NASA Astrophysics Data System (ADS)
Zhang, Wei; Rao, Qiaomeng
2018-01-01
In order to solve the problem of high speed, large capacity and limited spectrum resources of satellite communication network, a double-layered satellite network with global seamless coverage based on laser and microwave hybrid links is proposed in this paper. By analyzing the characteristics of the double-layered satellite network with laser and microwave hybrid links, an effectiveness evaluation index system for the network is established. And then, the fuzzy analytic hierarchy process, which combines the analytic hierarchy process and the fuzzy comprehensive evaluation theory, is used to evaluate the effectiveness of the double-layered satellite network with laser and microwave hybrid links. Furthermore, the evaluation result of the proposed hybrid link network is obtained by simulation. The effectiveness evaluation process of the proposed double-layered satellite network with laser and microwave hybrid links can help to optimize the design of hybrid link double-layered satellite network and improve the operating efficiency of the satellite system.
Dissociable meta-analytic brain networks contribute to coordinated emotional processing.
Riedel, Michael C; Yanes, Julio A; Ray, Kimberly L; Eickhoff, Simon B; Fox, Peter T; Sutherland, Matthew T; Laird, Angela R
2018-06-01
Meta-analytic techniques for mining the neuroimaging literature continue to exert an impact on our conceptualization of functional brain networks contributing to human emotion and cognition. Traditional theories regarding the neurobiological substrates contributing to affective processing are shifting from regional- towards more network-based heuristic frameworks. To elucidate differential brain network involvement linked to distinct aspects of emotion processing, we applied an emergent meta-analytic clustering approach to the extensive body of affective neuroimaging results archived in the BrainMap database. Specifically, we performed hierarchical clustering on the modeled activation maps from 1,747 experiments in the affective processing domain, resulting in five meta-analytic groupings of experiments demonstrating whole-brain recruitment. Behavioral inference analyses conducted for each of these groupings suggested dissociable networks supporting: (1) visual perception within primary and associative visual cortices, (2) auditory perception within primary auditory cortices, (3) attention to emotionally salient information within insular, anterior cingulate, and subcortical regions, (4) appraisal and prediction of emotional events within medial prefrontal and posterior cingulate cortices, and (5) induction of emotional responses within amygdala and fusiform gyri. These meta-analytic outcomes are consistent with a contemporary psychological model of affective processing in which emotionally salient information from perceived stimuli are integrated with previous experiences to engender a subjective affective response. This study highlights the utility of using emergent meta-analytic methods to inform and extend psychological theories and suggests that emotions are manifest as the eventual consequence of interactions between large-scale brain networks. © 2018 Wiley Periodicals, Inc.
Statistically Qualified Neuro-Analytic system and Method for Process Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilim, Richard B.; Garcia, Humberto E.; Chen, Frederick W.
1998-11-04
An apparatus and method for monitoring a process involves development and application of a statistically qualified neuro-analytic (SQNA) model to accurately and reliably identify process change. The development of the SQNA model is accomplished in two steps: deterministic model adaption and stochastic model adaptation. Deterministic model adaption involves formulating an analytic model of the process representing known process characteristics,augmenting the analytic model with a neural network that captures unknown process characteristics, and training the resulting neuro-analytic model by adjusting the neural network weights according to a unique scaled equation emor minimization technique. Stochastic model adaptation involves qualifying any remaining uncertaintymore » in the trained neuro-analytic model by formulating a likelihood function, given an error propagation equation, for computing the probability that the neuro-analytic model generates measured process output. Preferably, the developed SQNA model is validated using known sequential probability ratio tests and applied to the process as an on-line monitoring system.« less
INTEGRATED ENVIRONMENTAL ASSESSMENT OF THE MID-ATLANTIC REGION WITH ANALYTICAL NETWORK PROCESS
A decision analysis method for integrating environmental indicators was developed. This was a combination of Principal Component Analysis (PCA) and the Analytic Network Process (ANP). Being able to take into account interdependency among variables, the method was capable of ran...
Statistically qualified neuro-analytic failure detection method and system
Vilim, Richard B.; Garcia, Humberto E.; Chen, Frederick W.
2002-03-02
An apparatus and method for monitoring a process involve development and application of a statistically qualified neuro-analytic (SQNA) model to accurately and reliably identify process change. The development of the SQNA model is accomplished in two stages: deterministic model adaption and stochastic model modification of the deterministic model adaptation. Deterministic model adaption involves formulating an analytic model of the process representing known process characteristics, augmenting the analytic model with a neural network that captures unknown process characteristics, and training the resulting neuro-analytic model by adjusting the neural network weights according to a unique scaled equation error minimization technique. Stochastic model modification involves qualifying any remaining uncertainty in the trained neuro-analytic model by formulating a likelihood function, given an error propagation equation, for computing the probability that the neuro-analytic model generates measured process output. Preferably, the developed SQNA model is validated using known sequential probability ratio tests and applied to the process as an on-line monitoring system. Illustrative of the method and apparatus, the method is applied to a peristaltic pump system.
THREAT ANTICIPATION AND DECEPTIVE REASONING USING BAYESIAN BELIEF NETWORKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allgood, Glenn O; Olama, Mohammed M; Lake, Joe E
Recent events highlight the need for tools to anticipate threats posed by terrorists. Assessing these threats requires combining information from disparate data sources such as analytic models, simulations, historical data, sensor networks, and user judgments. These disparate data can be combined in a coherent, analytically defensible, and understandable manner using a Bayesian belief network (BBN). In this paper, we develop a BBN threat anticipatory model based on a deceptive reasoning algorithm using a network engineering process that treats the probability distributions of the BBN nodes within the broader context of the system development process.
Analytic Networks in Music Task Definition.
ERIC Educational Resources Information Center
Piper, Richard M.
For a student to acquire the conceptual systems of a discipline, the designer must reflect that structure or analytic network in his curriculum. The four networks identified for music and used in the development of the Southwest Regional Laboratory (SWRL) Music Program are the variable-value, the whole-part, the process-stage, and the class-member…
NASA Astrophysics Data System (ADS)
Wu, Linqin; Xu, Sheng; Jiang, Dezhi
2015-12-01
Industrial wireless networked control system has been widely used, and how to evaluate the performance of the wireless network is of great significance. In this paper, considering the shortcoming of the existing performance evaluation methods, a comprehensive performance evaluation method of networks multi-indexes fuzzy analytic hierarchy process (MFAHP) combined with the fuzzy mathematics and the traditional analytic hierarchy process (AHP) is presented. The method can overcome that the performance evaluation is not comprehensive and subjective. Experiments show that the method can reflect the network performance of real condition. It has direct guiding role on protocol selection, network cabling, and node setting, and can meet the requirements of different occasions by modifying the underlying parameters.
Ku-band signal design study. [space shuttle orbiter data processing network
NASA Technical Reports Server (NTRS)
Rubin, I.
1978-01-01
Analytical tools, methods and techniques for assessing the design and performance of the space shuttle orbiter data processing system (DPS) are provided. The computer data processing network is evaluated in the key areas of queueing behavior synchronization and network reliability. The structure of the data processing network is described as well as the system operation principles and the network configuration. The characteristics of the computer systems are indicated. System reliability measures are defined and studied. System and network invulnerability measures are computed. Communication path and network failure analysis techniques are included.
A Fuzzy-Based Decision Support Model for Selecting the Best Dialyser Flux in Haemodialysis.
Oztürk, Necla; Tozan, Hakan
2015-01-01
Decision making is an important procedure for every organization. The procedure is particularly challenging for complicated multi-criteria problems. Selection of dialyser flux is one of the decisions routinely made for haemodialysis treatment provided for chronic kidney failure patients. This study provides a decision support model for selecting the best dialyser flux between high-flux and low-flux dialyser alternatives. The preferences of decision makers were collected via a questionnaire. A total of 45 questionnaires filled by dialysis physicians and nephrologists were assessed. A hybrid fuzzy-based decision support software that enables the use of Analytic Hierarchy Process (AHP), Fuzzy Analytic Hierarchy Process (FAHP), Analytic Network Process (ANP), and Fuzzy Analytic Network Process (FANP) was used to evaluate the flux selection model. In conclusion, the results showed that a high-flux dialyser is the best. option for haemodialysis treatment.
Discovery of Information Diffusion Process in Social Networks
NASA Astrophysics Data System (ADS)
Kim, Kwanho; Jung, Jae-Yoon; Park, Jonghun
Information diffusion analysis in social networks is of significance since it enables us to deeply understand dynamic social interactions among users. In this paper, we introduce approaches to discovering information diffusion process in social networks based on process mining. Process mining techniques are applied from three perspectives: social network analysis, process discovery and community recognition. We then present experimental results by using a real-life social network data. The proposed techniques are expected to employ as new analytical tools in online social networks such as blog and wikis for company marketers, politicians, news reporters and online writers.
Schilbach, Leonhard; Müller, Veronika I; Hoffstaedter, Felix; Clos, Mareike; Goya-Maldonado, Roberto; Gruber, Oliver; Eickhoff, Simon B
2014-01-01
Alterations of social cognition and dysfunctional interpersonal expectations are thought to play an important role in the etiology of depression and have, thus, become a key target of psychotherapeutic interventions. The underlying neurobiology, however, remains elusive. Based upon the idea of a close link between affective and introspective processes relevant for social interactions and alterations thereof in states of depression, we used a meta-analytically informed network analysis to investigate resting-state functional connectivity in an introspective socio-affective (ISA) network in individuals with and without depression. Results of our analysis demonstrate significant differences between the groups with depressed individuals showing hyperconnectivity of the ISA network. These findings demonstrate that neurofunctional alterations exist in individuals with depression in a neural network relevant for introspection and socio-affective processing, which may contribute to the interpersonal difficulties that are linked to depressive symptomatology.
Schilbach, Leonhard; Müller, Veronika I.; Hoffstaedter, Felix; Clos, Mareike; Goya-Maldonado, Roberto
2014-01-01
Alterations of social cognition and dysfunctional interpersonal expectations are thought to play an important role in the etiology of depression and have, thus, become a key target of psychotherapeutic interventions. The underlying neurobiology, however, remains elusive. Based upon the idea of a close link between affective and introspective processes relevant for social interactions and alterations thereof in states of depression, we used a meta-analytically informed network analysis to investigate resting-state functional connectivity in an introspective socio-affective (ISA) network in individuals with and without depression. Results of our analysis demonstrate significant differences between the groups with depressed individuals showing hyperconnectivity of the ISA network. These findings demonstrate that neurofunctional alterations exist in individuals with depression in a neural network relevant for introspection and socio-affective processing, which may contribute to the interpersonal difficulties that are linked to depressive symptomatology. PMID:24759619
Collective relaxation dynamics of small-world networks
NASA Astrophysics Data System (ADS)
Grabow, Carsten; Grosskinsky, Stefan; Kurths, Jürgen; Timme, Marc
2015-05-01
Complex networks exhibit a wide range of collective dynamic phenomena, including synchronization, diffusion, relaxation, and coordination processes. Their asymptotic dynamics is generically characterized by the local Jacobian, graph Laplacian, or a similar linear operator. The structure of networks with regular, small-world, and random connectivities are reasonably well understood, but their collective dynamical properties remain largely unknown. Here we present a two-stage mean-field theory to derive analytic expressions for network spectra. A single formula covers the spectrum from regular via small-world to strongly randomized topologies in Watts-Strogatz networks, explaining the simultaneous dependencies on network size N , average degree k , and topological randomness q . We present simplified analytic predictions for the second-largest and smallest eigenvalue, and numerical checks confirm our theoretical predictions for zero, small, and moderate topological randomness q , including the entire small-world regime. For large q of the order of one, we apply standard random matrix theory, thereby overarching the full range from regular to randomized network topologies. These results may contribute to our analytic and mechanistic understanding of collective relaxation phenomena of network dynamical systems.
Collective relaxation dynamics of small-world networks.
Grabow, Carsten; Grosskinsky, Stefan; Kurths, Jürgen; Timme, Marc
2015-05-01
Complex networks exhibit a wide range of collective dynamic phenomena, including synchronization, diffusion, relaxation, and coordination processes. Their asymptotic dynamics is generically characterized by the local Jacobian, graph Laplacian, or a similar linear operator. The structure of networks with regular, small-world, and random connectivities are reasonably well understood, but their collective dynamical properties remain largely unknown. Here we present a two-stage mean-field theory to derive analytic expressions for network spectra. A single formula covers the spectrum from regular via small-world to strongly randomized topologies in Watts-Strogatz networks, explaining the simultaneous dependencies on network size N, average degree k, and topological randomness q. We present simplified analytic predictions for the second-largest and smallest eigenvalue, and numerical checks confirm our theoretical predictions for zero, small, and moderate topological randomness q, including the entire small-world regime. For large q of the order of one, we apply standard random matrix theory, thereby overarching the full range from regular to randomized network topologies. These results may contribute to our analytic and mechanistic understanding of collective relaxation phenomena of network dynamical systems.
MapReduce Based Parallel Bayesian Network for Manufacturing Quality Control
NASA Astrophysics Data System (ADS)
Zheng, Mao-Kuan; Ming, Xin-Guo; Zhang, Xian-Yu; Li, Guo-Ming
2017-09-01
Increasing complexity of industrial products and manufacturing processes have challenged conventional statistics based quality management approaches in the circumstances of dynamic production. A Bayesian network and big data analytics integrated approach for manufacturing process quality analysis and control is proposed. Based on Hadoop distributed architecture and MapReduce parallel computing model, big volume and variety quality related data generated during the manufacturing process could be dealt with. Artificial intelligent algorithms, including Bayesian network learning, classification and reasoning, are embedded into the Reduce process. Relying on the ability of the Bayesian network in dealing with dynamic and uncertain problem and the parallel computing power of MapReduce, Bayesian network of impact factors on quality are built based on prior probability distribution and modified with posterior probability distribution. A case study on hull segment manufacturing precision management for ship and offshore platform building shows that computing speed accelerates almost directly proportionally to the increase of computing nodes. It is also proved that the proposed model is feasible for locating and reasoning of root causes, forecasting of manufacturing outcome, and intelligent decision for precision problem solving. The integration of bigdata analytics and BN method offers a whole new perspective in manufacturing quality control.
Wearable Networked Sensing for Human Mobility and Activity Analytics: A Systems Study.
Dong, Bo; Biswas, Subir
2012-01-01
This paper presents implementation details, system characterization, and the performance of a wearable sensor network that was designed for human activity analysis. Specific machine learning mechanisms are implemented for recognizing a target set of activities with both out-of-body and on-body processing arrangements. Impacts of energy consumption by the on-body sensors are analyzed in terms of activity detection accuracy for out-of-body processing. Impacts of limited processing abilities in the on-body scenario are also characterized in terms of detection accuracy, by varying the background processing load in the sensor units. Through a rigorous systems study, it is shown that an efficient human activity analytics system can be designed and operated even under energy and processing constraints of tiny on-body wearable sensors.
Analytical reasoning task reveals limits of social learning in networks
Rahwan, Iyad; Krasnoshtan, Dmytro; Shariff, Azim; Bonnefon, Jean-François
2014-01-01
Social learning—by observing and copying others—is a highly successful cultural mechanism for adaptation, outperforming individual information acquisition and experience. Here, we investigate social learning in the context of the uniquely human capacity for reflective, analytical reasoning. A hallmark of the human mind is its ability to engage analytical reasoning, and suppress false associative intuitions. Through a set of laboratory-based network experiments, we find that social learning fails to propagate this cognitive strategy. When people make false intuitive conclusions and are exposed to the analytic output of their peers, they recognize and adopt this correct output. But they fail to engage analytical reasoning in similar subsequent tasks. Thus, humans exhibit an ‘unreflective copying bias’, which limits their social learning to the output, rather than the process, of their peers’ reasoning—even when doing so requires minimal effort and no technical skill. In contrast to much recent work on observation-based social learning, which emphasizes the propagation of successful behaviour through copying, our findings identify a limit on the power of social networks in situations that require analytical reasoning. PMID:24501275
Analytical reasoning task reveals limits of social learning in networks.
Rahwan, Iyad; Krasnoshtan, Dmytro; Shariff, Azim; Bonnefon, Jean-François
2014-04-06
Social learning-by observing and copying others-is a highly successful cultural mechanism for adaptation, outperforming individual information acquisition and experience. Here, we investigate social learning in the context of the uniquely human capacity for reflective, analytical reasoning. A hallmark of the human mind is its ability to engage analytical reasoning, and suppress false associative intuitions. Through a set of laboratory-based network experiments, we find that social learning fails to propagate this cognitive strategy. When people make false intuitive conclusions and are exposed to the analytic output of their peers, they recognize and adopt this correct output. But they fail to engage analytical reasoning in similar subsequent tasks. Thus, humans exhibit an 'unreflective copying bias', which limits their social learning to the output, rather than the process, of their peers' reasoning-even when doing so requires minimal effort and no technical skill. In contrast to much recent work on observation-based social learning, which emphasizes the propagation of successful behaviour through copying, our findings identify a limit on the power of social networks in situations that require analytical reasoning.
Theory of nonstationary Hawkes processes
NASA Astrophysics Data System (ADS)
Tannenbaum, Neta Ravid; Burak, Yoram
2017-12-01
We expand the theory of Hawkes processes to the nonstationary case, in which the mutually exciting point processes receive time-dependent inputs. We derive an analytical expression for the time-dependent correlations, which can be applied to networks with arbitrary connectivity, and inputs with arbitrary statistics. The expression shows how the network correlations are determined by the interplay between the network topology, the transfer functions relating units within the network, and the pattern and statistics of the external inputs. We illustrate the correlation structure using several examples in which neural network dynamics are modeled as a Hawkes process. In particular, we focus on the interplay between internally and externally generated oscillations and their signatures in the spike and rate correlation functions.
NASA Astrophysics Data System (ADS)
Adelina, W.; Kusumastuti, R. D.
2017-01-01
This study is about business strategy selection for green supply chain management (GSCM) for PT XYZ by using Analytic Network Process (ANP). GSCM is initiated as a response to reduce environmental impacts from industrial activities. The purposes of this study are identifying criteria and sub criteria in selecting GSCM Strategy, and analysing a suitable GSCM strategy for PT XYZ. This study proposes ANP network with 6 criteria and 29 sub criteria, which are obtained from the literature and experts’ judgements. One of the six criteria contains GSCM strategy options, namely risk-based strategy, efficiency-based strategy, innovation-based strategy, and closed loop strategy. ANP solves complex GSCM strategy-selection by using a more structured process and considering green perspectives from experts. The result indicates that innovation-based strategy is the most suitable green supply chain management strategy for PT XYZ.
Controlling Contagion Processes in Activity Driven Networks
NASA Astrophysics Data System (ADS)
Liu, Suyu; Perra, Nicola; Karsai, Márton; Vespignani, Alessandro
2014-03-01
The vast majority of strategies aimed at controlling contagion processes on networks consider the connectivity pattern of the system either quenched or annealed. However, in the real world, many networks are highly dynamical and evolve, in time, concurrently with the contagion process. Here, we derive an analytical framework for the study of control strategies specifically devised for a class of time-varying networks, namely activity-driven networks. We develop a block variable mean-field approach that allows the derivation of the equations describing the coevolution of the contagion process and the network dynamic. We derive the critical immunization threshold and assess the effectiveness of three different control strategies. Finally, we validate the theoretical picture by simulating numerically the spreading process and control strategies in both synthetic networks and a large-scale, real-world, mobile telephone call data set.
Adverse outcome pathway networks II: Network analytics
The US EPA is developing more cost effective and efficient ways to evaluate chemical safety using high throughput and computationally based testing strategies. An important component of this approach is the ability to translate chemical effects on fundamental biological processes...
ERIC Educational Resources Information Center
Sanborn, Mark
2011-01-01
Wireless sensor networks (WSNs) represent a class of miniaturized information systems designed to monitor physical environments. These smart monitoring systems form collaborative networks utilizing autonomous sensing, data-collection, and processing to provide real-time analytics of observed environments. As a fundamental research area in…
Analytical Computation of the Epidemic Threshold on Temporal Networks
NASA Astrophysics Data System (ADS)
Valdano, Eugenio; Ferreri, Luca; Poletto, Chiara; Colizza, Vittoria
2015-04-01
The time variation of contacts in a networked system may fundamentally alter the properties of spreading processes and affect the condition for large-scale propagation, as encoded in the epidemic threshold. Despite the great interest in the problem for the physics, applied mathematics, computer science, and epidemiology communities, a full theoretical understanding is still missing and currently limited to the cases where the time-scale separation holds between spreading and network dynamics or to specific temporal network models. We consider a Markov chain description of the susceptible-infectious-susceptible process on an arbitrary temporal network. By adopting a multilayer perspective, we develop a general analytical derivation of the epidemic threshold in terms of the spectral radius of a matrix that encodes both network structure and disease dynamics. The accuracy of the approach is confirmed on a set of temporal models and empirical networks and against numerical results. In addition, we explore how the threshold changes when varying the overall time of observation of the temporal network, so as to provide insights on the optimal time window for data collection of empirical temporal networked systems. Our framework is of both fundamental and practical interest, as it offers novel understanding of the interplay between temporal networks and spreading dynamics.
Fault detection and diagnosis using neural network approaches
NASA Technical Reports Server (NTRS)
Kramer, Mark A.
1992-01-01
Neural networks can be used to detect and identify abnormalities in real-time process data. Two basic approaches can be used, the first based on training networks using data representing both normal and abnormal modes of process behavior, and the second based on statistical characterization of the normal mode only. Given data representative of process faults, radial basis function networks can effectively identify failures. This approach is often limited by the lack of fault data, but can be facilitated by process simulation. The second approach employs elliptical and radial basis function neural networks and other models to learn the statistical distributions of process observables under normal conditions. Analytical models of failure modes can then be applied in combination with the neural network models to identify faults. Special methods can be applied to compensate for sensor failures, to produce real-time estimation of missing or failed sensors based on the correlations codified in the neural network.
xQuake: A Modern Approach to Seismic Network Analytics
NASA Astrophysics Data System (ADS)
Johnson, C. E.; Aikin, K. E.
2017-12-01
While seismic networks have expanded over the past few decades, and social needs for accurate and timely information has increased dramatically, approaches to the operational needs of both global and regional seismic observatories have been slow to adopt new technologies. This presentation presents the xQuake system that provides a fresh approach to seismic network analytics based on complexity theory and an adaptive architecture of streaming connected microservices as diverse data (picks, beams, and other data) flow into a final, curated catalog of events. The foundation for xQuake is the xGraph (executable graph) framework that is essentially a self-organizing graph database. An xGraph instance provides both the analytics as well as the data storage capabilities at the same time. Much of the analytics, such as synthetic annealing in the detection process and an evolutionary programing approach for event evolution, draws from the recent GLASS 3.0 seismic associator developed by and for the USGS National Earthquake Information Center (NEIC). In some respects xQuake is reminiscent of the Earthworm system, in that it comprises processes interacting through store and forward rings; not surprising as the first author was the lead architect of the original Earthworm project when it was known as "Rings and Things". While Earthworm components can easily be integrated into the xGraph processing framework, the architecture and analytics are more current (e.g. using a Kafka Broker for store and forward rings). The xQuake system is being released under an unrestricted open source license to encourage and enable sthe eismic community support in further development of its capabilities.
Visual analysis of large heterogeneous social networks by semantic and structural abstraction.
Shen, Zeqian; Ma, Kwan-Liu; Eliassi-Rad, Tina
2006-01-01
Social network analysis is an active area of study beyond sociology. It uncovers the invisible relationships between actors in a network and provides understanding of social processes and behaviors. It has become an important technique in a variety of application areas such as the Web, organizational studies, and homeland security. This paper presents a visual analytics tool, OntoVis, for understanding large, heterogeneous social networks, in which nodes and links could represent different concepts and relations, respectively. These concepts and relations are related through an ontology (also known as a schema). OntoVis is named such because it uses information in the ontology associated with a social network to semantically prune a large, heterogeneous network. In addition to semantic abstraction, OntoVis also allows users to do structural abstraction and importance filtering to make large networks manageable and to facilitate analytic reasoning. All these unique capabilities of OntoVis are illustrated with several case studies.
Process-based network decomposition reveals backbone motif structure
Wang, Guanyu; Du, Chenghang; Chen, Hao; Simha, Rahul; Rong, Yongwu; Xiao, Yi; Zeng, Chen
2010-01-01
A central challenge in systems biology today is to understand the network of interactions among biomolecules and, especially, the organizing principles underlying such networks. Recent analysis of known networks has identified small motifs that occur ubiquitously, suggesting that larger networks might be constructed in the manner of electronic circuits by assembling groups of these smaller modules. Using a unique process-based approach to analyzing such networks, we show for two cell-cycle networks that each of these networks contains a giant backbone motif spanning all the network nodes that provides the main functional response. The backbone is in fact the smallest network capable of providing the desired functionality. Furthermore, the remaining edges in the network form smaller motifs whose role is to confer stability properties rather than provide function. The process-based approach used in the above analysis has additional benefits: It is scalable, analytic (resulting in a single analyzable expression that describes the behavior), and computationally efficient (all possible minimal networks for a biological process can be identified and enumerated). PMID:20498084
Random walks on activity-driven networks with attractiveness
NASA Astrophysics Data System (ADS)
Alessandretti, Laura; Sun, Kaiyuan; Baronchelli, Andrea; Perra, Nicola
2017-05-01
Virtually all real-world networks are dynamical entities. In social networks, the propensity of nodes to engage in social interactions (activity) and their chances to be selected by active nodes (attractiveness) are heterogeneously distributed. Here, we present a time-varying network model where each node and the dynamical formation of ties are characterized by these two features. We study how these properties affect random-walk processes unfolding on the network when the time scales describing the process and the network evolution are comparable. We derive analytical solutions for the stationary state and the mean first-passage time of the process, and we study cases informed by empirical observations of social networks. Our work shows that previously disregarded properties of real social systems, such as heterogeneous distributions of activity and attractiveness as well as the correlations between them, substantially affect the dynamical process unfolding on the network.
Inter-layer synchronization in multiplex networks of identical layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sevilla-Escoboza, R.; Sendiña-Nadal, I.; Leyva, I.
2016-06-15
Inter-layer synchronization is a distinctive process of multiplex networks whereby each node in a given layer evolves synchronously with all its replicas in other layers, irrespective of whether or not it is synchronized with the other units of the same layer. We analytically derive the necessary conditions for the existence and stability of such a state, and verify numerically the analytical predictions in several cases where such a state emerges. We further inspect its robustness against a progressive de-multiplexing of the network, and provide experimental evidence by means of multiplexes of nonlinear electronic circuits affected by intrinsic noise and parametermore » mismatch.« less
Networks in Action: New Actors and Practices in Education Policy in Brazil
ERIC Educational Resources Information Center
Shiroma, Eneida Oto
2014-01-01
This paper focuses on the role of networks in the policy-making process in education and discusses the potential of network analysis as an analytical tool for education policy research. Drawing on publically available data from personal or institutional websites, this paper reports the findings from research carried out between 2005 and 2011.…
Kepinska, Olga; de Rover, Mischa; Caspers, Johanneke; Schiller, Niels O
2017-03-01
In an effort to advance the understanding of brain function and organisation accompanying second language learning, we investigate the neural substrates of novel grammar learning in a group of healthy adults, consisting of participants with high and average language analytical abilities (LAA). By means of an Independent Components Analysis, a data-driven approach to functional connectivity of the brain, the fMRI data collected during a grammar-learning task were decomposed into maps representing separate cognitive processes. These included the default mode, task-positive, working memory, visual, cerebellar and emotional networks. We further tested for differences within the components, representing individual differences between the High and Average LAA learners. We found high analytical abilities to be coupled with stronger contributions to the task-positive network from areas adjacent to bilateral Broca's region, stronger connectivity within the working memory network and within the emotional network. Average LAA participants displayed stronger engagement within the task-positive network from areas adjacent to the right-hemisphere homologue of Broca's region and typical to lower level processing (visual word recognition), and increased connectivity within the default mode network. The significance of each of the identified networks for the grammar learning process is presented next to a discussion on the established markers of inter-individual learners' differences. We conclude that in terms of functional connectivity, the engagement of brain's networks during grammar acquisition is coupled with one's language learning abilities. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Weihua; Tang, Shaoting; Fang, Wenyi; Guo, Quantong; Zhang, Xiao; Zheng, Zhiming
2015-10-01
The information diffusion process in single complex networks has been extensively studied, especially for modeling the spreading activities in online social networks. However, individuals usually use multiple social networks at the same time, and can share the information they have learned from one social network to another. This phenomenon gives rise to a new diffusion process on multiplex networks with more than one network layer. In this paper we account for this multiplex network spreading by proposing a model of information diffusion in two-layer multiplex networks. We develop a theoretical framework using bond percolation and cascading failure to describe the intralayer and interlayer diffusion. This allows us to obtain analytical solutions for the fraction of informed individuals as a function of transmissibility T and the interlayer transmission rate θ . Simulation results show that interaction between layers can greatly enhance the information diffusion process. And explosive diffusion can occur even if the transmissibility of the focal layer is under the critical threshold, due to interlayer transmission.
Reactive power optimization strategy considering analytical impedance ratio
NASA Astrophysics Data System (ADS)
Wu, Zhongchao; Shen, Weibing; Liu, Jinming; Guo, Maoran; Zhang, Shoulin; Xu, Keqiang; Wang, Wanjun; Sui, Jinlong
2017-05-01
In this paper, considering the traditional reactive power optimization cannot realize the continuous voltage adjustment and voltage stability, a dynamic reactive power optimization strategy is proposed in order to achieve both the minimization of network loss and high voltage stability with wind power. Due to the fact that wind power generation is fluctuant and uncertain, electrical equipments such as transformers and shunt capacitors may be operated frequently in order to achieve minimization of network loss, which affect the lives of these devices. In order to solve this problem, this paper introduces the derivation process of analytical impedance ratio based on Thevenin equivalent. Thus, the multiple objective function is proposed to minimize the network loss and analytical impedance ratio. Finally, taking the improved IEEE 33-bus distribution system as example, the result shows that the movement of voltage control equipment has been reduced and network loss increment is controlled at the same time, which proves the applicable value of this strategy.
Mapping Systemic Risk: Critical Degree and Failures Distribution in Financial Networks.
Smerlak, Matteo; Stoll, Brady; Gupta, Agam; Magdanz, James S
2015-01-01
The financial crisis illustrated the need for a functional understanding of systemic risk in strongly interconnected financial structures. Dynamic processes on complex networks being intrinsically difficult to model analytically, most recent studies of this problem have relied on numerical simulations. Here we report analytical results in a network model of interbank lending based on directly relevant financial parameters, such as interest rates and leverage ratios. We obtain a closed-form formula for the "critical degree" (the number of creditors per bank below which an individual shock can propagate throughout the network), and relate failures distributions to network topologies, in particular scalefree ones. Our criterion for the onset of contagion turns out to be isomorphic to the condition for cooperation to evolve on graphs and social networks, as recently formulated in evolutionary game theory. This remarkable connection supports recent calls for a methodological rapprochement between finance and ecology.
Mapping Systemic Risk: Critical Degree and Failures Distribution in Financial Networks
Smerlak, Matteo; Stoll, Brady; Gupta, Agam; Magdanz, James S.
2015-01-01
The financial crisis illustrated the need for a functional understanding of systemic risk in strongly interconnected financial structures. Dynamic processes on complex networks being intrinsically difficult to model analytically, most recent studies of this problem have relied on numerical simulations. Here we report analytical results in a network model of interbank lending based on directly relevant financial parameters, such as interest rates and leverage ratios. We obtain a closed-form formula for the “critical degree” (the number of creditors per bank below which an individual shock can propagate throughout the network), and relate failures distributions to network topologies, in particular scalefree ones. Our criterion for the onset of contagion turns out to be isomorphic to the condition for cooperation to evolve on graphs and social networks, as recently formulated in evolutionary game theory. This remarkable connection supports recent calls for a methodological rapprochement between finance and ecology. PMID:26207631
A Holistic Management Architecture for Large-Scale Adaptive Networks
2007-09-01
transmission and processing overhead required for management. The challenges of building models to describe dynamic systems are well-known to the field of...increases the challenge of finding a simple approach to assessing the state of the network. Moreover, the performance state of one network link may be... challenging . These obstacles indicate the need for a less comprehensive-analytical, more systemic-holistic approach to managing networks. This approach might
Disassortativity of random critical branching trees
NASA Astrophysics Data System (ADS)
Kim, J. S.; Kahng, B.; Kim, D.
2009-06-01
Random critical branching trees (CBTs) are generated by the multiplicative branching process, where the branching number is determined stochastically, independent of the degree of their ancestor. Here we show analytically that despite this stochastic independence, there exists the degree-degree correlation (DDC) in the CBT and it is disassortative. Moreover, the skeletons of fractal networks, the maximum spanning trees formed by the edge betweenness centrality, behave similarly to the CBT in the DDC. This analytic solution and observation support the argument that the fractal scaling in complex networks originates from the disassortativity in the DDC.
Definition and characterization of an extended social-affective default network.
Amft, Maren; Bzdok, Danilo; Laird, Angela R; Fox, Peter T; Schilbach, Leonhard; Eickhoff, Simon B
2015-03-01
Recent evidence suggests considerable overlap between the default mode network (DMN) and regions involved in social, affective and introspective processes. We considered these overlapping regions as the social-affective part of the DMN. In this study, we established a robust mapping of the underlying brain network formed by these regions and those strongly connected to them (the extended social-affective default network). We first seeded meta-analytic connectivity modeling and resting-state analyses in the meta-analytically defined DMN regions that showed statistical overlap with regions associated with social and affective processing. Consensus connectivity of each seed was subsequently delineated by a conjunction across both connectivity analyses. We then functionally characterized the ensuing regions and performed several cluster analyses. Among the identified regions, the amygdala/hippocampus formed a cluster associated with emotional processes and memory functions. The ventral striatum, anterior cingulum, subgenual cingulum and ventromedial prefrontal cortex formed a heterogeneous subgroup associated with motivation, reward and cognitive modulation of affect. Posterior cingulum/precuneus and dorsomedial prefrontal cortex were associated with mentalizing, self-reference and autobiographic information. The cluster formed by the temporo-parietal junction and anterior middle temporal sulcus/gyrus was associated with language and social cognition. Taken together, the current work highlights a robustly interconnected network that may be central to introspective, socio-affective, that is, self- and other-related mental processes.
A generalized theory of preferential linking
NASA Astrophysics Data System (ADS)
Hu, Haibo; Guo, Jinli; Liu, Xuan; Wang, Xiaofan
2014-12-01
There are diverse mechanisms driving the evolution of social networks. A key open question dealing with understanding their evolution is: How do various preferential linking mechanisms produce networks with different features? In this paper we first empirically study preferential linking phenomena in an evolving online social network, find and validate the linear preference. We propose an analyzable model which captures the real growth process of the network and reveals the underlying mechanism dominating its evolution. Furthermore based on preferential linking we propose a generalized model reproducing the evolution of online social networks, and present unified analytical results describing network characteristics for 27 preference scenarios. We study the mathematical structure of degree distributions and find that within the framework of preferential linking analytical degree distributions can only be the combinations of finite kinds of functions which are related to rational, logarithmic and inverse tangent functions, and extremely complex network structure will emerge even for very simple sublinear preferential linking. This work not only provides a verifiable origin for the emergence of various network characteristics in social networks, but bridges the micro individuals' behaviors and the global organization of social networks.
Firing rate dynamics in recurrent spiking neural networks with intrinsic and network heterogeneity.
Ly, Cheng
2015-12-01
Heterogeneity of neural attributes has recently gained a lot of attention and is increasing recognized as a crucial feature in neural processing. Despite its importance, this physiological feature has traditionally been neglected in theoretical studies of cortical neural networks. Thus, there is still a lot unknown about the consequences of cellular and circuit heterogeneity in spiking neural networks. In particular, combining network or synaptic heterogeneity and intrinsic heterogeneity has yet to be considered systematically despite the fact that both are known to exist and likely have significant roles in neural network dynamics. In a canonical recurrent spiking neural network model, we study how these two forms of heterogeneity lead to different distributions of excitatory firing rates. To analytically characterize how these types of heterogeneities affect the network, we employ a dimension reduction method that relies on a combination of Monte Carlo simulations and probability density function equations. We find that the relationship between intrinsic and network heterogeneity has a strong effect on the overall level of heterogeneity of the firing rates. Specifically, this relationship can lead to amplification or attenuation of firing rate heterogeneity, and these effects depend on whether the recurrent network is firing asynchronously or rhythmically firing. These observations are captured with the aforementioned reduction method, and furthermore simpler analytic descriptions based on this dimension reduction method are developed. The final analytic descriptions provide compact and descriptive formulas for how the relationship between intrinsic and network heterogeneity determines the firing rate heterogeneity dynamics in various settings.
Analytic Strategies of Streaming Data for eHealth.
Yoon, Sunmoo
2016-01-01
New analytic strategies for streaming big data from wearable devices and social media are emerging in ehealth. We face challenges to find meaningful patterns from big data because researchers face difficulties to process big volume of streaming data using traditional processing applications.1 This introductory 180 minutes tutorial offers hand-on instruction on analytics2 (e.g., topic modeling, social network analysis) of streaming data. This tutorial aims to provide practical strategies of information on reducing dimensionality using examples of big data. This tutorial will highlight strategies of incorporating domain experts and a comprehensive approach to streaming social media data.
Nekhay, Olexandr; Arriaza, Manuel; Boerboom, Luc
2009-07-01
The study presents an approach that combined objective information such as sampling or experimental data with subjective information such as expert opinions. This combined approach was based on the Analytic Network Process method. It was applied to evaluate soil erosion risk and overcomes one of the drawbacks of USLE/RUSLE soil erosion models, namely that they do not consider interactions among soil erosion factors. Another advantage of this method is that it can be used if there are insufficient experimental data. The lack of experimental data can be compensated for through the use of expert evaluations. As an example of the proposed approach, the risk of soil erosion was evaluated in olive groves in Southern Spain, showing the potential of the ANP method for modelling a complex physical process like soil erosion.
Nanophotonic particle simulation and inverse design using artificial neural networks.
Peurifoy, John; Shen, Yichen; Jing, Li; Yang, Yi; Cano-Renteria, Fidel; DeLacy, Brendan G; Joannopoulos, John D; Tegmark, Max; Soljačić, Marin
2018-06-01
We propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find that the network needs to be trained on only a small sampling of the data to approximate the simulation to high precision. Once the neural network is trained, it can simulate such optical processes orders of magnitude faster than conventional simulations. Furthermore, the trained neural network can be used to solve nanophotonic inverse design problems by using back propagation, where the gradient is analytical, not numerical.
Exploring activity-driven network with biased walks
NASA Astrophysics Data System (ADS)
Wang, Yan; Wu, Ding Juan; Lv, Fang; Su, Meng Long
We investigate the concurrent dynamics of biased random walks and the activity-driven network, where the preferential transition probability is in terms of the edge-weighting parameter. We also obtain the analytical expressions for stationary distribution and the coverage function in directed and undirected networks, all of which depend on the weight parameter. Appropriately adjusting this parameter, more effective search strategy can be obtained when compared with the unbiased random walk, whether in directed or undirected networks. Since network weights play a significant role in the diffusion process.
Big data and high-performance analytics in structural health monitoring for bridge management
NASA Astrophysics Data System (ADS)
Alampalli, Sharada; Alampalli, Sandeep; Ettouney, Mohammed
2016-04-01
Structural Health Monitoring (SHM) can be a vital tool for effective bridge management. Combining large data sets from multiple sources to create a data-driven decision-making framework is crucial for the success of SHM. This paper presents a big data analytics framework that combines multiple data sets correlated with functional relatedness to convert data into actionable information that empowers risk-based decision-making. The integrated data environment incorporates near real-time streams of semi-structured data from remote sensors, historical visual inspection data, and observations from structural analysis models to monitor, assess, and manage risks associated with the aging bridge inventories. Accelerated processing of dataset is made possible by four technologies: cloud computing, relational database processing, support from NOSQL database, and in-memory analytics. The framework is being validated on a railroad corridor that can be subjected to multiple hazards. The framework enables to compute reliability indices for critical bridge components and individual bridge spans. In addition, framework includes a risk-based decision-making process that enumerate costs and consequences of poor bridge performance at span- and network-levels when rail networks are exposed to natural hazard events such as floods and earthquakes. Big data and high-performance analytics enable insights to assist bridge owners to address problems faster.
NASA Astrophysics Data System (ADS)
Czuba, Jonathan A.; Foufoula-Georgiou, Efi; Gran, Karen B.; Belmont, Patrick; Wilcock, Peter R.
2017-05-01
Understanding how sediment moves along source to sink pathways through watersheds—from hillslopes to channels and in and out of floodplains—is a fundamental problem in geomorphology. We contribute to advancing this understanding by modeling the transport and in-channel storage dynamics of bed material sediment on a river network over a 600 year time period. Specifically, we present spatiotemporal changes in bed sediment thickness along an entire river network to elucidate how river networks organize and process sediment supply. We apply our model to sand transport in the agricultural Greater Blue Earth River Basin in Minnesota. By casting the arrival of sediment to links of the network as a Poisson process, we derive analytically (under supply-limited conditions) the time-averaged probability distribution function of bed sediment thickness for each link of the river network for any spatial distribution of inputs. Under transport-limited conditions, the analytical assumptions of the Poisson arrival process are violated (due to in-channel storage dynamics) where we find large fluctuations and periodicity in the time series of bed sediment thickness. The time series of bed sediment thickness is the result of dynamics on a network in propagating, altering, and amalgamating sediment inputs in sometimes unexpected ways. One key insight gleaned from the model is that there can be a small fraction of reaches with relatively low-transport capacity within a nonequilibrium river network acting as "bottlenecks" that control sediment to downstream reaches, whereby fluctuations in bed elevation can dissociate from signals in sediment supply.
Real-Time Visualization of Network Behaviors for Situational Awareness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Best, Daniel M.; Bohn, Shawn J.; Love, Douglas V.
Plentiful, complex, and dynamic data make understanding the state of an enterprise network difficult. Although visualization can help analysts understand baseline behaviors in network traffic and identify off-normal events, visual analysis systems often do not scale well to operational data volumes (in the hundreds of millions to billions of transactions per day) nor to analysis of emergent trends in real-time data. We present a system that combines multiple, complementary visualization techniques coupled with in-stream analytics, behavioral modeling of network actors, and a high-throughput processing platform called MeDICi. This system provides situational understanding of real-time network activity to help analysts takemore » proactive response steps. We have developed these techniques using requirements gathered from the government users for which the tools are being developed. By linking multiple visualization tools to a streaming analytic pipeline, and designing each tool to support a particular kind of analysis (from high-level awareness to detailed investigation), analysts can understand the behavior of a network across multiple levels of abstraction.« less
Hierarchical analytical and simulation modelling of human-machine systems with interference
NASA Astrophysics Data System (ADS)
Braginsky, M. Ya; Tarakanov, D. V.; Tsapko, S. G.; Tsapko, I. V.; Baglaeva, E. A.
2017-01-01
The article considers the principles of building the analytical and simulation model of the human operator and the industrial control system hardware and software. E-networks as the extension of Petri nets are used as the mathematical apparatus. This approach allows simulating complex parallel distributed processes in human-machine systems. The structural and hierarchical approach is used as the building method for the mathematical model of the human operator. The upper level of the human operator is represented by the logical dynamic model of decision making based on E-networks. The lower level reflects psychophysiological characteristics of the human-operator.
NASA Astrophysics Data System (ADS)
Han, Keesook J.; Hodge, Matthew; Ross, Virginia W.
2011-06-01
For monitoring network traffic, there is an enormous cost in collecting, storing, and analyzing network traffic datasets. Data mining based network traffic analysis has a growing interest in the cyber security community, but is computationally expensive for finding correlations between attributes in massive network traffic datasets. To lower the cost and reduce computational complexity, it is desirable to perform feasible statistical processing on effective reduced datasets instead of on the original full datasets. Because of the dynamic behavior of network traffic, traffic traces exhibit mixtures of heavy tailed statistical distributions or overdispersion. Heavy tailed network traffic characterization and visualization are important and essential tasks to measure network performance for the Quality of Services. However, heavy tailed distributions are limited in their ability to characterize real-time network traffic due to the difficulty of parameter estimation. The Entropy-Based Heavy Tailed Distribution Transformation (EHTDT) was developed to convert the heavy tailed distribution into a transformed distribution to find the linear approximation. The EHTDT linearization has the advantage of being amenable to characterize and aggregate overdispersion of network traffic in realtime. Results of applying the EHTDT for innovative visual analytics to real network traffic data are presented.
Elements of an algorithm for optimizing a parameter-structural neural network
NASA Astrophysics Data System (ADS)
Mrówczyńska, Maria
2016-06-01
The field of processing information provided by measurement results is one of the most important components of geodetic technologies. The dynamic development of this field improves classic algorithms for numerical calculations in the aspect of analytical solutions that are difficult to achieve. Algorithms based on artificial intelligence in the form of artificial neural networks, including the topology of connections between neurons have become an important instrument connected to the problem of processing and modelling processes. This concept results from the integration of neural networks and parameter optimization methods and makes it possible to avoid the necessity to arbitrarily define the structure of a network. This kind of extension of the training process is exemplified by the algorithm called the Group Method of Data Handling (GMDH), which belongs to the class of evolutionary algorithms. The article presents a GMDH type network, used for modelling deformations of the geometrical axis of a steel chimney during its operation.
Swarm intelligence metaheuristics for enhanced data analysis and optimization.
Hanrahan, Grady
2011-09-21
The swarm intelligence (SI) computing paradigm has proven itself as a comprehensive means of solving complicated analytical chemistry problems by emulating biologically-inspired processes. As global optimum search metaheuristics, associated algorithms have been widely used in training neural networks, function optimization, prediction and classification, and in a variety of process-based analytical applications. The goal of this review is to provide readers with critical insight into the utility of swarm intelligence tools as methods for solving complex chemical problems. Consideration will be given to algorithm development, ease of implementation and model performance, detailing subsequent influences on a number of application areas in the analytical, bioanalytical and detection sciences.
NASA Astrophysics Data System (ADS)
Rahmanita, E.; Widyaningrum, V. T.; Kustiyahningsih, Y.; Purnama, J.
2018-04-01
SMEs have a very important role in the development of the economy in Indonesia. SMEs assist the government in terms of creating new jobs and can support household income. The number of SMEs in Madura and the number of measurement indicators in the SME mapping so that it requires a method.This research uses Fuzzy Analytic Network Process (FANP) method for performance measurement SME. The FANP method can handle data that contains uncertainty. There is consistency index in determining decisions. Performance measurement in this study is based on a perspective of the Balanced Scorecard. This research approach integrated internal business perspective, learning, and growth perspective and fuzzy Analytic Network Process (FANP). The results of this research areframework a priority weighting of assessment indicators SME.
Wong, Yung-Hao; Wu, Chia-Chou; Wu, John Chung-Che; Lai, Hsien-Yong; Chen, Kai-Yun; Jheng, Bo-Ren; Chen, Mien-Cheng; Chang, Tzu-Hao; Chen, Bor-Sen
2016-01-01
Traumatic brain injury (TBI) is a primary injury caused by external physical force and also a secondary injury caused by biological processes such as metabolic, cellular, and other molecular events that eventually lead to brain cell death, tissue and nerve damage, and atrophy. It is a common disease process (as opposed to an event) that causes disabilities and high death rates. In order to treat all the repercussions of this injury, treatment becomes increasingly complex and difficult throughout the evolution of a TBI. Using high-throughput microarray data, we developed a systems biology approach to explore potential molecular mechanisms at four time points post-TBI (4, 8, 24, and 72 h), using a controlled cortical impact (CCI) model. We identified 27, 50, 48, and 59 significant proteins as network biomarkers at these four time points, respectively. We present their network structures to illustrate the protein–protein interactions (PPIs). We also identified UBC (Ubiquitin C), SUMO1, CDKN1A (cyclindependent kinase inhibitor 1A), and MYC as the core network biomarkers at the four time points, respectively. Using the functional analytical tool MetaCore™, we explored regulatory mechanisms and biological processes and conducted a statistical analysis of the four networks. The analytical results support some recent findings regarding TBI and provide additional guidance and directions for future research. PMID:26861311
Synchronizability of random rectangular graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estrada, Ernesto, E-mail: ernesto.estrada@strath.ac.uk; Chen, Guanrong
2015-08-15
Random rectangular graphs (RRGs) represent a generalization of the random geometric graphs in which the nodes are embedded into hyperrectangles instead of on hypercubes. The synchronizability of RRG model is studied. Both upper and lower bounds of the eigenratio of the network Laplacian matrix are determined analytically. It is proven that as the rectangular network is more elongated, the network becomes harder to synchronize. The synchronization processing behavior of a RRG network of chaotic Lorenz system nodes is numerically investigated, showing complete consistence with the theoretical results.
Nanophotonic particle simulation and inverse design using artificial neural networks
Peurifoy, John; Shen, Yichen; Jing, Li; Cano-Renteria, Fidel; DeLacy, Brendan G.; Joannopoulos, John D.; Tegmark, Max
2018-01-01
We propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find that the network needs to be trained on only a small sampling of the data to approximate the simulation to high precision. Once the neural network is trained, it can simulate such optical processes orders of magnitude faster than conventional simulations. Furthermore, the trained neural network can be used to solve nanophotonic inverse design problems by using back propagation, where the gradient is analytical, not numerical. PMID:29868640
Optimal Signal Processing in Small Stochastic Biochemical Networks
Ziv, Etay; Nemenman, Ilya; Wiggins, Chris H.
2007-01-01
We quantify the influence of the topology of a transcriptional regulatory network on its ability to process environmental signals. By posing the problem in terms of information theory, we do this without specifying the function performed by the network. Specifically, we study the maximum mutual information between the input (chemical) signal and the output (genetic) response attainable by the network in the context of an analytic model of particle number fluctuations. We perform this analysis for all biochemical circuits, including various feedback loops, that can be built out of 3 chemical species, each under the control of one regulator. We find that a generic network, constrained to low molecule numbers and reasonable response times, can transduce more information than a simple binary switch and, in fact, manages to achieve close to the optimal information transmission fidelity. These high-information solutions are robust to tenfold changes in most of the networks' biochemical parameters; moreover they are easier to achieve in networks containing cycles with an odd number of negative regulators (overall negative feedback) due to their decreased molecular noise (a result which we derive analytically). Finally, we demonstrate that a single circuit can support multiple high-information solutions. These findings suggest a potential resolution of the “cross-talk” phenomenon as well as the previously unexplained observation that transcription factors that undergo proteolysis are more likely to be auto-repressive. PMID:17957259
Network growth models: A behavioural basis for attachment proportional to fitness
NASA Astrophysics Data System (ADS)
Bell, Michael; Perera, Supun; Piraveenan, Mahendrarajah; Bliemer, Michiel; Latty, Tanya; Reid, Chris
2017-02-01
Several growth models have been proposed in the literature for scale-free complex networks, with a range of fitness-based attachment models gaining prominence recently. However, the processes by which such fitness-based attachment behaviour can arise are less well understood, making it difficult to compare the relative merits of such models. This paper analyses an evolutionary mechanism that would give rise to a fitness-based attachment process. In particular, it is proven by analytical and numerical methods that in homogeneous networks, the minimisation of maximum exposure to node unfitness leads to attachment probabilities that are proportional to node fitness. This result is then extended to heterogeneous networks, with supply chain networks being used as an example.
Generalized epidemic process on modular networks.
Chung, Kihong; Baek, Yongjoo; Kim, Daniel; Ha, Meesoon; Jeong, Hawoong
2014-05-01
Social reinforcement and modular structure are two salient features observed in the spreading of behavior through social contacts. In order to investigate the interplay between these two features, we study the generalized epidemic process on modular networks with equal-sized finite communities and adjustable modularity. Using the analytical approach originally applied to clique-based random networks, we show that the system exhibits a bond-percolation type continuous phase transition for weak social reinforcement, whereas a discontinuous phase transition occurs for sufficiently strong social reinforcement. Our findings are numerically verified using the finite-size scaling analysis and the crossings of the bimodality coefficient.
2015-07-31
and make the expected decision outcomes. The scenario is based around a scripted storyboard where an organized crime network is operating in a city to...interdicted by law enforcement to disrupt the network. The scenario storyboard was used to develop a probabilistic vehicle traffic model in order to
Friendship and Alcohol Use in Early Adolescence: A Multilevel Social Network Approach
ERIC Educational Resources Information Center
Knecht, Andrea B.; Burk, William J.; Weesie, Jeroen; Steglich, Christian
2011-01-01
This study applies multilevel social network analytic techniques to examine processes of homophilic selection and social influence related to alcohol use among friends in early adolescence. Participants included 3,041 Dutch youth (M age =12 years, 49% female) from 120 classrooms in 14 schools. Three waves with 3-month intervals of friendship…
Measurement of company effectiveness using analytic network process method
NASA Astrophysics Data System (ADS)
Goran, Janjić; Zorana, Tanasić; Borut, Kosec
2017-07-01
The sustainable development of an organisation is monitored through the organisation's performance, which beforehand incorporates all stakeholders' requirements in its strategy. The strategic management concept enables organisations to monitor and evaluate their effectiveness along with efficiency by monitoring of the implementation of set strategic goals. In the process of monitoring and measuring effectiveness, an organisation can use multiple-criteria decision-making methods as help. This study uses the method of analytic network process (ANP) to define the weight factors of the mutual influences of all the important elements of an organisation's strategy. The calculation of an organisation's effectiveness is based on the weight factors and the degree of fulfilment of the goal values of the strategic map measures. New business conditions influence the changes in the importance of certain elements of an organisation's business in relation to competitive advantage on the market, and on the market, increasing emphasis is given to non-material resources in the process of selection of the organisation's most important measures.
Epidemic spreading on interconnected networks.
Saumell-Mendiola, Anna; Serrano, M Ángeles; Boguñá, Marián
2012-08-01
Many real networks are not isolated from each other but form networks of networks, often interrelated in nontrivial ways. Here, we analyze an epidemic spreading process taking place on top of two interconnected complex networks. We develop a heterogeneous mean-field approach that allows us to calculate the conditions for the emergence of an endemic state. Interestingly, a global endemic state may arise in the coupled system even though the epidemics is not able to propagate on each network separately and even when the number of coupling connections is small. Our analytic results are successfully confronted against large-scale numerical simulations.
Epidemic spreading on interconnected networks
NASA Astrophysics Data System (ADS)
Saumell-Mendiola, Anna; Serrano, M. Ángeles; Boguñá, Marián
2012-08-01
Many real networks are not isolated from each other but form networks of networks, often interrelated in nontrivial ways. Here, we analyze an epidemic spreading process taking place on top of two interconnected complex networks. We develop a heterogeneous mean-field approach that allows us to calculate the conditions for the emergence of an endemic state. Interestingly, a global endemic state may arise in the coupled system even though the epidemics is not able to propagate on each network separately and even when the number of coupling connections is small. Our analytic results are successfully confronted against large-scale numerical simulations.
Analytical network process based optimum cluster head selection in wireless sensor network.
Farman, Haleem; Javed, Huma; Jan, Bilal; Ahmad, Jamil; Ali, Shaukat; Khalil, Falak Naz; Khan, Murad
2017-01-01
Wireless Sensor Networks (WSNs) are becoming ubiquitous in everyday life due to their applications in weather forecasting, surveillance, implantable sensors for health monitoring and other plethora of applications. WSN is equipped with hundreds and thousands of small sensor nodes. As the size of a sensor node decreases, critical issues such as limited energy, computation time and limited memory become even more highlighted. In such a case, network lifetime mainly depends on efficient use of available resources. Organizing nearby nodes into clusters make it convenient to efficiently manage each cluster as well as the overall network. In this paper, we extend our previous work of grid-based hybrid network deployment approach, in which merge and split technique has been proposed to construct network topology. Constructing topology through our proposed technique, in this paper we have used analytical network process (ANP) model for cluster head selection in WSN. Five distinct parameters: distance from nodes (DistNode), residual energy level (REL), distance from centroid (DistCent), number of times the node has been selected as cluster head (TCH) and merged node (MN) are considered for CH selection. The problem of CH selection based on these parameters is tackled as a multi criteria decision system, for which ANP method is used for optimum cluster head selection. Main contribution of this work is to check the applicability of ANP model for cluster head selection in WSN. In addition, sensitivity analysis is carried out to check the stability of alternatives (available candidate nodes) and their ranking for different scenarios. The simulation results show that the proposed method outperforms existing energy efficient clustering protocols in terms of optimum CH selection and minimizing CH reselection process that results in extending overall network lifetime. This paper analyzes that ANP method used for CH selection with better understanding of the dependencies of different components involved in the evaluation process.
Analytical network process based optimum cluster head selection in wireless sensor network
Javed, Huma; Jan, Bilal; Ahmad, Jamil; Ali, Shaukat; Khalil, Falak Naz; Khan, Murad
2017-01-01
Wireless Sensor Networks (WSNs) are becoming ubiquitous in everyday life due to their applications in weather forecasting, surveillance, implantable sensors for health monitoring and other plethora of applications. WSN is equipped with hundreds and thousands of small sensor nodes. As the size of a sensor node decreases, critical issues such as limited energy, computation time and limited memory become even more highlighted. In such a case, network lifetime mainly depends on efficient use of available resources. Organizing nearby nodes into clusters make it convenient to efficiently manage each cluster as well as the overall network. In this paper, we extend our previous work of grid-based hybrid network deployment approach, in which merge and split technique has been proposed to construct network topology. Constructing topology through our proposed technique, in this paper we have used analytical network process (ANP) model for cluster head selection in WSN. Five distinct parameters: distance from nodes (DistNode), residual energy level (REL), distance from centroid (DistCent), number of times the node has been selected as cluster head (TCH) and merged node (MN) are considered for CH selection. The problem of CH selection based on these parameters is tackled as a multi criteria decision system, for which ANP method is used for optimum cluster head selection. Main contribution of this work is to check the applicability of ANP model for cluster head selection in WSN. In addition, sensitivity analysis is carried out to check the stability of alternatives (available candidate nodes) and their ranking for different scenarios. The simulation results show that the proposed method outperforms existing energy efficient clustering protocols in terms of optimum CH selection and minimizing CH reselection process that results in extending overall network lifetime. This paper analyzes that ANP method used for CH selection with better understanding of the dependencies of different components involved in the evaluation process. PMID:28719616
Autocatalytic polymerization generates persistent random walk of crawling cells.
Sambeth, R; Baumgaertner, A
2001-05-28
The autocatalytic polymerization kinetics of the cytoskeletal actin network provides the basic mechanism for a persistent random walk of a crawling cell. It is shown that network remodeling by branching processes near the cell membrane is essential for the bimodal spatial stability of the network which induces a spontaneous breaking of isotropic cell motion. Details of the phenomena are analyzed using a simple polymerization model studied by analytical and simulation methods.
Artificial neural network and classical least-squares methods for neurotransmitter mixture analysis.
Schulze, H G; Greek, L S; Gorzalka, B B; Bree, A V; Blades, M W; Turner, R F
1995-02-01
Identification of individual components in biological mixtures can be a difficult problem regardless of the analytical method employed. In this work, Raman spectroscopy was chosen as a prototype analytical method due to its inherent versatility and applicability to aqueous media, making it useful for the study of biological samples. Artificial neural networks (ANNs) and the classical least-squares (CLS) method were used to identify and quantify the Raman spectra of the small-molecule neurotransmitters and mixtures of such molecules. The transfer functions used by a network, as well as the architecture of a network, played an important role in the ability of the network to identify the Raman spectra of individual neurotransmitters and the Raman spectra of neurotransmitter mixtures. Specifically, networks using sigmoid and hyperbolic tangent transfer functions generalized better from the mixtures in the training data set to those in the testing data sets than networks using sine functions. Networks with connections that permit the local processing of inputs generally performed better than other networks on all the testing data sets. and better than the CLS method of curve fitting, on novel spectra of some neurotransmitters. The CLS method was found to perform well on noisy, shifted, and difference spectra.
Generalized model for k -core percolation and interdependent networks
NASA Astrophysics Data System (ADS)
Panduranga, Nagendra K.; Gao, Jianxi; Yuan, Xin; Stanley, H. Eugene; Havlin, Shlomo
2017-09-01
Cascading failures in complex systems have been studied extensively using two different models: k -core percolation and interdependent networks. We combine the two models into a general model, solve it analytically, and validate our theoretical results through extensive simulations. We also study the complete phase diagram of the percolation transition as we tune the average local k -core threshold and the coupling between networks. We find that the phase diagram of the combined processes is very rich and includes novel features that do not appear in the models studying each of the processes separately. For example, the phase diagram consists of first- and second-order transition regions separated by two tricritical lines that merge and enclose a two-stage transition region. In the two-stage transition, the size of the giant component undergoes a first-order jump at a certain occupation probability followed by a continuous second-order transition at a lower occupation probability. Furthermore, at certain fixed interdependencies, the percolation transition changes from first-order → second-order → two-stage → first-order as the k -core threshold is increased. The analytic equations describing the phase boundaries of the two-stage transition region are set up, and the critical exponents for each type of transition are derived analytically.
Alejo, Luz; Atkinson, John; Guzmán-Fierro, Víctor; Roeckel, Marlene
2018-05-16
Computational self-adapting methods (Support Vector Machines, SVM) are compared with an analytical method in effluent composition prediction of a two-stage anaerobic digestion (AD) process. Experimental data for the AD of poultry manure were used. The analytical method considers the protein as the only source of ammonia production in AD after degradation. Total ammonia nitrogen (TAN), total solids (TS), chemical oxygen demand (COD), and total volatile solids (TVS) were measured in the influent and effluent of the process. The TAN concentration in the effluent was predicted, this being the most inhibiting and polluting compound in AD. Despite the limited data available, the SVM-based model outperformed the analytical method for the TAN prediction, achieving a relative average error of 15.2% against 43% for the analytical method. Moreover, SVM showed higher prediction accuracy in comparison with Artificial Neural Networks. This result reveals the future promise of SVM for prediction in non-linear and dynamic AD processes. Graphical abstract ᅟ.
Path-Length and the Misperception of Speech: Insights from Network Science and Psycholinguistics
NASA Astrophysics Data System (ADS)
Vitevitch, Michael S.; Goldstein, Rutherford; Johnson, Elizabeth
Using the analytical methods of network science we examined what could be retrieved from the lexicon when a spoken word is misperceived. To simulate misperceptions in the laboratory, we used a variant of the semantic associates task—the phonological associate task—in which participants heard an English word and responded with the first word that came to mind that sounded like the word they heard, to examine what people actually do retrieve from the lexicon when a spoken word is misperceived. Most responses were 1 link away from the stimulus word in the lexical network. Distant neighbors (words >1 link) were provided more often as responses when the stimulus word had low rather than high degree. Finally, even very distant neighbors tended to be connected to the stimulus word by a path in the lexical network. These findings have implications for the processing of spoken words, and highlight the valuable insights that can be obtained by combining the analytic tools of network science with the experimental tasks of psycholinguistics.
Network as transconcept: elements for a conceptual demarcation in the field of public health
Amaral, Carlos Eduardo Menezes; Bosi, Maria Lúcia Magalhães
2016-01-01
ABSTRACT The main proposal to set up an articulated mode of operation of health services has been the concept of network, which has been appropriated in different ways in the field of public health, as it is used in other disciplinary fields or even taking it from common sense. Amid the diversity of uses and concepts, we recognize the need for rigorous conceptual demarcation about networks in the field of health. Such concern aims to preserve the strategic potential of this concept in the research and planning in the field, overcoming uncertainties and distortions still observed in its discourse-analytic circulation in public health. To this end, we will introduce the current uses of network in different disciplinary fields, emphasizing dialogues with the field of public health. With this, we intend to stimulate discussions about the development of empirical dimensions and analytical models that may allow us to understand the processes produced within and around health networks. PMID:27556965
Quantitative Characterization of the Microstructure and Transport Properties of Biopolymer Networks
Jiao, Yang; Torquato, Salvatore
2012-01-01
Biopolymer networks are of fundamental importance to many biological processes in normal and tumorous tissues. In this paper, we employ the panoply of theoretical and simulation techniques developed for characterizing heterogeneous materials to quantify the microstructure and effective diffusive transport properties (diffusion coefficient De and mean survival time τ) of collagen type I networks at various collagen concentrations. In particular, we compute the pore-size probability density function P(δ) for the networks and present a variety of analytical estimates of the effective diffusion coefficient De for finite-sized diffusing particles, including the low-density approximation, the Ogston approximation, and the Torquato approximation. The Hashin-Strikman upper bound on the effective diffusion coefficient De and the pore-size lower bound on the mean survival time τ are used as benchmarks to test our analytical approximations and numerical results. Moreover, we generalize the efficient first-passage-time techniques for Brownian-motion simulations in suspensions of spheres to the case of fiber networks and compute the associated effective diffusion coefficient De as well as the mean survival time τ, which is related to nuclear magnetic resonance (NMR) relaxation times. Our numerical results for De are in excellent agreement with analytical results for simple network microstructures, such as periodic arrays of parallel cylinders. Specifically, the Torquato approximation provides the most accurate estimates of De for all collagen concentrations among all of the analytical approximations we consider. We formulate a universal curve for τ for the networks at different collagen concentrations, extending the work of Yeong and Torquato [J. Chem. Phys. 106, 8814 (1997)]. We apply rigorous cross-property relations to estimate the effective bulk modulus of collagen networks from a knowledge of the effective diffusion coefficient computed here. The use of cross-property relations to link other physical properties to the transport properties of collagen networks is also discussed. PMID:22683739
Generalized master equations for non-Poisson dynamics on networks.
Hoffmann, Till; Porter, Mason A; Lambiotte, Renaud
2012-10-01
The traditional way of studying temporal networks is to aggregate the dynamics of the edges to create a static weighted network. This implicitly assumes that the edges are governed by Poisson processes, which is not typically the case in empirical temporal networks. Accordingly, we examine the effects of non-Poisson inter-event statistics on the dynamics of edges, and we apply the concept of a generalized master equation to the study of continuous-time random walks on networks. We show that this equation reduces to the standard rate equations when the underlying process is Poissonian and that its stationary solution is determined by an effective transition matrix whose leading eigenvector is easy to calculate. We conduct numerical simulations and also derive analytical results for the stationary solution under the assumption that all edges have the same waiting-time distribution. We discuss the implications of our work for dynamical processes on temporal networks and for the construction of network diagnostics that take into account their nontrivial stochastic nature.
Generalized master equations for non-Poisson dynamics on networks
NASA Astrophysics Data System (ADS)
Hoffmann, Till; Porter, Mason A.; Lambiotte, Renaud
2012-10-01
The traditional way of studying temporal networks is to aggregate the dynamics of the edges to create a static weighted network. This implicitly assumes that the edges are governed by Poisson processes, which is not typically the case in empirical temporal networks. Accordingly, we examine the effects of non-Poisson inter-event statistics on the dynamics of edges, and we apply the concept of a generalized master equation to the study of continuous-time random walks on networks. We show that this equation reduces to the standard rate equations when the underlying process is Poissonian and that its stationary solution is determined by an effective transition matrix whose leading eigenvector is easy to calculate. We conduct numerical simulations and also derive analytical results for the stationary solution under the assumption that all edges have the same waiting-time distribution. We discuss the implications of our work for dynamical processes on temporal networks and for the construction of network diagnostics that take into account their nontrivial stochastic nature.
de Blasio, Birgitte Freiesleben; Seierstad, Taral Guldahl; Aalen, Odd O
2011-01-01
Preferential attachment is a proportionate growth process in networks, where nodes receive new links in proportion to their current degree. Preferential attachment is a popular generative mechanism to explain the widespread observation of power-law-distributed networks. An alternative explanation for the phenomenon is a randomly grown network with large individual variation in growth rates among the nodes (frailty). We derive analytically the distribution of individual rates, which will reproduce the connectivity distribution that is obtained from a general preferential attachment process (Yule process), and the structural differences between the two types of graphs are examined by simulations. We present a statistical test to distinguish the two generative mechanisms from each other and we apply the test to both simulated data and two real data sets of scientific citation and sexual partner networks. The findings from the latter analyses argue for frailty effects as an important mechanism underlying the dynamics of complex networks. PMID:21572513
Motion/imagery secure cloud enterprise architecture analysis
NASA Astrophysics Data System (ADS)
DeLay, John L.
2012-06-01
Cloud computing with storage virtualization and new service-oriented architectures brings a new perspective to the aspect of a distributed motion imagery and persistent surveillance enterprise. Our existing research is focused mainly on content management, distributed analytics, WAN distributed cloud networking performance issues of cloud based technologies. The potential of leveraging cloud based technologies for hosting motion imagery, imagery and analytics workflows for DOD and security applications is relatively unexplored. This paper will examine technologies for managing, storing, processing and disseminating motion imagery and imagery within a distributed network environment. Finally, we propose areas for future research in the area of distributed cloud content management enterprises.
X-Graphs: Language and Algorithms for Heterogeneous Graph Streams
2017-09-01
INTRODUCTION 1 3 METHODS , ASUMPTIONS, AND PROCEDURES 2 Software Abstractions for Graph Analytic Applications 2 High performance Platforms for Graph Processing...data is stored in a distributed file system. 3 METHODS , ASUMPTIONS, AND PROCEDURES Software Abstractions for Graph Analytic Applications To...implementations of novel methods for networks analysis: several methods for detection of overlapping communities, personalized PageRank, node embeddings into a d
Molloy Elreda, Lauren; Coatsworth, J Douglas; Gest, Scott D; Ram, Nilam; Bamberger, Katharine
2016-11-01
Although the majority of evidence-based programs are designed for group delivery, group process and its role in participant outcomes have received little empirical attention. Data were collected from 20 groups of participants (94 early adolescents, 120 parents) enrolled in an efficacy trial of a mindfulness-based adaptation of the Strengthening Families Program (MSFP). Following each weekly session, participants reported on their relations to group members. Social network analysis and methods sensitive to intraindividual variability were integrated to examine weekly covariation between group process and participant progress, and to predict post-intervention outcomes from levels and changes in group process. Results demonstrate hypothesized links between network indices of group process and intervention outcomes and highlight the value of this unique analytic approach to studying intervention group process.
Evaluating the performance of free-formed surface parts using an analytic network process
NASA Astrophysics Data System (ADS)
Qian, Xueming; Ma, Yanqiao; Liang, Dezhi
2018-03-01
To successfully design parts with a free-formed surface, the critical issue of how to evaluate and select a favourable evaluation strategy before design is raised. The evaluation of free-formed surface parts is a multiple criteria decision-making (MCDM) problem that requires the consideration of a large number of interdependent factors. The analytic network process (ANP) is a relatively new MCDM method that can systematically deal with all kinds of dependences. In this paper, the factors, which come from the life-cycle and influence the design of free-formed surface parts, are proposed. After analysing the interdependence among these factors, a Hybrid ANP (HANP) structure for evaluating the part’s curved surface is constructed. Then, a HANP evaluation of an impeller is presented to illustrate the application of the proposed method.
Renormalization group theory for percolation in time-varying networks.
Karschau, Jens; Zimmerling, Marco; Friedrich, Benjamin M
2018-05-22
Motivated by multi-hop communication in unreliable wireless networks, we present a percolation theory for time-varying networks. We develop a renormalization group theory for a prototypical network on a regular grid, where individual links switch stochastically between active and inactive states. The question whether a given source node can communicate with a destination node along paths of active links is equivalent to a percolation problem. Our theory maps the temporal existence of multi-hop paths on an effective two-state Markov process. We show analytically how this Markov process converges towards a memoryless Bernoulli process as the hop distance between source and destination node increases. Our work extends classical percolation theory to the dynamic case and elucidates temporal correlations of message losses. Quantification of temporal correlations has implications for the design of wireless communication and control protocols, e.g. in cyber-physical systems such as self-organized swarms of drones or smart traffic networks.
Robust autoassociative memory with coupled networks of Kuramoto-type oscillators
NASA Astrophysics Data System (ADS)
Heger, Daniel; Krischer, Katharina
2016-08-01
Uncertain recognition success, unfavorable scaling of connection complexity, or dependence on complex external input impair the usefulness of current oscillatory neural networks for pattern recognition or restrict technical realizations to small networks. We propose a network architecture of coupled oscillators for pattern recognition which shows none of the mentioned flaws. Furthermore we illustrate the recognition process with simulation results and analyze the dynamics analytically: Possible output patterns are isolated attractors of the system. Additionally, simple criteria for recognition success are derived from a lower bound on the basins of attraction.
NASA Astrophysics Data System (ADS)
Frolov, Nikita S.; Goremyko, Mikhail V.; Makarov, Vladimir V.; Maksimenko, Vladimir A.; Hramov, Alexander E.
2017-03-01
In this paper we study the conditions of chimera states excitation in ensemble of non-locally coupled Kuramoto-Sakaguchi (KS) oscillators. In the framework of current research we analyze the dynamics of the homogeneous network containing identical oscillators. We show the chimera state formation process is sensitive to the parameters of coupling kernel and to the KS network initial state. To perform the analysis we have used the Ott-Antonsen (OA) ansatz to consider the behavior of infinitely large KS network.
Analytical Studies on the Synchronization of a Network of Linearly-Coupled Simple Chaotic Systems
NASA Astrophysics Data System (ADS)
Sivaganesh, G.; Arulgnanam, A.; Seethalakshmi, A. N.; Selvaraj, S.
2018-05-01
We present explicit generalized analytical solutions for a network of linearly-coupled simple chaotic systems. Analytical solutions are obtained for the normalized state equations of a network of linearly-coupled systems driven by a common chaotic drive system. Two parameter bifurcation diagrams revealing the various hidden synchronization regions, such as complete, phase and phase-lag synchronization are identified using the analytical results. The synchronization dynamics and their stability are studied using phase portraits and the master stability function, respectively. Further, experimental results for linearly-coupled simple chaotic systems are presented to confirm the analytical results. The synchronization dynamics of a network of chaotic systems studied analytically is reported for the first time.
Intelligent manipulation technique for multi-branch robotic systems
NASA Technical Reports Server (NTRS)
Chen, Alexander Y. K.; Chen, Eugene Y. S.
1990-01-01
New analytical development in kinematics planning is reported. The INtelligent KInematics Planner (INKIP) consists of the kinematics spline theory and the adaptive logic annealing process. Also, a novel framework of robot learning mechanism is introduced. The FUzzy LOgic Self Organized Neural Networks (FULOSONN) integrates fuzzy logic in commands, control, searching, and reasoning, the embedded expert system for nominal robotics knowledge implementation, and the self organized neural networks for the dynamic knowledge evolutionary process. Progress on the mechanical construction of SRA Advanced Robotic System (SRAARS) and the real time robot vision system is also reported. A decision was made to incorporate the Local Area Network (LAN) technology in the overall communication system.
NASA Astrophysics Data System (ADS)
Nicosia, Vincenzo; Skardal, Per Sebastian; Arenas, Alex; Latora, Vito
2017-03-01
We introduce a framework to intertwine dynamical processes of different nature, each with its own distinct network topology, using a multilayer network approach. As an example of collective phenomena emerging from the interactions of multiple dynamical processes, we study a model where neural dynamics and nutrient transport are bidirectionally coupled in such a way that the allocation of the transport process at one layer depends on the degree of synchronization at the other layer, and vice versa. We show numerically, and we prove analytically, that the multilayer coupling induces a spontaneous explosive synchronization and a heterogeneous distribution of allocations, otherwise not present in the two systems considered separately. Our framework can find application to other cases where two or more dynamical processes such as synchronization, opinion formation, information diffusion, or disease spreading, are interacting with each other.
Selecting public relations personnel of hospitals by analytic network process.
Liao, Sen-Kuei; Chang, Kuei-Lun
2009-01-01
This study describes the use of analytic network process (ANP) in the Taiwanese hospital public relations personnel selection process. Starting with interviewing 48 practitioners and executives in north Taiwan, we collected selection criteria. Then, we retained the 12 critical criteria that were mentioned above 40 times by theses respondents, including: interpersonal skill, experience, negotiation, language, ability to follow orders, cognitive ability, adaptation to environment, adaptation to company, emotion, loyalty, attitude, and Response. Finally, we discussed with the 20 executives to take these important criteria into three perspectives to structure the hierarchy for hospital public relations personnel selection. After discussing with practitioners and executives, we find that selecting criteria are interrelated. The ANP, which incorporates interdependence relationships, is a new approach for multi-criteria decision-making. Thus, we apply ANP to select the most optimal public relations personnel of hospitals. An empirical study of public relations personnel selection problems in Taiwan hospitals is conducted to illustrate how the selection procedure works.
Molinos-Senante, María; Gómez, Trinidad; Caballero, Rafael; Hernández-Sancho, Francesc; Sala-Garrido, Ramón
2015-11-01
The selection of the most appropriate wastewater treatment (WWT) technology is a complex problem since many alternatives are available and many criteria are involved in the decision-making process. To deal with this challenge, the analytic network process (ANP) is applied for the first time to rank a set of seven WWT technology set-ups for secondary treatment in small communities. A major advantage of ANP is that it incorporates interdependent relationships between elements. Results illustrated that extensive technologies, constructed wetlands and pond systems are the most preferred alternatives by WWT experts. The sensitivity analysis performed verified that the ranking of WWT alternatives is very stable since constructed wetlands are almost always placed in the first position. This paper showed that ANP analysis is suitable to deal with complex decision-making problems, such as the selection of the most appropriate WWT system contributing to better understand the multiple interdependences among elements involved in the assessment. Copyright © 2015 Elsevier B.V. All rights reserved.
Asymptotic theory of time-varying social networks with heterogeneous activity and tie allocation.
Ubaldi, Enrico; Perra, Nicola; Karsai, Márton; Vezzani, Alessandro; Burioni, Raffaella; Vespignani, Alessandro
2016-10-24
The dynamic of social networks is driven by the interplay between diverse mechanisms that still challenge our theoretical and modelling efforts. Amongst them, two are known to play a central role in shaping the networks evolution, namely the heterogeneous propensity of individuals to i) be socially active and ii) establish a new social relationships with their alters. Here, we empirically characterise these two mechanisms in seven real networks describing temporal human interactions in three different settings: scientific collaborations, Twitter mentions, and mobile phone calls. We find that the individuals' social activity and their strategy in choosing ties where to allocate their social interactions can be quantitatively described and encoded in a simple stochastic network modelling framework. The Master Equation of the model can be solved in the asymptotic limit. The analytical solutions provide an explicit description of both the system dynamic and the dynamical scaling laws characterising crucial aspects about the evolution of the networks. The analytical predictions match with accuracy the empirical observations, thus validating the theoretical approach. Our results provide a rigorous dynamical system framework that can be extended to include other processes shaping social dynamics and to generate data driven predictions for the asymptotic behaviour of social networks.
Asymptotic theory of time-varying social networks with heterogeneous activity and tie allocation
NASA Astrophysics Data System (ADS)
Ubaldi, Enrico; Perra, Nicola; Karsai, Márton; Vezzani, Alessandro; Burioni, Raffaella; Vespignani, Alessandro
2016-10-01
The dynamic of social networks is driven by the interplay between diverse mechanisms that still challenge our theoretical and modelling efforts. Amongst them, two are known to play a central role in shaping the networks evolution, namely the heterogeneous propensity of individuals to i) be socially active and ii) establish a new social relationships with their alters. Here, we empirically characterise these two mechanisms in seven real networks describing temporal human interactions in three different settings: scientific collaborations, Twitter mentions, and mobile phone calls. We find that the individuals’ social activity and their strategy in choosing ties where to allocate their social interactions can be quantitatively described and encoded in a simple stochastic network modelling framework. The Master Equation of the model can be solved in the asymptotic limit. The analytical solutions provide an explicit description of both the system dynamic and the dynamical scaling laws characterising crucial aspects about the evolution of the networks. The analytical predictions match with accuracy the empirical observations, thus validating the theoretical approach. Our results provide a rigorous dynamical system framework that can be extended to include other processes shaping social dynamics and to generate data driven predictions for the asymptotic behaviour of social networks.
Real-Time Communication Support for Underwater Acoustic Sensor Networks †.
Santos, Rodrigo; Orozco, Javier; Micheletto, Matias; Ochoa, Sergio F; Meseguer, Roc; Millan, Pere; Molina, And Carlos
2017-07-14
Underwater sensor networks represent an important and promising field of research due to the large diversity of underwater ubiquitous applications that can be supported by these networks, e.g., systems that deliver tsunami and oil spill warnings, or monitor submarine ecosystems. Most of these monitoring and warning systems require real-time communication in wide area networks that have a low density of nodes. The underwater communication medium involved in these networks is very harsh and imposes strong restrictions to the communication process. In this scenario, the real-time transmission of information is done mainly using acoustic signals, since the network nodes are not physically close. The features of the communication scenario and the requirements of the communication process represent major challenges for designers of both, communication protocols and monitoring and warning systems. The lack of models to represent these networks is the main stumbling block for the proliferation of underwater ubiquitous systems. This paper presents a real-time communication model for underwater acoustic sensor networks (UW-ASN) that are designed to cover wide areas with a low density of nodes, using any-to-any communication. This model is analytic, considers two solution approaches for scheduling the real-time messages, and provides a time-constraint analysis for the network performance. Using this model, the designers of protocols and underwater ubiquitous systems can quickly prototype and evaluate their solutions in an evolving way, in order to determine the best solution to the problem being addressed. The suitability of the proposal is illustrated with a case study that shows the performance of a UW-ASN under several initial conditions. This is the first analytic model for representing real-time communication in this type of network, and therefore, it opens the door for the development of underwater ubiquitous systems for several application scenarios.
Real-Time Communication Support for Underwater Acoustic Sensor Networks †
Santos, Rodrigo; Orozco, Javier; Micheletto, Matias
2017-01-01
Underwater sensor networks represent an important and promising field of research due to the large diversity of underwater ubiquitous applications that can be supported by these networks, e.g., systems that deliver tsunami and oil spill warnings, or monitor submarine ecosystems. Most of these monitoring and warning systems require real-time communication in wide area networks that have a low density of nodes. The underwater communication medium involved in these networks is very harsh and imposes strong restrictions to the communication process. In this scenario, the real-time transmission of information is done mainly using acoustic signals, since the network nodes are not physically close. The features of the communication scenario and the requirements of the communication process represent major challenges for designers of both, communication protocols and monitoring and warning systems. The lack of models to represent these networks is the main stumbling block for the proliferation of underwater ubiquitous systems. This paper presents a real-time communication model for underwater acoustic sensor networks (UW-ASN) that are designed to cover wide areas with a low density of nodes, using any-to-any communication. This model is analytic, considers two solution approaches for scheduling the real-time messages, and provides a time-constraint analysis for the network performance. Using this model, the designers of protocols and underwater ubiquitous systems can quickly prototype and evaluate their solutions in an evolving way, in order to determine the best solution to the problem being addressed. The suitability of the proposal is illustrated with a case study that shows the performance of a UW-ASN under several initial conditions. This is the first analytic model for representing real-time communication in this type of network, and therefore, it opens the door for the development of underwater ubiquitous systems for several application scenarios. PMID:28708093
Study on additional carrier sensing for IEEE 802.15.4 wireless sensor networks.
Lee, Bih-Hwang; Lai, Ruei-Lung; Wu, Huai-Kuei; Wong, Chi-Ming
2010-01-01
Wireless sensor networks based on the IEEE 802.15.4 standard are able to achieve low-power transmissions in the guise of low-rate and short-distance wireless personal area networks (WPANs). The slotted carrier sense multiple access with collision avoidance (CSMA/CA) is used for contention mechanism. Sensor nodes perform a backoff process as soon as the clear channel assessment (CCA) detects a busy channel. In doing so they may neglect the implicit information of the failed CCA detection and further cause the redundant sensing. The blind backoff process in the slotted CSMA/CA will cause lower channel utilization. This paper proposes an additional carrier sensing (ACS) algorithm based on IEEE 802.15.4 to enhance the carrier sensing mechanism for the original slotted CSMA/CA. An analytical Markov chain model is developed to evaluate the performance of the ACS algorithm. Both analytical and simulation results show that the proposed algorithm performs better than IEEE 802.15.4, which in turn significantly improves throughput, average medium access control (MAC) delay and power consumption of CCA detection.
Modeling regional freight flow assignment through intermodal terminals
DOT National Transportation Integrated Search
2005-03-01
An analytical model is developed to assign regional freight across a multimodal highway and railway network using geographic information systems. As part of the regional planning process, the model is an iterative procedure that assigns multimodal fr...
Analytic network process model for sustainable lean and green manufacturing performance indicator
NASA Astrophysics Data System (ADS)
Aminuddin, Adam Shariff Adli; Nawawi, Mohd Kamal Mohd; Mohamed, Nik Mohd Zuki Nik
2014-09-01
Sustainable manufacturing is regarded as the most complex manufacturing paradigm to date as it holds the widest scope of requirements. In addition, its three major pillars of economic, environment and society though distinct, have some overlapping among each of its elements. Even though the concept of sustainability is not new, the development of the performance indicator still needs a lot of improvement due to its multifaceted nature, which requires integrated approach to solve the problem. This paper proposed the best combination of criteria en route a robust sustainable manufacturing performance indicator formation via Analytic Network Process (ANP). The integrated lean, green and sustainable ANP model can be used to comprehend the complex decision system of the sustainability assessment. The finding shows that green manufacturing is more sustainable than lean manufacturing. It also illustrates that procurement practice is the most important criteria in the sustainable manufacturing performance indicator.
NASA Astrophysics Data System (ADS)
Various papers on global telecommunications are presented. The general topics addressed include: multiservice integration with optical fibers, multicompany owned telecommunication networks, softworks quality and reliability, advanced on-board processing, impact of new services and systems on operations and maintenance, analytical studies of protocols for data communication networks, topics in packet radio networking, CCITT No. 7 to support new services, document processing and communication, antenna technology and system aspects in satellite communications. Also considered are: communication systems modelling methodology, experimental integrated local area voice/data nets, spread spectrum communications, motion video at the DS-0 rate, optical and data communications, intelligent work stations, switch performance analysis, novel radio communication systems, wireless local networks, ISDN services, LAN communication protocols, user-system interface, radio propagation and performance, mobile satellite system, software for computer networks, VLSI for ISDN terminals, quality management, man-machine interfaces in switching, and local area network performance.
Optimal Information Processing in Biochemical Networks
NASA Astrophysics Data System (ADS)
Wiggins, Chris
2012-02-01
A variety of experimental results over the past decades provide examples of near-optimal information processing in biological networks, including in biochemical and transcriptional regulatory networks. Computing information-theoretic quantities requires first choosing or computing the joint probability distribution describing multiple nodes in such a network --- for example, representing the probability distribution of finding an integer copy number of each of two interacting reactants or gene products while respecting the `intrinsic' small copy number noise constraining information transmission at the scale of the cell. I'll given an overview of some recent analytic and numerical work facilitating calculation of such joint distributions and the associated information, which in turn makes possible numerical optimization of information flow in models of noisy regulatory and biochemical networks. Illustrating cases include quantification of form-function relations, ideal design of regulatory cascades, and response to oscillatory driving.
A new surface-process model for landscape evolution at a mountain belt scale
NASA Astrophysics Data System (ADS)
Willett, Sean D.; Braun, Jean; Herman, Frederic
2010-05-01
We present a new surface process model designed for modeling surface erosion and mass transport at an orogenic scale. Modeling surface processes at a large-scale is difficult because surface geomorphic processes are frequently described at the scale of a few meters, and such resolution cannot be represented in orogen-scale models operating over hundreds of square kilometers. We circumvent this problem by implementing a hybrid numerical -- analytical model. Like many previous models, the model is based on a numerical fluvial network represented by a series of nodes linked by model rivers in a descending network, with fluvial incision and sediment transport defined by laws operating on this network. However we only represent the largest rivers in the landscape by nodes in this model. Low-order rivers and water divides between large rivers are determined from analytical solutions assuming steady-state conditions with respect to the local river channel. The analytical solution includes the same fluvial incision law as the large rivers and a channel head with a specified size and mean slope. This permits a precise representation of the position of water divides between river basins. This is a key characteristic in landscape evolution as divide migration provides a positive feedback between river incision and a consequent increase in drainage area. The analytical solution also provides an explicit criterion for river capture, which occurs once a water divide migrates to its neighboring channel. This algorithm avoids the artificial network organization that often results from meshing and remeshing algorithms in numerical models. We demonstrate the use of this model with several simple examples including uniform uplift of a block, simultaneous uplift and shortening of a block, and a model involving strike slip faulting. We find a strong dependence on initial condition, but also a surprisingly strong dependence on channel head height parameters. Low channel heads, as expected, lead to more fluvial capture, but with low initial relief initial and a small channel-head height, runaway capture is common, with a few rivers capturing much of the available drainage area. With larger channel-head relief, lateral capture of rivers is less common, resulting in evenly spaced river basins. Basin spacing ratios matching those observed in nature are obtained for specific channel head parameters. These models thus demonstrate the mixed control on basin characteristics by antecedent river networks and channel-head parameters, which control the mobility of drainage basin water divides.
A Learning Framework for Winner-Take-All Networks with Stochastic Synapses.
Mostafa, Hesham; Cauwenberghs, Gert
2018-06-01
Many recent generative models make use of neural networks to transform the probability distribution of a simple low-dimensional noise process into the complex distribution of the data. This raises the question of whether biological networks operate along similar principles to implement a probabilistic model of the environment through transformations of intrinsic noise processes. The intrinsic neural and synaptic noise processes in biological networks, however, are quite different from the noise processes used in current abstract generative networks. This, together with the discrete nature of spikes and local circuit interactions among the neurons, raises several difficulties when using recent generative modeling frameworks to train biologically motivated models. In this letter, we show that a biologically motivated model based on multilayer winner-take-all circuits and stochastic synapses admits an approximate analytical description. This allows us to use the proposed networks in a variational learning setting where stochastic backpropagation is used to optimize a lower bound on the data log likelihood, thereby learning a generative model of the data. We illustrate the generality of the proposed networks and learning technique by using them in a structured output prediction task and a semisupervised learning task. Our results extend the domain of application of modern stochastic network architectures to networks where synaptic transmission failure is the principal noise mechanism.
Dixon, Matthew L; De La Vega, Alejandro; Mills, Caitlin; Andrews-Hanna, Jessica; Spreng, R Nathan; Cole, Michael W; Christoff, Kalina
2018-02-13
The frontoparietal control network (FPCN) plays a central role in executive control. It has been predominantly viewed as a unitary domain general system. Here, we examined patterns of FPCN functional connectivity (FC) across multiple conditions of varying cognitive demands, to test for FPCN heterogeneity. We identified two distinct subsystems within the FPCN based on hierarchical clustering and machine learning classification analyses of within-FPCN FC patterns. These two FPCN subsystems exhibited distinct patterns of FC with the default network (DN) and the dorsal attention network (DAN). FPCN A exhibited stronger connectivity with the DN than the DAN, whereas FPCN B exhibited the opposite pattern. This twofold FPCN differentiation was observed across four independent datasets, across nine different conditions (rest and eight tasks), at the level of individual-participant data, as well as in meta-analytic coactivation patterns. Notably, the extent of FPCN differentiation varied across conditions, suggesting flexible adaptation to task demands. Finally, we used meta-analytic tools to identify several functional domains associated with the DN and DAN that differentially predict activation in the FPCN subsystems. These findings reveal a flexible and heterogeneous FPCN organization that may in part emerge from separable DN and DAN processing streams. We propose that FPCN A may be preferentially involved in the regulation of introspective processes, whereas FPCN B may be preferentially involved in the regulation of visuospatial perceptual attention.
NASA Astrophysics Data System (ADS)
Green, H. D.; Contractor, N. S.; Yao, Y.
2006-12-01
A knowledge network is a multi-dimensional network created from the interactions and interconnections among the scientists, documents, data, analytic tools, and interactive collaboration spaces (like forums and wikis) associated with a collaborative environment. CI-KNOW is a suite of software tools that leverages automated data collection, social network theories, analysis techniques and algorithms to infer an individual's interests and expertise based on their interactions and activities within a knowledge network. The CI-KNOW recommender system mines the knowledge network associated with a scientific community's use of cyberinfrastructure tools and uses relational metadata to record connections among entities in the knowledge network. Recent developments in social network theories and methods provide the backbone for a modular system that creates recommendations from relational metadata. A network navigation portlet allows users to locate colleagues, documents, data or analytic tools in the knowledge network and to explore their networks through a visual, step-wise process. An internal auditing portlet offers administrators diagnostics to assess the growth and health of the entire knowledge network. The first instantiation of the prototype CI-KNOW system is part of the Environmental Cyberinfrastructure Demonstration project at the National Center for Supercomputing Applications, which supports the activities of hydrologic and environmental science communities (CLEANER and CUAHSI) under the umbrella of the WATERS network environmental observatory planning activities (http://cleaner.ncsa.uiuc.edu). This poster summarizes the key aspects of the CI-KNOW system, highlighting the key inputs, calculation mechanisms, and output modalities.
Risk Evaluation of Railway Coal Transportation Network Based on Multi Level Grey Evaluation Model
NASA Astrophysics Data System (ADS)
Niu, Wei; Wang, Xifu
2018-01-01
The railway transport mode is currently the most important way of coal transportation, and now China’s railway coal transportation network has become increasingly perfect, but there is still insufficient capacity, some lines close to saturation and other issues. In this paper, the theory and method of risk assessment, analytic hierarchy process and multi-level gray evaluation model are applied to the risk evaluation of coal railway transportation network in China. Based on the example analysis of Shanxi railway coal transportation network, to improve the internal structure and the competitiveness of the market.
Concurrency-Induced Transitions in Epidemic Dynamics on Temporal Networks.
Onaga, Tomokatsu; Gleeson, James P; Masuda, Naoki
2017-09-08
Social contact networks underlying epidemic processes in humans and animals are highly dynamic. The spreading of infections on such temporal networks can differ dramatically from spreading on static networks. We theoretically investigate the effects of concurrency, the number of neighbors that a node has at a given time point, on the epidemic threshold in the stochastic susceptible-infected-susceptible dynamics on temporal network models. We show that network dynamics can suppress epidemics (i.e., yield a higher epidemic threshold) when the node's concurrency is low, but can also enhance epidemics when the concurrency is high. We analytically determine different phases of this concurrency-induced transition, and confirm our results with numerical simulations.
Concurrency-Induced Transitions in Epidemic Dynamics on Temporal Networks
NASA Astrophysics Data System (ADS)
Onaga, Tomokatsu; Gleeson, James P.; Masuda, Naoki
2017-09-01
Social contact networks underlying epidemic processes in humans and animals are highly dynamic. The spreading of infections on such temporal networks can differ dramatically from spreading on static networks. We theoretically investigate the effects of concurrency, the number of neighbors that a node has at a given time point, on the epidemic threshold in the stochastic susceptible-infected-susceptible dynamics on temporal network models. We show that network dynamics can suppress epidemics (i.e., yield a higher epidemic threshold) when the node's concurrency is low, but can also enhance epidemics when the concurrency is high. We analytically determine different phases of this concurrency-induced transition, and confirm our results with numerical simulations.
Distributed data networks: a blueprint for Big Data sharing and healthcare analytics.
Popovic, Jennifer R
2017-01-01
This paper defines the attributes of distributed data networks and outlines the data and analytic infrastructure needed to build and maintain a successful network. We use examples from one successful implementation of a large-scale, multisite, healthcare-related distributed data network, the U.S. Food and Drug Administration-sponsored Sentinel Initiative. Analytic infrastructure-development concepts are discussed from the perspective of promoting six pillars of analytic infrastructure: consistency, reusability, flexibility, scalability, transparency, and reproducibility. This paper also introduces one use case for machine learning algorithm development to fully utilize and advance the portfolio of population health analytics, particularly those using multisite administrative data sources. © 2016 New York Academy of Sciences.
Distributed wireless sensing for methane leak detection technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Levente; van Kesse, Theodor
Large scale environmental monitoring requires dynamic optimization of data transmission, power management, and distribution of the computational load. In this work, we demonstrate the use of a wireless sensor network for detection of chemical leaks on gas oil well pads. The sensor network consist of chemi-resistive and wind sensors and aggregates all the data and transmits it to the cloud for further analytics processing. The sensor network data is integrated with an inversion model to identify leak location and quantify leak rates. We characterize the sensitivity and accuracy of such system under multiple well controlled methane release experiments. It ismore » demonstrated that even 1 hour measurement with 10 sensors localizes leaks within 1 m and determines leak rate with an accuracy of 40%. This integrated sensing and analytics solution is currently refined to be a robust system for long term remote monitoring of methane leaks, generation of alarms, and tracking regulatory compliance.« less
Distributed wireless sensing for fugitive methane leak detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Levente J.; van Kessel, Theodore; Nair, Dhruv
Large scale environmental monitoring requires dynamic optimization of data transmission, power management, and distribution of the computational load. In this work, we demonstrate the use of a wireless sensor network for detection of chemical leaks on gas oil well pads. The sensor network consist of chemi-resistive and wind sensors and aggregates all the data and transmits it to the cloud for further analytics processing. The sensor network data is integrated with an inversion model to identify leak location and quantify leak rates. We characterize the sensitivity and accuracy of such system under multiple well controlled methane release experiments. It ismore » demonstrated that even 1 hour measurement with 10 sensors localizes leaks within 1 m and determines leak rate with an accuracy of 40%. This integrated sensing and analytics solution is currently refined to be a robust system for long term remote monitoring of methane leaks, generation of alarms, and tracking regulatory compliance.« less
Distributed wireless sensing for fugitive methane leak detection
Klein, Levente J.; van Kessel, Theodore; Nair, Dhruv; ...
2017-12-11
Large scale environmental monitoring requires dynamic optimization of data transmission, power management, and distribution of the computational load. In this work, we demonstrate the use of a wireless sensor network for detection of chemical leaks on gas oil well pads. The sensor network consist of chemi-resistive and wind sensors and aggregates all the data and transmits it to the cloud for further analytics processing. The sensor network data is integrated with an inversion model to identify leak location and quantify leak rates. We characterize the sensitivity and accuracy of such system under multiple well controlled methane release experiments. It ismore » demonstrated that even 1 hour measurement with 10 sensors localizes leaks within 1 m and determines leak rate with an accuracy of 40%. This integrated sensing and analytics solution is currently refined to be a robust system for long term remote monitoring of methane leaks, generation of alarms, and tracking regulatory compliance.« less
Percolation on bipartite scale-free networks
NASA Astrophysics Data System (ADS)
Hooyberghs, H.; Van Schaeybroeck, B.; Indekeu, J. O.
2010-08-01
Recent studies introduced biased (degree-dependent) edge percolation as a model for failures in real-life systems. In this work, such process is applied to networks consisting of two types of nodes with edges running only between nodes of unlike type. Such bipartite graphs appear in many social networks, for instance in affiliation networks and in sexual-contact networks in which both types of nodes show the scale-free characteristic for the degree distribution. During the depreciation process, an edge between nodes with degrees k and q is retained with a probability proportional to (, where α is positive so that links between hubs are more prone to failure. The removal process is studied analytically by introducing a generating functions theory. We deduce exact self-consistent equations describing the system at a macroscopic level and discuss the percolation transition. Critical exponents are obtained by exploiting the Fortuin-Kasteleyn construction which provides a link between our model and a limit of the Potts model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb-Robertson, Bobbie-Jo M.; Corley, Courtney D.; McCue, Lee Ann
The field of bioforensics is focused on the analysis of evidence from a biocrime. Existing laboratory analyses can identify the specific strain of an organism in the evidence, as well signatures of the specific culture batch of organisms, such as low-frequency contaminants or indicators of growth and processing methods. To link these disparate types of physical data to potential suspects, investigators may need to identify institutions or individuals whose access to strains and culturing practices match those identified from the evidence. In this work we present a Bayesian statistical network to fuse different types of analytical measurements that predict themore » production environment of a Yersinia pestis sample under investigation with automated test processing of scientific publications to identify institutions with a history of growing Y. pestis under similar conditions. Furthermore, the textual and experimental signatures were evaluated recursively to determine the overall sensitivity of the network across all levels of false positives. We illustrate that institutions associated with several specific culturing practices can be accurately selected based on the experimental signature from only a few analytical measurements. These findings demonstrate that similar Bayesian networks can be generated generically for many organisms of interest and their deployment is not prohibitive due to either computational or experimental factors.« less
Brooks, M.H.; Schroder, L.J.; Willoughby, T.C.
1987-01-01
The U.S. Geological Survey operated a blind audit sample program during 1974 to test the effects of the sample handling and shipping procedures used by the National Atmospheric Deposition Program and National Trends Network on the quality of wet deposition data produced by the combined networks. Blind audit samples, which were dilutions of standard reference water samples, were submitted by network site operators to the central analytical laboratory disguised as actual wet deposition samples. Results from the analyses of blind audit samples were used to calculate estimates of analyte bias associated with all network wet deposition samples analyzed in 1984 and to estimate analyte precision. Concentration differences between double blind samples that were submitted to the central analytical laboratory and separate analyses of aliquots of those blind audit samples that had not undergone network sample handling and shipping were used to calculate analyte masses that apparently were added to each blind audit sample by routine network handling and shipping procedures. These calculated masses indicated statistically significant biases for magnesium, sodium , potassium, chloride, and sulfate. Median calculated masses were 41.4 micrograms (ug) for calcium, 14.9 ug for magnesium, 23.3 ug for sodium, 0.7 ug for potassium, 16.5 ug for chloride and 55.3 ug for sulfate. Analyte precision was estimated using two different sets of replicate measures performed by the central analytical laboratory. Estimated standard deviations were similar to those previously reported. (Author 's abstract)
Fasoli, Diego; Cattani, Anna; Panzeri, Stefano
2018-05-01
Despite their biological plausibility, neural network models with asymmetric weights are rarely solved analytically, and closed-form solutions are available only in some limiting cases or in some mean-field approximations. We found exact analytical solutions of an asymmetric spin model of neural networks with arbitrary size without resorting to any approximation, and we comprehensively studied its dynamical and statistical properties. The network had discrete time evolution equations and binary firing rates, and it could be driven by noise with any distribution. We found analytical expressions of the conditional and stationary joint probability distributions of the membrane potentials and the firing rates. By manipulating the conditional probability distribution of the firing rates, we extend to stochastic networks the associating learning rule previously introduced by Personnaz and coworkers. The new learning rule allowed the safe storage, under the presence of noise, of point and cyclic attractors, with useful implications for content-addressable memories. Furthermore, we studied the bifurcation structure of the network dynamics in the zero-noise limit. We analytically derived examples of the codimension 1 and codimension 2 bifurcation diagrams of the network, which describe how the neuronal dynamics changes with the external stimuli. This showed that the network may undergo transitions among multistable regimes, oscillatory behavior elicited by asymmetric synaptic connections, and various forms of spontaneous symmetry breaking. We also calculated analytically groupwise correlations of neural activity in the network in the stationary regime. This revealed neuronal regimes where, statistically, the membrane potentials and the firing rates are either synchronous or asynchronous. Our results are valid for networks with any number of neurons, although our equations can be realistically solved only for small networks. For completeness, we also derived the network equations in the thermodynamic limit of infinite network size and we analytically studied their local bifurcations. All the analytical results were extensively validated by numerical simulations.
Adverse outcome pathway networks: Development, analytics and applications
The US EPA is developing more cost effective and efficient ways to evaluate chemical safety using high throughput and computationally based testing strategies. An important component of this approach is the ability to translate chemical effects on fundamental biological processes...
Navigability of multiplex temporal network
NASA Astrophysics Data System (ADS)
Wang, Yan; Song, Qiao-Zhen
2017-01-01
Real world complex systems have multiple levels of relationships and in many cases, they need to be modeled as multiplex networks where the same nodes can interact with each other in different layers, such as social networks. However, social relationships only appear at prescribed times so the temporal structures of edge activations can also affect the dynamical processes located above them. To consider both factors are simultaneously, we introduce multiplex temporal networks and propose three different walk strategies to investigate the concurrent dynamics of random walks and the temporal structure of multiplex networks. Thus, we derive analytical results for the multiplex centrality and coverage function in multiplex temporal networks. By comparing them with the numerical results, we show how the underlying topology of the layers and the walk strategy affect the efficiency when exploring the networks. In particular, the most interesting result is the emergence of a super-diffusion process, where the time scale of the multiplex is faster than that of both layers acting separately.
EvoGraph: On-The-Fly Efficient Mining of Evolving Graphs on GPU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Dipanjan; Song, Shuaiwen
With the prevalence of the World Wide Web and social networks, there has been a growing interest in high performance analytics for constantly-evolving dynamic graphs. Modern GPUs provide massive AQ1 amount of parallelism for efficient graph processing, but the challenges remain due to their lack of support for the near real-time streaming nature of dynamic graphs. Specifically, due to the current high volume and velocity of graph data combined with the complexity of user queries, traditional processing methods by first storing the updates and then repeatedly running static graph analytics on a sequence of versions or snapshots are deemed undesirablemore » and computational infeasible on GPU. We present EvoGraph, a highly efficient and scalable GPU- based dynamic graph analytics framework.« less
Attacks and intrusion detection in wireless sensor networks of industrial SCADA systems
NASA Astrophysics Data System (ADS)
Kamaev, V. A.; Finogeev, A. G.; Finogeev, A. A.; Parygin, D. S.
2017-01-01
The effectiveness of automated process control systems (APCS) and supervisory control and data acquisition systems (SCADA) information security depends on the applied protection technologies of transport environment data transmission components. This article investigates the problems of detecting attacks in wireless sensor networks (WSN) of SCADA systems. As a result of analytical studies, the authors developed the detailed classification of external attacks and intrusion detection in sensor networks and brought a detailed description of attacking impacts on components of SCADA systems in accordance with the selected directions of attacks.
NASA Astrophysics Data System (ADS)
Samsinar, Riza; Suseno, Jatmiko Endro; Widodo, Catur Edi
2018-02-01
The distribution network is the closest power grid to the customer Electric service providers such as PT. PLN. The dispatching center of power grid companies is also the data center of the power grid where gathers great amount of operating information. The valuable information contained in these data means a lot for power grid operating management. The technique of data warehousing online analytical processing has been used to manage and analysis the great capacity of data. Specific methods for online analytics information systems resulting from data warehouse processing with OLAP are chart and query reporting. The information in the form of chart reporting consists of the load distribution chart based on the repetition of time, distribution chart on the area, the substation region chart and the electric load usage chart. The results of the OLAP process show the development of electric load distribution, as well as the analysis of information on the load of electric power consumption and become an alternative in presenting information related to peak load.
NASA Astrophysics Data System (ADS)
Takiyama, Ken
2017-12-01
How neural adaptation affects neural information processing (i.e. the dynamics and equilibrium state of neural activities) is a central question in computational neuroscience. In my previous works, I analytically clarified the dynamics and equilibrium state of neural activities in a ring-type neural network model that is widely used to model the visual cortex, motor cortex, and several other brain regions. The neural dynamics and the equilibrium state in the neural network model corresponded to a Bayesian computation and statistically optimal multiple information integration, respectively, under a biologically inspired condition. These results were revealed in an analytically tractable manner; however, adaptation effects were not considered. Here, I analytically reveal how the dynamics and equilibrium state of neural activities in a ring neural network are influenced by spike-frequency adaptation (SFA). SFA is an adaptation that causes gradual inhibition of neural activity when a sustained stimulus is applied, and the strength of this inhibition depends on neural activities. I reveal that SFA plays three roles: (1) SFA amplifies the influence of external input in neural dynamics; (2) SFA allows the history of the external input to affect neural dynamics; and (3) the equilibrium state corresponds to the statistically optimal multiple information integration independent of the existence of SFA. In addition, the equilibrium state in a ring neural network model corresponds to the statistically optimal integration of multiple information sources under biologically inspired conditions, independent of the existence of SFA.
Maximum flow-based resilience analysis: From component to system
Jin, Chong; Li, Ruiying; Kang, Rui
2017-01-01
Resilience, the ability to withstand disruptions and recover quickly, must be considered during system design because any disruption of the system may cause considerable loss, including economic and societal. This work develops analytic maximum flow-based resilience models for series and parallel systems using Zobel’s resilience measure. The two analytic models can be used to evaluate quantitatively and compare the resilience of the systems with the corresponding performance structures. For systems with identical components, the resilience of the parallel system increases with increasing number of components, while the resilience remains constant in the series system. A Monte Carlo-based simulation method is also provided to verify the correctness of our analytic resilience models and to analyze the resilience of networked systems based on that of components. A road network example is used to illustrate the analysis process, and the resilience comparison among networks with different topologies but the same components indicates that a system with redundant performance is usually more resilient than one without redundant performance. However, not all redundant capacities of components can improve the system resilience, the effectiveness of the capacity redundancy depends on where the redundant capacity is located. PMID:28545135
Wetherbee, Gregory A.; Martin, RoseAnn
2017-02-06
The U.S. Geological Survey Branch of Quality Systems operates the Precipitation Chemistry Quality Assurance Project (PCQA) for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN) and National Atmospheric Deposition Program/Mercury Deposition Network (NADP/MDN). Since 1978, various programs have been implemented by the PCQA to estimate data variability and bias contributed by changing protocols, equipment, and sample submission schemes within NADP networks. These programs independently measure the field and laboratory components which contribute to the overall variability of NADP wet-deposition chemistry and precipitation depth measurements. The PCQA evaluates the quality of analyte-specific chemical analyses from the two, currently (2016) contracted NADP laboratories, Central Analytical Laboratory and Mercury Analytical Laboratory, by comparing laboratory performance among participating national and international laboratories. Sample contamination and stability are evaluated for NTN and MDN by using externally field-processed blank samples provided by the Branch of Quality Systems. A colocated sampler program evaluates the overall variability of NTN measurements and bias between dissimilar precipitation gages and sample collectors.This report documents historical PCQA operations and general procedures for each of the external quality-assurance programs from 2007 to 2016.
2012-03-01
Simulation Simulation is a flexible tool for modeling airport operations , which has made the method a staple for airport systems analysts. Animation...be derived to define the character- istics of the airport terminal and describe the nature of the systems [sic] operation ”, which makes discrete...This system decomposition method, however, disregards the effects of network structure on performance measures. Real-life processes do not operate
Theory of Turing Patterns on Time Varying Networks.
Petit, Julien; Lauwens, Ben; Fanelli, Duccio; Carletti, Timoteo
2017-10-06
The process of pattern formation for a multispecies model anchored on a time varying network is studied. A nonhomogeneous perturbation superposed to an homogeneous stable fixed point can be amplified following the Turing mechanism of instability, solely instigated by the network dynamics. By properly tuning the frequency of the imposed network evolution, one can make the examined system behave as its averaged counterpart, over a finite time window. This is the key observation to derive a closed analytical prediction for the onset of the instability in the time dependent framework. Continuously and piecewise constant periodic time varying networks are analyzed, setting the framework for the proposed approach. The extension to nonperiodic settings is also discussed.
Network analysis applications in hydrology
NASA Astrophysics Data System (ADS)
Price, Katie
2017-04-01
Applied network theory has seen pronounced expansion in recent years, in fields such as epidemiology, computer science, and sociology. Concurrent development of analytical methods and frameworks has increased possibilities and tools available to researchers seeking to apply network theory to a variety of problems. While water and nutrient fluxes through stream systems clearly demonstrate a directional network structure, the hydrological applications of network theory remain underexplored. This presentation covers a review of network applications in hydrology, followed by an overview of promising network analytical tools that potentially offer new insights into conceptual modeling of hydrologic systems, identifying behavioral transition zones in stream networks and thresholds of dynamical system response. Network applications were tested along an urbanization gradient in Atlanta, Georgia, USA. Peachtree Creek and Proctor Creek. Peachtree Creek contains a nest of five longterm USGS streamflow and water quality gages, allowing network application of longterm flow statistics. The watershed spans a range of suburban and heavily urbanized conditions. Summary flow statistics and water quality metrics were analyzed using a suite of network analysis techniques, to test the conceptual modeling and predictive potential of the methodologies. Storm events and low flow dynamics during Summer 2016 were analyzed using multiple network approaches, with an emphasis on tomogravity methods. Results indicate that network theory approaches offer novel perspectives for understanding long term and eventbased hydrological data. Key future directions for network applications include 1) optimizing data collection, 2) identifying "hotspots" of contaminant and overland flow influx to stream systems, 3) defining process domains, and 4) analyzing dynamic connectivity of various system components, including groundwatersurface water interactions.
Critical regimes driven by recurrent mobility patterns of reaction-diffusion processes in networks
NASA Astrophysics Data System (ADS)
Gómez-Gardeñes, J.; Soriano-Paños, D.; Arenas, A.
2018-04-01
Reaction-diffusion processes1 have been widely used to study dynamical processes in epidemics2-4 and ecology5 in networked metapopulations. In the context of epidemics6, reaction processes are understood as contagions within each subpopulation (patch), while diffusion represents the mobility of individuals between patches. Recently, the characteristics of human mobility7, such as its recurrent nature, have been proven crucial to understand the phase transition to endemic epidemic states8,9. Here, by developing a framework able to cope with the elementary epidemic processes, the spatial distribution of populations and the commuting mobility patterns, we discover three different critical regimes of the epidemic incidence as a function of these parameters. Interestingly, we reveal a regime of the reaction-diffussion process in which, counter-intuitively, mobility is detrimental to the spread of disease. We analytically determine the precise conditions for the emergence of any of the three possible critical regimes in real and synthetic networks.
Developing weighted criteria to evaluate lean reverse logistics through analytical network process
NASA Astrophysics Data System (ADS)
Zagloel, Teuku Yuri M.; Hakim, Inaki Maulida; Krisnawardhani, Rike Adyartie
2017-11-01
Reverse logistics is a part of supply chain that bring materials from consumers back to manufacturer in order to gain added value or do a proper disposal. Nowadays, most companies are still facing several problems on reverse logistics implementation which leads to high waste along reverse logistics processes. In order to overcome this problem, Madsen [Framework for Reverse Lean Logistics to Enable Green Manufacturing, Eco Design 2009: 6th International Symposium on Environmentally Conscious Design and Inverse Manufacturing, Sapporo, 2009] has developed a lean reverse logistics framework as a step to eliminate waste by implementing lean on reverse logistics. However, the resulted framework sets aside criteria used to evaluate its performance. This research aims to determine weighted criteria that can be used as a base on reverse logistics evaluation by considering lean principles. The resulted criteria will ensure reverse logistics are kept off from waste, thus implemented efficiently. Analytical Network Process (ANP) is used in this research to determine the weighted criteria. The result shows that criteria used for evaluation lean reverse logistics are Innovation and Learning (35%), Economic (30%), Process Flow Management (14%), Customer Relationship Management (13%), Environment (6%), and Social (2%).
A Baseline for the Multivariate Comparison of Resting-State Networks
Allen, Elena A.; Erhardt, Erik B.; Damaraju, Eswar; Gruner, William; Segall, Judith M.; Silva, Rogers F.; Havlicek, Martin; Rachakonda, Srinivas; Fries, Jill; Kalyanam, Ravi; Michael, Andrew M.; Caprihan, Arvind; Turner, Jessica A.; Eichele, Tom; Adelsheim, Steven; Bryan, Angela D.; Bustillo, Juan; Clark, Vincent P.; Feldstein Ewing, Sarah W.; Filbey, Francesca; Ford, Corey C.; Hutchison, Kent; Jung, Rex E.; Kiehl, Kent A.; Kodituwakku, Piyadasa; Komesu, Yuko M.; Mayer, Andrew R.; Pearlson, Godfrey D.; Phillips, John P.; Sadek, Joseph R.; Stevens, Michael; Teuscher, Ursina; Thoma, Robert J.; Calhoun, Vince D.
2011-01-01
As the size of functional and structural MRI datasets expands, it becomes increasingly important to establish a baseline from which diagnostic relevance may be determined, a processing strategy that efficiently prepares data for analysis, and a statistical approach that identifies important effects in a manner that is both robust and reproducible. In this paper, we introduce a multivariate analytic approach that optimizes sensitivity and reduces unnecessary testing. We demonstrate the utility of this mega-analytic approach by identifying the effects of age and gender on the resting-state networks (RSNs) of 603 healthy adolescents and adults (mean age: 23.4 years, range: 12–71 years). Data were collected on the same scanner, preprocessed using an automated analysis pipeline based in SPM, and studied using group independent component analysis. RSNs were identified and evaluated in terms of three primary outcome measures: time course spectral power, spatial map intensity, and functional network connectivity. Results revealed robust effects of age on all three outcome measures, largely indicating decreases in network coherence and connectivity with increasing age. Gender effects were of smaller magnitude but suggested stronger intra-network connectivity in females and more inter-network connectivity in males, particularly with regard to sensorimotor networks. These findings, along with the analysis approach and statistical framework described here, provide a useful baseline for future investigations of brain networks in health and disease. PMID:21442040
VisualUrText: A Text Analytics Tool for Unstructured Textual Data
NASA Astrophysics Data System (ADS)
Zainol, Zuraini; Jaymes, Mohd T. H.; Nohuddin, Puteri N. E.
2018-05-01
The growing amount of unstructured text over Internet is tremendous. Text repositories come from Web 2.0, business intelligence and social networking applications. It is also believed that 80-90% of future growth data is available in the form of unstructured text databases that may potentially contain interesting patterns and trends. Text Mining is well known technique for discovering interesting patterns and trends which are non-trivial knowledge from massive unstructured text data. Text Mining covers multidisciplinary fields involving information retrieval (IR), text analysis, natural language processing (NLP), data mining, machine learning statistics and computational linguistics. This paper discusses the development of text analytics tool that is proficient in extracting, processing, analyzing the unstructured text data and visualizing cleaned text data into multiple forms such as Document Term Matrix (DTM), Frequency Graph, Network Analysis Graph, Word Cloud and Dendogram. This tool, VisualUrText, is developed to assist students and researchers for extracting interesting patterns and trends in document analyses.
Analysis of gene network robustness based on saturated fixed point attractors
2014-01-01
The analysis of gene network robustness to noise and mutation is important for fundamental and practical reasons. Robustness refers to the stability of the equilibrium expression state of a gene network to variations of the initial expression state and network topology. Numerical simulation of these variations is commonly used for the assessment of robustness. Since there exists a great number of possible gene network topologies and initial states, even millions of simulations may be still too small to give reliable results. When the initial and equilibrium expression states are restricted to being saturated (i.e., their elements can only take values 1 or −1 corresponding to maximum activation and maximum repression of genes), an analytical gene network robustness assessment is possible. We present this analytical treatment based on determination of the saturated fixed point attractors for sigmoidal function models. The analysis can determine (a) for a given network, which and how many saturated equilibrium states exist and which and how many saturated initial states converge to each of these saturated equilibrium states and (b) for a given saturated equilibrium state or a given pair of saturated equilibrium and initial states, which and how many gene networks, referred to as viable, share this saturated equilibrium state or the pair of saturated equilibrium and initial states. We also show that the viable networks sharing a given saturated equilibrium state must follow certain patterns. These capabilities of the analytical treatment make it possible to properly define and accurately determine robustness to noise and mutation for gene networks. Previous network research conclusions drawn from performing millions of simulations follow directly from the results of our analytical treatment. Furthermore, the analytical results provide criteria for the identification of model validity and suggest modified models of gene network dynamics. The yeast cell-cycle network is used as an illustration of the practical application of this analytical treatment. PMID:24650364
Google matrix analysis of directed networks
NASA Astrophysics Data System (ADS)
Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.
2015-10-01
In the past decade modern societies have developed enormous communication and social networks. Their classification and information retrieval processing has become a formidable task for the society. Because of the rapid growth of the World Wide Web, and social and communication networks, new mathematical methods have been invented to characterize the properties of these networks in a more detailed and precise way. Various search engines extensively use such methods. It is highly important to develop new tools to classify and rank a massive amount of network information in a way that is adapted to internal network structures and characteristics. This review describes the Google matrix analysis of directed complex networks demonstrating its efficiency using various examples including the World Wide Web, Wikipedia, software architectures, world trade, social and citation networks, brain neural networks, DNA sequences, and Ulam networks. The analytical and numerical matrix methods used in this analysis originate from the fields of Markov chains, quantum chaos, and random matrix theory.
Review: visual analytics of climate networks
NASA Astrophysics Data System (ADS)
Nocke, T.; Buschmann, S.; Donges, J. F.; Marwan, N.; Schulz, H.-J.; Tominski, C.
2015-09-01
Network analysis has become an important approach in studying complex spatiotemporal behaviour within geophysical observation and simulation data. This new field produces increasing numbers of large geo-referenced networks to be analysed. Particular focus lies currently on the network analysis of the complex statistical interrelationship structure within climatological fields. The standard procedure for such network analyses is the extraction of network measures in combination with static standard visualisation methods. Existing interactive visualisation methods and tools for geo-referenced network exploration are often either not known to the analyst or their potential is not fully exploited. To fill this gap, we illustrate how interactive visual analytics methods in combination with geovisualisation can be tailored for visual climate network investigation. Therefore, the paper provides a problem analysis relating the multiple visualisation challenges to a survey undertaken with network analysts from the research fields of climate and complex systems science. Then, as an overview for the interested practitioner, we review the state-of-the-art in climate network visualisation and provide an overview of existing tools. As a further contribution, we introduce the visual network analytics tools CGV and GTX, providing tailored solutions for climate network analysis, including alternative geographic projections, edge bundling, and 3-D network support. Using these tools, the paper illustrates the application potentials of visual analytics for climate networks based on several use cases including examples from global, regional, and multi-layered climate networks.
Review: visual analytics of climate networks
NASA Astrophysics Data System (ADS)
Nocke, T.; Buschmann, S.; Donges, J. F.; Marwan, N.; Schulz, H.-J.; Tominski, C.
2015-04-01
Network analysis has become an important approach in studying complex spatiotemporal behaviour within geophysical observation and simulation data. This new field produces increasing amounts of large geo-referenced networks to be analysed. Particular focus lies currently on the network analysis of the complex statistical interrelationship structure within climatological fields. The standard procedure for such network analyses is the extraction of network measures in combination with static standard visualisation methods. Existing interactive visualisation methods and tools for geo-referenced network exploration are often either not known to the analyst or their potential is not fully exploited. To fill this gap, we illustrate how interactive visual analytics methods in combination with geovisualisation can be tailored for visual climate network investigation. Therefore, the paper provides a problem analysis, relating the multiple visualisation challenges with a survey undertaken with network analysts from the research fields of climate and complex systems science. Then, as an overview for the interested practitioner, we review the state-of-the-art in climate network visualisation and provide an overview of existing tools. As a further contribution, we introduce the visual network analytics tools CGV and GTX, providing tailored solutions for climate network analysis, including alternative geographic projections, edge bundling, and 3-D network support. Using these tools, the paper illustrates the application potentials of visual analytics for climate networks based on several use cases including examples from global, regional, and multi-layered climate networks.
Connecting Core Percolation and Controllability of Complex Networks
Jia, Tao; Pósfai, Márton
2014-01-01
Core percolation is a fundamental structural transition in complex networks related to a wide range of important problems. Recent advances have provided us an analytical framework of core percolation in uncorrelated random networks with arbitrary degree distributions. Here we apply the tools in analysis of network controllability. We confirm analytically that the emergence of the bifurcation in control coincides with the formation of the core and the structure of the core determines the control mode of the network. We also derive the analytical expression related to the controllability robustness by extending the deduction in core percolation. These findings help us better understand the interesting interplay between the structural and dynamical properties of complex networks. PMID:24946797
Sense-making for intelligence analysis on social media data
NASA Astrophysics Data System (ADS)
Pritzkau, Albert
2016-05-01
Social networks, in particular online social networks as a subset, enable the analysis of social relationships which are represented by interaction, collaboration, or other sorts of influence between people. Any set of people and their internal social relationships can be modelled as a general social graph. These relationships are formed by exchanging emails, making phone calls, or carrying out a range of other activities that build up the network. This paper presents an overview of current approaches to utilizing social media as a ubiquitous sensor network in the context of national and global security. Exploitation of social media is usually an interdisciplinary endeavour, in which the relevant technologies and methods are identified and linked in order ultimately demonstrate selected applications. Effective and efficient intelligence is usually accomplished in a combined human and computer effort. Indeed, the intelligence process heavily depends on combining a human's flexibility, creativity, and cognitive ability with the bandwidth and processing power of today's computers. To improve the usability and accuracy of the intelligence analysis we will have to rely on data-processing tools at the level of natural language. Especially the collection and transformation of unstructured data into actionable, structured data requires scalable computational algorithms ranging from Artificial Intelligence, via Machine Learning, to Natural Language Processing (NLP). To support intelligence analysis on social media data, social media analytics is concerned with developing and evaluating computational tools and frameworks to collect, monitor, analyze, summarize, and visualize social media data. Analytics methods are employed to extract of significant patterns that might not be obvious. As a result, different data representations rendering distinct aspects of content and interactions serve as a means to adapt the focus of the intelligence analysis to specific information requests.
Use of artificial intelligence in analytical systems for the clinical laboratory
Truchaud, Alain; Ozawa, Kyoichi; Pardue, Harry; Schnipelsky, Paul
1995-01-01
The incorporation of information-processing technology into analytical systems in the form of standard computing software has recently been advanced by the introduction of artificial intelligence (AI), both as expert systems and as neural networks. This paper considers the role of software in system operation, control and automation, and attempts to define intelligence. AI is characterized by its ability to deal with incomplete and imprecise information and to accumulate knowledge. Expert systems, building on standard computing techniques, depend heavily on the domain experts and knowledge engineers that have programmed them to represent the real world. Neural networks are intended to emulate the pattern-recognition and parallel processing capabilities of the human brain and are taught rather than programmed. The future may lie in a combination of the recognition ability of the neural network and the rationalization capability of the expert system. In the second part of the paper, examples are given of applications of AI in stand-alone systems for knowledge engineering and medical diagnosis and in embedded systems for failure detection, image analysis, user interfacing, natural language processing, robotics and machine learning, as related to clinical laboratories. It is concluded that AI constitutes a collective form of intellectual propery, and that there is a need for better documentation, evaluation and regulation of the systems already being used in clinical laboratories. PMID:18924784
ProteoLens: a visual analytic tool for multi-scale database-driven biological network data mining.
Huan, Tianxiao; Sivachenko, Andrey Y; Harrison, Scott H; Chen, Jake Y
2008-08-12
New systems biology studies require researchers to understand how interplay among myriads of biomolecular entities is orchestrated in order to achieve high-level cellular and physiological functions. Many software tools have been developed in the past decade to help researchers visually navigate large networks of biomolecular interactions with built-in template-based query capabilities. To further advance researchers' ability to interrogate global physiological states of cells through multi-scale visual network explorations, new visualization software tools still need to be developed to empower the analysis. A robust visual data analysis platform driven by database management systems to perform bi-directional data processing-to-visualizations with declarative querying capabilities is needed. We developed ProteoLens as a JAVA-based visual analytic software tool for creating, annotating and exploring multi-scale biological networks. It supports direct database connectivity to either Oracle or PostgreSQL database tables/views, on which SQL statements using both Data Definition Languages (DDL) and Data Manipulation languages (DML) may be specified. The robust query languages embedded directly within the visualization software help users to bring their network data into a visualization context for annotation and exploration. ProteoLens supports graph/network represented data in standard Graph Modeling Language (GML) formats, and this enables interoperation with a wide range of other visual layout tools. The architectural design of ProteoLens enables the de-coupling of complex network data visualization tasks into two distinct phases: 1) creating network data association rules, which are mapping rules between network node IDs or edge IDs and data attributes such as functional annotations, expression levels, scores, synonyms, descriptions etc; 2) applying network data association rules to build the network and perform the visual annotation of graph nodes and edges according to associated data values. We demonstrated the advantages of these new capabilities through three biological network visualization case studies: human disease association network, drug-target interaction network and protein-peptide mapping network. The architectural design of ProteoLens makes it suitable for bioinformatics expert data analysts who are experienced with relational database management to perform large-scale integrated network visual explorations. ProteoLens is a promising visual analytic platform that will facilitate knowledge discoveries in future network and systems biology studies.
Identification of Patient Zero in Static and Temporal Networks: Robustness and Limitations
NASA Astrophysics Data System (ADS)
Antulov-Fantulin, Nino; Lančić, Alen; Šmuc, Tomislav; Štefančić, Hrvoje; Šikić, Mile
2015-06-01
Detection of patient zero can give new insights to epidemiologists about the nature of first transmissions into a population. In this Letter, we study the statistical inference problem of detecting the source of epidemics from a snapshot of spreading on an arbitrary network structure. By using exact analytic calculations and Monte Carlo estimators, we demonstrate the detectability limits for the susceptible-infected-recovered model, which primarily depend on the spreading process characteristics. Finally, we demonstrate the applicability of the approach in a case of a simulated sexually transmitted infection spreading over an empirical temporal network of sexual interactions.
Epidemic processes in complex networks
NASA Astrophysics Data System (ADS)
Pastor-Satorras, Romualdo; Castellano, Claudio; Van Mieghem, Piet; Vespignani, Alessandro
2015-07-01
In recent years the research community has accumulated overwhelming evidence for the emergence of complex and heterogeneous connectivity patterns in a wide range of biological and sociotechnical systems. The complex properties of real-world networks have a profound impact on the behavior of equilibrium and nonequilibrium phenomena occurring in various systems, and the study of epidemic spreading is central to our understanding of the unfolding of dynamical processes in complex networks. The theoretical analysis of epidemic spreading in heterogeneous networks requires the development of novel analytical frameworks, and it has produced results of conceptual and practical relevance. A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear. Physicists, mathematicians, epidemiologists, computer, and social scientists share a common interest in studying epidemic spreading and rely on similar models for the description of the diffusion of pathogens, knowledge, and innovation. For this reason, while focusing on the main results and the paradigmatic models in infectious disease modeling, the major results concerning generalized social contagion processes are also presented. Finally, the research activity at the forefront in the study of epidemic spreading in coevolving, coupled, and time-varying networks is reported.
Meaux, Emilie; Vuilleumier, Patrik
2016-11-01
The ability to decode facial emotions is of primary importance for human social interactions; yet, it is still debated how we analyze faces to determine their expression. Here we compared the processing of emotional face expressions through holistic integration and/or local analysis of visual features, and determined which brain systems mediate these distinct processes. Behavioral, physiological, and brain responses to happy and angry faces were assessed by presenting congruent global configurations of expressions (e.g., happy top+happy bottom), incongruent composite configurations (e.g., angry top+happy bottom), and isolated features (e.g. happy top only). Top and bottom parts were always from the same individual. Twenty-six healthy volunteers were scanned using fMRI while they classified the expression in either the top or the bottom face part but ignored information in the other non-target part. Results indicate that the recognition of happy and anger expressions is neither strictly holistic nor analytic Both routes were involved, but with a different role for analytic and holistic information depending on the emotion type, and different weights of local features between happy and anger expressions. Dissociable neural pathways were engaged depending on emotional face configurations. In particular, regions within the face processing network differed in their sensitivity to holistic expression information, which predominantly activated fusiform, inferior occipital areas and amygdala when internal features were congruent (i.e. template matching), whereas more local analysis of independent features preferentially engaged STS and prefrontal areas (IFG/OFC) in the context of full face configurations, but early visual areas and pulvinar when seen in isolated parts. Collectively, these findings suggest that facial emotion recognition recruits separate, but interactive dorsal and ventral routes within the face processing networks, whose engagement may be shaped by reciprocal interactions and modulated by task demands. Copyright © 2016 Elsevier Inc. All rights reserved.
A neural network model for credit risk evaluation.
Khashman, Adnan
2009-08-01
Credit scoring is one of the key analytical techniques in credit risk evaluation which has been an active research area in financial risk management. This paper presents a credit risk evaluation system that uses a neural network model based on the back propagation learning algorithm. We train and implement the neural network to decide whether to approve or reject a credit application, using seven learning schemes and real world credit applications from the Australian credit approval datasets. A comparison of the system performance under the different learning schemes is provided, furthermore, we compare the performance of two neural networks; with one and two hidden layers following the ideal learning scheme. Experimental results suggest that neural networks can be effectively used in automatic processing of credit applications.
Dynamic Network Selection for Multicast Services in Wireless Cooperative Networks
NASA Astrophysics Data System (ADS)
Chen, Liang; Jin, Le; He, Feng; Cheng, Hanwen; Wu, Lenan
In next generation mobile multimedia communications, different wireless access networks are expected to cooperate. However, it is a challenging task to choose an optimal transmission path in this scenario. This paper focuses on the problem of selecting the optimal access network for multicast services in the cooperative mobile and broadcasting networks. An algorithm is proposed, which considers multiple decision factors and multiple optimization objectives. An analytic hierarchy process (AHP) method is applied to schedule the service queue and an artificial neural network (ANN) is used to improve the flexibility of the algorithm. Simulation results show that by applying the AHP method, a group of weight ratios can be obtained to improve the performance of multiple objectives. And ANN method is effective to adaptively adjust weight ratios when users' new waiting threshold is generated.
Weak percolation on multiplex networks
NASA Astrophysics Data System (ADS)
Baxter, Gareth J.; Dorogovtsev, Sergey N.; Mendes, José F. F.; Cellai, Davide
2014-04-01
Bootstrap percolation is a simple but nontrivial model. It has applications in many areas of science and has been explored on random networks for several decades. In single-layer (simplex) networks, it has been recently observed that bootstrap percolation, which is defined as an incremental process, can be seen as the opposite of pruning percolation, where nodes are removed according to a connectivity rule. Here we propose models of both bootstrap and pruning percolation for multiplex networks. We collectively refer to these two models with the concept of "weak" percolation, to distinguish them from the somewhat classical concept of ordinary ("strong") percolation. While the two models coincide in simplex networks, we show that they decouple when considering multiplexes, giving rise to a wealth of critical phenomena. Our bootstrap model constitutes the simplest example of a contagion process on a multiplex network and has potential applications in critical infrastructure recovery and information security. Moreover, we show that our pruning percolation model may provide a way to diagnose missing layers in a multiplex network. Finally, our analytical approach allows us to calculate critical behavior and characterize critical clusters.
2013-12-01
The Analytic Hierarch/Network Process,” in Rev. R. Acad. Cien. Serie A. Mat (RACSAM), submitted by Francisco Javier Giron (Real Academia de Ciencias ...Academia de Ciencias : Spain. Scott, Nathan. Naval Special Warfare Officer Retention Survey. Monterey, CA: NPS Press, September 2013. Whittenberger
ERIC Educational Resources Information Center
Turan, Fikret Korhan; Cetinkaya, Saadet; Ustun, Ceyda
2016-01-01
Building sustainable universities calls for participative management and collaboration among stakeholders. Combining analytic hierarchy and network processes (AHP/ANP) with statistical analysis, this research proposes a framework that can be used in higher education institutions for integrating stakeholder preferences into strategic decisions. The…
NETWORK DESIGN FACTORS FOR ASSESSING TEMPORAL VARIABILITY IN GROUND-WATER QUALITY
A 1.5 year benchmark data Set was collected at biweekly frequency from two siteS in shallow sand and gravel deposits in West Central Illinois. ne site was near a hog-processing facility and the other represented uncontaminated conditions. onsistent sampling and analytical protoco...
Dynamics of history-dependent epidemics in temporal networks
NASA Astrophysics Data System (ADS)
Sunny, Albert; Kotnis, Bhushan; Kuri, Joy
2015-08-01
The structural properties of temporal networks often influence the dynamical processes that occur on these networks, e.g., bursty interaction patterns have been shown to slow down epidemics. In this paper, we investigate the effect of link lifetimes on the spread of history-dependent epidemics. We formulate an analytically tractable activity-driven temporal network model that explicitly incorporates link lifetimes. For Markovian link lifetimes, we use mean-field analysis for computing the epidemic threshold, while the effect of non-Markovian link lifetimes is studied using simulations. Furthermore, we also study the effect of negative correlation between the number of links spawned by an individual and the lifetimes of those links. Such negative correlations may arise due to the finite cognitive capacity of the individuals. Our investigations reveal that heavy-tailed link lifetimes slow down the epidemic, while negative correlations can reduce epidemic prevalence. We believe that our results help shed light on the role of link lifetimes in modulating diffusion processes on temporal networks.
Spontaneous repulsion in the A +B →0 reaction on coupled networks
NASA Astrophysics Data System (ADS)
Lazaridis, Filippos; Gross, Bnaya; Maragakis, Michael; Argyrakis, Panos; Bonamassa, Ivan; Havlin, Shlomo; Cohen, Reuven
2018-04-01
We study the transient dynamics of an A +B →0 process on a pair of randomly coupled networks, where reactants are initially separated. We find that, for sufficiently small fractions q of cross couplings, the concentration of A (or B ) particles decays linearly in a first stage and crosses over to a second linear decrease at a mixing time tx. By numerical and analytical arguments, we show that for symmetric and homogeneous structures tx∝(
Thermodynamic efficiency of learning a rule in neural networks
NASA Astrophysics Data System (ADS)
Goldt, Sebastian; Seifert, Udo
2017-11-01
Biological systems have to build models from their sensory input data that allow them to efficiently process previously unseen inputs. Here, we study a neural network learning a binary classification rule for these inputs from examples provided by a teacher. We analyse the ability of the network to apply the rule to new inputs, that is to generalise from past experience. Using stochastic thermodynamics, we show that the thermodynamic costs of the learning process provide an upper bound on the amount of information that the network is able to learn from its teacher for both batch and online learning. This allows us to introduce a thermodynamic efficiency of learning. We analytically compute the dynamics and the efficiency of a noisy neural network performing online learning in the thermodynamic limit. In particular, we analyse three popular learning algorithms, namely Hebbian, Perceptron and AdaTron learning. Our work extends the methods of stochastic thermodynamics to a new type of learning problem and might form a suitable basis for investigating the thermodynamics of decision-making.
Burstiness and tie activation strategies in time-varying social networks.
Ubaldi, Enrico; Vezzani, Alessandro; Karsai, Márton; Perra, Nicola; Burioni, Raffaella
2017-04-13
The recent developments in the field of social networks shifted the focus from static to dynamical representations, calling for new methods for their analysis and modelling. Observations in real social systems identified two main mechanisms that play a primary role in networks' evolution and influence ongoing spreading processes: the strategies individuals adopt when selecting between new or old social ties, and the bursty nature of the social activity setting the pace of these choices. We introduce a time-varying network model accounting both for ties selection and burstiness and we analytically study its phase diagram. The interplay of the two effects is non trivial and, interestingly, the effects of burstiness might be suppressed in regimes where individuals exhibit a strong preference towards previously activated ties. The results are tested against numerical simulations and compared with two empirical datasets with very good agreement. Consequently, the framework provides a principled method to classify the temporal features of real networks, and thus yields new insights to elucidate the effects of social dynamics on spreading processes.
SociAL Sensor Analytics: Measuring Phenomenology at Scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corley, Courtney D.; Dowling, Chase P.; Rose, Stuart J.
The objective of this paper is to present a system for interrogating immense social media streams through analytical methodologies that characterize topics and events critical to tactical and strategic planning. First, we propose a conceptual framework for interpreting social media as a sensor network. Time-series models and topic clustering algorithms are used to implement this concept into a functioning analytical system. Next, we address two scientific challenges: 1) to understand, quantify, and baseline phenomenology of social media at scale, and 2) to develop analytical methodologies to detect and investigate events of interest. This paper then documents computational methods and reportsmore » experimental findings that address these challenges. Ultimately, the ability to process billions of social media posts per week over a period of years enables the identification of patterns and predictors of tactical and strategic concerns at an unprecedented rate through SociAL Sensor Analytics (SALSA).« less
Environmental Response Laboratory Network (ERLN) Data Submission Requirements
These Environmental Response Laboratory Network specifications are essential to the mission of providing consistent analytical data of know and documented quality for each Analytical Service Request (ASR).
Towards an Analytic Foundation for Network Architecture
2010-12-31
SUPPLEMENTARY NOTES N/A 14. ABSTRACT In this project, we develop the analytic tools of stochastic optimization for wireless network design and apply them...and Mung Chiang, “ DaVinci : Dynamically Adaptive Virtual Networks for a Customized Internet,” in Proc. ACM SIGCOMM CoNext Conference, December 2008
NASA Astrophysics Data System (ADS)
Moon, Joon-Young; Kim, Junhyeok; Ko, Tae-Wook; Kim, Minkyung; Iturria-Medina, Yasser; Choi, Jee-Hyun; Lee, Joseph; Mashour, George A.; Lee, Uncheol
2017-04-01
Identifying how spatially distributed information becomes integrated in the brain is essential to understanding higher cognitive functions. Previous computational and empirical studies suggest a significant influence of brain network structure on brain network function. However, there have been few analytical approaches to explain the role of network structure in shaping regional activities and directionality patterns. In this study, analytical methods are applied to a coupled oscillator model implemented in inhomogeneous networks. We first derive a mathematical principle that explains the emergence of directionality from the underlying brain network structure. We then apply the analytical methods to the anatomical brain networks of human, macaque, and mouse, successfully predicting simulation and empirical electroencephalographic data. The results demonstrate that the global directionality patterns in resting state brain networks can be predicted solely by their unique network structures. This study forms a foundation for a more comprehensive understanding of how neural information is directed and integrated in complex brain networks.
Distribution of shortest cycle lengths in random networks
NASA Astrophysics Data System (ADS)
Bonneau, Haggai; Hassid, Aviv; Biham, Ofer; Kühn, Reimer; Katzav, Eytan
2017-12-01
We present analytical results for the distribution of shortest cycle lengths (DSCL) in random networks. The approach is based on the relation between the DSCL and the distribution of shortest path lengths (DSPL). We apply this approach to configuration model networks, for which analytical results for the DSPL were obtained before. We first calculate the fraction of nodes in the network which reside on at least one cycle. Conditioning on being on a cycle, we provide the DSCL over ensembles of configuration model networks with degree distributions which follow a Poisson distribution (Erdős-Rényi network), degenerate distribution (random regular graph), and a power-law distribution (scale-free network). The mean and variance of the DSCL are calculated. The analytical results are found to be in very good agreement with the results of computer simulations.
NASA Astrophysics Data System (ADS)
Naharudin, N.; Ahamad, M. S. S.; Sadullah, A. F. M.
2017-10-01
Every transit trip begins and ends with pedestrian travel. People need to walk to access the transit services. However, their choice to walk depends on many factors including the connectivity, level of comfort and safety. These factors can influence the pleasantness of riding the transit itself, especially during the first/last mile (FLM) journey. This had triggered few studies attempting to measure the pedestrian-friendliness a walking environment can offer. There were studies that implement the pedestrian experience on walking to assess the pedestrian-friendliness of a walking environment. There were also studies that use spatial analysis to measure it based on the path connectivity and accessibility to public facilities and amenities. Though both are good, but the perception-based studies and spatial analysis can be combined to derive more holistic results. This paper proposes a framework for selecting a pedestrian-friendly path for the FLM transit journey by using the two techniques (perception-based and spatial analysis). First, the degree of importance for the factors influencing a good walking environment will be aggregated by using Analytical Network Process (ANP) decision rules based on people's preferences on those factors. The weight will then be used as attributes in the GIS network analysis. Next, the network analysis will be performed to find a pedestrian-friendly walking route based on the priorities aggregated by ANP. It will choose routes passing through the preferred attributes accordingly. The final output is a map showing pedestrian-friendly walking path for the FLM transit journey.
Mailloux, Shay; Halámek, Jan; Katz, Evgeny
2014-03-07
A new Sense-and-Act system was realized by the integration of a biocomputing system, performing analytical processes, with a signal-responsive electrode. A drug-mimicking release process was triggered by biomolecular signals processed by different logic networks, including three concatenated AND logic gates or a 3-input OR logic gate. Biocatalytically produced NADH, controlled by various combinations of input signals, was used to activate the electrochemical system. A biocatalytic electrode associated with signal-processing "biocomputing" systems was electrically connected to another electrode coated with a polymer film, which was dissolved upon the formation of negative potential releasing entrapped drug-mimicking species, an enzyme-antibody conjugate, operating as a model for targeted immune-delivery and consequent "prodrug" activation. The system offers great versatility for future applications in controlled drug release and personalized medicine.
Organizing knowledge for tutoring fire loss prevention
NASA Astrophysics Data System (ADS)
Schmoldt, Daniel L.
1989-09-01
The San Bernardino National Forest in southern California has recently developed a systematic approach to wildfire prevention planning. However, a comprehensive document or other mechanism for teaching this process to other prevention personnel does not exist. An intelligent tutorial expert system is being constructed to provide a means for learning the process and to assist in the creation of specific prevention plans. An intelligent tutoring system (ITS) contains two types of knowledge—domain and tutoring. The domain knowledge for wildfire prevention is structured around several foci: (1) individual concepts used in prevention planning; (2) explicitly specified interrelationships between concepts; (3) deductive methods that contain subjective judgment normally unavailable to less-experienced users; (4) analytical models of fire behavior used for identification of hazard areas; (5) how-to guidance needed for performance of planning tasks; and (6) expository information that provides a rationale for planning steps and ideas. Combining analytical, procedure, inferential, conceptual, and expositional knowledge into a tutoring environment provides the student and/or user with a multiple perspective of the subject matter. A concept network provides a unifying framework for structuring and utilizing these diverse forms of prevention planning knowledge. This network structure borrows from and combines semantic networks and frame-based knowledge representations. The flexibility of this organization facilitates an effective synthesis and organization of multiple knowledge forms.
Streaming data analytics via message passing with application to graph algorithms
Plimpton, Steven J.; Shead, Tim
2014-05-06
The need to process streaming data, which arrives continuously at high-volume in real-time, arises in a variety of contexts including data produced by experiments, collections of environmental or network sensors, and running simulations. Streaming data can also be formulated as queries or transactions which operate on a large dynamic data store, e.g. a distributed database. We describe a lightweight, portable framework named PHISH which enables a set of independent processes to compute on a stream of data in a distributed-memory parallel manner. Datums are routed between processes in patterns defined by the application. PHISH can run on top of eithermore » message-passing via MPI or sockets via ZMQ. The former means streaming computations can be run on any parallel machine which supports MPI; the latter allows them to run on a heterogeneous, geographically dispersed network of machines. We illustrate how PHISH can support streaming MapReduce operations, and describe streaming versions of three algorithms for large, sparse graph analytics: triangle enumeration, subgraph isomorphism matching, and connected component finding. Lastly, we also provide benchmark timings for MPI versus socket performance of several kernel operations useful in streaming algorithms.« less
A Robust and Resilient Network Design Paradigm for Region-Based Faults Inflicted by WMD Attack
2016-04-01
MEASUREMENTS FOR GRID MONITORING AND CONTROL AGAINST POSSIBLE WMD ATTACKS We investigated big data processing of PMU measurements for grid monitoring and...control against possible WMD attacks. Big data processing and analytics of synchrophasor measurements, collected from multiple locations of power grids...collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources
The development of computer networks: First results from a microeconomic model
NASA Astrophysics Data System (ADS)
Maier, Gunther; Kaufmann, Alexander
Computer networks like the Internet are gaining importance in social and economic life. The accelerating pace of the adoption of network technologies for business purposes is a rather recent phenomenon. Many applications are still in the early, sometimes even experimental, phase. Nevertheless, it seems to be certain that networks will change the socioeconomic structures we know today. This is the background for our special interest in the development of networks, in the role of spatial factors influencing the formation of networks, and consequences of networks on spatial structures, and in the role of externalities. This paper discusses a simple economic model - based on a microeconomic calculus - that incorporates the main factors that generate the growth of computer networks. The paper provides analytic results about the generation of computer networks. The paper discusses (1) under what conditions economic factors will initiate the process of network formation, (2) the relationship between individual and social evaluation, and (3) the efficiency of a network that is generated based on economic mechanisms.
Overview of Aro Program on Network Science for Human Decision Making
NASA Astrophysics Data System (ADS)
West, Bruce J.
This program brings together researchers from disparate disciplines to work on a complex research problem that defies confinement within any single discipline. Consequently, not only are new and rewarding solutions sought and obtained for a problem of importance to society and the Army, that is, the human dimension of complex networks, but, in addition, collaborations are established that would not otherwise have formed given the traditional disciplinary compartmentalization of research. This program develops the basic research foundation of a science of networks supporting the linkage between the physical and human (cognitive and social) domains as they relate to human decision making. The strategy is to extend the recent methods of non-equilibrium statistical physics to non-stationary, renewal stochastic processes that appear to be characteristic of the interactions among nodes in complex networks. We also pursue understanding of the phenomenon of synchronization, whose mathematical formulation has recently provided insight into how complex networks reach accommodation and cooperation. The theoretical analyses of complex networks, although mathematically rigorous, often elude analytic solutions and require computer simulation and computation to analyze the underlying dynamic process.
Synchronization invariance under network structural transformations
NASA Astrophysics Data System (ADS)
Arola-Fernández, Lluís; Díaz-Guilera, Albert; Arenas, Alex
2018-06-01
Synchronization processes are ubiquitous despite the many connectivity patterns that complex systems can show. Usually, the emergence of synchrony is a macroscopic observable; however, the microscopic details of the system, as, e.g., the underlying network of interactions, is many times partially or totally unknown. We already know that different interaction structures can give rise to a common functionality, understood as a common macroscopic observable. Building upon this fact, here we propose network transformations that keep the collective behavior of a large system of Kuramoto oscillators invariant. We derive a method based on information theory principles, that allows us to adjust the weights of the structural interactions to map random homogeneous in-degree networks into random heterogeneous networks and vice versa, keeping synchronization values invariant. The results of the proposed transformations reveal an interesting principle; heterogeneous networks can be mapped to homogeneous ones with local information, but the reverse process needs to exploit higher-order information. The formalism provides analytical insight to tackle real complex scenarios when dealing with uncertainty in the measurements of the underlying connectivity structure.
Mercury Deposition Network Site Operator Training for the System Blank and Blind Audit Programs
Wetherbee, Gregory A.; Lehmann, Christopher M.B.
2008-01-01
The U.S. Geological Survey operates the external quality assurance project for the National Atmospheric Deposition Program/Mercury Deposition Network. The project includes the system blank and blind audit programs for assessment of total mercury concentration data quality for wet-deposition samples. This presentation was prepared to train new site operators and to refresh experienced site operators to successfully process and submit system blank and blind audit samples for chemical analysis. Analytical results are used to estimate chemical stability and contamination levels of National Atmospheric Deposition Program/Mercury Deposition Network samples and to evaluate laboratory variability and bias.
Weighted Scaling in Non-growth Random Networks
NASA Astrophysics Data System (ADS)
Chen, Guang; Yang, Xu-Hua; Xu, Xin-Li
2012-09-01
We propose a weighted model to explain the self-organizing formation of scale-free phenomenon in non-growth random networks. In this model, we use multiple-edges to represent the connections between vertices and define the weight of a multiple-edge as the total weights of all single-edges within it and the strength of a vertex as the sum of weights for those multiple-edges attached to it. The network evolves according to a vertex strength preferential selection mechanism. During the evolution process, the network always holds its total number of vertices and its total number of single-edges constantly. We show analytically and numerically that a network will form steady scale-free distributions with our model. The results show that a weighted non-growth random network can evolve into scale-free state. It is interesting that the network also obtains the character of an exponential edge weight distribution. Namely, coexistence of scale-free distribution and exponential distribution emerges.
Modern Adaptive Analytics Approach to Lowering Seismic Network Detection Thresholds
NASA Astrophysics Data System (ADS)
Johnson, C. E.
2017-12-01
Modern seismic networks present a number of challenges, but perhaps most notably are those related to 1) extreme variation in station density, 2) temporal variation in station availability, and 3) the need to achieve detectability for much smaller events of strategic importance. The first of these has been reasonably addressed in the development of modern seismic associators, such as GLASS 3.0 by the USGS/NEIC, though some work still remains to be done in this area. However, the latter two challenges demand special attention. Station availability is impacted by weather, equipment failure or the adding or removing of stations, and while thresholds have been pushed to increasingly smaller magnitudes, new algorithms are needed to achieve even lower thresholds. Station availability can be addressed by a modern, adaptive architecture that maintains specified performance envelopes using adaptive analytics coupled with complexity theory. Finally, detection thresholds can be lowered using a novel approach that tightly couples waveform analytics with the event detection and association processes based on a principled repicking algorithm that uses particle realignment for enhanced phase discrimination.
On Connectivity of Wireless Sensor Networks with Directional Antennas
Wang, Qiu; Dai, Hong-Ning; Zheng, Zibin; Imran, Muhammad; Vasilakos, Athanasios V.
2017-01-01
In this paper, we investigate the network connectivity of wireless sensor networks with directional antennas. In particular, we establish a general framework to analyze the network connectivity while considering various antenna models and the channel randomness. Since existing directional antenna models have their pros and cons in the accuracy of reflecting realistic antennas and the computational complexity, we propose a new analytical directional antenna model called the iris model to balance the accuracy against the complexity. We conduct extensive simulations to evaluate the analytical framework. Our results show that our proposed analytical model on the network connectivity is accurate, and our iris antenna model can provide a better approximation to realistic directional antennas than other existing antenna models. PMID:28085081
Visual analytics of brain networks.
Li, Kaiming; Guo, Lei; Faraco, Carlos; Zhu, Dajiang; Chen, Hanbo; Yuan, Yixuan; Lv, Jinglei; Deng, Fan; Jiang, Xi; Zhang, Tuo; Hu, Xintao; Zhang, Degang; Miller, L Stephen; Liu, Tianming
2012-05-15
Identification of regions of interest (ROIs) is a fundamental issue in brain network construction and analysis. Recent studies demonstrate that multimodal neuroimaging approaches and joint analysis strategies are crucial for accurate, reliable and individualized identification of brain ROIs. In this paper, we present a novel approach of visual analytics and its open-source software for ROI definition and brain network construction. By combining neuroscience knowledge and computational intelligence capabilities, visual analytics can generate accurate, reliable and individualized ROIs for brain networks via joint modeling of multimodal neuroimaging data and an intuitive and real-time visual analytics interface. Furthermore, it can be used as a functional ROI optimization and prediction solution when fMRI data is unavailable or inadequate. We have applied this approach to an operation span working memory fMRI/DTI dataset, a schizophrenia DTI/resting state fMRI (R-fMRI) dataset, and a mild cognitive impairment DTI/R-fMRI dataset, in order to demonstrate the effectiveness of visual analytics. Our experimental results are encouraging. Copyright © 2012 Elsevier Inc. All rights reserved.
Trapping in scale-free networks with hierarchical organization of modularity.
Zhang, Zhongzhi; Lin, Yuan; Gao, Shuyang; Zhou, Shuigeng; Guan, Jihong; Li, Mo
2009-11-01
A wide variety of real-life networks share two remarkable generic topological properties: scale-free behavior and modular organization, and it is natural and important to study how these two features affect the dynamical processes taking place on such networks. In this paper, we investigate a simple stochastic process--trapping problem, a random walk with a perfect trap fixed at a given location, performed on a family of hierarchical networks that exhibit simultaneously striking scale-free and modular structure. We focus on a particular case with the immobile trap positioned at the hub node having the largest degree. Using a method based on generating functions, we determine explicitly the mean first-passage time (MFPT) for the trapping problem, which is the mean of the node-to-trap first-passage time over the entire network. The exact expression for the MFPT is calculated through the recurrence relations derived from the special construction of the hierarchical networks. The obtained rigorous formula corroborated by extensive direct numerical calculations exhibits that the MFPT grows algebraically with the network order. Concretely, the MFPT increases as a power-law function of the number of nodes with the exponent much less than 1. We demonstrate that the hierarchical networks under consideration have more efficient structure for transport by diffusion in contrast with other analytically soluble media including some previously studied scale-free networks. We argue that the scale-free and modular topologies are responsible for the high efficiency of the trapping process on the hierarchical networks.
How Do Mathematicians Learn Math?: Resources and Acts for Constructing and Understanding Mathematics
ERIC Educational Resources Information Center
Wilkerson-Jerde, Michelle H.; Wilensky, Uri J.
2011-01-01
In this paper, we present an analytic framework for investigating expert mathematical learning as the process of building a "network of mathematical resources" by establishing relationships between different components and properties of mathematical ideas. We then use this framework to analyze the reasoning of ten mathematicians and mathematics…
Analyte-Responsive Hydrogels: Intelligent Materials for Biosensing and Drug Delivery.
Culver, Heidi R; Clegg, John R; Peppas, Nicholas A
2017-02-21
Nature has mastered the art of molecular recognition. For example, using synergistic non-covalent interactions, proteins can distinguish between molecules and bind a partner with incredible affinity and specificity. Scientists have developed, and continue to develop, techniques to investigate and better understand molecular recognition. As a consequence, analyte-responsive hydrogels that mimic these recognitive processes have emerged as a class of intelligent materials. These materials are unique not only in the type of analyte to which they respond but also in how molecular recognition is achieved and how the hydrogel responds to the analyte. Traditional intelligent hydrogels can respond to environmental cues such as pH, temperature, and ionic strength. The functional monomers used to make these hydrogels can be varied to achieve responsive behavior. For analyte-responsive hydrogels, molecular recognition can also be achieved by incorporating biomolecules with inherent molecular recognition properties (e.g., nucleic acids, peptides, enzymes, etc.) into the polymer network. Furthermore, in addition to typical swelling/syneresis responses, these materials exhibit unique responsive behaviors, such as gel assembly or disassembly, upon interaction with the target analyte. With the diverse tools available for molecular recognition and the ability to generate unique responsive behaviors, analyte-responsive hydrogels have found great utility in a wide range of applications. In this Account, we discuss strategies for making four different classes of analyte-responsive hydrogels, specifically, non-imprinted, molecularly imprinted, biomolecule-containing, and enzymatically responsive hydrogels. Then we explore how these materials have been incorporated into sensors and drug delivery systems, highlighting examples that demonstrate the versatility of these materials. For example, in addition to the molecular recognition properties of analyte-responsive hydrogels, the physicochemical changes that are induced upon analyte binding can be exploited to generate a detectable signal for sensing applications. As research in this area has grown, a number of creative approaches for improving the selectivity and sensitivity (i.e., detection limit) of these sensors have emerged. For applications in drug delivery systems, therapeutic release can be triggered by competitive molecular interactions or physicochemical changes in the network. Additionally, including degradable units within the network can enable sustained and responsive therapeutic release. Several exciting examples exploiting the analyte-responsive behavior of hydrogels for the treatment of cancer, diabetes, and irritable bowel syndrome are discussed in detail. We expect that creative and combinatorial approaches used in the design of analyte-responsive hydrogels will continue to yield materials with great potential in the fields of sensing and drug delivery.
NASA Astrophysics Data System (ADS)
Hong, Y.; Curteza, A.; Zeng, X.; Bruniaux, P.; Chen, Y.
2016-06-01
Material selection is the most difficult section in the customized garment product design and development process. This study aims to create a hierarchical framework for material selection. The analytic hierarchy process and fuzzy sets theories have been applied to mindshare the diverse requirements from the customer and inherent interaction/interdependencies among these requirements. Sensory evaluation ensures a quick and effective selection without complex laboratory test such as KES and FAST, using the professional knowledge of the designers. A real empirical application for the physically disabled people is carried out to demonstrate the proposed method. Both the theoretical and practical background of this paper have indicated the fuzzy analytical network process can capture expert's knowledge existing in the form of incomplete, ambiguous and vague information for the mutual influence on attribute and criteria of the material selection.
Functional connectivity mapping of regions associated with self- and other-processing.
Murray, Ryan J; Debbané, Martin; Fox, Peter T; Bzdok, Danilo; Eickhoff, Simon B
2015-04-01
Neuroscience literature increasingly suggests a conceptual self composed of interacting neural regions, rather than independent local activations, yet such claims have yet to be investigated. We, thus, combined task-dependent meta-analytic connectivity modeling (MACM) with task-independent resting-state (RS) connectivity analysis to delineate the neural network of the self, across both states. Given psychological evidence implicating the self's interdependence on social information, we also delineated the neural network underlying conceptual other-processing. To elucidate the relation between the self-/other-networks and their function, we mined the MACM metadata to generate a cognitive-behavioral profile for an empirically identified region specific to conceptual self, the pregenual anterior cingulate (pACC), and conceptual other, posterior cingulate/precuneus (PCC/PC). Mining of 7,200 published, task-dependent, neuroimaging studies, using healthy human subjects, yielded 193 studies activating the self-related seed and were conjoined with RS connectivity analysis to delineate a differentiated self-network composed of the pACC (seed) and anterior insula, relative to other functional connectivity. Additionally, 106 studies activating the other-related seed were conjoined with RS connectivity analysis to delineate a differentiated other-network of PCC/PC (seed) and angular gyrus/temporoparietal junction, relative to self-functional connectivity. The self-network seed related to emotional conflict resolution and motivational processing, whereas the other-network seed related to socially oriented processing and contextual information integration. Notably, our findings revealed shared RS connectivity between ensuing self-/other-networks within the ventromedial prefrontal cortex and medial orbitofrontal cortex, suggesting self-updating via integration of self-relevant social information. We, therefore, present initial neurobiological evidence corroborating the increasing claims of an intricate self-network, the architecture of which may promote social value processing. © 2014 Wiley Periodicals, Inc.
Wang, Quanxin; Sporns, Olaf; Burkhalter, Andreas
2012-01-01
Much of the information used for visual perception and visually guided actions is processed in complex networks of connections within the cortex. To understand how this works in the normal brain and to determine the impact of disease, mice are promising models. In primate visual cortex, information is processed in a dorsal stream specialized for visuospatial processing and guided action and a ventral stream for object recognition. Here, we traced the outputs of 10 visual areas and used quantitative graph analytic tools of modern network science to determine, from the projection strengths in 39 cortical targets, the community structure of the network. We found a high density of the cortical graph that exceeded that previously shown in monkey. Each source area showed a unique distribution of projection weights across its targets (i.e. connectivity profile) that was well-fit by a lognormal function. Importantly, the community structure was strongly dependent on the location of the source area: outputs from medial/anterior extrastriate areas were more strongly linked to parietal, motor and limbic cortex, whereas lateral extrastriate areas were preferentially connected to temporal and parahippocampal cortex. These two subnetworks resemble dorsal and ventral cortical streams in primates, demonstrating that the basic layout of cortical networks is conserved across species. PMID:22457489
Analytics for Cyber Network Defense
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plantenga, Todd.; Kolda, Tamara Gibson
2011-06-01
This report provides a brief survey of analytics tools considered relevant to cyber network defense (CND). Ideas and tools come from elds such as statistics, data mining, and knowledge discovery. Some analytics are considered standard mathematical or statistical techniques, while others re ect current research directions. In all cases the report attempts to explain the relevance to CND with brief examples.
Cluster Size Optimization in Sensor Networks with Decentralized Cluster-Based Protocols
Amini, Navid; Vahdatpour, Alireza; Xu, Wenyao; Gerla, Mario; Sarrafzadeh, Majid
2011-01-01
Network lifetime and energy-efficiency are viewed as the dominating considerations in designing cluster-based communication protocols for wireless sensor networks. This paper analytically provides the optimal cluster size that minimizes the total energy expenditure in such networks, where all sensors communicate data through their elected cluster heads to the base station in a decentralized fashion. LEACH, LEACH-Coverage, and DBS comprise three cluster-based protocols investigated in this paper that do not require any centralized support from a certain node. The analytical outcomes are given in the form of closed-form expressions for various widely-used network configurations. Extensive simulations on different networks are used to confirm the expectations based on the analytical results. To obtain a thorough understanding of the results, cluster number variability problem is identified and inspected from the energy consumption point of view. PMID:22267882
Transition to synchrony in degree-frequency correlated Sakaguchi-Kuramoto model
NASA Astrophysics Data System (ADS)
Kundu, Prosenjit; Khanra, Pitambar; Hens, Chittaranjan; Pal, Pinaki
2017-11-01
We investigate transition to synchrony in degree-frequency correlated Sakaguchi-Kuramoto (SK) model on complex networks both analytically and numerically. We analytically derive self-consistent equations for group angular velocity and order parameter for the model in the thermodynamic limit. Using the self-consistent equations we investigate transition to synchronization in SK model on uncorrelated scale-free (SF) and Erdős-Rényi (ER) networks in detail. Depending on the degree distribution exponent (γ ) of SF networks and phase-frustration parameter, the population undergoes from first-order transition [explosive synchronization (ES)] to second-order transition and vice versa. In ER networks transition is always second order irrespective of the values of the phase-lag parameter. We observe that the critical coupling strength for the onset of synchronization is decreased by phase-frustration parameter in case of SF network where as in ER network, the phase-frustration delays the onset of synchronization. Extensive numerical simulations using SF and ER networks are performed to validate the analytical results. An analytical expression of critical coupling strength for the onset of synchronization is also derived from the self-consistent equations considering the vanishing order parameter limit.
PSF estimation for defocus blurred image based on quantum back-propagation neural network
NASA Astrophysics Data System (ADS)
Gao, Kun; Zhang, Yan; Shao, Xiao-guang; Liu, Ying-hui; Ni, Guoqiang
2010-11-01
Images obtained by an aberration-free system are defocused blur due to motion in depth and/or zooming. The precondition of restoring the degraded image is to estimate point spread function (PSF) of the imaging system as precisely as possible. But it is difficult to identify the analytic model of PSF precisely due to the complexity of the degradation process. Inspired by the similarity between the quantum process and imaging process in the probability and statistics fields, one reformed multilayer quantum neural network (QNN) is proposed to estimate PSF of the defocus blurred image. Different from the conventional artificial neural network (ANN), an improved quantum neuron model is used in the hidden layer instead, which introduces a 2-bit controlled NOT quantum gate to control output and adopts 2 texture and edge features as the input vectors. The supervised back-propagation learning rule is adopted to train network based on training sets from the historical images. Test results show that this method owns excellent features of high precision and strong generalization ability.
Neural Network Based Modeling and Analysis of LP Control Surface Allocation
NASA Technical Reports Server (NTRS)
Langari, Reza; Krishnakumar, Kalmanje; Gundy-Burlet, Karen
2003-01-01
This paper presents an approach to interpretive modeling of LP based control allocation in intelligent flight control. The emphasis is placed on a nonlinear interpretation of the LP allocation process as a static map to support analytical study of the resulting closed loop system, albeit in approximate form. The approach makes use of a bi-layer neural network to capture the essential functioning of the LP allocation process. It is further shown via Lyapunov based analysis that under certain relatively mild conditions the resulting closed loop system is stable. Some preliminary conclusions from a study at Ames are stated and directions for further research are given at the conclusion of the paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senesac, Larry R; Datskos, Panos G; Sepaniak, Michael J
2006-01-01
In the present work, we have performed analyte species and concentration identification using an array of ten differentially functionalized microcantilevers coupled with a back-propagation artificial neural network pattern recognition algorithm. The array consists of ten nanostructured silicon microcantilevers functionalized by polymeric and gas chromatography phases and macrocyclic receptors as spatially dense, differentially responding sensing layers for identification and quantitation of individual analyte(s) and their binary mixtures. The array response (i.e. cantilever bending) to analyte vapor was measured by an optical readout scheme and the responses were recorded for a selection of individual analytes as well as several binary mixtures. Anmore » artificial neural network (ANN) was designed and trained to recognize not only the individual analytes and binary mixtures, but also to determine the concentration of individual components in a mixture. To the best of our knowledge, ANNs have not been applied to microcantilever array responses previously to determine concentrations of individual analytes. The trained ANN correctly identified the eleven test analyte(s) as individual components, most with probabilities greater than 97%, whereas it did not misidentify an unknown (untrained) analyte. Demonstrated unique aspects of this work include an ability to measure binary mixtures and provide both qualitative (identification) and quantitative (concentration) information with array-ANN-based sensor methodologies.« less
Feedback topology and XOR-dynamics in Boolean networks with varying input structure
NASA Astrophysics Data System (ADS)
Ciandrini, L.; Maffi, C.; Motta, A.; Bassetti, B.; Cosentino Lagomarsino, M.
2009-08-01
We analyze a model of fixed in-degree random Boolean networks in which the fraction of input-receiving nodes is controlled by the parameter γ . We investigate analytically and numerically the dynamics of graphs under a parallel XOR updating scheme. This scheme is interesting because it is accessible analytically and its phenomenology is at the same time under control and as rich as the one of general Boolean networks. We give analytical formulas for the dynamics on general graphs, showing that with a XOR-type evolution rule, dynamic features are direct consequences of the topological feedback structure, in analogy with the role of relevant components in Kauffman networks. Considering graphs with fixed in-degree, we characterize analytically and numerically the feedback regions using graph decimation algorithms (Leaf Removal). With varying γ , this graph ensemble shows a phase transition that separates a treelike graph region from one in which feedback components emerge. Networks near the transition point have feedback components made of disjoint loops, in which each node has exactly one incoming and one outgoing link. Using this fact, we provide analytical estimates of the maximum period starting from topological considerations.
Feedback topology and XOR-dynamics in Boolean networks with varying input structure.
Ciandrini, L; Maffi, C; Motta, A; Bassetti, B; Cosentino Lagomarsino, M
2009-08-01
We analyze a model of fixed in-degree random Boolean networks in which the fraction of input-receiving nodes is controlled by the parameter gamma. We investigate analytically and numerically the dynamics of graphs under a parallel XOR updating scheme. This scheme is interesting because it is accessible analytically and its phenomenology is at the same time under control and as rich as the one of general Boolean networks. We give analytical formulas for the dynamics on general graphs, showing that with a XOR-type evolution rule, dynamic features are direct consequences of the topological feedback structure, in analogy with the role of relevant components in Kauffman networks. Considering graphs with fixed in-degree, we characterize analytically and numerically the feedback regions using graph decimation algorithms (Leaf Removal). With varying gamma , this graph ensemble shows a phase transition that separates a treelike graph region from one in which feedback components emerge. Networks near the transition point have feedback components made of disjoint loops, in which each node has exactly one incoming and one outgoing link. Using this fact, we provide analytical estimates of the maximum period starting from topological considerations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franklin, Lyndsey; Pirrung, Megan A.; Blaha, Leslie M.
Cyber network analysts follow complex processes in their investigations of potential threats to their network. Much research is dedicated to providing automated tool support in the effort to make their tasks more efficient, accurate, and timely. This tool support comes in a variety of implementations from machine learning algorithms that monitor streams of data to visual analytic environments for exploring rich and noisy data sets. Cyber analysts, however, often speak of a need for tools which help them merge the data they already have and help them establish appropriate baselines against which to compare potential anomalies. Furthermore, existing threat modelsmore » that cyber analysts regularly use to structure their investigation are not often leveraged in support tools. We report on our work with cyber analysts to understand they analytic process and how one such model, the MITRE ATT&CK Matrix [32], is used to structure their analytic thinking. We present our efforts to map specific data needed by analysts into the threat model to inform our eventual visualization designs. We examine data mapping for gaps where the threat model is under-supported by either data or tools. We discuss these gaps as potential design spaces for future research efforts. We also discuss the design of a prototype tool that combines machine-learning and visualization components to support cyber analysts working with this threat model.« less
NASA Astrophysics Data System (ADS)
Bhardwaj, Manish; McCaughan, Leon; Olkhovets, Anatoli; Korotky, Steven K.
2006-12-01
We formulate an analytic framework for the restoration performance of path-based restoration schemes in planar mesh networks. We analyze various switch architectures and signaling schemes and model their total restoration interval. We also evaluate the network global expectation value of the time to restore a demand as a function of network parameters. We analyze a wide range of nominally capacity-optimal planar mesh networks and find our analytic model to be in good agreement with numerical simulation data.
How Fast Can Networks Synchronize? A Random Matrix Theory Approach
NASA Astrophysics Data System (ADS)
Timme, Marc; Wolf, Fred; Geisel, Theo
2004-03-01
Pulse-coupled oscillators constitute a paradigmatic class of dynamical systems interacting on networks because they model a variety of biological systems including flashing fireflies and chirping crickets as well as pacemaker cells of the heart and neural networks. Synchronization is one of the most simple and most prevailing kinds of collective dynamics on such networks. Here we study collective synchronization [1] of pulse-coupled oscillators interacting on asymmetric random networks. Using random matrix theory we analytically determine the speed of synchronization in such networks in dependence on the dynamical and network parameters [2]. The speed of synchronization increases with increasing coupling strengths. Surprisingly, however, it stays finite even for infinitely strong interactions. The results indicate that the speed of synchronization is limited by the connectivity of the network. We discuss the relevance of our findings to general equilibration processes on complex networks. [5mm] [1] M. Timme, F. Wolf, T. Geisel, Phys. Rev. Lett. 89:258701 (2002). [2] M. Timme, F. Wolf, T. Geisel, cond-mat/0306512 (2003).
Contagion processes on the static and activity-driven coupling networks
NASA Astrophysics Data System (ADS)
Lei, Yanjun; Jiang, Xin; Guo, Quantong; Ma, Yifang; Li, Meng; Zheng, Zhiming
2016-03-01
The evolution of network structure and the spreading of epidemic are common coexistent dynamical processes. In most cases, network structure is treated as either static or time-varying, supposing the whole network is observed in the same time window. In this paper, we consider the epidemics spreading on a network which has both static and time-varying structures. Meanwhile, the time-varying part and the epidemic spreading are supposed to be of the same time scale. We introduce a static and activity-driven coupling (SADC) network model to characterize the coupling between the static ("strong") structure and the dynamic ("weak") structure. Epidemic thresholds of the SIS and SIR models are studied using the SADC model both analytically and numerically under various coupling strategies, where the strong structure is of homogeneous or heterogeneous degree distribution. Theoretical thresholds obtained from the SADC model can both recover and generalize the classical results in static and time-varying networks. It is demonstrated that a weak structure might make the epidemic threshold low in homogeneous networks but high in heterogeneous cases. Furthermore, we show that the weak structure has a substantive effect on the outbreak of the epidemics. This result might be useful in designing some efficient control strategies for epidemics spreading in networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
- PNNL, Harold Trease
2012-10-10
ASSA is a software application that processes binary data into summarized index tables that can be used to organize features contained within the data. ASSA's index tables can also be used to search for user specified features. ASSA is designed to organize and search for patterns in unstructured binary data streams or archives, such as video, images, audio, and network traffic. ASSA is basically a very general search engine used to search for any pattern in any binary data stream. It has uses in video analytics, image analysis, audio analysis, searching hard-drives, monitoring network traffic, etc.
NASA Astrophysics Data System (ADS)
Fischer, Ulrich; Celia, Michael A.
1999-04-01
Functional relationships for unsaturated flow in soils, including those between capillary pressure, saturation, and relative permeabilities, are often described using analytical models based on the bundle-of-tubes concept. These models are often limited by, for example, inherent difficulties in prediction of absolute permeabilities, and in incorporation of a discontinuous nonwetting phase. To overcome these difficulties, an alternative approach may be formulated using pore-scale network models. In this approach, the pore space of the network model is adjusted to match retention data, and absolute and relative permeabilities are then calculated. A new approach that allows more general assignments of pore sizes within the network model provides for greater flexibility to match measured data. This additional flexibility is especially important for simultaneous modeling of main imbibition and drainage branches. Through comparisons between the network model results, analytical model results, and measured data for a variety of both undisturbed and repacked soils, the network model is seen to match capillary pressure-saturation data nearly as well as the analytical model, to predict water phase relative permeabilities equally well, and to predict gas phase relative permeabilities significantly better than the analytical model. The network model also provides very good estimates for intrinsic permeability and thus for absolute permeabilities. Both the network model and the analytical model lost accuracy in predicting relative water permeabilities for soils characterized by a van Genuchten exponent n≲3. Overall, the computational results indicate that reliable predictions of both relative and absolute permeabilities are obtained with the network model when the model matches the capillary pressure-saturation data well. The results also indicate that measured imbibition data are crucial to good predictions of the complete hysteresis loop.
Influence versus intent for predictive analytics in situation awareness
NASA Astrophysics Data System (ADS)
Cui, Biru; Yang, Shanchieh J.; Kadar, Ivan
2013-05-01
Predictive analytics in situation awareness requires an element to comprehend and anticipate potential adversary activities that might occur in the future. Most work in high level fusion or predictive analytics utilizes machine learning, pattern mining, Bayesian inference, and decision tree techniques to predict future actions or states. The emergence of social computing in broader contexts has drawn interests in bringing the hypotheses and techniques from social theory to algorithmic and computational settings for predictive analytics. This paper aims at answering the question on how influence and attitude (some interpreted such as intent) of adversarial actors can be formulated and computed algorithmically, as a higher level fusion process to provide predictions of future actions. The challenges in this interdisciplinary endeavor include drawing existing understanding of influence and attitude in both social science and computing fields, as well as the mathematical and computational formulation for the specific context of situation to be analyzed. The study of `influence' has resurfaced in recent years due to the emergence of social networks in the virtualized cyber world. Theoretical analysis and techniques developed in this area are discussed in this paper in the context of predictive analysis. Meanwhile, the notion of intent, or `attitude' using social theory terminologies, is a relatively uncharted area in the computing field. Note that a key objective of predictive analytics is to identify impending/planned attacks so their `impact' and `threat' can be prevented. In this spirit, indirect and direct observables are drawn and derived to infer the influence network and attitude to predict future threats. This work proposes an integrated framework that jointly assesses adversarial actors' influence network and their attitudes as a function of past actions and action outcomes. A preliminary set of algorithms are developed and tested using the Global Terrorism Database (GTD). Our results reveals the benefits to perform joint predictive analytics with both attitude and influence. At the same time, we discover significant challenges in deriving influence and attitude from indirect observables for diverse adversarial behavior. These observations warrant further investigation of optimal use of influence and attitude for predictive analytics, as well as the potential inclusion of other environmental or capability elements for the actors.
Heterogeneous network epidemics: real-time growth, variance and extinction of infection.
Ball, Frank; House, Thomas
2017-09-01
Recent years have seen a large amount of interest in epidemics on networks as a way of representing the complex structure of contacts capable of spreading infections through the modern human population. The configuration model is a popular choice in theoretical studies since it combines the ability to specify the distribution of the number of contacts (degree) with analytical tractability. Here we consider the early real-time behaviour of the Markovian SIR epidemic model on a configuration model network using a multitype branching process. We find closed-form analytic expressions for the mean and variance of the number of infectious individuals as a function of time and the degree of the initially infected individual(s), and write down a system of differential equations for the probability of extinction by time t that are numerically fast compared to Monte Carlo simulation. We show that these quantities are all sensitive to the degree distribution-in particular we confirm that the mean prevalence of infection depends on the first two moments of the degree distribution and the variance in prevalence depends on the first three moments of the degree distribution. In contrast to most existing analytic approaches, the accuracy of these results does not depend on having a large number of infectious individuals, meaning that in the large population limit they would be asymptotically exact even for one initial infectious individual.
Biomolecular logic systems: applications to biosensors and bioactuators
NASA Astrophysics Data System (ADS)
Katz, Evgeny
2014-05-01
The paper presents an overview of recent advances in biosensors and bioactuators based on the biocomputing concept. Novel biosensors digitally process multiple biochemical signals through Boolean logic networks of coupled biomolecular reactions and produce output in the form of YES/NO response. Compared to traditional single-analyte sensing devices, biocomputing approach enables a high-fidelity multi-analyte biosensing, particularly beneficial for biomedical applications. Multi-signal digital biosensors thus promise advances in rapid diagnosis and treatment of diseases by processing complex patterns of physiological biomarkers. Specifically, they can provide timely detection and alert to medical emergencies, along with an immediate therapeutic intervention. Application of the biocomputing concept has been successfully demonstrated for systems performing logic analysis of biomarkers corresponding to different injuries, particularly exemplified for liver injury. Wide-ranging applications of multi-analyte digital biosensors in medicine, environmental monitoring and homeland security are anticipated. "Smart" bioactuators, for example for signal-triggered drug release, were designed by interfacing switchable electrodes and biocomputing systems. Integration of novel biosensing and bioactuating systems with the biomolecular information processing systems keeps promise for further scientific advances and numerous practical applications.
Burstiness and tie activation strategies in time-varying social networks
NASA Astrophysics Data System (ADS)
Ubaldi, Enrico; Vezzani, Alessandro; Karsai, Márton; Perra, Nicola; Burioni, Raffaella
2017-04-01
The recent developments in the field of social networks shifted the focus from static to dynamical representations, calling for new methods for their analysis and modelling. Observations in real social systems identified two main mechanisms that play a primary role in networks’ evolution and influence ongoing spreading processes: the strategies individuals adopt when selecting between new or old social ties, and the bursty nature of the social activity setting the pace of these choices. We introduce a time-varying network model accounting both for ties selection and burstiness and we analytically study its phase diagram. The interplay of the two effects is non trivial and, interestingly, the effects of burstiness might be suppressed in regimes where individuals exhibit a strong preference towards previously activated ties. The results are tested against numerical simulations and compared with two empirical datasets with very good agreement. Consequently, the framework provides a principled method to classify the temporal features of real networks, and thus yields new insights to elucidate the effects of social dynamics on spreading processes.
Framework for cascade size calculations on random networks
NASA Astrophysics Data System (ADS)
Burkholz, Rebekka; Schweitzer, Frank
2018-04-01
We present a framework to calculate the cascade size evolution for a large class of cascade models on random network ensembles in the limit of infinite network size. Our method is exact and applies to network ensembles with almost arbitrary degree distribution, degree-degree correlations, and, in case of threshold models, for arbitrary threshold distribution. With our approach, we shift the perspective from the known branching process approximations to the iterative update of suitable probability distributions. Such distributions are key to capture cascade dynamics that involve possibly continuous quantities and that depend on the cascade history, e.g., if load is accumulated over time. As a proof of concept, we provide two examples: (a) Constant load models that cover many of the analytically tractable casacade models, and, as a highlight, (b) a fiber bundle model that was not tractable by branching process approximations before. Our derivations cover the whole cascade dynamics, not only their steady state. This allows us to include interventions in time or further model complexity in the analysis.
Comprehensive evaluation of impacts of distributed generation integration in distribution network
NASA Astrophysics Data System (ADS)
Peng, Sujiang; Zhou, Erbiao; Ji, Fengkun; Cao, Xinhui; Liu, Lingshuang; Liu, Zifa; Wang, Xuyang; Cai, Xiaoyu
2018-04-01
All Distributed generation (DG) as the supplement to renewable energy centralized utilization, is becoming the focus of development direction of renewable energy utilization. With the increasing proportion of DG in distribution network, the network power structure, power flow distribution, operation plans and protection are affected to some extent. According to the main impacts of DG, a comprehensive evaluation model of distributed network with DG is proposed in this paper. A comprehensive evaluation index system including 7 aspects, along with their corresponding index calculation method is established for quantitative analysis. The indices under different access capacity of DG in distribution network are calculated based on the IEEE RBTS-Bus 6 system and the evaluation result is calculated by analytic hierarchy process (AHP). The proposed model and method are verified effective and validity through case study.
Modeling Renewable Penertration Using a Network Economic Model
NASA Astrophysics Data System (ADS)
Lamont, A.
2001-03-01
This paper evaluates the accuracy of a network economic modeling approach in designing energy systems having renewable and conventional generators. The network approach models the system as a network of processes such as demands, generators, markets, and resources. The model reaches a solution by exchanging prices and quantity information between the nodes of the system. This formulation is very flexible and takes very little time to build and modify models. This paper reports an experiment designing a system with photovoltaic and base and peak fossil generators. The level of PV penetration as a function of its price and the capacities of the fossil generators were determined using the network approach and using an exact, analytic approach. It is found that the two methods agree very closely in terms of the optimal capacities and are nearly identical in terms of annual system costs.
See, Randolph B.; Schroder, LeRoy J.; Willoughby, Timothy C.
1988-01-01
During 1986, the U.S. Geological Survey operated three programs to provide external quality-assurance monitoring of the National Atmospheric Deposition Program and National Trends Network. An intersite-comparison program was used to assess the accuracy of onsite pH and specific-conductance determinations at quarterly intervals. The blind-audit program was used to assess the effect of routine sample handling on the precision and bias of program and network wet-deposition data. Analytical results from four laboratories, which routinely analyze wet-deposition samples, were examined to determine if differences existed between laboratory analytical results and to provide estimates of the analytical precision of each laboratory. An average of 78 and 89 percent of the site operators participating in the intersite-comparison met the network goals for pH and specific conductance. A comparison of analytical values versus actual values for samples submitted as part of the blind-audit program indicated that analytical values were slightly but significantly (a = 0.01) larger than actual values for pH, magnesium, sodium, and sulfate; analytical values for specific conductance were slightly less than actual values. The decreased precision in the analyses of blind-audit samples when compared to interlaboratory studies indicates that a large amount of uncertainty in network deposition data may be a result of routine field operations. The results of the interlaboratory comparison study indicated that the magnitude of the difference between laboratory analyses was small for all analytes. Analyses of deionized, distilled water blanks by participating laboratories indicated that the laboratories had difficulty measuring analyte concentrations near their reported detection limits. (USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qishi; Zhu, Mengxia; Rao, Nageswara S
We propose an intelligent decision support system based on sensor and computer networks that incorporates various component techniques for sensor deployment, data routing, distributed computing, and information fusion. The integrated system is deployed in a distributed environment composed of both wireless sensor networks for data collection and wired computer networks for data processing in support of homeland security defense. We present the system framework and formulate the analytical problems and develop approximate or exact solutions for the subtasks: (i) sensor deployment strategy based on a two-dimensional genetic algorithm to achieve maximum coverage with cost constraints; (ii) data routing scheme tomore » achieve maximum signal strength with minimum path loss, high energy efficiency, and effective fault tolerance; (iii) network mapping method to assign computing modules to network nodes for high-performance distributed data processing; and (iv) binary decision fusion rule that derive threshold bounds to improve system hit rate and false alarm rate. These component solutions are implemented and evaluated through either experiments or simulations in various application scenarios. The extensive results demonstrate that these component solutions imbue the integrated system with the desirable and useful quality of intelligence in decision making.« less
ERIC Educational Resources Information Center
Sadiig, I. Ahmed M. J.
2005-01-01
The traditional learning paradigm involving face-to-face interaction with students is shifting to highly data-intensive electronic learning with the advances in Information and Communication Technology. An important component of the e-learning process is the delivery of the learning contents to their intended audience over a network. A distributed…
An Empirical Investigation of Entrepreneurship Intensity in Iranian State Universities
ERIC Educational Resources Information Center
Mazdeh, Mohammad Mahdavi; Razavi, Seyed-Mostafa; Hesamamiri, Roozbeh; Zahedi, Mohammad-Reza; Elahi, Behin
2013-01-01
The purpose of this study is to propose a framework to evaluate the entrepreneurship intensity (EI) of Iranian state universities. In order to determine EI, a hybrid multi-method framework consisting of Delphi, Analytic Network Process (ANP), and VIKOR is proposed. The Delphi method is used to localize and reduce the number of criteria extracted…
ERIC Educational Resources Information Center
Lee, Chung-Ping; Lou, Shi-Jer; Shih, Ru-Chu; Tseng, Kuo-Hung
2011-01-01
This study uses the analytical hierarchy process (AHP) to quantify important knowledge management behaviors and to analyze the weight scores of elementary school students' behaviors in knowledge transfer, sharing, and creation. Based on the analysis of Expert Choice and tests for validity and reliability, this study identified the weight scores of…
ERIC Educational Resources Information Center
Alexander, Rodney T.
2017-01-01
Organizational computing devices are increasingly becoming targets of cyber-attacks, and organizations have become dependent on the safety and security of their computer networks and their organizational computing devices. Business and government often use defense in-depth information assurance measures such as firewalls, intrusion detection…
Fractional quantum mechanics on networks: Long-range dynamics and quantum transport
NASA Astrophysics Data System (ADS)
Riascos, A. P.; Mateos, José L.
2015-11-01
In this paper we study the quantum transport on networks with a temporal evolution governed by the fractional Schrödinger equation. We generalize the dynamics based on continuous-time quantum walks, with transitions to nearest neighbors on the network, to the fractional case that allows long-range displacements. By using the fractional Laplacian matrix of a network, we establish a formalism that combines a long-range dynamics with the quantum superposition of states; this general approach applies to any type of connected undirected networks, including regular, random, and complex networks, and can be implemented from the spectral properties of the Laplacian matrix. We study the fractional dynamics and its capacity to explore the network by means of the transition probability, the average probability of return, and global quantities that characterize the efficiency of this quantum process. As a particular case, we explore analytically these quantities for circulant networks such as rings, interacting cycles, and complete graphs.
Fractional quantum mechanics on networks: Long-range dynamics and quantum transport.
Riascos, A P; Mateos, José L
2015-11-01
In this paper we study the quantum transport on networks with a temporal evolution governed by the fractional Schrödinger equation. We generalize the dynamics based on continuous-time quantum walks, with transitions to nearest neighbors on the network, to the fractional case that allows long-range displacements. By using the fractional Laplacian matrix of a network, we establish a formalism that combines a long-range dynamics with the quantum superposition of states; this general approach applies to any type of connected undirected networks, including regular, random, and complex networks, and can be implemented from the spectral properties of the Laplacian matrix. We study the fractional dynamics and its capacity to explore the network by means of the transition probability, the average probability of return, and global quantities that characterize the efficiency of this quantum process. As a particular case, we explore analytically these quantities for circulant networks such as rings, interacting cycles, and complete graphs.
Network analysis for the visualization and analysis of qualitative data.
Pokorny, Jennifer J; Norman, Alex; Zanesco, Anthony P; Bauer-Wu, Susan; Sahdra, Baljinder K; Saron, Clifford D
2018-03-01
We present a novel manner in which to visualize the coding of qualitative data that enables representation and analysis of connections between codes using graph theory and network analysis. Network graphs are created from codes applied to a transcript or audio file using the code names and their chronological location. The resulting network is a representation of the coding data that characterizes the interrelations of codes. This approach enables quantification of qualitative codes using network analysis and facilitates examination of associations of network indices with other quantitative variables using common statistical procedures. Here, as a proof of concept, we applied this method to a set of interview transcripts that had been coded in 2 different ways and the resultant network graphs were examined. The creation of network graphs allows researchers an opportunity to view and share their qualitative data in an innovative way that may provide new insights and enhance transparency of the analytical process by which they reach their conclusions. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bereketli Zafeirakopoulos, Ilke, E-mail: ibereketli@gsu.edu.tr; Erol Genevois, Mujde, E-mail: merol@gsu.edu.tr
Life Cycle Assessment is a tool to assess, in a systematic way, the environmental aspects and its potential environmental impacts and resources used throughout a product's life cycle. It is widely accepted and considered as one of the most powerful tools to support decision-making processes used in ecodesign and sustainable production in order to learn about the most problematic parts and life cycle phases of a product and to have a projection for future improvements. However, since Life Cycle Assessment is a cost and time intensive method, companies do not intend to carry out a full version of it, exceptmore » for large corporate ones. Especially for small and medium sized enterprises, which do not have enough budget for and knowledge on sustainable production and ecodesign approaches, focusing only on the most important possible environmental aspect is unavoidable. In this direction, finding the right environmental aspect to work on is crucial for the companies. In this study, a multi-criteria decision-making methodology, Analytic Network Process is proposed to select the most relevant environmental aspect. The proposed methodology aims at providing a simplified environmental assessment to producers. It is applied for a hand blender, which is a member of the Electrical and Electronic Equipment family. The decision criteria for the environmental aspects and relations of dependence are defined. The evaluation is made by the Analytic Network Process in order to create a realistic approach to inter-dependencies among the criteria. The results are computed via the Super Decisions software. Finally, it is observed that the procedure is completed in less time, with less data, with less cost and in a less subjective way than conventional approaches. - Highlights: • We present a simplified environmental assessment methodology to support LCA. • ANP is proposed to select the most relevant environmental aspect. • ANP deals well with the interdependencies between aspects and impacts. • The methodology is less subjective, less complicated, and less time–money consuming. • The proposed methodology is suitable for use by SMEs.« less
Chen, Xi; Zhao, Liu; Özdemir, Mujgan Sagir; Liang, Haiming
2018-04-05
The resource allocation of air pollution treatment in China is a complex problem, since many alternatives are available and many criteria influence mutually. A number of stakeholders participate in this issue holding different opinions because of the benefits they value. So a method is needed, based on the analytic network process (ANP) and large-group decision-making (LGDM), to rank the alternatives considering interdependent criteria and stakeholders' opinions. In this method, the criteria related to air pollution treatment are examined by experts. Then, the network structure of the problem is constructed based on the relationships between the criteria. Further, every participant in each group provide comparison matrices by judging the importance between criteria according to dominance, regarding a certain criteria (or goal), and the geometric average comparison matrix of each group is obtained. The decision weight of each group is derived by combining the subjective weight and the objective weight, in which the subjective weight is provided by organizers, while the objective weight is determined by considering the consensus levels of groups. The final comparison matrices are obtained by the geometric average of comparison matrices and the decision weights. Next, the resource allocation is made according to the priorities of the alternatives using the super decision software. Finally, an example is given to illustrate the use of the proposed method.
Luo, Wei; Yin, Peifeng; Di, Qian; Hardisty, Frank; MacEachren, Alan M
2014-01-01
The world has become a complex set of geo-social systems interconnected by networks, including transportation networks, telecommunications, and the internet. Understanding the interactions between spatial and social relationships within such geo-social systems is a challenge. This research aims to address this challenge through the framework of geovisual analytics. We present the GeoSocialApp which implements traditional network analysis methods in the context of explicitly spatial and social representations. We then apply it to an exploration of international trade networks in terms of the complex interactions between spatial and social relationships. This exploration using the GeoSocialApp helps us develop a two-part hypothesis: international trade network clusters with structural equivalence are strongly 'balkanized' (fragmented) according to the geography of trading partners, and the geographical distance weighted by population within each network cluster has a positive relationship with the development level of countries. In addition to demonstrating the potential of visual analytics to provide insight concerning complex geo-social relationships at a global scale, the research also addresses the challenge of validating insights derived through interactive geovisual analytics. We develop two indicators to quantify the observed patterns, and then use a Monte-Carlo approach to support the hypothesis developed above.
Luo, Wei; Yin, Peifeng; Di, Qian; Hardisty, Frank; MacEachren, Alan M.
2014-01-01
The world has become a complex set of geo-social systems interconnected by networks, including transportation networks, telecommunications, and the internet. Understanding the interactions between spatial and social relationships within such geo-social systems is a challenge. This research aims to address this challenge through the framework of geovisual analytics. We present the GeoSocialApp which implements traditional network analysis methods in the context of explicitly spatial and social representations. We then apply it to an exploration of international trade networks in terms of the complex interactions between spatial and social relationships. This exploration using the GeoSocialApp helps us develop a two-part hypothesis: international trade network clusters with structural equivalence are strongly ‘balkanized’ (fragmented) according to the geography of trading partners, and the geographical distance weighted by population within each network cluster has a positive relationship with the development level of countries. In addition to demonstrating the potential of visual analytics to provide insight concerning complex geo-social relationships at a global scale, the research also addresses the challenge of validating insights derived through interactive geovisual analytics. We develop two indicators to quantify the observed patterns, and then use a Monte-Carlo approach to support the hypothesis developed above. PMID:24558409
Analytical Models of Cross-Layer Protocol Optimization in Real-Time Wireless Sensor Ad Hoc Networks
NASA Astrophysics Data System (ADS)
Hortos, William S.
The real-time interactions among the nodes of a wireless sensor network (WSN) to cooperatively process data from multiple sensors are modeled. Quality-of-service (QoS) metrics are associated with the quality of fused information: throughput, delay, packet error rate, etc. Multivariate point process (MVPP) models of discrete random events in WSNs establish stochastic characteristics of optimal cross-layer protocols. Discrete-event, cross-layer interactions in mobile ad hoc network (MANET) protocols have been modeled using a set of concatenated design parameters and associated resource levels by the MVPPs. Characterization of the "best" cross-layer designs for a MANET is formulated by applying the general theory of martingale representations to controlled MVPPs. Performance is described in terms of concatenated protocol parameters and controlled through conditional rates of the MVPPs. Modeling limitations to determination of closed-form solutions versus explicit iterative solutions for ad hoc WSN controls are examined.
Optimal deployment of resources for maximizing impact in spreading processes
2017-01-01
The effective use of limited resources for controlling spreading processes on networks is of prime significance in diverse contexts, ranging from the identification of “influential spreaders” for maximizing information dissemination and targeted interventions in regulatory networks, to the development of mitigation policies for infectious diseases and financial contagion in economic systems. Solutions for these optimization tasks that are based purely on topological arguments are not fully satisfactory; in realistic settings, the problem is often characterized by heterogeneous interactions and requires interventions in a dynamic fashion over a finite time window via a restricted set of controllable nodes. The optimal distribution of available resources hence results from an interplay between network topology and spreading dynamics. We show how these problems can be addressed as particular instances of a universal analytical framework based on a scalable dynamic message-passing approach and demonstrate the efficacy of the method on a variety of real-world examples. PMID:28900013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cartas, Raul; Mimendia, Aitor; Valle, Manel del
2009-05-23
Calibration models for multi-analyte electronic tongues have been commonly built using a set of sensors, at least one per analyte under study. Complex signals recorded with these systems are formed by the sensors' responses to the analytes of interest plus interferents, from which a multivariate response model is then developed. This work describes a data treatment method for the simultaneous quantification of two species in solution employing the signal from a single sensor. The approach used here takes advantage of the complex information recorded with one electrode's transient after insertion of sample for building the calibration models for both analytes.more » The departure information from the electrode was firstly processed by discrete wavelet for transforming the signals to extract useful information and reduce its length, and then by artificial neural networks for fitting a model. Two different potentiometric sensors were used as study case for simultaneously corroborating the effectiveness of the approach.« less
Development of dynamic Bayesian models for web application test management
NASA Astrophysics Data System (ADS)
Azarnova, T. V.; Polukhin, P. V.; Bondarenko, Yu V.; Kashirina, I. L.
2018-03-01
The mathematical apparatus of dynamic Bayesian networks is an effective and technically proven tool that can be used to model complex stochastic dynamic processes. According to the results of the research, mathematical models and methods of dynamic Bayesian networks provide a high coverage of stochastic tasks associated with error testing in multiuser software products operated in a dynamically changing environment. Formalized representation of the discrete test process as a dynamic Bayesian model allows us to organize the logical connection between individual test assets for multiple time slices. This approach gives an opportunity to present testing as a discrete process with set structural components responsible for the generation of test assets. Dynamic Bayesian network-based models allow us to combine in one management area individual units and testing components with different functionalities and a direct influence on each other in the process of comprehensive testing of various groups of computer bugs. The application of the proposed models provides an opportunity to use a consistent approach to formalize test principles and procedures, methods used to treat situational error signs, and methods used to produce analytical conclusions based on test results.
Zerlaut, Yann; Chemla, Sandrine; Chavane, Frederic; Destexhe, Alain
2018-02-01
Voltage-sensitive dye imaging (VSDi) has revealed fundamental properties of neocortical processing at macroscopic scales. Since for each pixel VSDi signals report the average membrane potential over hundreds of neurons, it seems natural to use a mean-field formalism to model such signals. Here, we present a mean-field model of networks of Adaptive Exponential (AdEx) integrate-and-fire neurons, with conductance-based synaptic interactions. We study a network of regular-spiking (RS) excitatory neurons and fast-spiking (FS) inhibitory neurons. We use a Master Equation formalism, together with a semi-analytic approach to the transfer function of AdEx neurons to describe the average dynamics of the coupled populations. We compare the predictions of this mean-field model to simulated networks of RS-FS cells, first at the level of the spontaneous activity of the network, which is well predicted by the analytical description. Second, we investigate the response of the network to time-varying external input, and show that the mean-field model predicts the response time course of the population. Finally, to model VSDi signals, we consider a one-dimensional ring model made of interconnected RS-FS mean-field units. We found that this model can reproduce the spatio-temporal patterns seen in VSDi of awake monkey visual cortex as a response to local and transient visual stimuli. Conversely, we show that the model allows one to infer physiological parameters from the experimentally-recorded spatio-temporal patterns.
Agricultural trade networks and patterns of economic development.
Shutters, Shade T; Muneepeerakul, Rachata
2012-01-01
International trade networks are manifestations of a complex combination of diverse underlying factors, both natural and social. Here we apply social network analytics to the international trade network of agricultural products to better understand the nature of this network and its relation to patterns of international development. Using a network tool known as triadic analysis we develop triad significance profiles for a series of agricultural commodities traded among countries. Results reveal a novel network "superfamily" combining properties of biological information processing networks and human social networks. To better understand this unique network signature, we examine in more detail the degree and triadic distributions within the trade network by country and commodity. Our results show that countries fall into two very distinct classes based on their triadic frequencies. Roughly 165 countries fall into one class while 18, all highly isolated with respect to international agricultural trade, fall into the other. Only Vietnam stands out as a unique case. Finally, we show that as a country becomes less isolated with respect to number of trading partners, the country's triadic signature follows a predictable trajectory that may correspond to a trajectory of development.
Epidemic spreading on hierarchical geographical networks with mobile agents
NASA Astrophysics Data System (ADS)
Han, Xiao-Pu; Zhao, Zhi-Dan; Hadzibeganovic, Tarik; Wang, Bing-Hong
2014-05-01
Hierarchical geographical traffic networks are critical for our understanding of scaling laws in human trajectories. Here, we investigate the susceptible-infected epidemic process evolving on hierarchical networks in which agents randomly walk along the edges and establish contacts in network nodes. We employ a metapopulation modeling framework that allows us to explore the contagion spread patterns in relation to multi-scale mobility behaviors. A series of computer simulations revealed that a shifted power-law-like negative relationship between the peak timing of epidemics τ0 and population density, and a logarithmic positive relationship between τ0 and the network size, can both be explained by the gradual enlargement of fluctuations in the spreading process. We employ a semi-analytical method to better understand the nature of these relationships and the role of pertinent demographic factors. Additionally, we provide a quantitative discussion of the efficiency of a border screening procedure in delaying epidemic outbreaks on hierarchical networks, yielding a rather limited feasibility of this mitigation strategy but also its non-trivial dependence on population density, infector detectability, and the diversity of the susceptible region. Our results suggest that the interplay between the human spatial dynamics, network topology, and demographic factors can have important consequences for the global spreading and control of infectious diseases. These findings provide novel insights into the combined effects of human mobility and the organization of geographical networks on spreading processes, with important implications for both epidemiological research and health policy.
NASA Astrophysics Data System (ADS)
Baatz, Roland; Sullivan, Pamela L.; Li, Li; Weintraub, Samantha R.; Loescher, Henry W.; Mirtl, Michael; Groffman, Peter M.; Wall, Diana H.; Young, Michael; White, Tim; Wen, Hang; Zacharias, Steffen; Kühn, Ingolf; Tang, Jianwu; Gaillardet, Jérôme; Braud, Isabelle; Flores, Alejandro N.; Kumar, Praveen; Lin, Henry; Ghezzehei, Teamrat; Jones, Julia; Gholz, Henry L.; Vereecken, Harry; Van Looy, Kris
2018-05-01
Advancing our understanding of Earth system dynamics (ESD) depends on the development of models and other analytical tools that apply physical, biological, and chemical data. This ambition to increase understanding and develop models of ESD based on site observations was the stimulus for creating the networks of Long-Term Ecological Research (LTER), Critical Zone Observatories (CZOs), and others. We organized a survey, the results of which identified pressing gaps in data availability from these networks, in particular for the future development and evaluation of models that represent ESD processes, and provide insights for improvement in both data collection and model integration. From this survey overview of data applications in the context of LTER and CZO research, we identified three challenges: (1) widen application of terrestrial observation network data in Earth system modelling, (2) develop integrated Earth system models that incorporate process representation and data of multiple disciplines, and (3) identify complementarity in measured variables and spatial extent, and promoting synergies in the existing observational networks. These challenges lead to perspectives and recommendations for an improved dialogue between the observation networks and the ESD modelling community, including co-location of sites in the existing networks and further formalizing these recommendations among these communities. Developing these synergies will enable cross-site and cross-network comparison and synthesis studies, which will help produce insights around organizing principles, classifications, and general rules of coupling processes with environmental conditions.
A Fuzzy analytical hierarchy process approach in irrigation networks maintenance
NASA Astrophysics Data System (ADS)
Riza Permana, Angga; Rintis Hadiani, Rr.; Syafi'i
2017-11-01
Ponorogo Regency has 440 Irrigation Area with a total area of 17,950 Ha. Due to the limited budget and lack of maintenance cause decreased function on the irrigation. The aim of this study is to make an appropriate system to determine the indices weighted of the rank prioritization criteria for irrigation network maintenance using a fuzzy-based methodology. The criteria that are used such as the physical condition of irrigation networks, area of service, estimated maintenance cost, and efficiency of irrigation water distribution. 26 experts in the field of water resources in the Dinas Pekerjaan Umum were asked to fill out the questionnaire, and the result will be used as a benchmark to determine the rank of irrigation network maintenance priority. The results demonstrate that the physical condition of irrigation networks criterion (W1) = 0,279 has the greatest impact on the assessment process. The area of service (W2) = 0,270, efficiency of irrigation water distribution (W4) = 0,249, and estimated maintenance cost (W3) = 0,202 criteria rank next in effectiveness, respectively. The proposed methodology deals with uncertainty and vague data using triangular fuzzy numbers, and, moreover, it provides a comprehensive decision-making technique to assess maintenance priority on irrigation network.
Conditions for Viral Influence Spreading through Multiplex Correlated Social Networks
NASA Astrophysics Data System (ADS)
Hu, Yanqing; Havlin, Shlomo; Makse, Hernán A.
2014-04-01
A fundamental problem in network science is to predict how certain individuals are able to initiate new networks to spring up "new ideas." Frequently, these changes in trends are triggered by a few innovators who rapidly impose their ideas through "viral" influence spreading, producing cascades of followers and fragmenting an old network to create a new one. Typical examples include the rise of scientific ideas or abrupt changes in social media, like the rise of Facebook to the detriment of Myspace. How this process arises in practice has not been conclusively demonstrated. Here, we show that a condition for sustaining a viral spreading process is the existence of a multiplex-correlated graph with hidden "influence links." Analytical solutions predict percolation-phase transitions, either abrupt or continuous, where networks are disintegrated through viral cascades of followers, as in empirical data. Our modeling predicts the strict conditions to sustain a large viral spreading via a scaling form of the local correlation function between multilayers, which we also confirm empirically. Ultimately, the theory predicts the conditions for viral cascading in a large class of multiplex networks ranging from social to financial systems and markets.
Social Sensor Analytics: Making Sense of Network Models in Social Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowling, Chase P.; Harrison, Joshua J.; Sathanur, Arun V.
Social networks can be thought of as noisy sensor networks mapping real world information to the web. Owing to the extensive body of literature in sensor network analysis, this work sought to apply several novel and traditional methods in sensor network analysis for the purposes of efficiently interrogating social media data streams from raw data. We carefully revisit our definition of a social media signal from previous work both in terms of time-varying features within the data and the networked nature of the medium. Further, we detail our analysis of global patterns in Twitter over the months of November 2013more » and June 2014, detect and categorize events, and illustrate how these analyses can be used to inform graph-based models of Twitter, namely using a recent network influence model called PhySense: similar to PageRank but tuned to behavioral analysis by leveraging a sociologically inspired probabilistic model. We ultimately identify forms of information dissemination via analysis of time series and dynamic graph spectra and corroborate these findings through manual investigation of the data as a requisite step in modeling the diffusion process with PhySense. We hope to sufficiently characterize global behavior in a medium such as Twitter as a means of learning global model parameters one may use to predict or simulate behavior on a large scale. We have made our time series and dynamic graph analytical code available via a GitHub repository https://github.com/cpatdowling/salsa and our data are available upon request.« less
Modelling information dissemination under privacy concerns in social media
NASA Astrophysics Data System (ADS)
Zhu, Hui; Huang, Cheng; Lu, Rongxing; Li, Hui
2016-05-01
Social media has recently become an important platform for users to share news, express views, and post messages. However, due to user privacy preservation in social media, many privacy setting tools are employed, which inevitably change the patterns and dynamics of information dissemination. In this study, a general stochastic model using dynamic evolution equations was introduced to illustrate how privacy concerns impact the process of information dissemination. Extensive simulations and analyzes involving the privacy settings of general users, privileged users, and pure observers were conducted on real-world networks, and the results demonstrated that user privacy settings affect information differently. Finally, we also studied the process of information diffusion analytically and numerically with different privacy settings using two classic networks.
Gut feelings as a third track in general practitioners' diagnostic reasoning.
Stolper, Erik; Van de Wiel, Margje; Van Royen, Paul; Van Bokhoven, Marloes; Van der Weijden, Trudy; Dinant, Geert Jan
2011-02-01
General practitioners (GPs) are often faced with complicated, vague problems in situations of uncertainty that they have to solve at short notice. In such situations, gut feelings seem to play a substantial role in their diagnostic process. Qualitative research distinguished a sense of alarm and a sense of reassurance. However, not every GP trusted their gut feelings, since a scientific explanation is lacking. This paper explains how gut feelings arise and function in GPs' diagnostic reasoning. The paper reviews literature from medical, psychological and neuroscientific perspectives. Gut feelings in general practice are based on the interaction between patient information and a GP's knowledge and experience. This is visualized in a knowledge-based model of GPs' diagnostic reasoning emphasizing that this complex task combines analytical and non-analytical cognitive processes. The model integrates the two well-known diagnostic reasoning tracks of medical decision-making and medical problem-solving, and adds gut feelings as a third track. Analytical and non-analytical diagnostic reasoning interacts continuously, and GPs use elements of all three tracks, depending on the task and the situation. In this dual process theory, gut feelings emerge as a consequence of non-analytical processing of the available information and knowledge, either reassuring GPs or alerting them that something is wrong and action is required. The role of affect as a heuristic within the physician's knowledge network explains how gut feelings may help GPs to navigate in a mostly efficient way in the often complex and uncertain diagnostic situations of general practice. Emotion research and neuroscientific data support the unmistakable role of affect in the process of making decisions and explain the bodily sensation of gut feelings.The implications for health care practice and medical education are discussed.
Gut Feelings as a Third Track in General Practitioners’ Diagnostic Reasoning
Van de Wiel, Margje; Van Royen, Paul; Van Bokhoven, Marloes; Van der Weijden, Trudy; Dinant, Geert Jan
2010-01-01
Background General practitioners (GPs) are often faced with complicated, vague problems in situations of uncertainty that they have to solve at short notice. In such situations, gut feelings seem to play a substantial role in their diagnostic process. Qualitative research distinguished a sense of alarm and a sense of reassurance. However, not every GP trusted their gut feelings, since a scientific explanation is lacking. Objective This paper explains how gut feelings arise and function in GPs’ diagnostic reasoning. Approach The paper reviews literature from medical, psychological and neuroscientific perspectives. Conclusions Gut feelings in general practice are based on the interaction between patient information and a GP’s knowledge and experience. This is visualized in a knowledge-based model of GPs’ diagnostic reasoning emphasizing that this complex task combines analytical and non-analytical cognitive processes. The model integrates the two well-known diagnostic reasoning tracks of medical decision-making and medical problem-solving, and adds gut feelings as a third track. Analytical and non-analytical diagnostic reasoning interacts continuously, and GPs use elements of all three tracks, depending on the task and the situation. In this dual process theory, gut feelings emerge as a consequence of non-analytical processing of the available information and knowledge, either reassuring GPs or alerting them that something is wrong and action is required. The role of affect as a heuristic within the physician’s knowledge network explains how gut feelings may help GPs to navigate in a mostly efficient way in the often complex and uncertain diagnostic situations of general practice. Emotion research and neuroscientific data support the unmistakable role of affect in the process of making decisions and explain the bodily sensation of gut feelings.The implications for health care practice and medical education are discussed. PMID:20967509
A meta-analysis of fMRI studies on Chinese orthographic, phonological, and semantic processing.
Wu, Chiao-Yi; Ho, Moon-Ho Ringo; Chen, Shen-Hsing Annabel
2012-10-15
A growing body of neuroimaging evidence has shown that Chinese character processing recruits differential activation from alphabetic languages due to its unique linguistic features. As more investigations on Chinese character processing have recently become available, we applied a meta-analytic approach to summarize previous findings and examined the neural networks for orthographic, phonological, and semantic processing of Chinese characters independently. The activation likelihood estimation (ALE) method was used to analyze eight studies in the orthographic task category, eleven in the phonological and fifteen in the semantic task categories. Converging activation among three language-processing components was found in the left middle frontal gyrus, the left superior parietal lobule and the left mid-fusiform gyrus, suggesting a common sub-network underlying the character recognition process regardless of the task nature. With increasing task demands, the left inferior parietal lobule and the right superior temporal gyrus were specialized for phonological processing, while the left middle temporal gyrus was involved in semantic processing. Functional dissociation was identified in the left inferior frontal gyrus, with the posterior dorsal part for phonological processing and the anterior ventral part for semantic processing. Moreover, bilateral involvement of the ventral occipito-temporal regions was found for both phonological and semantic processing. The results provide better understanding of the neural networks underlying Chinese orthographic, phonological, and semantic processing, and consolidate the findings of additional recruitment of the left middle frontal gyrus and the right fusiform gyrus for Chinese character processing as compared with the universal language network that has been based on alphabetic languages. Copyright © 2012 Elsevier Inc. All rights reserved.
A Network Selection Algorithm Considering Power Consumption in Hybrid Wireless Networks
NASA Astrophysics Data System (ADS)
Joe, Inwhee; Kim, Won-Tae; Hong, Seokjoon
In this paper, we propose a novel network selection algorithm considering power consumption in hybrid wireless networks for vertical handover. CDMA, WiBro, WLAN networks are candidate networks for this selection algorithm. This algorithm is composed of the power consumption prediction algorithm and the final network selection algorithm. The power consumption prediction algorithm estimates the expected lifetime of the mobile station based on the current battery level, traffic class and power consumption for each network interface card of the mobile station. If the expected lifetime of the mobile station in a certain network is not long enough compared the handover delay, this particular network will be removed from the candidate network list, thereby preventing unnecessary handovers in the preprocessing procedure. On the other hand, the final network selection algorithm consists of AHP (Analytic Hierarchical Process) and GRA (Grey Relational Analysis). The global factors of the network selection structure are QoS, cost and lifetime. If user preference is lifetime, our selection algorithm selects the network that offers longest service duration due to low power consumption. Also, we conduct some simulations using the OPNET simulation tool. The simulation results show that the proposed algorithm provides longer lifetime in the hybrid wireless network environment.
Godoi, Heloisa; Andrade, Selma Regina de; Mello, Ana Lúcia Schaefer Ferreira de
2017-09-28
: The objective was to describe the governance system used in structuring the regionalized healthcare network in Santa Catarina State, Brazil, based on the Bipartite Inter-Managerial Commission (CIB), with a focus on structuring of oral healthcare. This was a qualitative, exploratory-descriptive documental study, based on the foundations of governance as an analytical tool through identification of the dimensions actors, norms, nodal points, and processes. Secondary data were collected from the minutes of CIB meetings held from January 2011 to December 2015. The analysis shows weaknesses in CIB governance in Santa Catarina in relation to regionalized structuring of oral healthcare from a network perspective. Structuring of oral healthcare occurs in parallel to that of other thematic networks in the state and shows the expansion of dental services, especially those with medium complexity, as an effect of the prevailing governance process. The relations established between administrators and decision-making processes allowed recognizing this network's "prescription", since there is little negotiation and local demand, limited more to following recommendations and incentives from the federal/state sphere, intermediated by staff from the State Health Secretariat. Thus, setting a policy agenda for oral healthcare for the population of Santa Catarina is weakened, with a peripheral position in relation to other health programs.
NASA Astrophysics Data System (ADS)
Davenport, Jack H.
2016-05-01
Intelligence analysts demand rapid information fusion capabilities to develop and maintain accurate situational awareness and understanding of dynamic enemy threats in asymmetric military operations. The ability to extract relationships between people, groups, and locations from a variety of text datasets is critical to proactive decision making. The derived network of entities must be automatically created and presented to analysts to assist in decision making. DECISIVE ANALYTICS Corporation (DAC) provides capabilities to automatically extract entities, relationships between entities, semantic concepts about entities, and network models of entities from text and multi-source datasets. DAC's Natural Language Processing (NLP) Entity Analytics model entities as complex systems of attributes and interrelationships which are extracted from unstructured text via NLP algorithms. The extracted entities are automatically disambiguated via machine learning algorithms, and resolution recommendations are presented to the analyst for validation; the analyst's expertise is leveraged in this hybrid human/computer collaborative model. Military capability is enhanced by these NLP Entity Analytics because analysts can now create/update an entity profile with intelligence automatically extracted from unstructured text, thereby fusing entity knowledge from structured and unstructured data sources. Operational and sustainment costs are reduced since analysts do not have to manually tag and resolve entities.
Remote Internet access to advanced analytical facilities: a new approach with Web-based services.
Sherry, N; Qin, J; Fuller, M Suominen; Xie, Y; Mola, O; Bauer, M; McIntyre, N S; Maxwell, D; Liu, D; Matias, E; Armstrong, C
2012-09-04
Over the past decade, the increasing availability of the World Wide Web has held out the possibility that the efficiency of scientific measurements could be enhanced in cases where experiments were being conducted at distant facilities. Examples of early successes have included X-ray diffraction (XRD) experimental measurements of protein crystal structures at synchrotrons and access to scanning electron microscopy (SEM) and NMR facilities by users from institutions that do not possess such advanced capabilities. Experimental control, visual contact, and receipt of results has used some form of X forwarding and/or VNC (virtual network computing) software that transfers the screen image of a server at the experimental site to that of the users' home site. A more recent development is a web services platform called Science Studio that provides teams of scientists with secure links to experiments at one or more advanced research facilities. The software provides a widely distributed team with a set of controls and screens to operate, observe, and record essential parts of the experiment. As well, Science Studio provides high speed network access to computing resources to process the large data sets that are often involved in complex experiments. The simple web browser and the rapid transfer of experimental data to a processing site allow efficient use of the facility and assist decision making during the acquisition of the experimental results. The software provides users with a comprehensive overview and record of all parts of the experimental process. A prototype network is described involving X-ray beamlines at two different synchrotrons and an SEM facility. An online parallel processing facility has been developed that analyzes the data in near-real time using stream processing. Science Studio and can be expanded to include many other analytical applications, providing teams of users with rapid access to processed results along with the means for detailed discussion of their significance.
MSE-impact of PPP-RTK ZTD estimation strategies
NASA Astrophysics Data System (ADS)
Wang, K.; Khodabandeh, A.; Teunissen, P. J. G.
2018-06-01
In PPP-RTK network processing, the wet component of the zenith tropospheric delay (ZTD) cannot be precisely modelled and thus remains unknown in the observation equations. For small networks, the tropospheric mapping functions of different stations to a given satellite are almost equal to each other, thereby causing a near rank-deficiency between the ZTDs and satellite clocks. The stated near rank-deficiency can be solved by estimating the wet ZTD components relatively to that of the reference receiver, while the wet ZTD component of the reference receiver is constrained to zero. However, by increasing network scale and humidity around the reference receiver, enlarged mismodelled effects could bias the network and the user solutions. To consider both the influences of the noise and the biases, the mean-squared errors (MSEs) of different network and user parameters are studied analytically employing both the ZTD estimation strategies. We conclude that for a certain set of parameters, the difference in their MSE structures using both strategies is only driven by the square of the reference wet ZTD component and the formal variance of its solution. Depending on the network scale and the humidity condition around the reference receiver, the ZTD estimation strategy that delivers more accurate solutions might be different. Simulations are performed to illustrate the conclusions made by analytical studies. We find that estimating the ZTDs relatively in large networks and humid regions (for the reference receiver) could significantly degrade the network ambiguity success rates. Using ambiguity-fixed network-derived PPP-RTK corrections, for networks with an inter-station distance within 100 km, the choices of the ZTD estimation strategy is not crucial for single-epoch ambiguity-fixed user positioning. Using ambiguity-float network corrections, for networks with inter-station distances of 100, 300 and 500 km in humid regions (for the reference receiver), the root-mean-squared errors (RMSEs) of the estimated user coordinates using relative ZTD estimation could be higher than those under the absolute case with differences up to millimetres, centimetres and decimetres, respectively.
Mobility and Congestion in Dynamical Multilayer Networks with Finite Storage Capacity
NASA Astrophysics Data System (ADS)
Manfredi, S.; Di Tucci, E.; Latora, V.
2018-02-01
Multilayer networks describe well many real interconnected communication and transportation systems, ranging from computer networks to multimodal mobility infrastructures. Here, we introduce a model in which the nodes have a limited capacity of storing and processing the agents moving over a multilayer network, and their congestions trigger temporary faults which, in turn, dynamically affect the routing of agents seeking for uncongested paths. The study of the network performance under different layer velocities and node maximum capacities reveals the existence of delicate trade-offs between the number of served agents and their time to travel to destination. We provide analytical estimates of the optimal buffer size at which the travel time is minimum and of its dependence on the velocity and number of links at the different layers. Phenomena reminiscent of the slower is faster effect and of the Braess' paradox are observed in our dynamical multilayer setup.
Mobility and Congestion in Dynamical Multilayer Networks with Finite Storage Capacity.
Manfredi, S; Di Tucci, E; Latora, V
2018-02-09
Multilayer networks describe well many real interconnected communication and transportation systems, ranging from computer networks to multimodal mobility infrastructures. Here, we introduce a model in which the nodes have a limited capacity of storing and processing the agents moving over a multilayer network, and their congestions trigger temporary faults which, in turn, dynamically affect the routing of agents seeking for uncongested paths. The study of the network performance under different layer velocities and node maximum capacities reveals the existence of delicate trade-offs between the number of served agents and their time to travel to destination. We provide analytical estimates of the optimal buffer size at which the travel time is minimum and of its dependence on the velocity and number of links at the different layers. Phenomena reminiscent of the slower is faster effect and of the Braess' paradox are observed in our dynamical multilayer setup.
Global efficiency of local immunization on complex networks
NASA Astrophysics Data System (ADS)
Hébert-Dufresne, Laurent; Allard, Antoine; Young, Jean-Gabriel; Dubé, Louis J.
2013-07-01
Epidemics occur in all shapes and forms: infections propagating in our sparse sexual networks, rumours and diseases spreading through our much denser social interactions, or viruses circulating on the Internet. With the advent of large databases and efficient analysis algorithms, these processes can be better predicted and controlled. In this study, we use different characteristics of network organization to identify the influential spreaders in 17 empirical networks of diverse nature using 2 epidemic models. We find that a judicious choice of local measures, based either on the network's connectivity at a microscopic scale or on its community structure at a mesoscopic scale, compares favorably to global measures, such as betweenness centrality, in terms of efficiency, practicality and robustness. We also develop an analytical framework that highlights a transition in the characteristic scale of different epidemic regimes. This allows to decide which local measure should govern immunization in a given scenario.
Global efficiency of local immunization on complex networks.
Hébert-Dufresne, Laurent; Allard, Antoine; Young, Jean-Gabriel; Dubé, Louis J
2013-01-01
Epidemics occur in all shapes and forms: infections propagating in our sparse sexual networks, rumours and diseases spreading through our much denser social interactions, or viruses circulating on the Internet. With the advent of large databases and efficient analysis algorithms, these processes can be better predicted and controlled. In this study, we use different characteristics of network organization to identify the influential spreaders in 17 empirical networks of diverse nature using 2 epidemic models. We find that a judicious choice of local measures, based either on the network's connectivity at a microscopic scale or on its community structure at a mesoscopic scale, compares favorably to global measures, such as betweenness centrality, in terms of efficiency, practicality and robustness. We also develop an analytical framework that highlights a transition in the characteristic scale of different epidemic regimes. This allows to decide which local measure should govern immunization in a given scenario.
Modeling the dynamical interaction between epidemics on overlay networks
NASA Astrophysics Data System (ADS)
Marceau, Vincent; Noël, Pierre-André; Hébert-Dufresne, Laurent; Allard, Antoine; Dubé, Louis J.
2011-08-01
Epidemics seldom occur as isolated phenomena. Typically, two or more viral agents spread within the same host population and may interact dynamically with each other. We present a general model where two viral agents interact via an immunity mechanism as they propagate simultaneously on two networks connecting the same set of nodes. By exploiting a correspondence between the propagation dynamics and a dynamical process performing progressive network generation, we develop an analytical approach that accurately captures the dynamical interaction between epidemics on overlay networks. The formalism allows for overlay networks with arbitrary joint degree distribution and overlap. To illustrate the versatility of our approach, we consider a hypothetical delayed intervention scenario in which an immunizing agent is disseminated in a host population to hinder the propagation of an undesirable agent (e.g., the spread of preventive information in the context of an emerging infectious disease).
Objective assessment of MPEG-2 video quality
NASA Astrophysics Data System (ADS)
Gastaldo, Paolo; Zunino, Rodolfo; Rovetta, Stefano
2002-07-01
The increasing use of video compression standards in broadcasting television systems has required, in recent years, the development of video quality measurements that take into account artifacts specifically caused by digital compression techniques. In this paper we present a methodology for the objective quality assessment of MPEG video streams by using circular back-propagation feedforward neural networks. Mapping neural networks can render nonlinear relationships between objective features and subjective judgments, thus avoiding any simplifying assumption on the complexity of the model. The neural network processes an instantaneous set of input values, and yields an associated estimate of perceived quality. Therefore, the neural-network approach turns objective quality assessment into adaptive modeling of subjective perception. The objective features used for the estimate are chosen according to the assessed relevance to perceived quality and are continuously extracted in real time from compressed video streams. The overall system mimics perception but does not require any analytical model of the underlying physical phenomenon. The capability to process compressed video streams represents an important advantage over existing approaches, like avoiding the stream-decoding process greatly enhances real-time performance. Experimental results confirm that the system provides satisfactory, continuous-time approximations for actual scoring curves concerning real test videos.
The Case for Adopting Server-side Analytics
NASA Astrophysics Data System (ADS)
Tino, C.; Holmes, C. P.; Feigelson, E.; Hurlburt, N. E.
2017-12-01
The standard method for accessing Earth and space science data relies on a scheme developed decades ago: data residing in one or many data stores must be parsed out and shipped via internet lines or physical transport to the researcher who in turn locally stores the data for analysis. The analyses tasks are varied and include visualization, parameterization, and comparison with or assimilation into physics models. In many cases this process is inefficient and unwieldy as the data sets become larger and demands on the analysis tasks become more sophisticated and complex. For about a decade, several groups have explored a new paradigm to this model. The names applied to the paradigm include "data analytics", "climate analytics", and "server-side analytics". The general concept is that in close network proximity to the data store there will be a tailored processing capability appropriate to the type and use of the data served. The user of the server-side analytics will operate on the data with numerical procedures. The procedures can be accessed via canned code, a scripting processor, or an analysis package such as Matlab, IDL or R. Results of the analytics processes will then be relayed via the internet to the user. In practice, these results will be at a much lower volume, easier to transport to and store locally by the user and easier for the user to interoperate with data sets from other remote data stores. The user can also iterate on the processing call to tailor the results as needed. A major component of server-side analytics could be to provide sets of tailored results to end users in order to eliminate the repetitive preconditioning that is both often required with these data sets and which drives much of the throughput challenges. NASA's Big Data Task Force studied this issue. This paper will present the results of this study including examples of SSAs that are being developed and demonstrated and suggestions for architectures that might be developed for future applications.
Identification of drought in Dhalai river watershed using MCDM and ANN models
NASA Astrophysics Data System (ADS)
Aher, Sainath; Shinde, Sambhaji; Guha, Shantamoy; Majumder, Mrinmoy
2017-03-01
An innovative approach for drought identification is developed using Multi-Criteria Decision Making (MCDM) and Artificial Neural Network (ANN) models from surveyed drought parameter data around the Dhalai river watershed in Tripura hinterlands, India. Total eight drought parameters, i.e., precipitation, soil moisture, evapotranspiration, vegetation canopy, cropping pattern, temperature, cultivated land, and groundwater level were obtained from expert, literature and cultivator survey. Then, the Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP) were used for weighting of parameters and Drought Index Identification (DII). Field data of weighted parameters in the meso scale Dhalai River watershed were collected and used to train the ANN model. The developed ANN model was used in the same watershed for identification of drought. Results indicate that the Limited-Memory Quasi-Newton algorithm was better than the commonly used training method. Results obtained from the ANN model shows the drought index developed from the study area ranges from 0.32 to 0.72. Overall analysis revealed that, with appropriate training, the ANN model can be used in the areas where the model is calibrated, or other areas where the range of input parameters is similar to the calibrated region for drought identification.
Tuck, Melissa K; Chan, Daniel W; Chia, David; Godwin, Andrew K; Grizzle, William E; Krueger, Karl E; Rom, William; Sanda, Martin; Sorbara, Lynn; Stass, Sanford; Wang, Wendy; Brenner, Dean E
2009-01-01
Specimen collection is an integral component of clinical research. Specimens from subjects with various stages of cancers or other conditions, as well as those without disease, are critical tools in the hunt for biomarkers, predictors, or tests that will detect serious diseases earlier or more readily than currently possible. Analytic methodologies evolve quickly. Access to high-quality specimens, collected and handled in standardized ways that minimize potential bias or confounding factors, is key to the "bench to bedside" aim of translational research. It is essential that standard operating procedures, "the how" of creating the repositories, be defined prospectively when designing clinical trials. Small differences in the processing or handling of a specimen can have dramatic effects in analytical reliability and reproducibility, especially when multiplex methods are used. A representative working group, Standard Operating Procedures Internal Working Group (SOPIWG), comprised of members from across Early Detection Research Network (EDRN) was formed to develop standard operating procedures (SOPs) for various types of specimens collected and managed for our biomarker discovery and validation work. This report presents our consensus on SOPs for the collection, processing, handling, and storage of serum and plasma for biomarker discovery and validation.
High throughput computing: a solution for scientific analysis
O'Donnell, M.
2011-01-01
handle job failures due to hardware, software, or network interruptions (obviating the need to manually resubmit the job after each stoppage); be affordable; and most importantly, allow us to complete very large, complex analyses that otherwise would not even be possible. In short, we envisioned a job-management system that would take advantage of unused FORT CPUs within a local area network (LAN) to effectively distribute and run highly complex analytical processes. What we found was a solution that uses High Throughput Computing (HTC) and High Performance Computing (HPC) systems to do exactly that (Figure 1).
Robustness and Vulnerability of Networks with Dynamical Dependency Groups.
Bai, Ya-Nan; Huang, Ning; Wang, Lei; Wu, Zhi-Xi
2016-11-28
The dependency property and self-recovery of failure nodes both have great effects on the robustness of networks during the cascading process. Existing investigations focused mainly on the failure mechanism of static dependency groups without considering the time-dependency of interdependent nodes and the recovery mechanism in reality. In this study, we present an evolving network model consisting of failure mechanisms and a recovery mechanism to explore network robustness, where the dependency relations among nodes vary over time. Based on generating function techniques, we provide an analytical framework for random networks with arbitrary degree distribution. In particular, we theoretically find that an abrupt percolation transition exists corresponding to the dynamical dependency groups for a wide range of topologies after initial random removal. Moreover, when the abrupt transition point is above the failure threshold of dependency groups, the evolving network with the larger dependency groups is more vulnerable; when below it, the larger dependency groups make the network more robust. Numerical simulations employing the Erdős-Rényi network and Barabási-Albert scale free network are performed to validate our theoretical results.
Thermal luminescence spectroscopy chemical imaging sensor.
Carrieri, Arthur H; Buican, Tudor N; Roese, Erik S; Sutter, James; Samuels, Alan C
2012-10-01
The authors present a pseudo-active chemical imaging sensor model embodying irradiative transient heating, temperature nonequilibrium thermal luminescence spectroscopy, differential hyperspectral imaging, and artificial neural network technologies integrated together. We elaborate on various optimizations, simulations, and animations of the integrated sensor design and apply it to the terrestrial chemical contamination problem, where the interstitial contaminant compounds of detection interest (analytes) comprise liquid chemical warfare agents, their various derivative condensed phase compounds, and other material of a life-threatening nature. The sensor must measure and process a dynamic pattern of absorptive-emissive middle infrared molecular signature spectra of subject analytes to perform its chemical imaging and standoff detection functions successfully.
Nilles, M.A.; Gordon, J.D.; Schroder, L.J.; Paulin, C.E.
1995-01-01
The U.S. Geological Survey used four programs in 1991 to provide external quality assurance for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). An intersite-comparison program was used to evaluate onsite pH and specific-conductance determinations. The effects of routine sample handling, processing, and shipping of wet-deposition samples on analyte determinations and an estimated precision of analyte values and concentrations were evaluated in the blind-audit program. Differences between analytical results and an estimate of the analytical precision of four laboratories routinely measuring wet deposition were determined by an interlaboratory-comparison program. Overall precision estimates for the precipitation-monitoring system were determined for selected sites by a collocated-sampler program. Results of the intersite-comparison program indicated that 93 and 86 percent of the site operators met the NADP/NTN accuracy goal for pH determinations during the two intersite-comparison studies completed during 1991. The results also indicated that 96 and 97 percent of the site operators met the NADP/NTN accuracy goal for specific-conductance determinations during the two 1991 studies. The effects of routine sample handling, processing, and shipping, determined in the blind-audit program indicated significant positive bias (a=.O 1) for calcium, magnesium, sodium, potassium, chloride, nitrate, and sulfate. Significant negative bias (or=.01) was determined for hydrogen ion and specific conductance. Only ammonium determinations were not biased. A Kruskal-Wallis test indicated that there were no significant (*3t=.01) differences in analytical results from the four laboratories participating in the interlaboratory-comparison program. Results from the collocated-sampler program indicated the median relative error for cation concentration and deposition exceeded eight percent at most sites, whereas the median relative error for sample volume, sulfate, and nitrate concentration at all sites was less than four percent. The median relative error for hydrogen ion concentration and deposition ranged from 4.6 to 18.3 percent at the four sites and as indicated in previous years of the study, was inversely proportional to the acidity of the precipitation at a given site. Overall, collocated-sampling error typically was five times that of laboratory error estimates for most analytes.
Collective behavior of networks with linear (VLSI) integrate-and-fire neurons.
Fusi, S; Mattia, M
1999-04-01
We analyze in detail the statistical properties of the spike emission process of a canonical integrate-and-fire neuron, with a linear integrator and a lower bound for the depolarization, as often used in VLSI implementations (Mead, 1989). The spike statistics of such neurons appear to be qualitatively similar to conventional (exponential) integrate-and-fire neurons, which exhibit a wide variety of characteristics observed in cortical recordings. We also show that, contrary to current opinion, the dynamics of a network composed of such neurons has two stable fixed points, even in the purely excitatory network, corresponding to two different states of reverberating activity. The analytical results are compared with numerical simulations and are found to be in good agreement.
NASA Astrophysics Data System (ADS)
Boldyreff, Anton S.; Bespalov, Dmitry A.; Adzhiev, Anatoly Kh.
2017-05-01
Methods of artificial intelligence are a good solution for weather phenomena forecasting. They allow to process a large amount of diverse data. Recirculation Neural Networks is implemented in the paper for the system of thunderstorm events prediction. Large amounts of experimental data from lightning sensors and electric field mills networks are received and analyzed. The average recognition accuracy of sensor signals is calculated. It is shown that Recirculation Neural Networks is a promising solution in the forecasting of thunderstorms and weather phenomena, characterized by the high efficiency of the recognition elements of the sensor signals, allows to compress images and highlight their characteristic features for subsequent recognition.
Power-law weighted networks from local attachments
NASA Astrophysics Data System (ADS)
Moriano, P.; Finke, J.
2012-07-01
This letter introduces a mechanism for constructing, through a process of distributed decision-making, substrates for the study of collective dynamics on extended power-law weighted networks with both a desired scaling exponent and a fixed clustering coefficient. The analytical results show that the connectivity distribution converges to the scaling behavior often found in social and engineering systems. To illustrate the approach of the proposed framework we generate network substrates that resemble steady state properties of the empirical citation distributions of i) publications indexed by the Institute for Scientific Information from 1981 to 1997; ii) patents granted by the U.S. Patent and Trademark Office from 1975 to 1999; and iii) opinions written by the Supreme Court and the cases they cite from 1754 to 2002.
Determination of a Limited Scope Network's Lightning Detection Efficiency
NASA Technical Reports Server (NTRS)
Rompala, John T.; Blakeslee, R.
2008-01-01
This paper outlines a modeling technique to map lightning detection efficiency variations over a region surveyed by a sparse array of ground based detectors. A reliable flash peak current distribution (PCD) for the region serves as the technique's base. This distribution is recast as an event probability distribution function. The technique then uses the PCD together with information regarding: site signal detection thresholds, type of solution algorithm used, and range attenuation; to formulate the probability that a flash at a specified location will yield a solution. Applying this technique to the full region produces detection efficiency contour maps specific to the parameters employed. These contours facilitate a comparative analysis of each parameter's effect on the network's detection efficiency. In an alternate application, this modeling technique gives an estimate of the number, strength, and distribution of events going undetected. This approach leads to a variety of event density contour maps. This application is also illustrated. The technique's base PCD can be empirical or analytical. A process for formulating an empirical PCD specific to the region and network being studied is presented. A new method for producing an analytical representation of the empirical PCD is also introduced.
Zhang, Yuanchao; Liu, Jingquan; Li, Da; Dai, Xing; Yan, Fuhua; Conlan, Xavier A; Zhou, Ruhong; Barrow, Colin J; He, Jin; Wang, Xin; Yang, Wenrong
2016-05-24
Chirality sensing is a very challenging task. Here, we report a method for ultrasensitive detection of chiral molecule l/d-carnitine based on changes in the recognition tunneling current across self-assembled core-satellite gold nanoparticle (GNP) networks. The recognition tunneling technique has been demonstrated to work at the single molecule level where the binding between the reader molecules and the analytes in a nanojunction. This process was observed to generate a unique and sensitive change in tunneling current, which can be used to identify the analytes of interest. The molecular recognition mechanism between amino acid l-cysteine and l/d-carnitine has been studied with the aid of SERS. The different binding strength between homo- or heterochiral pairs can be effectively probed by the copper ion replacement fracture. The device resistance was measured before and after the sequential exposures to l/d-carnitine and copper ions. The normalized resistance change was found to be extremely sensitive to the chirality of carnitine molecule. The results suggested that a GNP networks device optimized for recognition tunneling was successfully built and that such a device can be used for ultrasensitive detection of chiral molecules.
S-curve networks and an approximate method for estimating degree distributions of complex networks
NASA Astrophysics Data System (ADS)
Guo, Jin-Li
2010-12-01
In the study of complex networks almost all theoretical models have the property of infinite growth, but the size of actual networks is finite. According to statistics from the China Internet IPv4 (Internet Protocol version 4) addresses, this paper proposes a forecasting model by using S curve (logistic curve). The growing trend of IPv4 addresses in China is forecasted. There are some reference values for optimizing the distribution of IPv4 address resource and the development of IPv6. Based on the laws of IPv4 growth, that is, the bulk growth and the finitely growing limit, it proposes a finite network model with a bulk growth. The model is said to be an S-curve network. Analysis demonstrates that the analytic method based on uniform distributions (i.e., Barabási-Albert method) is not suitable for the network. It develops an approximate method to predict the growth dynamics of the individual nodes, and uses this to calculate analytically the degree distribution and the scaling exponents. The analytical result agrees with the simulation well, obeying an approximately power-law form. This method can overcome a shortcoming of Barabási-Albert method commonly used in current network research.
NASA Technical Reports Server (NTRS)
Blakeslee, R. J.; Bailey, J. C.; Pinto, O.; Athayde, A.; Renno, N.; Weidman, C. D.
2003-01-01
A four station Advanced Lightning Direction Finder (ALDF) network was established in the state of Rondonia in western Brazil in 1999 through a collaboration of U.S. and Brazilian participants from NASA, INPE, INMET, and various universities. The network utilizes ALDF IMPACT (Improved Accuracy from Combined Technology) sensors to provide cloud-to-ground lightning observations (i.e., stroke/flash locations, signal amplitude, and polarity) using both time-of- arrival and magnetic direction finding techniques. The observations are collected, processed and archived at a central site in Brasilia and at the NASA/Marshall Space Flight Center in Huntsville, Alabama. Initial, non-quality assured quick-look results are made available in near real-time over the Internet. The network, which is still operational, was deployed to provide ground truth data for the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite that was launched in November 1997. The measurements are also being used to investigate the relationship between the electrical, microphysical and kinematic properties of tropical convection. In addition, the long-time series observations produced by this network will help establish a regional lightning climatological database, supplementing other databases in Brazil that already exist or may soon be implemented. Analytic inversion algorithms developed at the NASA/Marshall Space Flight Center have been applied to the Rondonian ALDF lightning observations to obtain site error corrections and improved location retrievals. The data will also be corrected for the network detection efficiency. The processing methodology and the results from the analysis of four years of network operations will be presented.
Cascades on a stochastic pulse-coupled network
NASA Astrophysics Data System (ADS)
Wray, C. M.; Bishop, S. R.
2014-09-01
While much recent research has focused on understanding isolated cascades of networks, less attention has been given to dynamical processes on networks exhibiting repeated cascades of opposing influence. An example of this is the dynamic behaviour of financial markets where cascades of buying and selling can occur, even over short timescales. To model these phenomena, a stochastic pulse-coupled oscillator network with upper and lower thresholds is described and analysed. Numerical confirmation of asynchronous and synchronous regimes of the system is presented, along with analytical identification of the fixed point state vector of the asynchronous mean field system. A lower bound for the finite system mean field critical value of network coupling probability is found that separates the asynchronous and synchronous regimes. For the low-dimensional mean field system, a closed-form equation is found for cascade size, in terms of the network coupling probability. Finally, a description of how this model can be applied to interacting agents in a financial market is provided.
Cascades on a stochastic pulse-coupled network
Wray, C. M.; Bishop, S. R.
2014-01-01
While much recent research has focused on understanding isolated cascades of networks, less attention has been given to dynamical processes on networks exhibiting repeated cascades of opposing influence. An example of this is the dynamic behaviour of financial markets where cascades of buying and selling can occur, even over short timescales. To model these phenomena, a stochastic pulse-coupled oscillator network with upper and lower thresholds is described and analysed. Numerical confirmation of asynchronous and synchronous regimes of the system is presented, along with analytical identification of the fixed point state vector of the asynchronous mean field system. A lower bound for the finite system mean field critical value of network coupling probability is found that separates the asynchronous and synchronous regimes. For the low-dimensional mean field system, a closed-form equation is found for cascade size, in terms of the network coupling probability. Finally, a description of how this model can be applied to interacting agents in a financial market is provided. PMID:25213626
Kayser, Jona; Haslbeck, Martin; Dempfle, Lisa; Krause, Maike; Grashoff, Carsten; Buchner, Johannes; Herrmann, Harald; Bausch, Andreas R
2013-10-15
The mechanical properties of living cells are essential for many processes. They are defined by the cytoskeleton, a composite network of protein fibers. Thus, the precise control of its architecture is of paramount importance. Our knowledge about the molecular and physical mechanisms defining the network structure remains scarce, especially for the intermediate filament cytoskeleton. Here, we investigate the effect of small heat shock proteins on the keratin 8/18 intermediate filament cytoskeleton using a well-controlled model system of reconstituted keratin networks. We demonstrate that Hsp27 severely alters the structure of such networks by changing their assembly dynamics. Furthermore, the C-terminal tail domain of keratin 8 is shown to be essential for this effect. Combining results from fluorescence and electron microscopy with data from analytical ultracentrifugation reveals the crucial role of kinetic trapping in keratin network formation. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Li, Chunhui; Yu, Chuanhua
2013-01-01
To provide a reference for evaluating public non-profit hospitals in the new environment of medical reform, we established a performance evaluation system for public non-profit hospitals. The new “input-output” performance model for public non-profit hospitals is based on four primary indexes (input, process, output and effect) that include 11 sub-indexes and 41 items. The indicator weights were determined using the analytic hierarchy process (AHP) and entropy weight method. The BP neural network was applied to evaluate the performance of 14 level-3 public non-profit hospitals located in Hubei Province. The most stable BP neural network was produced by comparing different numbers of neurons in the hidden layer and using the “Leave-one-out” Cross Validation method. The performance evaluation system we established for public non-profit hospitals could reflect the basic goal of the new medical health system reform in China. Compared with PLSR, the result indicated that the BP neural network could be used effectively for evaluating the performance public non-profit hospitals. PMID:23955238
Impact of constrained rewiring on network structure and node dynamics
NASA Astrophysics Data System (ADS)
Rattana, P.; Berthouze, L.; Kiss, I. Z.
2014-11-01
In this paper, we study an adaptive spatial network. We consider a susceptible-infected-susceptible (SIS) epidemic on the network, with a link or contact rewiring process constrained by spatial proximity. In particular, we assume that susceptible nodes break links with infected nodes independently of distance and reconnect at random to susceptible nodes available within a given radius. By systematically manipulating this radius we investigate the impact of rewiring on the structure of the network and characteristics of the epidemic. We adopt a step-by-step approach whereby we first study the impact of rewiring on the network structure in the absence of an epidemic, then with nodes assigned a disease status but without disease dynamics, and finally running network and epidemic dynamics simultaneously. In the case of no labeling and no epidemic dynamics, we provide both analytic and semianalytic formulas for the value of clustering achieved in the network. Our results also show that the rewiring radius and the network's initial structure have a pronounced effect on the endemic equilibrium, with increasingly large rewiring radiuses yielding smaller disease prevalence.
NASA Astrophysics Data System (ADS)
Havemann, Frank; Heinz, Michael; Struck, Alexander; Gläser, Jochen
2011-01-01
We propose a new local, deterministic and parameter-free algorithm that detects fuzzy and crisp overlapping communities in a weighted network and simultaneously reveals their hierarchy. Using a local fitness function, the algorithm greedily expands natural communities of seeds until the whole graph is covered. The hierarchy of communities is obtained analytically by calculating resolution levels at which communities grow rather than numerically by testing different resolution levels. This analytic procedure is not only more exact than its numerical alternatives such as LFM and GCE but also much faster. Critical resolution levels can be identified by searching for intervals in which large changes of the resolution do not lead to growth of communities. We tested our algorithm on benchmark graphs and on a network of 492 papers in information science. Combined with a specific post-processing, the algorithm gives much more precise results on LFR benchmarks with high overlap compared to other algorithms and performs very similarly to GCE.
Golightly, Andrew; Wilkinson, Darren J.
2011-01-01
Computational systems biology is concerned with the development of detailed mechanistic models of biological processes. Such models are often stochastic and analytically intractable, containing uncertain parameters that must be estimated from time course data. In this article, we consider the task of inferring the parameters of a stochastic kinetic model defined as a Markov (jump) process. Inference for the parameters of complex nonlinear multivariate stochastic process models is a challenging problem, but we find here that algorithms based on particle Markov chain Monte Carlo turn out to be a very effective computationally intensive approach to the problem. Approximations to the inferential model based on stochastic differential equations (SDEs) are considered, as well as improvements to the inference scheme that exploit the SDE structure. We apply the methodology to a Lotka–Volterra system and a prokaryotic auto-regulatory network. PMID:23226583
A convergent model for distributed processing of Big Sensor Data in urban engineering networks
NASA Astrophysics Data System (ADS)
Parygin, D. S.; Finogeev, A. G.; Kamaev, V. A.; Finogeev, A. A.; Gnedkova, E. P.; Tyukov, A. P.
2017-01-01
The problems of development and research of a convergent model of the grid, cloud, fog and mobile computing for analytical Big Sensor Data processing are reviewed. The model is meant to create monitoring systems of spatially distributed objects of urban engineering networks and processes. The proposed approach is the convergence model of the distributed data processing organization. The fog computing model is used for the processing and aggregation of sensor data at the network nodes and/or industrial controllers. The program agents are loaded to perform computing tasks for the primary processing and data aggregation. The grid and the cloud computing models are used for integral indicators mining and accumulating. A computing cluster has a three-tier architecture, which includes the main server at the first level, a cluster of SCADA system servers at the second level, a lot of GPU video cards with the support for the Compute Unified Device Architecture at the third level. The mobile computing model is applied to visualize the results of intellectual analysis with the elements of augmented reality and geo-information technologies. The integrated indicators are transferred to the data center for accumulation in a multidimensional storage for the purpose of data mining and knowledge gaining.
Agricultural Trade Networks and Patterns of Economic Development
Shutters, Shade T.; Muneepeerakul, Rachata
2012-01-01
International trade networks are manifestations of a complex combination of diverse underlying factors, both natural and social. Here we apply social network analytics to the international trade network of agricultural products to better understand the nature of this network and its relation to patterns of international development. Using a network tool known as triadic analysis we develop triad significance profiles for a series of agricultural commodities traded among countries. Results reveal a novel network “superfamily” combining properties of biological information processing networks and human social networks. To better understand this unique network signature, we examine in more detail the degree and triadic distributions within the trade network by country and commodity. Our results show that countries fall into two very distinct classes based on their triadic frequencies. Roughly 165 countries fall into one class while 18, all highly isolated with respect to international agricultural trade, fall into the other. Only Vietnam stands out as a unique case. Finally, we show that as a country becomes less isolated with respect to number of trading partners, the country's triadic signature follows a predictable trajectory that may correspond to a trajectory of development. PMID:22768310
Meeker, Daniella; Jiang, Xiaoqian; Matheny, Michael E; Farcas, Claudiu; D'Arcy, Michel; Pearlman, Laura; Nookala, Lavanya; Day, Michele E; Kim, Katherine K; Kim, Hyeoneui; Boxwala, Aziz; El-Kareh, Robert; Kuo, Grace M; Resnic, Frederic S; Kesselman, Carl; Ohno-Machado, Lucila
2015-11-01
Centralized and federated models for sharing data in research networks currently exist. To build multivariate data analysis for centralized networks, transfer of patient-level data to a central computation resource is necessary. The authors implemented distributed multivariate models for federated networks in which patient-level data is kept at each site and data exchange policies are managed in a study-centric manner. The objective was to implement infrastructure that supports the functionality of some existing research networks (e.g., cohort discovery, workflow management, and estimation of multivariate analytic models on centralized data) while adding additional important new features, such as algorithms for distributed iterative multivariate models, a graphical interface for multivariate model specification, synchronous and asynchronous response to network queries, investigator-initiated studies, and study-based control of staff, protocols, and data sharing policies. Based on the requirements gathered from statisticians, administrators, and investigators from multiple institutions, the authors developed infrastructure and tools to support multisite comparative effectiveness studies using web services for multivariate statistical estimation in the SCANNER federated network. The authors implemented massively parallel (map-reduce) computation methods and a new policy management system to enable each study initiated by network participants to define the ways in which data may be processed, managed, queried, and shared. The authors illustrated the use of these systems among institutions with highly different policies and operating under different state laws. Federated research networks need not limit distributed query functionality to count queries, cohort discovery, or independently estimated analytic models. Multivariate analyses can be efficiently and securely conducted without patient-level data transport, allowing institutions with strict local data storage requirements to participate in sophisticated analyses based on federated research networks. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.
NASA Astrophysics Data System (ADS)
Coughlin, J.; Mital, R.; Nittur, S.; SanNicolas, B.; Wolf, C.; Jusufi, R.
2016-09-01
Operational analytics when combined with Big Data technologies and predictive techniques have been shown to be valuable in detecting mission critical sensor anomalies that might be missed by conventional analytical techniques. Our approach helps analysts and leaders make informed and rapid decisions by analyzing large volumes of complex data in near real-time and presenting it in a manner that facilitates decision making. It provides cost savings by being able to alert and predict when sensor degradations pass a critical threshold and impact mission operations. Operational analytics, which uses Big Data tools and technologies, can process very large data sets containing a variety of data types to uncover hidden patterns, unknown correlations, and other relevant information. When combined with predictive techniques, it provides a mechanism to monitor and visualize these data sets and provide insight into degradations encountered in large sensor systems such as the space surveillance network. In this study, data from a notional sensor is simulated and we use big data technologies, predictive algorithms and operational analytics to process the data and predict sensor degradations. This study uses data products that would commonly be analyzed at a site. This study builds on a big data architecture that has previously been proven valuable in detecting anomalies. This paper outlines our methodology of implementing an operational analytic solution through data discovery, learning and training of data modeling and predictive techniques, and deployment. Through this methodology, we implement a functional architecture focused on exploring available big data sets and determine practical analytic, visualization, and predictive technologies.
Nicola, Wilten; Tripp, Bryan; Scott, Matthew
2016-01-01
A fundamental question in computational neuroscience is how to connect a network of spiking neurons to produce desired macroscopic or mean field dynamics. One possible approach is through the Neural Engineering Framework (NEF). The NEF approach requires quantities called decoders which are solved through an optimization problem requiring large matrix inversion. Here, we show how a decoder can be obtained analytically for type I and certain type II firing rates as a function of the heterogeneity of its associated neuron. These decoders generate approximants for functions that converge to the desired function in mean-squared error like 1/N, where N is the number of neurons in the network. We refer to these decoders as scale-invariant decoders due to their structure. These decoders generate weights for a network of neurons through the NEF formula for weights. These weights force the spiking network to have arbitrary and prescribed mean field dynamics. The weights generated with scale-invariant decoders all lie on low dimensional hypersurfaces asymptotically. We demonstrate the applicability of these scale-invariant decoders and weight surfaces by constructing networks of spiking theta neurons that replicate the dynamics of various well known dynamical systems such as the neural integrator, Van der Pol system and the Lorenz system. As these decoders are analytically determined and non-unique, the weights are also analytically determined and non-unique. We discuss the implications for measured weights of neuronal networks. PMID:26973503
Nicola, Wilten; Tripp, Bryan; Scott, Matthew
2016-01-01
A fundamental question in computational neuroscience is how to connect a network of spiking neurons to produce desired macroscopic or mean field dynamics. One possible approach is through the Neural Engineering Framework (NEF). The NEF approach requires quantities called decoders which are solved through an optimization problem requiring large matrix inversion. Here, we show how a decoder can be obtained analytically for type I and certain type II firing rates as a function of the heterogeneity of its associated neuron. These decoders generate approximants for functions that converge to the desired function in mean-squared error like 1/N, where N is the number of neurons in the network. We refer to these decoders as scale-invariant decoders due to their structure. These decoders generate weights for a network of neurons through the NEF formula for weights. These weights force the spiking network to have arbitrary and prescribed mean field dynamics. The weights generated with scale-invariant decoders all lie on low dimensional hypersurfaces asymptotically. We demonstrate the applicability of these scale-invariant decoders and weight surfaces by constructing networks of spiking theta neurons that replicate the dynamics of various well known dynamical systems such as the neural integrator, Van der Pol system and the Lorenz system. As these decoders are analytically determined and non-unique, the weights are also analytically determined and non-unique. We discuss the implications for measured weights of neuronal networks.
Benda, Lee; Miller, Daniel; Barquin, Jose; McCleary, Richard; Cai, TiJiu; Ji, Y
2016-03-01
Modern land-use planning and conservation strategies at landscape to country scales worldwide require complete and accurate digital representations of river networks, encompassing all channels including the smallest headwaters. The digital river networks, integrated with widely available digital elevation models, also need to have analytical capabilities to support resource management and conservation, including attributing river segments with key stream and watershed data, characterizing topography to identify landforms, discretizing land uses at scales necessary to identify human-environment interactions, and connecting channels downstream and upstream, and to terrestrial environments. We investigate the completeness and analytical capabilities of national to regional scale digital river networks that are available in five countries: Canada, China, Russia, Spain, and United States using actual resource management and conservation projects involving 12 university, agency, and NGO organizations. In addition, we review one pan-European and one global digital river network. Based on our analysis, we conclude that the majority of the regional, national, and global scale digital river networks in our sample lack in network completeness, analytical capabilities or both. To address this limitation, we outline a general framework to build as complete as possible digital river networks and to integrate them with available digital elevation models to create robust analytical capabilities (e.g., virtual watersheds). We believe this presents a global opportunity for in-country agencies, or international players, to support creation of virtual watersheds to increase environmental problem solving, broaden access to the watershed sciences, and strengthen resource management and conservation in countries worldwide.
Building Virtual Watersheds: A Global Opportunity to Strengthen Resource Management and Conservation
NASA Astrophysics Data System (ADS)
Benda, Lee; Miller, Daniel; Barquin, Jose; McCleary, Richard; Cai, TiJiu; Ji, Y.
2016-03-01
Modern land-use planning and conservation strategies at landscape to country scales worldwide require complete and accurate digital representations of river networks, encompassing all channels including the smallest headwaters. The digital river networks, integrated with widely available digital elevation models, also need to have analytical capabilities to support resource management and conservation, including attributing river segments with key stream and watershed data, characterizing topography to identify landforms, discretizing land uses at scales necessary to identify human-environment interactions, and connecting channels downstream and upstream, and to terrestrial environments. We investigate the completeness and analytical capabilities of national to regional scale digital river networks that are available in five countries: Canada, China, Russia, Spain, and United States using actual resource management and conservation projects involving 12 university, agency, and NGO organizations. In addition, we review one pan-European and one global digital river network. Based on our analysis, we conclude that the majority of the regional, national, and global scale digital river networks in our sample lack in network completeness, analytical capabilities or both. To address this limitation, we outline a general framework to build as complete as possible digital river networks and to integrate them with available digital elevation models to create robust analytical capabilities (e.g., virtual watersheds). We believe this presents a global opportunity for in-country agencies, or international players, to support creation of virtual watersheds to increase environmental problem solving, broaden access to the watershed sciences, and strengthen resource management and conservation in countries worldwide.
Universal electronics for miniature and automated chemical assays.
Urban, Pawel L
2015-02-21
This minireview discusses universal electronic modules (generic programmable units) and their use by analytical chemists to construct inexpensive, miniature or automated devices. Recently, open-source platforms have gained considerable popularity among tech-savvy chemists because their implementation often does not require expert knowledge and investment of funds. Thus, chemistry students and researchers can easily start implementing them after a few hours of reading tutorials and trial-and-error. Single-board microcontrollers and micro-computers such as Arduino, Teensy, Raspberry Pi or BeagleBone enable collecting experimental data with high precision as well as efficient control of electric potentials and actuation of mechanical systems. They are readily programmed using high-level languages, such as C, C++, JavaScript or Python. They can also be coupled with mobile consumer electronics, including smartphones as well as teleinformatic networks. More demanding analytical tasks require fast signal processing. Field-programmable gate arrays enable efficient and inexpensive prototyping of high-performance analytical platforms, thus becoming increasingly popular among analytical chemists. This minireview discusses the advantages and drawbacks of universal electronic modules, considering their application in prototyping and manufacture of intelligent analytical instrumentation.
Systems-level mechanisms of action of Panax ginseng: a network pharmacological approach.
Park, Sa-Yoon; Park, Ji-Hun; Kim, Hyo-Su; Lee, Choong-Yeol; Lee, Hae-Jeung; Kang, Ki Sung; Kim, Chang-Eop
2018-01-01
Panax ginseng has been used since ancient times based on the traditional Asian medicine theory and clinical experiences, and currently, is one of the most popular herbs in the world. To date, most of the studies concerning P. ginseng have focused on specific mechanisms of action of individual constituents. However, in spite of many studies on the molecular mechanisms of P. ginseng , it still remains unclear how multiple active ingredients of P. ginseng interact with multiple targets simultaneously, giving the multidimensional effects on various conditions and diseases. In order to decipher the systems-level mechanism of multiple ingredients of P. ginseng , a novel approach is needed beyond conventional reductive analysis. We aim to review the systems-level mechanism of P. ginseng by adopting novel analytical framework-network pharmacology. Here, we constructed a compound-target network of P. ginseng using experimentally validated and machine learning-based prediction results. The targets of the network were analyzed in terms of related biological process, pathways, and diseases. The majority of targets were found to be related with primary metabolic process, signal transduction, nitrogen compound metabolic process, blood circulation, immune system process, cell-cell signaling, biosynthetic process, and neurological system process. In pathway enrichment analysis of targets, mainly the terms related with neural activity showed significant enrichment and formed a cluster. Finally, relative degrees analysis for the target-disease association of P. ginseng revealed several categories of related diseases, including respiratory, psychiatric, and cardiovascular diseases.
Lewicki, James P.; Fox, Christina A.; Worsley, Marcus A.
2015-05-15
With the new impetus towards the development of hierarchical graphene and CNT macro-assemblies for application in fields such as advanced energy storage, catalysis and electronics; there is much renewed interest in organic carbon-based sol–gel processes as a synthetically convenient and versatile means of forming three dimensional, covalently bonded organic/inorganic networks. Such matrices can act as highly effective precursors, scaffolds or molecular ‘glues’ for the assembly of a wide variety of functional carbon macro-assemblies. However, despite the utility and broad use of organic sol–gel processes – such as the ubiquitous resorcinol-formaldehyde (RF) reaction, there are details of the reaction chemistries ofmore » these important sol–gel processes that remain poorly understood at present. It is therefore both timely and necessary to examine these reactions in more detail using modern analytical techniques in order to gain a more rigorous understanding of the mechanisms by which these organic networks form. The goal of such studies is to obtain improved and rational control over the organic network structure, in order to better direct and tailor the architecture of the final inorganic carbon matrix. In this study we have investigated in detail, the mechanism of the organic sol–gel network forming reaction of resorcinol and formaldehyde from a structural and kinetic standpoint, by using a combination of real-time high field solution state nuclear magnetic resonance (NMR), low field NMR relaxometry and differential scanning calorimetry (DSC). These investigations have allowed us to track the network formation processes in real-time, gain both detailed structural information on the mechanisms of the RF sol–gel process and a quantitative assessment of the kinetics of the global network formation process. Here, it has been shown that the mechanism, by which the RF organic network forms, proceeds via an initial exothermic step correlated to the formation of a free aromatic aldehyde. The network growth reaction then proceeds in a statistical manner following a first order Arrhenius type kinetic relationship – characteristic of a typical thermoset network poly-condensation process. Finally, despite the relative complexity and ill-defined nature of the formaldehyde staring material, the final network structure is to a large extent, governed by the substitution pattern of the resorcinol molecule.« less
ERIC Educational Resources Information Center
Zhang, Zhidong
2016-01-01
This study explored an alternative assessment procedure to examine learning trajectories of matrix multiplication. It took rule-based analytical and cognitive task analysis methods specifically to break down operation rules for a given matrix multiplication. Based on the analysis results, a hierarchical Bayesian network, an assessment model,…
Time Course of Brain Network Reconfiguration Supporting Inhibitory Control.
Popov, Tzvetan; Westner, Britta U; Silton, Rebecca L; Sass, Sarah M; Spielberg, Jeffrey M; Rockstroh, Brigitte; Heller, Wendy; Miller, Gregory A
2018-05-02
Hemodynamic research has recently clarified key nodes and links in brain networks implementing inhibitory control. Although fMRI methods are optimized for identifying the structure of brain networks, the relatively slow temporal course of fMRI limits the ability to characterize network operation. The latter is crucial for developing a mechanistic understanding of how brain networks shift dynamically to support inhibitory control. To address this critical gap, we applied spectrally resolved Granger causality (GC) and random forest machine learning tools to human EEG data in two large samples of adults (test sample n = 96, replication sample n = 237, total N = 333, both sexes) who performed a color-word Stroop task. Time-frequency analysis confirmed that recruitment of inhibitory control accompanied by slower behavioral responses was related to changes in theta and alpha/beta power. GC analyses revealed directionally asymmetric exchanges within frontal and between frontal and parietal brain areas: top-down influence of superior frontal gyrus (SFG) over both dorsal ACC (dACC) and inferior frontal gyrus (IFG), dACC control over middle frontal gyrus (MFG), and frontal-parietal exchanges (IFG, precuneus, MFG). Predictive analytics confirmed a combination of behavioral and brain-derived variables as the best set of predictors of inhibitory control demands, with SFG theta bearing higher classification importance than dACC theta and posterior beta tracking the onset of behavioral response. The present results provide mechanistic insight into the biological implementation of a psychological phenomenon: inhibitory control is implemented by dynamic routing processes during which the target response is upregulated via theta-mediated effective connectivity within key PFC nodes and via beta-mediated motor preparation. SIGNIFICANCE STATEMENT Hemodynamic neuroimaging research has recently clarified regional structures in brain networks supporting inhibitory control. However, due to inherent methodological constraints, much of this research has been unable to characterize the temporal dynamics of such networks (e.g., direction of information flow between nodes). Guided by fMRI research identifying the structure of brain networks supporting inhibitory control, results of EEG source analysis in a test sample ( n = 96) and replication sample ( n = 237) using effective connectivity and predictive analytics strategies advance a model of inhibitory control by characterizing the precise temporal dynamics by which this network operates and exemplify an approach by which mechanistic models can be developed for other key psychological processes. Copyright © 2018 the authors 0270-6474/18/384348-09$15.00/0.
Local Spatial Obesity Analysis and Estimation Using Online Social Network Sensors.
Sun, Qindong; Wang, Nan; Li, Shancang; Zhou, Hongyi
2018-03-15
Recently, the online social networks (OSNs) have received considerable attentions as a revolutionary platform to offer users massive social interaction among users that enables users to be more involved in their own healthcare. The OSNs have also promoted increasing interests in the generation of analytical, data models in health informatics. This paper aims at developing an obesity identification, analysis, and estimation model, in which each individual user is regarded as an online social network 'sensor' that can provide valuable health information. The OSN-based obesity analytic model requires each sensor node in an OSN to provide associated features, including dietary habit, physical activity, integral/incidental emotions, and self-consciousness. Based on the detailed measurements on the correlation of obesity and proposed features, the OSN obesity analytic model is able to estimate the obesity rate in certain urban areas and the experimental results demonstrate a high success estimation rate. The measurements and estimation experimental findings created by the proposed obesity analytic model show that the online social networks could be used in analyzing the local spatial obesity problems effectively. Copyright © 2018. Published by Elsevier Inc.
Punctuated evolution and robustness in morphogenesis
Grigoriev, D.; Reinitz, J.; Vakulenko, S.; Weber, A.
2014-01-01
This paper presents an analytic approach to the pattern stability and evolution problem in morphogenesis. The approach used here is based on the ideas from the gene and neural network theory. We assume that gene networks contain a number of small groups of genes (called hubs) controlling morphogenesis process. Hub genes represent an important element of gene network architecture and their existence is empirically confirmed. We show that hubs can stabilize morphogenetic pattern and accelerate the morphogenesis. The hub activity exhibits an abrupt change depending on the mutation frequency. When the mutation frequency is small, these hubs suppress all mutations and gene product concentrations do not change, thus, the pattern is stable. When the environmental pressure increases and the population needs new genotypes, the genetic drift and other effects increase the mutation frequency. For the frequencies that are larger than a critical amount the hubs turn off; and as a result, many mutations can affect phenotype. This effect can serve as an engine for evolution. We show that this engine is very effective: the evolution acceleration is an exponential function of gene redundancy. Finally, we show that the Eldredge-Gould concept of punctuated evolution results from the network architecture, which provides fast evolution, control of evolvability, and pattern robustness. To describe analytically the effect of exponential acceleration, we use mathematical methods developed recently for hard combinatorial problems, in particular, for so-called k-SAT problem, and numerical simulations. PMID:24996115
Workflow-Oriented Cyberinfrastructure for Sensor Data Analytics
NASA Astrophysics Data System (ADS)
Orcutt, J. A.; Rajasekar, A.; Moore, R. W.; Vernon, F.
2015-12-01
Sensor streams comprise an increasingly large part of Earth Science data. Analytics based on sensor data require an easy way to perform operations such as acquisition, conversion to physical units, metadata linking, sensor fusion, analysis and visualization on distributed sensor streams. Furthermore, embedding real-time sensor data into scientific workflows is of growing interest. We have implemented a scalable networked architecture that can be used to dynamically access packets of data in a stream from multiple sensors, and perform synthesis and analysis across a distributed network. Our system is based on the integrated Rule Oriented Data System (irods.org), which accesses sensor data from the Antelope Real Time Data System (brtt.com), and provides virtualized access to collections of data streams. We integrate real-time data streaming from different sources, collected for different purposes, on different time and spatial scales, and sensed by different methods. iRODS, noted for its policy-oriented data management, brings to sensor processing features and facilities such as single sign-on, third party access control lists ( ACLs), location transparency, logical resource naming, and server-side modeling capabilities while reducing the burden on sensor network operators. Rich integrated metadata support also makes it straightforward to discover data streams of interest and maintain data provenance. The workflow support in iRODS readily integrates sensor processing into any analytical pipeline. The system is developed as part of the NSF-funded Datanet Federation Consortium (datafed.org). APIs for selecting, opening, reaping and closing sensor streams are provided, along with other helper functions to associate metadata and convert sensor packets into NetCDF and JSON formats. Near real-time sensor data including seismic sensors, environmental sensors, LIDAR and video streams are available through this interface. A system for archiving sensor data and metadata in NetCDF format has been implemented and will be demonstrated at AGU.
Schroder, L.J.; Bricker, A.W.; Willoughby, T.C.
1985-01-01
Blind-audit samples with known analyte concentrations have been prepared by the U.S. Geological Survey and distributed to the National Atmospheric Deposition Program 's Central Analytical Laboratory. The difference between the National Atmospheric Deposition Program and National Trends Network reported analyte concentrations and known analyte concentrations have been calculated, and the bias has been determined. Calcium, magnesium , sodium, and chloride were biased at the 99-percent confidence limit; potassium and sulfate were unbiased at the 99-percent confidence limit, for 1983 results. Relative-percent differences between the measured and known analyte concentration for calcium , magnesium, sodium, potassium, chloride, and sulfate have been calculated for 1983. The median relative percent difference for calcium was 17.0; magnesium was 6.4; sodium was 10.8; potassium was 6.4; chloride was 17.2; and sulfate was -5.3. These relative percent differences should be used to correct the 1983 data before user-analysis of the data. Variances have been calculated for calcium, magnesium, sodium, potassium, chloride, and sulfate determinations. These variances should be applicable to natural-sample analyte concentrations reported by the National Atmospheric Deposition Program and National Trends Network for calendar year 1983. (USGS)
Using i2b2 to Bootstrap Rural Health Analytics and Learning Networks
Harris, Daniel R.; Baus, Adam D.; Harper, Tamela J.; Jarrett, Traci D.; Pollard, Cecil R.; Talbert, Jeffery C.
2017-01-01
We demonstrate that the open-source i2b2 (Informatics for Integrating Biology and the Bedside) data model can be used to bootstrap rural health analytics and learning networks. These networks promote communication and research initiatives by providing the infrastructure necessary for sharing data and insights across a group of healthcare and research partners. Data integration remains a crucial challenge in connecting rural healthcare sites with a common data sharing and learning network due to the lack of interoperability and standards within electronic health records. The i2b2 data model acts as a point of convergence for disparate data from multiple healthcare sites. A consistent and natural data model for healthcare data is essential for overcoming integration issues, but challenges such as those caused by weak data standardization must still be addressed. We describe our experience in the context of building the West Virginia/Kentucky Health Analytics and Learning Network, a collaborative, multi-state effort connecting rural healthcare sites. PMID:28261006
Using i2b2 to Bootstrap Rural Health Analytics and Learning Networks.
Harris, Daniel R; Baus, Adam D; Harper, Tamela J; Jarrett, Traci D; Pollard, Cecil R; Talbert, Jeffery C
2016-08-01
We demonstrate that the open-source i2b2 (Informatics for Integrating Biology and the Bedside) data model can be used to bootstrap rural health analytics and learning networks. These networks promote communication and research initiatives by providing the infrastructure necessary for sharing data and insights across a group of healthcare and research partners. Data integration remains a crucial challenge in connecting rural healthcare sites with a common data sharing and learning network due to the lack of interoperability and standards within electronic health records. The i2b2 data model acts as a point of convergence for disparate data from multiple healthcare sites. A consistent and natural data model for healthcare data is essential for overcoming integration issues, but challenges such as those caused by weak data standardization must still be addressed. We describe our experience in the context of building the West Virginia/Kentucky Health Analytics and Learning Network, a collaborative, multi-state effort connecting rural healthcare sites.
Meng, X Flora; Baetica, Ania-Ariadna; Singhal, Vipul; Murray, Richard M
2017-05-01
Noise is often indispensable to key cellular activities, such as gene expression, necessitating the use of stochastic models to capture its dynamics. The chemical master equation (CME) is a commonly used stochastic model of Kolmogorov forward equations that describe how the probability distribution of a chemically reacting system varies with time. Finding analytic solutions to the CME can have benefits, such as expediting simulations of multiscale biochemical reaction networks and aiding the design of distributional responses. However, analytic solutions are rarely known. A recent method of computing analytic stationary solutions relies on gluing simple state spaces together recursively at one or two states. We explore the capabilities of this method and introduce algorithms to derive analytic stationary solutions to the CME. We first formally characterize state spaces that can be constructed by performing single-state gluing of paths, cycles or both sequentially. We then study stochastic biochemical reaction networks that consist of reversible, elementary reactions with two-dimensional state spaces. We also discuss extending the method to infinite state spaces and designing the stationary behaviour of stochastic biochemical reaction networks. Finally, we illustrate the aforementioned ideas using examples that include two interconnected transcriptional components and biochemical reactions with two-dimensional state spaces. © 2017 The Author(s).
Baetica, Ania-Ariadna; Singhal, Vipul; Murray, Richard M.
2017-01-01
Noise is often indispensable to key cellular activities, such as gene expression, necessitating the use of stochastic models to capture its dynamics. The chemical master equation (CME) is a commonly used stochastic model of Kolmogorov forward equations that describe how the probability distribution of a chemically reacting system varies with time. Finding analytic solutions to the CME can have benefits, such as expediting simulations of multiscale biochemical reaction networks and aiding the design of distributional responses. However, analytic solutions are rarely known. A recent method of computing analytic stationary solutions relies on gluing simple state spaces together recursively at one or two states. We explore the capabilities of this method and introduce algorithms to derive analytic stationary solutions to the CME. We first formally characterize state spaces that can be constructed by performing single-state gluing of paths, cycles or both sequentially. We then study stochastic biochemical reaction networks that consist of reversible, elementary reactions with two-dimensional state spaces. We also discuss extending the method to infinite state spaces and designing the stationary behaviour of stochastic biochemical reaction networks. Finally, we illustrate the aforementioned ideas using examples that include two interconnected transcriptional components and biochemical reactions with two-dimensional state spaces. PMID:28566513
Müller, Veronika I.; Cieslik, Edna C.; Laird, Angela R.; Fox, Peter T.; Eickhoff, Simon B.
2013-01-01
The inferior parietal cortex (IPC) is a heterogeneous region that is known to be involved in a multitude of diverse different tasks and processes, though its contribution to these often-complex functions is yet poorly understood. In a previous study we demonstrated that patients with depression failed to deactivate the left IPC during processing of congruent audiovisual information. We now found the same dysregulation (same region and condition) in schizophrenia. By using task-independent (resting state) and task-dependent meta-analytic connectivity modeling (MACM) analyses we aimed at characterizing this particular region with regard to its connectivity and function. Across both approaches, results revealed functional connectivity of the left inferior parietal seed region with bilateral IPC, precuneus and posterior cingulate cortex (PrC/PCC), medial orbitofrontal cortex (mOFC), left middle frontal (MFG) as well as inferior frontal (IFG) gyrus. Network-level functional characterization further revealed that on the one hand, all interconnected regions are part of a network involved in memory processes. On the other hand, sub-networks are formed when emotion, language, social cognition and reasoning processes are required. Thus, the IPC-region that is dysregulated in both depression and schizophrenia is functionally connected to a network of regions which, depending on task demands may form sub-networks. These results therefore indicate that dysregulation of left IPC in depression and schizophrenia might not only be connected to deficits in audiovisual integration, but is possibly also associated to impaired memory and deficits in emotion processing in these patient groups. PMID:23781190
NASA Astrophysics Data System (ADS)
Long, Yin; Zhang, Xiao-Jun; Wang, Kui
2018-05-01
In this paper, convergence and approximate calculation of average degree under different network sizes for decreasing random birth-and-death networks (RBDNs) are studied. First, we find and demonstrate that the average degree is convergent in the form of power law. Meanwhile, we discover that the ratios of the back items to front items of convergent reminder are independent of network link number for large network size, and we theoretically prove that the limit of the ratio is a constant. Moreover, since it is difficult to calculate the analytical solution of the average degree for large network sizes, we adopt numerical method to obtain approximate expression of the average degree to approximate its analytical solution. Finally, simulations are presented to verify our theoretical results.
The role of the putamen in language: a meta-analytic connectivity modeling study.
Viñas-Guasch, Nestor; Wu, Yan Jing
2017-12-01
The putamen is a subcortical structure that forms part of the dorsal striatum of basal ganglia, and has traditionally been associated with reinforcement learning and motor control, including speech articulation. However, recent studies have shown involvement of the left putamen in other language functions such as bilingual language processing (Abutalebi et al. 2012) and production, with some authors arguing for functional segregation of anterior and posterior putamen (Oberhuber et al. 2013). A further step in exploring the role of putamen in language would involve identifying the network of coactivations of not only the left, but also the right putamen, given the involvement of right hemisphere in high order language functions (Vigneau et al. 2011). Here, a meta-analytic connectivity modeling technique was used to determine the patterns of coactivation of anterior and bilateral putamen in the language domain. Based on previous evidence, we hypothesized that left putamen coactivations would include brain regions directly associated with language processing, whereas right putamen coactivations would encompass regions involved in broader semantic processes, such as memory and visual imagery. The results showed that left anterior putamen coactivated with clusters predominantly in left hemisphere, encompassing regions directly associated with language processing, a left posterior putamen network spanning both hemispheres, and cerebellum. In right hemisphere, coactivations were in both hemispheres, in regions associated with visual and orthographic processing. These results confirm the differential involvement of right and left putamen in different language components, thus highlighting the need for further research into the role of putamen in language.
A Study of Driver's Route Choice Behavior Based on Evolutionary Game Theory
Jiang, Xiaowei; Ji, Yanjie; Deng, Wei
2014-01-01
This paper proposes a route choice analytic method that embeds cumulative prospect theory in evolutionary game theory to analyze how the drivers adjust their route choice behaviors under the influence of the traffic information. A simulated network with two alternative routes and one variable message sign is built to illustrate the analytic method. We assume that the drivers in the transportation system are bounded rational, and the traffic information they receive is incomplete. An evolutionary game model is constructed to describe the evolutionary process of the drivers' route choice decision-making behaviors. Here we conclude that the traffic information plays an important role in the route choice behavior. The driver's route decision-making process develops towards different evolutionary stable states in accordance with different transportation situations. The analysis results also demonstrate that employing cumulative prospect theory and evolutionary game theory to study the driver's route choice behavior is effective. This analytic method provides an academic support and suggestion for the traffic guidance system, and may optimize the travel efficiency to a certain extent. PMID:25610455
A study of driver's route choice behavior based on evolutionary game theory.
Jiang, Xiaowei; Ji, Yanjie; Du, Muqing; Deng, Wei
2014-01-01
This paper proposes a route choice analytic method that embeds cumulative prospect theory in evolutionary game theory to analyze how the drivers adjust their route choice behaviors under the influence of the traffic information. A simulated network with two alternative routes and one variable message sign is built to illustrate the analytic method. We assume that the drivers in the transportation system are bounded rational, and the traffic information they receive is incomplete. An evolutionary game model is constructed to describe the evolutionary process of the drivers' route choice decision-making behaviors. Here we conclude that the traffic information plays an important role in the route choice behavior. The driver's route decision-making process develops towards different evolutionary stable states in accordance with different transportation situations. The analysis results also demonstrate that employing cumulative prospect theory and evolutionary game theory to study the driver's route choice behavior is effective. This analytic method provides an academic support and suggestion for the traffic guidance system, and may optimize the travel efficiency to a certain extent.
Research on the exponential growth effect on network topology: Theoretical and empirical analysis
NASA Astrophysics Data System (ADS)
Li, Shouwei; You, Zongjun
Integrated circuit (IC) industry network has been built in Yangtze River Delta with the constant expansion of IC industry. The IC industry network grows exponentially with the establishment of new companies and the establishment of contacts with old firms. Based on preferential attachment and exponential growth, the paper presents the analytical results in which the vertices degree of scale-free network follows power-law distribution p(k)˜k‑γ (γ=2β+1) and parameter β satisfies 0.5≤β≤1. At the same time, we find that the preferential attachment takes place in a dynamic local world and the size of the dynamic local world is in direct proportion to the size of whole networks. The paper also gives the analytical results of no-preferential attachment and exponential growth on random networks. The computer simulated results of the model illustrate these analytical results. Through some investigations on the enterprises, this paper at first presents the distribution of IC industry, composition of industrial chain and service chain firstly. Then, the correlative network and its analysis of industrial chain and service chain are presented. The correlative analysis of the whole IC industry is also presented at the same time. Based on the theory of complex network, the analysis and comparison of industrial chain network and service chain network in Yangtze River Delta are provided in the paper.
Evolution of the social network of scientific collaborations
NASA Astrophysics Data System (ADS)
Barabási, A. L.; Jeong, H.; Néda, Z.; Ravasz, E.; Schubert, A.; Vicsek, T.
2002-08-01
The co-authorship network of scientists represents a prototype of complex evolving networks. In addition, it offers one of the most extensive database to date on social networks. By mapping the electronic database containing all relevant journals in mathematics and neuro-science for an 8-year period (1991-98), we infer the dynamic and the structural mechanisms that govern the evolution and topology of this complex system. Three complementary approaches allow us to obtain a detailed characterization. First, empirical measurements allow us to uncover the topological measures that characterize the network at a given moment, as well as the time evolution of these quantities. The results indicate that the network is scale-free, and that the network evolution is governed by preferential attachment, affecting both internal and external links. However, in contrast with most model predictions the average degree increases in time, and the node separation decreases. Second, we propose a simple model that captures the network's time evolution. In some limits the model can be solved analytically, predicting a two-regime scaling in agreement with the measurements. Third, numerical simulations are used to uncover the behavior of quantities that could not be predicted analytically. The combined numerical and analytical results underline the important role internal links play in determining the observed scaling behavior and network topology. The results and methodologies developed in the context of the co-authorship network could be useful for a systematic study of other complex evolving networks as well, such as the world wide web, Internet, or other social networks.
Ritrovato, Matteo; Faggiano, Francesco C; Tedesco, Giorgia; Derrico, Pietro
2015-06-01
This article outlines the Decision-Oriented Health Technology Assessment: a new implementation of the European network for Health Technology Assessment Core Model, integrating the multicriteria decision-making analysis by using the analytic hierarchy process to introduce a standardized methodological approach as a valued and shared tool to support health care decision making within a hospital. Following the Core Model as guidance (European network for Health Technology Assessment. HTA core model for medical and surgical interventions. Available from: http://www.eunethta.eu/outputs/hta-core-model-medical-and-surgical-interventions-10r. [Accessed May 27, 2014]), it is possible to apply the analytic hierarchy process to break down a problem into its constituent parts and identify priorities (i.e., assigning a weight to each part) in a hierarchical structure. Thus, it quantitatively compares the importance of multiple criteria in assessing health technologies and how the alternative technologies perform in satisfying these criteria. The verbal ratings are translated into a quantitative form by using the Saaty scale (Saaty TL. Decision making with the analytic hierarchy process. Int J Serv Sci 2008;1:83-98). An eigenvectors analysis is used for deriving the weights' systems (i.e., local and global weights' system) that reflect the importance assigned to the criteria and the priorities related to the performance of the alternative technologies. Compared with the Core Model, this methodological approach supplies a more timely as well as contextualized evidence for a specific technology, making it possible to obtain data that are more relevant and easier to interpret, and therefore more useful for decision makers to make investment choices with greater awareness. We reached the conclusion that although there may be scope for improvement, this implementation is a step forward toward the goal of building a "solid bridge" between the scientific evidence and the final decision maker's choice. Copyright © 2015 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Knapsack - TOPSIS Technique for Vertical Handover in Heterogeneous Wireless Network
2015-01-01
In a heterogeneous wireless network, handover techniques are designed to facilitate anywhere/anytime service continuity for mobile users. Consistent best-possible access to a network with widely varying network characteristics requires seamless mobility management techniques. Hence, the vertical handover process imposes important technical challenges. Handover decisions are triggered for continuous connectivity of mobile terminals. However, bad network selection and overload conditions in the chosen network can cause fallout in the form of handover failure. In order to maintain the required Quality of Service during the handover process, decision algorithms should incorporate intelligent techniques. In this paper, a new and efficient vertical handover mechanism is implemented using a dynamic programming method from the operation research discipline. This dynamic programming approach, which is integrated with the Technique to Order Preference by Similarity to Ideal Solution (TOPSIS) method, provides the mobile user with the best handover decisions. Moreover, in this proposed handover algorithm a deterministic approach which divides the network into zones is incorporated into the network server in order to derive an optimal solution. The study revealed that this method is found to achieve better performance and QoS support to users and greatly reduce the handover failures when compared to the traditional TOPSIS method. The decision arrived at the zone gateway using this operational research analytical method (known as the dynamic programming knapsack approach together with Technique to Order Preference by Similarity to Ideal Solution) yields remarkably better results in terms of the network performance measures such as throughput and delay. PMID:26237221
Knapsack--TOPSIS Technique for Vertical Handover in Heterogeneous Wireless Network.
Malathy, E M; Muthuswamy, Vijayalakshmi
2015-01-01
In a heterogeneous wireless network, handover techniques are designed to facilitate anywhere/anytime service continuity for mobile users. Consistent best-possible access to a network with widely varying network characteristics requires seamless mobility management techniques. Hence, the vertical handover process imposes important technical challenges. Handover decisions are triggered for continuous connectivity of mobile terminals. However, bad network selection and overload conditions in the chosen network can cause fallout in the form of handover failure. In order to maintain the required Quality of Service during the handover process, decision algorithms should incorporate intelligent techniques. In this paper, a new and efficient vertical handover mechanism is implemented using a dynamic programming method from the operation research discipline. This dynamic programming approach, which is integrated with the Technique to Order Preference by Similarity to Ideal Solution (TOPSIS) method, provides the mobile user with the best handover decisions. Moreover, in this proposed handover algorithm a deterministic approach which divides the network into zones is incorporated into the network server in order to derive an optimal solution. The study revealed that this method is found to achieve better performance and QoS support to users and greatly reduce the handover failures when compared to the traditional TOPSIS method. The decision arrived at the zone gateway using this operational research analytical method (known as the dynamic programming knapsack approach together with Technique to Order Preference by Similarity to Ideal Solution) yields remarkably better results in terms of the network performance measures such as throughput and delay.
Optimal deployment of resources for maximizing impact in spreading processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lokhov, Andrey Y.; Saad, David
The effective use of limited resources for controlling spreading processes on networks is of prime significance in diverse contexts, ranging from the identification of “influential spreaders” for maximizing information dissemination and targeted interventions in regulatory networks, to the development of mitigation policies for infectious diseases and financial contagion in economic systems. Solutions for these optimization tasks that are based purely on topological arguments are not fully satisfactory; in realistic settings, the problem is often characterized by heterogeneous interactions and requires interventions in a dynamic fashion over a finite time window via a restricted set of controllable nodes. The optimal distributionmore » of available resources hence results from an interplay between network topology and spreading dynamics. Here, we show how these problems can be addressed as particular instances of a universal analytical framework based on a scalable dynamic message-passing approach and demonstrate the efficacy of the method on a variety of real-world examples.« less
Optimal deployment of resources for maximizing impact in spreading processes
Lokhov, Andrey Y.; Saad, David
2017-09-12
The effective use of limited resources for controlling spreading processes on networks is of prime significance in diverse contexts, ranging from the identification of “influential spreaders” for maximizing information dissemination and targeted interventions in regulatory networks, to the development of mitigation policies for infectious diseases and financial contagion in economic systems. Solutions for these optimization tasks that are based purely on topological arguments are not fully satisfactory; in realistic settings, the problem is often characterized by heterogeneous interactions and requires interventions in a dynamic fashion over a finite time window via a restricted set of controllable nodes. The optimal distributionmore » of available resources hence results from an interplay between network topology and spreading dynamics. Here, we show how these problems can be addressed as particular instances of a universal analytical framework based on a scalable dynamic message-passing approach and demonstrate the efficacy of the method on a variety of real-world examples.« less
Brennan, Sean R.; Torgersen, Christian E.; Hollenbeck, Jeff P.; Fernandez, Diego P.; Jensen, Carrie K; Schindler, Daniel E.
2016-01-01
A critical challenge for the Earth sciences is to trace the transport and flux of matter within and among aquatic, terrestrial, and atmospheric systems. Robust descriptions of isotopic patterns across space and time, called “isoscapes,” form the basis of a rapidly growing and wide-ranging body of research aimed at quantifying connectivity within and among Earth's systems. However, isoscapes of rivers have been limited by conventional Euclidean approaches in geostatistics and the lack of a quantitative framework to apportion the influence of processes driven by landscape features versus in-stream phenomena. Here we demonstrate how dendritic network models substantially improve the accuracy of isoscapes of strontium isotopes and partition the influence of hydrologic transport versus local geologic features on strontium isotope ratios in a large Alaska river. This work illustrates the analytical power of dendritic network models for the field of isotope biogeochemistry, particularly for provenance studies of modern and ancient animals.
Epidemic spreading on activity-driven networks with attractiveness.
Pozzana, Iacopo; Sun, Kaiyuan; Perra, Nicola
2017-10-01
We study SIS epidemic spreading processes unfolding on a recent generalization of the activity-driven modeling framework. In this model of time-varying networks, each node is described by two variables: activity and attractiveness. The first describes the propensity to form connections, while the second defines the propensity to attract them. We derive analytically the epidemic threshold considering the time scale driving the evolution of contacts and the contagion as comparable. The solutions are general and hold for any joint distribution of activity and attractiveness. The theoretical picture is confirmed via large-scale numerical simulations performed considering heterogeneous distributions and different correlations between the two variables. We find that heterogeneous distributions of attractiveness alter the contagion process. In particular, in the case of uncorrelated and positive correlations between the two variables, heterogeneous attractiveness facilitates the spreading. On the contrary, negative correlations between activity and attractiveness hamper the spreading. The results presented contribute to the understanding of the dynamical properties of time-varying networks and their effects on contagion phenomena unfolding on their fabric.
A Framework for Real-Time Collection, Analysis, and Classification of Ubiquitous Infrasound Data
NASA Astrophysics Data System (ADS)
Christe, A.; Garces, M. A.; Magana-Zook, S. A.; Schnurr, J. M.
2015-12-01
Traditional infrasound arrays are generally expensive to install and maintain. There are ~10^3 infrasound channels on Earth today. The amount of data currently provided by legacy architectures can be processed on a modest server. However, the growing availability of low-cost, ubiquitous, and dense infrasonic sensor networks presents a substantial increase in the volume, velocity, and variety of data flow. Initial data from a prototype ubiquitous global infrasound network is already pushing the boundaries of traditional research server and communication systems, in particular when serving data products over heterogeneous, international network topologies. We present a scalable, cloud-based approach for capturing and analyzing large amounts of dense infrasonic data (>10^6 channels). We utilize Akka actors with WebSockets to maintain data connections with infrasound sensors. Apache Spark provides streaming, batch, machine learning, and graph processing libraries which will permit signature classification, cross-correlation, and other analytics in near real time. This new framework and approach provide significant advantages in scalability and cost.
Small-World Network Spectra in Mean-Field Theory
NASA Astrophysics Data System (ADS)
Grabow, Carsten; Grosskinsky, Stefan; Timme, Marc
2012-05-01
Collective dynamics on small-world networks emerge in a broad range of systems with their spectra characterizing fundamental asymptotic features. Here we derive analytic mean-field predictions for the spectra of small-world models that systematically interpolate between regular and random topologies by varying their randomness. These theoretical predictions agree well with the actual spectra (obtained by numerical diagonalization) for undirected and directed networks and from fully regular to strongly random topologies. These results may provide analytical insights to empirically found features of dynamics on small-world networks from various research fields, including biology, physics, engineering, and social science.
Non-Equlibrium Driven Dynamics of Continuous Attractors in Place Cell Networks
NASA Astrophysics Data System (ADS)
Zhong, Weishun; Kim, Hyun Jin; Schwab, David; Murugan, Arvind
Attractors have found much use in neuroscience as a means of information processing and decision making. Examples include associative memory with point and continuous attractors, spatial navigation and planning using place cell networks, dynamic pattern recognition among others. The functional use of such attractors requires the action of spatially and temporally varying external driving signals and yet, most theoretical work on attractors has been in the limit of small or no drive. We take steps towards understanding the non-equilibrium driven dynamics of continuous attractors in place cell networks. We establish an `equivalence principle' that relates fluctuations under a time-dependent external force to equilibrium fluctuations in a `co-moving' frame with only static forces, much like in Newtonian physics. Consequently, we analytically derive a network's capacity to encode multiple attractors as a function of the driving signal size and rate of change.
Kibinge, Nelson; Ono, Naoaki; Horie, Masafumi; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Saito, Akira; Kanaya, Shigehiko
2016-06-01
Conventionally, workflows examining transcription regulation networks from gene expression data involve distinct analytical steps. There is a need for pipelines that unify data mining and inference deduction into a singular framework to enhance interpretation and hypotheses generation. We propose a workflow that merges network construction with gene expression data mining focusing on regulation processes in the context of transcription factor driven gene regulation. The pipeline implements pathway-based modularization of expression profiles into functional units to improve biological interpretation. The integrated workflow was implemented as a web application software (TransReguloNet) with functions that enable pathway visualization and comparison of transcription factor activity between sample conditions defined in the experimental design. The pipeline merges differential expression, network construction, pathway-based abstraction, clustering and visualization. The framework was applied in analysis of actual expression datasets related to lung, breast and prostrate cancer. Copyright © 2016 Elsevier Inc. All rights reserved.
Alcohol expectancy multiaxial assessment: a memory network-based approach.
Goldman, Mark S; Darkes, Jack
2004-03-01
Despite several decades of activity, alcohol expectancy research has yet to merge measurement approaches with developing memory theory. This article offers an expectancy assessment approach built on a conceptualization of expectancy as an information processing network. The authors began with multidimensional scaling models of expectancy space, which served as heuristics to suggest confirmatory factor analytic dimensional models for entry into covariance structure predictive models. It is argued that this approach permits a relatively thorough assessment of the broad range of potential expectancy dimensions in a format that is very flexible in terms of instrument length and specificity versus breadth of focus. ((c) 2004 APA, all rights reserved)
NASA Technical Reports Server (NTRS)
Blakelee, Richard
1999-01-01
A four station Advanced Lightning Direction Finder (ALDF) network was recently established in the state of Rondonia in western Brazil through a collaboration of U.S. and Brazilian participants from NASA, INPE, INMET, and various universities. The network utilizes ALDF IMPACT (Improved Accuracy from Combined Technology) sensors to provide cloud-to-ground lightning observations (i.e., stroke/flash locations, signal amplitude, and polarity) using both time-of-arrival and magnetic direction finding techniques. The observations are collected, processed and archived at a central site in Brasilia and at the NASA/Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Initial, non-quality assured quick-look results are made available in near real-time over the internet. The network will remain deployed for several years to provide ground truth data for the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measurement Mission (TRMM) satellite which was launched in November 1997. The measurements will also be used to investigate the relationship between the electrical, microphysical and kinematic properties of tropical convection. In addition, the long-term observations from this network will contribute in establishing a regional lightning climatological data base, supplementing other data bases in Brazil that already exist or may soon be implemented. Analytic inversion algorithms developed at NASA/MSFC are now being applied to the Rondonian ALDF lightning observations to obtain site error corrections and improved location retrievals. The processing methodology and the initial results from an analysis of the first 6 months of network operations will be presented.
NASA Technical Reports Server (NTRS)
Blakeslee, Rich; Bailey, Jeff; Koshak, Bill
1999-01-01
A four station Advanced Lightning Direction Finder (ALDF) network was recently established in the state of Rondonia in western Brazil through a collaboration of U.S. and Brazilian participants from NASA, INPE, INMET, and various universities. The network utilizes ALDF IMPACT (Improved Accuracy from Combined Technology) sensors to provide cloud-to-ground lightning observations (i.e., stroke/flash locations, signal amplitude, and polarity) using both time-of-arrival and magnetic direction finding techniques. The observations are collected, processed and archived at a central site in Brasilia and at the NASA/ Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Initial, non-quality assured quick-look results are made available in near real-time over the internet. The network will remain deployed for several years to provide ground truth data for the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite which was launched in November 1997. The measurements will also be used to investigate the relationship between the electrical, microphysical and kinematic properties of tropical convection. In addition, the long-term observations from this network will contribute in establishing a regional lightning climatological data base, supplementing other data bases in Brazil that already exist or may soon be implemented. Analytic inversion algorithms developed at NASA/Marshall Space Flight Center (MSFC) are now being applied to the Rondonian ALDF lightning observations to obtain site error corrections and improved location retrievals. The processing methodology and the initial results from an analysis of the first 6 months of network operations will be presented.
Reasoning and Knowledge Acquisition Framework for 5G Network Analytics
2017-01-01
Autonomic self-management is a key challenge for next-generation networks. This paper proposes an automated analysis framework to infer knowledge in 5G networks with the aim to understand the network status and to predict potential situations that might disrupt the network operability. The framework is based on the Endsley situational awareness model, and integrates automated capabilities for metrics discovery, pattern recognition, prediction techniques and rule-based reasoning to infer anomalous situations in the current operational context. Those situations should then be mitigated, either proactive or reactively, by a more complex decision-making process. The framework is driven by a use case methodology, where the network administrator is able to customize the knowledge inference rules and operational parameters. The proposal has also been instantiated to prove its adaptability to a real use case. To this end, a reference network traffic dataset was used to identify suspicious patterns and to predict the behavior of the monitored data volume. The preliminary results suggest a good level of accuracy on the inference of anomalous traffic volumes based on a simple configuration. PMID:29065473
Unified study of Quality of Service (QoS) in OPS/OBS networks
NASA Astrophysics Data System (ADS)
Hailu, Dawit Hadush; Lema, Gebrehiwet Gebrekrstos; Yekun, Ephrem Admasu; Kebede, Samrawit Haylu
2017-07-01
With the growth of Internet traffic, an inevitable use of optical networks provide a large bandwidth, fast data transmission rates and Quality of Service (QoS) support. Currently, Optical Burst Switched (OBS)/Optical Packet Switched (OPS) networks are under study as future solutions for addressing the increase demand of Internet traffic. However, due to their high blocking probability in the intermediate nodes they have been delayed in the industries. Packet loss in OBS/OPS networks is mainly occur due to contention. Hence, the contribution of this study is to analyze the file loss ratio (FLR), packet overhead and number of disjoint paths, and processing delay over Coded Packet Transport (CPT) scheme for OBS/OPS network using simulation. The simulations show that CPT scheme reduces the FLR in OBS/OPS network for the evaluated scenarios since the data packets are chopped off into blocks of the data packet for transmission over a network. Simulation results for secrecy and survivability are verified with the help of the analytical model to define the operational range of CPT scheme.
Reasoning and Knowledge Acquisition Framework for 5G Network Analytics.
Sotelo Monge, Marco Antonio; Maestre Vidal, Jorge; García Villalba, Luis Javier
2017-10-21
Autonomic self-management is a key challenge for next-generation networks. This paper proposes an automated analysis framework to infer knowledge in 5G networks with the aim to understand the network status and to predict potential situations that might disrupt the network operability. The framework is based on the Endsley situational awareness model, and integrates automated capabilities for metrics discovery, pattern recognition, prediction techniques and rule-based reasoning to infer anomalous situations in the current operational context. Those situations should then be mitigated, either proactive or reactively, by a more complex decision-making process. The framework is driven by a use case methodology, where the network administrator is able to customize the knowledge inference rules and operational parameters. The proposal has also been instantiated to prove its adaptability to a real use case. To this end, a reference network traffic dataset was used to identify suspicious patterns and to predict the behavior of the monitored data volume. The preliminary results suggest a good level of accuracy on the inference of anomalous traffic volumes based on a simple configuration.
Investigating the two-moment characterisation of subcellular biochemical networks.
Ullah, Mukhtar; Wolkenhauer, Olaf
2009-10-07
While ordinary differential equations (ODEs) form the conceptual framework for modelling many cellular processes, specific situations demand stochastic models to capture the influence of noise. The most common formulation of stochastic models for biochemical networks is the chemical master equation (CME). While stochastic simulations are a practical way to realise the CME, analytical approximations offer more insight into the influence of noise. Towards that end, the two-moment approximation (2MA) is a promising addition to the established analytical approaches including the chemical Langevin equation (CLE) and the related linear noise approximation (LNA). The 2MA approach directly tracks the mean and (co)variance which are coupled in general. This coupling is not obvious in CME and CLE and ignored by LNA and conventional ODE models. We extend previous derivations of 2MA by allowing (a) non-elementary reactions and (b) relative concentrations. Often, several elementary reactions are approximated by a single step. Furthermore, practical situations often require the use of relative concentrations. We investigate the applicability of the 2MA approach to the well-established fission yeast cell cycle model. Our analytical model reproduces the clustering of cycle times observed in experiments. This is explained through multiple resettings of M-phase promoting factor (MPF), caused by the coupling between mean and (co)variance, near the G2/M transition.
Comparison between genetic algorithm and self organizing map to detect botnet network traffic
NASA Astrophysics Data System (ADS)
Yugandhara Prabhakar, Shinde; Parganiha, Pratishtha; Madhu Viswanatham, V.; Nirmala, M.
2017-11-01
In Cyber Security world the botnet attacks are increasing. To detect botnet is a challenging task. Botnet is a group of computers connected in a coordinated fashion to do malicious activities. Many techniques have been developed and used to detect and prevent botnet traffic and the attacks. In this paper, a comparative study is done on Genetic Algorithm (GA) and Self Organizing Map (SOM) to detect the botnet network traffic. Both are soft computing techniques and used in this paper as data analytics system. GA is based on natural evolution process and SOM is an Artificial Neural Network type, uses unsupervised learning techniques. SOM uses neurons and classifies the data according to the neurons. Sample of KDD99 dataset is used as input to GA and SOM.
Developments and advances concerning the hyperpolarisation technique SABRE.
Mewis, Ryan E
2015-10-01
To overcome the inherent sensitivity issue in NMR and MRI, hyperpolarisation techniques are used. Signal Amplification By Reversible Exchange (SABRE) is a hyperpolarisation technique that utilises parahydrogen, a molecule that possesses a nuclear singlet state, as the source of polarisation. A metal complex is required to break the singlet order of parahydrogen and, by doing so, facilitates polarisation transfer to analyte molecules ligated to the same complex through the J-coupled network that exists. The increased signal intensities that the analyte molecules possess as a result of this process have led to investigations whereby their potential as MRI contrast agents has been probed and to understand the fundamental processes underpinning the polarisation transfer mechanism. As well as discussing literature relevant to both of these areas, the chemical structure of the complex, the physical constraints of the polarisation transfer process and the successes of implementing SABRE at low and high magnetic fields are discussed. Copyright © 2015 John Wiley & Sons, Ltd.
Assessment of Learning in Digital Interactive Social Networks: A Learning Analytics Approach
ERIC Educational Resources Information Center
Wilson, Mark; Gochyyev, Perman; Scalise, Kathleen
2016-01-01
This paper summarizes initial field-test results from data analytics used in the work of the Assessment and Teaching of 21st Century Skills (ATC21S) project, on the "ICT Literacy--Learning in digital networks" learning progression. This project, sponsored by Cisco, Intel and Microsoft, aims to help educators around the world enable…
Heterogeneous fractionation profiles of meta-analytic coactivation networks.
Laird, Angela R; Riedel, Michael C; Okoe, Mershack; Jianu, Radu; Ray, Kimberly L; Eickhoff, Simon B; Smith, Stephen M; Fox, Peter T; Sutherland, Matthew T
2017-04-01
Computational cognitive neuroimaging approaches can be leveraged to characterize the hierarchical organization of distributed, functionally specialized networks in the human brain. To this end, we performed large-scale mining across the BrainMap database of coordinate-based activation locations from over 10,000 task-based experiments. Meta-analytic coactivation networks were identified by jointly applying independent component analysis (ICA) and meta-analytic connectivity modeling (MACM) across a wide range of model orders (i.e., d=20-300). We then iteratively computed pairwise correlation coefficients for consecutive model orders to compare spatial network topologies, ultimately yielding fractionation profiles delineating how "parent" functional brain systems decompose into constituent "child" sub-networks. Fractionation profiles differed dramatically across canonical networks: some exhibited complex and extensive fractionation into a large number of sub-networks across the full range of model orders, whereas others exhibited little to no decomposition as model order increased. Hierarchical clustering was applied to evaluate this heterogeneity, yielding three distinct groups of network fractionation profiles: high, moderate, and low fractionation. BrainMap-based functional decoding of resultant coactivation networks revealed a multi-domain association regardless of fractionation complexity. Rather than emphasize a cognitive-motor-perceptual gradient, these outcomes suggest the importance of inter-lobar connectivity in functional brain organization. We conclude that high fractionation networks are complex and comprised of many constituent sub-networks reflecting long-range, inter-lobar connectivity, particularly in fronto-parietal regions. In contrast, low fractionation networks may reflect persistent and stable networks that are more internally coherent and exhibit reduced inter-lobar communication. Copyright © 2017 Elsevier Inc. All rights reserved.
Heterogeneous fractionation profiles of meta-analytic coactivation networks
Laird, Angela R.; Riedel, Michael C.; Okoe, Mershack; Jianu, Radu; Ray, Kimberly L.; Eickhoff, Simon B.; Smith, Stephen M.; Fox, Peter T.; Sutherland, Matthew T.
2017-01-01
Computational cognitive neuroimaging approaches can be leveraged to characterize the hierarchical organization of distributed, functionally specialized networks in the human brain. To this end, we performed large-scale mining across the BrainMap database of coordinate-based activation locations from over 10,000 task-based experiments. Meta-analytic coactivation networks were identified by jointly applying independent component analysis (ICA) and meta-analytic connectivity modeling (MACM) across a wide range of model orders (i.e., d = 20 to 300). We then iteratively computed pairwise correlation coefficients for consecutive model orders to compare spatial network topologies, ultimately yielding fractionation profiles delineating how “parent” functional brain systems decompose into constituent “child” sub-networks. Fractionation profiles differed dramatically across canonical networks: some exhibited complex and extensive fractionation into a large number of sub-networks across the full range of model orders, whereas others exhibited little to no decomposition as model order increased. Hierarchical clustering was applied to evaluate this heterogeneity, yielding three distinct groups of network fractionation profiles: high, moderate, and low fractionation. BrainMap-based functional decoding of resultant coactivation networks revealed a multi-domain association regardless of fractionation complexity. Rather than emphasize a cognitive-motor-perceptual gradient, these outcomes suggest the importance of inter-lobar connectivity in functional brain organization. We conclude that high fractionation networks are complex and comprised of many constituent sub-networks reflecting long-range, inter-lobar connectivity, particularly in fronto-parietal regions. In contrast, low fractionation networks may reflect persistent and stable networks that are more internally coherent and exhibit reduced inter-lobar communication. PMID:28222386
Synchronization in interdependent networks
NASA Astrophysics Data System (ADS)
Um, Jaegon; Minnhagen, Petter; Kim, Beom Jun
2011-06-01
We explore the synchronization behavior in interdependent systems, where the one-dimensional (1D) network (the intranetwork coupling strength JI) is ferromagnetically intercoupled (the strength J) to the Watts-Strogatz (WS) small-world network (the intranetwork coupling strength JII). In the absence of the internetwork coupling (J =0), the former network is well known not to exhibit the synchronized phase at any finite coupling strength, whereas the latter displays the mean-field transition. Through an analytic approach based on the mean-field approximation, it is found that for the weakly coupled 1D network (JI≪1) the increase of J suppresses synchrony, because the nonsynchronized 1D network becomes a heavier burden for the synchronization process of the WS network. As the coupling in the 1D network becomes stronger, it is revealed by the renormalization group (RG) argument that the synchronization is enhanced as JI is increased, implying that the more enhanced partial synchronization in the 1D network makes the burden lighter. Extensive numerical simulations confirm these expected behaviors, while exhibiting a reentrant behavior in the intermediate range of JI. The nonmonotonic change of the critical value of JII is also compared with the result from the numerical RG calculation.
Stimulus dependence of local field potential spectra: experiment versus theory.
Barbieri, Francesca; Mazzoni, Alberto; Logothetis, Nikos K; Panzeri, Stefano; Brunel, Nicolas
2014-10-29
The local field potential (LFP) captures different neural processes, including integrative synaptic dynamics that cannot be observed by measuring only the spiking activity of small populations. Therefore, investigating how LFP power is modulated by external stimuli can offer important insights into sensory neural representations. However, gaining such insight requires developing data-driven computational models that can identify and disambiguate the neural contributions to the LFP. Here, we investigated how networks of excitatory and inhibitory integrate-and-fire neurons responding to time-dependent inputs can be used to interpret sensory modulations of LFP spectra. We computed analytically from such models the LFP spectra and the information that they convey about input and used these analytical expressions to fit the model to LFPs recorded in V1 of anesthetized macaques (Macaca mulatta) during the presentation of color movies. Our expressions explain 60%-98% of the variance of the LFP spectrum shape and its dependency upon movie scenes and we achieved this with realistic values for the best-fit parameters. In particular, synaptic best-fit parameters were compatible with experimental measurements and the predictions of firing rates, based only on the fit of LFP data, correlated with the multiunit spike rate recorded from the same location. Moreover, the parameters characterizing the input to the network across different movie scenes correlated with cross-scene changes of several image features. Our findings suggest that analytical descriptions of spiking neuron networks may become a crucial tool for the interpretation of field recordings. Copyright © 2014 the authors 0270-6474/14/3414589-17$15.00/0.
A 3-states magnetic model of binary decisions in sociophysics
NASA Astrophysics Data System (ADS)
Fernandez, Miguel A.; Korutcheva, Elka; de la Rubia, F. Javier
2016-11-01
We study a diluted Blume-Capel model of 3-states sites as an attempt to understand how some social processes as cooperation or organization happen. For this aim, we study the effect of the complex network topology on the equilibrium properties of the model, by focusing on three different substrates: random graph, Watts-Strogatz and Newman substrates. Our computer simulations are in good agreement with the corresponding analytical results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parwatiningtyas, Diyan, E-mail: diane.tyas@gmail.com, E-mail: erlinunindra@gmail.com; Ambarsari, Erlin Windia, E-mail: diane.tyas@gmail.com, E-mail: erlinunindra@gmail.com; Marlina, Dwi, E-mail: diane.tyas@gmail.com, E-mail: erlinunindra@gmail.com
Indonesia has a wealth of natural assets is so large to be managed and utilized, either from its own local government and local communities, especially in the mining sector. However, mining activities can change the state of the surface layer of the earth that have a high impact disaster risk. This could threaten the safety and disrupt human life, environmental damage, loss of property, and the psychological impact, sulking to the rule of law no 24 of 2007. That's why we strive to manage and minimize the risk of mine disasters in the region, how to use the method ofmore » calculation of Amplification Factor (AF) from the analysis based microtremor sulking Kanai and Nakamura, and decision systems were tested by analysis of ANP. Based on the amplification factor and Analytical Network Processing (ANP) obtained, some points showed instability in the surface layer of a mining area include the site of the TP-7, TP-8, TP-9, TP-10, (Birowo2). If in terms of structure, location indicated unstable due to have a sloping surface layer, resulting in the occurrence of landslides and earthquake risk is high. In the meantime, other areas of the mine site can be said to be a stable area.« less
Latysh, Natalie E.; Wetherbee, Gregory A.
2007-01-01
The U.S. Geological Survey (USGS) Branch of Quality Systems operates external quality assurance programs for the National Atmospheric Deposition Program/Mercury Deposition Network (NADP/MDN). Beginning in 2004, three programs have been implemented: the system blank program, the interlaboratory comparison program, and the blind audit program. Each program was designed to measure error contributed by specific components in the data-collection process. The system blank program assesses contamination that may result from sampling equipment, field exposure, and routine handling and processing of the wet-deposition samples. The interlaboratory comparison program evaluates bias and precision of analytical results produced by the Mercury Analytical Laboratory (HAL) for the NADP/MDN, operated by Frontier GeoSciences, Inc. The HAL's performance is compared with the performance of five other laboratories. The blind audit program assesses bias and variability of MDN data produced by the HAL using solutions disguised as environmental samples to ascertain true laboratory performance. This report documents the implementation of quality assurance procedures for the NADP/MDN and the operating procedures for each of the external quality assurance programs conducted by the USGS. The USGS quality assurance information provides a measure of confidence to NADP/MDN data users that measurement variability is distinguished from environmental signals.
NASA Astrophysics Data System (ADS)
Parwatiningtyas, Diyan; Ambarsari, Erlin Windia; Marlina, Dwi; Wiratomo, Yogi
2014-03-01
Indonesia has a wealth of natural assets is so large to be managed and utilized, either from its own local government and local communities, especially in the mining sector. However, mining activities can change the state of the surface layer of the earth that have a high impact disaster risk. This could threaten the safety and disrupt human life, environmental damage, loss of property, and the psychological impact, sulking to the rule of law no 24 of 2007. That's why we strive to manage and minimize the risk of mine disasters in the region, how to use the method of calculation of Amplification Factor (AF) from the analysis based microtremor sulking Kanai and Nakamura, and decision systems were tested by analysis of ANP. Based on the amplification factor and Analytical Network Processing (ANP) obtained, some points showed instability in the surface layer of a mining area include the site of the TP-7, TP-8, TP-9, TP-10, (Birowo2). If in terms of structure, location indicated unstable due to have a sloping surface layer, resulting in the occurrence of landslides and earthquake risk is high. In the meantime, other areas of the mine site can be said to be a stable area.
Topological Structure of the Space of Phenotypes: The Case of RNA Neutral Networks
Aguirre, Jacobo; Buldú, Javier M.; Stich, Michael; Manrubia, Susanna C.
2011-01-01
The evolution and adaptation of molecular populations is constrained by the diversity accessible through mutational processes. RNA is a paradigmatic example of biopolymer where genotype (sequence) and phenotype (approximated by the secondary structure fold) are identified in a single molecule. The extreme redundancy of the genotype-phenotype map leads to large ensembles of RNA sequences that fold into the same secondary structure and can be connected through single-point mutations. These ensembles define neutral networks of phenotypes in sequence space. Here we analyze the topological properties of neutral networks formed by 12-nucleotides RNA sequences, obtained through the exhaustive folding of sequence space. A total of 412 sequences fragments into 645 subnetworks that correspond to 57 different secondary structures. The topological analysis reveals that each subnetwork is far from being random: it has a degree distribution with a well-defined average and a small dispersion, a high clustering coefficient, and an average shortest path between nodes close to its minimum possible value, i.e. the Hamming distance between sequences. RNA neutral networks are assortative due to the correlation in the composition of neighboring sequences, a feature that together with the symmetries inherent to the folding process explains the existence of communities. Several topological relationships can be analytically derived attending to structural restrictions and generic properties of the folding process. The average degree of these phenotypic networks grows logarithmically with their size, such that abundant phenotypes have the additional advantage of being more robust to mutations. This property prevents fragmentation of neutral networks and thus enhances the navigability of sequence space. In summary, RNA neutral networks show unique topological properties, unknown to other networks previously described. PMID:22028856
Morphology and linear-elastic moduli of random network solids.
Nachtrab, Susan; Kapfer, Sebastian C; Arns, Christoph H; Madadi, Mahyar; Mecke, Klaus; Schröder-Turk, Gerd E
2011-06-17
The effective linear-elastic moduli of disordered network solids are analyzed by voxel-based finite element calculations. We analyze network solids given by Poisson-Voronoi processes and by the structure of collagen fiber networks imaged by confocal microscopy. The solid volume fraction ϕ is varied by adjusting the fiber radius, while keeping the structural mesh or pore size of the underlying network fixed. For intermediate ϕ, the bulk and shear modulus are approximated by empirical power-laws K(phi)proptophin and G(phi)proptophim with n≈1.4 and m≈1.7. The exponents for the collagen and the Poisson-Voronoi network solids are similar, and are close to the values n=1.22 and m=2.11 found in a previous voxel-based finite element study of Poisson-Voronoi systems with different boundary conditions. However, the exponents of these empirical power-laws are at odds with the analytic values of n=1 and m=2, valid for low-density cellular structures in the limit of thin beams. We propose a functional form for K(ϕ) that models the cross-over from a power-law at low densities to a porous solid at high densities; a fit of the data to this functional form yields the asymptotic exponent n≈1.00, as expected. Further, both the intensity of the Poisson-Voronoi process and the collagen concentration in the samples, both of which alter the typical pore or mesh size, affect the effective moduli only by the resulting change of the solid volume fraction. These findings suggest that a network solid with the structure of the collagen networks can be modeled in quantitative agreement by a Poisson-Voronoi process. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Being around and knowing the players: networks of influence in health policy.
Lewis, Jenny M
2006-05-01
The accumulation and use of power is crucial to the health policy process. This paper examines the power of the medical profession in the health policy arena, by analysing which actors are perceived as influential, and how influence is structured in health policy. It combines an analysis of policy networks and social networks, to examine positional and personal influence in health policy in the state of Victoria, Australia. In the sub-graph of the influence network examined here, those most widely regarded as influential are academics, medically qualified and male. Positional actors (the top politician, political advisor and bureaucrat in health and the top nursing official) form part of a core group within this network structure. A second central group consists of medical influentials working in academia, research institutes and health-related NGOs. In this network locale overall, medical academics appear to combine positional and personal influence, and play significant intermediary roles across the network. While many claim that the medical profession has lost power in health policy and politics, this analysis yields few signs that the power of medicine to shape the health policy process has been greatly diminished in Victoria. Medical expertise is a potent embedded resource connecting actors through ties of association, making it difficult for actors with other resources and different knowledge to be considered influential. The network concepts and analytical techniques used here provide a novel means for uncovering different types of influence in health policy.
NASA Astrophysics Data System (ADS)
Margitus, Michael R.; Tagliaferri, William A., Jr.; Sudit, Moises; LaMonica, Peter M.
2012-06-01
Understanding the structure and dynamics of networks are of vital importance to winning the global war on terror. To fully comprehend the network environment, analysts must be able to investigate interconnected relationships of many diverse network types simultaneously as they evolve both spatially and temporally. To remove the burden from the analyst of making mental correlations of observations and conclusions from multiple domains, we introduce the Dynamic Graph Analytic Framework (DYGRAF). DYGRAF provides the infrastructure which facilitates a layered multi-modal network analysis (LMMNA) approach that enables analysts to assemble previously disconnected, yet related, networks in a common battle space picture. In doing so, DYGRAF provides the analyst with timely situation awareness, understanding and anticipation of threats, and support for effective decision-making in diverse environments.
A study of the temporal robustness of the growing global container-shipping network
Wang, Nuo; Wu, Nuan; Dong, Ling-ling; Yan, Hua-kun; Wu, Di
2016-01-01
Whether they thrive as they grow must be determined for all constantly expanding networks. However, few studies have focused on this important network feature or the development of quantitative analytical methods. Given the formation and growth of the global container-shipping network, we proposed the concept of network temporal robustness and quantitative method. As an example, we collected container liner companies’ data at two time points (2004 and 2014) and built a shipping network with ports as nodes and routes as links. We thus obtained a quantitative value of the temporal robustness. The temporal robustness is a significant network property because, for the first time, we can clearly recognize that the shipping network has become more vulnerable to damage over the last decade: When the node failure scale reached 50% of the entire network, the temporal robustness was approximately −0.51% for random errors and −12.63% for intentional attacks. The proposed concept and analytical method described in this paper are significant for other network studies. PMID:27713549
An Introduction to Social Network Data Analytics
NASA Astrophysics Data System (ADS)
Aggarwal, Charu C.
The advent of online social networks has been one of the most exciting events in this decade. Many popular online social networks such as Twitter, LinkedIn, and Facebook have become increasingly popular. In addition, a number of multimedia networks such as Flickr have also seen an increasing level of popularity in recent years. Many such social networks are extremely rich in content, and they typically contain a tremendous amount of content and linkage data which can be leveraged for analysis. The linkage data is essentially the graph structure of the social network and the communications between entities; whereas the content data contains the text, images and other multimedia data in the network. The richness of this network provides unprecedented opportunities for data analytics in the context of social networks. This book provides a data-centric view of online social networks; a topic which has been missing from much of the literature. This chapter provides an overview of the key topics in this field, and their coverage in this book.
Hu, Miao; Zhong, Zhangdui; Ni, Minming; Baiocchi, Andrea
2016-11-01
Large volume content dissemination is pursued by the growing number of high quality applications for Vehicular Ad hoc NETworks(VANETs), e.g., the live road surveillance service and the video-based overtaking assistant service. For the highly dynamical vehicular network topology, beacon-less routing protocols have been proven to be efficient in achieving a balance between the system performance and the control overhead. However, to the authors' best knowledge, the routing design for large volume content has not been well considered in the previous work, which will introduce new challenges, e.g., the enhanced connectivity requirement for a radio link. In this paper, a link Lifetime-aware Beacon-less Routing Protocol (LBRP) is designed for large volume content delivery in VANETs. Each vehicle makes the forwarding decision based on the message header information and its current state, including the speed and position information. A semi-Markov process analytical model is proposed to evaluate the expected delay in constructing one routing path for LBRP. Simulations show that the proposed LBRP scheme outperforms the traditional dissemination protocols in providing a low end-to-end delay. The analytical model is shown to exhibit a good match on the delay estimation with Monte Carlo simulations, as well.
Hu, Miao; Zhong, Zhangdui; Ni, Minming; Baiocchi, Andrea
2016-01-01
Large volume content dissemination is pursued by the growing number of high quality applications for Vehicular Ad hoc NETworks(VANETs), e.g., the live road surveillance service and the video-based overtaking assistant service. For the highly dynamical vehicular network topology, beacon-less routing protocols have been proven to be efficient in achieving a balance between the system performance and the control overhead. However, to the authors’ best knowledge, the routing design for large volume content has not been well considered in the previous work, which will introduce new challenges, e.g., the enhanced connectivity requirement for a radio link. In this paper, a link Lifetime-aware Beacon-less Routing Protocol (LBRP) is designed for large volume content delivery in VANETs. Each vehicle makes the forwarding decision based on the message header information and its current state, including the speed and position information. A semi-Markov process analytical model is proposed to evaluate the expected delay in constructing one routing path for LBRP. Simulations show that the proposed LBRP scheme outperforms the traditional dissemination protocols in providing a low end-to-end delay. The analytical model is shown to exhibit a good match on the delay estimation with Monte Carlo simulations, as well. PMID:27809285
NASA Astrophysics Data System (ADS)
McInnes, B.; Brown, A.; Liffers, M.
2015-12-01
Publically funded laboratories have a responsibility to generate, archive and disseminate analytical data to the research community. Laboratory managers know however, that a long tail of analytical effort never escapes researchers' thumb drives once they leave the lab. This work reports on a research data management project (Digital Mineralogy Library) where integrated hardware and software systems automatically archive and deliver analytical data and metadata to institutional and community data portals. The scientific objective of the DML project was to quantify the modal abundance of heavy minerals extracted from key lithological units in Western Australia. The selected analytical platform was a TESCAN Integrated Mineral Analyser (TIMA) that uses EDS-based mineral classification software to image and quantify mineral abundance and grain size at micron scale resolution. The analytical workflow used a bespoke laboratory information management system (LIMS) to orchestrate: (1) the preparation of grain mounts with embedded QR codes that serve as enduring links between physical samples and analytical data, (2) the assignment of an International Geo Sample Number (IGSN) and Digital Object Identifier (DOI) to each grain mount via the System for Earth Sample Registry (SESAR), (3) the assignment of a DOI to instrument metadata via Research Data Australia, (4) the delivery of TIMA analytical outputs, including spatially registered mineralogy images and mineral abundance data, to an institutionally-based data management server, and (5) the downstream delivery of a final data product via a Google Maps interface such as the AuScope Discovery Portal. The modular design of the system permits the networking of multiple instruments within a single site or multiple collaborating research institutions. Although sharing analytical data does provide new opportunities for the geochemistry community, the creation of an open data network requires: (1) adopting open data reporting standards and conventions, (2) requiring instrument manufacturers and software developers to deliver and process data in formats compatible with open standards, and (3) public funding agencies to incentivise researchers, laboratories and institutions to make their data open and accessible to consumers.
Effect of risk perception on epidemic spreading in temporal networks
NASA Astrophysics Data System (ADS)
Moinet, Antoine; Pastor-Satorras, Romualdo; Barrat, Alain
2018-01-01
Many progresses in the understanding of epidemic spreading models have been obtained thanks to numerous modeling efforts and analytical and numerical studies, considering host populations with very different structures and properties, including complex and temporal interaction networks. Moreover, a number of recent studies have started to go beyond the assumption of an absence of coupling between the spread of a disease and the structure of the contacts on which it unfolds. Models including awareness of the spread have been proposed, to mimic possible precautionary measures taken by individuals that decrease their risk of infection, but have mostly considered static networks. Here, we adapt such a framework to the more realistic case of temporal networks of interactions between individuals. We study the resulting model by analytical and numerical means on both simple models of temporal networks and empirical time-resolved contact data. Analytical results show that the epidemic threshold is not affected by the awareness but that the prevalence can be significantly decreased. Numerical studies on synthetic temporal networks highlight, however, the presence of very strong finite-size effects, resulting in a significant shift of the effective epidemic threshold in the presence of risk awareness. For empirical contact networks, the awareness mechanism leads as well to a shift in the effective threshold and to a strong reduction of the epidemic prevalence.
NASA Astrophysics Data System (ADS)
Cocco, Alex P.; Nakajo, Arata; Chiu, Wilson K. S.
2017-12-01
We present a fully analytical, heuristic model - the "Analytical Transport Network Model" - for steady-state, diffusive, potential flow through a 3-D network. Employing a combination of graph theory, linear algebra, and geometry, the model explicitly relates a microstructural network's topology and the morphology of its channels to an effective material transport coefficient (a general term meant to encompass, e.g., conductivity or diffusion coefficient). The model's transport coefficient predictions agree well with those from electrochemical fin (ECF) theory and finite element analysis (FEA), but are computed 0.5-1.5 and 5-6 orders of magnitude faster, respectively. In addition, the theory explicitly relates a number of morphological and topological parameters directly to the transport coefficient, whereby the distributions that characterize the structure are readily available for further analysis. Furthermore, ATN's explicit development provides insight into the nature of the tortuosity factor and offers the potential to apply theory from network science and to consider the optimization of a network's effective resistance in a mathematically rigorous manner. The ATN model's speed and relative ease-of-use offer the potential to aid in accelerating the design (with respect to transport), and thus reducing the cost, of energy materials.
Dominating Scale-Free Networks Using Generalized Probabilistic Methods
Molnár,, F.; Derzsy, N.; Czabarka, É.; Székely, L.; Szymanski, B. K.; Korniss, G.
2014-01-01
We study ensemble-based graph-theoretical methods aiming to approximate the size of the minimum dominating set (MDS) in scale-free networks. We analyze both analytical upper bounds of dominating sets and numerical realizations for applications. We propose two novel probabilistic dominating set selection strategies that are applicable to heterogeneous networks. One of them obtains the smallest probabilistic dominating set and also outperforms the deterministic degree-ranked method. We show that a degree-dependent probabilistic selection method becomes optimal in its deterministic limit. In addition, we also find the precise limit where selecting high-degree nodes exclusively becomes inefficient for network domination. We validate our results on several real-world networks, and provide highly accurate analytical estimates for our methods. PMID:25200937
NASA Technical Reports Server (NTRS)
Lee, David; Ge, Yi; Cha, Soyoung Stephen; Ramachandran, Narayanan; Rose, M. Franklin (Technical Monitor)
2001-01-01
Measurement of three-dimensional (3-D) three-component velocity fields is of great importance in both ground and space experiments for understanding materials processing and fluid physics. The experiments in these fields most likely inhibit the application of conventional planar probes for observing 3-D phenomena. Here, we present the investigation results of stereoscopic tracking velocimetry (STV) for measuring 3-D velocity fields, which include diagnostic technology development, experimental velocity measurement, and comparison with analytical and numerical computation. STV is advantageous in system simplicity for building compact hardware and in software efficiency for continual near-real-time monitoring. It has great freedom in illuminating and observing volumetric fields from arbitrary directions. STV is based on stereoscopic observation of particles-Seeded in a flow by CCD sensors. In the approach, part of the individual particle images that provide data points is likely to be lost or cause errors when their images overlap and crisscross each other especially under a high particle density. In order to maximize the valid recovery of data points, neural networks are implemented for these two important processes. For the step of particle overlap decomposition, the back propagation neural network is utilized because of its ability in pattern recognition with pertinent particle image feature parameters. For the step of particle tracking, the Hopfield neural network is employed to find appropriate particle tracks based on global optimization. Our investigation indicates that the neural networks are very efficient and useful for stereoscopically tracking particles. As an initial assessment of the diagnostic technology performance, laminar water jets with and without pulsation are measured. The jet tip velocity profiles are in good agreement with analytical predictions. Finally, for testing in material processing applications, a simple directional solidification apparatus is built for experimenting with a metal analog of succinonitrile. Its 3-D velocity field at the liquid phase is then measured to be compared with those from numerical computation. Our theoretical, numerical, and experimental investigations have proven STV to be a viable candidate for reliably measuring 3-D flow velocities. With current activities are focused on further improving the processing efficiency, overall accuracy, and automation, the eventual efforts of broad experimental applications and concurrent numerical modeling validation will be vital to many areas in fluid flow and materials processing.
The rise and fall of social communities: Cascades of followers triggered by innovators
NASA Astrophysics Data System (ADS)
Hu, Yanqing; Havlin, Shlomo; Makse, Hernan
2013-03-01
New scientific ideas as well as key political messages, consumer products, advertisement strategies and art trends are originally adopted by a small number of pioneers who innovate and develop the ``new ideas''. When these innovators migrate to develop the novel idea, their former social network gradually weakens its grips as followers migrate too. As a result, an internal ``cascade of followers'' starts immediately thereafter speeding up the extinction of the entire original network. A fundamental problem in network theory is to determine the minimum number of pioneers that, upon leaving, will disintegrate their social network. Here, we first employ empirical analyses of collaboration networks of scientists to show that these communities are extremely fragile with regard to the departure of a few pioneers. This process can be mapped out on a percolation model in a correlated graph crucially augmented with outgoing ``influence links''. Analytical solutions predict phase transitions, either abrupt or continuous, where networks are disintegrated through cascades of followers as in the empirical data. The theory provides a framework to predict the vulnerability of a large class of networks containing influence links ranging from social and infrastructure networks to financial systems and markets.
NASA Astrophysics Data System (ADS)
Abramov, E. Y.; Sopov, V. I.
2017-10-01
In a given research using the example of traction network area with high asymmetry of power supply parameters, the sequence of comparative assessment of power losses in DC traction network with parallel and traditional separated operating modes of traction substation feeders was shown. Experimental measurements were carried out under these modes of operation. The calculation data results based on statistic processing showed the power losses decrease in contact network and the increase in feeders. The changes proved to be critical ones and this demonstrates the significance of potential effects when converting traction network areas into parallel feeder operation. An analytical method of calculation the average power losses for different feed schemes of the traction network was developed. On its basis, the dependences of the relative losses were obtained by varying the difference in feeder voltages. The calculation results showed unreasonableness transition to a two-sided feed scheme for the considered traction network area. A larger reduction in the total power loss can be obtained with a smaller difference of the feeders’ resistance and / or a more symmetrical sectioning scheme of contact network.
Modelling dendritic ecological networks in space: An integrated network perspective
Erin E. Peterson; Jay M. Ver Hoef; Dan J. Isaak; Jeffrey A. Falke; Marie-Josee Fortin; Chris E. Jordan; Kristina McNyset; Pascal Monestiez; Aaron S. Ruesch; Aritra Sengupta; Nicholas Som; E. Ashley Steel; David M. Theobald; Christian E. Torgersen; Seth J. Wenger
2013-01-01
Dendritic ecological networks (DENs) are a unique form of ecological networks that exhibit a dendritic network topology (e.g. stream and cave networks or plant architecture). DENs have a dual spatial representation; as points within the network and as points in geographical space. Consequently, some analytical methods used to quantify relationships in other types of...
Exact solutions for rate and synchrony in recurrent networks of coincidence detectors.
Mikula, Shawn; Niebur, Ernst
2008-11-01
We provide analytical solutions for mean firing rates and cross-correlations of coincidence detector neurons in recurrent networks with excitatory or inhibitory connectivity, with rate-modulated steady-state spiking inputs. We use discrete-time finite-state Markov chains to represent network state transition probabilities, which are subsequently used to derive exact analytical solutions for mean firing rates and cross-correlations. As illustrated in several examples, the method can be used for modeling cortical microcircuits and clarifying single-neuron and population coding mechanisms. We also demonstrate that increasing firing rates do not necessarily translate into increasing cross-correlations, though our results do support the contention that firing rates and cross-correlations are likely to be coupled. Our analytical solutions underscore the complexity of the relationship between firing rates and cross-correlations.
L-hop percolation on networks with arbitrary degree distributions and its applications
NASA Astrophysics Data System (ADS)
Shang, Yilun; Luo, Weiliang; Xu, Shouhuai
2011-09-01
Site percolation has been used to help understand analytically the robustness of complex networks in the presence of random node deletion (or failure). In this paper we move a further step beyond random node deletion by considering that a node can be deleted because it is chosen or because it is within some L-hop distance of a chosen node. Using the generating functions approach, we present analytic results on the percolation threshold as well as the mean size, and size distribution, of nongiant components of complex networks under such operations. The introduction of parameter L is both conceptually interesting because it accommodates a sort of nonindependent node deletion, which is often difficult to tackle analytically, and practically interesting because it offers useful insights for cybersecurity (such as botnet defense).
Stochastic fluctuations and the detectability limit of network communities.
Floretta, Lucio; Liechti, Jonas; Flammini, Alessandro; De Los Rios, Paolo
2013-12-01
We have analyzed the detectability limits of network communities in the framework of the popular Girvan and Newman benchmark. By carefully taking into account the inevitable stochastic fluctuations that affect the construction of each and every instance of the benchmark, we come to the conclusion that the native, putative partition of the network is completely lost even before the in-degree/out-degree ratio becomes equal to that of a structureless Erdös-Rényi network. We develop a simple iterative scheme, analytically well described by an infinite branching process, to provide an estimate of the true detectability limit. Using various algorithms based on modularity optimization, we show that all of them behave (semiquantitatively) in the same way, with the same functional form of the detectability threshold as a function of the network parameters. Because the same behavior has also been found by further modularity-optimization methods and for methods based on different heuristics implementations, we conclude that indeed a correct definition of the detectability limit must take into account the stochastic fluctuations of the network construction.
Criticality in finite dynamical networks
NASA Astrophysics Data System (ADS)
Rohlf, Thimo; Gulbahce, Natali; Teuscher, Christof
2007-03-01
It has been shown analytically and experimentally that both random boolean and random threshold networks show a transition from ordered to chaotic dynamics at a critical average connectivity Kc in the thermodynamical limit [1]. By looking at the statistical distributions of damage spreading (damage sizes), we go beyond this extensively studied mean-field approximation. We study the scaling properties of damage size distributions as a function of system size N and initial perturbation size d(t=0). We present numerical evidence that another characteristic point, Kd exists for finite system sizes, where the expectation value of damage spreading in the network is independent of the system size N. Further, the probability to obtain critical networks is investigated for a given system size and average connectivity k. Our results suggest that, for finite size dynamical networks, phase space structure is very complex and may not exhibit a sharp order-disorder transition. Finally, we discuss the implications of our findings for evolutionary processes and learning applied to networks which solve specific computational tasks. [1] Derrida, B. and Pomeau, Y. (1986), Europhys. Lett., 1, 45-49
Evolutionary neural networks for anomaly detection based on the behavior of a program.
Han, Sang-Jun; Cho, Sung-Bae
2006-06-01
The process of learning the behavior of a given program by using machine-learning techniques (based on system-call audit data) is effective to detect intrusions. Rule learning, neural networks, statistics, and hidden Markov models (HMMs) are some of the kinds of representative methods for intrusion detection. Among them, neural networks are known for good performance in learning system-call sequences. In order to apply this knowledge to real-world problems successfully, it is important to determine the structures and weights of these call sequences. However, finding the appropriate structures requires very long time periods because there are no suitable analytical solutions. In this paper, a novel intrusion-detection technique based on evolutionary neural networks (ENNs) is proposed. One advantage of using ENNs is that it takes less time to obtain superior neural networks than when using conventional approaches. This is because they discover the structures and weights of the neural networks simultaneously. Experimental results with the 1999 Defense Advanced Research Projects Agency (DARPA) Intrusion Detection Evaluation (IDEVAL) data confirm that ENNs are promising tools for intrusion detection.
Functional Genomics Assistant (FUGA): a toolbox for the analysis of complex biological networks
2011-01-01
Background Cellular constituents such as proteins, DNA, and RNA form a complex web of interactions that regulate biochemical homeostasis and determine the dynamic cellular response to external stimuli. It follows that detailed understanding of these patterns is critical for the assessment of fundamental processes in cell biology and pathology. Representation and analysis of cellular constituents through network principles is a promising and popular analytical avenue towards a deeper understanding of molecular mechanisms in a system-wide context. Findings We present Functional Genomics Assistant (FUGA) - an extensible and portable MATLAB toolbox for the inference of biological relationships, graph topology analysis, random network simulation, network clustering, and functional enrichment statistics. In contrast to conventional differential expression analysis of individual genes, FUGA offers a framework for the study of system-wide properties of biological networks and highlights putative molecular targets using concepts of systems biology. Conclusion FUGA offers a simple and customizable framework for network analysis in a variety of systems biology applications. It is freely available for individual or academic use at http://code.google.com/p/fuga. PMID:22035155
Chung, Younjin; Salvador-Carulla, Luis; Salinas-Pérez, José A; Uriarte-Uriarte, Jose J; Iruin-Sanz, Alvaro; García-Alonso, Carlos R
2018-04-25
Decision-making in mental health systems should be supported by the evidence-informed knowledge transfer of data. Since mental health systems are inherently complex, involving interactions between its structures, processes and outcomes, decision support systems (DSS) need to be developed using advanced computational methods and visual tools to allow full system analysis, whilst incorporating domain experts in the analysis process. In this study, we use a DSS model developed for interactive data mining and domain expert collaboration in the analysis of complex mental health systems to improve system knowledge and evidence-informed policy planning. We combine an interactive visual data mining approach, the self-organising map network (SOMNet), with an operational expert knowledge approach, expert-based collaborative analysis (EbCA), to develop a DSS model. The SOMNet was applied to the analysis of healthcare patterns and indicators of three different regional mental health systems in Spain, comprising 106 small catchment areas and providing healthcare for over 9 million inhabitants. Based on the EbCA, the domain experts in the development team guided and evaluated the analytical processes and results. Another group of 13 domain experts in mental health systems planning and research evaluated the model based on the analytical information of the SOMNet approach for processing information and discovering knowledge in a real-world context. Through the evaluation, the domain experts assessed the feasibility and technology readiness level (TRL) of the DSS model. The SOMNet, combined with the EbCA, effectively processed evidence-based information when analysing system outliers, explaining global and local patterns, and refining key performance indicators with their analytical interpretations. The evaluation results showed that the DSS model was feasible by the domain experts and reached level 7 of the TRL (system prototype demonstration in operational environment). This study supports the benefits of combining health systems engineering (SOMNet) and expert knowledge (EbCA) to analyse the complexity of health systems research. The use of the SOMNet approach contributes to the demonstration of DSS for mental health planning in practice.
An Adaptive Jitter Mechanism for Reactive Route Discovery in Sensor Networks
Cordero, Juan Antonio; Yi, Jiazi; Clausen, Thomas
2014-01-01
This paper analyses the impact of jitter when applied to route discovery in reactive (on-demand) routing protocols. In multi-hop non-synchronized wireless networks, jitter—a small, random variation in the timing of message emission—is commonly employed, as a means to avoid collisions of simultaneous transmissions by adjacent routers over the same channel. In a reactive routing protocol for sensor and ad hoc networks, jitter is recommended during the route discovery process, specifically, during the network-wide flooding of route request messages, in order to avoid collisions. Commonly, a simple uniform jitter is recommended. Alas, this is not without drawbacks: when applying uniform jitter to the route discovery process, an effect called delay inversion is observed. This paper, first, studies and quantifies this delay inversion effect. Second, this paper proposes an adaptive jitter mechanism, designed to alleviate the delay inversion effect and thereby to reduce the route discovery overhead and (ultimately) allow the routing protocol to find more optimal paths, as compared to uniform jitter. This paper presents both analytical and simulation studies, showing that the proposed adaptive jitter can effectively decrease the cost of route discovery and increase the path quality. PMID:25111238
Limitations and tradeoffs in synchronization of large-scale networks with uncertain links
Diwadkar, Amit; Vaidya, Umesh
2016-01-01
The synchronization of nonlinear systems connected over large-scale networks has gained popularity in a variety of applications, such as power grids, sensor networks, and biology. Stochastic uncertainty in the interconnections is a ubiquitous phenomenon observed in these physical and biological networks. We provide a size-independent network sufficient condition for the synchronization of scalar nonlinear systems with stochastic linear interactions over large-scale networks. This sufficient condition, expressed in terms of nonlinear dynamics, the Laplacian eigenvalues of the nominal interconnections, and the variance and location of the stochastic uncertainty, allows us to define a synchronization margin. We provide an analytical characterization of important trade-offs between the internal nonlinear dynamics, network topology, and uncertainty in synchronization. For nearest neighbour networks, the existence of an optimal number of neighbours with a maximum synchronization margin is demonstrated. An analytical formula for the optimal gain that produces the maximum synchronization margin allows us to compare the synchronization properties of various complex network topologies. PMID:27067994
Resilience Simulation for Water, Power & Road Networks
NASA Astrophysics Data System (ADS)
Clark, S. S.; Seager, T. P.; Chester, M.; Eisenberg, D. A.; Sweet, D.; Linkov, I.
2014-12-01
The increasing frequency, scale, and damages associated with recent catastrophic events has called for a shift in focus from evading losses through risk analysis to improving threat preparation, planning, absorption, recovery, and adaptation through resilience. However, neither underlying theory nor analytic tools have kept pace with resilience rhetoric. As a consequence, current approaches to engineering resilience analysis often conflate resilience and robustness or collapse into a deeper commitment to the risk analytic paradigm proven problematic in the first place. This research seeks a generalizable understanding of resilience that is applicable in multiple disciplinary contexts. We adopt a unique investigative perspective by coupling social and technical analysis with human subjects research to discover the adaptive actions, ideas and decisions that contribute to resilience in three socio-technical infrastructure systems: electric power, water, and roadways. Our research integrates physical models representing network objects with examination of the knowledge systems and social interactions revealed by human subjects making decisions in a simulated crisis environment. To ensure a diversity of contexts, we model electric power, water, roadway and knowledge networks for Phoenix AZ and Indianapolis IN. We synthesize this in a new computer-based Resilient Infrastructure Simulation Environment (RISE) to allow individuals, groups (including students) and experts to test different network design configurations and crisis response approaches. By observing simulated failures and best performances, we expect a generalizable understanding of resilience may emerge that yields a measureable understanding of the sensing, anticipating, adapting, and learning processes that are essential to resilient organizations.
Disease Localization in Multilayer Networks
NASA Astrophysics Data System (ADS)
de Arruda, Guilherme Ferraz; Cozzo, Emanuele; Peixoto, Tiago P.; Rodrigues, Francisco A.; Moreno, Yamir
2017-01-01
We present a continuous formulation of epidemic spreading on multilayer networks using a tensorial representation, extending the models of monoplex networks to this context. We derive analytical expressions for the epidemic threshold of the susceptible-infected-susceptible (SIS) and susceptible-infected-recovered dynamics, as well as upper and lower bounds for the disease prevalence in the steady state for the SIS scenario. Using the quasistationary state method, we numerically show the existence of disease localization and the emergence of two or more susceptibility peaks, which are characterized analytically and numerically through the inverse participation ratio. At variance with what is observed in single-layer networks, we show that disease localization takes place on the layers and not on the nodes of a given layer. Furthermore, when mapping the critical dynamics to an eigenvalue problem, we observe a characteristic transition in the eigenvalue spectra of the supra-contact tensor as a function of the ratio of two spreading rates: If the rate at which the disease spreads within a layer is comparable to the spreading rate across layers, the individual spectra of each layer merge with the coupling between layers. Finally, we report on an interesting phenomenon, the barrier effect; i.e., for a three-layer configuration, when the layer with the lowest eigenvalue is located at the center of the line, it can effectively act as a barrier to the disease. The formalism introduced here provides a unifying mathematical approach to disease contagion in multiplex systems, opening new possibilities for the study of spreading processes.
NASA Astrophysics Data System (ADS)
Dugan, H.; Hanson, P. C.; Weathers, K. C.
2016-12-01
In the water sciences there is a massive need for graduate students who possess the analytical and technical skills to deal with large datasets and function in the new paradigm of open, collaborative -science. The Global Lake Ecological Observatory Network (GLEON) graduate fellowship program (GFP) was developed as an interdisciplinary training program to supplement the intensive disciplinary training of traditional graduate education. The primary goal of the GFP was to train a diverse cohort of graduate students in network science, open-web technologies, collaboration, and data analytics, and importantly to provide the opportunity to use these skills to conduct collaborative research resulting in publishable scientific products. The GFP is run as a series of three week-long workshops over two years that brings together a cohort of twelve students. In addition, fellows are expected to attend and contribute to at least one international GLEON all-hands' meeting. Here, we provide examples of training modules in the GFP (model building, data QA/QC, information management, bayesian modeling, open coding/version control, national data programs), as well as scientific outputs (manuscripts, software products, and new global datasets) produced by the fellows, as well as the process by which this team science was catalyzed. Data driven education that lets students apply learned skills to real research projects reinforces concepts, provides motivation, and can benefit their publication record. This program design is extendable to other institutions and networks.
Gassó, Patricia; Mas, Sergi; Rodríguez, Natalia; Boloc, Daniel; García-Cerro, Susana; Bernardo, Miquel; Lafuente, Amalia; Parellada, Eduard
2017-12-01
Schizophrenia (SZ) is a chronic psychiatric disorder whose onset of symptoms occurs in late adolescence and early adulthood. The etiology is complex and involves important gene-environment interactions. Microarray gene-expression studies on SZ have identified alterations in several biological processes. The heterogeneity in the results can be attributed to the use of different sample types and other important confounding factors including age, illness chronicity and antipsychotic exposure. The aim of the present microarray study was to analyze, for the first time to our knowledge, differences in gene expression profiles in 18 fibroblast (FCLs) and 14 lymphoblastoid cell lines (LCLs) from antipsychotic-naïve first-episode schizophrenia (FES) patients and healthy controls. We used an analytical approach based on protein-protein interaction network construction and functional annotation analysis to identify the biological processes that are altered in SZ. Significant differences in the expression of 32 genes were found when LCLs were assessed. The network and gene set enrichment approach revealed the involvement of similar biological processes in FCLs and LCLs, including apoptosis and related biological terms such as cell cycle, autophagy, cytoskeleton organization and response to stress and stimulus. Metabolism and other processes, including signal transduction, kinase activity and phosphorylation, were also identified. These results were replicated in two independent cohorts using the same analytical approach. This provides more evidence for altered apoptotic processes in antipsychotic-naïve FES patients and other important biological functions such as cytoskeleton organization and metabolism. The convergent results obtained in both peripheral cell models support their usefulness for transcriptome studies on SZ. Copyright © 2017 Elsevier Ltd. All rights reserved.
Load-induced modulation of signal transduction networks.
Jiang, Peng; Ventura, Alejandra C; Sontag, Eduardo D; Merajver, Sofia D; Ninfa, Alexander J; Del Vecchio, Domitilla
2011-10-11
Biological signal transduction networks are commonly viewed as circuits that pass along information--in the process amplifying signals, enhancing sensitivity, or performing other signal-processing tasks--to transcriptional and other components. Here, we report on a "reverse-causality" phenomenon, which we call load-induced modulation. Through a combination of analytical and experimental tools, we discovered that signaling was modulated, in a surprising way, by downstream targets that receive the signal and, in doing so, apply what in physics is called a load. Specifically, we found that non-intuitive changes in response dynamics occurred for a covalent modification cycle when load was present. Loading altered the response time of a system, depending on whether the activity of one of the enzymes was maximal and the other was operating at its minimal rate or whether both enzymes were operating at submaximal rates. These two conditions, which we call "limit regime" and "intermediate regime," were associated with increased or decreased response times, respectively. The bandwidth, the range of frequency in which the system can process information, decreased in the presence of load, suggesting that downstream targets participate in establishing a balance between noise-filtering capabilities and a circuit's ability to process high-frequency stimulation. Nodes in a signaling network are not independent relay devices, but rather are modulated by their downstream targets.
A network approach to decentralized coordination of energy production-consumption grids.
Omodei, Elisa; Arenas, Alex
2018-01-01
Energy grids are facing a relatively new paradigm consisting in the formation of local distributed energy sources and loads that can operate in parallel independently from the main power grid (usually called microgrids). One of the main challenges in microgrid-like networks management is that of self-adapting to the production and demands in a decentralized coordinated way. Here, we propose a stylized model that allows to analytically predict the coordination of the elements in the network, depending on the network topology. Surprisingly, almost global coordination is attained when users interact locally, with a small neighborhood, instead of the obvious but more costly all-to-all coordination. We compute analytically the optimal value of coordinated users in random homogeneous networks. The methodology proposed opens a new way of confronting the analysis of energy demand-side management in networked systems.
Indicator of reliability of power grids and networks for environmental monitoring
NASA Astrophysics Data System (ADS)
Shaptsev, V. A.
2017-10-01
The energy supply of the mining enterprises includes power networks in particular. Environmental monitoring relies on the data network between the observers and the facilitators. Weather and conditions of their work change over time randomly. Temperature, humidity, wind strength and other stochastic processes are interconnecting in different segments of the power grid. The article presents analytical expressions for the probability of failure of the power grid as a whole or its particular segment. These expressions can contain one or more parameters of the operating conditions, simulated by Monte Carlo. In some cases, one can get the ultimate mathematical formula for calculation on the computer. In conclusion, the expression, including the probability characteristic function of one random parameter, for example, wind, temperature or humidity, is given. The parameters of this characteristic function can be given by retrospective or special observations (measurements).
NASA Astrophysics Data System (ADS)
Grytskyy, Dmytro; Diesmann, Markus; Helias, Moritz
2016-06-01
Self-organized structures in networks with spike-timing dependent synaptic plasticity (STDP) are likely to play a central role for information processing in the brain. In the present study we derive a reaction-diffusion-like formalism for plastic feed-forward networks of nonlinear rate-based model neurons with a correlation sensitive learning rule inspired by and being qualitatively similar to STDP. After obtaining equations that describe the change of the spatial shape of the signal from layer to layer, we derive a criterion for the nonlinearity necessary to obtain stable dynamics for arbitrary input. We classify the possible scenarios of signal evolution and find that close to the transition to the unstable regime metastable solutions appear. The form of these dissipative solitons is determined analytically and the evolution and interaction of several such coexistent objects is investigated.
Burns, K C; Zotz, G
2010-02-01
Epiphytes are an important component of many forested ecosystems, yet our understanding of epiphyte communities lags far behind that of terrestrial-based plant communities. This discrepancy is exacerbated by the lack of a theoretical context to assess patterns in epiphyte community structure. We attempt to fill this gap by developing an analytical framework to investigate epiphyte assemblages, which we then apply to a data set on epiphyte distributions in a Panamanian rain forest. On a coarse scale, interactions between epiphyte species and host tree species can be viewed as bipartite networks, similar to pollination and seed dispersal networks. On a finer scale, epiphyte communities on individual host trees can be viewed as meta-communities, or suites of local epiphyte communities connected by dispersal. Similar analytical tools are typically employed to investigate species interaction networks and meta-communities, thus providing a unified analytical framework to investigate coarse-scale (network) and fine-scale (meta-community) patterns in epiphyte distributions. Coarse-scale analysis of the Panamanian data set showed that most epiphyte species interacted with fewer host species than expected by chance. Fine-scale analyses showed that epiphyte species richness on individual trees was lower than null model expectations. Therefore, epiphyte distributions were clumped at both scales, perhaps as a result of dispersal limitations. Scale-dependent patterns in epiphyte species composition were observed. Epiphyte-host networks showed evidence of negative co-occurrence patterns, which could arise from adaptations among epiphyte species to avoid competition for host species, while most epiphyte meta-communities were distributed at random. Application of our "meta-network" analytical framework in other locales may help to identify general patterns in the structure of epiphyte assemblages and their variation in space and time.
Active transport on disordered microtubule networks: the generalized random velocity model.
Kahana, Aviv; Kenan, Gilad; Feingold, Mario; Elbaum, Michael; Granek, Rony
2008-11-01
The motion of small cargo particles on microtubules by means of motor proteins in disordered microtubule networks is investigated theoretically using both analytical tools and computer simulations. Different network topologies in two and three dimensions are considered, one of which has been recently studied experimentally by Salman [Biophys. J. 89, 2134 (2005)]. A generalization of the random velocity model is used to derive the mean-square displacement of the cargo particle. We find that all cases belong to the class of anomalous superdiffusion, which is sensitive mainly to the dimensionality of the network and only marginally to its topology. Yet in three dimensions the motion is very close to simple diffusion, with sublogarithmic corrections that depend on the network topology. When details of the thermal diffusion in the bulk solution are included, no significant change to the asymptotic time behavior is found. However, a small asymmetry in the mean microtubule polarity affects the corresponding long-time behavior. We also study a three-dimensional model of the microtubule network in living animal cells. Three first-passage-time problems of intracellular transport are simulated and analyzed for different motor processivities: (i) cargo that originates near the nucleus and has to reach the membrane, (ii) cargo that originates from the membrane and has to reach the nucleus, and (iii) cargo that leaves the nucleus and has to reach a specific target in the cytoplasm. We conclude that while a higher motor processivity increases the transport efficiency in cases (i) and (ii), in case (iii) it has the opposite effect. We conjecture that the balance between the different network tasks, as manifested in cases (i) and (ii) versus case (iii), may be the reason for the evolutionary choice of a finite motor processivity.
Active transport on disordered microtubule networks: The generalized random velocity model
NASA Astrophysics Data System (ADS)
Kahana, Aviv; Kenan, Gilad; Feingold, Mario; Elbaum, Michael; Granek, Rony
2008-11-01
The motion of small cargo particles on microtubules by means of motor proteins in disordered microtubule networks is investigated theoretically using both analytical tools and computer simulations. Different network topologies in two and three dimensions are considered, one of which has been recently studied experimentally by Salman [Biophys. J. 89, 2134 (2005)]. A generalization of the random velocity model is used to derive the mean-square displacement of the cargo particle. We find that all cases belong to the class of anomalous superdiffusion, which is sensitive mainly to the dimensionality of the network and only marginally to its topology. Yet in three dimensions the motion is very close to simple diffusion, with sublogarithmic corrections that depend on the network topology. When details of the thermal diffusion in the bulk solution are included, no significant change to the asymptotic time behavior is found. However, a small asymmetry in the mean microtubule polarity affects the corresponding long-time behavior. We also study a three-dimensional model of the microtubule network in living animal cells. Three first-passage-time problems of intracellular transport are simulated and analyzed for different motor processivities: (i) cargo that originates near the nucleus and has to reach the membrane, (ii) cargo that originates from the membrane and has to reach the nucleus, and (iii) cargo that leaves the nucleus and has to reach a specific target in the cytoplasm. We conclude that while a higher motor processivity increases the transport efficiency in cases (i) and (ii), in case (iii) it has the opposite effect. We conjecture that the balance between the different network tasks, as manifested in cases (i) and (ii) versus case (iii), may be the reason for the evolutionary choice of a finite motor processivity.
Design and Analysis of a Low Latency Deterministic Network MAC for Wireless Sensor Networks
Sahoo, Prasan Kumar; Pattanaik, Sudhir Ranjan; Wu, Shih-Lin
2017-01-01
The IEEE 802.15.4e standard has four different superframe structures for different applications. Use of a low latency deterministic network (LLDN) superframe for the wireless sensor network is one of them, which can operate in a star topology. In this paper, a new channel access mechanism for IEEE 802.15.4e-based LLDN shared slots is proposed, and analytical models are designed based on this channel access mechanism. A prediction model is designed to estimate the possible number of retransmission slots based on the number of failed transmissions. Performance analysis in terms of data transmission reliability, delay, throughput and energy consumption are provided based on our proposed designs. Our designs are validated for simulation and analytical results, and it is observed that the simulation results well match with the analytical ones. Besides, our designs are compared with the IEEE 802.15.4 MAC mechanism, and it is shown that ours outperforms in terms of throughput, energy consumption, delay and reliability. PMID:28937632
Design and Analysis of a Low Latency Deterministic Network MAC for Wireless Sensor Networks.
Sahoo, Prasan Kumar; Pattanaik, Sudhir Ranjan; Wu, Shih-Lin
2017-09-22
The IEEE 802.15.4e standard has four different superframe structures for different applications. Use of a low latency deterministic network (LLDN) superframe for the wireless sensor network is one of them, which can operate in a star topology. In this paper, a new channel access mechanism for IEEE 802.15.4e-based LLDN shared slots is proposed, and analytical models are designed based on this channel access mechanism. A prediction model is designed to estimate the possible number of retransmission slots based on the number of failed transmissions. Performance analysis in terms of data transmission reliability, delay, throughput and energy consumption are provided based on our proposed designs. Our designs are validated for simulation and analytical results, and it is observed that the simulation results well match with the analytical ones. Besides, our designs are compared with the IEEE 802.15.4 MAC mechanism, and it is shown that ours outperforms in terms of throughput, energy consumption, delay and reliability.
Analytical Model of Large Data Transactions in CoAP Networks
Ludovici, Alessandro; Di Marco, Piergiuseppe; Calveras, Anna; Johansson, Karl H.
2014-01-01
We propose a novel analytical model to study fragmentation methods in wireless sensor networks adopting the Constrained Application Protocol (CoAP) and the IEEE 802.15.4 standard for medium access control (MAC). The blockwise transfer technique proposed in CoAP and the 6LoWPAN fragmentation are included in the analysis. The two techniques are compared in terms of reliability and delay, depending on the traffic, the number of nodes and the parameters of the IEEE 802.15.4 MAC. The results are validated trough Monte Carlo simulations. To the best of our knowledge this is the first study that evaluates and compares analytically the performance of CoAP blockwise transfer and 6LoWPAN fragmentation. A major contribution is the possibility to understand the behavior of both techniques with different network conditions. Our results show that 6LoWPAN fragmentation is preferable for delay-constrained applications. For highly congested networks, the blockwise transfer slightly outperforms 6LoWPAN fragmentation in terms of reliability. PMID:25153143
Differential Privacy Preserving in Big Data Analytics for Connected Health.
Lin, Chi; Song, Zihao; Song, Houbing; Zhou, Yanhong; Wang, Yi; Wu, Guowei
2016-04-01
In Body Area Networks (BANs), big data collected by wearable sensors usually contain sensitive information, which is compulsory to be appropriately protected. Previous methods neglected privacy protection issue, leading to privacy exposure. In this paper, a differential privacy protection scheme for big data in body sensor network is developed. Compared with previous methods, this scheme will provide privacy protection with higher availability and reliability. We introduce the concept of dynamic noise thresholds, which makes our scheme more suitable to process big data. Experimental results demonstrate that, even when the attacker has full background knowledge, the proposed scheme can still provide enough interference to big sensitive data so as to preserve the privacy.
Anomaly Detection in Dynamic Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turcotte, Melissa
2014-10-14
Anomaly detection in dynamic communication networks has many important security applications. These networks can be extremely large and so detecting any changes in their structure can be computationally challenging; hence, computationally fast, parallelisable methods for monitoring the network are paramount. For this reason the methods presented here use independent node and edge based models to detect locally anomalous substructures within communication networks. As a first stage, the aim is to detect changes in the data streams arising from node or edge communications. Throughout the thesis simple, conjugate Bayesian models for counting processes are used to model these data streams. Amore » second stage of analysis can then be performed on a much reduced subset of the network comprising nodes and edges which have been identified as potentially anomalous in the first stage. The first method assumes communications in a network arise from an inhomogeneous Poisson process with piecewise constant intensity. Anomaly detection is then treated as a changepoint problem on the intensities. The changepoint model is extended to incorporate seasonal behavior inherent in communication networks. This seasonal behavior is also viewed as a changepoint problem acting on a piecewise constant Poisson process. In a static time frame, inference is made on this extended model via a Gibbs sampling strategy. In a sequential time frame, where the data arrive as a stream, a novel, fast Sequential Monte Carlo (SMC) algorithm is introduced to sample from the sequence of posterior distributions of the change points over time. A second method is considered for monitoring communications in a large scale computer network. The usage patterns in these types of networks are very bursty in nature and don’t fit a Poisson process model. For tractable inference, discrete time models are considered, where the data are aggregated into discrete time periods and probability models are fitted to the communication counts. In a sequential analysis, anomalous behavior is then identified from outlying behavior with respect to the fitted predictive probability models. Seasonality is again incorporated into the model and is treated as a changepoint model on the transition probabilities of a discrete time Markov process. Second stage analytics are then developed which combine anomalous edges to identify anomalous substructures in the network.« less
Tuckwell, Henry C
2006-01-01
The circuitry of cortical networks involves interacting populations of excitatory (E) and inhibitory (I) neurons whose relationships are now known to a large extent. Inputs to E- and I-cells may have their origins in remote or local cortical areas. We consider a rudimentary model involving E- and I-cells. One of our goals is to test an analytic approach to finding firing rates in neural networks without using a diffusion approximation and to this end we consider in detail networks of excitatory neurons with leaky integrate-and-fire (LIF) dynamics. A simple measure of synchronization, denoted by S(q), where q is between 0 and 100 is introduced. Fully connected E-networks have a large tendency to become dominated by synchronously firing groups of cells, except when inputs are relatively weak. We observed random or asynchronous firing in such networks with diverse sets of parameter values. When such firing patterns were found, the analytical approach was often able to accurately predict average neuronal firing rates. We also considered several properties of E-E networks, distinguishing several kinds of firing pattern. Included were those with silences before or after periods of intense activity or with periodic synchronization. We investigated the occurrence of synchronized firing with respect to changes in the internal excitatory postsynaptic potential (EPSP) magnitude in a network of 100 neurons with fixed values of the remaining parameters. When the internal EPSP size was less than a certain value, synchronization was absent. The amount of synchronization then increased slowly as the EPSP amplitude increased until at a particular EPSP size the amount of synchronization abruptly increased, with S(5) attaining the maximum value of 100%. We also found network frequency transfer characteristics for various network sizes and found a linear dependence of firing frequency over wide ranges of the external afferent frequency, with non-linear effects at lower input frequencies. The theory may also be applied to sparsely connected networks, whose firing behaviour was found to change abruptly as the probability of a connection passed through a critical value. The analytical method was also found to be useful for a feed-forward excitatory network and a network of excitatory and inhibitory neurons.
Exact solution for the Poisson field in a semi-infinite strip.
Cohen, Yossi; Rothman, Daniel H
2017-04-01
The Poisson equation is associated with many physical processes. Yet exact analytic solutions for the two-dimensional Poisson field are scarce. Here we derive an analytic solution for the Poisson equation with constant forcing in a semi-infinite strip. We provide a method that can be used to solve the field in other intricate geometries. We show that the Poisson flux reveals an inverse square-root singularity at a tip of a slit, and identify a characteristic length scale in which a small perturbation, in a form of a new slit, is screened by the field. We suggest that this length scale expresses itself as a characteristic spacing between tips in real Poisson networks that grow in response to fluxes at tips.
NASA Astrophysics Data System (ADS)
Ni, Yongnian; Wang, Yong; Kokot, Serge
2008-10-01
A spectrophotometric method for the simultaneous determination of the important pharmaceuticals, pefloxacin and its structurally similar metabolite, norfloxacin, is described for the first time. The analysis is based on the monitoring of a kinetic spectrophotometric reaction of the two analytes with potassium permanganate as the oxidant. The measurement of the reaction process followed the absorbance decrease of potassium permanganate at 526 nm, and the accompanying increase of the product, potassium manganate, at 608 nm. It was essential to use multivariate calibrations to overcome severe spectral overlaps and similarities in reaction kinetics. Calibration curves for the individual analytes showed linear relationships over the concentration ranges of 1.0-11.5 mg L -1 at 526 and 608 nm for pefloxacin, and 0.15-1.8 mg L -1 at 526 and 608 nm for norfloxacin. Various multivariate calibration models were applied, at the two analytical wavelengths, for the simultaneous prediction of the two analytes including classical least squares (CLS), principal component regression (PCR), partial least squares (PLS), radial basis function-artificial neural network (RBF-ANN) and principal component-radial basis function-artificial neural network (PC-RBF-ANN). PLS and PC-RBF-ANN calibrations with the data collected at 526 nm, were the preferred methods—%RPE T ˜ 5, and LODs for pefloxacin and norfloxacin of 0.36 and 0.06 mg L -1, respectively. Then, the proposed method was applied successfully for the simultaneous determination of pefloxacin and norfloxacin present in pharmaceutical and human plasma samples. The results compared well with those from the alternative analysis by HPLC.
Metadata-driven Clinical Data Loading into i2b2 for Clinical and Translational Science Institutes.
Post, Andrew R; Pai, Akshatha K; Willard, Richard; May, Bradley J; West, Andrew C; Agravat, Sanjay; Granite, Stephen J; Winslow, Raimond L; Stephens, David S
2016-01-01
Clinical and Translational Science Award (CTSA) recipients have a need to create research data marts from their clinical data warehouses, through research data networks and the use of i2b2 and SHRINE technologies. These data marts may have different data requirements and representations, thus necessitating separate extract, transform and load (ETL) processes for populating each mart. Maintaining duplicative procedural logic for each ETL process is onerous. We have created an entirely metadata-driven ETL process that can be customized for different data marts through separate configurations, each stored in an extension of i2b2 's ontology database schema. We extended our previously reported and open source Eureka! Clinical Analytics software with this capability. The same software has created i2b2 data marts for several projects, the largest being the nascent Accrual for Clinical Trials (ACT) network, for which it has loaded over 147 million facts about 1.2 million patients.
Metadata-driven Clinical Data Loading into i2b2 for Clinical and Translational Science Institutes
Post, Andrew R.; Pai, Akshatha K.; Willard, Richard; May, Bradley J.; West, Andrew C.; Agravat, Sanjay; Granite, Stephen J.; Winslow, Raimond L.; Stephens, David S.
2016-01-01
Clinical and Translational Science Award (CTSA) recipients have a need to create research data marts from their clinical data warehouses, through research data networks and the use of i2b2 and SHRINE technologies. These data marts may have different data requirements and representations, thus necessitating separate extract, transform and load (ETL) processes for populating each mart. Maintaining duplicative procedural logic for each ETL process is onerous. We have created an entirely metadata-driven ETL process that can be customized for different data marts through separate configurations, each stored in an extension of i2b2 ‘s ontology database schema. We extended our previously reported and open source Eureka! Clinical Analytics software with this capability. The same software has created i2b2 data marts for several projects, the largest being the nascent Accrual for Clinical Trials (ACT) network, for which it has loaded over 147 million facts about 1.2 million patients. PMID:27570667
Analytical solution for a class of network dynamics with mechanical and financial applications
NASA Astrophysics Data System (ADS)
Krejčí, P.; Lamba, H.; Melnik, S.; Rachinskii, D.
2014-09-01
We show that for a certain class of dynamics at the nodes the response of a network of any topology to arbitrary inputs is defined in a simple way by its response to a monotone input. The nodes may have either a discrete or continuous set of states and there is no limit on the complexity of the network. The results provide both an efficient numerical method and the potential for accurate analytic approximation of the dynamics on such networks. As illustrative applications, we introduce a quasistatic mechanical model with objects interacting via frictional forces and a financial market model with avalanches and critical behavior that are generated by momentum trading strategies.
Learning Analytics for Networked Learning Models
ERIC Educational Resources Information Center
Joksimovic, Srecko; Hatala, Marek; Gaševic, Dragan
2014-01-01
Teaching and learning in networked settings has attracted significant attention recently. The central topic of networked learning research is human-human and human-information interactions occurring within a networked learning environment. The nature of these interactions is highly complex and usually requires a multi-dimensional approach to…
Chaotic, informational and synchronous behaviour of multiplex networks
NASA Astrophysics Data System (ADS)
Baptista, M. S.; Szmoski, R. M.; Pereira, R. F.; Pinto, S. E. De Souza
2016-03-01
The understanding of the relationship between topology and behaviour in interconnected networks would allow to charac- terise and predict behaviour in many real complex networks since both are usually not simultaneously known. Most previous studies have focused on the relationship between topology and synchronisation. In this work, we provide analytical formulas that shows how topology drives complex behaviour: chaos, information, and weak or strong synchronisation; in multiplex net- works with constant Jacobian. We also study this relationship numerically in multiplex networks of Hindmarsh-Rose neurons. Whereas behaviour in the analytically tractable network is a direct but not trivial consequence of the spectra of eigenvalues of the Laplacian matrix, where behaviour may strongly depend on the break of symmetry in the topology of interconnections, in Hindmarsh-Rose neural networks the nonlinear nature of the chemical synapses breaks the elegant mathematical connec- tion between the spectra of eigenvalues of the Laplacian matrix and the behaviour of the network, creating networks whose behaviour strongly depends on the nature (chemical or electrical) of the inter synapses.
Crossing disciplines and scales to understand the critical zone
Brantley, S.L.; Goldhaber, M.B.; Vala, Ragnarsdottir K.
2007-01-01
The Critical Zone (CZ) is the system of coupled chemical, biological, physical, and geological processes operating together to support life at the Earth's surface. While our understanding of this zone has increased over the last hundred years, further advance requires scientists to cross disciplines and scales to integrate understanding of processes in the CZ, ranging in scale from the mineral-water interface to the globe. Despite the extreme heterogeneities manifest in the CZ, patterns are observed at all scales. Explanations require the use of new computational and analytical tools, inventive interdisciplinary approaches, and growing networks of sites and people.
Dynamical processes and epidemic threshold on nonlinear coupled multiplex networks
NASA Astrophysics Data System (ADS)
Gao, Chao; Tang, Shaoting; Li, Weihua; Yang, Yaqian; Zheng, Zhiming
2018-04-01
Recently, the interplay between epidemic spreading and awareness diffusion has aroused the interest of many researchers, who have studied models mainly based on linear coupling relations between information and epidemic layers. However, in real-world networks the relation between two layers may be closely correlated with the property of individual nodes and exhibits nonlinear dynamical features. Here we propose a nonlinear coupled information-epidemic model (I-E model) and present a comprehensive analysis in a more generalized scenario where the upload rate differs from node to node, deletion rate varies between susceptible and infected states, and infection rate changes between unaware and aware states. In particular, we develop a theoretical framework of the intra- and inter-layer dynamical processes with a microscopic Markov chain approach (MMCA), and derive an analytic epidemic threshold. Our results suggest that the change of upload and deletion rate has little effect on the diffusion dynamics in the epidemic layer.
Wetherbee, Gregory A.; Latysh, Natalie E.; Chesney, Tanya A.
2010-01-01
The U.S. Geological Survey (USGS) used six distinct programs to provide external quality-assurance monitoring for the National Atmospheric Deposition Program / National Trends Network (NTN) and Mercury Deposition Network (MDN) during 2007-08. The field-audit program assessed the effects of onsite exposure, sample handling, and shipping on the chemistry of NTN samples, and a system-blank program assessed the same effects for MDN. Two interlaboratory-comparison programs assessed the bias and variability of the chemical analysis data from the Central Analytical Laboratory (CAL), Mercury (Hg) Analytical Laboratory (HAL), and 12 other participating laboratories. A blind-audit program was also implemented for the MDN to evaluate analytical bias in HAL total Hg concentration data. A co-located-sampler program was used to identify and quantify potential shifts in NADP data resulting from replacement of original network instrumentation with new electronic recording rain gages (E-gages) and prototype precipitation collectors. The results indicate that NADP data continue to be of sufficient quality for the analysis of spatial distributions and time trends of chemical constituents in wet deposition across the U.S. NADP data-quality objectives continued to be achieved during 2007-08. Results also indicate that retrofit of the NADP networks with the new E-gages is not likely to create step-function type shifts in NADP precipitation-depth records, except for sites where annual precipitation depth is dominated by snow because the E-gages tend to catch more snow than the original NADP rain gages. Evaluation of prototype precipitation collectors revealed no difference in sample volumes and analyte concentrations between the original NADP collectors and modified, deep-bucket collectors, but the Yankee Environmental Systems, Inc. (YES) collector obtained samples of significantly higher volumes and analyte concentrations than the standard NADP collector.
Exact Solutions for Rate and Synchrony in Recurrent Networks of Coincidence Detectors
Mikula, Shawn; Niebur, Ernst
2009-01-01
We provide analytical solutions for mean firing rates and cross-correlations of coincidence detector neurons in recurrent networks with excitatory or inhibitory connectivity with rate-modulated steady-state spiking inputs. We use discrete-time finite-state Markov chains to represent network state transition probabilities, which are subsequently used to derive exact analytical solutions for mean firing rates and cross-correlations. As illustrated in several examples, the method can be used for modeling cortical microcircuits and clarifying single-neuron and population coding mechanisms. We also demonstrate that increasing firing rates do not necessarily translate into increasing cross-correlations, though our results do support the contention that firing rates and cross-correlations are likely to be coupled. Our analytical solutions underscore the complexity of the relationship between firing rates and cross-correlations. PMID:18439133
Information-theoretic metamodel of organizational evolution
NASA Astrophysics Data System (ADS)
Sepulveda, Alfredo
2011-12-01
Social organizations are abstractly modeled by holarchies---self-similar connected networks---and intelligent complex adaptive multiagent systems---large networks of autonomous reasoning agents interacting via scaled processes. However, little is known of how information shapes evolution in such organizations, a gap that can lead to misleading analytics. The research problem addressed in this study was the ineffective manner in which classical model-predict-control methods used in business analytics attempt to define organization evolution. The purpose of the study was to construct an effective metamodel for organization evolution based on a proposed complex adaptive structure---the info-holarchy. Theoretical foundations of this study were holarchies, complex adaptive systems, evolutionary theory, and quantum mechanics, among other recently developed physical and information theories. Research questions addressed how information evolution patterns gleamed from the study's inductive metamodel more aptly explained volatility in organization. In this study, a hybrid grounded theory based on abstract inductive extensions of information theories was utilized as the research methodology. An overarching heuristic metamodel was framed from the theoretical analysis of the properties of these extension theories and applied to business, neural, and computational entities. This metamodel resulted in the synthesis of a metaphor for, and generalization of organization evolution, serving as the recommended and appropriate analytical tool to view business dynamics for future applications. This study may manifest positive social change through a fundamental understanding of complexity in business from general information theories, resulting in more effective management.
US EPA's National Dioxin Air Monitoring Network: Analytical ...
The U.S. EPA has established a National Dioxin Air Monitoring Network (NDAMN) to determine the temporal and geographical variability of atmospheric chlorinated dibenzo-p-dioxins (CDDs), furans (CDFs), and coplanar polychlorinated biphenyls (PCBs) at rural and non-impacted locations throughout the United States. Currently operating at 32 sampling stations, NDAMN has three primary purposes: (1) to determine the atmospheric levels and occurrences of dioxin-like compounds in rural and agricultural areas where livestock, poultry, and animal feed crops are grown; (2) to provide measurements of atmospheric levels in different geographic regions of the U.S.; and (3) to provide information regarding the long-range transport of dioxin-like compounds in air over the U.S. Designed in 1997, NDAMN has been implemented in phases, with the first phase consisting of 9 monitoring stations and is achieving congener-specific detection lmits of 0.1 fg/m3 for 2,3,7,8-TCDD and 10 fg/m3 for OCDD. With respect to coplanar PCBs, the detection limits are generally higher due to the presence of background levels in the air during the preparation and processing of the samples. Achieving these extremely low levels of detection present a host of analytical issues. Among these issues are the methods used to establish ultra-trace detection limits, measures to ensure against and monitor for breakthrough of native analytes when sampling large volumes of air, and procedures for handling and e
Turner, Simon; Vasilakis, Christos; Utley, Martin; Foster, Paul; Kotecha, Aachal; Fulop, Naomi J
2018-05-01
The development and implementation of innovation by healthcare providers is understood as a multi-determinant and multi-level process. Theories at different analytical levels (i.e. micro and organisational) are needed to capture the processes that influence innovation by providers. This article combines a micro theory of innovation, actor-network theory, with organisational level processes using the 'resource based view of the firm'. It examines the influence of, and interplay between, innovation-seeking teams (micro) and underlying organisational capabilities (meso) during innovation processes. We used ethnographic methods to study service innovations in relation to ophthalmology services run by a specialist English NHS Trust at multiple locations. Operational research techniques were used to support the ethnographic methods by mapping the care process in the existing and redesigned clinics. Deficiencies in organisational capabilities for supporting innovation were identified, including manager-clinician relations and organisation-wide resources. The article concludes that actor-network theory can be combined with the resource-based view to highlight the influence of organisational capabilities on the management of innovation. Equally, actor-network theory helps to address the lack of theory in the resource-based view on the micro practices of implementing change. © 2018 The Authors. Sociology of Health & Illness published by John Wiley & Sons Ltd on behalf of Foundation for SHIL.
Unlocking Proteomic Heterogeneity in Complex Diseases through Visual Analytics
Bhavnani, Suresh K.; Dang, Bryant; Bellala, Gowtham; Divekar, Rohit; Visweswaran, Shyam; Brasier, Allan; Kurosky, Alex
2015-01-01
Despite years of preclinical development, biological interventions designed to treat complex diseases like asthma often fail in phase III clinical trials. These failures suggest that current methods to analyze biomedical data might be missing critical aspects of biological complexity such as the assumption that cases and controls come from homogeneous distributions. Here we discuss why and how methods from the rapidly evolving field of visual analytics can help translational teams (consisting of biologists, clinicians, and bioinformaticians) to address the challenge of modeling and inferring heterogeneity in the proteomic and phenotypic profiles of patients with complex diseases. Because a primary goal of visual analytics is to amplify the cognitive capacities of humans for detecting patterns in complex data, we begin with an overview of the cognitive foundations for the field of visual analytics. Next, we organize the primary ways in which a specific form of visual analytics called networks have been used to model and infer biological mechanisms, which help to identify the properties of networks that are particularly useful for the discovery and analysis of proteomic heterogeneity in complex diseases. We describe one such approach called subject-protein networks, and demonstrate its application on two proteomic datasets. This demonstration provides insights to help translational teams overcome theoretical, practical, and pedagogical hurdles for the widespread use of subject-protein networks for analyzing molecular heterogeneities, with the translational goal of designing biomarker-based clinical trials, and accelerating the development of personalized approaches to medicine. PMID:25684269
A Sensemaking Approach to Visual Analytics of Attribute-Rich Social Networks
ERIC Educational Resources Information Center
Gou, Liang
2012-01-01
Social networks have become more complex, in particular considering the fact that elements in social networks are not only abstract topological nodes and links, but contain rich social attributes and reflecting diverse social relationships. For example, in a co-authorship social network in a scientific community, nodes in the social network, which…
NASA Astrophysics Data System (ADS)
Kim, Kunhwi; Rutqvist, Jonny; Nakagawa, Seiji; Birkholzer, Jens
2017-11-01
This paper presents coupled hydro-mechanical modeling of hydraulic fracturing processes in complex fractured media using a discrete fracture network (DFN) approach. The individual physical processes in the fracture propagation are represented by separate program modules: the TOUGH2 code for multiphase flow and mass transport based on the finite volume approach; and the rigid-body-spring network (RBSN) model for mechanical and fracture-damage behavior, which are coupled with each other. Fractures are modeled as discrete features, of which the hydrological properties are evaluated from the fracture deformation and aperture change. The verification of the TOUGH-RBSN code is performed against a 2D analytical model for single hydraulic fracture propagation. Subsequently, modeling capabilities for hydraulic fracturing are demonstrated through simulations of laboratory experiments conducted on rock-analogue (soda-lime glass) samples containing a designed network of pre-existing fractures. Sensitivity analyses are also conducted by changing the modeling parameters, such as viscosity of injected fluid, strength of pre-existing fractures, and confining stress conditions. The hydraulic fracturing characteristics attributed to the modeling parameters are investigated through comparisons of the simulation results.
A network approach to decentralized coordination of energy production-consumption grids
Arenas, Alex
2018-01-01
Energy grids are facing a relatively new paradigm consisting in the formation of local distributed energy sources and loads that can operate in parallel independently from the main power grid (usually called microgrids). One of the main challenges in microgrid-like networks management is that of self-adapting to the production and demands in a decentralized coordinated way. Here, we propose a stylized model that allows to analytically predict the coordination of the elements in the network, depending on the network topology. Surprisingly, almost global coordination is attained when users interact locally, with a small neighborhood, instead of the obvious but more costly all-to-all coordination. We compute analytically the optimal value of coordinated users in random homogeneous networks. The methodology proposed opens a new way of confronting the analysis of energy demand-side management in networked systems. PMID:29364962
Robustness and fragility in coupled oscillator networks under targeted attacks.
Yuan, Tianyu; Aihara, Kazuyuki; Tanaka, Gouhei
2017-01-01
The dynamical tolerance of coupled oscillator networks against local failures is studied. As the fraction of failed oscillator nodes gradually increases, the mean oscillation amplitude in the entire network decreases and then suddenly vanishes at a critical fraction as a phase transition. This critical fraction, widely used as a measure of the network robustness, was analytically derived for random failures but not for targeted attacks so far. Here we derive the general formula for the critical fraction, which can be applied to both random failures and targeted attacks. We consider the effects of targeting oscillator nodes based on their degrees. First we deal with coupled identical oscillators with homogeneous edge weights. Then our theory is applied to networks with heterogeneous edge weights and to those with nonidentical oscillators. The analytical results are validated by numerical experiments. Our results reveal the key factors governing the robustness and fragility of oscillator networks.
Two-population dynamics in a growing network model
NASA Astrophysics Data System (ADS)
Ivanova, Kristinka; Iordanov, Ivan
2012-02-01
We introduce a growing network evolution model with nodal attributes. The model describes the interactions between potentially violent V and non-violent N agents who have different affinities in establishing connections within their own population versus between the populations. The model is able to generate all stable triads observed in real social systems. In the framework of rate equations theory, we employ the mean-field approximation to derive analytical expressions of the degree distribution and the local clustering coefficient for each type of nodes. Analytical derivations agree well with numerical simulation results. The assortativity of the potentially violent network qualitatively resembles the connectivity pattern in terrorist networks that was recently reported. The assortativity of the network driven by aggression shows clearly different behavior than the assortativity of the networks with connections of non-aggressive nature in agreement with recent empirical results of an online social system.
A Crowdsensing Based Analytical Framework for Perceptional Degradation of OTT Web Browsing.
Li, Ke; Wang, Hai; Xu, Xiaolong; Du, Yu; Liu, Yuansheng; Ahmad, M Omair
2018-05-15
Service perception analysis is crucial for understanding both user experiences and network quality as well as for maintaining and optimizing of mobile networks. Given the rapid development of mobile Internet and over-the-top (OTT) services, the conventional network-centric mode of network operation and maintenance is no longer effective. Therefore, developing an approach to evaluate and optimizing users' service perceptions has become increasingly important. Meanwhile, the development of a new sensing paradigm, mobile crowdsensing (MCS), makes it possible to evaluate and analyze the user's OTT service perception from end-user's point of view other than from the network side. In this paper, the key factors that impact users' end-to-end OTT web browsing service perception are analyzed by monitoring crowdsourced user perceptions. The intrinsic relationships among the key factors and the interactions between key quality indicators (KQI) are evaluated from several perspectives. Moreover, an analytical framework of perceptional degradation and a detailed algorithm are proposed whose goal is to identify the major factors that impact the perceptional degradation of web browsing service as well as their significance of contribution. Finally, a case study is presented to show the effectiveness of the proposed method using a dataset crowdsensed from a large number of smartphone users in a real mobile network. The proposed analytical framework forms a valuable solution for mobile network maintenance and optimization and can help improve web browsing service perception and network quality.
Data Analytics and Visualization for Large Army Testing Data
2013-09-01
and relationships in the data that would otherwise remain hidden. 7 Bibliography 1. Goodall , J. R.; Tesone, D. R. Visual Analytics for Network...Software Visualization, 2003, pp 143–149. 3. Goodall , J. R.; Sowul, M. VIAssist: Visual Analytics for Cyber Defense, IEEE Conference on Technologies
Wang, Yongqiang; Núñez, Felipe; Doyle, Francis J.
2013-01-01
Synchronization is crucial to wireless sensor networks due to their decentralized structure. We propose an energy-efficient pulse-coupled synchronization strategy to achieve this goal. The basic idea is to reduce idle listening by intentionally introducing a large refractory period in the sensors’ cooperation. The large refractory period greatly reduces idle listening in each oscillation period, and is analytically proven to have no influence on the time to synchronization. Hence, it significantly reduces the total energy consumption in a synchronization process. A topology control approach tailored for pulse-coupled synchronization is given to guarantee a k-edge strongly connected interaction topology, which is tolerant to communication-link failures. The topology control approach is totally decentralized and needs no information exchange among sensors, and it is applicable to dynamic network topologies as well. This facilitates a completely decentralized implementation of the synchronization strategy. The strategy is applicable to mobile sensor networks, too. QualNet case studies confirm the effectiveness of the synchronization strategy. PMID:24307831
Network and social support in family care of children with diabetes.
Pennafort, Viviane Peixoto Dos Santos; Queiroz, Maria Veraci Oliveira; Nascimento, Lucila Castanheira; Guedes, Maria Vilani Cavalcante
2016-01-01
to understand the influence of network and social support in the care of a child with type 1 diabetes. qualitative study, with assumptions of ethnonursing, conducted in a reference service specialized in the treatment of diabetes, in 2014, in the city of Fortaleza, state of Ceará, Brazil. Twenty-six members of the family and their respective school children participated in the study. The process of collection and analysis followed the observation-participation-reflection model. the analytical categories showed that the social network in the care of children with diabetes helped sharing of information and experiences, moments of relaxation and aid in the acquisition of supplies for treatment, with positive repercussions in the family context, generating well-being and confidence in the care of children with diabetes. the cultural care provided by nurses strengthens the network and social support because it encourages autonomy in the promotion of the quality of life of children with type 1 diabetes and their families.
Genetic Network Inference: From Co-Expression Clustering to Reverse Engineering
NASA Technical Reports Server (NTRS)
Dhaeseleer, Patrik; Liang, Shoudan; Somogyi, Roland
2000-01-01
Advances in molecular biological, analytical, and computational technologies are enabling us to systematically investigate the complex molecular processes underlying biological systems. In particular, using high-throughput gene expression assays, we are able to measure the output of the gene regulatory network. We aim here to review datamining and modeling approaches for conceptualizing and unraveling the functional relationships implicit in these datasets. Clustering of co-expression profiles allows us to infer shared regulatory inputs and functional pathways. We discuss various aspects of clustering, ranging from distance measures to clustering algorithms and multiple-duster memberships. More advanced analysis aims to infer causal connections between genes directly, i.e., who is regulating whom and how. We discuss several approaches to the problem of reverse engineering of genetic networks, from discrete Boolean networks, to continuous linear and non-linear models. We conclude that the combination of predictive modeling with systematic experimental verification will be required to gain a deeper insight into living organisms, therapeutic targeting, and bioengineering.
Wu, Ting-Ting
2014-06-01
Virtual communities provide numerous resources, immediate feedback, and information sharing, enabling people to rapidly acquire information and knowledge and supporting diverse applications that facilitate interpersonal interactions, communication, and sharing. Moreover, incorporating highly mobile and convenient devices into practice-based courses can be advantageous in learning situations. Therefore, in this study, a tablet PC and Google+ were introduced to a health education practice course to elucidate satisfaction of learning module and conditions and analyze the sequence and frequency of learning behaviors during the social-network-based learning process. According to the analytical results, social networks can improve interaction among peers and between educators and students, particularly when these networks are used to search for data, post articles, engage in discussions, and communicate. In addition, most nursing students and nursing educators expressed a positive attitude and satisfaction toward these innovative teaching methods, and looked forward to continuing the use of this learning approach. Copyright © 2014 Elsevier Ltd. All rights reserved.
Classification of images acquired with colposcopy using artificial neural networks.
Simões, Priscyla W; Izumi, Narjara B; Casagrande, Ramon S; Venson, Ramon; Veronezi, Carlos D; Moretti, Gustavo P; da Rocha, Edroaldo L; Cechinel, Cristian; Ceretta, Luciane B; Comunello, Eros; Martins, Paulo J; Casagrande, Rogério A; Snoeyer, Maria L; Manenti, Sandra A
2014-01-01
To explore the advantages of using artificial neural networks (ANNs) to recognize patterns in colposcopy to classify images in colposcopy. Transversal, descriptive, and analytical study of a quantitative approach with an emphasis on diagnosis. The training test e validation set was composed of images collected from patients who underwent colposcopy. These images were provided by a gynecology clinic located in the city of Criciúma (Brazil). The image database (n = 170) was divided; 48 images were used for the training process, 58 images were used for the tests, and 64 images were used for the validation. A hybrid neural network based on Kohonen self-organizing maps and multilayer perceptron (MLP) networks was used. After 126 cycles, the validation was performed. The best results reached an accuracy of 72.15%, a sensibility of 69.78%, and a specificity of 68%. Although the preliminary results still exhibit an average efficiency, the present approach is an innovative and promising technique that should be deeply explored in the context of the present study.
NASA Astrophysics Data System (ADS)
Naharudin, Nabilah; Ahamad, Mohd Sanusi S.; Sadullah, Ahmad Farhan Mohd
2017-10-01
In support to the nation's goal of developing a liveable city, Malaysian government aims to improve the mobility in Kuala Lumpur by providing good quality transit services across the city. However, the public starts to demand for more than just a connectivity between two points. They want their transit journey to be comfortable and pleasant from the very first mile. The key here is the first and last mile (FLM) of the transit service which defines their journey to access the station itself. The question is, does the existing transit services' FLM satisfy public's needs? Therefore, many studies had emerged in attempt to assess the pedestrian-friendliness. While most of them did base on the pedestrian's perceptions, there were also studies that spatially measured the connectivity and accessibility to various landuses and point of interests. While both can be a good method, their integration could actually produce a better assessment. However, till date, only a few studies had attempted to do so. This paper proposes a framework to develop a Spatial Walkability Index (SWI) by integrating a multicriteria evaluation technique, Analytical Network Process (ANP) and network analysis on geographical information system (GIS) platform. First, ANP will aggregate the degree of importance for each walkability criteria based on the pedestrian's perceptions. Then, the network analysis will use the weighted criteria as attributes to find the walkable routes within half mile radius from each station. The index will be calculated by rationing the total length of walkable routes in respect to the available footpath. The final outcome is a percentage of walkable FLM transit routes for each station which will be named as the SWI. It is expected that the developed framework can be applied in other cities across the globe. It can also be improvised to suit the demand and purpose there.
Next Generation Space Surveillance System-of-Systems
NASA Astrophysics Data System (ADS)
McShane, B.
2014-09-01
International economic and military dependence on space assets is pervasive and ever-growing in an environment that is now congested, contested, and competitive. There are a number of natural and man-made risks that need to be monitored and characterized to protect and preserve the space environment and the assets within it. Unfortunately, today's space surveillance network (SSN) has gaps in coverage, is not resilient, and has a growing number of objects that get lost. Risks can be efficiently and effectively mitigated, gaps closed, resiliency improved, and performance increased within a next generation space surveillance network implemented as a system-of-systems with modern information architectures and analytic techniques. This also includes consideration for the newest SSN sensors (e.g. Space Fence) which are born Net-Centric out-of-the-box and able to seamlessly interface with the JSpOC Mission System, global information grid, and future unanticipated users. Significant opportunity exists to integrate legacy, traditional, and non-traditional sensors into a larger space system-of-systems (including command and control centers) for multiple clients through low cost sustainment, modification, and modernization efforts. Clients include operations centers (e.g. JSpOC, USSTRATCOM, CANSPOC), Intelligence centers (e.g. NASIC), space surveillance sensor sites (e.g. AMOS, GEODSS), international governments (e.g. Germany, UK), space agencies (e.g. NASA), and academic institutions. Each has differing priorities, networks, data needs, timeliness, security, accuracy requirements and formats. Enabling processes and technologies include: Standardized and type accredited methods for secure connections to multiple networks, machine-to-machine interfaces for near real-time data sharing and tip-and-queue activities, common data models for analytical processing across multiple radar and optical sensor types, an efficient way to automatically translate between differing client and sensor formats, data warehouse of time based space events, secure collaboration tools for international coalition space operations, shared concept-of-operations, tactics, techniques, and procedures.
Network Analytical Tool for Monitoring Global Food Safety Highlights China
Nepusz, Tamás; Petróczi, Andrea; Naughton, Declan P.
2009-01-01
Background The Beijing Declaration on food safety and security was signed by over fifty countries with the aim of developing comprehensive programs for monitoring food safety and security on behalf of their citizens. Currently, comprehensive systems for food safety and security are absent in many countries, and the systems that are in place have been developed on different principles allowing poor opportunities for integration. Methodology/Principal Findings We have developed a user-friendly analytical tool based on network approaches for instant customized analysis of food alert patterns in the European dataset from the Rapid Alert System for Food and Feed. Data taken from alert logs between January 2003 – August 2008 were processed using network analysis to i) capture complexity, ii) analyze trends, and iii) predict possible effects of interventions by identifying patterns of reporting activities between countries. The detector and transgressor relationships are readily identifiable between countries which are ranked using i) Google's PageRank algorithm and ii) the HITS algorithm of Kleinberg. The program identifies Iran, China and Turkey as the transgressors with the largest number of alerts. However, when characterized by impact, counting the transgressor index and the number of countries involved, China predominates as a transgressor country. Conclusions/Significance This study reports the first development of a network analysis approach to inform countries on their transgressor and detector profiles as a user-friendly aid for the adoption of the Beijing Declaration. The ability to instantly access the country-specific components of the several thousand annual reports will enable each country to identify the major transgressors and detectors within its trading network. Moreover, the tool can be used to monitor trading countries for improved detector/transgressor ratios. PMID:19688088
NASA Technical Reports Server (NTRS)
Mengshoel, Ole J.; Roth, Dan; Wilkins, David C.
2001-01-01
Portfolio methods support the combination of different algorithms and heuristics, including stochastic local search (SLS) heuristics, and have been identified as a promising approach to solve computationally hard problems. While successful in experiments, theoretical foundations and analytical results for portfolio-based SLS heuristics are less developed. This article aims to improve the understanding of the role of portfolios of heuristics in SLS. We emphasize the problem of computing most probable explanations (MPEs) in Bayesian networks (BNs). Algorithmically, we discuss a portfolio-based SLS algorithm for MPE computation, Stochastic Greedy Search (SGS). SGS supports the integration of different initialization operators (or initialization heuristics) and different search operators (greedy and noisy heuristics), thereby enabling new analytical and experimental results. Analytically, we introduce a novel Markov chain model tailored to portfolio-based SLS algorithms including SGS, thereby enabling us to analytically form expected hitting time results that explain empirical run time results. For a specific BN, we show the benefit of using a homogenous initialization portfolio. To further illustrate the portfolio approach, we consider novel additive search heuristics for handling determinism in the form of zero entries in conditional probability tables in BNs. Our additive approach adds rather than multiplies probabilities when computing the utility of an explanation. We motivate the additive measure by studying the dramatic impact of zero entries in conditional probability tables on the number of zero-probability explanations, which again complicates the search process. We consider the relationship between MAXSAT and MPE, and show that additive utility (or gain) is a generalization, to the probabilistic setting, of MAXSAT utility (or gain) used in the celebrated GSAT and WalkSAT algorithms and their descendants. Utilizing our Markov chain framework, we show that expected hitting time is a rational function - i.e. a ratio of two polynomials - of the probability of applying an additive search operator. Experimentally, we report on synthetically generated BNs as well as BNs from applications, and compare SGSs performance to that of Hugin, which performs BN inference by compilation to and propagation in clique trees. On synthetic networks, SGS speeds up computation by approximately two orders of magnitude compared to Hugin. In application networks, our approach is highly competitive in Bayesian networks with a high degree of determinism. In addition to showing that stochastic local search can be competitive with clique tree clustering, our empirical results provide an improved understanding of the circumstances under which portfolio-based SLS outperforms clique tree clustering and vice versa.
NASA Astrophysics Data System (ADS)
RazaviToosi, S. L.; Samani, J. M. V.
2016-03-01
Watersheds are considered as hydrological units. Their other important aspects such as economic, social and environmental functions play crucial roles in sustainable development. The objective of this work is to develop methodologies to prioritize watersheds by considering different development strategies in environmental, social and economic sectors. This ranking could play a significant role in management to assign the most critical watersheds where by employing water management strategies, best condition changes are expected to be accomplished. Due to complex relations among different criteria, two new hybrid fuzzy ANP (Analytical Network Process) algorithms, fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and fuzzy max-min set methods are used to provide more flexible and accurate decision model. Five watersheds in Iran named Oroomeyeh, Atrak, Sefidrood, Namak and Zayandehrood are considered as alternatives. Based on long term development goals, 38 water management strategies are defined as subcriteria in 10 clusters. The main advantage of the proposed methods is its ability to overcome uncertainty. This task is accomplished by using fuzzy numbers in all steps of the algorithms. To validate the proposed method, the final results were compared with those obtained from the ANP algorithm and the Spearman rank correlation coefficient is applied to find the similarity in the different ranking methods. Finally, the sensitivity analysis was conducted to investigate the influence of cluster weights on the final ranking.
Depressive Rumination, the Default-Mode Network, and the Dark Matter of Clinical Neuroscience.
Hamilton, J Paul; Farmer, Madison; Fogelman, Phoebe; Gotlib, Ian H
2015-08-15
The intuitive association between self-focused rumination in major depressive disorder (MDD) and the self-referential operations performed by the brain's default-mode network (DMN) has prompted interest in examining the role of the DMN in MDD. In this article, we present meta-analytic findings showing reliably increased functional connectivity between the DMN and subgenual prefrontal cortex (sgPFC)-connectivity that often predicts levels of depressive rumination. We also present meta-analytic findings that, while there is reliably increased regional cerebral blood flow in sgPFC in MDD, no such abnormality has been reliably observed in nodes of the DMN. We then detail a model that integrates the body of research presented. In this model, we propose that increased functional connectivity between sgPFC and the DMN in MDD represents an integration of the self-referential processes supported by the DMN with the affectively laden, behavioral withdrawal processes associated with sgPFC-an integration that produces a functional neural ensemble well suited for depressive rumination and that, in MDD, abnormally taxes only sgPFC and not the DMN. This synthesis explains a broad array of existing data concerning the neural substrates of depressive rumination and provides an explicit account of functional abnormalities in sgPFC in MDD. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Johnson, Bruce D; Golub, Andrew
2007-09-01
There are numerous analytic and methodological limitations to current measures of drug market activity. This paper explores the structure of markets and individual user behavior to provide an integrated understanding of behavioral and economic (and market) aspects of illegal drug use with an aim toward developing improved procedures for measurement. This involves understanding the social processes that structure illegal distribution networks and drug users' interactions with them. These networks are where and how social behaviors, prices, and markets for illegal drugs intersect. Our focus is upon getting an up close measurement of these activities. Building better measures of consumption behaviors necessitates building better rapport with subjects than typically achieved with one-time surveys in order to overcome withholding and underreporting and to get a comprehensive understanding of the processes involved. This can be achieved through repeated interviews and observations of behaviors. This paper also describes analytic advances that could be adopted to direct this inquiry including behavioral templates, and insights into the economic valuation of labor inputs and cash expenditures for various illegal drugs. Additionally, the paper makes recommendations to funding organizations for developing the mechanisms that would support behavioral scientists to weigh specimens and to collect small samples for laboratory analysis-by providing protection from the potential for arrest. The primary focus is upon U.S. markets. The implications for other countries are discussed.
Johnson, Bruce D.; Golub, Andrew
2007-01-01
There are numerous analytic and methodological limitations to current measures of drug market activity. This paper explores the structure of markets and individual user behavior to provide an integrated understanding of behavioral and economic (and market) aspects of illegal drug use with an aim toward developing improved procedures for measurement. This involves understanding the social processes that structure illegal distribution networks and drug users’ interactions with them. These networks are where and how social behaviors, prices, and markets for illegal drugs intersect. Our focus is upon getting an up close measurement of these activities. Building better measures of consumption behaviors necessitates building better rapport with subjects than typically achieved with one-time surveys in order to overcome withholding and underreporting and to get a comprehensive understanding of the processes involved. This can be achieved through repeated interviews and observations of behaviors. This paper also describes analytic advances that could be adopted to direct this inquiry including behavioral templates, and insights into the economic valuation of labor inputs and cash expenditures for various illegal drugs. Additionally, the paper makes recommendations to funding organizations for developing the mechanisms that would support behavioral scientists to weigh specimens and to collect small samples for laboratory analysis—by providing protection from the potential for arrest. The primary focus is upon U.S. markets. The implications for other countries are discussed. PMID:16978801
Estimation of Global Network Statistics from Incomplete Data
Bliss, Catherine A.; Danforth, Christopher M.; Dodds, Peter Sheridan
2014-01-01
Complex networks underlie an enormous variety of social, biological, physical, and virtual systems. A profound complication for the science of complex networks is that in most cases, observing all nodes and all network interactions is impossible. Previous work addressing the impacts of partial network data is surprisingly limited, focuses primarily on missing nodes, and suggests that network statistics derived from subsampled data are not suitable estimators for the same network statistics describing the overall network topology. We generate scaling methods to predict true network statistics, including the degree distribution, from only partial knowledge of nodes, links, or weights. Our methods are transparent and do not assume a known generating process for the network, thus enabling prediction of network statistics for a wide variety of applications. We validate analytical results on four simulated network classes and empirical data sets of various sizes. We perform subsampling experiments by varying proportions of sampled data and demonstrate that our scaling methods can provide very good estimates of true network statistics while acknowledging limits. Lastly, we apply our techniques to a set of rich and evolving large-scale social networks, Twitter reply networks. Based on 100 million tweets, we use our scaling techniques to propose a statistical characterization of the Twitter Interactome from September 2008 to November 2008. Our treatment allows us to find support for Dunbar's hypothesis in detecting an upper threshold for the number of active social contacts that individuals maintain over the course of one week. PMID:25338183
The diminishing role of hubs in dynamical processes on complex networks.
Quax, Rick; Apolloni, Andrea; Sloot, Peter M A
2013-11-06
It is notoriously difficult to predict the behaviour of a complex self-organizing system, where the interactions among dynamical units form a heterogeneous topology. Even if the dynamics of each microscopic unit is known, a real understanding of their contributions to the macroscopic system behaviour is still lacking. Here, we develop information-theoretical methods to distinguish the contribution of each individual unit to the collective out-of-equilibrium dynamics. We show that for a system of units connected by a network of interaction potentials with an arbitrary degree distribution, highly connected units have less impact on the system dynamics when compared with intermediately connected units. In an equilibrium setting, the hubs are often found to dictate the long-term behaviour. However, we find both analytically and experimentally that the instantaneous states of these units have a short-lasting effect on the state trajectory of the entire system. We present qualitative evidence of this phenomenon from empirical findings about a social network of product recommendations, a protein-protein interaction network and a neural network, suggesting that it might indeed be a widespread property in nature.
Network meta-analysis: application and practice using Stata
2017-01-01
This review aimed to arrange the concepts of a network meta-analysis (NMA) and to demonstrate the analytical process of NMA using Stata software under frequentist framework. The NMA tries to synthesize evidences for a decision making by evaluating the comparative effectiveness of more than two alternative interventions for the same condition. Before conducting a NMA, 3 major assumptions—similarity, transitivity, and consistency—should be checked. The statistical analysis consists of 5 steps. The first step is to draw a network geometry to provide an overview of the network relationship. The second step checks the assumption of consistency. The third step is to make the network forest plot or interval plot in order to illustrate the summary size of comparative effectiveness among various interventions. The fourth step calculates cumulative rankings for identifying superiority among interventions. The last step evaluates publication bias or effect modifiers for a valid inference from results. The synthesized evidences through five steps would be very useful to evidence-based decision-making in healthcare. Thus, NMA should be activated in order to guarantee the quality of healthcare system. PMID:29092392
Network meta-analysis: application and practice using Stata.
Shim, Sungryul; Yoon, Byung-Ho; Shin, In-Soo; Bae, Jong-Myon
2017-01-01
This review aimed to arrange the concepts of a network meta-analysis (NMA) and to demonstrate the analytical process of NMA using Stata software under frequentist framework. The NMA tries to synthesize evidences for a decision making by evaluating the comparative effectiveness of more than two alternative interventions for the same condition. Before conducting a NMA, 3 major assumptions-similarity, transitivity, and consistency-should be checked. The statistical analysis consists of 5 steps. The first step is to draw a network geometry to provide an overview of the network relationship. The second step checks the assumption of consistency. The third step is to make the network forest plot or interval plot in order to illustrate the summary size of comparative effectiveness among various interventions. The fourth step calculates cumulative rankings for identifying superiority among interventions. The last step evaluates publication bias or effect modifiers for a valid inference from results. The synthesized evidences through five steps would be very useful to evidence-based decision-making in healthcare. Thus, NMA should be activated in order to guarantee the quality of healthcare system.
Approximating natural connectivity of scale-free networks based on largest eigenvalue
NASA Astrophysics Data System (ADS)
Tan, S.-Y.; Wu, J.; Li, M.-J.; Lu, X.
2016-06-01
It has been recently proposed that natural connectivity can be used to efficiently characterize the robustness of complex networks. The natural connectivity has an intuitive physical meaning and a simple mathematical formulation, which corresponds to an average eigenvalue calculated from the graph spectrum. However, as a network model close to the real-world system that widely exists, the scale-free network is found difficult to obtain its spectrum analytically. In this article, we investigate the approximation of natural connectivity based on the largest eigenvalue in both random and correlated scale-free networks. It is demonstrated that the natural connectivity of scale-free networks can be dominated by the largest eigenvalue, which can be expressed asymptotically and analytically to approximate natural connectivity with small errors. Then we show that the natural connectivity of random scale-free networks increases linearly with the average degree given the scaling exponent and decreases monotonically with the scaling exponent given the average degree. Moreover, it is found that, given the degree distribution, the more assortative a scale-free network is, the more robust it is. Experiments in real networks validate our methods and results.
Kasahara, Kota; Kinoshita, Kengo
2016-01-01
Ion conduction mechanisms of ion channels are a long-standing conundrum. Although the molecular dynamics (MD) method has been extensively used to simulate ion conduction dynamics at the atomic level, analysis and interpretation of MD results are not straightforward due to complexity of the dynamics. In our previous reports, we proposed an analytical method called ion-binding state analysis to scrutinize and summarize ion conduction mechanisms by taking advantage of a variety of analytical protocols, e.g., the complex network analysis, sequence alignment, and hierarchical clustering. This approach effectively revealed the ion conduction mechanisms and their dependence on the conditions, i.e., ion concentration and membrane voltage. Here, we present an easy-to-use computational toolkit for ion-binding state analysis, called IBiSA_tools. This toolkit consists of a C++ program and a series of Python and R scripts. From the trajectory file of MD simulations and a structure file, users can generate several images and statistics of ion conduction processes. A complex network named ion-binding state graph is generated in a standard graph format (graph modeling language; GML), which can be visualized by standard network analyzers such as Cytoscape. As a tutorial, a trajectory of a 50 ns MD simulation of the Kv1.2 channel is also distributed with the toolkit. Users can trace the entire process of ion-binding state analysis step by step. The novel method for analysis of ion conduction mechanisms of ion channels can be easily used by means of IBiSA_tools. This software is distributed under an open source license at the following URL: http://www.ritsumei.ac.jp/~ktkshr/ibisa_tools/.
New Material for Surface-Enhanced Raman Spectroscopy
NASA Technical Reports Server (NTRS)
Farquharson, Stuart; Nelson, Chad; Lee, Yuan
2004-01-01
A chemical method of synthesis and application of coating materials that are especially suitable for surface-enhanced Raman spectroscopy (SERS) has been developed. The purpose of this development is to facilitate the utilization of the inherently high sensitivity of SERS to detect chemicals of interest (analytes) in trace amounts, without need for lengthy sample preparation. Up to now, the use of SERS has not become routine because the methods available have not been able to reproduce sampling conditions and provide quantitative measurements. In contrast, the coating materials of the present method enable analysis with minimum preparation of samples, and SERS measurements made using these materials are reproducible and reversible. Moreover, unlike in methods investigated in prior efforts to implement SERS, sampling is not restricted to such specific environments as electrolytes or specific solvents. The coating materials of this method are porous glasses, formed in sol-gel processes, that contain small particles of gold or silver metal. Materials of this type can be applied to the sample-contact surfaces of a variety of sampling and sensing devices, including glass slides, glass vials, fiber-optic probes, and glass tubes. Glass vials with their insides coated according to this method are particularly convenient for SERS to detect trace chemicals in solutions: One simply puts a sample solution containing the analyte(s) into a vial, then puts the vial into a Raman spectrometer for analysis. The chemical ingredients and the physical conditions of the sol-gel process have been selected so that the porous glass formed incorporates particles of the desired metal with size(s) to match the wavelength(s) of the SERS excitation laser in order to optimize the generation of surface plasmons. The ingredients and processing conditions have further been chosen to tailor the porosity and polarity of the glass to optimize the sample flow and the interaction between the analyte(s) and the plasmon field that generates Raman photons. The porous silica network of a sol-gel glass creates a unique environment for stabilizing SERS-active metal particles. Relative to other material structures that could be considered for SERS, the porous silica network offers higher specific surface area and thus greater interaction between analyte molecules and metal particles. Efforts to perform SERS measurements with the help of sampling devices coated by this method have been successful. In tests, numerous organic and inorganic chemicals were analyzed in several solvents, including water. The results of the tests indicate that the SERS measurements were reproducible within 10 percent and linear over five orders of magnitude. One measure of the limits of detectability of chemicals in these tests was found to be a concentration of 300 parts per billion. Further development may eventually make it possible to realize the full potential sensitivity of SERS for detecting some analytes in quantities as small as a single molecule.
NASA Technical Reports Server (NTRS)
Aires, Filipe; Rossow, William B.; Hansen, James E. (Technical Monitor)
2001-01-01
A new approach is presented for the analysis of feedback processes in a nonlinear dynamical system by observing its variations. The new methodology consists of statistical estimates of the sensitivities between all pairs of variables in the system based on a neural network modeling of the dynamical system. The model can then be used to estimate the instantaneous, multivariate and nonlinear sensitivities, which are shown to be essential for the analysis of the feedbacks processes involved in the dynamical system. The method is described and tested on synthetic data from the low-order Lorenz circulation model where the correct sensitivities can be evaluated analytically.
Analytical connection between thresholds and immunization strategies of SIS model in random networks
NASA Astrophysics Data System (ADS)
Zhou, Ming-Yang; Xiong, Wen-Man; Liao, Hao; Wang, Tong; Wei, Zong-Wen; Fu, Zhong-Qian
2018-05-01
Devising effective strategies for hindering the propagation of viruses and protecting the population against epidemics is critical for public security and health. Despite a number of studies based on the susceptible-infected-susceptible (SIS) model devoted to this topic, we still lack a general framework to compare different immunization strategies in completely random networks. Here, we address this problem by suggesting a novel method based on heterogeneous mean-field theory for the SIS model. Our method builds the relationship between the thresholds and different immunization strategies in completely random networks. Besides, we provide an analytical argument that the targeted large-degree strategy achieves the best performance in random networks with arbitrary degree distribution. Moreover, the experimental results demonstrate the effectiveness of the proposed method in both artificial and real-world networks.
GraphPrints: Towards a Graph Analytic Method for Network Anomaly Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harshaw, Chris R; Bridges, Robert A; Iannacone, Michael D
This paper introduces a novel graph-analytic approach for detecting anomalies in network flow data called \\textit{GraphPrints}. Building on foundational network-mining techniques, our method represents time slices of traffic as a graph, then counts graphlets\\textemdash small induced subgraphs that describe local topology. By performing outlier detection on the sequence of graphlet counts, anomalous intervals of traffic are identified, and furthermore, individual IPs experiencing abnormal behavior are singled-out. Initial testing of GraphPrints is performed on real network data with an implanted anomaly. Evaluation shows false positive rates bounded by 2.84\\% at the time-interval level, and 0.05\\% at the IP-level with 100\\% truemore » positive rates at both.« less
Making sense of the transition from the Detroit streets to drug treatment.
Draus, Paul; Roddy, Juliette; Asabigi, Kanzoni
2015-02-01
In this article we consider the process of adjustment from active street sex work to life in structured substance abuse treatment among Detroit-area women who participated in a semicoercive program administered through a drug court. We examine this transition in terms of changes in daily routines and social networks, drawing on extensive qualitative data to illuminate the ways in which women defined their own situations. Using concepts from Bourdieu and Latour as analytical aids, we analyze the role of daily routines, environments, and networks in producing the shifts in identity that those who embraced the goals of recovery demonstrated. We conclude with a discussion of how the restrictive environments and redundant situations experienced by women in treatment could be paradoxically embraced as a means to achieve expanded opportunity and enhanced individual responsibility because women effectively reassembled their social networks and identities to align with the goals of recovery. © The Author(s) 2014.
Model of a Soft Robotic Actuator with Embedded Fluidic Network
NASA Astrophysics Data System (ADS)
Gamus, Benny; Or, Yizhar; Gat, Amir
2017-11-01
Soft robotics is an emerging bio-inspired concept of actuation, with promising applications for robotic locomotion and manipulation. Focusing on actuation by pressurized embedded fluidic networks, we present analytic formulation and closed-form solutions of an elastic actuator with pressurized fluidic networks. In this work we account for the effects of solid inertia and elasticity, as well as fluid viscosity, which allows modelling the system's step-response and frequency response as well as suggesting mode elimination and isolation techniques. We also present and model the application of viscous-peeling as an actuation mechanism, simplifying the fabrication process by eliminating the need for internal cavities. The theoretical results describing the viscous-elastic-inertial dynamics of the actuator are illustrated by experiments. The approach presented in this work may pave the way for the design and implementation of soft robotic legged locomotion that exploits dynamic effects.
Mounet, Fabien; Moing, Annick; Garcia, Virginie; Petit, Johann; Maucourt, Michael; Deborde, Catherine; Bernillon, Stéphane; Le Gall, Gwénaëlle; Colquhoun, Ian; Defernez, Marianne; Giraudel, Jean-Luc; Rolin, Dominique; Rothan, Christophe; Lemaire-Chamley, Martine
2009-01-01
Variations in early fruit development and composition may have major impacts on the taste and the overall quality of ripe tomato (Solanum lycopersicum) fruit. To get insights into the networks involved in these coordinated processes and to identify key regulatory genes, we explored the transcriptional and metabolic changes in expanding tomato fruit tissues using multivariate analysis and gene-metabolite correlation networks. To this end, we demonstrated and took advantage of the existence of clear structural and compositional differences between expanding mesocarp and locular tissue during fruit development (12–35 d postanthesis). Transcriptome and metabolome analyses were carried out with tomato microarrays and analytical methods including proton nuclear magnetic resonance and liquid chromatography-mass spectrometry, respectively. Pairwise comparisons of metabolite contents and gene expression profiles detected up to 37 direct gene-metabolite correlations involving regulatory genes (e.g. the correlations between glutamine, bZIP, and MYB transcription factors). Correlation network analyses revealed the existence of major hub genes correlated with 10 or more regulatory transcripts and embedded in a large regulatory network. This approach proved to be a valuable strategy for identifying specific subsets of genes implicated in key processes of fruit development and metabolism, which are therefore potential targets for genetic improvement of tomato fruit quality. PMID:19144766
A Novel IEEE 802.15.4e DSME MAC for Wireless Sensor Networks
Sahoo, Prasan Kumar; Pattanaik, Sudhir Ranjan; Wu, Shih-Lin
2017-01-01
IEEE 802.15.4e standard proposes Deterministic and Synchronous Multichannel Extension (DSME) mode for wireless sensor networks (WSNs) to support industrial, commercial and health care applications. In this paper, a new channel access scheme and beacon scheduling schemes are designed for the IEEE 802.15.4e enabled WSNs in star topology to reduce the network discovery time and energy consumption. In addition, a new dynamic guaranteed retransmission slot allocation scheme is designed for devices with the failure Guaranteed Time Slot (GTS) transmission to reduce the retransmission delay. To evaluate our schemes, analytical models are designed to analyze the performance of WSNs in terms of reliability, delay, throughput and energy consumption. Our schemes are validated with simulation and analytical results and are observed that simulation results well match with the analytical one. The evaluated results of our designed schemes can improve the reliability, throughput, delay, and energy consumptions significantly. PMID:28275216
A Novel IEEE 802.15.4e DSME MAC for Wireless Sensor Networks.
Sahoo, Prasan Kumar; Pattanaik, Sudhir Ranjan; Wu, Shih-Lin
2017-01-16
IEEE 802.15.4e standard proposes Deterministic and Synchronous Multichannel Extension (DSME) mode for wireless sensor networks (WSNs) to support industrial, commercial and health care applications. In this paper, a new channel access scheme and beacon scheduling schemes are designed for the IEEE 802.15.4e enabled WSNs in star topology to reduce the network discovery time and energy consumption. In addition, a new dynamic guaranteed retransmission slot allocation scheme is designed for devices with the failure Guaranteed Time Slot (GTS) transmission to reduce the retransmission delay. To evaluate our schemes, analytical models are designed to analyze the performance of WSNs in terms of reliability, delay, throughput and energy consumption. Our schemes are validated with simulation and analytical results and are observed that simulation results well match with the analytical one. The evaluated results of our designed schemes can improve the reliability, throughput, delay, and energy consumptions significantly.
Network Community Detection based on the Physarum-inspired Computational Framework.
Gao, Chao; Liang, Mingxin; Li, Xianghua; Zhang, Zili; Wang, Zhen; Zhou, Zhili
2016-12-13
Community detection is a crucial and essential problem in the structure analytics of complex networks, which can help us understand and predict the characteristics and functions of complex networks. Many methods, ranging from the optimization-based algorithms to the heuristic-based algorithms, have been proposed for solving such a problem. Due to the inherent complexity of identifying network structure, how to design an effective algorithm with a higher accuracy and a lower computational cost still remains an open problem. Inspired by the computational capability and positive feedback mechanism in the wake of foraging process of Physarum, which is a large amoeba-like cell consisting of a dendritic network of tube-like pseudopodia, a general Physarum-based computational framework for community detection is proposed in this paper. Based on the proposed framework, the inter-community edges can be identified from the intra-community edges in a network and the positive feedback of solving process in an algorithm can be further enhanced, which are used to improve the efficiency of original optimization-based and heuristic-based community detection algorithms, respectively. Some typical algorithms (e.g., genetic algorithm, ant colony optimization algorithm, and Markov clustering algorithm) and real-world datasets have been used to estimate the efficiency of our proposed computational framework. Experiments show that the algorithms optimized by Physarum-inspired computational framework perform better than the original ones, in terms of accuracy and computational cost. Moreover, a computational complexity analysis verifies the scalability of our framework.
Drinking Water and Wastewater Laboratory Networks
This website provides the drinking water sector with an integrated nationwide network of laboratories with the analytical capability to respond to intentional and unintentional drinking water incidents.
QFD-ANP Approach for the Conceptual Design of Research Vessels: A Case Study
NASA Astrophysics Data System (ADS)
Venkata Subbaiah, Kambagowni; Yeshwanth Sai, Koneru; Suresh, Challa
2016-10-01
Conceptual design is a subset of concept art wherein a new idea of product is created instead of a visual representation which would directly be used in a final product. The purpose is to understand the needs of conceptual design which are being used in engineering designs and to clarify the current conceptual design practice. Quality function deployment (QFD) is a customer oriented design approach for developing new or improved products and services to enhance customer satisfaction. House of quality (HOQ) has been traditionally used as planning tool of QFD which translates customer requirements (CRs) into design requirements (DRs). Factor analysis is carried out in order to reduce the CR portions of HOQ. The analytical hierarchical process is employed to obtain the priority ratings of CR's which are used in constructing HOQ. This paper mainly discusses about the conceptual design of an oceanographic research vessel using analytical network process (ANP) technique. Finally the QFD-ANP integrated methodology helps to establish the importance ratings of DRs.
Visualization techniques for computer network defense
NASA Astrophysics Data System (ADS)
Beaver, Justin M.; Steed, Chad A.; Patton, Robert M.; Cui, Xiaohui; Schultz, Matthew
2011-06-01
Effective visual analysis of computer network defense (CND) information is challenging due to the volume and complexity of both the raw and analyzed network data. A typical CND is comprised of multiple niche intrusion detection tools, each of which performs network data analysis and produces a unique alerting output. The state-of-the-practice in the situational awareness of CND data is the prevalent use of custom-developed scripts by Information Technology (IT) professionals to retrieve, organize, and understand potential threat events. We propose a new visual analytics framework, called the Oak Ridge Cyber Analytics (ORCA) system, for CND data that allows an operator to interact with all detection tool outputs simultaneously. Aggregated alert events are presented in multiple coordinated views with timeline, cluster, and swarm model analysis displays. These displays are complemented with both supervised and semi-supervised machine learning classifiers. The intent of the visual analytics framework is to improve CND situational awareness, to enable an analyst to quickly navigate and analyze thousands of detected events, and to combine sophisticated data analysis techniques with interactive visualization such that patterns of anomalous activities may be more easily identified and investigated.
Latysh, Natalie E.; Wetherbee, Gregory A.
2005-01-01
The U.S. Geological Survey, Branch of Quality Systems, operates the external quality-assurance programs for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Beginning in 1978, six different programs have been implemented?the intersite-comparison program, the blind-audit program, the sample-handling evaluation program, the field-audit program, the interlaboratory-comparison program, and the collocated-sampler program. Each program was designed to measure error contributed by specific components in the data-collection process. The intersite-comparison program, which was discontinued in 2004, was designed to assess the accuracy and reliability of field pH and specific-conductance measurements made by site operators. The blind-audit and sample-handling evaluation programs, which also were discontinued in 2002 and 2004, respectively, assessed contamination that may result from sampling equipment and routine handling and processing of the wet-deposition samples. The field-audit program assesses the effects of sample handling, processing, and field exposure. The interlaboratory-comparison program evaluates bias and precision of analytical results produced by the contract laboratory for NADP, the Illinois State Water Survey, Central Analytical Laboratory, and compares its performance with the performance of international laboratories. The collocated-sampler program assesses the overall precision of wet-deposition data collected by NADP/NTN. This report documents historical operations and the operating procedures for each of these external quality-assurance programs. USGS quality-assurance information allows NADP/NTN data users to discern between actual environmental trends and inherent measurement variability.
NASA Astrophysics Data System (ADS)
Ismail, A. H.; Mahardika, R. Z. Z.
2017-12-01
Supply chain management has increased more significance with the impact of globalization. In the present worldwide market, well-managed supply chain is a standout amongst the most vital requirement to be more competitive in the market. For any organization incorporate cement industry, the most critical decision in initial process of supply chain management is to buy products, materials or services from suppliers. So the role of suppliers is irrefutable important in the global aggressive markets. Appropriate decision of supplier selection can lead to reducing cost in supply chain management. However, it is becoming more complex because of existing various criteria and involving the suitable experts in the company to make valid decision in accordance with its criteria. In this study, the supplier selection of an Indonesia’s leading cement company is analyzed by using one of the popular multi-criteria decision making method, Saaty’s analytical network process (ANP). It is employed for the selection of the best alternative among three suppliers of pasted bag. Supplier with the highest rank comes from several major steps from building the relationship between various criteria to rating the alternatives with the help of experts from the company. The results show that, Communication capability, Flexible payment terms, Ability to meet delivery quantities are the most important criteria in the pasted bag supplier selection in Indonesian cement industry with 0.155, 0.110 and 0.1 ANP coefficient respectively. And based on the ANP coefficient values in limit supermatrix, the A2 or supplier 2 had the highest score with 64.7% or 0.13 ANP coefficient.
Competing epidemics on complex networks
NASA Astrophysics Data System (ADS)
Karrer, Brian; Newman, M. E. J.
2011-09-01
Human diseases spread over networks of contacts between individuals and a substantial body of recent research has focused on the dynamics of the spreading process. Here we examine a model of two competing diseases spreading over the same network at the same time, where infection with either disease gives an individual subsequent immunity to both. Using a combination of analytic and numerical methods, we derive the phase diagram of the system and estimates of the expected final numbers of individuals infected with each disease. The system shows an unusual dynamical transition between dominance of one disease and dominance of the other as a function of their relative rates of growth. Close to this transition the final outcomes show strong dependence on stochastic fluctuations in the early stages of growth, dependence that decreases with increasing network size, but does so sufficiently slowly as still to be easily visible in systems with millions or billions of individuals. In most regions of the phase diagram we find that one disease eventually dominates while the other reaches only a vanishing fraction of the network, but the system also displays a significant coexistence regime in which both diseases reach epidemic proportions and infect an extensive fraction of the network.
Frisse, Mark E
2016-04-01
New mobile devices, social networks, analytics, and communications technologies are emerging at an unparalleled rate. As a result, academic health centers will face both new opportunities and formidable challenges. Unlike previous transitions from paper-based systems to networked computer systems, these new technologies are the product of new entrepreneurial and commercial interests driven by consumers. As these new commercial products and services are more widely adopted, the likelihood grows that data will be used in unanticipated ways inconsistent with societal norms. Academic health centers will have to understand the implications of these technologies and engage more actively in processes governing the collection, aggregation, and use of health data produced in a new era of consumer-driven health care technology. Maintaining public trust should be a paramount concern.
Resilient Monitoring Systems: Architecture, Design, and Application to Boiler/Turbine Plant
Garcia, Humberto E.; Lin, Wen-Chiao; Meerkov, Semyon M.; ...
2014-11-01
Resilient monitoring systems, considered in this paper, are sensor networks that degrade gracefully under malicious attacks on their sensors, causing them to project misleading information. The goal of this work is to design, analyze, and evaluate the performance of a resilient monitoring system intended to monitor plant conditions (normal or anomalous). The architecture developed consists of four layers: data quality assessment, process variable assessment, plant condition assessment, and sensor network adaptation. Each of these layers is analyzed by either analytical or numerical tools. The performance of the overall system is evaluated using a simplified boiler/turbine plant. The measure of resiliencymore » is quantified using Kullback-Leibler divergence, and is shown to be sufficiently high in all scenarios considered.« less
Resilient monitoring systems: architecture, design, and application to boiler/turbine plant.
Garcia, Humberto E; Lin, Wen-Chiao; Meerkov, Semyon M; Ravichandran, Maruthi T
2014-11-01
Resilient monitoring systems, considered in this paper, are sensor networks that degrade gracefully under malicious attacks on their sensors, causing them to project misleading information. The goal of this paper is to design, analyze, and evaluate the performance of a resilient monitoring system intended to monitor plant conditions (normal or anomalous). The architecture developed consists of four layers: data quality assessment, process variable assessment, plant condition assessment, and sensor network adaptation. Each of these layers is analyzed by either analytical or numerical tools. The performance of the overall system is evaluated using a simplified boiler/turbine plant. The measure of resiliency is quantified based on the Kullback-Leibler divergence and shown to be sufficiently high in all scenarios considered.
A slotted access control protocol for metropolitan WDM ring networks
NASA Astrophysics Data System (ADS)
Baziana, P. A.; Pountourakis, I. E.
2009-03-01
In this study we focus on the serious scalability problems that many access protocols for WDM ring networks introduce due to the use of a dedicated wavelength per access node for either transmission or reception. We propose an efficient slotted MAC protocol suitable for WDM ring metropolitan area networks. The proposed network architecture employs a separate wavelength for control information exchange prior to the data packet transmission. Each access node is equipped with a pair of tunable transceivers for data communication and a pair of fixed tuned transceivers for control information exchange. Also, each access node includes a set of fixed delay lines for synchronization reasons; to keep the data packets, while the control information is processed. An efficient access algorithm is applied to avoid both the data wavelengths and the receiver collisions. In our protocol, each access node is capable of transmitting and receiving over any of the data wavelengths, facing the scalability issues. Two different slot reuse schemes are assumed: the source and the destination stripping schemes. For both schemes, performance measures evaluation is provided via an analytic model. The analytical results are validated by a discrete event simulation model that uses Poisson traffic sources. Simulation results show that the proposed protocol manages efficient bandwidth utilization, especially under high load. Also, comparative simulation results prove that our protocol achieves significant performance improvement as compared with other WDMA protocols which restrict transmission over a dedicated data wavelength. Finally, performance measures evaluation is explored for diverse numbers of buffer size, access nodes and data wavelengths.
NASA Astrophysics Data System (ADS)
Choi, Charles J.; Chan, Leo L.; Pineda, Maria F.; Cunningham, Brian T.
2007-09-01
Assays used in pharmaceutical research require a system that can not only detect biochemical interactions with high sensitivity, but that can also perform many measurements in parallel while consuming low volumes of reagents. While nearly all label-free biosensor transducers to date have been interfaced with a flow channel, the liquid handling system is typically aligned and bonded to the transducer for supplying analytes to only a few sensors in parallel. In this presentation, we describe a fabrication approach for photonic crystal biosensors that utilizes nanoreplica molding to produce a network of sensors that are automatically self-aligned with a microfluidic network in a single process step. The sensor/fluid network is inexpensively produced on large surface areas upon flexible plastic substrates, allowing the device to be incorporated into standard format 96-well microplates. A simple flow scheme using hydrostatic pressure applied through a single control point enables immobilization of capture ligands upon a large number of sensors with 220 nL of reagent, and subsequent exposure of the sensors to test samples. A high resolution imaging detection instrument is capable of monitoring the binding within parallel channels at rates compatible with determining kinetic binding constants between the immobilized ligands and the analytes. The first implementation of this system is capable of monitoring the kinetic interactions of 11 flow channels at once, and a total of 88 channels within an integrated biosensor microplate in rapid succession. The system was initially tested to characterize the interaction between sets of proteins with known binding behavior.
NASA Astrophysics Data System (ADS)
Eftekhari Zadeh, E.; Feghhi, S. A. H.; Roshani, G. H.; Rezaei, A.
2016-05-01
Due to variation of neutron energy spectrum in the target sample during the activation process and to peak overlapping caused by the Compton effect with gamma radiations emitted from activated elements, which results in background changes and consequently complex gamma spectrum during the measurement process, quantitative analysis will ultimately be problematic. Since there is no simple analytical correlation between peaks' counts with elements' concentrations, an artificial neural network for analyzing spectra can be a helpful tool. This work describes a study on the application of a neural network to determine the percentages of cement elements (mainly Ca, Si, Al, and Fe) using the neutron capture delayed gamma-ray spectra of the substance emitted by the activated nuclei as patterns which were simulated via the Monte Carlo N-particle transport code, version 2.7. The Radial Basis Function (RBF) network is developed with four specific peaks related to Ca, Si, Al and Fe, which were extracted as inputs. The proposed RBF model is developed and trained with MATLAB 7.8 software. To obtain the optimal RBF model, several structures have been constructed and tested. The comparison between simulated and predicted values using the proposed RBF model shows that there is a good agreement between them.
Wirsich, Jonathan; Perry, Alistair; Ridley, Ben; Proix, Timothée; Golos, Mathieu; Bénar, Christian; Ranjeva, Jean-Philippe; Bartolomei, Fabrice; Breakspear, Michael; Jirsa, Viktor; Guye, Maxime
2016-01-01
The in vivo structure-function relationship is key to understanding brain network reorganization due to pathologies. This relationship is likely to be particularly complex in brain network diseases such as temporal lobe epilepsy, in which disturbed large-scale systems are involved in both transient electrical events and long-lasting functional and structural impairments. Herein, we estimated this relationship by analyzing the correlation between structural connectivity and functional connectivity in terms of analytical network communication parameters. As such, we targeted the gradual topological structure-function reorganization caused by the pathology not only at the whole brain scale but also both in core and peripheral regions of the brain. We acquired diffusion (dMRI) and resting-state fMRI (rsfMRI) data in seven right-lateralized TLE (rTLE) patients and fourteen healthy controls and analyzed the structure-function relationship by using analytical network communication metrics derived from the structural connectome. In rTLE patients, we found a widespread hypercorrelated functional network. Network communication analysis revealed greater unspecific branching of the shortest path (search information) in the structural connectome and a higher global correlation between the structural and functional connectivity for the patient group. We also found evidence for a preserved structural rich-club in the patient group. In sum, global augmentation of structure-function correlation might be linked to a smaller functional repertoire in rTLE patients, while sparing the central core of the brain which may represent a pathway that facilitates the spread of seizures.
Cobelo-García, A; Filella, M; Croot, P; Frazzoli, C; Du Laing, G; Ospina-Alvarez, N; Rauch, S; Salaun, P; Schäfer, J; Zimmermann, S
2015-10-01
The current socio-economic, environmental and public health challenges that countries are facing clearly need common-defined strategies to inform and support our transition to a sustainable economy. Here, the technology-critical elements (which includes Ga, Ge, In, Te, Nb, Ta, Tl, the Platinum Group Elements and most of the rare-earth elements) are of great relevance in the development of emerging key technologies-including renewable energy, energy efficiency, electronics or the aerospace industry. In this context, the increasing use of technology-critical elements (TCEs) and associated environmental impacts (from mining to end-of-life waste products) is not restricted to a national level but covers most likely a global scale. Accordingly, the European COST Action TD1407: Network on Technology-Critical Elements (NOTICE)-from environmental processes to human health threats, has an overall objective for creating a network of scientists and practitioners interested in TCEs, from the evaluation of their environmental processes to understanding potential human health threats, with the aim of defining the current state of knowledge and gaps, proposing priority research lines/activities and acting as a platform for new collaborations and joint research projects. The Action is focused on three major scientific areas: (i) analytical chemistry, (ii) environmental biogeochemistry and (iii) human exposure and (eco)-toxicology.
Chein, Jason M; Schneider, Walter
2005-12-01
Functional magnetic resonance imaging and a meta-analysis of prior neuroimaging studies were used to characterize cortical changes resulting from extensive practice and to evaluate a dual-processing account of the neural mechanisms underlying human learning. Three core predictions of the dual processing theory are evaluated: 1) that practice elicits generalized reductions in regional activity by reducing the load on the cognitive control mechanisms that scaffold early learning; 2) that these control mechanisms are domain-general; and 3) that no separate processing pathway emerges as skill develops. To evaluate these predictions, a meta-analysis of prior neuroimaging studies and a within-subjects fMRI experiment contrasting unpracticed to practiced performance in a paired-associate task were conducted. The principal effect of practice was found to be a reduction in the extent and magnitude of activity in a cortical network spanning bilateral dorsal prefrontal, left ventral prefrontal, medial frontal (anterior cingulate), left insular, bilateral parietal, and occipito-temporal (fusiform) areas. These activity reductions are shown to occur in common regions across prior neuroimaging studies and for both verbal and nonverbal paired-associate learning in the present fMRI experiment. The implicated network of brain regions is interpreted as a domain-general system engaged specifically to support novice, but not practiced, performance.
Networks and the Epidemiology of Infectious Disease
Danon, Leon; Ford, Ashley P.; House, Thomas; Jewell, Chris P.; Keeling, Matt J.; Roberts, Gareth O.; Ross, Joshua V.; Vernon, Matthew C.
2011-01-01
The science of networks has revolutionised research into the dynamics of interacting elements. It could be argued that epidemiology in particular has embraced the potential of network theory more than any other discipline. Here we review the growing body of research concerning the spread of infectious diseases on networks, focusing on the interplay between network theory and epidemiology. The review is split into four main sections, which examine: the types of network relevant to epidemiology; the multitude of ways these networks can be characterised; the statistical methods that can be applied to infer the epidemiological parameters on a realised network; and finally simulation and analytical methods to determine epidemic dynamics on a given network. Given the breadth of areas covered and the ever-expanding number of publications, a comprehensive review of all work is impossible. Instead, we provide a personalised overview into the areas of network epidemiology that have seen the greatest progress in recent years or have the greatest potential to provide novel insights. As such, considerable importance is placed on analytical approaches and statistical methods which are both rapidly expanding fields. Throughout this review we restrict our attention to epidemiological issues. PMID:21437001
Wu, Huiquan; White, Maury; Khan, Mansoor A
2011-02-28
The aim of this work was to develop an integrated process analytical technology (PAT) approach for a dynamic pharmaceutical co-precipitation process characterization and design space development. A dynamic co-precipitation process by gradually introducing water to the ternary system of naproxen-Eudragit L100-alcohol was monitored at real-time in situ via Lasentec FBRM and PVM. 3D map of count-time-chord length revealed three distinguishable process stages: incubation, transition, and steady-state. The effects of high risk process variables (slurry temperature, stirring rate, and water addition rate) on both derived co-precipitation process rates and final chord-length-distribution were evaluated systematically using a 3(3) full factorial design. Critical process variables were identified via ANOVA for both transition and steady state. General linear models (GLM) were then used for parameter estimation for each critical variable. Clear trends about effects of each critical variable during transition and steady state were found by GLM and were interpreted using fundamental process principles and Nyvlt's transfer model. Neural network models were able to link process variables with response variables at transition and steady state with R(2) of 0.88-0.98. PVM images evidenced nucleation and crystal growth. Contour plots illustrated design space via critical process variables' ranges. It demonstrated the utility of integrated PAT approach for QbD development. Published by Elsevier B.V.
Organising a University Computer System: Analytical Notes.
ERIC Educational Resources Information Center
Jacquot, J. P.; Finance, J. P.
1990-01-01
Thirteen trends in university computer system development are identified, system user requirements are analyzed, critical system qualities are outlined, and three options for organizing a computer system are presented. The three systems include a centralized network, local network, and federation of local networks. (MSE)
Planton, Samuel; Jucla, Mélanie; Roux, Franck-Emmanuel; Démonet, Jean-François
2013-01-01
Handwriting is a modality of language production whose cerebral substrates remain poorly known although the existence of specific regions is postulated. The description of brain damaged patients with agraphia and, more recently, several neuroimaging studies suggest the involvement of different brain regions. However, results vary with the methodological choices made and may not always discriminate between "writing-specific" and motor or linguistic processes shared with other abilities. We used the "Activation Likelihood Estimate" (ALE) meta-analytical method to identify the cerebral network of areas commonly activated during handwriting in 18 neuroimaging studies published in the literature. Included contrasts were also classified according to the control tasks used, whether non-specific motor/output-control or linguistic/input-control. These data were included in two secondary meta-analyses in order to reveal the functional role of the different areas of this network. An extensive, mainly left-hemisphere network of 12 cortical and sub-cortical areas was obtained; three of which were considered as primarily writing-specific (left superior frontal sulcus/middle frontal gyrus area, left intraparietal sulcus/superior parietal area, right cerebellum) while others related rather to non-specific motor (primary motor and sensorimotor cortex, supplementary motor area, thalamus and putamen) or linguistic processes (ventral premotor cortex, posterior/inferior temporal cortex). This meta-analysis provides a description of the cerebral network of handwriting as revealed by various types of neuroimaging experiments and confirms the crucial involvement of the left frontal and superior parietal regions. These findings provide new insights into cognitive processes involved in handwriting and their cerebral substrates. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Khan, Akhtar Nawaz
2017-11-01
Currently, analytical models are used to compute approximate blocking probabilities in opaque and all-optical WDM networks with the homogeneous link capacities. Existing analytical models can also be extended to opaque WDM networking with heterogeneous link capacities due to the wavelength conversion at each switch node. However, existing analytical models cannot be utilized for all-optical WDM networking with heterogeneous structure of link capacities due to the wavelength continuity constraint and unequal numbers of wavelength channels on different links. In this work, a mathematical model is extended for computing approximate network blocking probabilities in heterogeneous all-optical WDM networks in which the path blocking is dominated by the link along the path with fewer number of wavelength channels. A wavelength assignment scheme is also proposed for dynamic traffic, termed as last-fit-first wavelength assignment, in which a wavelength channel with maximum index is assigned first to a lightpath request. Due to heterogeneous structure of link capacities and the wavelength continuity constraint, the wavelength channels with maximum indexes are utilized for minimum hop routes. Similarly, the wavelength channels with minimum indexes are utilized for multi-hop routes between source and destination pairs. The proposed scheme has lower blocking probability values compared to the existing heuristic for wavelength assignments. Finally, numerical results are computed in different network scenarios which are approximately equal to values obtained from simulations. Since January 2016, he is serving as Head of Department and an Assistant Professor in the Department of Electrical Engineering at UET, Peshawar-Jalozai Campus, Pakistan. From May 2013 to June 2015, he served Department of Telecommunication Engineering as an Assistant Professor at UET, Peshawar-Mardan Campus, Pakistan. He also worked as an International Internship scholar in the Fukuda Laboratory, National Institute of Informatics, Tokyo, Japan on the topic large-scale simulation for internet topology analysis. His research interests include design and analysis of optical WDM networks, network algorithms, network routing, and network resource optimization problems.
Nepusz, Tamás; Petróczi, Andrea; Naughton, Declan P.
2012-01-01
Background The globalization of food supply necessitates continued advances in regulatory control measures to ensure that citizens enjoy safe and adequate nutrition. The aim of this study was to extend previous reports on network analysis relating to food notifications by including an optional filter by type of notification and in cases of contamination, by type of contaminant in the notified foodstuff. Methodology/Principal Findings A filter function has been applied to enable processing of selected notifications by contaminant or type of notification to i) capture complexity, ii) analyze trends, and iii) identify patterns of reporting activities between countries. The program rapidly assesses nations' roles as transgressor and/or detector for each category of contaminant and for the key class of border rejection. In the open access demonstration version, the majority of notifications in the Rapid Alert System for Food and Feed were categorized by contaminant type as mycotoxin (50.4%), heavy metals (10.9%) or bacteria (20.3%). Examples are given demonstrating how network analytical approaches complement, and in some cases supersede, descriptive statistics such as frequency counts, which may give limited or potentially misleading information. One key feature is that network analysis takes the relationship between transgressor and detector countries, along with number of reports and impact simultaneously into consideration. Furhermore, the indices that compliment the network maps and reflect each country's transgressor and detector activities allow comparisons to be made between (transgressing vs. detecting) as well as within (e.g. transgressing) activities. Conclusions/significance This further development of the network analysis approach to food safety contributes to a better understanding of the complexity of the effort ensuring food is safe for consumption in the European Union. The unique patterns of the interplay between detectors and transgressors, instantly revealed by our approach, could supplement the intelligence gathered by regulatory authorities and inform risk based sampling protocols. PMID:22530063
Nepusz, Tamás; Petróczi, Andrea; Naughton, Declan P
2012-01-01
The globalization of food supply necessitates continued advances in regulatory control measures to ensure that citizens enjoy safe and adequate nutrition. The aim of this study was to extend previous reports on network analysis relating to food notifications by including an optional filter by type of notification and in cases of contamination, by type of contaminant in the notified foodstuff. A filter function has been applied to enable processing of selected notifications by contaminant or type of notification to i) capture complexity, ii) analyze trends, and iii) identify patterns of reporting activities between countries. The program rapidly assesses nations' roles as transgressor and/or detector for each category of contaminant and for the key class of border rejection. In the open access demonstration version, the majority of notifications in the Rapid Alert System for Food and Feed were categorized by contaminant type as mycotoxin (50.4%), heavy metals (10.9%) or bacteria (20.3%). Examples are given demonstrating how network analytical approaches complement, and in some cases supersede, descriptive statistics such as frequency counts, which may give limited or potentially misleading information. One key feature is that network analysis takes the relationship between transgressor and detector countries, along with number of reports and impact simultaneously into consideration. Furhermore, the indices that compliment the network maps and reflect each country's transgressor and detector activities allow comparisons to be made between (transgressing vs. detecting) as well as within (e.g. transgressing) activities. This further development of the network analysis approach to food safety contributes to a better understanding of the complexity of the effort ensuring food is safe for consumption in the European Union. The unique patterns of the interplay between detectors and transgressors, instantly revealed by our approach, could supplement the intelligence gathered by regulatory authorities and inform risk based sampling protocols.
Kim, Hongkeun
2016-01-08
It remains unclear whether and to what extent the default network subregions involved in episodic memory (EM) and semantic memory (SM) processes overlap or are separated from one another. This study addresses this issue through a controlled meta-analysis of functional neuroimaging studies involving healthy participants. Various EM and SM task paradigms differ widely in the extent of default network involvement. Therefore, the issue at hand cannot be properly addressed without some control for this factor. In this regard, this study employs a two-stage analysis: a preliminary meta-analysis to select EM and SM task paradigms that recruit relatively extensive default network regions and a main analysis to compare the selected task paradigms. Based on a within-EM comparison, the default network contributed more to recollection/familiarity effects than to old/new effects, and based on a within-SM comparison, it contributed more to word/pseudoword effects than to semantic/phonological effects. According to a direct comparison of recollection/familiarity and word/pseudoword effects, each involving a range of default network regions, there were more overlaps than separations in default network subregions involved in these two effects. More specifically, overlaps included the bilateral posterior cingulate/retrosplenial cortex, left inferior parietal lobule, and left anteromedial prefrontal regions, whereas separations included only the hippocampal formation and the parahippocampal cortex region, which was unique to recollection/familiarity effects. These results indicate that EM and SM retrieval processes involving strong memory signals recruit extensive and largely overlapping default network regions and differ mainly in distinct contributions of hippocampus and parahippocampal regions to EM retrieval. Copyright © 2015 Elsevier Ltd. All rights reserved.
On Modeling Eavesdropping Attacks in Underwater Acoustic Sensor Networks †
Wang, Qiu; Dai, Hong-Ning; Li, Xuran; Wang, Hao; Xiao, Hong
2016-01-01
The security and privacy of underwater acoustic sensor networks has received extensive attention recently due to the proliferation of underwater activities. This paper proposes an analytical model to investigate the eavesdropping attacks in underwater acoustic sensor networks. Our analytical framework considers the impacts of various underwater acoustic channel conditions (such as the acoustic signal frequency, spreading factor and wind speed) and different hydrophones (isotropic hydrophones and array hydrophones) in terms of network nodes and eavesdroppers. We also conduct extensive simulations to evaluate the effectiveness and the accuracy of our proposed model. Empirical results show that our proposed model is quite accurate. In addition, our results also imply that the eavesdropping probability heavily depends on both the underwater acoustic channel conditions and the features of hydrophones. PMID:27213379
Aarsand, Aasne K; Villanger, Jørild H; Støle, Egil; Deybach, Jean-Charles; Marsden, Joanne; To-Figueras, Jordi; Badminton, Mike; Elder, George H; Sandberg, Sverre
2011-11-01
The porphyrias are a group of rare metabolic disorders whose diagnosis depends on identification of specific patterns of porphyrin precursor and porphyrin accumulation in urine, blood, and feces. Diagnostic tests for porphyria are performed by specialized laboratories in many countries. Data regarding the analytical and diagnostic performance of these laboratories are scarce. We distributed 5 sets of multispecimen samples from different porphyria patients accompanied by clinical case histories to 18-21 European specialist porphyria laboratories/centers as part of a European Porphyria Network organized external analytical and postanalytical quality assessment (EQA) program. The laboratories stated which analyses they would normally have performed given the case histories and reported results of all porphyria-related analyses available, interpretative comments, and diagnoses. Reported diagnostic strategies initially showed considerable diversity, but the number of laboratories applying adequate diagnostic strategies increased during the study period. We found an average interlaboratory CV of 50% (range 12%-152%) for analytes in absolute concentrations. Result normalization by forming ratios to the upper reference limits did not reduce this variation. Sixty-five percent of reported results were within biological variation-based analytical quality specifications. Clinical interpretation of the obtained analytical results was accurate, and most laboratories established the correct diagnosis in all distributions. Based on a case-based EQA scheme, variations were apparent in analytical and diagnostic performance between European specialist porphyria laboratories. Our findings reinforce the use of EQA schemes as an essential tool to assess both analytical and diagnostic processes and thereby to improve patient care in rare diseases.
Interactive entity resolution in relational data: a visual analytic tool and its evaluation.
Kang, Hyunmo; Getoor, Lise; Shneiderman, Ben; Bilgic, Mustafa; Licamele, Louis
2008-01-01
Databases often contain uncertain and imprecise references to real-world entities. Entity resolution, the process of reconciling multiple references to underlying real-world entities, is an important data cleaning process required before accurate visualization or analysis of the data is possible. In many cases, in addition to noisy data describing entities, there is data describing the relationships among the entities. This relational data is important during the entity resolution process; it is useful both for the algorithms which determine likely database references to be resolved and for visual analytic tools which support the entity resolution process. In this paper, we introduce a novel user interface, D-Dupe, for interactive entity resolution in relational data. D-Dupe effectively combines relational entity resolution algorithms with a novel network visualization that enables users to make use of an entity's relational context for making resolution decisions. Since resolution decisions often are interdependent, D-Dupe facilitates understanding this complex process through animations which highlight combined inferences and a history mechanism which allows users to inspect chains of resolution decisions. An empirical study with 12 users confirmed the benefits of the relational context visualization on the performance of entity resolution tasks in relational data in terms of time as well as users' confidence and satisfaction.
Motion control in free-standing shape-memory actuators
NASA Astrophysics Data System (ADS)
Belmonte, Alberto; Lama, Giuseppe C.; Cerruti, Pierfrancesco; Ambrogi, Veronica; Fernández-Francos, Xavier; De la Flor, Silvia
2018-07-01
In this work, free-standing shape-memory thermally triggered actuators are developed by laminating ‘thiol-epoxy’-based glassy thermoset (GT) and stretched liquid-crystalline network (LCN) films. A sequential curing process was used to obtain GTs with tailored thermomechanical properties and network relaxation dynamics, and also to assemble the final actuator. The actuation extent, rate and time were studied by varying the GT and the heating rate in thermo-actuation with an experimental approach. The results demonstrate that it is possible to tailor the actuation rate and time by designing GT materials with a glass transition temperature close to that of the liquid-crystalline-to-isotropic phase transition of the LCN, thus making it possible to couple the two processes. Such coupling is also possible in rapid heating processes even when the glass transition temperature of the GT is clearly lower than the isotropization temperature of the LCN, depending on the network relaxation dynamics of the GT and the presence of thermal gradients within the actuators. Interestingly, varying the GT network relaxation dynamics does not affect the actuation extent. As predicted by the analytical model developed in our previous work, the modulus of the GT layer is mainly responsible for the actuation extent. Finally, to demonstrate the enhanced control of the actuation, specifically designed actuators were assembled in a three-dimensional actuating device able to make complex motions (including ‘S-type’ bending). This approach makes it possible to engineer advanced functional materials for application in self-adaptable structures and soft robotics.
Ma, Chuang; Xin, Mingming; Feldmann, Kenneth A.; Wang, Xiangfeng
2014-01-01
Machine learning (ML) is an intelligent data mining technique that builds a prediction model based on the learning of prior knowledge to recognize patterns in large-scale data sets. We present an ML-based methodology for transcriptome analysis via comparison of gene coexpression networks, implemented as an R package called machine learning–based differential network analysis (mlDNA) and apply this method to reanalyze a set of abiotic stress expression data in Arabidopsis thaliana. The mlDNA first used a ML-based filtering process to remove nonexpressed, constitutively expressed, or non-stress-responsive “noninformative” genes prior to network construction, through learning the patterns of 32 expression characteristics of known stress-related genes. The retained “informative” genes were subsequently analyzed by ML-based network comparison to predict candidate stress-related genes showing expression and network differences between control and stress networks, based on 33 network topological characteristics. Comparative evaluation of the network-centric and gene-centric analytic methods showed that mlDNA substantially outperformed traditional statistical testing–based differential expression analysis at identifying stress-related genes, with markedly improved prediction accuracy. To experimentally validate the mlDNA predictions, we selected 89 candidates out of the 1784 predicted salt stress–related genes with available SALK T-DNA mutagenesis lines for phenotypic screening and identified two previously unreported genes, mutants of which showed salt-sensitive phenotypes. PMID:24520154
Validation of the SINDA/FLUINT code using several analytical solutions
NASA Technical Reports Server (NTRS)
Keller, John R.
1995-01-01
The Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA/FLUINT) code has often been used to determine the transient and steady-state response of various thermal and fluid flow networks. While this code is an often used design and analysis tool, the validation of this program has been limited to a few simple studies. For the current study, the SINDA/FLUINT code was compared to four different analytical solutions. The thermal analyzer portion of the code (conduction and radiative heat transfer, SINDA portion) was first compared to two separate solutions. The first comparison examined a semi-infinite slab with a periodic surface temperature boundary condition. Next, a small, uniform temperature object (lumped capacitance) was allowed to radiate to a fixed temperature sink. The fluid portion of the code (FLUINT) was also compared to two different analytical solutions. The first study examined a tank filling process by an ideal gas in which there is both control volume work and heat transfer. The final comparison considered the flow in a pipe joining two infinite reservoirs of pressure. The results of all these studies showed that for the situations examined here, the SINDA/FLUINT code was able to match the results of the analytical solutions.
Temporal dynamics of connectivity and epidemic properties of growing networks
NASA Astrophysics Data System (ADS)
Fotouhi, Babak; Shirkoohi, Mehrdad Khani
2016-01-01
Traditional mathematical models of epidemic disease had for decades conventionally considered static structure for contacts. Recently, an upsurge of theoretical inquiry has strived towards rendering the models more realistic by incorporating the temporal aspects of networks of contacts, societal and online, that are of interest in the study of epidemics (and other similar diffusion processes). However, temporal dynamics have predominantly focused on link fluctuations and nodal activities, and less attention has been paid to the growth of the underlying network. Many real networks grow: Online networks are evidently in constant growth, and societal networks can grow due to migration flux and reproduction. The effect of network growth on the epidemic properties of networks is hitherto unknown, mainly due to the predominant focus of the network growth literature on the so-called steady state. This paper takes a step towards alleviating this gap. We analytically study the degree dynamics of a given arbitrary network that is subject to growth. We use the theoretical findings to predict the epidemic properties of the network as a function of time. We observe that the introduction of new individuals into the network can enhance or diminish its resilience against endemic outbreaks and investigate how this regime shift depends upon the connectivity of newcomers and on how they establish connections to existing nodes. Throughout, theoretical findings are corroborated with Monte Carlo simulations over synthetic and real networks. The results shed light on the effects of network growth on the future epidemic properties of networks and offers insights for devising a priori immunization strategies.
Enhanced storage capacity with errors in scale-free Hopfield neural networks: An analytical study.
Kim, Do-Hyun; Park, Jinha; Kahng, Byungnam
2017-01-01
The Hopfield model is a pioneering neural network model with associative memory retrieval. The analytical solution of the model in mean field limit revealed that memories can be retrieved without any error up to a finite storage capacity of O(N), where N is the system size. Beyond the threshold, they are completely lost. Since the introduction of the Hopfield model, the theory of neural networks has been further developed toward realistic neural networks using analog neurons, spiking neurons, etc. Nevertheless, those advances are based on fully connected networks, which are inconsistent with recent experimental discovery that the number of connections of each neuron seems to be heterogeneous, following a heavy-tailed distribution. Motivated by this observation, we consider the Hopfield model on scale-free networks and obtain a different pattern of associative memory retrieval from that obtained on the fully connected network: the storage capacity becomes tremendously enhanced but with some error in the memory retrieval, which appears as the heterogeneity of the connections is increased. Moreover, the error rates are also obtained on several real neural networks and are indeed similar to that on scale-free model networks.
Analytical approach to cross-layer protocol optimization in wireless sensor networks
NASA Astrophysics Data System (ADS)
Hortos, William S.
2008-04-01
In the distributed operations of route discovery and maintenance, strong interaction occurs across mobile ad hoc network (MANET) protocol layers. Quality of service (QoS) requirements of multimedia service classes must be satisfied by the cross-layer protocol, along with minimization of the distributed power consumption at nodes and along routes to battery-limited energy constraints. In previous work by the author, cross-layer interactions in the MANET protocol are modeled in terms of a set of concatenated design parameters and associated resource levels by multivariate point processes (MVPPs). Determination of the "best" cross-layer design is carried out using the optimal control of martingale representations of the MVPPs. In contrast to the competitive interaction among nodes in a MANET for multimedia services using limited resources, the interaction among the nodes of a wireless sensor network (WSN) is distributed and collaborative, based on the processing of data from a variety of sensors at nodes to satisfy common mission objectives. Sensor data originates at the nodes at the periphery of the WSN, is successively transported to other nodes for aggregation based on information-theoretic measures of correlation and ultimately sent as information to one or more destination (decision) nodes. The "multimedia services" in the MANET model are replaced by multiple types of sensors, e.g., audio, seismic, imaging, thermal, etc., at the nodes; the QoS metrics associated with MANETs become those associated with the quality of fused information flow, i.e., throughput, delay, packet error rate, data correlation, etc. Significantly, the essential analytical approach to MANET cross-layer optimization, now based on the MVPPs for discrete random events occurring in the WSN, can be applied to develop the stochastic characteristics and optimality conditions for cross-layer designs of sensor network protocols. Functional dependencies of WSN performance metrics are described in terms of the concatenated protocol parameters. New source-to-destination routes are sought that optimize cross-layer interdependencies to achieve the "best available" performance in the WSN. The protocol design, modified from a known reactive protocol, adapts the achievable performance to the transient network conditions and resource levels. Control of network behavior is realized through the conditional rates of the MVPPs. Optimal cross-layer protocol parameters are determined by stochastic dynamic programming conditions derived from models of transient packetized sensor data flows. Moreover, the defining conditions for WSN configurations, grouping sensor nodes into clusters and establishing data aggregation at processing nodes within those clusters, lead to computationally tractable solutions to the stochastic differential equations that describe network dynamics. Closed-form solution characteristics provide an alternative to the "directed diffusion" methods for resource-efficient WSN protocols published previously by other researchers. Performance verification of the resulting cross-layer designs is found by embedding the optimality conditions for the protocols in actual WSN scenarios replicated in a wireless network simulation environment. Performance tradeoffs among protocol parameters remain for a sequel to the paper.
Application of stochastic processes in random growth and evolutionary dynamics
NASA Astrophysics Data System (ADS)
Oikonomou, Panagiotis
We study the effect of power-law distributed randomness on the dynamical behavior of processes such as stochastic growth patterns and evolution. First, we examine the geometrical properties of random shapes produced by a generalized stochastic Loewner Evolution driven by a superposition of a Brownian motion and a stable Levy process. The situation is defined by the usual stochastic Loewner Evolution parameter, kappa, as well as alpha which defines the power-law tail of the stable Levy distribution. We show that the properties of these patterns change qualitatively and singularly at critical values of kappa and alpha. It is reasonable to call such changes "phase transitions". These transitions occur as kappa passes through four and as alpha passes through one. Numerical simulations are used to explore the global scaling behavior of these patterns in each "phase". We show both analytically and numerically that the growth continues indefinitely in the vertical direction for alpha greater than 1, goes as logarithmically with time for alpha equals to 1, and saturates for alpha smaller than 1. The probability density has two different scales corresponding to directions along and perpendicular to the boundary. Scaling functions for the probability density are given for various limiting cases. Second, we study the effect of the architecture of biological networks on their evolutionary dynamics. In recent years, studies of the architecture of large networks have unveiled a common topology, called scale-free, in which a majority of the elements are poorly connected except for a small fraction of highly connected components. We ask how networks with distinct topologies can evolve towards a pre-established target phenotype through a process of random mutations and selection. We use networks of Boolean components as a framework to model a large class of phenotypes. Within this approach, we find that homogeneous random networks and scale-free networks exhibit drastically different evolutionary paths. While homogeneous random networks accumulate neutral mutations and evolve by sparse punctuated steps, scale-free networks evolve rapidly and continuously towards the target phenotype. Moreover, we show that scale-free networks always evolve faster than homogeneous random networks; remarkably, this property does not depend on the precise value of the topological parameter. By contrast, homogeneous random networks require a specific tuning of their topological parameter in order to optimize their fitness. This model suggests that the evolutionary paths of biological networks, punctuated or continuous, may solely be determined by the network topology.
Impact of Cross-Tie Properties on the Modal Behavior of Cable Networks on Cable-Stayed Bridges
Ahmad, Javaid; Ghrib, Faouzi
2015-01-01
Dynamic behaviour of cable networks is highly dependent on the installation location, stiffness, and damping of cross-ties. Thus, these are the important design parameters for a cable network. While the effects of the former two on the network response have been investigated to some extent in the past, the impact of cross-tie damping has rarely been addressed. To comprehend our knowledge of mechanics associated with cable networks, in the current study, an analytical model of a cable network will be proposed by taking into account both cross-tie stiffness and damping. In addition, the damping property of main cables in the network will also be considered in the formulation. This would allow exploring not only the effectiveness of a cross-tie design on enhancing the in-plane stiffness of a constituted cable network, but also its energy dissipation capacity. The proposed analytical model will be applied to networks with different configurations. The influence of cross-tie stiffness and damping on the modal response of various types of networks will be investigated by using the corresponding undamped rigid cross-tie network as a reference base. Results will provide valuable information on the selection of cross-tie properties to achieve more effective cable vibration control. PMID:26167539
Impact of Cross-Tie Properties on the Modal Behavior of Cable Networks on Cable-Stayed Bridges.
Ahmad, Javaid; Cheng, Shaohong; Ghrib, Faouzi
2015-01-01
Dynamic behaviour of cable networks is highly dependent on the installation location, stiffness, and damping of cross-ties. Thus, these are the important design parameters for a cable network. While the effects of the former two on the network response have been investigated to some extent in the past, the impact of cross-tie damping has rarely been addressed. To comprehend our knowledge of mechanics associated with cable networks, in the current study, an analytical model of a cable network will be proposed by taking into account both cross-tie stiffness and damping. In addition, the damping property of main cables in the network will also be considered in the formulation. This would allow exploring not only the effectiveness of a cross-tie design on enhancing the in-plane stiffness of a constituted cable network, but also its energy dissipation capacity. The proposed analytical model will be applied to networks with different configurations. The influence of cross-tie stiffness and damping on the modal response of various types of networks will be investigated by using the corresponding undamped rigid cross-tie network as a reference base. Results will provide valuable information on the selection of cross-tie properties to achieve more effective cable vibration control.
Average Throughput Performance of Myopic Policy in Energy Harvesting Wireless Sensor Networks.
Gul, Omer Melih; Demirekler, Mubeccel
2017-09-26
This paper considers a single-hop wireless sensor network where a fusion center collects data from M energy harvesting wireless sensors. The harvested energy is stored losslessly in an infinite-capacity battery at each sensor. In each time slot, the fusion center schedules K sensors for data transmission over K orthogonal channels. The fusion center does not have direct knowledge on the battery states of sensors, or the statistics of their energy harvesting processes. The fusion center only has information of the outcomes of previous transmission attempts. It is assumed that the sensors are data backlogged, there is no battery leakage and the communication is error-free. An energy harvesting sensor can transmit data to the fusion center whenever being scheduled only if it has enough energy for data transmission. We investigate average throughput of Round-Robin type myopic policy both analytically and numerically under an average reward (throughput) criterion. We show that Round-Robin type myopic policy achieves optimality for some class of energy harvesting processes although it is suboptimal for a broad class of energy harvesting processes.
Analytic study of small scale structure on cosmic strings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polchinski, Joseph; Rocha, Jorge V.; Department of Physics, University of California, Santa Barbara, California 93106
2006-10-15
The properties of string networks at scales well below the horizon are poorly understood, but they enter critically into many observables. We argue that in some regimes, stretching will be the only relevant process governing the evolution. In this case, the string two-point function is determined up to normalization: the fractal dimension approaches one at short distance, but the rate of approach is characterized by an exponent that plays an essential role in network properties. The smoothness at short distance implies, for example, that cosmic string lensing images are almost undistorted. We then add in loop production as a perturbationmore » and find that it diverges at small scales. This need not invalidate the stretching model, since the loop production occurs in localized regions, but it implies a complicated fragmentation process. Our ability to model this process is limited, but we argue that loop production peaks a few orders of magnitude below the horizon scale, without the inclusion of gravitational radiation. We find agreement with some features of simulations, and interesting discrepancies that must be resolved by future work.« less
Average Throughput Performance of Myopic Policy in Energy Harvesting Wireless Sensor Networks
Demirekler, Mubeccel
2017-01-01
This paper considers a single-hop wireless sensor network where a fusion center collects data from M energy harvesting wireless sensors. The harvested energy is stored losslessly in an infinite-capacity battery at each sensor. In each time slot, the fusion center schedules K sensors for data transmission over K orthogonal channels. The fusion center does not have direct knowledge on the battery states of sensors, or the statistics of their energy harvesting processes. The fusion center only has information of the outcomes of previous transmission attempts. It is assumed that the sensors are data backlogged, there is no battery leakage and the communication is error-free. An energy harvesting sensor can transmit data to the fusion center whenever being scheduled only if it has enough energy for data transmission. We investigate average throughput of Round-Robin type myopic policy both analytically and numerically under an average reward (throughput) criterion. We show that Round-Robin type myopic policy achieves optimality for some class of energy harvesting processes although it is suboptimal for a broad class of energy harvesting processes. PMID:28954420
Guise, Andy; Horyniak, Danielle; Melo, Jason; McNeil, Ryan; Werb, Dan
2017-12-01
Understanding the experience of initiating injection drug use and its social contexts is crucial to inform efforts to prevent transitions into this mode of drug consumption and support harm reduction. We reviewed and synthesized existing qualitative scientific literature systematically to identify the socio-structural contexts for, and experiences of, the initiation of injection drug use. We searched six databases (Medline, Embase, PsychINFO, CINAHL, IBSS and SSCI) systematically, along with a manual search, including key journals and subject experts. Peer-reviewed studies were included if they qualitatively explored experiences of or socio-structural contexts for injection drug use initiation. A thematic synthesis approach was used to identify descriptive and analytical themes throughout studies. From 1731 initial results, 41 studies reporting data from 1996 participants were included. We developed eight descriptive themes and two analytical (higher-order) themes. The first analytical theme focused on injecting initiation resulting from a social process enabled and constrained by socio-structural factors: social networks and individual interactions, socialization into drug-using identities and choices enabled and constrained by social context all combine to produce processes of injection initiation. The second analytical theme addressed pathways that explore varying meanings attached to injection initiation and how they link to social context: seeking pleasure, responses to increasing tolerance to drugs, securing belonging and identity and coping with pain and trauma. Qualitative research shows that injection drug use initiation has varying and distinct meanings for individuals involved and is a dynamic process shaped by social and structural factors. Interventions should therefore respond to the socio-structural influences on injecting drug use initiation by seeking to modify the contexts for initiation, rather than solely prioritizing the reduction of individual harms through behavior change. © 2017 Society for the Study of Addiction.
Hannigan, Geoffrey D.; Duhaime, Melissa B.; Koutra, Danai
2018-01-01
Viruses and bacteria are critical components of the human microbiome and play important roles in health and disease. Most previous work has relied on studying bacteria and viruses independently, thereby reducing them to two separate communities. Such approaches are unable to capture how these microbial communities interact, such as through processes that maintain community robustness or allow phage-host populations to co-evolve. We implemented a network-based analytical approach to describe phage-bacteria network diversity throughout the human body. We built these community networks using a machine learning algorithm to predict which phages could infect which bacteria in a given microbiome. Our algorithm was applied to paired viral and bacterial metagenomic sequence sets from three previously published human cohorts. We organized the predicted interactions into networks that allowed us to evaluate phage-bacteria connectedness across the human body. We observed evidence that gut and skin network structures were person-specific and not conserved among cohabitating family members. High-fat diets appeared to be associated with less connected networks. Network structure differed between skin sites, with those exposed to the external environment being less connected and likely more susceptible to network degradation by microbial extinction events. This study quantified and contrasted the diversity of virome-microbiome networks across the human body and illustrated how environmental factors may influence phage-bacteria interactive dynamics. This work provides a baseline for future studies to better understand system perturbations, such as disease states, through ecological networks. PMID:29668682
A Topological Criterion for Filtering Information in Complex Brain Networks
Latora, Vito; Chavez, Mario
2017-01-01
In many biological systems, the network of interactions between the elements can only be inferred from experimental measurements. In neuroscience, non-invasive imaging tools are extensively used to derive either structural or functional brain networks in-vivo. As a result of the inference process, we obtain a matrix of values corresponding to a fully connected and weighted network. To turn this into a useful sparse network, thresholding is typically adopted to cancel a percentage of the weakest connections. The structural properties of the resulting network depend on how much of the inferred connectivity is eventually retained. However, how to objectively fix this threshold is still an open issue. We introduce a criterion, the efficiency cost optimization (ECO), to select a threshold based on the optimization of the trade-off between the efficiency of a network and its wiring cost. We prove analytically and we confirm through numerical simulations that the connection density maximizing this trade-off emphasizes the intrinsic properties of a given network, while preserving its sparsity. Moreover, this density threshold can be determined a-priori, since the number of connections to filter only depends on the network size according to a power-law. We validate this result on several brain networks, from micro- to macro-scales, obtained with different imaging modalities. Finally, we test the potential of ECO in discriminating brain states with respect to alternative filtering methods. ECO advances our ability to analyze and compare biological networks, inferred from experimental data, in a fast and principled way. PMID:28076353
New solutions for climate network visualization
NASA Astrophysics Data System (ADS)
Nocke, Thomas; Buschmann, Stefan; Donges, Jonathan F.; Marwan, Norbert
2016-04-01
An increasing amount of climate and climate impact research methods deals with geo-referenced networks, including energy, trade, supply-chain, disease dissemination and climatic tele-connection networks. At the same time, the size and complexity of these networks increases, resulting in networks of more than hundred thousand or even millions of edges, which are often temporally evolving, have additional data at nodes and edges, and can consist of multiple layers even in real 3D. This gives challenges to both the static representation and the interactive exploration of these networks, first of all avoiding edge clutter ("edge spagetti") and allowing interactivity even for unfiltered networks. Within this presentation, we illustrate potential solutions to these challenges. Therefore, we give a glimpse on a questionnaire performed with climate and complex system scientists with respect to their network visualization requirements, and on a review of available state-of-the-art visualization techniques and tools for this purpose (see as well Nocke et al., 2015). In the main part, we present alternative visualization solutions for several use cases (global, regional, and multi-layered climate networks) including alternative geographic projections, edge bundling, and 3-D network support (based on CGV and GTX tools), and implementation details to reach interactive frame rates. References: Nocke, T., S. Buschmann, J. F. Donges, N. Marwan, H.-J. Schulz, and C. Tominski: Review: Visual analytics of climate networks, Nonlinear Processes in Geophysics, 22, 545-570, doi:10.5194/npg-22-545-2015, 2015
Hannigan, Geoffrey D; Duhaime, Melissa B; Koutra, Danai; Schloss, Patrick D
2018-04-01
Viruses and bacteria are critical components of the human microbiome and play important roles in health and disease. Most previous work has relied on studying bacteria and viruses independently, thereby reducing them to two separate communities. Such approaches are unable to capture how these microbial communities interact, such as through processes that maintain community robustness or allow phage-host populations to co-evolve. We implemented a network-based analytical approach to describe phage-bacteria network diversity throughout the human body. We built these community networks using a machine learning algorithm to predict which phages could infect which bacteria in a given microbiome. Our algorithm was applied to paired viral and bacterial metagenomic sequence sets from three previously published human cohorts. We organized the predicted interactions into networks that allowed us to evaluate phage-bacteria connectedness across the human body. We observed evidence that gut and skin network structures were person-specific and not conserved among cohabitating family members. High-fat diets appeared to be associated with less connected networks. Network structure differed between skin sites, with those exposed to the external environment being less connected and likely more susceptible to network degradation by microbial extinction events. This study quantified and contrasted the diversity of virome-microbiome networks across the human body and illustrated how environmental factors may influence phage-bacteria interactive dynamics. This work provides a baseline for future studies to better understand system perturbations, such as disease states, through ecological networks.
Environmental Response Laboratory Network (ERLN) Laboratory Requirements
The Environmental Response Laboratory Network requires its member labs follow specified quality systems, sample management, data reporting, and general, in order to ensure consistent analytical data of known and documented quality.
2015-03-26
1977. [29] J. D. Guzman, R. F. Deckro, M. J. Robbins, J. F. Morris and N. A. Ballester, “An Analytical Comparison of Social Network Measures,” IEEE...AN APPLICATION OF SOCIAL NETWORK ANALYSIS ON MILITARY STRATEGY, SYSTEM NETWORKS AND THE PHASES OF...subject to copyright protection in the United States. AFIT-ENS-MS-15-M-117 AN APPLICATION OF SOCIAL NETWORK ANALYSIS ON MILITARY STRATEGY
Language Networks as Complex Systems
ERIC Educational Resources Information Center
Lee, Max Kueiming; Ou, Sheue-Jen
2008-01-01
Starting in the late eighties, with a growing discontent with analytical methods in science and the growing power of computers, researchers began to study complex systems such as living organisms, evolution of genes, biological systems, brain neural networks, epidemics, ecology, economy, social networks, etc. In the early nineties, the research…
Characteristics of Effective Leadership Networks
ERIC Educational Resources Information Center
Leithwood, Kenneth; Azah, Vera Ndifor
2016-01-01
Purpose: The purpose of this paper is to inquire about the characteristics of effective school leadership networks and the contribution of such networks to the development of individual leaders' professional capacities. Design/methodology/approach: The study used path-analytic techniques with survey data provided by 450 school and district leaders…
Competing opinion diffusion on social networks.
Hu, Haibo
2017-11-01
Opinion competition is a common phenomenon in real life, such as with opinions on controversial issues or political candidates; however, modelling this competition remains largely unexplored. To bridge this gap, we propose a model of competing opinion diffusion on social networks taking into account degree-dependent fitness or persuasiveness. We study the combined influence of social networks, individual fitnesses and attributes, as well as mass media on people's opinions, and find that both social networks and mass media act as amplifiers in opinion diffusion, the amplifying effect of which can be quantitatively characterized. We analytically obtain the probability that each opinion will ultimately pervade the whole society when there are no committed people in networks, and the final proportion of each opinion at the steady state when there are committed people in networks. The results of numerical simulations show good agreement with those obtained through an analytical approach. This study provides insight into the collective influence of individual attributes, local social networks and global media on opinion diffusion, and contributes to a comprehensive understanding of competing diffusion behaviours in the real world.
Competing opinion diffusion on social networks
2017-01-01
Opinion competition is a common phenomenon in real life, such as with opinions on controversial issues or political candidates; however, modelling this competition remains largely unexplored. To bridge this gap, we propose a model of competing opinion diffusion on social networks taking into account degree-dependent fitness or persuasiveness. We study the combined influence of social networks, individual fitnesses and attributes, as well as mass media on people’s opinions, and find that both social networks and mass media act as amplifiers in opinion diffusion, the amplifying effect of which can be quantitatively characterized. We analytically obtain the probability that each opinion will ultimately pervade the whole society when there are no committed people in networks, and the final proportion of each opinion at the steady state when there are committed people in networks. The results of numerical simulations show good agreement with those obtained through an analytical approach. This study provides insight into the collective influence of individual attributes, local social networks and global media on opinion diffusion, and contributes to a comprehensive understanding of competing diffusion behaviours in the real world. PMID:29291101
Microelectromechanical Systems
NASA Technical Reports Server (NTRS)
Gabriel, Kaigham J.
1995-01-01
Micro-electromechanical systems (MEMS) is an enabling technology that merges computation and communication with sensing and actuation to change the way people and machines interact with the physical world. MEMS is a manufacturing technology that will impact widespread applications including: miniature inertial measurement measurement units for competent munitions and personal navigation; distributed unattended sensors; mass data storage devices; miniature analytical instruments; embedded pressure sensors; non-invasive biomedical sensors; fiber-optics components and networks; distributed aerodynamic control; and on-demand structural strength. The long term goal of ARPA's MEMS program is to merge information processing with sensing and actuation to realize new systems and strategies for both perceiving and controlling systems, processes, and the environment. The MEMS program has three major thrusts: advanced devices and processes, system design, and infrastructure.
Bolam, Bruce; McLean, Carl; Pennington, Andrew; Gillies, Pamela
2006-03-01
The present article presents an exploratory qualitative process evaluation study of 'Ambassador' participation in CityNet, an innovative information-communication technology-based (ICT) project that aims to build aspects of social capital and improve access to information and services among disadvantaged groups in Nottingham, UK. A purposive sample of 40 'Ambassadors' interviewees was gathered in three waves of data collection. The two emergent analytic themes highlighted how improvements in confidence, self-esteem and social networks produced via participation were mitigated by structural problems in devolving power within the project. This illustrates how concepts of power are important for understanding the process of health promotion interventions using new media.
NASA Astrophysics Data System (ADS)
Sobolevskaya, E. Yu; Glushkov, S. V.; Levchenko, N. G.; Orlov, A. P.
2018-05-01
The analysis of software intended for organizing and managing the processes of sea cargo transportation has been carried out. The shortcomings of information resources are presented, for the organization of work in the Arctic and Subarctic regions of the Far East: the lack of decision support systems, the lack of factor analysis to calculate the time and cost of delivery. The architecture of the module for calculating the effectiveness of the organization of sea cargo transportation has been developed. The simulation process has been considered, which is based on the neural network. The main classification factors with their weighting coefficients have been identified. The architecture of the neural network has been developed to calculate the efficiency of the organization of sea cargo transportation in Arctic conditions. The architecture of the intellectual system of organization of sea cargo transportation has been developed, taking into account the difficult navigation conditions in the Arctic. Its implementation will allow one to provide the management of the shipping company with predictive analytics; to support decision-making; to calculate the most efficient delivery route; to provide on demand online transportation forecast, to minimize the shipping cost, delays in transit, and risks to cargo safety.
Environmental Response Laboratory Network (ERLN) Overview
The Environmental Response Laboratory Network provides Federal, State, and local decision-makers with reliable, high quality analytical data used to identify chemical, biological, and radiological contaminants collected in support of response and cleanup.
NASA Astrophysics Data System (ADS)
Khotimah, Bain Khusnul; Irhamni, Firli; Kustiyahningsih, Yenny
2017-08-01
Business competition is one risk factor for Small and Medium Enterprises (SME) to set up good management in handling the risk of loss. This proposed research will look for criteria that influence the occurrence of damages based on data from by Cooperative and SME on Batik Madura. Method approach which used Fuzzy Analytic Network Process (FANP) as the weight of interest in decision support systems. Factor analysis of the level losses will influence the performance in the business sector. SWOT analysis combined with FANP method to determine the most appropriate development strategy to be applied industry. From the results of SWOT analysis and FANP, it was found the strategy of the best development to apply business strategy. The raw materials and human resources are available to increase the production capacity of the test results of SWOT analysis SME on Batik Madura. The result measurement of SME are always favourable the position, because the value is well resulted production and the amount is stable revenue which caused SME are in the first quadrant, so the power can exist take advantage of business opportunities. While the trial results of SWOT analysis on SME on Batik Madura in January and March are quadrant of second quadrant because of the number of defective products is quite produced, causing SME are under threat. But although SME suffer threats, SME still have strength on the amount of production and timely delivery.
Druka, Arnis; Druka, Ilze; Centeno, Arthur G; Li, Hongqiang; Sun, Zhaohui; Thomas, William T B; Bonar, Nicola; Steffenson, Brian J; Ullrich, Steven E; Kleinhofs, Andris; Wise, Roger P; Close, Timothy J; Potokina, Elena; Luo, Zewei; Wagner, Carola; Schweizer, Günther F; Marshall, David F; Kearsey, Michael J; Williams, Robert W; Waugh, Robbie
2008-11-18
A typical genetical genomics experiment results in four separate data sets; genotype, gene expression, higher-order phenotypic data and metadata that describe the protocols, processing and the array platform. Used in concert, these data sets provide the opportunity to perform genetic analysis at a systems level. Their predictive power is largely determined by the gene expression dataset where tens of millions of data points can be generated using currently available mRNA profiling technologies. Such large, multidimensional data sets often have value beyond that extracted during their initial analysis and interpretation, particularly if conducted on widely distributed reference genetic materials. Besides quality and scale, access to the data is of primary importance as accessibility potentially allows the extraction of considerable added value from the same primary dataset by the wider research community. Although the number of genetical genomics experiments in different plant species is rapidly increasing, none to date has been presented in a form that allows quick and efficient on-line testing for possible associations between genes, loci and traits of interest by an entire research community. Using a reference population of 150 recombinant doubled haploid barley lines we generated novel phenotypic, mRNA abundance and SNP-based genotyping data sets, added them to a considerable volume of legacy trait data and entered them into the GeneNetwork http://www.genenetwork.org. GeneNetwork is a unified on-line analytical environment that enables the user to test genetic hypotheses about how component traits, such as mRNA abundance, may interact to condition more complex biological phenotypes (higher-order traits). Here we describe these barley data sets and demonstrate some of the functionalities GeneNetwork provides as an easily accessible and integrated analytical environment for exploring them. By integrating barley genotypic, phenotypic and mRNA abundance data sets directly within GeneNetwork's analytical environment we provide simple web access to the data for the research community. In this environment, a combination of correlation analysis and linkage mapping provides the potential to identify and substantiate gene targets for saturation mapping and positional cloning. By integrating datasets from an unsequenced crop plant (barley) in a database that has been designed for an animal model species (mouse) with a well established genome sequence, we prove the importance of the concept and practice of modular development and interoperability of software engineering for biological data sets.
The VAST Challenge: History, Scope, and Outcomes: An introduction to the Special Issue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Kristin A.; Grinstein, Georges; Whiting, Mark A.
2014-10-01
Visual analytics aims to facilitate human insight from complex data via a combination of visual representations, interaction techniques, and supporting algorithms. To create new tools and techniques that achieve this goal requires that researchers have an understanding of analytical questions to be addressed, data that illustrates the complexities and ambiguities found in realistic analytic settings, and methods for evaluating whether the plausible insights are gained through use of the new methods. However, researchers do not, generally speaking, have access to analysts who can articulate their problems or operational data that is used for analysis. To fill this gap, the Visualmore » Analytics Science and Technology (VAST) Challenge has been held annually since 2006. The VAST Challenge provides an opportunity for researchers to experiment with realistic but not real problems, using realistic synthetic data with known events embedded. Since its inception, the VAST Challenge has evolved along with the visual analytics research community to pose more complex challenges, ranging from text analysis to video analysis to large scale network log analysis. The seven years of the VAST Challenge have seen advancements in research and development, education, evaluation, and in the challenge process itself. This special issue of Information Visualization highlights some of the noteworthy advancements in each of these areas. Some of these papers focus on important research questions related to the challenge itself, and other papers focus on innovative research that has been shaped by participation in the challenge. This paper describes the VAST Challenge process and benefits in detail. It also provides an introduction to and context for the remaining papers in the issue.« less
Visualization Techniques for Computer Network Defense
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaver, Justin M; Steed, Chad A; Patton, Robert M
2011-01-01
Effective visual analysis of computer network defense (CND) information is challenging due to the volume and complexity of both the raw and analyzed network data. A typical CND is comprised of multiple niche intrusion detection tools, each of which performs network data analysis and produces a unique alerting output. The state-of-the-practice in the situational awareness of CND data is the prevalent use of custom-developed scripts by Information Technology (IT) professionals to retrieve, organize, and understand potential threat events. We propose a new visual analytics framework, called the Oak Ridge Cyber Analytics (ORCA) system, for CND data that allows an operatormore » to interact with all detection tool outputs simultaneously. Aggregated alert events are presented in multiple coordinated views with timeline, cluster, and swarm model analysis displays. These displays are complemented with both supervised and semi-supervised machine learning classifiers. The intent of the visual analytics framework is to improve CND situational awareness, to enable an analyst to quickly navigate and analyze thousands of detected events, and to combine sophisticated data analysis techniques with interactive visualization such that patterns of anomalous activities may be more easily identified and investigated.« less
Preparation of stir bars for sorptive extraction using sol-gel technology.
Liu, Wenmin; Wang, Hanwen; Guan, Yafeng
2004-08-06
A sol-gel coating method for the preparation of extractive phase on bars used in sorptive microextraction is described. The extraction phase of poly(dimethylsiloxane) is partially crosslinked with the sol-gel network, and the most part is physically incorporated in the network. Three aging steps at different temperatures are applied to complete the crosslinking process. Thirty-micrometer-thick coating layer is obtained by one coating process. The improved coating shows good thermal stability up to 300 degrees C. Spiked aqueous samples containing n-alkanes, polycyclic aromatic hydrocarbons and organophosphorus pesticides were analyzed by using the sorptive bars and GC. The results demonstrate that it is suitable for both aploar and polar analytes. The detection limit for chrysene is 7.44 ng/L, 0.74 ng/L for C19 and 0.9 ng/L for phorate. The extraction equilibration can be reached in less than 15 min by supersonic extraction with the bars of 30 microm coating layer.
Gaussian process regression for sensor networks under localization uncertainty
Jadaliha, M.; Xu, Yunfei; Choi, Jongeun; Johnson, N.S.; Li, Weiming
2013-01-01
In this paper, we formulate Gaussian process regression with observations under the localization uncertainty due to the resource-constrained sensor networks. In our formulation, effects of observations, measurement noise, localization uncertainty, and prior distributions are all correctly incorporated in the posterior predictive statistics. The analytically intractable posterior predictive statistics are proposed to be approximated by two techniques, viz., Monte Carlo sampling and Laplace's method. Such approximation techniques have been carefully tailored to our problems and their approximation error and complexity are analyzed. Simulation study demonstrates that the proposed approaches perform much better than approaches without considering the localization uncertainty properly. Finally, we have applied the proposed approaches on the experimentally collected real data from a dye concentration field over a section of a river and a temperature field of an outdoor swimming pool to provide proof of concept tests and evaluate the proposed schemes in real situations. In both simulation and experimental results, the proposed methods outperform the quick-and-dirty solutions often used in practice.
The Impact of Heterogeneity and Awareness in Modeling Epidemic Spreading on Multiplex Networks
Scatà, Marialisa; Di Stefano, Alessandro; Liò, Pietro; La Corte, Aurelio
2016-01-01
In the real world, dynamic processes involving human beings are not disjoint. To capture the real complexity of such dynamics, we propose a novel model of the coevolution of epidemic and awareness spreading processes on a multiplex network, also introducing a preventive isolation strategy. Our aim is to evaluate and quantify the joint impact of heterogeneity and awareness, under different socioeconomic conditions. Considering, as case study, an emerging public health threat, Zika virus, we introduce a data-driven analysis by exploiting multiple sources and different types of data, ranging from Big Five personality traits to Google Trends, related to different world countries where there is an ongoing epidemic outbreak. Our findings demonstrate how the proposed model allows delaying the epidemic outbreak and increasing the resilience of nodes, especially under critical economic conditions. Simulation results, using data-driven approach on Zika virus, which has a growing scientific research interest, are coherent with the proposed analytic model. PMID:27848978
Information Networks and Education: An Analytic Bibliography.
ERIC Educational Resources Information Center
Pritchard, Roger
This literature review presents a broad and overall perspective on the various kinds of information networks that will be useful to educators in developing nations. There are five sections to the essay. The first section cites and briefly describes the literature dealing with library, information, and computer networks. Sections two and three…
Who Is Supporting Homeless Youth? Predictors of Support in Personal Networks
ERIC Educational Resources Information Center
de la Haye, Kayla; Green, Harold D., Jr.; Kennedy, David P.; Zhou, Annie; Golinelli, Daniela; Wenzel, Suzanne L.; Tucker, Joan S.
2012-01-01
Homeless youth lack the traditional support networks of their housed peers, which increases their risk for poor health outcomes. Using a multilevel dyadic analytic approach, this study identified characteristics of social contacts, relationships, and social networks associated with the provision of tangible and emotional support to homeless youth…
Communication Network Analysis Methods.
ERIC Educational Resources Information Center
Farace, Richard V.; Mabee, Timothy
This paper reviews a variety of analytic procedures that can be applied to network data, discussing the assumptions and usefulness of each procedure when applied to the complexity of human communication. Special attention is paid to the network properties measured or implied by each procedure. Factor analysis and multidimensional scaling are among…
Insight in the Brain: The Cognitive and Neural Bases of Eureka Moments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beeman, Mark
Where do new ideas come from? Although all new ideas build on old, this can happen in different ways. Some new ideas, or solutions to old problems, are achieved through methodical, analytical processing. Other new ideas come about in a sudden burst of insight, often based on or generating a restructured view of the problem itself. Behavioral, brain imaging, and eye-tracking results all reveal distinct cortical networks contributing to insight solving, as contrasted with analytic solving. Consistently, the way in which people solve problems appears to relate to the way they engage attention and cognitive control: across time, across moods,more » and across individuals. Insight is favored when people can disengage from strong stimuli and associations - figuratively and literally looking "outside the box" of the problem to suddenly solve with a new idea.« less
25 years of HBM in the Czech Republic.
Černá, Milena; Puklová, Vladimíra; Hanzlíková, Lenka; Sochorová, Lenka; Kubínová, Růžena
2017-03-01
Since 1991 a human biomonitoring network has been established in the Czech Republic as part of the Environmental Health Monitoring System, which was set out by the Government Resolution. During the last quarter-century, important data was obtained to characterize exposure to both children and adult populations to significant toxic substances from the environment, to development trends over time, to establish reference values and compare them with existing health-related values. Moreover, the saturation of population with several essential substances as selenium, zinc, copper or iodine has also been monitored. Development of analytical and statistical methods led to increase the capacity building, improvement of QA/QC in analytical laboratories and interpretation of results. The obtained results are translated to policy actions and are used in health risk assessment processes at local and national levels. Copyright © 2016 Elsevier GmbH. All rights reserved.
Genome Scale Modeling in Systems Biology: Algorithms and Resources
Najafi, Ali; Bidkhori, Gholamreza; Bozorgmehr, Joseph H.; Koch, Ina; Masoudi-Nejad, Ali
2014-01-01
In recent years, in silico studies and trial simulations have complemented experimental procedures. A model is a description of a system, and a system is any collection of interrelated objects; an object, moreover, is some elemental unit upon which observations can be made but whose internal structure either does not exist or is ignored. Therefore, any network analysis approach is critical for successful quantitative modeling of biological systems. This review highlights some of most popular and important modeling algorithms, tools, and emerging standards for representing, simulating and analyzing cellular networks in five sections. Also, we try to show these concepts by means of simple example and proper images and graphs. Overall, systems biology aims for a holistic description and understanding of biological processes by an integration of analytical experimental approaches along with synthetic computational models. In fact, biological networks have been developed as a platform for integrating information from high to low-throughput experiments for the analysis of biological systems. We provide an overview of all processes used in modeling and simulating biological networks in such a way that they can become easily understandable for researchers with both biological and mathematical backgrounds. Consequently, given the complexity of generated experimental data and cellular networks, it is no surprise that researchers have turned to computer simulation and the development of more theory-based approaches to augment and assist in the development of a fully quantitative understanding of cellular dynamics. PMID:24822031
NASA Astrophysics Data System (ADS)
Huang, Guan-Rong; Saakian, David B.; Hu, Chin-Kun
2018-01-01
Studying gene regulation networks in a single cell is an important, interesting, and hot research topic of molecular biology. Such process can be described by chemical master equations (CMEs). We propose a Hamilton-Jacobi equation method with finite-size corrections to solve such CMEs accurately at the intermediate region of switching, where switching rate is comparable to fast protein production rate. We applied this approach to a model of self-regulating proteins [H. Ge et al., Phys. Rev. Lett. 114, 078101 (2015), 10.1103/PhysRevLett.114.078101] and found that as a parameter related to inducer concentration increases the probability of protein production changes from unimodal to bimodal, then to unimodal, consistent with phenotype switching observed in a single cell.
Practical skills of the future innovator
NASA Astrophysics Data System (ADS)
Kaurov, Vitaliy
2015-03-01
Physics graduates face and often are disoriented by the complex and turbulent world of startups, incubators, emergent technologies, big data, social network engineering, and so on. In order to build the curricula that foster the skills necessary to navigate this world, we will look at the experiences at the Wolfram Science Summer School that gathers annually international students for already more than a decade. We will look at the examples of projects and see the development of such skills as innovative thinking, data mining, machine learning, cloud technologies, device connectivity and the Internet of things, network analytics, geo-information systems, formalized computable knowledge, and the adjacent applied research skills from graph theory to image processing and beyond. This should give solid ideas to educators who will build standard curricula adapted for innovation and entrepreneurship education.
NASA Technical Reports Server (NTRS)
Hutto, Clayton; Briscoe, Erica; Trewhitt, Ethan
2012-01-01
Societal level macro models of social behavior do not sufficiently capture nuances needed to adequately represent the dynamics of person-to-person interactions. Likewise, individual agent level micro models have limited scalability - even minute parameter changes can drastically affect a model's response characteristics. This work presents an approach that uses agent-based modeling to represent detailed intra- and inter-personal interactions, as well as a system dynamics model to integrate societal-level influences via reciprocating functions. A Cognitive Network Model (CNM) is proposed as a method of quantitatively characterizing cognitive mechanisms at the intra-individual level. To capture the rich dynamics of interpersonal communication for the propagation of beliefs and attitudes, a Socio-Cognitive Network Model (SCNM) is presented. The SCNM uses socio-cognitive tie strength to regulate how agents influence--and are influenced by--one another's beliefs during social interactions. We then present experimental results which support the use of this network analytical approach, and we discuss its applicability towards characterizing and understanding human information processing.
Nonequilibrium dynamics of probe filaments in actin-myosin networks
NASA Astrophysics Data System (ADS)
Gladrow, J.; Broedersz, C. P.; Schmidt, C. F.
2017-08-01
Active dynamic processes of cells are largely driven by the cytoskeleton, a complex and adaptable semiflexible polymer network, motorized by mechanoenzymes. Small dimensions, confined geometries, and hierarchical structures make it challenging to probe dynamics and mechanical response of such networks. Embedded semiflexible probe polymers can serve as nonperturbing multiscale probes to detect force distributions in active polymer networks. We show here that motor-induced forces transmitted to the probe polymers are reflected in nonequilibrium bending dynamics, which we analyze in terms of spatial eigenmodes of an elastic beam under steady-state conditions. We demonstrate how these active forces induce correlations among the mode amplitudes, which furthermore break time-reversal symmetry. This leads to a breaking of detailed balance in this mode space. We derive analytical predictions for the magnitude of resulting probability currents in mode space in the white-noise limit of motor activity. We relate the structure of these currents to the spatial profile of motor-induced forces along the probe polymers and provide a general relation for observable currents on two-dimensional hyperplanes.
Deep learning and the electronic structure problem
NASA Astrophysics Data System (ADS)
Mills, Kyle; Spanner, Michael; Tamblyn, Isaac
In the past decade, the fields of artificial intelligence and computer vision have progressed remarkably. Supported by the enthusiasm of large tech companies, as well as significant hardware advances and the utilization of graphical processing units to accelerate computations, deep neural networks (DNN) are gaining momentum as a robust choice for many diverse machine learning applications. We have demonstrated the ability of a DNN to solve a quantum mechanical eigenvalue equation directly, without the need to compute a wavefunction, and without knowledge of the underlying physics. We have trained a convolutional neural network to predict the total energy of an electron in a confining, 2-dimensional electrostatic potential. We numerically solved the one-electron Schrödinger equation for millions of electrostatic potentials, and used this as training data for our neural network. Four classes of potentials were assessed: the canonical cases of the harmonic oscillator and infinite well, and two types of randomly generated potentials for which no analytic solution is known. We compare the performance of the neural network and consider how these results could lead to future advances in electronic structure theory.
Systemic risk in multiplex networks with asymmetric coupling and threshold feedback
NASA Astrophysics Data System (ADS)
Burkholz, Rebekka; Leduc, Matt V.; Garas, Antonios; Schweitzer, Frank
2016-06-01
We study cascades on a two-layer multiplex network, with asymmetric feedback that depends on the coupling strength between the layers. Based on an analytical branching process approximation, we calculate the systemic risk measured by the final fraction of failed nodes on a reference layer. The results are compared with the case of a single layer network that is an aggregated representation of the two layers. We find that systemic risk in the two-layer network is smaller than in the aggregated one only if the coupling strength between the two layers is small. Above a critical coupling strength, systemic risk is increased because of the mutual amplification of cascades in the two layers. We even observe sharp phase transitions in the cascade size that are less pronounced on the aggregated layer. Our insights can be applied to a scenario where firms decide whether they want to split their business into a less risky core business and a more risky subsidiary business. In most cases, this may lead to a drastic increase of systemic risk, which is underestimated in an aggregated approach.
NASA Astrophysics Data System (ADS)
Bazhin, V. Yu; Danilov, I. V.; Petrov, P. A.
2018-05-01
During the casting of light alloys and ligatures based on aluminum and magnesium, problems of the qualitative distribution of the metal and its crystallization in the mold arise. To monitor the defects of molds on the casting conveyor, a camera with a resolution of 780 x 580 pixels and a shooting rate of 75 frames per second was selected. Images of molds from casting machines were used as input data for neural network algorithm. On the preparation of a digital database and its analytical evaluation stage, the architecture of the convolutional neural network was chosen for the algorithm. The information flow from the local controller is transferred to the OPC server and then to the SCADA system of foundry. After the training, accuracy of neural network defect recognition was about 95.1% on a validation split. After the training, weight coefficients of the neural network were used on testing split and algorithm had identical accuracy with validation images. The proposed technical solutions make it possible to increase the efficiency of the automated process control system in the foundry by expanding the digital database.
NASA Astrophysics Data System (ADS)
Winey, Karen I.; Mutiso, Rose M.; Sherrott, Michelle C.; Rathmell, Aaron R.; Wiley, Benjamin J.
2013-03-01
Thin-film metal nanowire networks are being pursued as a viable alternative to the expensive and brittle indium tin oxide (ITO) for transparent conductors. For high performance applications, nanowire networks must exhibit high transmittance at low sheet resistance. Previously, we have used complimentary experimental, simulation and theoretical techniques to explore the effects of filler aspect ratio (L/D), orientation, and size-dispersity on the electrical conductivity of three-dimensional rod-networks in bulk polymer nanocomposites. We adapted our 3D simulation approach and analytical percolation model to study the electrical properties of thin-film rod-networks. By fitting our simulation results to experimental results, we determined the average effective contact resistance between silver nanowires. This contact resistance was then used to quantify how the sheet resistance depends on the aspect ratio of the rods and to show that networks made of nanowires with L/D greater than 100 yield sheet resistances lower than the required 100 Ohm/sq. We also report the critical area fraction of rods required to form a percolated network in thin-film networks and provide an analytical expression for the critical area fraction as a function of L/D.
Self-avoiding walks on scale-free networks
NASA Astrophysics Data System (ADS)
Herrero, Carlos P.
2005-01-01
Several kinds of walks on complex networks are currently used to analyze search and navigation in different systems. Many analytical and computational results are known for random walks on such networks. Self-avoiding walks (SAW’s) are expected to be more suitable than unrestricted random walks to explore various kinds of real-life networks. Here we study long-range properties of random SAW’s on scale-free networks, characterized by a degree distribution P (k) ˜ k-γ . In the limit of large networks (system size N→∞ ), the average number sn of SAW’s starting from a generic site increases as μn , with μ= < k2 > /
Schroder, L.J.; Brooks, M.H.; Malo, B.A.; Willoughby, T.C.
1986-01-01
Five intersite comparison studies for the field determination of pH and specific conductance, using simulated-precipitation samples, were conducted by the U.S.G.S. for the National Atmospheric Deposition Program and National Trends Network. These comparisons were performed to estimate the precision of pH and specific conductance determinations made by sampling-site operators. Simulated-precipitation samples were prepared from nitric acid and deionized water. The estimated standard deviation for site-operator determination of pH was 0.25 for pH values ranging from 3.79 to 4.64; the estimated standard deviation for specific conductance was 4.6 microsiemens/cm at 25 C for specific-conductance values ranging from 10.4 to 59.0 microsiemens/cm at 25 C. Performance-audit samples with known analyte concentrations were prepared by the U.S.G.S.and distributed to the National Atmospheric Deposition Program 's Central Analytical Laboratory. The differences between the National Atmospheric Deposition Program and national Trends Network-reported analyte concentrations and known analyte concentrations were calculated, and the bias and precision were determined. For 1983, concentrations of calcium, magnesium, sodium, and chloride were biased at the 99% confidence limit; concentrations of potassium and sulfate were unbiased at the 99% confidence limit. Four analytical laboratories routinely analyzing precipitation were evaluated in their analysis of identical natural- and simulated precipitation samples. Analyte bias for each laboratory was examined using analysis of variance coupled with Duncan 's multiple-range test on data produced by these laboratories, from the analysis of identical simulated-precipitation samples. Analyte precision for each laboratory has been estimated by calculating a pooled variance for each analyte. Interlaboratory comparability results may be used to normalize natural-precipitation chemistry data obtained from two or more of these laboratories. (Author 's abstract)
Analysis of latency performance of bluetooth low energy (BLE) networks.
Cho, Keuchul; Park, Woojin; Hong, Moonki; Park, Gisu; Cho, Wooseong; Seo, Jihoon; Han, Kijun
2014-12-23
Bluetooth Low Energy (BLE) is a short-range wireless communication technology aiming at low-cost and low-power communication. The performance evaluation of classical Bluetooth device discovery have been intensively studied using analytical modeling and simulative methods, but these techniques are not applicable to BLE, since BLE has a fundamental change in the design of the discovery mechanism, including the usage of three advertising channels. Recently, there several works have analyzed the topic of BLE device discovery, but these studies are still far from thorough. It is thus necessary to develop a new, accurate model for the BLE discovery process. In particular, the wide range settings of the parameters introduce lots of potential for BLE devices to customize their discovery performance. This motivates our study of modeling the BLE discovery process and performing intensive simulation. This paper is focused on building an analytical model to investigate the discovery probability, as well as the expected discovery latency, which are then validated via extensive experiments. Our analysis considers both continuous and discontinuous scanning modes. We analyze the sensitivity of these performance metrics to parameter settings to quantitatively examine to what extent parameters influence the performance metric of the discovery processes.
Analysis of Latency Performance of Bluetooth Low Energy (BLE) Networks
Cho, Keuchul; Park, Woojin; Hong, Moonki; Park, Gisu; Cho, Wooseong; Seo, Jihoon; Han, Kijun
2015-01-01
Bluetooth Low Energy (BLE) is a short-range wireless communication technology aiming at low-cost and low-power communication. The performance evaluation of classical Bluetooth device discovery have been intensively studied using analytical modeling and simulative methods, but these techniques are not applicable to BLE, since BLE has a fundamental change in the design of the discovery mechanism, including the usage of three advertising channels. Recently, there several works have analyzed the topic of BLE device discovery, but these studies are still far from thorough. It is thus necessary to develop a new, accurate model for the BLE discovery process. In particular, the wide range settings of the parameters introduce lots of potential for BLE devices to customize their discovery performance. This motivates our study of modeling the BLE discovery process and performing intensive simulation. This paper is focused on building an analytical model to investigate the discovery probability, as well as the expected discovery latency, which are then validated via extensive experiments. Our analysis considers both continuous and discontinuous scanning modes. We analyze the sensitivity of these performance metrics to parameter settings to quantitatively examine to what extent parameters influence the performance metric of the discovery processes. PMID:25545266
Novel insights into the architecture and protein interaction network of yeast eIF3.
Khoshnevis, Sohail; Hauer, Florian; Milón, Pohl; Stark, Holger; Ficner, Ralf
2012-12-01
Translation initiation in eukaryotes is a multistep process requiring the orchestrated interaction of several eukaryotic initiation factors (eIFs). The largest of these factors, eIF3, forms the scaffold for other initiation factors, promoting their binding to the 40S ribosomal subunit. Biochemical and structural studies on eIF3 need highly pure eIF3. However, natively purified eIF3 comprise complexes containing other proteins such as eIF5. Therefore we have established in vitro reconstitution protocols for Saccharomyces cerevisiae eIF3 using its five recombinantly expressed and purified subunits. This reconstituted eIF3 complex (eIF3(rec)) exhibits the same size and activity as the natively purified eIF3 (eIF3(nat)). The homogeneity and stoichiometry of eIF3(rec) and eIF3(nat) were confirmed by analytical size exclusion chromatography, mass spectrometry, and multi-angle light scattering, demonstrating the presence of one copy of each subunit in the eIF3 complex. The reconstituted and native eIF3 complexes were compared by single-particle electron microscopy showing a high degree of structural conservation. The interaction network between eIF3 proteins was studied by means of limited proteolysis, analytical size exclusion chromatography, in vitro binding assays, and isothermal titration calorimetry, unveiling distinct protein domains and subcomplexes that are critical for the integrity of the protein network in yeast eIF3. Taken together, the data presented here provide a novel procedure to obtain highly pure yeast eIF3, suitable for biochemical and structural analysis, in addition to a detailed picture of the network of protein interactions within this complex.
NASA Astrophysics Data System (ADS)
Doe, T.; McLaren, R.; Finilla, A.
2017-12-01
An enduring legacy of Paul Witherspoon and his students and colleagues has been both the development of geothermal energy and the bases of modern fractured-rock hydrogeology. One of the seminal contributions to the geothermal field was Gringarten, Witherspoon, and Ohnishi's analytical models for enhanced geothermal systems. Although discrete fracture network (DFN) modeling developed somewhat independently in the late 1970s, Paul Witherspoon's foresight in promoting underground in situ testing at the Stripa Mine in Sweden was a major driver in Lawrence Berkeley Laboratory's contributions to its development.This presentation looks extensions of Gringarten's analytical model into discrete fracture network modeling as a basis for providing further insights into the challenges and opportunities of engineered geothermal systems. The analytical solution itself has many insightful applications beyond those presented in the original paper. The definition of dimensionless time by itself shows that thermal breakthrough has a second power dependence on surface area and on flow rate. The fracture intensity also plays a strong role, as it both increases the surface area and decrease his flow rate per fracture. The improvement of EGS performance with fracture intensity reaches a limit where thermal depletion of the rock lags only slightly behind the thermal breakthrough of cold water in the fracture network.Simple network models, which couple a DFN generator (FracMan) with a hydrothermally coupled flow solver (HydroGeoSphere) expand on Gringarten's concepts to show that realistic heterogeneity of spacing and transmissivity significantly degrades EGS performance. EGS production in networks of stimulated fractures initially follows Gringarten's type curves, with a later deviation is the smaller rock blocks thermally deplete and the entire stimulated volume acts as a single sink. Three-dimensional models of EGS performance show the critical importance of the relative magnitudes of fluid pressure and stress gradients, preferential growth and aperture enhancement may change with depth creating preferential pathways through rock this cooler than the injection depth.
Statistical Physics of Cascading Failures in Complex Networks
NASA Astrophysics Data System (ADS)
Panduranga, Nagendra Kumar
Systems such as the power grid, world wide web (WWW), and internet are categorized as complex systems because of the presence of a large number of interacting elements. For example, the WWW is estimated to have a billion webpages and understanding the dynamics of such a large number of individual agents (whose individual interactions might not be fully known) is a challenging task. Complex network representations of these systems have proved to be of great utility. Statistical physics is the study of emergence of macroscopic properties of systems from the characteristics of the interactions between individual molecules. Hence, statistical physics of complex networks has been an effective approach to study these systems. In this dissertation, I have used statistical physics to study two distinct phenomena in complex systems: i) Cascading failures and ii) Shortest paths in complex networks. Understanding cascading failures is considered to be one of the "holy grails" in the study of complex systems such as the power grid, transportation networks, and economic systems. Studying failures of these systems as percolation on complex networks has proved to be insightful. Previously, cascading failures have been studied extensively using two different models: k-core percolation and interdependent networks. The first part of this work combines the two models into a general model, solves it analytically, and validates the theoretical predictions through extensive computer simulations. The phase diagram of the percolation transition has been systematically studied as one varies the average local k-core threshold and the coupling between networks. The phase diagram of the combined processes is very rich and includes novel features that do not appear in the models which study each of the processes separately. For example, the phase diagram consists of first- and second-order transition regions separated by two tricritical lines that merge together and enclose a two-stage transition region. In the two-stage transition, the size of the giant component undergoes a first-order jump at a certain occupation probability followed by a continuous second-order transition at a smaller occupation probability. Furthermore, at certain fixed interdependencies, the percolation transition cycles from first-order to second-order to two-stage to first-order as the k-core threshold is increased. We setup the analytical equations describing the phase boundaries of the two-stage transition region and we derive the critical exponents for each type of transition. Understanding the shortest paths between individual elements in systems like communication networks and social media networks is important in the study of information cascades in these systems. Often, large heterogeneity can be present in the connections between nodes in these networks. Certain sets of nodes can be more highly connected among themselves than with the nodes from other sets. These sets of nodes are often referred to as 'communities'. The second part of this work studies the effect of the presence of communities on the distribution of shortest paths in a network using a modular Erdős-Renyi network model. In this model, the number of communities and the degree of modularity of the network can be tuned using the parameters of the model. We find that the model reaches a percolation threshold while tuning the degree of modularity of the network and the distribution of the shortest paths in the network can be used as an indicator of how the communities are connected.
P³DB 3.0: From plant phosphorylation sites to protein networks.
Yao, Qiuming; Ge, Huangyi; Wu, Shangquan; Zhang, Ning; Chen, Wei; Xu, Chunhui; Gao, Jianjiong; Thelen, Jay J; Xu, Dong
2014-01-01
In the past few years, the Plant Protein Phosphorylation Database (P(3)DB, http://p3db.org) has become one of the most significant in vivo data resources for studying plant phosphoproteomics. We have substantially updated P(3)DB with respect to format, new datasets and analytic tools. In the P(3)DB 3.0, there are altogether 47 923 phosphosites in 16 477 phosphoproteins curated across nine plant organisms from 32 studies, which have met our multiple quality standards for acquisition of in vivo phosphorylation site data. Centralized by these phosphorylation data, multiple related data and annotations are provided, including protein-protein interaction (PPI), gene ontology, protein tertiary structures, orthologous sequences, kinase/phosphatase classification and Kinase Client Assay (KiC Assay) data--all of which provides context for the phosphorylation event. In addition, P(3)DB 3.0 incorporates multiple network viewers for the above features, such as PPI network, kinase-substrate network, phosphatase-substrate network, and domain co-occurrence network to help study phosphorylation from a systems point of view. Furthermore, the new P(3)DB reflects a community-based design through which users can share datasets and automate data depository processes for publication purposes. Each of these new features supports the goal of making P(3)DB a comprehensive, systematic and interactive platform for phosphoproteomics research.
Modelling conflicts with cluster dynamics in networks
NASA Astrophysics Data System (ADS)
Tadić, Bosiljka; Rodgers, G. J.
2010-12-01
We introduce cluster dynamical models of conflicts in which only the largest cluster can be involved in an action. This mimics the situations in which an attack is planned by a central body, and the largest attack force is used. We study the model in its annealed random graph version, on a fixed network, and on a network evolving through the actions. The sizes of actions are distributed with a power-law tail, however, the exponent is non-universal and depends on the frequency of actions and sparseness of the available connections between units. Allowing the network reconstruction over time in a self-organized manner, e.g., by adding the links based on previous liaisons between units, we find that the power-law exponent depends on the evolution time of the network. Its lower limit is given by the universal value 5/2, derived analytically for the case of random fragmentation processes. In the temporal patterns behind the size of actions we find long-range correlations in the time series of the number of clusters and the non-trivial distribution of time that a unit waits between two actions. In the case of an evolving network the distribution develops a power-law tail, indicating that through repeated actions, the system develops an internal structure with a hierarchy of units.
Predictive functional control for active queue management in congested TCP/IP networks.
Bigdeli, N; Haeri, M
2009-01-01
Predictive functional control (PFC) as a new active queue management (AQM) method in dynamic TCP networks supporting explicit congestion notification (ECN) is proposed. The ability of the controller in handling system delay along with its simplicity and low computational load makes PFC a privileged AQM method in the high speed networks. Besides, considering the disturbance term (which represents model/process mismatches, external disturbances, and existing noise) in the control formulation adds some level of robustness into the PFC-AQM controller. This is an important and desired property in the control of dynamically-varying computer networks. In this paper, the controller is designed based on a small signal linearized fluid-flow model of the TCP/AQM networks. Then, closed-loop transfer function representation of the system is derived to analyze the robustness with respect to the network and controller parameters. The analytical as well as the packet-level ns-2 simulation results show the out-performance of the developed controller for both queue regulation and resource utilization. Fast response, low queue fluctuations (and consequently low delay jitter), high link utilization, good disturbance rejection, scalability, and low packet marking probability are other features of the developed method with respect to other well-known AQM methods such as RED, PI, and REM which are also simulated for comparison.
Veronezi, Carlos Cassiano Denipotti; de Azevedo Simões, Priscyla Waleska Targino; Dos Santos, Robson Luiz; da Rocha, Edroaldo Lummertz; Meláo, Suelen; de Mattos, Merisandra Côrtes; Cechinel, Cristian
2011-01-01
To ascertain the advantages of applying artificial neural networks to recognize patterns on lumbar spine radiographies in order to aid in the process of diagnosing primary osteoarthritis. This was a cross-sectional descriptive analytical study with a quantitative approach and an emphasis on diagnosis. The training set was composed of images collected between January and July 2009 from patients who had undergone lateral-view digital radiographies of the lumbar spine, which were provided by a radiology clinic located in the municipality of Criciúma (SC). Out of the total of 260 images gathered, those with distortions, those presenting pathological conditions that altered the architecture of the lumbar spine and those with patterns that were difficult to characterize were discarded, resulting in 206 images. The image data base (n = 206) was then subdivided, resulting in 68 radiographies for the training stage, 68 images for tests and 70 for validation. A hybrid neural network based on Kohonen self-organizing maps and on Multilayer Perceptron networks was used. After 90 cycles, the validation was carried out on the best results, achieving accuracy of 62.85%, sensitivity of 65.71% and specificity of 60%. Even though the effectiveness shown was moderate, this study is still innovative. The values show that the technique used has a promising future, pointing towards further studies on image and cycle processing methodology with a larger quantity of radiographies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turcotte, Melissa; Moore, Juston Shane
User Behaviour Analytics is the tracking, collecting and assessing of user data and activities. The goal is to detect misuse of user credentials by developing models for the normal behaviour of user credentials within a computer network and detect outliers with respect to their baseline.
Network meta-analysis, electrical networks and graph theory.
Rücker, Gerta
2012-12-01
Network meta-analysis is an active field of research in clinical biostatistics. It aims to combine information from all randomized comparisons among a set of treatments for a given medical condition. We show how graph-theoretical methods can be applied to network meta-analysis. A meta-analytic graph consists of vertices (treatments) and edges (randomized comparisons). We illustrate the correspondence between meta-analytic networks and electrical networks, where variance corresponds to resistance, treatment effects to voltage, and weighted treatment effects to current flows. Based thereon, we then show that graph-theoretical methods that have been routinely applied to electrical networks also work well in network meta-analysis. In more detail, the resulting consistent treatment effects induced in the edges can be estimated via the Moore-Penrose pseudoinverse of the Laplacian matrix. Moreover, the variances of the treatment effects are estimated in analogy to electrical effective resistances. It is shown that this method, being computationally simple, leads to the usual fixed effect model estimate when applied to pairwise meta-analysis and is consistent with published results when applied to network meta-analysis examples from the literature. Moreover, problems of heterogeneity and inconsistency, random effects modeling and including multi-armed trials are addressed. Copyright © 2012 John Wiley & Sons, Ltd. Copyright © 2012 John Wiley & Sons, Ltd.
Competitive epidemic spreading over arbitrary multilayer networks.
Darabi Sahneh, Faryad; Scoglio, Caterina
2014-06-01
This study extends the Susceptible-Infected-Susceptible (SIS) epidemic model for single-virus propagation over an arbitrary graph to an Susceptible-Infected by virus 1-Susceptible-Infected by virus 2-Susceptible (SI_{1}SI_{2}S) epidemic model of two exclusive, competitive viruses over a two-layer network with generic structure, where network layers represent the distinct transmission routes of the viruses. We find analytical expressions determining extinction, coexistence, and absolute dominance of the viruses after we introduce the concepts of survival threshold and absolute-dominance threshold. The main outcome of our analysis is the discovery and proof of a region for long-term coexistence of competitive viruses in nontrivial multilayer networks. We show coexistence is impossible if network layers are identical yet possible if network layers are distinct. Not only do we rigorously prove a region of coexistence, but we can quantitate it via interrelation of central nodes across the network layers. Little to no overlapping of the layers' central nodes is the key determinant of coexistence. For example, we show both analytically and numerically that positive correlation of network layers makes it difficult for a virus to survive, while in a network with negatively correlated layers, survival is easier, but total removal of the other virus is more difficult.
Paolino, Andrea R.; McGlynn, Elizabeth A.; Lieu, Tracy; Nelson, Andrew F.; Prausnitz, Stephanie; Horberg, Michael A.; Arterburn, David E.; Gould, Michael K.; Laws, Reesa L.; Steiner, John F.
2016-01-01
Introduction: The Patient Outcomes Research to Advance Learning (PORTAL) Network was established with funding from the Patient-Centered Outcomes Research Institute (PCORI) in 2014. The PORTAL team adapted governance structures and processes from past research network collaborations. We will review and outline the structures and processes of the PORTAL governance approach and describe how proactively focusing on priority areas helped us to facilitate an ambitious research agenda. Background: For years a variety of funders have supported large-scale infrastructure grants to promote the use of clinical datasets to answer important comparative effectiveness research (CER) questions. These awards have provided the impetus for health care systems to join forces in creating clinical data research networks. Often, these scientific networks do not develop governance processes proactively or systematically, and address issues only as problems arise. Even if network leaders and collaborators foresee the need to develop governance approaches, they may underestimate the time and effort required to develop sound processes. The resulting delays can impede research progress. Innovation: Because the PORTAL sites had built trust and a foundation of collaboration by participating with one another in past research networks, essential elements of effective governance such as guiding principles, decision making processes, project governance, data governance, and stakeholders in governance were familiar to PORTAL investigators. This trust and familiarity enabled the network to rapidly prioritize areas that required sound governance approaches: responding to new research opportunities, creating a culture of trust and collaboration, conducting individual studies, within the broader network, assigning responsibility and credit to scientific investigators, sharing data while protecting privacy/security, and allocating resources. The PORTAL Governance Document, complete with a Toolkit of Appendices is included for reference and for adaptation by other networks. Credibility: As a result of identifying project-based governance priorities (IRB approval, subcontracting, selection of new research including lead PI and participating sites, and authorship) and data governance priorities (reciprocal data use agreement, analytic plan procedures, and other tools for data governance), PORTAL established most of its governance structure by Month 6 of the 18 month project. This allowed science to progress and collaborators to experience first-hand how the structures and procedures functioned in the remaining 12 months of the project, leaving ample time to refine them and to develop new structures or processes as necessary. Discussion: The use of procedures and processes with which participating investigators and their home institutions were already familiar allowed project and regulatory requirements to be established quickly to protect patients, their data, and the health care systems that act as stewards for both. As the project progressed, PORTAL was able to test and adjust the structures it put place, and to make substantive revisions by Month 17. As a result, priority processes have been predictable, transparent and effective. Conclusion/Next steps: Strong governance practices are a stewardship responsibility of research networks to justify the trust of patients, health plan members, health care delivery organizations, and other stakeholders. Well-planned governance can reduce the time necessary to initiate the scientific activities of a network, a particular concern when the time frame to complete research is short. Effective network and data governance structures protect patient and institutional data as well as the interests of investigators and their institutions, and assures that the network has built an environment to meet the goals of the research. PMID:27141524
Paolino, Andrea R; McGlynn, Elizabeth A; Lieu, Tracy; Nelson, Andrew F; Prausnitz, Stephanie; Horberg, Michael A; Arterburn, David E; Gould, Michael K; Laws, Reesa L; Steiner, John F
2016-01-01
The Patient Outcomes Research to Advance Learning (PORTAL) Network was established with funding from the Patient-Centered Outcomes Research Institute (PCORI) in 2014. The PORTAL team adapted governance structures and processes from past research network collaborations. We will review and outline the structures and processes of the PORTAL governance approach and describe how proactively focusing on priority areas helped us to facilitate an ambitious research agenda. For years a variety of funders have supported large-scale infrastructure grants to promote the use of clinical datasets to answer important comparative effectiveness research (CER) questions. These awards have provided the impetus for health care systems to join forces in creating clinical data research networks. Often, these scientific networks do not develop governance processes proactively or systematically, and address issues only as problems arise. Even if network leaders and collaborators foresee the need to develop governance approaches, they may underestimate the time and effort required to develop sound processes. The resulting delays can impede research progress. Because the PORTAL sites had built trust and a foundation of collaboration by participating with one another in past research networks, essential elements of effective governance such as guiding principles, decision making processes, project governance, data governance, and stakeholders in governance were familiar to PORTAL investigators. This trust and familiarity enabled the network to rapidly prioritize areas that required sound governance approaches: responding to new research opportunities, creating a culture of trust and collaboration, conducting individual studies, within the broader network, assigning responsibility and credit to scientific investigators, sharing data while protecting privacy/security, and allocating resources. The PORTAL Governance Document, complete with a Toolkit of Appendices is included for reference and for adaptation by other networks. As a result of identifying project-based governance priorities (IRB approval, subcontracting, selection of new research including lead PI and participating sites, and authorship) and data governance priorities (reciprocal data use agreement, analytic plan procedures, and other tools for data governance), PORTAL established most of its governance structure by Month 6 of the 18 month project. This allowed science to progress and collaborators to experience first-hand how the structures and procedures functioned in the remaining 12 months of the project, leaving ample time to refine them and to develop new structures or processes as necessary. The use of procedures and processes with which participating investigators and their home institutions were already familiar allowed project and regulatory requirements to be established quickly to protect patients, their data, and the health care systems that act as stewards for both. As the project progressed, PORTAL was able to test and adjust the structures it put place, and to make substantive revisions by Month 17. As a result, priority processes have been predictable, transparent and effective. Strong governance practices are a stewardship responsibility of research networks to justify the trust of patients, health plan members, health care delivery organizations, and other stakeholders. Well-planned governance can reduce the time necessary to initiate the scientific activities of a network, a particular concern when the time frame to complete research is short. Effective network and data governance structures protect patient and institutional data as well as the interests of investigators and their institutions, and assures that the network has built an environment to meet the goals of the research.
Escarce, Andrezza Gonzalez; Lemos, Stela Maris Aguiar; Carvalho, Sirley Alves da Silva
2016-01-01
To analyze the correlation between the satisfaction of professionals from the Hearing Health Care network in two micro-regions of Minas Gerais state and the sociodemographic profile, work process, and work performance in the health service. This is a cross-sectional, observational, analytic study with a non-probabilistic sample including 34 professionals from the Hearing Health Care services. Data collection occurred through individual interviews in the municipality of professional practice. Associations between the Professional Satisfaction variable and the explanatory variables Sociodemographic Data, Work Routine, and Developed Actions were conducted. Professionals with graduate studies were more satisfied with the human resources policy and the activities developed, whereas health civil servants showed more satisfaction with the wage policy and the work schedule. The correlation analysis between work process and satisfaction revealed a moderate positive correlation between items such as Health Promotion Actions, Satisfaction with Diagnostic Equipment, and Satisfaction with Maintenance Equipment. The present study revealed a higher level of satisfaction among professionals with graduate studies (human resources policy and activities developed) and civil servants (wage policy and work schedule). The relevance of this study lies on the important role that health professionals play on the Health Care Network. Additionally, the study of satisfaction level can provide a search for improvements, considering that satisfied professionals not only improve service quality, but also show greater creativity, commitment, and performance.
A process of rumour scotching on finite populations.
de Arruda, Guilherme Ferraz; Lebensztayn, Elcio; Rodrigues, Francisco A; Rodríguez, Pablo Martín
2015-09-01
Rumour spreading is a ubiquitous phenomenon in social and technological networks. Traditional models consider that the rumour is propagated by pairwise interactions between spreaders and ignorants. Only spreaders are active and may become stiflers after contacting spreaders or stiflers. Here we propose a competition-like model in which spreaders try to transmit an information, while stiflers are also active and try to scotch it. We study the influence of transmission/scotching rates and initial conditions on the qualitative behaviour of the process. An analytical treatment based on the theory of convergence of density-dependent Markov chains is developed to analyse how the final proportion of ignorants behaves asymptotically in a finite homogeneously mixing population. We perform Monte Carlo simulations in random graphs and scale-free networks and verify that the results obtained for homogeneously mixing populations can be approximated for random graphs, but are not suitable for scale-free networks. Furthermore, regarding the process on a heterogeneous mixing population, we obtain a set of differential equations that describes the time evolution of the probability that an individual is in each state. Our model can also be applied for studying systems in which informed agents try to stop the rumour propagation, or for describing related susceptible-infected-recovered systems. In addition, our results can be considered to develop optimal information dissemination strategies and approaches to control rumour propagation.
A process of rumour scotching on finite populations
de Arruda, Guilherme Ferraz; Lebensztayn, Elcio; Rodrigues, Francisco A.; Rodríguez, Pablo Martín
2015-01-01
Rumour spreading is a ubiquitous phenomenon in social and technological networks. Traditional models consider that the rumour is propagated by pairwise interactions between spreaders and ignorants. Only spreaders are active and may become stiflers after contacting spreaders or stiflers. Here we propose a competition-like model in which spreaders try to transmit an information, while stiflers are also active and try to scotch it. We study the influence of transmission/scotching rates and initial conditions on the qualitative behaviour of the process. An analytical treatment based on the theory of convergence of density-dependent Markov chains is developed to analyse how the final proportion of ignorants behaves asymptotically in a finite homogeneously mixing population. We perform Monte Carlo simulations in random graphs and scale-free networks and verify that the results obtained for homogeneously mixing populations can be approximated for random graphs, but are not suitable for scale-free networks. Furthermore, regarding the process on a heterogeneous mixing population, we obtain a set of differential equations that describes the time evolution of the probability that an individual is in each state. Our model can also be applied for studying systems in which informed agents try to stop the rumour propagation, or for describing related susceptible–infected–recovered systems. In addition, our results can be considered to develop optimal information dissemination strategies and approaches to control rumour propagation. PMID:26473048
Iorio, Francesco; Bernardo-Faura, Marti; Gobbi, Andrea; Cokelaer, Thomas; Jurman, Giuseppe; Saez-Rodriguez, Julio
2016-12-20
Networks are popular and powerful tools to describe and model biological processes. Many computational methods have been developed to infer biological networks from literature, high-throughput experiments, and combinations of both. Additionally, a wide range of tools has been developed to map experimental data onto reference biological networks, in order to extract meaningful modules. Many of these methods assess results' significance against null distributions of randomized networks. However, these standard unconstrained randomizations do not preserve the functional characterization of the nodes in the reference networks (i.e. their degrees and connection signs), hence including potential biases in the assessment. Building on our previous work about rewiring bipartite networks, we propose a method for rewiring any type of unweighted networks. In particular we formally demonstrate that the problem of rewiring a signed and directed network preserving its functional connectivity (F-rewiring) reduces to the problem of rewiring two induced bipartite networks. Additionally, we reformulate the lower bound to the iterations' number of the switching-algorithm to make it suitable for the F-rewiring of networks of any size. Finally, we present BiRewire3, an open-source Bioconductor package enabling the F-rewiring of any type of unweighted network. We illustrate its application to a case study about the identification of modules from gene expression data mapped on protein interaction networks, and a second one focused on building logic models from more complex signed-directed reference signaling networks and phosphoproteomic data. BiRewire3 it is freely available at https://www.bioconductor.org/packages/BiRewire/ , and it should have a broad application as it allows an efficient and analytically derived statistical assessment of results from any network biology tool.
ERIC Educational Resources Information Center
Schaefer, David R.; adams, jimi; Haas, Steven A.
2013-01-01
Adolescent smoking and friendship networks are related in many ways that can amplify smoking prevalence. Understanding and developing interventions within such a complex system requires new analytic approaches. We draw on recent advances in dynamic network modeling to develop a technique that explores the implications of various intervention…
Kemp, Candace L.; Ball, Mary M.; Morgan, Jennifer Craft; Doyle, Patrick J.; Burgess, Elisabeth O.; Dillard, Joy A.; Barmon, Christina E.; Fitzroy, Andrea F.; Helmly, Victoria E.; Avent, Elizabeth S.; Perkins, Molly M.
2018-01-01
In this article, we analyze the research experiences associated with a longitudinal qualitative study of residents’ care networks in assisted living. Using data from researcher meetings, field notes, and memos, we critically examine our design and decision making and accompanying methodological implications. We focus on one complete wave of data collection involving 28 residents and 114 care network members in four diverse settings followed for 2 years. We identify study features that make our research innovative, but that also represent significant challenges. They include the focus and topic; settings and participants; scope and design complexity; nature, modes, frequency, and duration of data collection; and analytic approach. Each feature has methodological implications, including benefits and challenges pertaining to recruitment, retention, data collection, quality, and management, research team work, researcher roles, ethics, and dissemination. Our analysis demonstrates the value of our approach and of reflecting on and sharing methodological processes for cumulative knowledge building. PMID:27651072