Science.gov

Sample records for analytical chemistry biochemical

  1. Biochemical Applications in the Analytical Chemistry Lab

    ERIC Educational Resources Information Center

    Strong, Cynthia; Ruttencutter, Jeffrey

    2004-01-01

    An HPLC and a UV-visible spectrophotometer are identified as instruments that helps to incorporate more biologically-relevant experiments into the course, in order to increase the students understanding of selected biochemistry topics and enhances their ability to apply an analytical approach to biochemical problems. The experiment teaches…

  2. Science Update: Analytical Chemistry.

    ERIC Educational Resources Information Center

    Worthy, Ward

    1980-01-01

    Briefly discusses new instrumentation in the field of analytical chemistry. Advances in liquid chromatography, photoacoustic spectroscopy, the use of lasers, and mass spectrometry are also discussed. (CS)

  3. Frontiers in analytical chemistry

    SciTech Connect

    Amato, I.

    1988-12-15

    Doing more with less was the modus operandi of R. Buckminster Fuller, the late science genius, and inventor of such things as the geodesic dome. In late September, chemists described their own version of this maxim--learning more chemistry from less material and in less time--in a symposium titled Frontiers in Analytical Chemistry at the 196th National Meeting of the American Chemical Society in Los Angeles. Symposium organizer Allen J. Bard of the University of Texas at Austin assembled six speakers, himself among them, to survey pretty widely different areas of analytical chemistry.

  4. Analytical Chemistry in Russia.

    PubMed

    Zolotov, Yuri

    2016-09-06

    Research in Russian analytical chemistry (AC) is carried out on a significant scale, and the analytical service solves practical tasks of geological survey, environmental protection, medicine, industry, agriculture, etc. The education system trains highly skilled professionals in AC. The development and especially manufacturing of analytical instruments should be improved; in spite of this, there are several good domestic instruments and other satisfy some requirements. Russian AC has rather good historical roots.

  5. Quo vadis, analytical chemistry?

    PubMed

    Valcárcel, Miguel

    2016-01-01

    This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed.

  6. Analytical Chemistry Laboratory

    NASA Technical Reports Server (NTRS)

    Anderson, Mark

    2013-01-01

    The Analytical Chemistry and Material Development Group maintains a capability in chemical analysis, materials R&D failure analysis and contamination control. The uniquely qualified staff and facility support the needs of flight projects, science instrument development and various technical tasks, as well as Cal Tech.

  7. Nuclear analytical chemistry

    SciTech Connect

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection.

  8. Advances in analytical chemistry

    NASA Technical Reports Server (NTRS)

    Arendale, W. F.; Congo, Richard T.; Nielsen, Bruce J.

    1991-01-01

    Implementation of computer programs based on multivariate statistical algorithms makes possible obtaining reliable information from long data vectors that contain large amounts of extraneous information, for example, noise and/or analytes that we do not wish to control. Three examples are described. Each of these applications requires the use of techniques characteristic of modern analytical chemistry. The first example, using a quantitative or analytical model, describes the determination of the acid dissociation constant for 2,2'-pyridyl thiophene using archived data. The second example describes an investigation to determine the active biocidal species of iodine in aqueous solutions. The third example is taken from a research program directed toward advanced fiber-optic chemical sensors. The second and third examples require heuristic or empirical models.

  9. ENVIRONMENTAL ANALYTICAL CHEMISTRY OF ...

    EPA Pesticide Factsheets

    Within the scope of a number of emerging contaminant issues in environmental analysis, one area that has received a great deal of public interest has been the assessment of the role of pharmaceuticals and personal care products (PPCPs) as stressors and agents of change in ecosystems as well as their role in unplanned human exposure. The relationship between personal actions and the occurrence of PPCPs in the environment is clear-cut and comprehensible to the public. In this overview, we attempt to examine the separations aspect of the analytical approach to the vast array of potential analytes among this class of compounds. We also highlight the relationship between these compounds and endocrine disrupting compounds (EDCs) and between PPCPs and EDCs and the more traditional environmental analytes such as the persistent organic pollutants (POPs). Although the spectrum of chemical behavior extends from hydrophobic to hydrophilic, the current focus has shifted to moderately and highly polar analytes. Thus, emphasis on HPLC and LC/MS has grown and MS/MS has become a detection technique of choice with either electrospray ionization or atmospheric pressure chemical ionization. This contrasts markedly with the bench mark approach of capillary GC, GC/MS and electron ionization in traditional environmental analysis. The expansion of the analyte list has fostered new vigor in the development of environmental analytical chemistry, modernized the range of tools appli

  10. Ultrasound in analytical chemistry.

    PubMed

    Priego Capote, F; Luque de Castro, M D

    2007-01-01

    Ultrasound is a type of energy which can help analytical chemists in almost all their laboratory tasks, from cleaning to detection. A generic view of the different steps which can be assisted by ultrasound is given here. These steps include preliminary operations usually not considered in most analytical methods (e.g. cleaning, degassing, and atomization), sample preparation being the main area of application. In sample preparation ultrasound is used to assist solid-sample treatment (e.g. digestion, leaching, slurry formation) and liquid-sample preparation (e.g. liquid-liquid extraction, emulsification, homogenization) or to promote heterogeneous sample treatment (e.g. filtration, aggregation, dissolution of solids, crystallization, precipitation, defoaming, degassing). Detection techniques based on use of ultrasonic radiation, the principles on which they are based, responses, and the quantities measured are also discussed.

  11. Laser ablation in analytical chemistry.

    PubMed

    Russo, Richard E; Mao, Xianglei; Gonzalez, Jhanis J; Zorba, Vassilia; Yoo, Jong

    2013-07-02

    In 2002, we wrote an Analytical Chemistry feature article describing the Physics of Laser Ablation in Microchemical Analysis. In line with the theme of the 2002 article, this manuscript discusses current issues in fundamental research, applications based on detecting photons at the ablation site (LIBS and LAMIS) and by collecting particles for excitation in a secondary source (ICP), and directions for the technology.

  12. Analytical Chemistry and the Microchip.

    ERIC Educational Resources Information Center

    Lowry, Robert K.

    1986-01-01

    Analytical techniques used at various points in making microchips are described. They include: Fourier transform infrared spectrometry (silicon purity); optical emission spectroscopy (quantitative thin-film composition); X-ray photoelectron spectroscopy (chemical changes in thin films); wet chemistry, instrumental analysis (process chemicals);…

  13. Microcomputer Applications in Analytical Chemistry.

    ERIC Educational Resources Information Center

    Long, Joseph W.

    The first part of this paper addresses the following topics: (1) the usefulness of microcomputers; (2) applications for microcomputers in analytical chemistry; (3) costs; (4) major microcomputer systems and subsystems; and (5) which microcomputer to buy. Following these brief comments, the major focus of the paper is devoted to a discussion of…

  14. Analytical Chemistry as an Information Science.

    DTIC Science & Technology

    1981-06-01

    AD-AIOS 433 WASHINGTON UNIV SEATTLE LAB OR CHEMOMETRICS /7/ ANALYTICAL CHEMISTRY AS AN INFORMATION SCIENCE Ul NAb7/ .JUN 81 B A KO WALSKI NUUUIA 75C...AN INFORMATION SCIENCE by B. R. Kowalski Prepared for Publication in Trends in Analytical Chemistry University of Washington Department of Chemistry...S. TYPE OF REPORT & PERIOD COVERED Technical Report - Interim ANALYTICAL CHEMISTRY AS AN INFORMATION SCIENCE , 2/1981 - 6/1981 6. PERFORMING ORG

  15. Modern Analytical Chemistry in the Contemporary World

    ERIC Educational Resources Information Center

    Šíma, Jan

    2016-01-01

    Students not familiar with chemistry tend to misinterpret analytical chemistry as some kind of the sorcery where analytical chemists working as modern wizards handle magical black boxes able to provide fascinating results. However, this approach is evidently improper and misleading. Therefore, the position of modern analytical chemistry among…

  16. Green analytical chemistry--theory and practice.

    PubMed

    Tobiszewski, Marek; Mechlińska, Agata; Namieśnik, Jacek

    2010-08-01

    This tutorial review summarises the current state of green analytical chemistry with special emphasis on environmentally friendly sample preparation techniques. Green analytical chemistry is a part of the sustainable development concept; its history and origins are described. Miniaturisation of analytical devices and shortening the time elapsing between performing analysis and obtaining reliable analytical results are important aspects of green analytical chemistry. Solventless extraction techniques, the application of alternative solvents and assisted extractions are considered to be the main approaches complying with green analytical chemistry principles.

  17. Significant steps in the evolution of analytical chemistry--is the today's analytical chemistry only chemistry?

    PubMed

    Karayannis, Miltiades I; Efstathiou, Constantinos E

    2012-12-15

    In this review the history of chemistry and specifically the history and the significant steps of the evolution of analytical chemistry are presented. In chronological time spans, covering the ancient world, the middle ages, the period of the 19th century, and the three evolutional periods, from the verge of the 19th century to contemporary times, it is given information for the progress of chemistry and analytical chemistry. During this period, analytical chemistry moved gradually from its pure empirical nature to more rational scientific activities, transforming itself to an autonomous branch of chemistry and a separate discipline. It is also shown that analytical chemistry moved gradually from the status of exclusive serving the chemical science, towards serving, the environment, health, law, almost all areas of science and technology, and the overall society. Some recommendations are also directed to analytical chemistry educators concerning the indispensable nature of knowledge of classical analytical chemistry and the associated laboratory exercises and to analysts, in general, why it is important to use the chemical knowledge to make measurements on problems of everyday life.

  18. Emphasizing Mineral Chemistry in an Analytical Chemistry Unit.

    ERIC Educational Resources Information Center

    Dunn, Jeffrey G.; And Others

    1995-01-01

    Describes an analytical chemistry unit in the second year of the chemistry degree course at Curtin University that was designed to reflect the numerous employment opportunities for chemistry graduates in the mineral processing industries and private analytical laboratories. Presents the lecture syllabus, the laboratory course description, and…

  19. Analytical Chemistry in Microenvironments: Single Nerve Cells.

    DTIC Science & Technology

    1992-03-16

    AD-A251 491 * - OFFICE OF NAVAL RESEARCH GRANT or CONTRACT N00014-90-J-1161 R & T Code 4133030 Technical Report No. 012 Analytical Chemistry in...AGENCY USE ONLY (Leave oldnk) 2. REPORT DATE 1. R EP O R T T Y P E AND DATES COVERED 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Analytical Chemistry in...CLASSIFICATION 20. LIMITATION OF ABSTRACT OF REPORT OF THIS PAGE OF ABSTRACT unclassified unclassified unclassified ANALYTICAL CHEMISTRY IN

  20. Teaching social responsibility in analytical chemistry.

    PubMed

    Valcárcel, M; Christian, G D; Lucena, R

    2013-07-02

    Analytical chemistry is key to the functioning of a modern society. From early days, ethics in measurements have been a concern and that remains today, especially as we have come to rely more on the application of analytical science in many aspects of our lives. The main aim of this Feature is to suggest ways of introducing the topic of social responsibility and its relation to analytical chemistry in undergraduate or graduate chemistry courses.

  1. Ternary complexes in analytical chemistry.

    PubMed

    Babko, A K

    1968-08-01

    Reactions between a complex AB and a third component C do not always proceed by a displacement mechanism governed by the energy difference of the chemical bonds A-B and A-C. The third component often becomes part of the complex, forming a mixed co-ordination sphere or ternary complex. The properties of this ternary complex ABC are not additive functions of the properties of AB and AC. Such reactions are important in many methods in analytical chemistry, particularly in photometric analysis, extractive separation, masking, etc. The general properties of the four basic types of ternary complex are reviewed and examples given. The four types comprise the systems (a) metal ion, electronegative ligand, organic base, (b) one metal ion, two different electronegative ligands, (c) ternary heteropoly acids, and (d) two different metal ions, one ligand.

  2. The Mars Analytical Chemistry Experiment

    NASA Astrophysics Data System (ADS)

    Dissly, R. W.; Waite, J. H.; Chassefiere, E.; Sacks, R.; Block, B.; Scherer, S.; Young, D. T.; Miller, G. P.; Nicks, D. K.; Beauchamp, P. M.; Croonquist, A.; Berthelier, J.-J.; Jambon, A.

    2004-11-01

    Future missions to Mars will offer the opportunity to continue the search for organic molecules accessible from the surface, and to better quantify the cycling of volatile elements through geochemical pathways. This presentation describes an analytical instrument suite that is designed to measure elemental, isotopic, and potential organic signatures contained in the atmosphere and near surface reservoirs on Mars. The Mars Analytical Chemistry Experiment (MACE) combines two unique mass-spectrometer-based instruments to accomplish these measurements. The first instrument combines a sample handling system with a reusable pyrolysis oven for processing solid materials. Evolved volatile gases from the pyrolyzer are either oxidized for elemental analysis, or sent through a preconcentrator into a two-dimensional gas chromatograph for separation of organics. The processed gas stream is them sent to a high resolution dynamic time-of-flight mass spectrometer for detection. The second instrument is designed primarily for direct atmospheric measurements, using a combination of catalyst beds, getters, and cryogenic traps to separate and concentrate species of interest, such as noble gases. Concentrated gases are subsequently detected with a second mass spectrometer. This instrument can also be used to analyze evolved gases from the pyrolyzer in the first instrument. A breadboard version of each of these instruments has been demonstrated in the laboratory. In this presentaion, we will discuss the design, applicability, and capabilities of the MACE suite in more detail.

  3. Science and Technology Text Mining: Analytical Chemistry

    DTIC Science & Technology

    2001-01-01

    mainly) from analytical chemistry, will be presented. KEYWORDS: text mining; information retrieval; bibliometrics ; computational linguistics; information...analytical chemistry, will be presented. 15. SUBJECT TERMS text mining; information retrieval; bibliometrics ; computational linguistics; information...records. Our definition includes three components: 1) Bibliometrics ; 2) Computational Linguistics; 3) Clustering. For multi-field structured records

  4. Contained radiological analytical chemistry module

    DOEpatents

    Barney, David M.

    1990-01-01

    A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

  5. Contained radiological analytical chemistry module

    DOEpatents

    Barney, David M.

    1989-01-01

    A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

  6. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry.

    PubMed

    Tobiszewski, Marek; Marć, Mariusz; Gałuszka, Agnieszka; Namieśnik, Jacek

    2015-06-12

    The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-established and recently developed green analytical chemistry metrics, including NEMI labeling and analytical Eco-scale, are presented. Additionally, this paper focuses on the possibility of the use of multivariate statistics in evaluation of environmental impact of analytical procedures. All the above metrics are compared and discussed in terms of their advantages and disadvantages. The current needs and future perspectives in green chemistry metrics are also discussed.

  7. Modern analytical chemistry in the contemporary world

    NASA Astrophysics Data System (ADS)

    Šíma, Jan

    2016-12-01

    Students not familiar with chemistry tend to misinterpret analytical chemistry as some kind of the sorcery where analytical chemists working as modern wizards handle magical black boxes able to provide fascinating results. However, this approach is evidently improper and misleading. Therefore, the position of modern analytical chemistry among sciences and in the contemporary world is discussed. Its interdisciplinary character and the necessity of the collaboration between analytical chemists and other experts in order to effectively solve the actual problems of the human society and the environment are emphasized. The importance of the analytical method validation in order to obtain the accurate and precise results is highlighted. The invalid results are not only useless; they can often be even fatal (e.g., in clinical laboratories). The curriculum of analytical chemistry at schools and universities is discussed. It is referred to be much broader than traditional equilibrium chemistry coupled with a simple description of individual analytical methods. Actually, the schooling of analytical chemistry should closely connect theory and practice.

  8. Light-emitting diodes for analytical chemistry.

    PubMed

    Macka, Mirek; Piasecki, Tomasz; Dasgupta, Purnendu K

    2014-01-01

    Light-emitting diodes (LEDs) are playing increasingly important roles in analytical chemistry, from the final analysis stage to photoreactors for analyte conversion to actual fabrication of and incorporation in microdevices for analytical use. The extremely fast turn-on/off rates of LEDs have made possible simple approaches to fluorescence lifetime measurement. Although they are increasingly being used as detectors, their wavelength selectivity as detectors has rarely been exploited. From their first proposed use for absorbance measurement in 1970, LEDs have been used in analytical chemistry in too many ways to make a comprehensive review possible. Hence, we critically review here the more recent literature on their use in optical detection and measurement systems. Cloudy as our crystal ball may be, we express our views on the future applications of LEDs in analytical chemistry: The horizon will certainly become wider as LEDs in the deep UV with sufficient intensity become available.

  9. Analytical Chemistry of Nitric Oxide

    PubMed Central

    Hetrick, Evan M.

    2013-01-01

    Nitric oxide (NO) is the focus of intense research, owing primarily to its wide-ranging biological and physiological actions. A requirement for understanding its origin, activity, and regulation is the need for accurate and precise measurement techniques. Unfortunately, analytical assays for monitoring NO are challenged by NO’s unique chemical and physical properties, including its reactivity, rapid diffusion, and short half-life. Moreover, NO concentrations may span pM to µM in physiological milieu, requiring techniques with wide dynamic response ranges. Despite such challenges, many analytical techniques have emerged for the detection of NO. Herein, we review the most common spectroscopic and electrochemical methods, with special focus on the fundamentals behind each technique and approaches that have been coupled with modern analytical measurement tools or exploited to create novel NO sensors. PMID:20636069

  10. Analytical chemistry of nitric oxide.

    PubMed

    Hetrick, Evan M; Schoenfisch, Mark H

    2009-01-01

    Nitric oxide (NO) is the focus of intense research primarily because of its wide-ranging biological and physiological actions. To understand its origin, activity, and regulation, accurate and precise measurement techniques are needed. Unfortunately, analytical assays for monitoring NO are challenged by NO's unique chemical and physical properties, including its reactivity, rapid diffusion, and short half-life. Moreover, NO concentrations may span the picomolar-to-micromolar range in physiological milieus, requiring techniques with wide dynamic response ranges. Despite such challenges, many analytical techniques have emerged for the detection of NO. Herein, we review the most common spectroscopic and electrochemical methods, with a focus on the underlying mechanism of each technique and on approaches that have been coupled with modern analytical measurement tools to create novel NO sensors.

  11. Dielectric barrier discharges in analytical chemistry.

    PubMed

    Meyer, C; Müller, S; Gurevich, E L; Franzke, J

    2011-06-21

    The present review reflects the importance of dielectric barrier discharges in analytical chemistry. Special about this discharge is-and in contrast to usual discharges with direct current-that the plasma is separated from one or two electrodes by a dielectric barrier. This gives rise to two main features of the dielectric barrier discharges; it can serve as dissociation and excitation device and as ionization mechanism, respectively. The article portrays the various application fields for dielectric barrier discharges in analytical chemistry, for example the use for elemental detection with optical spectrometry or as ionization source for mass spectrometry. Besides the introduction of different kinds of dielectric barrier discharges used for analytical chemistry from the literature, a clear and concise classification of dielectric barrier discharges into capacitively coupled discharges is provided followed by an overview about the characteristics of a dielectric barrier discharge concerning discharge properties and the ignition mechanism.

  12. ANALYTICAL CHEMISTRY RESEARCH NEEDS FOR ...

    EPA Pesticide Factsheets

    The consensus among environmental scientists and risk assessors is that the fate and effects of pharmaceutical and personal care products (PPCPS) in the environment are poorly understood. Many classes of PPCPs have yet to be investigated. Acquisition of trends data for a suite of PPCPs (representatives from each of numerous significant classes), shown to recur amongst municipal wastewater treatment plants across the country, may prove of key importance. The focus of this paper is an overview of some of the analytical methods being developed at the Environmenental Protection Agency and their application to wastewater and surface water samples. Because PPCPs are generally micro-pollutants, emphasis is on development of enrichment and pre- concentration techniques using various means of solid-phase extraction. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spectrometry) and apply them to studying the sources and fate of a select list of PPCP

  13. Click Chemistry-Mediated Nanosensors for Biochemical Assays

    PubMed Central

    Chen, Yiping; Xianyu, Yunlei; Wu, Jing; Yin, Binfeng; Jiang, Xingyu

    2016-01-01

    Click chemistry combined with functional nanoparticles have drawn increasing attention in biochemical assays because they are promising in developing biosensors with effective signal transformation/amplification and straightforward signal readout for clinical diagnostic assays. In this review, we focus on the latest advances of biochemical assays based on Cu (I)-catalyzed 1, 3-dipolar cycloaddition of azides and alkynes (CuAAC)-mediated nanosensors, as well as the functionalization of nanoprobes based on click chemistry. Nanoprobes including gold nanoparticles, quantum dots, magnetic nanoparticles and carbon nanomaterials are covered. We discuss the advantages of click chemistry-mediated nanosensors for biochemical assays, and give perspectives on the development of click chemistry-mediated approaches for clinical diagnosis and other biomedical applications. PMID:27217831

  14. Click Chemistry-Mediated Nanosensors for Biochemical Assays.

    PubMed

    Chen, Yiping; Xianyu, Yunlei; Wu, Jing; Yin, Binfeng; Jiang, Xingyu

    2016-01-01

    Click chemistry combined with functional nanoparticles have drawn increasing attention in biochemical assays because they are promising in developing biosensors with effective signal transformation/amplification and straightforward signal readout for clinical diagnostic assays. In this review, we focus on the latest advances of biochemical assays based on Cu (I)-catalyzed 1, 3-dipolar cycloaddition of azides and alkynes (CuAAC)-mediated nanosensors, as well as the functionalization of nanoprobes based on click chemistry. Nanoprobes including gold nanoparticles, quantum dots, magnetic nanoparticles and carbon nanomaterials are covered. We discuss the advantages of click chemistry-mediated nanosensors for biochemical assays, and give perspectives on the development of click chemistry-mediated approaches for clinical diagnosis and other biomedical applications.

  15. Analytical chemistry and measurement science: (What has DOE done for analytical chemistry. )

    SciTech Connect

    Shults, W.D.

    1989-01-01

    Over the past forty years, analytical scientists within the DOE complex have had a tremendous impact on the field of analytical chemistry. This paper suggests six ''high impact'' research/development areas that either originated within or were brought to maturity within the DOE laboratories. ''High impact'' means they lead to new subdisciplines or to new ways of doing business. 21 refs.

  16. Analytical Chemistry and Measurement Science: (What Has DOE Done for Analytical Chemistry?)

    DOE R&D Accomplishments Database

    Shults, W. D.

    1989-04-01

    Over the past forty years, analytical scientists within the DOE complex have had a tremendous impact on the field of analytical chemistry. This paper suggests six "high impact" research/development areas that either originated within or were brought to maturity within the DOE laboratories. "High impact" means they lead to new subdisciplines or to new ways of doing business.

  17. Analytical chemistry and measurement science; (What DOE has done for analytical chemistry)

    SciTech Connect

    Shults, W.D. . Analytical Chemistry Div.)

    1989-11-01

    Over the past forty years, analytical scientists within the Department of Energy (DOE) complex have had impact on the field of analytical chemistry. This paper suggests six research/development areas that either originated within or were brought to maturity with the DOE laboratories. These areas have lead to new subdisciplines or to new ways of doing business.

  18. Improving Conceptions in Analytical Chemistry: The Central Limit Theorem

    ERIC Educational Resources Information Center

    Rodriguez-Lopez, Margarita; Carrasquillo, Arnaldo, Jr.

    2006-01-01

    This article describes the central limit theorem (CLT) and its relation to analytical chemistry. The pedagogic rational, which argues for teaching the CLT in the analytical chemistry classroom, is discussed. Some analytical chemistry concepts that could be improved through an understanding of the CLT are also described. (Contains 2 figures.)

  19. Clinical chemistry: challenges for analytical chemistry and the nanosciences from medicine.

    PubMed

    Durner, Jürgen

    2010-02-01

    Clinical chemistry and laboratory medicine can look back over more than 150 years of eventful history. The subject encompasses all the medicinal disciplines as well as the remaining natural sciences. Clinical chemistry demonstrates how new insights from basic research in biochemical, biological, analytical chemical, engineering, and information technology can be transferred into the daily routine of medicine to improve diagnosis, therapeutic monitoring, and prevention. This Review begins with a presentation of the development of clinical chemistry. Individual steps between the drawing of blood and interpretation of laboratory data are then illustrated; here not only are pitfalls described, but so are quality control systems. The introduction of new methods and trends into medicinal analysis is explored, along with opportunities and problems associated with personalized medicine.

  20. Analytical Chemistry Core Capability Assessment - Preliminary Report

    SciTech Connect

    Barr, Mary E.; Farish, Thomas J.

    2012-05-16

    The concept of 'core capability' can be nebulous one. Even at a fairly specific level, where core capability equals maintaining essential services, it is highly dependent upon the perspective of the requestor. Samples are submitted to analytical services because the requesters do not have the capability to conduct adequate analyses themselves. Some requests are for general chemical information in support of R and D, process control, or process improvement. Many analyses, however, are part of a product certification package and must comply with higher-level customer quality assurance requirements. So which services are essential to that customer - just those for product certification? Does the customer also (indirectly) need services that support process control and improvement? And what is the timeframe? Capability is often expressed in terms of the currently utilized procedures, and most programmatic customers can only plan a few years out, at best. But should core capability consider the long term where new technologies, aging facilities, and personnel replacements must be considered? These questions, and a multitude of others, explain why attempts to gain long-term consensus on the definition of core capability have consistently failed. This preliminary report will not try to define core capability for any specific program or set of programs. Instead, it will try to address the underlying concerns that drive the desire to determine core capability. Essentially, programmatic customers want to be able to call upon analytical chemistry services to provide all the assays they need, and they don't want to pay for analytical chemistry services they don't currently use (or use infrequently). This report will focus on explaining how the current analytical capabilities and methods evolved to serve a variety of needs with a focus on why some analytes have multiple analytical techniques, and what determines the infrastructure for these analyses. This information will be

  1. State-of-the-Art of (Bio)Chemical Sensor Developments in Analytical Spanish Groups

    PubMed Central

    Plata, María Reyes; Contento, Ana María; Ríos, Angel

    2010-01-01

    (Bio)chemical sensors are one of the most exciting fields in analytical chemistry today. The development of these analytical devices simplifies and miniaturizes the whole analytical process. Although the initial expectation of the massive incorporation of sensors in routine analytical work has been truncated to some extent, in many other cases analytical methods based on sensor technology have solved important analytical problems. Many research groups are working in this field world-wide, reporting interesting results so far. Modestly, Spanish researchers have contributed to these recent developments. In this review, we summarize the more representative achievements carried out for these groups. They cover a wide variety of sensors, including optical, electrochemical, piezoelectric or electro-mechanical devices, used for laboratory or field analyses. The capabilities to be used in different applied areas are also critically discussed. PMID:22319260

  2. State-of-the-art of (bio)chemical sensor developments in analytical Spanish groups.

    PubMed

    Plata, María Reyes; Contento, Ana María; Ríos, Angel

    2010-01-01

    (Bio)chemical sensors are one of the most exciting fields in analytical chemistry today. The development of these analytical devices simplifies and miniaturizes the whole analytical process. Although the initial expectation of the massive incorporation of sensors in routine analytical work has been truncated to some extent, in many other cases analytical methods based on sensor technology have solved important analytical problems. Many research groups are working in this field world-wide, reporting interesting results so far. Modestly, Spanish researchers have contributed to these recent developments. In this review, we summarize the more representative achievements carried out for these groups. They cover a wide variety of sensors, including optical, electrochemical, piezoelectric or electro-mechanical devices, used for laboratory or field analyses. The capabilities to be used in different applied areas are also critically discussed.

  3. Laser ablation in analytical chemistry - A review

    SciTech Connect

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S.

    2001-10-10

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.

  4. Analytical Chemistry Laboratory progress report for FY 1989

    SciTech Connect

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Erickson, M.D.

    1989-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1989 (October 1988 through September 1989). The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.

  5. Analytical Chemistry Laboratory progress report for FY 1991

    SciTech Connect

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Boparai, A.S.

    1991-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1991 (October 1990 through September 1991). This is the eighth annual report for the ACL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.

  6. Analytical chemistry in the Aegean Sea region: current status.

    PubMed

    Samanidou, Victoria F

    2012-12-01

    The Eighth Aegean Analytical Chemistry Days Conference took place in Urla, İzmir, Turkey, from 16-20 September 2012. This conference is held every 2 years, organized alternately by analytical chemistry departments of Turkish and Greek universities, so that analytical chemists from the region around the Aegean Sea can exchange experience and knowledge based on their research in a large number of fields. This report summarizes the most interesting presentations and posters pertaining to bioanalytical work.

  7. 40 CFR 158.2081 - Experimental use permit biochemical pesticides product chemistry data requirements table.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pesticides product chemistry data requirements table. 158.2081 Section 158.2081 Protection of Environment... Pesticides § 158.2081 Experimental use permit biochemical pesticides product chemistry data requirements... product chemistry data requirements for a particular biochemical pesticide product. Notes that apply to...

  8. 40 CFR 158.2081 - Experimental use permit biochemical pesticides product chemistry data requirements table.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pesticides product chemistry data requirements table. 158.2081 Section 158.2081 Protection of Environment... Pesticides § 158.2081 Experimental use permit biochemical pesticides product chemistry data requirements... product chemistry data requirements for a particular biochemical pesticide product. Notes that apply to...

  9. 40 CFR 158.2081 - Experimental use permit biochemical pesticides product chemistry data requirements table.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pesticides product chemistry data requirements table. 158.2081 Section 158.2081 Protection of Environment... Pesticides § 158.2081 Experimental use permit biochemical pesticides product chemistry data requirements... product chemistry data requirements for a particular biochemical pesticide product. Notes that apply to...

  10. 40 CFR 158.2081 - Experimental use permit biochemical pesticides product chemistry data requirements table.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... pesticides product chemistry data requirements table. 158.2081 Section 158.2081 Protection of Environment... Pesticides § 158.2081 Experimental use permit biochemical pesticides product chemistry data requirements... product chemistry data requirements for a particular biochemical pesticide product. Notes that apply to...

  11. Applications of MEMS-based biochemical analytical instrumentation

    SciTech Connect

    Morse, J. D., LLNL

    1997-05-21

    The MicroTechnology Center at Lawrence Livermore National Laboratory is developing a variety of MEMS-Based analytical instrumentation systems in support of programmatic needs, along with numerous external customers. Several of the applications of interest are in the area of biochemical identification and analysis. These applications range from DNA fragment analysis and collection in support of the Human Genome Project, to detection of viruses or biological warfare agents. Each of the applications of interest has focused in micro-machined MEMS technology for reduced cost, higher throughput, and faster results. Development of these analytical instrumentation systems will have long term benefits for the medical community as well. The following describes the technologies several specific applications.

  12. Incorporating Information Literacy Skills into Analytical Chemistry: An Evolutionary Step

    ERIC Educational Resources Information Center

    Walczak, Mary M.; Jackson, Paul T.

    2007-01-01

    The American Chemical Society (ACS) has recently decided to incorporate various information literacy skills for teaching analytical chemistry to the students. The methodology has been found to be extremely effective, as it provides better understanding to the students.

  13. INVESTIGATING ENVIRONMENTAL SINKS OF MACROLIDE ANTIBIOTICS WITH ANALYTICAL CHEMISTRY

    EPA Science Inventory

    Possible environmental sinks (wastewater effluents, biosolids, sediments) of macrolide antibiotics (i.e., azithromycin, roxithromycin and clarithromycin)are investigated using state-of-the-art analytical chemistry techniques.

  14. Analytical chemistry methods for mixed oxide fuel, March 1985

    SciTech Connect

    Not Available

    1985-03-01

    This standard provides analytical chemistry methods for the analysis of materials used to produce mixed oxide fuel. These materials are ceramic fuel and insulator pellets and the plutonium and uranium oxides and nitrates used to fabricate these pellets.

  15. Perspective: Status and Future of Analytical Chemistry in India.

    PubMed

    Verma, Krishna K

    2017-02-07

    Relative to many other areas in chemistry, analytical chemistry appears singularly lagging behind in India despite the commendable growth it had shown in the past both in teaching and research. Certain presumptions in policy making and current educational practices are believed to be the crux of the problem.

  16. A review of opportunities for electrospun nanofibers in analytical chemistry.

    PubMed

    Chigome, Samuel; Torto, Nelson

    2011-11-07

    Challenges associated with analyte and matrix complexities and the ever increasing pressure from all sectors of industry for alternative analytical devices, have necessitated the development and application of new materials in analytical chemistry. To date, nanomaterials have emerged as having excellent properties for analytical chemistry applications mainly due to their large surface area to volume ratio and the availability of a wide variety of chemical and morphological modification methods. Of the available nanofibrous material fabrication methods, electrospinning has emerged as the most versatile. It is the aim of this contribution to highlight some of the recent developments that harness the great potential shown by electrospun nanofibers for application in analytical chemistry. The review discusses the use of electrospun nanofibers as a platform for low resolution separation or as a chromatographic sorbent bed for high resolution separation. It concludes by discussing the applications of electrospun nanofibers in detection systems with a specific focus on the development of simple electrospun nanofiber based colorimetric probes.

  17. Analytical Chemistry Laboratory progress report for FY 1985

    SciTech Connect

    Green, D.W.; Heinrich, R.R.; Jensen, K.J.

    1985-12-01

    The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques. The purpose of this report is to summarize the technical and administrative activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1985 (October 1984 through September 1985). This is the second annual report for the ACL. 4 figs., 1 tab.

  18. Teaching Analytical Chemistry with Automatic Analyzers

    ERIC Educational Resources Information Center

    Schubert, Leo

    1972-01-01

    Discusses the advantages of using automated analytical procedures in providing rapid, inexpensive alternatives to traditional methods and in teaching skills used in many professions and industry. (CP)

  19. Cyclodextrins in analytical chemistry: host-guest type molecular recognition.

    PubMed

    Szente, Lajos; Szemán, Julianna

    2013-09-03

    Cyclodextrins are utilized in many diverse fields of analytical chemistry, due to their propensity to form reversible inclusion complexes and recognize analytes selectively. This Feature shows how these nanocavities can serve analysts in sample preparation, sensitivity and selectivity improvement, enantio-separation, creating single-molecule sensors, and automatizing DNA sequencing.

  20. Gatlinburg conference: barometer of progress in analytical chemistry

    SciTech Connect

    Shults, W.D.

    1981-01-01

    Much progress has been made in the field of analytical chemistry over the past twenty-five years. The AEC-ERDA-DOE family of laboratories contributed greatly to this progress. It is not surprising then to find a close correlation between program content of past Gatlinburg conferences and developments in analytical methodology. These conferences have proved to be a barometer of technical status.

  1. Analytical Chemistry Laboratory. Progress report for FY 1996

    SciTech Connect

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    1996-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1996. This annual report is the thirteenth for the ACL. It describes effort on continuing and new projects and contributions of the ACL staff to various programs at ANL. The ACL operates in the ANL system as a full-cost-recovery service center, but has a mission that includes a complementary research and development component: The Analytical Chemistry Laboratory will provide high-quality, cost-effective chemical analysis and related technical support to solve research problems of our clients -- Argonne National Laboratory, the Department of Energy, and others -- and will conduct world-class research and development in analytical chemistry and its applications. Because of the diversity of research and development work at ANL, the ACL handles a wide range of analytical chemistry problems. Some routine or standard analyses are done, but the ACL usually works with commercial laboratories if our clients require high-volume, production-type analyses. It is common for ANL programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. Thus, much of the support work done by the ACL is very similar to our applied analytical chemistry research.

  2. Analytical considerations for the biochemical assessment of vitamin D status

    PubMed Central

    Couchman, Lewis; Moniz, Cajetan F

    2017-01-01

    The most widely used and clinically accepted biochemical marker for assessing vitamin D status is the total serum 25-hydroxyvitamin D [25(OH)D] concentration. Despite the analysis of 25(OH)D dating back to the early 1970s, modern analytical techniques still exhibit significant interassay variability due to varying concentrations of other related vitamin D metabolites and sample-to-sample matrix differences. It is important for clinicians requesting 25(OH)D analyses to understand these issues and limitations, and where necessary to confront laboratories for details of analytical methods used. The availability of reference measurement procedures for 25(OH)D based on liquid chromatography and tandem mass spectrometry, whilst not intended for routine clinical sample analysis, should be utilized to improve assay harmonization and reduce interlaboratory variability. Laboratories should also be forthcoming with details of subscriptions to external quality assessment schemes and assay traceability. As well as discussing the reasons for ongoing assay variability for 25(OH)D, this short review will also briefly discuss other assays related to the assessment of vitamin D status, including parathyroid hormone, 24,25-dihydroxyvitamin D, 1,25-dihydroxyvitamin D and vitamin D binding proteins. PMID:28382113

  3. Analytical chemistry: Sweet solution to sensing

    NASA Astrophysics Data System (ADS)

    Sia, Samuel K.; Chin, Curtis D.

    2011-09-01

    Glucose meters allow rapid and quantitative measurement of blood sugar levels for diabetes sufferers worldwide. Now a new method allows this proven technology to be used to quantify a much wider range of analytes.

  4. Analytical Chemistry Laboratory, progress report for FY 1993

    SciTech Connect

    Not Available

    1993-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1993 (October 1992 through September 1993). This annual report is the tenth for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has research programs in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require development or modification of methods and adaption of techniques to obtain useful analytical data. The ACL is administratively within the Chemical Technology Division (CMT), its principal ANL client, but provides technical support for many of the technical divisions and programs at ANL. The ACL has four technical groups--Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis--which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL.

  5. Analytical Applications of NMR: Summer Symposium on Analytical Chemistry.

    ERIC Educational Resources Information Center

    Borman, Stuart A.

    1982-01-01

    Highlights a symposium on analytical applications of nuclear magnetic resonance spectroscopy (NMR), discussing pulse Fourier transformation technique, two-dimensional NMR, solid state NMR, and multinuclear NMR. Includes description of ORACLE, an NMR data processing system at Syracuse University using real-time color graphics, and algorithms for…

  6. Justifying instrumental techniques of analytical chemistry.

    PubMed

    Rothbart, Daniel; Kohout, Ladislav

    2003-05-01

    In this paper, we argue that the foundations of chemistry rely as much on the methods of measurement as they do on categories of chemical substance. To some degree, chemists perform the work of knowledge engineering: designing complex systems for the efficient retrieval of information. Indeed, in some cases, methods of instrumental detection move to the forefront of attention. For example, researchers are expected to deploy optimization methods designed to maximize desired signal and minimize the damaging effects of noise. But in his important contributions to the development of high-resolution NMR spectrometers, Hans Primas used stochastic methods to reveal beneficial effects of noise for characterizing physical systems, demonstrating the value of noisy signals for nonlinear physical systems in chemistry.

  7. Applications of polydimethylsiloxane in analytical chemistry: a review.

    PubMed

    Seethapathy, Suresh; Górecki, Tadeusz

    2012-10-31

    Silicones have innumerable applications in many areas of life. Polydimethylsiloxane (PDMS), which belongs to the class of silicones, has been extensively used in the field of analytical chemistry owing to its favourable physicochemical properties. The use of PDMS in analytical chemistry gained importance with its application as a stationary phase in gas chromatographic separations. Since then it has been used in many sample preparation techniques such as solid phase microextraction (SPME), stir bar sorptive extraction (SBSE), thin-film extraction, permeation passive sampling, etc. Further, it is gaining importance in the manufacturing of lab-on-a-chip devices, which have revolutionized bio-analysis. Applications of devices containing PDMS and used in the field of analytical chemistry are reviewed in this paper.

  8. 40 CFR 158.2030 - Biochemical pesticides product chemistry data requirements table.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... chemistry data requirements table. 158.2030 Section 158.2030 Protection of Environment ENVIRONMENTAL... § 158.2030 Biochemical pesticides product chemistry data requirements table. (a) General. (1) Sections 158.100 through 158.130 describe how to use this table to determine the product chemistry...

  9. 40 CFR 158.2030 - Biochemical pesticides product chemistry data requirements table.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chemistry data requirements table. 158.2030 Section 158.2030 Protection of Environment ENVIRONMENTAL... § 158.2030 Biochemical pesticides product chemistry data requirements table. (a) General. (1) Sections 158.100 through 158.130 describe how to use this table to determine the product chemistry...

  10. 40 CFR 158.2030 - Biochemical pesticides product chemistry data requirements table.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... chemistry data requirements table. 158.2030 Section 158.2030 Protection of Environment ENVIRONMENTAL... § 158.2030 Biochemical pesticides product chemistry data requirements table. (a) General. (1) Sections 158.100 through 158.130 describe how to use this table to determine the product chemistry...

  11. 40 CFR 158.2030 - Biochemical pesticides product chemistry data requirements table.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chemistry data requirements table. 158.2030 Section 158.2030 Protection of Environment ENVIRONMENTAL... § 158.2030 Biochemical pesticides product chemistry data requirements table. (a) General. (1) Sections 158.100 through 158.130 describe how to use this table to determine the product chemistry...

  12. Bias Assessment of General Chemistry Analytes using Commutable Samples

    PubMed Central

    Koerbin, Gus; Tate, Jillian R; Ryan, Julie; Jones, Graham RD; Sikaris, Ken A; Kanowski, David; Reed, Maxine; Gill, Janice; Koumantakis, George; Yen, Tina; St John, Andrew; Hickman, Peter E; Simpson, Aaron; Graham, Peter

    2014-01-01

    Harmonisation of reference intervals for routine general chemistry analytes has been a goal for many years. Analytical bias may prevent this harmonisation. To determine if analytical bias is present when comparing methods, the use of commutable samples, or samples that have the same properties as the clinical samples routinely analysed, should be used as reference samples to eliminate the possibility of matrix effect. The use of commutable samples has improved the identification of unacceptable analytical performance in the Netherlands and Spain. The International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) has undertaken a pilot study using commutable samples in an attempt to determine not only country specific reference intervals but to make them comparable between countries. Australia and New Zealand, through the Australasian Association of Clinical Biochemists (AACB), have also undertaken an assessment of analytical bias using commutable samples and determined that of the 27 general chemistry analytes studied, 19 showed sufficiently small between method biases as to not prevent harmonisation of reference intervals. Application of evidence based approaches including the determination of analytical bias using commutable material is necessary when seeking to harmonise reference intervals. PMID:25678726

  13. Synergistic relationships between Analytical Chemistry and written standards.

    PubMed

    Valcárcel, Miguel; Lucena, Rafael

    2013-07-25

    This paper describes the mutual impact of Analytical Chemistry and several international written standards (norms and guides) related to knowledge management (CEN-CWA 14924:2004), social responsibility (ISO 26000:2010), management of occupational health and safety (OHSAS 18001/2), environmental management (ISO 14001:2004), quality management systems (ISO 9001:2008) and requirements of the competence of testing and calibration laboratories (ISO 17025:2004). The intensity of this impact, based on a two-way influence, is quite different depending on the standard considered. In any case, a new and fruitful approach to Analytical Chemistry based on these relationships can be derived.

  14. Magnetic ionic liquids in analytical chemistry: A review.

    PubMed

    Clark, Kevin D; Nacham, Omprakash; Purslow, Jeffrey A; Pierson, Stephen A; Anderson, Jared L

    2016-08-31

    Magnetic ionic liquids (MILs) have recently generated a cascade of innovative applications in numerous areas of analytical chemistry. By incorporating a paramagnetic component within the cation or anion, MILs exhibit a strong response toward external magnetic fields. Careful design of the MIL structure has yielded magnetoactive compounds with unique physicochemical properties including high magnetic moments, enhanced hydrophobicity, and the ability to solvate a broad range of molecules. The structural tunability and paramagnetic properties of MILs have enabled magnet-based technologies that can easily be added to the analytical method workflow, complement needed extraction requirements, or target specific analytes. This review highlights the application of MILs in analytical chemistry and examines the important structural features of MILs that largely influence their physicochemical and magnetic properties.

  15. Analytical Chemistry Laboratory Progress Report for FY 1994

    SciTech Connect

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    1994-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1994 (October 1993 through September 1994). This annual report is the eleventh for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has a research program in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis -- which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL. The Chemical Analysis Group uses wet- chemical and instrumental methods for elemental, compositional, and isotopic determinations in solid, liquid, and gaseous samples and provides specialized analytical services. Major instruments in this group include an ion chromatograph (IC), an inductively coupled plasma/atomic emission spectrometer (ICP/AES), spectrophotometers, mass spectrometers (including gas-analysis and thermal-ionization mass spectrometers), emission spectrographs, autotitrators, sulfur and carbon determinators, and a kinetic phosphorescence uranium analyzer.

  16. Analytical Chemistry with Silica Sol-Gels: Traditional Routes to New Materials for Chemical Analysis

    NASA Astrophysics Data System (ADS)

    Walcarius, Alain; Collinson, Maryanne M.

    2009-07-01

    The versatility of sol-gel chemistry enables us to generate a wide range of silica and organosilica materials with controlled structure, composition, morphology and porosity. These materials’ hosting and recognition properties, as well as their wide-open structures containing many easily accessible active sites, make them particularly attractive for analytical purposes. In this review, we summarize the importance of silica sol-gels in analytical chemistry by providing examples from the separation sciences, optical and electrochemical sensors, molecular imprinting, and biosensors. Recent work suggests that manipulating the structure and composition of these materials at different scales (from molecular to macromolecular states and/or from micro- to meso- and/or macroporous levels) promises to generate chemical and biochemical sensing devices with improved selectivity and sensitivity.

  17. Contributions of Analytical Chemistry to the Clinical Laboratory.

    ERIC Educational Resources Information Center

    Skogerboe, Kristen J.

    1988-01-01

    Highlights several analytical techniques that are being used in state-of-the-art clinical labs. Illustrates how other advances in instrumentation may contribute to clinical chemistry in the future. Topics include: biosensors, polarization spectroscopy, chemiluminescence, fluorescence, photothermal deflection, and chromatography in clinical…

  18. Using Presentation Software to Flip an Undergraduate Analytical Chemistry Course

    ERIC Educational Resources Information Center

    Fitzgerald, Neil; Li, Luisa

    2015-01-01

    An undergraduate analytical chemistry course has been adapted to a flipped course format. Course content was provided by video clips, text, graphics, audio, and simple animations organized as concept maps using the cloud-based presentation platform, Prezi. The advantages of using Prezi to present course content in a flipped course format are…

  19. An Interactive Analytical Chemistry Summer Camp for Middle School Girls

    ERIC Educational Resources Information Center

    Robbins, Mary E.; Schoenfisch, Mark H.

    2005-01-01

    A summer outreach program, which was implemented for the first time in the summer of 2004, that provided middle school girls with an opportunity to conduct college-level analytical chemistry experiments under the guidance of female graduate students is explained. The program proved beneficial to participants at each level.

  20. Active Learning Strategies in the Analytical Chemistry Classroom.

    ERIC Educational Resources Information Center

    Ross, Michael R.; Fulton, Robert B.

    1994-01-01

    Describes an analytical chemistry course restructured around the use of cooperative groups to help students become active learners in a non-competitive environment. Five years of experience with the course indicates that the syllabus covers almost exactly the same content as old courses and that test scores compare favorably on the national level.…

  1. Analytical chemistry methods for metallic core components: Revision March 1985

    SciTech Connect

    Not Available

    1985-03-01

    This standard provides analytical chemistry methods for the analysis of alloys used to fabricate core components. These alloys are 302, 308, 316, 316-Ti, and 321 stainless steels and 600 and 718 Inconels and they may include other 300-series stainless steels.

  2. A Field Study Program in Analytical Chemistry for College Seniors.

    ERIC Educational Resources Information Center

    Langhus, D. L.; Flinchbaugh, D. A.

    1986-01-01

    Describes an elective field study program at Moravian College (Pennsylvania) in which seniors in analytical chemistry obtain first-hand experience at Bethlehem Steel Corporation. Discusses the program's planning phase, some method development projects done by students, experiences received in laboratory operations, and the evaluation of student…

  3. Analytical Chemistry Laboratory progress report for FY 1998.

    SciTech Connect

    Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.; Green, D. W.; Lindahl, P. C.

    1999-03-29

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1998 (October 1997 through September 1998). This annual progress report, which is the fifteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  4. Analytical Chemistry Laboratory progress report for FY 1999

    SciTech Connect

    Green, D. W.; Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.

    2000-06-15

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1999 (October 1998 through September 1999). This annual progress report, which is the sixteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  5. Spectroelectrochemical Sensing of Aqueous Iron: An Experiment for Analytical Chemistry

    ERIC Educational Resources Information Center

    Shtoyko, Tanya; Stuart, Dean; Gray, H. Neil

    2007-01-01

    We have designed a laboratory experiment to illustrate the use of spectroelectrochemical techniques for determination of aqueous iron. The experiment described in this article is applicable to an undergraduate laboratory course in analytical chemistry. Students are asked to fabricate spectroelectrochemical sensors, make electrochemical and optical…

  6. An Experimental Introduction to Interlaboratory Exercises in Analytical Chemistry

    ERIC Educational Resources Information Center

    Puignou, L.; Llaurado, M.

    2005-01-01

    An experimental exercise on analytical proficiency studies in collaborative trials is proposed. This practical provides students in advanced undergraduate courses in chemistry, pharmacy, and biochemistry, with the opportunity to improve their quality assurance skills. It involves an environmental analysis, determining the concentration of a…

  7. Chemometrics tools used in analytical chemistry: an overview.

    PubMed

    Kumar, Naveen; Bansal, Ankit; Sarma, G S; Rawal, Ravindra K

    2014-06-01

    This article presents various important tools of chemometrics utilized as data evaluation tools generated by various hyphenated analytical techniques including their application since its advent to today. The work has been divided into various sections, which include various multivariate regression methods and multivariate resolution methods. Finally the last section deals with the applicability of chemometric tools in analytical chemistry. The main objective of this article is to review the chemometric methods used in analytical chemistry (qualitative/quantitative), to determine the elution sequence, classify various data sets, assess peak purity and estimate the number of chemical components. These reviewed methods further can be used for treating n-way data obtained by hyphenation of LC with multi-channel detectors. We prefer to provide a detailed view of various important methods developed with their algorithm in favor of employing and understanding them by researchers not very familiar with chemometrics.

  8. Analytical Chemistry Laboratory progress report for FY 1984

    SciTech Connect

    Green, D.W.; Heinrich, R.R.; Jensen, K.J.; Stetter, J.R.

    1985-03-01

    Technical and administrative activities of the Analytical Chemistry Laboratory (ACL) are reported for fiscal year 1984. The ACL is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL is administratively within the Chemical Technology Division, the principal user, but provides technical support for all of the technical divisions and programs at ANL. The ACL has three technical groups - Chemical Analysis, Instrumental Analysis, and Organic Analysis. Under technical activities 26 projects are briefly described. Under professional activities, a list is presented for publications and reports, oral presentations, awards and meetings attended. 6 figs., 2 tabs.

  9. Analytical Chemistry at the Interface Between Materials Science and Biology

    SciTech Connect

    O'Brien, Janese C.

    2000-09-21

    Likedlessentid sciences, anal~cd chetis~continues toreinvent itself. Moving beyond its traditional roles of identification and quantification, analytical chemistry is now expanding its frontiers into areas previously reserved to other disciplines. This work describes several research efforts that lie at the new interfaces between analytical chemistry and two of these disciplines, namely materials science and biology. In the materials science realm, the search for new materials that may have useful or unique chromatographic properties motivated the synthesis and characterization of electrically conductive sol-gels. In the biology realm, the search for new surface fabrication schemes that would permit or even improve the detection of specific biological reactions motivated the design of miniaturized biological arrays. Collectively, this work represents some of analytical chemistry’s newest forays into these disciplines. The introduction section to this dissertation provides a literature review on several of the key aspects of this work. In advance of the materials science discussion, a brief introduction into electrochemically-modulated liquid chromatography (EMLC) and sol-gel chemistry is provided. In advance of the biological discussions, brief overviews of scanning force microscopy (SFM) and the oxidative chemistry used to construct our biological arrays are provided. This section is followed by four chapters, each of which is presented as a separate manuscript, and focuses on work that describes some of our cross-disciplinary efforts within materials science and biology. This dissertation concludes with a general summary and future prospectus.

  10. Green analytical chemistry introduction to chloropropanols determination at no economic and analytical performance costs?

    PubMed

    Jędrkiewicz, Renata; Orłowski, Aleksander; Namieśnik, Jacek; Tobiszewski, Marek

    2016-01-15

    In this study we perform ranking of analytical procedures for 3-monochloropropane-1,2-diol determination in soy sauces by PROMETHEE method. Multicriteria decision analysis was performed for three different scenarios - metrological, economic and environmental, by application of different weights to decision making criteria. All three scenarios indicate capillary electrophoresis-based procedure as the most preferable. Apart from that the details of ranking results differ for these three scenarios. The second run of rankings was done for scenarios that include metrological, economic and environmental criteria only, neglecting others. These results show that green analytical chemistry-based selection correlates with economic, while there is no correlation with metrological ones. This is an implication that green analytical chemistry can be brought into laboratories without analytical performance costs and it is even supported by economic reasons.

  11. Role-Playing in Analytical Chemistry: The Alumni Speak

    NASA Astrophysics Data System (ADS)

    Jackson, Paul T.; Walters, John P.

    2000-08-01

    Cooperative learning constructs take a variety of forms. Over the last 15 years, one such pedagogical structure, role-playing, has been used in the analytical chemistry curriculum at St. Olaf College. A long-term assessment of this teaching method was conducted through use of a survey distributed to alumni graduating between 1987 and 1997. The graduates overwhelmingly indicated that the use of role-playing had a positive impact on their careers as well as their lives. Furthermore, many non-achievement learning outcomes attributed to cooperative learning experiences were reinforced through the survey response. Role-playing created an effective environment in which to develop communication and collaborative skills in addition to the technical skills that are essential to analytical chemistry. These results support continued evolutionary development of this teaching method.

  12. Analytical chemistry laboratory. Progress report for FY 1997

    SciTech Connect

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    1997-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1997 (October 1996 through September 1997). This annual progress report is the fourteenth in this series for the ACL, and it describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  13. Application of Multidimensional Spectrum Analysis for Analytical Chemistry

    SciTech Connect

    Hatsukawa, Yuichi; Hayakawa, Takehito; Toh, Yosuke; Shinohara, Nobuo; Oshima, Masumi

    1999-12-31

    Feasibility of application of the multidimensional {gamma} ray spectroscopy for analytical chemistry was examined. Two reference igneous rock (JP-1, JB-1a) samples issued by the Geological Survey of Japan (GSJ) were irradiated at a research reactor with thermal neutrons, and {gamma} rays from the radioisotopes produced by neutron capture reactions were measured using a {gamma}-ray detector array. Simultaneously 27 elements were observed with no chemical separation.

  14. MAR flow mapping of Analytical Chemistry Operations (Preliminary Report)

    SciTech Connect

    Barr, Mary E.; Farish, Thomas J.

    2012-06-13

    The recently released Supplemental Directive, NA-1 SD 1027, updates the radionuclide threshold values in DOE-STD-1027-92 CN1 to reflect the use of modern parameters for dose conversion factors and breathing rates. The directive also corrects several arithmetic errors within the original standard. The result is a roughly four-fold increase in the amount of weapons-grade nuclear material allowed within a designated radiological facility. Radiological laboratory space within the recently constructed Radiological Laboratory Office and Utility Building (RLUOB) is slated to house selected analytical chemistry support activities in addition to small-scale actinide R&D activities. RLUOB is within the same facility operations envelope as TA-55. Consolidation of analytical chemistry activities to RLUOB and PF-4 offers operational efficiency improvements relative to the current pre-CMRR plans of dividing these activities between RLUOB, PF-4, and CMR. RLUOB is considered a Radiological Facility under STD-1027 - 'Facilities that do not meet or exceed Category 3 threshold criteria but still possess some amount of radioactive material may be considered Radiological Facilities.' The supplemental directive essentially increases the allowable material-at-risk (MAR) within radiological facilities from 8.4 g to 38.6 g for {sup 239}Pu. This increase in allowable MAR provides a unique opportunity to establish additional analytical chemistry support functions in RLUOB without negatively impacting either R&D activities or facility operations. Individual radiological facilities are tasked to determine MAR limits (up to the Category 3 thresholds) appropriate to their operational conditions. This study presents parameters that impact establishing MAR limits for RLUOB and an assessment of how various analytical chemistry support functions could operate within the established MAR limits.

  15. Application of multidimensional spectrum analysis for analytical chemistry

    SciTech Connect

    Hatsukawa, Yuichi; Hayakawa, Takehito; Toh, Yosuke; Shinohara, Nobuo; Oshima, Masumi

    1999-11-16

    Feasibility of application of the multidimensional {gamma} ray spectroscopy for analytical chemistry was examined. Two reference igneous rock (JP-1, JB-1a) samples issued by the Geological Survey of Japan (GSJ) were irradiated at a research reactor with thermal neutrons, and {gamma} rays from the radioisotopes produced by neutron capture reactions were measured using a {gamma}-ray detector array. Simultaneously 27 elements were observed with no chemical separation.

  16. Chemiluminescence microarrays in analytical chemistry: a critical review.

    PubMed

    Seidel, Michael; Niessner, Reinhard

    2014-09-01

    Multi-analyte immunoassays on microarrays and on multiplex DNA microarrays have been described for quantitative analysis of small organic molecules (e.g., antibiotics, drugs of abuse, small molecule toxins), proteins (e.g., antibodies or protein toxins), and microorganisms, viruses, and eukaryotic cells. In analytical chemistry, multi-analyte detection by use of analytical microarrays has become an innovative research topic because of the possibility of generating several sets of quantitative data for different analyte classes in a short time. Chemiluminescence (CL) microarrays are powerful tools for rapid multiplex analysis of complex matrices. A wide range of applications for CL microarrays is described in the literature dealing with analytical microarrays. The motivation for this review is to summarize the current state of CL-based analytical microarrays. Combining analysis of different compound classes on CL microarrays reduces analysis time, cost of reagents, and use of laboratory space. Applications are discussed, with examples from food safety, water safety, environmental monitoring, diagnostics, forensics, toxicology, and biosecurity. The potential and limitations of research on multiplex analysis by use of CL microarrays are discussed in this review.

  17. 78 FR 4170 - License Amendment Request for Analytical Bio-Chemistry Laboratories, Inc., Columbia, MO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ... COMMISSION License Amendment Request for Analytical Bio-Chemistry Laboratories, Inc., Columbia, MO AGENCY... issuance of a license amendment to Materials License No. 24-13365-01 issued to Analytical Bio-Chemistry... accession numbers are: 1. Analytical Bio-Chemistry Laboratories, Inc., Licensee amendment request...

  18. Membrane-based microextraction techniques in analytical chemistry: A review.

    PubMed

    Carasek, Eduardo; Merib, Josias

    2015-06-23

    The use of membrane-based sample preparation techniques in analytical chemistry has gained growing attention from the scientific community since the development of miniaturized sample preparation procedures in the 1990s. The use of membranes makes the microextraction procedures more stable, allowing the determination of analytes in complex and "dirty" samples. This review describes some characteristics of classical membrane-based microextraction techniques (membrane-protected solid-phase microextraction, hollow-fiber liquid-phase microextraction and hollow-fiber renewal liquid membrane) as well as some alternative configurations (thin film and electromembrane extraction) used successfully for the determination of different analytes in a large variety of matrices, some critical points regarding each technique are highlighted.

  19. The Application of Physical Organic Chemistry to Biochemical Problems.

    ERIC Educational Resources Information Center

    Westheimer, Frank

    1986-01-01

    Presents the synthesis of the science of enzymology from application of the concepts of physical organic chemistry from a historical perspective. Summarizes enzyme and coenzyme mechanisms elucidated prior to 1963. (JM)

  20. The evolution of analytical chemistry methods in foodomics.

    PubMed

    Gallo, Monica; Ferranti, Pasquale

    2016-01-08

    The methodologies of food analysis have greatly evolved over the past 100 years, from basic assays based on solution chemistry to those relying on the modern instrumental platforms. Today, the development and optimization of integrated analytical approaches based on different techniques to study at molecular level the chemical composition of a food may allow to define a 'food fingerprint', valuable to assess nutritional value, safety and quality, authenticity and security of foods. This comprehensive strategy, defined foodomics, includes emerging work areas such as food chemistry, phytochemistry, advanced analytical techniques, biosensors and bioinformatics. Integrated approaches can help to elucidate some critical issues in food analysis, but also to face the new challenges of a globalized world: security, sustainability and food productions in response to environmental world-wide changes. They include the development of powerful analytical methods to ensure the origin and quality of food, as well as the discovery of biomarkers to identify potential food safety problems. In the area of nutrition, the future challenge is to identify, through specific biomarkers, individual peculiarities that allow early diagnosis and then a personalized prognosis and diet for patients with food-related disorders. Far from the aim of an exhaustive review of the abundant literature dedicated to the applications of omic sciences in food analysis, we will explore how classical approaches, such as those used in chemistry and biochemistry, have evolved to intersect with the new omics technologies to produce a progress in our understanding of the complexity of foods. Perhaps most importantly, a key objective of the review will be to explore the development of simple and robust methods for a fully applied use of omics data in food science.

  1. Nucleic Acid i-Motif Structures in Analytical Chemistry.

    PubMed

    Alba, Joan Josep; Sadurní, Anna; Gargallo, Raimundo

    2016-09-02

    Under the appropriate experimental conditions of pH and temperature, cytosine-rich segments in DNA or RNA sequences may produce a characteristic folded structure known as an i-motif. Besides its potential role in vivo, which is still under investigation, this structure has attracted increasing interest in other fields due to its sharp, fast and reversible pH-driven conformational changes. This "on/off" switch at molecular level is being used in nanotechnology and analytical chemistry to develop nanomachines and sensors, respectively. This paper presents a review of the latest applications of this structure in the field of chemical analysis.

  2. Analytical Chemistry (edited by R. Kellner, J.- M. Mermet, M. Otto, and H. M. Widmer)

    NASA Astrophysics Data System (ADS)

    Thompson, Reviewed By Robert Q.

    2000-04-01

    marginal notes. The text is divided into 5 parts (General Topics, Chemical Analysis, Physical Analysis, Computer-Based Analytical Chemistry, and Total Analysis Systems), 16 sections, and many chapters and subsections, all numbered and with headings for easy reference. The book provides comprehensive coverage of analytical science. Many curricula in North America cling to the tired notion of one semester of classical analytical (wet) chemistry followed by a second semester of instrumental analysis, and publishers continue to respond by publishing separate texts for each course. The Europeans, in contrast, have a text that bridges this artificial gap. Included are chapters and subsections on chemical equilibrium, electronic and vibrational spectroscopy, separations, and electrochemistry (found in most first courses in analytical chemistry). The authors also address atomic spectroscopy in all of its forms, luminescence, mass spectrometry, NMR spectrometry, surface analysis, thermal methods, activation analysis, and automated methods of analysis (found in most instrumental courses). Additional, uncommon chapters on chemical and biochemical sensors, immunoassay, chemometrics, miniaturized systems, and process analytical chemistry point toward the present and future of analytical science. The only glaring omission in comparison to other instrumental texts is in the area of measurement systems and electronics. No mention is made of the analytical laboratory, such as descriptions of glassware calibration and suggested experiments, as is found in most quantitative analysis texts in the U.S. The dangers in any multi-authored book include an uneven treatment of topics and a lack of cohesiveness and logical development of topics. I found some evidence of these problems in Analytical Chemistry. My first reaction to the Table of Contents and the grouping of chapters was "Where is ?" and "What about ?" While the order of topics in an analytical chemistry course always is open to debate

  3. Tunable lasers and their application in analytical chemistry

    NASA Technical Reports Server (NTRS)

    Steinfeld, J. I.

    1975-01-01

    The impact that laser techniques might have in chemical analysis is examined. Absorption, scattering, and heterodyne detection is considered. Particular emphasis is placed on the advantages of using frequency-tunable sources, and dye solution lasers are regarded as the outstanding example of this type of laser. Types of spectroscopy that can be carried out with lasers are discussed along with the ultimate sensitivity or minimum detectable concentration of molecules that can be achieved with each method. Analytical applications include laser microprobe analysis, remote sensing and instrumental methods such as laser-Raman spectroscopy, atomic absorption/fluorescence spectrometry, fluorescence assay techniques, optoacoustic spectroscopy, and polarization measurements. The application of lasers to spectroscopic methods of analysis would seem to be a rewarding field both for research in analytical chemistry and for investments in instrument manufacturing.

  4. Applications of Optical Microcavity Resonators in Analytical Chemistry.

    PubMed

    Wade, James H; Bailey, Ryan C

    2016-06-12

    Optical resonator sensors are an emerging class of analytical technologies that use recirculating light confined within a microcavity to sensitively measure the surrounding environment. Bolstered by advances in microfabrication, these devices can be configured for a wide variety of chemical or biomolecular sensing applications. We begin with a brief description of optical resonator sensor operation, followed by discussions regarding sensor design, including different geometries, choices of material systems, methods of sensor interrogation, and new approaches to sensor operation. Throughout, key developments are highlighted, including advancements in biosensing and other applications of optical sensors. We discuss the potential of alternative sensing mechanisms and hybrid sensing devices for more sensitive and rapid analyses. We conclude with our perspective on the future of optical microcavity sensors and their promise as versatile detection elements within analytical chemistry.

  5. Analytical Chemistry Division annual progress report: For period ending December 31, 1987

    SciTech Connect

    Not Available

    1988-05-01

    This report is divided into analytical spectroscopy; radioactive materials analysis; inorganic chemistry; organic chemistry; ORNL environmental programs; quality assurance, safety, and training; supplementary activities; and presentation of research results.

  6. Selectivity in analytical chemistry: two interpretations for univariate methods.

    PubMed

    Dorkó, Zsanett; Verbić, Tatjana; Horvai, George

    2015-01-01

    Selectivity is extremely important in analytical chemistry but its definition is elusive despite continued efforts by professional organizations and individual scientists. This paper shows that the existing selectivity concepts for univariate analytical methods broadly fall in two classes: selectivity concepts based on measurement error and concepts based on response surfaces (the response surface being the 3D plot of the univariate signal as a function of analyte and interferent concentration, respectively). The strengths and weaknesses of the different definitions are analyzed and contradictions between them unveiled. The error based selectivity is very general and very safe but its application to a range of samples (as opposed to a single sample) requires the knowledge of some constraint about the possible sample compositions. The selectivity concepts based on the response surface are easily applied to linear response surfaces but may lead to difficulties and counterintuitive results when applied to nonlinear response surfaces. A particular advantage of this class of selectivity is that with linear response surfaces it can provide a concentration independent measure of selectivity. In contrast, the error based selectivity concept allows only yes/no type decision about selectivity.

  7. Reflections on my career in analytical chemistry and biochemistry.

    PubMed

    Sweeley, Charles C

    2010-01-01

    My career has been focused in two major areas, analytical chemistry and biochemistry of complex lipids and glycoconjugates. Included here are the pioneering work on the gas chromatography of long-chain sphingolipid bases, carbohydrates, steroids and urinary organic acids. Mass spectrometry was utilized extensively in structural studies of sphingolipids, fatty acids, carbohydrates, steroids, urinary organic acids, polyisoprenoid alcohols, and juvenile hormone. Computer systems were developed for the acquisition and analysis of mass spectra, and were used for development of automated metabolic profiling of complex mixtures of metabolites. Fabry's disease was discovered to be a glycosphingolipidosis. Enzymes of lysosomal metabolism of glycosphingolipids were purified, characterized, and used in one of the first demonstrations of the feasibility of enzyme replacement therapy in a lysosomal storage disorder (Fabry's disease). Extracellular sialidases were studied to evaluate the hypothesis that they might be involved in the regulation of membrane growth factor receptors. The enzyme for hematoside synthesis was purified and characterized.

  8. Microfluidics: applications for analytical purposes in chemistry and biochemistry.

    PubMed

    Ohno, Ken-ichi; Tachikawa, Kaoru; Manz, Andreas

    2008-11-01

    In this review, we present recent advancements and novel developments in fluidic systems for applied analytical purposes in chemistry, biochemistry, and life science in general that employ and reflect the full benefits of microfluidics. A staggering rise in publications related to integrated, all-in-one microfluidic chips capable of separation, reaction, and detection have been observed, all of which realise the principal of micro total analysis systems or lab-on-a-chip. These integrated chips actively adopt the scaling law concepts, utilising the highly developed fabrication techniques. Their aim is to multi-functionalise and fully automate devices believed to assist the future advancements of point-of-care, clinical, and medical diagnostics.

  9. Statistical Data Analyses of Trace Chemical, Biochemical, and Physical Analytical Signatures

    SciTech Connect

    Udey, Ruth Norma

    2013-01-01

    Analytical and bioanalytical chemistry measurement results are most meaningful when interpreted using rigorous statistical treatments of the data. The same data set may provide many dimensions of information depending on the questions asked through the applied statistical methods. Three principal projects illustrated the wealth of information gained through the application of statistical data analyses to diverse problems.

  10. A New Project-Based Lab for Undergraduate Environmental and Analytical Chemistry

    ERIC Educational Resources Information Center

    Adami, Gianpiero

    2006-01-01

    A new project-based lab was developed for third year undergraduate chemistry students based on real world applications. The experience suggests that the total analytical procedure (TAP) project offers a stimulating alternative for delivering science skills and developing a greater interest for analytical chemistry and environmental sciences and…

  11. Analytical chemistry at the interface between materials science and biology

    NASA Astrophysics Data System (ADS)

    O'Brien, Janese Christine

    This work describes several research efforts that lie at the new interfaces between analytical chemistry and other disciplines, namely materials science and biology. In the materials science realm, the search for new materials that may have useful or unique chromatographic properties motivated the synthesis and characterization of electrically conductive sol-gels. In the biology realm, the search for new surface fabrication schemes that would permit or even improve the detection of specific biological reactions motivated the design of miniaturized biological arrays. Collectively, this work represents some of analytical chemistry's newest forays into these disciplines. This dissertation is divided into six chapters. Chapter 1 is an introductory chapter that provides background information pertinent to several key aspects of the work contained in this dissertation. Chapter 2 describes the synthesis and characterization of electrically conductive sol-gels derived from the acid-catalyzed hydrolysis of a vanadium alkoxide. Specifically, this chapter describes our attempts to increase the conductivity of vanadium sol-gels by optimizing the acidic and drying conditions used during synthesis. Chapter 3 reports the construction of novel antigenic immunosensing platforms of increased epitope density using Fab'-SH antibody fragments on gold. Here, X-ray photoelectron spectroscopy (XPS), thin-layer cell (TLC) and confocal fluorescence spectroscopies, and scanning force microscopy (SFM) are employed to characterize the fragment-substrate interaction, to quantify epitope density, and to demonstrate fragment viability and specificity. Chapter 4 presents a novel method for creating and interrogating double-stranded DNA (dsDNA) microarrays suitable for screening protein:dsDNA interactions. Using the restriction enzyme ECoR1, we demonstrate the ability of the atomic force microscope (AFM) to detect changes in topography that result from the enzymatic cleavage of dsDNA microarrays

  12. Effect of repeated freezing and thawing on 18 clinical chemistry analytes in rat serum.

    PubMed

    Kale, Vijay P; Patel, Sweta G; Gunjal, Prashant S; Wakchaure, Santosh U; Sundar, Rajesh S; Ranvir, Ramchandra K; Jain, Mukul R

    2012-07-01

    In a preclinical research laboratory, using serum samples that have been frozen and thawed repeatedly is sometimes unavoidable when needing to confirm previous results or perform additional analysis. Here we determined the effects of multiple cycles of refrigeration or freezing and thawing of rat serum at 3 temperature conditions for different storage times on clinical chemistry analytes. Serum samples obtained from adult Wistar rats were stored at 2 to 8 °C and -10 to -20 °C for as long as 72 h and at -70 °C for as long as 30 d. At different time points (24, 48, and 72 h for samples stored at 2 to 8 °C or -10 to -20 °C and 1, 7, and 30 d for samples stored at -70 °C), the samples were brought to room temperature, analyzed, and then stored again at the designated temperature. The results obtained after each storage cycle were compared with those obtained from the initial analysis of fresh samples. Of the 18 serum analytes evaluated, 14 were stable without significant changes, even after 3 freeze-thaw cycles at the tested temperature ranges. Results from this study will help researchers working with rat serum to interpret the biochemical data obtained from serum samples that have been frozen and thawed repeatedly.

  13. Topological data analysis: A promising big data exploration tool in biology, analytical chemistry and physical chemistry.

    PubMed

    Offroy, Marc; Duponchel, Ludovic

    2016-03-03

    An important feature of experimental science is that data of various kinds is being produced at an unprecedented rate. This is mainly due to the development of new instrumental concepts and experimental methodologies. It is also clear that the nature of acquired data is significantly different. Indeed in every areas of science, data take the form of always bigger tables, where all but a few of the columns (i.e. variables) turn out to be irrelevant to the questions of interest, and further that we do not necessary know which coordinates are the interesting ones. Big data in our lab of biology, analytical chemistry or physical chemistry is a future that might be closer than any of us suppose. It is in this sense that new tools have to be developed in order to explore and valorize such data sets. Topological data analysis (TDA) is one of these. It was developed recently by topologists who discovered that topological concept could be useful for data analysis. The main objective of this paper is to answer the question why topology is well suited for the analysis of big data set in many areas and even more efficient than conventional data analysis methods. Raman analysis of single bacteria should be providing a good opportunity to demonstrate the potential of TDA for the exploration of various spectroscopic data sets considering different experimental conditions (with high noise level, with/without spectral preprocessing, with wavelength shift, with different spectral resolution, with missing data).

  14. Analytical chemistry of the citrate process for flue gas desulfurization

    SciTech Connect

    Marchant, W.N.; May, S.L.; Simpson, W.W.; Winter, J.K.; Beard, H.R.

    1980-01-01

    The citrate process for flue gas desulfurization (FGD) is a product of continuing research by the US Bureau of Mines to meet the goal of minimizing the objectionable effects of minerals industry operations upon the environment. The reduction of SO/sub 2/ in solution by H/sub 2/S to produce elemental sulfur by the citrate process is extremely complex and results in solutions that contain at least nine different sulfur species. Process solution analysis is essential to a clear understanding of process chemistry and its safe, efficient operation. The various chemical species, the approximate ranges of their concentrations in citrate process solutions, and the analytical methods evolved to determine them are hydrogen sulfide (approx. 0M to 0.06M) by specific ion electrode, polysulfides (unknown) by ultraviolet (uv) spectrophotometry, elemental sulfur (approx. 0M to approx. 0.001M dissolved, approx. 0M to approx. 0.1M suspended) by uv spectrophotometry, thiosulfate (approx. 0M to approx. 0.25M) by iodometry or high performance liquid chromatography (HPLC), polythionates (approx. 0M to approx. 0.01M) by thin layer chromatography (TLC), dithionite (searched for but not detected in process solutions) by polarography or TLC, bisulfite (approx. 0M to 0.2M) by iodometry, sulfate (approx. 0M to 1M) by a Bureau-developed gravimetric procedure, citric acid (approx. 0M to 0.5M) by titration or visible colorimetry, glycolic acid (approx. 0M to 1M) by HPLC, sodium (approx. 1.5M) by flame photometry, and chloride by argentometric titration.

  15. Analytical Thinking, Analytical Action: Using Prelab Video Demonstrations and e-Quizzes to Improve Undergraduate Preparedness for Analytical Chemistry Practical Classes

    ERIC Educational Resources Information Center

    Jolley, Dianne F.; Wilson, Stephen R.; Kelso, Celine; O'Brien, Glennys; Mason, Claire E.

    2016-01-01

    This project utilizes visual and critical thinking approaches to develop a higher-education synergistic prelab training program for a large second-year undergraduate analytical chemistry class, directing more of the cognitive learning to the prelab phase. This enabled students to engage in more analytical thinking prior to engaging in the…

  16. The role of analytical chemistry in Niger Delta petroleum exploration: a review.

    PubMed

    Akinlua, Akinsehinwa

    2012-06-12

    Petroleum and organic matter from which the petroleum is derived are composed of organic compounds with some trace elements. These compounds give an insight into the origin, thermal maturity and paleoenvironmental history of petroleum, which are essential elements in petroleum exploration. The main tool to acquire the geochemical data is analytical techniques. Due to progress in the development of new analytical techniques, many hitherto petroleum exploration problems have been resolved. Analytical chemistry has played a significant role in the development of petroleum resources of Niger Delta. Various analytical techniques that have aided the success of petroleum exploration in the Niger Delta are discussed. The analytical techniques that have helped to understand the petroleum system of the basin are also described. Recent and emerging analytical methodologies including green analytical methods as applicable to petroleum exploration particularly Niger Delta petroleum province are discussed in this paper. Analytical chemistry is an invaluable tool in finding the Niger Delta oils.

  17. ICRPG WORKING GROUP ON ANALYTICAL CHEMISTRY ROUND ROBIN NO. 22 -- EUDIOMETRIC ANALYSIS OF POWDERED ALUMINUM,

    DTIC Science & Technology

    Analytical Chemistry voted to conduct a round robin to estimate the interlaboratory reproducibility. The round robin was designed to facilitate statistical analysis of the data. Three samples representing different purity levels as

  18. A conflict of analysis: analytical chemistry and milk adulteration in Victorian Britain.

    PubMed

    Steere-Williams, Jacob

    2014-08-01

    This article centres on a particularly intense debate within British analytical chemistry in the late nineteenth century, between local public analysts and the government chemists of the Inland Revenue Service. The two groups differed in both practical methodologies and in the interpretation of analytical findings. The most striking debates in this period were related to milk analysis, highlighted especially in Victorian courtrooms. It was in protracted court cases, such as the well known Manchester Milk Case in 1883, that analytical chemistry was performed between local public analysts and the government chemists, who were often both used as expert witnesses. Victorian courtrooms were thus important sites in the context of the uneven professionalisation of chemistry. I use this tension to highlight what Christopher Hamlin has called the defining feature of Victorian public health, namely conflicts of professional jurisdiction, which adds nuance to histories of the struggle of professionalisation and public credibility in analytical chemistry.

  19. Integration of Environmental Analytical Chemistry with Environmental Law: The Development of a Problem-Based Laboratory.

    ERIC Educational Resources Information Center

    Cancilla, Devon A.

    2001-01-01

    Introduces an undergraduate level problem-based analytical chemistry laboratory course integrated with an environmental law course. Aims to develop an understanding among students on the use of environmental indicators for environmental evaluation. (Contains 30 references.) (YDS)

  20. Chemometric classification techniques as a tool for solving problems in analytical chemistry.

    PubMed

    Bevilacqua, Marta; Nescatelli, Riccardo; Bucci, Remo; Magrì, Andrea D; Magrì, Antonio L; Marini, Federico

    2014-01-01

    Supervised pattern recognition (classification) techniques, i.e., the family of chemometric methods whose aim is the prediction of a qualitative response on a set of samples, represent a very important assortment of tools for solving problems in several areas of applied analytical chemistry. This paper describes the theory behind the chemometric classification techniques most frequently used in analytical chemistry together with some examples of their application to real-world problems.

  1. Effects of Computer Based Learning on Students' Attitudes and Achievements towards Analytical Chemistry

    ERIC Educational Resources Information Center

    Akcay, Hüsamettin; Durmaz, Asli; Tüysüz, Cengiz; Feyzioglu, Burak

    2006-01-01

    The aim of this study was to compare the effects of computer-based learning and traditional method on students' attitudes and achievement towards analytical chemistry. Students from Chemistry Education Department at Dokuz Eylul University (D.E.U) were selected randomly and divided into three groups; two experimental (Eg-1 and Eg-2) and a control…

  2. Evaluating the Effectiveness of the Chemistry Education by Using the Analytic Hierarchy Process

    ERIC Educational Resources Information Center

    Yüksel, Mehmet

    2012-01-01

    In this study, an attempt was made to develop a method of measurement and evaluation aimed at overcoming the difficulties encountered in the determination of the effectiveness of chemistry education based on the goals of chemistry education. An Analytic Hierarchy Process (AHP), which is a multi-criteria decision technique, is used in the present…

  3. 75 FR 8147 - Notice of Consideration of Amendment Request for Decommissioning of Analytical Bio-Chemistry...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Notice of Consideration of Amendment Request for Decommissioning of Analytical Bio-Chemistry...-Chemistry Laboratories, Inc. (the Licensee) pursuant to 10 CFR part 30. By application dated October...

  4. Integrating Bio-Inorganic and Analytical Chemistry into an Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Erasmus, Daniel J.; Brewer, Sharon E.; Cinel, Bruno

    2015-01-01

    Undergraduate laboratories expose students to a wide variety of topics and techniques in a limited amount of time. This can be a challenge and lead to less exposure to concepts and activities in bio-inorganic chemistry and analytical chemistry that are closely-related to biochemistry. To address this, we incorporated a new iron determination by…

  5. Using Mathematical Software to Introduce Fourier Transforms in Physical Chemistry to Develop Improved Understanding of Their Applications in Analytical Chemistry

    ERIC Educational Resources Information Center

    Miller, Tierney C.; Richardson, John N.; Kegerreis, Jeb S.

    2016-01-01

    This manuscript presents an exercise that utilizes mathematical software to explore Fourier transforms in the context of model quantum mechanical systems, thus providing a deeper mathematical understanding of relevant information often introduced and treated as a "black-box" in analytical chemistry courses. The exercise is given to…

  6. Fifty years of continuous improvement: (What has DOE done for analytical chemistry?)

    SciTech Connect

    Shults, W.D.

    1993-11-01

    Over the past fifty years, analytical scientist within the DOE complex have had a tremendous impact on the field of analytical chemistry. This paper suggests six ``high impact`` research/development areas that either originated within or were brought to maturity within the DOE laboratories. ``High impact`` means they lead to new subdisciplines or to new ways of doing business.

  7. Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 1, Administrative

    SciTech Connect

    Not Available

    1992-06-01

    Covered are: analytical laboratory operations (ALO) sample receipt and control, ALO data report/package preparation review and control, single shell tank (PST) project sample tracking system, sample receiving, analytical balances, duties and responsibilities of sample custodian, sample refrigerator temperature monitoring, security, assignment of staff responsibilities, sample storage, data reporting, and general requirements for glassware.

  8. Recent Applications of Carbon-Based Nanomaterials in Analytical Chemistry: Critical Review

    PubMed Central

    Scida, Karen; Stege, Patricia W.; Haby, Gabrielle; Messina, Germán A.; García, Carlos D.

    2011-01-01

    The objective of this review is to provide a broad overview of the advantages and limitations of carbon-based nanomaterials with respect to analytical chemistry. Aiming to illustrate the impact of nanomaterials on the development of novel analytical applications, developments reported in the 2005–2010 period have been included and divided into sample preparation, separation, and detection. Within each section, fullerenes, carbon nanotubes, graphene, and composite materials will be addressed specifically. Although only briefly discussed, included is a section highlighting nanomaterials with interesting catalytic properties that can be used in the design of future devices for analytical chemistry. PMID:21458626

  9. Recent applications of carbon-based nanomaterials in analytical chemistry: critical review.

    PubMed

    Scida, Karen; Stege, Patricia W; Haby, Gabrielle; Messina, Germán A; García, Carlos D

    2011-04-08

    The objective of this review is to provide a broad overview of the advantages and limitations of carbon-based nanomaterials with respect to analytical chemistry. Aiming to illustrate the impact of nanomaterials on the development of novel analytical applications, developments reported in the 2005-2010 period have been included and divided into sample preparation, separation, and detection. Within each section, fullerenes, carbon nanotubes, graphene, and composite materials will be addressed specifically. Although only briefly discussed, included is a section highlighting nanomaterials with interesting catalytic properties that can be used in the design of future devices for analytical chemistry.

  10. Analytical Chemistry for Homeland Defense and National Security

    SciTech Connect

    S.Randolph Long; Dan rock; Gary Eiceman; Chris Rowe Taitt; Robert J.Cotter; Dean D.Fetterolf; David R.Walt; Basil I. Swanson; Scott A McLuckey; Robin L.Garrell; Scott D. Cunningham

    2002-08-18

    The budget was requested to support speaker expenses to attend and speak in the day long symposium at the ACS meeting. The purpose of the symposium was to encourage analytical chemists to contribute to national security.

  11. Analytical Pharmaceutical Chemistry--Bridging Disciplines and Interests

    ERIC Educational Resources Information Center

    Smith, Robert V.

    1977-01-01

    Because of their interest and expertise in the analysis of drugs in biological fluids, analytical pharmaceutical chemists can contribute significantly to interdisciplinary research and teaching efforts. Suggestions for such efforts are described. (Author/LBH)

  12. An Experiential Research-Focused Approach: Implementation in a Nonlaboratory-Based Graduate-Level Analytical Chemistry Course

    ERIC Educational Resources Information Center

    Toh, Chee-Seng

    2007-01-01

    A project is described which incorporates nonlaboratory research skills in a graduate level course on analytical chemistry. This project will help students to grasp the basic principles and concepts of modern analytical techniques and also help them develop relevant research skills in analytical chemistry.

  13. Experimental and Analytical Studies of Solar System Chemistry

    NASA Technical Reports Server (NTRS)

    Burnett, Donald S.

    2003-01-01

    The cosmochemistry research funded by this grant resulted in the publications given in the attached Publication List. The research focused in three areas: (1) Experimental studies of trace element partitioning. (2) Studies of the minor element chemistry and O isotopic compositions of MgAlO4 spinels from Ca-Al-Rich Inclusions in carbonaceous chondrite meteorites, and (3) The abundances and chemical fractionations of Th and U in chondritic meteorites.

  14. Influence of a Regular, Standardized Meal on Clinical Chemistry Analytes

    PubMed Central

    Salvagno, Gian Luca; Lippi, Giuseppe; Gelati, Matteo; Montagnana, Martina; Danese, Elisa; Picheth, Geraldo; Guidi, Gian Cesare

    2012-01-01

    Background Preanalytical variability, including biological variability and patient preparation, is an important source of variability in laboratory testing. In this study, we assessed whether a regular light meal might bias the results of routine clinical chemistry testing. Methods We studied 17 healthy volunteers who consumed light meals containing a standardized amount of carbohydrates, proteins, and lipids. We collected blood for routine clinical chemistry tests before the meal and 1, 2, and 4 hr thereafter. Results One hour after the meal, triglycerides (TG), albumin (ALB), uric acid (UA), phosphatase (ALP), Ca, Fe, and Na levels significantly increased, whereas blood urea nitrogen (BUN) and P levels decreased. TG, ALB, Ca, Na, P, and total protein (TP) levels varied significantly. Two hours after the meal, TG, ALB, Ca, Fe, and Na levels remained significantly high, whereas BUN, P, UA, and total bilirubin (BT) levels decreased. Clinically significant variations were recorded for TG, ALB, ALT, Ca, Fe, Na, P, BT, and direct bilirubin (BD) levels. Four hours after the meal, TG, ALB, Ca, Fe, Na, lactate dehydrogenase (LDH), P, Mg, and K levels significantly increased, whereas UA and BT levels decreased. Clinically significant variations were observed for TG, ALB, ALT, Ca, Na, Mg, K, C-reactive protein (CRP), AST, UA, and BT levels. Conclusions A significant variation in the clinical chemistry parameters after a regular meal shows that fasting time needs to be carefully considered when performing tests to prevent spurious results and reduce laboratory errors, especially in an emergency setting. PMID:22779065

  15. Selected uses of enzymes with critical fluids in analytical chemistry.

    PubMed

    Turner, Charlotta; King, Jerry W; McKeon, Thomas

    2004-01-01

    The use of enzymes coupled with supercritical fluid (SF)-based analytical techniques, such as supercritical fluid extraction (SFE), provides a safer environment platform for the analytical chemist and reduces the use of organic solvents. Incorporation of such techniques not only reduces the use of solvent in analytical laboratories, but it can also lead to overall method simplification and time savings. In this review, some of the fundamental aspects of using enzymes in the presence of SF media are discussed, particularly the influence of extraction (reaction) pressure, temperature, and water content of the extracting fluid and/or the sample matrix. Screening of optimal conditions for conducting reactions in the presence of SF media can be readily accomplished with automated serial or parallel SFE instrumentation, including selection of the proper enzyme. Numerous examples are cited, many based on lipase-initiated conversions of lipid substrates, to form useful analytical derivatives for gas chromatography, liquid chromatography, or SF chromatography analysis. In certain cases, enzymatic-aided processing of samples can permit the coupling of the extraction, sample preparation, and final analysis steps. The derived methods/techniques find application in nutritional food analyses, assays of industrial products, and micro analyses of specific samples.

  16. Manual of analytical methods for the Industrial Hygiene Chemistry Laboratory

    SciTech Connect

    Greulich, K.A.; Gray, C.E.

    1991-08-01

    This Manual is compiled from techniques used in the Industrial Hygiene Chemistry Laboratory of Sandia National Laboratories in Albuquerque, New Mexico. The procedures are similar to those used in other laboratories devoted to industrial hygiene practices. Some of the methods are standard; some, modified to suit our needs; and still others, developed at Sandia. The authors have attempted to present all methods in a simple and concise manner but in sufficient detail to make them readily usable. It is not to be inferred that these methods are universal for any type of sample, but they have been found very reliable for the types of samples mentioned.

  17. Analytical Chemistry Division annual progress report for period ending December 31, 1985

    SciTech Connect

    Shultz, W.D.

    1986-05-01

    Progress reports are presented for the four major sections of the division: analytical spectroscopy, radioactive materials laboratories, inorganic chemistry, and organic chemistry. A brief discussion of the division's role in the Laboratory's Environmental Restoration and Facilities Upgrade is given. Information about quality assurance and safety programs is presented, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited.

  18. Waste minimization in analytical chemistry through innovative sample preparation techniques.

    SciTech Connect

    Smith, L. L.

    1998-05-28

    Because toxic solvents and other hazardous materials are commonly used in analytical methods, characterization procedures result in significant and costly amount of waste. We are developing alternative analytical methods in the radiological and organic areas to reduce the volume or form of the hazardous waste produced during sample analysis. For the radiological area, we have examined high-pressure, closed-vessel microwave digestion as a way to minimize waste from sample preparation operations. Heated solutions of strong mineral acids can be avoided for sample digestion by using the microwave approach. Because reactivity increases with pressure, we examined the use of less hazardous solvents to leach selected contaminants from soil for subsequent analysis. We demonstrated the feasibility of this approach by extracting plutonium from a NET reference material using citric and tartaric acids with microwave digestion. Analytical results were comparable to traditional digestion methods, while hazardous waste was reduced by a factor often. We also evaluated the suitability of other natural acids, determined the extraction performance on a wider variety of soil types, and examined the extraction efficiency of other contaminants. For the organic area, we examined ways to minimize the wastes associated with the determination of polychlorinated biphenyls (PCBs) in environmental samples. Conventional methods for analyzing semivolatile organic compounds are labor intensive and require copious amounts of hazardous solvents. For soil and sediment samples, we have a method to analyze PCBs that is based on microscale extraction using benign solvents (e.g., water or hexane). The extraction is performed at elevated temperatures in stainless steel cells containing the sample and solvent. Gas chromatography-mass spectrometry (GC/MS) was used to quantitate the analytes in the isolated extract. More recently, we developed a method utilizing solid-phase microextraction (SPME) for natural

  19. Bibliometric mapping: eight decades of analytical chemistry, with special focus on the use of mass spectrometry.

    PubMed

    Waaijer, Cathelijn J F; Palmblad, Magnus

    2015-01-01

    In this Feature we use automatic bibliometric mapping tools to visualize the history of analytical chemistry from the 1920s until the present. In particular, we have focused on the application of mass spectrometry in different fields. The analysis shows major shifts in research focus and use of mass spectrometry. We conclude by discussing the application of bibliometric mapping and visualization tools in analytical chemists' research.

  20. Analytical chemistry in water quality monitoring during manned space missions

    NASA Astrophysics Data System (ADS)

    Artemyeva, Anastasia A.

    2016-09-01

    Water quality monitoring during human spaceflights is essential. However, most of the traditional methods require sample collection with a subsequent ground analysis because of the limitations in volume, power, safety and gravity. The space missions are becoming longer-lasting; hence methods suitable for in-flight monitoring are demanded. Since 2009, water quality has been monitored in-flight with colorimetric methods allowing for detection of iodine and ionic silver. Organic compounds in water have been monitored with a second generation total organic carbon analyzer, which provides information on the amount of carbon in water at both the U.S. and Russian segments of the International Space Station since 2008. The disadvantage of this approach is the lack of compound-specific information. The recently developed methods and tools may potentially allow one to obtain in-flight a more detailed information on water quality. Namely, the microanalyzers based on potentiometric measurements were designed for online detection of chloride, potassium, nitrate ions and ammonia. The recent application of the current highly developed air quality monitoring system for water analysis was a logical step because most of the target analytes are the same in air and water. An electro-thermal vaporizer was designed, manufactured and coupled with the air quality control system. This development allowed for liberating the analytes from the aqueous matrix and further compound-specific analysis in the gas phase.

  1. The Analytical Chemistry of Drug Monitoring in Athletes

    NASA Astrophysics Data System (ADS)

    Bowers, Larry D.

    2009-07-01

    The detection and deterrence of the abuse of performance-enhancing drugs in sport are important to maintaining a level playing field among athletes and to decreasing the risk to athletes’ health. The World Anti-Doping Program consists of six documents, three of which play a role in analytical development: The World Anti-Doping Code, The List of Prohibited Substances and Methods, and The International Standard for Laboratories. Among the classes of prohibited substances, three have given rise to the most recent analytical developments in the field: anabolic agents; peptide and protein hormones; and methods to increase oxygen delivery to the tissues, including recombinant erythropoietin. Methods for anabolic agents, including designer steroids, have been enhanced through the use of liquid chromatography/tandem mass spectrometry and gas chromatography/combustion/isotope-ratio mass spectrometry. Protein and peptide identification and quantification have benefited from advances in liquid chromatography/tandem mass spectrometry. Incorporation of techniques such as flow cytometry and isoelectric focusing have supported the detection of blood doping.

  2. The analytical chemistry of drug monitoring in athletes.

    PubMed

    Bowers, Larry D

    2009-01-01

    The detection and deterrence of the abuse of performance-enhancing drugs in sport are important to maintaining a level playing field among athletes and to decreasing the risk to athletes' health. The World Anti-Doping Program consists of six documents, three of which play a role in analytical development: The World Anti-Doping Code, The List of Prohibited Substances and Methods, and The International Standard for Laboratories. Among the classes of prohibited substances, three have given rise to the most recent analytical developments in the field: anabolic agents; peptide and protein hormones; and methods to increase oxygen delivery to the tissues, including recombinant erythropoietin. Methods for anabolic agents, including designer steroids, have been enhanced through the use of liquid chromatography/tandem mass spectrometry and gas chromatography/combustion/isotope-ratio mass spectrometry. Protein and peptide identification and quantification have benefited from advances in liquid chromatography/tandem mass spectrometry. Incorporation of techniques such as flow cytometry and isoelectric focusing have supported the detection of blood doping.

  3. Disruptive by design: a perspective on engineering in analytical chemistry.

    PubMed

    Herr, Amy E

    2013-08-20

    Perhaps paradoxically, we argue that the biological sciences are "data-limited". In contrast to the glut of DNA sequencing data available, high-throughput protein analysis is expensive and largely inaccessible. Hence, we posit that access to robust protein-level data is inadequate. Here, we use the framework of the formal engineering design process to both identify and understand the problems facing measurement science in the 21st century. In particular, discussion centers on the notable challenge of realizing protein analyses that are as effective (and transformative) as genomics tools. This Perspective looks through the lens of a case study on protein biomarker validation and verification, to highlight the importance of iterative design in realizing significant advances over currently available measurement capabilities in the candidate or targeted proteomics space. The Perspective follows a podium presentation given by the author at The 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences (μTAS 2012), specifically focusing on novel targeted proteomic measurement tools based in microfluidic design. The role of unmet needs identification, iteration in concept generation and development, and the existing gap in rapid prototyping tools for separations are all discussed.

  4. Disruptive by Design: A perspective on engineering in analytical chemistry

    PubMed Central

    Herr, Amy E.

    2013-01-01

    Perhaps paradoxically, we argue that the biological sciences are ‘data-limited’. In contrast to the glut of DNA sequencing data available, high-throughput protein analysis is expensive and largely inaccessible. Hence we posit that access to robust protein-level data is inadequate. Here we use the framework of the formal engineering design process to both identify and understand the problems facing measurement science in the 21st century. In particular, discussion centers on the notable challenge of realizing protein analyses that are as effective (and transformative) as genomics tools. This Perspective looks through the lens of a case study on protein biomarker validation and verification, to highlight the importance of iterative design in realizing significant advances over currently available measurement capabilities in the candidate or targeted proteomics space. The Perspective follows a podium presentation given by the author at The 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences (μTAS 2012), specifically focusing on novel targeted proteomic measurement tools based in microfluidic design. The role of unmet needs identification, iteration in concept generation and development, and the existing gap in rapid prototyping tools for separations are all discussed. PMID:23924345

  5. Determination of Mercury in Milk by Cold Vapor Atomic Fluorescence: A Green Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Armenta, Sergio; de la Guardia, Miguel

    2011-01-01

    Green analytical chemistry principles were introduced to undergraduate students in a laboratory experiment focused on determining the mercury concentration in cow and goat milk. In addition to traditional goals, such as accuracy, precision, sensitivity, and limits of detection in method selection and development, attention was paid to the…

  6. Liquid-Liquid Extraction of Insecticides from Juice: An Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Radford, Samantha A.; Hunter, Ronald E., Jr.; Barr, Dana Boyd; Ryan, P. Barry

    2013-01-01

    A laboratory experiment was developed to target analytical chemistry students and to teach them about insecticides in food, sample extraction, and cleanup. Micro concentrations (sub-microgram/mL levels) of 12 insecticides spiked into apple juice samples are extracted using liquid-liquid extraction and cleaned up using either a primary-secondary…

  7. Island Explorations: Discovering Effects of Environmental Research-Based Lab Activities on Analytical Chemistry Students

    ERIC Educational Resources Information Center

    Tomasik, Janice Hall; LeCaptain, Dale; Murphy, Sarah; Martin, Mary; Knight, Rachel M.; Harke, Maureen A.; Burke, Ryan; Beck, Kara; Acevedo-Polakovich, I. David

    2014-01-01

    Motivating students in analytical chemistry can be challenging, in part because of the complexity and breadth of topics involved. Some methods that help encourage students and convey real-world relevancy of the material include incorporating environmental issues, research-based lab experiments, and service learning projects. In this paper, we…

  8. A Comprehensive Microfluidics Device Construction and Characterization Module for the Advanced Undergraduate Analytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Piunno, Paul A. E.; Zetina, Adrian; Chu, Norman; Tavares, Anthony J.; Noor, M. Omair; Petryayeva, Eleonora; Uddayasankar, Uvaraj; Veglio, Andrew

    2014-01-01

    An advanced analytical chemistry undergraduate laboratory module on microfluidics that spans 4 weeks (4 h per week) is presented. The laboratory module focuses on comprehensive experiential learning of microfluidic device fabrication and the core characteristics of microfluidic devices as they pertain to fluid flow and the manipulation of samples.…

  9. Quantitative Ultrasound-Assisted Extraction for Trace-Metal Determination: An Experiment for Analytical Chemistry

    ERIC Educational Resources Information Center

    Lavilla, Isela; Costas, Marta; Pena-Pereira, Francisco; Gil, Sandra; Bendicho, Carlos

    2011-01-01

    Ultrasound-assisted extraction (UAE) is introduced to upper-level analytical chemistry students as a simple strategy focused on sample preparation for trace-metal determination in biological tissues. Nickel extraction in seafood samples and quantification by electrothermal atomic absorption spectrometry (ETAAS) are carried out by a team of four…

  10. Incorporating Students' Self-Designed, Research-Based Analytical Chemistry Projects into the Instrumentation Curriculum

    ERIC Educational Resources Information Center

    Gao, Ruomei

    2015-01-01

    In a typical chemistry instrumentation laboratory, students learn analytical techniques through a well-developed procedure. Such an approach, however, does not engage students in a creative endeavor. To foster the intrinsic motivation of students' desire to learn, improve their confidence in self-directed learning activities and enhance their…

  11. [Analytical chemistry in works of Maria Skłodowska-Curie].

    PubMed

    Hulanicki, Adam

    2012-01-01

    Maria Skłodowska-Curie--a Nobel Prize winner in chemistry--the elements of learning of chemistry gained just by a dint of work of more than ten months in Warsaw in the Institute of Industry and Agriculture Museum. The Nobel Prize concerned a contribution to the progress of chemistry through the discovery of radium and polonium, separation of radium and study of properties of this amazing element. It was awarded for an extremely arduous work, during which the chemical reactions being the principles of analytical chemistry were realized. Unlike to a typical analytical procedure, an initial attempt here was the thousands of kilograms of uranium ore: pitchblende. The final effect was small amounts of new elements: polonium and radium. Both the knowledge and the intuition of the researcher let her have a triumph. The difficulties she experienced because the properties of the searched chemical elements could only be evaluated thanks to the knowledge on other chemical elements. A significant achievement was the determination of the samples by means of radioactivity measurement, which gave rise to radiochemical analytical methods. An extreme analytical precision was demanded in multiple processes of fractional crystallization and precipitation which finally led to the calculation of the atomic mass of radium.

  12. An Attenuated Total Reflectance Sensor for Copper: An Experiment for Analytical or Physical Chemistry

    ERIC Educational Resources Information Center

    Shtoyko, Tanya; Zudans, Imants; Seliskar, Carl J.; Heineman, William R.; Richardson, John N.

    2004-01-01

    A sensor experiment which can be applied to advanced undergraduate laboratory course in physical or analytical chemistry is described along with certain concepts like the demonstration of chemical sensing, preparation of thin films on a substrate, microtitration, optical determination of complex ion stoichiometry and isosbestic point. It is seen…

  13. Student Learning and Evaluation in Analytical Chemistry Using a Problem-Oriented Approach and Portfolio Assessment

    ERIC Educational Resources Information Center

    Boyce, Mary C.; Singh, Kuki

    2008-01-01

    This paper describes a student-focused activity that promotes effective learning in analytical chemistry. Providing an environment where students were responsible for their own learning allowed them to participate at all levels from designing the problem to be addressed, planning the laboratory work to support their learning, to providing evidence…

  14. Juicing the Juice: A Laboratory-Based Case Study for an Instrumental Analytical Chemistry Course

    ERIC Educational Resources Information Center

    Schaber, Peter M.; Dinan, Frank J.; St. Phillips, Michael; Larson, Renee; Pines, Harvey A.; Larkin, Judith E.

    2011-01-01

    A young, inexperienced Food and Drug Administration (FDA) chemist is asked to distinguish between authentic fresh orange juice and suspected reconstituted orange juice falsely labeled as fresh. In an advanced instrumental analytical chemistry application of this case, inductively coupled plasma (ICP) spectroscopy is used to distinguish between the…

  15. Online Video Tutorials Increase Learning of Difficult Concepts in an Undergraduate Analytical Chemistry Course

    ERIC Educational Resources Information Center

    He, Yi; Swenson, Sandra; Lents, Nathan

    2012-01-01

    Educational technology has enhanced, even revolutionized, pedagogy in many areas of higher education. This study examines the incorporation of video tutorials as a supplement to learning in an undergraduate analytical chemistry course. The concepts and problems in which students faced difficulty were first identified by assessing students'…

  16. [Recent progress on analytical chemistry and biochemistry of D-amino acids].

    PubMed

    Imai, K; Kato, M; Huang, Y; Ichihara, H; Fukushima, T; Santa, T; Homma, H

    1997-11-01

    Recent findings that D-amino acids, especially D-aspartic acid and D-serine, exist in vivo in the mammalian tissues (brain and peripheries), prompted us now to investigate their biological and pathological roles in mammals. In this review, the overview of the progress of analytical chemistry and biochemistry of D-amino acids is described.

  17. Analytical Chemistry Division annual progress report for period ending December 31, 1992

    SciTech Connect

    Shults, W.D.

    1993-04-01

    This report is divided into: Analytical spectroscopy (optical spectroscopy, organic mass spectrometry, inorganic mass spectrometry, secondary ion mass spectrometry), inorganic and radiochemistry (transuranium and activation analysis, low-level radiochemical analysis, inorganic analysis, radioactive materials analysis, special projects), organic chemistry (organic spectroscopy, separations and synthesis, special projects, organic analysis, ORNL/UT research program), operations (quality assurance/quality control, environmental protection, safety, analytical improvement, training, radiation control), education programs, supplementary activities, and presentation of research results. Tables are included for articles reviewed or refereed for periodicals, analytical service work, division manpower and financial summary, and organization chart; a glossary is also included.

  18. Exploration of Antarctic Subglacial environments: a challenge for analytical chemistry

    NASA Astrophysics Data System (ADS)

    Traversi, R.; Becagli, S.; Castellano, E.; Ghedini, C.; Marino, F.; Rugi, F.; Severi, M.; Udisti, R.

    2009-12-01

    The large number of subglacial lakes detected in the Dome C area in East Antarctica suggests that this region may be a valuable source of paleo-records essential for understanding the evolution of the Antarctic ice cap and climate changes in the last several millions years. In the framework of the Project on “Exploration and characterization of Concordia Lake, Antarctica”, supported by Italian Program for Antarctic Research (PNRA), a glaciological investigation of the Dome C “Lake District” are planned. Indeed, the glacio-chemical characterisation of the ice column over subglacial lakes will allow to evaluate the fluxes of major and trace chemical species along the ice column and in the accreted ice and, consequently, the availability of nutrients and oligo-elements for possible biological activity in the lake water and sediments. Melting and freezing at the base of the ice sheet should be able to deliver carbon and salts to the lake, as observed for the Vostok subglacial lake, which are thought to be able to support a low concentration of micro-organisms for extended periods of time. Thus, this investigation represents the first step for exploring the subglacial environments including sampling and analysis of accreted ice, lake water and sediments. In order to perform reliable analytical measurements, especially of trace chemical species, clean sub-sampling and analytical techniques are required. For this purpose, the techniques already used by the CHIMPAC laboratory (Florence University) in the framework of international Antarctic drilling Projects (EPICA - European Project for Ice Coring in Antarctica, TALDICE - TALos Dome ICE core, ANDRILL MIS - ANTarctic DRILLing McMurdo Ice Shelf) were optimised and new techniques were developed to ensure a safe sample handling. CHIMPAC laboratory has been involved since several years in the study of Antarctic continent, primarily focused on understanding the bio-geo-chemical cycles of chemical markers and the

  19. The Efficacy of Problem-Based Learning in an Analytical Laboratory Course for Pre-Service Chemistry Teachers

    ERIC Educational Resources Information Center

    Yoon, Heojeong; Woo, Ae Ja; Treagust, David; Chandrasegaran, A. L.

    2014-01-01

    The efficacy of problem-based learning (PBL) in an analytical chemistry laboratory course was studied using a programme that was designed and implemented with 20 students in a treatment group over 10 weeks. Data from 26 students in a traditional analytical chemistry laboratory course were used for comparison. Differences in the creative thinking…

  20. Increasing Efficiency and Quality by Consolidation of Clinical Chemistry and Immunochemistry Systems with MODULAR ANALYTICS SWA

    PubMed Central

    Mocarelli, Paolo; Horowitz, Gary L.; Gerthoux, Pier Mario; Cecere, Rossana; Imdahl, Roland; Ruinemans-Koerts, Janneke; Luthe, Hilmar; Calatayud, Silvia Pesudo; Salve, Marie Luisa; Kunst, Albert; McGovern, Margaret; Ng, Katherine; Stockmann, Wolfgang

    2008-01-01

    MODULAR ANALYTICS Serum Work Area (in USA Integrated MODULAR ANALYTICS, MODULAR ANALYTICS is a trademark of a member of the Roche Group) represents a further approach to automation in the laboratory medicine. This instrument combines previously introduced modular systems for the clinical chemistry and immunochemistry laboratory and allows customised combinations for various laboratory workloads. Functionality, practicability, and workflow behaviour of MODULAR ANALYTICS Serum Work Area were evaluated in an international multicenter study at six laboratories. Across all experiments, 236000 results from 32400 samples were generated using 93 methods. Simulated routine testing which included provocation incidents and anomalous situations demonstrated good performance and full functionality. Heterogeneous immunoassays, performed on the E-module with the electrochemiluminescence technology, showed reproducibility at the same level of the general chemistry tests, which was well within the clinical demands. Sample carryover cannot occur due to intelligent sample processing. Workflow experiments for the various module combinations, with menus of about 50 assays, yielded mean sample processing times of <38 minutes for combined clinical chemistry and immunochemistry requests; <50 minutes including automatically repeated samples. MODULAR ANALYTICS Serum Work Area offered simplified workflow by combining various laboratory segments. It increased efficiency while maintaining or even improving quality of laboratory processes. PMID:18401449

  1. Priority survey between indicators and analytic hierarchy process analysis for green chemistry technology assessment

    PubMed Central

    Kim, Sungjune; Hong, Seokpyo; Ahn, Kilsoo; Gong, Sungyong

    2015-01-01

    Objectives This study presents the indicators and proxy variables for the quantitative assessment of green chemistry technologies and evaluates the relative importance of each assessment element by consulting experts from the fields of ecology, chemistry, safety, and public health. Methods The results collected were subjected to an analytic hierarchy process to obtain the weights of the indicators and the proxy variables. Results These weights may prove useful in avoiding having to resort to qualitative means in absence of weights between indicators when integrating the results of quantitative assessment by indicator. Conclusions This study points to the limitations of current quantitative assessment techniques for green chemistry technologies and seeks to present the future direction for quantitative assessment of green chemistry technologies. PMID:26206364

  2. Hard Cap Espresso Machines in Analytical Chemistry: What Else?

    PubMed

    Armenta, Sergio; de la Guardia, Miguel; Esteve-Turrillas, Francesc A

    2016-06-21

    A hard cap espresso machine has been used in combination with liquid chromatography with molecular fluorescence detection for the determination of polycyclic aromatic hydrocarbons (PAHs) from contaminated soils and sediments providing appropriate extraction efficiencies and quantitative results. Naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benz[b]fluoranthene, benz[k]fluoranthene, benz[a]pyrene, dibenz[a,h]anthracene, benz[ghi]perylene, and indeno[1,2,3-cd]pyrene were used as target compounds. It should be mentioned that the pairs benz[a]anthracene-chrysene and dibenz[a,h]anthracene-benz[ghi]perylene peaks coelute under the employed chromatographic conditions; thus, those compounds were determined together. PAHs were extracted from 5.0 g of soil, previously homogenized, freeze-dried, and sieved to 250 μm, with 50 mL of 40% (v/v) acetonitrile in water at a temperature of 72 ± 3 °C. The proposed procedure is really fast, with an extraction time of 11 s, and it reduces the required amount of organic solvent to do the sample preparation. The obtained limit of detection for the evaluated PAHs was from 1 to 38 μg kg(-1). Recoveries were calculated using clean soils spiked with 100, 500, 1000, and 2000 μg kg(-1) PAHs with values ranging from 81 to 121% and good precision with relative standard deviation values lower than 30%. The method was validated using soil and sediment certified reference materials and also using real samples by comparison with ultrasound-assisted extraction, as reference methodology, obtaining statistically comparable results. Thus, the use of hard cap espresso machines in the analytical laboratories offers tremendous possibilities as low cost extraction units for the extraction of solid samples.

  3. Analytical Chemistry Division annual progress report for period ending December 31, 1988

    SciTech Connect

    Not Available

    1988-05-01

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: (1) Analytical Research, Development, and Implementation. The division maintains a program to conceptualize, investigate, develop, assess, improve, and implement advanced technology for chemical and physicochemical measurements. Emphasis is on problems and needs identified with ORNL and Department of Energy (DOE) programs; however, attention is also given to advancing the analytical sciences themselves. (2) Programmatic Research, Development, and Utilization. The division carries out a wide variety of chemical work that typically involves analytical research and/or development plus the utilization of analytical capabilities to expedite programmatic interests. (3) Technical Support. The division performs chemical and physicochemical analyses of virtually all types. The Analytical Chemistry Division is organized into four major sections, each of which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1988. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8.

  4. Integrating bio-inorganic and analytical chemistry into an undergraduate biochemistry laboratory.

    PubMed

    Erasmus, Daniel J; Brewer, Sharon E; Cinel, Bruno

    2015-01-01

    Undergraduate laboratories expose students to a wide variety of topics and techniques in a limited amount of time. This can be a challenge and lead to less exposure to concepts and activities in bio-inorganic chemistry and analytical chemistry that are closely-related to biochemistry. To address this, we incorporated a new iron determination by atomic absorption spectroscopy exercise as part of a five-week long laboratory-based project on the purification of myoglobin from beef. Students were required to prepare samples for chemical analysis, operate an atomic absorption spectrophotometer, critically evaluate their iron data, and integrate these data into a study of myoglobin.

  5. Photography by Cameras Integrated in Smartphones as a Tool for Analytical Chemistry Represented by an Butyrylcholinesterase Activity Assay.

    PubMed

    Pohanka, Miroslav

    2015-06-11

    Smartphones are popular devices frequently equipped with sensitive sensors and great computational ability. Despite the widespread availability of smartphones, practical uses in analytical chemistry are limited, though some papers have proposed promising applications. In the present paper, a smartphone is used as a tool for the determination of cholinesterasemia i.e., the determination of a biochemical marker butyrylcholinesterase (BChE). The work should demonstrate suitability of a smartphone-integrated camera for analytical purposes. Paper strips soaked with indoxylacetate were used for the determination of BChE activity, while the standard Ellman's assay was used as a reference measurement. In the smartphone-based assay, BChE converted indoxylacetate to indigo blue and coloration was photographed using the phone's integrated camera. A RGB color model was analyzed and color values for the individual color channels were determined. The assay was verified using plasma samples and samples containing pure BChE, and validated using Ellmans's assay. The smartphone assay was proved to be reliable and applicable for routine diagnoses where BChE serves as a marker (liver function tests; some poisonings, etc.). It can be concluded that the assay is expected to be of practical applicability because of the results' relevance.

  6. Photography by Cameras Integrated in Smartphones as a Tool for Analytical Chemistry Represented by an Butyrylcholinesterase Activity Assay

    PubMed Central

    Pohanka, Miroslav

    2015-01-01

    Smartphones are popular devices frequently equipped with sensitive sensors and great computational ability. Despite the widespread availability of smartphones, practical uses in analytical chemistry are limited, though some papers have proposed promising applications. In the present paper, a smartphone is used as a tool for the determination of cholinesterasemia i.e., the determination of a biochemical marker butyrylcholinesterase (BChE). The work should demonstrate suitability of a smartphone-integrated camera for analytical purposes. Paper strips soaked with indoxylacetate were used for the determination of BChE activity, while the standard Ellman’s assay was used as a reference measurement. In the smartphone-based assay, BChE converted indoxylacetate to indigo blue and coloration was photographed using the phone’s integrated camera. A RGB color model was analyzed and color values for the individual color channels were determined. The assay was verified using plasma samples and samples containing pure BChE, and validated using Ellmans’s assay. The smartphone assay was proved to be reliable and applicable for routine diagnoses where BChE serves as a marker (liver function tests; some poisonings, etc.). It can be concluded that the assay is expected to be of practical applicability because of the results’ relevance. PMID:26110404

  7. Analytical Chemistry Division. Annual progress report for period ending December 31, 1981

    SciTech Connect

    Lyon, W. S.

    1982-04-01

    The functions of the Analytical Chemistry Division fall into three general categories: (1) analytical research, development, and implementation; (2) programmatic research, development and utilization; (3) technical support. The Division is organized into five major sections each of which may carry out any type of work falling into the thre categories mentioned above. Chapters 1 through 5 of this report highlight progress within the five sections which are: analytical methodology; mass and emission spectrometry; analytical technical support; bio/organic analysis section; and nuclear and radiochemical analysis. A short summary introduces each chapter to indicate work scope. Information about quality assurance and safety programs is presented in Chapter 6, along with a tabulation of analyses rendered. Chapter 7 covers supplementary activities. Chapter 8 is on presentation of research results (publications, articles reviewed or referred for periodicals). Approximately 56 articles, 31 proceedings publications and 33 reports have been published, and 119 oral presentations given during this reporting period.

  8. 75 years of the Division of Analytical Chemistry of the American Chemical Society.

    PubMed

    Hirsch, Roland F

    2013-04-02

    The Division of Analytical Chemistry is celebrating the 75th anniversary of its founding in 1938. We celebrate the continuing high importance of our discipline for all aspects of chemical science and for its applications in so many aspects of everyday life. We especially celebrate the accomplishments of our fellow analytical chemists through the years, and the impact we have had on the profession. This article is a short history of the Division within the context of the parallel development of our profession and our science.

  9. On the outside looking in: redefining the role of analytical chemistry in the biosciences.

    PubMed

    Hare, Dominic J; New, Elizabeth J

    2016-07-12

    Biomedical research has moved on from the study of the structure of organs, cells and organelles. Today, the key questions that must be addressed to understand the body in health and disease are related to fundamental biochemistry: the distribution and speciation of chemicals, the regulation of chemical reactions, and the control of chemical environments. To see advances in this field, it is essential for analytical chemists to actively engage in this process, from beginning to end. In this Feature Article, we review the progress that has been made towards gaining an understanding of the chemistry of the body, while commenting on the intrinsic disconnect between new innovations in the field of analytical chemistry and practical application within the biosciences. We identify the challenges that prevent chemists from making a greater impact in this field, and highlight key steps for moving forward.

  10. Quality Assurance Baseline Assessment Report to Los Alamos National Laboratory Analytical Chemistry Operations

    SciTech Connect

    Jordan, R. A.

    1998-09-01

    This report summarizes observations that were made during a Quality Assurance (QA) Baseline Assessment of the Nuclear Materials Technology Analytical Chemistry Group (NMT-1). The Quality and Planning personnel, for NMT-1, are spending a significant amount of time transitioning out of their roles of environmental oversight into production oversight. A team from the Idaho National Engineering and Environmental Laboratory Defense Program Environmental Surety Program performed an assessment of the current status of the QA Program. Several Los Alamos National Laboratory Analytical Chemistry procedures were reviewed, as well as Transuranic Waste Characterization Program (TWCP) QA documents. Checklists were developed and the assessment was performed according to an Implementation Work Plan, INEEL/EXT-98-00740.

  11. Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry.

    PubMed

    Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek

    2013-12-20

    Solid phase microextraction find increasing applications in the sample preparation step before chromatographic determination of analytes in samples with a complex composition. These techniques allow for integrating several operations, such as sample collection, extraction, analyte enrichment above the detection limit of a given measuring instrument and the isolation of analytes from sample matrix. In this work the information about novel methodological and instrumental solutions in relation to different variants of solid phase extraction techniques, solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE) and magnetic solid phase extraction (MSPE) is presented, including practical applications of these techniques and a critical discussion about their advantages and disadvantages. The proposed solutions fulfill the requirements resulting from the concept of sustainable development, and specifically from the implementation of green chemistry principles in analytical laboratories. Therefore, particular attention was paid to the description of possible uses of novel, selective stationary phases in extraction techniques, inter alia, polymeric ionic liquids, carbon nanotubes, and silica- and carbon-based sorbents. The methodological solutions, together with properly matched sampling devices for collecting analytes from samples with varying matrix composition, enable us to reduce the number of errors during the sample preparation prior to chromatographic analysis as well as to limit the negative impact of this analytical step on the natural environment and the health of laboratory employees.

  12. Fitting It All In: Adapting a Green Chemistry Extraction Experiment for Inclusion in an Undergraduate Analytical Laboratory

    ERIC Educational Resources Information Center

    Buckley, Heather L.; Beck, Annelise R.; Mulvihill, Martin J.; Douskey, Michelle C.

    2013-01-01

    Several principles of green chemistry are introduced through this experiment designed for use in the undergraduate analytical chemistry laboratory. An established experiment of liquid CO2 extraction of D-limonene has been adapted to include a quantitative analysis by gas chromatography. This facilitates drop-in incorporation of an exciting…

  13. Integration of Environmental Analytical Chemistry with Environmental Law: The Development of a Problem-Based Laboratory

    NASA Astrophysics Data System (ADS)

    Cancilla, Devon A.

    2001-12-01

    Environmental chemists face difficult challenges related to generating, interpreting, and communicating complex chemical data in a manner understandable by nonchemists. For this reason, it is essential that environmental chemistry students develop the skills necessary not only to collect and interpret complex data sets, but also to communicate their findings in a credible manner in nonscientific forums. Key to this requirement is an understanding of the quality assurance/quality control (QA/QC) elements used to support specific findings. This paper describes the development of a problem-based undergraduate environmental analytical chemistry laboratory and its integration with an undergraduate environmental law course. The course is designed to introduce students to the principles of performance-based analytical methods and the use of environmental indicators to perform environmental assessments. Conducting a series of chemical and toxicological tests, chemistry students perform an environmental assessment on the watershed of the mythical City of Rowan. Law students use these assessments to develop legal arguments under both the Safe Drinking Water Act and the Clean Water Act.

  14. Redox chemistry and natural organic matter (NOM): Geochemists' dream, analytical chemists' nightmare

    USGS Publications Warehouse

    Macalady, Donald L.; Walton-Day, Katherine

    2011-01-01

    Natural organic matter (NOM) is an inherently complex mixture of polyfunctional organic molecules. Because of their universality and chemical reversibility, oxidation/reductions (redox) reactions of NOM have an especially interesting and important role in geochemistry. Variabilities in NOM composition and chemistry make studies of its redox chemistry particularly challenging, and details of NOM-mediated redox reactions are only partially understood. This is in large part due to the analytical difficulties associated with NOM characterization and the wide range of reagents and experimental systems used to study NOM redox reactions. This chapter provides a summary of the ongoing efforts to provide a coherent comprehension of aqueous redox chemistry involving NOM and of techniques for chemical characterization of NOM. It also describes some attempts to confirm the roles of different structural moieties in redox reactions. In addition, we discuss some of the operational parameters used to describe NOM redox capacities and redox states, and describe nomenclature of NOM redox chemistry. Several relatively facile experimental methods applicable to predictions of the NOM redox activity and redox states of NOM samples are discussed, with special attention to the proposed use of fluorescence spectroscopy to predict relevant redox characteristics of NOM samples.

  15. Analytical Chemistry Division annual progress report for period ending December 31, 1989

    SciTech Connect

    Not Available

    1990-04-01

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: Analytical Research, Development and Implementation; Programmatic Research, Development, and Utilization; and Technical Support. The Analytical Chemistry Division is organized into four major sections, each which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1989. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8. Approximately 69 articles, 41 proceedings, and 31 reports were published, and 151 oral presentations were given during this reporting period. Some 308,981 determinations were performed.

  16. Ubiquitous trisulfur radical anion: fundamentals and applications in materials science, electrochemistry, analytical chemistry and geochemistry.

    PubMed

    Chivers, Tristram; Elder, Philip J W

    2013-07-21

    The trisulfur radical anion [S3]˙(-) is well-known from inorganic chemistry textbooks as the blue chromophore in ultramarine blues in which this highly reactive species is trapped in a zeolitic framework. Recent findings have revealed that [S3]˙(-) has a multi-faceted role in a variety of media, including alkali metal-sulfur batteries, aqueous solutions at high temperatures and pressures, and ionic liquids; it has also been used to detect trace amounts of water in organic solvents. This tutorial review illustrates how various physical techniques are used to identify a reactive species in solution and shows how elucidation of electronic structures can be used to explain spectroscopic and structural properties. Examples of the function of [S3]˙(-) in materials science, electrochemistry, analytical chemistry and geochemistry are used to illustrate the widespread influence of this fundamentally important triatomic sulfur species.

  17. Graphene-based materials: fabrication and application for adsorption in analytical chemistry.

    PubMed

    Wang, Xin; Liu, Bo; Lu, Qipeng; Qu, Qishu

    2014-10-03

    Graphene, a single layer of carbon atoms densely packed into a honeycomb crystal lattice with unique electronic, chemical, and mechanical properties, is the 2D allotrope of carbon. Owing to the remarkable properties, graphene and graphene-based materials are likely to find potential applications as a sorbent in analytical chemistry. The current review focuses predominantly on the recent development of graphene-based materials and demonstrates their enhanced performance in adsorption of organic compounds, metal ions, and solid phase extraction as well as in separation science since mostly 2012.

  18. Portable microwave assisted extraction: An original concept for green analytical chemistry.

    PubMed

    Perino, Sandrine; Petitcolas, Emmanuel; de la Guardia, Miguel; Chemat, Farid

    2013-11-08

    This paper describes a portable microwave assisted extraction apparatus (PMAE) for extraction of bioactive compounds especially essential oils and aromas directly in a crop or in a forest. The developed procedure, based on the concept of green analytical chemistry, is appropriate to obtain direct in-field information about the level of essential oils in natural samples and to illustrate green chemical lesson and research. The efficiency of this experiment was validated for the extraction of essential oil of rosemary directly in a crop and allows obtaining a quantitative information on the content of essential oil, which was similar to that obtained by conventional methods in the laboratory.

  19. Functional Interfaces Constructed by Controlled/Living Radical Polymerization for Analytical Chemistry.

    PubMed

    Wang, Huai-Song; Song, Min; Hang, Tai-Jun

    2016-02-10

    The high-value applications of functional polymers in analytical science generally require well-defined interfaces, including precisely synthesized molecular architectures and compositions. Controlled/living radical polymerization (CRP) has been developed as a versatile and powerful tool for the preparation of polymers with narrow molecular weight distributions and predetermined molecular weights. Among the CRP system, atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) are well-used to develop new materials for analytical science, such as surface-modified core-shell particles, monoliths, MIP micro- or nanospheres, fluorescent nanoparticles, and multifunctional materials. In this review, we summarize the emerging functional interfaces constructed by RAFT and ATRP for applications in analytical science. Various polymers with precisely controlled architectures including homopolymers, block copolymers, molecular imprinted copolymers, and grafted copolymers were synthesized by CRP methods for molecular separation, retention, or sensing. We expect that the CRP methods will become the most popular technique for preparing functional polymers that can be broadly applied in analytical chemistry.

  20. Recent developments in computer vision-based analytical chemistry: A tutorial review.

    PubMed

    Capitán-Vallvey, Luis Fermín; López-Ruiz, Nuria; Martínez-Olmos, Antonio; Erenas, Miguel M; Palma, Alberto J

    2015-10-29

    Chemical analysis based on colour changes recorded with imaging devices is gaining increasing interest. This is due to its several significant advantages, such as simplicity of use, and the fact that it is easily combinable with portable and widely distributed imaging devices, resulting in friendly analytical procedures in many areas that demand out-of-lab applications for in situ and real-time monitoring. This tutorial review covers computer vision-based analytical (CVAC) procedures and systems from 2005 to 2015, a period of time when 87.5% of the papers on this topic were published. The background regarding colour spaces and recent analytical system architectures of interest in analytical chemistry is presented in the form of a tutorial. Moreover, issues regarding images, such as the influence of illuminants, and the most relevant techniques for processing and analysing digital images are addressed. Some of the most relevant applications are then detailed, highlighting their main characteristics. Finally, our opinion about future perspectives is discussed.

  1. Electrical field-induced extraction and separation techniques: promising trends in analytical chemistry--a review.

    PubMed

    Yamini, Yadollah; Seidi, Shahram; Rezazadeh, Maryam

    2014-03-03

    Sample preparation is an important issue in analytical chemistry, and is often a bottleneck in chemical analysis. So, the major incentive for the recent research has been to attain faster, simpler, less expensive, and more environmentally friendly sample preparation methods. The use of auxiliary energies, such as heat, ultrasound, and microwave, is one of the strategies that have been employed in sample preparation to reach the above purposes. Application of electrical driving force is the current state-of-the-art, which presents new possibilities for simplifying and shortening the sample preparation process as well as enhancing its selectivity. The electrical driving force has scarcely been utilized in comparison with other auxiliary energies. In this review, the different roles of electrical driving force (as a powerful auxiliary energy) in various extraction techniques, including liquid-, solid-, and membrane-based methods, have been taken into consideration. Also, the references have been made available, relevant to the developments in separation techniques and Lab-on-a-Chip (LOC) systems. All aspects of electrical driving force in extraction and separation methods are too specific to be treated in this contribution. However, the main aim of this review is to provide a brief knowledge about the different fields of analytical chemistry, with an emphasis on the latest efforts put into the electrically assisted membrane-based sample preparation systems. The advantages and disadvantages of these approaches as well as the new achievements in these areas have been discussed, which might be helpful for further progress in the future.

  2. Analytical Chemistry at the Laboratoire d'Electrochimie Physique et Analytique.

    PubMed

    Bondarenko, Alexandra; Cortés-Salazar, Fernando; Gasilova, Natalia; Lesch, Andreas; Qiao, Liang; Girault, Hubert H

    2015-01-01

    The Laboratoire d'Electrochimie Physique et Analytique (LEPA) has moved to the new Energypolis campus in Sion. This laboratory is involved in energy research in particular by studying charge transfer reactions at soft interfaces and developing interfacial redox electrocatalysis, by pioneering the concept of photo-ionic cells and by integrating redox flow batteries for the production of hydrogen at the pilot scale. Nonetheless, this laboratory has a long tradition in analytical chemistry with the development of microfabrication techniques such as laser photo-ablation, screen-printing and more recently inkjet printing for the design and fabrication of biosensors and immunosensors. As shown in the present review, the laboratory has recently pioneered new technologies for electrochemical and mass spectrometry imaging and for the screening of allergy in patients. The role of the laboratory in the Valais landscape will be to foster the collaboration with the HES to develop teaching and research in analytical chemistry as this field is a major source of employment for chemists.

  3. Hematological and serum biochemical analytes reflect physiological challenges during gestation and lactation in killer whales (Orcinus orca).

    PubMed

    Robeck, Todd R; Nollens, Hendrik H

    2013-01-01

    Gestation and lactation result in metabolic alterations of the dam because of varying demands of the fetus and offspring during the different stages of development. Despite killer whales (Orcinus orca) having one of the longest gestations and highest birth weights of all mammals in human care, these metabolic alterations, and their impact on the physiology of the dam have not been measured. The objectives of this analysis were to determine if physiologic demands on the killer whale during pregnancy and lactation have measurable effects on hematology and biochemical analytes and if detectable, to compare these changes to those which are observed in other mammalian species. Forty hematologic and biochemical analytes from seven female killer whales (22 pregnancies, 1,507 samples) were compared between the following stages: (1) non-pregnant or lactating (control); (2) gestation; and (3) the first 12 months of lactation. Decreased hematocrit, hemoglobin, and red blood cell counts were indicative of plasma volume expansion during mid and late gestation. The killer whales exhibited a progressively increasing physiologic inflammatory state leading up to parturition. Gestation and lactation caused significant shifts in the serum lipid profiles. Gestation and lactation cause significant physiologic changes in the killer whale dam. The last 12 months of gestation had greater physiological impact than lactation, but changes associated with and immediately following parturition were the most dramatic. During this period, killer whales may experience increased susceptibility to illness, and anthropogenic and environmental disturbances.

  4. Analytical Chemistry Division annual progress report for period ending December 31, 1982

    SciTech Connect

    Lyon, W.S.

    1983-05-01

    The Analytical Chemistry Dvision of Oak Ridge National laboratory (ORNL) serves a multitude of functions for a clientele that exists both in and outside ORNL. These functions fall into the following general categories: (1) analytical research, development, and implementation; (2) programmatic research, development, and utilization; and (3) technical support. The Division is organized into five major sections, each of which may carry out any type of work falling in the three categories mentioned above. Chapters 1 through 5 of this report highlight progress within the five sections (analytical methodology, mass and emission spectrometry, radioactive materials, bio/organic analysis, and general and environmental analysis) during the period January 1, 1982 to December 31, 1982. A short summary introduces each chapter to indicate work scope. Information about quality assurance and safety programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8. Approximately 61 articles, 32 proceedings publications and 37 reports have been published, and 107 oral presentations were given during this reporting period.

  5. Sample Acquisition and Analytical Chemistry Challenges to Verifying Compliance to Aviators Breathing Oxygen (ABO) Purity Specification

    NASA Technical Reports Server (NTRS)

    Graf, John

    2015-01-01

    NASA has been developing and testing two different types of oxygen separation systems. One type of oxygen separation system uses pressure swing technology, the other type uses a solid electrolyte electrochemical oxygen separation cell. Both development systems have been subjected to long term testing, and performance testing under a variety of environmental and operational conditions. Testing these two systems revealed that measuring the product purity of oxygen, and determining if an oxygen separation device meets Aviator's Breathing Oxygen (ABO) specifications is a subtle and sometimes difficult analytical chemistry job. Verifying product purity of cryogenically produced oxygen presents a different set of analytical chemistry challenges. This presentation will describe some of the sample acquisition and analytical chemistry challenges presented by verifying oxygen produced by an oxygen separator - and verifying oxygen produced by cryogenic separation processes. The primary contaminant that causes gas samples to fail to meet ABO requirements is water. The maximum amount of water vapor allowed is 7 ppmv. The principal challenge of verifying oxygen produced by an oxygen separator is that it is produced relatively slowly, and at comparatively low temperatures. A short term failure that occurs for just a few minutes in the course of a 1 week run could cause an entire tank to be rejected. Continuous monitoring of oxygen purity and water vapor could identify problems as soon as they occur. Long term oxygen separator tests were instrumented with an oxygen analyzer and with an hygrometer: a GE Moisture Monitor Series 35. This hygrometer uses an aluminum oxide sensor. The user's manual does not report this, but long term exposure to pure oxygen causes the aluminum oxide sensor head to bias dry. Oxygen product that exceeded the 7 ppm specification was improperly accepted, because the sensor had biased. The bias is permanent - exposure to air does not cause the sensor to

  6. 40 CFR 158.2030 - Biochemical pesticides product chemistry data requirements table.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... chemistry data are required for all pesticide products and are not use specific. (c) Key. R=Required; CR... product; TGAI=Technical grade of the active ingredient; Residue of concern=the active ingredient and its... -- 830.7000 pH CR TGAI and MP TGAI and EP 8, 11 830.7050 UV/Visible light absorption R TGAI TGAI --...

  7. Amino Acid Complementarity: A Biochemical Exemplar of Stoichiometry for General and Health Sciences Chemistry

    ERIC Educational Resources Information Center

    Vitz, Ed

    2005-01-01

    The standard introduction to stoichiometry and simple exemplars can motivate students to learn the stoichiometric studies and the condensation reaction that occurs between amino acids to form the peptide bond. This topic can be integrated into general chemistry courses as an alternative to inclusion of a separate biochemistry course that could be…

  8. The Academic Tree of Howard V. Malmstadt: From Early Scientific Exploration to Modern Analytical Chemistry.

    PubMed

    Storey, Andrew P; Hieftje, Gary M

    2016-12-01

    Over the last several decades, science has benefited tremendously by the implementation of digital electronic components for analytical instrumentation. A pioneer in this area of scientific inquiry was Howard Malmstadt. Frequently, such revolutions in scientific history can be viewed as a series of discoveries without a great deal of attention as to how mentorship shapes the careers and methodologies of those who made great strides forward for science. This paper focuses on the verifiable relationships of those who are connected through the academic tree of Malmstadt and how their experiences and the context of world events influenced their scientific pursuits. Particular attention is dedicated to the development of American chemistry departments and the critical role played by many of the individuals in the tree in this process.

  9. Pollution Prevention Plan for the Y-12 Analytical Chemistry Organization Off-Site Union Valley Facility

    SciTech Connect

    Jackson, J. G.

    2010-03-01

    The Y-12 Analytical Chemistry Organization (ACO) Off-Site Union Valley Facility (Union Valley Facility) is managed by Babcock and Wilcox Technical Services Y-12, L.L.C. (B and W Y-12) through the Y-12 National Security Complex organization. Accordingly, the Y-12 Pollution Prevention Program encompasses the operations conducted at the Union Valley Facility. The Y-12 Program is designed to fully comply with state, federal and U.S. Department of Energy (DOE) requirements concerning waste minimization/pollution prevention as documented in the Y-12 Pollution Prevention Program Plan. The Program is formulated to reduce the generation and toxicity of all Y-12 wastes in all media, including those wastes generated by the Union Valley Facility operations. All regulatory and DOE requirements are met by the Y-12 Program Plan.

  10. Education: a microfluidic platform for university-level analytical chemistry laboratories.

    PubMed

    Greener, Jesse; Tumarkin, Ethan; Debono, Michael; Dicks, Andrew P; Kumacheva, Eugenia

    2012-02-21

    We demonstrate continuous flow acid-base titration reactions as an educational microfluidic platform for undergraduate and graduate analytical chemistry courses. A series of equations were developed for controlling and predicting the results of acid-base neutralisation reactions conducted in a microfluidic format, including the combinations of (i) a strong base and a strong acid, (ii) a strong base and a weak acid, and (iii) a strong base and a multiprotic acid. Microfluidic titrations yielded excellent repeatability. The small experimental footprint is advantageous in crowded teaching laboratories, and it offers limited waste and exposure to potentially hazardous acids and bases. This platform will help promote the utilisation of microfluidics at an earlier stage of students' careers.

  11. Teaching Effective Communication in a Writing-Intensive Analytical Chemistry Course

    NASA Astrophysics Data System (ADS)

    Whelan, Rebecca J.; Zare, Richard N.

    2003-08-01

    Effective writing and speaking skills are vital for chemical professionals, yet traditional academic preparation does little to develop these skills. In this report, we describe classroom-tested strategies for teaching writing and speaking. In the context of a required lecture and laboratory course in analytical chemistry, students gain extensive experience with reading, writing, revising, and speaking in the way that professional chemists do. Students improve their writing skills by preparing four laboratory reports that follow the conventions of the chemical literature. One of the reports is prepared collaboratively to reflect the real experience of professional chemists. Individualized conferences and critiques by more experienced peers lead to extensive revision of a graded report. Several activities encourage the students to develop an appreciation of the organization and strategy of a scientific article. Finally, the students practice oral communication by preparing and delivering a short presentation, including visual aids, based on a paper from the literature.

  12. High Resolution Spectrometry of Leaf and Canopy Chemistry for Biochemical Cycling

    NASA Technical Reports Server (NTRS)

    Spanner, M. A.; Peterson, D. L.; Acevedo, W.; Matson, P.

    1985-01-01

    High-resolution laboratory spectrophotometer and Airborne Imaging Spectrometer (AIS) data were used to analyze forest leaf and canopy chemistry. Fundamental stretching frequencies of organic bonds in the visible, near infrared and short-wave infrared are indicative of concentrations and total content of nitrogen, phosphorous, starch and sugar. Laboratory spectrophotometer measurements showed very strong negative correlations with nitrogen (measured using wet chemistry) in the visible wavelengths. Strong correlations with green wet canopy weight in the atmospheric water absorption windows were observed in the AIS data. A fairly strong negative correlation between the AIS data at 1500 nm and total nitrogen and nitrogen concentration was evident. This relationship corresponds very closely to protein absorption features near 1500 nm.

  13. Analytical Models of Exoplanetary Atmospheres. III. Gaseous C-H-O-N Chemistry with Nine Molecules

    NASA Astrophysics Data System (ADS)

    Heng, Kevin; Tsai, Shang-Min

    2016-10-01

    We present novel, analytical, equilibrium-chemistry formulae for the abundances of molecules in hot exoplanetary atmospheres that include the carbon, oxygen, and nitrogen networks. Our hydrogen-dominated solutions involve acetylene (C2H2), ammonia (NH3), carbon dioxide (CO2), carbon monoxide (CO), ethylene (C2H4), hydrogen cyanide (HCN), methane (CH4), molecular nitrogen (N2), and water (H2O). By considering only the gas phase, we prove that the mixing ratio of carbon monoxide is governed by a decic equation (polynomial equation of 10 degrees). We validate our solutions against numerical calculations of equilibrium chemistry that perform Gibbs free energy minimization and demonstrate that they are accurate at the ˜ 1 % level for temperatures from 500 to 3000 K. In hydrogen-dominated atmospheres, the ratio of abundances of HCN to CH4 is nearly constant across a wide range of carbon-to-oxygen ratios, which makes it a robust diagnostic of the metallicity in the gas phase. Our validated formulae allow for the convenient benchmarking of chemical kinetics codes and provide an efficient way of enforcing chemical equilibrium in atmospheric retrieval calculations.

  14. Applications of the New Family of Coherent Multidimensional Spectroscopies for Analytical Chemistry.

    PubMed

    Wright, John C

    2017-03-27

    A new family of vibrational and electronic spectroscopies has emerged, comprising the coherent analogs of traditional analytical methods. These methods are also analogs of coherent multidimensional nuclear magnetic resonance (NMR) spectroscopy. This new family is based on creating the same quantum mechanical superposition states called multiple quantum coherences (MQCs). NMR MQCs are mixtures of nuclear spin states that retain their quantum mechanical phase information for milliseconds. The MQCs in this new family are mixtures of vibrational and electronic states that retain their phases for picoseconds or shorter times. Ultrafast, high-intensity coherent beams rapidly excite multiple states. The excited MQCs then emit bright beams while they retain their phases. Time-domain methods measure the frequencies of the MQCs by resolving their phase oscillations, whereas frequency-domain methods measure the resonance enhancements of the output beam while scanning the excitation frequencies. The resulting spectra provide multidimensional spectral signatures that increase the spectroscopic selectivity required for analyzing complex samples. Expected final online publication date for the Annual Review of Analytical Chemistry Volume 10 is June 12, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  15. Infrared Ion Spectroscopy at Felix: Applications in Peptide Dissociation and Analytical Chemistry

    NASA Astrophysics Data System (ADS)

    Oomens, Jos

    2016-06-01

    Infrared free electron lasers such as those in Paris, Berlin and Nijmegen have been at the forefront of the development of infrared ion spectroscopy. In this contribution, I will give an overview of new developments in IR spectroscopy of stored ions at the FELIX Laboratory. In particular, I will focus on recent developments made possible by the coupling of a new commercial ion trap mass spectrometer to the FELIX beamline. The possibility to record IR spectra of mass-selected molecular ions and their reaction products has in recent years shed new light on our understanding of collision induced dissociation (CID) reactions of protonated peptides in mass spectrometry (MS). We now show that it is possible to record IR spectra for the products of electron transfer dissociation (ETD) reactions [M + nH]n+ + A- → [M + nH](n-1)+ + A → {dissociation of analyte} These reactions are now widely used in novel MS-based protein sequencing strategies, but involve complex radical chemistry. The spectroscopic results allow stringent verification of computationally predicted product structures and hence reaction mechanisms and H-atom migration. The sensitivity and high dynamic range of a commercial mass spectrometer also allows us to apply infrared ion spectroscopy to analytes in complex "real-life" mixtures. The ability to record IR spectra with the sensitivity of mass-spectrometric detection is unrivalled in analytical sciences and is particularly useful in the identification of small (biological) molecules, such as in metabolomics. We report preliminary results of a pilot study on the spectroscopic identification of small metabolites in urine and plasma samples.

  16. Using a Practical Instructional Development Process to Show That Integrating Lab and Active Learning Benefits Undergraduate Analytical Chemistry

    ERIC Educational Resources Information Center

    Goacher, Robyn E.; Kline, Cynthia M.; Targus, Alexis; Vermette, Paul J.

    2017-01-01

    We describe how a practical instructional development process helped a first-year assistant professor rapidly develop, implement, and assess the impact on her Analytical Chemistry course caused by three changes: (a) moving the lab into the same semester as the lecture, (b) developing a more collaborative classroom environment, and (c) increasing…

  17. An Advanced Analytical Chemistry Experiment Using Gas Chromatography-Mass Spectrometry, MATLAB, and Chemometrics to Predict Biodiesel Blend Percent Composition

    ERIC Educational Resources Information Center

    Pierce, Karisa M.; Schale, Stephen P.; Le, Trang M.; Larson, Joel C.

    2011-01-01

    We present a laboratory experiment for an advanced analytical chemistry course where we first focus on the chemometric technique partial least-squares (PLS) analysis applied to one-dimensional (1D) total-ion-current gas chromatography-mass spectrometry (GC-TIC) separations of biodiesel blends. Then, we focus on n-way PLS (n-PLS) applied to…

  18. Tetraglyme Trap for the Determination of Volatile Organic Compounds in Urban Air: Projects for Undergraduate Analytical Chemistry

    ERIC Educational Resources Information Center

    Hope, Wilbert W.; Johnson, Clyde; Johnson, Leon P.

    2004-01-01

    The differences in the levels of volatile organic compounds (VOCs), in the ambient air from the two urban locations, were studied by the undergraduate analytical chemistry students. Tetraglyme is very widely used due to its simplicity and its potential for use to investigate VOCs in ambient and indoor air employing a purge-and-trap concentrator…

  19. The Quantitative Resolution of a Mixture of Group II Metal Ions by Thermometric Titration with EDTA. An Analytical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Smith, Robert L.; Popham, Ronald E.

    1983-01-01

    Presents an experiment in thermometric titration used in an analytic chemistry-chemical instrumentation course, consisting of two titrations, one a mixture of calcium and magnesium, the other of calcium, magnesium, and barium ions. Provides equipment and solutions list/specifications, graphs, and discussion of results. (JM)

  20. APPLICATION OF INFRARED SPECTROSCOPY TO THE ANALYSIS OF INORGANIC NITRATES. PHASE 1. SPECTRA OF INORGANIC NITRATES IN ACETONE AND THE USE OF SUCH SPECTRA IN ANALYTICAL CHEMISTRY

    DTIC Science & Technology

    A study was made of the spectra of soluble inorganic nitrates in acetone solution and the use of such spectra in analytical chemistry . The spectra of...solubilities of anhydrous inorganic nitrates in acetone. The applications of the spectra of inorganic nitrates in acetone to analytical chemistry is

  1. Analytical Chemistry Division annual progress report for period ending December 31, 1991

    SciTech Connect

    1992-01-01

    The following sentences highlight some of the technical activities carried out during 1991. They illustrate the diversity of programs and technical work performed within the Analytical Chemistry Division. Our neutron activation analysis laboratory at HFIR was placed into operation during 1991. We have combined inductively coupled plasma mass spectrometry (ICP/MS) with a preparation procedure developed at the Argonne National Laboratory to measure ultra-trace levels of U, Pu, Np, and Am in body fluids, primarily urine. Much progress has been made over the last year in the interfacing of an rf-powered glow discharge source to a double-focusing mass spectrometer. Preliminary experiments using electrospray ionization combined with ion trap mass spectrometry show much promise for the analysis of metals in solution. A secondary ion microprobe has been constructed that permits determination of the distribution of organic compounds less than a monolayer thick on samples as large as 1 cm diameter. Fourier transform mass spectrometry has been demonstrated to be a highly effective tool for the detailed characterization of biopolymers, especially normal and modified oligonucleotides. Much has been accomplished in understanding the fundamentals of quadrupole ion trap mass spectrometry. Work with ITMS instrumentation has led to the development of rapid methods for the detection of trace organics in environmental and physiological samples. A new type of time-of-flight mass spectrometer was designed for use with our positron ionization experiments. Fundamental research on chromatography at high concentrations and on gas-solid adsorption has continued. The preparation of a monograph on the chemistry of environmental tobacco smoke was completed this year.

  2. Analytical Chemistry Laboratory Quality Assurance Project Plan for the Transuranic Waste Characterization Program

    SciTech Connect

    Sailer, S.J.

    1996-08-01

    This Quality Assurance Project Plan (QAPJP) specifies the quality of data necessary and the characterization techniques employed at the Idaho National Engineering Laboratory (INEL) to meet the objectives of the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Transuranic Waste Characterization Quality Assurance Program Plan (QAPP) requirements. This QAPJP is written to conform with the requirements and guidelines specified in the QAPP and the associated documents referenced in the QAPP. This QAPJP is one of a set of five interrelated QAPjPs that describe the INEL Transuranic Waste Characterization Program (TWCP). Each of the five facilities participating in the TWCP has a QAPJP that describes the activities applicable to that particular facility. This QAPJP describes the roles and responsibilities of the Idaho Chemical Processing Plant (ICPP) Analytical Chemistry Laboratory (ACL) in the TWCP. Data quality objectives and quality assurance objectives are explained. Sample analysis procedures and associated quality assurance measures are also addressed; these include: sample chain of custody; data validation; usability and reporting; documentation and records; audits and 0385 assessments; laboratory QC samples; and instrument testing, inspection, maintenance and calibration. Finally, administrative quality control measures, such as document control, control of nonconformances, variances and QA status reporting are described.

  3. [The analytical setting of rotary speed of centrifuge rotor and centrifugation time in chemical, biochemical and microbiological practice].

    PubMed

    Zolotarev, K V

    2012-08-01

    The researchers happen to face with suspensions in their chemical, biochemical and microbiological practice. The suspensions are the disperse systems with solid dispersed phase and liquid dispersion medium and with dispersed phase particle size > 100 nm (10-7 m). Quite often the necessity occurs to separate solid particles from liquid. To use for this purpose the precipitation in gravitation field can make the process to progress too long. In this respect an effective mode is the precipitation in the field of centrifugal forces--the centrifugation. The rotary speed of centrifuge rotor and centrifugation time can be set analytically using regularities of general dynamics and hydrodynamics. To this effect, should be written and transformed the equation of First and Second Newton Laws for suspension particle being in the field of centrifugal forces and forces of resistance of liquid and vessel wall. The force of liquid resistance depends on particle motion condition in liquid. To determine the regimen the Archimedes and Reynolds numerical dimensionless criteria are to be applied. The article demonstrates the results of these transformations as analytical inverse ratio dependence of centrifugation time from rotary speed. The calculation of series of "rate-time" data permits to choose the optimal data pair on the assumption of centrifuge capacity and practical reasonability. The results of calculations are validated by actual experimental data hence the physical mathematical apparatus can be considered as effective one. The setting progress depends both from parameter (Reynolds criterion) and data series calculation. So, the most convenient way to apply this operation is the programming approach. The article proposes to use the program Microsoft Excel and VBA programming language for this purpose. The possibility to download the file from Internet to use it for fast solution is proposed.

  4. Novel detection schemes of nuclear magnetic resonance and magnetic resonance imaging: applications from analytical chemistry to molecular sensors.

    PubMed

    Harel, Elad; Schröder, Leif; Xu, Shoujun

    2008-01-01

    Nuclear magnetic resonance (NMR) is a well-established analytical technique in chemistry. The ability to precisely control the nuclear spin interactions that give rise to the NMR phenomenon has led to revolutionary advances in fields as diverse as protein structure determination and medical diagnosis. Here, we discuss methods for increasing the sensitivity of magnetic resonance experiments, moving away from the paradigm of traditional NMR by separating the encoding and detection steps of the experiment. This added flexibility allows for diverse applications ranging from lab-on-a-chip flow imaging and biological sensors to optical detection of magnetic resonance imaging at low magnetic fields. We aim to compare and discuss various approaches for a host of problems in material science, biology, and physics that differ from the high-field methods routinely used in analytical chemistry and medical imaging.

  5. General Procedure for the Easy Calculation of pH in an Introductory Course of General or Analytical Chemistry

    ERIC Educational Resources Information Center

    Cepriá, Gemma; Salvatella, Luis

    2014-01-01

    All pH calculations for simple acid-base systems used in introductory courses on general or analytical chemistry can be carried out by using a general procedure requiring the use of predominance diagrams. In particular, the pH is calculated as the sum of an independent term equaling the average pK[subscript a] values of the acids involved in the…

  6. Study of the Stability of Various Biochemical Analytes in Samples Stored at Different Predefined Storage Conditions at an Accredited Laboratory of India

    PubMed Central

    Kachhawa, Kamal; Kachhawa, Poonam; Varma, Meena; Behera, Rasmirekha; Agrawal, Divya; Kumar, Sanjay

    2017-01-01

    Background: Storage of serum and other blood products is often necessary in laboratories because of technical issues or to preserve samples for subsequent research purposes. The aim of this study was to determine whether the stability of biochemical analytes is affected by storage conditions. Materials and Methods: A total of 17 biochemical analytes in the sera of ten patients were examined following storage. Subsequent to determining the baseline measurements, the serum of each patient was aliquoted and stored at −20°C for 7, 15, and 30 days and then analyzed for stability. The results were compared with the initial analysis measurements obtained from fresh samples. Mean changes compared to baseline (T0) concentrations were evaluated both statistically and clinically. Results: Our results show that sodium, potassium, urea, creatinine, uric acid, total calcium, phosphorus, direct bilirubin, total bilirubin, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total protein, albumin, cholesterol, and triglyceride levels were stable under all conditions. Serum amylase was the only analyte demonstrating instability following prolonged storage; amylase levels changed significantly (both statistically and clinically) at 7, 15, and 30 days (P < 0.05). Conclusion: Most common biochemical analytes, except for amylase, showed adequate stability in serum following 30 days of storage at −20­C. Serum amylase analysis should be conducted on the same day that the sample is received in the laboratory. PMID:28042210

  7. Black Boxes in Analytical Chemistry: University Students' Misconceptions of Instrumental Analysis

    ERIC Educational Resources Information Center

    Carbo, Antonio Domenech; Adelantado, Jose Vicente Gimeno; Reig, Francisco Bosch

    2010-01-01

    Misconceptions of chemistry and chemical engineering university students concerning instrumental analysis have been established from coordinated tests, tutorial interviews and laboratory lessons. Misconceptions can be divided into: (1) formal, involving specific concepts and formulations within the general frame of chemistry; (2)…

  8. Proteomics Is Analytical Chemistry: Fitness-for-Purpose in the Application of Top-Down and Bottom-Up Analyses.

    PubMed

    Coorssen, Jens R; Yergey, Alfred L

    2015-12-03

    Molecular mechanisms underlying health and disease function at least in part based on the flexibility and fine-tuning afforded by protein isoforms and post-translational modifications. The ability to effectively and consistently resolve these protein species or proteoforms, as well as assess quantitative changes is therefore central to proteomic analyses. Here we discuss the pros and cons of currently available and developing analytical techniques from the perspective of the full spectrum of available tools and their current applications, emphasizing the concept of fitness-for-purpose in experimental design based on consideration of sample size and complexity; this necessarily also addresses analytical reproducibility and its variance. Data quality is considered the primary criterion, and we thus emphasize that the standards of Analytical Chemistry must apply throughout any proteomic analysis.

  9. Proteomics Is Analytical Chemistry: Fitness-for-Purpose in the Application of Top-Down and Bottom-Up Analyses

    PubMed Central

    Coorssen, Jens R.; Yergey, Alfred L.

    2015-01-01

    Molecular mechanisms underlying health and disease function at least in part based on the flexibility and fine-tuning afforded by protein isoforms and post-translational modifications. The ability to effectively and consistently resolve these protein species or proteoforms, as well as assess quantitative changes is therefore central to proteomic analyses. Here we discuss the pros and cons of currently available and developing analytical techniques from the perspective of the full spectrum of available tools and their current applications, emphasizing the concept of fitness-for-purpose in experimental design based on consideration of sample size and complexity; this necessarily also addresses analytical reproducibility and its variance. Data quality is considered the primary criterion, and we thus emphasize that the standards of Analytical Chemistry must apply throughout any proteomic analysis. PMID:28248279

  10. ASVCP quality assurance guidelines: control of preanalytical, analytical, and postanalytical factors for urinalysis, cytology, and clinical chemistry in veterinary laboratories.

    PubMed

    Gunn-Christie, Rebekah G; Flatland, Bente; Friedrichs, Kristen R; Szladovits, Balazs; Harr, Kendal E; Ruotsalo, Kristiina; Knoll, Joyce S; Wamsley, Heather L; Freeman, Kathy P

    2012-03-01

    In December 2009, the American Society for Veterinary Clinical Pathology (ASVCP) Quality Assurance and Laboratory Standards committee published the updated and peer-reviewed ASVCP Quality Assurance Guidelines on the Society's website. These guidelines are intended for use by veterinary diagnostic laboratories and veterinary research laboratories that are not covered by the US Food and Drug Administration Good Laboratory Practice standards (Code of Federal Regulations Title 21, Chapter 58). The guidelines have been divided into 3 reports: (1) general analytical factors for veterinary laboratory performance and comparisons; (2) hematology, hemostasis, and crossmatching; and (3) clinical chemistry, cytology, and urinalysis. This particular report is one of 3 reports and documents recommendations for control of preanalytical, analytical, and postanalytical factors related to urinalysis, cytology, and clinical chemistry in veterinary laboratories and is adapted from sections 1.1 and 2.2 (clinical chemistry), 1.3 and 2.5 (urinalysis), 1.4 and 2.6 (cytology), and 3 (postanalytical factors important in veterinary clinical pathology) of these guidelines. These guidelines are not intended to be all-inclusive; rather, they provide minimal guidelines for quality assurance and quality control for veterinary laboratory testing and a basis for laboratories to assess their current practices, determine areas for improvement, and guide continuing professional development and education efforts.

  11. The Efficacy of Problem-based Learning in an Analytical Laboratory Course for Pre-service Chemistry Teachers

    NASA Astrophysics Data System (ADS)

    Yoon, Heojeong; Woo, Ae Ja; Treagust, David; Chandrasegaran, AL

    2014-01-01

    The efficacy of problem-based learning (PBL) in an analytical chemistry laboratory course was studied using a programme that was designed and implemented with 20 students in a treatment group over 10 weeks. Data from 26 students in a traditional analytical chemistry laboratory course were used for comparison. Differences in the creative thinking ability of students in both the treatment and control groups were evaluated before and at the end of the implementation of the programme, using the Torrance Tests of Creative Thinking. In addition, changes in students' self-regulated learning skills using the Self-Regulated Learning Interview Schedule (SRLIS) and their self-evaluation proficiency were evaluated. Analysis of covariance showed that the creative thinking ability of the treatment group had improved statistically significantly after the PBL course (p < 0.001) compared to that of the students in the comparison group. PBL was shown to have a positive effect on creative thinking ability. The SRLIS test showed that students in the treatment group used self-regulated learning strategies more frequently than students in the comparison group. According to the results of the self-evaluation, students became more positive and confident in problem-solving and group work as the semester progressed. Overall, PBL was shown to be an effective pedagogical instructional strategy for enhancing chemistry students' creative thinking ability, self-regulated learning skills and self-evaluation.

  12. The influence of surface chemistry on GSR particles: using XPS to complement SEM/EDS analytical techniques

    NASA Astrophysics Data System (ADS)

    Schwoeble, A. J.; Strohmeier, Brian R.; Piasecki, John D.

    2010-06-01

    Gunshot residue particles (GSR) were examined using scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) to illustrate the size, shape, morphology, and elemental composition normally observed in particulate resulting from a discharged firearm. Determining the presence of lead (Pb), antimony (Sb), and barium (Ba), barring other elemental tags, fused together in a single particle with the correct morphology, is all that is required for the positive identification of GSR. X-ray photoelectron spectroscopy (XPS), however, can reveal more detailed information on surface chemistry than SEM/EDS. XPS is a highly surface-sensitive (<= ~10 nm), non-destructive, analytical technique that provides qualitative information for all elements except hydrogen and helium. Nanometer-scale sampling depth and its ability to provide unique chemical state information make XPS a potential technique for providing important knowledge on the surface chemistry of GSR that complements results obtained from SEM/EDS analysis.

  13. Analytical Chemistry Division annual progress report for period ending December 31, 1979

    SciTech Connect

    Shults, W.D.; Lyon, W.S.

    1980-05-01

    The progress is reported in the following sections: analytical methodology, mass and emission spectrometry, technical support, bio-organic analysis, nuclear and radiochemical analysis, and quality assurance. (DLC)

  14. The Abbott Architect c8000: analytical performance and productivity characteristics of a new analyzer applied to general chemistry testing.

    PubMed

    Pauli, Daniela; Seyfarth, Michael; Dibbelt, Leif

    2005-01-01

    Applying basic potentiometric and photometric assays, we evaluated the fully automated random access chemistry analyzer Architect c8000, a new member of the Abbott Architect system family, with respect to both its analytical and operational performance and compared it to an established high-throughput chemistry platform, the Abbott Aeroset. Our results demonstrate that intra- and inter-assay imprecision, inaccuracy, lower limit of detection and linear range of the c8000 generally meet actual requirements of laboratory diagnosis; there were only rare exceptions, e.g. assays for plasma lipase or urine uric acid which apparently need to be improved by additional rinsing of reagent pipettors. Even with plasma exhibiting CK activities as high as 40.000 U/l, sample carryover by the c8000 could not be detected. Comparison of methods run on the c8000 and the Aeroset revealed correlation coefficients of 0.98-1.00; if identical chemistries were applied on both analyzers, slopes of regression lines approached unity. With typical laboratory workloads including 10-20% STAT samples and up to 10% samples with high analyte concentrations demanding dilutional reruns, steady-state throughput numbers of 700 to 800 tests per hour were obtained with the c8000. The system generally responded to STAT orders within 2 minutes yielding analytical STAT order completion times of 5 to 15 minutes depending on the type and number of assays requested per sample. Due to its extended test and sample processing capabilities and highly comfortable software, the c8000 may meet the varying needs of clinical laboratories rather well.

  15. Gas-Phase Chemistry of Multiply Charged Bioions in Analytical Mass Spectrometry

    PubMed Central

    Huang, Teng-Yi; McLuckey, Scott A.

    2011-01-01

    Ion chemistry has long played an important role in molecular mass spectrometry (MS), as it is central to the use of MS as a structural characterization tool. With the advent of ionization methods capable of producing gaseous ions from large biomolecules, the chemistry of gaseous bioions has become a highly active area of research. Gas-phase biomolecule-ion reactions are usually driven by interactions with neutral molecules, photons, electrons, ions, or surfaces. Ion dissociation or transformation into different ion types can be achieved. The types of reaction products observed depend on the characteristics of the ions, the transformation methods, and the time frame of observation. This review focuses on the gas-phase chemistries of ions derived from the electrospray ionization of peptides, proteins, and oligonucleotides, with particular emphasis on their utility in bioanalysis. Various ion-transformation strategies, which further facilitate structural interrogation by converting ions from one type to another, are also summarized. PMID:20636047

  16. Incorporating Course-Based Undergraduate Research Experiences into Analytical Chemistry Laboratory Curricula

    ERIC Educational Resources Information Center

    Kerr, Melissa A.; Yan, Fei

    2016-01-01

    A continuous effort within an undergraduate university setting is to improve students' learning outcomes and thus improve students' attitudes about a particular field of study. This is undoubtedly relevant within a chemistry laboratory. This paper reports the results of an effort to introduce a problem-based learning strategy into the analytical…

  17. A Multidisciplinary Science Summer Camp for Students with Emphasis on Environmental and Analytical Chemistry

    ERIC Educational Resources Information Center

    Schwarz, Gunnar; Frenzel, Wolfgang; Richter, Wolfgang M.; Ta¨uscher, Lothar; Kubsch, Georg

    2016-01-01

    This paper presents the course of events of a five-day summer camp on environmental chemistry with high emphasis on chemical analysis. The annual camp was optional and open for students of all disciplines and levels. The duration of the summer camp was five and a half days in the Feldberg Lake District in northeast Germany (federal state of…

  18. Using Cooperative Learning to Teach Chemistry: A Meta-Analytic Review

    ERIC Educational Resources Information Center

    Warfa, Abdi-Rizak M.

    2016-01-01

    A meta-analysis of recent quantitative studies that examine the effects of cooperative learning (CL) on achievement outcomes in chemistry is presented. Findings from 25 chemical education studies involving 3985 participants (N[subscript treatment] = 1,845; N[subscript control] = 2,140) and published since 2001 show positive association between…

  19. Opening Remarks for "Analytical Chemistry, Monitoring, and Environmental Fate and Transport" Session at Fluoros 2015

    EPA Science Inventory

    There have been a number of revolutionary developments during the past decade that have led to a much more comprehensive understanding of per- and polyfluoroalkyl substances (PFASs) in the environment. Improvements in analytical instrumentation have made liquid chromatography tri...

  20. Selected clinical chemistry analytes correlate with the pathogenesis of inclusion body hepatitis experimentally induced by fowl aviadenoviruses.

    PubMed

    Matos, Miguel; Grafl, Beatrice; Liebhart, Dieter; Schwendenwein, Ilse; Hess, Michael

    2016-10-01

    In the present study, clinical chemistry was applied to assess the pathogenesis and progression of experimentally induced inclusion body hepatitis (IBH). For this, five fowl aviadenovirus (FAdV) strains from recent IBH field outbreaks were used to orally inoculate different groups of day-old specific pathogen-free chickens, which were weighed, sampled and examined during necropsy by sequential killing. Mortalities of 50% and 30% were recorded in two groups between 6 and 9 days post-infection (dpi), along with a decreased weight of 23% and 20%, respectively, compared to the control group. Macroscopical changes were seen in the liver and kidney between 6 and 10 dpi, with no lesions being observed in the other organs. Histological lesions were observed in the liver and pancreas during the same period. Plasma was collected from killed birds of each group at each time point and the following clinical chemistry analytes were investigated: aspartate aminotransferase (AST), glutamate dehydrogenase (GLDH), bile acids, total protein, albumin, uric acid and lipase. Plasma protein profile, AST and GLDH, together with bile acids values paralleled the macroscopical and histopathological lesions in the liver, while plasma lipase activity levels coincided with lesions observed in pancreas. In agreement with the histology and clinical chemistry, viral load in the target organs, liver and pancreas, was highest at 7 dpi. Thus, clinical chemistry was found to be a valuable tool in evaluating and monitoring the progression of IBH in experimentally infected birds, providing a deeper knowledge of the underlying pathophysiological mechanisms of a FAdV infection in chickens.

  1. Instrumental Analysis of Biodiesel Content in Commercial Diesel Blends: An Experiment for Undergraduate Analytical Chemistry

    ERIC Educational Resources Information Center

    Feng, Z. Vivian; Buchman, Joseph T.

    2012-01-01

    The potential of replacing petroleum fuels with renewable biofuels has drawn significant public interest. Many states have imposed biodiesel mandates or incentives to use commercial biodiesel blends. We present an inquiry-driven experiment where students are given the tasks to gather samples, develop analytical methods using various instrumental…

  2. The intrinsic fluorescence of FAD and its application in analytical chemistry: a review.

    PubMed

    Galbán, Javier; Sanz-Vicente, Isabel; Navarro, Jesús; de Marcos, Susana

    2016-12-19

    This review (with 106 references) mainly deals with the analytical applications of flavin-adenine dinucleotide (FAD) fluorescence. In the first section, the spectroscopic properties of this compound are reviewed at the light of his different acid-base, oxidation and structural forms; the chemical and spectroscopic properties of flavin mononucleotide (FMN) and other flavins will be also briefly discussed. The second section discusses how the properties of FAD fluorescence changes in flavoenzymes (FvEs), again considering the different chemical and structural forms; the glucose oxidase (GOx) and the choline oxidase (ChOx) cases will be commented. Since almost certainly the most reported analytical application of FAD fluorescence is as an auto-indicator in enzymatic methods catalysed by FvE oxidoreductases, it is important to know how the concentrations of the different forms of FAD changes along the reaction and, consequently, the fluorescence and the analytical signals. An approach to do this will be presented in section 3. The fourth part of the paper compiles the analytical applications which have been reported until now based in these fluorescence properties. Finally, some suggestions about tentative future research are also given.

  3. Analytical Chemistry Division. Annual progress report for period ending December 31, 1980

    SciTech Connect

    Lyon, W.S.

    1981-05-01

    This report is divided into: analytical methodology; mass and emission spectrometry; technical support; bio/organic analysis; nuclear and radiochemical analysis; quality assurance, safety, and tabulation of analyses; supplementary activities; and presentation of research results. Separate abstracts were prepared for the technical support, bio/organic analysis, and nuclear and radiochemical analysis. (DLC)

  4. Data Acquisition Programming (LabVIEW): An Aid to Teaching Instrumental Analytical Chemistry.

    ERIC Educational Resources Information Center

    Gostowski, Rudy

    A course was developed at Austin Peay State University (Tennessee) which offered an opportunity for hands-on experience with the essential components of modern analytical instruments. The course aimed to provide college students with the skills necessary to construct a simple model instrument, including the design and fabrication of electronic…

  5. Analytical Chemistry Division annual progress report for period ending December 31, 1984

    SciTech Connect

    Lyon, W.S.

    1985-04-01

    Progress reports are presented for the following sections: analytical methodology; mass and emission spectroscopy; radioactive materials analysis; bio/organic analysis; and general and environmental analysis; quality assurance, safety, and tabulation analyses. In addition a list of publications and oral presentations and supplemental activities are included.

  6. Analytical Chemistry Division annual progress report for period ending December 31, 1983

    SciTech Connect

    Lyon, W.S.

    1984-05-01

    Progress and activities are reported in: analytical methodology, mass and emission spectrometry, radioactive materials analysis, bio/organic analysis, general and environmental analysis, and quality assurance and safety. Supplementary activities are also discussed, and a bibliography of publications is also included. (DLC)

  7. Charge Density Quantification of Polyelectrolyte Polysaccharides by Conductometric Titration: An Analytical Chemistry Experiment

    ERIC Educational Resources Information Center

    Farris, Stefano; Mora, Luigi; Capretti, Giorgio; Piergiovanni, Luciano

    2012-01-01

    An easy analytical method for determination of the charge density of polyelectrolytes, including polysaccharides and other biopolymers, is presented. The basic principles of conductometric titration, which is used in the pulp and paper industry as well as in colloid and interface science, were adapted to quantify the charge densities of a…

  8. Thirty-seventh ORNL/DOE conference on analytical chemistry in energy technology: Abstracts of papers

    SciTech Connect

    1997-12-31

    Abstracts only are given for papers presented during the following topical sessions: Opportunities for collaboration: Industry, academic, national laboratories; Developments in sensor technology; Analysis in containment facilities; Improving the quality of environmental data; Process analysis; Field analysis; Radiological separations; Interactive analytical seminars; Measurements and chemical industry initiatives; and Isotopic measurements and mass spectroscopy.

  9. Structural Isomer Identification via NMR: A Nuclear Magnetic Resonance Experiment for Organic, Analytical, or Physical Chemistry.

    ERIC Educational Resources Information Center

    Szafran, Zvi

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment that examines the ability of nuclear magnetic resonance (NMR) to distinguish between structural isomers via resonance multiplicities and chemical shifts. Reasons for incorporating the experiment into organic, analytical, or physical chemistry…

  10. The intrinsic fluorescence of FAD and its application in analytical chemistry: a review

    NASA Astrophysics Data System (ADS)

    Galbán, Javier; Sanz-Vicente, Isabel; Navarro, Jesús; de Marcos, Susana

    2016-12-01

    This review (with 106 references) mainly deals with the analytical applications of flavin-adenine dinucleotide (FAD) fluorescence. In the first section, the spectroscopic properties of this compound are reviewed at the light of his different acid-base, oxidation and structural forms; the chemical and spectroscopic properties of flavin mononucleotide (FMN) and other flavins will be also briefly discussed. The second section discusses how the properties of FAD fluorescence changes in flavoenzymes (FvEs), again considering the different chemical and structural forms; the glucose oxidase (GOx) and the choline oxidase (ChOx) cases will be commented. Since almost certainly the most reported analytical application of FAD fluorescence is as an auto-indicator in enzymatic methods catalysed by FvE oxidoreductases, it is important to know how the concentrations of the different forms of FAD changes along the reaction and, consequently, the fluorescence and the analytical signals. An approach to do this will be presented in section 3. The fourth part of the paper compiles the analytical applications which have been reported until now based in these fluorescence properties. Finally, some suggestions about tentative future research are also given.

  11. Peroxide induced ultra-weak chemiluminescence and its application in analytical chemistry.

    PubMed

    Lin, Zhen; Chen, Hui; Lin, Jin-Ming

    2013-09-21

    Chemiluminescence (CL), as a sensitive, rapid, and facile analytical method, has been widely applied in environmental monitoring, clinical diagnosis and food safety. Recently, the main challenge and research interest in the CL study have been focused on exploring new CL systems and obtaining new insight into the interaction between CL reagents. The peroxide induced ultra-weak CL reactions are some new arising systems that have received great attention and have been successfully applied in many fields. The peroxide includes hydrogen peroxide, peroxynitrite, peroxymonocarbonate, peroxomonosulphate and so on. This review paper covers the mechanism of the peroxide induced ultra-weak CL and the analytical applications of the CL have also been summarized. The future prospects for the peroxide induced ultra-weak CL are discussed.

  12. Computerized real-time quality control program for analytical chemistry laboratories

    SciTech Connect

    Dill, M.S.; Floyd, M.A.; Morrow, R.W.

    1985-10-01

    A unique computer program has been developed for complete quality control/quality assurance of the operation and statistical control of the testing in the analytical laboratory. The system operates similar to a scanner on a production line with effective checkpoints and furnishes immediate feedback by automatically generated mail messages to appropriate personnel when any non-conformance is encountered. Corrective action is required by the technician prior to proceeding with the analysis.

  13. Analyzing DNA Nanotechnology: A Call to Arms For The Analytical Chemistry Community.

    PubMed

    Mathur, Divita; Medintz, Igor L

    2017-03-07

    In order to fully realize the potential of DNA nanotechnology, it is crucial to overcome the lack of robust analytical techniques that continue to hinder the purification and characterization of DNA-based structures. In this Feature, we provide a snapshot of the current state of metrological techniques in DNA nanotechnology and look forward to emerging technologies that may offer new ways to probe and visualize these complex structures.

  14. Comparison of the single channel and multichannel (multivariate) concepts of selectivity in analytical chemistry.

    PubMed

    Dorkó, Zsanett; Verbić, Tatjana; Horvai, George

    2015-07-01

    Different measures of selectivity are in use for single channel and multichannel linear analytical measurements, respectively. It is important to understand that these two measures express related but still distinctly different features of the respective measurements. These relationships are clarified by introducing new arguments. The most widely used selectivity measure of multichannel linear methods (which is based on the net analyte signal, NAS, concept) expresses the sensitivity to random errors of a determination where all bias from interferents is computationally eliminated using pure component spectra. The conventional selectivity measure of single channel linear measurements, on the other hand, helps to estimate the bias caused by an interferent in a biased measurement. In single channel methods expert knowledge about the samples is used to limit the possible range of interferent concentrations. The same kind of expert knowledge allows improved (lower mean squared error, MSE) analyte determinations also in "classical" multichannel measurements if those are intractable due to perfect collinearity or to high noise inflation. To achieve this goal bias variance tradeoff is employed, hence there remains some bias in the results and therefore the concept of single channel selectivity can be extended in a natural way to multichannel measurements. This extended definition and the resulting selectivity measure can also be applied to the so-called inverse multivariate methods like partial least squares regression (PLSR), principal component regression (PCR) and ridge regression (RR).

  15. Construction of Protein-Based Biosensors Using Ligand-Directed Chemistry for Detecting Analyte Binding.

    PubMed

    Yamaura, Kei; Kiyonaka, Shigeki; Hamachi, Itaru

    2017-01-01

    Protein-based fluorescent biosensors are powerful tools for quantitative detection of biomolecules or drugs with high sensitivity under physiological conditions. However, conventional methods for construction of biosensors require structural data with high resolution or amino acid sequence information in most cases, which hampers applicability of this method to structurally complicated receptor proteins. To sidestep such limitations, we recently developed a new method that employs ligand-directed chemistry coupled with a bimolecular fluorescence quenching and recovery system, which enabled the conversion of various kinds of membrane-bound receptors to "turn-on" type fluorescent sensors. Here, we describe a protocol for construction of "turn-on" type fluorescent biosensors based on the GABAA receptor which permits quantitative analysis of the ligand affinity.

  16. Analytical Chemistry Developmental Work Using a 243Am Solution

    SciTech Connect

    Spencer, Khalil J.; Stanley, Floyd E.; Porterfield, Donivan R.; Castro, Alonso

    2015-02-24

    This project seeks to reestablish our analytical capability to characterize Am bulk material and develop a reference material suitable to characterizing the purity and assay of 241Am oxide for industrial use. The tasks associated with this phase of the project included conducting initial separations experiments, developing thermal ionization mass spectrometry capability using the 243Am isotope as an isotope dilution spike , optimizing the spike for the determination of 241Pu-241 Am radiochemistry, and, additionally, developing and testing a methodology which can detect trace to ultra- trace levels of Pu (both assay and isotopics) in bulk Am samples .

  17. The development of paper microzone-based green analytical chemistry methods for determining the quality of wines.

    PubMed

    Vaher, M; Kaljurand, M

    2012-08-01

    The colorimetric determination of the concentration of polyphenols, flavonoids, and anthocyanins in wine samples, using a mobile phone camera for sample spot capture on a paper microzone and a remote computer with dedicated software for quantification, is presented as an illustrative application of green analytical chemistry. A comparison of the results with conventional spectrophotometry demonstrates that both methods yield similar results. Developing the assay took approximately 2 months, and the use of chemicals, compared with spectrophotometry, was reduced by about two orders of magnitude: the paper assay consumed 0.4 mL of reagent for 100 samples, whereas the spectrophotometric assay required 100 mL. The relative testing times for 100 samples were 7 h by spectrophotometry and 2 h for paper-a savings on the order of 3.5. No analytical instrumentation was used for the colorimetry on paper microzones. Instead, the assay took advantage of the existing communication technology and free software. The assay was found to be effective, with a nonlinear response at the concentration range of 0.2-5 g/L. The detection limit of the proposed method is in sub-grams per liter.

  18. ICL-Based OF-CEAS: A Sensitive Tool for Analytical Chemistry.

    PubMed

    Manfred, Katherine M; Hunter, Katharine M; Ciaffoni, Luca; Ritchie, Grant A D

    2017-01-03

    Optical-feedback cavity-enhanced absorption spectroscopy (OF-CEAS) using mid-infrared interband cascade lasers (ICLs) is a sensitive technique for trace gas sensing. The setup of a V-shaped optical cavity operating with a 3.29 μm cw ICL is detailed, and a quantitative characterization of the injection efficiency, locking stability, mode matching, and detection sensitivity is presented. The experimental data are supported by a model to show how optical feedback affects the laser frequency as it is scanned across several longitudinal modes of the optical cavity. The model predicts that feedback enhancement effects under strongly absorbing conditions can cause underestimations in the measured absorption, and these predictions are verified experimentally. The technique is then used in application to the detection of nitrous oxide as an exemplar of the utility of this technique for analytical gas phase spectroscopy. The analytical performance of the spectrometer, expressed as noise equivalent absorption coefficient, was estimated as 4.9 × 10(-9) cm (-1) Hz(-1/2), which compares well with recently reported values.

  19. Chlorfenapyr and mallard ducks: overview, study design, macroscopic effects, and analytical chemistry.

    PubMed

    Albers, Peter H; Klein, Patrice N; Green, David E; Melancon, Mark J; Bradley, Brian P; Noguchi, George

    2006-02-01

    The first commercial pesticide derived from a class of compounds known as halogenated pyrroles was registered for use in the United States in 2001. Chlorfenapyr degrades slowly in soil, sediment, and water and is highly toxic to birds. Information on biochemical or histological endpoints in birds is lacking; therefore, a two-year study was conducted to provide information needed to develop diagnostic criteria for chlorfenapyr toxicosis. In the first year, male mallard ducks were fed concentrations of 0, 2, 5, or 10 ppm technical chlorfenapyr or 5 ppm of a formulated product in their diet during a 10-week chronic exposure study. Survival, body weight, feed consumption (removal), behavior, and molt progression were monitored. Feed and liver were analyzed for chlorfenapyr and two metabolites. Five of 10 ducks in the 10-ppm group died, and neurotoxic effects were observed in the 5- and 10-ppm groups. Feed removal increased for ducks receiving chlorfenapyr and body weights of 5- and 10-ppm ducks were reduced. Loss of body fat, muscle atrophy, and bile retention were suggestive of metabolic disruption or a decreased ability to digest and absorb nutrients. Liver and kidney weights and liver and kidney weight/body weight ratios exhibited a positive response to concentrations of chlorfenapyr in the diet. Emaciation and elevated organ weight/body weight ratios are candidates for a suite of indicators of chronic chlorfenapyr exposure. Liver is the preferred tissue for chemical confirmation of exposure.

  20. Chlorfenapyr and mallard ducks: overview, study design, macroscopic effects, and analytical chemistry

    USGS Publications Warehouse

    Albers, P.H.; Klein, P.N.; Green, D.E.; Melancon, M.J.; Bradley, B.P.; Noguchi, G.

    2006-01-01

    The first commercial pesticide derived from a class of compounds known as halogenated pyrroles was registered for use in the United States in 2001. Chlorfenapyr degrades slowly in soil, sediment, and water and is highly toxic to birds. Information on biochemical or histological endpoints in birds is lacking; therefore, a two-year study was conducted to provide information needed to develop diagnostic criteria for chlorfenapyr toxicosis. In the first year, male mallard ducks were fed concentrations of 0, 2, 5, or 10 ppm technical chlorfenapyr or 5 ppm of a formulated product in their diet during a 10-week chronic exposure study. Survival, body weight, feed consumption (removal), behavior, and molt progression were monitored. Feed and liver were analyzed for chlorfenapyr and two metabolites. Five of 10 ducks in the 10-ppm group died, and neurotoxic effects were observed in the 5- and 10-ppm groups. Feed removal increased for ducks receiving chlorfenapyr and body weights of 5- and 10-ppm ducks were reduced. Loss of body fat, muscle atrophy, and bile retention were suggestive of metabolic disruption or a decreased ability to digest and absorb nutrients. Liver and kidney weights and liver and kidney weight/body weight ratios exhibited a positive response to concentrations of chlorfenapyr in the diet. Emaciation and elevated organ weight/body weight ratios are candidates for a suite of indicators of chronic chlorfenapyr exposure. Liver is the preferred tissue for chemical confirmation of exposure.

  1. ELISA and GC-MS as Teaching Tools in the Undergraduate Environmental Analytical Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Wilson, Ruth I.; Mathers, Dan T.; Mabury, Scott A.; Jorgensen, Greg M.

    2000-12-01

    An undergraduate experiment for the analysis of potential water pollutants is described. Students are exposed to two complementary techniques, ELISA and GC-MS, for the analysis of a water sample containing atrazine, desethylatrazine, and simazine. Atrazine was chosen as the target analyte because of its wide usage in North America and its utility for students to predict environmental degradation products. The water sample is concentrated using solid-phase extraction for GC-MS, or diluted and analyzed using a competitive ELISA test kit for atrazine. The nature of the water sample is such that students generally find that ELISA gives an artificially high value for the concentration of atrazine. Students gain an appreciation for problems associated with measuring pollutants in the aqueous environment: sensitivity, accuracy, precision, and ease of analysis. This undergraduate laboratory provides an opportunity for students to learn several new analysis and sample preparation techniques and to critically evaluate these methods in terms of when they are most useful.

  2. Developments in Analytical Chemistry: Acoustically Levitated Drop Reactors for Enzyme Reaction Kinetics and Single-Walled Carbon Nanotube-Based Sensors for Detection of Toxic Organic Phosphonates

    ERIC Educational Resources Information Center

    Field, Christopher Ryan

    2009-01-01

    Developments in analytical chemistry were made using acoustically levitated small volumes of liquid to study enzyme reaction kinetics and by detecting volatile organic compounds in the gas phase using single-walled carbon nanotubes. Experience gained in engineering, electronics, automation, and software development from the design and…

  3. Extraction and Quantitation of FD&C Red Dye #40 from Beverages Containing Cranberry Juice: A College-Level Analytical Chemistry Experiment

    ERIC Educational Resources Information Center

    Rossi, Henry F., III; Rizzo, Jacqueline; Zimmerman, Devon C.; Usher, Karyn M.

    2012-01-01

    A chemical separation experiment can be an interesting addition to an introductory analytical chemistry laboratory course. We have developed an experiment to extract FD&C Red Dye #40 from beverages containing cranberry juice. After extraction, the dye is quantified using colorimetry. The experiment gives students hands-on experience in using solid…

  4. Determination of Total Arsenic and Speciation in Apple Juice by Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry: An Experiment for the Analytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    He, Ping; Colon, Luis A.; Aga, Diana S.

    2016-01-01

    A two-part laboratory experiment was designed for upper-level analytical chemistry students to provide hands-on experience in the use of high performance liquid chromatography (HPLC) for separation and inductively coupled plasma mass spectrometry (ICP-MS) for detection. In the first part of the experiment, the students analyze total arsenic in…

  5. Integrating Organic Matter Structure with Ecosystem Function using Advanced Analytical Chemistry Techniques

    NASA Astrophysics Data System (ADS)

    Boot, C. M.

    2012-12-01

    Microorganisms are the primary transformers of organic matter in terrestrial and aquatic ecosystems. The structure of organic matter controls its bioavailability and researchers have long sought to link the chemical characteristics of the organic matter pool to its lability. To date this effort has been primarily attempted using low resolution descriptive characteristics (e.g. organic matter content, carbon to nitrogen ratio, aromaticity, etc .). However, recent progress in linking these two important ecosystem components has been advanced using advanced high resolution tools (e.g. nuclear magnetic resonance (NMR) spectroscopy, and mass spectroscopy (MS)-based techniques). A series of experiments will be presented that highlight the application of high resolution techniques in a variety of terrestrial and aquatic ecosystems with the focus on how these data explicitly provide the foundation for integrating organic matter structure into our concept of ecosystem function. The talk will highlight results from a series of experiments including: an MS-based metabolomics and fluorescence excitation emission matrix approach evaluating seasonal and vegetation based changes in dissolved organic matter (DOM) composition from arctic soils; Fourier transform ion cyclotron resonance (FTICR) MS and MS metabolomics analysis of DOM from three lakes in an alpine watershed; and the transformation of 13C labeled glucose track with NMR during a rewetting experiment from Colorado grassland soils. These data will be synthesized to illustrate how the application of advanced analytical techniques provides novel insight into our understanding of organic matter processing in a wide range of ecosystems.

  6. Acid-Base Chemistry of White Wine: Analytical Characterisation and Chemical Modelling

    PubMed Central

    Prenesti, Enrico; Berto, Silvia; Toso, Simona; Daniele, Pier Giuseppe

    2012-01-01

    A chemical model of the acid-base properties is optimized for each white wine under study, together with the calculation of their ionic strength, taking into account the contributions of all significant ionic species (strong electrolytes and weak one sensitive to the chemical equilibria). Coupling the HPLC-IEC and HPLC-RP methods, we are able to quantify up to 12 carboxylic acids, the most relevant substances responsible of the acid-base equilibria of wine. The analytical concentration of carboxylic acids and of other acid-base active substances was used as input, with the total acidity, for the chemical modelling step of the study based on the contemporary treatment of overlapped protonation equilibria. New protonation constants were refined (L-lactic and succinic acids) with respect to our previous investigation on red wines. Attention was paid for mixed solvent (ethanol-water mixture), ionic strength, and temperature to ensure a thermodynamic level to the study. Validation of the chemical model optimized is achieved by way of conductometric measurements and using a synthetic “wine” especially adapted for testing. PMID:22566762

  7. Acid-base chemistry of white wine: analytical characterisation and chemical modelling.

    PubMed

    Prenesti, Enrico; Berto, Silvia; Toso, Simona; Daniele, Pier Giuseppe

    2012-01-01

    A chemical model of the acid-base properties is optimized for each white wine under study, together with the calculation of their ionic strength, taking into account the contributions of all significant ionic species (strong electrolytes and weak one sensitive to the chemical equilibria). Coupling the HPLC-IEC and HPLC-RP methods, we are able to quantify up to 12 carboxylic acids, the most relevant substances responsible of the acid-base equilibria of wine. The analytical concentration of carboxylic acids and of other acid-base active substances was used as input, with the total acidity, for the chemical modelling step of the study based on the contemporary treatment of overlapped protonation equilibria. New protonation constants were refined (L-lactic and succinic acids) with respect to our previous investigation on red wines. Attention was paid for mixed solvent (ethanol-water mixture), ionic strength, and temperature to ensure a thermodynamic level to the study. Validation of the chemical model optimized is achieved by way of conductometric measurements and using a synthetic "wine" especially adapted for testing.

  8. To address accuracy and precision using methods from analytical chemistry and computational physics.

    PubMed

    Kozmutza, Cornelia; Picó, Yolanda

    2009-04-01

    In this work the pesticides were determined by liquid chromatography-mass spectrometry (LC-MS). In present study the occurrence of imidacloprid in 343 samples of oranges, tangerines, date plum, and watermelons from Valencian Community (Spain) has been investigated. The nine additional pesticides were chosen as they have been recommended for orchard treatment together with imidacloprid. The Mulliken population analysis has been applied to present the charge distribution in imidacloprid. Partitioned energy terms and the virial ratios have been calculated for certain molecules entering in interaction. A new technique based on the comparison of the decomposed total energy terms at various configurations is demonstrated in this work. The interaction ability could be established correctly in the studied case. An attempt is also made in this work to address accuracy and precision. These quantities are well-known in experimental measurements. In case precise theoretical description is achieved for the contributing monomers and also for the interacting complex structure some properties of this latter system can be predicted to quite a good accuracy. Based on simple hypothetical considerations we estimate the impact of applying computations on reducing the amount of analytical work.

  9. A Biochemical GC-MS Application for the Organic Chemistry Laboratory: Determination of Fatty Acid Composition of Arabidopsis thaliana Lipids

    NASA Astrophysics Data System (ADS)

    Bender, Jared D.; Catino, Arthur J., III.; Hess, Kenneth R.; Lassman, Michael E.; Leber, Phyllis A.; Reinard, Michael D.; Strotman, Neil A.; Pike, Carl S.

    2000-11-01

    A biochemical application of GC-MS in which students determine the qualitative and quantitative lipid composition of plant leaf samples is described. There are four facets of this project: (i) synthesis and characterization of individual fatty acid methyl esters (FAMEs) as standards for GC-MS analysis, (ii) isolation of the fatty acids of Arabidopsis thaliana leaves, both wild type and mutants, as FAMEs, (iii) GC-MS analysis of the Arabidopsis leaf extracts for fatty acid composition, and (iv) comparison of the class results with the literature data for both wild type and the four mutants and with a biochemical model of two pathways for lipid synthesis in Arabidopsis leaves. Because this experimental paradigm links organic synthesis and spectral characterization by IR and NMR, both 1H and 13C, with separation and identification via GC-MS analysis, all of the key areas of laboratory procedure are encompassed in this single project. The experimental design permits a myriad of hypothesis-testing variations. Plants can be grown at different temperatures and for different lengths of time to determine if and how fatty acid composition varies. Different types of plant leaves can be examined to ascertain if each has a unique fatty acid fingerprint.

  10. Atmospheric Chemistry for Astrophysicists: A Self-consistent Formalism and Analytical Solutions for Arbitrary C/O

    NASA Astrophysics Data System (ADS)

    Heng, Kevin; Lyons, James R.; Tsai, Shang-Min

    2016-01-01

    We present a self-consistent formalism for computing and understanding the atmospheric chemistry of exoplanets from the viewpoint of an astrophysicist. Starting from the first law of thermodynamics, we demonstrate that the van’t Hoff equation (which describes the equilibrium constant), Arrhenius equation (which describes the rate coefficients), and procedures associated with the Gibbs free energy (minimization, rescaling) have a common physical and mathematical origin. We address an ambiguity associated with the equilibrium constant, which is used to relate the forward and reverse rate coefficients, and restate its two definitions. By necessity, one of the equilibrium constants must be dimensionless and equate to an exponential function involving the Gibbs free energy, while the other is a ratio of rate coefficients and must therefore possess physical units. We demonstrate that the Arrhenius equation takes on a functional form that is more general than previously stated without recourse to tagging on ad hoc functional forms. Finally, we derive analytical models of chemical systems, in equilibrium, with carbon, hydrogen, and oxygen. We include acetylene and are able to reproduce several key trends, versus temperature and carbon-to-oxygen ratio, published in the literature. The rich variety of behavior that mixing ratios exhibit as a function of the carbon-to-oxygen ratio is merely the outcome of stoichiometric book-keeping and not the direct consequence of temperature or pressure variations.

  11. Double-sided Microfluidic Device for Speciation Analysis of Iron in Water Samples: Towards Greener Analytical Chemistry.

    PubMed

    Youngvises, Napaporn; Thanurak, Porapichcha; Chaida, Thanatcha; Jukmunee, Jaroon; Alsuhaimi, Awadh

    2015-01-01

    Microfluidics minimize the amounts of reagents and generate less waste. While microdevices are commonly single-sided, producing a substrate with microchannels on multiple surfaces would increase their usefulness. Herein, a polymethymethacrylate substrate incorporating microchannel structures on two sides was sandwiched between two polydimethylsiloxane sheets to create a multi-analysis device, which was used for the spectrophotometric analysis of the ferrous ion (Fe(2+)) and the ferric ion (Fe(3+)), by utilizing colorimetric detection. To monitor the signals from both channel networks, dual optical sensors were integrated into the system. The linear ranges for Fe(2+) and Fe(3+) analyses were 0.1 - 20 mg L(-1) (R(2) = 0.9988) and 1.0 - 40 mg L(-1) (R(2) = 0.9974), respectively. The detection limits for Fe(2+) and Fe(3+) were 0.1 and 0.5 mg L(-1), respectively. The percent recoveries of Fe(2+) and Fe(3+) were 93.5 - 104.3 with an RSD < 8%. The microdevice demonstrated capabilities for simultaneous analysis, low waste generation (7.2 mL h(-1)), and high sample throughput (180 h(-1)), making it ideal for greener analytical chemistry applications.

  12. ATMOSPHERIC CHEMISTRY FOR ASTROPHYSICISTS: A SELF-CONSISTENT FORMALISM AND ANALYTICAL SOLUTIONS FOR ARBITRARY C/O

    SciTech Connect

    Heng, Kevin; Tsai, Shang-Min; Lyons, James R.

    2016-01-10

    We present a self-consistent formalism for computing and understanding the atmospheric chemistry of exoplanets from the viewpoint of an astrophysicist. Starting from the first law of thermodynamics, we demonstrate that the van’t Hoff equation (which describes the equilibrium constant), Arrhenius equation (which describes the rate coefficients), and procedures associated with the Gibbs free energy (minimization, rescaling) have a common physical and mathematical origin. We address an ambiguity associated with the equilibrium constant, which is used to relate the forward and reverse rate coefficients, and restate its two definitions. By necessity, one of the equilibrium constants must be dimensionless and equate to an exponential function involving the Gibbs free energy, while the other is a ratio of rate coefficients and must therefore possess physical units. We demonstrate that the Arrhenius equation takes on a functional form that is more general than previously stated without recourse to tagging on ad hoc functional forms. Finally, we derive analytical models of chemical systems, in equilibrium, with carbon, hydrogen, and oxygen. We include acetylene and are able to reproduce several key trends, versus temperature and carbon-to-oxygen ratio, published in the literature. The rich variety of behavior that mixing ratios exhibit as a function of the carbon-to-oxygen ratio is merely the outcome of stoichiometric book-keeping and not the direct consequence of temperature or pressure variations.

  13. Label-free biochemical analytic method for the early detection of adenoviral conjunctivitis using human tear biofluids.

    PubMed

    Choi, Samjin; Moon, Sung Woon; Shin, Jae-Ho; Park, Hun-Kuk; Jin, Kyung-Hyun

    2014-11-18

    Cell culture and polymerase chain reaction are currently regarded as the gold standard for adenoviral conjunctivitis diagnosis. They maximize sensitivity and specificity but require several days to 3 weeks to get the results. The aim of this study is to determine the potential of Raman spectroscopy as a stand-alone analytical tool for clinical diagnosis of adenoviral conjunctivitis using human tear fluids. A drop-coating deposition surface enhanced Raman scattering (DCD-SERS) method was identified as the most effective method of proteomic analysis in tear biofluids. The proposed DCD-SERS method (using a 2-μL sample) led to Raman spectra with high reproducibility, noise-independence, and uniformity. Additionally, the spectra were independent of the volume of biofluids used and detection zones, including the ring, middle, and central zone, with the exception of the outer layer of the ring zone. Assessments with an intensity ratio of 1242-1342 cm(-1) achieved 100% sensitivity and 100% specificity in the central zone. Principal component analysis assessments achieved 0.9453 in the area under the receiver operating characteristic curve (AUC) as well as 93.3% sensitivity and 94.5% specificity in the central zone. Multi-Gaussian peak assessments showed that the differences between these two groups resulted from the reduction of the amide III α-helix structures of the proteins. The presence of adenovirus in tear fluids could be detected more accurately in the center of the sample than in the periphery. The DCD-SERS technique allowed for high chemical structure sensitivity without additional tagging or chemical modification, making it a good alternative for early clinical diagnosis of adenoviral conjunctivitis. Therefore, we are hopeful that the DCD-SERS method will be approved for use in ophthalmological clinics in the near future.

  14. Integrated assessment of runoff from livestock farming operations: analytical chemistry, in vitro bioassays, and in vivo fish exposures

    USGS Publications Warehouse

    Cavallin, Jenna E.; Durhan, Elizabeth J.; Evans, Nicola; Jensen, Kathleen M.; Kahl, Michael D.; Kolpin, Dana W.; Kolodziej, Edward P.; Foreman, William T.; LaLone, Carlie A.; Makynen, Elizabeth A.; Seidl, Sara M.; Thomas, Linnea M.; Villeneuve, Daniel L.; Weberg, Matthew A.; Wilson, Vickie S.; Ankley, Gerald T.

    2014-01-01

    Animal waste from livestock farming operations can contain varying levels of natural and synthetic androgens and/or estrogens, which can contaminate surrounding waterways. In the present study, surface stream water was collected from 6 basins containing livestock farming operations. Aqueous concentrations of 12 hormones were determined via chemical analyses. Relative androgenic and estrogenic activity was measured using in vitro cell assays (MDA-kb2 and T47D-Kbluc assays, respectively). In parallel, 48-h static-renewal in vivo exposures were conducted to examine potential endocrine-disrupting effects in fathead minnows. Mature fish were exposed to surface water dilutions (0%, 25%, 50%, and 100%) and 10-ng/L of 17α-ethynylestradiol or 50-ng/L of 17β-trenbolone as positive controls. Hepatic expression of vitellogenin and estrogen receptor α mRNA, gonadal ex vivo testosterone and 17β-estradiol production, and plasma vitellogenin concentrations were examined. Potentially estrogenic and androgenic steroids were detected at low nanogram per liter concentrations. In vitro estrogenic activity was detected in all samples, whereas androgenic activity was detected in only 1 sample. In vivo exposures to the surface water had no significant dose-dependent effect on any of the biological endpoints, with the exception of increased male testosterone production in 1 exposure. The present study, which combines analytical chemistry measurements, in vitro bioassays, and in vivo fish exposures, highlights the integrated value and future use of a combination of techniques to obtain a comprehensive characterization of an environmental chemical mixture. 

  15. Integrated assessment of runoff from livestock farming operations: Analytical chemistry, in vitro bioassays, and in vivo fish exposures.

    PubMed

    Cavallin, Jenna E; Durhan, Elizabeth J; Evans, Nicola; Jensen, Kathleen M; Kahl, Michael D; Kolpin, Dana W; Kolodziej, Edward P; Foreman, William T; LaLone, Carlie A; Makynen, Elizabeth A; Seidl, Sara M; Thomas, Linnea M; Villeneuve, Daniel L; Weberg, Matthew A; Wilson, Vickie S; Ankley, Gerald T

    2014-08-01

    Animal waste from livestock farming operations can contain varying levels of natural and synthetic androgens and/or estrogens, which can contaminate surrounding waterways. In the present study, surface stream water was collected from 6 basins containing livestock farming operations. Aqueous concentrations of 12 hormones were determined via chemical analyses. Relative androgenic and estrogenic activity was measured using in vitro cell assays (MDA-kb2 and T47D-Kbluc assays, respectively). In parallel, 48-h static-renewal in vivo exposures were conducted to examine potential endocrine-disrupting effects in fathead minnows. Mature fish were exposed to surface water dilutions (0%, 25%, 50%, and 100%) and 10-ng/L of 17α-ethynylestradiol or 50-ng/L of 17β-trenbolone as positive controls. Hepatic expression of vitellogenin and estrogen receptor α mRNA, gonadal ex vivo testosterone and 17β-estradiol production, and plasma vitellogenin concentrations were examined. Potentially estrogenic and androgenic steroids were detected at low nanogram per liter concentrations. In vitro estrogenic activity was detected in all samples, whereas androgenic activity was detected in only 1 sample. In vivo exposures to the surface water had no significant dose-dependent effect on any of the biological endpoints, with the exception of increased male testosterone production in 1 exposure. The present study, which combines analytical chemistry measurements, in vitro bioassays, and in vivo fish exposures, highlights the integrated value and future use of a combination of techniques to obtain a comprehensive characterization of an environmental chemical mixture.

  16. Earle K. Plyler Prize for Molecular Spectroscopy & Dynamics Lecture: Broadband Rotational Spectroscopy for Chemical Kinetics, Molecular Structure, and Analytical Chemistry

    NASA Astrophysics Data System (ADS)

    Pate, Brooks

    2013-03-01

    Advances in high-speed digital electronics have enabled a new generation of molecular rotational spectroscopy techniques that provide instantaneous broadband spectral coverage. These techniques use a chirped excitation pulse to coherently excite the molecular sample over a spectral bandwidth of 10 GHz or larger through rapid passage. The subsequent time-domain emission is recorded using high-speed digitizers (up to 100 Gigasample/s) and the frequency domain spectrum is produced by fast Fourier transformation. The chirped-pulse Fourier transform (CP-FT) method has been implemented in the microwave frequency range (2-40 GHz) for studies of cold samples in pulsed jet sources and in the mm-wave/terahertz (THz) frequency range for studies of samples at room-temperature. The method has opened new applications for molecular rotational spectroscopy in the area of chemical kinetics where dynamic rotational spectroscopy is used to measure the rates of unimolecular isomerization reactions in highly excited molecules prepared by pulsed infrared laser excitation. In these applications, the isomerization rate is obtained from an analysis of the overall line shapes which are modified by chemical exchange leading to coalescence behavior similar to the effect in NMR spectroscopy. The sensitivity of the method and the ability to extend it to low frequency (2-8 GHz) have significantly increased the size range of molecules and molecular clusters for structure determination using isotopic substitution to build up the 3D molecular structures atom-by-atom. Application to the structure of water clusters with up to 15 water molecules will be presented. When coupled with advances in solid-state mm-wave/THz devices, this method provides a direct digital technique for analytical chemistry of room-temperature gases based on molecular rotational spectroscopy. These high-throughput methods can analyze complex sample mixtures with unmatched chemical selectivity and short analysis times. Work

  17. Using an innovative combination of quality-by-design and green analytical chemistry approaches for the development of a stability indicating UHPLC method in pharmaceutical products.

    PubMed

    Boussès, Christine; Ferey, Ludivine; Vedrines, Elodie; Gaudin, Karen

    2015-11-10

    An innovative combination of green chemistry and quality by design (QbD) approach is presented through the development of an UHPLC method for the analysis of the main degradation products of dextromethorphan hydrobromide. QbD strategy was integrated to the field of green analytical chemistry to improve method understanding while assuring quality and minimizing environmental impacts, and analyst exposure. This analytical method was thoroughly evaluated by applying risk assessment and multivariate analysis tools. After a scouting phase aimed at selecting a suitable stationary phase and an organic solvent in accordance with green chemistry principles, quality risk assessment tools were applied to determine the critical process parameters (CPPs). The effects of the CPPs on critical quality attributes (CQAs), i.e., resolutions, efficiencies, and solvent consumption were further evaluated by means of a screening design. A response surface methodology was then carried out to model CQAs as function of the selected CPPs and the optimal separation conditions were determined through a desirability analysis. Resulting contour plots enabled to establish the design space (DS) (method operable design region) where all CQAs fulfilled the requirements. An experimental validation of the DS proved that quality within the DS was guaranteed; therefore no more robustness study was required before the validation. Finally, this UHPLC method was validated using the concept of total error and was used to analyze a pharmaceutical drug product.

  18. Forensic chemistry.

    PubMed

    Bell, Suzanne

    2009-01-01

    Forensic chemistry is unique among chemical sciences in that its research, practice, and presentation must meet the needs of both the scientific and the legal communities. As such, forensic chemistry research is applied and derivative by nature and design, and it emphasizes metrology (the science of measurement) and validation. Forensic chemistry has moved away from its analytical roots and is incorporating a broader spectrum of chemical sciences. Existing forensic practices are being revisited as the purview of forensic chemistry extends outward from drug analysis and toxicology into such diverse areas as combustion chemistry, materials science, and pattern evidence.

  19. JPRS Report, Science & Technology, USSR: Chemistry

    DTIC Science & Technology

    2007-11-02

    This report contains foreign media information from the USSR concerning analytical chemistry, electrochemistry, environmental chemistry, inorganic compounds, organophosphorous compounds, polymers (rubber) and radiation chemistry.

  20. Prevalence of Pre-Analytical Errors in Clinical Chemistry Diagnostic Labs in Sulaimani City of Iraqi Kurdistan

    PubMed Central

    2017-01-01

    Background Laboratory testing is roughly divided into three phases: a pre-analytical phase, an analytical phase and a post-analytical phase. Most analytical errors have been attributed to the analytical phase. However, recent studies have shown that up to 70% of analytical errors reflect the pre-analytical phase. The pre-analytical phase comprises all processes from the time a laboratory request is made by a physician until the specimen is analyzed at the lab. Generally, the pre-analytical phase includes patient preparation, specimen transportation, specimen collection and storage. In the present study, we report the first comprehensive assessment of the frequency and types of pre-analytical errors at the Sulaimani diagnostic labs in Iraqi Kurdistan. Materials and Methods Over 2 months, 5500 venous blood samples were observed in 10 public diagnostic labs of Sulaimani City. The percentages of rejected samples and types of sample inappropriateness were evaluated. The percentage of each of the following pre-analytical errors were recorded: delay in sample transportation, clotted samples, expired reagents, hemolyzed samples, samples not on ice, incorrect sample identification, insufficient sample, tube broken in centrifuge, request procedure errors, sample mix-ups, communication conflicts, misinterpreted orders, lipemic samples, contaminated samples and missed physician’s request orders. The difference between the relative frequencies of errors observed in the hospitals considered was tested using a proportional Z test. In particular, the survey aimed to discover whether analytical errors were recorded and examine the types of platforms used in the selected diagnostic labs. Results The analysis showed a high prevalence of improper sample handling during the pre-analytical phase. In appropriate samples, the percentage error was as high as 39%. The major reasons for rejection were hemolyzed samples (9%), incorrect sample identification (8%) and clotted samples (6

  1. "In situ" extraction of essential oils by use of Dean-Stark glassware and a Vigreux column inside a microwave oven: a procedure for teaching green analytical chemistry.

    PubMed

    Chemat, Farid; Perino-Issartier, Sandrine; Petitcolas, Emmanuel; Fernandez, Xavier

    2012-08-01

    One of the principal objectives of sustainable and green processing development remains the dissemination and teaching of green chemistry in colleges, high schools, and academic laboratories. This paper describes simple glassware that illustrates the phenomenon of extraction in a conventional microwave oven as energy source and a process for green analytical chemistry. Simple glassware comprising a Dean-Stark apparatus (for extraction of aromatic plant material and recovery of essential oils and distilled water) and a Vigreux column (as an air-cooled condenser inside the microwave oven) was designed as an in-situ extraction vessel inside a microwave oven. The efficiency of this experiment was validated for extraction of essential oils from 30 g fresh orange peel, a by-product in the production of orange juice. Every laboratory throughout the world can use this equipment. The microwave power is 100 W and the irradiation time 15 min. The method is performed at atmospheric pressure without added solvent or water and furnishes essential oils similar to those obtained by conventional hydro or steam distillation. By use of GC-MS, 22 compounds in orange peel were separated and identified; the main compounds were limonene (72.1%), β-pinene (8.4%), and γ-terpinene (6.9%). This procedure is appropriate for the teaching laboratory, does not require any special microwave equipment, and enables the students to learn the skills of extraction, and chromatographic and spectroscopic analysis. They are also exposed to a dramatic visual example of rapid, sustainable, and green extraction of an essential oil, and are introduced to successful sustainable and green analytical chemistry.

  2. Authentic Learning Enviroment in Analytical Chemistry Using Cooperative Methods and Open-Ended Laboratories in Large Lecture Courses

    NASA Astrophysics Data System (ADS)

    Wright, John C.

    1996-09-01

    It is recognized that a need exists to move from the passive learning styles that have characterized chemistry courses to an active style in which students participate and assume responsibility for their learning (1 - 5). In addition, it is argued that course reform should be linked to authentic student achievement, so that students can actively experience the feelings of practicing professionals (6). Course experiments where such changes have been introduced have proven successful but the number of examples of such changes is limited in the higher level courses or courses with large enrollments (7 - 11). In this paper, a one-semester introductory analytical chemistry course is described that accomplishes this goal by the use of open-ended laboratories, cooperative learning, and spreadsheet programs. The course uses many of the ideas described by Walters (7). It is offered at the upperclass level to nonmajors and at the freshman level to students with solid chemistry backgrounds from high school. Typically there are 90 students, who are divided into 5 sections. A teaching assistant is assigned to each section. The course has two 4-hour laboratories and two or three lectures each week (depending on whether it is the upperclass or freshman course). The heart of the course changes is the use of open-ended laboratory experiments in the last half of the course. A sample group project is to have the students develop a mixture of acid-base indicators that can serve as a spectroscopic pH meter. These projects are enhanced by dividing the students into teams of four who take charge of all aspects of accomplishing the projects' goals. Since there are many skills required to make these projects work, the first half of the course is spent developing the individual conceptual, computational, laboratory, problem solving, and group skills so students are prepared for the last half. These changes have markedly improved the student attitudes towards each other and towards learning

  3. International Federation of Clinical Chemistry. Use of artificial intelligence in analytical systems for the clinical laboratory. IFCC Committee on Analytical Systems.

    PubMed

    Place, J F; Truchaud, A; Ozawa, K; Pardue, H; Schnipelsky, P

    1994-12-16

    The incorporation of information-processing technology into analytical systems in the form of standard computing software has recently been advanced by the introduction of artificial intelligence (AI) both as expert systems and as neural networks. This paper considers the role of software in system operation, control and automation and attempts to define intelligence. AI is characterized by its ability to deal with incomplete and imprecise information and to accumulate knowledge. Expert systems, building on standard computing techniques, depend heavily on the domain experts and knowledge engineers that have programmed them to represent the real world. Neural networks are intended to emulate the pattern-recognition and parallel-processing capabilities of the human brain and are taught rather than programmed. The future may lie in a combination of the recognition ability of the neural network and the rationalization capability of the expert system. In the second part of this paper, examples are given of applications of AI in stand-alone systems for knowledge engineering and medical diagnosis and in embedded systems for failure detection, image analysis, user interfacing, natural language processing, robotics and machine learning, as related to clinical laboratories. It is concluded that AI constitutes a collective form of intellectual property and that there is a need for better documentation, evaluation and regulation of the systems already being used widely in clinical laboratories.

  4. Hydrolysis Studies and Quantitative Determination of Aluminum Ions Using [superscript 27]Al NMR: An Undergraduate Analytical Chemistry Experiment

    ERIC Educational Resources Information Center

    Curtin, Maria A.; Ingalls, Laura R.; Campbell, Andrew; James-Pederson, Magdalena

    2008-01-01

    This article describes a novel experiment focused on metal ion hydrolysis and the equilibria related to metal ions in aqueous systems. Using [superscript 27]Al NMR, the students become familiar with NMR spectroscopy as a quantitative analytical tool for the determination of aluminum by preparing a standard calibration curve using standard aluminum…

  5. Analytical Challenges in Biotechnology.

    ERIC Educational Resources Information Center

    Glajch, Joseph L.

    1986-01-01

    Highlights five major analytical areas (electrophoresis, immunoassay, chromatographic separations, protein and DNA sequencing, and molecular structures determination) and discusses how analytical chemistry could further improve these techniques and thereby have a major impact on biotechnology. (JN)

  6. USSR Report, Chemistry.

    DTIC Science & Technology

    2007-11-02

    This chemistry Report from the USSR contains articles mainly on Adsorption, Analytical Chemistry, Biochemistry, Catalysis, Chemical Industry, Coal ... Gasification , Electrochemistry, Fertilizers, Food Technology, Inorganic Compounds, Nitrogen Compounds and Organometallic Compounds.

  7. Surface Modification of Gold Nanoparticles with Small Molecules for Biochemical Analysis.

    PubMed

    Chen, Yiping; Xianyu, Yunlei; Jiang, Xingyu

    2017-02-21

    As one of the major tools for and by chemical science, biochemical analysis is becoming increasingly important in fields like clinical diagnosis, food safety, environmental monitoring, and the development of chemistry and biochemistry. The advancement of nanotechnology boosts the development of analytical chemistry, particularly the nanoparticle (NP)-based approaches for biochemical assays. Functional NPs can greatly improve the performance of biochemical analysis because they can accelerate signal transduction, enhance the signal intensity, and enable convenient signal readout due to their unique physical and chemical properties. Surface chemistry is a widely used tool to functionalize NPs, and the strategy for surface modification is of great significance to the application of NP-mediated biochemical assays. Surface chemistry not only affects the quality of NPs (stability, monodispersity, and biocompatibility) but also provides functional groups (-COO(-), -NH3(+), -CHO, and so on) or charges that can be exploited for bioconjugation or ligand exchange. Surface chemistry also dictates the sensitivity and specificity of the NP-mediated biochemical assays, since it is vital to the orientation, accessibility, and bioactivity of the functionalized ligands on the NPs. In this Account, we will focus on surface chemistry for functionalization of gold nanoparticles (AuNPs) with small organic molecules for biochemical analysis. Compared to other NPs, AuNPs have many merits including controllable synthesis, easy surface modification and high molar absorption coefficient, making them ideal probes for biochemical assays. Small-molecule functionalized AuNPs are widely employed to develop sensors for biochemical analysis, considering that small molecules, such as amino acids and sulfhydryl compounds, are more easily and controllably bioconjugated to the surface of AuNPs than biomacromolecules due to their less complex structure and steric hindrance. The orientation and

  8. Harmonising Adult and Paediatric Reference Intervals in Australia and New Zealand: An Evidence-Based Approach for Establishing a First Panel of Chemistry Analytes

    PubMed Central

    Tate, Jillian R; Sikaris, Ken A; Jones, Graham RD; Yen, Tina; Koerbin, Gus; Ryan, Julie; Reed, Maxine; Gill, Janice; Koumantakis, George; Hickman, Peter; Graham, Peter

    2014-01-01

    Scientific evidence supports the use of common reference intervals (RIs) for many general chemistry analytes, in particular those with sound calibration and traceability in place. Already the Nordic countries and United Kingdom have largely achieved harmonised RIs. Following a series of workshops organised by the Australasian Association of Clinical Biochemists (AACB) between 2012 and 2014 at which an evidence-based approach for determination of common intervals was developed, pathology organisations in Australia and New Zealand have reached a scientific consensus on what adult and paediatric intervals we should use across Australasia. The aim of this report is to describe the processes that the AACB and the Royal College of Pathologists of Australasia have taken towards recommending the implementation of a first panel of common RIs for use in Australasia. PMID:25678727

  9. Analytical performance evaluation of ADVIA Chemistry Carbamazepine_2 assay: minimal cross-reactivity with carbamazepine 10, 11-epoxide and none with hydroxyzine or cetirizine.

    PubMed

    Dasgupta, Amitava; Reyes, Meredith A; Davis, Barbara G; Marlow, Anne M; Johnson, Myrtle

    2010-01-01

    Carbamazepine is an anticonvulsant requiring routine therapeutic drug monitoring. Recently, Siemens Healthcare Diagnostic Division released a new carbamazepine assay: ADVIA Chemistry Carbamazepine_2 (Carbamazepine_2) for application on ADVIA analyzers. We evaluated the analytical performance of this assay as well as its potential cross-reactivities with carbamazepine 10, 11-epoxide, hydroxyzine, and cetirizine. The within-run and between-run precisions of the Carbamzepine-2 assay were <6% and limit of detection was 0.5 microg/ml using ADVIA 1800 analyzer. The assay was linear up to a carbamazepine concentration of 20.0 microg/ml. The new method compared well with a widely used carbamazepine EMIT 2000 assay on the Hitachi 917 analyzer. Using 75 patients' specimens (where carbamazepine concentrations varied from 0.5 to 21.7 microg/ml) and carbamazepine EMIT 2000 as the reference method (x-axis), we observed the following regression equation: y=1.04 x+0.32 (r=0.99). The new carbazepine_2 method was not affected by a hemoglobin concentration of 1,000 mg/dl, conjugated or unconjugated bilirubin concentration of 60 mg/dl, and triglyceride concentration of 1,000 mg/dl. In addition, this assay showed no cross-reactivity with hydroxyzine or cetirizine and demonstrated minimal cross-reactivity with carbamazepine 10, 11-epoxide. We conclude that the ADVIA Chemistry carbamazepine_2 assay has adequate precision and accuracy for routine therapeutic drug monitoring of carbamazepine in clinical laboratories.

  10. A Review on the Role of Vibrational Spectroscopy as An Analytical Method to Measure Starch Biochemical and Biophysical Properties in Cereals and Starchy Foods

    PubMed Central

    Cozzolino, D.; Degner, S.; Eglinton, J.

    2014-01-01

    Starch is the major component of cereal grains and starchy foods, and changes in its biophysical and biochemical properties (e.g., amylose, amylopectin, pasting, gelatinization, viscosity) will have a direct effect on its end use properties (e.g., bread, malt, polymers). The use of rapid and non-destructive methods to study and monitor starch properties, such as gelatinization, retrogradation, water absorption in cereals and starchy foods, is of great interest in order to improve and assess their quality. In recent years, near infrared reflectance (NIR) and mid infrared (MIR) spectroscopy have been explored to predict several quality parameters, such as those generated by instrumental methods commonly used in routine analysis like the rapid visco analyser (RVA) or viscometers. In this review, applications of both NIR and MIR spectroscopy to measure and monitor starch biochemical (amylose, amylopectin, starch) and biophysical properties (e.g., pasting properties) will be presented and discussed. PMID:28234340

  11. Finding out egyptian gods' secret using analytical chemistry: biomedical properties of egyptian black makeup revealed by amperometry at single cells.

    PubMed

    Tapsoba, Issa; Arbault, Stéphane; Walter, Philippe; Amatore, Christian

    2010-01-15

    Lead-based compounds were used during antiquity as both pigments and medicines in the formulation of makeup materials. Chemical analysis of cosmetics samples found in Egyptians tombs and the reconstitution of ancient recipes as reported by Greco-Roman authors have shown that two non-natural lead chlorides (laurionite Pb(OH)Cl and phosgenite Pb(2)Cl(2)CO(3)) were purposely synthesized and were used as fine powders in makeup and eye lotions. According to ancient Egyptian manuscripts, these were essential remedies for treating eye illness and skin ailments. This conclusion seems amazing because today we focus only on the well-recognized toxicity of lead salts. Here, using ultramicroelectrodes, we obtain new insights into the biochemical interactions between lead(II) ions and cells, which support the ancient medical use of sparingly soluble lead compounds. Submicromolar concentrations of Pb(2+) ions are shown to be sufficient for eliciting specific oxidative stress responses of keratinocytes. These consist essentially of an overproduction of nitrogen monoxide (NO degrees ). Owing to the biological role of NO degrees in stimulating nonspecific immunological defenses, one may argue that these lead compounds were deliberately manufactured and used in ancient Egyptian formulations to prevent and treat eye illnesses by promoting the action of immune cells.

  12. Effects of Tailored Surface Chemistry on Desorption Electrospray Ionization Mass Spectrometry: a Surface-Analytical Study by XPS and AFM

    NASA Astrophysics Data System (ADS)

    Penna, Andrea; Careri, Maria; Spencer, Nicholas D.; Rossi, Antonella

    2015-08-01

    Since it was proposed for the first time, desorption electrospray ionization-mass spectrometry (DESI-MS) has been evaluated for applicability in numerous areas. Elucidations of the ionization mechanisms and the subsequent formation of isolated gas-phase ions have been proposed so far. In this context, the role of both surface and pneumatic effects on ion-formation yield has recently been investigated. Nevertheless, the effect of the surface chemistry has not yet been completely understood. Functionalized glass surfaces have been prepared, in order to tailor surface performance for ion formation. Three substrates were functionalized by depositing three different silanes [3-mercaptopropyltriethoxysilane (MTES), octyltriethoxysilane (OTES), and 1H,1H,2H,2H-perfluorooctyltriethoxy-silane (FOTES)] from toluene solution onto standard glass slides. Surface characterization was carried out by contact-angle measurements, tapping-mode atomic force microscopy, and X-ray photoelectron spectroscopy. Morphologically homogeneous and thickness-controlled films in the nm range were obtained, with surface free energies lying between 15 and 70 mJ/m2. These results are discussed, together with those of DESI-MS on low-molecular-weight compounds such as melamine, tetracycline, and lincomycin, also taking into account the effects of the sprayer potential and its correlation with surface wettability. The results demonstrate that ion-formation efficiency is affected by surface wettability, and this was demonstrated operating above and below the onset of the electrospray.

  13. ;Click; analytics for ;click; chemistry - A simple method for calibration-free evaluation of online NMR spectra

    NASA Astrophysics Data System (ADS)

    Michalik-Onichimowska, Aleksandra; Kern, Simon; Riedel, Jens; Panne, Ulrich; King, Rudibert; Maiwald, Michael

    2017-04-01

    Driven mostly by the search for chemical syntheses under biocompatible conditions, so called ;click; chemistry rapidly became a growing field of research. The resulting simple one-pot reactions are so far only scarcely accompanied by an adequate optimization via comparably straightforward and robust analysis techniques possessing short set-up times. Here, we report on a fast and reliable calibration-free online NMR monitoring approach for technical mixtures. It combines a versatile fluidic system, continuous-flow measurement of 1H spectra with a time interval of 20 s per spectrum, and a robust, fully automated algorithm to interpret the obtained data. As a proof-of-concept, the thiol-ene coupling between N-boc cysteine methyl ester and allyl alcohol was conducted in a variety of non-deuterated solvents while its time-resolved behaviour was characterized with step tracer experiments. Overlapping signals in online spectra during thiol-ene coupling could be deconvoluted with a spectral model using indirect hard modeling and were subsequently converted to either molar ratios (using a calibration-free approach) or absolute concentrations (using 1-point calibration). For various solvents the kinetic constant k for pseudo-first order reaction was estimated to be 3.9 h-1 at 25 °C. The obtained results were compared with direct integration of non-overlapping signals and showed good agreement with the implemented mass balance.

  14. "Click" analytics for "click" chemistry - A simple method for calibration-free evaluation of online NMR spectra.

    PubMed

    Michalik-Onichimowska, Aleksandra; Kern, Simon; Riedel, Jens; Panne, Ulrich; King, Rudibert; Maiwald, Michael

    2017-03-01

    Driven mostly by the search for chemical syntheses under biocompatible conditions, so called "click" chemistry rapidly became a growing field of research. The resulting simple one-pot reactions are so far only scarcely accompanied by an adequate optimization via comparably straightforward and robust analysis techniques possessing short set-up times. Here, we report on a fast and reliable calibration-free online NMR monitoring approach for technical mixtures. It combines a versatile fluidic system, continuous-flow measurement of (1)H spectra with a time interval of 20s per spectrum, and a robust, fully automated algorithm to interpret the obtained data. As a proof-of-concept, the thiol-ene coupling between N-boc cysteine methyl ester and allyl alcohol was conducted in a variety of non-deuterated solvents while its time-resolved behaviour was characterized with step tracer experiments. Overlapping signals in online spectra during thiol-ene coupling could be deconvoluted with a spectral model using indirect hard modeling and were subsequently converted to either molar ratios (using a calibration-free approach) or absolute concentrations (using 1-point calibration). For various solvents the kinetic constant k for pseudo-first order reaction was estimated to be 3.9h(-1) at 25°C. The obtained results were compared with direct integration of non-overlapping signals and showed good agreement with the implemented mass balance.

  15. A reference interval study for common biochemical analytes in Eastern Turkey: a comparison of a reference population with laboratory data mining

    PubMed Central

    Bakan, Ebubekir; Polat, Harun; Ozarda, Yesim; Ozturk, Nurinnisa; Baygutalp, Nurcan Kilic; Umudum, Fatma Zuhal; Bakan, Nuri

    2016-01-01

    Introduction The aim of this study was to define the reference intervals (RIs) in a Turkish population living in Northeast Turkey (Erzurum) for 34 analytes using direct and indirect methods. In the present study, the regional RIs obtained were compared with other RI studies, primarily the nationwide study performed in Turkey. Materials and methods For the direct method, 435 blood samples were collected from a healthy group of females (N = 218) and males (N = 217) aged between 18 and 65 years. The sera were analysed in Ataturk University hospital laboratory using Roche reagents and analysers for 34 analytes. The data from 1,366,948 records were used to calculate the indirect RIs using a modified Bhattacharya method. Results Significant gender-related differences were observed for 17 analytes. There were also some apparent differences between RIs derived from indirect and direct methods particularly in some analytes (e.g. gamma-glutamyltransferase, creatine kinase, LDL-cholesterol and iron). The RIs derived with the direct method for some, but not all, of the analytes were generally comparable with the RIs reported in the nationwide study and other previous studies in Turkey.There were large differences between RIs derived by the direct method and the expected values shown in the kit insert (e.g. aspartate aminotransferase, total-cholesterol, HDL-cholesterol, and vitamin B12). Conclusions These data provide region-specific RIs for 34 analytes determined by the direct and indirect methods. The observed differences in RIs between previous studies could be related to nutritional status and environmental factors. PMID:27346966

  16. Evaluation of innovative stationary phase ligand chemistries and analytical conditions for the analysis of basic drugs by supercritical fluid chromatography.

    PubMed

    Desfontaine, Vincent; Veuthey, Jean-Luc; Guillarme, Davy

    2016-03-18

    Similar to reversed phase liquid chromatography, basic compounds can be highly challenging to analyze by supercritical fluid chromatography (SFC), as they tend to exhibit poor peak shape, especially those with high pKa values. In this study, three new stationary phase ligand chemistries available in sub -2 μm particle sizes, namely 2-picolylamine (2-PIC), 1-aminoanthracene (1-AA) and diethylamine (DEA), were tested in SFC conditions for the analysis of basic drugs. Due to the basic properties of these ligands, it is expected that the repulsive forces may improve peak shape of basic substances, similarly to the widely used 2-ethypyridine (2-EP) phase. However, among the 38 tested basic drugs, less of 10% displayed Gaussian peaks (asymmetry between 0.8 and 1.4) using pure CO2/methanol on these phases. The addition of 10mM ammonium formate as mobile phase additive, drastically improved peak shapes and increased this proportion to 67% on 2-PIC. Introducing the additive in the injection solvent rather than in the organic modifier, gave acceptable results for 2-PIC only, with 31% of Gaussian peaks with an average asymmetry of 1.89 for the 38 selected basic drugs. These columns were also compared to hybrid silica (BEH), DIOL and 2-EP stationary phases, commonly employed in SFC. These phases commonly exhibit alternative retention and selectivity. In the end, the two most interesting ligands used as complementary columns were 2-PIC and BEH, as they provided suitable peak shapes for the basic drugs and almost orthogonal selectivities.

  17. Spectroscopic Studies on Physicochemical Natures of Ion Exchangers and Highly Functional Polymers and Their Application to Analytical Chemistry

    NASA Astrophysics Data System (ADS)

    Yoshimura, Kazuhisa

    The absorption spectra or NMR spectra of chemical species adsorbed on ion exchangers and highly functional polymers such as crosslinked dextran could be directly measured by the corresponding solution methods. Spectrophotometric measurements of a target species in the solid phase have been extended to solid phase spectrometry (SPS), based on the direct measurement of light-absorption by the solid phase, which has adsorbed the target analyte. SPS has employed two different procedures; i.e., batch and flow methods. The Lambert-Beer law could be applicable to the solid particle layer system. The sensitivity was proportional to the volume ratio of the solid and sample solution, giving more than 100 times the sensitivity obtainable with the combination of a 0.1 cm3 solid and a 10-100 cm3 sample for the batch method. An online measurement of the light attenuation by the adsorbed species in the flow-through cell made it possible to both significantly reduce the sample solution volume and to simplify the respective procedures for the derivatization of the analyte and packing the solid particles into the cell. Because the cross-linked dextran and similar glucopyranoside-based gels have polyol moieties in their gel matrix, they could be used as oxo acid-selective adsorbents without introducing any special functional groups. Especially, in the case of boric acid, 11B NMR spectroscopy was one of the best tools for elucidating the nature of the interaction between boric acid/borate and polyols. Its combination with other methods enabled basic understanding of the chemical reactions. Reaction paths for 1:1 complexation are in general divided into two groups, i.e., neutral polyols that directly react with tetrahedral borate, and acidic polyols that react with trigonal boric acid in a 1:1 complexation. Both of the reactions produce tetrahedral anionic complexes, followed by a condensation reaction between the 1:1 monochelate complex and the undissociated diols to yield the 1

  18. Optoacoustic spectroscopy for real-time monitoring of strongly light-absorbing solutions in applications to analytical chemistry.

    PubMed

    Filimonova, Tatyana A; Volkov, Dmitry S; Proskurnin, Mikhail A; Pelivanov, Ivan M

    2013-12-01

    An optoacoustic technique for solutions of strongly light-absorbing analytes at 0.1-0.01 mol l(-1) is proposed. The technique is based on the wide-band forward mode detection of temporal profiles of laser-generated ultrasonic pulses (optoacoustic signals). The leading edge of the signal repeats the distribution of the laser fluence in the medium, which makes it possible to determine its optical absorption and investigate its dynamics during a reaction. The range of light-absorption coefficients starts from 1 to 5 and reaches 10(4) to 10(5) cm(-1). The determination of iron(II) as ferroin shows the possibility of probing 0.1 mol l(-1) of iron(II), which was not previously achieved for this reaction by optical spectroscopy. To further prove the concept, kinetic measurements for ferroin decomposition at the level of 0.1 mol l(-1) and at high pHs are performed. The results are compared with spectrophotometry at lower concentrations and show good reproducibility and accuracy of kinetic constants.

  19. Effects of Meloxicam on Hematologic and Plasma Biochemical Analyte Values and Results of Histologic Examination of Kidney Biopsy Specimens of African Grey Parrots (Psittacus erithacus).

    PubMed

    Montesinos, Andres; Ardiaca, Maria; Juan-Sallés, Carles; Tesouro, Miguel A

    2015-03-01

    In this study we evaluated the effects of meloxicam administered at 0.5 mg/kg IM q12h for 14 days on hematologic and plasma biochemical values and on kidney tissue in 11 healthy African grey parrots (Psittacus erithacus). Before treatment with meloxicam, blood samples were collected and renal biopsy samples were obtained from the cranial portion of the left kidney from each of the birds. On day 14 of treatment, a second blood sample and biopsy from the middle portion of the left kidney were obtained from each bird. All birds remained clinically normal throughout the study period. No significant differences were found between hematologic and plasma biochemical values before and after 14 days of treatment with meloxicam, except for a slight increase in median beta globulin and corresponding total globulin concentrations, and a slight decrease in median phosphorus concentration. Renal lesions were absent in 9 of 10 representative posttreatment biopsy samples. On the basis of these results, meloxicam administered at the dosage used in this study protocol does not appear to cause renal disease in African grey parrots.

  20. Temperature-controlled micro-TLC: a versatile green chemistry and fast analytical tool for separation and preliminary screening of steroids fraction from biological and environmental samples.

    PubMed

    Zarzycki, Paweł K; Slączka, Magdalena M; Zarzycka, Magdalena B; Bartoszuk, Małgorzata A; Włodarczyk, Elżbieta; Baran, Michał J

    2011-11-01

    whole range of target substances as well as chemo-taxonomic studies and fingerprinting of complex mixtures, which are present in biological or environmental samples. Due to low consumption of eluent (usually 0.3-1mL/run) mainly composed of water-alcohol binary mixtures, this method can be considered as environmentally friendly and green chemistry focused analytical tool, supplementary to analytical protocols involving column chromatography or planar micro-fluidic devices.

  1. High resolution analytical electron microscopy reveals cell culture media induced changes to the chemistry of silver nanowires

    PubMed Central

    Chen, Shu; Theodorou, Ioannis G.; Goode, Angela E.; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng (Jim); Chung, Kian Fan; Tetley, Teresa D.; Shaffer, Milo S.; Ryan, Mary P.; Porter, Alexandra E.

    2014-01-01

    There is a growing concern about the potential adverse effects on human health upon exposure to engineered silver nanomaterials (particles, wires and plates). However, the majority of studies testing the toxicity of silver nanomaterials have examined nominally ‘as-synthesized’ materials without considering the fate of the materials in biologically relevant fluids. Here, in-house silver nanowires (AgNWs) were prepared by a modified polyol process and were incubated in three cell culture media (DMEM, RPMI-1640 and DCCM-1) to examine the impact of AgNW-medium interactions on the physicochemical properties of the AgNWs. High-resolution analytical transmission electron microscopy revealed that Ag2S crystals form on the surface of AgNWs within 1 hour of incubation in DCCM-1. In contrast, the incubation of AgNWs in RPMI-1640 or DMEM did not lead to sulfidation. When the DCCM-1 cell culture medium was separated into its small molecule solutes and salts and protein components, the AgNWs were found to sulfidize in the fraction containing small molecule solutes and salts, but not in the fraction containing the protein component of the media. Further investigation showed the AgNWs did not readily sulfidize in the presence of isolated sulfur containing amino acids or proteins, such as cysteine or bovine serum albumin (BSA). The results demonstrate that the AgNWs can be transformed by the media before and during the incubation with cells and therefore the effects of cell culture media must be considered in the analysis of toxicity assays. Appropriate media and material controls must be in place to allow accurate predictions about the toxicity, and ultimately, the health risk of this commercially relevant class of nanomaterial. PMID:24160871

  2. Developments in the analytical chemistry of arsenic to support teaching and learning through research in environmental topics

    NASA Astrophysics Data System (ADS)

    Ampiah-Bonney, Richmond Jerry

    Two manifolds were designed to determine phosphate concentrations. The linear range for the 2-channel manifold was 0 to 30 mg L-1, and that for the 3-channel manifold was 0 to 400 mg L-1. Optimized conditions for the determination of arsenic with molybdenum-blue method were 0.5% w/v ascorbic acid, 0.4 M sulfuric acid in the molybdate solution and 80°C reaction temperature. A method for determination of arsenic using pervaporation flow injection hydride generation with visible spectrophotometry was developed. The method was sensitive for low arsenic concentrations (≤ 10 mug L-1), with sensitivity decreasing as arsenic concentration increased. There was no heating required, and the pervaporation membrane transferred only arsine. The analytical performance of two arsenic test kits was assessed. The Alpha Environmental kit cannot be recommended for arsenic measurement in water. The Hach kit was reliable for measuring arsenic concentrations greater than 70 mug L-1. A modified reaction tube was constructed that allowed NaBH4 solution to be delivered into the reaction mixture to replace zinc powder in the Hach kit, with no loss of gases. A more quantitative way of measuring arsenic using the Hach kit was developed by measuring the B-value of the color of jpeg images of test strips taken by a desktop scanner. Leersia oryzoides grown in soil amended with 110 mg kg-1arsenic extracted up to 305 mug g-1 and 272 mug g-1 arsenic into its shoots and roots respectively, giving a shoot:root quotient (SRQ) of 1.12 and phytoextraction coefficients (PEC) up to 1.3 in greenhouse experiments. Five supervised arsenic-related projects were reported. All except one of these reports fell short of the standards acceptable for a publishable manuscript. Factors such as high expectations, competitive entrance requirements and good motivation were responsible for the publishable report. For the remaining reports, problems with working in a team, relatively low expectations and lack of

  3. JPRS Report, Science & Technology, USSR: Chemistry

    DTIC Science & Technology

    2007-11-02

    This report contains foreign media information from the USSR concerning analytical chemistry, electrochemistry, environmental chemistry, inorganic compounds, organophosphorous compounds, petroleum coal processing and polymers.

  4. JPRS Report, Science & Technology, USSR: Chemistry

    DTIC Science & Technology

    2007-11-02

    This report contains foreign media information from the USSR concerning analytical chemistry, catalysis, electrochemistry, inorganic compounds, organometallic compounds, organophosphorous compounds, polymers and radiation chemistry.

  5. Principles of Environmental Chemistry

    NASA Astrophysics Data System (ADS)

    Hathaway, Ruth A.

    2007-07-01

    Roy M. Harrison, Editor RSC Publishing; ISBN 0854043713; × + 363 pp.; 2006; $69.95 Environmental chemistry is an interdisciplinary science that includes chemistry of the air, water, and soil. Although it may be confused with green chemistry, which deals with potential pollution reduction, environmental chemistry is the scientific study of the chemical and biochemical principles that occur in nature. Therefore, it is the study of the sources, reactions, transport, effects, and fates of chemical species in the air, water, and soil environments, and the effect of human activity on them. Environmental chemistry not only explores each of these environments, but also closely examines the interfaces and boundaries where the environments intersect.

  6. Efficient Biostimulation of Native and Introduced Quorum-Quenching Rhodococcus erythropolis Populations Is Revealed by a Combination of Analytical Chemistry, Microbiology, and Pyrosequencing

    PubMed Central

    Cirou, Amélie; Mondy, Samuel; An, Shu; Charrier, Amélie; Sarrazin, Amélie; Thoison, Odile; DuBow, Michael

    2012-01-01

    Degradation of the quorum-sensing (QS) signals known as N-acylhomoserine lactones (AHL) by soil bacteria may be useful as a beneficial trait for protecting crops, such as potato plants, against the worldwide pathogen Pectobacterium. In this work, analytical chemistry and microbial and molecular approaches were combined to explore and compare biostimulation of native and introduced AHL-degrading Rhodococcus erythropolis populations in the rhizosphere of potato plants cultivated in farm greenhouses under hydroponic conditions. We first identified gamma-heptalactone (GHL) as a novel biostimulating agent that efficiently promotes plant root colonization by AHL-degrading R. erythropolis population. We also characterized an AHL-degrading biocontrol R. erythropolis isolate, R138, which was introduced in the potato rhizosphere. Moreover, root colonization by AHL-degrading bacteria receiving different combinations of GHL and R138 treatments was compared by using a cultivation-based approach (percentage of AHL-degrading bacteria), pyrosequencing of PCR-amplified rrs loci (total bacterial community), and quantitative PCR (qPCR) of the qsdA gene, which encodes an AHL lactonase in R. erythropolis. Higher densities of the AHL-degrading R. erythropolis population in the rhizosphere were observed when GHL treatment was associated with biocontrol strain R138. Under this condition, the introduced R. erythropolis population displaced the native R. erythropolis population. Finally, chemical analyses revealed that GHL, gamma-caprolactone (GCL), and their by-products, gamma-hydroxyheptanoic acid and gamma-hydroxycaproic acid, rapidly disappeared from the rhizosphere and did not accumulate in plant tissues. This integrative study highlights biostimulation as a potential innovative approach for improving root colonization by beneficial bacteria. PMID:22081576

  7. Millimeter-Wave Spectroscopy for Analytical Chemistry: Thermal Evolution of Low Volatility Impurities and Detection with a Fourier Transform Molecular Rotational Resonance Spectrometer (tev Ft-Mrr

    NASA Astrophysics Data System (ADS)

    Harris, Brent; Fields, Shelby S.; Neill, Justin L.; Pulliam, Robin; Muckle, Matt; Pate, Brooks

    2016-06-01

    Recent advances in Fourier transform millimeter-wave spectroscopy techniques have renewed the application reach of molecular rotational spectroscopy for analytical chemistry. We present a sampling method for sub ppm analysis of low volatility impurities by thermal evolution from solid powders using a millimeter-wave Fourier transform molecular rotational resonance (FT-MRR) spectrometer for detection. This application of FT-MRR is relevant to the manufacturing of safe oral pharmaceuticals. Low volatility impurities can be challenging to detect at 1 ppm levels with chromatographic techniques. One such example of a potentially mutagenic impurity is acetamide (v.p. 1 Torr at 40 C, m.p. 80 C). We measured the pure reference spectrum of acetamide by flowing the sublimated vapor pressure of acetamide crystals through the FT-MRR spectrometer. The spectrometer lower detection level (LDL) for a broadband (> 20 GHz, 10 min.) spectrum is 300 nTorr, 30 pmol, or 2 ng. For a 50 mg powder, perfect sample transfer efficiency can yield a w/w % detection limit of 35 ppb. We extended the sampling method for the acetamide reference measurement to an acetaminophen sample spiked with 5000 ppm acetamide in order to test the sample transfer efficiency when liberated from an pharmaceutical powder. A spectral reference matching algorithm detected the presence of several impurities including acetaldehyde, acetic acid, and acetonitrile that evolved at the melting point of acetaminophen, demonstrating the capability of FT-MRR for identification without a routine chemical standard. The method detection limit (MDL) without further development is less than 10 ppm w/w %. Resolved FT-MRR mixture spectra will be presented with a description of sampling methods.

  8. Analytical mass spectrometry

    SciTech Connect

    Not Available

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  9. Analytical mass spectrometry. Abstracts

    SciTech Connect

    Not Available

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  10. Using Modern Solid-State Analytical Tools for Investigations of an Advanced Carbon Capture Material: Experiments for the Inorganic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Wriedt, Mario; Sculley, Julian P.; Aulakh, Darpandeep; Zhou, Hong-Cai

    2016-01-01

    A simple and straightforward synthesis of an ultrastable porous metal-organic framework (MOF) based on copper(II) and a mixed N donor ligand system is described as a laboratory experiment for chemistry undergraduate students. These experiments and the resulting analysis are designed to teach students basic research tools and procedures while…

  11. Quantitative Analysis of Heavy Metals in Children's Toys and Jewelry: A Multi-Instrument, Multitechnique Exercise in Analytical Chemistry and Public Health

    ERIC Educational Resources Information Center

    Finch, Lauren E.; Hillyer, Margot M.; Leopold, Michael C.

    2015-01-01

    For most chemistry curricula, laboratory-based activities in quantitative and instrumental analysis continue to be an important aspect of student development/training, one that can be more effective if conceptual understanding is delivered through an inquiry-based process relating the material to relevant issues of public interest and student…

  12. Estimating the Analytical and Surface Enhancement Factors in Surface-Enhanced Raman Scattering (SERS): A Novel Physical Chemistry and Nanotechnology Laboratory Experiment

    ERIC Educational Resources Information Center

    Pavel, Ioana E.; Alnajjar, Khadijeh S.; Monahan, Jennifer L.; Stahler, Adam; Hunter, Nora E.; Weaver, Kent M.; Baker, Joshua D.; Meyerhoefer, Allie J.; Dolson, David A.

    2012-01-01

    A novel laboratory experiment was successfully implemented for undergraduate and graduate students in physical chemistry and nanotechnology. The main goal of the experiment was to rigorously determine the surface-enhanced Raman scattering (SERS)-based sensing capabilities of colloidal silver nanoparticles (AgNPs). These were quantified by…

  13. Serum Biochemical Phenotypes in the Domestic Dog.

    PubMed

    Chang, Yu-Mei; Hadox, Erin; Szladovits, Balazs; Garden, Oliver A

    2016-01-01

    The serum or plasma biochemical profile is essential in the diagnosis and monitoring of systemic disease in veterinary medicine, but current reference intervals typically take no account of breed-specific differences. Breed-specific hematological phenotypes have been documented in the domestic dog, but little has been published on serum biochemical phenotypes in this species. Serum biochemical profiles of dogs in which all measurements fell within the existing reference intervals were retrieved from a large veterinary database. Serum biochemical profiles from 3045 dogs were retrieved, of which 1495 had an accompanying normal glucose concentration. Sixty pure breeds plus a mixed breed control group were represented by at least 10 individuals. All analytes, except for sodium, chloride and glucose, showed variation with age. Total protein, globulin, potassium, chloride, creatinine, cholesterol, total bilirubin, ALT, CK, amylase, and lipase varied between sexes. Neutering status significantly impacted all analytes except albumin, sodium, calcium, urea, and glucose. Principal component analysis of serum biochemical data revealed 36 pure breeds with distinctive phenotypes. Furthermore, comparative analysis identified 23 breeds with significant differences from the mixed breed group in all biochemical analytes except urea and glucose. Eighteen breeds were identified by both principal component and comparative analysis. Tentative reference intervals were generated for breeds with a distinctive phenotype identified by comparative analysis and represented by at least 120 individuals. This is the first large-scale analysis of breed-specific serum biochemical phenotypes in the domestic dog and highlights potential genetic components of biochemical traits in this species.

  14. Serum Biochemical Phenotypes in the Domestic Dog

    PubMed Central

    Chang, Yu-Mei; Hadox, Erin; Szladovits, Balazs; Garden, Oliver A.

    2016-01-01

    The serum or plasma biochemical profile is essential in the diagnosis and monitoring of systemic disease in veterinary medicine, but current reference intervals typically take no account of breed-specific differences. Breed-specific hematological phenotypes have been documented in the domestic dog, but little has been published on serum biochemical phenotypes in this species. Serum biochemical profiles of dogs in which all measurements fell within the existing reference intervals were retrieved from a large veterinary database. Serum biochemical profiles from 3045 dogs were retrieved, of which 1495 had an accompanying normal glucose concentration. Sixty pure breeds plus a mixed breed control group were represented by at least 10 individuals. All analytes, except for sodium, chloride and glucose, showed variation with age. Total protein, globulin, potassium, chloride, creatinine, cholesterol, total bilirubin, ALT, CK, amylase, and lipase varied between sexes. Neutering status significantly impacted all analytes except albumin, sodium, calcium, urea, and glucose. Principal component analysis of serum biochemical data revealed 36 pure breeds with distinctive phenotypes. Furthermore, comparative analysis identified 23 breeds with significant differences from the mixed breed group in all biochemical analytes except urea and glucose. Eighteen breeds were identified by both principal component and comparative analysis. Tentative reference intervals were generated for breeds with a distinctive phenotype identified by comparative analysis and represented by at least 120 individuals. This is the first large-scale analysis of breed-specific serum biochemical phenotypes in the domestic dog and highlights potential genetic components of biochemical traits in this species. PMID:26919479

  15. Low-Cost Method for Quantifying Sodium in Coconut Water and Seawater for the Undergraduate Analytical Chemistry Laboratory: Flame Test, a Mobile Phone Camera, and Image Processing

    ERIC Educational Resources Information Center

    Moraes, Edgar P.; da Silva, Nilbert S. A.; de Morais, Camilo de L. M.; das Neves, Luiz S.; de Lima, Kassio M. G.

    2014-01-01

    The flame test is a classical analytical method that is often used to teach students how to identify specific metals. However, some universities in developing countries have difficulties acquiring the sophisticated instrumentation needed to demonstrate how to identify and quantify metals. In this context, a method was developed based on the flame…

  16. Developing and Implementing Inquiry-Based, Water Quality Laboratory Experiments for High School Students to Explore Real Environmental Issues Using Analytical Chemistry

    ERIC Educational Resources Information Center

    Mandler, Daphna; Blonder, Ron; Yayon, Malka; Mamlok-Naaman, Rachel; Hofstein, Avi

    2014-01-01

    This paper describes the rationale and the implementation of five laboratory experiments; four of them, intended for high-school students, are inquiry-based activities that explore the quality of water. The context of water provides students with an opportunity to study the importance of analytical methods and how they influence our everyday…

  17. Process chemistry {ampersand} statistics quality assurance plan

    SciTech Connect

    Meznarich, H.K.

    1996-08-01

    This document provides quality assurance guidelines and quality control requirements for Process Chemistry and Statistics. This document is designed on the basis of Hanford Analytical Services Quality Assurance Plan (HASQAP) technical guidelines and is used for governing process chemistry activities.

  18. Direct analysis of six antibiotics in wastewater samples using rapid high-performance liquid chromatography coupled with diode array detector: a chemometric study towards green analytical chemistry.

    PubMed

    Vosough, Maryam; Rashvand, Masoumeh; Esfahani, Hadi M; Kargosha, Kazem; Salemi, Amir

    2015-04-01

    In this work, a rapid HPLC-DAD method has been developed for the analysis of six antibiotics (amoxicillin, metronidazole, sulfamethoxazole, ofloxacine, sulfadiazine and sulfamerazine) in the sewage treatment plant influent and effluent samples. Decreasing the chromatographic run time to less than 4 min as well as lowering the cost per analysis, were achieved through direct injection of the samples into the HPLC system followed by chemometric analysis. The problem of the complete separation of the analytes from each other and/or from the matrix ingredients was resolved as a posteriori. The performance of MCR/ALS and U-PLS/RBL, as second-order algorithms, was studied and comparable results were obtained from implication of these modeling methods. It was demonstrated that the proposed methods could be used promisingly as green analytical strategies for detection and quantification of the targeted pollutants in wastewater samples while avoiding the more complicated high cost instrumentations.

  19. Eleventh international symposium on radiopharmaceutical chemistry

    SciTech Connect

    1995-12-31

    This document contains abstracts of papers which were presented at the Eleventh International Symposium on Radiopharmaceutical Chemistry. Sessions included: radiopharmaceuticals for the dopaminergic system, strategies for the production and use of labelled reactive small molecules, radiopharmaceuticals for measuring metabolism, radiopharmaceuticals for the serotonin and sigma receptor systems, labelled probes for molecular biology applications, radiopharmaceuticals for receptor systems, radiopharmaceuticals utilizing coordination chemistry, radiolabelled antibodies, radiolabelling methods for small molecules, analytical techniques in radiopharmaceutical chemistry, and analytical techniques in radiopharmaceutical chemistry.

  20. Miniaturizing and automation of free acidity measurements for uranium (VI)-HNO3 solutions: Development of a new sequential injection analysis for a sustainable radio-analytical chemistry.

    PubMed

    Néri-Quiroz, José; Canto, Fabrice; Guillerme, Laurent; Couston, Laurent; Magnaldo, Alastair; Dugas, Vincent

    2016-10-01

    A miniaturized and automated approach for the determination of free acidity in solutions containing uranium (VI) is presented. The measurement technique is based on the concept of sequential injection analysis with on-line spectroscopic detection. The proposed methodology relies on the complexation and alkalimetric titration of nitric acid using a pH 5.6 sodium oxalate solution. The titration process is followed by UV/VIS detection at 650nm thanks to addition of Congo red as universal pH indicator. Mixing sequence as well as method validity was investigated by numerical simulation. This new analytical design allows fast (2.3min), reliable and accurate free acidity determination of low volume samples (10µL) containing uranium/[H(+)] moles ratio of 1:3 with relative standard deviation of <7.0% (n=11). The linearity range of the free nitric acid measurement is excellent up to 2.77molL(-1) with a correlation coefficient (R(2)) of 0.995. The method is specific, presence of actinide ions up to 0.54molL(-1) does not interfere on the determination of free nitric acid. In addition to automation, the developed sequential injection analysis method greatly improves the standard off-line oxalate complexation and alkalimetric titration method by reducing thousand fold the required sample volume, forty times the nuclear waste per analysis as well as the analysis time by eight fold. These analytical parameters are important especially in nuclear-related applications to improve laboratory safety, personnel exposure to radioactive samples and to drastically reduce environmental impacts or analytical radioactive waste.

  1. Label-free porous silicon immunosensor for broad detection of opiates in a blind clinical study and results comparison to commercial analytical chemistry techniques.

    PubMed

    Bonanno, Lisa M; Kwong, Tai C; DeLouise, Lisa A

    2010-12-01

    In this work, we evaluate for the first time the performance of a label-free porous silicon (PSi) immunosensor assay in a blind clinical study designed to screen authentic patient urine specimens for a broad range of opiates. The PSi opiate immunosensor achieved 96% concordance with liquid chromatography-mass spectrometry/tandem mass spectrometry (LC-MS/MS) results on samples that underwent standard opiate testing (n = 50). In addition, successful detection of a commonly abused opiate, oxycodone, resulted in 100% qualitative agreement between the PSi opiate sensor and LC-MS/MS. In contrast, a commercial broad opiate immunoassay technique (CEDIA) achieved 65% qualitative concordance with LC-MS/MS. Evaluation of important performance attributes including precision, accuracy, and recovery was completed on blank urine specimens spiked with test analytes. Variability of morphine detection as a model opiate target was <9% both within-run and between-day at and above the cutoff limit of 300 ng mL(-1). This study validates the analytical screening capability of label-free PSi opiate immunosensors in authentic patient samples and is the first semiquantitative demonstration of the technology's successful clinical use. These results motivate future development of label-free PSi technology to reduce complexity and cost of diagnostic testing particularly in a point-of-care setting.

  2. A Label-Free Porous Silicon Immunosensor for Broad Detection of Opiates in a Blind Clinical Study and Result Comparison to Commercial Analytical Chemistry Techniques

    PubMed Central

    Bonanno, Lisa M.; Kwong, Tai C.; DeLouise, Lisa A.

    2010-01-01

    In this work we evaluate for the first time the performance of a label-free porous silicon (PSi) immunosensor assay in a blind clinical study designed to screen authentic patient urine specimens for a broad range of opiates. The PSi opiate immunosensor achieved 96% concordance with liquid chromatography-mass spectrometry/tandem mass spectrometry (LC-MS/MS) results on samples that underwent standard opiate testing (n=50). In addition, successful detection of a commonly abused opiate, oxycodone, resulted in 100% qualitative agreement between the PSi opiate sensor and LC-MS/MS. In contrast, a commercial broad opiate immunoassay technique (CEDIA®) achieved 65% qualitative concordance with LC-MS/MS. Evaluation of important performance attributes including precision, accuracy, and recovery was completed on blank urine specimens spiked with test analytes. Variability of morphine detection as a model opiate target was < 9% both within-run and between-day at and above the cutoff limit of 300 ng ml−1. This study validates the analytical screening capability of label-free PSi opiate immunosensors in authentic patient samples and is the first semi-quantitative demonstration of the technology’s successful clinical use. These results motivate future development of PSi technology to reduce complexity and cost of diagnostic testing particularly in a point-of-care setting. PMID:21062030

  3. Statistical comparison of the results from six analytical chemistry laboratories of the mercury content of muscle tissue of two species of sharks.

    PubMed

    Walker, T I

    1977-01-01

    Statistical tests were carried out on the results of chemical analysis for total mercury concentrations of replicate samples of muscle tissue of school shark Galeorhinus australis (Macleay) and gummy shark Mustelus antarcticus Guenther from six independent analytical laboratories. These tests showed that one laboratory produced results 9% below the overall average of all results, another 1% below average while the other four were all 5% above average. Moreover, one laboratory had significantly lower scatter of results than the others, and the percentage scatter (standard error expressed as a percentage of the mean) in two of the laboratories tended to diminish as the magnitude of the results increased. Correction for what were concluded to be wild points indicated that the scatter for all laboratories was below 14%.

  4. Beginning Chemistry Can Be Relevant

    ERIC Educational Resources Information Center

    Corwin, James F.

    1971-01-01

    Reviews ways of applying laboratory work in general and analytical chemistry to supermarket products. Describes ways water and air pollution analysis can illustrate acid-base reactions, redox reactions, precipitimetry, and colorimetry. (PR)

  5. USSR Report, Chemistry, No. 105

    DTIC Science & Technology

    2007-11-02

    This USSR Report contains articles on Chemistry. Some of the topics covered are Alkaloids, Catalysis, Analytical Chemistry, Chemical Industry, Coal Gasification , Combustion, Electrochemistry, Fertilizers, Free Radials, Nitrogen Compounds, Organometallic Compounds, Organophosphorus Compounds, Pesticides, Petroleum Processing Technology, Polymers and Polymerization and Rubber and Elastomers.,

  6. Review about the manganese speciation project related to neurodegeneration: An analytical chemistry approach to increase the knowledge about manganese related parkinsonian symptoms.

    PubMed

    Michalke, Bernhard

    2016-09-01

    Neurodegenerative diseases get a growing relevance for societies. But yet the complex multi-factorial mechanisms of these diseases are not fully understood, although it is well accepted that metal ions may play a crucial role. Manganese (Mn) is a transition metal which has essential biochemical functions but from occupational exposure scenarios it appeared that Mn can cause severe neurological damage. This "two-faces"-nature of manganese initiated us to start a project on Mn-speciation, since different element species are known to exhibit different impacts on health. A summary about the step-wise developments and findings from our working group was presented during the annual conference of the German trace element society in 2015. This paper summarizes now the contribution to this conference. It is intended to provide a complete picture of the so far evolved puzzle from our studies regarding manganese, manganese speciation and metabolomics as well as Mn-related mechanisms of neural damage. Doing so, the results of the single studies are now summarized in a connected way and thus their interrelationships are demonstrated. In short terms, we found that Mn-exposure leads to an increase of low molecular weight Mn compounds, above all Mn-citrate complex, which gets even enriched across neural barriers (NB). At a Mn serum concentration between 1.5 and 1.9μg/L a carrier switch from Mn-transferrin to Mn-citrate was observed. We concluded that the Mn-citrate complex is that important Mn-carrier to NB which can be found also beyond NB in human cerebrospinal fluid (CSF) or brain of exposed rats. In brain of Mn-exposed rats manganese leads to a decreased iron (Fe) concentration, to a shift from Fe(III) to Fe(II) after long term exposure and thus to a shift toward oxidative stress. This was additionally supported by an increase of markers for oxidative stress, inflammation or lipid peroxidation at increased Mn concentration in brain extracts. Furthermore, glutamate and

  7. The Role of Dafachronic Acid Signaling in Development and Longevity in Caenorhabditis elegans: Digging Deeper Using Cutting-Edge Analytical Chemistry

    PubMed Central

    Aguilaniu, Hugo; Fabrizio, Paola; Witting, Michael

    2016-01-01

    Steroid hormones regulate physiological processes in species ranging from plants to humans. A wide range of steroid hormones exist, and their contributions to processes, such as growth, reproduction, development, and aging, is almost always complex. Understanding the biosynthetic pathways that generate steroid hormones and the signaling pathways that mediate their effects is thus of fundamental importance. In this work, we review recent advances in (i) the biological role of steroid hormones in the roundworm Caenorhabditis elegans and (ii) the development of novel methods to facilitate the detection and identification of these molecules. Our current understanding of steroid signaling in this simple organism serves to illustrate the challenges we face moving forward. First, it seems clear that we have not yet identified all of the enzymes responsible for steroid biosynthesis and/or degradation. Second, perturbation of steroid signaling affects a wide range of phenotypes, and subtly different steroid molecules can have distinct effects. Finally, steroid hormone levels are critically important, and minute variations in quantity can profoundly impact a phenotype. Thus, it is imperative that we develop innovative analytical tools and combine them with cutting-edge approaches including comprehensive and highly selective liquid chromatography coupled to mass spectrometry based on new methods such as supercritical fluid chromatography coupled to mass spectrometry (SFC-MS) if we are to obtain a better understanding of the biological functions of steroid signaling. PMID:26903948

  8. The Role of Dafachronic Acid Signaling in Development and Longevity in Caenorhabditis elegans: Digging Deeper Using Cutting-Edge Analytical Chemistry.

    PubMed

    Aguilaniu, Hugo; Fabrizio, Paola; Witting, Michael

    2016-01-01

    Steroid hormones regulate physiological processes in species ranging from plants to humans. A wide range of steroid hormones exist, and their contributions to processes, such as growth, reproduction, development, and aging, is almost always complex. Understanding the biosynthetic pathways that generate steroid hormones and the signaling pathways that mediate their effects is thus of fundamental importance. In this work, we review recent advances in (i) the biological role of steroid hormones in the roundworm Caenorhabditis elegans and (ii) the development of novel methods to facilitate the detection and identification of these molecules. Our current understanding of steroid signaling in this simple organism serves to illustrate the challenges we face moving forward. First, it seems clear that we have not yet identified all of the enzymes responsible for steroid biosynthesis and/or degradation. Second, perturbation of steroid signaling affects a wide range of phenotypes, and subtly different steroid molecules can have distinct effects. Finally, steroid hormone levels are critically important, and minute variations in quantity can profoundly impact a phenotype. Thus, it is imperative that we develop innovative analytical tools and combine them with cutting-edge approaches including comprehensive and highly selective liquid chromatography coupled to mass spectrometry based on new methods such as supercritical fluid chromatography coupled to mass spectrometry (SFC-MS) if we are to obtain a better understanding of the biological functions of steroid signaling.

  9. Soap bubbles in analytical chemistry. Conductometric determination of sub-parts per million levels of sulfur dioxide with a soap bubble.

    PubMed

    Kanyanee, Tinakorn; Borst, Walter L; Jakmunee, Jaroon; Grudpan, Kate; Li, Jianzhong; Dasgupta, Purnendu K

    2006-04-15

    Soap bubbles provide a fascinating tool that is little used analytically. With a very low liquid volume to surface area ratio, a soap bubble can potentially provide a very useful interface for preconcentration where mass transfer to an interfacial surface is important. Here we use an automated system to create bubbles of uniform size and film thickness. We utilize purified Triton-X 100, a nonionic surfactant, to make soap bubbles. We use such bubbles as a gas-sampling interface. Incorporating hydrogen peroxide into the bubble provides a system where electrical conductance increases as the bubble is exposed to low concentrations of sulfur dioxide gas. We theoretically derive the conductance of a hollow conducting spherical thin film with spherical cap electrodes. We measure the film thickness by incorporating a dye in the bubble making solution and laser transmission photometry and find that it agrees well with the geometrically computed thickness. With the conductance of the bubble-making soap solution being measured by conventional methods, we show that the measured values of the bubble conductance with known bubble and electrode dimensions closely correspond to the theoretically computed value. Finally, we demonstrate that sub-ppm levels of SO(2) can readily be detected by the conductivity change of a hydrogen peroxide-doped soap bubble, measured in situ, when the gas flows around the bubble.

  10. Spotlight on medicinal chemistry education.

    PubMed

    Pitman, Simone; Xu, Yao-Zhong; Taylor, Peter; Turner, Nicholas; Coaker, Hannah; Crews, Kasumi

    2014-05-01

    The field of medicinal chemistry is constantly evolving and it is important for medicinal chemists to develop the skills and knowledge required to succeed and contribute to the advancement of the field. Future Medicinal Chemistry spoke with Simone Pitman (SP), Yao-Zhong Xu (YX), Peter Taylor (PT) and Nick Turner (NT) from The Open University (OU), which offers an MSc in Medicinal Chemistry. In the interview, they discuss the MSc course content, online teaching, the future of medicinal chemistry education and The OU's work towards promoting widening participation. SP is a Qualifications Manager in the Science Faculty at The OU. She joined The OU in 1993 and since 1998 has been involved in the Postgraduate Medicinal Chemistry provision at The OU. YX is a Senior Lecturer in Bioorganic Chemistry at The OU. He has been with The OU from 2001, teaching undergraduate courses of all years and chairing the master's course on medicinal chemistry. PT is a Professor of Organic Chemistry at The OU and has been involved with the production and presentation of The OU courses in Science and across the university for over 30 years, including medicinal chemistry modules at postgraduate level. NT is a Lecturer in Analytical Science at The OU since 2009 and has been involved in the production of analytical sciences courses, as well as contributing to the presentation of a number of science courses including medicinal chemistry.

  11. Forensic Chemistry--A Symposium Collection.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1985

    1985-01-01

    Presents a collection of articles to provide chemistry teachers with resource materials to add forensic chemistry units to their chemistry courses. Topics range from development of forensic science laboratory courses and mock-crime scenes to forensic serology and analytical techniques. (JN)

  12. Supplemental Instruction in Physical Chemistry I

    ERIC Educational Resources Information Center

    Toby, Ellen; Scott, Timothy P.; Migl, David; Kolodzeji, Elizabeth

    2016-01-01

    Physical chemistry I at Texas A&M University is an upper division course requiring mathematical and analytical skills. As such, this course poses a major problem for many Chemistry, Engineering, Biochemistry and Genetics majors. Comparisons between participants and non-participants in Supplemental Instruction for physical chemistry were made…

  13. ENVIRONMENTAL CHEMISTRY CAREERS IN GOVERNMENT AGENCIES

    EPA Science Inventory

    Careers in chemistry and chemistry related fields can be very rewarding and enriching. Being an environmental chemist for a government agency requires a broad background in the field of chemistry. A knowledge of the operation of several analytical and preparatory instruments is...

  14. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    SciTech Connect

    Ryan, R.R.

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  15. Discovering Reliable Sources of Biochemical Thermodynamic Data to Aid Students' Understanding

    ERIC Educational Resources Information Center

    Me´ndez, Eduardo; Cerda´, María F.

    2016-01-01

    Students of physical chemistry in biochemical disciplines need biochemical examples to capture the need, not always understood, of a difficult area in their studies. The use of thermodynamic data in the chemical reference state may lead to incorrect interpretations in the analysis of biochemical examples when the analysis does not include relevant…

  16. Microfluidics in inorganic chemistry.

    PubMed

    Abou-Hassan, Ali; Sandre, Olivier; Cabuil, Valérie

    2010-08-23

    The application of microfluidics in chemistry has gained significant importance in the recent years. Miniaturized chemistry platforms provide controlled fluid transport, rapid chemical reactions, and cost-saving advantages over conventional reactors. The advantages of microfluidics have been clearly established in the field of analytical and bioanalytical sciences and in the field of organic synthesis. It is less true in the field of inorganic chemistry and materials science; however in inorganic chemistry it has mostly been used for the separation and selective extraction of metal ions. Microfluidics has been used in materials science mainly for the improvement of nanoparticle synthesis, namely metal, metal oxide, and semiconductor nanoparticles. Microfluidic devices can also be used for the formulation of more advanced and sophisticated inorganic materials or hybrids.

  17. Automation and quality in analytical laboratories

    SciTech Connect

    Valcarcel, M.; Rios, A.

    1994-05-01

    After a brief introduction to the generic aspects of automation in analytical laboratories, the different approaches to quality in analytical chemistry are presented and discussed to establish the following different facets emerging from the combination of quality and automation: automated analytical control of quality of products and systems; quality control of automated chemical analysis; and improvement of capital (accuracy and representativeness), basic (sensitivity, precision, and selectivity), and complementary (rapidity, cost, and personnel factors) analytical features. Several examples are presented to demonstrate the importance of this marriage of convenience in present and future analytical chemistry. 7 refs., 4 figs.

  18. Heavy element stable isotope ratios: analytical approaches and applications.

    PubMed

    Tanimizu, Masaharu; Sohrin, Yoshiki; Hirata, Takafumi

    2013-03-01

    Continuous developments in inorganic mass spectrometry techniques, including a combination of an inductively coupled plasma ion source and a magnetic sector-based mass spectrometer equipped with a multiple-collector array, have revolutionized the precision of isotope ratio measurements, and applications of inorganic mass spectrometry for biochemistry, geochemistry, and marine chemistry are beginning to appear on the horizon. Series of pioneering studies have revealed that natural stable isotope fractionations of many elements heavier than S (e.g., Fe, Cu, Zn, Sr, Ce, Nd, Mo, Cd, W, Tl, and U) are common on Earth, and it had been widely recognized that most physicochemical reactions or biochemical processes induce mass-dependent isotope fractionation. The variations in isotope ratios of the heavy elements can provide new insights into past and present biochemical and geochemical processes. To achieve this, the analytical community is actively solving problems such as spectral interference, mass discrimination drift, chemical separation and purification, and reduction of the contamination of analytes. This article describes data calibration and standardization protocols to allow interlaboratory comparisons or to maintain traceability of data, and basic principles of isotope fractionation in nature, together with high-selectivity and high-yield chemical separation and purification techniques for stable isotope studies.

  19. Biochemical correlates of neurosensory changes in weightlessness

    NASA Technical Reports Server (NTRS)

    Leach, Carolyn S.; Reschke, Millard F.

    1989-01-01

    The possible existence of a relationship between space motion sickness and chemical and biochemical variables measured in body fluids is studied. Clinical chemistry and endocrine measurements from blood and urine samples taken before and after Space Shuttle flights were analyzed along with the occurrence of SMS during flight and provocative testing before flight. Significant positive correlations were observed with serum chloride and significant negative correlations with serum phosphate, serum uric acid, and plasma thyroid stimulating hormone.

  20. Biophysical chemistry.

    PubMed

    Häussinger, Daniel; Pfohl, Thomas

    2010-01-01

    Biophysical chemistry at the Department of Chemistry, University of Basel, covers the NMR analysis of protein-protein interaction using paramagnetic tags and sophisticated microscopy techniques investigating the dynamics of biological matter.

  1. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents background information, laboratory procedures, classroom materials/activities, and chemistry experiments. Topics include sublimation, electronegativity, electrolysis, experimental aspects of strontianite, halide test, evaluation of present and future computer programs in chemistry, formula building, care of glass/saturated calomel…

  2. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1976

    1976-01-01

    Described are eight chemistry experiments and demonstrations applicable to introductory chemistry courses. Activities include: measure of lattice enthalpy, Le Chatelier's principle, decarboxylation of soap, use of pocket calculators in pH measurement, and making nylon. (SL)

  3. Chemistry Dashboard

    EPA Pesticide Factsheets

    The Chemistry Dashboard is part of a suite of dashboards developed by EPA to help evaluate the safety of chemicals. The Chemistry Dashboard provides access to a variety of information on over 700,000 chemicals currently in use.

  4. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Thirteen ideas are presented that may be of use to chemistry teachers. Topics covered include vitamin C, industrial chemistry, electrical conductivity, electrolysis, alkali metals, vibration modes infra-red, dynamic equilibrium, and some new demonstrations in gaseous combinations. (PS)

  5. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents background information, laboratory procedures, classroom materials/activities, and experiments for chemistry. Topics include superheavy elements, polarizing power and chemistry of alkali metals, particulate carbon from combustion, tips for the chemistry laboratory, interesting/colorful experiments, behavior of bismuth (III) iodine, and…

  6. Analytical chemistry: Virulence caught green-handed

    NASA Astrophysics Data System (ADS)

    Sanchez, Laura M.; Dorrestein, Pieter C.

    2013-03-01

    Many of us eat mushrooms, but few of us have probably ever thought about -- let alone witnessed -- the epic battle of kingdoms that can occur between this delicacy and its bacterial pathogens. Now, imaging mass spectrometry has enabled the identification of a bacterium's potent antifungal weapon of choice.

  7. Quality assurance for environmental analytical chemistry: 1980

    SciTech Connect

    Gladney, E.S.; Goode, W.E.; Perrin, D.R.; Burns, C.E.

    1981-09-01

    The continuing quality assurance effort by the Environmental Surveillance Group is presented. Included are all standard materials now in use, their consensus or certified concentrations, quality control charts, and all quality assurance measurements made by H-8 during 1980.

  8. CLUSTER CHEMISTRY

    SciTech Connect

    Muetterties, Earl L.

    1980-05-01

    Metal cluster chemistry is one of the most rapidly developing areas of inorganic and organometallic chemistry. Prior to 1960 only a few metal clusters were well characterized. However, shortly after the early development of boron cluster chemistry, the field of metal cluster chemistry began to grow at a very rapid rate and a structural and a qualitative theoretical understanding of clusters came quickly. Analyzed here is the chemistry and the general significance of clusters with particular emphasis on the cluster research within my group. The importance of coordinately unsaturated, very reactive metal clusters is the major subject of discussion.

  9. Biochemical adaptation to ocean acidification.

    PubMed

    Stillman, Jonathon H; Paganini, Adam W

    2015-06-01

    The change in oceanic carbonate chemistry due to increased atmospheric PCO2  has caused pH to decline in marine surface waters, a phenomenon known as ocean acidification (OA). The effects of OA on organisms have been shown to be widespread among diverse taxa from a wide range of habitats. The majority of studies of organismal response to OA are in short-term exposures to future levels of PCO2 . From such studies, much information has been gathered on plastic responses organisms may make in the future that are beneficial or harmful to fitness. Relatively few studies have examined whether organisms can adapt to negative-fitness consequences of plastic responses to OA. We outline major approaches that have been used to study the adaptive potential for organisms to OA, which include comparative studies and experimental evolution. Organisms that inhabit a range of pH environments (e.g. pH gradients at volcanic CO2 seeps or in upwelling zones) have great potential for studies that identify adaptive shifts that have occurred through evolution. Comparative studies have advanced our understanding of adaptation to OA by linking whole-organism responses with cellular mechanisms. Such optimization of function provides a link between genetic variation and adaptive evolution in tuning optimal function of rate-limiting cellular processes in different pH conditions. For example, in experimental evolution studies of organisms with short generation times (e.g. phytoplankton), hundreds of generations of growth under future conditions has resulted in fixed differences in gene expression related to acid-base regulation. However, biochemical mechanisms for adaptive responses to OA have yet to be fully characterized, and are likely to be more complex than simply changes in gene expression or protein modification. Finally, we present a hypothesis regarding an unexplored area for biochemical adaptation to ocean acidification. In this hypothesis, proteins and membranes exposed to the

  10. Medicinal chemistry for 2020

    PubMed Central

    Satyanarayanajois, Seetharama D; Hill, Ronald A

    2011-01-01

    Rapid advances in our collective understanding of biomolecular structure and, in concert, of biochemical systems, coupled with developments in computational methods, have massively impacted the field of medicinal chemistry over the past two decades, with even greater changes appearing on the horizon. In this perspective, we endeavor to profile some of the most prominent determinants of change and speculate as to further evolution that may consequently occur during the next decade. The five main angles to be addressed are: protein–protein interactions; peptides and peptidomimetics; molecular diversity and pharmacological space; molecular pharmacodynamics (significance, potential and challenges); and early-stage clinical efficacy and safety. We then consider, in light of these, the future of medicinal chemistry and the educational preparation that will be required for future medicinal chemists. PMID:22004084

  11. Biochemical transformation of coals

    DOEpatents

    Lin, Mow S.; Premuzic, Eugene T.

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed.

  12. Biochemical transformation of coals

    DOEpatents

    Lin, M.S.; Premuzic, E.T.

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed. 7 figs.

  13. Dynamically analyte-responsive macrocyclic host-fluorophore systems.

    PubMed

    Ghale, Garima; Nau, Werner M

    2014-07-15

    CONSPECTUS: Host-guest chemistry commenced to a large degree with the work of Pedersen, who in 1967 first reported the synthesis of crown ethers. The past 45 years have witnessed a substantial progress in the field, from the design of highly selective host molecules as receptors to their application in drug delivery and, particularly, analyte sensing. Much effort has been expended on designing receptors and signaling mechanism for detecting compounds of biological and environmental relevance. Traditionally, the design of a chemosensor comprises one component for molecular recognition, frequently macrocycles of the cyclodextrin, cucurbituril, cyclophane, or calixarene type. The second component, used for signaling, is typically an indicator dye which changes its photophysical properties, preferably its fluorescence, upon analyte binding. A variety of signal transduction mechanisms are available, of which displacement of the dye from the macrocyclic binding site is one of the simplest and most popular ones. This constitutes the working principle of indicator displacement assays. However, indicator displacement assays have been predominantly exploited in a static fashion, namely, to determine absolute analyte concentrations, or, by using combinations of several reporter pairs, to achieve a differential sensing and, thus, identification of specific food products or brands. In contrast, their use in biological systems, for example, with membranes, cells, or with enzymes has been comparably less explored, which led us to the design of the so-called tandem assays, that is, dynamically analyte-responsive host-dye systems, in which the change in analyte concentrations is induced by a biological reaction or process. This methodological variation has practical application potential, because the ability to monitor these biochemical pathways or to follow specific molecules in real time is of paramount interest for both biochemical laboratories and the pharmaceutical industry

  14. Analytic materials

    NASA Astrophysics Data System (ADS)

    Milton, Graeme W.

    2016-11-01

    The theory of inhomogeneous analytic materials is developed. These are materials where the coefficients entering the equations involve analytic functions. Three types of analytic materials are identified. The first two types involve an integer p. If p takes its maximum value, then we have a complete analytic material. Otherwise, it is incomplete analytic material of rank p. For two-dimensional materials, further progress can be made in the identification of analytic materials by using the well-known fact that a 90° rotation applied to a divergence-free field in a simply connected domain yields a curl-free field, and this can then be expressed as the gradient of a potential. Other exact results for the fields in inhomogeneous media are reviewed. Also reviewed is the subject of metamaterials, as these materials provide a way of realizing desirable coefficients in the equations.

  15. Analytic materials.

    PubMed

    Milton, Graeme W

    2016-11-01

    The theory of inhomogeneous analytic materials is developed. These are materials where the coefficients entering the equations involve analytic functions. Three types of analytic materials are identified. The first two types involve an integer p. If p takes its maximum value, then we have a complete analytic material. Otherwise, it is incomplete analytic material of rank p. For two-dimensional materials, further progress can be made in the identification of analytic materials by using the well-known fact that a 90(°) rotation applied to a divergence-free field in a simply connected domain yields a curl-free field, and this can then be expressed as the gradient of a potential. Other exact results for the fields in inhomogeneous media are reviewed. Also reviewed is the subject of metamaterials, as these materials provide a way of realizing desirable coefficients in the equations.

  16. Technetium chemistry

    SciTech Connect

    Burns, C.; Bryan, J.; Cotton, F.; Ott, K.; Kubas, G.; Haefner, S.; Barrera, J.; Hall, K.; Burrell, A.

    1996-04-01

    Technetium chemistry is a young and developing field. Despite the limited knowledge of its chemistry, technetium is the workhorse for nuclear medicine. Technetium is also a significant environmental concern because it is formed as a byproduct of nuclear weapons production and fission-power generators. Development of new technetium radio-pharmaceuticals and effective environmental control depends strongly upon knowledge of basic technetium chemistry. The authors performed research into the basic coordination and organometallic chemistry of technetium and used this knowledge to address nuclear medicine and environmental applications. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  17. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Twelve new chemistry expermiments are described. Broad areas covered include atomic structure, solubility, gaseous diffusion, endothermic reactions, alcohols, equilibrium, atomic volumes, and some improvised apparatus. (PS)

  18. Theme-Based Bidisciplinary Chemistry Laboratory Modules

    NASA Astrophysics Data System (ADS)

    Leber, Phyllis A.; Szczerbicki, Sandra K.

    1996-12-01

    A thematic approach to each of the two introductory chemistry laboratory sequences, general and organic chemistry, not only provides an element of cohesion but also stresses the role that chemistry plays as the "central science" and emphasizes the intimate link between chemistry and other science disciplines. Thus, in general chemistry the rubric "Environmental Chemistry" affords connections to the geosciences, whereas experiments on the topic of "Plant Assays" bridge organic chemistry and biology. By establishing links with other science departments, the theme-based laboratory experiments will satisfy the following multidisciplinary criteria: (i) to demonstrate the general applicability of core methodologies to the sciences, (ii) to help students relate concepts to a broader multidisciplinary context, (iii) to foster an attitude of both independence and cooperation that can transcend the teaching laboratory to the research arena, and (iv) to promote greater cooperation and interaction between the science departments. Fundamentally, this approach has the potential to impact the chemistry curriculum significantly by including student decision-making in the experimental process. Furthermore, the incorporation of GC-MS, a powerful tool for separation and identification as well as a state-of-the-art analytical technique, in the modules will enhance the introductory general and organic chemistry laboratory sequences by making them more instrument-intensive and by providing a reliable and reproducible means of obtaining quantitative analyses. Each multifaceted module has been designed to meet the following criteria: (i) a synthetic protocol including full spectral characterization of products, (ii) quantitative and statistical analyses of data, and (iii) construction of a database of results. The database will provide several concrete functions. It will foster the idea that science is a continuous incremental process building on the results of earlier experimentalists

  19. Biosensors in clinical chemistry.

    PubMed

    D'Orazio, Paul

    2003-08-01

    Biosensors are analytical devices composed of a recognition element of biological origin and a physico-chemical transducer. The biological element is capable of sensing the presence, activity or concentration of a chemical analyte in solution. The sensing takes place either as a binding event or a biocatalytical event. These interactions produce a measurable change in a solution property, which the transducer converts into a quantifiable electrical signal. Present-day applications of biosensors to clinical chemistry are reviewed, including basic and applied research, commercial applications and fabrication techniques. Recognition elements include enzymes as biocatalytic recognition elements and immunoagents and DNA segments as affinity ligand recognition elements, coupled to electrochemical and optical modes of transduction. The future will include biosensors based on synthetic recognition elements to allow broad applicability to different classes of analytes and modes of transduction extending lower limits of sensitivity. Microfabrication will permit biosensors to be constructed as arrays and incorporated into lab-on-a-chip devices.

  20. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Outlines laboratory procedures, demonstrations, teaching suggestions, and content information related to chemistry. Topics include polarizing power; calorimetry and momentum; microcomputers in school chemistry; a constant-volume dispenser for liquids, floating magnets, and crystal lattices; preparation of chromium; and solvent polarity and…

  1. 40 CFR 136.6 - Method modifications and analytical requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... person or laboratory using a test procedure (analytical method) in this Part. (2) Chemistry of the method... (analytical method) provided that the chemistry of the method or the determinative technique is not changed... prevent efficient recovery of organic pollutants and prevent the method from meeting QC requirements,...

  2. Multifunctional nanoparticles: analytical prospects.

    PubMed

    de Dios, Alejandro Simón; Díaz-García, Marta Elena

    2010-05-07

    Multifunctional nanoparticles are among the most exciting nanomaterials with promising applications in analytical chemistry. These applications include (bio)sensing, (bio)assays, catalysis and separations. Although most of these applications are based on the magnetic, optical and electrochemical properties of multifunctional nanoparticles, other aspects such as the synergistic effect of the functional groups and the amplification effect associated with the nanoscale dimension have also been observed. Considering not only the nature of the raw material but also the shape, there is a huge variety of nanoparticles. In this review only magnetic, quantum dots, gold nanoparticles, carbon and inorganic nanotubes as well as silica, titania and gadolinium oxide nanoparticles are addressed. This review presents a narrative summary on the use of multifunctional nanoparticles for analytical applications, along with a discussion on some critical challenges existing in the field and possible solutions that have been or are being developed to overcome these challenges.

  3. Environmental Chemistry in the Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Wenzel, Thomas J.; Austin, Rachel N.

    2001-01-01

    Discusses the importance of environmental chemistry and the use of laboratory exercises in analytical and general chemistry courses. Notes the importance of lab work in heightening student interest in coursework including problem-based learning in undergraduate curricula, ready adaptability of environmental coursework to existing curricula, and…

  4. Circumstellar chemistry

    NASA Technical Reports Server (NTRS)

    Glassgold, Alfred E.; Huggins, Patrick J.

    1987-01-01

    The study of the outer envelopes of cool evolved stars has become an active area of research. The physical properties of CS envelopes are presented. Observations of many wavelengths bands are relevant. A summary of observations and a discussion of theoretical considerations concerning the chemistry are summarized. Recent theoretical considerations show that the thermal equilibrium model is of limited use for understanding the chemistry of the outer CS envelopes. The theoretical modeling of the chemistry of CS envelopes provides a quantitive test of chemical concepts which have a broader interest than the envelopes themselves.

  5. Evaluation of an in-practice wet-chemistry analyzer using canine and feline serum samples.

    PubMed

    Irvine, Katherine L; Burt, Kay; Papasouliotis, Kostas

    2016-01-01

    A wet-chemistry biochemical analyzer was assessed for in-practice veterinary use. Its small size may mean a cost-effective method for low-throughput in-house biochemical analyses for first-opinion practice. The objectives of our study were to determine imprecision, total observed error, and acceptability of the analyzer for measurement of common canine and feline serum analytes, and to compare clinical sample results to those from a commercial reference analyzer. Imprecision was determined by within- and between-run repeatability for canine and feline pooled samples, and manufacturer-supplied quality control material (QCM). Total observed error (TEobs) was determined for pooled samples and QCM. Performance was assessed for canine and feline pooled samples by sigma metric determination. Agreement and errors between the in-practice and reference analyzers were determined for canine and feline clinical samples by Bland-Altman and Deming regression analyses. Within- and between-run precision was high for most analytes, and TEobs(%) was mostly lower than total allowable error. Performance based on sigma metrics was good (σ > 4) for many analytes and marginal (σ > 3) for most of the remainder. Correlation between the analyzers was very high for most canine analytes and high for most feline analytes. Between-analyzer bias was generally attributed to high constant error. The in-practice analyzer showed good overall performance, with only calcium and phosphate analyses identified as significantly problematic. Agreement for most analytes was insufficient for transposition of reference intervals, and we recommend that in-practice-specific reference intervals be established in the laboratory.

  6. Analytical testing

    NASA Technical Reports Server (NTRS)

    Flannelly, W. G.; Fabunmi, J. A.; Nagy, E. J.

    1981-01-01

    Analytical methods for combining flight acceleration and strain data with shake test mobility data to predict the effects of structural changes on flight vibrations and strains are presented. This integration of structural dynamic analysis with flight performance is referred to as analytical testing. The objective of this methodology is to analytically estimate the results of flight testing contemplated structural changes with minimum flying and change trials. The category of changes to the aircraft includes mass, stiffness, absorbers, isolators, and active suppressors. Examples of applying the analytical testing methodology using flight test and shake test data measured on an AH-1G helicopter are included. The techniques and procedures for vibration testing and modal analysis are also described.

  7. Catalytic Chemistry.

    ERIC Educational Resources Information Center

    Borer, Londa; And Others

    1996-01-01

    Describes an approach for making chemistry relevant to everyday life. Involves the study of kinetics using the decomposition of hydrogen peroxide by vegetable juices. Allows students to design and carry out experiments and then draw conclusions from their results. (JRH)

  8. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1980

    1980-01-01

    Describes equipment, activities, and experiments useful in chemistry instruction, including among others, a rapid method to determine available chlorine in bleach, simple flame testing apparatus, and a simple apparatus demonstrating the technique of flash photolysis. (SK)

  9. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1973

    1973-01-01

    Several ideas are proposed for chemistry teachers to try in their classrooms. Subjects included are polymerization of acrylate, polymerization of styrene, conductivity, pollution, preparation of chlorine, redox equations, chemiluminescence, and molecular sieves. (PS)

  10. Nuclear Chemistry.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1979

    1979-01-01

    Provides a brief review of the latest developments in nuclear chemistry. Nuclear research today is directed toward increased activity in radiopharmaceuticals and formation of new isotopes by high-energy, heavy-ion collisions. (Author/BB)

  11. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Describes 13 activities, experiments and demonstrations, including the preparation of iron (III) chloride, simple alpha-helix model, investigating camping gas, redox reactions of some organic compounds, a liquid crystal thermometer, and the oxidation number concept in organic chemistry. (JN)

  12. Precolumbian Chemistry.

    ERIC Educational Resources Information Center

    Robinson, Janet Bond

    1995-01-01

    Describes the content and development of a curriculum that provides an approach to descriptive chemistry and the history of technology through consideration of the pottery, metallurgy, pigments, dyes, agriculture, and medicine of pre-Columbian people. (DDR)

  13. Stratospheric chemistry

    SciTech Connect

    Brune, W.H. )

    1991-01-01

    Advances in stratospheric chemistry made by investigators in the United States from 1987 to 1990 are reviewed. Subject areas under consideration include photochemistry of the polar stratosphere, photochemistry of the global stratosphere, and assessments of inadvertent modification of the stratosphere by anthropogenic activity. Particular attention is given to early observations and theories, gas phase chemistry, Antarctic observations, Arctic observations, odd-oxygen, odd-hydrogen, odd-nitrogen, halogens, aerosols, modeling of stratospheric ozone, and reactive nitrogen effects.

  14. Undergraduate Professional Education in Chemistry: Guidelines and Evaluation Procedures.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    Provided are guidelines for evaluating undergraduate professional education in chemistry. The guidelines summarize an approved program as including: 400 hours of classroom work; 500 hours of laboratory work; a core curriculum covering principles of analytical, inorganic, organic, and physical chemistry; 1 year of advanced work in chemistry or…

  15. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    SciTech Connect

    Ryan, R.R.

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  16. Phoenix's Wet Chemistry Lab

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is an illustration of the analytical procedure of NASA's Phoenix Mars Lander's Wet Chemistry Lab (WCL) on board the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument. By dissolving small amounts of soil in water, WCL can determine the pH, the abundance of minerals such as magnesium and sodium cations or chloride, bromide and sulfate anions, as well as the conductivity and redox potential.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. Analytical Microscopy

    SciTech Connect

    Not Available

    2006-06-01

    In the Analytical Microscopy group, within the National Center for Photovoltaic's Measurements and Characterization Division, we combine two complementary areas of analytical microscopy--electron microscopy and proximal-probe techniques--and use a variety of state-of-the-art imaging and analytical tools. We also design and build custom instrumentation and develop novel techniques that provide unique capabilities for studying materials and devices. In our work, we collaborate with you to solve materials- and device-related R&D problems. This sheet summarizes the uses and features of four major tools: transmission electron microscopy, scanning electron microscopy, the dual-beam focused-ion-beam workstation, and scanning probe microscopy.

  18. Programmed Lab Experiments for Biochemical Investigation of Quorum-Sensing Signal Molecules in Rhizospheric Soil Bacteria.

    PubMed

    Nievas, Fiorela L; Bogino, Pablo C; Giordano, Walter

    2016-05-06

    Biochemistry courses in the Department of Molecular Biology at the National University of Río Cuarto, Argentina, are designed for undergraduate students in biology, microbiology, chemistry, agronomy, and veterinary medicine. Microbiology students typically have previous coursework in general, analytical, and organic chemistry. Programmed sequences of lab experiments allow these students to investigate biochemical problems whose solution is feasible within the context of their knowledge and experience. We previously designed and reported a programmed lab experiment that familiarizes microbiology students with techniques for detection and characterization of quorum-sensing (QS) and quorum-quenching (QQ) signal molecules. Here, we describe a sequence of experiments designed to expand the understanding and capabilities of biochemistry students using techniques for extraction and identification of QS and QQ signal molecules from peanut rhizospheric soil bacteria, including culturing and manipulation of bacteria under sterile conditions. The program provides students with an opportunity to perform useful assays, draw conclusions from their results, and discuss possible extensions of the study. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:256-262, 2016.

  19. Optical chemical and biochemical sensors: new trends (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Baldini, F.; Giannetti, A.

    2005-06-01

    Chemical and biochemical sensing is under the extensive research all over the world and many chemical and biochemical sensors are finding increasing number of applications in industry, environmental monitoring, medicine, biomedicine and chemical analysis. This is evidenced by each-year-growing number of international scientific conferences, in which advances in the field of the sensors are reported. One of the main reason why only a few sensors reach the international market, notwithstanding the high number of laboratory prototype described in many peer reviewed papers, lies in the fact that a biochemical sensor is a highly interdisciplinary "object" the realization of which requires the team work of scientists coming from different areas such as chemistry, physics, optoelectronics, engineering, biochemistry, and medicine. And this peculiarity is not easily found in the research teams. In the present paper, the fundamental bases of chemical and biochemical optical sensing are summarised and the new trends are described.

  20. Biochemical upgrading of oils

    DOEpatents

    Premuzic, E.T.; Lin, M.S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  1. Biochemical upgrading of oils

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

  2. Biochemical Education in Brazil.

    ERIC Educational Resources Information Center

    Vella, F.

    1988-01-01

    Described are discussions held concerning the problems of biochemical education in Brazil at a meeting of the Sociedade Brazileira de Bioquimica in April 1988. Also discussed are other visits that were made to universities in Brazil. Three major recommendations to improve the state of biochemistry education in Brazil are presented. (CW)

  3. Measures of Biochemical Sociology

    ERIC Educational Resources Information Center

    Snell, Joel; Marsh, Mitchell

    2008-01-01

    In a previous article, the authors introduced a new sub field in sociology that we labeled "biochemical sociology." We introduced the definition of a sociology that encompasses sociological measures, psychological measures, and biological indicators Snell & Marsh (2003). In this article, we want to demonstrate a research strategy that would assess…

  4. Nanoparticles as biochemical sensors

    PubMed Central

    El-Ansary, Afaf; Faddah, Layla M

    2010-01-01

    There is little doubt that nanoparticles offer real and new opportunities in many fields, such as biomedicine and materials science. Such particles are small enough to enter almost all areas of the body, including cells and organelles, potentially leading to new approaches in nanomedicine. Sensors for small molecules of biochemical interest are of critical importance. This review is an attempt to trace the use of nanomaterials in biochemical sensor design. The possibility of using nanoparticles functionalized with antibodies as markers for proteins will be elucidated. Moreover, capabilities and applications for nanoparticles based on gold, silver, magnetic, and semiconductor materials (quantum dots), used in optical (absorbance, luminescence, surface enhanced Raman spectroscopy, surface plasmon resonance), electrochemical, and mass-sensitive sensors will be highlighted. The unique ability of nanosensors to improve the analysis of biochemical fluids is discussed either through considering the use of nanoparticles for in vitro molecular diagnosis, or in the biological/biochemical analysis for in vivo interaction with the human body. PMID:24198472

  5. Miniature spectroscopic instrumentation: Applications to biology and chemistry

    NASA Astrophysics Data System (ADS)

    Bacon, Christina P.; Mattley, Yvette; DeFrece, Ronald

    2004-01-01

    Spectroscopy is a fundamental analytical tool utilized throughout all of the sciences. For chemistry and biology alone, there are thousands of applications. In the past two decades there have been monumental advances in the miniaturization of components used in spectrophotometric systems. The key components include detector arrays, laser diodes, and fiber optics. Currently, there are numerous commercially available miniature spectrometer systems as well as discrete components that are used by researchers in designing their own systems. A comprehensive summary of current instrumentation available for the design and development of miniaturized spectroscopy applications is described, including detectors, wavelength discriminating components, light sources, and sampling assemblies. Recommendations are made for designing spectrometer systems for specific applications. Current literature is reviewed for chemical and biological applications specifically using miniaturized spectrometer systems with the focus being on ultraviolet-visible-near-infrared spectrometers. The applications include laboratory applications, environmental sensing, on-site industrial analyses, botany and ecology applications, and finally clinical and biochemical studies. Additionally, microspectrometers, two-dimensional arrays, and photonics crystals are discussed in regards to their future role in chemistry and biology applications.

  6. Hydrogel-based piezoresistive biochemical microsensors

    NASA Astrophysics Data System (ADS)

    Guenther, Margarita; Schulz, Volker; Gerlach, Gerald; Wallmersperger, Thomas; Solzbacher, Florian; Magda, Jules J.; Tathireddy, Prashant; Lin, Genyao; Orthner, Michael P.

    2010-04-01

    This work is motivated by a demand for inexpensive, robust and reliable biochemical sensors with high signal reproducibility and long-term-stable sensitivity, especially for medical applications. Micro-fabricated sensors can provide continuous monitoring and on-line control of analyte concentrations in ambient aqueous solutions. The piezoresistive biochemical sensor containing a special biocompatible polymer (hydrogel) with a sharp volume phase transition in the neutral physiological pH range near 7.4 can detect a specific analyte, for example glucose. Thereby the hydrogel-based biochemical sensors are useful for the diagnosis and monitoring of diabetes. The response of the glucosesensitive hydrogel was studied at different regimes of the glucose concentration change and of the solution supply. Sensor response time and accuracy with which a sensor can track gradual changes in glucose was estimated. Additionally, the influence of various recommended sterilization methods on the gel swelling properties and on the mechano-electrical transducer of the pH-sensors has been evaluated in order to choose the most optimal sterilization method for the implantable sensors. It has been shown that there is no negative effect of gamma irradiation with a dose of 25.7 kGy on the hydrogel sensitivity. In order to achieve an optimum between sensor signal amplitude and sensor response time, corresponding calibration and measurement procedures have been proposed and evaluated for the chemical sensors.

  7. SU-8 Cantilevers for Bio/chemical Sensing; Fabrication, Characterisation and Development of Novel Read-out Methods

    PubMed Central

    Nordström, Maria; Keller, Stephan; Lillemose, Michael; Johansson, Alicia; Dohn, Søren; Haefliger, Daniel; Blagoi, Gabriela; Havsteen-Jakobsen, Mogens; Boisen, Anja

    2008-01-01

    Here, we present the activities within our research group over the last five years with cantilevers fabricated in the polymer SU-8. We believe that SU-8 is an interesting polymer for fabrication of cantilevers for bio/chemical sensing due to its simple processing and low Young's modulus. We show examples of different integrated read-out methods and their characterisation. We also show that SU-8 cantilevers have a reduced sensitivity to changes in the environmental temperature and pH of the buffer solution. Moreover, we show that the SU-8 cantilever surface can be functionalised directly with receptor molecules for analyte detection, thereby avoiding gold-thiol chemistry. PMID:27879783

  8. Clays in prebiological chemistry

    NASA Technical Reports Server (NTRS)

    Rao, M.; Oro, J.; Odom, D. G.

    1980-01-01

    The ways in which clays have been utilized in studies of prebiological chemistry are reviewed, and an assessment is given of the possible role of clays in prebiological systems. The adsorption of organic molecules on clays has been demonstrated, as has the synthesis of bioorganic monomers in the presence of clays. For instance, amino acids, purines and pyrimidines have been obtained from carbon monoxide and nitric acid in the presence of clays at relatively high temperatures (250-325 C). The oligomerization of biochemical monomers, mediated by clays, has also been shown to result in the formation of polymer molecules basic to life. Clays have also been found to affect the condensation of mononucleotides to oligonucleotides.

  9. Polymer Chemistry

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  10. Chemistry Experiments

    NASA Technical Reports Server (NTRS)

    Brasseur, Guy; Remsberg, Ellis; Purcell, Patrick; Bhatt, Praful; Sage, Karen H.; Brown, Donald E.; Scott, Courtney J.; Ko, Malcolm K. W.; Tie, Xue-Xi; Huang, Theresa

    1999-01-01

    The purpose of the chemistry component of the model comparison is to assess to what extent differences in the formulation of chemical processes explain the variance between model results. Observed concentrations of chemical compounds are used to estimate to what degree the various models represent realistic situations. For readability, the materials for the chemistry experiment are reported in three separate sections. This section discussed the data used to evaluate the models in their simulation of the source gases and the Nitrogen compounds (NO(y)) and Chlorine compounds (Cl(y)) species.

  11. 40 CFR 158.355 - Enforcement analytical method.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Enforcement analytical method. 158.355... DATA REQUIREMENTS FOR PESTICIDES Product Chemistry § 158.355 Enforcement analytical method. An analytical method suitable for enforcement purposes must be provided for each active ingredient in...

  12. Fock space, symbolic algebra, and analytical solutions for small stochastic systems

    NASA Astrophysics Data System (ADS)

    Santos, Fernando A. N.; Gadêlha, Hermes; Gaffney, Eamonn A.

    2015-12-01

    Randomness is ubiquitous in nature. From single-molecule biochemical reactions to macroscale biological systems, stochasticity permeates individual interactions and often regulates emergent properties of the system. While such systems are regularly studied from a modeling viewpoint using stochastic simulation algorithms, numerous potential analytical tools can be inherited from statistical and quantum physics, replacing randomness due to quantum fluctuations with low-copy-number stochasticity. Nevertheless, classical studies remained limited to the abstract level, demonstrating a more general applicability and equivalence between systems in physics and biology rather than exploiting the physics tools to study biological systems. Here the Fock space representation, used in quantum mechanics, is combined with the symbolic algebra of creation and annihilation operators to consider explicit solutions for the chemical master equations describing small, well-mixed, biochemical, or biological systems. This is illustrated with an exact solution for a Michaelis-Menten single enzyme interacting with limited substrate, including a consideration of very short time scales, which emphasizes when stiffness is present even for small copy numbers. Furthermore, we present a general matrix representation for Michaelis-Menten kinetics with an arbitrary number of enzymes and substrates that, following diagonalization, leads to the solution of this ubiquitous, nonlinear enzyme kinetics problem. For this, a flexible symbolic maple code is provided, demonstrating the prospective advantages of this framework compared to stochastic simulation algorithms. This further highlights the possibilities for analytically based studies of stochastic systems in biology and chemistry using tools from theoretical quantum physics.

  13. Single-scan 2D NMR: An Emerging Tool in Analytical Spectroscopy

    PubMed Central

    Giraudeau, Patrick; Frydman, Lucio

    2016-01-01

    Two-dimensional Nuclear Magnetic Resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing an increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago a so-called “ultrafast” (UF) approach was proposed, capable to deliver arbitrary 2D NMR spectra involving any kind of homo- or hetero-nuclear correlations, in a single scan. During the intervening years the performance of this sub-second 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool witnessing an expanded scope of applications. The present reviews summarizes the principles and the main developments which have contributed to the success of this approach, and focuses on applications which have been recently demonstrated in various areas of analytical chemistry –from the real time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications. PMID:25014342

  14. Fock space, symbolic algebra, and analytical solutions for small stochastic systems.

    PubMed

    Santos, Fernando A N; Gadêlha, Hermes; Gaffney, Eamonn A

    2015-12-01

    Randomness is ubiquitous in nature. From single-molecule biochemical reactions to macroscale biological systems, stochasticity permeates individual interactions and often regulates emergent properties of the system. While such systems are regularly studied from a modeling viewpoint using stochastic simulation algorithms, numerous potential analytical tools can be inherited from statistical and quantum physics, replacing randomness due to quantum fluctuations with low-copy-number stochasticity. Nevertheless, classical studies remained limited to the abstract level, demonstrating a more general applicability and equivalence between systems in physics and biology rather than exploiting the physics tools to study biological systems. Here the Fock space representation, used in quantum mechanics, is combined with the symbolic algebra of creation and annihilation operators to consider explicit solutions for the chemical master equations describing small, well-mixed, biochemical, or biological systems. This is illustrated with an exact solution for a Michaelis-Menten single enzyme interacting with limited substrate, including a consideration of very short time scales, which emphasizes when stiffness is present even for small copy numbers. Furthermore, we present a general matrix representation for Michaelis-Menten kinetics with an arbitrary number of enzymes and substrates that, following diagonalization, leads to the solution of this ubiquitous, nonlinear enzyme kinetics problem. For this, a flexible symbolic maple code is provided, demonstrating the prospective advantages of this framework compared to stochastic simulation algorithms. This further highlights the possibilities for analytically based studies of stochastic systems in biology and chemistry using tools from theoretical quantum physics.

  15. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1980

    1980-01-01

    Presents 12 chemistry notes for British secondary school teachers. Some of these notes are: (1) a simple device for testing pH-meters; (2) portable fume cupboard safety screen; and (3) Mass spectroscopy-analysis of a mass peak. (HM)

  16. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1976

    1976-01-01

    Describes several chemistry projects, including solubility, formula for magnesium oxide, dissociation of dinitrogen tetroxide, use of 1-chloro-2, 4-dinitrobenzene, migration of ions, heats of neutralizations, use of pocket calculators, sonic cleaning, oxidation states of manganese, and cell potentials. Includes an extract from Chemical Age on…

  17. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Short articles on the alkylation of aniline, the preparation and properties of perbromate, using scrap copper in chemistry instruction, a safe method of burning hydrogen, and the use of an ion-charge model as an alternative to the mole concept in secondary school instruction. (AL)

  18. Confectionary Chemistry.

    ERIC Educational Resources Information Center

    Levine, Elise Hilf

    1996-01-01

    Presents activities and demonstrations that enable teachers to use various types of confections as tactile experiences to spark chemistry students' interest and generate enthusiasm for learning. Presents uses of candy in teaching about atomic structure, spontaneous nuclear decay, chemical formulas, fractoluminescence, the effect of a molecular…

  19. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Short articles on the kinetics of the hydrogen peroxide-iodide ion reaction, simulation of fluidization catalysis, the use of Newman projection diagrams to represent steric relationships in organic chemistry, the use of synthetic substrates for proteolytic enzyme reactions, and two simple clock reactions"--hydrolysis of halogenoalkanes and…

  20. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents chemistry experiments, laboratory procedures, demonstrations, teaching suggestions, and classroom materials/activities. These include: game for teaching ionic formulas; method for balancing equations; description of useful redox series; computer programs (with listings) for water electrolysis simulation and for determining chemical…

  1. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents chemistry experiments, laboratory procedures, demonstrations, and classroom materials/activities. These include: experiments on colloids, processing of uranium ore, action of heat on carbonates; color test for phenols and aromatic amines; solvent properties of non-electrolytes; stereoscopic applications/methods; a valency balance;…

  2. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents procedures, experiments, demonstrations, teaching suggestions, and information on a variety of chemistry topics including, for example, inert gases, light-induced reactions, calculators, identification of substituted acetophenones, the elements, analysis of copper minerals, extraction of metallic strontium, equilibrium, halogens, and…

  3. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1978

    1978-01-01

    Describes some laboratory apparatus, chemistry experiments and demonstrations, such as a Kofler block melting point apparatus, chromatographic investigation of the phosphoric acid, x-ray diffraction, the fountain experiment, endothermic sherbet, the measurement of viscosity, ionization energies and electronic configurations. (GA)

  4. Microscale Chemistry and Green Chemistry: Complementary Pedagogies

    NASA Astrophysics Data System (ADS)

    Singh, Mono M.; Szafran, Zvi; Pike, R. M.

    1999-12-01

    This paper describes the complementary nature of microscale chemistry and green chemistry. Green chemistry emphasizes the concepts of atom economy, source reduction, pathway modification, solvent substitution, and pollution prevention as means of improving the environmental impact of industrial chemistry. Microscale chemistry serves as a tool for incorporating green chemistry ideas across the curriculum in educational institutions. Examples are drawn from microscale laboratory experiments to illustrate the pedagogic connection between the two areas.

  5. Physical chemistry and the environment

    SciTech Connect

    Dunning, T.H. Jr.; Garrett, B.C.; Kolb, C.E. Jr.; Shaw, R.W.; Choppin, G.R.; Wagner, A.F.

    1994-08-01

    From the ozone hole and the greenhouse effect to plastics recycling and hazardous waste disposal, society faces a number of issues, the solutions to which require an unprecedented understanding of the properties of molecules. We are coming to realize that the environment is a coupled set of chemical systems, its dynamics determining the welfare of the biosphere and of humans in particular. These chemical systems are governed by fundamental molecular interactions, and they present chemists with an unparalleled challenge. The application of current concepts of molecular behavior and of up-to-date experimental and computational techniques can provide us with insights into the environment that are needed to mitigate past damage, to anticipate the impact of current human activity, and to avoid future insults to the environment. Environmental chemistry encompasses a number of separate, yet interlocking, areas of research. In all of these areas progress is limited by an inadequate understanding of the underlying chemical processes involved. Participation of all chemical approaches -- experimental, theoretical and computational -- and of all disciplines of chemistry -- organic, inorganic, physical, analytical and biochemistry -- will be required to provide the necessary fundamental understanding. The Symposium on ``Physical Chemistry and the Environment`` was designed to bring the many exciting and challenging physical chemistry problems involved in environmental chemistry to the attention of a larger segment of the physical chemistry community.

  6. The biochemical properties of antibodies and their fragments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immunoglobulins (Ig) or antibodies are a powerful molecular recognition tools that can be used to identify minute quantities of a given target analyte. Their antigen binding properties define both the sensitivity and selectivity of an immunoassay. Understanding the biochemical properties of this c...

  7. Polynitrogen Chemistry

    DTIC Science & Technology

    2013-09-24

    4N3, while As(C6H5)4N3 presents a borderline case.23 Theoretical Calculations High-level theoretical studies of nitrogen, oxygen, selenium and...Dixon, D. A.; Christe, K. O., "Thermochemical Properties of Selenium Fluorides, Oxides, and Oxofluorides," Inorganic Chemistry, p. 2472, vol. 51, (2012...34Thermochemical Properties of Selenium Fluorides, Oxides, and Oxofluorides," Inorg. Chem., p. 2472, vol. 51, (2012). 26. K. S. Thanthiriwatte, M. Vasiliu

  8. Computational chemistry

    NASA Technical Reports Server (NTRS)

    Arnold, J. O.

    1987-01-01

    With the advent of supercomputers, modern computational chemistry algorithms and codes, a powerful tool was created to help fill NASA's continuing need for information on the properties of matter in hostile or unusual environments. Computational resources provided under the National Aerodynamics Simulator (NAS) program were a cornerstone for recent advancements in this field. Properties of gases, materials, and their interactions can be determined from solutions of the governing equations. In the case of gases, for example, radiative transition probabilites per particle, bond-dissociation energies, and rates of simple chemical reactions can be determined computationally as reliably as from experiment. The data are proving to be quite valuable in providing inputs to real-gas flow simulation codes used to compute aerothermodynamic loads on NASA's aeroassist orbital transfer vehicles and a host of problems related to the National Aerospace Plane Program. Although more approximate, similar solutions can be obtained for ensembles of atoms simulating small particles of materials with and without the presence of gases. Computational chemistry has application in studying catalysis, properties of polymers, all of interest to various NASA missions, including those previously mentioned. In addition to discussing these applications of computational chemistry within NASA, the governing equations and the need for supercomputers for their solution is outlined.

  9. Green chemistry, biofuels, and biorefinery.

    PubMed

    Clark, James H; Luque, Rafael; Matharu, Avtar S

    2012-01-01

    In the current climate of several interrelated impending global crises, namely, climate change, chemicals, energy, and oil, the impact of green chemistry with respect to chemicals and biofuels generated from within a holistic concept of a biorefinery is discussed. Green chemistry provides unique opportunities for innovation via product substitution, new feedstock generation, catalysis in aqueous media, utilization of microwaves, and scope for alternative or natural solvents. The potential of utilizing waste as a new resource and the development of integrated facilities producing multiple products from biomass is discussed under the guise of biorefineries. Biofuels are discussed in depth, as they not only provide fuel (energy) but are also a source of feedstock chemicals. In the future, the commercial success of biofuels commensurate with consumer demand will depend on the availability of new green (bio)chemical technologies capable of converting waste biomass to fuel in a context of a biorefinery.

  10. Energy-based analysis of biochemical cycles using bond graphs.

    PubMed

    Gawthrop, Peter J; Crampin, Edmund J

    2014-11-08

    Thermodynamic aspects of chemical reactions have a long history in the physical chemistry literature. In particular, biochemical cycles require a source of energy to function. However, although fundamental, the role of chemical potential and Gibb's free energy in the analysis of biochemical systems is often overlooked leading to models which are physically impossible. The bond graph approach was developed for modelling engineering systems, where energy generation, storage and transmission are fundamental. The method focuses on how power flows between components and how energy is stored, transmitted or dissipated within components. Based on the early ideas of network thermodynamics, we have applied this approach to biochemical systems to generate models which automatically obey the laws of thermodynamics. We illustrate the method with examples of biochemical cycles. We have found that thermodynamically compliant models of simple biochemical cycles can easily be developed using this approach. In particular, both stoichiometric information and simulation models can be developed directly from the bond graph. Furthermore, model reduction and approximation while retaining structural and thermodynamic properties is facilitated. Because the bond graph approach is also modular and scaleable, we believe that it provides a secure foundation for building thermodynamically compliant models of large biochemical networks.

  11. Energy-based analysis of biochemical cycles using bond graphs

    PubMed Central

    Gawthrop, Peter J.; Crampin, Edmund J.

    2014-01-01

    Thermodynamic aspects of chemical reactions have a long history in the physical chemistry literature. In particular, biochemical cycles require a source of energy to function. However, although fundamental, the role of chemical potential and Gibb's free energy in the analysis of biochemical systems is often overlooked leading to models which are physically impossible. The bond graph approach was developed for modelling engineering systems, where energy generation, storage and transmission are fundamental. The method focuses on how power flows between components and how energy is stored, transmitted or dissipated within components. Based on the early ideas of network thermodynamics, we have applied this approach to biochemical systems to generate models which automatically obey the laws of thermodynamics. We illustrate the method with examples of biochemical cycles. We have found that thermodynamically compliant models of simple biochemical cycles can easily be developed using this approach. In particular, both stoichiometric information and simulation models can be developed directly from the bond graph. Furthermore, model reduction and approximation while retaining structural and thermodynamic properties is facilitated. Because the bond graph approach is also modular and scaleable, we believe that it provides a secure foundation for building thermodynamically compliant models of large biochemical networks. PMID:25383030

  12. Comparison of two dry chemistry analyzers and a wet chemistry analyzer using canine serum.

    PubMed

    Lanevschi, Anne; Kramer, John W.

    1996-01-01

    Canine serum was used to compare seven chemistry analytes on two tabletop clinical dry chemistry analyzers, Boehringer's Reflotron and Kodak's Ektachem. Results were compared to those obtained on a wet chemistry reference analyzer, Roche Diagnostic's Cobas Mira. Analytes measured were urea nitrogen (BUN), creatinine, glucose, aspartate aminotransferase (AST), alanine aminotransferase (ALT), cholesterol and bilirubin. Nine to 12 canine sera with values in the low, normal, and high range were evaluated. The correlations were acceptable for all comparisons with correlation coefficients greater than 0.98 for all analytes. Regression analysis resulted in significant differences for both tabletop analyzers when compared to the reference analyzer for cholesterol and bilirubin, and for glucose and AST on the Kodak Ektachem. Differences appeared to result from proportional systematic error occurring at high analyte concentrations.

  13. ENVIRONMENTAL IMMUNOCHEMISTRY RESPONDING TO A SPECTRUM OF ANALYTICAL NEEDS

    EPA Science Inventory

    A review, with 13 references, is given on the field of environmental immunochemistry which brings together several specalties, including analytical chemistry, biochemistry, moluclar biology, and environmental engineering. This multidisciplinary nature is both benefit and a confus...

  14. (Pesticide chemistry)

    SciTech Connect

    Barnthouse, L.W.

    1990-09-04

    This report summarizes a trip by L. W. Barnthouse of the Environmental Sciences Division (ESD), Oak Ridge National Laboratory (ORNL), to Hamburg, Federal Republic of Germany (FRG), where he participated in the 7th International Congress of Pesticide Chemistry. He chaired a workshop on experimental systems for determining effects of pesticides on nontarget organisms and gave an oral presentation at a symposium on pesticide risk assessment. Before returning to the United States, Dr. Barnthouse visited the Netherlands Institute for Sea Research in Texel, the Netherlands.

  15. High-level multireference methods in the quantum-chemistry program system COLUMBUS : analytic MR-CISD and MR-AQCC gradients and MR-AQCC-LRT for excited states, GUGA spin-orbit CI, and parallel CI density.

    SciTech Connect

    Lischka, H.; Shepard, R.; Pitzer, R. M.; Shavitt, I.; Dallos, M.; Muller, T.; Szalay, P. G.; Seth, M.; Kedziora, G. S.; Yabushita, S.; Zhang, Z.; Chemistry; Univ. of Vienna; Ohio State Univ.; Univ. of Illinois; Eotvos Lorand Univ.; Univ. of Calgary; Northwestern Univ.; Keio Univ.; PNNL

    2001-01-01

    Development of several new computational approaches within the framework of multi-reference ab initio molecular electronic structure methodology and their implementation in the COLUMBUS program system are reported. These new features are: calculation of the analytical MR-CI gradient for excited states based on state-averaged MCSCF orbitals, the extension of the MR-ACPF/AQCC methods to excited states in the framework of linear-response theory, spin-orbit CI for molecules containing heavy atoms and the development of a massively-parallel code for the computation of the one- and two-particle density matrix elements. Illustrative examples are given for each of these cases.

  16. Misleading biochemical laboratory test results

    PubMed Central

    Nanji, Amin A.

    1984-01-01

    This article reviews the general and specific factors that interfere with the performance of common biochemical laboratory tests and the interpretation of their results. The clinical status of the patient, drug interactions, and in-vivo and in-vitro biochemical interactions and changes may alter the results obtained from biochemical analysis of blood constituents. Failure to recognize invalid laboratory test results may lead to injudicious and dangerous management of patients. PMID:6375845

  17. Biochemical Reversal of Aging

    NASA Astrophysics Data System (ADS)

    Ely, John T. A.

    2006-03-01

    We cite our progress on biochemical reversal of aging. However, it may be circa 2 years before we have necessary substances at low cost. Meanwhile, without them, a number of measures can be adopted providing marked improvement for the problems of aging in modern societies. For example, enzymes are needed to excrete toxins that accelerate aging; Hg is the ultimate toxin that disables all enzymes (including those needed to excrete Hg itself). Low Hg level in the urine, due to loss of excretory ability, causes the diagnosis of Hg toxicity to almost always be missed. Hg sources must be removed from the body! Another example is excess sugar; hyperglycemia decreases intracellular ascorbic acid (AA) by competitively inhibiting the insulin- mediated active transport of AA into cells. Thus, immunity is impaired by low leucocyte AA. AA is needed for new proteins in aging tissues. Humans must supplement AA; their need same as in AA-synthesizing mammals.

  18. Frontiers in polymer chemistry.

    PubMed

    Schlüter, A Dieter

    2013-01-01

    The article shows how the initial concept of Staudinger on linear macromolecules was expanded topologically by increasing the cross-section diameter of polymer chains and by introducing sheet polymers with planar rather than the commonly known linear repeat units. The two concrete projects addressed are the synthesis of dendronized and of two-dimensional polymers. It is explained how these novel macromolecules were achieved and which obstacles had to be overcome but also where these frontiers in polymer chemistry might lead to new insights in polymer science in general and novel applications in particular. The article also provides insights into analytical issues because both target macromolecules are in an extraordinarily high molar mass range and contrast/sensitivity issues can turn rather serious in particular for the two-dimensional polymers.

  19. Project SOAR (Stress on Analytical Reasoning).

    ERIC Educational Resources Information Center

    Carmichael, J. W., Jr.; And Others

    Project SOAR (Stress on Analytic Reasoning) is a pre-college summer program for natural, health, and mathematics science majors jointly developed and conducted by the Departments of Biology, Chemistry, Mathematics/Computer Science and Physics/Pre-Engineering at Xavier University of Louisiana. The program objective was to increase performance in…

  20. Biochemical Application and Laboratory Analysis of Calcium and Chloride Ions in Human Urine.

    ERIC Educational Resources Information Center

    Giulino, Vincenzo; And Others

    1988-01-01

    Presents a laboratory exercise suitable for advanced placement biology or chemistry classes. Discusses the theoretical approach, preparation and standardization of reagents, and results. Emphasizes standard analytical procedure and chelometric titration. (CW)

  1. Presidential Green Chemistry Challenge: 2009 Greener Reaction Conditions Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2009 award winner, CEM Corporation, developed a fast, automated analytical process using less toxic reagents and less energy to distinguish protein from the food adulterant, melamine.

  2. Why Teach Environmental Chemistry?

    ERIC Educational Resources Information Center

    Gardner, Marjorie H.

    1974-01-01

    Discusses the importance of teaching environmental chemistry in secondary school science classes, and outlines five examples of environmental chemistry problems that focus on major concepts of chemistry and have critical implications for human survival and well-being. (JR)

  3. Science Update: Inorganic Chemistry

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1978-01-01

    This first in a series of articles describing the state of the art of various branches of chemistry reviews inorganic chemistry, including bioinorganic, photochemistry, organometallic, and solid state chemistries. (SL)

  4. Combustion chemistry

    SciTech Connect

    Brown, N.J.

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  5. Programmed Lab Experiments for Biochemical Investigation of Quorum-Sensing Signal Molecules in Rhizospheric Soil Bacteria

    ERIC Educational Resources Information Center

    Nievas, Fiorela L.; Bogino, Pablo C.; Giordano, Walter

    2016-01-01

    Biochemistry courses in the Department of Molecular Biology at the National University of Río Cuarto, Argentina, are designed for undergraduate students in biology, microbiology, chemistry, agronomy, and veterinary medicine. Microbiology students typically have previous coursework in general, analytical, and organic chemistry. Programmed sequences…

  6. Science Update: Inorganic Chemistry.

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1981-01-01

    Describes areas of inorganic chemistry which have changed dramatically in the past year or two, including photochemistry, electrochemistry, organometallic complexes, inorganic reaction theory, and solid state chemistry. (DS)

  7. Rapamycin regulates biochemical metabolites

    PubMed Central

    Tucci, Paola; Porta, Giovanni; Agostini, Massimiliano; Antonov, Alexey; Garabadgiu, Alexander Vasilievich; Melino, Gerry; Willis, Anne E

    2013-01-01

    The mammalian target of rapamycin (mTOR) kinase is a master regulator of protein synthesis that couples nutrient sensing to cell growth, and deregulation of this pathway is associated with tumorigenesis. p53, and its less investigated family member p73, have been shown to interact closely with mTOR pathways through the transcriptional regulation of different target genes. To investigate the metabolic changes that occur upon inhibition of the mTOR pathway and the role of p73 in this response primary mouse embryonic fibroblast from control and TAp73−/− were treated with the macrocyclic lactone rapamycin. Extensive gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS/MS) analysis were used to obtain a rapamycin-dependent global metabolome profile from control or TAp73−/− cells. In total 289 metabolites involved in selective pathways were identified; 39 biochemical metabolites were found to be significantly altered, many of which are known to be associated with the cellular stress response. PMID:23839040

  8. 40 CFR 158.355 - Enforcement analytical method.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Enforcement analytical method. 158.355 Section 158.355 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Product Chemistry § 158.355 Enforcement analytical method....

  9. 40 CFR 158.355 - Enforcement analytical method.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Enforcement analytical method. 158.355 Section 158.355 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Product Chemistry § 158.355 Enforcement analytical method....

  10. 40 CFR 158.355 - Enforcement analytical method.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Enforcement analytical method. 158.355 Section 158.355 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Product Chemistry § 158.355 Enforcement analytical method....

  11. 40 CFR 158.355 - Enforcement analytical method.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Enforcement analytical method. 158.355 Section 158.355 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Product Chemistry § 158.355 Enforcement analytical method....

  12. 40 CFR 136.6 - Method modifications and analytical requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... person or laboratory using a test procedure (analytical method) in this Part. (2) Chemistry of the method... requirements. 136.6 Section 136.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... interest in an environmental sample. (3) Determinative technique means the way in which an analyte...

  13. Cholesterol oxidase: sources, physical properties and analytical applications.

    PubMed

    MacLachlan, J; Wotherspoon, A T; Ansell, R O; Brooks, C J

    2000-04-01

    Since Flegg (H.M. Flegg, An investigation of the determination of serum cholesterol by an enzymatic method, Ann. Clin. Biochem. 10 (1973) 79-84) and Richmond (W. Richmond, The development of an enzymatic technique for the assay of cholesterol in biological fluids, Scand. J. clin. Lab. Invest. 29 (1972) 25; W. Richmond, Preparation and properties of a bacterial cholesterol oxidase from Nocardia sp. and its application to enzyme assay of total cholesterol in serum, Clinical Chemistry 19 (1973) 1350-1356) first illustrated the suitability of cholesterol oxidase (COD) for the analysis of serum cholesterol, COD has risen to become the most widely used enzyme in clinical laboratories with the exception of glucose oxidase (GOD). The use is widespread because assays incorporating the enzyme are extremely simple, specific, and highly sensitive and thus offer distinct advantages over the Liebermann-Burchard analytical methodologies which employ corrosive reagents and can be prone to unreliable results due to interfering substances such as bilirubin. Individuals can now readily determine their own serum cholesterol levels with a simple disposable test kit. This review discusses COD in some detail and includes the topics: (1) The variety of bacterial sources available; (2) The various extraction/purification protocols utilised in order to obtain protein of sufficient clarification (purity) for use in food/clinical analysis; (3) Significant differences in the properties of the individual enzymes; (4) Substrate specificities of the various enzymes; (5) Examples of biological assays which have employed cholesterol oxidase as an integral part of the analysis, and the various assay protocols; (6) New steroidal products of COD. This review is not a comprehensive description of published work, but is intended to provide an account of recent and current research, and should promote further interest in the application of enzymes to analytical selectivity.

  14. Biochemical and Hematologic Reference Intervals for Aged Xenopus laevis in a Research Colony.

    PubMed

    Chang, Angela G; Hu, Jing; Lake, Elizabeth; Bouley, Donna M; Johns, Jennifer L

    2015-09-01

    Xenopus laevis, the African clawed frog, is commonly used in developmental and toxicology research studies. Little information is available on aged X. laevis; however, with the complete mapping of the genome and the availability of transgenic animal models, the number of aged animals in research colonies is increasing. The goals of this study were to obtain biochemical and hematologic parameters to establish reference intervals for aged X. laevis and to compare results with those from young adult X. laevis. Blood samples were collected from laboratory reared, female frogs (n = 52) between the ages of 10 and 14 y. Reference intervals were generated for 30 biochemistry analytes and full hematologic analysis; these data were compared with prior results for young X. laevis from the same vendor. Parameters that were significantly higher in aged compared with young frogs included calcium, calcium:phosphorus ratio, total protein, albumin, HDL, amylase, potassium, CO2, and uric acid. Parameters found to be significantly lower in aged frogs included glucose, AST, ALT, cholesterol, BUN, BUN:creatinine ratio, phosphorus, triglycerides, LDL, lipase, sodium, chloride, sodium:potassium ratio, and anion gap. Hematology data did not differ between young and old frogs. These findings indicate that chemistry reference intervals for young X. laevis may be inappropriate for use with aged frogs.

  15. Biochemical and Hematologic Reference Intervals for Aged Xenopus laevis in a Research Colony

    PubMed Central

    Chang, Angela G; Hu, Jing; Lake, Elizabeth; Bouley, Donna M; Johns, Jennifer L

    2015-01-01

    Xenopus laevis, the African clawed frog, is commonly used in developmental and toxicology research studies. Little information is available on aged X. laevis; however, with the complete mapping of the genome and the availability of transgenic animal models, the number of aged animals in research colonies is increasing. The goals of this study were to obtain biochemical and hematologic parameters to establish reference intervals for aged X. laevis and to compare results with those from young adult X. laevis. Blood samples were collected from laboratory reared, female frogs (n = 52) between the ages of 10 and 14 y. Reference intervals were generated for 30 biochemistry analytes and full hematologic analysis; these data were compared with prior results for young X. laevis from the same vendor. Parameters that were significantly higher in aged compared with young frogs included calcium, calcium:phosphorus ratio, total protein, albumin, HDL, amylase, potassium, CO2, and uric acid. Parameters found to be significantly lower in aged frogs included glucose, AST, ALT, cholesterol, BUN, BUN:creatinine ratio, phosphorus, triglycerides, LDL, lipase, sodium, chloride, sodium:potassium ratio, and anion gap. Hematology data did not differ between young and old frogs. These findings indicate that chemistry reference intervals for young X. laevis may be inappropriate for use with aged frogs. PMID:26424243

  16. Trace Chemistry

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Whitefield, Philip

    1999-01-01

    The goals of the trace chemistry group were to identify the processes relevant to aerosol and aerosol precursor formation occurring within aircraft gas turbine engines; that is, within the combustor, turbine, and nozzle. The topics of discussion focused on whether the chemistry of aerosol formation is homogeneous or heterogeneous; what species are important for aerosol and aerosol precursor formation; what modeling/theoretical activities to pursue; what experiments to carry out that both support modeling activities and elucidate fundamental processes; and the role of particulates in aerosol and aerosol precursor formation. The consensus of the group was that attention should be focused on SO2, SO3, and aerosols. Of immediate concern is the measurement of the concentration of the species SO3, SO2, H2SO4 OH, HO2, H2O2, O, NO, NO2, HONO, HNO3, CO, and CO2 and particulates in various engines, both those currently in use and those in development. The recommendation was that concentration measurements should be made at both the combustor exit and the engine exit. At each location the above species were classified into one of four categories of decreasing importance, Priority I through IV, as follows: Combustor exit: Priority I species - SO3:SO2 ratio, SO3, SO2, and particulates; Priority II species: OH and O; Priority III species - NO and NO2; and Priority IV species - CO and CO2. For the Engine exit: Priority I species - SO3:SO2 ratio, SO3, SO2,H2SO4, and particulates; Priority II species: OH,HO2, H2O2, and O; Priority III species - NO, NO2, HONO, and HNO3; and Priority IV species - CO and CO2. Table I summarizes the anticipated concentration range of each of these species. For particulate matter, the quantities of interest are the number density, size distribution, and composition. In order to provide data for validating multidimensional reacting flow models, it would be desirable to make 2-D, time-resolved measurements of the concentrations of the above species and

  17. Understanding Business Analytics

    DTIC Science & Technology

    2015-01-05

    Business Analytics, Decision Analytics, Business Intelligence, Advanced Analytics, Data Science. . . to a certain degree, to label is to limit - if only... Business Analytics. 2004 2006 2008 2010 2012 2014 Figure 1: Google trending of daily searches for various analytic disciplines “The limits of my

  18. Optofluidics in bio-chemical analysis

    NASA Astrophysics Data System (ADS)

    Guo, Yunbo; Fan, Xudong

    2012-01-01

    Optofluidics organically integrates microfluidics and photonics and is an emerging technology in biological and chemical analysis. In this paper, we overview the recent studies in bio-chemical sensing applications of optofluidics. Particularly, we report the research progress in our lab in developing diverse optofluidic devices using two unique configurations: thin-walled capillary based optofluidic ring resonator (OFRR) and multi-hole capillary based optofluidic platforms. The first one has been developed to be OFRR-based label-free biosensor, microfluidic laser based intra-cavity sensors, and on-column optical detectors for micro-gas chromatography (μGC), while the second one has been developed to be optofluidic Fabry-Pérot based label-free biosensor and optofluidic Surface-Enhanced Raman Spectroscopy (SERS) biosensor. All of these devices take advantage of superior fluidic handling capability and high sensitivity, and have been used in detecting various biological and chemical analytes in either liquid or vapor phase.

  19. (Chemistry of the global atmosphere)

    SciTech Connect

    Marland, G.

    1990-09-27

    The traveler attended the conference The Chemistry of the Global Atmosphere,'' and presented a paper on the anthropogenic emission of carbon dioxide (CO{sub 2}) to the atmosphere. The conference included meetings of the International Global Atmospheric Chemistry (IGAC) programme, a core project of the International Geosphere/Biosphere Programme (IGBP) and the traveler participated in meetings on the IGAC project Development of Global Emissions Inventories'' and agreed to coordinate the working group on CO{sub 2}. Papers presented at the conference focused on the latest developments in analytical methods, modeling and understanding of atmospheric CO{sub 2}, CO, CH{sub 4}, N{sub 2}O, SO{sub 2}, NO{sub x}, NMHCs, CFCs, and aerosols.

  20. Undergraduate Chemistry Students' Perceptions of and Misconceptions about Buffers and Buffer Problems

    ERIC Educational Resources Information Center

    Orgill, MaryKay; Sutherland, Aynsley

    2008-01-01

    Both upper- and lower-level chemistry students struggle with understanding the concept of buffers and with solving corresponding buffer problems. While it might be reasonable to expect general chemistry students to struggle with this abstract concept, it is surprising that upper-level students in analytical chemistry and biochemistry continue to…

  1. Airborne chemistry: acoustic levitation in chemical analysis.

    PubMed

    Santesson, Sabina; Nilsson, Staffan

    2004-04-01

    This review with 60 references describes a unique path to miniaturisation, that is, the use of acoustic levitation in analytical and bioanalytical chemistry applications. Levitation of small volumes of sample by means of a levitation technique can be used as a way to avoid solid walls around the sample, thus circumventing the main problem of miniaturisation, the unfavourable surface-to-volume ratio. Different techniques for sample levitation have been developed and improved. Of the levitation techniques described, acoustic or ultrasonic levitation fulfils all requirements for analytical chemistry applications. This technique has previously been used to study properties of molten materials and the equilibrium shape()and stability of liquid drops. Temperature and mass transfer in levitated drops have also been described, as have crystallisation and microgravity applications. The airborne analytical system described here is equipped with different and exchangeable remote detection systems. The levitated drops are normally in the 100 nL-2 microL volume range and additions to the levitated drop can be made in the pL-volume range. The use of levitated drops in analytical and bioanalytical chemistry offers several benefits. Several remote detection systems are compatible with acoustic levitation, including fluorescence imaging detection, right angle light scattering, Raman spectroscopy, and X-ray diffraction. Applications include liquid/liquid extractions, solvent exchange, analyte enrichment, single-cell analysis, cell-cell communication studies, precipitation screening of proteins to establish nucleation conditions, and crystallisation of proteins and pharmaceuticals.

  2. Biochemical Engineering and Industrial Biotechnology.

    ERIC Educational Resources Information Center

    Moo-Young, Murray

    1986-01-01

    Describes the biochemical engineering and industrial biotechnology programs of the University of Waterloo (Ontario, Canada). Provides descriptions of graduate courses, along with a sample of current research activities. Includes a discussion of the programs' mechanisms for technology transfer. (TW)

  3. A Course in... Biochemical Engineering.

    ERIC Educational Resources Information Center

    Ng, Terry K-L.; And Others

    1988-01-01

    Describes a chemical engineering course for senior undergraduates and first year graduate students in biochemical engineering. Discusses five experiments used in the course: aseptic techniques, dissolved oxygen measurement, oxygen uptake by yeast, continuous sterilization, and cultivation of microorganisms. (MVL)

  4. Integrating Free Computer Software in Chemistry and Biochemistry Instruction: An International Collaboration

    ERIC Educational Resources Information Center

    Cedeno, David L.; Jones, Marjorie A.; Friesen, Jon A.; Wirtz, Mark W.; Rios, Luz Amalia; Ocampo, Gonzalo Taborda

    2010-01-01

    At the Universidad de Caldas, Manizales, Colombia, we used their new computer facilities to introduce chemistry graduate students to biochemical database mining and quantum chemistry calculations using freeware. These hands-on workshops allowed the students a strong introduction to easily accessible software and how to use this software to begin…

  5. Isotope and Nuclear Chemistry Division annual report, FY 1983

    SciTech Connect

    Heiken, J.H.; Lindberg, H.A.

    1984-05-01

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes.

  6. Chemistry Rocks: Redox Chemistry as a Geologic Tool.

    ERIC Educational Resources Information Center

    Burns, Mary Sue

    2001-01-01

    Applies chemistry to earth science, uses rocks in chemistry laboratories, and teaches about transition metal chemistry, oxidation states, and oxidation-reduction reactions from firsthand experiences. (YDS)

  7. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    PubMed

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  8. Analytics for Education

    ERIC Educational Resources Information Center

    MacNeill, Sheila; Campbell, Lorna M.; Hawksey, Martin

    2014-01-01

    This article presents an overview of the development and use of analytics in the context of education. Using Buckingham Shum's three levels of analytics, the authors present a critical analysis of current developments in the domain of learning analytics, and contrast the potential value of analytics research and development with real world…

  9. Let's Talk... Analytics

    ERIC Educational Resources Information Center

    Oblinger, Diana G.

    2012-01-01

    Talk about analytics seems to be everywhere. Everyone is talking about analytics. Yet even with all the talk, many in higher education have questions about--and objections to--using analytics in colleges and universities. In this article, the author explores the use of analytics in, and all around, higher education. (Contains 1 note.)

  10. Engineering Bioluminescent Proteins: Expanding their Analytical Potential

    PubMed Central

    Rowe, Laura; Dikici, Emre; Daunert, Sylvia

    2009-01-01

    Synopsis Bioluminescence has been observed in nature since the dawn of time, but now, scientists are harnessing it for analytical applications. Laura Rowe, Emre Dikici, and Sylvia Daunert of the University of Kentucky describe the origins of bioluminescent proteins and explore their uses in the modern chemistry laboratory. The cover features spectra of bioluminescent light superimposed on an image of jellyfish, which are a common source of bioluminescent proteins. Images courtesy of Emre Dikici and Shutterstock. PMID:19725502

  11. Chemistry for Potters.

    ERIC Educational Resources Information Center

    Denio, Allen A.

    1980-01-01

    Relates pottery making to chemistry by providing chemical information about clay, its origin, composition, properties, and changes that occur during firing; also describes glaze compositions, examples of redox chemistry, salt glazing, crystalline glazes, and problems in toxicity. (CS)

  12. Organometallic Chemistry of Molybdenum.

    ERIC Educational Resources Information Center

    Lucas, C. Robert; Walsh, Kelly A.

    1987-01-01

    Suggests ways to avoid some of the problems students have learning the principles of organometallic chemistry. Provides a description of an experiment used in a third-year college chemistry laboratory on molybdenum. (TW)

  13. Special Report: Brain Chemistry.

    ERIC Educational Resources Information Center

    Krassner, Michael B.

    1983-01-01

    Chemical actions in the brain result in cognitive, emotional, neuroendocrine, neuromuscular, and/or neurocirculatory effects. Developments in understanding brain chemistry are discussed, considering among others, neurotransmitter chemistry, neuropeptides, drugs and the brain, antidepressants, and actions of minor tranquilizers. (JN)

  14. Environmental chemistry: Volume A

    SciTech Connect

    Yen, T.F.

    1999-08-01

    This is an extensive introduction to environmental chemistry for engineering and chemical professionals. The contents of Volume A include a brief review of basic chemistry prior to coverage of litho, atmo, hydro, pedo, and biospheres.

  15. The greening of PCB analytical methods

    SciTech Connect

    Erickson, M.D.; Alvarado, J.S.; Aldstadt, J.H.

    1995-12-01

    Green chemistry incorporates waste minimization, pollution prevention and solvent substitution. The primary focus of green chemistry over the past decade has been within the chemical industry; adoption by routine environmental laboratories has been slow because regulatory standard methods must be followed. A related paradigm, microscale chemistry has gained acceptance in undergraduate teaching laboratories, but has not been broadly applied to routine environmental analytical chemistry. We are developing green and microscale techniques for routine polychlorinated biphenyl (PCB) analyses as an example of the overall potential within the environmental analytical community. Initial work has focused on adaptation of commonly used routine EPA methods for soils and oils. Results of our method development and validation demonstrate that: (1) Solvent substitution can achieve comparable results and eliminate environmentally less-desirable solvents, (2) Microscale extractions can cut the scale of the analysis by at least a factor of ten, (3) We can better match the amount of sample used with the amount needed for the GC determination step, (4) The volume of waste generated can be cut by at least a factor of ten, and (5) Costs are reduced significantly in apparatus, reagent consumption, and labor.

  16. Mass spectrometry. [in organic ion and biorganic chemistry and medicine

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Cox, R. E.; Derrick, P. J.

    1974-01-01

    Review of the present status of mass spectrometry in the light of pertinent recent publications spanning the period from December 1971 to January 1974. Following an initial survey of techniques, instruments, and computer applications, a sharp distinction is made between the chemistry of organic (radical-)ions and analytical applications in biorganic chemistry and medicine. The emphasis is on the chemistry of organic (radical-)ions at the expense of inorganic, organometallic, and surface ion chemistry. Biochemistry and medicine are chosen because of their contemporary importance and because of the stupendous contributions of mass spectroscopy to these fields in the past two years. In the review of gas-phase organic ion chemistry, special attention is given to studies making significant contributions to the understanding of ion chemistry.

  17. School Chemistry vs. Chemistry in Research: An Exploratory Experiment.

    ERIC Educational Resources Information Center

    Habraken, Clarisse L.; Buijs, Wim; Borkent, Hens; Ligeon, Willy; Wender, Harry; Meijer, Marijn

    2001-01-01

    Reports on a study exploring why students are not studying chemistry. Three groups of graduating high school students and their chemistry teachers stayed at a research institute working on molecular modeling and wrote essays on school chemistry versus chemistry in research. Concludes that school chemistry does not convey today's chemistry in…

  18. Chemistry on Stamps.

    ERIC Educational Resources Information Center

    Schreck, James O.

    1986-01-01

    Suggests how postage stamps can be incorporated into chemistry teaching. Categories considered include emergence of chemistry as a science, metric system, atoms (and molecules and ions), stoichiometry, energy relationships in chemical systems, chemical bonding, nuclear chemistry, biochemistry, geochemistry, matter (gases, liquids, and solids),…

  19. Green Chemistry and Education.

    ERIC Educational Resources Information Center

    Hjeresen, Dennis L.; Schutt, David L.; Boese, Janet M.

    2000-01-01

    Many students today are profoundly interested in the sustainability of their world. Introduces Green Chemistry and its principles with teaching materials. Green Chemistry is the use of chemistry for pollution prevention and the design of chemical products and processes that are environmentally benign. (ASK)

  20. Teaching School Chemistry.

    ERIC Educational Resources Information Center

    Waddington, D. J., Ed.

    This eight-chapter book is intended for use by chemistry teachers, curriculum developers, teacher educators, and other key personnel working in the field of chemical education. The chapters are: (1) "The Changing Face of Chemistry" (J. A. Campbell); (2) "Curriculum Innovation in School Chemistry" (R. B. Ingel and A. M.…

  1. Chemistry and Art.

    ERIC Educational Resources Information Center

    Berry, Martyn

    1999-01-01

    Describes a Chemistry and Art project developed for secondary students and teachers sponsored by the National Gallery and The Royal Society of Chemistry in the United Kingdom. Discusses aspects of the techniques used in creating five paintings as well as the chemistry involved in their making, deterioration, conservation, and restoration.…

  2. Chemistry as General Education

    ERIC Educational Resources Information Center

    Tro, Nivaldo J.

    2004-01-01

    The efficacy of different science and chemistry courses for science-major and non-major students, and the question of chemistry's contribution to general education are evaluated. Chemistry and science curriculum are too profession- and consumer-oriented, and to overcome this problem, it is advised that all disciplines must incorporate the major…

  3. Mechanisms in Photographic Chemistry

    ERIC Educational Resources Information Center

    Sahyun, M. R. V.

    1974-01-01

    Reviews current research interests in photographic chemistry, involving two proposed models for spectral sensitization of crystal defects and impurities in the photolysis reactivity and the mechanisms of development and complexation. Establishment of photographic chemistry in a chemistry curriculum is recommended. (CC)

  4. Chemistry as General Education

    NASA Astrophysics Data System (ADS)

    Tro, Nivaldo J.

    2004-01-01

    Science courses are common in most general education requirements. This paper addresses the role of chemistry classes in meeting these requirements. Chemistry professors have for many years questioned the appropriateness of the standard introductory chemistry course as general education, resulting in the growing popularity of specialized non-majors courses. I suggest that current non-major chemistry courses cover too much consumer chemistry and ignore some of the big contributions of chemistry to human knowledge. Majors chemistry courses, while they prepare students for majoring in science, do not address these issues either. Consequently, chemistry courses are often an ineffective and unpopular way to meet general education science requirements. Part of the reason for this dilemma is the lack of chemists who address the contributions of chemistry to human knowledge in general. I propose that faculty at liberal arts colleges engage in this important task and that non-majors chemistry textbooks incorporate questions and issues that relate chemistry to a broader view of human knowledge. If these things happen, perhaps chemistry courses will become more effective as general education.

  5. Biochemical Control of Marine Fouling

    DTIC Science & Technology

    1988-01-14

    amino acid and catecholamine analyses by ion-exchange chromatography, and determination with ninhydrin , performed in collaboration with Dr. Herbert...attempted to design and test new, potentially specific (nonhazardous, environmentally safe) biochemical inhibitors of the recruitment and fouling...reaction- sequences. In this effort, we have concentrated first on the design and testing of agents which specifically block the larval receptors and

  6. Chemistry and Physics of Analyte Identification in Integrated Nanosensors

    DTIC Science & Technology

    2009-02-05

    points," / Differential Geometry 26 (1987), pp. 285-314. 12 [7] S. Haker , G. Sapiro, and A. Tannenbaum, "Knowledge-based segmentation of SAR data with...learned priors," IEEE Trans. Image Processing, vol. 9, pp. 298-302, 2000. [8] S. Haker , L. Zhu, S. Angenent, and A. Tannenbaum, "Optimal mass...transport for registration and warping" Int. Journal Computer Vision, vol. 60, pp. 225-240, 2004. [9] S. Haker , G. Sapiro, A. Tannenbaum, and D. Washburn

  7. Sampling Error in a Particulate Mixture: An Analytical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Kratochvil, Byron

    1980-01-01

    Presents an undergraduate experiment demonstrating sampling error. Selected as the sampling system is a mixture of potassium hydrogen phthalate and sucrose; using a self-zeroing, automatically refillable buret to minimize titration time of multiple samples and employing a dilute back-titrant to obtain high end-point precision. (CS)

  8. Real-time fluorescence imaging in analytical chemistry

    NASA Astrophysics Data System (ADS)

    Johansson, Jonas; Johansson, Thomas; Nilsson, Stefan

    1996-01-01

    A detection system for capillary electroseparation methods based on fluorescence imaging has been developed. In capillary electrophoresis (CE) the detection unit is normally placed near the outlet part of the fused silica column where a window is opened in the coating and the fluorescence is recorded over a short distance to maintain a high resolution. Our method employs fluorescence imaging of the whole column during separation of various samples. The column is positioned in a straight holder and the outer protective coating of the column is removed to get optical access to the sample. An excimer/dye laser is used for excitation of the sample and the fluorescence is recorded with an image-intensified CCD detector and displayed in real-time. The CCD detector is read out with a rate of about 5 frames per second and the corresponding full fluorescence line profiles along the column are displayed. Thus, full electropherogram are displayed showing the propagation and gradual separation of the sample fractions. The main advantage of this method is that parameters such as sample concentrations, diffusion, wall interaction and sample-to-sample interaction can be studied in real-time over the full length of the column, which is crucial for efficient system optimization. Among several applications, isoelectric focusing, isotachophoresis and enzyme-substrate interactions can be mentioned. Methods for increasing the collection efficiency, such as fiber optic arrays, have been investigated as well as different methods for computer-assisted signal integration and filtering. A fiber array consisting of 500 optical quartz fibers has been constructed that gives a substantial improvement of the optical collection efficiency.

  9. The chemistry of chromium and some resulting analytical problems.

    PubMed Central

    Shupack, S I

    1991-01-01

    Chromium, named for its many-colored compounds, exists in the oxidation states of -2 to +6 inclusively. The compounds exhibit a wide range of geometries including square planar, tetrahedral, octahedral, and various distorted geometries. Chromium is found in nature principally as the chromite ore FeCr2O4 in which chromium is in the +3 state. The existence of a particular oxidation state is dependent on many factors including pH, redox potentials, and kinetics. Thermodynamically, +3 and +2 are the most stable states, while the +3 and +6 oxidation states are the most common ones found in aqueous solution. Kinetically, chromium +3 is substitutionally inert: for water exchange k(sec-1) = 2.5 x 10(-6), due to the presence of the half-filled d(t2g)3.4A2g state. On the other hand, protonation/deprotonation is quite rapid. Polymerization is very slow but is promoted at higher pHs; acid cleavage of the protonated oligomers is also quite slow. Chromium +6 as the chromate ion is strongly oxidizing at low pHs and less so in basic solution. The chromate ion does form some polyacids and polyanions. These factors must be considered in analyzing samples for total chromium and for the amounts of each oxidation state. Images FIGURE 1. PMID:1935853

  10. On the Frontier: Analytical Chemistry and the Occurrence of ...

    EPA Pesticide Factsheets

    While environmental scientists focused on industrial and agricultural pollutants (e.g. PCBs, volatile organics, dioxins, benzene, DDT) in the 1970’s and 1980’s, overlooked was the subtle connection between personal human activities, such as drug consumption, and the subsequent release of anthropogenic drugs and drug metabolites into the natural environment. There was evidence of this possible connection nearly 30 years ago when Garrison et al. (1976) reported the detection of clofibric acid (the bioactive metabolite from a series of serum triglyceride-lowering drugs) in a groundwater reservoir that had been recharged with treated wastewater.(Garrison et al. 1976) A year later Hignite and Azarnoff (1977) reported finding aspirin, caffeine, and nicotine in wastewater effluent, and then Watts et al. (1983) reported the presence of three pharmaceuticals (erythromycin, tetracycline, and theophylline), bisphenol A and other suspected endocrine disrupting compounds (EDCs) in a river water sample.(Hignite and Azarnoff, 1977; Watts et al. 1983) Following those three journal articles there, nothing was published for nearly a decade regarding the drug-human-environmental connection. Renewed interest in the subject was reported by Daughton and Ternes’s seminal and authoritative work published in 1999.(Daughton and Ternes, 1999) Since the 1999 publication of Daughton and Ternes’s, the number of publications from the scientific community regarding the human drug c

  11. Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 4, Organic methods

    SciTech Connect

    Not Available

    1993-08-01

    This interim notice covers the following: extractable organic halides in solids, total organic halides, analysis by gas chromatography/Fourier transform-infrared spectroscopy, hexadecane extracts for volatile organic compounds, GC/MS analysis of VOCs, GC/MS analysis of methanol extracts of cryogenic vapor samples, screening of semivolatile organic extracts, GPC cleanup for semivolatiles, sample preparation for GC/MS for semi-VOCs, analysis for pesticides/PCBs by GC with electron capture detection, sample preparation for pesticides/PCBs in water and soil sediment, report preparation, Florisil column cleanup for pesticide/PCBs, silica gel and acid-base partition cleanup of samples for semi-VOCs, concentrate acid wash cleanup, carbon determination in solids using Coulometrics` CO{sub 2} coulometer, determination of total carbon/total organic carbon/total inorganic carbon in radioactive liquids/soils/sludges by hot persulfate method, analysis of solids for carbonates using Coulometrics` Model 5011 coulometer, and soxhlet extraction.

  12. Analytical Chemistry of 2,4,6-Trinitrotoluene

    DTIC Science & Technology

    1980-10-01

    ref 14). A mixture of TNT, pentaerythritol tetranitrate ( PETN ), and wax was analyzed by solvent extractions followed by titrimetry using titanous...samples of TNT, TNB, tetryl, RDX, HMX, and PETN (ref 36). The differential thermal analysis thermograms of TNT showing varying rapidity of heat...ref 79). The IR was used for the identification of explosive residues (TNT, RDX, PETN ) detected at the scene of criminal bombings (refs 90, 132

  13. Analytical Chemistry Laboratory progress report for FY 1992

    SciTech Connect

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Boparai, A.S.; Bass, D.A.

    1992-12-01

    The ACL activities covered IFR fuel reprocessing, corium-concrete interactions, environmental samples, wastes, WIPP support, Advanced Photon Source, H-Tc superconductors, EBWR vessel, soils, illegal drug detection, quality control, etc.

  14. An advanced search engine for patent analytics in medicinal chemistry.

    PubMed

    Pasche, Emilie; Gobeill, Julien; Teodoro, Douglas; Gaudinat, Arnaud; Vishnykova, Dina; Lovis, Christian; Ruch, Patrick

    2012-01-01

    Patent collections contain an important amount of medical-related knowledge, but existing tools were reported to lack of useful functionalities. We present here the development of TWINC, an advanced search engine dedicated to patent retrieval in the domain of health and life sciences. Our tool embeds two search modes: an ad hoc search to retrieve relevant patents given a short query and a related patent search to retrieve similar patents given a patent. Both search modes rely on tuning experiments performed during several patent retrieval competitions. Moreover, TWINC is enhanced with interactive modules, such as chemical query expansion, which is of prior importance to cope with various ways of naming biomedical entities. While the related patent search showed promising performances, the ad-hoc search resulted in fairly contrasted results. Nonetheless, TWINC performed well during the Chemathlon task of the PatOlympics competition and experts appreciated its usability.

  15. The use of biochemical methods in extraterrestrial life detection

    NASA Astrophysics Data System (ADS)

    McDonald, Gene

    2006-08-01

    Instrument development for in situ extraterrestrial life detection focuses primarily on the ability to distinguish between biological and non-biological material, mostly through chemical analysis for potential biosignatures (e.g., biogenic minerals, enantiomeric excesses). In constrast, biochemical analysis techniques commonly applied to Earth life focus primarily on the exploration of cellular and molecular processes, not on the classification of a given system as biological or non-biological. This focus has developed because of the relatively large functional gap between life and non-life on Earth today. Life on Earth is very diverse from an environmental and physiological point of view, but is highly conserved from a molecular point of view. Biochemical analysis techniques take advantage of this similarity of all terrestrial life at the molecular level, particularly through the use of biologically-derived reagents (e.g., DNA polymerases, antibodies), to enable analytical methods with enormous sensitivity and selectivity. These capabilities encourage consideration of such reagents and methods for use in extraterrestrial life detection instruments. The utility of this approach depends in large part on the (unknown at this time) degree of molecular compositional differences between extraterrestrial and terrestrial life. The greater these differences, the less useful laboratory biochemical techniques will be without significant modification. Biochemistry and molecular biology methods may need to be "de-focused" in order to produce instruments capable of unambiguously detecting a sufficiently wide range of extraterrestrial biochemical systems. Modern biotechnology tools may make that possible in some cases.

  16. Multimedia Analysis plus Visual Analytics = Multimedia Analytics

    SciTech Connect

    Chinchor, Nancy; Thomas, James J.; Wong, Pak C.; Christel, Michael; Ribarsky, Martin W.

    2010-10-01

    Multimedia analysis has focused on images, video, and to some extent audio and has made progress in single channels excluding text. Visual analytics has focused on the user interaction with data during the analytic process plus the fundamental mathematics and has continued to treat text as did its precursor, information visualization. The general problem we address in this tutorial is the combining of multimedia analysis and visual analytics to deal with multimedia information gathered from different sources, with different goals or objectives, and containing all media types and combinations in common usage.

  17. The EPOS Automated Selective Chemistry Analyzer evaluated.

    PubMed

    Moses, G C; Lightle, G O; Tuckerman, J F; Henderson, A R

    1986-01-01

    We evaluated the analytical performance of the EPOS (Eppendorf Patient Oriented System) Automated Selective Chemistry Analyzer, using the following tests for serum analytes: alanine and aspartate aminotransferases, lactate dehydrogenase, creatine kinase, gamma-glutamyltransferase, alkaline phosphatase, and glucose. Results from the EPOS correlated well with those from comparison instruments (r greater than or equal to 0.990). Precision and linearity limits were excellent for all tests; linearity of the optical and pipetting systems was satisfactory. Reagent carryover was negligible. Sample-to-sample carryover was less than 1% for all tests, but only lactate dehydrogenase was less than the manufacturer's specified 0.5%. Volumes aspirated and dispensed by the sample and reagent II pipetting systems differed significantly from preset values, especially at lower settings; the reagent I system was satisfactory at all volumes tested. Minimal daily maintenance and an external data-reduction system make the EPOS a practical alternative to other bench-top chemistry analyzers.

  18. The Chemistry of Flammable Gas Generation

    SciTech Connect

    ZACH, J.J.

    2000-10-30

    The document collects information from field instrumentation, laboratory tests, and analytical models to provide a single source of information on the chemistry of flammable gas generation at the Hanford Site. It considers the 3 mechanisms of formation: radiolysis, chemical reactions, and thermal generation. An assessment of the current models for gas generation is then performed. The results are that the various phenomena are reasonably understood and modeled compared to field data.

  19. Nonequilibrium chemistry boundary layer integral matrix procedure

    NASA Technical Reports Server (NTRS)

    Tong, H.; Buckingham, A. C.; Morse, H. L.

    1973-01-01

    The development of an analytic procedure for the calculation of nonequilibrium boundary layer flows over surfaces of arbitrary catalycities is described. An existing equilibrium boundary layer integral matrix code was extended to include nonequilibrium chemistry while retaining all of the general boundary condition features built into the original code. For particular application to the pitch-plane of shuttle type vehicles, an approximate procedure was developed to estimate the nonequilibrium and nonisentropic state at the edge of the boundary layer.

  20. Analyticity without Differentiability

    ERIC Educational Resources Information Center

    Kirillova, Evgenia; Spindler, Karlheinz

    2008-01-01

    In this article we derive all salient properties of analytic functions, including the analytic version of the inverse function theorem, using only the most elementary convergence properties of series. Not even the notion of differentiability is required to do so. Instead, analytical arguments are replaced by combinatorial arguments exhibiting…

  1. Plasma biochemical and PCV ranges for healthy, wild, immature hawksbill (Eretmochelys imbricata) sea turtles.

    PubMed

    Whiting, S D; Guinea, M L; Fomiatti, K; Flint, M; Limpus, C J

    2014-06-14

    In recent years, the use of blood chemistry as a diagnostic tool for sea turtles has been demonstrated, but much of its effectiveness relies on reference intervals. The first comprehensive blood chemistry values for healthy wild hawksbill (Eretmochelys imbricata) sea turtles are presented. Nineteen blood chemistry analytes and packed cell volume were analysed for 40 clinically healthy juvenile hawksbill sea turtles captured from a rocky reef habitat in northern Australia. We used four statistical approaches to calculate reference intervals and to investigate their use with non-normal distributions and small sample sizes, and to compare upper and lower limits between methods. Eleven analytes were correlated with curved carapace length indicating that body size should be considered when designing future studies and interpreting analyte values.

  2. Label-free optical resonant sensors for biochemical applications

    NASA Astrophysics Data System (ADS)

    Ciminelli, Caterina; Campanella, Clarissa Martina; Dell'Olio, Francesco; Campanella, Carlo Edoardo; Armenise, Mario Nicola

    2013-03-01

    For a number of years, the scientific community has been paying growing attention to the monitoring and enhancement of public health and the quality of life through the detection of all dangerous agents for the human body, including gases, proteins, virus, and bacterial agents. When these agents are detected through label-free biochemical sensors, the molecules are not modified structurally or functionally by adding fluorescent or radioactive dyes. This work focuses on label-free optical ring resonator-based configurations suited for bio-chemical sensing, highlighting their physical aspects and specific applications. Resonant wavelength shift and the modal splitting occurring when the analyte interacts with microresonant structures are the two major physical aspects analyzed in this paper. Competitive optical platforms proposed in the literature are also illustrated together with their properties and performance.

  3. [Progress in noninvasive biochemical examination by near infrared spectroscopy].

    PubMed

    Ding, Hai-quan; Lu, Qi-peng; Peng, Zhong-qi; Chen, Xing-dan

    2010-08-01

    In the early nineties of last century, great importance had been gradually attached to the potential of near-infrared spectroscopy (NIRS) in the human body noninvasive biochemical examination. However, the human body is extremely complex. Although research teams have made some achievements in experimental simulations and in-vitro analysis, there is still no substantive breakthrough in clinical application now. The present paper discusses the key problems which prevent NIRS from achieving human noninvasive clinical biochemical examination, such as weak signal, the interference of human tissue background and the problem of blood volume change. The thoughts of noninvasive biomedical examination using NIRS are divided into two categories in terms of analytical method, that is classical near-infrared analysis and issue background interference elimination analysis. This paper also introduces in detail the current status of the two categories in the world, and believes that the second category is more promising to be successful in clinical application under the existing conditions.

  4. First-principles quantum chemistry in the life sciences.

    PubMed

    van Mourik, Tanja

    2004-12-15

    The area of computational quantum chemistry, which applies the principles of quantum mechanics to molecular and condensed systems, has developed drastically over the last decades, due to both increased computer power and the efficient implementation of quantum chemical methods in readily available computer programs. Because of this, accurate computational techniques can now be applied to much larger systems than before, bringing the area of biochemistry within the scope of electronic-structure quantum chemical methods. The rapid pace of progress of quantum chemistry makes it a very exciting research field; calculations that are too computationally expensive today may be feasible in a few months' time! This article reviews the current application of 'first-principles' quantum chemistry in biochemical and life sciences research, and discusses its future potential. The current capability of first-principles quantum chemistry is illustrated in a brief examination of computational studies on neurotransmitters, helical peptides, and DNA complexes.

  5. Interferometric biochemical and chemical sensors

    NASA Astrophysics Data System (ADS)

    Gauglitz, Guenter; Brecht, Andreas; Kraus, Gerolf

    1995-09-01

    Interferometric principles have gained wide acceptance in the field of chemical and biochemical sensing. Reflectometric interference spectrometry sensors using white light multiple reflections at thin layers, structures of polymers, or monolayers of biochemicals are discussed in a survey. These are compared to other techniques, especially methods using surface plasmon resonance and grating couplers. Applications in the area of environmental monitoring in public safety are given, demonstrating the results for halogenated hydrocarbons in air and water as well as pesticides in ground water. Calibration curves, limits of decision, of detection, and of determination are specified and discussed with respect to EU limits. The application of multivariate data analysis is considered including artificial neuronal networks for multisensor systems and referencing in the case of gas sensors.

  6. Art, Meet Chemistry; Chemistry, Meet Art: Case Studies, Current Literature, and Instrumental Methods Combined to Create a Hands-On Experience for Nonmajors and Instrumental Analysis Students

    ERIC Educational Resources Information Center

    Nivens, Delana A.; Padgett, Clifford W.; Chase, Jeffery M.; Verges, Katie J.; Jamieson, Deborah S.

    2010-01-01

    Case studies and current literature are combined with spectroscopic analysis to provide a unique chemistry experience for art history students and to provide a unique inquiry-based laboratory experiment for analytical chemistry students. The XRF analysis method was used to demonstrate to nonscience majors (art history students) a powerful…

  7. Hematologic and Biochemical Biologic Variation in Laboratory Cats

    PubMed Central

    Trumel, Catherine; Monzali, Céline; Geffré, Anne; Concordet, Didier V; Hourqueig, Louise; Braun, Jean-Pierre D; Bourgès-Abella, Nathalie H

    2016-01-01

    The biologic variation associated with a clinical pathology result is important to consider before reference intervals (RI) are used. Most available RI are population-based RI, in which the analytical variability, interindividual variability, and intraindividual variability are confounded. In addition, when the intraindividual variability is considerably less than the interindividual variability, a population-based RI is insufficiently sensitive to detect changes in a subject over time. Here we determined the biologic variation and reference change value (RCV) of hematologic and biochemical variables in laboratory cats. Blood specimens from 14 (7 females and 7 males) overnight-fasted laboratory cats sampled 7 times (days 1, 2, 7, 14, 31, 42, and 100) were analyzed regarding hematology and biochemistry variables. For each variable, analytical, intraindividual, and interindividual coefficients of variation were estimated prior to calculation of the index of individuality and the RCV. RBC variables (count, Hgb, Hct, MCV, MCH, MCHC, and RBC distribution width) and 5 biochemical analytes (cholesterol, creatinine, triglycerides, ALP, and calcium) exhibited marked individuality, therefore indicating that subject-based reference intervals or RCV would be preferable when monitoring these variables in laboratory cats. Population-based RI were shown to be adequate for glucose and sodium, and both types of population and individual RI were similarly efficient for albumin, total protein, urea, ALT, AST, creatine kinase, chloride, carbon dioxide, iron, magnesium, inorganic phosphate, and potassium and reticulocyte, WBC, neutrophil, lymphocyte, monocyte, eosinophil, and platelet counts. The RCV determined in the present study provide a valuable tool for monitoring hematologic and biochemical variables in healthy laboratory cats. PMID:27657703

  8. Integration of electrochemistry in micro-total analysis systems for biochemical assays: recent developments.

    PubMed

    Xu, Xiaoli; Zhang, Song; Chen, Hui; Kong, Jilie

    2009-11-15

    Micro-total analysis systems (microTAS) integrate different analytical operations like sample preparation, separation and detection into a single microfabricated device. With the outstanding advantages of low cost, satisfactory analytical efficiency and flexibility in design, highly integrated and miniaturized devices from the concept of microTAS have gained widespread applications, especially in biochemical assays. Electrochemistry is shown to be quite compatible with microanalytical systems for biochemical assays, because of its attractive merits such as simplicity, rapidity, high sensitivity, reduced power consumption, and sample/reagent economy. This review presents recent developments in the integration of electrochemistry in microdevices for biochemical assays. Ingenious microelectrode design and fabrication methods, and versatility of electrochemical techniques are involved. Practical applications of such integrated microsystem in biochemical assays are focused on in situ analysis, point-of-care testing and portable devices. Electrochemical techniques are apparently suited to microsystems, since easy microfabrication of electrochemical elements and a high degree of integration with multi-analytical functions can be achieved at low cost. Such integrated microsystems will play an increasingly important role for analysis of small volume biochemical samples. Work is in progress toward new microdevice design and applications.

  9. Green Chemistry Pedagogy

    NASA Astrophysics Data System (ADS)

    Kolopajlo, Larry

    2017-02-01

    This chapter attempts to show how the practice of chemistry teaching and learning is enriched by the incorporation of green chemistry (GC) into lectures and labs. To support this viewpoint, evidence from a wide range of published papers serve as a cogent argument that GC attracts and engages both science and nonscience students, enhances chemistry content knowledge, and improves the image of the field, while preparing the world for a sustainable future. Published pedagogy associated with green and sustainable chemistry is critically reviewed and discussed.

  10. Connecting Algebra and Chemistry.

    ERIC Educational Resources Information Center

    O'Connor, Sean

    2003-01-01

    Correlates high school chemistry curriculum with high school algebra curriculum and makes the case for an integrated approach to mathematics and science instruction. Focuses on process integration. (DDR)

  11. USSR Report, Chemistry.

    DTIC Science & Technology

    2007-11-02

    Industry, Coal Gasification , Electrochemistry, Inorganic Compounds, Nitrogen Compounds, Organophosphorus Compounds, Petroleum Processing Technology, Pharmacology and Toxicology, Polymers and Polymerization and, Radiation Chemistry.

  12. National Bioenergy Center, Biochemical Platform Integration Project: Quarterly Update, Summer 2011 (Newsletter)

    SciTech Connect

    Not Available

    2011-09-01

    Summer 2011 issue of the National Bioenergy Center Biochemical Platform Integration Project quarterly update. Issue topics: evaluating new analytical techniques for measuring soluble sugars in the liquid portion of biomass hydrolysates, and measurement of the fraction of insoluble solids in biomass slurries.

  13. Hanford analytical services quality assurance requirements documents

    SciTech Connect

    Hyatt, J.E.

    1997-09-25

    Hanford Analytical Services Quality Assurance Requirements Document (HASQARD) is issued by the Analytical Services, Program of the Waste Management Division, US Department of Energy (US DOE), Richland Operations Office (DOE-RL). The HASQARD establishes quality requirements in response to DOE Order 5700.6C (DOE 1991b). The HASQARD is designed to meet the needs of DOE-RL for maintaining a consistent level of quality for sampling and field and laboratory analytical services provided by contractor and commercial field and laboratory analytical operations. The HASQARD serves as the quality basis for all sampling and field/laboratory analytical services provided to DOE-RL through the Analytical Services Program of the Waste Management Division in support of Hanford Site environmental cleanup efforts. This includes work performed by contractor and commercial laboratories and covers radiological and nonradiological analyses. The HASQARD applies to field sampling, field analysis, and research and development activities that support work conducted under the Hanford Federal Facility Agreement and Consent Order Tri-Party Agreement and regulatory permit applications and applicable permit requirements described in subsections of this volume. The HASQARD applies to work done to support process chemistry analysis (e.g., ongoing site waste treatment and characterization operations) and research and development projects related to Hanford Site environmental cleanup activities. This ensures a uniform quality umbrella to analytical site activities predicated on the concepts contained in the HASQARD. Using HASQARD will ensure data of known quality and technical defensibility of the methods used to obtain that data. The HASQARD is made up of four volumes: Volume 1, Administrative Requirements; Volume 2, Sampling Technical Requirements; Volume 3, Field Analytical Technical Requirements; and Volume 4, Laboratory Technical Requirements. Volume 1 describes the administrative requirements

  14. Identifying Deficiencies in the Environmental Chemistry Educational Literature

    NASA Astrophysics Data System (ADS)

    Hoa Tran, Thi; Bigger, Stephen W.; Kruger, Tony; Orbell, John D.; Buddhadasa, Saman; Barone, Sebastian

    2001-12-01

    Saman Buddhadasa and Sebastian Barone Australian Government Analytical Laboratories, South Melbourne, Victoria 3205, Australia A survey of environmental chemistry laboratory experiments published during the period 1969-2000 in the mainstream chemical education journals, The Journal of Chemical Education and Education in Chemistry, was conducted. The experiments were categorized as being related to the environmental domains of air, water, or soil. Using the same timeframe, a similar survey was carried out for commonly used environmental chemistry textbooks, assessing the relative number of pages devoted to the same areas. The data obtained from both analyses indicate that the area of soil is seriously underrepresented in the environmental chemistry educational literature. This suggests a need to develop more environmental chemistry educational material (in the form of published laboratory experiments and textbook material) related to soil chemistry and soil contamination. To provide a basis for optimizing the level of integration in the design of such experiments, the publications surveyed were categorized according to how they integrate the four traditional subfields of chemistry --organic, inorganic, physical, and analytical.

  15. Conference Report: Analytical challenges in the qualification and validation of pharmacodynamic biomarkers.

    PubMed

    Houghton, Richard; Chamberlain, Joseph

    2011-05-01

    This 1-day workshop, held in association with the Royal Society of Chemistry Analytical Biosciences Group, discussed current concepts in the qualification and validation of biomarker assays for the measurement of pharmacodynamic responses to drugs and vaccines. The venue was Burlington House, the prestigious home of the Royal Society of Chemistry, with delegates drawn from academia, pharmaceutical companies and CROs.

  16. 40 CFR 161.180 - Enforcement analytical method.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Enforcement analytical method. 161.180 Section 161.180 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR REGISTRATION OF ANTIMICROBIAL PESTICIDES Product Chemistry Data...

  17. 40 CFR 161.180 - Enforcement analytical method.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Enforcement analytical method. 161.180 Section 161.180 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR REGISTRATION OF ANTIMICROBIAL PESTICIDES Product Chemistry Data...

  18. 40 CFR 161.180 - Enforcement analytical method.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Enforcement analytical method. 161.180 Section 161.180 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR REGISTRATION OF ANTIMICROBIAL PESTICIDES Product Chemistry Data...

  19. 40 CFR 161.180 - Enforcement analytical method.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Enforcement analytical method. 161.180 Section 161.180 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR REGISTRATION OF ANTIMICROBIAL PESTICIDES Product Chemistry Data...

  20. ENVIRONMENTAL ANALYTICAL CHEMISTRY OF PHARMACEUTICAL AND PERSONAL CARE PRODUCTS: THE SEPARATIONS FOCUS TURNS TO POLAR ANALYTES

    EPA Science Inventory

    Within the scope of a number of emerging contaminant issues in environmental analysis, one area that has received a great deal of public interest has been the assessment of the role of pharmaceuticals and personal care products (PPCPs) as stressors and agents of change in ecosyst...

  1. Biochemical structure of Calendula officinalis.

    PubMed

    Korakhashvili, A; Kacharava, T; Kiknavelidze, N

    2007-01-01

    Calendula officinalis is a well known medicinal herb. It is common knowledge that its medicinal properties are conditioned on biologically active complex substances of Carotin (Provitamin A), Stearin, Triterpiniod, Plavonoid, Kumarin, macro and micro compound elements. Because of constant need in raw material of Calendula officinalis, features of its ontogenetic development agro-biological qualities in various eco regions of Georgia were investigated. The data of biologically active compounds, biochemical structure and the maintenance both in flowers and in others parts of plant is presented; the pharmacological activity and importance in medicine was reviewed.

  2. Hyponatraemia: biochemical and clinical perspectives.

    PubMed

    Gill, G; Leese, G

    1998-09-01

    Hyponatraemia is a common bio-chemical abnormality, occurring in about 15% of hospital inpatients. It is often associated with severe illness and relatively poor outcome. Pathophysiologically, hyponatraemia may be spurious, dilutional, depletional or redistributional. Particularly difficult causes and concepts of hyponatraemia are the syndrome of inappropriate antidiuresis and the sick cell syndrome, which are discussed here in detail. Therapy should always be targeted at the underlying disease process. 'Hyponatraemic symptoms' are of doubtful importance, and may be more related to water overload and/or the causative disease, than to hyponatraemia per se. Artificial elevation of plasma sodium by saline infusion carries the risk of induction of osmotic demyelination (central pontine myelinolysis).

  3. Bioorganic and bioinorganic chemistry.

    PubMed

    Constable, Edwin C; Housecroft, Catherine E; Creus, Marc; Gademann, Karl; Giese, Bernd; Ward, Thomas R; Woggon, Wolf D; Chougnet, Antoinette

    2010-01-01

    The interdisciplinary projects in bioinorganic and bioorganic chemistry of the Department of Chemistry, University of Basel led to the preparation of new systems that mimic biologically important processes and to the discovery of compounds from natural sources which are very promising with respect to medical applications. The advances in these areas are reported here.

  4. Coupled Phenomena in Chemistry.

    ERIC Educational Resources Information Center

    Matsubara, Akira; Nomura, Kazuo

    1979-01-01

    Various phenomena in chemistry and biology can be understood through Gibbs energy utilization. Some common phenomena in chemistry are explained including neutralization, hydrolysis, oxidation and reaction, simultaneous dissociation equilibrium of two weak acids, and common ion effect on solubility. (Author/SA)

  5. Chemistry and Philosophy

    ERIC Educational Resources Information Center

    Theobald, D. W.

    1970-01-01

    In the second article of a series, the author discusses some of the interactions between chemistry and philosophy. Evaluates chemistry's role within the scientific enterprise. Traces the rise and fall of the logical atom and argues for a new way of looking at science as an educational instrument. (RR)

  6. Chemistry from Issues.

    ERIC Educational Resources Information Center

    Harding, Jan; Donaldson, Jim

    1986-01-01

    Describes the "Chemistry from Issues" project at Chelsea College. Provides the background information, rationale, and overall structure of a proposed course about the importance of chemistry to common culture. Outlines one module about the British steel industry that has been taught at King's College. (TW)

  7. Infrared Lasers in Chemistry.

    ERIC Educational Resources Information Center

    John, Phillip

    1982-01-01

    Selected infrared laser chemistry topics are discussed including carbon dioxide lasers, infrared quanta and molecules, laser-induced chemistry, structural isomerization (laser purification, sensitized reactions, and dielectric breakdown), and fundamental principles of laser isotope separation, focusing on uranium isotope separation. (JN)

  8. Chemistry in Microfluidic Channels

    ERIC Educational Resources Information Center

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  9. Pre-Tech Chemistry.

    ERIC Educational Resources Information Center

    Florida Junior Coll., Jacksonville.

    This course guide is designed to aid chemistry instructors in teaching the skills and knowledge needed by those students planning to take junior college chemistry and is composed of 11 terminal performance objectives, with intermediate performance objectives and sample criterion measures. Suggestions for related laboratory activities are also…

  10. Brushing Up on Chemistry.

    ERIC Educational Resources Information Center

    Trantow, Ashley

    2002-01-01

    Presents an activity designed for use during National Chemistry Week 2002 with the theme "Chemistry Keeps Us Clean". Allows students to discover more about a cleaning product they use everyday. Students make their own toothpaste and compare its properties with those of commercial toothpaste. (MM)

  11. Movies in Chemistry Education

    ERIC Educational Resources Information Center

    Pekdag, Bulent; Le Marechal, Jean-Francois

    2010-01-01

    This article reviews numerous studies on chemistry movies. Movies, or moving pictures, are important elements of multimedia and signify a privileged or motivating means of presenting knowledge. Studies on chemistry movies show that the first movie productions in this field were devoted to university lectures or documentaries. Shorter movies were…

  12. Chemistry of Moth Repellents

    ERIC Educational Resources Information Center

    Pinto, Gabriel

    2005-01-01

    An effective way to teach chemistry is to examine the substances used in daily life from a pedagogical viewpoint, from the overlap of science, technology, and society (STS). A study aims to engage students in the topic of moth repellents and to encourage them to investigate the chemistry in this familiar product using a set of questions.

  13. Mathematics and Chemistry

    ERIC Educational Resources Information Center

    Henson, R.; Stumbles, A.

    1977-01-01

    The relationship between mathematics and chemistry has been changing rapidly in recent years. Some chemistry teachers have experienced difficulties in their teaching with the introduction of modern mathematics in the schools. Some suggestions for reinforcing the concepts and language of modern mathematics are put forth. (Author/MA)

  14. Organic Chemistry Made Easy.

    ERIC Educational Resources Information Center

    Bradt, Steve

    1998-01-01

    Student-led workshops are helping undergraduate students learn from each other as they tackle organic chemistry. Each week, small groups brainstorm tough problems in sessions guided by upper-class students who have taken and passed the course. Debating and discussing chemistry problems with peers engages students with the material and boosts…

  15. Undergraduate Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bretz, Stacey Lowery; Fay, Michael; Bruck, Laura B.; Towns, Marcy H.

    2013-01-01

    Forty chemistry faculty from American Chemical Society-approved departments were interviewed to determine their goals for undergraduate chemistry laboratory. Faculty were stratified by type of institution, departmental success with regard to National Science Foundation funding for laboratory reform, and level of laboratory course. Interview…

  16. Biosynthetic inorganic chemistry.

    PubMed

    Lu, Yi

    2006-08-25

    Inorganic chemistry and biology can benefit greatly from each other. Although synthetic and physical inorganic chemistry have been greatly successful in clarifying the role of metal ions in biological systems, the time may now be right to utilize biological systems to advance coordination chemistry. One such example is the use of small, stable, easy-to-make, and well-characterized proteins as ligands to synthesize novel inorganic compounds. This biosynthetic inorganic chemistry is possible thanks to a number of developments in biology. This review summarizes the progress in the synthesis of close models of complex metalloproteins, followed by a description of recent advances in using the approach for making novel compounds that are unprecedented in either inorganic chemistry or biology. The focus is mainly on synthetic "tricks" learned from biology, as well as novel structures and insights obtained. The advantages and disadvantages of this biosynthetic approach are discussed.

  17. Biochemical aspects of Huntington's chorea.

    PubMed Central

    Caraceni, T; Calderini, G; Consolazione, A; Riva, E; Algeri, S; Girotti, F; Spreafico, R; Branciforti, A; Dall'olio, A; Morselli, P L

    1977-01-01

    Fifteen patients affected by Huntington's chorea were divided into two groups, 'slow' and 'fast', according to IQ scores on the Wechsler-Bellevue scale, and scores on some motor performance tests. A possible correlation was looked for between some biochemical data (cerebrospinal fluid (CSF), homovanillic acid (HVA), and 5-hydroxyindolacetic acid (5HIAA) levels, plasma dopamine-beta-hydroxylase (DBH), dopamine (DA) uptake by platelets), and clinical data (duration of illness, severity of symptoms, age of patients, IQ scores, 'slow' and 'fast' groups). The CSF, HVA, and 5HIAA levels were found to be significantly lowered in comparison with normal controls. DBH activity and DA uptake by platelets did not differ significantly from normal subjects. Treatment with haloperidol in all patients and with dipropylacetic acid in three patients did not appear to modify the CSF, HVA, and 5HIAA concentrations, the plasma DBH activity, or the DA uptake. There were no significant differences in the CSF, HVA, and 5HIAA contents between the two groups of patients, and there was no correlation between biochemical data and clinical features. PMID:143508

  18. Biochemical abnormalities in Pearson syndrome.

    PubMed

    Crippa, Beatrice Letizia; Leon, Eyby; Calhoun, Amy; Lowichik, Amy; Pasquali, Marzia; Longo, Nicola

    2015-03-01

    Pearson marrow-pancreas syndrome is a multisystem mitochondrial disorder characterized by bone marrow failure and pancreatic insufficiency. Children who survive the severe bone marrow dysfunction in childhood develop Kearns-Sayre syndrome later in life. Here we report on four new cases with this condition and define their biochemical abnormalities. Three out of four patients presented with failure to thrive, with most of them having normal development and head size. All patients had evidence of bone marrow involvement that spontaneously improved in three out of four patients. Unique findings in our patients were acute pancreatitis (one out of four), renal Fanconi syndrome (present in all patients, but symptomatic only in one), and an unusual organic aciduria with 3-hydroxyisobutyric aciduria in one patient. Biochemical analysis indicated low levels of plasma citrulline and arginine, despite low-normal ammonia levels. Regression analysis indicated a significant correlation between each intermediate of the urea cycle and the next, except between ornithine and citrulline. This suggested that the reaction catalyzed by ornithine transcarbamylase (that converts ornithine to citrulline) might not be very efficient in patients with Pearson syndrome. In view of low-normal ammonia levels, we hypothesize that ammonia and carbamylphosphate could be diverted from the urea cycle to the synthesis of nucleotides in patients with Pearson syndrome and possibly other mitochondrial disorders.

  19. Thermodynamic constraints for biochemical networks.

    PubMed

    Beard, Daniel A; Babson, Eric; Curtis, Edward; Qian, Hong

    2004-06-07

    The constraint-based approach to analysis of biochemical systems has emerged as a useful tool for rational metabolic engineering. Flux balance analysis (FBA) is based on the constraint of mass conservation; energy balance analysis (EBA) is based on non-equilibrium thermodynamics. The power of these approaches lies in the fact that the constraints are based on physical laws, and do not make use of unknown parameters. Here, we show that the network structure (i.e. the stoichiometric matrix) alone provides a system of constraints on the fluxes in a biochemical network which are feasible according to both mass balance and the laws of thermodynamics. A realistic example shows that these constraints can be sufficient for deriving unambiguous, biologically meaningful results. The thermodynamic constraints are obtained by comparing of the sign pattern of the flux vector to the sign patterns of the cycles of the internal cycle space via connection between stoichiometric network theory (SNT) and the mathematical theory of oriented matroids.

  20. Art in Chemistry; Chemistry in Art.

    ERIC Educational Resources Information Center

    Greenberg, Barbara R.; Patterson, Dianne

    High school teachers are often challenged to motivate students who have little or no interest in a subject and are bored with traditional instruction. This unique book is designed to help educators make chemistry classes more interesting and links art curriculum to practical applications, integrating the two subjects through scores of hands-on…