Sample records for analytical performance parameters

  1. A simple analytical method to estimate all exit parameters of a cross-flow air dehumidifier using liquid desiccant.

    PubMed

    Bassuoni, M M

    2014-03-01

    The dehumidifier is a key component in liquid desiccant air-conditioning systems. Analytical solutions have more advantages than numerical solutions in studying the dehumidifier performance parameters. This paper presents the performance results of exit parameters from an analytical model of an adiabatic cross-flow liquid desiccant air dehumidifier. Calcium chloride is used as desiccant material in this investigation. A program performing the analytical solution is developed using the engineering equation solver software. Good accuracy has been found between analytical solution and reliable experimental results with a maximum deviation of +6.63% and -5.65% in the moisture removal rate. The method developed here can be used in the quick prediction of the dehumidifier performance. The exit parameters from the dehumidifier are evaluated under the effects of variables such as air temperature and humidity, desiccant temperature and concentration, and air to desiccant flow rates. The results show that hot humid air and desiccant concentration have the greatest impact on the performance of the dehumidifier. The moisture removal rate is decreased with increasing both air inlet temperature and desiccant temperature while increases with increasing air to solution mass ratio, inlet desiccant concentration, and inlet air humidity ratio.

  2. A simple analytical method to estimate all exit parameters of a cross-flow air dehumidifier using liquid desiccant

    PubMed Central

    Bassuoni, M.M.

    2013-01-01

    The dehumidifier is a key component in liquid desiccant air-conditioning systems. Analytical solutions have more advantages than numerical solutions in studying the dehumidifier performance parameters. This paper presents the performance results of exit parameters from an analytical model of an adiabatic cross-flow liquid desiccant air dehumidifier. Calcium chloride is used as desiccant material in this investigation. A program performing the analytical solution is developed using the engineering equation solver software. Good accuracy has been found between analytical solution and reliable experimental results with a maximum deviation of +6.63% and −5.65% in the moisture removal rate. The method developed here can be used in the quick prediction of the dehumidifier performance. The exit parameters from the dehumidifier are evaluated under the effects of variables such as air temperature and humidity, desiccant temperature and concentration, and air to desiccant flow rates. The results show that hot humid air and desiccant concentration have the greatest impact on the performance of the dehumidifier. The moisture removal rate is decreased with increasing both air inlet temperature and desiccant temperature while increases with increasing air to solution mass ratio, inlet desiccant concentration, and inlet air humidity ratio. PMID:25685485

  3. ATTIRE (analytical tools for thermal infrared engineering): A sensor simulation and modeling package

    NASA Astrophysics Data System (ADS)

    Jaggi, S.

    1993-02-01

    The Advanced Sensor Development Laboratory (ASDL) at the Stennis Space Center develops, maintains and calibrates remote sensing instruments for the National Aeronautics & Space Administration (NASA). To perform system design trade-offs, analysis, and establish system parameters, ASDL has developed a software package for analytical simulation of sensor systems. This package called 'Analytical Tools for Thermal InfraRed Engineering' - ATTIRE, simulates the various components of a sensor system. The software allows each subsystem of the sensor to be analyzed independently for its performance. These performance parameters are then integrated to obtain system level information such as Signal-to-Noise Ratio (SNR), Noise Equivalent Radiance (NER), Noise Equivalent Temperature Difference (NETD) etc. This paper describes the uses of the package and the physics that were used to derive the performance parameters.

  4. Sigma metrics as a tool for evaluating the performance of internal quality control in a clinical chemistry laboratory.

    PubMed

    Kumar, B Vinodh; Mohan, Thuthi

    2018-01-01

    Six Sigma is one of the most popular quality management system tools employed for process improvement. The Six Sigma methods are usually applied when the outcome of the process can be measured. This study was done to assess the performance of individual biochemical parameters on a Sigma Scale by calculating the sigma metrics for individual parameters and to follow the Westgard guidelines for appropriate Westgard rules and levels of internal quality control (IQC) that needs to be processed to improve target analyte performance based on the sigma metrics. This is a retrospective study, and data required for the study were extracted between July 2015 and June 2016 from a Secondary Care Government Hospital, Chennai. The data obtained for the study are IQC - coefficient of variation percentage and External Quality Assurance Scheme (EQAS) - Bias% for 16 biochemical parameters. For the level 1 IQC, four analytes (alkaline phosphatase, magnesium, triglyceride, and high-density lipoprotein-cholesterol) showed an ideal performance of ≥6 sigma level, five analytes (urea, total bilirubin, albumin, cholesterol, and potassium) showed an average performance of <3 sigma level and for level 2 IQCs, same four analytes of level 1 showed a performance of ≥6 sigma level, and four analytes (urea, albumin, cholesterol, and potassium) showed an average performance of <3 sigma level. For all analytes <6 sigma level, the quality goal index (QGI) was <0.8 indicating the area requiring improvement to be imprecision except cholesterol whose QGI >1.2 indicated inaccuracy. This study shows that sigma metrics is a good quality tool to assess the analytical performance of a clinical chemistry laboratory. Thus, sigma metric analysis provides a benchmark for the laboratory to design a protocol for IQC, address poor assay performance, and assess the efficiency of existing laboratory processes.

  5. Sigma metrics as a tool for evaluating the performance of internal quality control in a clinical chemistry laboratory

    PubMed Central

    Kumar, B. Vinodh; Mohan, Thuthi

    2018-01-01

    OBJECTIVE: Six Sigma is one of the most popular quality management system tools employed for process improvement. The Six Sigma methods are usually applied when the outcome of the process can be measured. This study was done to assess the performance of individual biochemical parameters on a Sigma Scale by calculating the sigma metrics for individual parameters and to follow the Westgard guidelines for appropriate Westgard rules and levels of internal quality control (IQC) that needs to be processed to improve target analyte performance based on the sigma metrics. MATERIALS AND METHODS: This is a retrospective study, and data required for the study were extracted between July 2015 and June 2016 from a Secondary Care Government Hospital, Chennai. The data obtained for the study are IQC - coefficient of variation percentage and External Quality Assurance Scheme (EQAS) - Bias% for 16 biochemical parameters. RESULTS: For the level 1 IQC, four analytes (alkaline phosphatase, magnesium, triglyceride, and high-density lipoprotein-cholesterol) showed an ideal performance of ≥6 sigma level, five analytes (urea, total bilirubin, albumin, cholesterol, and potassium) showed an average performance of <3 sigma level and for level 2 IQCs, same four analytes of level 1 showed a performance of ≥6 sigma level, and four analytes (urea, albumin, cholesterol, and potassium) showed an average performance of <3 sigma level. For all analytes <6 sigma level, the quality goal index (QGI) was <0.8 indicating the area requiring improvement to be imprecision except cholesterol whose QGI >1.2 indicated inaccuracy. CONCLUSION: This study shows that sigma metrics is a good quality tool to assess the analytical performance of a clinical chemistry laboratory. Thus, sigma metric analysis provides a benchmark for the laboratory to design a protocol for IQC, address poor assay performance, and assess the efficiency of existing laboratory processes. PMID:29692587

  6. Determination of the Performance Parameters of a Spectrophotometer: An Advanced Experiment.

    ERIC Educational Resources Information Center

    Cope, Virgil W.

    1978-01-01

    Describes an advanced analytical chemistry laboratory experiment developed for the determination of the performance parameters of a spectrophotometer. Among the parameters are the baseline linearity with wavelength, wavelength accuracy and respectability, stray light, noise level and pen response time. (HM)

  7. Temporal Learning Analytics for Adaptive Assessment

    ERIC Educational Resources Information Center

    Papamitsiou, Zacharoula; Economides, Anastasios A.

    2014-01-01

    Accurate and early predictions of student performance could significantly affect interventions during teaching and assessment, which gradually could lead to improved learning outcomes. In our research, we seek to identify and formalize temporal parameters as predictors of performance ("temporal learning analytics" or TLA) and examine…

  8. Hydrodynamic dispersion in porous media with macroscopic disorder of parameters

    NASA Astrophysics Data System (ADS)

    Goldobin, D. S.; Maryshev, B. S.

    2017-10-01

    We present an analytical derivation of the macroscopic hydrodynamic dispersion for flows in porous media with frozen disorder of macroscopic parameters: porosity and permeability. The parameter inhomogeneities generate inhomogeneities of filtration flow which perform fluid mixing and, on the large spacial scale, act as an additional effective diffusion (eddy diffusivity or hydrodynamic dispersion). The derivation is performed for the general case, where the only restrictions are (i) the spatial autocorrelation functions of parameter inhomogeneities decay with the distance r not slower than 1/rn with n > 1, and (ii) the amplitudes of inhomogeneities are small compared to the mean value of parameters. Our analytical findings are confirmed with the results of direct numerical simulation for the transport of a passive scalar in inhomogeneous filtration flow.

  9. Ground temperature measurement by PRT-5 for maps experiment

    NASA Technical Reports Server (NTRS)

    Gupta, S. K.; Tiwari, S. N.

    1978-01-01

    A simple algorithm and computer program were developed for determining the actual surface temperature from the effective brightness temperature as measured remotely by a radiation thermometer called PRT-5. This procedure allows the computation of atmospheric correction to the effective brightness temperature without performing detailed radiative transfer calculations. Model radiative transfer calculations were performed to compute atmospheric corrections for several values of the surface and atmospheric parameters individually and in combination. Polynomial regressions were performed between the magnitudes or deviations of these parameters and the corresponding computed corrections to establish simple analytical relations between them. Analytical relations were also developed to represent combined correction for simultaneous variation of parameters in terms of their individual corrections.

  10. Design and analysis of tubular permanent magnet linear generator for small-scale wave energy converter

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Man; Koo, Min-Mo; Jeong, Jae-Hoon; Hong, Keyyong; Cho, Il-Hyoung; Choi, Jang-Young

    2017-05-01

    This paper reports the design and analysis of a tubular permanent magnet linear generator (TPMLG) for a small-scale wave-energy converter. The analytical field computation is performed by applying a magnetic vector potential and a 2-D analytical model to determine design parameters. Based on analytical solutions, parametric analysis is performed to meet the design specifications of a wave-energy converter (WEC). Then, 2-D FEA is employed to validate the analytical method. Finally, the experimental result confirms the predictions of the analytical and finite element analysis (FEA) methods under regular and irregular wave conditions.

  11. Piezoresistive Cantilever Performance-Part I: Analytical Model for Sensitivity.

    PubMed

    Park, Sung-Jin; Doll, Joseph C; Pruitt, Beth L

    2010-02-01

    An accurate analytical model for the change in resistance of a piezoresistor is necessary for the design of silicon piezoresistive transducers. Ion implantation requires a high-temperature oxidation or annealing process to activate the dopant atoms, and this treatment results in a distorted dopant profile due to diffusion. Existing analytical models do not account for the concentration dependence of piezoresistance and are not accurate for nonuniform dopant profiles. We extend previous analytical work by introducing two nondimensional factors, namely, the efficiency and geometry factors. A practical benefit of this efficiency factor is that it separates the process parameters from the design parameters; thus, designers may address requirements for cantilever geometry and fabrication process independently. To facilitate the design process, we provide a lookup table for the efficiency factor over an extensive range of process conditions. The model was validated by comparing simulation results with the experimentally determined sensitivities of piezoresistive cantilevers. We performed 9200 TSUPREM4 simulations and fabricated 50 devices from six unique process flows; we systematically explored the design space relating process parameters and cantilever sensitivity. Our treatment focuses on piezoresistive cantilevers, but the analytical sensitivity model is extensible to other piezoresistive transducers such as membrane pressure sensors.

  12. On the performance of piezoelectric harvesters loaded by finite width impulses

    NASA Astrophysics Data System (ADS)

    Doria, A.; Medè, C.; Desideri, D.; Maschio, A.; Codecasa, L.; Moro, F.

    2018-02-01

    The response of cantilevered piezoelectric harvesters loaded by finite width impulses of base acceleration is studied analytically in the frequency domain in order to identify the parameters that influence the generated voltage. Experimental tests are then performed on harvesters loaded by hammer impacts. The latter are used to confirm analytical results and to validate a linear finite element (FE) model of a unimorph harvester. The FE model is, in turn, used to extend analytical results to more general harvesters (tapered, inverse tapered, triangular) and to more general impulses (heel strike in human gait). From analytical and numerical results design criteria for improving harvester performance are obtained.

  13. An analytic performance model of disk arrays and its application

    NASA Technical Reports Server (NTRS)

    Lee, Edward K.; Katz, Randy H.

    1991-01-01

    As disk arrays become widely used, tools for understanding and analyzing their performance become increasingly important. In particular, performance models can be invaluable in both configuring and designing disk arrays. Accurate analytic performance models are desirable over other types of models because they can be quickly evaluated, are applicable under a wide range of system and workload parameters, and can be manipulated by a range of mathematical techniques. Unfortunately, analytical performance models of disk arrays are difficult to formulate due to the presence of queuing and fork-join synchronization; a disk array request is broken up into independent disk requests which must all complete to satisfy the original request. We develop, validate, and apply an analytic performance model for disk arrays. We derive simple equations for approximating their utilization, response time, and throughput. We then validate the analytic model via simulation and investigate the accuracy of each approximation used in deriving the analytical model. Finally, we apply the analytical model to derive an equation for the optimal unit of data striping in disk arrays.

  14. INTEGRATING DATA ANALYTICS AND SIMULATION METHODS TO SUPPORT MANUFACTURING DECISION MAKING

    PubMed Central

    Kibira, Deogratias; Hatim, Qais; Kumara, Soundar; Shao, Guodong

    2017-01-01

    Modern manufacturing systems are installed with smart devices such as sensors that monitor system performance and collect data to manage uncertainties in their operations. However, multiple parameters and variables affect system performance, making it impossible for a human to make informed decisions without systematic methodologies and tools. Further, the large volume and variety of streaming data collected is beyond simulation analysis alone. Simulation models are run with well-prepared data. Novel approaches, combining different methods, are needed to use this data for making guided decisions. This paper proposes a methodology whereby parameters that most affect system performance are extracted from the data using data analytics methods. These parameters are used to develop scenarios for simulation inputs; system optimizations are performed on simulation data outputs. A case study of a machine shop demonstrates the proposed methodology. This paper also reviews candidate standards for data collection, simulation, and systems interfaces. PMID:28690363

  15. Performances estimation of a rotary traveling wave ultrasonic motor based on two-dimension analytical model.

    PubMed

    Ming, Y; Peiwen, Q

    2001-03-01

    The understanding of ultrasonic motor performances as a function of input parameters, such as the voltage amplitude, driving frequency, the preload on the rotor, is a key to many applications and control of ultrasonic motor. This paper presents performances estimation of the piezoelectric rotary traveling wave ultrasonic motor as a function of input voltage amplitude and driving frequency and preload. The Love equation is used to derive the traveling wave amplitude on the stator surface. With the contact model of the distributed spring-rigid body between the stator and rotor, a two-dimension analytical model of the rotary traveling wave ultrasonic motor is constructed. Then the performances of stead rotation speed and stall torque are deduced. With MATLAB computational language and iteration algorithm, we estimate the performances of rotation speed and stall torque versus input parameters respectively. The same experiments are completed with the optoelectronic tachometer and stand weight. Both estimation and experiment results reveal the pattern of performance variation as a function of its input parameters.

  16. Simulating parameters of lunar physical libration on the basis of its analytical theory

    NASA Astrophysics Data System (ADS)

    Petrova, N.; Zagidullin, A.; Nefediev, Yu.

    2014-04-01

    Results of simulating behavior of lunar physical libration parameters are presented. Some features in the speed change of impulse variables are revealed: fast periodic changes in р2 and long periodic changes in р3. A problem of searching for a dynamic explanation of this phenomenon is put. The simulation was performed on the basis of the analytical libration theory [1] in the programming environment VBA.

  17. Dynamic imaging model and parameter optimization for a star tracker.

    PubMed

    Yan, Jinyun; Jiang, Jie; Zhang, Guangjun

    2016-03-21

    Under dynamic conditions, star spots move across the image plane of a star tracker and form a smeared star image. This smearing effect increases errors in star position estimation and degrades attitude accuracy. First, an analytical energy distribution model of a smeared star spot is established based on a line segment spread function because the dynamic imaging process of a star tracker is equivalent to the static imaging process of linear light sources. The proposed model, which has a clear physical meaning, explicitly reflects the key parameters of the imaging process, including incident flux, exposure time, velocity of a star spot in an image plane, and Gaussian radius. Furthermore, an analytical expression of the centroiding error of the smeared star spot is derived using the proposed model. An accurate and comprehensive evaluation of centroiding accuracy is obtained based on the expression. Moreover, analytical solutions of the optimal parameters are derived to achieve the best performance in centroid estimation. Finally, we perform numerical simulations and a night sky experiment to validate the correctness of the dynamic imaging model, the centroiding error expression, and the optimal parameters.

  18. Estimation of the uncertainty of analyte concentration from the measurement uncertainty.

    PubMed

    Brown, Simon; Cooke, Delwyn G; Blackwell, Leonard F

    2015-09-01

    Ligand-binding assays, such as immunoassays, are usually analysed using standard curves based on the four-parameter and five-parameter logistic models. An estimate of the uncertainty of an analyte concentration obtained from such curves is needed for confidence intervals or precision profiles. Using a numerical simulation approach, it is shown that the uncertainty of the analyte concentration estimate becomes significant at the extremes of the concentration range and that this is affected significantly by the steepness of the standard curve. We also provide expressions for the coefficient of variation of the analyte concentration estimate from which confidence intervals and the precision profile can be obtained. Using three examples, we show that the expressions perform well.

  19. The effects of scene content parameters, compression, and frame rate on the performance of analytics systems

    NASA Astrophysics Data System (ADS)

    Tsifouti, A.; Triantaphillidou, S.; Larabi, M. C.; Doré, G.; Bilissi, E.; Psarrou, A.

    2015-01-01

    In this investigation we study the effects of compression and frame rate reduction on the performance of four video analytics (VA) systems utilizing a low complexity scenario, such as the Sterile Zone (SZ). Additionally, we identify the most influential scene parameters affecting the performance of these systems. The SZ scenario is a scene consisting of a fence, not to be trespassed, and an area with grass. The VA system needs to alarm when there is an intruder (attack) entering the scene. The work includes testing of the systems with uncompressed and compressed (using H.264/MPEG-4 AVC at 25 and 5 frames per second) footage, consisting of quantified scene parameters. The scene parameters include descriptions of scene contrast, camera to subject distance, and attack portrayal. Additional footage, including only distractions (no attacks) is also investigated. Results have shown that every system has performed differently for each compression/frame rate level, whilst overall, compression has not adversely affected the performance of the systems. Frame rate reduction has decreased performance and scene parameters have influenced the behavior of the systems differently. Most false alarms were triggered with a distraction clip, including abrupt shadows through the fence. Findings could contribute to the improvement of VA systems.

  20. Quality Measures in Pre-Analytical Phase of Tissue Processing: Understanding Its Value in Histopathology.

    PubMed

    Rao, Shalinee; Masilamani, Suresh; Sundaram, Sandhya; Duvuru, Prathiba; Swaminathan, Rajendiran

    2016-01-01

    Quality monitoring in histopathology unit is categorized into three phases, pre-analytical, analytical and post-analytical, to cover various steps in the entire test cycle. Review of literature on quality evaluation studies pertaining to histopathology revealed that earlier reports were mainly focused on analytical aspects with limited studies on assessment of pre-analytical phase. Pre-analytical phase encompasses several processing steps and handling of specimen/sample by multiple individuals, thus allowing enough scope for errors. Due to its critical nature and limited studies in the past to assess quality in pre-analytical phase, it deserves more attention. This study was undertaken to analyse and assess the quality parameters in pre-analytical phase in a histopathology laboratory. This was a retrospective study done on pre-analytical parameters in histopathology laboratory of a tertiary care centre on 18,626 tissue specimens received in 34 months. Registers and records were checked for efficiency and errors for pre-analytical quality variables: specimen identification, specimen in appropriate fixatives, lost specimens, daily internal quality control performance on staining, performance in inter-laboratory quality assessment program {External quality assurance program (EQAS)} and evaluation of internal non-conformities (NC) for other errors. The study revealed incorrect specimen labelling in 0.04%, 0.01% and 0.01% in 2007, 2008 and 2009 respectively. About 0.04%, 0.07% and 0.18% specimens were not sent in fixatives in 2007, 2008 and 2009 respectively. There was no incidence of specimen lost. A total of 113 non-conformities were identified out of which 92.9% belonged to the pre-analytical phase. The predominant NC (any deviation from normal standard which may generate an error and result in compromising with quality standards) identified was wrong labelling of slides. Performance in EQAS for pre-analytical phase was satisfactory in 6 of 9 cycles. A low incidence of errors in pre-analytical phase implies that a satisfactory level of quality standards was being practiced with still scope for improvement.

  1. An analytical method of estimating turbine performance

    NASA Technical Reports Server (NTRS)

    Kochendorfer, Fred D; Nettles, J Cary

    1949-01-01

    A method is developed by which the performance of a turbine over a range of operating conditions can be analytically estimated from the blade angles and flow areas. In order to use the method, certain coefficients that determine the weight flow and the friction losses must be approximated. The method is used to calculate the performance of the single-stage turbine of a commercial aircraft gas-turbine engine and the calculated performance is compared with the performance indicated by experimental data. For the turbine of the typical example, the assumed pressure losses and the tuning angles give a calculated performance that represents the trends of the experimental performance with reasonable accuracy. The exact agreement between analytical performance and experimental performance is contingent upon the proper selection of a blading-loss parameter.

  2. Transition to synchrony in degree-frequency correlated Sakaguchi-Kuramoto model

    NASA Astrophysics Data System (ADS)

    Kundu, Prosenjit; Khanra, Pitambar; Hens, Chittaranjan; Pal, Pinaki

    2017-11-01

    We investigate transition to synchrony in degree-frequency correlated Sakaguchi-Kuramoto (SK) model on complex networks both analytically and numerically. We analytically derive self-consistent equations for group angular velocity and order parameter for the model in the thermodynamic limit. Using the self-consistent equations we investigate transition to synchronization in SK model on uncorrelated scale-free (SF) and Erdős-Rényi (ER) networks in detail. Depending on the degree distribution exponent (γ ) of SF networks and phase-frustration parameter, the population undergoes from first-order transition [explosive synchronization (ES)] to second-order transition and vice versa. In ER networks transition is always second order irrespective of the values of the phase-lag parameter. We observe that the critical coupling strength for the onset of synchronization is decreased by phase-frustration parameter in case of SF network where as in ER network, the phase-frustration delays the onset of synchronization. Extensive numerical simulations using SF and ER networks are performed to validate the analytical results. An analytical expression of critical coupling strength for the onset of synchronization is also derived from the self-consistent equations considering the vanishing order parameter limit.

  3. Revisiting the positive DC corona discharge theory: Beyond Peek's and Townsend's law

    NASA Astrophysics Data System (ADS)

    Monrolin, Nicolas; Praud, Olivier; Plouraboué, Franck

    2018-06-01

    The classical positive Corona Discharge theory in a cylindrical axisymmetric configuration is revisited in order to find analytically the influence of gas properties and thermodynamic conditions on the corona current. The matched asymptotic expansion of Durbin and Turyn [J. Phys. D: Appl. Phys. 20, 1490-1495 (1987)] of a simplified but self-consistent problem is performed and explicit analytical solutions are derived. The mathematical derivation enables us to express a new positive DC corona current-voltage characteristic, choosing either a dimensionless or dimensional formulation. In dimensional variables, the current voltage law and the corona inception voltage explicitly depend on the electrode size and physical gas properties such as ionization and photoionization parameters. The analytical predictions are successfully confronted with experiments and Peek's and Townsend's laws. An analytical expression of the corona inception voltage φ o n is proposed, which depends on the known values of physical parameters without adjustable parameters. As a proof of consistency, the classical Townsend current-voltage law I = C φ ( φ - φ o n ) is retrieved by linearizing the non-dimensional analytical solution. A brief parametric study showcases the interest in this analytical current model, especially for exploring small corona wires or considering various thermodynamic conditions.

  4. Tests of a Semi-Analytical Case 1 and Gelbstoff Case 2 SeaWiFS Algorithm with a Global Data Set

    NASA Technical Reports Server (NTRS)

    Carder, Kendall L.; Hawes, Steve K.; Lee, Zhongping

    1997-01-01

    A semi-analytical algorithm was tested with a total of 733 points of either unpackaged or packaged-pigment data, with corresponding algorithm parameters for each data type. The 'unpackaged' type consisted of data sets that were generally consistent with the Case 1 CZCS algorithm and other well calibrated data sets. The 'packaged' type consisted of data sets apparently containing somewhat more packaged pigments, requiring modification of the absorption parameters of the model consistent with the CalCOFI study area. This resulted in two equally divided data sets. A more thorough scrutiny of these and other data sets using a semianalytical model requires improved knowledge of the phytoplankton and gelbstoff of the specific environment studied. Since the semi-analytical algorithm is dependent upon 4 spectral channels including the 412 nm channel, while most other algorithms are not, a means of testing data sets for consistency was sought. A numerical filter was developed to classify data sets into the above classes. The filter uses reflectance ratios, which can be determined from space. The sensitivity of such numerical filters to measurement resulting from atmospheric correction and sensor noise errors requires further study. The semi-analytical algorithm performed superbly on each of the data sets after classification, resulting in RMS1 errors of 0.107 and 0.121, respectively, for the unpackaged and packaged data-set classes, with little bias and slopes near 1.0. In combination, the RMS1 performance was 0.114. While these numbers appear rather sterling, one must bear in mind what mis-classification does to the results. Using an average or compromise parameterization on the modified global data set yielded an RMS1 error of 0.171, while using the unpackaged parameterization on the global evaluation data set yielded an RMS1 error of 0.284. So, without classification, the algorithm performs better globally using the average parameters than it does using the unpackaged parameters. Finally, the effects of even more extreme pigment packaging must be examined in order to improve algorithm performance at high latitudes. Note, however, that the North Sea and Mississippi River plume studies contributed data to the packaged and unpackaged classess, respectively, with little effect on algorithm performance. This suggests that gelbstoff-rich Case 2 waters do not seriously degrade performance of the semi-analytical algorithm.

  5. Performance enhancement of Pt/TiO2/Si UV-photodetector by optimizing light trapping capability and interdigitated electrodes geometry

    NASA Astrophysics Data System (ADS)

    Bencherif, H.; Djeffal, F.; Ferhati, H.

    2016-09-01

    This paper presents a hybrid approach based on an analytical and metaheuristic investigation to study the impact of the interdigitated electrodes engineering on both speed and optical performance of an Interdigitated Metal-Semiconductor-Metal Ultraviolet Photodetector (IMSM-UV-PD). In this context, analytical models regarding the speed and optical performance have been developed and validated by experimental results, where a good agreement has been recorded. Moreover, the developed analytical models have been used as objective functions to determine the optimized design parameters, including the interdigit configuration effect, via a Multi-Objective Genetic Algorithm (MOGA). The ultimate goal of the proposed hybrid approach is to identify the optimal design parameters associated with the maximum of electrical and optical device performance. The optimized IMSM-PD not only reveals superior performance in terms of photocurrent and response time, but also illustrates higher optical reliability against the optical losses due to the active area shadowing effects. The advantages offered by the proposed design methodology suggest the possibility to overcome the most challenging problem with the communication speed and power requirements of the UV optical interconnect: high derived current and commutation speed in the UV receiver.

  6. Analytical flow duration curves for summer streamflow in Switzerland

    NASA Astrophysics Data System (ADS)

    Santos, Ana Clara; Portela, Maria Manuela; Rinaldo, Andrea; Schaefli, Bettina

    2018-04-01

    This paper proposes a systematic assessment of the performance of an analytical modeling framework for streamflow probability distributions for a set of 25 Swiss catchments. These catchments show a wide range of hydroclimatic regimes, including namely snow-influenced streamflows. The model parameters are calculated from a spatially averaged gridded daily precipitation data set and from observed daily discharge time series, both in a forward estimation mode (direct parameter calculation from observed data) and in an inverse estimation mode (maximum likelihood estimation). The performance of the linear and the nonlinear model versions is assessed in terms of reproducing observed flow duration curves and their natural variability. Overall, the nonlinear model version outperforms the linear model for all regimes, but the linear model shows a notable performance increase with catchment elevation. More importantly, the obtained results demonstrate that the analytical model performs well for summer discharge for all analyzed streamflow regimes, ranging from rainfall-driven regimes with summer low flow to snow and glacier regimes with summer high flow. These results suggest that the model's encoding of discharge-generating events based on stochastic soil moisture dynamics is more flexible than previously thought. As shown in this paper, the presence of snowmelt or ice melt is accommodated by a relative increase in the discharge-generating frequency, a key parameter of the model. Explicit quantification of this frequency increase as a function of mean catchment meteorological conditions is left for future research.

  7. Analytical and pre-analytical performance characteristics of a novel cartridge-type blood gas analyzer for point-of-care and laboratory testing.

    PubMed

    Oyaert, Matthijs; Van Maerken, Tom; Bridts, Silke; Van Loon, Silvi; Laverge, Heleen; Stove, Veronique

    2018-03-01

    Point-of-care blood gas test results may benefit therapeutic decision making by their immediate impact on patient care. We evaluated the (pre-)analytical performance of a novel cartridge-type blood gas analyzer, the GEM Premier 5000 (Werfen), for the determination of pH, partial carbon dioxide pressure (pCO 2 ), partial oxygen pressure (pO 2 ), sodium (Na + ), potassium (K + ), chloride (Cl - ), ionized calcium ( i Ca 2+ ), glucose, lactate, and total hemoglobin (tHb). Total imprecision was estimated according to the CLSI EP5-A2 protocol. The estimated total error was calculated based on the mean of the range claimed by the manufacturer. Based on the CLSI EP9-A2 evaluation protocol, a method comparison with the Siemens RapidPoint 500 and Abbott i-STAT CG8+ was performed. Obtained data were compared against preset quality specifications. Interference of potential pre-analytical confounders on co-oximetry and electrolyte concentrations were studied. The analytical performance was acceptable for all parameters tested. Method comparison demonstrated good agreement to the RapidPoint 500 and i-STAT CG8+, except for some parameters (RapidPoint 500: pCO 2 , K + , lactate and tHb; i-STAT CG8+: pO 2 , Na + , i Ca 2+ and tHb) for which significant differences between analyzers were recorded. No interference of lipemia or methylene blue on CO-oximetry results was found. On the contrary, significant interference for benzalkonium and hemolysis on electrolyte measurements were found, for which the user is notified by an interferent specific flag. Identification of sample errors from pre-analytical sources, such as interferences and automatic corrective actions, along with the analytical performance, ease of use and low maintenance time of the instrument, makes the evaluated instrument a suitable blood gas analyzer for both POCT and laboratory use. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  8. The contribution of Raman spectroscopy to the analytical quality control of cytotoxic drugs in a hospital environment: eliminating the exposure risks for staff members and their work environment.

    PubMed

    Bourget, Philippe; Amin, Alexandre; Vidal, Fabrice; Merlette, Christophe; Troude, Pénélope; Baillet-Guffroy, Arlette

    2014-08-15

    The purpose of the study was to perform a comparative analysis of the technical performance, respective costs and environmental effect of two invasive analytical methods (HPLC and UV/visible-FTIR) as compared to a new non-invasive analytical technique (Raman spectroscopy). Three pharmacotherapeutic models were used to compare the analytical performances of the three analytical techniques. Statistical inter-method correlation analysis was performed using non-parametric correlation rank tests. The study's economic component combined calculations relative to the depreciation of the equipment and the estimated cost of an AQC unit of work. In any case, analytical validation parameters of the three techniques were satisfactory, and strong correlations between the two spectroscopic techniques vs. HPLC were found. In addition, Raman spectroscopy was found to be superior as compared to the other techniques for numerous key criteria including a complete safety for operators and their occupational environment, a non-invasive procedure, no need for consumables, and a low operating cost. Finally, Raman spectroscopy appears superior for technical, economic and environmental objectives, as compared with the other invasive analytical methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. G-189A analytical simulation of the integrated waste management-water system using radioisotopes for thermal energy

    NASA Technical Reports Server (NTRS)

    Coggi, J. V.; Loscutoff, A. V.; Barker, R. S.

    1973-01-01

    An analytical simulation of the RITE-Integrated Waste Management and Water Recovery System using radioisotopes for thermal energy was prepared for the NASA-Manned Space Flight Center (MSFC). The RITE system is the most advanced concept water-waste management system currently under development and has undergone extended duration testing. It has the capability of disposing of nearly all spacecraft wastes including feces and trash and of recovering water from usual waste water sources: urine, condensate, wash water, etc. All of the process heat normally used in the system is produced from low penalty radioisotope heat sources. The analytical simulation was developed with the G189A computer program. The objective of the simulation was to obtain an analytical simulation which can be used to (1) evaluate the current RITE system steady state and transient performance during normal operating conditions, and also during off normal operating conditions including failure modes; and (2) evaluate the effects of variations in component design parameters and vehicle interface parameters on system performance.

  10. On the performance of energy detection-based CR with SC diversity over IG channel

    NASA Astrophysics Data System (ADS)

    Verma, Pappu Kumar; Soni, Sanjay Kumar; Jain, Priyanka

    2017-12-01

    Cognitive radio (CR) is a viable 5G technology to address the scarcity of the spectrum. Energy detection-based sensing is known to be the simplest method as far as hardware complexity is concerned. In this paper, the performance of spectrum sensing-based energy detection technique in CR networks over inverse Gaussian channel for selection combining diversity technique is analysed. More specifically, accurate analytical expressions for the average detection probability under different detection scenarios such as single channel (no diversity) and with diversity reception are derived and evaluated. Further, the detection threshold parameter is optimised by minimising the probability of error over several diversity branches. The results clearly show the significant improvement in the probability of detection when optimised threshold parameter is applied. The impact of shadowing parameters on the performance of energy detector is studied in terms of complimentary receiver operating characteristic curve. To verify the correctness of our analysis, the derived analytical expressions are corroborated via exact result and Monte Carlo simulations.

  11. Analysis of latency performance of bluetooth low energy (BLE) networks.

    PubMed

    Cho, Keuchul; Park, Woojin; Hong, Moonki; Park, Gisu; Cho, Wooseong; Seo, Jihoon; Han, Kijun

    2014-12-23

    Bluetooth Low Energy (BLE) is a short-range wireless communication technology aiming at low-cost and low-power communication. The performance evaluation of classical Bluetooth device discovery have been intensively studied using analytical modeling and simulative methods, but these techniques are not applicable to BLE, since BLE has a fundamental change in the design of the discovery mechanism, including the usage of three advertising channels. Recently, there several works have analyzed the topic of BLE device discovery, but these studies are still far from thorough. It is thus necessary to develop a new, accurate model for the BLE discovery process. In particular, the wide range settings of the parameters introduce lots of potential for BLE devices to customize their discovery performance. This motivates our study of modeling the BLE discovery process and performing intensive simulation. This paper is focused on building an analytical model to investigate the discovery probability, as well as the expected discovery latency, which are then validated via extensive experiments. Our analysis considers both continuous and discontinuous scanning modes. We analyze the sensitivity of these performance metrics to parameter settings to quantitatively examine to what extent parameters influence the performance metric of the discovery processes.

  12. Analysis of Latency Performance of Bluetooth Low Energy (BLE) Networks

    PubMed Central

    Cho, Keuchul; Park, Woojin; Hong, Moonki; Park, Gisu; Cho, Wooseong; Seo, Jihoon; Han, Kijun

    2015-01-01

    Bluetooth Low Energy (BLE) is a short-range wireless communication technology aiming at low-cost and low-power communication. The performance evaluation of classical Bluetooth device discovery have been intensively studied using analytical modeling and simulative methods, but these techniques are not applicable to BLE, since BLE has a fundamental change in the design of the discovery mechanism, including the usage of three advertising channels. Recently, there several works have analyzed the topic of BLE device discovery, but these studies are still far from thorough. It is thus necessary to develop a new, accurate model for the BLE discovery process. In particular, the wide range settings of the parameters introduce lots of potential for BLE devices to customize their discovery performance. This motivates our study of modeling the BLE discovery process and performing intensive simulation. This paper is focused on building an analytical model to investigate the discovery probability, as well as the expected discovery latency, which are then validated via extensive experiments. Our analysis considers both continuous and discontinuous scanning modes. We analyze the sensitivity of these performance metrics to parameter settings to quantitatively examine to what extent parameters influence the performance metric of the discovery processes. PMID:25545266

  13. Long-term urine biobanking: storage stability of clinical chemical parameters under moderate freezing conditions without use of preservatives.

    PubMed

    Remer, Thomas; Montenegro-Bethancourt, Gabriela; Shi, Lijie

    2014-12-01

    To examine the long-term stability and validity of analyte concentrations of 21 clinical biochemistry parameters in 24-h urine samples stored for 12 or 15 yr at -22°C and preservative free. Healthy children's 24-h urine samples in which the respective analytes had been measured shortly after sample collection (baseline) were reanalyzed. Second measurement was performed after 12 yr (organic acids) and 15 yr (creatinine, urea, osmolality, iodine, nitrogen, anions, cations, acid-base parameters) with the same analytical methodology. Paired comparisons and correlations between the baseline and repeated measurements were done. Recovery rates were calculated. More than half of the analytes (creatinine, urea, iodine, nitrogen, sodium, potassium, magnesium, calcium, ammonium, bicarbonate, citric & uric acid) showed measurement values after >10 yr of storage not significantly different from baseline. 15 of the 21 parameters were highly correlated (r=0.99) between baseline and second measurement. Poorest correlation was r=0.77 for oxalate. Recovery ranged from 73% (oxalate) to 105% (phosphate). Our results suggest high long-term stability and measurement validity for numerous clinical chemistry parameters stored at -22°C without addition of any urine preservative. Prospective storage of urine aliquots at -22°C for periods even exceeding 10 yr, appears to be an acceptable and valid tool in epidemiological settings for later quantification of several urine analytes. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  14. Piezoresistive Cantilever Performance—Part I: Analytical Model for Sensitivity

    PubMed Central

    Park, Sung-Jin; Doll, Joseph C.; Pruitt, Beth L.

    2010-01-01

    An accurate analytical model for the change in resistance of a piezoresistor is necessary for the design of silicon piezoresistive transducers. Ion implantation requires a high-temperature oxidation or annealing process to activate the dopant atoms, and this treatment results in a distorted dopant profile due to diffusion. Existing analytical models do not account for the concentration dependence of piezoresistance and are not accurate for nonuniform dopant profiles. We extend previous analytical work by introducing two nondimensional factors, namely, the efficiency and geometry factors. A practical benefit of this efficiency factor is that it separates the process parameters from the design parameters; thus, designers may address requirements for cantilever geometry and fabrication process independently. To facilitate the design process, we provide a lookup table for the efficiency factor over an extensive range of process conditions. The model was validated by comparing simulation results with the experimentally determined sensitivities of piezoresistive cantilevers. We performed 9200 TSUPREM4 simulations and fabricated 50 devices from six unique process flows; we systematically explored the design space relating process parameters and cantilever sensitivity. Our treatment focuses on piezoresistive cantilevers, but the analytical sensitivity model is extensible to other piezoresistive transducers such as membrane pressure sensors. PMID:20336183

  15. Analytical Verifications in Cryogenic Testing of NGST Advanced Mirror System Demonstrators

    NASA Technical Reports Server (NTRS)

    Cummings, Ramona; Levine, Marie; VanBuren, Dave; Kegley, Jeff; Green, Joseph; Hadaway, James; Presson, Joan; Cline, Todd; Stahl, H. Philip (Technical Monitor)

    2002-01-01

    Ground based testing is a critical and costly part of component, assembly, and system verifications of large space telescopes. At such tests, however, with integral teamwork by planners, analysts, and test personnel, segments can be included to validate specific analytical parameters and algorithms at relatively low additional cost. This paper opens with strategy of analytical verification segments added to vacuum cryogenic testing of Advanced Mirror System Demonstrator (AMSD) assemblies. These AMSD assemblies incorporate material and architecture concepts being considered in the Next Generation Space Telescope (NGST) design. The test segments for workmanship testing, cold survivability, and cold operation optical throughput are supplemented by segments for analytical verifications of specific structural, thermal, and optical parameters. Utilizing integrated modeling and separate materials testing, the paper continues with support plan for analyses, data, and observation requirements during the AMSD testing, currently slated for late calendar year 2002 to mid calendar year 2003. The paper includes anomaly resolution as gleaned by authors from similar analytical verification support of a previous large space telescope, then closes with draft of plans for parameter extrapolations, to form a well-verified portion of the integrated modeling being done for NGST performance predictions.

  16. Mass Spectrometry Parameters Optimization for the 46 Multiclass Pesticides Determination in Strawberries with Gas Chromatography Ion-Trap Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Fernandes, Virgínia C.; Vera, Jose L.; Domingues, Valentina F.; Silva, Luís M. S.; Mateus, Nuno; Delerue-Matos, Cristina

    2012-12-01

    Multiclass analysis method was optimized in order to analyze pesticides traces by gas chromatography with ion-trap and tandem mass spectrometry (GC-MS/MS). The influence of some analytical parameters on pesticide signal response was explored. Five ion trap mass spectrometry (IT-MS) operating parameters, including isolation time (IT), excitation voltage (EV), excitation time (ET), maximum excitation energy or " q" value (q), and isolation mass window (IMW) were numerically tested in order to maximize the instrument analytical signal response. For this, multiple linear regression was used in data analysis to evaluate the influence of the five parameters on the analytical response in the ion trap mass spectrometer and to predict its response. The assessment of the five parameters based on the regression equations substantially increased the sensitivity of IT-MS/MS in the MS/MS mode. The results obtained show that for most of the pesticides, these parameters have a strong influence on both signal response and detection limit. Using the optimized method, a multiclass pesticide analysis was performed for 46 pesticides in a strawberry matrix. Levels higher than the limit established for strawberries by the European Union were found in some samples.

  17. Fluid manifold design for a solar energy storage tank

    NASA Technical Reports Server (NTRS)

    Humphries, W. R.; Hewitt, H. C.; Griggs, E. I.

    1975-01-01

    A design technique for a fluid manifold for use in a solar energy storage tank is given. This analytical treatment generalizes the fluid equations pertinent to manifold design, giving manifold pressures, velocities, and orifice pressure differentials in terms of appropriate fluid and manifold geometry parameters. Experimental results used to corroborate analytical predictions are presented. These data indicate that variations in discharge coefficients due to variations in orifices can cause deviations between analytical predictions and actual performance values.

  18. Effect of vibration on retention characteristics of screen acquisition systems. [for surface tension propellant acquisition

    NASA Technical Reports Server (NTRS)

    Tegart, J. R.; Aydelott, J. C.

    1978-01-01

    The design of surface tension propellant acquisition systems using fine-mesh screen must take into account all factors that influence the liquid pressure differentials within the system. One of those factors is spacecraft vibration. Analytical models to predict the effects of vibration have been developed. A test program to verify the analytical models and to allow a comparative evaluation of the parameters influencing the response to vibration was performed. Screen specimens were tested under conditions simulating the operation of an acquisition system, considering the effects of such parameters as screen orientation and configuration, screen support method, screen mesh, liquid flow and liquid properties. An analytical model, based on empirical coefficients, was most successful in predicting the effects of vibration.

  19. Annular convective-radiative fins with a step change in thickness, and temperature-dependent thermal conductivity and heat transfer coefficient

    NASA Astrophysics Data System (ADS)

    Barforoush, M. S. M.; Saedodin, S.

    2018-01-01

    This article investigates the thermal performance of convective-radiative annular fins with a step reduction in local cross section (SRC). The thermal conductivity of the fin's material is assumed to be a linear function of temperature, and heat transfer coefficient is assumed to be a power-law function of surface temperature. Moreover, nonzero convection and radiation sink temperatures are included in the mathematical model of the energy equation. The well-known differential transformation method (DTM) is used to derive the analytical solution. An exact analytical solution for a special case is derived to prove the validity of the obtained results from the DTM. The model provided here is a more realistic representation of SRC annular fins in actual engineering practices. Effects of many parameters such as conduction-convection parameters, conduction-radiation parameter and sink temperature, and also some parameters which deal with step fins such as thickness parameter and dimensionless parameter describing the position of junction in the fin on the temperature distribution of both thin and thick sections of the fin are investigated. It is believed that the obtained results will facilitate the design and performance evaluation of SRC annular fins.

  20. Extended Analytic Device Optimization Employing Asymptotic Expansion

    NASA Technical Reports Server (NTRS)

    Mackey, Jonathan; Sehirlioglu, Alp; Dynsys, Fred

    2013-01-01

    Analytic optimization of a thermoelectric junction often introduces several simplifying assumptionsincluding constant material properties, fixed known hot and cold shoe temperatures, and thermallyinsulated leg sides. In fact all of these simplifications will have an effect on device performance,ranging from negligible to significant depending on conditions. Numerical methods, such as FiniteElement Analysis or iterative techniques, are often used to perform more detailed analysis andaccount for these simplifications. While numerical methods may stand as a suitable solution scheme,they are weak in gaining physical understanding and only serve to optimize through iterativesearching techniques. Analytic and asymptotic expansion techniques can be used to solve thegoverning system of thermoelectric differential equations with fewer or less severe assumptionsthan the classic case. Analytic methods can provide meaningful closed form solutions and generatebetter physical understanding of the conditions for when simplifying assumptions may be valid.In obtaining the analytic solutions a set of dimensionless parameters, which characterize allthermoelectric couples, is formulated and provide the limiting cases for validating assumptions.Presentation includes optimization of both classic rectangular couples as well as practically andtheoretically interesting cylindrical couples using optimization parameters physically meaningful toa cylindrical couple. Solutions incorporate the physical behavior for i) thermal resistance of hot andcold shoes, ii) variable material properties with temperature, and iii) lateral heat transfer through legsides.

  1. Simulation and modeling of the temporal performance of path-based restoration schemes in planar mesh networks

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Manish; McCaughan, Leon; Olkhovets, Anatoli; Korotky, Steven K.

    2006-12-01

    We formulate an analytic framework for the restoration performance of path-based restoration schemes in planar mesh networks. We analyze various switch architectures and signaling schemes and model their total restoration interval. We also evaluate the network global expectation value of the time to restore a demand as a function of network parameters. We analyze a wide range of nominally capacity-optimal planar mesh networks and find our analytic model to be in good agreement with numerical simulation data.

  2. Distributed parameter modeling to prevent charge cancellation for discrete thickness piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Krishnasamy, M.; Qian, Feng; Zuo, Lei; Lenka, T. R.

    2018-03-01

    The charge cancellation due to the change of strain along single continuous piezoelectric layer can remarkably affect the performance of a cantilever based harvester. In this paper, analytical models using distributed parameters are developed with some extent of averting the charge cancellation in cantilever piezoelectric transducer where the piezoelectric layers are segmented at strain nodes of concerned vibration mode. The electrode of piezoelectric segments are parallelly connected with a single external resistive load in the 1st model (Model 1). While each bimorph piezoelectric layers are connected in parallel to a resistor to form an independent circuit in the 2nd model (Model 2). The analytical expressions of the closed-form electromechanical coupling responses in frequency domain under harmonic base excitation are derived based on the Euler-Bernoulli beam assumption for both models. The developed analytical models are validated by COMSOL and experimental results. The results demonstrate that the energy harvesting performance of the developed segmented piezoelectric layer models is better than the traditional model of continuous piezoelectric layer.

  3. Application of the Taguchi analytical method for optimization of effective parameters of the chemical vapor deposition process controlling the production of nanotubes/nanobeads.

    PubMed

    Sharon, Maheshwar; Apte, P R; Purandare, S C; Zacharia, Renju

    2005-02-01

    Seven variable parameters of the chemical vapor deposition system have been optimized with the help of the Taguchi analytical method for getting a desired product, e.g., carbon nanotubes or carbon nanobeads. It is observed that almost all selected parameters influence the growth of carbon nanotubes. However, among them, the nature of precursor (racemic, R or Technical grade camphor) and the carrier gas (hydrogen, argon and mixture of argon/hydrogen) seem to be more important parameters affecting the growth of carbon nanotubes. Whereas, for the growth of nanobeads, out of seven parameters, only two, i.e., catalyst (powder of iron, cobalt, and nickel) and temperature (1023 K, 1123 K, and 1273 K), are the most influential parameters. Systematic defects or islands on the substrate surface enhance nucleation of novel carbon materials. Quantitative contributions of process parameters as well as optimum factor levels are obtained by performing analysis of variance (ANOVA) and analysis of mean (ANOM), respectively.

  4. LOX/hydrocarbon rocket engine analytical design methodology development and validation. Volume 1: Executive summary and technical narrative

    NASA Technical Reports Server (NTRS)

    Pieper, Jerry L.; Walker, Richard E.

    1993-01-01

    During the past three decades, an enormous amount of resources were expended in the design and development of Liquid Oxygen/Hydrocarbon and Hydrogen (LOX/HC and LOX/H2) rocket engines. A significant portion of these resources were used to develop and demonstrate the performance and combustion stability for each new engine. During these efforts, many analytical and empirical models were developed that characterize design parameters and combustion processes that influence performance and stability. Many of these models are suitable as design tools, but they have not been assembled into an industry-wide usable analytical design methodology. The objective of this program was to assemble existing performance and combustion stability models into a usable methodology capable of producing high performing and stable LOX/hydrocarbon and LOX/hydrogen propellant booster engines.

  5. Design Evaluation of Wind Turbine Spline Couplings Using an Analytical Model: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Y.; Keller, J.; Wallen, R.

    2015-02-01

    Articulated splines are commonly used in the planetary stage of wind turbine gearboxes for transmitting the driving torque and improving load sharing. Direct measurement of spline loads and performance is extremely challenging because of limited accessibility. This paper presents an analytical model for the analysis of articulated spline coupling designs. For a given torque and shaft misalignment, this analytical model quickly yields insights into relationships between the spline design parameters and resulting loads; bending, contact, and shear stresses; and safety factors considering various heat treatment methods. Comparisons of this analytical model against previously published computational approaches are also presented.

  6. Analytical study on the thermal performance of a partially wet constructal T-shaped fin

    NASA Astrophysics Data System (ADS)

    Hazarika, Saheera Azmi; Zeeshan, Mohd; Bhanja, Dipankar; Nath, Sujit

    2017-07-01

    The present paper addresses the thermal analysis of a T-shaped fin under partially wet condition by adopting a cubic variation of the humidity ratio of saturated air with the corresponding fin surface temperature. The point separating the dry and wet parts may lie either in the flange or stem part of the fin and so, two different cases having different governing equations and boundary conditions are analyzed in this paper. Since the governing equations are highly non-linear, they are solved by using an analytical technique called the Differential Transform Method and subsequently, the dry fin length, temperature distribution and fin performances are evaluated and analyzed for a wide range of the various psychometric, geometric and thermo-physical parameters. Finally, it can be highlighted that relative humidity has a pronounced effect on the performance parameters when the fin surface is partially wet whereas this effect is marginally small for fully wet surface.

  7. Historical performance evaluation of Iowa pavement treatments using data analytics : tech transfer summary.

    DOT National Transportation Integrated Search

    2017-01-01

    Evaluate the performance of the most-used pavement treatments in Iowa by considering different parameters such as type of treatment, treatment thickness, traffic, and pavement type : Estimate a service life for each treatment based on the obs...

  8. Collisional evolution - an analytical study for the non steady-state mass distribution.

    NASA Astrophysics Data System (ADS)

    Vieira Martins, R.

    1999-05-01

    To study the collisional evolution of asteroidal groups one can use an analytical solution for the self-similar collision cascades. This solution is suitable to study the steady-state mass distribution of the collisional fragmentation. However, out of the steady-state conditions, this solution is not satisfactory for some values of the collisional parameters. In fact, for some values for the exponent of the mass distribution power law of an asteroidal group and its relation to the exponent of the function which describes "how rocks break" the author arrives at singular points for the equation which describes the collisional evolution. These singularities appear since some approximations are usually made in the laborious evaluation of many integrals that appear in the analytical calculations. They concern the cutoff for the smallest and the largest bodies. These singularities set some restrictions to the study of the analytical solution for the collisional equation. To overcome these singularities the author performed an algebraic computation considering the smallest and the largest bodies and he obtained the analytical expressions for the integrals that describe the collisional evolution without restriction on the parameters. However, the new distribution is more sensitive to the values of the collisional parameters. In particular the steady-state solution for the differential mass distribution has exponents slightly different from 11/6 for the usual parameters in the asteroid belt. The sensitivity of this distribution with respect to the parameters is analyzed for the usual values in the asteroidal groups. With an expression for the mass distribution without singularities, one can evaluate also its time evolution. The author arrives at an analytical expression given by a power series of terms constituted by a small parameter multiplied by the mass to an exponent, which depends on the initial power law distribution. This expression is a formal solution for the equation which describes the collisional evolution.

  9. Analyses of ACPL thermal/fluid conditioning system

    NASA Technical Reports Server (NTRS)

    Stephen, L. A.; Usher, L. H.

    1976-01-01

    Results of engineering analyses are reported. Initial computations were made using a modified control transfer function where the systems performance was characterized parametrically using an analytical model. The analytical model was revised to represent the latest expansion chamber fluid manifold design, and systems performance predictions were made. Parameters which were independently varied in these computations are listed. Systems predictions which were used to characterize performance are primarily transient computer plots comparing the deviation between average chamber temperature and the chamber temperature requirement. Additional computer plots were prepared. Results of parametric computations with the latest fluid manifold design are included.

  10. Correlation and evaluation of inplane stability characteristics for an advanced bearingless main rotor

    NASA Technical Reports Server (NTRS)

    Weller, W. H.

    1983-01-01

    A program of experimental and analytical research was performed to demonstrate the degree of correlation achieved between measured and computed rotor inplane stability characteristics. The experimental data were obtained from hover and wind tunnel tests of a scaled bearingless main rotor model. Both isolated rotor and free-hub conditions were tested. Test parameters included blade built-in cone and sweep angles; rotor inplane structural stiffness and damping; pitch link stiffness and location; and fuselage damping, inertia, and natural frequency. Analytical results for many test conditions were obtained. In addition, the analytical and experimental results were examined to ascertain the effects of the test parameters on rotor ground and air resonance stability. The results from this program are presented herein in tabular and graphical form.

  11. Standardless quantification by parameter optimization in electron probe microanalysis

    NASA Astrophysics Data System (ADS)

    Limandri, Silvina P.; Bonetto, Rita D.; Josa, Víctor Galván; Carreras, Alejo C.; Trincavelli, Jorge C.

    2012-11-01

    A method for standardless quantification by parameter optimization in electron probe microanalysis is presented. The method consists in minimizing the quadratic differences between an experimental spectrum and an analytical function proposed to describe it, by optimizing the parameters involved in the analytical prediction. This algorithm, implemented in the software POEMA (Parameter Optimization in Electron Probe Microanalysis), allows the determination of the elemental concentrations, along with their uncertainties. The method was tested in a set of 159 elemental constituents corresponding to 36 spectra of standards (mostly minerals) that include trace elements. The results were compared with those obtained with the commercial software GENESIS Spectrum® for standardless quantification. The quantifications performed with the method proposed here are better in the 74% of the cases studied. In addition, the performance of the method proposed is compared with the first principles standardless analysis procedure DTSA for a different data set, which excludes trace elements. The relative deviations with respect to the nominal concentrations are lower than 0.04, 0.08 and 0.35 for the 66% of the cases for POEMA, GENESIS and DTSA, respectively.

  12. Exploration Opportunity Search of Near-earth Objects Based on Analytical Gradients

    NASA Astrophysics Data System (ADS)

    Ren, Yuan; Cui, Ping-Yuan; Luan, En-Jie

    2008-07-01

    The problem of search of opportunity for the exploration of near-earth minor objects is investigated. For rendezvous missions, the analytical gradients of the performance index with respect to the free parameters are derived using the variational calculus and the theory of state-transition matrix. After generating randomly some initial guesses in the search space, the performance index is optimized, guided by the analytical gradients, leading to the local minimum points representing the potential launch opportunities. This method not only keeps the global-search property of the traditional method, but also avoids the blindness in the latter, thereby increasing greatly the computing speed. Furthermore, with this method, the searching precision could be controlled effectively.

  13. Search of exploration opportunity for near earth objects based on analytical gradients

    NASA Astrophysics Data System (ADS)

    Ren, Y.; Cui, P. Y.; Luan, E. J.

    2008-01-01

    The problem of searching for exploration opportunity of near Earth objects is investigated. For rendezvous missions, the analytical gradients of performance index with respect to free parameters are derived by combining the calculus of variation with the theory of state-transition matrix. Then, some initial guesses are generated random in the search space, and the performance index is optimized with the guidance of analytical gradients from these initial guesses. This method not only keeps the property of global search in traditional method, but also avoids the blindness in the traditional exploration opportunity search; hence, the computing speed could be increased greatly. Furthermore, by using this method, the search precision could be controlled effectively.

  14. Instrumental Surveillance of Water Quality.

    ERIC Educational Resources Information Center

    Miller, J. A.; And Others

    The role analytical instrumentation performs in the surveillance and control of the quality of water resources is reviewed. Commonly performed analyses may range from simple tests for physical parameters to more highly sophisticated radiological or spectrophotometric methods. This publication explores many of these types of water quality analyses…

  15. Laboratory longitudinal diffusion tests: 1. Dimensionless formulations and validity of simplified solutions

    NASA Astrophysics Data System (ADS)

    Takeda, M.; Nakajima, H.; Zhang, M.; Hiratsuka, T.

    2008-04-01

    To obtain reliable diffusion parameters for diffusion testing, multiple experiments should not only be cross-checked but the internal consistency of each experiment should also be verified. In the through- and in-diffusion tests with solution reservoirs, test interpretation of different phases often makes use of simplified analytical solutions. This study explores the feasibility of steady, quasi-steady, equilibrium and transient-state analyses using simplified analytical solutions with respect to (i) valid conditions for each analytical solution, (ii) potential error, and (iii) experimental time. For increased generality, a series of numerical analyses are performed using unified dimensionless parameters and the results are all related to dimensionless reservoir volume (DRV) which includes only the sorptive parameter as an unknown. This means the above factors can be investigated on the basis of the sorption properties of the testing material and/or tracer. The main findings are that steady, quasi-steady and equilibrium-state analyses are applicable when the tracer is not highly sorptive. However, quasi-steady and equilibrium-state analyses become inefficient or impractical compared to steady state analysis when the tracer is non-sorbing and material porosity is significantly low. Systematic and comprehensive reformulation of analytical models enables the comparison of experimental times between different test methods. The applicability and potential error of each test interpretation can also be studied. These can be applied in designing, performing, and interpreting diffusion experiments by deducing DRV from the available information for the target material and tracer, combined with the results of this study.

  16. Applications of computer algebra to distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Storch, Joel A.

    1993-01-01

    In the analysis of vibrations of continuous elastic systems, one often encounters complicated transcendental equations with roots directly related to the system's natural frequencies. Typically, these equations contain system parameters whose values must be specified before a numerical solution can be obtained. The present paper presents a method whereby the fundamental frequency can be obtained in analytical form to any desired degree of accuracy. The method is based upon truncation of rapidly converging series involving inverse powers of the system natural frequencies. A straightforward method to developing these series and summing them in closed form is presented. It is demonstrated how Computer Algebra can be exploited to perform the intricate analytical procedures which otherwise would render the technique difficult to apply in practice. We illustrate the method by developing two analytical approximations to the fundamental frequency of a vibrating cantilever carrying a rigid tip body. The results are compared to the numerical solution of the exact (transcendental) frequency equation over a range of system parameters.

  17. The Use and Abuse of Limits of Detection in Environmental Analytical Chemistry

    PubMed Central

    Brown, Richard J. C.

    2008-01-01

    The limit of detection (LoD) serves as an important method performance measure that is useful for the comparison of measurement techniques and the assessment of likely signal to noise performance, especially in environmental analytical chemistry. However, the LoD is only truly related to the precision characteristics of the analytical instrument employed for the analysis and the content of analyte in the blank sample. This article discusses how other criteria, such as sampling volume, can serve to distort the quoted LoD artificially and make comparison between various analytical methods inequitable. In order to compare LoDs between methods properly, it is necessary to state clearly all of the input parameters relating to the measurements that have been used in the calculation of the LoD. Additionally, the article discusses that the use of LoDs in contexts other than the comparison of the attributes of analytical methods, in particular when reporting analytical results, may be confusing, less informative than quoting the actual result with an accompanying statement of uncertainty, and may act to bias descriptive statistics. PMID:18690384

  18. MFAHP: A novel method on the performance evaluation of the industrial wireless networked control system

    NASA Astrophysics Data System (ADS)

    Wu, Linqin; Xu, Sheng; Jiang, Dezhi

    2015-12-01

    Industrial wireless networked control system has been widely used, and how to evaluate the performance of the wireless network is of great significance. In this paper, considering the shortcoming of the existing performance evaluation methods, a comprehensive performance evaluation method of networks multi-indexes fuzzy analytic hierarchy process (MFAHP) combined with the fuzzy mathematics and the traditional analytic hierarchy process (AHP) is presented. The method can overcome that the performance evaluation is not comprehensive and subjective. Experiments show that the method can reflect the network performance of real condition. It has direct guiding role on protocol selection, network cabling, and node setting, and can meet the requirements of different occasions by modifying the underlying parameters.

  19. Analytical Computation of Effective Grid Parameters for the Finite-Difference Seismic Waveform Modeling With the PREM, IASP91, SP6, and AK135

    NASA Astrophysics Data System (ADS)

    Toyokuni, G.; Takenaka, H.

    2007-12-01

    We propose a method to obtain effective grid parameters for the finite-difference (FD) method with standard Earth models using analytical ways. In spite of the broad use of the heterogeneous FD formulation for seismic waveform modeling, accurate treatment of material discontinuities inside the grid cells has been a serious problem for many years. One possible way to solve this problem is to introduce effective grid elastic moduli and densities (effective parameters) calculated by the volume harmonic averaging of elastic moduli and volume arithmetic averaging of density in grid cells. This scheme enables us to put a material discontinuity into an arbitrary position in the spatial grids. Most of the methods used for synthetic seismogram calculation today receives the blessing of the standard Earth models, such as the PREM, IASP91, SP6, and AK135, represented as functions of normalized radius. For the FD computation of seismic waveform with such models, we first need accurate treatment of material discontinuities in radius. This study provides a numerical scheme for analytical calculations of the effective parameters for an arbitrary spatial grids in radial direction as to these major four standard Earth models making the best use of their functional features. This scheme can analytically obtain the integral volume averages through partial fraction decompositions (PFDs) and integral formulae. We have developed a FORTRAN subroutine to perform the computations, which is opened to utilization in a large variety of FD schemes ranging from 1-D to 3-D, with conventional- and staggered-grids. In the presentation, we show some numerical examples displaying the accuracy of the FD synthetics simulated with the analytical effective parameters.

  20. Flow adjustment inside homogeneous canopies after a leading edge – An analytical approach backed by LES

    DOE PAGES

    Kroniger, Konstantin; Banerjee, Tirtha; De Roo, Frederik; ...

    2017-10-06

    A two-dimensional analytical model for describing the mean flow behavior inside a vegetation canopy after a leading edge in neutral conditions was developed and tested by means of large eddy simulations (LES) employing the LES code PALM. The analytical model is developed for the region directly after the canopy edge, the adjustment region, where one-dimensional canopy models fail due to the sharp change in roughness. The derivation of this adjustment region model is based on an analytic solution of the two-dimensional Reynolds averaged Navier–Stokes equation in neutral conditions for a canopy with constant plant area density (PAD). The main assumptionsmore » for solving the governing equations are separability of the velocity components concerning the spatial variables and the neglection of the Reynolds stress gradients. These two assumptions are verified by means of LES. To determine the emerging model parameters, a simultaneous fitting scheme was applied to the velocity and pressure data of a reference LES simulation. Furthermore a sensitivity analysis of the adjustment region model, equipped with the previously calculated parameters, was performed varying the three relevant length, the canopy height ( h), the canopy length and the adjustment length ( Lc), in additional LES. Even if the model parameters are, in general, functions of h/ Lc, it was found out that the model is capable of predicting the flow quantities in various cases, when using constant parameters. Subsequently the adjustment region model is combined with the one-dimensional model of Massman, which is applicable for the interior of the canopy, to attain an analytical model capable of describing the mean flow for the full canopy domain. As a result, the model is tested against an analytical model based on a linearization approach.« less

  1. Flow adjustment inside homogeneous canopies after a leading edge – An analytical approach backed by LES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroniger, Konstantin; Banerjee, Tirtha; De Roo, Frederik

    A two-dimensional analytical model for describing the mean flow behavior inside a vegetation canopy after a leading edge in neutral conditions was developed and tested by means of large eddy simulations (LES) employing the LES code PALM. The analytical model is developed for the region directly after the canopy edge, the adjustment region, where one-dimensional canopy models fail due to the sharp change in roughness. The derivation of this adjustment region model is based on an analytic solution of the two-dimensional Reynolds averaged Navier–Stokes equation in neutral conditions for a canopy with constant plant area density (PAD). The main assumptionsmore » for solving the governing equations are separability of the velocity components concerning the spatial variables and the neglection of the Reynolds stress gradients. These two assumptions are verified by means of LES. To determine the emerging model parameters, a simultaneous fitting scheme was applied to the velocity and pressure data of a reference LES simulation. Furthermore a sensitivity analysis of the adjustment region model, equipped with the previously calculated parameters, was performed varying the three relevant length, the canopy height ( h), the canopy length and the adjustment length ( Lc), in additional LES. Even if the model parameters are, in general, functions of h/ Lc, it was found out that the model is capable of predicting the flow quantities in various cases, when using constant parameters. Subsequently the adjustment region model is combined with the one-dimensional model of Massman, which is applicable for the interior of the canopy, to attain an analytical model capable of describing the mean flow for the full canopy domain. As a result, the model is tested against an analytical model based on a linearization approach.« less

  2. Analytical calculation on the determination of steep side wall angles from far field measurements

    NASA Astrophysics Data System (ADS)

    Cisotto, Luca; Pereira, Silvania F.; Urbach, H. Paul

    2018-06-01

    In the semiconductor industry, the performance and capabilities of the lithographic process are evaluated by measuring specific structures. These structures are often gratings of which the shape is described by a few parameters such as period, middle critical dimension, height, and side wall angle (SWA). Upon direct measurement or retrieval of these parameters, the determination of the SWA suffers from considerable inaccuracies. Although the scattering effects that steep SWAs have on the illumination can be obtained with rigorous numerical simulations, analytical models constitute a very useful tool to get insights into the problem we are treating. In this paper, we develop an approach based on analytical calculations to describe the scattering of a cliff and a ridge with steep SWAs. We also propose a detection system to determine the SWAs of the structures.

  3. Constitutive parameter measurements of lossy materials

    NASA Technical Reports Server (NTRS)

    Dominek, A.; Park, A.

    1989-01-01

    The electrical constitutive parameters of lossy materials are considered. A discussion of the NRL arch for lossy coatings is presented involving analytical analyses of the reflected field using the geometrical theory of diffraction (GTD) and physical optics (PO). The actual values for these parameters can be obtained through a traditional transmission technique which is examined from an error analysis standpoint. Alternate sample geometries are suggested for this technique to reduce sample tolerance requirements for accurate parameter determination. The performance for one alternate geometry is given.

  4. The predictive accuracy of analytical formulas and semiclassical approaches for α decay half-lives of superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Zhao, T. L.; Bao, X. J.; Guo, S. Q.

    2018-02-01

    Systematic calculations on the α decay half-lives are performed by using three analytical formulas and two semiclassical approaches. For the three analytical formulas, the experimental α decay half-lives and {Q}α values of the 66 reference nuclei have been used to obtain the coefficients. We get only four adjustable parameters to describe α decay half-lives for even-even, odd-A, and odd-odd nuclei. By comparison between the calculated values from ten analytical formulas and experimental data, it is shown that the new universal decay law (NUDL) foumula is the most accurate one to reproduce the experimental α decay half-lives of the superheavy nuclei (SHN). Meanwhile it is found that the experimental α decay half-lives of SHN are well reproduced by the Royer formula although many parameters are contained. The results show that the NUDL formula and the generalized liquid drop model (GLDM2) with consideration of the preformation factor can give fairly equivalent results for the superheavy nuclei.

  5. Determination of Global Stability of the Slosh Motion in a Spacecraft via Num Erical Experiment

    NASA Astrophysics Data System (ADS)

    Kang, Ja-Young

    2003-12-01

    The global stability of the attitude motion of a spin-stabilized space vehicle is investigated by performing numerical experiment. In the previous study, a stationary solution and a particular resonant condition for a given model were found by using analytical method but failed to represent the system stability over parameter values near and off the stationary points. Accordingly, as an extension of the previous work, this study performs numerical experiment to investigate the stability of the system across the parameter space and determines stable and unstable regions of the design parameters of the system.

  6. Cavitation in liquid cryogens. 4: Combined correlations for venturi, hydrofoil, ogives, and pumps

    NASA Technical Reports Server (NTRS)

    Hord, J.

    1974-01-01

    The results of a series of experimental and analytical cavitation studies are presented. Cross-correlation is performed of the developed cavity data for a venturi, a hydrofoil and three scaled ogives. The new correlating parameter, MTWO, improves data correlation for these stationary bodies and for pumping equipment. Existing techniques for predicting the cavitating performance of pumping machinery were extended to include variations in flow coefficient, cavitation parameter, and equipment geometry. The new predictive formulations hold promise as a design tool and universal method for correlating pumping machinery performance. Application of these predictive formulas requires prescribed cavitation test data or an independent method of estimating the cavitation parameter for each pump. The latter would permit prediction of performance without testing; potential methods for evaluating the cavitation parameter prior to testing are suggested.

  7. Combustion performance and heat transfer characterization of LOX/hydrocarbon type propellants

    NASA Technical Reports Server (NTRS)

    Gross, R. S.

    1980-01-01

    A sound data base was established by analytically and experimentally generating basic regenerative cooling, combustion performance, combustion stability, and combustion chamber heat transfer parameters for LOX/HC propellants, with specific application to second generation orbit maneuvering and reaction control systems (OMS/RCS) for the Space Shuttle Orbiter.

  8. Buckling Testing and Analysis of Space Shuttle Solid Rocket Motor Cylinders

    NASA Technical Reports Server (NTRS)

    Weidner, Thomas J.; Larsen, David V.; McCool, Alex (Technical Monitor)

    2002-01-01

    A series of full-scale buckling tests were performed on the space shuttle Reusable Solid Rocket Motor (RSRM) cylinders. The tests were performed to determine the buckling capability of the cylinders and to provide data for analytical comparison. A nonlinear ANSYS Finite Element Analysis (FEA) model was used to represent and evaluate the testing. Analytical results demonstrated excellent correlation to test results, predicting the failure load within 5%. The analytical value was on the conservative side, predicting a lower failure load than was applied to the test. The resulting study and analysis indicated the important parameters for FEA to accurately predict buckling failure. The resulting method was subsequently used to establish the pre-launch buckling capability of the space shuttle system.

  9. Slow-roll approximation in loop quantum cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luc, Joanna; Mielczarek, Jakub, E-mail: joanna.luc@uj.edu.pl, E-mail: jakub.mielczarek@uj.edu.pl

    The slow-roll approximation is an analytical approach to study dynamical properties of the inflationary universe. In this article, systematic construction of the slow-roll expansion for effective loop quantum cosmology is presented. The analysis is performed up to the fourth order in both slow-roll parameters and the parameter controlling the strength of deviation from the classical case. The expansion is performed for three types of the slow-roll parameters: Hubble slow-roll parameters, Hubble flow parameters and potential slow-roll parameters. An accuracy of the approximation is verified by comparison with the numerical phase space trajectories for the case with a massive potential term.more » The results obtained in this article may be helpful in the search for the subtle quantum gravitational effects with use of the cosmological data.« less

  10. Parameter identification of partially covered piezoelectric cantilever power scavenger based on the coupled distributed parameter solution

    NASA Astrophysics Data System (ADS)

    Hosseini; Hamedi; Ebrahimi Mamaghani; Kim; Kim; Dayou

    2017-07-01

    Among the various techniques of power scavenging, piezoelectric energy harvesting usually has more power density. Although piezoceramics are usually more efficient than other piezoelectric materials, since they are very brittle and fragile, researchers are looking for alternative materials. Recently Cellulose Electro-active paper (EAPap) has been recognized as a smart material with piezoelectric behavior that can be used in energy scavenging systems. The majority of researches in energy harvesting area, use unimorph piezoelectric cantilever beams. This paper presents an analytical solution based on distributed parameter model for partially covered pieoelectric cantilever energy harvester. The purpose of the paper is to describe the changes in generated power with damping and the load resistance using analytical calculations. The analytical data are verified using experiment on a vibrating cantilever substrate that is partially covered by EAPap films. The results are very close to each other. Also asymptotic trends of the voltage, current and power outputs are investigated and expressions are obtained for the extreme conditions of the load resistance. These new findings provide guidelines for identification and manipulation of effective parameters in order to achieve the efficient performance in different ambient source conditions.

  11. TRAC performance estimates

    NASA Technical Reports Server (NTRS)

    Everett, L.

    1992-01-01

    This report documents the performance characteristics of a Targeting Reflective Alignment Concept (TRAC) sensor. The performance will be documented for both short and long ranges. For long ranges, the sensor is used without the flat mirror attached to the target. To better understand the capabilities of the TRAC based sensors, an engineering model is required. The model can be used to better design the system for a particular application. This is necessary because there are many interrelated design variables in application. These include lense parameters, camera, and target configuration. The report presents first an analytical development of the performance, and second an experimental verification of the equations. In the analytical presentation it is assumed that the best vision resolution is a single pixel element. The experimental results suggest however that the resolution is better than 1 pixel. Hence the analytical results should be considered worst case conditions. The report also discusses advantages and limitations of the TRAC sensor in light of the performance estimates. Finally the report discusses potential improvements.

  12. The state of the art of the impact of sampling uncertainty on measurement uncertainty

    NASA Astrophysics Data System (ADS)

    Leite, V. J.; Oliveira, E. C.

    2018-03-01

    The measurement uncertainty is a parameter that marks the reliability and can be divided into two large groups: sampling and analytical variations. Analytical uncertainty is a controlled process, performed in the laboratory. The same does not occur with the sampling uncertainty, which, because it faces several obstacles and there is no clarity on how to perform the procedures, has been neglected, although it is admittedly indispensable to the measurement process. This paper aims at describing the state of the art of sampling uncertainty and at assessing its relevance to measurement uncertainty.

  13. Quantum approximate optimization algorithm for MaxCut: A fermionic view

    NASA Astrophysics Data System (ADS)

    Wang, Zhihui; Hadfield, Stuart; Jiang, Zhang; Rieffel, Eleanor G.

    2018-02-01

    Farhi et al. recently proposed a class of quantum algorithms, the quantum approximate optimization algorithm (QAOA), for approximately solving combinatorial optimization problems (E. Farhi et al., arXiv:1411.4028; arXiv:1412.6062; arXiv:1602.07674). A level-p QAOA circuit consists of p steps; in each step a classical Hamiltonian, derived from the cost function, is applied followed by a mixing Hamiltonian. The 2 p times for which these two Hamiltonians are applied are the parameters of the algorithm, which are to be optimized classically for the best performance. As p increases, parameter optimization becomes inefficient due to the curse of dimensionality. The success of the QAOA approach will depend, in part, on finding effective parameter-setting strategies. Here we analytically and numerically study parameter setting for the QAOA applied to MaxCut. For the level-1 QAOA, we derive an analytical expression for a general graph. In principle, expressions for higher p could be derived, but the number of terms quickly becomes prohibitive. For a special case of MaxCut, the "ring of disagrees," or the one-dimensional antiferromagnetic ring, we provide an analysis for an arbitrarily high level. Using a fermionic representation, the evolution of the system under the QAOA translates into quantum control of an ensemble of independent spins. This treatment enables us to obtain analytical expressions for the performance of the QAOA for any p . It also greatly simplifies the numerical search for the optimal values of the parameters. By exploring symmetries, we identify a lower-dimensional submanifold of interest; the search effort can be accordingly reduced. This analysis also explains an observed symmetry in the optimal parameter values. Further, we numerically investigate the parameter landscape and show that it is a simple one in the sense of having no local optima.

  14. One-dimensional backreacting holographic superconductors with exponential nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Ghotbabadi, B. Binaei; Zangeneh, M. Kord; Sheykhi, A.

    2018-05-01

    In this paper, we investigate the effects of nonlinear exponential electrodynamics as well as backreaction on the properties of one-dimensional s-wave holographic superconductors. We continue our study both analytically and numerically. In analytical study, we employ the Sturm-Liouville method while in numerical approach we perform the shooting method. We obtain a relation between the critical temperature and chemical potential analytically. Our results show a good agreement between analytical and numerical methods. We observe that the increase in the strength of both nonlinearity and backreaction parameters causes the formation of condensation in the black hole background harder and critical temperature lower. These results are consistent with those obtained for two dimensional s-wave holographic superconductors.

  15. Analytical mass formula and nuclear surface properties in the ETF approximation. Part II: asymmetric nuclei

    NASA Astrophysics Data System (ADS)

    Aymard, François; Gulminelli, Francesca; Margueron, Jérôme

    2016-08-01

    We have recently addressed the problem of the determination of the nuclear surface energy for symmetric nuclei in the framework of the extended Thomas-Fermi (ETF) approximation using Skyrme functionals. We presently extend this formalism to the case of asymmetric nuclei and the question of the surface symmetry energy. We propose an approximate expression for the diffuseness and the surface energy. These quantities are analytically related to the parameters of the energy functional. In particular, the influence of the different equation of state parameters can be explicitly quantified. Detailed analyses of the different energy components (local/non-local, isoscalar/isovector, surface/curvature and higher order) are also performed. Our analytical solution of the ETF integral improves previous models and leads to a precision of better than 200 keV per nucleon in the determination of the nuclear binding energy for dripline nuclei.

  16. Use of in-die powder densification parameters in the implementation of process analytical technologies for tablet production on industrial scale.

    PubMed

    Cespi, Marco; Perinelli, Diego R; Casettari, Luca; Bonacucina, Giulia; Caporicci, Giuseppe; Rendina, Filippo; Palmieri, Giovanni F

    2014-12-30

    The use of process analytical technologies (PAT) to ensure final product quality is by now a well established practice in pharmaceutical industry. To date, most of the efforts in this field have focused on development of analytical methods using spectroscopic techniques (i.e., NIR, Raman, etc.). This work evaluated the possibility of using the parameters derived from the processing of in-line raw compaction data (the forces and displacement of the punches) as a PAT tool for controlling the tableting process. To reach this goal, two commercially available formulations were used, changing the quantitative composition and compressing them on a fully instrumented rotary pressing machine. The Heckel yield pressure and the compaction energies, together with the tablets hardness and compaction pressure, were selected and evaluated as discriminating parameters in all the prepared formulations. The apparent yield pressure, as shown in the obtained results, has the necessary sensitivity to be effectively included in a PAT strategy to monitor the tableting process. Additional investigations were performed to understand the criticalities and the mechanisms beyond this performing parameter and the associated implications. Specifically, it was discovered that the efficiency of the apparent yield pressure depends on the nominal drug title, the drug densification mechanism and the error in pycnometric density. In this study, the potential of using some parameters derived from the compaction raw data has been demonstrated to be an attractive alternative and complementary method to the well established spectroscopic techniques to monitor and control the tableting process. The compaction data monitoring method is also easy to set up and very cost effective. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Methodology for the systems engineering process. Volume 3: Operational availability

    NASA Technical Reports Server (NTRS)

    Nelson, J. H.

    1972-01-01

    A detailed description and explanation of the operational availability parameter is presented. The fundamental mathematical basis for operational availability is developed, and its relationship to a system's overall performance effectiveness is illustrated within the context of identifying specific availability requirements. Thus, in attempting to provide a general methodology for treating both hypothetical and existing availability requirements, the concept of an availability state, in conjunction with the more conventional probability-time capability, is investigated. In this respect, emphasis is focused upon a balanced analytical and pragmatic treatment of operational availability within the system design process. For example, several applications of operational availability to typical aerospace systems are presented, encompassing the techniques of Monte Carlo simulation, system performance availability trade-off studies, analytical modeling of specific scenarios, as well as the determination of launch-on-time probabilities. Finally, an extensive bibliography is provided to indicate further levels of depth and detail of the operational availability parameter.

  18. Complete set of homogeneous isotropic analytic solutions in scalar-tensor cosmology with radiation and curvature

    NASA Astrophysics Data System (ADS)

    Bars, Itzhak; Chen, Shih-Hung; Steinhardt, Paul J.; Turok, Neil

    2012-10-01

    We study a model of a scalar field minimally coupled to gravity, with a specific potential energy for the scalar field, and include curvature and radiation as two additional parameters. Our goal is to obtain analytically the complete set of configurations of a homogeneous and isotropic universe as a function of time. This leads to a geodesically complete description of the Universe, including the passage through the cosmological singularities, at the classical level. We give all the solutions analytically without any restrictions on the parameter space of the model or initial values of the fields. We find that for generic solutions the Universe goes through a singular (zero-size) bounce by entering a period of antigravity at each big crunch and exiting from it at the following big bang. This happens cyclically again and again without violating the null-energy condition. There is a special subset of geodesically complete nongeneric solutions which perform zero-size bounces without ever entering the antigravity regime in all cycles. For these, initial values of the fields are synchronized and quantized but the parameters of the model are not restricted. There is also a subset of spatial curvature-induced solutions that have finite-size bounces in the gravity regime and never enter the antigravity phase. These exist only within a small continuous domain of parameter space without fine-tuning the initial conditions. To obtain these results, we identified 25 regions of a 6-parameter space in which the complete set of analytic solutions are explicitly obtained.

  19. How Should Blood Glucose Meter System Analytical Performance Be Assessed?

    PubMed

    Simmons, David A

    2015-08-31

    Blood glucose meter system analytical performance is assessed by comparing pairs of meter system and reference instrument blood glucose measurements measured over time and across a broad array of glucose values. Consequently, no single, complete, and ideal parameter can fully describe the difference between meter system and reference results. Instead, a number of assessment tools, both graphical (eg, regression plots, modified Bland-Altman plots, and error grid analysis) and tabular (eg, International Organization for Standardization guidelines, mean absolute difference, and mean absolute relative difference) have been developed to evaluate meter system performance. The strengths and weaknesses of these methods of presenting meter system performance data, including a new method known as Radar Plots, are described here. © 2015 Diabetes Technology Society.

  20. Precise analytic approximations for the Bessel function J1 (x)

    NASA Astrophysics Data System (ADS)

    Maass, Fernando; Martin, Pablo

    2018-03-01

    Precise and straightforward analytic approximations for the Bessel function J1 (x) have been found. Power series and asymptotic expansions have been used to determine the parameters of the approximation, which is as a bridge between both expansions, and it is a combination of rational and trigonometric functions multiplied with fractional powers of x. Here, several improvements with respect to the so called Multipoint Quasirational Approximation technique have been performed. Two procedures have been used to determine the parameters of the approximations. The maximum absolute errors are in both cases smaller than 0.01. The zeros of the approximation are also very precise with less than 0.04 per cent for the first one. A second approximation has been also determined using two more parameters, and in this way the accuracy has been increased to less than 0.001.

  1. Flow Generated by a Partially Penetrating Well in a Leaky Two-Aquifer System with a Storative Semiconfining Layer

    NASA Astrophysics Data System (ADS)

    Sepulveda, N.; Rohrer, K.

    2008-05-01

    The permeability of the semiconfining layers of the highly productive Floridan Aquifer System may be large enough to invalidate the assumptions of the leaky aquifer theory. These layers are the intermediate confining and the middle semiconfining units. The analysis of aquifer-test data with analytical solutions of the ground-water flow equation developed with the approximation of a low hydraulic conductivity ratio between the semiconfining layer and the aquifer may lead to inaccurate hydraulic parameters. An analytical solution is presented here for the flow in a confined leaky aquifer, the overlying storative semiconfining layer, and the unconfined aquifer, generated by a partially penetrating well in a two-aquifer system, and allowing vertical and lateral flow components to occur in the semiconfining layer. The equations describing flow caused by a partially penetrating production well are solved analytically to provide a method to accurately determine the hydraulic parameters in the confined aquifer, semiconfining layer, and unconfined aquifer from aquifer-test data. Analysis of the drawdown data from an aquifer test performed in central Florida showed that the flow solution presented here for the semiconfining layer provides a better match and a more unique identification of the hydraulic parameters than an analytical solution that considers only vertical flow in the semiconfining layer.

  2. A practical model of thin disk regenerative amplifier based on analytical expression of ASE lifetime

    NASA Astrophysics Data System (ADS)

    Zhou, Huang; Chyla, Michal; Nagisetty, Siva Sankar; Chen, Liyuan; Endo, Akira; Smrz, Martin; Mocek, Tomas

    2017-12-01

    In this paper, a practical model of a thin disk regenerative amplifier has been developed based on an analytical approach, in which Drew A. Copeland [1] had evaluated the loss rate of the upper state laser level due to ASE and derived the analytical expression of the effective life-time of the upper-state laser level by taking the Lorentzian stimulated emission line-shape and total internal reflection into account. By adopting the analytical expression of effective life-time in the rate equations, we have developed a less numerically intensive model for predicting and analyzing the performance of a thin disk regenerative amplifier. Thanks to the model, optimized combination of various parameters can be obtained to avoid saturation, period-doubling bifurcation or first pulse suppression prior to experiments. The effective life-time due to ASE is also analyzed against various parameters. The simulated results fit well with experimental data. By fitting more experimental results with numerical model, we can improve the parameters of the model, such as reflective factor which is used to determine the weight of boundary reflection within the influence of ASE. This practical model will be used to explore the scaling limits imposed by ASE of the thin disk regenerative amplifier being developed in HiLASE Centre.

  3. A Case Study on the Application of a Structured Experimental Method for Optimal Parameter Design of a Complex Control System

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2015-01-01

    This report documents a case study on the application of Reliability Engineering techniques to achieve an optimal balance between performance and robustness by tuning the functional parameters of a complex non-linear control system. For complex systems with intricate and non-linear patterns of interaction between system components, analytical derivation of a mathematical model of system performance and robustness in terms of functional parameters may not be feasible or cost-effective. The demonstrated approach is simple, structured, effective, repeatable, and cost and time efficient. This general approach is suitable for a wide range of systems.

  4. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models

    PubMed Central

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization. PMID:27243005

  5. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models.

    PubMed

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.

  6. Determination of Stable-Unstable Regions of the Slosh Motion in Spinning Space Vehicle by Perturbation Technique

    NASA Astrophysics Data System (ADS)

    Kang, Jai Young

    2005-12-01

    The objectives of this study are to perform extensive analysis on internal mass motion for a wider parameter space and to provide suitable design criteria for a broader applicability for the class of spinning space vehicles. In order to examine the stability criterion determined by a perturbation method, some numerical simulations will be performed and compared at various parameter points. In this paper, Ince-Strutt diagram for determination of stable-unstable regions of the internal mass motion of the spinning thrusting space vehicle in terms of design parameters will be obtained by an analytical method. Also, phase trajectories of the motion will be obtained for various parameter values and their characteristics are compared.

  7. Table look-up estimation of signal and noise parameters from quantized observables

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V. A.; Rodemich, E. R.

    1986-01-01

    A table look-up algorithm for estimating underlying signal and noise parameters from quantized observables is examined. A general mathematical model is developed, and a look-up table designed specifically for estimating parameters from four-bit quantized data is described. Estimator performance is evaluated both analytically and by means of numerical simulation, and an example is provided to illustrate the use of the look-up table for estimating signal-to-noise ratios commonly encountered in Voyager-type data.

  8. Approximate analytical relationships for linear optimal aeroelastic flight control laws

    NASA Astrophysics Data System (ADS)

    Kassem, Ayman Hamdy

    1998-09-01

    This dissertation introduces new methods to uncover functional relationships between design parameters of a contemporary control design technique and the resulting closed-loop properties. Three new methods are developed for generating such relationships through analytical expressions: the Direct Eigen-Based Technique, the Order of Magnitude Technique, and the Cost Function Imbedding Technique. Efforts concentrated on the linear-quadratic state-feedback control-design technique applied to an aeroelastic flight control task. For this specific application, simple and accurate analytical expressions for the closed-loop eigenvalues and zeros in terms of basic parameters such as stability and control derivatives, structural vibration damping and natural frequency, and cost function weights are generated. These expressions explicitly indicate how the weights augment the short period and aeroelastic modes, as well as the closed-loop zeros, and by what physical mechanism. The analytical expressions are used to address topics such as damping, nonminimum phase behavior, stability, and performance with robustness considerations, and design modifications. This type of knowledge is invaluable to the flight control designer and would be more difficult to formulate when obtained from numerical-based sensitivity analysis.

  9. Analytical design of an industrial two-term controller for optimal regulatory control of open-loop unstable processes under operational constraints.

    PubMed

    Tchamna, Rodrigue; Lee, Moonyong

    2018-01-01

    This paper proposes a novel optimization-based approach for the design of an industrial two-term proportional-integral (PI) controller for the optimal regulatory control of unstable processes subjected to three common operational constraints related to the process variable, manipulated variable and its rate of change. To derive analytical design relations, the constrained optimal control problem in the time domain was transformed into an unconstrained optimization problem in a new parameter space via an effective parameterization. The resulting optimal PI controller has been verified to yield optimal performance and stability of an open-loop unstable first-order process under operational constraints. The proposed analytical design method explicitly takes into account the operational constraints in the controller design stage and also provides useful insights into the optimal controller design. Practical procedures for designing optimal PI parameters and a feasible constraint set exclusive of complex optimization steps are also proposed. The proposed controller was compared with several other PI controllers to illustrate its performance. The robustness of the proposed controller against plant-model mismatch has also been investigated. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Retention prediction and separation optimization under multilinear gradient elution in liquid chromatography with Microsoft Excel macros.

    PubMed

    Fasoula, S; Zisi, Ch; Gika, H; Pappa-Louisi, A; Nikitas, P

    2015-05-22

    A package of Excel VBA macros have been developed for modeling multilinear gradient retention data obtained in single or double gradient elution mode by changing organic modifier(s) content and/or eluent pH. For this purpose, ten chromatographic models were used and four methods were adopted for their application. The methods were based on (a) the analytical expression of the retention time, provided that this expression is available, (b) the retention times estimated using the Nikitas-Pappa approach, (c) the stepwise approximation, and (d) a simple numerical approximation involving the trapezoid rule for integration of the fundamental equation for gradient elution. For all these methods, Excel VBA macros have been written and implemented using two different platforms; the fitting and the optimization platform. The fitting platform calculates not only the adjustable parameters of the chromatographic models, but also the significance of these parameters and furthermore predicts the analyte elution times. The optimization platform determines the gradient conditions that lead to the optimum separation of a mixture of analytes by using the Solver evolutionary mode, provided that proper constraints are set in order to obtain the optimum gradient profile in the minimum gradient time. The performance of the two platforms was tested using experimental and artificial data. It was found that using the proposed spreadsheets, fitting, prediction, and optimization can be performed easily and effectively under all conditions. Overall, the best performance is exhibited by the analytical and Nikitas-Pappa's methods, although the former cannot be used under all circumstances. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Models for estimating photosynthesis parameters from in situ production profiles

    NASA Astrophysics Data System (ADS)

    Kovač, Žarko; Platt, Trevor; Sathyendranath, Shubha; Antunović, Suzana

    2017-12-01

    The rate of carbon assimilation in phytoplankton primary production models is mathematically prescribed with photosynthesis irradiance functions, which convert a light flux (energy) into a material flux (carbon). Information on this rate is contained in photosynthesis parameters: the initial slope and the assimilation number. The exactness of parameter values is crucial for precise calculation of primary production. Here we use a model of the daily production profile based on a suite of photosynthesis irradiance functions and extract photosynthesis parameters from in situ measured daily production profiles at the Hawaii Ocean Time-series station Aloha. For each function we recover parameter values, establish parameter distributions and quantify model skill. We observe that the choice of the photosynthesis irradiance function to estimate the photosynthesis parameters affects the magnitudes of parameter values as recovered from in situ profiles. We also tackle the problem of parameter exchange amongst the models and the effect it has on model performance. All models displayed little or no bias prior to parameter exchange, but significant bias following parameter exchange. The best model performance resulted from using optimal parameter values. Model formulation was extended further by accounting for spectral effects and deriving a spectral analytical solution for the daily production profile. The daily production profile was also formulated with time dependent growing biomass governed by a growth equation. The work on parameter recovery was further extended by exploring how to extract photosynthesis parameters from information on watercolumn production. It was demonstrated how to estimate parameter values based on a linearization of the full analytical solution for normalized watercolumn production and from the solution itself, without linearization. The paper complements previous works on photosynthesis irradiance models by analysing the skill and consistency of photosynthesis irradiance functions and parameters for modeling in situ production profiles. In light of the results obtained in this work we argue that the choice of the primary production model should reflect the available data and these models should be data driven regarding parameter estimation.

  12. Passenger rail vehicle safety assessment methodology. Volume II, Detailed analyses and simulation results.

    DOT National Transportation Integrated Search

    2000-04-01

    This report presents detailed analytic tools and results on dynamic response which are used to develop the safe dynamic performance limits of commuter passenger vehicles. The methodology consists of determining the critical parameters and characteris...

  13. Collisional evolution - an analytical study for the nonsteady-state mass distribution

    NASA Astrophysics Data System (ADS)

    Martins, R. Vieira

    1999-05-01

    To study the collisional evolution of asteroidal groups we can use an analytical solutionfor the self-similar collision cascades. This solution is suitable to study the steady-state massdistribution of the collisional fragmentation. However, out of the steady-state conditions, thissolution is not satisfactory for some values of the collisional parameters. In fact, for some valuesfor the exponent of the mass distribution power law of an asteroidal group and its relation to theexponent of the function which describes how rocks break we arrive at singular points for theequation which describes the collisional evolution. These singularities appear since someapproximations are usually made in the laborious evaluation of many integrals that appear in theanalytical calculations. They concern the cutoff for the smallest and the largest bodies. Thesesingularities set some restrictions to the study of the analytical solution for the collisionalequation. To overcome these singularities we performed an algebraic computationconsidering the smallest and the largest bodies and we obtained the analytical expressions for theintegrals that describe the collisional evolution without restriction on the parameters. However,the new distribution is more sensitive to the values of the collisional parameters. In particular thesteady-state solution for the differential mass distribution has exponents slightly different from11⧸6 for the usual parameters in the Asteroid Belt. The sensitivity of this distribution with respectto the parameters is analyzed for the usual values in the asteroidal groups. With anexpression for the mass distribution without singularities, we can evaluate also its time evolution.We arrive at an analytical expression given by a power series of terms constituted by a smallparameter multiplied by the mass to an exponent, which depends on the initial power lawdistribution. This expression is a formal solution for the equation which describes the collisionalevolution. Furthermore, the first-order term for this solution is the time rate of the distribution atthe initial time. In particular the solution shows the fundamental importance played by theexponent of the power law initial condition in the evolution of the system.

  14. Analytical and Experimental Performance Evaluation of BLE Neighbor Discovery Process Including Non-Idealities of Real Chipsets

    PubMed Central

    Perez-Diaz de Cerio, David; Hernández, Ángela; Valenzuela, Jose Luis; Valdovinos, Antonio

    2017-01-01

    The purpose of this paper is to evaluate from a real perspective the performance of Bluetooth Low Energy (BLE) as a technology that enables fast and reliable discovery of a large number of users/devices in a short period of time. The BLE standard specifies a wide range of configurable parameter values that determine the discovery process and need to be set according to the particular application requirements. Many previous works have been addressed to investigate the discovery process through analytical and simulation models, according to the ideal specification of the standard. However, measurements show that additional scanning gaps appear in the scanning process, which reduce the discovery capabilities. These gaps have been identified in all of the analyzed devices and respond to both regular patterns and variable events associated with the decoding process. We have demonstrated that these non-idealities, which are not taken into account in other studies, have a severe impact on the discovery process performance. Extensive performance evaluation for a varying number of devices and feasible parameter combinations has been done by comparing simulations and experimental measurements. This work also includes a simple mathematical model that closely matches both the standard implementation and the different chipset peculiarities for any possible parameter value specified in the standard and for any number of simultaneous advertising devices under scanner coverage. PMID:28273801

  15. Analytical and Experimental Performance Evaluation of BLE Neighbor Discovery Process Including Non-Idealities of Real Chipsets.

    PubMed

    Perez-Diaz de Cerio, David; Hernández, Ángela; Valenzuela, Jose Luis; Valdovinos, Antonio

    2017-03-03

    The purpose of this paper is to evaluate from a real perspective the performance of Bluetooth Low Energy (BLE) as a technology that enables fast and reliable discovery of a large number of users/devices in a short period of time. The BLE standard specifies a wide range of configurable parameter values that determine the discovery process and need to be set according to the particular application requirements. Many previous works have been addressed to investigate the discovery process through analytical and simulation models, according to the ideal specification of the standard. However, measurements show that additional scanning gaps appear in the scanning process, which reduce the discovery capabilities. These gaps have been identified in all of the analyzed devices and respond to both regular patterns and variable events associated with the decoding process. We have demonstrated that these non-idealities, which are not taken into account in other studies, have a severe impact on the discovery process performance. Extensive performance evaluation for a varying number of devices and feasible parameter combinations has been done by comparing simulations and experimental measurements. This work also includes a simple mathematical model that closely matches both the standard implementation and the different chipset peculiarities for any possible parameter value specified in the standard and for any number of simultaneous advertising devices under scanner coverage.

  16. The Quantum Approximation Optimization Algorithm for MaxCut: A Fermionic View

    NASA Technical Reports Server (NTRS)

    Wang, Zhihui; Hadfield, Stuart; Jiang, Zhang; Rieffel, Eleanor G.

    2017-01-01

    Farhi et al. recently proposed a class of quantum algorithms, the Quantum Approximate Optimization Algorithm (QAOA), for approximately solving combinatorial optimization problems. A level-p QAOA circuit consists of steps in which a classical Hamiltonian, derived from the cost function, is applied followed by a mixing Hamiltonian. The 2p times for which these two Hamiltonians are applied are the parameters of the algorithm. As p increases, however, the parameter search space grows quickly. The success of the QAOA approach will depend, in part, on finding effective parameter-setting strategies. Here, we analytically and numerically study parameter setting for QAOA applied to MAXCUT. For level-1 QAOA, we derive an analytical expression for a general graph. In principle, expressions for higher p could be derived, but the number of terms quickly becomes prohibitive. For a special case of MAXCUT, the Ring of Disagrees, or the 1D antiferromagnetic ring, we provide an analysis for arbitrarily high level. Using a Fermionic representation, the evolution of the system under QAOA translates into quantum optimal control of an ensemble of independent spins. This treatment enables us to obtain analytical expressions for the performance of QAOA for any p. It also greatly simplifies numerical search for the optimal values of the parameters. By exploring symmetries, we identify a lower-dimensional sub-manifold of interest; the search effort can be accordingly reduced. This analysis also explains an observed symmetry in the optimal parameter values. Further, we numerically investigate the parameter landscape and show that it is a simple one in the sense of having no local optima.

  17. An algorithm for analytical solution of basic problems featuring elastostatic bodies with cavities and surface flaws

    NASA Astrophysics Data System (ADS)

    Penkov, V. B.; Levina, L. V.; Novikova, O. S.; Shulmin, A. S.

    2018-03-01

    Herein we propose a methodology for structuring a full parametric analytical solution to problems featuring elastostatic media based on state-of-the-art computing facilities that support computerized algebra. The methodology includes: direct and reverse application of P-Theorem; methods of accounting for physical properties of media; accounting for variable geometrical parameters of bodies, parameters of boundary states, independent parameters of volume forces, and remote stress factors. An efficient tool to address the task is the sustainable method of boundary states originally designed for the purposes of computerized algebra and based on the isomorphism of Hilbertian spaces of internal states and boundary states of bodies. We performed full parametric solutions of basic problems featuring a ball with a nonconcentric spherical cavity, a ball with a near-surface flaw, and an unlimited medium with two spherical cavities.

  18. Solid-State Thermionic Power Generators: An Analytical Analysis in the Nonlinear Regime

    NASA Astrophysics Data System (ADS)

    Zebarjadi, M.

    2017-07-01

    Solid-state thermionic power generators are an alternative to thermoelectric modules. In this paper, we develop an analytical model to investigate the performance of these generators in the nonlinear regime. We identify dimensionless parameters determining their performance and provide measures to estimate an acceptable range of thermal and electrical resistances of thermionic generators. We find the relation between the optimum load resistance and the internal resistance and suggest guidelines for the design of thermionic power generators. Finally, we show that in the nonlinear regime, thermionic power generators can have efficiency values higher than the state-of-the-art thermoelectric modules.

  19. Sensitivity of echo enabled harmonic generation to sinusoidal electron beam energy structure

    DOE PAGES

    Hemsing, E.; Garcia, B.; Huang, Z.; ...

    2017-06-19

    Here, we analytically examine the bunching factor spectrum of a relativistic electron beam with sinusoidal energy structure that then undergoes an echo-enabled harmonic generation (EEHG) transformation to produce high harmonics. The performance is found to be described primarily by a simple scaling parameter. The dependence of the bunching amplitude on fluctuations of critical parameters is derived analytically, and compared with simulations. Where applicable, EEHG is also compared with high gain harmonic generation (HGHG) and we find that EEHG is generally less sensitive to several types of energy structure. In the presence of intermediate frequency modulations like those produced by themore » microbunching instability, EEHG has a substantially narrower intrinsic bunching pedestal.« less

  20. Low Velocity Earth-Penetration Test and Analysis

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jones, Yvonne; Knight, Norman F., Jr.; Kellas, Sotiris

    2001-01-01

    Modeling and simulation of structural impacts into soil continue to challenge analysts to develop accurate material models and detailed analytical simulations to predict the soil penetration event. This paper discusses finite element modeling of a series of penetrometer drop tests into soft clay. Parametric studies are performed with penetrometers of varying diameters, masses, and impact speeds to a maximum of 45 m/s. Parameters influencing the simulation such as the contact penalty factor and the material model representing the soil are also studied. An empirical relationship between key parameters is developed and is shown to correlate experimental and analytical results quite well. The results provide preliminary design guidelines for Earth impact that may be useful for future space exploration sample return missions.

  1. COHERENT NETWORK ANALYSIS FOR CONTINUOUS GRAVITATIONAL WAVE SIGNALS IN A PULSAR TIMING ARRAY: PULSAR PHASES AS EXTRINSIC PARAMETERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yan; Mohanty, Soumya D.; Jenet, Fredrick A., E-mail: ywang12@hust.edu.cn

    2015-12-20

    Supermassive black hole binaries are one of the primary targets of gravitational wave (GW) searches using pulsar timing arrays (PTAs). GW signals from such systems are well represented by parameterized models, allowing the standard Generalized Likelihood Ratio Test (GLRT) to be used for their detection and estimation. However, there is a dichotomy in how the GLRT can be implemented for PTAs: there are two possible ways in which one can split the set of signal parameters for semi-analytical and numerical extremization. The straightforward extension of the method used for continuous signals in ground-based GW searches, where the so-called pulsar phasemore » parameters are maximized numerically, was addressed in an earlier paper. In this paper, we report the first study of the performance of the second approach where the pulsar phases are maximized semi-analytically. This approach is scalable since the number of parameters left over for numerical optimization does not depend on the size of the PTA. Our results show that for the same array size (9 pulsars), the new method performs somewhat worse in parameter estimation, but not in detection, than the previous method where the pulsar phases were maximized numerically. The origin of the performance discrepancy is likely to be in the ill-posedness that is intrinsic to any network analysis method. However, the scalability of the new method allows the ill-posedness to be mitigated by simply adding more pulsars to the array. This is shown explicitly by taking a larger array of pulsars.« less

  2. Performance Analysis of Blind Subspace-Based Signature Estimation Algorithms for DS-CDMA Systems with Unknown Correlated Noise

    NASA Astrophysics Data System (ADS)

    Zarifi, Keyvan; Gershman, Alex B.

    2006-12-01

    We analyze the performance of two popular blind subspace-based signature waveform estimation techniques proposed by Wang and Poor and Buzzi and Poor for direct-sequence code division multiple-access (DS-CDMA) systems with unknown correlated noise. Using the first-order perturbation theory, analytical expressions for the mean-square error (MSE) of these algorithms are derived. We also obtain simple high SNR approximations of the MSE expressions which explicitly clarify how the performance of these techniques depends on the environmental parameters and how it is related to that of the conventional techniques that are based on the standard white noise assumption. Numerical examples further verify the consistency of the obtained analytical results with simulation results.

  3. Analytical performance evaluation of a high-volume hematology laboratory utilizing sigma metrics as standard of excellence.

    PubMed

    Shaikh, M S; Moiz, B

    2016-04-01

    Around two-thirds of important clinical decisions about the management of patients are based on laboratory test results. Clinical laboratories are required to adopt quality control (QC) measures to ensure provision of accurate and precise results. Six sigma is a statistical tool, which provides opportunity to assess performance at the highest level of excellence. The purpose of this study was to assess performance of our hematological parameters on sigma scale in order to identify gaps and hence areas of improvement in patient care. Twelve analytes included in the study were hemoglobin (Hb), hematocrit (Hct), red blood cell count (RBC), mean corpuscular volume (MCV), red cell distribution width (RDW), total leukocyte count (TLC) with percentages of neutrophils (Neutr%) and lymphocytes (Lymph %), platelet count (Plt), mean platelet volume (MPV), prothrombin time (PT), and fibrinogen (Fbg). Internal quality control data and external quality assurance survey results were utilized for the calculation of sigma metrics for each analyte. Acceptable sigma value of ≥3 was obtained for the majority of the analytes included in the analysis. MCV, Plt, and Fbg achieved value of <3 for level 1 (low abnormal) control. PT performed poorly on both level 1 and 2 controls with sigma value of <3. Despite acceptable conventional QC tools, application of sigma metrics can identify analytical deficits and hence prospects for the improvement in clinical laboratories. © 2016 John Wiley & Sons Ltd.

  4. Performance analysis of wideband data and television channels. [space shuttle communications

    NASA Technical Reports Server (NTRS)

    Geist, J. M.

    1975-01-01

    Several aspects are discussed of space shuttle communications, including the return link (shuttle-to-ground) relayed through a satellite repeater (TDRS). The repeater exhibits nonlinear amplification and an amplitude-dependent phase shift. Models were developed for various link configurations, and computer simulation programs based on these models are described. Certain analytical results on system performance were also obtained. For the system parameters assumed, the results indicate approximately 1 db degradation relative to a link employing a linear repeater. While this degradation is dependent upon the repeater, filter bandwidths, and modulation parameters used, the programs can accommodate changes to any of these quantities. Thus the programs can be applied to determine the performance with any given set of parameters, or used as an aid in link design.

  5. Number of graphene layers exhibiting an influence on oxidation of DNA bases: analytical parameters.

    PubMed

    Goh, Madeline Shuhua; Pumera, Martin

    2012-01-20

    This article investigates the analytical performance of double-, few- and multi-layer graphene upon oxidation of adenine and guanine. We observed that the sensitivity of differential pulse voltammetric response of guanine and adenine is significantly higher at few-layer graphene surface than single-layer graphene. We use glassy carbon electrode as substrate coated with graphenes. Our findings shall have profound influence on construction of graphene based genosensors. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Stability of ricinine, abrine, and alpha-amanitin in finished tap ...

    EPA Pesticide Factsheets

    Journal Article Ricinine and abrine are potential indicators of drinking water contamination by the biotoxins ricin and abrin, respectively. Simultaneous detection of ricinine and abrine, along with α-amanitin, another potential biotoxin water contaminant, is reportable through the use of automated sample preparation via solid phase extraction and detection using liquid chromatography/tandem-mass spectrometry. Performance of the method was characterized over eight analytical batches with quality control samples analyzed over 10 days. For solutions of analytes prepared with appropriate preservatives, the minimum reporting level (MRL) was 0.50 μg/L for ricinine and abrine and 2.0 μg/L for α-amanitin. Among the analytes, the accuracy of the analysis ranged between 93 and 100% at concentrations of 1-2.5 x the MRL, with analytical precision ranging from 4 to 8%. Five drinking waters representing a range of water quality parameters and disinfection practices were fortified with the analytes and analyzed over a 28 day period to determine their storage stability in these waters. Ricinine was observed to be stable for 28 days in all tap waters. The analytical signal decreased within 5 hrs of sample preparation for abrine and μ-amanitin in some waters, but afterwards, remained stable for 28 days. The magnitude of the decrease correlated with common water quality parameters potentially related to sorption of contaminants onto dissolved and colloidal components within

  7. ACCELERATING MR PARAMETER MAPPING USING SPARSITY-PROMOTING REGULARIZATION IN PARAMETRIC DIMENSION

    PubMed Central

    Velikina, Julia V.; Alexander, Andrew L.; Samsonov, Alexey

    2013-01-01

    MR parameter mapping requires sampling along additional (parametric) dimension, which often limits its clinical appeal due to a several-fold increase in scan times compared to conventional anatomic imaging. Data undersampling combined with parallel imaging is an attractive way to reduce scan time in such applications. However, inherent SNR penalties of parallel MRI due to noise amplification often limit its utility even at moderate acceleration factors, requiring regularization by prior knowledge. In this work, we propose a novel regularization strategy, which utilizes smoothness of signal evolution in the parametric dimension within compressed sensing framework (p-CS) to provide accurate and precise estimation of parametric maps from undersampled data. The performance of the method was demonstrated with variable flip angle T1 mapping and compared favorably to two representative reconstruction approaches, image space-based total variation regularization and an analytical model-based reconstruction. The proposed p-CS regularization was found to provide efficient suppression of noise amplification and preservation of parameter mapping accuracy without explicit utilization of analytical signal models. The developed method may facilitate acceleration of quantitative MRI techniques that are not suitable to model-based reconstruction because of complex signal models or when signal deviations from the expected analytical model exist. PMID:23213053

  8. Analytical performance evaluation of SAR ATR with inaccurate or estimated models

    NASA Astrophysics Data System (ADS)

    DeVore, Michael D.

    2004-09-01

    Hypothesis testing algorithms for automatic target recognition (ATR) are often formulated in terms of some assumed distribution family. The parameter values corresponding to a particular target class together with the distribution family constitute a model for the target's signature. In practice such models exhibit inaccuracy because of incorrect assumptions about the distribution family and/or because of errors in the assumed parameter values, which are often determined experimentally. Model inaccuracy can have a significant impact on performance predictions for target recognition systems. Such inaccuracy often causes model-based predictions that ignore the difference between assumed and actual distributions to be overly optimistic. This paper reports on research to quantify the effect of inaccurate models on performance prediction and to estimate the effect using only trained parameters. We demonstrate that for large observation vectors the class-conditional probabilities of error can be expressed as a simple function of the difference between two relative entropies. These relative entropies quantify the discrepancies between the actual and assumed distributions and can be used to express the difference between actual and predicted error rates. Focusing on the problem of ATR from synthetic aperture radar (SAR) imagery, we present estimators of the probabilities of error in both ideal and plug-in tests expressed in terms of the trained model parameters. These estimators are defined in terms of unbiased estimates for the first two moments of the sample statistic. We present an analytical treatment of these results and include demonstrations from simulated radar data.

  9. Variation in the modal parameters of space structures

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Barlow, Mark S.; Van Schoor, Marthinus C.; Bicos, Andrew S.

    1992-01-01

    An analytic and experimental study of gravity and suspension influences on space structural test articles is presented. A modular test article including deployable, erectable, and rotary modules was assembled in three one- and two-dimensional structures. The two deployable modules utilized cable diagonal bracing rather than rigid cross members; within a bay of one of the deployable modules, the cable preload was adjustable. A friction lock was used on the alpha joint to either allow or prohibit rotary motion. Suspension systems with plunge fundamentals of 1, 2, and 5 Hz were used for ground testing to evaluate the influences of suspension stiffness. Assembly and reassembly testing was performed, as was testing on two separate shipsets at two test sites. Trends and statistical variances in modal parameters are presented as a function of force amplitude, joint preload, reassembly, shipset and suspension. Linear finite element modeling of each structure provided analytical results for 0-g unsuspended and 1-g suspended models, which are correlated with the analytical model.

  10. Distribution-centric 3-parameter thermodynamic models of partition gas chromatography.

    PubMed

    Blumberg, Leonid M

    2017-03-31

    If both parameters (the entropy, ΔS, and the enthalpy, ΔH) of the classic van't Hoff model of dependence of distribution coefficients (K) of analytes on temperature (T) are treated as the temperature-independent constants then the accuracy of the model is known to be insufficient for the needed accuracy of retention time prediction. A more accurate 3-parameter Clarke-Glew model offers a way to treat ΔS and ΔH as functions, ΔS(T) and ΔH(T), of T. A known T-centric construction of these functions is based on relating them to the reference values (ΔS ref and ΔH ref ) corresponding to a predetermined reference temperature (T ref ). Choosing a single T ref for all analytes in a complex sample or in a large database might lead to practically irrelevant values of ΔS ref and ΔH ref for those analytes that have too small or too large retention factors at T ref . Breaking all analytes in several subsets each with its own T ref leads to discontinuities in the analyte parameters. These problems are avoided in the K-centric modeling where ΔS(T) and ΔS(T) and other analyte parameters are described in relation to their values corresponding to a predetermined reference distribution coefficient (K Ref ) - the same for all analytes. In this report, the mathematics of the K-centric modeling are described and the properties of several types of K-centric parameters are discussed. It has been shown that the earlier introduced characteristic parameters of the analyte-column interaction (the characteristic temperature, T char , and the characteristic thermal constant, θ char ) are a special chromatographically convenient case of the K-centric parameters. Transformations of T-centric parameters into K-centric ones and vice-versa as well as the transformations of one set of K-centric parameters into another set and vice-versa are described. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Improved model reduction and tuning of fractional-order PI(λ)D(μ) controllers for analytical rule extraction with genetic programming.

    PubMed

    Das, Saptarshi; Pan, Indranil; Das, Shantanu; Gupta, Amitava

    2012-03-01

    Genetic algorithm (GA) has been used in this study for a new approach of suboptimal model reduction in the Nyquist plane and optimal time domain tuning of proportional-integral-derivative (PID) and fractional-order (FO) PI(λ)D(μ) controllers. Simulation studies show that the new Nyquist-based model reduction technique outperforms the conventional H(2)-norm-based reduced parameter modeling technique. With the tuned controller parameters and reduced-order model parameter dataset, optimum tuning rules have been developed with a test-bench of higher-order processes via genetic programming (GP). The GP performs a symbolic regression on the reduced process parameters to evolve a tuning rule which provides the best analytical expression to map the data. The tuning rules are developed for a minimum time domain integral performance index described by a weighted sum of error index and controller effort. From the reported Pareto optimal front of the GP-based optimal rule extraction technique, a trade-off can be made between the complexity of the tuning formulae and the control performance. The efficacy of the single-gene and multi-gene GP-based tuning rules has been compared with the original GA-based control performance for the PID and PI(λ)D(μ) controllers, handling four different classes of representative higher-order processes. These rules are very useful for process control engineers, as they inherit the power of the GA-based tuning methodology, but can be easily calculated without the requirement for running the computationally intensive GA every time. Three-dimensional plots of the required variation in PID/fractional-order PID (FOPID) controller parameters with reduced process parameters have been shown as a guideline for the operator. Parametric robustness of the reported GP-based tuning rules has also been shown with credible simulation examples. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Real-time monitoring of process parameters in rice wine fermentation by a portable spectral analytical system combined with multivariate analysis.

    PubMed

    Ouyang, Qin; Zhao, Jiewen; Pan, Wenxiu; Chen, Quansheng

    2016-01-01

    A portable and low-cost spectral analytical system was developed and used to monitor real-time process parameters, i.e. total sugar content (TSC), alcohol content (AC) and pH during rice wine fermentation. Various partial least square (PLS) algorithms were implemented to construct models. The performance of a model was evaluated by the correlation coefficient (Rp) and the root mean square error (RMSEP) in the prediction set. Among the models used, the synergy interval PLS (Si-PLS) was found to be superior. The optimal performance by the Si-PLS model for the TSC was Rp = 0.8694, RMSEP = 0.438; the AC was Rp = 0.8097, RMSEP = 0.617; and the pH was Rp = 0.9039, RMSEP = 0.0805. The stability and reliability of the system, as well as the optimal models, were verified using coefficients of variation, most of which were found to be less than 5%. The results suggest this portable system is a promising tool that could be used as an alternative method for rapid monitoring of process parameters during rice wine fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. High-performance liquid chromatographic enantioseparation of monoterpene-based 2-amino carboxylic acids on macrocyclic glycopeptide-based phases.

    PubMed

    Sipos, László; Ilisz, István; Pataj, Zoltán; Szakonyi, Zsolt; Fülöp, Ferenc; Armstrong, Daniel W; Péter, Antal

    2010-10-29

    The enantiomers of five monoterpene-based 2-amino carboxylic acids were directly separated on chiral stationary phases containing macrocyclic glycopeptide antibiotics such as teicoplanin (Astec Chirobiotic T and T2) and teicoplanin aglycone (Chirobiotic TAG) as chiral selectors. The effects of pH, the mobile phase composition, the structure of the analyte and temperature on the separations were investigated. Experiments were performed at constant mobile phase compositions in the temperature range 10-40°C to study the effects of temperature and thermodynamic parameters on separations. Apparent thermodynamic parameters and T(iso) values were calculated from plots of ln k or ln α versus 1/T. Some mechanistic aspects of the chiral recognition process are discussed with respect to the structures of the analytes. It was found that the enantioseparations were in most cases enthalpy driven. The sequence of elution of the enantiomers was determined in all cases. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Structureborne noise measurements on a small twin-engine aircraft

    NASA Technical Reports Server (NTRS)

    Cole, J. E., III; Martini, K. F.

    1988-01-01

    Structureborne noise measurements performed on a twin-engine aircraft (Beechcraft Baron) are reported. There are two overall objectives of the test program. The first is to obtain data to support the development of analytical models of the wing and fuselage, while the second is to evaluate effects of structural parameters on cabin noise. Measurements performed include structural and acoustic responses to impact excitation, structural and acoustic loss factors, and modal parameters of the wing. Path alterations include added mass to simulate fuel, variations in torque of bolts joining wing and fuselage, and increased acoustic absorption. Conclusions drawn regarding these measurements are presented.

  15. Structureborne noise measurements on a small twin-engine aircraft

    NASA Astrophysics Data System (ADS)

    Cole, J. E., III; Martini, K. F.

    1988-06-01

    Structureborne noise measurements performed on a twin-engine aircraft (Beechcraft Baron) are reported. There are two overall objectives of the test program. The first is to obtain data to support the development of analytical models of the wing and fuselage, while the second is to evaluate effects of structural parameters on cabin noise. Measurements performed include structural and acoustic responses to impact excitation, structural and acoustic loss factors, and modal parameters of the wing. Path alterations include added mass to simulate fuel, variations in torque of bolts joining wing and fuselage, and increased acoustic absorption. Conclusions drawn regarding these measurements are presented.

  16. Dual-domain mass-transfer parameters from electrical hysteresis: theory and analytical approach applied to laboratory, synthetic streambed, and groundwater experiments

    USGS Publications Warehouse

    Briggs, Martin A.; Day-Lewis, Frederick D.; Ong, John B.; Harvey, Judson W.; Lane, John W.

    2014-01-01

    Models of dual-domain mass transfer (DDMT) are used to explain anomalous aquifer transport behavior such as the slow release of contamination and solute tracer tailing. Traditional tracer experiments to characterize DDMT are performed at the flow path scale (meters), which inherently incorporates heterogeneous exchange processes; hence, estimated “effective” parameters are sensitive to experimental design (i.e., duration and injection velocity). Recently, electrical geophysical methods have been used to aid in the inference of DDMT parameters because, unlike traditional fluid sampling, electrical methods can directly sense less-mobile solute dynamics and can target specific points along subsurface flow paths. Here we propose an analytical framework for graphical parameter inference based on a simple petrophysical model explaining the hysteretic relation between measurements of bulk and fluid conductivity arising in the presence of DDMT at the local scale. Analysis is graphical and involves visual inspection of hysteresis patterns to (1) determine the size of paired mobile and less-mobile porosities and (2) identify the exchange rate coefficient through simple curve fitting. We demonstrate the approach using laboratory column experimental data, synthetic streambed experimental data, and field tracer-test data. Results from the analytical approach compare favorably with results from calibration of numerical models and also independent measurements of mobile and less-mobile porosity. We show that localized electrical hysteresis patterns resulting from diffusive exchange are independent of injection velocity, indicating that repeatable parameters can be extracted under varied experimental designs, and these parameters represent the true intrinsic properties of specific volumes of porous media of aquifers and hyporheic zones.

  17. Dual-domain mass-transfer parameters from electrical hysteresis: Theory and analytical approach applied to laboratory, synthetic streambed, and groundwater experiments

    NASA Astrophysics Data System (ADS)

    Briggs, Martin A.; Day-Lewis, Frederick D.; Ong, John B.; Harvey, Judson W.; Lane, John W.

    2014-10-01

    Models of dual-domain mass transfer (DDMT) are used to explain anomalous aquifer transport behavior such as the slow release of contamination and solute tracer tailing. Traditional tracer experiments to characterize DDMT are performed at the flow path scale (meters), which inherently incorporates heterogeneous exchange processes; hence, estimated "effective" parameters are sensitive to experimental design (i.e., duration and injection velocity). Recently, electrical geophysical methods have been used to aid in the inference of DDMT parameters because, unlike traditional fluid sampling, electrical methods can directly sense less-mobile solute dynamics and can target specific points along subsurface flow paths. Here we propose an analytical framework for graphical parameter inference based on a simple petrophysical model explaining the hysteretic relation between measurements of bulk and fluid conductivity arising in the presence of DDMT at the local scale. Analysis is graphical and involves visual inspection of hysteresis patterns to (1) determine the size of paired mobile and less-mobile porosities and (2) identify the exchange rate coefficient through simple curve fitting. We demonstrate the approach using laboratory column experimental data, synthetic streambed experimental data, and field tracer-test data. Results from the analytical approach compare favorably with results from calibration of numerical models and also independent measurements of mobile and less-mobile porosity. We show that localized electrical hysteresis patterns resulting from diffusive exchange are independent of injection velocity, indicating that repeatable parameters can be extracted under varied experimental designs, and these parameters represent the true intrinsic properties of specific volumes of porous media of aquifers and hyporheic zones.

  18. Sensitivity of ecological soil-screening levels for metals to exposure model parameterization and toxicity reference values.

    PubMed

    Sample, Bradley E; Fairbrother, Anne; Kaiser, Ashley; Law, Sheryl; Adams, Bill

    2014-10-01

    Ecological soil-screening levels (Eco-SSLs) were developed by the United States Environmental Protection Agency (USEPA) for the purposes of setting conservative soil screening values that can be used to eliminate the need for further ecological assessment for specific analytes at a given site. Ecological soil-screening levels for wildlife represent a simplified dietary exposure model solved in terms of soil concentrations to produce exposure equal to a no-observed-adverse-effect toxicity reference value (TRV). Sensitivity analyses were performed for 6 avian and mammalian model species, and 16 metals/metalloids for which Eco-SSLs have been developed. The relative influence of model parameters was expressed as the absolute value of the range of variation observed in the resulting soil concentration when exposure is equal to the TRV. Rank analysis of variance was used to identify parameters with greatest influence on model output. For both birds and mammals, soil ingestion displayed the broadest overall range (variability), although TRVs consistently had the greatest influence on calculated soil concentrations; bioavailability in food was consistently the least influential parameter, although an important site-specific variable. Relative importance of parameters differed by trophic group. Soil ingestion ranked 2nd for carnivores and herbivores, but was 4th for invertivores. Different patterns were exhibited, depending on which parameter, trophic group, and analyte combination was considered. The approach for TRV selection was also examined in detail, with Cu as the representative analyte. The underlying assumption that generic body-weight-normalized TRVs can be used to derive protective levels for any species is not supported by the data. Whereas the use of site-, species-, and analyte-specific exposure parameters is recommended to reduce variation in exposure estimates (soil protection level), improvement of TRVs is more problematic. © 2014 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc.

  19. Sensitivity of ecological soil-screening levels for metals to exposure model parameterization and toxicity reference values

    PubMed Central

    Sample, Bradley E; Fairbrother, Anne; Kaiser, Ashley; Law, Sheryl; Adams, Bill

    2014-01-01

    Ecological soil-screening levels (Eco-SSLs) were developed by the United States Environmental Protection Agency (USEPA) for the purposes of setting conservative soil screening values that can be used to eliminate the need for further ecological assessment for specific analytes at a given site. Ecological soil-screening levels for wildlife represent a simplified dietary exposure model solved in terms of soil concentrations to produce exposure equal to a no-observed-adverse-effect toxicity reference value (TRV). Sensitivity analyses were performed for 6 avian and mammalian model species, and 16 metals/metalloids for which Eco-SSLs have been developed. The relative influence of model parameters was expressed as the absolute value of the range of variation observed in the resulting soil concentration when exposure is equal to the TRV. Rank analysis of variance was used to identify parameters with greatest influence on model output. For both birds and mammals, soil ingestion displayed the broadest overall range (variability), although TRVs consistently had the greatest influence on calculated soil concentrations; bioavailability in food was consistently the least influential parameter, although an important site-specific variable. Relative importance of parameters differed by trophic group. Soil ingestion ranked 2nd for carnivores and herbivores, but was 4th for invertivores. Different patterns were exhibited, depending on which parameter, trophic group, and analyte combination was considered. The approach for TRV selection was also examined in detail, with Cu as the representative analyte. The underlying assumption that generic body-weight–normalized TRVs can be used to derive protective levels for any species is not supported by the data. Whereas the use of site-, species-, and analyte-specific exposure parameters is recommended to reduce variation in exposure estimates (soil protection level), improvement of TRVs is more problematic. Environ Toxicol Chem 2014;33:2386–2398. PMID:24944000

  20. Back analysis of geomechanical parameters in underground engineering using artificial bee colony.

    PubMed

    Zhu, Changxing; Zhao, Hongbo; Zhao, Ming

    2014-01-01

    Accurate geomechanical parameters are critical in tunneling excavation, design, and supporting. In this paper, a displacements back analysis based on artificial bee colony (ABC) algorithm is proposed to identify geomechanical parameters from monitored displacements. ABC was used as global optimal algorithm to search the unknown geomechanical parameters for the problem with analytical solution. To the problem without analytical solution, optimal back analysis is time-consuming, and least square support vector machine (LSSVM) was used to build the relationship between unknown geomechanical parameters and displacement and improve the efficiency of back analysis. The proposed method was applied to a tunnel with analytical solution and a tunnel without analytical solution. The results show the proposed method is feasible.

  1. Photonic Crystal Fiber-Based Surface Plasmon Resonance Sensor with Selective Analyte Channels and Graphene-Silver Deposited Core

    PubMed Central

    Rifat, Ahmmed A.; Mahdiraji, G. Amouzad; Chow, Desmond M.; Shee, Yu Gang; Ahmed, Rajib; Adikan, Faisal Rafiq Mahamd

    2015-01-01

    We propose a surface plasmon resonance (SPR) sensor based on photonic crystal fiber (PCF) with selectively filled analyte channels. Silver is used as the plasmonic material to accurately detect the analytes and is coated with a thin graphene layer to prevent oxidation. The liquid-filled cores are placed near to the metallic channel for easy excitation of free electrons to produce surface plasmon waves (SPWs). Surface plasmons along the metal surface are excited with a leaky Gaussian-like core guided mode. Numerical investigations of the fiber’s properties and sensing performance are performed using the finite element method (FEM). The proposed sensor shows maximum amplitude sensitivity of 418 Refractive Index Units (RIU−1) with resolution as high as 2.4 × 10−5 RIU. Using the wavelength interrogation method, a maximum refractive index (RI) sensitivity of 3000 nm/RIU in the sensing range of 1.46–1.49 is achieved. The proposed sensor is suitable for detecting various high RI chemicals, biochemical and organic chemical analytes. Additionally, the effects of fiber structural parameters on the properties of plasmonic excitation are investigated and optimized for sensing performance as well as reducing the sensor’s footprint. PMID:25996510

  2. Parametric Modeling of the Safety Effects of NextGen Terminal Maneuvering Area Conflict Scenarios

    NASA Technical Reports Server (NTRS)

    Rogers, William H.; Waldron, Timothy P.; Stroiney, Steven R.

    2011-01-01

    The goal of this work was to analytically identify and quantify the issues, challenges, technical hurdles, and pilot-vehicle interface issues associated with conflict detection and resolution (CD&R)in emerging operational concepts for a NextGen terminal aneuvering area, including surface operations. To this end, the work entailed analytical and trade studies focused on modeling the achievable safety benefits of different CD&R strategies and concepts in the current and future airport environment. In addition, crew-vehicle interface and pilot performance enhancements and potential issues were analyzed based on review of envisioned NextGen operations, expected equipage advances, and human factors expertise. The results of perturbation analysis, which quantify the high-level performance impact of changes to key parameters such as median response time and surveillance position error, show that the analytical model developed could be useful in making technology investment decisions.

  3. Generalized constitutive equations for piezo-actuated compliant mechanism

    NASA Astrophysics Data System (ADS)

    Cao, Junyi; Ling, Mingxiang; Inman, Daniel J.; Lin, Jin

    2016-09-01

    This paper formulates analytical models to describe the static displacement and force interactions between generic serial-parallel compliant mechanisms and their loads by employing the matrix method. In keeping with the familiar piezoelectric constitutive equations, the generalized constitutive equations of compliant mechanism represent the input-output displacement and force relations in the form of a generalized Hooke’s law and as analytical functions of physical parameters. Also significantly, a new model of output displacement for compliant mechanism interacting with piezo-stacks and elastic loads is deduced based on the generalized constitutive equations. Some original findings differing from the well-known constitutive performance of piezo-stacks are also given. The feasibility of the proposed models is confirmed by finite element analysis and by experiments under various elastic loads. The analytical models can be an insightful tool for predicting and optimizing the performance of a wide class of compliant mechanisms that simultaneously consider the influence of loads and piezo-stacks.

  4. The need for control of magnetic parameters for energy efficient performance of magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Farhat, I. A. H.; Gale, E.; Alpha, C.; Isakovic, A. F.

    2017-07-01

    Optimizing energy performance of Magnetic Tunnel Junctions (MTJs) is the key for embedding Spin Transfer Torque-Random Access Memory (STT-RAM) in low power circuits. Due to the complex interdependencies of the parameters and variables of the device operating energy, it is important to analyse parameters with most effective control of MTJ power. The impact of threshold current density, Jco , on the energy and the impact of HK on Jco are studied analytically, following the expressions that stem from Landau-Lifshitz-Gilbert-Slonczewski (LLGS-STT) model. In addition, the impact of other magnetic material parameters, such as Ms , and geometric parameters such as tfree and λ is discussed. Device modelling study was conducted to analyse the impact at the circuit level. Nano-magnetism simulation based on NMAGTM package was conducted to analyse the impact of controlling HK on the switching dynamics of the film.

  5. Analytical modeling and numerical simulation of the short-wave infrared electron-injection detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Movassaghi, Yashar; Fathipour, Morteza; Fathipour, Vala

    2016-03-21

    This paper describes comprehensive analytical and simulation models for the design and optimization of the electron-injection based detectors. The electron-injection detectors evaluated here operate in the short-wave infrared range and utilize a type-II band alignment in InP/GaAsSb/InGaAs material system. The unique geometry of detectors along with an inherent negative-feedback mechanism in the device allows for achieving high internal avalanche-free amplifications without any excess noise. Physics-based closed-form analytical models are derived for the detector rise time and dark current. Our optical gain model takes into account the drop in the optical gain at high optical power levels. Furthermore, numerical simulation studiesmore » of the electrical characteristics of the device show good agreement with our analytical models as well experimental data. Performance comparison between devices with different injector sizes shows that enhancement in the gain and speed is anticipated by reducing the injector size. Sensitivity analysis for the key detector parameters shows the relative importance of each parameter. The results of this study may provide useful information and guidelines for development of future electron-injection based detectors as well as other heterojunction photodetectors.« less

  6. Applicability of a 1D Analytical Model for Pulse Thermography of Laterally Heterogeneous Semitransparent Materials

    NASA Astrophysics Data System (ADS)

    Bernegger, R.; Altenburg, S. J.; Röllig, M.; Maierhofer, C.

    2018-03-01

    Pulse thermography (PT) has proven to be a valuable non-destructive testing method to identify and quantify defects in fiber-reinforced polymers. To perform a quantitative defect characterization, the heat diffusion within the material as well as the material parameters must be known. The heterogeneous material structure of glass fiber-reinforced polymers (GFRP) as well as the semitransparency of the material for optical excitation sources of PT is still challenging. For homogeneous semitransparent materials, 1D analytical models describing the temperature distribution are available. Here, we present an analytical approach to model PT for laterally inhomogeneous semitransparent materials. We show the validity of the model by considering different configurations of the optical heating source, the IR camera, and the differently coated GFRP sample. The model considers the lateral inhomogeneity of the semitransparency by an additional absorption coefficient. It includes additional effects such as thermal losses at the samples surfaces, multilayer systems with thermal contact resistance, and a finite duration of the heating pulse. By using a sufficient complexity of the analytical model, similar values of the material parameters were found for all six investigated configurations by numerical fitting.

  7. Microemulsification: an approach for analytical determinations.

    PubMed

    Lima, Renato S; Shiroma, Leandro Y; Teixeira, Alvaro V N C; de Toledo, José R; do Couto, Bruno C; de Carvalho, Rogério M; Carrilho, Emanuel; Kubota, Lauro T; Gobbi, Angelo L

    2014-09-16

    We address a novel method for analytical determinations that combines simplicity, rapidity, low consumption of chemicals, and portability with high analytical performance taking into account parameters such as precision, linearity, robustness, and accuracy. This approach relies on the effect of the analyte content over the Gibbs free energy of dispersions, affecting the thermodynamic stabilization of emulsions or Winsor systems to form microemulsions (MEs). Such phenomenon was expressed by the minimum volume fraction of amphiphile required to form microemulsion (Φ(ME)), which was the analytical signal of the method. Thus, the measurements can be taken by visually monitoring the transition of the dispersions from cloudy to transparent during the microemulsification, like a titration. It bypasses the employment of electric energy. The performed studies were: phase behavior, droplet dimension by dynamic light scattering, analytical curve, and robustness tests. The reliability of the method was evaluated by determining water in ethanol fuels and monoethylene glycol in complex samples of liquefied natural gas. The dispersions were composed of water-chlorobenzene (water analysis) and water-oleic acid (monoethylene glycol analysis) with ethanol as the hydrotrope phase. The mean hydrodynamic diameter values for the nanostructures in the droplet-based water-chlorobenzene MEs were in the range of 1 to 11 nm. The procedures of microemulsification were conducted by adding ethanol to water-oleic acid (W-O) mixtures with the aid of micropipette and shaking. The Φ(ME) measurements were performed in a thermostatic water bath at 23 °C by direct observation that is based on the visual analyses of the media. The experiments to determine water demonstrated that the analytical performance depends on the composition of ME. It shows flexibility in the developed method. The linear range was fairly broad with limits of linearity up to 70.00% water in ethanol. For monoethylene glycol in water, in turn, the linear range was observed throughout the volume fraction of analyte. The best limits of detection were 0.32% v/v water to ethanol and 0.30% v/v monoethylene glycol to water. Furthermore, the accuracy was highly satisfactory. The natural gas samples provided by the Petrobras exhibited color, particulate material, high ionic strength, and diverse compounds as metals, carboxylic acids, and anions. These samples had a conductivity of up to 2630 μS cm(-1); the conductivity of pure monoethylene glycol was only 0.30 μS cm(-1). Despite such downsides, the method allowed accurate measures bypassing steps such as extraction, preconcentration, and dilution of the sample. In addition, the levels of robustness were promising. This parameter was evaluated by investigating the effect of (i) deviations in volumetric preparation of the dispersions and (ii) changes in temperature over the analyte contents recorded by the method.

  8. Nanostructure Formation by controlled dewetting on patterned substrates: A combined theoretical, modeling and experimental study.

    PubMed

    Lu, Liang-Xing; Wang, Ying-Min; Srinivasan, Bharathi Madurai; Asbahi, Mohamed; Yang, Joel K W; Zhang, Yong-Wei

    2016-09-01

    We perform systematic two-dimensional energetic analysis to study the stability of various nanostructures formed by dewetting solid films deposited on patterned substrates. Our analytical results show that by controlling system parameters such as the substrate surface pattern, film thickness and wetting angle, a variety of equilibrium nanostructures can be obtained. Phase diagrams are presented to show the complex relations between these system parameters and various nanostructure morphologies. We further carry out both phase field simulations and dewetting experiments to validate the analytically derived phase diagrams. Good agreements between the results from our energetic analyses and those from our phase field simulations and experiments verify our analysis. Hence, the phase diagrams presented here provide guidelines for using solid-state dewetting as a tool to achieve various nanostructures.

  9. Optical eye simulator for laser dazzle events.

    PubMed

    Coelho, João M P; Freitas, José; Williamson, Craig A

    2016-03-20

    An optical simulator of the human eye and its application to laser dazzle events are presented. The simulator combines optical design software (ZEMAX) with a scientific programming language (MATLAB) and allows the user to implement and analyze a dazzle scenario using practical, real-world parameters. Contrary to conventional analytical glare analysis, this work uses ray tracing and the scattering model and parameters for each optical element of the eye. The theoretical background of each such element is presented in relation to the model. The overall simulator's calibration, validation, and performance analysis are achieved by comparison with a simpler model based uponCIE disability glare data. Results demonstrate that this kind of advanced optical eye simulation can be used to represent laser dazzle and has the potential to extend the range of applicability of analytical models.

  10. Convolved substructure: analytically decorrelating jet substructure observables

    NASA Astrophysics Data System (ADS)

    Moult, Ian; Nachman, Benjamin; Neill, Duff

    2018-05-01

    A number of recent applications of jet substructure, in particular searches for light new particles, require substructure observables that are decorrelated with the jet mass. In this paper we introduce the Convolved SubStructure (CSS) approach, which uses a theoretical understanding of the observable to decorrelate the complete shape of its distribution. This decorrelation is performed by convolution with a shape function whose parameters and mass dependence are derived analytically. We consider in detail the case of the D 2 observable and perform an illustrative case study using a search for a light hadronically decaying Z'. We find that the CSS approach completely decorrelates the D 2 observable over a wide range of masses. Our approach highlights the importance of improving the theoretical understanding of jet substructure observables to exploit increasingly subtle features for performance.

  11. A systematic investigation of sample diluents in modern supercritical fluid chromatography.

    PubMed

    Desfontaine, Vincent; Tarafder, Abhijit; Hill, Jason; Fairchild, Jacob; Grand-Guillaume Perrenoud, Alexandre; Veuthey, Jean-Luc; Guillarme, Davy

    2017-08-18

    This paper focuses on the possibility to inject large volumes (up to 10μL) in ultra-high performance supercritical fluid chromatography (UHPSFC) under generic gradient conditions. Several injection and method parameters have been individually evaluated (i.e. analyte concentration, injection volume, initial percentage of co-solvent in the gradient, nature of the weak needle wash solvent, nature of the sample diluent, nature of the column and of the analyte). The most critical parameters were further investigated using in a multivariate approach. The overall results suggested that several aprotic solvents including methyl tert-butyl ether (MTBE), dichloromethane, acetonitrile or cyclopentyl methyl ether (CPME) were well adapted for the injection of large volume in UHPSFC, while MeOH was generally the worst alternative. However, the nature of the stationary phase also had a strong impact and some of these diluents did not perform equally on each column. This was due to the existence of a competition in the adsorption of the analyte and the diluent on the stationary phase. This observation introduced the idea that the sample diluent should not only be chosen according to the analyte but also to the column chemistry to limit the interactions between the diluent and the ligands. Other important characteristics of the "ideal" SFC sample diluent were finally highlighted. Aprotic solvents with low viscosity are preferable to avoid strong solvent effects and viscous fingering, respectively. In the end, the authors suggest that the choice of the sample diluent should be part of the method development, as a function of the analyte and the selected stationary phase. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Analytical method development of nifedipine and its degradants binary mixture using high performance liquid chromatography through a quality by design approach

    NASA Astrophysics Data System (ADS)

    Choiri, S.; Ainurofiq, A.; Ratri, R.; Zulmi, M. U.

    2018-03-01

    Nifedipin (NIF) is a photo-labile drug that easily degrades when it exposures a sunlight. This research aimed to develop of an analytical method using a high-performance liquid chromatography and implemented a quality by design approach to obtain effective, efficient, and validated analytical methods of NIF and its degradants. A 22 full factorial design approach with a curvature as a center point was applied to optimize of the analytical condition of NIF and its degradants. Mobile phase composition (MPC) and flow rate (FR) as factors determined on the system suitability parameters. The selected condition was validated by cross-validation using a leave one out technique. Alteration of MPC affected on time retention significantly. Furthermore, an increase of FR reduced the tailing factor. In addition, the interaction of both factors affected on an increase of the theoretical plates and resolution of NIF and its degradants. The selected analytical condition of NIF and its degradants has been validated at range 1 – 16 µg/mL that had good linearity, precision, accuration and efficient due to an analysis time within 10 min.

  13. The 2D analytic signal for envelope detection and feature extraction on ultrasound images.

    PubMed

    Wachinger, Christian; Klein, Tassilo; Navab, Nassir

    2012-08-01

    The fundamental property of the analytic signal is the split of identity, meaning the separation of qualitative and quantitative information in form of the local phase and the local amplitude, respectively. Especially the structural representation, independent of brightness and contrast, of the local phase is interesting for numerous image processing tasks. Recently, the extension of the analytic signal from 1D to 2D, covering also intrinsic 2D structures, was proposed. We show the advantages of this improved concept on ultrasound RF and B-mode images. Precisely, we use the 2D analytic signal for the envelope detection of RF data. This leads to advantages for the extraction of the information-bearing signal from the modulated carrier wave. We illustrate this, first, by visual assessment of the images, and second, by performing goodness-of-fit tests to a Nakagami distribution, indicating a clear improvement of statistical properties. The evaluation is performed for multiple window sizes and parameter estimation techniques. Finally, we show that the 2D analytic signal allows for an improved estimation of local features on B-mode images. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Multivariate figures of merit (FOM) investigation on the effect of instrument parameters on a Fourier transform-near infrared spectroscopy (FT-NIRS) based content uniformity method on core tablets.

    PubMed

    Doddridge, Greg D; Shi, Zhenqi

    2015-01-01

    Since near infrared spectroscopy (NIRS) was introduced to the pharmaceutical industry, efforts have been spent to leverage the power of chemometrics to extract out the best possible signal to correlate with the analyte of the interest. In contrast, only a few studies addressed the potential impact of instrument parameters, such as resolution and co-adds (i.e., the number of averaged replicate spectra), on the method performance of error statistics. In this study, a holistic approach was used to evaluate the effect of the instrument parameters of a FT-NIR spectrometer on the performance of a content uniformity method with respect to a list of figures of merit. The figures of merit included error statistics, signal-to-noise ratio (S/N), sensitivity, analytical sensitivity, effective resolution, selectivity, limit of detection (LOD), and noise. A Bruker MPA FT-NIR spectrometer was used for the investigation of an experimental design in terms of resolution (4 cm(-1) and 32 cm(-1)) and co-adds (256 and 16) plus a center point at 8 cm(-1) and 32 co-adds. Given the balance among underlying chemistry, instrument parameters, chemometrics, and measurement time, 8 cm(-1) and 32 co-adds in combination with appropriate 2nd derivative preprocessing was found to fit best for the intended purpose as a content uniformity method. The considerations for optimizing both instrument parameters and chemometrics were proposed and discussed in order to maximize the method performance for its intended purpose for future NIRS method development in R&D. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. An adaptive learning control system for aircraft

    NASA Technical Reports Server (NTRS)

    Mekel, R.; Nachmias, S.

    1978-01-01

    A learning control system and its utilization as a flight control system for F-8 Digital Fly-By-Wire (DFBW) research aircraft is studied. The system has the ability to adjust a gain schedule to account for changing plant characteristics and to improve its performance and the plant's performance in the course of its own operation. Three subsystems are detailed: (1) the information acquisition subsystem which identifies the plant's parameters at a given operating condition; (2) the learning algorithm subsystem which relates the identified parameters to predetermined analytical expressions describing the behavior of the parameters over a range of operating conditions; and (3) the memory and control process subsystem which consists of the collection of updated coefficients (memory) and the derived control laws. Simulation experiments indicate that the learning control system is effective in compensating for parameter variations caused by changes in flight conditions.

  16. Optimizing cosmological surveys in a crowded market

    NASA Astrophysics Data System (ADS)

    Bassett, Bruce A.

    2005-04-01

    Optimizing the major next-generation cosmological surveys (such as SNAP, KAOS, etc.) is a key problem given our ignorance of the physics underlying cosmic acceleration and the plethora of surveys planned. We propose a Bayesian design framework which (1) maximizes the discrimination power of a survey without assuming any underlying dark-energy model, (2) finds the best niche survey geometry given current data and future competing experiments, (3) maximizes the cross section for serendipitous discoveries and (4) can be adapted to answer specific questions (such as “is dark energy dynamical?”). Integrated parameter-space optimization (IPSO) is a design framework that integrates projected parameter errors over an entire dark energy parameter space and then extremizes a figure of merit (such as Shannon entropy gain which we show is stable to off-diagonal covariance matrix perturbations) as a function of survey parameters using analytical, grid or MCMC techniques. We discuss examples where the optimization can be performed analytically. IPSO is thus a general, model-independent and scalable framework that allows us to appropriately use prior information to design the best possible surveys.

  17. Experiences with Probabilistic Analysis Applied to Controlled Systems

    NASA Technical Reports Server (NTRS)

    Kenny, Sean P.; Giesy, Daniel P.

    2004-01-01

    This paper presents a semi-analytic method for computing frequency dependent means, variances, and failure probabilities for arbitrarily large-order closed-loop dynamical systems possessing a single uncertain parameter or with multiple highly correlated uncertain parameters. The approach will be shown to not suffer from the same computational challenges associated with computing failure probabilities using conventional FORM/SORM techniques. The approach is demonstrated by computing the probabilistic frequency domain performance of an optimal feed-forward disturbance rejection scheme.

  18. Lubricant Evaluation and Performance 2

    DTIC Science & Technology

    1992-01-01

    IDENTIFICATION OF SAMPLES USED IN ANALYTICAL FERROGRAPHY STUDY INCLUDING DESCRIPTION OF FERROGRAM DEBRIS 223 89. ANALYTICAL FERROGRAPH DATA FOR DOD-L-85734(AS...testing under various test parameters for determining effects on lubricant stability. Ferrography of the wear test samples showed a change in type of... ATLA i -- 0 A~ LAO0 O0 ui C.6j 0 0 -0 VI. CD 0-. Li C . LiC: a.- CD C). > C) : 132 L Y = 1.04X - 1.60 (r = 0.99997) 0 Y = 1.03X - 1.08 (r = 0.99999) 600

  19. Numerical implementation of complex orthogonalization, parallel transport on Stiefel bundles, and analyticity

    NASA Astrophysics Data System (ADS)

    Avitabile, Daniele; Bridges, Thomas J.

    2010-06-01

    Numerical integration of complex linear systems of ODEs depending analytically on an eigenvalue parameter are considered. Complex orthogonalization, which is required to stabilize the numerical integration, results in non-analytic systems. It is shown that properties of eigenvalues are still efficiently recoverable by extracting information from a non-analytic characteristic function. The orthonormal systems are constructed using the geometry of Stiefel bundles. Different forms of continuous orthogonalization in the literature are shown to correspond to different choices of connection one-form on the Stiefel bundle. For the numerical integration, Gauss-Legendre Runge-Kutta algorithms are the principal choice for preserving orthogonality, and performance results are shown for a range of GLRK methods. The theory and methods are tested by application to example boundary value problems including the Orr-Sommerfeld equation in hydrodynamic stability.

  20. Computing sensitivity and selectivity in parallel factor analysis and related multiway techniques: the need for further developments in net analyte signal theory.

    PubMed

    Olivieri, Alejandro C

    2005-08-01

    Sensitivity and selectivity are important figures of merit in multiway analysis, regularly employed for comparison of the analytical performance of methods and for experimental design and planning. They are especially interesting in the second-order advantage scenario, where the latter property allows for the analysis of samples with a complex background, permitting analyte determination even in the presence of unsuspected interferences. Since no general theory exists for estimating the multiway sensitivity, Monte Carlo numerical calculations have been developed for estimating variance inflation factors, as a convenient way of assessing both sensitivity and selectivity parameters for the popular parallel factor (PARAFAC) analysis and also for related multiway techniques. When the second-order advantage is achieved, the existing expressions derived from net analyte signal theory are only able to adequately cover cases where a single analyte is calibrated using second-order instrumental data. However, they fail for certain multianalyte cases, or when third-order data are employed, calling for an extension of net analyte theory. The results have strong implications in the planning of multiway analytical experiments.

  1. Chemical interactions in complex matrices: Determination of polar impurities in biofuels and fuel contaminants in building materials

    NASA Astrophysics Data System (ADS)

    Baglayeva, Ganna

    The solutions to several real-life analytical and physical chemistry problems, which involve chemical interactions in complex matrices are presented. The possible interferences due to the analyte-analyte and analyte-matrix chemical interactions were minimized on each step of the performed chemical analysis. Concrete and wood, as major construction materials, typically become contaminated with fuel oil hydrocarbons during their spillage. In the catastrophic scenarios (e.g., during floods), fuel oil mixes with water and then becomes entrained within the porous structure of wood or concrete. A strategy was proposed for the efficient extraction of fuel oil hydrocarbons from concrete to enable their monitoring. The impacts of sample aging and inundation with water on the extraction efficiency were investigated to elucidate the nature of analytematrix interactions. Two extraction methods, 4-days cold solvent extraction with shaking and 24-hours Soxhlet extraction with ethylacetate, methanol or acetonitrile yielded 95-100 % recovery of fuel oil hydrocarbons from concrete. A method of concrete remediation after contamination with fuel oil hydrocarbons using activated carbon as an adsorbent was developed. The 14 days remediation was able to achieve ca. 90 % of the contaminant removal even from aged water-submerged concrete samples. The degree of contamination can be qualitatively assessed using transport rates of the contaminants. Two models were developed, Fickian and empirical, to predict long-term transport behavior of fuel oil hydrocarbons under flood representative scenarios into wood. Various sorption parameters, including sorption rate, penetration degree and diffusion coefficients were obtained. The explanations to the observed three sorption phases are provided in terms of analyte-matrix interactions. The detailed simultaneous analysis of intermediate products of the cracking of triacylglycerol oils, namely monocarboxylic acids, triacyl-, diacyl- and monoacylglycerols was developed. The identification and quantification of analytes were performed using a 15-m high temperature capillary column (DB-1HT) with a GC coupled to both flame ionization and mass spectrometric detectors. To eliminate discrimination of low or high molecular weight species, programmed temperature vaporization (PTV) injection parameters were optimized using design of experiments methodology. Evaluation of the column temperature program and MS parameters allowed achieving separation of majority of target compounds based on their total number of carbon atoms, regioisomerization and, to some extent, degree of unsaturation.

  2. Analysis of a piezoelectric bimorph plate with a central-attached mass as an energy harvester.

    PubMed

    Jiang, Shunong; Hu, Yuantai

    2007-07-01

    This article analyzes the performance of a piezoelectric energy harvester in the flexural mode for scavenging ambient vibration energy. The energy harvester consists of a piezoelectric bimorph plate with a central-attached mass. The linear piezoelectricity theory is applied to evaluate the performance dependence upon the physical and geometrical parameters of the model bimorph plate. The analytical solution for the flexural motion of the piezoelectric bimorph plate energy harvester shows that the output power density increases initially, reaches a maximum, then decreases monotonically with the increasing load impedance, which is normalized by a parameter that is a simple combination of the physical and geometrical parameters of the scavenging structure, the bimorph plate, and the frequency of the ambient vibration, underscoring the importance for the load circuit to have the impedance desirable by the scavenging structure. The numerical results illustrate the considerably enhanced performances by adjusting the physical and geometrical parameters of the scavenging structure.

  3. CALIBRATION OF SEMI-ANALYTIC MODELS OF GALAXY FORMATION USING PARTICLE SWARM OPTIMIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz, Andrés N.; Domínguez, Mariano J.; Yaryura, Yamila

    2015-03-10

    We present a fast and accurate method to select an optimal set of parameters in semi-analytic models of galaxy formation and evolution (SAMs). Our approach compares the results of a model against a set of observables applying a stochastic technique called Particle Swarm Optimization (PSO), a self-learning algorithm for localizing regions of maximum likelihood in multidimensional spaces that outperforms traditional sampling methods in terms of computational cost. We apply the PSO technique to the SAG semi-analytic model combined with merger trees extracted from a standard Lambda Cold Dark Matter N-body simulation. The calibration is performed using a combination of observedmore » galaxy properties as constraints, including the local stellar mass function and the black hole to bulge mass relation. We test the ability of the PSO algorithm to find the best set of free parameters of the model by comparing the results with those obtained using a MCMC exploration. Both methods find the same maximum likelihood region, however, the PSO method requires one order of magnitude fewer evaluations. This new approach allows a fast estimation of the best-fitting parameter set in multidimensional spaces, providing a practical tool to test the consequences of including other astrophysical processes in SAMs.« less

  4. A thermal vacuum test optimization procedure

    NASA Technical Reports Server (NTRS)

    Kruger, R.; Norris, H. P.

    1979-01-01

    An analytical model was developed that can be used to establish certain parameters of a thermal vacuum environmental test program based on an optimization of program costs. This model is in the form of a computer program that interacts with a user insofar as the input of certain parameters. The program provides the user a list of pertinent information regarding an optimized test program and graphs of some of the parameters. The model is a first attempt in this area and includes numerous simplifications. The model appears useful as a general guide and provides a way for extrapolating past performance to future missions.

  5. Relating Vegetation Aerodynamic Roughness Length to Interferometric SAR Measurements

    NASA Technical Reports Server (NTRS)

    Saatchi, Sassan; Rodriquez, Ernesto

    1998-01-01

    In this paper, we investigate the feasibility of estimating aerodynamic roughness parameter from interferometric SAR (INSAR) measurements. The relation between the interferometric correlation and the rms height of the surface is presented analytically. Model simulations performed over realistic canopy parameters obtained from field measurements in boreal forest environment demonstrate the capability of the INSAR measurements for estimating and mapping surface roughness lengths over forests and/or other vegetation types. The procedure for estimating this parameter over boreal forests using the INSAR data is discussed and the possibility of extending the methodology over tropical forests is examined.

  6. Nanostructure Formation by controlled dewetting on patterned substrates: A combined theoretical, modeling and experimental study

    PubMed Central

    Lu, Liang-Xing; Wang, Ying-Min; Srinivasan, Bharathi Madurai; Asbahi, Mohamed; Yang, Joel K. W.; Zhang, Yong-Wei

    2016-01-01

    We perform systematic two-dimensional energetic analysis to study the stability of various nanostructures formed by dewetting solid films deposited on patterned substrates. Our analytical results show that by controlling system parameters such as the substrate surface pattern, film thickness and wetting angle, a variety of equilibrium nanostructures can be obtained. Phase diagrams are presented to show the complex relations between these system parameters and various nanostructure morphologies. We further carry out both phase field simulations and dewetting experiments to validate the analytically derived phase diagrams. Good agreements between the results from our energetic analyses and those from our phase field simulations and experiments verify our analysis. Hence, the phase diagrams presented here provide guidelines for using solid-state dewetting as a tool to achieve various nanostructures. PMID:27580943

  7. Integrated Requirements Analysis and Technology Roadmaps

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In fiscal year 1997, Strategic Insight performed analytical studies for NASA's Highly Reusable Space Transportation (HRST) program, creating program documents which illuminated technical requirements and critical research opportunities. Studies were performed to structure and confirm HRST's evolving technical requirements, building on Marshall's Phase 1 work, which defined HRST system concepts, analytical tools and high-level issues for assessment in Phase 2. Specifically, Strategic Insight: (1) Performed a requirements analysis to update HRST: An Advanced Concepts Study, Study Guidelines, Version 2.0 of January 22, 1996; only minor changes were recommended for the given parameters of interest to concept designers; (2) Conducted mini-workshops during HRST Working Group meetings on April 14-15, 1997 and July 22-24, 1997; and (3) Created structures for technology road maps of candidate HRST concepts, both subsystem and end-to-end concepts, emerging from the 13 cooperative agreement projects.

  8. Time-varying output performances of piezoelectric vibration energy harvesting under nonstationary random vibrations

    NASA Astrophysics Data System (ADS)

    Yoon, Heonjun; Kim, Miso; Park, Choon-Su; Youn, Byeng D.

    2018-01-01

    Piezoelectric vibration energy harvesting (PVEH) has received much attention as a potential solution that could ultimately realize self-powered wireless sensor networks. Since most ambient vibrations in nature are inherently random and nonstationary, the output performances of PVEH devices also randomly change with time. However, little attention has been paid to investigating the randomly time-varying electroelastic behaviors of PVEH systems both analytically and experimentally. The objective of this study is thus to make a step forward towards a deep understanding of the time-varying performances of PVEH devices under nonstationary random vibrations. Two typical cases of nonstationary random vibration signals are considered: (1) randomly-varying amplitude (amplitude modulation; AM) and (2) randomly-varying amplitude with randomly-varying instantaneous frequency (amplitude and frequency modulation; AM-FM). In both cases, this study pursues well-balanced correlations of analytical predictions and experimental observations to deduce the relationships between the time-varying output performances of the PVEH device and two primary input parameters, such as a central frequency and an external electrical resistance. We introduce three correlation metrics to quantitatively compare analytical prediction and experimental observation, including the normalized root mean square error, the correlation coefficient, and the weighted integrated factor. Analytical predictions are in an excellent agreement with experimental observations both mechanically and electrically. This study provides insightful guidelines for designing PVEH devices to reliably generate electric power under nonstationary random vibrations.

  9. Closed-form solutions and scaling laws for Kerr frequency combs

    PubMed Central

    Renninger, William H.; Rakich, Peter T.

    2016-01-01

    A single closed-form analytical solution of the driven nonlinear Schrödinger equation is developed, reproducing a large class of the behaviors in Kerr-comb systems, including bright-solitons, dark-solitons, and a large class of periodic wavetrains. From this analytical framework, a Kerr-comb area theorem and a pump-detuning relation are developed, providing new insights into soliton- and wavetrain-based combs along with concrete design guidelines for both. This new area theorem reveals significant deviation from the conventional soliton area theorem, which is crucial to understanding cavity solitons in certain limits. Moreover, these closed-form solutions represent the first step towards an analytical framework for wavetrain formation, and reveal new parameter regimes for enhanced Kerr-comb performance. PMID:27108810

  10. Fracture mechanics concepts in reliability analysis of monolithic ceramics

    NASA Technical Reports Server (NTRS)

    Manderscheid, Jane M.; Gyekenyesi, John P.

    1987-01-01

    Basic design concepts for high-performance, monolithic ceramic structural components are addressed. The design of brittle ceramics differs from that of ductile metals because of the inability of ceramic materials to redistribute high local stresses caused by inherent flaws. Random flaw size and orientation requires that a probabilistic analysis be performed in order to determine component reliability. The current trend in probabilistic analysis is to combine linear elastic fracture mechanics concepts with the two parameter Weibull distribution function to predict component reliability under multiaxial stress states. Nondestructive evaluation supports this analytical effort by supplying data during verification testing. It can also help to determine statistical parameters which describe the material strength variation, in particular the material threshold strength (the third Weibull parameter), which in the past was often taken as zero for simplicity.

  11. Analytically optimal parameters of dynamic vibration absorber with negative stiffness

    NASA Astrophysics Data System (ADS)

    Shen, Yongjun; Peng, Haibo; Li, Xianghong; Yang, Shaopu

    2017-02-01

    In this paper the optimal parameters of a dynamic vibration absorber (DVA) with negative stiffness is analytically studied. The analytical solution is obtained by Laplace transform method when the primary system is subjected to harmonic excitation. The research shows there are still two fixed points independent of the absorber damping in the amplitude-frequency curve of the primary system when the system contains negative stiffness. Then the optimum frequency ratio and optimum damping ratio are respectively obtained based on the fixed-point theory. A new strategy is proposed to obtain the optimum negative stiffness ratio and make the system remain stable at the same time. At last the control performance of the presented DVA is compared with those of three existing typical DVAs, which were presented by Den Hartog, Ren and Sims respectively. The comparison results in harmonic and random excitation show that the presented DVA in this paper could not only reduce the peak value of the amplitude-frequency curve of the primary system significantly, but also broaden the efficient frequency range of vibration mitigation.

  12. A model of freezing foods with liquid nitrogen using special functions

    NASA Astrophysics Data System (ADS)

    Rodríguez Vega, Martín.

    2014-05-01

    A food freezing model is analyzed analytically. The model is based on the heat diffusion equation in the case of cylindrical shaped food frozen by liquid nitrogen; and assuming that the thermal conductivity of the cylindrical food is radially modulated. The model is solved using the Laplace transform method, the Bromwich theorem, and the residue theorem. The temperature profile in the cylindrical food is presented as an infinite series of special functions. All the required computations are performed with computer algebra software, specifically Maple. Using the numeric values of the thermal and geometric parameters for the cylindrical food, as well as the thermal parameters of the liquid nitrogen freezing system, the temporal evolution of the temperature in different regions in the interior of the cylindrical food is presented both analytically and graphically. The duration of the liquid nitrogen freezing process to achieve the specified effect on the cylindrical food is computed. The analytical results are expected to be of importance in food engineering and cooking engineering. As a future research line, the formulation and solution of freezing models with thermal memory is proposed.

  13. Simple, rapid, and environmentally friendly method for the separation of isoflavones using ultra-high performance supercritical fluid chromatography.

    PubMed

    Wu, Wenjie; Zhang, Yuan; Wu, Hanqiu; Zhou, Weie; Cheng, Yan; Li, Hongna; Zhang, Chuanbin; Li, Lulu; Huang, Ying; Zhang, Feng

    2017-07-01

    Isoflavones are natural substances that exhibit hormone-like pharmacological activities. The separation of isoflavones remains an analytical challenge because of their similar structures. We show that ultra-high performance supercritical fluid chromatography can be an appropriate tool to achieve the fast separation of 12 common dietary isoflavones. Among the five tested columns the Torus DEA column was found to be the most effective column for the separation of these isoflavones. The impact of individual parameters on the retention time and separation factor was evaluated. These parameters were optimized to develop a simple, rapid, and green method for the separation of the 12 target analytes. It only took 12.91 min using gradient elution with methanol as an organic modifier and formic acid as an additive. These isoflavones were determined with limit of quantitation ranging from 0.10 to 0.50 μg/mL, which was sufficient for reliable determination of various matrixes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Exploration of ethyl anthranilate-loaded monolithic matrix-type prophylactic polymeric patch.

    PubMed

    Islam, Johirul; Zaman, Kamaruz; Chakrabarti, Srijita; Bora, Nilutpal Sharma; Pathak, Manash Pratim; Mandal, Santa; Junejo, Julfikar Ali; Chattopadhyay, Pronobesh

    2017-10-01

    Compromised stability of pharmaceutical formulations loaded with volatiles is a serious problem associated with devices designed to deliver volatile compounds. The present study has been focused to evaluate the stability potential of matrix-type polymeric patches composed of volatile ethyl anthranilate for prophylaxis against vector-borne diseases. Ethyl anthranilate-loaded matrix-type polymeric patches were fabricated by solvent evaporation method on an impermeable backing membrane and attached to temporary release liners. Stability testing of the polymeric patches was performed as per the International Conference on Harmonization (ICH) guidelines for 6 months under accelerated conditions. In addition, the quantification of residual solvents was also performed as per the ICH guidelines. After conducting the stability studies for 6 months, the optimized patches showed the best possible results with respect to uniformity of drug content, physical appearance, and other analytical parameters. Furthermore, the amount of residual solvent was found well below the accepted limit. Thus, the present report outlined the analytical parameters to be evaluated to ensure the stability of a certain devices consisting of volatile compounds. Copyright © 2016. Published by Elsevier B.V.

  15. Theoretical characterization of a model of aragonite crystal orientation in red abalone nacre

    NASA Astrophysics Data System (ADS)

    Coppersmith, S N; Gilbert, P U P A; Metzler, R A

    2009-03-01

    Nacre, commonly known as mother-of-pearl, is a remarkable biomineral that in red abalone consists of layers of 400 nm thick aragonite crystalline tablets confined by organic matrix sheets, with the [0 0 1] crystal axes of the aragonite tablets oriented to within ±12° from the normal to the layer planes. Recent experiments demonstrate that greater orientational order develops over a distance of tens of layers from the prismatic boundary at which nacre formation begins. Our previous simulations of a model in which the order develops because of differential tablet growth rates (oriented tablets growing faster than misoriented ones) yield patterns of tablets that agree qualitatively and quantitatively with the experimental measurements. This paper presents an analytical treatment of this model, focusing on how the dynamical development and eventual degree of order depend on model parameters. Dynamical equations for the probability distributions governing tablet orientations are introduced whose form can be determined from symmetry considerations and for which substantial analytic progress can be made. Numerical simulations are performed to relate the parameters used in the analytic theory to those in the microscopic growth model. The analytic theory demonstrates that the dynamical mechanism is able to achieve a much higher degree of order than naive estimates would indicate.

  16. An improved approach for flight readiness certification: Probabilistic models for flaw propagation and turbine blade failure. Volume 1: Methodology and applications

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.

    1992-01-01

    An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with analytical modeling of failure phenomena to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in analytical modeling, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which analytical models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes. These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. State-of-the-art analytical models currently employed for designs failure prediction, or performance analysis are used in this methodology. The rationale for the statistical approach taken in the PFA methodology is discussed, the PFA methodology is described, and examples of its application to structural failure modes are presented. The engineering models and computer software used in fatigue crack growth and fatigue crack initiation applications are thoroughly documented.

  17. An improved approach for flight readiness certification: Probabilistic models for flaw propagation and turbine blade failure. Volume 2: Software documentation

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.

    1992-01-01

    An improved methodology for quantitatively evaluating failure risk of spaceflights systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with analytical modeling of failure phenomena to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in analytical modeling, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which analytical models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes. These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. State-of-the-art analytical models currently employed for design, failure prediction, or performance analysis are used in this methodology. The rationale for the statistical approach taken in the PFA methodology is discussed, the PFA methodology is described, and examples of its application to structural failure modes are presented. The engineering models and computer software used in fatigue crack growth and fatigue crack initiation applications are thoroughly documented.

  18. Assessing performance of feedlot operations using epidemiology.

    PubMed

    Corbin, Marilyn J; Griffin, Dee

    2006-03-01

    The progressive feedlot veterinarian must be well versed not only in individual production animal medicine, but also in population-based medicine. Feedlot health programs must be goal oriented, and evaluation of these goals is accomplished through diligent use of record systems and analytic evaluation of these record systems. Basic feedlot monitoring parameters include health and economic parameters in addition to the use of bench marking parameters between and among feed yards. When these parameters have significant changes, steps should be initiated to begin field investigations. Feedlot epidemiology uses several novel applications such as partial budgeting, risk assessment, and packing plant audits to provide scientifically sound and economically feasible solutions for the feeding industry.

  19. Automated Deployment of Advanced Controls and Analytics in Buildings

    NASA Astrophysics Data System (ADS)

    Pritoni, Marco

    Buildings use 40% of primary energy in the US. Recent studies show that developing energy analytics and enhancing control strategies can significantly improve their energy performance. However, the deployment of advanced control software applications has been mostly limited to academic studies. Larger-scale implementations are prevented by the significant engineering time and customization required, due to significant differences among buildings. This study demonstrates how physics-inspired data-driven models can be used to develop portable analytics and control applications for buildings. Specifically, I demonstrate application of these models in all phases of the deployment of advanced controls and analytics in buildings: in the first phase, "Site Preparation and Interface with Legacy Systems" I used models to discover or map relationships among building components, automatically gathering metadata (information about data points) necessary to run the applications. During the second phase: "Application Deployment and Commissioning", models automatically learn system parameters, used for advanced controls and analytics. In the third phase: "Continuous Monitoring and Verification" I utilized models to automatically measure the energy performance of a building that has implemented advanced control strategies. In the conclusions, I discuss future challenges and suggest potential strategies for these innovative control systems to be widely deployed in the market. This dissertation provides useful new tools in terms of procedures, algorithms, and models to facilitate the automation of deployment of advanced controls and analytics and accelerate their wide adoption in buildings.

  20. Nonesterified fatty acid determination for functional lipidomics: comprehensive ultrahigh performance liquid chromatography-tandem mass spectrometry quantitation, qualification, and parameter prediction.

    PubMed

    Hellmuth, Christian; Weber, Martina; Koletzko, Berthold; Peissner, Wolfgang

    2012-02-07

    Despite their central importance for lipid metabolism, straightforward quantitative methods for determination of nonesterified fatty acid (NEFA) species are still missing. The protocol presented here provides unbiased quantitation of plasma NEFA species by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Simple deproteination of plasma in organic solvent solution yields high accuracy, including both the unbound and initially protein-bound fractions, while avoiding interferences from hydrolysis of esterified fatty acids from other lipid classes. Sample preparation is fast and nonexpensive, hence well suited for automation and high-throughput applications. Separation of isotopologic NEFA is achieved using ultrahigh-performance liquid chromatography (UPLC) coupled to triple quadrupole LC-MS/MS detection. In combination with automated liquid handling, total assay time per sample is less than 15 min. The analytical spectrum extends beyond readily available NEFA standard compounds by a regression model predicting all the relevant analytical parameters (retention time, ion path settings, and response factor) of NEFA species based on chain length and number of double bonds. Detection of 50 NEFA species and accurate quantification of 36 NEFA species in human plasma is described, the highest numbers ever reported for a LC-MS application. Accuracy and precision are within widely accepted limits. The use of qualifier ions supports unequivocal analyte verification. © 2012 American Chemical Society

  1. An Analytical-Numerical Model for Two-Phase Slug Flow through a Sudden Area Change in Microchannels

    DOE PAGES

    Momen, A. Mehdizadeh; Sherif, S. A.; Lear, W. E.

    2016-01-01

    In this article, two new analytical models have been developed to calculate two-phase slug flow pressure drop in microchannels through a sudden contraction. Even though many studies have been reported on two-phase flow in microchannels, considerable discrepancies still exist, mainly due to the difficulties in experimental setup and measurements. Numerical simulations were performed to support the new analytical models and to explore in more detail the physics of the flow in microchannels with a sudden contraction. Both analytical and numerical results were compared to the available experimental data and other empirical correlations. Results show that models, which were developed basedmore » on the slug and semi-slug assumptions, agree well with experiments in microchannels. Moreover, in contrast to the previous empirical correlations which were tuned for a specific geometry, the new analytical models are capable of taking geometrical parameters as well as flow conditions into account.« less

  2. Experimental and analytical determination of stability parameters for a balloon tethered in a wind

    NASA Technical Reports Server (NTRS)

    Redd, L. T.; Bennett, R. M.; Bland, S. R.

    1973-01-01

    Experimental and analytical techniques for determining stability parameters for a balloon tethered in a steady wind are described. These techniques are applied to a particular 7.64-meter-long balloon, and the results are presented. The stability parameters of interest appear as coefficients in linearized stability equations and are derived from the various forces and moments acting on the balloon. In several cases the results from the experimental and analytical techniques are compared and suggestions are given as to which techniques are the most practical means of determining values for the stability parameters.

  3. A carrier-based analytical theory for negative capacitance symmetric double-gate field effect transistors and its simulation verification

    NASA Astrophysics Data System (ADS)

    Jiang, Chunsheng; Liang, Renrong; Wang, Jing; Xu, Jun

    2015-09-01

    A carrier-based analytical drain current model for negative capacitance symmetric double-gate field effect transistors (NC-SDG FETs) is proposed by solving the differential equation of the carrier, the Pao-Sah current formulation, and the Landau-Khalatnikov equation. The carrier equation is derived from Poisson’s equation and the Boltzmann distribution law. According to the model, an amplified semiconductor surface potential and a steeper subthreshold slope could be obtained with suitable thicknesses of the ferroelectric film and insulator layer at room temperature. Results predicted by the analytical model agree well with those of the numerical simulation from a 2D simulator without any fitting parameters. The analytical model is valid for all operation regions and captures the transitions between them without any auxiliary variables or functions. This model can be used to explore the operating mechanisms of NC-SDG FETs and to optimize device performance.

  4. Cross-stream diffusion under pressure-driven flow in microchannels with arbitrary aspect ratios: a phase diagram study using a three-dimensional analytical model

    PubMed Central

    Song, Hongjun; Wang, Yi; Pant, Kapil

    2011-01-01

    This article presents a three-dimensional analytical model to investigate cross-stream diffusion transport in rectangular microchannels with arbitrary aspect ratios under pressure-driven flow. The Fourier series solution to the three-dimensional convection–diffusion equation is obtained using a double integral transformation method and associated eigensystem calculation. A phase diagram derived from the dimensional analysis is presented to thoroughly interrogate the characteristics in various transport regimes and examine the validity of the model. The analytical model is verified against both experimental and numerical models in terms of the concentration profile, diffusion scaling law, and mixing efficiency with excellent agreement (with <0.5% relative error). Quantitative comparison against other prior analytical models in extensive parameter space is also performed, which demonstrates that the present model accommodates much broader transport regimes with significantly enhanced applicability. PMID:22247719

  5. Cross-stream diffusion under pressure-driven flow in microchannels with arbitrary aspect ratios: a phase diagram study using a three-dimensional analytical model.

    PubMed

    Song, Hongjun; Wang, Yi; Pant, Kapil

    2012-01-01

    This article presents a three-dimensional analytical model to investigate cross-stream diffusion transport in rectangular microchannels with arbitrary aspect ratios under pressure-driven flow. The Fourier series solution to the three-dimensional convection-diffusion equation is obtained using a double integral transformation method and associated eigensystem calculation. A phase diagram derived from the dimensional analysis is presented to thoroughly interrogate the characteristics in various transport regimes and examine the validity of the model. The analytical model is verified against both experimental and numerical models in terms of the concentration profile, diffusion scaling law, and mixing efficiency with excellent agreement (with <0.5% relative error). Quantitative comparison against other prior analytical models in extensive parameter space is also performed, which demonstrates that the present model accommodates much broader transport regimes with significantly enhanced applicability.

  6. Space Storable Propellant Performance Gas/Liquid Like-Doublet Injector Characterization

    NASA Technical Reports Server (NTRS)

    Falk, A. Y.

    1972-01-01

    A 30-month applied research program was conducted, encompassing an analytical, design, and experimental effort to relate injector design parameters to simultaneous attainment of high performance and component (injector/thrust chamber) compatibility for gas/liquid space-storable propellants. The gas/liquid propellant combination selected for study was FLOX (82.6% F2)/ambient temperature gaseous methane. The injector pattern characterized was the like-(self)-impinging doublet. Program effort was apportioned into four basic technical tasks: injector and thrust chamber design, injector and thrust chamber fabrication, performance evaluation testing, and data evaluation and reporting. Analytical parametric combustion analyses and cold flow distribution and atomization experiments were conducted with injector segment models to support design of injector/thrust chamber combinations for hot fire evaluation. Hot fire tests were conducted to: (1) optimize performance of the injector core elements, and (2) provide design criteria for the outer zone elements so that injector/thrust chamber compatibility could be achieved with only minimal performance losses.

  7. Deployment simulation of a deployable reflector for earth science application

    NASA Astrophysics Data System (ADS)

    Wang, Xiaokai; Fang, Houfei; Cai, Bei; Ma, Xiaofei

    2015-10-01

    A novel mission concept namely NEXRAD-In-Space (NIS) has been developed for monitoring hurricanes, cyclones and other severe storms from a geostationary orbit. It requires a space deployable 35-meter diameter Ka-band (35 GHz) reflector. NIS can measure hurricane precipitation intensity, dynamics and its life cycle. These information is necessary for predicting the track, intensity, rain rate and hurricane-induced floods. To meet the requirements of the radar system, a Membrane Shell Reflector Segment (MSRS) reflector technology has been developed and several technologies have been evaluated. However, the deployment analysis of this large size and high-precision reflector has not been investigated. For a pre-studies, a scaled tetrahedral truss reflector with spring driving deployment system has been made and tested, deployment dynamics analysis of this scaled reflector has been performed using ADAMS to understand its deployment dynamic behaviors. Eliminating the redundant constraints in the reflector system with a large number of moving parts is a challenging issue. A primitive joint and flexible struts were introduced to the analytical model and they can effectively eliminate over constraints of the model. By using a high-speed camera and a force transducer, a deployment experiment of a single-bay tetrahedral module has been conducted. With the tested results, an optimization process has been performed by using the parameter optimization module of ADAMS to obtain the parameters of the analytical model. These parameters were incorporated to the analytical model of the whole reflector. It is observed from the analysis results that the deployment process of the reflector with a fixed boundary experiences three stages. These stages are rapid deployment stage, slow deployment stage and impact stage. The insight of the force peak distributions of the reflector can help the optimization design of the structure.

  8. Reexamination of the calculation of two-center, two-electron integrals over Slater-type orbitals. II. Neumann expansion of the exchange integrals

    NASA Astrophysics Data System (ADS)

    Lesiuk, Michał; Moszynski, Robert

    2014-12-01

    In this paper we consider the calculation of two-center exchange integrals over Slater-type orbitals (STOs). We apply the Neumann expansion of the Coulomb interaction potential and consider calculation of all basic quantities which appear in the resulting expression. Analytical closed-form equations for all auxiliary quantities have already been known but they suffer from large digital erosion when some of the parameters are large or small. We derive two differential equations which are obeyed by the most difficult basic integrals. Taking them as a starting point, useful series expansions for small parameter values or asymptotic expansions for large parameter values are systematically derived. The resulting expansions replace the corresponding analytical expressions when the latter introduce significant cancellations. Additionally, we reconsider numerical integration of some necessary quantities and present a new way to calculate the integrand with a controlled precision. All proposed methods are combined to lead to a general, stable algorithm. We perform extensive numerical tests of the introduced expressions to verify their validity and usefulness. Advances reported here provide methodology to compute two-electron exchange integrals over STOs for a broad range of the nonlinear parameters and large angular momenta.

  9. Numerical Simulation and Experimental Study of a Dental Handpiece Air Turbine

    NASA Astrophysics Data System (ADS)

    Hsu, Chih-Neng; Chiang, Hsiao-Wei D.; Chang, Ya-Yi

    2011-06-01

    Dental air turbine handpieces have been widely used in clinical dentistry for over 30 years, however, little work has been reported on their performance. In dental air turbine handpieces, the types of flow channel and turbine blade shape can have very different designs. These different designs can have major influence on the torque, rotating speed, and power performance. This research is focused on the turbine blade and the flow channel designs. Using numerical simulation and experiments, the key design parameters which influence the performance of dental hand pieces can be studied. Three types of dental air turbine designs with different turbine blades, nozzle angles, nozzle flow channels, and shroud clearances were tested and analyzed. Very good agreement was demonstrated between the numerical simulation analyses and the experiments. Using the analytical model, parametric studies were performed to identify key design parameters.

  10. Analysis and design of a standardized control module for switching regulators

    NASA Astrophysics Data System (ADS)

    Lee, F. C.; Mahmoud, M. F.; Yu, Y.; Kolecki, J. C.

    1982-07-01

    Three basic switching regulators: buck, boost, and buck/boost, employing a multiloop standardized control module (SCM) were characterized by a common small signal block diagram. Employing the unified model, regulator performances such as stability, audiosusceptibility, output impedance, and step load transient are analyzed and key performance indexes are expressed in simple analytical forms. More importantly, the performance characteristics of all three regulators are shown to enjoy common properties due to the unique SCM control scheme which nullifies the positive zero and provides adaptive compensation to the moving poles of the boost and buck/boost converters. This allows a simple unified design procedure to be devised for selecting the key SCM control parameters for an arbitrarily given power stage configuration and parameter values, such that all regulator performance specifications can be met and optimized concurrently in a single design attempt.

  11. The effectiveness of lifestyle interventions to reduce cardiovascular risk in patients with severe mental disorders: meta-analysis of intervention studies.

    PubMed

    Fernández-San-Martín, Maria Isabel; Martín-López, Luis Miguel; Masa-Font, Roser; Olona-Tabueña, Noemí; Roman, Yuani; Martin-Royo, Jaume; Oller-Canet, Silvia; González-Tejón, Susana; San-Emeterio, Luisa; Barroso-Garcia, Albert; Viñas-Cabrera, Lidia; Flores-Mateo, Gemma

    2014-01-01

    Patients with severe mental illness have higher prevalences of cardiovascular risk factors (CRF). The objective is to determine whether interventions to modify lifestyles in these patients reduce anthropometric and analytical parameters related to CRF in comparison to routine clinical practice. Systematic review of controlled clinical trials with lifestyle intervention in Medline, Cochrane Library, Embase, PsycINFO and CINALH. Change in body mass index, waist circumference, cholesterol, triglycerides and blood sugar. Meta-analyses were performed using random effects models to estimate the weighted mean difference. Heterogeneity was determined using i(2) statistical and subgroups analyses. 26 studies were selected. Lifestyle interventions decrease anthropometric and analytical parameters at 3 months follow up. At 6 and 12 months, the differences between the intervention and control groups were maintained, although with less precision. More studies with larger samples and long-term follow-up are needed.

  12. Form of prior for constrained thermodynamic processes with uncertainty

    NASA Astrophysics Data System (ADS)

    Aneja, Preety; Johal, Ramandeep S.

    2015-05-01

    We consider the quasi-static thermodynamic processes with constraints, but with additional uncertainty about the control parameters. Motivated by inductive reasoning, we assign prior distribution that provides a rational guess about likely values of the uncertain parameters. The priors are derived explicitly for both the entropy-conserving and the energy-conserving processes. The proposed form is useful when the constraint equation cannot be treated analytically. The inference is performed using spin-1/2 systems as models for heat reservoirs. Analytical results are derived in the high-temperatures limit. An agreement beyond linear response is found between the estimates of thermal quantities and their optimal values obtained from extremum principles. We also seek an intuitive interpretation for the prior and the estimated value of temperature obtained therefrom. We find that the prior over temperature becomes uniform over the quantity kept conserved in the process.

  13. The effect of damping on a quantum system containing a Kerr-like medium

    NASA Astrophysics Data System (ADS)

    Mohamed, A.-B. A.; Sebawe Abdalla, M.; Obada, A.-S. F.

    2018-05-01

    An analytical description is given for a model which represents the interaction between Su(1,1) and Su(2) quantum systems taking into account Su(1,1)-cavity damping and Kerr medium properties. The analytic solution for the master equation of the density matrix is obtained. The examination of the effects of the damping parameter as well as the Kerr-like medium features is performed. The atomic inversion is discussed where the revivals and collapses phenomenon is realized at the considered period of time. Our study is extended to include the degree of entanglement where the system shows partial entanglement in all cases, however, disentanglement is also observed. The death and rebirth is seen in the system provided one selects the suitable values of the parameters. The correlation function of the system shows non-classical as well as classical behavior.

  14. Heave-pitch-roll analysis and testing of air cushion landing systems

    NASA Technical Reports Server (NTRS)

    Boghani, A. B.; Captain, K. M.; Wormley, D. N.

    1978-01-01

    The analytical tools (analysis and computer simulation) needed to explain and predict the dynamic operation of air cushion landing systems (ACLS) is described. The following tasks were performed: the development of improved analytical models for the fan and the trunk; formulation of a heave pitch roll analysis for the complete ACLS; development of a general purpose computer simulation to evaluate landing and taxi performance of an ACLS equipped aircraft; and the verification and refinement of the analysis by comparison with test data obtained through lab testing of a prototype cushion. Demonstration of simulation capabilities through typical landing and taxi simulation of an ACLS aircraft are given. Initial results show that fan dynamics have a major effect on system performance. Comparison with lab test data (zero forward speed) indicates that the analysis can predict most of the key static and dynamic parameters (pressure, deflection, acceleration, etc.) within a margin of a 10 to 25 percent.

  15. Application of multiplex arrays for cytokine and chemokine profiling of bile.

    PubMed

    Kemp, Troy J; Castro, Felipe A; Gao, Yu-Tang; Hildesheim, Allan; Nogueira, Leticia; Wang, Bing-Sheng; Sun, Lu; Shelton, Gloriana; Pfeiffer, Ruth M; Hsing, Ann W; Pinto, Ligia A; Koshiol, Jill

    2015-05-01

    Gallbladder disease is highly related to inflammation, but the inflammatory processes are not well understood. Bile provides a direct substrate in assessing the local inflammatory response that develops in the gallbladder. To assess the reproducibility of measuring inflammatory markers in bile, we designed a methods study of 69 multiplexed immune-related markers measured in bile obtained from gallstone patients. To evaluate assay performance, a total of 18 bile samples were tested twice within the same plate for each analyte, and the 18 bile samples were tested on two different days for each analyte. We used the following performance parameters: detectability, coefficient of variation (CV), intraclass correlation coefficient (ICC), and percent agreement (concordance among replicate measures above and below detection limit). Furthermore, we examined the association of analyte levels with gallstone characteristics such as type, numbers, and size. All but 3 analytes (Stem Cell Factor, SCF; Thrombopoietin, TPO; sIL-1RI) were detectable in bile. 52 of 69 (75.4%) analytes had detectable levels for at least 50% of the subjects tested. The within-plate CVs were ⩽25% for 53 of 66 (80.3%) detectable analytes, and across-plate CVs were ⩽25% for 32 of 66 (48.5%) detectable analytes. Moreover, 64 of 66 (97.0%) analytes had ICC values of at least 0.8. Lastly, the percent agreement was high between replicates for all of the analytes (median; within plate, 97.2%; across plate, 97.2%). In exploratory analyses, we assessed analyte levels by gallstone characteristics and found that levels for several analytes decreased with increasing size of the largest gallstone per patient. Our data suggest that multiplex assays can be used to reliably measure cytokines and chemokines in bile. In addition, gallstone size was inversely related to the levels of select analytes, which may aid in identifying critical pathways and mechanisms associated with the pathogenesis of gallbladder diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Analytical study of the cruise performance of a class of remotely piloted, microwave-powered, high-altitude airplane platforms

    NASA Technical Reports Server (NTRS)

    Morris, C. E. K., Jr.

    1981-01-01

    Each cycle of the flight profile consists of climb while the vehicle is tracked and powered by a microwave beam, followed by gliding flight back to a minimum altitude. Parameter variations were used to define the effects of changes in the characteristics of the airplane aerodynamics, the power transmission systems, the propulsion system, and winds. Results show that wind effects limit the reduction of wing loading and increase the lift coefficient, two effective ways to obtain longer range and endurance for each flight cycle. Calculated climb performance showed strong sensitivity to some power and propulsion parameters. A simplified method of computing gliding endurance was developed.

  17. On cup anemometer rotor aerodynamics.

    PubMed

    Pindado, Santiago; Pérez, Javier; Avila-Sanchez, Sergio

    2012-01-01

    The influence of anemometer rotor shape parameters, such as the cups' front area or their center rotation radius on the anemometer's performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups' center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor's cup.

  18. Bayesian-based estimation of acoustic surface impedance: Finite difference frequency domain approach.

    PubMed

    Bockman, Alexander; Fackler, Cameron; Xiang, Ning

    2015-04-01

    Acoustic performance for an interior requires an accurate description of the boundary materials' surface acoustic impedance. Analytical methods may be applied to a small class of test geometries, but inverse numerical methods provide greater flexibility. The parameter estimation problem requires minimizing prediction vice observed acoustic field pressure. The Bayesian-network sampling approach presented here mitigates other methods' susceptibility to noise inherent to the experiment, model, and numerics. A geometry agnostic method is developed here and its parameter estimation performance is demonstrated for an air-backed micro-perforated panel in an impedance tube. Good agreement is found with predictions from the ISO standard two-microphone, impedance-tube method, and a theoretical model for the material. Data by-products exclusive to a Bayesian approach are analyzed to assess sensitivity of the method to nuisance parameters.

  19. Investigation of crew restraint system biomechanics. Report for May 79-Mar 81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, N.S.; Thomson, R.A.; Fiscus, I.B.

    1982-05-01

    Experimental data were collected and analyses were performed to study the influence of the dynamic mechanical properties of restraint system components on human response to impact and restraint system haulback. Tests were accomplished to isolate the characteristics of the restraint system and the human body. Three restraint webbing materials were studied at varied strain rates. A pyrotechnically powered inertia reel was tested, but could not be analytically modeled successfully. Analytical models of the human and restraint system were used to study the influence of restraint material properties changes on human response parameters. An analytical model of a rhesus monkey wasmore » also used to study the efficacy of animal tests and scaling techniques to evaluate restraint systems for human use applications.« less

  20. Validation conform ISO-15189 of assays in the field of autoimmunity: Joint efforts in The Netherlands.

    PubMed

    Mulder, Leontine; van der Molen, Renate; Koelman, Carin; van Leeuwen, Ester; Roos, Anja; Damoiseaux, Jan

    2018-05-01

    ISO 15189:2012 requires validation of methods used in the medical laboratory, and lists a series of performance parameters for consideration to include. Although these performance parameters are feasible for clinical chemistry analytes, application in the validation of autoimmunity tests is a challenge. Lack of gold standards or reference methods in combination with the scarcity of well-defined diagnostic samples of patients with rare diseases make validation of new assays difficult. The present manuscript describes the initiative of Dutch medical immunology laboratory specialists to combine efforts and perform multi-center validation studies of new assays in the field of autoimmunity. Validation data and reports are made available to interested Dutch laboratory specialists. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. NLC Luminosity as a Function of Beam Parameters

    NASA Astrophysics Data System (ADS)

    Nosochkov, Y.

    2002-06-01

    Realistic calculation of NLC luminosity has been performed using particle tracking in DIMAD and beam-beam simulations in GUINEA-PIG code for various values of beam emittance, energy and beta functions at the Interaction Point (IP). Results of the simulations are compared with analytic luminosity calculations. The optimum range of IP beta functions for high luminosity was identified.

  2. Users guide for EASI graphics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasser, D.W.

    1978-03-01

    EASI (Estimate of Adversary Sequence Interruption) is an analytical technique for measuring the effectiveness of physical protection systems. EASI Graphics is a computer graphics extension of EASI which provides a capability for performing sensitivity and trade-off analyses of the parameters of a physical protection system. This document reports on the implementation of EASI Graphics and illustrates its application with some examples.

  3. Rapid determination of residues of pesticides in honey by µGC-ECD and GC-MS/MS: Method validation and estimation of measurement uncertainty according to document No. SANCO/12571/2013.

    PubMed

    Paoloni, Angela; Alunni, Sabrina; Pelliccia, Alessandro; Pecorelli, Ivan

    2016-01-01

    A simple and straightforward method for simultaneous determination of residues of 13 pesticides in honey samples (acrinathrin, bifenthrin, bromopropylate, cyhalothrin-lambda, cypermethrin, chlorfenvinphos, chlorpyrifos, coumaphos, deltamethrin, fluvalinate-tau, malathion, permethrin and tetradifon) from different pesticide classes has been developed and validated. The analytical method provides dissolution of honey in water and an extraction of pesticide residues by n-Hexane followed by clean-up on a Florisil SPE column. The extract was evaporated and taken up by a solution of an injection internal standard (I-IS), ethion, and finally analyzed by capillary gas chromatography with electron capture detection (GC-µECD). Identification for qualitative purpose was conducted by gas chromatography with triple quadrupole mass spectrometer (GC-MS/MS). A matrix-matched calibration curve was performed for quantitative purposes by plotting the area ratio (analyte/I-IS) against concentration using a GC-µECD instrument. According to document No. SANCO/12571/2013, the method was validated by testing the following parameters: linearity, matrix effect, specificity, precision, trueness (bias) and measurement uncertainty. The analytical process was validated analyzing blank honey samples spiked at levels equal to and greater than 0.010 mg/kg (limit of quantification). All parameters were satisfactorily compared with the values established by document No. SANCO/12571/2013. The analytical performance was verified by participating in eight multi-residue proficiency tests organized by BIPEA, obtaining satisfactory z-scores in all 70 determinations. Measurement uncertainty was estimated according to the top-down approaches described in Appendix C of the SANCO document using the within-laboratory reproducibility relative standard deviation combined with laboratory bias using the proficiency test data.

  4. Antimicrobial drug residues in milk and meat: causes, concerns, prevalence, regulations, tests, and test performance.

    PubMed

    Mitchell, J M; Griffiths, M W; McEwen, S A; McNab, W B; Yee, A J

    1998-06-01

    This paper presents a historical review of antimicrobial use in food animals, the causes of residues in meat and milk, the types of residues found, their regulation in Canada, tests used for their detection, and test performance parameters, with an emphasis on immunoassay techniques. The development of residue detection methods began shortly after the introduction of antimicrobials to food animal production in the late 1940s. From initial technical concerns expressed by the dairy industry to the present public health and international trade implications, there has been an ongoing need for reliable, sensitive, and economical methods for the detection of antimicrobial residues in food animal products such as milk and meat. Initially there were microbial growth inhibition tests, followed by more sensitive and specific methods based on receptor binding, immunochemical, and chromatographic principle. An understanding of basic test performance parameters and their implications is essential when choosing an analytical strategy for residue testing. While each test format has its own attributes, none test will meet all the required analytical needs. Therefore the use of a tiered or integrated system employing assays designated for screening and confirmation is necessary to ensure that foods containing violative residues are not introduced into the food chain.

  5. Experimental and analytical study of close-coupled ventral nozzles for ASTOVL aircraft

    NASA Technical Reports Server (NTRS)

    Mcardle, Jack G.; Smith, C. Frederic

    1990-01-01

    Flow in a generic ventral nozzle system was studied experimentally and analytically with a block version of the PARC3D computational fluid dynamics program (a full Navier-Stokes equation solver) in order to evaluate the program's ability to predict system performance and internal flow patterns. For the experimental work a one-third-size model tailpipe with a single large rectangular ventral nozzle mounted normal to the tailpipe axis was tested with unheated air at steady-state pressure ratios up to 4.0. The end of the tailpipe was closed to simulate a blocked exhaust nozzle. Measurements showed about 5 1/2 percent flow-turning loss, reasonable nozzle performance coefficients, and a significant aftward axial component of thrust due to flow turning loss, reasonable nozzle performance coefficients, and a significant aftward axial component of thrust due to flow turning more than 90 deg. Flow behavior into and through the ventral duct is discussed and illustrated with paint streak flow visualization photographs. For the analytical work the same ventral system configuration was modeled with two computational grids to evaluate the effect of grid density. Both grids gave good results. The finer-grid solution produced more detailed flow patterns and predicted performance parameters, such as thrust and discharge coefficient, within 1 percent of the measured values. PARC3D flow visualization images are shown for comparison with the paint streak photographs. Modeling and computational issues encountered in the analytical work are discussed.

  6. Data and Analytics to Inform Energy Retrofit of High Performance Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tianzhen; Yang, Le; Hill, David

    Buildings consume more than one-third of the world?s primary energy. Reducing energy use in buildings with energy efficient technologies is feasible and also driven by energy policies such as energy benchmarking, disclosure, rating, and labeling in both the developed and developing countries. Current energy retrofits focus on the existing building stocks, especially older buildings, but the growing number of new high performance buildings built around the world raises a question that how these buildings perform and whether there are retrofit opportunities to further reduce their energy use. This is a new and unique problem for the building industry. Traditional energymore » audit or analysis methods are inadequate to look deep into the energy use of the high performance buildings. This study aims to tackle this problem with a new holistic approach powered by building performance data and analytics. First, three types of measured data are introduced, including the time series energy use, building systems operating conditions, and indoor and outdoor environmental parameters. An energy data model based on the ISO Standard 12655 is used to represent the energy use in buildings in a three-level hierarchy. Secondly, a suite of analytics were proposed to analyze energy use and to identify retrofit measures for high performance buildings. The data-driven analytics are based on monitored data at short time intervals, and cover three levels of analysis ? energy profiling, benchmarking and diagnostics. Thirdly, the analytics were applied to a high performance building in California to analyze its energy use and identify retrofit opportunities, including: (1) analyzing patterns of major energy end-use categories at various time scales, (2) benchmarking the whole building total energy use as well as major end-uses against its peers, (3) benchmarking the power usage effectiveness for the data center, which is the largest electricity consumer in this building, and (4) diagnosing HVAC equipment using detailed time-series operating data. Finally, a few energy efficiency measures were identified for retrofit, and their energy savings were estimated to be 20percent of the whole-building electricity consumption. Based on the analyses, the building manager took a few steps to improve the operation of fans, chillers, and data centers, which will lead to actual energy savings. This study demonstrated that there are energy retrofit opportunities for high performance buildings and detailed measured building performance data and analytics can help identify and estimate energy savings and to inform the decision making during the retrofit process. Challenges of data collection and analytics were also discussed to shape best practice of retrofitting high performance buildings.« less

  7. The determination of the constitutive parameters of a medium with application to a reinforced concrete pad

    NASA Technical Reports Server (NTRS)

    Poggio, A. J.; Burke, G. L.; Pennock, S. T.

    1995-01-01

    This report describes the experimental and analytical efforts performed to determine the constitutive parameters of a reinforced concrete pad on which an aircraft (the NASA Boeing 757) was parked while its internal electromagnetic environment was measured. This concrete pad is part of the Large Electromagnetic System-Level Illuminator (LESLI) test facility at the Phillips Laboratory, Kirtland Air Force Base, New Mexico. The relative dielectric constant, conductivity, index of refraction, and reflection coefficient have been determined over the frequency range of 0 to 300 MHz and are presented.

  8. TWT transmitter fault prediction based on ANFIS

    NASA Astrophysics Data System (ADS)

    Li, Mengyan; Li, Junshan; Li, Shuangshuang; Wang, Wenqing; Li, Fen

    2017-11-01

    Fault prediction is an important component of health management, and plays an important role in the reliability guarantee of complex electronic equipments. Transmitter is a unit with high failure rate. The cathode performance of TWT is a common fault of transmitter. In this dissertation, a model based on a set of key parameters of TWT is proposed. By choosing proper parameters and applying adaptive neural network training model, this method, combined with analytic hierarchy process (AHP), has a certain reference value for the overall health judgment of TWT transmitters.

  9. On justification of efficient Energy-Force parameters of Hydraulic-excavator main mechanisms

    NASA Astrophysics Data System (ADS)

    Komissarov, Anatoliy; Lagunova, Yuliya; Shestakov, Viktor; Lukashuk, Olga

    2018-03-01

    The article formulates requirements for energy-efficient designs of the operational equipment of a hydraulic excavator (its boom, stick and bucket) and defines, for a mechanism of that equipment, a new term “performance characteristic”. The drives of main rotation mechanisms of the equipment are realized by hydraulic actuators (hydraulic cylinders) and transmission (leverage) mechanisms, with the actuators (the cylinders themselves, their pistons and piston rods) also acting as links of the leverage. Those drives are characterized by the complexity of translating mechanical-energy parameters of the actuators into energy parameters of the driven links (a boom, a stick and a bucket). Relations between those parameters depend as much on the types of mechanical characteristics of the hydraulic actuators as on the types of structural schematics of the transmission mechanisms. To assess how energy-force parameters of the driven links change when a typical operation is performed, it was proposed to calculate performance characteristics of the main mechanisms as represented by a set of values of transfer functions, i.e. by functional dependences between driven links and driving links (actuators). Another term “ideal performance characteristic” of a mechanism was introduced. Based on operation-emulating models for the main mechanisms of hydraulic excavators, analytical expressions were derived to calculate kinematic and force transfer functions of the main mechanisms.

  10. Immunochemistry for high-throughput screening of human exhaled breath condensate (EBC) media: implementation of automated Quanterix SIMOA instrumentation.

    PubMed

    Pleil, Joachim D; Angrish, Michelle M; Madden, Michael C

    2015-12-11

    Immunochemistry is an important clinical tool for indicating biological pathways leading towards disease. Standard enzyme-linked immunosorbent assays (ELISA) are labor intensive and lack sensitivity at low-level concentrations. Here we report on emerging technology implementing fully-automated ELISA capable of molecular level detection and describe application to exhaled breath condensate (EBC) samples. The Quanterix SIMOA HD-1 analyzer was evaluated for analytical performance for inflammatory cytokines (IL-6, TNF-α, IL-1β and IL-8). The system was challenged with human EBC representing the most dilute and analytically difficult of the biological media. Calibrations from synthetic samples and spiked EBC showed excellent linearity at trace levels (r(2)  >  0.99). Sensitivities varied by analyte, but were robust from ~0.006 (IL-6) to ~0.01 (TNF-α) pg ml(-1). All analytes demonstrated response suppression when diluted with deionized water and so assay buffer diluent was found to be a better choice. Analytical runs required ~45 min setup time for loading samples, reagents, calibrants, etc., after which the instrument performs without further intervention for up to 288 separate samples. Currently, available kits are limited to single-plex analyses and so sample volumes require adjustments. Sample dilutions should be made with assay diluent to avoid response suppression. Automation performs seamlessly and data are automatically analyzed and reported in spreadsheet format. The internal 5-parameter logistic (pl) calibration model should be supplemented with a linear regression spline at the very lowest analyte levels, (<1.3 pg ml(-1)). The implementation of the automated Quanterix platform was successfully demonstrated using EBC, which poses the greatest challenge to ELISA due to limited sample volumes and low protein levels.

  11. Column Selection for Biomedical Analysis Supported by Column Classification Based on Four Test Parameters

    PubMed Central

    Plenis, Alina; Rekowska, Natalia; Bączek, Tomasz

    2016-01-01

    This article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the FKUL value characterising similarity of those parameters to the selected reference stationary phase. Thus, a ranking list based on the FKUL value can be calculated for the chosen reference column, then correlated with the results of the column performance test. In this study, the column performance test was based on analysis of moclobemide and its two metabolites in human plasma by liquid chromatography (LC), using 18 columns. The comparative study was performed using traditional correlation of the FKUL values with the retention parameters of the analytes describing the column performance test. In order to deepen the comparative assessment of both data sets, factor analysis (FA) was also used. The obtained results indicated that the stationary phase classes, closely related according to the KUL method, yielded comparable separation for the target substances. Therefore, the column ranking system based on the FKUL-values could be considered supportive in the choice of the appropriate column for biomedical analysis. PMID:26805819

  12. Column Selection for Biomedical Analysis Supported by Column Classification Based on Four Test Parameters.

    PubMed

    Plenis, Alina; Rekowska, Natalia; Bączek, Tomasz

    2016-01-21

    This article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the FKUL value characterising similarity of those parameters to the selected reference stationary phase. Thus, a ranking list based on the FKUL value can be calculated for the chosen reference column, then correlated with the results of the column performance test. In this study, the column performance test was based on analysis of moclobemide and its two metabolites in human plasma by liquid chromatography (LC), using 18 columns. The comparative study was performed using traditional correlation of the FKUL values with the retention parameters of the analytes describing the column performance test. In order to deepen the comparative assessment of both data sets, factor analysis (FA) was also used. The obtained results indicated that the stationary phase classes, closely related according to the KUL method, yielded comparable separation for the target substances. Therefore, the column ranking system based on the FKUL-values could be considered supportive in the choice of the appropriate column for biomedical analysis.

  13. RP-HPLC method with electrochemical detection for the determination of metoclopramide in serum and its use in pharmacokinetic studies.

    PubMed

    Lamparczyk, H; Chmielewska, A; Konieczna, L; Plenis, A; Zarzycki, P K

    2001-12-01

    A rapid and sensitive reversed-phase high performance liquid chromatographic method has been developed for the determination of metoclopramide in serum. The assay was performed after single extraction with ethyl ether using methyl parahydroxybenzoate as internal standard. Chromatographic separations were performed on C(18) stationary phase with a mobile phase composed of methanol-phosphate buffer pH 3 (30:70 v/v). Analytes were detected electrochemically. The quantification limit for metoclopramide in serum was 2 ng mL(-1). Linearity of the method was confirmed in the range of 5-120 ng mL(-1) (correlation coefficient 0.9998). Within-day relative standard deviations (RSDs) ranged from 0.3 to 5.5% and between-day RSDs from 0.8 to 6.0%. The analytical method was successfully applied for the determination of pharmacokinetic parameters after ingestion of 10 mg dose of metoclopramide. Studies were performed on 18 healthy volunteers of both sexes. Copyright 2001 John Wiley & Sons, Ltd.

  14. Evaluation of analytical performance of a new high-sensitivity immunoassay for cardiac troponin I.

    PubMed

    Masotti, Silvia; Prontera, Concetta; Musetti, Veronica; Storti, Simona; Ndreu, Rudina; Zucchelli, Gian Carlo; Passino, Claudio; Clerico, Aldo

    2018-02-23

    The study aim was to evaluate and compare the analytical performance of the new chemiluminescent immunoassay for cardiac troponin I (cTnI), called Access hs-TnI using DxI platform, with those of Access AccuTnI+3 method, and high-sensitivity (hs) cTnI method for ARCHITECT platform. The limits of blank (LoB), detection (LoD) and quantitation (LoQ) at 10% and 20% CV were evaluated according to international standardized protocols. For the evaluation of analytical performance and comparison of cTnI results, both heparinized plasma samples, collected from healthy subjects and patients with cardiac diseases, and quality control samples distributed in external quality assessment programs were used. LoB, LoD and LoQ at 20% and 10% CV values of the Access hs-cTnI method were 0.6, 1.3, 2.1 and 5.3 ng/L, respectively. Access hs-cTnI method showed analytical performance significantly better than that of Access AccuTnI+3 method and similar results to those of hs ARCHITECT cTnI method. Moreover, the cTnI concentrations measured with Access hs-cTnI method showed close linear regressions with both Access AccuTnI+3 and ARCHITECT hs-cTnI methods, although there were systematic differences between these methods. There was no difference between cTnI values measured by Access hs-cTnI in heparinized plasma and serum samples, whereas there was a significant difference between cTnI values, respectively measured in EDTA and heparin plasma samples. Access hs-cTnI has analytical sensitivity parameters significantly improved compared to Access AccuTnI+3 method and is similar to those of the high-sensitivity method using ARCHITECT platform.

  15. Hemolysis indexes for biochemical tests and immunoassays on Roche analyzers: determination of allowable interference limits according to different calculation methods.

    PubMed

    Monneret, Denis; Mestari, Fouzi; Atlan, Gregory; Corlouer, Camille; Ramani, Zo; Jaffre, Jeremy; Dever, Sylvie; Fressart, Veronique; Alkouri, Rana; Lamari, Foudil; Devilliers, Catherine; Imbert-Bismut, Françoise; Bonnefont-Rousselot, Dominique

    2015-04-01

    To determine the hemolysis interference on biochemical tests and immunoassays performed on Roche Diagnostics analyzers, according to different maximum allowable limits. Heparinized plasma and serum pools, free of interferences, were overloaded by increasing amounts of a hemoglobin-titrated hemolysate. This interference was evaluated for 45 analytes using Modular(®) and Cobas(®) analyzers. For each parameter, the hemolysis index (HI) corresponding to the traditional ± 10% change of concentrations from baseline (± 10%Δ) was determined, as well as those corresponding to the analytical change limit (ACL), and to the reference change value (RCV). Then, the relative frequencies distribution (% RFD) of hemolyzed tests performed in a hospital laboratory over a 25-day period were established for each HI as allowable limit. Considering the ± 10%Δ, the analyte concentrations enhanced by hemolysis were: Lactate dehydrogenase (LDH), aspartate aminotransferase (AST), folate, potassium, creatine kinase, phosphorus, iron, alanine aminotransferase, lipase, magnesium and triglycerides, decreasingly. The analyte concentrations decreased by hemolysis were: Haptoglobin, high-sensitive troponin T and alkaline phosphatase. Over the 25-day period, the % RFD of tests impacted more than 10%Δ by hemolysis were < 7% for LDH; < 5% for AST, folates and iron; and < 1% for the other analytes. Considering the ACL, HI were lower, giving % RFD substantially increased for many analytes, whereas only four analytes remain sensitive to hemolysis when considering RCV. This study proposes new HI based on different allowable limits, and can therefore serve as a starting point for future harmonization of hemolysis interference evaluation needed in routine laboratory practice.

  16. An Analytical Solution for Transient Thermal Response of an Insulated Structure

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.

    2012-01-01

    An analytical solution was derived for the transient response of an insulated aerospace vehicle structure subjected to a simplified heat pulse. This simplified problem approximates the thermal response of a thermal protection system of an atmospheric entry vehicle. The exact analytical solution is solely a function of two non-dimensional parameters. A simpler function of these two parameters was developed to approximate the maximum structural temperature over a wide range of parameter values. Techniques were developed to choose constant, effective properties to represent the relevant temperature and pressure-dependent properties for the insulator and structure. A technique was also developed to map a time-varying surface temperature history to an equivalent square heat pulse. Using these techniques, the maximum structural temperature rise was calculated using the analytical solutions and shown to typically agree with finite element simulations within 10 to 20 percent over the relevant range of parameters studied.

  17. Analytical challenges and regulatory requirements for nasal drug products in europe and the u.s.

    PubMed

    Trows, Sabrina; Wuchner, Klaus; Spycher, Rene; Steckel, Hartwig

    2014-04-11

    Nasal drug delivery can be assessed by a variety of means and regulatory agencies, e.g., the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) have published a set of guidelines and regulations proposing in vitro test methods for the characterization of nasal drug products. This article gives a summary of the FDA and EMA requirements regarding the determination of droplet size distribution (DSD), plume geometry, spray pattern and shot weights of solution nasal sprays and discusses the analytical challenges that can occur when performing these measurements. In order to support findings from the literature, studies were performed using a standard nasal spray pump and aqueous model formulations. The aim was to identify possible method-, device- and formulation-dependent influencing factors. The literature review, as well as the results from the studies show that DSD, plume geometry and spray pattern are influenced by, e.g., the viscosity of the solution, the design of the device and the actuation parameters, particularly the stroke length, actuation velocity and actuation force. The dominant factor influencing shot weights, however, is the adjustment of the actuation parameters, especially stroke length and actuation velocity. Consequently, for routine measurements assuring, e.g., the quality of a solution nasal spray or, for in vitro bioequivalence studies, the critical parameters, have to be identified and considered in method development in order to obtain reproducible and reliable results.

  18. Analytical solution of concentric two-pole Halbach cylinders as a preliminary design tool for magnetic refrigeration systems

    NASA Astrophysics Data System (ADS)

    Fortkamp, F. P.; Lozano, J. A.; Barbosa, J. R.

    2017-12-01

    This work presents a parametric analysis of the performance of nested permanent magnet Halbach cylinders intended for applications in magnetic refrigeration and heat pumping. An analytical model for the magnetic field generated by the cylinders is used to systematically investigate the influence of their geometric parameters. The proposed configuration generates two poles in the air gap between the cylinders, where active magnetic regenerators are positioned for conversion of magnetic work into cooling capacity or heat power. A sample geometry based on previous designs of magnetic refrigerators is investigated, and the results show that the magnetic field in the air gap oscillates between 0 to approximately 1 T, forming a rectified cosine profile along the circumference of the gap. Calculations of the energy density of the magnets indicate the need to operate at a low energy (particular the inner cylinder) in order to generate a magnetic profile suitable for a magnetic cooler. In practice, these low-energy regions of the magnet can be potentially replaced by soft ferromagnetic material. A parametric analysis of the air gap height has been performed, showing that there are optimal values which maximize the magnet efficiency parameter Λcool . Some combinations of cylinder radii resulted in magnetic field changes that were too small for practical purposes. No demagnetization of the cylinders has been found for the range of parameters considered.

  19. Generalized model of electromigration with 1:1 (analyte:selector) complexation stoichiometry: part I. Theory.

    PubMed

    Dubský, Pavel; Müllerová, Ludmila; Dvořák, Martin; Gaš, Bohuslav

    2015-03-06

    The model of electromigration of a multivalent weak acidic/basic/amphoteric analyte that undergoes complexation with a mixture of selectors is introduced. The model provides an extension of the series of models starting with the single-selector model without dissociation by Wren and Rowe in 1992, continuing with the monovalent weak analyte/single-selector model by Rawjee, Williams and Vigh in 1993 and that by Lelièvre in 1994, and ending with the multi-selector overall model without dissociation developed by our group in 2008. The new multivalent analyte multi-selector model shows that the effective mobility of the analyte obeys the original Wren and Row's formula. The overall complexation constant, mobility of the free analyte and mobility of complex can be measured and used in a standard way. The mathematical expressions for the overall parameters are provided. We further demonstrate mathematically that the pH dependent parameters for weak analytes can be simply used as an input into the multi-selector overall model and, in reverse, the multi-selector overall parameters can serve as an input into the pH-dependent models for the weak analytes. These findings can greatly simplify the rationale method development in analytical electrophoresis, specifically enantioseparations. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Optimizing the learning rate for adaptive estimation of neural encoding models

    PubMed Central

    2018-01-01

    Closed-loop neurotechnologies often need to adaptively learn an encoding model that relates the neural activity to the brain state, and is used for brain state decoding. The speed and accuracy of adaptive learning algorithms are critically affected by the learning rate, which dictates how fast model parameters are updated based on new observations. Despite the importance of the learning rate, currently an analytical approach for its selection is largely lacking and existing signal processing methods vastly tune it empirically or heuristically. Here, we develop a novel analytical calibration algorithm for optimal selection of the learning rate in adaptive Bayesian filters. We formulate the problem through a fundamental trade-off that learning rate introduces between the steady-state error and the convergence time of the estimated model parameters. We derive explicit functions that predict the effect of learning rate on error and convergence time. Using these functions, our calibration algorithm can keep the steady-state parameter error covariance smaller than a desired upper-bound while minimizing the convergence time, or keep the convergence time faster than a desired value while minimizing the error. We derive the algorithm both for discrete-valued spikes modeled as point processes nonlinearly dependent on the brain state, and for continuous-valued neural recordings modeled as Gaussian processes linearly dependent on the brain state. Using extensive closed-loop simulations, we show that the analytical solution of the calibration algorithm accurately predicts the effect of learning rate on parameter error and convergence time. Moreover, the calibration algorithm allows for fast and accurate learning of the encoding model and for fast convergence of decoding to accurate performance. Finally, larger learning rates result in inaccurate encoding models and decoders, and smaller learning rates delay their convergence. The calibration algorithm provides a novel analytical approach to predictably achieve a desired level of error and convergence time in adaptive learning, with application to closed-loop neurotechnologies and other signal processing domains. PMID:29813069

  1. Optimizing the learning rate for adaptive estimation of neural encoding models.

    PubMed

    Hsieh, Han-Lin; Shanechi, Maryam M

    2018-05-01

    Closed-loop neurotechnologies often need to adaptively learn an encoding model that relates the neural activity to the brain state, and is used for brain state decoding. The speed and accuracy of adaptive learning algorithms are critically affected by the learning rate, which dictates how fast model parameters are updated based on new observations. Despite the importance of the learning rate, currently an analytical approach for its selection is largely lacking and existing signal processing methods vastly tune it empirically or heuristically. Here, we develop a novel analytical calibration algorithm for optimal selection of the learning rate in adaptive Bayesian filters. We formulate the problem through a fundamental trade-off that learning rate introduces between the steady-state error and the convergence time of the estimated model parameters. We derive explicit functions that predict the effect of learning rate on error and convergence time. Using these functions, our calibration algorithm can keep the steady-state parameter error covariance smaller than a desired upper-bound while minimizing the convergence time, or keep the convergence time faster than a desired value while minimizing the error. We derive the algorithm both for discrete-valued spikes modeled as point processes nonlinearly dependent on the brain state, and for continuous-valued neural recordings modeled as Gaussian processes linearly dependent on the brain state. Using extensive closed-loop simulations, we show that the analytical solution of the calibration algorithm accurately predicts the effect of learning rate on parameter error and convergence time. Moreover, the calibration algorithm allows for fast and accurate learning of the encoding model and for fast convergence of decoding to accurate performance. Finally, larger learning rates result in inaccurate encoding models and decoders, and smaller learning rates delay their convergence. The calibration algorithm provides a novel analytical approach to predictably achieve a desired level of error and convergence time in adaptive learning, with application to closed-loop neurotechnologies and other signal processing domains.

  2. An analytical-numerical approach for parameter determination of a five-parameter single-diode model of photovoltaic cells and modules

    NASA Astrophysics Data System (ADS)

    Hejri, Mohammad; Mokhtari, Hossein; Azizian, Mohammad Reza; Söder, Lennart

    2016-04-01

    Parameter extraction of the five-parameter single-diode model of solar cells and modules from experimental data is a challenging problem. These parameters are evaluated from a set of nonlinear equations that cannot be solved analytically. On the other hand, a numerical solution of such equations needs a suitable initial guess to converge to a solution. This paper presents a new set of approximate analytical solutions for the parameters of a five-parameter single-diode model of photovoltaic (PV) cells and modules. The proposed solutions provide a good initial point which guarantees numerical analysis convergence. The proposed technique needs only a few data from the PV current-voltage characteristics, i.e. open circuit voltage Voc, short circuit current Isc and maximum power point current and voltage Im; Vm making it a fast and low cost parameter determination technique. The accuracy of the presented theoretical I-V curves is verified by experimental data.

  3. Performance verification and system parameter identification of spacecraft tape recorder control servo

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, A. K.

    1979-01-01

    Design adequacy of the lead-lag compensator of the frequency loop, accuracy checking of the analytical expression for the electrical motor transfer function, and performance evaluation of the speed control servo of the digital tape recorder used on-board the 1976 Viking Mars Orbiters and Voyager 1977 Jupiter-Saturn flyby spacecraft are analyzed. The transfer functions of the most important parts of a simplified frequency loop used for test simulation are described and ten simulation cases are reported. The first four of these cases illustrate the method of selecting the most suitable transfer function for the hysteresis synchronous motor, while the rest verify and determine the servo performance parameters and alternative servo compensation schemes. It is concluded that the linear methods provide a starting point for the final verification/refinement of servo design by nonlinear time response simulation and that the variation of the parameters of the static/dynamic Coulomb friction is as expected in a long-life space mission environment.

  4. Development of coring procedures applied to Si, CdTe, and CIGS solar panels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moutinho, H. R.; Johnston, S.; To, B.

    Most of the research on the performance and degradation of photovoltaic modules is based on macroscale measurements of device parameters such as efficiency, fill factor, open-circuit voltage, and short-circuit current. Our goal is to develop the capabilities to allow us to study the degradation of these parameters in the micro- and nanometer scale and to relate our results to performance parameters. To achieve this objective, the first step is to be able to access small samples from specific areas of the solar panels without changing the properties of the material. In this paper, we describe two coring procedures that wemore » developed and applied to Si, CIGS, and CdTe solar panels. In the first procedure, we cored full samples, whereas in the second we performed a partial coring that keeps the tempered glass intact. The cored samples were analyzed by different analytical techniques before and after coring, at the same locations, and no damage during the coring procedure was observed.« less

  5. A baroclinic quasigeostrophic open ocean model

    NASA Technical Reports Server (NTRS)

    Miller, R. N.; Robinson, A. R.; Haidvogel, D. B.

    1983-01-01

    A baroclinic quasigeostrophic open ocean model is presented, calibrated by a series of test problems, and demonstrated to be feasible and efficient for application to realistic mid-oceanic mesoscale eddy flow regimes. Two methods of treating the depth dependence of the flow, a finite difference method and a collocation method, are tested and intercompared. Sample Rossby wave calculations with and without advection are performed with constant stratification and two levels of nonlinearity, one weaker than and one typical of real ocean flows. Using exact analytical solutions for comparison, the accuracy and efficiency of the model is tabulated as a function of the computational parameters and stability limits set; typically, errors were controlled between 1 percent and 10 percent RMS after two wave periods. Further Rossby wave tests with realistic stratification and wave parameters chosen to mimic real ocean conditions were performed to determine computational parameters for use with real and simulated data. Finally, a prototype calculation with quasiturbulent simulated data was performed successfully, which demonstrates the practicality of the model for scientific use.

  6. Analytical design of modified Smith predictor for unstable second-order processes with time delay

    NASA Astrophysics Data System (ADS)

    Ajmeri, Moina; Ali, Ahmad

    2017-06-01

    In this paper, a modified Smith predictor using three controllers, namely, stabilising (Gc), set-point tracking (Gc1), and load disturbance rejection (Gc2) controllers is proposed for second-order unstable processes with time delay. Controllers of the proposed structure are tuned using direct synthesis approach as this method enables the user to achieve a trade-off between the performance and robustness by adjusting a single design parameter. Furthermore, suitable values of the tuning parameters are recommended after studying their effect on the closed-loop performance and robustness. This is the main advantage of the proposed work over other recently published manuscripts, where authors provide only suitable ranges for the tuning parameters in spite of giving their suitable values. Simulation studies show that the proposed method results in satisfactory performance and improved robustness as compared to the recently reported control schemes. It is observed that the proposed scheme is able to work in the noisy environment also.

  7. Development of coring procedures applied to Si, CdTe, and CIGS solar panels

    DOE PAGES

    Moutinho, H. R.; Johnston, S.; To, B.; ...

    2018-01-04

    Most of the research on the performance and degradation of photovoltaic modules is based on macroscale measurements of device parameters such as efficiency, fill factor, open-circuit voltage, and short-circuit current. Our goal is to develop the capabilities to allow us to study the degradation of these parameters in the micro- and nanometer scale and to relate our results to performance parameters. To achieve this objective, the first step is to be able to access small samples from specific areas of the solar panels without changing the properties of the material. In this paper, we describe two coring procedures that wemore » developed and applied to Si, CIGS, and CdTe solar panels. In the first procedure, we cored full samples, whereas in the second we performed a partial coring that keeps the tempered glass intact. The cored samples were analyzed by different analytical techniques before and after coring, at the same locations, and no damage during the coring procedure was observed.« less

  8. The lunar libration: comparisons between various models - a model fitted to LLR observations

    NASA Astrophysics Data System (ADS)

    Chapront, J.; Francou, G.

    2005-09-01

    We consider 4 libration models: 3 numerical models built by JPL (ephemerides for the libration in DE245, DE403 and DE405) and an analytical model improved with numerical complements fitted to recent LLR observations. The analytical solution uses 3 angular variables (ρ1, ρ2, τ) which represent the deviations with respect to Cassini's laws. After having referred the models to a unique reference frame, we study the differences between the models which depend on gravitational and tidal parameters of the Moon, as well as amplitudes and frequencies of the free librations. It appears that the differences vary widely depending of the above quantities. They correspond to a few meters displacement on the lunar surface, reminding that LLR distances are precise to the centimeter level. Taking advantage of the lunar libration theory built by Moons (1984) and improved by Chapront et al. (1999) we are able to establish 4 solutions and to represent their differences by Fourier series after a numerical substitution of the gravitational constants and free libration parameters. The results are confirmed by frequency analyses performed separately. Using DE245 as a basic reference ephemeris, we approximate the differences between the analytical and numerical models with Poisson series. The analytical solution - improved with numerical complements under the form of Poisson series - is valid over several centuries with an internal precision better than 5 centimeters.

  9. An analytic model for acoustic scattering from an impedance cylinder placed normal to an impedance plane

    NASA Astrophysics Data System (ADS)

    Swearingen, Michelle E.

    2004-04-01

    An analytic model, developed in cylindrical coordinates, is described for the scattering of a spherical wave off a semi-infinite reight cylinder placed normal to a ground surface. The motivation for the research is to have a model with which one can simulate scattering from a single tree and which can be used as a fundamental element in a model for estimating the attenuation in a forest comprised of multiple tree trunks. Comparisons are made to the plane wave case, the transparent cylinder case, and the rigid and soft ground cases as a method of theoretically verifying the model for the contemplated range of model parameters. Agreement is regarded as excellent for these benchmark cases. Model sensitivity to five parameters is also explored. An experiment was performed to study the scattering from a cylinder normal to a ground surface. The data from the experiment is analyzed with a transfer function method to yield frequency and impulse responses, and calculations based on the analytic model are compared to the experimental data. Thesis advisor: David C. Swanson Copies of this thesis written in English can be obtained from

  10. Rate decline curves analysis of multiple-fractured horizontal wells in heterogeneous reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, Jiahang; Wang, Xiaodong; Dong, Wenxiu

    2017-10-01

    In heterogeneous reservoir with multiple-fractured horizontal wells (MFHWs), due to the high density network of artificial hydraulic fractures, the fluid flow around fracture tips behaves like non-linear flow. Moreover, the production behaviors of different artificial hydraulic fractures are also different. A rigorous semi-analytical model for MFHWs in heterogeneous reservoirs is presented by combining source function with boundary element method. The model are first validated by both analytical model and simulation model. Then new Blasingame type curves are established. Finally, the effects of critical parameters on the rate decline characteristics of MFHWs are discussed. The results show that heterogeneity has significant influence on the rate decline characteristics of MFHWs; the parameters related to the MFHWs, such as fracture conductivity and length also can affect the rate characteristics of MFHWs. One novelty of this model is to consider the elliptical flow around artificial hydraulic fracture tips. Therefore, our model can be used to predict rate performance more accurately for MFHWs in heterogeneous reservoir. The other novelty is the ability to model the different production behavior at different fracture stages. Compared to numerical and analytic methods, this model can not only reduce extensive computing processing but also show high accuracy.

  11. Reliable before-fabrication forecasting of normal and touch mode MEMS capacitive pressure sensor: modeling and simulation

    NASA Astrophysics Data System (ADS)

    Jindal, Sumit Kumar; Mahajan, Ankush; Raghuwanshi, Sanjeev Kumar

    2017-10-01

    An analytical model and numerical simulation for the performance of MEMS capacitive pressure sensors in both normal and touch modes is required for expected behavior of the sensor prior to their fabrication. Obtaining such information should be based on a complete analysis of performance parameters such as deflection of diaphragm, change of capacitance when the diaphragm deflects, and sensitivity of the sensor. In the literature, limited work has been carried out on the above-stated issue; moreover, due to approximation factors of polynomials, a tolerance error cannot be overseen. Reliable before-fabrication forecasting requires exact mathematical calculation of the parameters involved. A second-order polynomial equation is calculated mathematically for key performance parameters of both modes. This eliminates the approximation factor, and an exact result can be studied, maintaining high accuracy. The elimination of approximation factors and an approach of exact results are based on a new design parameter (δ) that we propose. The design parameter gives an initial hint to the designers on how the sensor will behave once it is fabricated. The complete work is aided by extensive mathematical detailing of all the parameters involved. Next, we verified our claims using MATLAB® simulation. Since MATLAB® effectively provides the simulation theory for the design approach, more complicated finite element method is not used.

  12. Analytical difficulties facing today's regulatory laboratories: issues in method validation.

    PubMed

    MacNeil, James D

    2012-08-01

    The challenges facing analytical laboratories today are not unlike those faced in the past, although both the degree of complexity and the rate of change have increased. Challenges such as development and maintenance of expertise, maintenance and up-dating of equipment, and the introduction of new test methods have always been familiar themes for analytical laboratories, but international guidelines for laboratories involved in the import and export testing of food require management of such changes in a context which includes quality assurance, accreditation, and method validation considerations. Decisions as to when a change in a method requires re-validation of the method or on the design of a validation scheme for a complex multi-residue method require a well-considered strategy, based on a current knowledge of international guidance documents and regulatory requirements, as well the laboratory's quality system requirements. Validation demonstrates that a method is 'fit for purpose', so the requirement for validation should be assessed in terms of the intended use of a method and, in the case of change or modification of a method, whether that change or modification may affect a previously validated performance characteristic. In general, method validation involves method scope, calibration-related parameters, method precision, and recovery. Any method change which may affect method scope or any performance parameters will require re-validation. Some typical situations involving change in methods are discussed and a decision process proposed for selection of appropriate validation measures. © 2012 John Wiley & Sons, Ltd.

  13. Analytical performance, agreement and user-friendliness of six point-of-care testing urine analysers for urinary tract infection in general practice

    PubMed Central

    Schot, Marjolein J C; van Delft, Sanne; Kooijman-Buiting, Antoinette M J; de Wit, Niek J; Hopstaken, Rogier M

    2015-01-01

    Objective Various point-of-care testing (POCT) urine analysers are commercially available for routine urine analysis in general practice. The present study compares analytical performance, agreement and user-friendliness of six different POCT urine analysers for diagnosing urinary tract infection in general practice. Setting All testing procedures were performed at a diagnostic centre for primary care in the Netherlands. Urine samples were collected at four general practices. Primary and secondary outcome measures Analytical performance and agreement of the POCT analysers regarding nitrite, leucocytes and erythrocytes, with the laboratory reference standard, was the primary outcome measure, and analysed by calculating sensitivity, specificity, positive and negative predictive value, and Cohen's κ coefficient for agreement. Secondary outcome measures were the user-friendliness of the POCT analysers, in addition to other characteristics of the analysers. Results The following six POCT analysers were evaluated: Uryxxon Relax (Macherey Nagel), Urisys 1100 (Roche), Clinitek Status (Siemens), Aution 11 (Menarini), Aution Micro (Menarini) and Urilyzer (Analyticon). Analytical performance was good for all analysers. Compared with laboratory reference standards, overall agreement was good, but differed per parameter and per analyser. Concerning the nitrite test, the most important test for clinical practice, all but one showed perfect agreement with the laboratory standard. For leucocytes and erythrocytes specificity was high, but sensitivity was considerably lower. Agreement for leucocytes varied between good to very good, and for the erythrocyte test between fair and good. First-time users indicated that the analysers were easy to use. They expected higher productivity and accuracy when using these analysers in daily practice. Conclusions The overall performance and user-friendliness of all six commercially available POCT urine analysers was sufficient to justify routine use in suspected urinary tract infections in general practice. PMID:25986635

  14. Piezoresistive Cantilever Performance—Part II: Optimization

    PubMed Central

    Park, Sung-Jin; Doll, Joseph C.; Rastegar, Ali J.; Pruitt, Beth L.

    2010-01-01

    Piezoresistive silicon cantilevers fabricated by ion implantation are frequently used for force, displacement, and chemical sensors due to their low cost and electronic readout. However, the design of piezoresistive cantilevers is not a straightforward problem due to coupling between the design parameters, constraints, process conditions, and performance. We systematically analyzed the effect of design and process parameters on force resolution and then developed an optimization approach to improve force resolution while satisfying various design constraints using simulation results. The combined simulation and optimization approach is extensible to other doping methods beyond ion implantation in principle. The optimization results were validated by fabricating cantilevers with the optimized conditions and characterizing their performance. The measurement results demonstrate that the analytical model accurately predicts force and displacement resolution, and sensitivity and noise tradeoff in optimal cantilever performance. We also performed a comparison between our optimization technique and existing models and demonstrated eight times improvement in force resolution over simplified models. PMID:20333323

  15. CEval: All-in-one software for data processing and statistical evaluations in affinity capillary electrophoresis.

    PubMed

    Dubský, Pavel; Ördögová, Magda; Malý, Michal; Riesová, Martina

    2016-05-06

    We introduce CEval software (downloadable for free at echmet.natur.cuni.cz) that was developed for quicker and easier electrophoregram evaluation and further data processing in (affinity) capillary electrophoresis. This software allows for automatic peak detection and evaluation of common peak parameters, such as its migration time, area, width etc. Additionally, the software includes a nonlinear regression engine that performs peak fitting with the Haarhoff-van der Linde (HVL) function, including automated initial guess of the HVL function parameters. HVL is a fundamental peak-shape function in electrophoresis, based on which the correct effective mobility of the analyte represented by the peak is evaluated. Effective mobilities of an analyte at various concentrations of a selector can be further stored and plotted in an affinity CE mode. Consequently, the mobility of the free analyte, μA, mobility of the analyte-selector complex, μAS, and the apparent complexation constant, K('), are first guessed automatically from the linearized data plots and subsequently estimated by the means of nonlinear regression. An option that allows two complexation dependencies to be fitted at once is especially convenient for enantioseparations. Statistical processing of these data is also included, which allowed us to: i) express the 95% confidence intervals for the μA, μAS and K(') least-squares estimates, ii) do hypothesis testing on the estimated parameters for the first time. We demonstrate the benefits of the CEval software by inspecting complexation of tryptophan methyl ester with two cyclodextrins, neutral heptakis(2,6-di-O-methyl)-β-CD and charged heptakis(6-O-sulfo)-β-CD. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Discrimination of serum Raman spectroscopy between normal and colorectal cancer

    NASA Astrophysics Data System (ADS)

    Li, Xiaozhou; Yang, Tianyue; Yu, Ting; Li, Siqi

    2011-07-01

    Raman spectroscopy of tissues has been widely studied for the diagnosis of various cancers, but biofluids were seldom used as the analyte because of the low concentration. Herein, serum of 30 normal people, 46 colon cancer, and 44 rectum cancer patients were measured Raman spectra and analyzed. The information of Raman peaks (intensity and width) and that of the fluorescence background (baseline function coefficients) were selected as parameters for statistical analysis. Principal component regression (PCR) and partial least square regression (PLSR) were used on the selected parameters separately to see the performance of the parameters. PCR performed better than PLSR in our spectral data. Then linear discriminant analysis (LDA) was used on the principal components (PCs) of the two regression method on the selected parameters, and a diagnostic accuracy of 88% and 83% were obtained. The conclusion is that the selected features can maintain the information of original spectra well and Raman spectroscopy of serum has the potential for the diagnosis of colorectal cancer.

  17. Uncertainty in temperature-based determination of time of death

    NASA Astrophysics Data System (ADS)

    Weiser, Martin; Erdmann, Bodo; Schenkl, Sebastian; Muggenthaler, Holger; Hubig, Michael; Mall, Gita; Zachow, Stefan

    2018-03-01

    Temperature-based estimation of time of death (ToD) can be performed either with the help of simple phenomenological models of corpse cooling or with detailed mechanistic (thermodynamic) heat transfer models. The latter are much more complex, but allow a higher accuracy of ToD estimation as in principle all relevant cooling mechanisms can be taken into account. The potentially higher accuracy depends on the accuracy of tissue and environmental parameters as well as on the geometric resolution. We investigate the impact of parameter variations and geometry representation on the estimated ToD. For this, numerical simulation of analytic heat transport models is performed on a highly detailed 3D corpse model, that has been segmented and geometrically reconstructed from a computed tomography (CT) data set, differentiating various organs and tissue types. From that and prior information available on thermal parameters and their variability, we identify the most crucial parameters to measure or estimate, and obtain an a priori uncertainty quantification for the ToD.

  18. 46 CFR Appendix D to Subpart C of... - Sampling and Analytical Methods for Benzene Monitoring-Measurement Procedures

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... samples are analyzed directly by high performance liquid chromatography (HPLC). Detection limits: 0.01% by... proper selection of HPLC parameters. 2.4. Samples must be free of any particulates that may clog the... clarification kit. 3. Apparatus 3.1. Liquid chromatograph equipped with a UV detector. 3.2. HPLC Column that...

  19. 46 CFR Appendix D to Subpart C of... - Sampling and Analytical Methods for Benzene Monitoring-Measurement Procedures

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... samples are analyzed directly by high performance liquid chromatography (HPLC). Detection limits: 0.01% by... proper selection of HPLC parameters. 2.4. Samples must be free of any particulates that may clog the... clarification kit. 3. Apparatus 3.1. Liquid chromatograph equipped with a UV detector. 3.2. HPLC Column that...

  20. 46 CFR Appendix D to Subpart C of... - Sampling and Analytical Methods for Benzene Monitoring-Measurement Procedures

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... samples are analyzed directly by high performance liquid chromatography (HPLC). Detection limits: 0.01% by... proper selection of HPLC parameters. 2.4. Samples must be free of any particulates that may clog the... clarification kit. 3. Apparatus 3.1. Liquid chromatograph equipped with a UV detector. 3.2. HPLC Column that...

  1. Evaluation of the prediction precision capability of partial least squares regression approach for analysis of high alloy steel by laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarkar, Arnab; Karki, Vijay; Aggarwal, Suresh K.; Maurya, Gulab S.; Kumar, Rohit; Rai, Awadhesh K.; Mao, Xianglei; Russo, Richard E.

    2015-06-01

    Laser induced breakdown spectroscopy (LIBS) was applied for elemental characterization of high alloy steel using partial least squares regression (PLSR) with an objective to evaluate the analytical performance of this multivariate approach. The optimization of the number of principle components for minimizing error in PLSR algorithm was investigated. The effect of different pre-treatment procedures on the raw spectral data before PLSR analysis was evaluated based on several statistical (standard error of prediction, percentage relative error of prediction etc.) parameters. The pre-treatment with "NORM" parameter gave the optimum statistical results. The analytical performance of PLSR model improved by increasing the number of laser pulses accumulated per spectrum as well as by truncating the spectrum to appropriate wavelength region. It was found that the statistical benefit of truncating the spectrum can also be accomplished by increasing the number of laser pulses per accumulation without spectral truncation. The constituents (Co and Mo) present in hundreds of ppm were determined with relative precision of 4-9% (2σ), whereas the major constituents Cr and Ni (present at a few percent levels) were determined with a relative precision of ~ 2%(2σ).

  2. Automatic segmentation of the left ventricle in a cardiac MR short axis image using blind morphological operation

    NASA Astrophysics Data System (ADS)

    Irshad, Mehreen; Muhammad, Nazeer; Sharif, Muhammad; Yasmeen, Mussarat

    2018-04-01

    Conventionally, cardiac MR image analysis is done manually. Automatic examination for analyzing images can replace the monotonous tasks of massive amounts of data to analyze the global and regional functions of the cardiac left ventricle (LV). This task is performed using MR images to calculate the analytic cardiac parameter like end-systolic volume, end-diastolic volume, ejection fraction, and myocardial mass, respectively. These analytic parameters depend upon genuine delineation of epicardial, endocardial, papillary muscle, and trabeculations contours. In this paper, we propose an automatic segmentation method using the sum of absolute differences technique to localize the left ventricle. Blind morphological operations are proposed to segment and detect the LV contours of the epicardium and endocardium, automatically. We test the benchmark Sunny Brook dataset for evaluation of the proposed work. Contours of epicardium and endocardium are compared quantitatively to determine contour's accuracy and observe high matching values. Similarity or overlapping of an automatic examination to the given ground truth analysis by an expert are observed with high accuracy as with an index value of 91.30% . The proposed method for automatic segmentation gives better performance relative to existing techniques in terms of accuracy.

  3. Development and validation of rt-qpcr for vesicular stomatitis virus detection (Alagoas vesiculovirus).

    PubMed

    de Oliveira, Anapolino Macedo; Fonseca, Antônio Augusto; Camargos, Marcelo Fernandes; Orzil, Lívia Maria; Laguardia-Nascimento, Mateus; Oliveira, Anna Gabriella Guimarães; Rodrigues, Jacqueline Gomes; Sales, Mariana Lázaro; de Oliveira, Tatiana Flávia Pinheiro; de Melo, Cristiano Barros

    2018-07-01

    Vesicular stomatitis is an infectious disease that occurs mainly in countries of the Western Hemisphere and affects cattle, swine and horses. The clinical symptoms in cattle and swine are similar to foot-and-mouth disease and include vesicular ulceration of the tongue and mouth. The disease requires a rapid and accurate differential diagnosis, aiming for immediate implementation of control measures. The objective of the present study was to develop and perform validation tests of multiplex RT-qPCR(s) for the detection of RNA from Alagoas vesiculovirus, considering the parameters of sensitivity and analytical specificity, analytical performance (repeatability and reproducibility criteria) and the uncertainty of the measurement. The threshold cycle values obtained in triplicate from each sample were evaluated by considering the variations between days, analysts and equipment in an analysis of variance aimed at determining the variances of repeatability and reproducibility. The results showed that RT-qPCRs had excellent sensitivity and specificity in the detection of RNA of the Alagoas vesiculovirus. The validation parameters showed low coefficients of variation and were equivalent to those found in other validation studies, indicating that the tests presented excellent repeatability and reproducibility. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Rapid analysis of charge variants of monoclonal antibodies using non-linear salt gradient in cation-exchange high performance liquid chromatography.

    PubMed

    Joshi, Varsha; Kumar, Vijesh; Rathore, Anurag S

    2015-08-07

    A method is proposed for rapid development of a short, analytical cation exchange high performance liquid chromatography method for analysis of charge heterogeneity in monoclonal antibody products. The parameters investigated and optimized include pH, shape of elution gradient and length of the column. It is found that the most important parameter for development of a shorter method is the choice of the shape of elution gradient. In this paper, we propose a step by step approach to develop a non-linear sigmoidal shape gradient for analysis of charge heterogeneity for two different monoclonal antibody products. The use of this gradient not only decreases the run time of the method to 4min against the conventional method that takes more than 40min but also the resolution is retained. Superiority of the phosphate gradient over sodium chloride gradient for elution of mAbs is also observed. The method has been successfully evaluated for specificity, sensitivity, linearity, limit of detection, and limit of quantification. Application of this method as a potential at-line process analytical technology tool has been suggested. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Analytical study of a quasi-zero stiffness coupling using a torsion magnetic spring with negative stiffness

    NASA Astrophysics Data System (ADS)

    Zheng, Yisheng; Zhang, Xinong; Luo, Yajun; Zhang, Yahong; Xie, Shilin

    2018-02-01

    By now, many translation quasi-zero stiffness (QZS) mechanisms have been proposed to overcome the restriction between the isolation frequency range and the load bearing capacity of linear isolators. The couplings of rotor systems undertake the functions of transmitting static driving torque and isolating disturbing torque simultaneously, which creates the demand of torsion QZS mechanisms. Hence a QZS coupling is presented in this paper, where a torsion magnetic spring (TMS) composed of two coaxial ring magnet arrangements in repulsive configuration is employed to produce negative torsion stiffness to counteract the positive stiffness of a rubber spring. In this paper, the expressions of magnetic torque and stiffness are given firstly and verified by finite element simulations; and the effect of geometric parameters of the TMS on its stiffness characteristic is analyzed in detail, which contributes to the optimal design of the TMS. Then dynamic analysis of the QZS coupling is performed and the analytical expression of the torque transmissibility is achieved based on the Harmonic Balance Method. Finally, simulation of the torque transmissibility is carried out to reveal how geometric parameters of the TMS affect the isolation performance.

  6. Optimization of parameters affecting signal intensity in an LTQ-orbitrap in negative ion mode: A design of experiments approach.

    PubMed

    Lemonakis, Nikolaos; Skaltsounis, Alexios-Leandros; Tsarbopoulos, Anthony; Gikas, Evagelos

    2016-01-15

    A multistage optimization of all the parameters affecting detection/response in an LTQ-orbitrap analyzer was performed, using a design of experiments methodology. The signal intensity, a critical issue for mass analysis, was investigated and the optimization process was completed in three successive steps, taking into account the three main regions of an orbitrap, the ion generation, the ion transmission and the ion detection regions. Oleuropein and hydroxytyrosol were selected as the model compounds. Overall, applying this methodology the sensitivity was increased more than 24%, the resolution more than 6.5%, whereas the elapsed scan time was reduced nearly to its half. A high-resolution LTQ Orbitrap Discovery mass spectrometer was used for the determination of the analytes of interest. Thus, oleuropein and hydroxytyrosol were infused via the instruments syringe pump and they were analyzed employing electrospray ionization (ESI) in the negative high-resolution full-scan ion mode. The parameters of the three main regions of the LTQ-orbitrap were independently optimized in terms of maximum sensitivity. In this context, factorial design, response surface model and Plackett-Burman experiments were performed and analysis of variance was carried out to evaluate the validity of the statistical model and to determine the most significant parameters for signal intensity. The optimum MS conditions for each analyte were summarized and the method optimum condition was achieved by maximizing the desirability function. Our observation showed good agreement between the predicted optimum response and the responses collected at the predicted optimum conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Study on the Strength of GFRP/Stainless Steel Adhesive Joints Reinforced with Glass Mat

    NASA Astrophysics Data System (ADS)

    Iwasa, Masaaki

    The adhesive strengths of glass fiber reinforced plastics/metal adhesive joints reinforced with glass mat under tensile shear loads and tensile loads were investigated analytically and experimentally. First, the stress singularity parameters of the bonding edges were analyzed by FEM for various types of adhesive joints reinforced with glass mat. The shear stress and normal stress distributions near the bonding edge can be expressed by two stress singularity parameters. Second, tensile shear tests were performed on taper lap joint and taper lap joint reinforced with glass mat and tensile tests were performed on T-type adhesive joint and T-type adhesive joint reinforced with glass mat. The relationships between the loads and the crosshead displacements were measured. We concluded that reinforcing adhesive joints has a greater effect on strength under tensile load than under tensile shear load. The adhesive joints strength reinforced with glass mat can be evaluated by using stress singularity parameters.

  8. Performance of the Extravehicular Mobility Unit (EMU) Airlock Coolant Loop Remediation (A/L CLR) Hardware - Final

    NASA Technical Reports Server (NTRS)

    Steele, John W.; Rector, Tony; Gazda, Daniel; Lewis, John

    2011-01-01

    An EMU water processing kit (Airlock Coolant Loop Recovery -- A/L CLR) was developed as a corrective action to Extravehicular Mobility Unit (EMU) coolant flow disruptions experienced on the International Space Station (ISS) in May of 2004 and thereafter. A conservative duty cycle and set of use parameters for A/L CLR use and component life were initially developed and implemented based on prior analysis results and analytical modeling. Several initiatives were undertaken to optimize the duty cycle and use parameters of the hardware. Examination of post-flight samples and EMU Coolant Loop hardware provided invaluable information on the performance of the A/L CLR and has allowed for an optimization of the process. The intent of this paper is to detail the evolution of the A/L CLR hardware, efforts to optimize the duty cycle and use parameters, and the final recommendations for implementation in the post-Shuttle retirement era.

  9. Quantifying the condition of eruption column collapse during explosive volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Koyaguchi, Takehiro; Suzuki, Yujiro

    2016-04-01

    During an explosive eruption, a mixture of pyroclasts and volcanic gas forms a buoyant eruption column or a pyroclastic flow. Generation of a pyroclastic flow caused by eruption column collapse is one of the most hazardous phenomena during explosive volcanic eruptions. The quantification of column collapse condition (CCC) is, therefore, highly desired for volcanic hazard assessment. Previously the CCC was roughly predicted by a simple relationship between magma discharge rate and water content (e.g., Carazzo et al., 2008). When a crater is present above the conduit, because of decompression/compression process inside/above the crater, the CCC based on this relationship can be strongly modified (Woods and Bower, 1995; Koyaguchi et al., 2010); however, the effects of the crater on CCC has not been fully understood in a quantitative fashion. Here, we have derived a semi-analytical expression of CCC, in which the effects of the crater is taken into account. The CCC depends on magma properties, crater shape (radius, depth and opening angle) as well as the flow rate at the base of crater. Our semi-analytical CCC expresses all these dependencies by a single surface in a parameter space of the dimensionless magma discharge rate, the dimensionless magma flow rate (per unit area) and the ratio of the cross-sectional areas at the top and the base of crater. We have performed a systematic parameter study of three-dimensional (3D) numerical simulations of eruption column dynamics to confirm the semi-analytical CCC. The results of the 3D simulations are consistent with the semi-analytical CCC, while they show some additional fluid dynamical features in the transitional state (e.g., partial column collapse). Because the CCC depends on such many parameters, the scenario towards the generation of pyroclastic flow during explosive eruptions is considered to be diverse. Nevertheless, our semi-analytical CCC together with the existing semi-analytical solution for the 1D conduit flow model (Koyaguchi, 2005) allows us to intuitively and quantitatively understand how the eruption column dynamics approaches to the CCC as the crater radius increases during the waxing stage of an eruption, or as the magma chamber pressure decreases during the waning stage.

  10. Modeling and simulation of a 2-DOF bidirectional electrothermal microactuator

    NASA Astrophysics Data System (ADS)

    Topaloglu, N.; Elbuken, C.; Nieva, P. M.; Yavuz, M.; Huissoon, J. P.

    2008-03-01

    In this paper we present the modeling and simulation of a 2 degree-of-freedom (DOF) bidirectional electrothermal actuator. The four arm microactuator was designed to move in both the horizontal and vertical axes. By tailoring the geometrical parameters of the design, the in-plane and out-of-plane motions were decoupled, resulting in enhanced mobility in both directions. The motion of the actuator was modeled analytically using an electro-thermo-mechanical analysis. To validate the analytical model, finite element simulations were performed using ANSYS. The microactuators were fabricated using PolyMUMPS process and experimental results show good agreement with both the analytical model and the simulations. We demonstrated that the 2-DOF bidirectional electrothermal actuator can achieve 3.7 μm in-plane and 13.3 μm out-of-plane deflections with an input voltage of 10 V.

  11. High Sensitivity Refractive Index Sensor Based on Dual-Core Photonic Crystal Fiber with Hexagonal Lattice.

    PubMed

    Wang, Haiyang; Yan, Xin; Li, Shuguang; An, Guowen; Zhang, Xuenan

    2016-10-08

    A refractive index sensor based on dual-core photonic crystal fiber (PCF) with hexagonal lattice is proposed. The effects of geometrical parameters of the PCF on performances of the sensor are investigated by using the finite element method (FEM). Two fiber cores are separated by two air holes filled with the analyte whose refractive index is in the range of 1.33-1.41. Numerical simulation results show that the highest sensitivity can be up to 22,983 nm/RIU(refractive index unit) when the analyte refractive index is 1.41. The lowest sensitivity can reach to 21,679 nm/RIU when the analyte refractive index is 1.33. The sensor we proposed has significant advantages in the field of biomolecule detection as it provides a wide-range of detection with high sensitivity.

  12. Survey of NASA research on crash dynamics

    NASA Technical Reports Server (NTRS)

    Thomson, R. G.; Carden, H. D.; Hayduk, R. J.

    1984-01-01

    Ten years of structural crash dynamics research activities conducted on general aviation aircraft by the National Aeronautics and Space Administration (NASA) are described. Thirty-two full-scale crash tests were performed at Langley Research Center, and pertinent data on airframe and seat behavior were obtained. Concurrent with the experimental program, analytical methods were developed to help predict structural behavior during impact. The effects of flight parameters at impact on cabin deceleration pulses at the seat/occupant interface, experimental and analytical correlation of data on load-limiting subfloor and seat configurations, airplane section test results for computer modeling validation, and data from emergency-locator-transmitter (ELT) investigations to determine probable cause of false alarms and nonactivations are assessed. Computer programs which provide designers with analytical methods for predicting accelerations, velocities, and displacements of collapsing structures are also discussed.

  13. High Sensitivity Refractive Index Sensor Based on Dual-Core Photonic Crystal Fiber with Hexagonal Lattice

    PubMed Central

    Wang, Haiyang; Yan, Xin; Li, Shuguang; An, Guowen; Zhang, Xuenan

    2016-01-01

    A refractive index sensor based on dual-core photonic crystal fiber (PCF) with hexagonal lattice is proposed. The effects of geometrical parameters of the PCF on performances of the sensor are investigated by using the finite element method (FEM). Two fiber cores are separated by two air holes filled with the analyte whose refractive index is in the range of 1.33–1.41. Numerical simulation results show that the highest sensitivity can be up to 22,983 nm/RIU(refractive index unit) when the analyte refractive index is 1.41. The lowest sensitivity can reach to 21,679 nm/RIU when the analyte refractive index is 1.33. The sensor we proposed has significant advantages in the field of biomolecule detection as it provides a wide-range of detection with high sensitivity. PMID:27740607

  14. La-oxides as tracers for PuO{sub 2} to simulate contaminated aerosol behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, L.C.; Newton, G.J.; Cronenberg, A.W.

    1994-04-01

    An analytical and experimental study was performed on the use of lanthanide oxides (La-oxides) as surrogates for plutonium oxides (PuO{sub 2}) during simulated buried waste retrieval. This study determined how well the La-oxides move compared to PuO{sub 2} in aerosolized soils during retrieval scenarios. As part of the analytical study, physical properties of La-oxides and PuO{sub 2}, such as molecular diameter, diffusivity, density, and molecular weight are compared. In addition, an experimental study was performed in which Idaho National Engineering Laboratory (INEL) soil, INEL soil with lanthanides, and INEL soil with plutonium were aerosolized and collected in filters. Comparison ofmore » particle size distribution parameters from this experimental study show similarity between INEL soil, INEL soil with lanthanides, and INEL soil with plutonium.« less

  15. Application of solvent floatation to separation and determination of triazine herbicides in honey by high-performance liquid chromatography.

    PubMed

    Wang, Kun; Jiang, Jia; Lv, Xinping; Zang, Shuang; Tian, Sizhu; Zhang, Hanqi; Yu, Aimin; Zhang, Ziwei; Yu, Yong

    2018-03-01

    Based on the foaming property of the honey, a rapid, simple, and effective method solvent floatation (SF) was developed and firstly applied to the extraction and separation of triazine herbicides in honey. The analytes were determined by high-performance liquid chromatography. Some parameters affecting the extraction efficiencies, such as the type and volume of extraction solvent, type of salt, amount of (NH 4 ) 2 SO 4 , pH value of sample solution, gas flow rate, and floatation time, were investigated and optimized. The limits of detection for analytes are in the range of 0.16-0.56 μg kg -1 . The recoveries and relative standard deviations for determining triazines in five real honey samples are in the range of 78.2-112.9 and 0.2-9.2%, respectively.

  16. Multispectral scanner system parameter study and analysis software system description, volume 2

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A. (Principal Investigator); Mobasseri, B. G.; Wiersma, D. J.; Wiswell, E. R.; Mcgillem, C. D.; Anuta, P. E.

    1978-01-01

    The author has identified the following significant results. The integration of the available methods provided the analyst with the unified scanner analysis package (USAP), the flexibility and versatility of which was superior to many previous integrated techniques. The USAP consisted of three main subsystems; (1) a spatial path, (2) a spectral path, and (3) a set of analytic classification accuracy estimators which evaluated the system performance. The spatial path consisted of satellite and/or aircraft data, data correlation analyzer, scanner IFOV, and random noise model. The output of the spatial path was fed into the analytic classification and accuracy predictor. The spectral path consisted of laboratory and/or field spectral data, EXOSYS data retrieval, optimum spectral function calculation, data transformation, and statistics calculation. The output of the spectral path was fended into the stratified posterior performance estimator.

  17. Analysis of glyoxal and related substances by means of high-performance liquid chromatography with refractive index detection.

    PubMed

    Zhang, Zhiyong; Zhao, Dishun; Xu, Baoyun

    2013-01-01

    A simple and rapid method is described for the analysis of glyoxal and related substances by high-performance liquid chromatography with a refractive index detector. The following chromatographic conditions were adopted: Aminex HPX-87H column, mobile phase consisting of 0.01N H2SO4, flow rate of 0.8 mL/min and temperature of 65°C. The application of the analytical technique developed in this study demonstrated that the aqueous reaction mixture produced by the oxidation of acetaldehyde with HNO3 was composed of glyoxal, acetaldehyde, acetic acid, formic acid, glyoxylic acid, oxalic acid, butanedione and glycolic acid. The method was validated by evaluating analytical parameters such as linearity, limits of detection and quantification, precision, recovery and robustness. The proposed methodology was successfully applied to the production of glyoxal.

  18. Assessment of Existing Data and Reports for System Evaluation

    NASA Technical Reports Server (NTRS)

    Matolak, David W.; Skidmore, Trent A.

    2000-01-01

    This report describes work done as part of the Weather Datalink Research project grant. We describe the work done under Task 1 of this project: the assessment of the suitability of available reports and data for use in evaluation of candidate weather datalink systems, and the development of a performance parameter set for comparative system evaluation. It was found that existing data and reports are inadequate for a complete physical layer characterization, but that these reports provide a good foundation for system comparison. In addition, these reports also contain some information useful for evaluation at higher layers. The performance parameter list compiled can be viewed as near complete-additional investigations, both analytical/simulation and experimental, will likely result in additions and improvements to this list.

  19. Theoretical studies of system performance and adaptive optics design parameters

    NASA Astrophysics Data System (ADS)

    Tyson, Robert K.

    1990-08-01

    The ultimate performance of an adaptive optics (AO) system can be sensitive to specific design parameters of individual components. The type and configuration of a wavefront sensor or the shape of individual deformable mirror actuator influence functions can have a profound effect on the correctability of the AO system. This paper will discuss the results of a theoretical study which employed both closed form analytic solutions and computer models. A parametric analysis of wavefront sensor characteristics, noise, and subaperture geometry are independently evaluated against system response to an aberrated wave characteristic of atmospheric turbulence. Similarly, the shape and extent of the deformable mirror influence function and the placement and number of actuators is evaluated to characterize the effects of fitting error and coupling.

  20. Analyzing chromatographic data using multilevel modeling.

    PubMed

    Wiczling, Paweł

    2018-06-01

    It is relatively easy to collect chromatographic measurements for a large number of analytes, especially with gradient chromatographic methods coupled with mass spectrometry detection. Such data often have a hierarchical or clustered structure. For example, analytes with similar hydrophobicity and dissociation constant tend to be more alike in their retention than a randomly chosen set of analytes. Multilevel models recognize the existence of such data structures by assigning a model for each parameter, with its parameters also estimated from data. In this work, a multilevel model is proposed to describe retention time data obtained from a series of wide linear organic modifier gradients of different gradient duration and different mobile phase pH for a large set of acids and bases. The multilevel model consists of (1) the same deterministic equation describing the relationship between retention time and analyte-specific and instrument-specific parameters, (2) covariance relationships relating various physicochemical properties of the analyte to chromatographically specific parameters through quantitative structure-retention relationship based equations, and (3) stochastic components of intra-analyte and interanalyte variability. The model was implemented in Stan, which provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods. Graphical abstract Relationships between log k and MeOH content for acidic, basic, and neutral compounds with different log P. CI credible interval, PSA polar surface area.

  1. New trends in astrodynamics and applications: optimal trajectories for space guidance.

    PubMed

    Azimov, Dilmurat; Bishop, Robert

    2005-12-01

    This paper represents recent results on the development of optimal analytic solutions to the variation problem of trajectory optimization and their application in the construction of on-board guidance laws. The importance of employing the analytically integrated trajectories in a mission design is discussed. It is assumed that the spacecraft is equipped with a power-limited propulsion and moving in a central Newtonian field. Satisfaction of the necessary and sufficient conditions for optimality of trajectories is analyzed. All possible thrust arcs and corresponding classes of the analytical solutions are classified based on the propulsion system parameters and performance index of the problem. The solutions are presented in a form convenient for applications in escape, capture, and interorbital transfer problems. Optimal guidance and neighboring optimal guidance problems are considered. It is shown that the analytic solutions can be used as reference trajectories in constructing the guidance algorithms for the maneuver problems mentioned above. An illustrative example of a spiral trajectory that terminates on a given elliptical parking orbit is discussed.

  2. Analysis and synthesis of bianisotropic metasurfaces by using analytical approach based on equivalent parameters

    NASA Astrophysics Data System (ADS)

    Danaeifar, Mohammad; Granpayeh, Nosrat

    2018-03-01

    An analytical method is presented to analyze and synthesize bianisotropic metasurfaces. The equivalent parameters of metasurfaces in terms of meta-atom properties and other specifications of metasurfaces are derived. These parameters are related to electric, magnetic, and electromagnetic/magnetoelectric dipole moments of the bianisotropic media, and they can simplify the analysis of complicated and multilayer structures. A metasurface of split ring resonators is studied as an example demonstrating the proposed method. The optical properties of the meta-atom are explored, and the calculated polarizabilities are applied to find the reflection coefficient and the equivalent parameters of the metasurface. Finally, a structure consisting of two metasurfaces of the split ring resonators is provided, and the proposed analytical method is applied to derive the reflection coefficient. The validity of this analytical approach is verified by full-wave simulations which demonstrate good accuracy of the equivalent parameter method. This method can be used in the analysis and synthesis of bianisotropic metasurfaces with different materials and in different frequency ranges by considering electric, magnetic, and electromagnetic/magnetoelectric dipole moments.

  3. Quality specification in haematology: the automated blood cell count.

    PubMed

    Buttarello, Mauro

    2004-08-02

    Quality specifications for automated blood cell counts include topics that go beyond the traditional analytic stage (imprecision, inaccuracy, quality control) and extend to pre- and post-analytic phases. In this review pre-analytic aspects concerning the choice of anticoagulants, maximum conservation times and differences between storage at room temperature or at 4 degrees C are considered. For the analytic phase, goals for imprecision and bias obtained with various approaches (ratio to biologic variation, state of the art, specific clinical situations) are evaluated. For the post-analytic phase, medical review criteria (algorithm, decision limit and delta check) and the structure of the report (general part and comments), which constitutes the formal act through which a laboratory communicates with clinicians, are considered. K2EDTA is considered the anticoagulant of choice for automated cell counts. Regarding storage, specimens should be analyzed as soon as possible. Storage at 4 degrees C may stabilize specimens from 24 to 72 h when complete blood count (CBC) and differential leucocyte count (DLC) is performed. For precision, analytical goals based on the state of the art are acceptable while for bias this is satisfactory only for some parameters. In haematology quality specifications for pre- and analytical phases are important, but the review criteria and the quality of the report play a central role in assuring a definite clinical value.

  4. Analytical study of robustness of a negative feedback oscillator by multiparameter sensitivity

    PubMed Central

    2014-01-01

    Background One of the distinctive features of biological oscillators such as circadian clocks and cell cycles is robustness which is the ability to resume reliable operation in the face of different types of perturbations. In the previous study, we proposed multiparameter sensitivity (MPS) as an intelligible measure for robustness to fluctuations in kinetic parameters. Analytical solutions directly connect the mechanisms and kinetic parameters to dynamic properties such as period, amplitude and their associated MPSs. Although negative feedback loops are known as common structures to biological oscillators, the analytical solutions have not been presented for a general model of negative feedback oscillators. Results We present the analytical expressions for the period, amplitude and their associated MPSs for a general model of negative feedback oscillators. The analytical solutions are validated by comparing them with numerical solutions. The analytical solutions explicitly show how the dynamic properties depend on the kinetic parameters. The ratio of a threshold to the amplitude has a strong impact on the period MPS. As the ratio approaches to one, the MPS increases, indicating that the period becomes more sensitive to changes in kinetic parameters. We present the first mathematical proof that the distributed time-delay mechanism contributes to making the oscillation period robust to parameter fluctuations. The MPS decreases with an increase in the feedback loop length (i.e., the number of molecular species constituting the feedback loop). Conclusions Since a general model of negative feedback oscillators was employed, the results shown in this paper are expected to be true for many of biological oscillators. This study strongly supports that the hypothesis that phosphorylations of clock proteins contribute to the robustness of circadian rhythms. The analytical solutions give synthetic biologists some clues to design gene oscillators with robust and desired period. PMID:25605374

  5. Determination of Polymer Additives-Antioxidants, Ultraviolet Stabilizers, Plasticizers and Photoinitiators in Plastic Food Package by Accelerated Solvent Extraction Coupled with High-Performance Liquid Chromatography.

    PubMed

    Li, Bo; Wang, Zhi-Wei; Lin, Qin-Bao; Hu, Chang-Ying; Su, Qi-Zhi; Wu, Yu-Mei

    2015-07-01

    An analytical method for the quantitative determination of 4 antioxidants, 9 ultraviolet (UV) stabilizers, 12 phthalate plasticizers and 2 photoinitiators in plastic food package using accelerated solvent extraction (ASE) coupled with high-performance liquid chromatography-photodiode array detector (HPLC-PDA) has been developed. Parameters affecting the efficiency in the process such as extraction and chromatographic conditions were studied in order to determine operating conditions. The analytical method of ASE-HPLC showed good linearity with good correlation coefficients (R ≥ 0.9833). The limits of detection and quantification were between 0.03 and 0.30 µg mL(-1) and between 0.10 and 1.00 µg mL(-1) for 27 analytes. Average spiked recoveries for most analytes in samples were >70.4% at 10, 20 and 40 µg g(-1) spiked levels, except UV-9 and Irganox 1010 (58.6 and 64.0% spiked at 10 µg g(-1), respectively), the relative standard deviations were in the range from 0.4 to 15.4%. The methodology has been proposed for the analysis of 27 polymer additives in plastic food package. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials

    NASA Astrophysics Data System (ADS)

    Qureshi, Awais; Li, Bing; Tan, K. T.

    2016-06-01

    In this research, the negative effective mass behavior of elastic/mechanical metamaterials is exhibited by a cantilever-in-mass structure as a proposed design for creating frequency stopping band gaps, based on local resonance of the internal structure. The mass-in-mass unit cell model is transformed into a cantilever-in-mass model using the Bernoulli-Euler beam theory. An analytical model of the cantilever-in-mass structure is derived and the effects of geometrical dimensions and material parameters to create frequency band gaps are examined. A two-dimensional finite element model is created to validate the analytical results, and excellent agreement is achieved. The analytical model establishes an easily tunable metamaterial design to realize wave attenuation based on locally resonant frequency. To demonstrate feasibility for 3D printing, the analytical model is employed to design and fabricate 3D printable mechanical metamaterial. A three-dimensional numerical experiment is performed using COMSOL Multiphysics to validate the wave attenuation performance. Results show that the cantilever-in-mass metamaterial is capable of mitigating stress waves at the desired resonance frequency. Our study successfully presents the use of one constituent material to create a 3D printed cantilever-in-mass metamaterial with negative effective mass density for stress wave mitigation purposes.

  7. Automatically assessing properties of dynamic cameras for camera selection and rapid deployment of video content analysis tasks in large-scale ad-hoc networks

    NASA Astrophysics Data System (ADS)

    den Hollander, Richard J. M.; Bouma, Henri; van Rest, Jeroen H. C.; ten Hove, Johan-Martijn; ter Haar, Frank B.; Burghouts, Gertjan J.

    2017-10-01

    Video analytics is essential for managing large quantities of raw data that are produced by video surveillance systems (VSS) for the prevention, repression and investigation of crime and terrorism. Analytics is highly sensitive to changes in the scene, and for changes in the optical chain so a VSS with analytics needs careful configuration and prompt maintenance to avoid false alarms. However, there is a trend from static VSS consisting of fixed CCTV cameras towards more dynamic VSS deployments over public/private multi-organization networks, consisting of a wider variety of visual sensors, including pan-tilt-zoom (PTZ) cameras, body-worn cameras and cameras on moving platforms. This trend will lead to more dynamic scenes and more frequent changes in the optical chain, creating structural problems for analytics. If these problems are not adequately addressed, analytics will not be able to continue to meet end users' developing needs. In this paper, we present a three-part solution for managing the performance of complex analytics deployments. The first part is a register containing meta data describing relevant properties of the optical chain, such as intrinsic and extrinsic calibration, and parameters of the scene such as lighting conditions or measures for scene complexity (e.g. number of people). A second part frequently assesses these parameters in the deployed VSS, stores changes in the register, and signals relevant changes in the setup to the VSS administrator. A third part uses the information in the register to dynamically configure analytics tasks based on VSS operator input. In order to support the feasibility of this solution, we give an overview of related state-of-the-art technologies for autocalibration (self-calibration), scene recognition and lighting estimation in relation to person detection. The presented solution allows for rapid and robust deployment of Video Content Analysis (VCA) tasks in large scale ad-hoc networks.

  8. Automated dynamic analytical model improvement for damped structures

    NASA Technical Reports Server (NTRS)

    Fuh, J. S.; Berman, A.

    1985-01-01

    A method is described to improve a linear nonproportionally damped analytical model of a structure. The procedure finds the smallest changes in the analytical model such that the improved model matches the measured modal parameters. Features of the method are: (1) ability to properly treat complex valued modal parameters of a damped system; (2) applicability to realistically large structural models; and (3) computationally efficiency without involving eigensolutions and inversion of a large matrix.

  9. Performance of field-emitting resonating carbon nanotubes as radio-frequency demodulators

    NASA Astrophysics Data System (ADS)

    Vincent, P.; Poncharal, P.; Barois, T.; Perisanu, S.; Gouttenoire, V.; Frachon, H.; Lazarus, A.; de Langre, E.; Minoux, E.; Charles, M.; Ziaei, A.; Guillot, D.; Choueib, M.; Ayari, A.; Purcell, S. T.

    2011-04-01

    We report on a systematic study of the use of resonating nanotubes in a field emission (FE) configuration to demodulate radio frequency signals. We particularly concentrate on how the demodulation depends on the variation of the field amplification factor during resonance. Analytical formulas describing the demodulation are derived as functions of the system parameters. Experiments using AM and FM demodulations in a transmission electron microscope are also presented with a determination of all the pertinent experimental parameters. Finally we discuss the use of CNTs undergoing FE as nanoantennae and the different geometries that could be used for optimization and implementation.

  10. Bifurcation analysis of dengue transmission model in Baguio City, Philippines

    NASA Astrophysics Data System (ADS)

    Libatique, Criselda P.; Pajimola, Aprimelle Kris J.; Addawe, Joel M.

    2017-11-01

    In this study, we formulate a deterministic model for the transmission dynamics of dengue fever in Baguio City, Philippines. We analyzed the existence of the equilibria of the dengue model. We computed and obtained conditions for the existence of the equilibrium states. Stability analysis for the system is carried out for disease free equilibrium. We showed that the system becomes stable under certain conditions of the parameters. A particular parameter is taken and with the use of the Theory of Centre Manifold, the proposed model demonstrates a bifurcation phenomenon. We performed numerical simulation to verify the analytical results.

  11. Prevalidation in pharmaceutical analysis. Part I. Fundamentals and critical discussion.

    PubMed

    Grdinić, Vladimir; Vuković, Jadranka

    2004-05-28

    A complete prevalidation, as a basic prevalidation strategy for quality control and standardization of analytical procedure was inaugurated. Fast and simple, the prevalidation methodology based on mathematical/statistical evaluation of a reduced number of experiments (N < or = 24) was elaborated and guidelines as well as algorithms were given in detail. This strategy has been produced for the pharmaceutical applications and dedicated to the preliminary evaluation of analytical methods where linear calibration model, which is very often occurred in practice, could be the most appropriate to fit experimental data. The requirements presented in this paper should therefore help the analyst to design and perform the minimum number of prevalidation experiments needed to obtain all the required information to evaluate and demonstrate the reliability of its analytical procedure. In complete prevalidation process, characterization of analytical groups, checking of two limiting groups, testing of data homogeneity, establishment of analytical functions, recognition of outliers, evaluation of limiting values and extraction of prevalidation parameters were included. Moreover, system of diagnosis for particular prevalidation step was suggested. As an illustrative example for demonstration of feasibility of prevalidation methodology, among great number of analytical procedures, Vis-spectrophotometric procedure for determination of tannins with Folin-Ciocalteu's phenol reagent was selected. Favourable metrological characteristics of this analytical procedure, as prevalidation figures of merit, recognized the metrological procedure as a valuable concept in preliminary evaluation of quality of analytical procedures.

  12. Usefulness of analytical parameters in the management of paediatric patients with suspicion of acute pyelonephritis. Is procalcitonin reliable?

    PubMed

    Bañuelos-Andrío, L; Espino-Hernández, M; Ruperez-Lucas, M; Villar-Del Campo, M C; Romero-Carrasco, C I; Rodríguez-Caravaca, G

    To investigate the usefulness of procalcitonin (PCT) and other analytical parameters (white blood cell count [WBC], C-reactive protein [CRP]) as markers of acute renal damage in children after a first febrile or afebrile urinary tract infection (UTI). A retrospective study was conducted on children with a first episode of UTI admitted between January 2009 to December 2011, and in whom serum PCT, CRP and white blood cell count were measured, as well as assessing the acute renal damage with renal scintigraphy with 99m Tc-DMSA (DMSA) within the first 72h after referral. A descriptive study was performed and ROC curves were plotted, with optimal cut-off points calculated for each parameter. The 101 enrolled patients were divided into two groups according to DMSA scintigraphy results, with 64 patients being classified with acute pyelonephritis (APN), and 37 with UTI. The mean WBC, CRP and PCT values were significantly higher in patients with APN with respect to normal acute DMSA. The area under the ROC curve was 0.862 for PCR, 0.774 for WBC, and 0.731 for PCT. The optimum statistical cut-off value for PCT was 0.285ng/ml (sensitivity 71.4% and specificity 75%). Although the mean levels of fever, WBC, CRP, and PCT were significantly increased in patients with APN than in those who had UTI, the sensitivity and specificity of these analytical parameters are unable to predict the existence of acute renal damage, making the contribution by renal DMSA scintigraphy essential. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  13. Performance Analysis for Channel Estimation With 1-Bit ADC and Unknown Quantization Threshold

    NASA Astrophysics Data System (ADS)

    Stein, Manuel S.; Bar, Shahar; Nossek, Josef A.; Tabrikian, Joseph

    2018-05-01

    In this work, the problem of signal parameter estimation from measurements acquired by a low-complexity analog-to-digital converter (ADC) with $1$-bit output resolution and an unknown quantization threshold is considered. Single-comparator ADCs are energy-efficient and can be operated at ultra-high sampling rates. For analysis of such systems, a fixed and known quantization threshold is usually assumed. In the symmetric case, i.e., zero hard-limiting offset, it is known that in the low signal-to-noise ratio (SNR) regime the signal processing performance degrades moderately by ${2}/{\\pi}$ ($-1.96$ dB) when comparing to an ideal $\\infty$-bit converter. Due to hardware imperfections, low-complexity $1$-bit ADCs will in practice exhibit an unknown threshold different from zero. Therefore, we study the accuracy which can be obtained with receive data processed by a hard-limiter with unknown quantization level by using asymptotically optimal channel estimation algorithms. To characterize the estimation performance of these nonlinear algorithms, we employ analytic error expressions for different setups while modeling the offset as a nuisance parameter. In the low SNR regime, we establish the necessary condition for a vanishing loss due to missing offset knowledge at the receiver. As an application, we consider the estimation of single-input single-output wireless channels with inter-symbol interference and validate our analysis by comparing the analytic and experimental performance of the studied estimation algorithms. Finally, we comment on the extension to multiple-input multiple-output channel models.

  14. Biological diagnosis of von Willebrand disease: analytical characteristics of Innovance vWF:Ac assay kit on STA-R Evolution Expert series analyzer (Stago).

    PubMed

    Florin, Cécile; Garraud, Olivier; Molliex, Serge; Tardy, Brigitte; Campos, Lydia; Scherrer, Carine

    2016-06-01

    The Innovance VWF:Ac test (Siemens) has the particularity to assess the binding capacity of von Willebrand factor (VWF) to recombinant platelet GPIb mutated in the absence of ristocetin. Our study aimed to evaluate and validate according to standard NF EN ISO 15189 the original protocol adaptation on STA-R Evolution series analyser (Diagnostica Stago). We evaluated the performance in terms of imprecision and we validate additional parameters necessary in range B as recommended by the SH GTA 04 (Cofrac). We compared the new assay with the reference assay: ristocetin cofactor activity (VWF:RCo) performed on the BCS-XP analyser by testing retrospectively samples from 82 healthy normal subjects and 61 patients with von Willebrand disease (VWD). This new assay is consistent with objectives set in terms of imprecision with CV around 4%. Excepted limit of quantification higher, additional parameters evaluated in range B have been validated. The Innovance VWF: Ac assay allowed the detection of all deficits of VWF already detected by the VWF:RCo test on the BCS-XP. This adjustment on STA-R analyser therefore has satisfactory analytical performance criteria. Apart from the limit of quantification, this reagent can be used according to the recommendations specified in the original protocol adaptation. Its performance and compatibility with the spot measurement allow the diagnosis and therapeutic monitoring of VWD according to current requirements and guidelines.

  15. Efficient method for the calculation of mean extinction. II. Analyticity of the complex extinction efficiency of homogeneous spheroids and finite cylinders.

    PubMed

    Xing, Z F; Greenberg, J M

    1994-08-20

    The analyticity of the complex extinction efficiency is examined numerically in the size-parameter domain for homogeneous prolate and oblate spheroids and finite cylinders. The T-matrix code, which is the most efficient program available to date, is employed to calculate the individual particle-extinction efficiencies. Because of its computational limitations in the size-parameter range, a slightly modified Hilbert-transform algorithm is required to establish the analyticity numerically. The findings concerning analyticity that we reported for spheres (Astrophys. J. 399, 164-175, 1992) apply equally to these nonspherical particles.

  16. On the Probability of Error and Stochastic Resonance in Discrete Memoryless Channels

    DTIC Science & Technology

    2013-12-01

    Information - Driven Doppler Shift Estimation and Compensation Methods for Underwater Wireless Sensor Networks ”, which is to analyze and develop... underwater wireless sensor networks . We formulated an analytic relationship that relates the average probability of error to the systems parameters, the...thesis, we studied the performance of Discrete Memoryless Channels (DMC), arising in the context of cooperative underwater wireless sensor networks

  17. Performance evaluation of the croissant production line with reparable machines

    NASA Astrophysics Data System (ADS)

    Tsarouhas, Panagiotis H.

    2015-03-01

    In this study, the analytical probability models for an automated serial production system, bufferless that consists of n-machines in series with common transfer mechanism and control system was developed. Both time to failure and time to repair a failure are assumed to follow exponential distribution. Applying those models, the effect of system parameters on system performance in actual croissant production line was studied. The production line consists of six workstations with different numbers of reparable machines in series. Mathematical models of the croissant production line have been developed using Markov process. The strength of this study is in the classification of the whole system in states, representing failures of different machines. Failure and repair data from the actual production environment have been used to estimate reliability and maintainability for each machine, workstation, and the entire line is based on analytical models. The analysis provides a useful insight into the system's behaviour, helps to find design inherent faults and suggests optimal modifications to upgrade the system and improve its performance.

  18. Two Synthetic Methods for Preparation of Chiral Stationary Phases Using Crystalline Degradation Products of Vancomycin: Column Performance for Enantioseparation of Acidic and Basic Drugs.

    PubMed

    Abdollahpour, Assem; Heydari, Rouhollah; Shamsipur, Mojtaba

    2017-07-01

    Two chiral stationary phases (CSPs) based on crystalline degradation products (CDPs) of vancomycin by using different synthetic methods were prepared and compared. Crystalline degradation products of vancomycin were produced by hydrolytic loss of ammonia from vancomycin molecules. Performances of two chiral columns prepared with these degradation products were investigated using several acidic and basic drugs as model analytes. Retention and resolution of these analytes on the prepared columns, as two main parameters, in enantioseparation were studied. The results demonstrated that the stationary phase preparation procedure has a significant effect on the column performance. The resolving powers of prepared columns for enantiomers resolution were changed with the variation in vancomycin-CDP coverage on the silica support. Elemental analysis was used to monitor the surface coverage of silica support by vancomycin-CDP. The results showed that both columns can be successfully applied to chiral separation studies.

  19. Comparison of retention models for polymers 1. Poly(ethylene glycol)s.

    PubMed

    Bashir, Mubasher A; Radke, Wolfgang

    2006-10-27

    The suitability of three different retention models to predict the retention times of poly(ethylene glycol)s (PEGs) in gradient and isocratic chromatography was investigated. The models investigated were the linear (LSSM) and the quadratic solvent strength model (QSSM). In addition, a model describing the retention behaviour of polymers was extended to account for gradient elution (PM). It was found that all models are suited to properly predict gradient retention volumes provided the extraction of the analyte specific parameters is performed from gradient experiments as well. The LSSM and QSSM on principle cannot describe retention behaviour under critical or SEC conditions. Since the PM is designed to cover all three modes of polymer chromatography, it is therefore superior to the other models. However, the determination of the analyte specific parameters, which are needed to calibrate the retention behaviour, strongly depend on the suitable selection of initial experiments. A useful strategy for a purposeful selection of these calibration experiments is proposed.

  20. Automation of data processing and calculation of retention parameters and thermodynamic data for gas chromatography

    NASA Astrophysics Data System (ADS)

    Makarycheva, A. I.; Faerman, V. A.

    2017-02-01

    The analyses of automation patterns is performed and the programming solution for the automation of data processing of the chromatographic data and their further information storage with a help of a software package, Mathcad and MS Excel spreadsheets, is developed. The offered approach concedes the ability of data processing algorithm modification and does not require any programming experts participation. The approach provides making a measurement of the given time and retention volumes, specific retention volumes, a measurement of differential molar free adsorption energy, and a measurement of partial molar solution enthalpies and isosteric heats of adsorption. The developed solution is focused on the appliance in a small research group and is tested on the series of some new gas chromatography sorbents. More than 20 analytes were submitted to calculation of retention parameters and thermodynamic sorption quantities. The received data are provided in the form accessible to comparative analysis, and they are able to find sorbing agents with the most profitable properties to solve some concrete analytic issues.

  1. Emerging approach for analytical characterization and geographical classification of Moroccan and French honeys by means of a voltammetric electronic tongue.

    PubMed

    El Alami El Hassani, Nadia; Tahri, Khalid; Llobet, Eduard; Bouchikhi, Benachir; Errachid, Abdelhamid; Zine, Nadia; El Bari, Nezha

    2018-03-15

    Moroccan and French honeys from different geographical areas were classified and characterized by applying a voltammetric electronic tongue (VE-tongue) coupled to analytical methods. The studied parameters include color intensity, free lactonic and total acidity, proteins, phenols, hydroxymethylfurfural content (HMF), sucrose, reducing and total sugars. The geographical classification of different honeys was developed through three-pattern recognition techniques: principal component analysis (PCA), support vector machines (SVMs) and hierarchical cluster analysis (HCA). Honey characterization was achieved by partial least squares modeling (PLS). All the PLS models developed were able to accurately estimate the correct values of the parameters analyzed using as input the voltammetric experimental data (i.e. r>0.9). This confirms the potential ability of the VE-tongue for performing a rapid characterization of honeys via PLS in which an uncomplicated, cost-effective sample preparation process that does not require the use of additional chemicals is implemented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Performance of finned thermal capacitors. Ph.D. Thesis - Texas Univ., Austin

    NASA Technical Reports Server (NTRS)

    Humphries, W. R.

    1974-01-01

    The performance of typical thermal capacitors, both in earth and orbital environments, was investigated. Techniques which were used to make predictions of thermal behavior in a one-g earth environment are outlined. Orbital performance parameters are qualitatively discussed, and those effects expected to be important under zero-g conditions are outlined. A summary of thermal capacitor applications are documentated, along with significant problem areas and current configurations. An experimental program was conducted to determine typical one-g performance, and the physical significance of these data is discussed in detail. Numerical techniques were employed to allow comparison between analytical and experimental data.

  3. Effect of train carbody's parameters on vertical bending stiffness performance

    NASA Astrophysics Data System (ADS)

    Yang, Guangwu; Wang, Changke; Xiang, Futeng; Xiao, Shoune

    2016-10-01

    Finite element analysis(FEA) and modal test are main methods to give the first-order vertical bending vibration frequency of train carbody at present, but they are inefficiency and waste plenty of time. Based on Timoshenko beam theory, the bending deformation, moment of inertia and shear deformation are considered. Carbody is divided into some parts with the same length, and it's stiffness is calculated with series principle, it's cross section area, moment of inertia and shear shape coefficient is equivalent by segment length, and the fimal corrected first-order vertical bending vibration frequency analytical formula is deduced. There are 6 simple carbodies and 1 real carbody as examples to test the formula, all analysis frequencies are very close to their FEA frequencies, and especially for the real carbody, the error between analysis and experiment frequency is 0.75%. Based on the analytic formula, sensitivity analysis of the real carbody's design parameters is done, and some main parameters are found. The series principle of carbody stiffness is introduced into Timoshenko beam theory to deduce a formula, which can estimate the first-order vertical bending vibration frequency of carbody quickly without traditional FEA method and provide a reference to design engineers.

  4. Band gaps in grid structure with periodic local resonator subsystems

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoqin; Wang, Jun; Wang, Rongqi; Lin, Jieqiong

    2017-09-01

    The grid structure is widely used in architectural and mechanical field for its high strength and saving material. This paper will present a study on an acoustic metamaterial beam (AMB) based on the normal square grid structure with local resonators owning both flexible band gaps and high static stiffness, which have high application potential in vibration control. Firstly, the AMB with variable cross-section frame is analytically modeled by the beam-spring-mass model that is provided by using the extended Hamilton’s principle and Bloch’s theorem. The above model is used for computing the dispersion relation of the designed AMB in terms of the design parameters, and the influences of relevant parameters on band gaps are discussed. Then a two-dimensional finite element model of the AMB is built and analyzed in COMSOL Multiphysics, both the dispersion properties of unit cell and the wave attenuation in a finite AMB have fine agreement with the derived model. The effects of design parameters of the two-dimensional model in band gaps are further examined, and the obtained results can well verify the analytical model. Finally, the wave attenuation performances in three-dimensional AMBs with equal and unequal thickness are presented and discussed.

  5. Development of an analytical solution for the Budyko watershed parameter in terms of catchment physical features

    NASA Astrophysics Data System (ADS)

    Reaver, N.; Kaplan, D. A.; Jawitz, J. W.

    2017-12-01

    The Budyko hypothesis states that a catchment's long-term water and energy balances are dependent on two relatively easy to measure quantities: rainfall depth and potential evaporation. This hypothesis is expressed as a simple function, the Budyko equation, which allows for the prediction of a catchment's actual evapotranspiration and discharge from measured rainfall depth and potential evaporation, data which are widely available. However, the two main analytically derived forms of the Budyko equation contain a single unknown watershed parameter, whose value varies across catchments; variation in this parameter has been used to explain the hydrological behavior of different catchments. The watershed parameter is generally thought of as a lumped quantity that represents the influence of all catchment biophysical features (e.g. soil type and depth, vegetation type, timing of rainfall, etc). Previous work has shown that the parameter is statistically correlated with catchment properties, but an explicit expression has been elusive. While the watershed parameter can be determined empirically by fitting the Budyko equation to measured data in gauged catchments where actual evapotranspiration can be estimated, this limits the utility of the framework for predicting impacts to catchment hydrology due to changing climate and land use. In this study, we developed an analytical solution for the lumped catchment parameter for both forms of the Budyko equation. We combined these solutions with a statistical soil moisture model to obtain analytical solutions for the Budyko equation parameter as a function of measurable catchment physical features, including rooting depth, soil porosity, and soil wilting point. We tested the predictive power of these solutions using the U.S. catchments in the MOPEX database. We also compared the Budyko equation parameter estimates generated from our analytical solutions (i.e. predicted parameters) with those obtained through the calibration of the Budyko equation to discharge data (i.e. empirical parameters), and found good agreement. These results suggest that it is possible to predict the Budyko equation watershed parameter directly from physical features, even for ungauged catchments.

  6. Analytical Challenges and Regulatory Requirements for Nasal Drug Products in Europe and the U.S.

    PubMed Central

    Trows, Sabrina; Wuchner, Klaus; Spycher, Rene; Steckel, Hartwig

    2014-01-01

    Nasal drug delivery can be assessed by a variety of means and regulatory agencies, e.g., the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) have published a set of guidelines and regulations proposing in vitro test methods for the characterization of nasal drug products. This article gives a summary of the FDA and EMA requirements regarding the determination of droplet size distribution (DSD), plume geometry, spray pattern and shot weights of solution nasal sprays and discusses the analytical challenges that can occur when performing these measurements. In order to support findings from the literature, studies were performed using a standard nasal spray pump and aqueous model formulations. The aim was to identify possible method-, device- and formulation-dependent influencing factors. The literature review, as well as the results from the studies show that DSD, plume geometry and spray pattern are influenced by, e.g., the viscosity of the solution, the design of the device and the actuation parameters, particularly the stroke length, actuation velocity and actuation force. The dominant factor influencing shot weights, however, is the adjustment of the actuation parameters, especially stroke length and actuation velocity. Consequently, for routine measurements assuring, e.g., the quality of a solution nasal spray or, for in vitro bioequivalence studies, the critical parameters, have to be identified and considered in method development in order to obtain reproducible and reliable results. PMID:24732068

  7. Exact solution for an optimal impermeable parachute problem

    NASA Astrophysics Data System (ADS)

    Lupu, Mircea; Scheiber, Ernest

    2002-10-01

    In the paper there are solved direct and inverse boundary problems and analytical solutions are obtained for optimization problems in the case of some nonlinear integral operators. It is modeled the plane potential flow of an inviscid, incompressible and nonlimited fluid jet, witch encounters a symmetrical, curvilinear obstacle--the deflector of maximal drag. There are derived integral singular equations, for direct and inverse problems and the movement in the auxiliary canonical half-plane is obtained. Next, the optimization problem is solved in an analytical manner. The design of the optimal airfoil is performed and finally, numerical computations concerning the drag coefficient and other geometrical and aerodynamical parameters are carried out. This model corresponds to the Helmholtz impermeable parachute problem.

  8. Uniform Persistence and Global Stability for a Brain Tumor and Immune System Interaction

    NASA Astrophysics Data System (ADS)

    Khajanchi, Subhas

    This paper describes the synergistic interaction between the growth of malignant gliomas and the immune system interactions using a system of coupled ordinary differential equations (ODEs). The proposed mathematical model comprises the interaction of glioma cells, macrophages, activated Cytotoxic T-Lymphocytes (CTLs), the immunosuppressive factor TGF-β and the immuno-stimulatory factor IFN-γ. The dynamical behavior of the proposed system both analytically and numerically is investigated from the point of view of stability. By constructing Lyapunov functions, the global behavior of the glioma-free and the interior equilibrium point have been analyzed under some assumptions. Finally, we perform numerical simulations in order to illustrate our analytical findings by varying the system parameters.

  9. Theoretical study of a molecular turbine.

    PubMed

    Perez-Carrasco, R; Sancho, J M

    2013-10-01

    We present an analytic and stochastic simulation study of a molecular engine working with a flux of particles as a turbine. We focus on the physical observables of velocity, flux, power, and efficiency. The control parameters are the external conservative force and the particle densities. We revise a simpler previous study by using a more realistic model containing multiple equidistant vanes complemented by stochastic simulations of the particles and the turbine. Here we show that the effect of the thermal fluctuations into the flux and the efficiency of these nanometric devices are relevant to the working scale of the system. The stochastic simulations of the Brownian motion of the particles and turbine support the simplified analytical calculations performed.

  10. Flight Performance Handbook for Orbital Operations: Orbital Mechanics and Astrodynamics Formulae, Theorems, Techniques, and Applications

    NASA Technical Reports Server (NTRS)

    Ambrosio, Alphonso; Blitzer, Leon; Conte, S.D.; Cooper, Donald H.; Dergarabedian, P.; Dethlefsen, D.G.; Lunn, Richard L.; Ireland, Richard O.; Jensen, Arnold A.; Kang, Garfield; hide

    1961-01-01

    This handbook provides parametric data useful both to the space vehicle designer and mission analyst. It provides numerical and analytical relationships between missions and gross vehicle characteristics as a function of performance parameters. The effects of missile constraints and gross guidance limitations plus operational constraints such as launch site location, tracking net location, orbit visibility and mission on trajectory and orbit design parameters are exhibited. The influence of state-of- the-art applications of solar power as compared to future applications of nuclear power on orbit design parameters, such as eclipse time, are among the parameters included in the study. The principal aim, however, is in providing the analyst with useful parametric design information to cover the general area of earth satellite missions in the region of near-earth to cislunar space and beyond and from injection to atmospheric entry and controlled descent. The chapters are organized around the central idea of orbital operations in the 1961-1969 era with emphasis on parametric flight mechanics studies for ascent phase and parking orbits, transfer maneuvers, rendezvous maneuver, operational orbit considerations, and operational orbit control. The results are based almost entirely on the principles of flight and celestial mechanics. Numerous practical examples have been worked out in detail. This is especially important where it has been difficult or impossible to represent all possible variations of the parameters. The handbook contains analytical formulae and sufficient textual material to permit their proper use. The analytic methods consist of both exact and rapid, approximate methods. Scores of tables, working graphs and illustrations amplify the mathematical models which, together with important facts and data, cover the engineering and scientific applications of orbital mechanics. Each of the five major chapters are arranged to provide a rapid review of an entire astrodynamic subject. By the use of compact graphical and tabular presentation the full scope of the material is made available in an easy-to-use style. Throughout the volume the analyst is shown, by means of suitable introductions, notes, authoritative examples, and cross-references the vital interrelation of the various orbital mechanics topics in the general field of earth satellites and satellite rendezvous. The handbook is designed to give the analyst rapid, reliable access to the mathematics of orbital mechanics needed for virtually any working requirements.

  11. Buckling of a stiff thin film on an elastic graded compliant substrate.

    PubMed

    Chen, Zhou; Chen, Weiqiu; Song, Jizhou

    2017-12-01

    The buckling of a stiff film on a compliant substrate has attracted much attention due to its wide applications such as thin-film metrology, surface patterning and stretchable electronics. An analytical model is established for the buckling of a stiff thin film on a semi-infinite elastic graded compliant substrate subjected to in-plane compression. The critical compressive strain and buckling wavelength for the sinusoidal mode are obtained analytically for the case with the substrate modulus decaying exponentially. The rigorous finite element analysis (FEA) is performed to validate the analytical model and investigate the postbuckling behaviour of the system. The critical buckling strain for the period-doubling mode is obtained numerically. The influences of various material parameters on the results are investigated. These results are helpful to provide physical insights on the buckling of elastic graded substrate-supported thin film.

  12. Gradient retention prediction of acid-base analytes in reversed phase liquid chromatography: a simplified approach for acetonitrile-water mobile phases.

    PubMed

    Andrés, Axel; Rosés, Martí; Bosch, Elisabeth

    2014-11-28

    In previous work, a two-parameter model to predict chromatographic retention of ionizable analytes in gradient mode was proposed. However, the procedure required some previous experimental work to get a suitable description of the pKa change with the mobile phase composition. In the present study this previous experimental work has been simplified. The analyte pKa values have been calculated through equations whose coefficients vary depending on their functional group. Forced by this new approach, other simplifications regarding the retention of the totally neutral and totally ionized species also had to be performed. After the simplifications were applied, new prediction values were obtained and compared with the previously acquired experimental data. The simplified model gave pretty good predictions while saving a significant amount of time and resources. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Buckling of a stiff thin film on an elastic graded compliant substrate

    NASA Astrophysics Data System (ADS)

    Chen, Zhou; Chen, Weiqiu; Song, Jizhou

    2017-12-01

    The buckling of a stiff film on a compliant substrate has attracted much attention due to its wide applications such as thin-film metrology, surface patterning and stretchable electronics. An analytical model is established for the buckling of a stiff thin film on a semi-infinite elastic graded compliant substrate subjected to in-plane compression. The critical compressive strain and buckling wavelength for the sinusoidal mode are obtained analytically for the case with the substrate modulus decaying exponentially. The rigorous finite element analysis (FEA) is performed to validate the analytical model and investigate the postbuckling behaviour of the system. The critical buckling strain for the period-doubling mode is obtained numerically. The influences of various material parameters on the results are investigated. These results are helpful to provide physical insights on the buckling of elastic graded substrate-supported thin film.

  14. A modified Leslie-Gower predator-prey interaction model and parameter identifiability

    NASA Astrophysics Data System (ADS)

    Tripathi, Jai Prakash; Meghwani, Suraj S.; Thakur, Manoj; Abbas, Syed

    2018-01-01

    In this work, bifurcation and a systematic approach for estimation of identifiable parameters of a modified Leslie-Gower predator-prey system with Crowley-Martin functional response and prey refuge is discussed. Global asymptotic stability is discussed by applying fluctuation lemma. The system undergoes into Hopf bifurcation with respect to parameters intrinsic growth rate of predators (s) and prey reserve (m). The stability of Hopf bifurcation is also discussed by calculating Lyapunov number. The sensitivity analysis of the considered model system with respect to all variables is performed which also supports our theoretical study. To estimate the unknown parameter from the data, an optimization procedure (pseudo-random search algorithm) is adopted. System responses and phase plots for estimated parameters are also compared with true noise free data. It is found that the system dynamics with true set of parametric values is similar to the estimated parametric values. Numerical simulations are presented to substantiate the analytical findings.

  15. Method for Continuous Monitoring of Electrospray Ion Formation

    NASA Astrophysics Data System (ADS)

    Metzler, Guille; Crathern, Susan; Bachmann, Lorin; Fernández-Metzler, Carmen; King, Richard

    2017-10-01

    A method for continuously monitoring the performance of electrospray ionization without the addition of hardware or chemistry to the system is demonstrated. In the method, which we refer to as SprayDx, cluster ions with solvent vapor natively formed by electrospray are followed throughout the collection of liquid chromatography-selected reaction monitoring data. The cluster ion extracted ion chromatograms report on the consistency of the ion formation and detection system. The data collected by the SprayDx method resemble the data collected for postcolumn infusion of analyte. The response of the cluster ions monitored reports on changes in the physical parameters of the ion source such as voltage and gas flow. SprayDx is also observed to report on ion suppression in a fashion very similar to a postcolumn infusion of analyte. We anticipate the method finding utility as a continuous readout on the performance of electrospray and other atmospheric pressure ionization processes. [Figure not available: see fulltext.

  16. An Analytic Approximation to Very High Specific Impulse and Specific Power Interplanetary Space Mission Analysis

    NASA Technical Reports Server (NTRS)

    Williams, Craig Hamilton

    1995-01-01

    A simple, analytic approximation is derived to calculate trip time and performance for propulsion systems of very high specific impulse (50,000 to 200,000 seconds) and very high specific power (10 to 1000 kW/kg) for human interplanetary space missions. The approach assumed field-free space, constant thrust/constant specific power, and near straight line (radial) trajectories between the planets. Closed form, one dimensional equations of motion for two-burn rendezvous and four-burn round trip missions are derived as a function of specific impulse, specific power, and propellant mass ratio. The equations are coupled to an optimizing parameter that maximizes performance and minimizes trip time. Data generated for hypothetical one-way and round trip human missions to Jupiter were found to be within 1% and 6% accuracy of integrated solutions respectively, verifying that for these systems, credible analysis does not require computationally intensive numerical techniques.

  17. Querying and Extracting Timeline Information from Road Traffic Sensor Data

    PubMed Central

    Imawan, Ardi; Indikawati, Fitri Indra; Kwon, Joonho; Rao, Praveen

    2016-01-01

    The escalation of traffic congestion in urban cities has urged many countries to use intelligent transportation system (ITS) centers to collect historical traffic sensor data from multiple heterogeneous sources. By analyzing historical traffic data, we can obtain valuable insights into traffic behavior. Many existing applications have been proposed with limited analysis results because of the inability to cope with several types of analytical queries. In this paper, we propose the QET (querying and extracting timeline information) system—a novel analytical query processing method based on a timeline model for road traffic sensor data. To address query performance, we build a TQ-index (timeline query-index) that exploits spatio-temporal features of timeline modeling. We also propose an intuitive timeline visualization method to display congestion events obtained from specified query parameters. In addition, we demonstrate the benefit of our system through a performance evaluation using a Busan ITS dataset and a Seattle freeway dataset. PMID:27563900

  18. Transport velocity transformation - A convenient method for performance analysis of multilayer solar cell structure

    NASA Technical Reports Server (NTRS)

    Wolf, M.

    1981-01-01

    It is noted that in the case of low-level injection, space-charge quasi-neutrality, and spatially constant material parameters (including an electrostatic field), the individual layer can be treated analytically and the basic solar cell performance parameters can be evaluated from three equations. The first equation represents the transformation of the transport velocity across the layer from the other layer boundary. The second establishes the light-generated current output from the layer interface, under the influence of the transport velocities and minority-carrier density at both layer boundaries and of bulk recombination. The third equation describes the flow of these carriers across other layers. The power of the approach is considered to lie in its facility for analysis of the solar cell's performance layer by layer, giving a clear picture of the individual layer's influence on cell efficiency.

  19. Plasma brake model for preliminary mission analysis

    NASA Astrophysics Data System (ADS)

    Orsini, Leonardo; Niccolai, Lorenzo; Mengali, Giovanni; Quarta, Alessandro A.

    2018-03-01

    Plasma brake is an innovative propellantless propulsion system concept that exploits the Coulomb collisions between a charged tether and the ions in the surrounding environment (typically, the ionosphere) to generate an electrostatic force orthogonal to the tether direction. Previous studies on the plasma brake effect have emphasized the existence of a number of different parameters necessary to obtain an accurate description of the propulsive acceleration from a physical viewpoint. The aim of this work is to discuss an analytical model capable of estimating, with the accuracy required by a preliminary mission analysis, the performance of a spacecraft equipped with a plasma brake in a (near-circular) low Earth orbit. The simplified mathematical model is first validated through numerical simulations, and is then used to evaluate the plasma brake performance in some typical mission scenarios, in order to quantify the influence of the system parameters on the mission performance index.

  20. Investigations of calcium spectral lines in laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Ching, Sim Yit; Tariq, Usman; Haider, Zuhaib; Tufail, Kashif; Sabri, Salwanie; Imran, Muhammad; Ali, Jalil

    2017-03-01

    Laser-induced breakdown spectroscopy (LIBS) is a direct and versatile analytical technique that performs the elemental composition analysis based on optical emission produced by laser induced-plasma, with a little or no sample preparation. The performance of the LIBS technique relies on the choice of experimental conditions which must be thoroughly explored and optimized for each application. The main parameters affecting the LIBS performance are the laser energy, laser wavelength, pulse duration, gate delay, geometrical set-up of the focusing and collecting optics. In LIBS quantitative analysis, the gate delay and laser energy are very important parameters that have pronounced impact on the accuracy of the elemental composition information of the materials. The determination of calcium elements in the pelletized samples was investigated and served for the purpose of optimizing the gate delay and laser energy by studying and analyzing the results from emission intensities collected and signal to background ratio (S/B) for the specified wavelengths.

  1. Experimental and analytical investigation of a modified ring cusp NSTAR engine

    NASA Technical Reports Server (NTRS)

    Sengupta, Anita

    2005-01-01

    A series of experimental measurements on a modified laboratory NSTAR engine were used to validate a zero dimensional analytical discharge performance model of a ring cusp ion thruster. The model predicts the discharge performance of a ring cusp NSTAR thruster as a function the magnetic field configuration, thruster geometry, and throttle level. Analytical formalisms for electron and ion confinement are used to predict the ionization efficiency for a given thruster design. Explicit determination of discharge loss and volume averaged plasma parameters are also obtained. The model was used to predict the performance of the nominal and modified three and four ring cusp 30-cm ion thruster configurations operating at the full power (2.3 kW) NSTAR throttle level. Experimental measurements of the modified engine configuration discharge loss compare well with the predicted value for propellant utilizations from 80 to 95%. The theory, as validated by experiment, indicates that increasing the magnetic strength of the minimum closed reduces maxwellian electron diffusion and electrostatically confines the ion population and subsequent loss to the anode wall. The theory also indicates that increasing the cusp strength and minimizing the cusp area improves primary electron confinement increasing the probability of an ionization collision prior to loss at the cusp.

  2. International Space Station Model Correlation Analysis

    NASA Technical Reports Server (NTRS)

    Laible, Michael R.; Fitzpatrick, Kristin; Hodge, Jennifer; Grygier, Michael

    2018-01-01

    This paper summarizes the on-orbit structural dynamic data and the related modal analysis, model validation and correlation performed for the International Space Station (ISS) configuration ISS Stage ULF7, 2015 Dedicated Thruster Firing (DTF). The objective of this analysis is to validate and correlate the analytical models used to calculate the ISS internal dynamic loads and compare the 2015 DTF with previous tests. During the ISS configurations under consideration, on-orbit dynamic measurements were collected using the three main ISS instrumentation systems; Internal Wireless Instrumentation System (IWIS), External Wireless Instrumentation System (EWIS) and the Structural Dynamic Measurement System (SDMS). The measurements were recorded during several nominal on-orbit DTF tests on August 18, 2015. Experimental modal analyses were performed on the measured data to extract modal parameters including frequency, damping, and mode shape information. Correlation and comparisons between test and analytical frequencies and mode shapes were performed to assess the accuracy of the analytical models for the configurations under consideration. These mode shapes were also compared to earlier tests. Based on the frequency comparisons, the accuracy of the mathematical models is assessed and model refinement recommendations are given. In particular, results of the first fundamental mode will be discussed, nonlinear results will be shown, and accelerometer placement will be assessed.

  3. Analytical modeling and experimental validation of a magnetorheological mount

    NASA Astrophysics Data System (ADS)

    Nguyen, The; Ciocanel, Constantin; Elahinia, Mohammad

    2009-03-01

    Magnetorheological (MR) fluid has been increasingly researched and applied in vibration isolation devices. To date, the suspension system of several high performance vehicles has been equipped with MR fluid based dampers and research is ongoing to develop MR fluid based mounts for engine and powertrain isolation. MR fluid based devices have received attention due to the MR fluid's capability to change its properties in the presence of a magnetic field. This characteristic places MR mounts in the class of semiactive isolators making them a desirable substitution for the passive hydraulic mounts. In this research, an analytical model of a mixed-mode MR mount was constructed. The magnetorheological mount employs flow (valve) mode and squeeze mode. Each mode is powered by an independent electromagnet, so one mode does not affect the operation of the other. The analytical model was used to predict the performance of the MR mount with different sets of parameters. Furthermore, in order to produce the actual prototype, the analytical model was used to identify the optimal geometry of the mount. The experimental phase of this research was carried by fabricating and testing the actual MR mount. The manufactured mount was tested to evaluate the effectiveness of each mode individually and in combination. The experimental results were also used to validate the ability of the analytical model in predicting the response of the MR mount. Based on the observed response of the mount a suitable controller can be designed for it. However, the control scheme is not addressed in this study.

  4. Analytic Guided-Search Model of Human Performance Accuracy in Target- Localization Search Tasks

    NASA Technical Reports Server (NTRS)

    Eckstein, Miguel P.; Beutter, Brent R.; Stone, Leland S.

    2000-01-01

    Current models of human visual search have extended the traditional serial/parallel search dichotomy. Two successful models for predicting human visual search are the Guided Search model and the Signal Detection Theory model. Although these models are inherently different, it has been difficult to compare them because the Guided Search model is designed to predict response time, while Signal Detection Theory models are designed to predict performance accuracy. Moreover, current implementations of the Guided Search model require the use of Monte-Carlo simulations, a method that makes fitting the model's performance quantitatively to human data more computationally time consuming. We have extended the Guided Search model to predict human accuracy in target-localization search tasks. We have also developed analytic expressions that simplify simulation of the model to the evaluation of a small set of equations using only three free parameters. This new implementation and extension of the Guided Search model will enable direct quantitative comparisons with human performance in target-localization search experiments and with the predictions of Signal Detection Theory and other search accuracy models.

  5. Validation of the Mass-Extraction-Window for Quantitative Methods Using Liquid Chromatography High Resolution Mass Spectrometry.

    PubMed

    Glauser, Gaétan; Grund, Baptiste; Gassner, Anne-Laure; Menin, Laure; Henry, Hugues; Bromirski, Maciej; Schütz, Frédéric; McMullen, Justin; Rochat, Bertrand

    2016-03-15

    A paradigm shift is underway in the field of quantitative liquid chromatography-mass spectrometry (LC-MS) analysis thanks to the arrival of recent high-resolution mass spectrometers (HRMS). The capability of HRMS to perform sensitive and reliable quantifications of a large variety of analytes in HR-full scan mode is showing that it is now realistic to perform quantitative and qualitative analysis with the same instrument. Moreover, HR-full scan acquisition offers a global view of sample extracts and allows retrospective investigations as virtually all ionized compounds are detected with a high sensitivity. In time, the versatility of HRMS together with the increasing need for relative quantification of hundreds of endogenous metabolites should promote a shift from triple-quadrupole MS to HRMS. However, a current "pitfall" in quantitative LC-HRMS analysis is the lack of HRMS-specific guidance for validated quantitative analyses. Indeed, false positive and false negative HRMS detections are rare, albeit possible, if inadequate parameters are used. Here, we investigated two key parameters for the validation of LC-HRMS quantitative analyses: the mass accuracy (MA) and the mass-extraction-window (MEW) that is used to construct the extracted-ion-chromatograms. We propose MA-parameters, graphs, and equations to calculate rational MEW width for the validation of quantitative LC-HRMS methods. MA measurements were performed on four different LC-HRMS platforms. Experimentally determined MEW values ranged between 5.6 and 16.5 ppm and depended on the HRMS platform, its working environment, the calibration procedure, and the analyte considered. The proposed procedure provides a fit-for-purpose MEW determination and prevents false detections.

  6. Assessment of catchments' flooding potential: a physically-based analytical tool

    NASA Astrophysics Data System (ADS)

    Botter, G.; Basso, S.; Schirmer, M.

    2016-12-01

    The assessment of the flooding potential of river catchments is critical in many research and applied fields, ranging from river science and geomorphology to urban planning and the insurance industry. Predicting magnitude and frequency of floods is key to prevent and mitigate the negative effects of high flows, and has therefore long been the focus of hydrologic research. Here, the recurrence intervals of seasonal flow maxima are estimated through a novel physically-based analytic approach, which links the extremal distribution of streamflows to the stochastic dynamics of daily discharge. An analytical expression of the seasonal flood-frequency curve is provided, whose parameters embody climate and landscape attributes of the contributing catchment and can be estimated from daily rainfall and streamflow data. Only one parameter, which expresses catchment saturation prior to rainfall events, needs to be calibrated on the observed maxima. The method has been tested in a set of catchments featuring heterogeneous daily flow regimes. The model is able to reproduce characteristic shapes of flood-frequency curves emerging in erratic and persistent flow regimes and provides good estimates of seasonal flow maxima in different climatic regions. Performances are steady when the magnitude of events with return times longer than the available sample size is estimated. This makes the approach especially valuable for regions affected by data scarcity.

  7. A Liquid Chromatography – Tandem Mass Spectrometry Approach for the Identification of Mebendazole Residue in Pork, Chicken, and Horse

    PubMed Central

    Lee, Ji Sun; Cho, Soo Hee; Lim, Chae Mi; Chang, Moon Ik; Joo, Hyun Jin; Park, Hyun Jin

    2017-01-01

    A confirmatory and quantitative method of liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the determination of mebendazole and its hydrolyzed and reduced metabolites in pork, chicken, and horse muscles was developed and validated in this study. Anthelmintic compounds were extracted with ethyl acetate after sample mixture was made alkaline followed by liquid chromatographic separation using a reversed phase C18 column. Gradient elution was performed with a mobile phase consisting of water containing 10 mM ammonium formate and methanol. This confirmatory method was validated according to EU requirements. Evaluated validation parameters included specificity, accuracy, precision (repeatability and within-laboratory reproducibility), analytical limits (decision limit and detection limit), and applicability. Most parameters were proved to be conforming to the EU requirements. The decision limit (CCα) and detection capability (CCβ) for all analytes ranged from 15.84 to 17.96 μgkg-1. The limit of detection (LOD) and the limit of quantification (LOQ) for all analytes were 0.07 μgkg-1 and 0.2 μgkg-1, respectively. The developed method was successfully applied to monitoring samples collected from the markets in major cities and proven great potential to be used as a regulatory tool to determine mebendazole residues in animal based foods. PMID:28085912

  8. [Human growth hormone and Turner syndrome].

    PubMed

    Sánchez Marco, Silvia Beatriz; de Arriba Muñoz, Antonio; Ferrer Lozano, Marta; Labarta Aizpún, José Ignacio; Garagorri Otero, Jesús María

    2017-02-01

    The evaluation of clinical and analytical parameters as predictors of the final growth response in Turner syndrome patients treated with growth hormone. A retrospective study was performed on 25 girls with Turner syndrome (17 treated with growth hormone), followed-up until adult height. Auxological, analytical, genetic and pharmacological parameters were collected. A descriptive and analytical study was conducted to evaluate short (12 months) and long term response to treatment with growth hormone. A favourable treatment response was shown during the first year of treatment in terms of height velocity gain in 66.6% of cases (height-gain velocity >3cm/year). A favourable long-term treatment response was also observed in terms of adult height, which increased by 42.82±21.23cm (1.25±0.76 SDS), with an adult height gain of 9.59±5.39cm (1.68±1.51 SDS). Predictors of good response to growth hormone treatment are: A) initial growth hormone dose, B) time on growth hormone treatment until starting oestrogen therapy, C) increased IGF1 and IGFBP-3 levels in the first year of treatment, and D) height gain velocity in the first year of treatment. Copyright © 2015 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Comprehensive analytical model for locally contacted rear surface passivated solar cells

    NASA Astrophysics Data System (ADS)

    Wolf, Andreas; Biro, Daniel; Nekarda, Jan; Stumpp, Stefan; Kimmerle, Achim; Mack, Sebastian; Preu, Ralf

    2010-12-01

    For optimum performance of solar cells featuring a locally contacted rear surface, the metallization fraction as well as the size and distribution of the local contacts are crucial, since Ohmic and recombination losses have to be balanced. In this work we present a set of equations which enable to calculate this trade off without the need of numerical simulations. Our model combines established analytical and empirical equations to predict the energy conversion efficiency of a locally contacted device. For experimental verification, we fabricate devices from float zone silicon wafers of different resistivity using the laser fired contact technology for forming the local rear contacts. The detailed characterization of test structures enables the determination of important physical parameters, such as the surface recombination velocity at the contacted area and the spreading resistance of the contacts. Our analytical model reproduces the experimental results very well and correctly predicts the optimum contact spacing without the use of free fitting parameters. We use our model to estimate the optimum bulk resistivity for locally contacted devices fabricated from conventional Czochralski-grown silicon material. These calculations use literature values for the stable minority carrier lifetime to account for the bulk recombination caused by the formation of boron-oxygen complexes under carrier injection.

  10. Analytical Quality by Design in pharmaceutical quality assurance: Development of a capillary electrophoresis method for the analysis of zolmitriptan and its impurities.

    PubMed

    Orlandini, Serena; Pasquini, Benedetta; Caprini, Claudia; Del Bubba, Massimo; Pinzauti, Sergio; Furlanetto, Sandra

    2015-11-01

    A fast and selective CE method for the determination of zolmitriptan (ZOL) and its five potential impurities has been developed applying the analytical Quality by Design principles. Voltage, temperature, buffer concentration, and pH were investigated as critical process parameters that can influence the critical quality attributes, represented by critical resolution values between peak pairs, analysis time, and peak efficiency of ZOL-dimer. A symmetric screening matrix was employed for investigating the knowledge space, and a Box-Behnken design was used to evaluate the main, interaction, and quadratic effects of the critical process parameters on the critical quality attributes. Contour plots were drawn highlighting important interactions between buffer concentration and pH, and the gained information was merged into the sweet spot plots. Design space (DS) was established by the combined use of response surface methodology and Monte Carlo simulations, introducing a probability concept and thus allowing the quality of the analytical performances to be assured in a defined domain. The working conditions (with the interval defining the DS) were as follows: BGE, 138 mM (115-150 mM) phosphate buffer pH 2.74 (2.54-2.94); temperature, 25°C (24-25°C); voltage, 30 kV. A control strategy was planned based on method robustness and system suitability criteria. The main advantages of applying the Quality by Design concept consisted of a great increase of knowledge of the analytical system, obtained throughout multivariate techniques, and of the achievement of analytical assurance of quality, derived by probability-based definition of DS. The developed method was finally validated and applied to the analysis of ZOL tablets. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Characterization of potassium dichromate solutions for spectrophotometercalibration

    NASA Astrophysics Data System (ADS)

    Conceição, F. C.; Silva, E. M.; Gomes, J. F. S.; Borges, P. P.

    2018-03-01

    Spectrophotometric analysis in the ultraviolet (UV) region is used in the determination of several quantitative and qualitative parameters. For ensuring reliability of the analyses performed on the spectrophotometers, verification / calibration of the equipment must be performed periodically using certified reference materials (CRMs). This work presents the characterization stage needed for producing this CRM. The property value characterized was the absorbance for the wavelengths in the UV spectral regions. This CRM will contribute to guarantee the accuracy and linearity of the absorbance scale to the spectrophotometers, through which analytical measurement results will be provided with metrological traceability.

  12. Boom Minimization Framework for Supersonic Aircraft Using CFD Analysis

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Rallabhandi, Sriram K.

    2010-01-01

    A new framework is presented for shape optimization using analytical shape functions and high-fidelity computational fluid dynamics (CFD) via Cart3D. The focus of the paper is the system-level integration of several key enabling analysis tools and automation methods to perform shape optimization and reduce sonic boom footprint. A boom mitigation case study subject to performance, stability and geometrical requirements is presented to demonstrate a subset of the capabilities of the framework. Lastly, a design space exploration is carried out to assess the key parameters and constraints driving the design.

  13. Design and analysis of MEMS MWCNT/epoxy strain sensor using COMSOL

    NASA Astrophysics Data System (ADS)

    Sapra, Gaurav; Sharma, Preetika

    2017-07-01

    The design and performance of piezoresistive MEMS-based MWCNT/epoxy composite strain sensor using COMSOL Multiphysics Toolbox has been investigated. The proposed sensor design comprises su-8 based U-shaped cantilever beam with MWCNT/epoxy composite film as an active sensing element. A point load in microscale has been applied at the tip of the cantilever beam to observe its deflection in the proposed design. Analytical simulations have been performed to optimize various design parameters of the proposed sensor, which will be helpful at the time of fabrication.

  14. High accuracy fuel flowmeter

    NASA Technical Reports Server (NTRS)

    1986-01-01

    All three flowmeter concepts (vortex, dual turbine, and angular momentum) were subjected to experimental and analytical investigation to determine the potential portotype performance. The three concepts were subjected to a comprehensive rating. Eight parameters of performance were evaluated on a zero-to-ten scale, weighted, and summed. The relative ratings of the vortex, dual turbine, and angular momentum flowmeters are 0.71, 1.00, and 0.95, respectively. The dual turbine flowmeter concept was selected as the primary candidate and the angular momentum flowmeter as the secondary candidate for prototype development and evaluation.

  15. On the analytic and numeric optimisation of airplane trajectories under real atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Gonzalo, J.; Domínguez, D.; López, D.

    2014-12-01

    From the beginning of aviation era, economic constraints have forced operators to continuously improve the planning of the flights. The revenue is proportional to the cost per flight and the airspace occupancy. Many methods, the first started in the middle of last century, have explore analytical, numerical and artificial intelligence resources to reach the optimal flight planning. In parallel, advances in meteorology and communications allow an almost real-time knowledge of the atmospheric conditions and a reliable, error-bounded forecast for the near future. Thus, apart from weather risks to be avoided, airplanes can dynamically adapt their trajectories to minimise their costs. International regulators are aware about these capabilities, so it is reasonable to envisage some changes to allow this dynamic planning negotiation to soon become operational. Moreover, current unmanned airplanes, very popular and often small, suffer the impact of winds and other weather conditions in form of dramatic changes in their performance. The present paper reviews analytic and numeric solutions for typical trajectory planning problems. Analytic methods are those trying to solve the problem using the Pontryagin principle, where influence parameters are added to state variables to form a split condition differential equation problem. The system can be solved numerically -indirect optimisation- or using parameterised functions -direct optimisation-. On the other hand, numerical methods are based on Bellman's dynamic programming (or Dijkstra algorithms), where the fact that two optimal trajectories can be concatenated to form a new optimal one if the joint point is demonstrated to belong to the final optimal solution. There is no a-priori conditions for the best method. Traditionally, analytic has been more employed for continuous problems whereas numeric for discrete ones. In the current problem, airplane behaviour is defined by continuous equations, while wind fields are given in a discrete grid at certain time intervals. The research demonstrates advantages and disadvantages of each method as well as performance figures of the solutions found for typical flight conditions under static and dynamic atmospheres. This provides significant parameters to be used in the selection of solvers for optimal trajectories.

  16. Development of a validated liquid chromatographic method for quantification of sorafenib tosylate in the presence of stress-induced degradation products and in biological matrix employing analytical quality by design approach.

    PubMed

    Sharma, Teenu; Khurana, Rajneet Kaur; Jain, Atul; Katare, O P; Singh, Bhupinder

    2018-05-01

    The current research work envisages an analytical quality by design-enabled development of a simple, rapid, sensitive, specific, robust and cost-effective stability-indicating reversed-phase high-performance liquid chromatographic method for determining stress-induced forced-degradation products of sorafenib tosylate (SFN). An Ishikawa fishbone diagram was constructed to embark upon analytical target profile and critical analytical attributes, i.e. peak area, theoretical plates, retention time and peak tailing. Factor screening using Taguchi orthogonal arrays and quality risk assessment studies carried out using failure mode effect analysis aided the selection of critical method parameters, i.e. mobile phase ratio and flow rate potentially affecting the chosen critical analytical attributes. Systematic optimization using response surface methodology of the chosen critical method parameters was carried out employing a two-factor-three-level-13-run, face-centered cubic design. A method operable design region was earmarked providing optimum method performance using numerical and graphical optimization. The optimum method employed a mobile phase composition consisting of acetonitrile and water (containing orthophosphoric acid, pH 4.1) at 65:35 v/v at a flow rate of 0.8 mL/min with UV detection at 265 nm using a C 18 column. Response surface methodology validation studies confirmed good efficiency and sensitivity of the developed method for analysis of SFN in mobile phase as well as in human plasma matrix. The forced degradation studies were conducted under different recommended stress conditions as per ICH Q1A (R2). Mass spectroscopy studies showed that SFN degrades in strongly acidic, alkaline and oxidative hydrolytic conditions at elevated temperature, while the drug was per se found to be photostable. Oxidative hydrolysis using 30% H 2 O 2 showed maximum degradation with products at retention times of 3.35, 3.65, 4.20 and 5.67 min. The absence of any significant change in the retention time of SFN and degradation products, formed under different stress conditions, ratified selectivity and specificity of the systematically developed method. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Performance of convolutional codes on fading channels typical of planetary entry missions

    NASA Technical Reports Server (NTRS)

    Modestino, J. W.; Mui, S. Y.; Reale, T. J.

    1974-01-01

    The performance of convolutional codes in fading channels typical of the planetary entry channel is examined in detail. The signal fading is due primarily to turbulent atmospheric scattering of the RF signal transmitted from an entry probe through a planetary atmosphere. Short constraint length convolutional codes are considered in conjunction with binary phase-shift keyed modulation and Viterbi maximum likelihood decoding, and for longer constraint length codes sequential decoding utilizing both the Fano and Zigangirov-Jelinek (ZJ) algorithms are considered. Careful consideration is given to the modeling of the channel in terms of a few meaningful parameters which can be correlated closely with theoretical propagation studies. For short constraint length codes the bit error probability performance was investigated as a function of E sub b/N sub o parameterized by the fading channel parameters. For longer constraint length codes the effect was examined of the fading channel parameters on the computational requirements of both the Fano and ZJ algorithms. The effects of simple block interleaving in combatting the memory of the channel is explored, using the analytic approach or digital computer simulation.

  18. Extrapolating target tracks

    NASA Astrophysics Data System (ADS)

    Van Zandt, James R.

    2012-05-01

    Steady-state performance of a tracking filter is traditionally evaluated immediately after a track update. However, there is commonly a further delay (e.g., processing and communications latency) before the tracks can actually be used. We analyze the accuracy of extrapolated target tracks for four tracking filters: Kalman filter with the Singer maneuver model and worst-case correlation time, with piecewise constant white acceleration, and with continuous white acceleration, and the reduced state filter proposed by Mookerjee and Reifler.1, 2 Performance evaluation of a tracking filter is significantly simplified by appropriate normalization. For the Kalman filter with the Singer maneuver model, the steady-state RMS error immediately after an update depends on only two dimensionless parameters.3 By assuming a worst case value of target acceleration correlation time, we reduce this to a single parameter without significantly changing the filter performance (within a few percent for air tracking).4 With this simplification, we find for all four filters that the RMS errors for the extrapolated state are functions of only two dimensionless parameters. We provide simple analytic approximations in each case.

  19. Development of base pressure similarity parameters for application to space shuttle launch vehicle power-on aerodynamic testing

    NASA Technical Reports Server (NTRS)

    Sulyma, P. R.; Penny, M. M.

    1978-01-01

    A base pressure data correlation study was conducted to define exhaust plume similarity parameters for use in Space Shuttle power-on launch vehicle aerodynamic test programs. Data correlations were performed for single bodies having, respectively, single and triple nozzle configurations and for a triple body configuration with single nozzles on each of the outside bodies. Base pressure similarity parameters were found to differ for the single nozzle and triple nozzle configurations. However, the correlation parameter for each was found to be a strong function of the nozzle exit momentum. Results of the data base evaluation are presented indicating an assessment of all data points. Analytical/experimental data comparisons were made for nozzle calibrations and correction factors derived, where indicated for use in nozzle exit plane data calculations.

  20. Comparison of maximum runup through analytical and numerical approaches for different fault parameters estimates

    NASA Astrophysics Data System (ADS)

    Kanoglu, U.; Wronna, M.; Baptista, M. A.; Miranda, J. M. A.

    2017-12-01

    The one-dimensional analytical runup theory in combination with near shore synthetic waveforms is a promising tool for tsunami rapid early warning systems. Its application in realistic cases with complex bathymetry and initial wave condition from inverse modelling have shown that maximum runup values can be estimated reasonably well. In this study we generate a simplistic bathymetry domains which resemble realistic near-shore features. We investigate the accuracy of the analytical runup formulae to the variation of fault source parameters and near-shore bathymetric features. To do this we systematically vary the fault plane parameters to compute the initial tsunami wave condition. Subsequently, we use the initial conditions to run the numerical tsunami model using coupled system of four nested grids and compare the results to the analytical estimates. Variation of the dip angle of the fault plane showed that analytical estimates have less than 10% difference for angles 5-45 degrees in a simple bathymetric domain. These results shows that the use of analytical formulae for fast run up estimates constitutes a very promising approach in a simple bathymetric domain and might be implemented in Hazard Mapping and Early Warning.

  1. Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control †

    PubMed Central

    Reinhart, René Felix; Shareef, Zeeshan; Steil, Jochen Jakob

    2017-01-01

    Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant’s intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms. PMID:28208697

  2. Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control.

    PubMed

    Reinhart, René Felix; Shareef, Zeeshan; Steil, Jochen Jakob

    2017-02-08

    Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant's intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms.

  3. Reagentless, Structure-Switching, Electrochemical Aptamer-Based Sensors

    NASA Astrophysics Data System (ADS)

    Schoukroun-Barnes, Lauren R.; Macazo, Florika C.; Gutierrez, Brenda; Lottermoser, Justine; Liu, Juan; White, Ryan J.

    2016-06-01

    The development of structure-switching, electrochemical, aptamer-based sensors over the past ˜10 years has led to a variety of reagentless sensors capable of analytical detection in a range of sample matrices. The crux of this methodology is the coupling of target-induced conformation changes of a redox-labeled aptamer with electrochemical detection of the resulting altered charge transfer rate between the redox molecule and electrode surface. Using aptamer recognition expands the highly sensitive detection ability of electrochemistry to a range of previously inaccessible analytes. In this review, we focus on the methods of sensor fabrication and how sensor signaling is affected by fabrication parameters. We then discuss recent studies addressing the fundamentals of sensor signaling as well as quantitative characterization of the analytical performance of electrochemical aptamer-based sensors. Although the limits of detection of reported electrochemical aptamer-based sensors do not often reach that of gold-standard methods such as enzyme-linked immunosorbent assays, the operational convenience of the sensor platform enables exciting analytical applications that we address. Using illustrative examples, we highlight recent advances in the field that impact important areas of analytical chemistry. Finally, we discuss the challenges and prospects for this class of sensors.

  4. An analytic formula for H-infinity norm sensitivity with applications to control system design

    NASA Technical Reports Server (NTRS)

    Giesy, Daniel P.; Lim, Kyong B.

    1992-01-01

    An analytic formula for the sensitivity of singular value peak variation with respect to parameter variation is derived. As a corollary, the derivative of the H-infinity norm of a stable transfer function with respect to a parameter is presented. It depends on some of the first two derivatives of the transfer function with respect to frequency and the parameter. For cases when the transfer function has a linear system realization whose matrices depend on the parameter, analytic formulas for these first two derivatives are derived, and an efficient algorithm for calculating them is discussed. Examples are given which provide numerical verification of the H-infinity norm sensitivity formula and which demonstrate its utility in designing control systems satisfying H-infinity norm constraints. In the appendix, derivative formulas for singular values are paraphrased.

  5. A parameter optimization approach to controller partitioning for integrated flight/propulsion control application

    NASA Technical Reports Server (NTRS)

    Schmidt, Phillip; Garg, Sanjay; Holowecky, Brian

    1992-01-01

    A parameter optimization framework is presented to solve the problem of partitioning a centralized controller into a decentralized hierarchical structure suitable for integrated flight/propulsion control implementation. The controller partitioning problem is briefly discussed and a cost function to be minimized is formulated, such that the resulting 'optimal' partitioned subsystem controllers will closely match the performance (including robustness) properties of the closed-loop system with the centralized controller while maintaining the desired controller partitioning structure. The cost function is written in terms of parameters in a state-space representation of the partitioned sub-controllers. Analytical expressions are obtained for the gradient of this cost function with respect to parameters, and an optimization algorithm is developed using modern computer-aided control design and analysis software. The capabilities of the algorithm are demonstrated by application to partitioned integrated flight/propulsion control design for a modern fighter aircraft in the short approach to landing task. The partitioning optimization is shown to lead to reduced-order subcontrollers that match the closed-loop command tracking and decoupling performance achieved by a high-order centralized controller.

  6. A parameter optimization approach to controller partitioning for integrated flight/propulsion control application

    NASA Technical Reports Server (NTRS)

    Schmidt, Phillip H.; Garg, Sanjay; Holowecky, Brian R.

    1993-01-01

    A parameter optimization framework is presented to solve the problem of partitioning a centralized controller into a decentralized hierarchical structure suitable for integrated flight/propulsion control implementation. The controller partitioning problem is briefly discussed and a cost function to be minimized is formulated, such that the resulting 'optimal' partitioned subsystem controllers will closely match the performance (including robustness) properties of the closed-loop system with the centralized controller while maintaining the desired controller partitioning structure. The cost function is written in terms of parameters in a state-space representation of the partitioned sub-controllers. Analytical expressions are obtained for the gradient of this cost function with respect to parameters, and an optimization algorithm is developed using modern computer-aided control design and analysis software. The capabilities of the algorithm are demonstrated by application to partitioned integrated flight/propulsion control design for a modern fighter aircraft in the short approach to landing task. The partitioning optimization is shown to lead to reduced-order subcontrollers that match the closed-loop command tracking and decoupling performance achieved by a high-order centralized controller.

  7. Evaluation of carbon aerogel-based solid-phase extraction sorbent for the analysis of sulfur mustard degradation products in environmental water samples.

    PubMed

    Jõul, Piia; Vaher, Merike; Kuhtinskaja, Maria

    2018-05-01

    In this study, SPE method using a carbon aerogel(CA)-based sorbent was developed and evaluated for the simultaneous extraction of sulfur mustard (HD) degradation products from environmental water samples. Applied CAs proved to be very promising materials for use as SPE sorbents, due to their high porosity, very low density and a large specific surface area. 10 degradation products of HD, both aliphatic and cyclic (thiodiglycol (TDG), TDG sulfoxide, TDG sulfone, 3,5-dithia-1,7-heptanediol, 3,6-dithia-1,8-octanediol, 1,4-thioxane, 1,3-dithiolane, 1,4-dithiane, 1,2,5-trithiepane, and 1,4,5-oxadithiepane) were extracted on a CA-based SPE cartridge. The concentrations of target analytes in the eluate were determined by HPLC-DAD and CE-DAD. Several parameters affecting the extraction efficiency, including the kind and volume of the eluting solvent, sample loading flow rate, volume and ionic strength as well as the reusability of the cartridge, were investigated and optimized to achieve the best performance for the analytes. A series of quantitative parameters such as linear range, coefficient of determination, LOD, LOQ and precision were examined under the optimized conditions. High sensitivity (LODs 0.17-0.50 μM) and high precision (intraday RSD = 2.0-7.7% and interday RSD = 2.7-9.9%) for all the analytes were achieved. The performance of the CA-based sorbent was compared with that of commonly used SPE sorbents. Applied for the analysis of spiked pore water samples collected from the Bornholm Basin, one of the largest chemical warfare dumping sites in the Baltic Sea, the proposed method allowed high SPE recoveries of all the analytes ranging from 83.5 to 99.7% to be obtained. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Conductivity of higher dimensional holographic superconductors with nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Sheykhi, Ahmad; Hashemi Asl, Doa; Dehyadegari, Amin

    2018-06-01

    We investigate analytically as well as numerically the properties of s-wave holographic superconductors in d-dimensional spacetime and in the presence of Logarithmic nonlinear electrodynamics. We study three aspects of this kind of superconductors. First, we obtain, by employing analytical Sturm-Liouville method as well as numerical shooting method, the relation between critical temperature and charge density, ρ, and disclose the effects of both nonlinear parameter b and the dimensions of spacetime, d, on the critical temperature Tc. We find that in each dimension, Tc /ρ 1 / (d - 2) decreases with increasing the nonlinear parameter b while it increases with increasing the dimension of spacetime for a fixed value of b. Then, we calculate the condensation value and critical exponent of the system analytically and numerically and observe that in each dimension, the dimensionless condensation get larger with increasing the nonlinear parameter b. Besides, for a fixed value of b, it increases with increasing the spacetime dimension. We confirm that the results obtained from our analytical method are in agreement with the results obtained from numerical shooting method. This fact further supports the correctness of our analytical method. Finally, we explore the holographic conductivity of this system and find out that the superconducting gap increases with increasing either the nonlinear parameter or the spacetime dimension.

  9. Water sprays in space retrieval operations

    NASA Technical Reports Server (NTRS)

    Freesland, D. C.

    1977-01-01

    Experiments were conducted in a ground based vacuum chamber to determine physical properties of water-ice in a space-like environment. Additional ices, alcohol and ammonia, were also studied. An analytical analysis based on the conservation of angular momentum, resulted in despin performance parameters, i.e., total water mass requirements and despin times. The despin and retrieval of a disabled spacecraft was considered to illustrate a potential application of the water spray technique.

  10. Combined structures-controls optimization of lattice trusses

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1991-01-01

    The role that distributed parameter model can play in CSI is demonstrated, in particular in combined structures controls optimization problems of importance in preliminary design. Closed form solutions can be obtained for performance criteria such as rms attitude error, making possible analytical solutions of the optimization problem. This is in contrast to the need for numerical computer solution involving the inversion of large matrices in traditional finite element model (FEM) use. Another advantage of the analytic solution is that it can provide much needed insight into phenomena that can otherwise be obscured or difficult to discern from numerical computer results. As a compromise in level of complexity between a toy lab model and a real space structure, the lattice truss used in the EPS (Earth Pointing Satellite) was chosen. The optimization problem chosen is a generic one: of minimizing the structure mass subject to a specified stability margin and to a specified upper bond on the rms attitude error, using a co-located controller and sensors. Standard FEM treating each bar as a truss element is used, while the continuum model is anisotropic Timoshenko beam model. Performance criteria are derived for each model, except that for the distributed parameter model, explicit closed form solutions was obtained. Numerical results obtained by the two model show complete agreement.

  11. Integrated Application of Quality-by-Design Principles to Drug Product Development: A Case Study of Brivanib Alaninate Film-Coated Tablets.

    PubMed

    Badawy, Sherif I F; Narang, Ajit S; LaMarche, Keirnan R; Subramanian, Ganeshkumar A; Varia, Sailesh A; Lin, Judy; Stevens, Tim; Shah, Pankaj A

    2016-01-01

    Modern drug product development is expected to follow quality-by-design (QbD) paradigm. At the same time, although there are several issue-specific examples in the literature that demonstrate the application of QbD principles, a holistic demonstration of the application of QbD principles to drug product development and control strategy, is lacking. This article provides an integrated case study on the systematic application of QbD to product development and demonstrates the implementation of QbD concepts in the different aspects of product and process design for brivanib alaninate film-coated tablets. Using a risk-based approach, the strategy for development entailed identification of product critical quality attributes (CQAs), assessment of risks to the CQAs, and performing experiments to understand and mitigate identified risks. Quality risk assessments and design of experiments were performed to understand the quality of the input raw materials required for a robust formulation and the impact of manufacturing process parameters on CQAs. In addition to the material property and process parameter controls, the proposed control strategy includes use of process analytical technology and conventional analytical tests to control in-process material attributes and ensure quality of the final product. Copyright © 2016. Published by Elsevier Inc.

  12. Design and performance evaluation of the imaging payload for a remote sensing satellite

    NASA Astrophysics Data System (ADS)

    Abolghasemi, Mojtaba; Abbasi-Moghadam, Dariush

    2012-11-01

    In this paper an analysis method and corresponding analytical tools for design of the experimental imaging payload (IMPL) of a remote sensing satellite (SINA-1) are presented. We begin with top-level customer system performance requirements and constraints and derive the critical system and component parameters, then analyze imaging payload performance until a preliminary design that meets customer requirements. We consider system parameters and components composing the image chain for imaging payload system which includes aperture, focal length, field of view, image plane dimensions, pixel dimensions, detection quantum efficiency, and optical filter requirements. The performance analysis is accomplished by calculating the imaging payload's SNR (signal-to-noise ratio), and imaging resolution. The noise components include photon noise due to signal scene and atmospheric background, cold shield, out-of-band optical filter leakage and electronic noise. System resolution is simulated through cascaded modulation transfer functions (MTFs) and includes effects due to optics, image sampling, and system motion. Calculations results for the SINA-1 satellite are also presented.

  13. Quality performance of laboratory testing in pharmacies: a collaborative evaluation.

    PubMed

    Zaninotto, Martina; Miolo, Giorgia; Guiotto, Adriano; Marton, Silvia; Plebani, Mario

    2016-11-01

    The quality performance and the comparability between results of pharmacies point-of-care-testing (POCT) and institutional laboratories have been evaluated. Eight pharmacies participated in the project: a capillary specimen collected by the pharmacist and, simultaneously, a lithium-heparin sample drawn by a physician of laboratory medicine for the pharmacy customers (n=106) were analyzed in the pharmacy and in the laboratory, respectively. Glucose, cholesterol, HDL-cholesterol, triglycerides, creatinine, uric acid, aspartate aminotransferase, alanine aminotransferase, were measured using: Reflotron, n=5; Samsung, n=1; Cardiocheck PA, n=1; Cholestech LDX, n=1 and Cobas 8000. The POCT analytical performance only (phase 2) were evaluated testing, in pharmacies and in the laboratory, the lithium heparin samples from a female drawn fasting daily in a week, and a control sample containing high concentrations of glucose, cholesterol and triglycerides. For all parameters, except triglycerides, the slopes showed a satisfactory correlation. For triglycerides, a median value higher in POCT in comparison to the laboratory (1.627 mmol/L vs. 0.950 mmol/L) has been observed. The agreement in the subjects classification, demonstrates that for glucose, 70% of the subjects show concentrations below the POCT recommended level (5.8-6.1 mmol/L), while 56% are according to the laboratory limit (<5.6 mmol/L). Total cholesterol exhibits a similar trend while POCT triglycerides show a greater percentage of increased values (21% vs. 9%). The reduction in triglycerides bias (phase 2) suggests that differences between POCT and central laboratory is attributable to a pre-analytical problem. The results confirm the acceptable analytical performance of POCT pharmacies and specific criticisms in the pre- and post-analytical phases.

  14. SU-G-TeP1-02: Analytical Stopping Power and Range Parameterization for Therapeutic Energy Intervals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donahue, W; Newhauser, W; Mary Bird Perkins Cancer Center, Baton Rouge, LA

    Purpose: To develop a simple, analytic parameterization of stopping power and range, which covers a wide energy interval and is applicable to many species of projectile ions and target materials, with less than 15% disagreement in linear stopping power and 1 mm in range. Methods: The new parameterization was required to be analytically integrable from stopping power to range, and continuous across the range interval of 1 µm to 50 cm. The model parameters were determined from stopping power and range data for hydrogen, carbon, iron, and uranium ions incident on water, carbon, aluminum, lead and copper. Stopping power andmore » range data was taken from SRIM. A stochastic minimization algorithm was used to find model parameters, with 10 data points per energy decade. Additionally, fitting was performed with 2 and 26 data points per energy decade to test the model’s robustness to sparse Results: 6 free parameters were sufficient to cover the therapeutic energy range for each projectile ion species (e.g. 1 keV – 300 MeV for protons). The model agrees with stopping power and range data well, with less than 9% relative stopping power difference and 0.5 mm difference in range. As few as, 4 bins per decade were required to achieve comparable fitting results to the full data set. Conclusion: This study successfully demonstrated that a simple analytic function can be used to fit the entire energy interval of therapeutic ion beams of hydrogen and heavier elements. Advantages of this model were the small number (6) of free parameters, and that the model calculates both stopping power and range. Applications of this model include GPU-based dose calculation algorithms and Monte Carlo simulations, where available memory is limited. This work was supported in part by a research agreement between United States Naval Academy and Louisiana State University: Contract No N00189-13-P-0786. In addition, this work was accepted for presentation at the American Nuclear Society Annual Meeting 2016.« less

  15. betaFIT: A computer program to fit pointwise potentials to selected analytic functions

    NASA Astrophysics Data System (ADS)

    Le Roy, Robert J.; Pashov, Asen

    2017-01-01

    This paper describes program betaFIT, which performs least-squares fits of sets of one-dimensional (or radial) potential function values to four different types of sophisticated analytic potential energy functional forms. These families of potential energy functions are: the Expanded Morse Oscillator (EMO) potential [J Mol Spectrosc 1999;194:197], the Morse/Long-Range (MLR) potential [Mol Phys 2007;105:663], the Double Exponential/Long-Range (DELR) potential [J Chem Phys 2003;119:7398], and the "Generalized Potential Energy Function (GPEF)" form introduced by Šurkus et al. [Chem Phys Lett 1984;105:291], which includes a wide variety of polynomial potentials, such as the Dunham [Phys Rev 1932;41:713], Simons-Parr-Finlan [J Chem Phys 1973;59:3229], and Ogilvie-Tipping [Proc R Soc A 1991;378:287] polynomials, as special cases. This code will be useful for providing the realistic sets of potential function shape parameters that are required to initiate direct fits of selected analytic potential functions to experimental data, and for providing better analytical representations of sets of ab initio results.

  16. Separation of very hydrophobic analytes by micellar electrokinetic chromatography IV. Modeling of the effective electrophoretic mobility from carbon number equivalents and octanol-water partition coefficients.

    PubMed

    Huhn, Carolin; Pyell, Ute

    2008-07-11

    It is investigated whether those relationships derived within an optimization scheme developed previously to optimize separations in micellar electrokinetic chromatography can be used to model effective electrophoretic mobilities of analytes strongly differing in their properties (polarity and type of interaction with the pseudostationary phase). The modeling is based on two parameter sets: (i) carbon number equivalents or octanol-water partition coefficients as analyte descriptors and (ii) four coefficients describing properties of the separation electrolyte (based on retention data for a homologous series of alkyl phenyl ketones used as reference analytes). The applicability of the proposed model is validated comparing experimental and calculated effective electrophoretic mobilities. The results demonstrate that the model can effectively be used to predict effective electrophoretic mobilities of neutral analytes from the determined carbon number equivalents or from octanol-water partition coefficients provided that the solvation parameters of the analytes of interest are similar to those of the reference analytes.

  17. An efficient analytical model for baffled, multi-celled membrane-type acoustic metamaterial panels

    NASA Astrophysics Data System (ADS)

    Langfeldt, F.; Gleine, W.; von Estorff, O.

    2018-03-01

    A new analytical model for the oblique incidence sound transmission loss prediction of baffled panels with multiple subwavelength sized membrane-type acoustic metamaterial (MAM) unit cells is proposed. The model employs a novel approach via the concept of the effective surface mass density and approximates the unit cell vibrations in the form of piston-like displacements. This yields a coupled system of linear equations that can be solved efficiently using well-known solution procedures. A comparison with results from finite element model simulations for both normal and diffuse field incidence shows that the analytical model delivers accurate results as long as the edge length of the MAM unit cells is smaller than half the acoustic wavelength. The computation times for the analytical calculations are 100 times smaller than for the numerical simulations. In addition to that, the effect of flexible MAM unit cell edges compared to the fixed edges assumed in the analytical model is studied numerically. It is shown that the compliance of the edges has only a small impact on the transmission loss of the panel, except at very low frequencies in the stiffness-controlled regime. The proposed analytical model is applied to investigate the effect of variations of the membrane prestress, added mass, and mass eccentricity on the diffuse transmission loss of a MAM panel with 120 unit cells. Unlike most previous investigations of MAMs, these results provide a better understanding of the acoustic performance of MAMs under more realistic conditions. For example, it is shown that by varying these parameters deliberately in a checkerboard pattern, a new anti-resonance with large transmission loss values can be introduced. A random variation of these parameters, on the other hand, is shown to have only little influence on the diffuse transmission loss, as long as the standard deviation is not too large. For very large random variations, it is shown that the peak transmission loss value can be greatly diminished.

  18. Fatigue Performance of Advanced High-Strength Steels (AHSS) GMAW Joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Zhili; Sang, Yan; Jiang, Cindy

    2009-01-01

    The fatigue performance of gas metal arc welding (GMAW) joints of advanced high strength steels (AHSS) are compared and analyzed. The steel studied included a number of different grades of AHSS and baseline mild steels: DP600, DP780, DP980, M130, M220, solution annealed boron steel, fully hardened boron steels, HSLA690 and DR210 (a mild steel). Fatigue testing was conducted under a number of nominal stress ranges to obtain the S/N curves of the weld joints. A two-phase analytical model is developed to predict the fatigue performance of AHSS welds. It was found that there are appreciable differences in the fatigue S/Nmore » curves among different AHSS joints made using the same welding practices, suggesting that the local microstructure in the weld toe and root region plays non-negligible role in the fatigue performance of AHSS welds. Changes in weld parameters can influence the joint characteristics which in turn influence fatigue life of the weld joints, particularly of those of higher strength AHSS. The analytical model is capable of reasonably predicting the fatigue performance of welds made with various steel grades in this study.« less

  19. A closed form of a kurtosis parameter of a hypergeometric-Gaussian type-II beam

    NASA Astrophysics Data System (ADS)

    F, Khannous; A, A. A. Ebrahim; A, Belafhal

    2016-04-01

    Based on the irradiance moment definition and the analytical expression of waveform propagation for hypergeometric-Gaussian type-II beams passing through an ABCD system, the kurtosis parameter is derived analytically and illustrated numerically. The kurtosis parameters of the Gaussian beam, modified Bessel modulated Gaussian beam with quadrature radial and elegant Laguerre-Gaussian beams are obtained by treating them as special cases of the present treatment. The obtained results show that the kurtosis parameter depends on the change of the beam order m and the hollowness parameter p, such as its decrease with increasing m and increase with increasing p.

  20. Scalability Analysis and Use of Compression at the Goddard DAAC and End-to-End MODIS Transfers

    NASA Technical Reports Server (NTRS)

    Menasce, Daniel A.

    1998-01-01

    The goal of this task is to analyze the performance of single and multiple FTP transfer between SCF's and the Goddard DAAC. We developed an analytic model to compute the performance of FTP sessions as a function of various key parameters, implemented the model as a program called FTP Analyzer, and carried out validations with real data obtained by running single and multiple FTP transfer between GSFC and the Miami SCF. The input parameters to the model include the mix to FTP sessions (scenario), and for each FTP session, the file size. The network parameters include the round trip time, packet loss rate, the limiting bandwidth of the network connecting the SCF to a DAAC, TCP's basic timeout, TCP's Maximum Segment Size, and TCP's Maximum Receiver's Window Size. The modeling approach used consisted of modeling TCP's overall throughput, computing TCP's delay per FTP transfer, and then solving a queuing network model that includes the FTP clients and servers.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, S. E.; Schaeffer, D. B.; Everson, E. T.

    Two-dimensional hybrid simulations of perpendicular collisionless shocks are modeled after potential laboratory conditions that are attainable in the LArge Plasma Device (LAPD) at the University of California, Los Angeles Basic Plasma Science Facility. The kJ class 1053 nm Nd:Glass Raptor laser will be used to ablate carbon targets in the LAPD with on-target energies of 100-500 J. The ablated debris ions will expand into ambient, partially ionized hydrogen or helium. A parameter study is performed via hybrid simulation to determine possible conditions that could lead to shock formation in future LAPD experiments. Simulation results are presented along with a comparisonmore » to an analytical coupling parameter.« less

  2. Stopping power and dose calculations with analytical and Monte Carlo methods for protons and prompt gamma range verification

    NASA Astrophysics Data System (ADS)

    Usta, Metin; Tufan, Mustafa Çağatay; Aydın, Güral; Bozkurt, Ahmet

    2018-07-01

    In this study, we have performed the calculations stopping power, depth dose, and range verification for proton beams using dielectric and Bethe-Bloch theories and FLUKA, Geant4 and MCNPX Monte Carlo codes. In the framework, as analytical studies, Drude model was applied for dielectric theory and effective charge approach with Roothaan-Hartree-Fock charge densities was used in Bethe theory. In the simulations different setup parameters were selected to evaluate the performance of three distinct Monte Carlo codes. The lung and breast tissues were investigated are considered to be related to the most common types of cancer throughout the world. The results were compared with each other and the available data in literature. In addition, the obtained results were verified with prompt gamma range data. In both stopping power values and depth-dose distributions, it was found that the Monte Carlo values give better results compared with the analytical ones while the results that agree best with ICRU data in terms of stopping power are those of the effective charge approach between the analytical methods and of the FLUKA code among the MC packages. In the depth dose distributions of the examined tissues, although the Bragg curves for Monte Carlo almost overlap, the analytical ones show significant deviations that become more pronounce with increasing energy. Verifications with the results of prompt gamma photons were attempted for 100-200 MeV protons which are regarded important for proton therapy. The analytical results are within 2%-5% and the Monte Carlo values are within 0%-2% as compared with those of the prompt gammas.

  3. Analysis of magnesium and copper in aluminum alloys with high repetition rate laser-ablation spark-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    He, Xiaoyong; Dong, Bo; Chen, Yuqi; Li, Runhua; Wang, Fujuan; Li, Jiaoyang; Cai, Zhigang

    2018-03-01

    In order to improve the analytical speed and performance of laser-ablation based atomic emission spectroscopy, high repetition rate laser-ablation spark-induced breakdown spectroscopy (HRR LA-SIBS) was first developed. Magnesium and copper in aluminum alloys were analyzed with this technique. In the experiments, the fundamental output of an acousto-optically Q-switched Nd:YAG laser operated at 1 kHz repetition rate with low pulse energy and 120 ns pulse width was used to ablate the samples and the plasma emission was enhanced by spark discharge. The spectra were recorded with a compact fiber spectrometer with non-intensified charge-coupled device in non-gating mode. Different parameters relative with analytical performance, such as capacitance, voltage, laser pulse energy were optimized. Under current experimental conditions, calibration curves of magnesium and copper in aluminum alloys were built and limits of detection of them were determined to be 14.0 and 9.9 ppm by HRR LA-SIBS, respectively, which were 8-12 folds better than that achieved by HRR LA under similar experimental condition without spark discharge. The analytical sensitivities are close to those obtained with conventional LIBS but with improved analytical speed as well as possibility of using compact fiber spectrometer. Under high repetition rate operation, the noise level can be decreased and the analytical reproducibility can be improved obviously by averaging multiple measurements within short time. High repetition rate operation of laser-ablation spark-induced breakdown spectroscopy is very helpful for improving analytical speed. It is possible to find applications in fast elements analysis, especially fast two-dimension elemental mapping of solid samples.

  4. Systematic methods for the design of a class of fuzzy logic controllers

    NASA Astrophysics Data System (ADS)

    Yasin, Saad Yaser

    2002-09-01

    Fuzzy logic control, a relatively new branch of control, can be used effectively whenever conventional control techniques become inapplicable or impractical. Various attempts have been made to create a generalized fuzzy control system and to formulate an analytically based fuzzy control law. In this study, two methods, the left and right parameterization method and the normalized spline-base membership function method, were utilized for formulating analytical fuzzy control laws in important practical control applications. The first model was used to design an idle speed controller, while the second was used to control an inverted control problem. The results of both showed that a fuzzy logic control system based on the developed models could be used effectively to control highly nonlinear and complex systems. This study also investigated the application of fuzzy control in areas not fully utilizing fuzzy logic control. Three important practical applications pertaining to the automotive industries were studied. The first automotive-related application was the idle speed of spark ignition engines, using two fuzzy control methods: (1) left and right parameterization, and (2) fuzzy clustering techniques and experimental data. The simulation and experimental results showed that a conventional controller-like performance fuzzy controller could be designed based only on experimental data and intuitive knowledge of the system. In the second application, the automotive cruise control problem, a fuzzy control model was developed using parameters adaptive Proportional plus Integral plus Derivative (PID)-type fuzzy logic controller. Results were comparable to those using linearized conventional PID and linear quadratic regulator (LQR) controllers and, in certain cases and conditions, the developed controller outperformed the conventional PID and LQR controllers. The third application involved the air/fuel ratio control problem, using fuzzy clustering techniques, experimental data, and a conversion algorithm, to develop a fuzzy-based control algorithm. Results were similar to those obtained by recently published conventional control based studies. The influence of the fuzzy inference operators and parameters on performance and stability of the fuzzy logic controller was studied Results indicated that, the selections of certain parameters or combinations of parameters, affect greatly the performance and stability of the fuzzy controller. Diagnostic guidelines used to tune or change certain factors or parameters to improve controller performance were developed based on knowledge gained from conventional control methods and knowledge gained from the experimental and the simulation results of this study.

  5. 'Aussie normals': an a priori study to develop clinical chemistry reference intervals in a healthy Australian population.

    PubMed

    Koerbin, G; Cavanaugh, J A; Potter, J M; Abhayaratna, W P; West, N P; Glasgow, N; Hawkins, C; Armbruster, D; Oakman, C; Hickman, P E

    2015-02-01

    Development of reference intervals is difficult, time consuming, expensive and beyond the scope of most laboratories. The Aussie Normals study is a direct a priori study to determine reference intervals in healthy Australian adults. All volunteers completed a health and lifestyle questionnaire and exclusion was based on conditions such as pregnancy, diabetes, renal or cardiovascular disease. Up to 91 biochemical analyses were undertaken on a variety of analytical platforms using serum samples collected from 1856 volunteers. We report on our findings for 40 of these analytes and two calculated parameters performed on the Abbott ARCHITECTci8200/ci16200 analysers. Not all samples were analysed for all assays due to volume requirements or assay/instrument availability. Results with elevated interference indices and those deemed unsuitable after clinical evaluation were removed from the database. Reference intervals were partitioned based on the method of Harris and Boyd into three scenarios, combined gender, males and females and age and gender. We have performed a detailed reference interval study on a healthy Australian population considering the effects of sex, age and body mass. These reference intervals may be adapted to other manufacturer's analytical methods using method transference.

  6. Stir bar sorptive extraction coupled to gas chromatography-mass spectrometry for the determination of bisphenols in canned beverages and filling liquids of canned vegetables.

    PubMed

    Cacho, J I; Campillo, N; Viñas, P; Hernández-Córdoba, M

    2012-07-20

    This paper describes a method for the simultaneous determination of bisphenol A (BPA), bisphenol F (BPF), bisphenol Z (BPZ) and biphenol (BP), using stir bar sorptive extraction (SBSE) in combination with thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). Several parameters affecting both extraction and thermal desorption of the SBSE stages were carefully optimized by multivariate designs. SBSE was performed with two derivatization procedures, in situ acetylation and in tube silylation, and the results were compared with those obtained when the analytes were not derivatized. The proposed method, determining the analytes as acyl derivatives, was applied to analyze commercially canned beverages, as well as the filling liquids of canned vegetables, providing detection limits of between 4.7 and 12.5 ng L⁻¹, depending on the compound. The intraday and interday precisions were lower than 6% in terms of relative standard deviation. Recovery studies at two concentration levels, 0.1 and 1 μg L⁻¹, were performed providing recoveries in the 86-122% range. The samples analyzed contained higher concentrations of BPA than of the other analytes. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. A new analytical solution solved by triple series equations method for constant-head tests in confined aquifers

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Chi; Yeh, Hund-Der

    2010-06-01

    The constant-head pumping tests are usually employed to determine the aquifer parameters and they can be performed in fully or partially penetrating wells. Generally, the Dirichlet condition is prescribed along the well screen and the Neumann type no-flow condition is specified over the unscreened part of the test well. The mathematical model describing the aquifer response to a constant-head test performed in a fully penetrating well can be easily solved by the conventional integral transform technique under the uniform Dirichlet-type condition along the rim of wellbore. However, the boundary condition for a test well with partial penetration should be considered as a mixed-type condition. This mixed boundary value problem in a confined aquifer system of infinite radial extent and finite vertical extent is solved by the Laplace and finite Fourier transforms in conjunction with the triple series equations method. This approach provides analytical results for the drawdown in a partially penetrating well for arbitrary location of the well screen in a finite thickness aquifer. The semi-analytical solutions are particularly useful for the practical applications from the computational point of view.

  8. Assessment and prediction of drying shrinkage cracking in bonded mortar overlays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beushausen, Hans, E-mail: hans.beushausen@uct.ac.za; Chilwesa, Masuzyo

    2013-11-15

    Restrained drying shrinkage cracking was investigated on composite beams consisting of substrate concrete and bonded mortar overlays, and compared to the performance of the same mortars when subjected to the ring test. Stress development and cracking in the composite specimens were analytically modeled and predicted based on the measurement of relevant time-dependent material properties such as drying shrinkage, elastic modulus, tensile relaxation and tensile strength. Overlay cracking in the composite beams could be very well predicted with the analytical model. The ring test provided a useful qualitative comparison of the cracking performance of the mortars. The duration of curing wasmore » found to only have a minor influence on crack development. This was ascribed to the fact that prolonged curing has a beneficial effect on tensile strength at the onset of stress development, but is in the same time not beneficial to the values of tensile relaxation and elastic modulus. -- Highlights: •Parameter study on material characteristics influencing overlay cracking. •Analytical model gives good quantitative indication of overlay cracking. •Ring test presents good qualitative indication of overlay cracking. •Curing duration has little effect on overlay cracking.« less

  9. Polyamide as an efficient sorbent for simultaneous interface-free determination of three Sudan dyes in saffron and urine using high-performance liquid chromatography-ultra violet detection.

    PubMed

    Saeidi, Iman; Barfi, Behruz; Payrovi, Moazameh; Feizy, Javid; Sheibani, Hojat A; Miri, Mina; Ghollasi Moud, Farahnaz

    2015-01-01

    With polyamide (PA) as an efficient sorbent for solid phase extraction (SPE) of Sudan dyes II, III and Red 7B from saffron and urine, their determination by HPLC was performed. The optimum conditions for SPE were achieved using 7 mL methanol/water (1:9, v/v, pH 7) as the washing solvent and 3 mL tetrahydrofuran for elution. Good clean-up and high (above 90%) recoveries were observed for all the analytes. The optimized mobile phase composition for HPLC analysis of these compounds was methanol-water (70:30, v/v). The SPE parameters, such as the maximum loading capacity and breakthrough volume, were also determined for each analyte. The limits of detection (LODs), limits of quantification (LOQs), linear ranges and recoveries for the analytes were 4.6-6.6 microg/L, 13.0-19.8 microg/L, 13.0-5000 microg/L (r2>0.99) and 92.5%-113.4%, respectively. The precisions (RSDs) of the overall analytical procedure, estimated by five replicate measurements for Sudan II, III and Red 7B in saffron and urine samples were 2.3%, 1.8% and 3.6%, respectively. The developed method is simple and successful in the application to the determination of Sudan dyes in saffron and urine samples with HPLC coupled with UV detection.

  10. Analytical performance, agreement and user-friendliness of six point-of-care testing urine analysers for urinary tract infection in general practice.

    PubMed

    Schot, Marjolein J C; van Delft, Sanne; Kooijman-Buiting, Antoinette M J; de Wit, Niek J; Hopstaken, Rogier M

    2015-05-18

    Various point-of-care testing (POCT) urine analysers are commercially available for routine urine analysis in general practice. The present study compares analytical performance, agreement and user-friendliness of six different POCT urine analysers for diagnosing urinary tract infection in general practice. All testing procedures were performed at a diagnostic centre for primary care in the Netherlands. Urine samples were collected at four general practices. Analytical performance and agreement of the POCT analysers regarding nitrite, leucocytes and erythrocytes, with the laboratory reference standard, was the primary outcome measure, and analysed by calculating sensitivity, specificity, positive and negative predictive value, and Cohen's κ coefficient for agreement. Secondary outcome measures were the user-friendliness of the POCT analysers, in addition to other characteristics of the analysers. The following six POCT analysers were evaluated: Uryxxon Relax (Macherey Nagel), Urisys 1100 (Roche), Clinitek Status (Siemens), Aution 11 (Menarini), Aution Micro (Menarini) and Urilyzer (Analyticon). Analytical performance was good for all analysers. Compared with laboratory reference standards, overall agreement was good, but differed per parameter and per analyser. Concerning the nitrite test, the most important test for clinical practice, all but one showed perfect agreement with the laboratory standard. For leucocytes and erythrocytes specificity was high, but sensitivity was considerably lower. Agreement for leucocytes varied between good to very good, and for the erythrocyte test between fair and good. First-time users indicated that the analysers were easy to use. They expected higher productivity and accuracy when using these analysers in daily practice. The overall performance and user-friendliness of all six commercially available POCT urine analysers was sufficient to justify routine use in suspected urinary tract infections in general practice. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Geovisual analytics to enhance spatial scan statistic interpretation: an analysis of U.S. cervical cancer mortality

    PubMed Central

    Chen, Jin; Roth, Robert E; Naito, Adam T; Lengerich, Eugene J; MacEachren, Alan M

    2008-01-01

    Background Kulldorff's spatial scan statistic and its software implementation – SaTScan – are widely used for detecting and evaluating geographic clusters. However, two issues make using the method and interpreting its results non-trivial: (1) the method lacks cartographic support for understanding the clusters in geographic context and (2) results from the method are sensitive to parameter choices related to cluster scaling (abbreviated as scaling parameters), but the system provides no direct support for making these choices. We employ both established and novel geovisual analytics methods to address these issues and to enhance the interpretation of SaTScan results. We demonstrate our geovisual analytics approach in a case study analysis of cervical cancer mortality in the U.S. Results We address the first issue by providing an interactive visual interface to support the interpretation of SaTScan results. Our research to address the second issue prompted a broader discussion about the sensitivity of SaTScan results to parameter choices. Sensitivity has two components: (1) the method can identify clusters that, while being statistically significant, have heterogeneous contents comprised of both high-risk and low-risk locations and (2) the method can identify clusters that are unstable in location and size as the spatial scan scaling parameter is varied. To investigate cluster result stability, we conducted multiple SaTScan runs with systematically selected parameters. The results, when scanning a large spatial dataset (e.g., U.S. data aggregated by county), demonstrate that no single spatial scan scaling value is known to be optimal to identify clusters that exist at different scales; instead, multiple scans that vary the parameters are necessary. We introduce a novel method of measuring and visualizing reliability that facilitates identification of homogeneous clusters that are stable across analysis scales. Finally, we propose a logical approach to proceed through the analysis of SaTScan results. Conclusion The geovisual analytics approach described in this manuscript facilitates the interpretation of spatial cluster detection methods by providing cartographic representation of SaTScan results and by providing visualization methods and tools that support selection of SaTScan parameters. Our methods distinguish between heterogeneous and homogeneous clusters and assess the stability of clusters across analytic scales. Method We analyzed the cervical cancer mortality data for the United States aggregated by county between 2000 and 2004. We ran SaTScan on the dataset fifty times with different parameter choices. Our geovisual analytics approach couples SaTScan with our visual analytic platform, allowing users to interactively explore and compare SaTScan results produced by different parameter choices. The Standardized Mortality Ratio and reliability scores are visualized for all the counties to identify stable, homogeneous clusters. We evaluated our analysis result by comparing it to that produced by other independent techniques including the Empirical Bayes Smoothing and Kafadar spatial smoother methods. The geovisual analytics approach introduced here is developed and implemented in our Java-based Visual Inquiry Toolkit. PMID:18992163

  12. Geovisual analytics to enhance spatial scan statistic interpretation: an analysis of U.S. cervical cancer mortality.

    PubMed

    Chen, Jin; Roth, Robert E; Naito, Adam T; Lengerich, Eugene J; Maceachren, Alan M

    2008-11-07

    Kulldorff's spatial scan statistic and its software implementation - SaTScan - are widely used for detecting and evaluating geographic clusters. However, two issues make using the method and interpreting its results non-trivial: (1) the method lacks cartographic support for understanding the clusters in geographic context and (2) results from the method are sensitive to parameter choices related to cluster scaling (abbreviated as scaling parameters), but the system provides no direct support for making these choices. We employ both established and novel geovisual analytics methods to address these issues and to enhance the interpretation of SaTScan results. We demonstrate our geovisual analytics approach in a case study analysis of cervical cancer mortality in the U.S. We address the first issue by providing an interactive visual interface to support the interpretation of SaTScan results. Our research to address the second issue prompted a broader discussion about the sensitivity of SaTScan results to parameter choices. Sensitivity has two components: (1) the method can identify clusters that, while being statistically significant, have heterogeneous contents comprised of both high-risk and low-risk locations and (2) the method can identify clusters that are unstable in location and size as the spatial scan scaling parameter is varied. To investigate cluster result stability, we conducted multiple SaTScan runs with systematically selected parameters. The results, when scanning a large spatial dataset (e.g., U.S. data aggregated by county), demonstrate that no single spatial scan scaling value is known to be optimal to identify clusters that exist at different scales; instead, multiple scans that vary the parameters are necessary. We introduce a novel method of measuring and visualizing reliability that facilitates identification of homogeneous clusters that are stable across analysis scales. Finally, we propose a logical approach to proceed through the analysis of SaTScan results. The geovisual analytics approach described in this manuscript facilitates the interpretation of spatial cluster detection methods by providing cartographic representation of SaTScan results and by providing visualization methods and tools that support selection of SaTScan parameters. Our methods distinguish between heterogeneous and homogeneous clusters and assess the stability of clusters across analytic scales. We analyzed the cervical cancer mortality data for the United States aggregated by county between 2000 and 2004. We ran SaTScan on the dataset fifty times with different parameter choices. Our geovisual analytics approach couples SaTScan with our visual analytic platform, allowing users to interactively explore and compare SaTScan results produced by different parameter choices. The Standardized Mortality Ratio and reliability scores are visualized for all the counties to identify stable, homogeneous clusters. We evaluated our analysis result by comparing it to that produced by other independent techniques including the Empirical Bayes Smoothing and Kafadar spatial smoother methods. The geovisual analytics approach introduced here is developed and implemented in our Java-based Visual Inquiry Toolkit.

  13. Simultaneous determination of PPCPs, EDCs, and artificial sweeteners in environmental water samples using a single-step SPE coupled with HPLC-MS/MS and isotope dilution.

    PubMed

    Tran, Ngoc Han; Hu, Jiangyong; Ong, Say Leong

    2013-09-15

    A high-throughput method for the simultaneous determination of 24 pharmaceuticals and personal care products (PPCPs), endocrine disrupting chemicals (EDCs) and artificial sweeteners (ASs) was developed. The method was based on a single-step solid phase extraction (SPE) coupled with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and isotope dilution. In this study, a single-step SPE procedure was optimized for simultaneous extraction of all target analytes. Good recoveries (≥ 70%) were observed for all target analytes when extraction was performed using Chromabond(®) HR-X (500 mg, 6 mL) cartridges under acidic condition (pH 2). HPLC-MS/MS parameters were optimized for the simultaneous analysis of 24 PPCPs, EDCs and ASs in a single injection. Quantification was performed by using 13 isotopically labeled internal standards (ILIS), which allows correcting efficiently the loss of the analytes during SPE procedure, matrix effects during HPLC-MS/MS and fluctuation in MS/MS signal intensity due to instrument. Method quantification limit (MQL) for most of the target analytes was below 10 ng/L in all water samples. The method was successfully applied for the simultaneous determination of PPCPs, EDCs and ASs in raw wastewater, surface water and groundwater samples collected in a local catchment area in Singapore. In conclusion, the developed method provided a valuable tool for investigating the occurrence, behavior, transport, and the fate of PPCPs, EDCs and ASs in the aquatic environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Analysis of activation energy in Couette-Poiseuille flow of nanofluid in the presence of chemical reaction and convective boundary conditions

    NASA Astrophysics Data System (ADS)

    Zeeshan, A.; Shehzad, N.; Ellahi, R.

    2018-03-01

    The motivation of the current article is to explore the energy activation in MHD radiative Couette-Poiseuille flow nanofluid in horizontal channel with convective boundary conditions. The mathematical model of Buongiorno [1] effectively describes the current flow analysis. Additionally, the impact of chemical reaction is also taken in account. The governing flow equations are simplified with the help of boundary layer approximations. Non-linear coupled equations for momentum, energy and mass transfer are tackled with analytical (HAM) technique. The influence of dimensionless convergence parameter like Brownian motion parameter, radiation parameter, buoyancy ratio parameter, dimensionless activation energy, thermophoresis parameter, temperature difference parameter, dimensionless reaction rate, Schmidt number, Brinkman number, Biot number and convection diffusion parameter on velocity, temperature and concentration profiles are discussed graphically and in tabular form. From the results, it is elaborate that the nanoparticle concentration is directly proportional to the chemical reaction with activation energy and the performance of Brownian motion on nanoparticle concentration gives reverse pattern to that of thermophoresis parameter.

  15. THE IMPACT OF POINT-SOURCE SUBTRACTION RESIDUALS ON 21 cm EPOCH OF REIONIZATION ESTIMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trott, Cathryn M.; Wayth, Randall B.; Tingay, Steven J., E-mail: cathryn.trott@curtin.edu.au

    Precise subtraction of foreground sources is crucial for detecting and estimating 21 cm H I signals from the Epoch of Reionization (EoR). We quantify how imperfect point-source subtraction due to limitations of the measurement data set yields structured residual signal in the data set. We use the Cramer-Rao lower bound, as a metric for quantifying the precision with which a parameter may be measured, to estimate the residual signal in a visibility data set due to imperfect point-source subtraction. We then propagate these residuals into two metrics of interest for 21 cm EoR experiments-the angular power spectrum and two-dimensional powermore » spectrum-using a combination of full analytic covariant derivation, analytic variant derivation, and covariant Monte Carlo simulations. This methodology differs from previous work in two ways: (1) it uses information theory to set the point-source position error, rather than assuming a global rms error, and (2) it describes a method for propagating the errors analytically, thereby obtaining the full correlation structure of the power spectra. The methods are applied to two upcoming low-frequency instruments that are proposing to perform statistical EoR experiments: the Murchison Widefield Array and the Precision Array for Probing the Epoch of Reionization. In addition to the actual antenna configurations, we apply the methods to minimally redundant and maximally redundant configurations. We find that for peeling sources above 1 Jy, the amplitude of the residual signal, and its variance, will be smaller than the contribution from thermal noise for the observing parameters proposed for upcoming EoR experiments, and that optimal subtraction of bright point sources will not be a limiting factor for EoR parameter estimation. We then use the formalism to provide an ab initio analytic derivation motivating the 'wedge' feature in the two-dimensional power spectrum, complementing previous discussion in the literature.« less

  16. Characterization of a turbomolecular-pumped magnetic sector mass spectrometer

    NASA Technical Reports Server (NTRS)

    Mehta, Narinder K.

    1988-01-01

    A Perkin Elmer MGA-1200, turbomolecular-pumped, magnetic sector, multiple gas analyzer mass spectrometer with modified inlet for fast response was characterized for the analysis of hydrogen, helium, oxygen and argon in nitrogen and helium background gases. This instrument was specially modified for the Vanderberg AFB SLC-6 Hydrogen Disposal Test Program, as a part of the Hydrogen Sampling System (H2S2). Linearity, precision, drift, detection limits and accuracy among other analytical parameters for each of the background gas were studied to evaluate the performance of the instrument. The result demonstrates that H2S2 mass spectrometer is a stable instrument and can be utilized for the quantitative analytical determination of hydrogen, helium, oxygen and argon in nitrogen and helium background gases.

  17. Analytical design of a hyper-spectral imaging spectrometer utilizing a convex grating

    NASA Astrophysics Data System (ADS)

    Kim, Seo H.; Kong, Hong J.; Ku, Hana; Lee, Jun H.

    2012-09-01

    This paper describes about the new design method for hyper-spectral Imaging spectrometers utilizing convex grating. Hyper-spectral imaging systems are power tools in the field of remote sensing. HSI systems collect at least 100 spectral bands of 10~20 nm width. Because the spectral signature is different and induced unique for each material, it should be possible to discriminate between one material and another based on difference in spectral signature of material. I mathematically analyzed parameters for the intellectual initial design. Main concept of this is the derivative of "ring of minimum aberration without vignetting". This work is a kind of analytical design of an Offner imaging spectrometer. Also, several experiment methods will be contrived to evaluate the performance of imaging spectrometer.

  18. Analytic proof of the existence of the Lorenz attractor in the extended Lorenz model

    NASA Astrophysics Data System (ADS)

    Ovsyannikov, I. I.; Turaev, D. V.

    2017-01-01

    We give an analytic (free of computer assistance) proof of the existence of a classical Lorenz attractor for an open set of parameter values of the Lorenz model in the form of Yudovich-Morioka-Shimizu. The proof is based on detection of a homoclinic butterfly with a zero saddle value and rigorous verification of one of the Shilnikov criteria for the birth of the Lorenz attractor; we also supply a proof for this criterion. The results are applied in order to give an analytic proof for the existence of a robust, pseudohyperbolic strange attractor (the so-called discrete Lorenz attractor) for an open set of parameter values in a 4-parameter family of 3D Henon-like diffeomorphisms.

  19. Analysis of Mathematical Modelling on Potentiometric Biosensors

    PubMed Central

    Mehala, N.; Rajendran, L.

    2014-01-01

    A mathematical model of potentiometric enzyme electrodes for a nonsteady condition has been developed. The model is based on the system of two coupled nonlinear time-dependent reaction diffusion equations for Michaelis-Menten formalism that describes the concentrations of substrate and product within the enzymatic layer. Analytical expressions for the concentration of substrate and product and the corresponding flux response have been derived for all values of parameters using the new homotopy perturbation method. Furthermore, the complex inversion formula is employed in this work to solve the boundary value problem. The analytical solutions obtained allow a full description of the response curves for only two kinetic parameters (unsaturation/saturation parameter and reaction/diffusion parameter). Theoretical descriptions are given for the two limiting cases (zero and first order kinetics) and relatively simple approaches for general cases are presented. All the analytical results are compared with simulation results using Scilab/Matlab program. The numerical results agree with the appropriate theories. PMID:25969765

  20. Analysis of mathematical modelling on potentiometric biosensors.

    PubMed

    Mehala, N; Rajendran, L

    2014-01-01

    A mathematical model of potentiometric enzyme electrodes for a nonsteady condition has been developed. The model is based on the system of two coupled nonlinear time-dependent reaction diffusion equations for Michaelis-Menten formalism that describes the concentrations of substrate and product within the enzymatic layer. Analytical expressions for the concentration of substrate and product and the corresponding flux response have been derived for all values of parameters using the new homotopy perturbation method. Furthermore, the complex inversion formula is employed in this work to solve the boundary value problem. The analytical solutions obtained allow a full description of the response curves for only two kinetic parameters (unsaturation/saturation parameter and reaction/diffusion parameter). Theoretical descriptions are given for the two limiting cases (zero and first order kinetics) and relatively simple approaches for general cases are presented. All the analytical results are compared with simulation results using Scilab/Matlab program. The numerical results agree with the appropriate theories.

  1. Damping parameter study of a perforated plate with bias flow

    NASA Astrophysics Data System (ADS)

    Mazdeh, Alireza

    One of the main impediments to successful operation of combustion systems in industrial and aerospace applications including gas turbines, ramjets, rocket motors, afterburners (augmenters) and even large heaters/boilers is the dynamic instability also known as thermo-acoustic instability. Concerns with this ongoing problem have grown with the introduction of Lean Premixed Combustion (LPC) systems developed to address the environmental concerns associated with the conventional combustion systems. The most common way to mitigate thermo-acoustic instability is adding acoustic damping to the combustor using acoustic liners. Recently damping properties of bias flow initially introduced to liners only for cooling purposes have been recognized and proven to be an asset in enhancing the damping effectiveness of liners. Acoustic liners are currently being designed using empirical design rules followed by build-test-improve steps; basically by trial and error. There is growing concerns on the lack of reliability associated with the experimental evaluation of the acoustic liners with small size apertures. The development of physics-based tools in assisting the design of such liners has become of great interest to practitioners recently. This dissertation focuses primarily on how Large-Eddy Simulations (LES) or similar techniques such as Scaled Adaptive Simulation (SAS) can be used to characterize damping properties of bias flow. The dissertation also reviews assumptions made in the existing analytical, semi-empirical, and numerical models, provides a criteria to rank order the existing models, and identifies the best existing theoretical model. Flow field calculations by LES provide good insight into the mechanisms that led to acoustic damping. Comparison of simulation results with empirical and analytical studies shows that LES simulation is a viable alternative to the empirical and analytical methods and can accurately predict the damping behavior of liners. Currently the role of LES for research studies concerned with damping properties of liners is limited to validation of other empirical or theoretical approaches. This research has shown that LES can go beyond that and can be used for performing parametric studies to characterize the sensitivity of acoustic properties of multi--perforated liners to the changes in the geometry and flow conditions and be used as a tool to design acoustic liners. The conducted research provides an insightful understanding about the contribution of different flow and geometry parameters such as perforated plate thickness, aperture radius, porosity factors and bias flow velocity. While the study agrees with previous observations obtained by analytical or experimental methods, it also quantifies the impact from these parameters on the acoustic impedance of perforated plate, a key parameter to determine the acoustic performance of any system. The conducted study has also explored the limitations and capabilities of commercial tool when are applied for performing simulation studies on damping properties of liners. The overall agreement between LES results and previous studies proves that commercial tools can be effectively used for these applications under certain conditions.

  2. A terahertz performance of hybrid single walled CNT based amplifier with analytical approach

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Song, Hanjung

    2018-01-01

    This work is focuses on terahertz performance of hybrid single walled carbon nanotube (CNT) based amplifier and proposed for measurement of soil parameters application. The proposed circuit topology provides hybrid structure which achieves wide impedance bandwidth of 0.33 THz within range of 1.07-THz to 1.42-THz with fractional amount of 28%. The single walled RF CNT network executes proposed ambition and proves its ability to resonant at 1.25-THz with analytical approach. Moreover, a RF based microstrip transmission line radiator used as compensator in the circuit topology which achieves more than 30 dB of gain. A proper methodology is chosen for achieves stability at circuit level in order to obtain desired optimal conditions. The fundamental approach optimizes matched impedance condition at (50+j0) Ω and noise variation with impact of series resistances for the proposed hybrid circuit topology and demonstrates the accuracy of performance parameters at the circuit level. The chip fabrication of the proposed circuit by using RF based commercial CMOS process of 45 nm which reveals promising results with simulation one. Additionally, power measurement analysis achieves highest output power of 26 dBm with power added efficiency of 78%. The succeed minimum noise figure from 0.6 dB to 0.4 dB is outstanding achievement for circuit topology at terahertz range. The chip area of hybrid circuit is 0.65 mm2 and power consumption of 9.6 mW.

  3. Aerodynamic performances of three fan stator designs operating with rotor having tip speed of 337 meters per second and pressure ratio of 1.54. Relation of analytical code calculations to experimental performance

    NASA Technical Reports Server (NTRS)

    Gelder, T. F.; Schmidt, J. F.; Esgar, G. M.

    1980-01-01

    A hub-to-shroud and a blade-to-blade internal-flow analysis code, both inviscid and basically subsonic, were used to calculate the flow parameters within four stator-blade rows. The produced ratios of maximum suction-surface velocity to trailing-edge velocity correlated well in the midspan region, with the measured total-parameters over the minimum-loss to near stall operating range for all stators and speeds studied. The potential benefits of a blade designed with the aid of these flow analysis codes are illustrated by a proposed redesign of one of the four stators studied. An overall efficiency improvement of 1.6 points above the peak measured for that stator is predicted for the redesign.

  4. Variable forgetting factor mechanisms for diffusion recursive least squares algorithm in sensor networks

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Cai, Yunlong; Li, Chunguang; de Lamare, Rodrigo C.

    2017-12-01

    In this work, we present low-complexity variable forgetting factor (VFF) techniques for diffusion recursive least squares (DRLS) algorithms. Particularly, we propose low-complexity VFF-DRLS algorithms for distributed parameter and spectrum estimation in sensor networks. For the proposed algorithms, they can adjust the forgetting factor automatically according to the posteriori error signal. We develop detailed analyses in terms of mean and mean square performance for the proposed algorithms and derive mathematical expressions for the mean square deviation (MSD) and the excess mean square error (EMSE). The simulation results show that the proposed low-complexity VFF-DRLS algorithms achieve superior performance to the existing DRLS algorithm with fixed forgetting factor when applied to scenarios of distributed parameter and spectrum estimation. Besides, the simulation results also demonstrate a good match for our proposed analytical expressions.

  5. Simulation study of a new inverse-pinch high Coulomb transfer switch

    NASA Technical Reports Server (NTRS)

    Choi, S. H.

    1984-01-01

    A simulation study of a simplified model of a high coulomb transfer switch is performed. The switch operates in an inverse pinch geometry formed by an all metal chamber, which greatly reduces hot spot formations on the electrode surfaces. Advantages of the switch over the conventional switches are longer useful life, higher current capability and lower inductance, which improves the characteristics required for a high repetition rate switch. The simulation determines the design parameters by analytical computations and comparison with the experimentally measured risetime, current handling capability, electrode damage, and hold-off voltages. The parameters of initial switch design can be determined for the anticipated switch performance. Results are in agreement with the experiment results. Although the model is simplified, the switch characteristics such as risetime, current handling capability, electrode damages, and hold-off voltages are accurately determined.

  6. Injector design guidelines for gas/liquid propellant systems

    NASA Technical Reports Server (NTRS)

    Falk, A. Y.; Burick, R. J.

    1973-01-01

    Injector design guidelines are provided for gas/liquid propellant systems. Information was obtained from a 30-month applied research program encompassing an analytical, design, and experimental effort to relate injector design parameters to simultaneous attainment of high performance and component (injector/thrust chamber) compatibility for gas/liquid space storable propellants. The gas/liquid propellant combination studied was FLOX (82.6% F2)/ ambient temperature gaseous methane. Design criteria that provide for simultaneous attainment of high performance and chamber compatibility are presented for both injector types. Parametric data are presented that are applicable for the design of circular coaxial and like-doublet injectors that operate with design parameters similar to those employed. However, caution should be exercised when applying these data to propellant combinations whose elements operate in ranges considerably different from those employed in this study.

  7. Vectorlike fermions and Higgs effective field theory revisited

    DOE PAGES

    Chen, Chien-Yi; Dawson, S.; Furlan, Elisabetta

    2017-07-10

    Heavy vectorlike quarks (VLQs) appear in many models of beyond the Standard Model physics. Direct experimental searches require these new quarks to be heavy, ≳ 800 – 1000 GeV . Here, we perform a global fit of the parameters of simple VLQ models in minimal representations of S U ( 2 ) L to precision data and Higgs rates. One interesting connection between anomalous Z bmore » $$\\bar{b}$$ interactions and Higgs physics in VLQ models is discussed. Finally, we present our analysis in an effective field theory (EFT) framework and show that the parameters of VLQ models are already highly constrained. Exact and approximate analytical formulas for the S and T parameters in the VLQ models we consider are available in the Supplemental Material as Mathematica files.« less

  8. Monte Carlo Solution to Find Input Parameters in Systems Design Problems

    NASA Astrophysics Data System (ADS)

    Arsham, Hossein

    2013-06-01

    Most engineering system designs, such as product, process, and service design, involve a framework for arriving at a target value for a set of experiments. This paper considers a stochastic approximation algorithm for estimating the controllable input parameter within a desired accuracy, given a target value for the performance function. Two different problems, what-if and goal-seeking problems, are explained and defined in an auxiliary simulation model, which represents a local response surface model in terms of a polynomial. A method of constructing this polynomial by a single run simulation is explained. An algorithm is given to select the design parameter for the local response surface model. Finally, the mean time to failure (MTTF) of a reliability subsystem is computed and compared with its known analytical MTTF value for validation purposes.

  9. Interaction Junk: User Interaction-Based Evaluation of Visual Analytic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endert, Alexander; North, Chris

    2012-10-14

    With the growing need for visualization to aid users in understanding large, complex datasets, the ability for users to interact and explore these datasets is critical. As visual analytic systems have advanced to leverage powerful computational models and data analytics capabilities, the modes by which users engage and interact with the information are limited. Often, users are taxed with directly manipulating parameters of these models through traditional GUIs (e.g., using sliders to directly manipulate the value of a parameter). However, the purpose of user interaction in visual analytic systems is to enable visual data exploration – where users can focusmore » on their task, as opposed to the tool or system. As a result, users can engage freely in data exploration and decision-making, for the purpose of gaining insight. In this position paper, we discuss how evaluating visual analytic systems can be approached through user interaction analysis, where the goal is to minimize the cognitive translation between the visual metaphor and the mode of interaction (i.e., reducing the “Interactionjunk”). We motivate this concept through a discussion of traditional GUIs used in visual analytics for direct manipulation of model parameters, and the importance of designing interactions the support visual data exploration.« less

  10. Rime ice accretion and its effect on airfoil performance. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Bragg, M. B.

    1982-01-01

    A methodology was developed to predict the growth of rime ice, and the resulting aerodynamic penalty on unprotected, subcritical, airfoil surfaces. The system of equations governing the trajectory of a water droplet in the airfoil flowfield is developed and a numerical solution is obtained to predict the mass flux of super cooled water droplets freezing on impact. A rime ice shape is predicted. The effect of time on the ice growth is modeled by a time-stepping procedure where the flowfield and droplet mass flux are updated periodically through the ice accretion process. Two similarity parameters, the trajectory similarity parameter and accumulation parameter, are found to govern the accretion of rime ice. In addition, an analytical solution is presented for Langmuir's classical modified inertia parameter. The aerodynamic evaluation of the effect of the ice accretion on airfoil performance is determined using an existing airfoil analysis code with empirical corrections. The change in maximum lift coefficient is found from an analysis of the new iced airfoil shape. The drag correction needed due to the severe surface roughness is formulated from existing iced airfoil and rough airfoil data. A small scale wind tunnel test was conducted to determine the change in airfoil performance due to a simulated rime ice shape.

  11. Explicit analytical tuning rules for digital PID controllers via the magnitude optimum criterion.

    PubMed

    Papadopoulos, Konstantinos G; Yadav, Praveen K; Margaris, Nikolaos I

    2017-09-01

    Analytical tuning rules for digital PID type-I controllers are presented regardless of the process complexity. This explicit solution allows control engineers 1) to make an accurate examination of the effect of the controller's sampling time to the control loop's performance both in the time and frequency domain 2) to decide when the control has to be I, PI and when the derivative, D, term has to be added or omitted 3) apply this control action to a series of stable benchmark processes regardless of their complexity. The former advantages are considered critical in industry applications, since 1) most of the times the choice of the digital controller's sampling time is based on heuristics and past criteria, 2) there is little a-priori knowledge of the controlled process making the choice of the type of the controller a trial and error exercise 3) model parameters change often depending on the control loop's operating point making in this way, the problem of retuning the controller's parameter a much challenging issue. Basis of the proposed control law is the principle of the PID tuning via the Magnitude Optimum criterion. The final control law involves the controller's sampling time T s within the explicit solution of the controller's parameters. Finally, the potential of the proposed method is justified by comparing its performance with the conventional PID tuning when controlling the same process. Further investigation regarding the choice of the controller's sampling time T s is also presented and useful conclusions for control engineers are derived. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Model Construction and Analysis of Respiration in Halobacterium salinarum.

    PubMed

    Talaue, Cherryl O; del Rosario, Ricardo C H; Pfeiffer, Friedhelm; Mendoza, Eduardo R; Oesterhelt, Dieter

    2016-01-01

    The archaeon Halobacterium salinarum can produce energy using three different processes, namely photosynthesis, oxidative phosphorylation and fermentation of arginine, and is thus a model organism in bioenergetics. Compared to its bacteriorhodopsin-driven photosynthesis, less attention has been devoted to modeling its respiratory pathway. We created a system of ordinary differential equations that models its oxidative phosphorylation. The model consists of the electron transport chain, the ATP synthase, the potassium uniport and the sodium-proton antiport. By fitting the model parameters to experimental data, we show that the model can explain data on proton motive force generation, ATP production, and the charge balancing of ions between the sodium-proton antiporter and the potassium uniport. We performed sensitivity analysis of the model parameters to determine how the model will respond to perturbations in parameter values. The model and the parameters we derived provide a resource that can be used for analytical studies of the bioenergetics of H. salinarum.

  13. Program for Weibull Analysis of Fatigue Data

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.

    2005-01-01

    A Fortran computer program has been written for performing statistical analyses of fatigue-test data that are assumed to be adequately represented by a two-parameter Weibull distribution. This program calculates the following: (1) Maximum-likelihood estimates of the Weibull distribution; (2) Data for contour plots of relative likelihood for two parameters; (3) Data for contour plots of joint confidence regions; (4) Data for the profile likelihood of the Weibull-distribution parameters; (5) Data for the profile likelihood of any percentile of the distribution; and (6) Likelihood-based confidence intervals for parameters and/or percentiles of the distribution. The program can account for tests that are suspended without failure (the statistical term for such suspension of tests is "censoring"). The analytical approach followed in this program for the software is valid for type-I censoring, which is the removal of unfailed units at pre-specified times. Confidence regions and intervals are calculated by use of the likelihood-ratio method.

  14. Homeostatic enhancement of active mechanotransduction

    NASA Astrophysics Data System (ADS)

    Milewski, Andrew; O'Maoiléidigh, Dáibhid; Hudspeth, A. J.

    2018-05-01

    Our sense of hearing boasts exquisite sensitivity to periodic signals. Experiments and modeling imply, however, that the auditory system achieves this performance for only a narrow range of parameter values. As a result, small changes in these values could compromise the ability of the mechanosensory hair cells to detect stimuli. We propose that, rather than exerting tight control over parameters, the auditory system employs a homeostatic mechanism that ensures the robustness of its operation to variation in parameter values. Through analytical techniques and computer simulations we investigate whether a homeostatic mechanism renders the hair bundle's signal-detection ability more robust to alterations in experimentally accessible parameters. When homeostasis is enforced, the range of values for which the bundle's sensitivity exceeds a threshold can increase by more than an order of magnitude. The robustness of cochlear function based on somatic motility or hair bundle motility may be achieved by employing the approach we describe here.

  15. The shape parameter and its modification for defining coastal profiles

    NASA Astrophysics Data System (ADS)

    Türker, Umut; Kabdaşli, M. Sedat

    2009-03-01

    The shape parameter is important for the theoretical description of the sandy coastal profiles. This parameter has previously been defined as a function of the sediment-settling velocity. However, the settling velocity cannot be characterized over a wide range of sediment grains. This, in turn, limits the calculation of the shape parameter over a wide range. This paper provides a simpler and faster analytical equation to describe the shape parameter. The validity of the equation has been tested and compared with the previously estimated values given in both graphical and tabular forms. The results of this study indicate that the analytical solutions of the shape parameter improved the usability of profile better than graphical solutions, predicting better results both at the surf zone and offshore.

  16. (Compactified) black branes in four dimensional f(R)-gravity

    NASA Astrophysics Data System (ADS)

    Dimakis, N.; Giacomini, Alex; Paliathanasis, Andronikos

    2018-02-01

    A new family of analytical solutions in a four dimensional static spacetime is presented for f (R) -gravity. In contrast to General Relativity, we find that a non trivial black brane/string solution is supported in vacuum power law f (R) -gravity for appropriate values of the parameters characterizing the model and when axisymmetry is introduced in the line element. For the aforementioned solution, we perform a brief investigation over its basic thermodynamic quantities.

  17. Modeling of a ring rosen-type piezoelectric transformer by Hamilton's principle.

    PubMed

    Nadal, Clément; Pigache, Francois; Erhart, Jiří

    2015-04-01

    This paper deals with the analytical modeling of a ring Rosen-type piezoelectric transformer. The developed model is based on a Hamiltonian approach, enabling to obtain main parameters and performance evaluation for the first radial vibratory modes. Methodology is detailed, and final results, both the input admittance and the electric potential distribution on the surface of the secondary part, are compared with numerical and experimental ones for discussion and validation.

  18. Applicability of Time-Averaged Holography for Micro-Electro-Mechanical System Performing Non-Linear Oscillations

    PubMed Central

    Palevicius, Paulius; Ragulskis, Minvydas; Palevicius, Arvydas; Ostasevicius, Vytautas

    2014-01-01

    Optical investigation of movable microsystem components using time-averaged holography is investigated in this paper. It is shown that even a harmonic excitation of a non-linear microsystem may result in an unpredictable chaotic motion. Analytical results between parameters of the chaotic oscillations and the formation of time-averaged fringes provide a deeper insight into computational and experimental interpretation of time-averaged MEMS holograms. PMID:24451467

  19. MARA (Multimode Airborne Radar Altimeter) system documentation. Volume 1: MARA system requirements document

    NASA Technical Reports Server (NTRS)

    Parsons, C. L. (Editor)

    1989-01-01

    The Multimode Airborne Radar Altimeter (MARA), a flexible airborne radar remote sensing facility developed by NASA's Goddard Space Flight Center, is discussed. This volume describes the scientific justification for the development of the instrument and the translation of these scientific requirements into instrument design goals. Values for key instrument parameters are derived to accommodate these goals, and simulations and analytical models are used to estimate the developed system's performance.

  20. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 3

    NASA Technical Reports Server (NTRS)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit design of a multicylinder engine for eventual flight applications.

  1. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 2

    NASA Technical Reports Server (NTRS)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit a design of a multicylinder engine for eventual flight applications.

  2. Semi-analytical solutions of the Schnakenberg model of a reaction-diffusion cell with feedback

    NASA Astrophysics Data System (ADS)

    Al Noufaey, K. S.

    2018-06-01

    This paper considers the application of a semi-analytical method to the Schnakenberg model of a reaction-diffusion cell. The semi-analytical method is based on the Galerkin method which approximates the original governing partial differential equations as a system of ordinary differential equations. Steady-state curves, bifurcation diagrams and the region of parameter space in which Hopf bifurcations occur are presented for semi-analytical solutions and the numerical solution. The effect of feedback control, via altering various concentrations in the boundary reservoirs in response to concentrations in the cell centre, is examined. It is shown that increasing the magnitude of feedback leads to destabilization of the system, whereas decreasing this parameter to negative values of large magnitude stabilizes the system. The semi-analytical solutions agree well with numerical solutions of the governing equations.

  3. Rubric system for evaluation of crown preparation performed by dental students.

    PubMed

    Habib, S R

    2018-03-01

    This study aimed to investigate the use of an analytic rubric system for the evaluation of all-ceramic crown preparation on the right maxillary central incisor performed by the dental students. Seventy-two-third-year students and 8 faculty members from prosthodontics participated in this double-blind study. The students prepared an ivorine tooth # 11 for all-ceramic crown. The students were given clear instructions regarding the all-ceramic crown preparation and informed about the criteria for the assessment of the preparation. An analytic rubric based on 10-point scale for assessment of various preparation parameters was used by the 8 examiners. Descriptive statistics, ANOVA and post hoc Tukey tests were used for statistical analysis. One-way analysis of variance indicated significance amongst the examiners for all the parameters except for time management. The overall mean scoring by examiners was 7.60 ± 1.18, with highest and lowest mean scores for Examiner 1 (8.02 ± 1.06) and Examiner 4 (6.82 ± 1.50), respectively. The highest number of interexaminer variation (difference) in scoring was found for two plane reduction, and the least difference amongst the examiners was observed for finishing of margins and walls of the preparation. Examiner 4 had the highest number of significant difference with the rest of the examiners. The students scored least marks in axial reduction (56.33%) and preservation of adjacent teeth (66.9%). Criteria-based assessment using analytic rubric for crown preparations in pre-clinical fixed prosthodontics is an effective tool for finding the errors/weak areas of dental students. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Comparison of the response of four aerosol detectors used with ultra high pressure liquid chromatography.

    PubMed

    Hutchinson, Joseph P; Li, Jianfeng; Farrell, William; Groeber, Elizabeth; Szucs, Roman; Dicinoski, Greg; Haddad, Paul R

    2011-03-25

    The responses of four different types of aerosol detectors have been evaluated and compared to establish their potential use as a universal detector in conjunction with ultra high pressure liquid chromatography (UHPLC). Two charged-aerosol detectors, namely Corona CAD and Corona Ultra, and also two different types of light-scattering detectors (an evaporative light scattering detector, and a nano-quantity analyte detector [NQAD]) were evaluated. The responses of these detectors were systematically investigated under changing experimental and instrumental parameters, such as the mobile phase flow-rate, analyte concentration, mobile phase composition, nebulizer temperature, evaporator temperature, evaporator gas flow-rate and instrumental signal filtering after detection. It was found that these parameters exerted non-linear effects on the responses of the aerosol detectors and must therefore be considered when designing analytical separation conditions, particularly when gradient elution is performed. Identical reversed-phase gradient separations were compared on all four aerosol detectors and further compared with UV detection at 200 nm. The aerosol detectors were able to detect all 11 analytes in a test set comprising species having a variety of physicochemical properties, whilst UV detection was applicable only to those analytes containing chromophores. The reproducibility of the detector response for 11 analytes over 10 consecutive separations was found to be approximately 5% for the charged-aerosol detectors and approximately 11% for the light-scattering detectors. The tested analytes included semi-volatile species which exhibited a more variable response on the aerosol detectors. Peak efficiencies were generally better on the aerosol detectors in comparison to UV detection and particularly so for the light-scattering detectors which exhibited efficiencies of around 110,000 plates per metre. Limits of detection were calculated using different mobile phase compositions and the NQAD detector was found to be the most sensitive (LOD of 10 ng/mL), followed by the Corona CAD (76 ng/mL), then UV detection at 200 nm (178 ng/mL) using an injection volume of 25 μL. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Beyond Control Panels: Direct Manipulation for Visual Analytics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endert, Alexander; Bradel, Lauren; North, Chris

    2013-07-19

    Information Visualization strives to provide visual representations through which users can think about and gain insight into information. By leveraging the visual and cognitive systems of humans, complex relationships and phenomena occurring within datasets can be uncovered by exploring information visually. Interaction metaphors for such visualizations are designed to enable users direct control over the filters, queries, and other parameters controlling how the data is visually represented. Through the evolution of information visualization, more complex mathematical and data analytic models are being used to visualize relationships and patterns in data – creating the field of Visual Analytics. However, the expectationsmore » for how users interact with these visualizations has remained largely unchanged – focused primarily on the direct manipulation of parameters of the underlying mathematical models. In this article we present an opportunity to evolve the methodology for user interaction from the direct manipulation of parameters through visual control panels, to interactions designed specifically for visual analytic systems. Instead of focusing on traditional direct manipulation of mathematical parameters, the evolution of the field can be realized through direct manipulation within the visual representation – where users can not only gain insight, but also interact. This article describes future directions and research challenges that fundamentally change the meaning of direct manipulation with regards to visual analytics, advancing the Science of Interaction.« less

  6. Adaption of a parallel-path poly(tetrafluoroethylene) nebulizer to an evaporative light scattering detector: Optimization and application to studies of poly(dimethylsiloxane) oligomers as a model polymer.

    PubMed

    Durner, Bernhard; Ehmann, Thomas; Matysik, Frank-Michael

    2018-06-05

    The adaption of an parallel-path poly(tetrafluoroethylene)(PTFE) ICP-nebulizer to an evaporative light scattering detector (ELSD) was realized. This was done by substituting the originally installed concentric glass nebulizer of the ELSD. The performance of both nebulizers was compared regarding nebulizer temperature, evaporator temperature, flow rate of nebulizing gas and flow rate of mobile phase of different solvents using caffeine and poly(dimethylsiloxane) (PDMS) as analytes. Both nebulizers showed similar performances but for the parallel-path PTFE nebulizer the performance was considerably better at low LC flow rates and the nebulizer lifetime was substantially increased. In general, for both nebulizers the highest sensitivity was obtained by applying the lowest possible evaporator temperature in combination with the highest possible nebulizer temperature at preferably low gas flow rates. Besides the optimization of detector parameters, response factors for various PDMS oligomers were determined and the dependency of the detector signal on molar mass of the analytes was studied. The significant improvement regarding long-term stability made the modified ELSD much more robust and saved time and money by reducing the maintenance efforts. Thus, especially in polymer HPLC, associated with a complex matrix situation, the PTFE-based parallel-path nebulizer exhibits attractive characteristics for analytical studies of polymers. Copyright © 2018. Published by Elsevier B.V.

  7. Development and validation of LC-MS/MS methods for the determination of mirabegron and its metabolites in human plasma and their application to a clinical pharmacokinetic study.

    PubMed

    Teijlingen, Raymond van; Meijer, John; Takusagawa, Shin; Gelderen, Marcel van; Beld, Cas van den; Usui, Takashi

    2012-03-01

    Mirabegron is being developed for the treatment of overactive bladder. To support the development of mirabegron, including pharmacokinetic studies, liquid chromatography/tandem mass spectrometry methods for mirabegron and eight metabolites (M5, M8, M11-M16) were developed and validated for heparinized human plasma containing sodium fluoride. Four separate bioanalytical methods were developed for the analysis of: (1) mirabegron; (2) M5 and M16; (3) M8; and (4) M11-M15. Either solid-phase extraction or liquid-liquid extraction was used to extract the analytes of interest from matrix constituents. For mirabegron, an Inertsil C₈-3 analytical column was used and detection was performed using a triple-quad mass spectrometer equipped with an atmospheric pressure chemical ionization interface. For the metabolite assays, chromatographic separation was performed through a Phenomenex Synergi Fusion-RP C₁₈ analytical column and detection was performed using a triple-quad mass spectrometer equipped with a Heated Electrospray Ionization interface. The validation results demonstrated that the developed liquid chromatography/tandem mass spectrometry methods were precise, accurate, and selective for the determination of mirabegron and its metabolites in human plasma. All methods were successfully applied in evaluating the pharmacokinetic parameters of mirabegron and metabolites in human plasma. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Salting-out assisted liquid-liquid extraction coupled to ultra-high performance liquid chromatography-tandem mass spectrometry for the determination of tetracycline residues in infant foods.

    PubMed

    Moreno-González, David; García-Campaña, Ana M

    2017-04-15

    The use of salting-out assisted liquid-liquid extraction (SALLE) combined with ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) has been evaluated for the determination of tetracyclines in infant foods based on meat and vegetables or in milk. To obtain satisfactory extraction efficiencies for the studied analytes, several parameters affecting the SALLE procedure were optimized. Analytical performances of the method were satisfactory, obtaining limits of quantification lower than 0.48μgkg -1 in all cases. The precision, expressed as relative standard deviation (%, RSD) was below 11.3%. The extraction efficiency for fortified samples ranged from 89.2 to 96.8%, with RSDs lower than 7.3%. Matrix effect was evaluated for all samples studied, being lower than |21|% in all cases. In relation to the low solvent consumption, the proposed methodology could be considered rapid, cheap and environmentally friendly. Its applicability has been successfully tested in a wide range of infant foods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. An Efficient and Effective Design of InP Nanowires for Maximal Solar Energy Harvesting.

    PubMed

    Wu, Dan; Tang, Xiaohong; Wang, Kai; He, Zhubing; Li, Xianqiang

    2017-11-25

    Solar cells based on subwavelength-dimensions semiconductor nanowire (NW) arrays promise a comparable or better performance than their planar counterparts by taking the advantages of strong light coupling and light trapping. In this paper, we present an accurate and time-saving analytical design for optimal geometrical parameters of vertically aligned InP NWs for maximal solar energy absorption. Short-circuit current densities are calculated for each NW array with different geometrical dimensions under solar illumination. Optimal geometrical dimensions are quantitatively presented for single, double, and multiple diameters of the NW arrays arranged both squarely and hexagonal achieving the maximal short-circuit current density of 33.13 mA/cm 2 . At the same time, intensive finite-difference time-domain numerical simulations are performed to investigate the same NW arrays for the highest light absorption. Compared with time-consuming simulations and experimental results, the predicted maximal short-circuit current densities have tolerances of below 2.2% for all cases. These results unambiguously demonstrate that this analytical method provides a fast and accurate route to guide high performance InP NW-based solar cell design.

  10. An Efficient and Effective Design of InP Nanowires for Maximal Solar Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Wu, Dan; Tang, Xiaohong; Wang, Kai; He, Zhubing; Li, Xianqiang

    2017-11-01

    Solar cells based on subwavelength-dimensions semiconductor nanowire (NW) arrays promise a comparable or better performance than their planar counterparts by taking the advantages of strong light coupling and light trapping. In this paper, we present an accurate and time-saving analytical design for optimal geometrical parameters of vertically aligned InP NWs for maximal solar energy absorption. Short-circuit current densities are calculated for each NW array with different geometrical dimensions under solar illumination. Optimal geometrical dimensions are quantitatively presented for single, double, and multiple diameters of the NW arrays arranged both squarely and hexagonal achieving the maximal short-circuit current density of 33.13 mA/cm2. At the same time, intensive finite-difference time-domain numerical simulations are performed to investigate the same NW arrays for the highest light absorption. Compared with time-consuming simulations and experimental results, the predicted maximal short-circuit current densities have tolerances of below 2.2% for all cases. These results unambiguously demonstrate that this analytical method provides a fast and accurate route to guide high performance InP NW-based solar cell design.

  11. Simultaneous Determination of Food-Related Biogenic Amines and Precursor Amino Acids Using in Situ Derivatization Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction by Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry.

    PubMed

    He, Yongrui; Zhao, Xian-En; Wang, Renjun; Wei, Na; Sun, Jing; Dang, Jun; Chen, Guang; Liu, Zhiqiang; Zhu, Shuyun; You, Jinmao

    2016-11-02

    A simple, rapid, sensitive, selective, and environmentally friendly method, based on in situ derivatization ultrasound-assisted dispersive liquid-liquid microextraction (in situ DUADLLME) coupled with ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) using multiple reaction monitoring (MRM) mode has been developed for the simultaneous determination of food-related biogenic amines and amino acids. A new mass-spectrometry-sensitive derivatization reagent 4'-carbonyl chloride rosamine (CCR) was designed, synthesized, and first reported. Parameters and conditions of in situ DUADLLME and UHPLC-MS/MS were optimized in detail. Under the optimized conditions, the in situ DUADLLME was completed speedily (within 1 min) with high derivatization efficiencies (≥98.5%). With the cleanup and concentration of microextraction step, good analytical performance was obtained for the analytes. The results showed that this method was accurate and practical for quantification of biogenic amines and amino acids in common food samples (red wine, beer, wine, cheese, sausage, and fish).

  12. Stability of the fluid interface in a Hele-Shaw cell subjected to horizontal vibrations

    NASA Astrophysics Data System (ADS)

    Lyubimova, T. P.; Lyubimov, D. V.; Sadilov, E. S.; Popov, D. M.

    2017-07-01

    The stability of the horizontal interface of two immiscible viscous fluids in a Hele-Shaw cell subject to gravity and horizontal vibrations is studied. The problem is reduced to the generalized Hill equation, which is solved analytically by the multiple scale method and numerically. The long-wave instability, the resonance (parametric resonance) excitation of waves at finite frequencies of vibrations (for the first three resonances), and the limit of high-frequency vibrations are studied analytically under the assumption of small amplitudes of vibrations and small viscosity. For finite amplitudes of vibrations, finite wave numbers, and finite viscosity, the study is performed numerically. The influence of the specific natural control parameters and physical parameters of the system on its instability threshold is discussed. The results provide extension to other results [J. Bouchgl, S. Aniss, and M. Souhar, Phys. Rev. E 88, 023027 (2013), 10.1103/PhysRevE.88.023027], where the authors considered a similar problem but took into account viscosity in the basic state and did not consider it in the equations for perturbations.

  13. A Protocol Layer Trust-Based Intrusion Detection Scheme for Wireless Sensor Networks

    PubMed Central

    Wang, Jian; Jiang, Shuai; Fapojuwo, Abraham O.

    2017-01-01

    This article proposes a protocol layer trust-based intrusion detection scheme for wireless sensor networks. Unlike existing work, the trust value of a sensor node is evaluated according to the deviations of key parameters at each protocol layer considering the attacks initiated at different protocol layers will inevitably have impacts on the parameters of the corresponding protocol layers. For simplicity, the paper mainly considers three aspects of trustworthiness, namely physical layer trust, media access control layer trust and network layer trust. The per-layer trust metrics are then combined to determine the overall trust metric of a sensor node. The performance of the proposed intrusion detection mechanism is then analyzed using the t-distribution to derive analytical results of false positive and false negative probabilities. Numerical analytical results, validated by simulation results, are presented in different attack scenarios. It is shown that the proposed protocol layer trust-based intrusion detection scheme outperforms a state-of-the-art scheme in terms of detection probability and false probability, demonstrating its usefulness for detecting cross-layer attacks. PMID:28555023

  14. A Protocol Layer Trust-Based Intrusion Detection Scheme for Wireless Sensor Networks.

    PubMed

    Wang, Jian; Jiang, Shuai; Fapojuwo, Abraham O

    2017-05-27

    This article proposes a protocol layer trust-based intrusion detection scheme for wireless sensor networks. Unlike existing work, the trust value of a sensor node is evaluated according to the deviations of key parameters at each protocol layer considering the attacks initiated at different protocol layers will inevitably have impacts on the parameters of the corresponding protocol layers. For simplicity, the paper mainly considers three aspects of trustworthiness, namely physical layer trust, media access control layer trust and network layer trust. The per-layer trust metrics are then combined to determine the overall trust metric of a sensor node. The performance of the proposed intrusion detection mechanism is then analyzed using the t-distribution to derive analytical results of false positive and false negative probabilities. Numerical analytical results, validated by simulation results, are presented in different attack scenarios. It is shown that the proposed protocol layer trust-based intrusion detection scheme outperforms a state-of-the-art scheme in terms of detection probability and false probability, demonstrating its usefulness for detecting cross-layer attacks.

  15. Analytical instrumentation infrastructure for combinatorial and high-throughput development of formulated discrete and gradient polymeric sensor materials arrays

    NASA Astrophysics Data System (ADS)

    Potyrailo, Radislav A.; Hassib, Lamyaa

    2005-06-01

    Multicomponent polymer-based formulations of optical sensor materials are difficult and time consuming to optimize using conventional approaches. To address these challenges, our long-term goal is to determine relationships between sensor formulation and sensor response parameters using new scientific methodologies. As the first step, we have designed and implemented an automated analytical instrumentation infrastructure for combinatorial and high-throughput development of polymeric sensor materials for optical sensors. Our approach is based on the fabrication and performance screening of discrete and gradient sensor arrays. Simultaneous formation of multiple sensor coatings into discrete 4×6, 6×8, and 8×12 element arrays (3-15μL volume per element) and their screening provides not only a well-recognized acceleration in the screening rate, but also considerably reduces or even eliminates sources of variability, which are randomly affecting sensors response during a conventional one-at-a-time sensor coating evaluation. The application of gradient sensor arrays provides additional capabilities for rapid finding of the optimal formulation parameters.

  16. Detection of long wavelength infrared at moderate temperatures

    NASA Technical Reports Server (NTRS)

    Tredwell, T. J.

    1977-01-01

    Technical approaches for the advanced development of 8-12 micrometer detectors operating at elevated temperatures were defined. The theoretical limits to performance of 8-12 micrometer quantum detectors (photoconductive and photovoltaic) and thermal detectors (pyroelectrics, bolometers etc). An analytic model of signal and noise in both quantum detectors and pyroelectric detectors was developed and candidate materials for both detector types were identified and examined. The present status of both quantum and thermal detectors was assessed as well as the parameters limiting operating temperature and detectivity. The areas of research and development likely to lead to detector performance near the theoretical limit are identified.

  17. Oscillating-flow loss test results in rectangular heat exchanger passages

    NASA Technical Reports Server (NTRS)

    Wood, J. Gary

    1991-01-01

    Test results of oscillating flow losses in rectangular heat exchanger passages of various aspect ratios are given. This work was performed in support of the design of a free-piston Stirling engine (FPSE) for a dynamic space power conversion system. Oscillating flow loss testing was performed using an oscillating flow rig, which was based on a variable stroke and variable frequency linear drive motor. Tests were run over a range of oscillating flow parameters encompassing the flow regimes of the proposed engine design. Test results are presented in both tabular and graphical form and are compared against analytical predictions.

  18. Simultaneous analysis of multiple classes of antimicrobials in environmental water samples using SPE coupled with UHPLC-ESI-MS/MS and isotope dilution.

    PubMed

    Tran, Ngoc Han; Chen, Hongjie; Do, Thanh Van; Reinhard, Martin; Ngo, Huu Hao; He, Yiliang; Gin, Karina Yew-Hoong

    2016-10-01

    A robust and sensitive analytical method was developed for the simultaneous analysis of 21 target antimicrobials in different environmental water samples. Both single SPE and tandem SPE cartridge systems were investigated to simultaneously extract multiple classes of antimicrobials. Experimental results showed that good extraction efficiencies (84.5-105.6%) were observed for the vast majority of the target analytes when extraction was performed using the tandem SPE cartridge (SB+HR-X) system under an extraction pH of 3.0. HPLC-MS/MS parameters were optimized for simultaneous analysis of all the target analytes in a single injection. Quantification of target antimicrobials in water samples was accomplished using 15 isotopically labeled internal standards (ILISs), which allowed the efficient compensation of the losses of target analytes during sample preparation and correction of matrix effects during UHPLC-MS/MS as well as instrument fluctuations in MS/MS signal intensity. Method quantification limit (MQL) for most target analytes based on SPE was below 5ng/L for surface waters, 10ng/L for treated wastewater effluents, and 15ng/L for raw wastewater. The method was successfully applied to detect and quantify the occurrence of the target analytes in raw influent, treated effluent and surface water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Influence of a strong sample solvent on analyte dispersion in chromatographic columns.

    PubMed

    Mishra, Manoranjan; Rana, Chinar; De Wit, A; Martin, Michel

    2013-07-05

    In chromatographic columns, when the eluting strength of the sample solvent is larger than that of the carrier liquid, a deformation of the analyte zone occurs because its frontal part moves at a relatively high velocity due to a low retention factor in the sample solvent while the rear part of the analyte zone is more retained in the carrier liquid and hence moves at a lower velocity. The influence of this solvent strength effect on the separation of analytes is studied here theoretically using a mass balance model describing the spatio-temporal evolution of the eluent, the sample solvent and the analyte. The viscosity of the sample solvent and carrier fluid is supposed to be the same (i.e. no viscous fingering effects are taken into account). A linear isotherm adsorption with a retention factor depending upon the local concentration of the liquid phase is considered. The governing equations are numerically solved by using a Fourier spectral method and parametric studies are performed to analyze the effect of various governing parameters on the dispersion and skewness of the analyte zone. The distortion of this zone is found to depend strongly on the difference in eluting strength between the mobile phase and the sample solvent as well as on the sample volume. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Application of Analytical Quality by Design concept for bilastine and its degradation impurities determination by hydrophilic interaction liquid chromatographic method.

    PubMed

    Terzić, Jelena; Popović, Igor; Stajić, Ana; Tumpa, Anja; Jančić-Stojanović, Biljana

    2016-06-05

    This paper deals with the development of hydrophilic interaction liquid chromatographic (HILIC) method for the analysis of bilastine and its degradation impurities following Analytical Quality by Design approach. It is the first time that the method for bilastine and its impurities is proposed. The main objective was to identify the conditions where an adequate separation in minimal analysis duration could be achieved within a robust region. Critical process parameters which have the most influence on method performance were defined as acetonitrile content in the mobile phase, pH of the aqueous phase and ammonium acetate concentration in the aqueous phase. Box-Behnken design was applied for establishing a relationship between critical process parameters and critical quality attributes. The defined mathematical models and Monte Carlo simulations were used to identify the design space. Fractional factorial design was applied for experimental robustness testing and the method is validated to verify the adequacy of selected optimal conditions: the analytical column Luna(®) HILIC (100mm×4.6mm, 5μm particle size); mobile phase consisted of acetonitrile-aqueous phase (50mM ammonium acetate, pH adjusted to 5.3 with glacial acetic acid) (90.5:9.5, v/v); column temperature 30°C, mobile phase flow rate 1mLmin(-1), wavelength of detection 275nm. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Comparative measurements of mineral elements in milk powders with laser-induced breakdown spectroscopy and inductively coupled plasma atomic emission spectroscopy.

    PubMed

    Lei, W Q; El Haddad, J; Motto-Ros, V; Gilon-Delepine, N; Stankova, A; Ma, Q L; Bai, X S; Zheng, L J; Zeng, H P; Yu, J

    2011-07-01

    Mineral elements contained in commercially available milk powders, including seven infant formulae and one adult milk, were analyzed with inductively coupled plasma atomic emission spectrometry (ICP-AES) and laser-induced breakdown spectroscopy (LIBS). The purpose of this work was, through a direct comparison of the analytical results, to provide an assessment of the performance of LIBS, and especially of the procedure of calibration-free LIBS (CF-LIBS), to deal with organic compounds such as milk powders. In our experiments, the matrix effect was clearly observed affecting the analytical results each time laser ablation was employed for sampling. Such effect was in addition directly observed by determining the physical parameters of the plasmas induced on the different samples. The CF-LIBS procedure was implemented to deduce the concentrations of Mg and K with Ca as the internal reference element. Quantitative analytical results with CF-LIBS were validated with ICP-AES measurements and nominal concentrations specified for commercial milks. The obtained good results with the CF-LIBS procedure demonstrate its capacity to take into account the difference in physical parameters of the plasma in the calculation of the concentrations of mineral elements, which allows a significant reduction of the matrix effect related to laser ablation. We finally discuss the way to optimize the implementation of the CF-LIBS procedure for the analysis of mineral elements in organic materials.

  2. Build-Up Approach to Updating the Mock Quiet Spike Beam Model

    NASA Technical Reports Server (NTRS)

    Herrera, Claudia Y.; Pak, Chan-gi

    2007-01-01

    When a new aircraft is designed or a modification is done to an existing aircraft, the aeroelastic properties of the aircraft should be examined to ensure the aircraft is flight worthy. Evaluating the aeroelastic properties of a new or modified aircraft can include performing a variety of analyses, such as modal and flutter analyses. In order to produce accurate results from these analyses, it is imperative to work with finite element models (FEM) that have been validated by or correlated to ground vibration test (GVT) data, Updating an analytical model using measured data is a challenge in the area of structural dynamics. The analytical model update process encompasses a series of optimizations that match analytical frequencies and mode shapes to the measured modal characteristics of structure. In the past, the method used to update a model to test data was "trial and error." This is an inefficient method - running a modal analysis, comparing the analytical results to the GVT data, manually modifying one or more structural parameters (mass, CG, inertia, area, etc.), rerunning the analysis, and comparing the new analytical modal characteristics to the GVT modal data. If the match is close enough (close enough defined by analyst's updating requirements), then the updating process is completed. If the match does not meet updating-requirements, then the parameters are changed again and the process is repeated. Clearly, this manual optimization process is highly inefficient for large FEM's and/or a large number of structural parameters. NASA Dryden Flight Research Center (DFRC) has developed, in-house, a Mode Matching Code that automates the above-mentioned optimization process, DFRC's in-house Mode Matching Code reads mode shapes and frequencies acquired from GVT to create the target model. It also reads the current analytical model, as we11 as the design variables and their upper and lower limits. It performs a modal analysis on this model and modifies it to create an updated model that has similar mode shapes and frequencies as those of the target model. The Mode Matching Code output frequencies and modal assurance criteria (MAC) values that allow for the quantified comparison of the updated model versus the target model. A recent application of this code is the F453 supersonic flight testing platform, NASA DFRC possesses a modified F-15B that is used as a test bed aircraft for supersonic flight experiments. Traditionally, the finite element model of the test article is generated. A GVT is done on the test article ta validate and update its FEM. This FEM is then mated to the F-15B model, which was correlated to GVT data in fall of 2004, A GVT is conducted with the test article mated to the aircraft, and this mated F-15B/ test article FEM is correlated to this final GVT.

  3. Analytical Investigation and Improvement of Performance of a Proton Exchange Membrane (Pem) Fuel Cell in Mobile Applications

    NASA Astrophysics Data System (ADS)

    Khazaee, I.

    2015-05-01

    In this study, the performance of a proton exchange membrane fuel cell in mobile applications is investigated analytically. At present the main use and advantages of fuel cells impact particularly strongly on mobile applications such as vehicles, mobile computers and mobile telephones. Some external parameters such as the cell temperature (Tcell ) , operating pressure of gases (P) and air stoichiometry (λair ) affect the performance and voltage losses in the PEM fuel cell. Because of the existence of many theoretical, empirical and semi-empirical models of the PEM fuel cell, it is necessary to compare the accuracy of these models. But theoretical models that are obtained from thermodynamic and electrochemical approach, are very exact but complex, so it would be easier to use the empirical and smi-empirical models in order to forecast the fuel cell system performance in many applications such as mobile applications. The main purpose of this study is to obtain the semi-empirical relation of a PEM fuel cell with the least voltage losses. Also, the results are compared with the existing experimental results in the literature and a good agreement is seen.

  4. Estimating Aquifer Properties Using Sinusoidal Pumping Tests

    NASA Astrophysics Data System (ADS)

    Rasmussen, T. C.; Haborak, K. G.; Young, M. H.

    2001-12-01

    We develop the theoretical and applied framework for using sinusoidal pumping tests to estimate aquifer properties for confined, leaky, and partially penetrating conditions. The framework 1) derives analytical solutions for three boundary conditions suitable for many practical applications, 2) validates the analytical solutions against a finite element model, 3) establishes a protocol for conducting sinusoidal pumping tests, and 4) estimates aquifer hydraulic parameters based on the analytical solutions. The analytical solutions to sinusoidal stimuli in radial coordinates are derived for boundary value problems that are analogous to the Theis (1935) confined aquifer solution, the Hantush and Jacob (1955) leaky aquifer solution, and the Hantush (1964) partially penetrated confined aquifer solution. The analytical solutions compare favorably to a finite-element solution of a simulated flow domain, except in the region immediately adjacent to the pumping well where the implicit assumption of zero borehole radius is violated. The procedure is demonstrated in one unconfined and two confined aquifer units near the General Separations Area at the Savannah River Site, a federal nuclear facility located in South Carolina. Aquifer hydraulic parameters estimated using this framework provide independent confirmation of parameters obtained from conventional aquifer tests. The sinusoidal approach also resulted in the elimination of investigation-derived wastes.

  5. Reliable determination of new lipid peroxidation compounds as potential early Alzheimer Disease biomarkers.

    PubMed

    García-Blanco, Ana; Peña-Bautista, Carmen; Oger, Camille; Vigor, Claire; Galano, Jean-Marie; Durand, Thierry; Martín-Ibáñez, Nuria; Baquero, Miguel; Vento, Máximo; Cháfer-Pericás, Consuelo

    2018-07-01

    Lipid peroxidation plays an important role in Alzheimer Disease, so corresponding metabolites found in urine samples could be potential biomarkers. The aim of this work is to develop a reliable ultra-performance liquid chromatography-tandem mass spectrometry analytical method to determine a new set of lipid peroxidation compounds in urine samples. Excellent sensitivity was achieved with limits of detection between 0.08 and 17 nmol L -1 , which renders this method suitable to monitor analytes concentrations in real samples. The method's precision was satisfactory with coefficients of variation around 5-17% (intra-day) and 8-19% (inter-day). The accuracy of the method was assessed by analysis of spiked urine samples obtaining recoveries between 70% and 120% for most of the analytes. The utility of the described method was tested by analyzing urine samples from patients early diagnosed with mild cognitive impairment or mild dementia Alzheimer Disease following the clinical standard criteria. As preliminary results, some analytes (17(RS)-10-epi-SC-Δ 15 -11-dihomo-IsoF, PGE 2 ) and total parameters (Neuroprostanes, Isoprostanes, Isofurans) show differences between the control and the clinical groups. So, these analytes could be potential early Alzheimer Disease biomarkers assessing the patients' pro-oxidant condition. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Conductivity of graphene in the framework of Dirac model: Interplay between nonzero mass gap and chemical potential

    NASA Astrophysics Data System (ADS)

    Klimchitskaya, G. L.; Mostepanenko, V. M.; Petrov, V. M.

    2017-12-01

    The complete theory of electrical conductivity of graphene at arbitrary temperature is developed with taking into account mass-gap parameter and chemical potential. Both the in-plane and out-of-plane conductivities of graphene are expressed via the components of the polarization tensor in (2+1)-dimensional space-time analytically continued to the real frequency axis. Simple analytic expressions for both the real and imaginary parts of the conductivity of graphene are obtained at zero and nonzero temperature. They demonstrate an interesting interplay depending on the values of mass gap and chemical potential. In the local limit, several results obtained earlier using various approximate and phenomenological approaches are reproduced, refined, and generalized. The numerical computations of both the real and imaginary parts of the conductivity of graphene are performed to illustrate the obtained results. The analytic expressions for the conductivity of graphene obtained in this paper can serve as a guide in the comparison between different theoretical approaches and between experiment and theory.

  7. Thermodynamics of Newman-Unti-Tamburino charged spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, Robert; Department of Physics, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1; Stelea, Cristian

    We discuss and compare at length the results of two methods used recently to describe the thermodynamics of Taub-Newman-Unti-Tamburino (NUT) solutions in a de Sitter background. In the first approach (C approach), one deals with an analytically continued version of the metric while in the second approach (R approach), the discussion is carried out using the unmodified metric with Lorentzian signature. No analytic continuation is performed on the coordinates and/or the parameters that appear in the metric. We find that the results of both these approaches are completely equivalent modulo analytic continuation and we provide the exact prescription that relatesmore » the results in both methods. The extension of these results to the AdS/flat cases aims to give a physical interpretation of the thermodynamics of NUT-charged spacetimes in the Lorentzian sector. We also briefly discuss the higher-dimensional spaces and note that, analogous with the absence of hyperbolic NUTs in AdS backgrounds, there are no spherical Taub-NUT-dS solutions.« less

  8. Optimization of a Precolumn OPA Derivatization HPLC Assay for Monitoring of l-Asparagine Depletion in Serum during l-Asparaginase Therapy.

    PubMed

    Zhang, Mei; Zhang, Yong; Ren, Siqi; Zhang, Zunjian; Wang, Yongren; Song, Rui

    2018-06-06

    A method for monitoring l-asparagine (ASN) depletion in patients' serum using reversed-phase high-performance liquid chromatography with precolumn o-phthalaldehyde and ethanethiol (ET) derivatization is described. In order to improve the signal and stability of analytes, several important factors including precipitant reagent, derivatization conditions and detection wavelengths were optimized. The recovery of the analytes in biological matrix was the highest when 4% sulfosalicylic acid (1:1, v/v) was used as a precipitant reagent. Optimal fluorescence detection parameters were determined as λex = 340 nm and λem = 444 nm for maximal signal. The signal of analytes was the highest when the reagent ET and borate buffer of pH 9.9 were used in the derivatization solution. And the corresponding derivative products were stable up to 19 h. The validated method had been successfully applied to monitor ASN depletion and l-aspartic acid, l-glutamine, l-glutamic acid levels in pediatric patients during l-asparaginase therapy.

  9. Experimental and analytical studies on the vibration serviceability of long-span prestressed concrete floor

    NASA Astrophysics Data System (ADS)

    Cao, Liang; Liu, Jiepeng; Li, Jiang; Zhang, Ruizhi

    2018-04-01

    An extensive experimental and theoretical research study was undertaken to study the vibration serviceability of a long-span prestressed concrete floor system to be used in the lounge of a major airport. Specifically, jumping impact tests were carried out to obtain the floor's modal parameters, followed by an analysis of the distribution of peak accelerations. Running tests were also performed to capture the acceleration responses. The prestressed concrete floor was found to have a low fundamental natural frequency (≈ 8.86 Hz) corresponding to the average modal damping ratio of ≈ 2.17%. A coefficients β rp is proposed for convenient calculation of the maximum root-mean-square acceleration for running. In the theoretical analysis, the prestressed concrete floor under running excitation is treated as a two-span continuous anisotropic rectangular plate with simply-supported edges. The calculated analytical results (natural frequencies and root-mean-square acceleration) agree well with the experimental ones. The analytical approach is thus validated.

  10. Analytical Model of Large Data Transactions in CoAP Networks

    PubMed Central

    Ludovici, Alessandro; Di Marco, Piergiuseppe; Calveras, Anna; Johansson, Karl H.

    2014-01-01

    We propose a novel analytical model to study fragmentation methods in wireless sensor networks adopting the Constrained Application Protocol (CoAP) and the IEEE 802.15.4 standard for medium access control (MAC). The blockwise transfer technique proposed in CoAP and the 6LoWPAN fragmentation are included in the analysis. The two techniques are compared in terms of reliability and delay, depending on the traffic, the number of nodes and the parameters of the IEEE 802.15.4 MAC. The results are validated trough Monte Carlo simulations. To the best of our knowledge this is the first study that evaluates and compares analytically the performance of CoAP blockwise transfer and 6LoWPAN fragmentation. A major contribution is the possibility to understand the behavior of both techniques with different network conditions. Our results show that 6LoWPAN fragmentation is preferable for delay-constrained applications. For highly congested networks, the blockwise transfer slightly outperforms 6LoWPAN fragmentation in terms of reliability. PMID:25153143

  11. Transfer function verification and block diagram simplification of a very high-order distributed pole closed-loop servo by means of non-linear time-response simulation

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, A. K.

    1975-01-01

    Linear frequency domain methods are inadequate in analyzing the 1975 Viking Orbiter (VO75) digital tape recorder servo due to dominant nonlinear effects such as servo signal limiting, unidirectional servo control, and static/dynamic Coulomb friction. The frequency loop (speed control) servo of the VO75 tape recorder is used to illustrate the analytical tools and methodology of system redundancy elimination and high order transfer function verification. The paper compares time-domain performance parameters derived from a series of nonlinear time responses with the available experimental data in order to select the best possible analytical transfer function representation of the tape transport (mechanical segment of the tape recorder) from several possible candidates. The study also shows how an analytical time-response simulation taking into account most system nonlinearities can pinpoint system redundancy and overdesign stemming from a strictly empirical design approach. System order reduction is achieved through truncation of individual transfer functions and elimination of redundant blocks.

  12. Performance analysis of junctionless double gate VeSFET considering the effects of thermal variation - An explicit 2D analytical model

    NASA Astrophysics Data System (ADS)

    Chaudhary, Tarun; Khanna, Gargi

    2017-03-01

    The purpose of this paper is to explore junctionless double gate vertical slit field effect transistor (JLDG VeSFET) with reduced short channel effects and to develop an analytical threshold voltage model for the device considering the impact of thermal variations for the very first time. The model has been derived by solving 2D Poisson's equation and the effects of variation in temperature on various electrical parameters of the device such as Rout, drain current, mobility, subthreshold slope and DIBL has been studied and described in the paper. The model provides a deep physical insight of the device behavior and is also very helpful in contributing to the design space exploration for JLDG VeSFET. The proposed model is verified with simulative analysis at different radii of the device and it has been observed that there is a good agreement between the analytical model and simulation results.

  13. (Bio)Sensing Using Nanoparticle Arrays: On the Effect of Analyte Transport on Sensitivity.

    PubMed

    Lynn, N Scott; Homola, Jiří

    2016-12-20

    There has recently been an extensive amount of work regarding the development of optical, electrical, and mechanical (bio)sensors employing planar arrays of surface-bound nanoparticles. The sensor output for these systems is dependent on the rate at which analyte is transported to, and interacts with, each nanoparticle in the array. There has so far been little discussion on the relationship between the design parameters of an array and the interplay of convection, diffusion, and reaction. Moreover, current methods providing such information require extensive computational simulation. Here we demonstrate that the rate of analyte transport to a nanoparticle array can be quantified analytically. We show that such rates are bound by both the rate to a single NP and that to a planar surface (having equivalent size as the array), with the specific rate determined by the fill fraction: the ratio between the total surface area used for biomolecular capture with respect to the entire sensing area. We characterize analyte transport to arrays with respect to changes in numerous parameters relevant to experiment, including variation of the nanoparticle shape and size, packing density, flow conditions, and analyte diffusivity. We also explore how analyte capture is dependent on the kinetic parameters related to an affinity-based biosensor, and furthermore, we classify the conditions under which the array might be diffusion- or reaction-limited. The results obtained herein are applicable toward the design and optimization of all (bio)sensors based on nanoparticle arrays.

  14. Parachute-deployment-parameter identification based on an analytical simulation of Viking BLDT AV-4

    NASA Technical Reports Server (NTRS)

    Talay, T. A.

    1974-01-01

    A six-degree-of-freedom analytical simulation of parachute deployment dynamics developed at the Langley Research Center is presented. A comparison study was made using flight results from the Viking Balloon Launched Decelerator Test (BLDT) AV-4. Since there are significant voids in the knowledge of vehicle and decelerator aerodynamics and suspension system physical properties, a set of deployment-parameter input has been defined which may be used as a basis for future studies of parachute deployment dynamics. The study indicates the analytical model is sufficiently sophisticated to investigate parachute deployment dynamics with reasonable accuracy.

  15. dPotFit: A computer program to fit diatomic molecule spectral data to potential energy functions

    NASA Astrophysics Data System (ADS)

    Le Roy, Robert J.

    2017-01-01

    This paper describes program dPotFit, which performs least-squares fits of diatomic molecule spectroscopic data consisting of any combination of microwave, infrared or electronic vibrational bands, fluorescence series, and tunneling predissociation level widths, involving one or more electronic states and one or more isotopologs, and for appropriate systems, second virial coefficient data, to determine analytic potential energy functions defining the observed levels and other properties of each state. Four families of analytical potential functions are available for fitting in the current version of dPotFit: the Expanded Morse Oscillator (EMO) function, the Morse/Long-Range (MLR) function, the Double-Exponential/Long-Range (DELR) function, and the 'Generalized Potential Energy Function' (GPEF) of Šurkus, which incorporates a variety of polynomial functional forms. In addition, dPotFit allows sets of experimental data to be tested against predictions generated from three other families of analytic functions, namely, the 'Hannover Polynomial' (or "X-expansion") function, and the 'Tang-Toennies' and Scoles-Aziz 'HFD', exponential-plus-van der Waals functions, and from interpolation-smoothed pointwise potential energies, such as those obtained from ab initio or RKR calculations. dPotFit also allows the fits to determine atomic-mass-dependent Born-Oppenheimer breakdown functions, and singlet-state Λ-doubling, or 2Σ splitting radial strength functions for one or more electronic states. dPotFit always reports both the 95% confidence limit uncertainty and the "sensitivity" of each fitted parameter; the latter indicates the number of significant digits that must be retained when rounding fitted parameters, in order to ensure that predictions remain in full agreement with experiment. It will also, if requested, apply a "sequential rounding and refitting" procedure to yield a final parameter set defined by a minimum number of significant digits, while ensuring no significant loss of accuracy in the predictions yielded by those parameters.

  16. 1-D DC Resistivity Modeling and Interpretation in Anisotropic Media Using Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Pekşen, Ertan; Yas, Türker; Kıyak, Alper

    2014-09-01

    We examine the one-dimensional direct current method in anisotropic earth formation. We derive an analytic expression of a simple, two-layered anisotropic earth model. Further, we also consider a horizontally layered anisotropic earth response with respect to the digital filter method, which yields a quasi-analytic solution over anisotropic media. These analytic and quasi-analytic solutions are useful tests for numerical codes. A two-dimensional finite difference earth model in anisotropic media is presented in order to generate a synthetic data set for a simple one-dimensional earth. Further, we propose a particle swarm optimization method for estimating the model parameters of a layered anisotropic earth model such as horizontal and vertical resistivities, and thickness. The particle swarm optimization is a naturally inspired meta-heuristic algorithm. The proposed method finds model parameters quite successfully based on synthetic and field data. However, adding 5 % Gaussian noise to the synthetic data increases the ambiguity of the value of the model parameters. For this reason, the results should be controlled by a number of statistical tests. In this study, we use probability density function within 95 % confidence interval, parameter variation of each iteration and frequency distribution of the model parameters to reduce the ambiguity. The result is promising and the proposed method can be used for evaluating one-dimensional direct current data in anisotropic media.

  17. Approximate message passing for nonconvex sparse regularization with stability and asymptotic analysis

    NASA Astrophysics Data System (ADS)

    Sakata, Ayaka; Xu, Yingying

    2018-03-01

    We analyse a linear regression problem with nonconvex regularization called smoothly clipped absolute deviation (SCAD) under an overcomplete Gaussian basis for Gaussian random data. We propose an approximate message passing (AMP) algorithm considering nonconvex regularization, namely SCAD-AMP, and analytically show that the stability condition corresponds to the de Almeida-Thouless condition in spin glass literature. Through asymptotic analysis, we show the correspondence between the density evolution of SCAD-AMP and the replica symmetric (RS) solution. Numerical experiments confirm that for a sufficiently large system size, SCAD-AMP achieves the optimal performance predicted by the replica method. Through replica analysis, a phase transition between replica symmetric and replica symmetry breaking (RSB) region is found in the parameter space of SCAD. The appearance of the RS region for a nonconvex penalty is a significant advantage that indicates the region of smooth landscape of the optimization problem. Furthermore, we analytically show that the statistical representation performance of the SCAD penalty is better than that of \

  18. Validation of an Analytical Method for the Determination of Pesticide Residues in Vine Leaves by GC-MS/MS.

    PubMed

    Maestroni, Britt; Abu Alnaser, Amer; Ghanem, Iyad; Islam, Marivil; Cesio, Veronica; Heinzen, Horacio; Kelly, Simon; Cannavan, Andrew

    2018-06-27

    A modified and miniaturized SweEt/QuEChERS method for pesticide residue analysis applied to vine leaves is presented. The deep-frozen plant material was cryogenically processed. A 2 g analytical portion was hydrated for 30 min and extracted with acidified ethyl acetate after buffering with NaHCO 3 and adding Na 2 SO 4 . A dispersive solid-phase (d-SPE) cleanup step with primary-secondary amine (PSA) was performed. The pesticide residues were determined using GC-MS/MS. The whole procedure was validated for 54-59 pesticides at 0.01, 0.02, 0.1, and 0.2 mg/kg in fresh vine leaves ( Vitis vinifera). The key method performance parameters investigated were specificity, linearity, trueness, within laboratory repeatability and reproducibility, limit of detection, limit of quantitation, and matrix effects. Recoveries for the 59 pesticides tested ranged from 60 to 110%, and the RSDs were lower than 20% for the majority of the pesticides studied.

  19. Development and validation of an MEKC method for determination of nitrogen-containing drugs in pharmaceutical preparations.

    PubMed

    Buiarelli, Francesca; Coccioli, Franco; Jasionowska, Renata; Terracciano, Alessandro

    2008-09-01

    A fast and accurate micellar electrokinetic capillary chromatography method was developed for quality control of pharmaceutical preparations containing cold remedies as acetaminophen, salicylamide, caffeine, phenylephrine, pseudoephedrine, norephedrine and chlorpheniramine. The method optimization was realized on a Beckman P/ACE System MDQ instrument. The baseline separation of seven analytes was performed in an uncoated fused silica capillary internal diameter (ID)=50 microm using tris-borate (20 mM, pH=8.5) containing sodium dodecyl sulphate 30 mM BGE. On line-UV detection at 214 nm was performed and the applied voltage was 10 kV. The operating temperature was 25 degrees C. After experimental conditions optimization, the proposed method was validated. The evaluated parameters were: precision of migration time and of corrected peak area ratio, linearity range, limit of detection, limit of quantification, accuracy (recovery), ruggedness and applicability. The method was then successfully applied for the analysis of three pharmaceutical preparations containing some of the analytes listed before.

  20. High-performance liquid chromatographic enantioseparation of unusual isoxazoline-fused 2-aminocyclopentanecarboxylic acids on macrocyclic glycopeptide-based chiral stationary phases.

    PubMed

    Sipos, László; Ilisz, István; Nonn, Melinda; Fülöp, Ferenc; Pataj, Zoltán; Armstrong, Daniel W; Péter, Antal

    2012-04-06

    The enantiomers of four unusual isoxazoline-fused 2-aminocyclopentanecarboxylic acids were directly separated on chiral stationary phases containing macrocyclic glycopeptide antibiotics teicoplanin (Astec Chirobiotic T and T2), teicoplanin aglycone (Chirobiotic TAG), vancomycin (Chirobiotic V) and vancomycin aglycone (Chirobiotic VAG) as chiral selectors. The effects of the mobile phase composition, the structure of the analytes and temperature on the separations were investigated. Experiments were performed at constant mobile phase compositions in the temperature range 5-45 °C to study the effects of temperature, and thermodynamic parameters were calculated from plots of lnk or lnα versus 1/T. Some mechanistic aspects of the chiral recognition process are discussed with respect to the structures of the analytes. It was found that the enantiomeric separations were in most cases enthalpy-driven. The sequence of elution of the enantiomers was determined in all cases. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Secure communication via an energy-harvesting untrusted relay in the presence of an eavesdropper

    NASA Astrophysics Data System (ADS)

    Tuan, Van Phu; Kong, Hyung Yun

    2018-02-01

    This article studies a secure communication of a simultaneous wireless information and power transfer system in which an energy-constrained untrusted relay, which harvests energy from the wireless signals, helps the communication between the source and destination and is able to decode the source's confidential signal. Additionally, the source's confidential signal is also overheard by a passive eavesdropper. To create positive secrecy capacity, a destination-assisted jamming signal that is completely cancelled at the destination is adopted. Moreover, the jamming signal is also exploited as an additional energy source. To evaluate the secrecy performance, analytical expressions for the secrecy outage probability (SOP) and the average secrecy capacity are derived. Moreover, a high-power approximation for the SOP is presented. The accuracy of the analytical results is verified by Monte Carlo simulations. Numerical results provide valuable insights into the effect of various system parameters, such as the energy-harvesting efficiency, secrecy rate threshold, power-splitting ratio, transmit powers, and locations of the relay and eavesdropper, on the secrecy performance.

  2. Orion Orbit Control Design and Analysis

    NASA Technical Reports Server (NTRS)

    Jackson, Mark; Gonzalez, Rodolfo; Sims, Christopher

    2007-01-01

    The analysis of candidate thruster configurations for the Crew Exploration Vehicle (CEV) is presented. Six candidate configurations were considered for the prime contractor baseline design. The analysis included analytical assessments of control authority, control precision, efficiency and robustness, as well as simulation assessments of control performance. The principles used in the analytic assessments of controllability, robustness and fuel performance are covered and results provided for the configurations assessed. Simulation analysis was conducted using a pulse width modulated, 6 DOF reaction system control law with a simplex-based thruster selection algorithm. Control laws were automatically derived from hardware configuration parameters including thruster locations, directions, magnitude and specific impulse, as well as vehicle mass properties. This parameterized controller allowed rapid assessment of multiple candidate layouts. Simulation results are presented for final phase rendezvous and docking, as well as low lunar orbit attitude hold. Finally, on-going analysis to consider alternate Service Module designs and to assess the pilot-ability of the baseline design are discussed to provide a status of orbit control design work to date.

  3. Analytical Expressions for the Mixed-Order Kinetics Parameters of TL Glow Peaks Based on the two Heating Rates Method.

    PubMed

    Maghrabi, Mufeed; Al-Abdullah, Tariq; Khattari, Ziad

    2018-03-24

    The two heating rates method (originally developed for first-order glow peaks) was used for the first time to evaluate the activation energy (E) from glow peaks obeying mixed-order (MO) kinetics. The derived expression for E has an insignificant additional term (on the scale of a few meV) when compared with the first-order case. Hence, the original expression for E using the two heating rates method can be used with excellent accuracy in the case of MO glow peaks. In addition, we derived a simple analytical expression for the MO parameter. The present procedure has the advantage that the MO parameter can now be evaluated using analytical expression instead of using the graphical representation between the geometrical factor and the MO parameter as given by the existing peak shape methods. The applicability of the derived expressions for real samples was demonstrated for the glow curve of Li 2 B 4 O 7 :Mn single crystal. The obtained parameters compare very well with those obtained by glow curve fitting and with the available published data.

  4. Linear Power Spectra in Cold+Hot Dark Matter Models: Analytical Approximations and Applications

    NASA Astrophysics Data System (ADS)

    Ma, Chung-Pei

    1996-11-01

    This paper presents simple analytic approximations to the linear power spectra, linear growth rates, and rms mass fluctuations for both components in a family of cold + hot dark matter (CDM + HDM) models that are of current cosmological interest. The formulas are valid for a wide range of wavenumbers, neutrino fractions, redshifts, and Hubble constants: k ≤ 1O h Mpc-1, 0.05 ≤ Ωv le; 0.3 0 ≤ z ≤ 15, and 0.5 ≤ h ≤ 0.8. A new, redshift-dependent shape parameter, Γv = a½Ωvh2, is introduced to simplify the multidimensional parameter space and to characterize the effect of massive neutrinos on the power spectrum. The physical origin of Γv lies in the neutrino free-streaming process, and the analytic approximations can be simplified to depend only on this variable and Ωv. Linear calculations with these power spectra as input are performed to compare the predictions of Ωv ≤ 0.3 models with observational constraints from the reconstructed linear power spectrum and cluster abundance. The usual assumption of an exact scale-invariant primordial power spectrum is relaxed to allow a spectral index of 0.8 ≤ n ≤ 1. It is found that a slight tilt of n = 0.9 (no tensor mode) or n = 0.95 (with tensor mode) in 0.t-0.2 CDM + HDM models gives a power spectrum similar to that of an open CDM model with a shape parameter Γ = 0.25, providing good agreement with the power spectrum reconstructed by Peacock & Dodds and the observed cluster abundance at low redshifts. Late galaxy formation at high redshifts, however, will be a more severe problem in tilted models.

  5. Efficient simulation and model reformulation of two-dimensional electrochemical thermal behavior of lithium-ion batteries

    DOE PAGES

    Northrop, Paul W. C.; Pathak, Manan; Rife, Derek; ...

    2015-03-09

    Lithium-ion batteries are an important technology to facilitate efficient energy storage and enable a shift from petroleum based energy to more environmentally benign sources. Such systems can be utilized most efficiently if good understanding of performance can be achieved for a range of operating conditions. Mathematical models can be useful to predict battery behavior to allow for optimization of design and control. An analytical solution is ideally preferred to solve the equations of a mathematical model, as it eliminates the error that arises when using numerical techniques and is usually computationally cheap. An analytical solution provides insight into the behaviormore » of the system and also explicitly shows the effects of different parameters on the behavior. However, most engineering models, including the majority of battery models, cannot be solved analytically due to non-linearities in the equations and state dependent transport and kinetic parameters. The numerical method used to solve the system of equations describing a battery operation can have a significant impact on the computational cost of the simulation. In this paper, a model reformulation of the porous electrode pseudo three dimensional (P3D) which significantly reduces the computational cost of lithium ion battery simulation, while maintaining high accuracy, is discussed. This reformulation enables the use of the P3D model into applications that would otherwise be too computationally expensive to justify its use, such as online control, optimization, and parameter estimation. Furthermore, the P3D model has proven to be robust enough to allow for the inclusion of additional physical phenomena as understanding improves. In this study, the reformulated model is used to allow for more complicated physical phenomena to be considered for study, including thermal effects.« less

  6. Comparative plasma disposition kinetics of albendazole and its new benzimidazol prodrug in dog.

    PubMed

    Khalil, Z; El Karbane, M; Faouzi, M E A; Ansar, M; Azougagh, M; El Harti, J; Taoufik, J

    2016-01-01

    The comparative pharmacokinetic behavior of albendazole (ABZ) and its new benzimidazol prodrug [1-tert-butyloxycarbonyl-5-propylthio-1-H-benzimidazol-2ylcarbamate of methyl] (ABZBoc), following their oral administration (10mg/kg) to healthy dogs was explored. Blood samples were obtained serially over a 24h period after treatment, then the plasma was analyzed by high-performance liquid chromatography (HPLC) to search the albendazole metabolites (ABZSO and ABZSO2). However, the albendazole parent drug was not detectable at any time after both treatments (ABZ and ABZBoc). By albendazole metabolites (ABZSO and ABZSO2) were the analytes recovered in the plasma after oral administration of ABZ and ABZBoc. Furthermore, some amounts of ABZBoc were also available in the plasma samples treated with this new produg. The plasma profile of each analyte followed a similar pattern after both treatments, the active metabolite (ABZSO) was the major analyte recovered in plasma (between 1 and 24h post-treatment). The pharmacokinetic parameters of both groups were calculated (Cmax, Tmax, t1/2, AUC0-›∞), and analyzed using the Student's t-test, P<0.05. Thus,the pharmacokinetic analysis indicated four statistically significant changes in the pharmacokinetic parameters defined above of the albendazole metabolites (ABZSO, ABZSO2) between the group treated with albendazole (group A) and that treated with ABZBoc prodrug (group B). Hence, the levels of the various pharmacokinetics parameters were low in the group treated with prodrug, as well they did not reach equivalent concentrations to that of albendazole. These differences between albendazole and its new prodrug may be explained by the fact that ABZBoc prodrug was not effectively reduced in the intestine of dogs. Copyright © 2015 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  7. Results of an integrated structure-control law design sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    1988-01-01

    Next generation air and space vehicle designs are driven by increased performance requirements, demanding a high level of design integration between traditionally separate design disciplines. Interdisciplinary analysis capabilities have been developed, for aeroservoelastic aircraft and large flexible spacecraft control for instance, but the requisite integrated design methods are only beginning to be developed. One integrated design method which has received attention is based on hierarchal problem decompositions, optimization, and design sensitivity analyses. This paper highlights a design sensitivity analysis method for Linear Quadratic Cost, Gaussian (LQG) optimal control laws, which predicts change in the optimal control law due to changes in fixed problem parameters using analytical sensitivity equations. Numerical results of a design sensitivity analysis for a realistic aeroservoelastic aircraft example are presented. In this example, the sensitivity of the optimally controlled aircraft's response to various problem formulation and physical aircraft parameters is determined. These results are used to predict the aircraft's new optimally controlled response if the parameter was to have some other nominal value during the control law design process. The sensitivity results are validated by recomputing the optimal control law for discrete variations in parameters, computing the new actual aircraft response, and comparing with the predicted response. These results show an improvement in sensitivity accuracy for integrated design purposes over methods which do not include changess in the optimal control law. Use of the analytical LQG sensitivity expressions is also shown to be more efficient that finite difference methods for the computation of the equivalent sensitivity information.

  8. [Modal failure analysis and effects in the detection of errors in the transport of samples to the clinical laboratory].

    PubMed

    Parés-Pollán, L; Gonzalez-Quintana, A; Docampo-Cordeiro, J; Vargas-Gallego, C; García-Álvarez, G; Ramos-Rodríguez, V; Diaz Rubio-García, M P

    2014-01-01

    Owing to the decrease in values of biochemical glucose parameter in some samples from external extraction centres, and the risk this implies to patient safety; it was decided to apply an adaptation of the «Health Services Failure Mode and Effects Analysis» (HFMEA) to manage risk during the pre-analytical phase of sample transportation from external centres to clinical laboratories. A retrospective study of glucose parameter was conducted during two consecutive months. The analysis was performed in its different phases: to define the HFMEA topic, assemble the team, graphically describe the process, conduct a hazard analysis, design the intervention and indicators, and identify a person to be responsible for ensuring completion of each action. The results of glucose parameter in one of the transport routes, were significantly lower (P=.006). The errors and potential causes of this problem were analysed, and criteria of criticality and detectability were applied (score≥8) in the decision tree. It was decided to: develop a document management system; reorganise extractions and transport routes in some centres; quality control of the sample container ice-packs, and the time and temperature during transportation. This work proposes quality indicators for controlling time and temperature of transported samples in the pre-analytical phase. Periodic review of certain laboratory parameters can help to detect problems in transporting samples. The HFMEA technique is useful for the clinical laboratory. Copyright © 2013 SECA. Published by Elsevier Espana. All rights reserved.

  9. Estimation of parameters in rational reaction rates of molecular biological systems via weighted least squares

    NASA Astrophysics Data System (ADS)

    Wu, Fang-Xiang; Mu, Lei; Shi, Zhong-Ke

    2010-01-01

    The models of gene regulatory networks are often derived from statistical thermodynamics principle or Michaelis-Menten kinetics equation. As a result, the models contain rational reaction rates which are nonlinear in both parameters and states. It is challenging to estimate parameters nonlinear in a model although there have been many traditional nonlinear parameter estimation methods such as Gauss-Newton iteration method and its variants. In this article, we develop a two-step method to estimate the parameters in rational reaction rates of gene regulatory networks via weighted linear least squares. This method takes the special structure of rational reaction rates into consideration. That is, in the rational reaction rates, the numerator and the denominator are linear in parameters. By designing a special weight matrix for the linear least squares, parameters in the numerator and the denominator can be estimated by solving two linear least squares problems. The main advantage of the developed method is that it can produce the analytical solutions to the estimation of parameters in rational reaction rates which originally is nonlinear parameter estimation problem. The developed method is applied to a couple of gene regulatory networks. The simulation results show the superior performance over Gauss-Newton method.

  10. Failure modes in electroactive polymer thin films with elastic electrodes

    NASA Astrophysics Data System (ADS)

    De Tommasi, D.; Puglisi, G.; Zurlo, G.

    2014-02-01

    Based on an energy minimization approach, we analyse the elastic deformations of a thin electroactive polymer (EAP) film sandwiched by two elastic electrodes with non-negligible stiffness. We analytically show the existence of a critical value of the electrode voltage for which non-homogeneous solutions bifurcate from the homogeneous equilibrium state, leading to the pull-in phenomenon. This threshold strongly decreases the limit value proposed in the literature considering only homogeneous deformations. We explicitly discuss the influence of geometric and material parameters together with boundary conditions in the attainment of the different failure modes observed in EAP devices. In particular, we obtain the optimum values of these parameters leading to the maximum activation performances of the device.

  11. A pilot modeling technique for handling-qualities research

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1980-01-01

    A brief survey of the more dominant analysis techniques used in closed-loop handling-qualities research is presented. These techniques are shown to rely on so-called classical and modern analytical models of the human pilot which have their foundation in the analysis and design principles of feedback control. The optimal control model of the human pilot is discussed in some detail and a novel approach to the a priori selection of pertinent model parameters is discussed. Frequency domain and tracking performance data from 10 pilot-in-the-loop simulation experiments involving 3 different tasks are used to demonstrate the parameter selection technique. Finally, the utility of this modeling approach in handling-qualities research is discussed.

  12. Detection of J-coupling using atomic magnetometer

    DOEpatents

    Ledbetter, Micah P.; Crawford, Charles W.; Wemmer, David E.; Pines, Alexander; Knappe, Svenja; Kitching, John; Budker, Dmitry

    2015-09-22

    An embodiment of a method of detecting a J-coupling includes providing a polarized analyte adjacent to a vapor cell of an atomic magnetometer; and measuring one or more J-coupling parameters using the atomic magnetometer. According to an embodiment, measuring the one or more J-coupling parameters includes detecting a magnetic field created by the polarized analyte as the magnetic field evolves under a J-coupling interaction.

  13. Research in digital adaptive flight controllers

    NASA Technical Reports Server (NTRS)

    Kaufman, H.

    1976-01-01

    A design study of adaptive control logic suitable for implementation in modern airborne digital flight computers was conducted. Both explicit controllers which directly utilize parameter identification and implicit controllers which do not require identification were considered. Extensive analytical and simulation efforts resulted in the recommendation of two explicit digital adaptive flight controllers. Interface weighted least squares estimation procedures with control logic were developed using either optimal regulator theory or with control logic based upon single stage performance indices.

  14. Fabrication, test and demonstration of critical environment monitoring system

    NASA Technical Reports Server (NTRS)

    Heimendinger, K. W.

    1972-01-01

    Design and performance of an analytical system for the evaluation of certain environmental constituents in critical environmental areas of the Quality Reliability and Assurance Laboratory are reported. Developed was a self-contained, integrated, minimum sized unit that detects, interrogates, and records those parameters of the environment dictated for control in large storage facilities, clean rooms, temporarily curtained enclosures, and special working benches. The system analyzes humidity, temperature, hydrocarbons particle size, and particle count within prescribed clean areas.

  15. Final Remedial Investigation Report Area of Contamination (AOC) 57. Volume II. Appendices A through D

    DTIC Science & Technology

    2000-06-01

    completed over AOC 57 at the former Fort Devens in Ayer, MA. Geophysical work was conducted in two...data generated from chemical analyses performed on soil samples collected during the 1995 AOC 57 , 63AX, and 69W Remedial Investigations at Fort Devens ...pg/g W0059621.T80/1 9144-03 continued TABLE D-1 SUMMARY OF ANALYTICAL PARAMETERS AOC 57 , 63AX, AND 69W REMEDIAL INVESTIGATION FORT DEVENS

  16. Performance Analysis for Joint Target Parameter Estimation in UMTS-Based Passive Multistatic Radar with Antenna Arrays Using Modified Cramér-Rao Lower Bounds.

    PubMed

    Shi, Chenguang; Wang, Fei; Salous, Sana; Zhou, Jianjiang

    2017-10-18

    In this study, the modified Cramér-Rao lower bounds (MCRLBs) on the joint estimation of target position and velocity is investigated for a universal mobile telecommunication system (UMTS)-based passive multistatic radar system with antenna arrays. First, we analyze the log-likelihood redfunction of the received signal for a complex Gaussian extended target. Then, due to the non-deterministic transmitted data symbols, the analytically closed-form expressions of the MCRLBs on the Cartesian coordinates of target position and velocity are derived for a multistatic radar system with N t UMTS-based transmit station of L t antenna elements and N r receive stations of L r antenna elements. With the aid of numerical simulations, it is shown that increasing the number of receiving elements in each receive station can reduce the estimation errors. In addition, it is demonstrated that the MCRLB is not only a function of signal-to-noise ratio (SNR), the number of receiving antenna elements and the properties of the transmitted UMTS signals, but also a function of the relative geometric configuration between the target and the multistatic radar system.The analytical expressions for MCRLB will open up a new dimension for passive multistatic radar system by aiding the optimal placement of receive stations to improve the target parameter estimation performance.

  17. Performance Analysis for Joint Target Parameter Estimation in UMTS-Based Passive Multistatic Radar with Antenna Arrays Using Modified Cramér-Rao Lower Bounds

    PubMed Central

    Wang, Fei; Salous, Sana; Zhou, Jianjiang

    2017-01-01

    In this study, the modified Cramér-Rao lower bounds (MCRLBs) on the joint estimation of target position and velocity is investigated for a universal mobile telecommunication system (UMTS)-based passive multistatic radar system with antenna arrays. First, we analyze the log-likelihood redfunction of the received signal for a complex Gaussian extended target. Then, due to the non-deterministic transmitted data symbols, the analytically closed-form expressions of the MCRLBs on the Cartesian coordinates of target position and velocity are derived for a multistatic radar system with Nt UMTS-based transmit station of Lt antenna elements and Nr receive stations of Lr antenna elements. With the aid of numerical simulations, it is shown that increasing the number of receiving elements in each receive station can reduce the estimation errors. In addition, it is demonstrated that the MCRLB is not only a function of signal-to-noise ratio (SNR), the number of receiving antenna elements and the properties of the transmitted UMTS signals, but also a function of the relative geometric configuration between the target and the multistatic radar system.The analytical expressions for MCRLB will open up a new dimension for passive multistatic radar system by aiding the optimal placement of receive stations to improve the target parameter estimation performance. PMID:29057805

  18. Estimating estuarine salt intrusion using an analytical and a full hydrodynamic simulation - a comparison for the Ma Estuary

    NASA Astrophysics Data System (ADS)

    Nguyen, Duc Anh; Cat Vu, Minh; Willems, Patrick; Monbaliu, Jaak

    2017-04-01

    Salt intrusion is the most acute problem for irrigation water quality in coastal regions during dry seasons. The use of numerical hydrodynamic models is widespread and has become the prevailing approach to simulate the salinity distribution in an estuary. Despite its power to estimate both spatial and temporal salinity variations along the estuary, this approach also has its drawbacks. The high computational cost and the need for detailed hydrological, bathymetric and tidal datasets, put some limits on the usability in particular case studies. In poor data environments, analytical salt intrusion models are more widely used as they require less data and have a further reduction of the computational effort. There are few studies however where a more comprehensive comparison is made between the performance of a numerical hydrodynamic and an analytical model. In this research the multi-channel Ma Estuary in Vietnam is considered as a case study. Both the analytical and the hydrodynamic simulation approaches have been applied and were found capable to mimic the longitudinal salt distribution along the estuary. The data to construct the MIKE11 model include observations provided by a network of fixed hydrological stations and the cross-section measurements along the estuary. The analytic model is developed in parallel but based on information obtained from the hydrological network only (typical for poor data environment). Note that the two convergence length parameters of this simplified model are usually extracted from topography data including cross-sectional area and width along the estuary. Furthermore, freshwater discharge data are needed but these are gauged further upstream outside of the tidal region and unable to reflect the individual flows entering the multi-channel estuary. In order to tackle the poor data environment limitations, a new approach was needed to calibrate the two estuary geometry parameters of the parsimonious salt intrusion model. Compared to the values based on a field survey for the estuary, the calibrated cross-sectional convergence length values are in very high agreement. By assuming a linear relation between inverses of the individual flows entering the estuary and inverses of the sum of flows gauged further upstream, the individual flows can be assessed. Evaluation on the modeling approaches at high water slack shows that the two modeling approaches have similar results. They explain salinity distribution along the Ma Estuary reasonably well with Nash-Sutcliffe efficiency values at gauging stations along the estuary of 0.50 or higher. These performances demonstrate the predictive power of the simplified salt intrusion model and of the proposed parameter/input estimation approach, even with the poorer data.

  19. Interference correction by extracting the information of interference dominant regions: Application to near-infrared spectra

    NASA Astrophysics Data System (ADS)

    Bi, Yiming; Tang, Liang; Shan, Peng; Xie, Qiong; Hu, Yong; Peng, Silong; Tan, Jie; Li, Changwen

    2014-08-01

    Interference such as baseline drift and light scattering can degrade the model predictability in multivariate analysis of near-infrared (NIR) spectra. Usually interference can be represented by an additive and a multiplicative factor. In order to eliminate these interferences, correction parameters are needed to be estimated from spectra. However, the spectra are often mixed of physical light scattering effects and chemical light absorbance effects, making it difficult for parameter estimation. Herein, a novel algorithm was proposed to find a spectral region automatically that the interesting chemical absorbance and noise are low, that is, finding an interference dominant region (IDR). Based on the definition of IDR, a two-step method was proposed to find the optimal IDR and the corresponding correction parameters estimated from IDR. Finally, the correction was performed to the full spectral range using previously obtained parameters for the calibration set and test set, respectively. The method can be applied to multi target systems with one IDR suitable for all targeted analytes. Tested on two benchmark data sets of near-infrared spectra, the performance of the proposed method provided considerable improvement compared with full spectral estimation methods and comparable with other state-of-art methods.

  20. Design of an iterative auto-tuning algorithm for a fuzzy PID controller

    NASA Astrophysics Data System (ADS)

    Saeed, Bakhtiar I.; Mehrdadi, B.

    2012-05-01

    Since the first application of fuzzy logic in the field of control engineering, it has been extensively employed in controlling a wide range of applications. The human knowledge on controlling complex and non-linear processes can be incorporated into a controller in the form of linguistic terms. However, with the lack of analytical design study it is becoming more difficult to auto-tune controller parameters. Fuzzy logic controller has several parameters that can be adjusted, such as: membership functions, rule-base and scaling gains. Furthermore, it is not always easy to find the relation between the type of membership functions or rule-base and the controller performance. This study proposes a new systematic auto-tuning algorithm to fine tune fuzzy logic controller gains. A fuzzy PID controller is proposed and applied to several second order systems. The relationship between the closed-loop response and the controller parameters is analysed to devise an auto-tuning method. The results show that the proposed method is highly effective and produces zero overshoot with enhanced transient response. In addition, the robustness of the controller is investigated in the case of parameter changes and the results show a satisfactory performance.

  1. Considerations regarding the validation of chromatographic mass spectrometric methods for the quantification of endogenous substances in forensics.

    PubMed

    Hess, Cornelius; Sydow, Konrad; Kueting, Theresa; Kraemer, Michael; Maas, Alexandra

    2018-02-01

    The requirement for correct evaluation of forensic toxicological results in daily routine work and scientific studies is reliable analytical data based on validated methods. Validation of a method gives the analyst tools to estimate the efficacy and reliability of the analytical method. Without validation, data might be contested in court and lead to unjustified legal consequences for a defendant. Therefore, new analytical methods to be used in forensic toxicology require careful method development and validation of the final method. Until now, there are no publications on the validation of chromatographic mass spectrometric methods for the detection of endogenous substances although endogenous analytes can be important in Forensic Toxicology (alcohol consumption marker, congener alcohols, gamma hydroxy butyric acid, human insulin and C-peptide, creatinine, postmortal clinical parameters). For these analytes, conventional validation instructions cannot be followed completely. In this paper, important practical considerations in analytical method validation for endogenous substances will be discussed which may be used as guidance for scientists wishing to develop and validate analytical methods for analytes produced naturally in the human body. Especially the validation parameters calibration model, analytical limits, accuracy (bias and precision) and matrix effects and recovery have to be approached differently. Highest attention should be paid to selectivity experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Reliability analysis of composite structures

    NASA Technical Reports Server (NTRS)

    Kan, Han-Pin

    1992-01-01

    A probabilistic static stress analysis methodology has been developed to estimate the reliability of a composite structure. Closed form stress analysis methods are the primary analytical tools used in this methodology. These structural mechanics methods are used to identify independent variables whose variations significantly affect the performance of the structure. Once these variables are identified, scatter in their values is evaluated and statistically characterized. The scatter in applied loads and the structural parameters are then fitted to appropriate probabilistic distribution functions. Numerical integration techniques are applied to compute the structural reliability. The predicted reliability accounts for scatter due to variability in material strength, applied load, fabrication and assembly processes. The influence of structural geometry and mode of failure are also considerations in the evaluation. Example problems are given to illustrate various levels of analytical complexity.

  3. Joint Analysis of X-Ray and Sunyaev-Zel'Dovich Observations of Galaxy Clusters Using an Analytic Model of the Intracluster Medium

    NASA Technical Reports Server (NTRS)

    Hasler, Nicole; Bulbul, Esra; Bonamente, Massimiliano; Carlstrom, John E.; Culverhouse, Thomas L.; Gralla, Megan; Greer, Christopher; Lamb, James W.; Hawkins, David; Hennessy, Ryan; hide

    2012-01-01

    We perform a joint analysis of X-ray and Sunyaev-Zel'dovich effect data using an analytic model that describes the gas properties of galaxy clusters. The joint analysis allows the measurement of the cluster gas mass fraction profile and Hubble constant independent of cosmological parameters. Weak cosmological priors are used to calculate the overdensity radius within which the gas mass fractions are reported. Such an analysis can provide direct constraints on the evolution of the cluster gas mass fraction with redshift. We validate the model and the joint analysis on high signal-to-noise data from the Chandra X-ray Observatory and the Sunyaev-Zel'dovich Array for two clusters, A2631 and A2204.

  4. An Illumination- and Temperature-Dependent Analytical Model for Copper Indium Gallium Diselenide (CIGS) Solar Cells

    DOE PAGES

    Sun, Xingshu; Silverman, Timothy; Garris, Rebekah; ...

    2016-07-18

    In this study, we present a physics-based analytical model for copper indium gallium diselenide (CIGS) solar cells that describes the illumination- and temperature-dependent current-voltage (I-V) characteristics and accounts for the statistical shunt variation of each cell. The model is derived by solving the drift-diffusion transport equation so that its parameters are physical and, therefore, can be obtained from independent characterization experiments. The model is validated against CIGS I-V characteristics as a function of temperature and illumination intensity. This physics-based model can be integrated into a large-scale simulation framework to optimize the performance of solar modules, as well as predict themore » long-term output yields of photovoltaic farms under different environmental conditions.« less

  5. Analytical model of surface potential profiles and transfer characteristics for hetero stacked tunnel field-effect transistors

    NASA Astrophysics Data System (ADS)

    Xu, Hui Fang; Sun, Wen; Han, Xin Feng

    2018-06-01

    An analytical model of surface potential profiles and transfer characteristics for hetero stacked tunnel field-effect transistors (HS-TFETs) is presented for the first time, where hetero stacked materials are composed of two different bandgaps. The bandgap of the underlying layer is smaller than that of the upper layer. Under different device parameters (upper layer thickness, underlying layer thickness, and hetero stacked materials) and temperature, the validity of the model is demonstrated by the agreement of its results with the simulation results. Moreover, the results show that the HS-TFETs can obtain predominant performance with relatively slow changes of subthreshold swing (SS) over a wide drain current range, steep average subthreshold swing, high on-state current, and large on–off state current ratio.

  6. Interplanetary Program to Optimize Simulated Trajectories (IPOST). Volume 2: Analytic manual

    NASA Technical Reports Server (NTRS)

    Hong, P. E.; Kent, P. D.; Olson, D. W.; Vallado, C. A.

    1992-01-01

    The Interplanetary Program to Optimize Space Trajectories (IPOST) is intended to support many analysis phases, from early interplanetary feasibility studies through spacecraft development and operations. The IPOST output provides information for sizing and understanding mission impacts related to propulsion, guidance, communications, sensor/actuators, payload, and other dynamic and geometric environments. IPOST models three degree of freedom trajectory events, such as launch/ascent, orbital coast, propulsive maneuvering (impulsive and finite burn), gravity assist, and atmospheric entry. Trajectory propagation is performed using a choice of Cowell, Encke, Multiconic, Onestep, or Conic methods. The user identifies a desired sequence of trajectory events, and selects which parameters are independent (controls) and dependent (targets), as well as other constraints and the cost function. Targeting and optimization is performed using the Stanford NPSOL algorithm. IPOST structure allows subproblems within a master optimization problem to aid in the general constrained parameter optimization solution. An alternate optimization method uses implicit simulation and collocation techniques.

  7. SPS pilot signal design and power transponder analysis, volume 2, phase 3

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.; Scholtz, R. A.; Chie, C. M.

    1980-01-01

    The problem of pilot signal parameter optimization and the related problem of power transponder performance analysis for the Solar Power Satellite reference phase control system are addressed. Signal and interference models were established to enable specifications of the front end filters including both the notch filter and the antenna frequency response. A simulation program package was developed to be included in SOLARSIM to perform tradeoffs of system parameters based on minimizing the phase error for the pilot phase extraction. An analytical model that characterizes the overall power transponder operation was developed. From this model, the effects of different phase noise disturbance sources that contribute to phase variations at the output of the power transponders were studied and quantified. Results indicate that it is feasible to hold the antenna array phase error to less than one degree per power module for the type of disturbances modeled.

  8. Measurements and calculations of H2-broadening and shift parameters of water vapour transitions of the ν1 + ν2 + ν3 band

    NASA Astrophysics Data System (ADS)

    Petrova, T. M.; Solodov, A. M.; Solodov, A. A.; Deichuli, V. M.; Starikov, V. I.

    2018-05-01

    The water vapour line broadening and shifting for 97 lines in the ν1 + ν2 + ν3 band induced by hydrogen pressure are measured with Bruker IFS 125 HR FTIR spectrometer. The measurements were performed at room temperature, at the spectral resolution of 0.01 cm-1 and in a wide pressure range of H2. The calculations of the broadening γ and shift δ coefficients were performed in the semi-classical method framework with use of an effective vibrationally depended interaction potential. Two potential parameters were optimised to improve the quality of calculations. Good agreements with measured broadening coefficients were achieved. The comparison of calculated broadening coefficients γ with the previous measurements is discussed. The analytical expressions that reproduce these coefficients for rotational, ν2, ν1, and ν3 vibrational bands are presented.

  9. Through-the-earth communication: Experiment results from Billie Mine and Mississippi Chemical Mine

    NASA Astrophysics Data System (ADS)

    Buettner, H. M.; Didwall, E. M.; Bukofzer, D. C.

    1988-06-01

    As part of the Lawrence Livermore National Laboratory (LLNL) effort to evaluate Through-the-Earth Communication (TEC) as an option for military communication systems, experiments were conducted involving transmission, reception, and performance monitoring of digital electromagnetic communication signals propagating through the earth. The two experiments reported on here not only demonstrated that TEC is useful for transmissions at digital rates above a few bits per second, but also provided data on performance parameters with which to evaluate TEC in various military applications. The most important aspect of these experiments is that the bit error rate (BER) is measured rather than just estimated from purely analytic developments. By measuring this important parameter, not only has more credibility been lent to the proof of concept goals of the experiment, but also a means for judging the effects of assumptions in BER theoretical models has been provided.

  10. Evaluation of neutron thermalization parameters and benchmark reactor calculations using a synthetic scattering function for molecular gases

    NASA Astrophysics Data System (ADS)

    Gillette, V. H.; Patiño, N. E.; Granada, J. R.; Mayer, R. E.

    1989-08-01

    Using a synthetic incoherent scattering function which describes the interaction of neutrons with molecular gases we provide analytical expressions for zero- and first-order scattering kernels, σ0( E0 → E), σ1( E0 → E), and total cross section σ0( E0). Based on these quantities, we have performed calculations of thermalization parameters and transport coefficients for H 2O, D 2O, C 6H 6 and (CH 2) n at room temperature. Comparison of such values with available experimental data and other calculations is satisfactory. We also generated nuclear data libraries for H 2O with 47 thermal groups at 300 K and performed some benchmark calculations ( 235U, 239Pu, PWR cell and typical APWR cell); the resulting reactivities are compared with experimental data and ENDF/B-IV calculations.

  11. Matrix solid-phase dispersion coupled with homogeneous ionic liquid microextraction for the determination of sulfonamides in animal tissues using high-performance liquid chromatography.

    PubMed

    Wang, Zhibing; He, Mengyu; Jiang, Chunzhu; Zhang, Fengqing; Du, Shanshan; Feng, Wennan; Zhang, Hanqi

    2015-12-01

    Matrix solid-phase dispersion coupled with homogeneous ionic liquid microextraction was developed and applied to the extraction of some sulfonamides, including sulfamerazine, sulfamethazine, sulfathiazole, sulfachloropyridazine, sulfadoxine, sulfisoxazole, and sulfaphenazole, in animal tissues. High-performance liquid chromatography was applied to the separation and determination of the target analytes. The solid sample was directly treated by matrix solid-phase dispersion and the eluate obtained was treated by homogeneous ionic liquid microextraction. The ionic liquid was used as the extraction solvent in this method, which may result in the improvement of the recoveries of the target analytes. To avoid using organic solvent and reduce environmental pollution, water was used as the elution solvent of matrix solid-phase dispersion. The effects of the experimental parameters on recoveries, including the type and volume of ionic liquid, type of dispersant, ratio of sample to dispersant, pH value of elution solvent, volume of elution solvent, amount of salt in eluate, amount of ion-pairing agent (NH4 PF6 ), and centrifuging time, were evaluated. When the present method was applied to the analysis of animal tissues, the recoveries of the analytes ranged from 85.4 to 118.0%, and the relative standard deviations were lower than 9.30%. The detection limits for the analytes were 4.3-13.4 μg/kg. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Theoretical performance model for single image depth from defocus.

    PubMed

    Trouvé-Peloux, Pauline; Champagnat, Frédéric; Le Besnerais, Guy; Idier, Jérôme

    2014-12-01

    In this paper we present a performance model for depth estimation using single image depth from defocus (SIDFD). Our model is based on an original expression of the Cramér-Rao bound (CRB) in this context. We show that this model is consistent with the expected behavior of SIDFD. We then study the influence on the performance of the optical parameters of a conventional camera such as the focal length, the aperture, and the position of the in-focus plane (IFP). We derive an approximate analytical expression of the CRB away from the IFP, and we propose an interpretation of the SIDFD performance in this domain. Finally, we illustrate the predictive capacity of our performance model on experimental data comparing several settings of a consumer camera.

  13. Analytical description of the modern steam automobile

    NASA Technical Reports Server (NTRS)

    Peoples, J. A.

    1974-01-01

    The sensitivity of operating conditions upon performance of the modern steam automobile is discussed. The word modern has been used in the title to indicate that emphasis is upon miles per gallon rather than theoretical thermal efficiency. This has been accomplished by combining classical power analysis with the ideal Pressure-Volume diagram. Several parameters are derived which characterize performance capability of the modern steam car. The report illustrates that performance is dictated by the characteristics of the working medium, and the supply temperature. Performance is nearly independent of pressures above 800 psia. Analysis techniques were developed specifically for reciprocating steam engines suitable for automotive application. Specific performance charts have been constructed on the basis of water as a working medium. The conclusions and data interpretation are therefore limited within this scope.

  14. Model Reduction via Principe Component Analysis and Markov Chain Monte Carlo (MCMC) Methods

    NASA Astrophysics Data System (ADS)

    Gong, R.; Chen, J.; Hoversten, M. G.; Luo, J.

    2011-12-01

    Geophysical and hydrogeological inverse problems often include a large number of unknown parameters, ranging from hundreds to millions, depending on parameterization and problems undertaking. This makes inverse estimation and uncertainty quantification very challenging, especially for those problems in two- or three-dimensional spatial domains. Model reduction technique has the potential of mitigating the curse of dimensionality by reducing total numbers of unknowns while describing the complex subsurface systems adequately. In this study, we explore the use of principal component analysis (PCA) and Markov chain Monte Carlo (MCMC) sampling methods for model reduction through the use of synthetic datasets. We compare the performances of three different but closely related model reduction approaches: (1) PCA methods with geometric sampling (referred to as 'Method 1'), (2) PCA methods with MCMC sampling (referred to as 'Method 2'), and (3) PCA methods with MCMC sampling and inclusion of random effects (referred to as 'Method 3'). We consider a simple convolution model with five unknown parameters as our goal is to understand and visualize the advantages and disadvantages of each method by comparing their inversion results with the corresponding analytical solutions. We generated synthetic data with noise added and invert them under two different situations: (1) the noised data and the covariance matrix for PCA analysis are consistent (referred to as the unbiased case), and (2) the noise data and the covariance matrix are inconsistent (referred to as biased case). In the unbiased case, comparison between the analytical solutions and the inversion results show that all three methods provide good estimates of the true values and Method 1 is computationally more efficient. In terms of uncertainty quantification, Method 1 performs poorly because of relatively small number of samples obtained, Method 2 performs best, and Method 3 overestimates uncertainty due to inclusion of random effects. However, in the biased case, only Method 3 correctly estimates all the unknown parameters, and both Methods 1 and 2 provide wrong values for the biased parameters. The synthetic case study demonstrates that if the covariance matrix for PCA analysis is inconsistent with true models, the PCA methods with geometric or MCMC sampling will provide incorrect estimates.

  15. Developing semi-analytical solution for multiple-zone transient storage model with spatially non-uniform storage

    NASA Astrophysics Data System (ADS)

    Deng, Baoqing; Si, Yinbing; Wang, Jia

    2017-12-01

    Transient storages may vary along the stream due to stream hydraulic conditions and the characteristics of storage. Analytical solutions of transient storage models in literature didn't cover the spatially non-uniform storage. A novel integral transform strategy is presented that simultaneously performs integral transforms to the concentrations in the stream and in storage zones by using the single set of eigenfunctions derived from the advection-diffusion equation of the stream. The semi-analytical solution of the multiple-zone transient storage model with the spatially non-uniform storage is obtained by applying the generalized integral transform technique to all partial differential equations in the multiple-zone transient storage model. The derived semi-analytical solution is validated against the field data in literature. Good agreement between the computed data and the field data is obtained. Some illustrative examples are formulated to demonstrate the applications of the present solution. It is shown that solute transport can be greatly affected by the variation of mass exchange coefficient and the ratio of cross-sectional areas. When the ratio of cross-sectional areas is big or the mass exchange coefficient is small, more reaches are recommended to calibrate the parameter.

  16. Graphene oxide assisted electromembrane extraction with gas chromatography for the determination of methamphetamine as a model analyte in hair and urine samples.

    PubMed

    Bagheri, Hasan; Zavareh, Alireza Fakhari; Koruni, Mohammad Hossein

    2016-03-01

    In the present study, graphene oxide reinforced two-phase electromembrane extraction (EME) coupled with gas chromatography was applied for the determination of methamphetamine as a model analyte in biological samples. The presence of graphene oxide in the hollow fiber wall can increase the effective surface area, interactions with analyte and polarity of support liquid membrane that leads to an enhancement in the analyte migration. To investigate the influence of the presence of graphene oxide in the support liquid membrane on the extraction efficiency, a comparative study was performed between graphene oxide and graphene oxide/EME methods. The extraction parameters such as type of organic solvent, pH of the donor phase, stirring speed, time, voltage, salt addition and the concentration of graphene oxide were optimized. Under the optimum conditions, the proposed microextraction technique provided low limit of detection (2.4 ng/mL), high preconcentration factor (195-198) and high relative recovery (95-98.5%). Finally, the method was successfully employed for the determination of methamphetamine in urine and hair samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Normal Theory Two-Stage ML Estimator When Data Are Missing at the Item Level

    PubMed Central

    Savalei, Victoria; Rhemtulla, Mijke

    2017-01-01

    In many modeling contexts, the variables in the model are linear composites of the raw items measured for each participant; for instance, regression and path analysis models rely on scale scores, and structural equation models often use parcels as indicators of latent constructs. Currently, no analytic estimation method exists to appropriately handle missing data at the item level. Item-level multiple imputation (MI), however, can handle such missing data straightforwardly. In this article, we develop an analytic approach for dealing with item-level missing data—that is, one that obtains a unique set of parameter estimates directly from the incomplete data set and does not require imputations. The proposed approach is a variant of the two-stage maximum likelihood (TSML) methodology, and it is the analytic equivalent of item-level MI. We compare the new TSML approach to three existing alternatives for handling item-level missing data: scale-level full information maximum likelihood, available-case maximum likelihood, and item-level MI. We find that the TSML approach is the best analytic approach, and its performance is similar to item-level MI. We recommend its implementation in popular software and its further study. PMID:29276371

  18. Normal Theory Two-Stage ML Estimator When Data Are Missing at the Item Level.

    PubMed

    Savalei, Victoria; Rhemtulla, Mijke

    2017-08-01

    In many modeling contexts, the variables in the model are linear composites of the raw items measured for each participant; for instance, regression and path analysis models rely on scale scores, and structural equation models often use parcels as indicators of latent constructs. Currently, no analytic estimation method exists to appropriately handle missing data at the item level. Item-level multiple imputation (MI), however, can handle such missing data straightforwardly. In this article, we develop an analytic approach for dealing with item-level missing data-that is, one that obtains a unique set of parameter estimates directly from the incomplete data set and does not require imputations. The proposed approach is a variant of the two-stage maximum likelihood (TSML) methodology, and it is the analytic equivalent of item-level MI. We compare the new TSML approach to three existing alternatives for handling item-level missing data: scale-level full information maximum likelihood, available-case maximum likelihood, and item-level MI. We find that the TSML approach is the best analytic approach, and its performance is similar to item-level MI. We recommend its implementation in popular software and its further study.

  19. Transformation of an uncertain video search pipeline to a sketch-based visual analytics loop.

    PubMed

    Legg, Philip A; Chung, David H S; Parry, Matthew L; Bown, Rhodri; Jones, Mark W; Griffiths, Iwan W; Chen, Min

    2013-12-01

    Traditional sketch-based image or video search systems rely on machine learning concepts as their core technology. However, in many applications, machine learning alone is impractical since videos may not be semantically annotated sufficiently, there may be a lack of suitable training data, and the search requirements of the user may frequently change for different tasks. In this work, we develop a visual analytics systems that overcomes the shortcomings of the traditional approach. We make use of a sketch-based interface to enable users to specify search requirement in a flexible manner without depending on semantic annotation. We employ active machine learning to train different analytical models for different types of search requirements. We use visualization to facilitate knowledge discovery at the different stages of visual analytics. This includes visualizing the parameter space of the trained model, visualizing the search space to support interactive browsing, visualizing candidature search results to support rapid interaction for active learning while minimizing watching videos, and visualizing aggregated information of the search results. We demonstrate the system for searching spatiotemporal attributes from sports video to identify key instances of the team and player performance.

  20. Geophysical technique for mineral exploration and discrimination based on electromagnetic methods and associated systems

    DOEpatents

    Zhdanov,; Michael, S [Salt Lake City, UT

    2008-01-29

    Mineral exploration needs a reliable method to distinguish between uneconomic mineral deposits and economic mineralization. A method and system includes a geophysical technique for subsurface material characterization, mineral exploration and mineral discrimination. The technique introduced in this invention detects induced polarization effects in electromagnetic data and uses remote geophysical observations to determine the parameters of an effective conductivity relaxation model using a composite analytical multi-phase model of the rock formations. The conductivity relaxation model and analytical model can be used to determine parameters related by analytical expressions to the physical characteristics of the microstructure of the rocks and minerals. These parameters are ultimately used for the discrimination of different components in underground formations, and in this way provide an ability to distinguish between uneconomic mineral deposits and zones of economic mineralization using geophysical remote sensing technology.

  1. An Analytical Approach to Obtaining JWL Parameters from Cylinder Tests

    NASA Astrophysics Data System (ADS)

    Sutton, Ben; Ferguson, James

    2015-06-01

    An analytical method for determining parameters for the JWL equation of state (EoS) from cylinder test data is described. This method is applied to four datasets obtained from two 20.3 mm diameter EDC37 cylinder tests. The calculated parameters and pressure-volume (p-V) curves agree with those produced by hydro-code modelling. The calculated Chapman-Jouguet (CJ) pressure is 38.6 GPa, compared to the model value of 38.3 GPa; the CJ relative volume is 0.729 for both. The analytical pressure-volume curves produced agree with the one used in the model out to the commonly reported expansion of 7 relative volumes, as do the predicted energies generated by integrating under the p-V curve. The calculated and model energies are 8.64 GPa and 8.76 GPa respectively.

  2. Simultaneous determination of sixteen metabolites related to neural tube defects in maternal serum by liquid chromatography coupling with electrospray tandem mass spectrometry.

    PubMed

    Liang, Xiao-Ping; Liang, Qiong-Lin; Xia, Jian-Fei; Wang, Yong; Hu, Ping; Wang, Yi-Ming; Zheng, Xiao-Ying; Zhang, Ting; Luo, Guo-An

    2009-06-15

    Disturbances in maternal folate, homocysteine, and glutathione metabolism have been reported to be associated with neural tube defects (NTDs). However, the role played by specific components in the metabolic pathways leading to NTDs remains unclear. Thus an analytical method for simultaneous measurement of sixteen compounds involved in such three metabolic pathways by high performance liquid chromatography-tandem mass spectrometry was developed. The use of hydrophilic chromatography column improved the separation of polar analytes and the detection mode of multiple-reaction monitoring (MRM) enhanced the specificity and sensitivity so as to achieve simultaneous determination of three class of metabolites which have much variance in polarity and contents. The influence of parameters such as temperature, pH, flow rate on the performance of the analytes were studied to get an optimal condition. The method was validated for its linearity, accuracy, and precision, and also used for the analysis of serum samples of NTDs-affected pregnancies and normal women. The result showed that the present method is sensitive and reliable for simultaneous determination of as many as sixteen interesting metabolites which may provide a new means to study the underlying mechanism of NTDs as well as to discover new potential biomarkers.

  3. Parameter-space metric of semicoherent searches for continuous gravitational waves

    NASA Astrophysics Data System (ADS)

    Pletsch, Holger J.

    2010-08-01

    Continuous gravitational-wave (CW) signals such as emitted by spinning neutron stars are an important target class for current detectors. However, the enormous computational demand prohibits fully coherent broadband all-sky searches for prior unknown CW sources over wide ranges of parameter space and for yearlong observation times. More efficient hierarchical “semicoherent” search strategies divide the data into segments much shorter than one year, which are analyzed coherently; then detection statistics from different segments are combined incoherently. To optimally perform the incoherent combination, understanding of the underlying parameter-space structure is requisite. This problem is addressed here by using new coordinates on the parameter space, which yield the first analytical parameter-space metric for the incoherent combination step. This semicoherent metric applies to broadband all-sky surveys (also embedding directed searches at fixed sky position) for isolated CW sources. Furthermore, the additional metric resolution attained through the combination of segments is studied. From the search parameters (sky position, frequency, and frequency derivatives), solely the metric resolution in the frequency derivatives is found to significantly increase with the number of segments.

  4. Two-degree-of-freedom fractional order-PID controllers design for fractional order processes with dead-time.

    PubMed

    Li, Mingjie; Zhou, Ping; Zhao, Zhicheng; Zhang, Jinggang

    2016-03-01

    Recently, fractional order (FO) processes with dead-time have attracted more and more attention of many researchers in control field, but FO-PID controllers design techniques available for the FO processes with dead-time suffer from lack of direct systematic approaches. In this paper, a simple design and parameters tuning approach of two-degree-of-freedom (2-DOF) FO-PID controller based on internal model control (IMC) is proposed for FO processes with dead-time, conventional one-degree-of-freedom control exhibited the shortcoming of coupling of robustness and dynamic response performance. 2-DOF control can overcome the above weakness which means it realizes decoupling of robustness and dynamic performance from each other. The adjustable parameter η2 of FO-PID controller is directly related to the robustness of closed-loop system, and the analytical expression is given between the maximum sensitivity specification Ms and parameters η2. In addition, according to the dynamic performance requirement of the practical system, the parameters η1 can also be selected easily. By approximating the dead-time term of the process model with the first-order Padé or Taylor series, the expressions for 2-DOF FO-PID controller parameters are derived for three classes of FO processes with dead-time. Moreover, compared with other methods, the proposed method is simple and easy to implement. Finally, the simulation results are given to illustrate the effectiveness of this method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  5. An automated baseline correction protocol for infrared spectra of atmospheric aerosols collected on polytetrafluoroethylene (Teflon) filters

    NASA Astrophysics Data System (ADS)

    Kuzmiakova, Adele; Dillner, Ann M.; Takahama, Satoshi

    2016-06-01

    A growing body of research on statistical applications for characterization of atmospheric aerosol Fourier transform infrared (FT-IR) samples collected on polytetrafluoroethylene (PTFE) filters (e.g., Russell et al., 2011; Ruthenburg et al., 2014) and a rising interest in analyzing FT-IR samples collected by air quality monitoring networks call for an automated PTFE baseline correction solution. The existing polynomial technique (Takahama et al., 2013) is not scalable to a project with a large number of aerosol samples because it contains many parameters and requires expert intervention. Therefore, the question of how to develop an automated method for baseline correcting hundreds to thousands of ambient aerosol spectra given the variability in both environmental mixture composition and PTFE baselines remains. This study approaches the question by detailing the statistical protocol, which allows for the precise definition of analyte and background subregions, applies nonparametric smoothing splines to reproduce sample-specific PTFE variations, and integrates performance metrics from atmospheric aerosol and blank samples alike in the smoothing parameter selection. Referencing 794 atmospheric aerosol samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011, we start by identifying key FT-IR signal characteristics, such as non-negative absorbance or analyte segment transformation, to capture sample-specific transitions between background and analyte. While referring to qualitative properties of PTFE background, the goal of smoothing splines interpolation is to learn the baseline structure in the background region to predict the baseline structure in the analyte region. We then validate the model by comparing smoothing splines baseline-corrected spectra with uncorrected and polynomial baseline (PB)-corrected equivalents via three statistical applications: (1) clustering analysis, (2) functional group quantification, and (3) thermal optical reflectance (TOR) organic carbon (OC) and elemental carbon (EC) predictions. The discrepancy rate for a four-cluster solution is 10 %. For all functional groups but carboxylic COH the discrepancy is ≤ 10 %. Performance metrics obtained from TOR OC and EC predictions (R2 ≥ 0.94 %, bias ≤ 0.01 µg m-3, and error ≤ 0.04 µg m-3) are on a par with those obtained from uncorrected and PB-corrected spectra. The proposed protocol leads to visually and analytically similar estimates as those generated by the polynomial method. More importantly, the automated solution allows us and future users to evaluate its analytical reproducibility while minimizing reducible user bias. We anticipate the protocol will enable FT-IR researchers and data analysts to quickly and reliably analyze a large amount of data and connect them to a variety of available statistical learning methods to be applied to analyte absorbances isolated in atmospheric aerosol samples.

  6. High-frequency phase shift measurement greatly enhances the sensitivity of QCM immunosensors.

    PubMed

    March, Carmen; García, José V; Sánchez, Ángel; Arnau, Antonio; Jiménez, Yolanda; García, Pablo; Manclús, Juan J; Montoya, Ángel

    2015-03-15

    In spite of being widely used for in liquid biosensing applications, sensitivity improvement of conventional (5-20MHz) quartz crystal microbalance (QCM) sensors remains an unsolved challenging task. With the help of a new electronic characterization approach based on phase change measurements at a constant fixed frequency, a highly sensitive and versatile high fundamental frequency (HFF) QCM immunosensor has successfully been developed and tested for its use in pesticide (carbaryl and thiabendazole) analysis. The analytical performance of several immunosensors was compared in competitive immunoassays taking carbaryl insecticide as the model analyte. The highest sensitivity was exhibited by the 100MHz HFF-QCM carbaryl immunosensor. When results were compared with those reported for 9MHz QCM, analytical parameters clearly showed an improvement of one order of magnitude for sensitivity (estimated as the I50 value) and two orders of magnitude for the limit of detection (LOD): 30μgl(-1) vs 0.66μgL(-1)I50 value and 11μgL(-1) vs 0.14μgL(-1) LOD, for 9 and 100MHz, respectively. For the fungicide thiabendazole, I50 value was roughly the same as that previously reported for SPR under the same biochemical conditions, whereas LOD improved by a factor of 2. The analytical performance achieved by high frequency QCM immunosensors surpassed those of conventional QCM and SPR, closely approaching the most sensitive ELISAs. The developed 100MHz QCM immunosensor strongly improves sensitivity in biosensing, and therefore can be considered as a very promising new analytical tool for in liquid applications where highly sensitive detection is required. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. A semi-analytical analysis of electro-thermo-hydrodynamic stability in dielectric nanofluids using Buongiorno's mathematical model together with more realistic boundary conditions

    NASA Astrophysics Data System (ADS)

    Wakif, Abderrahim; Boulahia, Zoubair; Sehaqui, Rachid

    2018-06-01

    The main aim of the present analysis is to examine the electroconvection phenomenon that takes place in a dielectric nanofluid under the influence of a perpendicularly applied alternating electric field. In this investigation, we assume that the nanofluid has a Newtonian rheological behavior and verifies the Buongiorno's mathematical model, in which the effects of thermophoretic and Brownian diffusions are incorporated explicitly in the governing equations. Moreover, the nanofluid layer is taken to be confined horizontally between two parallel plate electrodes, heated from below and cooled from above. In a fast pulse electric field, the onset of electroconvection is due principally to the buoyancy forces and the dielectrophoretic forces. Within the framework of the Oberbeck-Boussinesq approximation and the linear stability theory, the governing stability equations are solved semi-analytically by means of the power series method for isothermal, no-slip and non-penetrability conditions. In addition, the computational implementation with the impermeability condition implies that there exists no nanoparticles mass flux on the electrodes. On the other hand, the obtained analytical solutions are validated by comparing them to those available in the literature for the limiting case of dielectric fluids. In order to check the accuracy of our semi-analytical results obtained for the case of dielectric nanofluids, we perform further numerical and semi-analytical computations by means of the Runge-Kutta-Fehlberg method, the Chebyshev-Gauss-Lobatto spectral method, the Galerkin weighted residuals technique, the polynomial collocation method and the Wakif-Galerkin weighted residuals technique. In this analysis, the electro-thermo-hydrodynamic stability of the studied nanofluid is controlled through the critical AC electric Rayleigh number Rec , whose value depends on several physical parameters. Furthermore, the effects of various pertinent parameters on the electro-thermo-hydrodynamic stability of the nanofluidic system are discussed in more detail through graphical and tabular illustrations.

  8. The influence of laser pulse duration and energy on ICP-MS signal intensity, elemental fractionation, and particle size distribution in NIR fs-LA-ICP-MS

    PubMed Central

    Diwakar, Prasoon K.; Harilal, Sivanandan S.; LaHaye, Nicole L.; Hassanein, Ahmed; Kulkarni, Pramod

    2015-01-01

    Laser parameters, typically wavelength, pulse width, irradiance, repetition rate, and pulse energy, are critical parameters which influence the laser ablation process and thereby influence the LA-ICP-MS signal. In recent times, femtosecond laser ablation has gained popularity owing to the reduction in fractionation related issues and improved analytical performance which can provide matrix-independent sampling. The advantage offered by fs-LA is due to shorter pulse duration of the laser as compared to the phonon relaxation time and heat diffusion time. Hence the thermal effects are minimized in fs-LA. Recently, fs-LA-ICP-MS demonstrated improved analytical performance as compared to ns-LA-ICP-MS, but detailed mechanisms and processes are still not clearly understood. Improvement of fs-LA-ICP-MS over ns-LA-ICP-MS elucidates the importance of laser pulse duration and related effects on the ablation process. In this study, we have investigated the influence of laser pulse width (40 fs to 0.3 ns) and energy on LA-ICP-MS signal intensity and repeatability using a brass sample. Experiments were performed in single spot ablation mode as well as rastering ablation mode to monitor the Cu/Zn ratio. The recorded ICP-MS signal was correlated with total particle counts generated during laser ablation as well as particle size distribution. Our results show the importance of pulse width effects in the fs regime that becomes more pronounced when moving from femtosecond to picosecond and nanosecond regimes. PMID:26664120

  9. Comparative study of I- V methods to extract Au/FePc/p-Si Schottky barrier diode parameters

    NASA Astrophysics Data System (ADS)

    Oruç, Çiğdem; Altındal, Ahmet

    2018-01-01

    So far, various methods have been proposed to extract the Schottky diode parameters from measured current-voltage characteristics. In this work, Schottky barrier diode with structure of Au/2(3),9(10),16(17),23(24)-tetra(4-(4-methoxyphenyl)-8-methylcoumarin-7 oxy) phthalocyaninatoiron(II) (FePc)/p-Si was fabricated and current-voltage measurements were carried out on it. In addition, current-voltage measurements were also performed on Au/p-Si structure, without FePc, to clarify the influence of the presence of an interface layer on the device performance. The measured current-voltage characteristics indicate that the interface properties of a Schottky barrier diode can be controlled by the presence of an organic interface layer. It is found that the room temperature barrier height of Au/FePc/p-Si structure is larger than that of the Au/p-Si structure. The obtained forward bias current-voltage characteristics of the Au/FePc/p-Si device was analysed by five different analytical methods. It is found that the extracted values of SBD parameters strongly depends on the method used.

  10. Cosmological information in Gaussianized weak lensing signals

    NASA Astrophysics Data System (ADS)

    Joachimi, B.; Taylor, A. N.; Kiessling, A.

    2011-11-01

    Gaussianizing the one-point distribution of the weak gravitational lensing convergence has recently been shown to increase the signal-to-noise ratio contained in two-point statistics. We investigate the information on cosmology that can be extracted from the transformed convergence fields. Employing Box-Cox transformations to determine optimal transformations to Gaussianity, we develop analytical models for the transformed power spectrum, including effects of noise and smoothing. We find that optimized Box-Cox transformations perform substantially better than an offset logarithmic transformation in Gaussianizing the convergence, but both yield very similar results for the signal-to-noise ratio. None of the transformations is capable of eliminating correlations of the power spectra between different angular frequencies, which we demonstrate to have a significant impact on the errors in cosmology. Analytic models of the Gaussianized power spectrum yield good fits to the simulations and produce unbiased parameter estimates in the majority of cases, where the exceptions can be traced back to the limitations in modelling the higher order correlations of the original convergence. In the ideal case, without galaxy shape noise, we find an increase in the cumulative signal-to-noise ratio by a factor of 2.6 for angular frequencies up to ℓ= 1500, and a decrease in the area of the confidence region in the Ωm-σ8 plane, measured in terms of q-values, by a factor of 4.4 for the best performing transformation. When adding a realistic level of shape noise, all transformations perform poorly with little decorrelation of angular frequencies, a maximum increase in signal-to-noise ratio of 34 per cent, and even slightly degraded errors on cosmological parameters. We argue that to find Gaussianizing transformations of practical use, it will be necessary to go beyond transformations of the one-point distribution of the convergence, extend the analysis deeper into the non-linear regime and resort to an exploration of parameter space via simulations.

  11. Concept design theory and model for multi-use space facilities: Analysis of key system design parameters through variance of mission requirements

    NASA Astrophysics Data System (ADS)

    Reynerson, Charles Martin

    This research has been performed to create concept design and economic feasibility data for space business parks. A space business park is a commercially run multi-use space station facility designed for use by a wide variety of customers. Both space hardware and crew are considered as revenue producing payloads. Examples of commercial markets may include biological and materials research, processing, and production, space tourism habitats, and satellite maintenance and resupply depots. This research develops a design methodology and an analytical tool to create feasible preliminary design information for space business parks. The design tool is validated against a number of real facility designs. Appropriate model variables are adjusted to ensure that statistical approximations are valid for subsequent analyses. The tool is used to analyze the effect of various payload requirements on the size, weight and power of the facility. The approach for the analytical tool was to input potential payloads as simple requirements, such as volume, weight, power, crew size, and endurance. In creating the theory, basic principles are used and combined with parametric estimation of data when necessary. Key system parameters are identified for overall system design. Typical ranges for these key parameters are identified based on real human spaceflight systems. To connect the economics to design, a life-cycle cost model is created based upon facility mass. This rough cost model estimates potential return on investments, initial investment requirements and number of years to return on the initial investment. Example cases are analyzed for both performance and cost driven requirements for space hotels, microgravity processing facilities, and multi-use facilities. In combining both engineering and economic models, a design-to-cost methodology is created for more accurately estimating the commercial viability for multiple space business park markets.

  12. Migration of antioxidants from polylactic acid films, a parameter estimation approach: Part I - A model including convective mass transfer coefficient.

    PubMed

    Samsudin, Hayati; Auras, Rafael; Burgess, Gary; Dolan, Kirk; Soto-Valdez, Herlinda

    2018-03-01

    A two-step solution based on the boundary conditions of Crank's equations for mass transfer in a film was developed. Three driving factors, the diffusion (D), partition (K p,f ) and convective mass transfer coefficients (h), govern the sorption and/or desorption kinetics of migrants from polymer films. These three parameters were simultaneously estimated. They provide in-depth insight into the physics of a migration process. The first step was used to find the combination of D, K p,f and h that minimized the sums of squared errors (SSE) between the predicted and actual results. In step 2, an ordinary least square (OLS) estimation was performed by using the proposed analytical solution containing D, K p,f and h. Three selected migration studies of PLA/antioxidant-based films were used to demonstrate the use of this two-step solution. Additional parameter estimation approaches such as sequential and bootstrap were also performed to acquire a better knowledge about the kinetics of migration. The proposed model successfully provided the initial guesses for D, K p,f and h. The h value was determined without performing a specific experiment for it. By determining h together with D, under or overestimation issues pertaining to a migration process can be avoided since these two parameters are correlated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Cramer-Rao Lower Bound Evaluation for Linear Frequency Modulation Based Active Radar Networks Operating in a Rice Fading Environment.

    PubMed

    Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang

    2016-12-06

    This paper investigates the joint target parameter (delay and Doppler) estimation performance of linear frequency modulation (LFM)-based radar networks in a Rice fading environment. The active radar networks are composed of multiple radar transmitters and multichannel receivers placed on moving platforms. First, the log-likelihood function of the received signal for a Rician target is derived, where the received signal scattered off the target comprises of dominant scatterer (DS) component and weak isotropic scatterers (WIS) components. Then, the analytically closed-form expressions of the Cramer-Rao lower bounds (CRLBs) on the Cartesian coordinates of target position and velocity are calculated, which can be adopted as a performance metric to access the target parameter estimation accuracy for LFM-based radar network systems in a Rice fading environment. It is found that the cumulative Fisher information matrix (FIM) is a linear combination of both DS component and WIS components, and it also demonstrates that the joint CRLB is a function of signal-to-noise ratio (SNR), target's radar cross section (RCS) and transmitted waveform parameters, as well as the relative geometry between the target and the radar network architectures. Finally, numerical results are provided to indicate that the joint target parameter estimation performance of active radar networks can be significantly improved with the exploitation of DS component.

  14. Cramer-Rao Lower Bound Evaluation for Linear Frequency Modulation Based Active Radar Networks Operating in a Rice Fading Environment

    PubMed Central

    Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang

    2016-01-01

    This paper investigates the joint target parameter (delay and Doppler) estimation performance of linear frequency modulation (LFM)-based radar networks in a Rice fading environment. The active radar networks are composed of multiple radar transmitters and multichannel receivers placed on moving platforms. First, the log-likelihood function of the received signal for a Rician target is derived, where the received signal scattered off the target comprises of dominant scatterer (DS) component and weak isotropic scatterers (WIS) components. Then, the analytically closed-form expressions of the Cramer-Rao lower bounds (CRLBs) on the Cartesian coordinates of target position and velocity are calculated, which can be adopted as a performance metric to access the target parameter estimation accuracy for LFM-based radar network systems in a Rice fading environment. It is found that the cumulative Fisher information matrix (FIM) is a linear combination of both DS component and WIS components, and it also demonstrates that the joint CRLB is a function of signal-to-noise ratio (SNR), target’s radar cross section (RCS) and transmitted waveform parameters, as well as the relative geometry between the target and the radar network architectures. Finally, numerical results are provided to indicate that the joint target parameter estimation performance of active radar networks can be significantly improved with the exploitation of DS component. PMID:27929433

  15. Importance of optimizing chromatographic conditions and mass spectrometric parameters for supercritical fluid chromatography/mass spectrometry.

    PubMed

    Fujito, Yuka; Hayakawa, Yoshihiro; Izumi, Yoshihiro; Bamba, Takeshi

    2017-07-28

    Supercritical fluid chromatography/mass spectrometry (SFC/MS) has great potential in high-throughput and the simultaneous analysis of a wide variety of compounds, and it has been widely used in recent years. The use of MS for detection provides the advantages of high sensitivity and high selectivity. However, the sensitivity of MS detection depends on the chromatographic conditions and MS parameters. Thus, optimization of MS parameters corresponding to the SFC condition is mandatory for maximizing performance when connecting SFC to MS. The aim of this study was to reveal a way to decide the optimum composition of the mobile phase and the flow rate of the make-up solvent for MS detection in a wide range of compounds. Additionally, we also showed the basic concept for determination of the optimum values of the MS parameters focusing on the MS detection sensitivity in SFC/MS analysis. To verify the versatility of these findings, a total of 441 pesticides with a wide polarity range (logP ow from -4.21 to 7.70) and pKa (acidic, neutral and basic). In this study, a new SFC-MS interface was used, which can transfer the entire volume of eluate into the MS by directly coupling the SFC with the MS. This enabled us to compare the sensitivity or optimum MS parameters for MS detection between LC/MS and SFC/MS for the same sample volume introduced into the MS. As a result, it was found that the optimum values of some MS parameters were completely different from those of LC/MS, and that SFC/MS-specific optimization of the analytical conditions is required. Lastly, we evaluated the sensitivity of SFC/MS using fully optimized analytical conditions. As a result, we confirmed that SFC/MS showed much higher sensitivity than LC/MS when the analytical conditions were fully optimized for SFC/MS; and the high sensitivity also increase the number of the compounds that can be detected with good repeatability in real sample analysis. This result indicates that SFC/MS has potential for practical use in the multiresidue analysis of a wide range of compounds that requires high sensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Truncation effect on Taylor-Aris dispersion in lattice Boltzmann schemes: Accuracy towards stability

    NASA Astrophysics Data System (ADS)

    Ginzburg, Irina; Roux, Laetitia

    2015-10-01

    The Taylor dispersion in parabolic velocity field provides a well-known benchmark for advection-diffusion (ADE) schemes and serves as a first step towards accurate modeling of the high-order non-Gaussian effects in heterogeneous flow. While applying the Lattice Boltzmann ADE two-relaxation-times (TRT) scheme for a transport with given Péclet number (Pe) one should select six free-tunable parameters, namely, (i) molecular-diffusion-scale, equilibrium parameter; (ii) three families of equilibrium weights, assigned to the terms of mass, velocity and numerical-diffusion-correction, and (iii) two relaxation rates. We analytically and numerically investigate the respective roles of all these degrees of freedom in the accuracy and stability in the evolution of a Gaussian plume. For this purpose, the third- and fourth-order transient multi-dimensional analysis of the recurrence equations of the TRT ADE scheme is extended for a spatially-variable velocity field. The key point is in the coupling of the truncation and Taylor dispersion analysis which allows us to identify the second-order numerical correction δkT to Taylor dispersivity coefficient kT. The procedure is exemplified for a straight Poiseuille flow where δkT is given in a closed analytical form in equilibrium and relaxation parameter spaces. The predicted longitudinal dispersivity is in excellent agreement with the numerical experiments over a wide parameter range. In relatively small Pe-range, the relative dispersion error increases with Péclet number. This deficiency reduces in the intermediate and high Pe-range where it becomes Pe-independent and velocity-amplitude independent. Eliminating δkT by a proper parameter choice and employing specular reflection for zero flux condition on solid boundaries, the d2Q9 TRT ADE scheme may reproduce the Taylor-Aris result quasi-exactly, from very coarse to fine grids, and from very small to arbitrarily high Péclet numbers. Since free-tunable product of two eigenfunctions also controls stability of the model, the validity of the analytically established von Neumann stability diagram is examined in Poiseuille profile. The simplest coordinate-stencil subclass, which is the d2Q5 TRT bounce-back scheme, demonstrates the best performance and achieves the maximum accuracy for most stable relaxation parameters.

  17. Method and apparatus for detecting an analyte

    DOEpatents

    Allendorf, Mark D [Pleasanton, CA; Hesketh, Peter J [Atlanta, GA

    2011-11-29

    We describe the use of coordination polymers (CP) as coatings on microcantilevers for the detection of chemical analytes. CP exhibit changes in unit cell parameters upon adsorption of analytes, which will induce a stress in a static microcantilever upon which a CP layer is deposited. We also describe fabrication methods for depositing CP layers on surfaces.

  18. Liquid propellant thermal conditioning system test program

    NASA Technical Reports Server (NTRS)

    Bullard, B. R.

    1972-01-01

    Results are presented from more than 1500 hours of testing on a liquid hydrogen thermal conditioning unit. Test parameters included: mixer and vent flow rates; tank size; ullage volume; pressurant gas; pressurant temperature; pressure level; and heat rate. Gaseous hydrogen and helium were used as pressurants. Analytical models were developed to correlate the test data and relate the performance to that anticipated in zero gravity. Experimental and theoretical results are presented which relate the variables controlling vapor condensation at a moving interface.

  19. System model the processing of heterogeneous sensory information in robotized complex

    NASA Astrophysics Data System (ADS)

    Nikolaev, V.; Titov, V.; Syryamkin, V.

    2018-05-01

    Analyzed the scope and the types of robotic systems consisting of subsystems of the form "a heterogeneous sensors data processing subsystem". On the basis of the Queuing theory model is developed taking into account the unevenness of the intensity of information flow from the sensors to the subsystem of information processing. Analytical solution to assess the relationship of subsystem performance and uneven flows. The research of the obtained solution in the range of parameter values of practical interest.

  20. Wind tunnel investigation of a 14 foot vertical axis windmill

    NASA Technical Reports Server (NTRS)

    Muraca, R. J.; Guillotte, R. J.

    1976-01-01

    A full scale wind tunnel investigation was made to determine the performance characteristics of a 14 ft diameter vertical axis windmill. The parameters measured were wind velocity, shaft torque, shaft rotation rate, along with the drag and yawing moment. A velocity survey of the flow field downstream of the windmill was also made. The results of these tests along with some analytically predicted data are presented in the form of generalized data as a function of tip speed ratio.

  1. Maximum and minimum return losses from a passive two-port network terminated with a mismatched load

    NASA Technical Reports Server (NTRS)

    Otoshi, T. Y.

    1993-01-01

    This article presents an analytical method for determining the exact distance a load is required to be offset from a passive two-port network to obtain maximum or minimum return losses from the terminated two-port network. Equations are derived in terms of two-port network S-parameters and load reflection coefficient. The equations are useful for predicting worst-case performances of some types of networks that are terminated with offset short-circuit loads.

  2. The role of local wisdom in developing friendly city

    NASA Astrophysics Data System (ADS)

    Sibarani, Robert

    2018-03-01

    This present paper discusses the local wisdom which can be applied to build the character of people living in a friendly city. It aims at (1) finding the main local wisdom which can be used to construct the integrity of human beings dwelling in it and (2) describing the concept of developing the friendly city based on local wisdom. Anthropolinguistics is applied to study this topic by focusing on the performance, indexicality, and participation. The analytic parameters are interconnection, evaluability, and sustainability.

  3. Downforce variation dependence of angle of incidence modification for the rear wing of high speed vehicles

    NASA Astrophysics Data System (ADS)

    Tarulescu, R.; Tarulescu, S.; Leahu, C.

    2017-10-01

    The conventional downforce devices (with fixed geometry) of high speed vehicles have parameters such as area, angle of incidence and head resistance coefficients, all with constant values. The downforce is proportional with the square of movement speed and the power consumed for the neutralization of aerodynamic road resistance is proportional with the cube of speed. The authors carried out an analytical study of downforce, adjustable/monitored by optimum incidence (modification of incidence angle of rear wing for performance improvement).

  4. An algorithm for full parametric solution of problems on the statics of orthotropic plates by the method of boundary states with perturbations

    NASA Astrophysics Data System (ADS)

    Penkov, V. B.; Ivanychev, D. A.; Novikova, O. S.; Levina, L. V.

    2018-03-01

    The article substantiates the possibility of building full parametric analytical solutions of mathematical physics problems in arbitrary regions by means of computer systems. The suggested effective means for such solutions is the method of boundary states with perturbations, which aptly incorporates all parameters of an orthotropic medium in a general solution. We performed check calculations of elastic fields of an anisotropic rectangular region (test and calculation problems) for a generalized plane stress state.

  5. An Analytic Training Effectiveness Analysis for a CTEA Update

    DTIC Science & Technology

    1977-11-01

    minutes to insert a fault in the crtual harduare and an additional 5 minut(,s to remove the fault. This manual insertion of f,iults, therefore, will cut an...organizatioual mu Inten;4 nce m4n.for tle potrfo’ in.ý;e of hi 1 t ,ksx. Thus, feedlark would hatve to be piovil,,d by an Instrutor ohb.-erving ,v,.ry...use Information regarding problem parameters and student performance (time, errors). The problems in handling this such data manually are such that

  6. Estimation of real-time runway surface contamination using flight data recorder parameters

    NASA Astrophysics Data System (ADS)

    Curry, Donovan

    Within this research effort, the development of an analytic process for friction coefficient estimation is presented. Under static equilibrium, the sum of forces and moments acting on the aircraft, in the aircraft body coordinate system, while on the ground at any instant is equal to zero. Under this premise the longitudinal, lateral and normal forces due to landing are calculated along with the individual deceleration components existent when an aircraft comes to a rest during ground roll. In order to validate this hypothesis a six degree of freedom aircraft model had to be created and landing tests had to be simulated on different surfaces. The simulated aircraft model includes a high fidelity aerodynamic model, thrust model, landing gear model, friction model and antiskid model. Three main surfaces were defined in the friction model; dry, wet and snow/ice. Only the parameters recorded by an FDR are used directly from the aircraft model all others are estimated or known a priori. The estimation of unknown parameters is also presented in the research effort. With all needed parameters a comparison and validation with simulated and estimated data, under different runway conditions, is performed. Finally, this report presents results of a sensitivity analysis in order to provide a measure of reliability of the analytic estimation process. Linear and non-linear sensitivity analysis has been performed in order to quantify the level of uncertainty implicit in modeling estimated parameters and how they can affect the calculation of the instantaneous coefficient of friction. Using the approach of force and moment equilibrium about the CG at landing to reconstruct the instantaneous coefficient of friction appears to be a reasonably accurate estimate when compared to the simulated friction coefficient. This is also true when the FDR and estimated parameters are introduced to white noise and when crosswind is introduced to the simulation. After the linear analysis the results show the minimum frequency at which the algorithm still provides moderately accurate data is at 2Hz. In addition, the linear analysis shows that with estimated parameters increased and decreased up to 25% at random, high priority parameters have to be accurate to within at least +/-5% to have an effect of less than 1% change in the average coefficient of friction. Non-linear analysis results show that the algorithm can be considered reasonably accurate for all simulated cases when inaccuracies in the estimated parameters vary randomly and simultaneously up to +/-27%. At worst-case the maximum percentage change in average coefficient of friction is less than 10% for all surfaces.

  7. Remote measurements of water pollution with a lidar polarimeter

    NASA Technical Reports Server (NTRS)

    Sheives, T. C.; Rouse, J. W., Jr.; Mayo, W. T., Jr.

    1974-01-01

    This paper examines a dual polarization laser backscatter system as a method for remote measurements of certain water quality parameters. Analytical models for describing the backscatter from turbid water and oil on turbid water are presented and compared with experimental data. Laser backscatter field measurements from natural waterways are presented and compared with simultaneous ground observations of the water quality parameters: turbidity, suspended solids, and transmittance. The results of this study show that the analytical models appear valid and that the sensor investigated is applicable to remote measurements of these water quality parameters and oil spills on water.-

  8. Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor.

    PubMed

    Rifat, Ahmmed A; Haider, Firoz; Ahmed, Rajib; Mahdiraji, Ghafour Amouzad; Mahamd Adikan, F R; Miroshnichenko, Andrey E

    2018-02-15

    Highly sensitive and miniaturized sensors are highly desirable for real-time analyte/sample detection. In this Letter, we propose a highly sensitive plasmonic sensing scheme with the miniaturized photonic crystal fiber (PCF) attributes. A large cavity is introduced in the first ring of the PCFs for the efficient field excitation of the surface plasmon polariton mode and proficient infiltration of the sensing elements. Due to the irregular air-hole diameter in the first ring, the cavity exhibits the birefringence behavior which enhances the sensing performance. The novel plasmonic material gold has been used considering the chemical stability in an aqueous environment. The guiding properties and the effects of the sensing performance with different parameters have been investigated by the finite element method, and the proposed PCFs have been fabricated using the stack-and-draw fiber drawing method. The proposed sensor performance was investigated based on the wavelength and amplitude sensing techniques and shows the maximum sensitivities of 11,000 nm/RIU and 1,420  RIU -1 , respectively. It also shows the maximum sensor resolutions of 9.1×10 -6 and 7×10 -6   RIU for the wavelength and amplitude sensing schemes, respectively, and the maximum figure of merits of 407. Furthermore, the proposed sensor is able to detect the analyte refractive indices in the range of 1.33-1.42; as a result, it will find the possible applications in the medical diagnostics, biomolecules, organic chemical, and chemical analyte detection.

  9. A new analytical solar radiation pressure model for current BeiDou satellites: IGGBSPM

    PubMed Central

    Tan, Bingfeng; Yuan, Yunbin; Zhang, Baocheng; Hsu, Hou Ze; Ou, Jikun

    2016-01-01

    An analytical solar radiation pressure (SRP) model, IGGBSPM (an abbreviation for Institute of Geodesy and Geophysics BeiDou Solar Pressure Model), has been developed for three BeiDou satellite types, namely, geostationary orbit (GEO), inclined geosynchronous orbit (IGSO) and medium earth orbit (MEO), based on a ray-tracing method. The performance of IGGBSPM was assessed based on numerical integration, SLR residuals and analyses of empirical SRP parameters (except overlap computations). The numerical results show that the integrated orbit resulting from IGGBSPM differs from the precise ephemerides by approximately 5 m and 2 m for GEO and non-GEO satellites, respectively. Moreover, when IGGBSPM is used as an a priori model to enhance the ECOM (5-parameter) model with stochastic pulses, named ECOM + APR, for precise orbit determination, the SLR RMS residual improves by approximately 20–25 percent over the ECOM-only solution during the yaw-steering period and by approximately 40 percent during the yaw-fixed period. For the BeiDou GEO01 satellite, improvements of 18 and 32 percent can be achieved during the out-of-eclipse season and during the eclipse season, respectively. An investigation of the estimated ECOM D0 parameters indicated that the β-angle dependence that is evident in the ECOM-only solution is no longer present in the ECOM + APR solution. PMID:27595795

  10. A parametric numerical study of mixing in a cylindrical duct

    NASA Astrophysics Data System (ADS)

    Oechsle, V. L.; Mongia, H. C.; Holderman, J. D.

    1992-07-01

    The interaction is described of some of the important parameters affecting the mixing process in a quick mixing region of a rich burn/quick mix/lean burn (RQL) combustor. The performance of the quick mixing region is significantly affected by the geometric designs of both the mixing domain and the jet inlet orifices. Several of the important geometric parameters and operating conditions affecting the mixing process were analytically studied. Parameters such as jet-to-mainstream momentum flux ratio (J), mass flow ratio (MR), orifice geometry, orifice orientation, and number of orifices/row (equally spaced around the circumferential direction were analyzed. Three different sets of orifice shapes were studied: (1) square, (2) elongated slots, and (3) equilateral triangles. Based on the analytical results, the best mixing configuration depends significantly on the penetration depth of the jet to prevent the hot mainstream flow from being entrained behind the orifice. The structure in a circular mixing section is highly weighted toward the outer wall and any mixing structure affecting this area significantly affects the overall results. The increase in the number of orifices per row increases the mixing at higher J conditions. Higher slot slant angles and aspect ratios are generally the best mixing configurations at higher momentum flux ratio (J) conditions. However, the square and triangular shaped orifices were more effective mixing configurations at lower J conditions.

  11. A new analytical solar radiation pressure model for current BeiDou satellites: IGGBSPM.

    PubMed

    Tan, Bingfeng; Yuan, Yunbin; Zhang, Baocheng; Hsu, Hou Ze; Ou, Jikun

    2016-09-06

    An analytical solar radiation pressure (SRP) model, IGGBSPM (an abbreviation for Institute of Geodesy and Geophysics BeiDou Solar Pressure Model), has been developed for three BeiDou satellite types, namely, geostationary orbit (GEO), inclined geosynchronous orbit (IGSO) and medium earth orbit (MEO), based on a ray-tracing method. The performance of IGGBSPM was assessed based on numerical integration, SLR residuals and analyses of empirical SRP parameters (except overlap computations). The numerical results show that the integrated orbit resulting from IGGBSPM differs from the precise ephemerides by approximately 5 m and 2 m for GEO and non-GEO satellites, respectively. Moreover, when IGGBSPM is used as an a priori model to enhance the ECOM (5-parameter) model with stochastic pulses, named ECOM + APR, for precise orbit determination, the SLR RMS residual improves by approximately 20-25 percent over the ECOM-only solution during the yaw-steering period and by approximately 40 percent during the yaw-fixed period. For the BeiDou GEO01 satellite, improvements of 18 and 32 percent can be achieved during the out-of-eclipse season and during the eclipse season, respectively. An investigation of the estimated ECOM D0 parameters indicated that the β-angle dependence that is evident in the ECOM-only solution is no longer present in the ECOM + APR solution.

  12. Cost-effectiveness of orthoptic screening in kindergarten: a decision-analytic model.

    PubMed

    König, H H; Barry, J C; Leidl, R; Zrenner, E

    2000-06-01

    The purpose of this study was to analyze the cost-effectiveness of orthoptic screening for amblyopia in kindergarten. A decision-analytic model was used. In this model all kindergarten children in Germany aged 3 years were examined by an orthoptist. Children with positive screening results were referred to an ophthalmologist for diagnosis. The number of newly diagnosed cases of amblyopia, amblyogenic non-obvious strabismus and amblyogenic refractive errors was used as the measure of effectiveness. Direct costs were measured form a third-party payer perspective. Data for model parameters were obtained from the literature and from own measurements in kindergartens. A base analysis was performed using median parameter values. The influence of uncertain parameters was tested in sensitivity analyses. According to the base analysis, the cost of one orthoptic screening test was 7.87 euro. One ophthalmologic examination cost 36.40 euro. The total cost of the screening program in all kindergartens was 3.1 million euro. A total of 4,261 new cases would be detected. The cost-effectiveness ratio was 727 euro per case detected. Sensitivity analysis showed considerable influence of the prevalence rate of target conditions and of the specificity of the orthopic examination on the cost-effectiveness ratio. This analysis provides information which is useful for discussion about the implementation of orthoptic screening and for planning a field study.

  13. Unprecedented homotopy perturbation method for solving nonlinear equations in the enzymatic reaction of glucose in a spherical matrix.

    PubMed

    Saranya, K; Mohan, V; Kizek, R; Fernandez, C; Rajendran, L

    2018-02-01

    The theory of glucose-responsive composite membranes for the planar diffusion and reaction process is extended to a microsphere membrane. The theoretical model of glucose oxidation and hydrogen peroxide production in the chitosan-aliginate microsphere has been discussed in this manuscript for the first time. We have successfully reported an analytical derived methodology utilizing homotopy perturbation to perform the numerical simulation. The influence and sensitive analysis of various parameters on the concentrations of gluconic acid and hydrogen peroxide are also discussed. The theoretical results enable to predict and optimize the performance of enzyme kinetics.

  14. Commercial Aircraft Protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehst, David A.

    This report summarizes the results of theoretical research performed during 3 years of P371 Project implementation. In results of such research a new scientific conceptual technology of quasi-passive individual infrared protection of heat-generating objects – Spatial Displacement of Thermal Image (SDTI technology) was developed. Theoretical substantiation and description of working processes of civil aircraft individual IR-protection system were conducted. The mathematical models and methodology were presented, there were obtained the analytical dependencies which allow performing theoretical research of the affect of intentionally arranged dynamic field of the artificial thermal interferences with variable contrast onto main parameters of optic-electronic tracking andmore » homing systems.« less

  15. Performance evaluation of four directional emissivity analytical models with thermal SAIL model and airborne images.

    PubMed

    Ren, Huazhong; Liu, Rongyuan; Yan, Guangjian; Li, Zhao-Liang; Qin, Qiming; Liu, Qiang; Nerry, Françoise

    2015-04-06

    Land surface emissivity is a crucial parameter in the surface status monitoring. This study aims at the evaluation of four directional emissivity models, including two bi-directional reflectance distribution function (BRDF) models and two gap-frequency-based models. Results showed that the kernel-driven BRDF model could well represent directional emissivity with an error less than 0.002, and was consequently used to retrieve emissivity with an accuracy of about 0.012 from an airborne multi-angular thermal infrared data set. Furthermore, we updated the cavity effect factor relating to multiple scattering inside canopy, which improved the performance of the gap-frequency-based models.

  16. Surprising performance for vibrational frequencies of the distinguishable clusters with singles and doubles (DCSD) and MP2.5 approximations

    NASA Astrophysics Data System (ADS)

    Kesharwani, Manoj K.; Sylvetsky, Nitai; Martin, Jan M. L.

    2017-11-01

    We show that the DCSD (distinguishable clusters with all singles and doubles) correlation method permits the calculation of vibrational spectra at near-CCSD(T) quality but at no more than CCSD cost, and with comparatively inexpensive analytical gradients. For systems dominated by a single reference configuration, even MP2.5 is a viable alternative, at MP3 cost. MP2.5 performance for vibrational frequencies is comparable to double hybrids such as DSD-PBEP86-D3BJ, but without resorting to empirical parameters. DCSD is also quite suitable for computing zero-point vibrational energies in computational thermochemistry.

  17. Petermann I and II spot size: Accurate semi analytical description involving Nelder-Mead method of nonlinear unconstrained optimization and three parameter fundamental modal field

    NASA Astrophysics Data System (ADS)

    Roy Choudhury, Raja; Roy Choudhury, Arundhati; Kanti Ghose, Mrinal

    2013-01-01

    A semi-analytical model with three optimizing parameters and a novel non-Gaussian function as the fundamental modal field solution has been proposed to arrive at an accurate solution to predict various propagation parameters of graded-index fibers with less computational burden than numerical methods. In our semi analytical formulation the optimization of core parameter U which is usually uncertain, noisy or even discontinuous, is being calculated by Nelder-Mead method of nonlinear unconstrained minimizations as it is an efficient and compact direct search method and does not need any derivative information. Three optimizing parameters are included in the formulation of fundamental modal field of an optical fiber to make it more flexible and accurate than other available approximations. Employing variational technique, Petermann I and II spot sizes have been evaluated for triangular and trapezoidal-index fibers with the proposed fundamental modal field. It has been demonstrated that, the results of the proposed solution identically match with the numerical results over a wide range of normalized frequencies. This approximation can also be used in the study of doped and nonlinear fiber amplifier.

  18. Analytical Modelling of the Effects of Different Gas Turbine Cooling Techniques on Engine Performance =

    NASA Astrophysics Data System (ADS)

    Uysal, Selcuk Can

    In this research, MATLAB SimulinkRTM was used to develop a cooled engine model for industrial gas turbines and aero-engines. The model consists of uncooled on-design, mean-line turbomachinery design and a cooled off-design analysis in order to evaluate the engine performance parameters by using operating conditions, polytropic efficiencies, material information and cooling system details. The cooling analysis algorithm involves a 2nd law analysis to calculate losses from the cooling technique applied. The model is used in a sensitivity analysis that evaluates the impacts of variations in metal Biot number, thermal barrier coating Biot number, film cooling effectiveness, internal cooling effectiveness and maximum allowable blade temperature on main engine performance parameters of aero and industrial gas turbine engines. The model is subsequently used to analyze the relative performance impact of employing Anti-Vortex Film Cooling holes (AVH) by means of data obtained for these holes by Detached Eddy Simulation-CFD Techniques that are valid for engine-like turbulence intensity conditions. Cooled blade configurations with AVH and other different external cooling techniques were used in a performance comparison study. (Abstract shortened by ProQuest.).

  19. Estimate of Joule Heating in a Flat Dechirper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bane, Karl; Stupakov, Gennady; Gjonaj, Erion

    2017-02-10

    We have performed Joule power loss calculations for a flat dechirper. We have considered the configurations of the beam on-axis between the two plates—for chirp control—and for the beam especially close to one plate—for use as a fast kicker. Our calculations use a surface impedance approach, one that is valid when corrugation parameters are small compared to aperture (the perturbative parameter regime). In our model we ignore effects of field reflections at the sides of the dechirper plates, and thus expect the results to underestimate the Joule losses. The analytical results were also tested by numerical, time-domain simulations. We findmore » that most of the wake power lost by the beam is radiated out to the sides of the plates. For the case of the beam passing by a single plate, we derive an analytical expression for the broad-band impedance, and—in Appendix B—numerically confirm recently developed, analytical formulas for the short-range wakes. While our theory can be applied to the LCLS-II dechirper with large gaps, for the nominal apertures we are not in the perturbative regime and the reflection contribution to Joule losses is not negligible. With input from computer simulations, we estimate the Joule power loss (assuming bunch charge of 300 pC, repetition rate of 100 kHz) is 21 W/m for the case of two plates, and 24 W/m for the case of a single plate.« less

  20. Uncertainty evaluation of mass values determined by electronic balances in analytical chemistry: a new method to correct for air buoyancy.

    PubMed

    Wunderli, S; Fortunato, G; Reichmuth, A; Richard, Ph

    2003-06-01

    A new method to correct for the largest systematic influence in mass determination-air buoyancy-is outlined. A full description of the most relevant influence parameters is given and the combined measurement uncertainty is evaluated according to the ISO-GUM approach [1]. A new correction method for air buoyancy using an artefact is presented. This method has the advantage that only a mass artefact is used to correct for air buoyancy. The classical approach demands the determination of the air density and therefore suitable equipment to measure at least the air temperature, the air pressure and the relative air humidity within the demanded uncertainties (i.e. three independent measurement tasks have to be performed simultaneously). The calculated uncertainty is lower for the classical method. However a field laboratory may not always be in possession of fully traceable measurement systems for these room climatic parameters.A comparison of three approaches applied to the calculation of the combined uncertainty of mass values is presented. Namely the classical determination of air buoyancy, the artefact method, and the neglecting of this systematic effect as proposed in the new EURACHEM/CITAC guide [2]. The artefact method is suitable for high-precision measurement in analytical chemistry and especially for the production of certified reference materials, reference values and analytical chemical reference materials. The method could also be used either for volume determination of solids or for air density measurement by an independent method.

  1. An analysis of beam parameters on proton-acoustic waves through an analytic approach.

    PubMed

    Kipergil, Esra Aytac; Erkol, Hakan; Kaya, Serhat; Gulsen, Gultekin; Unlu, Mehmet Burcin

    2017-06-21

    It has been reported that acoustic waves are generated when a high-energy pulsed proton beam is deposited in a small volume within tissue. One possible application of proton-induced acoustics is to get real-time feedback for intra-treatment adjustments by monitoring such acoustic waves. A high spatial resolution in ultrasound imaging may reduce proton range uncertainty. Thus, it is crucial to understand the dependence of the acoustic waves on the proton beam characteristics. In this manuscript, firstly, an analytic solution for the proton-induced acoustic wave is presented to reveal the dependence of the signal on the beam parameters; then it is combined with an analytic approximation of the Bragg curve. The influence of the beam energy, pulse duration and beam diameter variation on the acoustic waveform are investigated. Further analysis is performed regarding the Fourier decomposition of the proton-acoustic signals. Our results show that the smaller spill time of the proton beam upsurges the amplitude of the acoustic wave for a constant number of protons, which is hence beneficial for dose monitoring. The increase in the energy of each individual proton in the beam leads to the spatial broadening of the Bragg curve, which also yields acoustic waves of greater amplitude. The pulse duration and the beam width of the proton beam do not affect the central frequency of the acoustic wave, but they change the amplitude of the spectral components.

  2. Hasse diagram as a green analytical metrics tool: ranking of methods for benzo[a]pyrene determination in sediments.

    PubMed

    Bigus, Paulina; Tsakovski, Stefan; Simeonov, Vasil; Namieśnik, Jacek; Tobiszewski, Marek

    2016-05-01

    This study presents an application of the Hasse diagram technique (HDT) as the assessment tool to select the most appropriate analytical procedures according to their greenness or the best analytical performance. The dataset consists of analytical procedures for benzo[a]pyrene determination in sediment samples, which were described by 11 variables concerning their greenness and analytical performance. Two analyses with the HDT were performed-the first one with metrological variables and the second one with "green" variables as input data. Both HDT analyses ranked different analytical procedures as the most valuable, suggesting that green analytical chemistry is not in accordance with metrology when benzo[a]pyrene in sediment samples is determined. The HDT can be used as a good decision support tool to choose the proper analytical procedure concerning green analytical chemistry principles and analytical performance merits.

  3. A Semi-Analytical Method for Rapid Estimation of Near-Well Saturation, Temperature, Pressure and Stress in Non-Isothermal CO2 Injection

    NASA Astrophysics Data System (ADS)

    LaForce, T.; Ennis-King, J.; Paterson, L.

    2015-12-01

    Reservoir cooling near the wellbore is expected when fluids are injected into a reservoir or aquifer in CO2 storage, enhanced oil or gas recovery, enhanced geothermal systems, and water injection for disposal. Ignoring thermal effects near the well can lead to under-prediction of changes in reservoir pressure and stress due to competition between increased pressure and contraction of the rock in the cooled near-well region. In this work a previously developed semi-analytical model for immiscible, nonisothermal fluid injection is generalised to include partitioning of components between two phases. Advection-dominated radial flow is assumed so that the coupled two-phase flow and thermal conservation laws can be solved analytically. The temperature and saturation profiles are used to find the increase in reservoir pressure, tangential, and radial stress near the wellbore in a semi-analytical, forward-coupled model. Saturation, temperature, pressure, and stress profiles are found for parameters representative of several CO2 storage demonstration projects around the world. General results on maximum injection rates vs depth for common reservoir parameters are also presented. Prior to drilling an injection well there is often little information about the properties that will determine the injection rate that can be achieved without exceeding fracture pressure, yet injection rate and pressure are key parameters in well design and placement decisions. Analytical solutions to simplified models such as these can quickly provide order of magnitude estimates for flow and stress near the well based on a range of likely parameters.

  4. Predicting Malignant and Paramalignant Pleural Effusions by Combining Clinical, Radiological and Pleural Fluid Analytical Parameters.

    PubMed

    Herrera Lara, Susana; Fernández-Fabrellas, Estrella; Juan Samper, Gustavo; Marco Buades, Josefa; Andreu Lapiedra, Rafael; Pinilla Moreno, Amparo; Morales Suárez-Varela, María

    2017-10-01

    The usefulness of clinical, radiological and pleural fluid analytical parameters for diagnosing malignant and paramalignant pleural effusion is not clearly stated. Hence this study aimed to identify possible predictor variables of diagnosing malignancy in pleural effusion of unknown aetiology. Clinical, radiological and pleural fluid analytical parameters were obtained from consecutive patients who had suffered pleural effusion of unknown aetiology. They were classified into three groups according to their final diagnosis: malignant, paramalignant and benign pleural effusion. The CHAID (Chi-square automatic interaction detector) methodology was used to estimate the implication of the clinical, radiological and analytical variables in daily practice through decision trees. Of 71 patients, malignant (n = 31), paramalignant (n = 15) and benign (n = 25), smoking habit, dyspnoea, weight loss, radiological characteristics (mass, node, adenopathies and pleural thickening) and pleural fluid analytical parameters (pH and glucose) distinguished malignant and paramalignant pleural effusions (all with a p < 0.05). Decision tree 1 classified 77.8% of malignant and paramalignant pleural effusions in step 2. Decision tree 2 classified 83.3% of malignant pleural effusions in step 2, 73.3% of paramalignant pleural effusions and 91.7% of benign ones. The data herein suggest that the identified predictor values applied to tree diagrams, which required no extraordinary measures, have a higher rate of correct identification of malignant, paramalignant and benign effusions when compared to techniques available today and proved most useful for usual clinical practice. Future studies are still needed to further improve the classification of patients.

  5. A novel procedure for detecting and focusing moving objects with SAR based on the Wigner-Ville distribution

    NASA Astrophysics Data System (ADS)

    Barbarossa, S.; Farina, A.

    A novel scheme for detecting moving targets with synthetic aperture radar (SAR) is presented. The proposed approach is based on the use of the Wigner-Ville distribution (WVD) for simultaneously detecting moving targets and estimating their motion kinematic parameters. The estimation plays a key role for focusing the target and correctly locating it with respect to the stationary background. The method has a number of advantages: (i) the detection is efficiently performed on the samples in the time-frequency domain, provided the WVD, without resorting to the use of a bank of filters, each one matched to possible values of the unknown target motion parameters; (ii) the estimation of the target motion parameters can be done on the same time-frequency domain by locating the line where the maximum energy of the WVD is concentrated. A validation of the approach is given by both analytical and simulation means. In addition, the estimation of the target kinematic parameters and the corresponding image focusing are also demonstrated.

  6. Generalisation of Gilbert damping and magnetic inertia parameter as a series of higher-order relativistic terms

    NASA Astrophysics Data System (ADS)

    Mondal, Ritwik; Berritta, Marco; Oppeneer, Peter M.

    2018-07-01

    The phenomenological Landau–Lifshitz–Gilbert (LLG) equation of motion remains as the cornerstone of contemporary magnetisation dynamics studies, wherein the Gilbert damping parameter has been attributed to first-order relativistic effects. To include magnetic inertial effects the LLG equation has previously been extended with a supplemental inertia term; the arising inertial dynamics has been related to second-order relativistic effects. Here we start from the relativistic Dirac equation and, performing a Foldy–Wouthuysen transformation, derive a generalised Pauli spin Hamiltonian that contains relativistic correction terms to any higher order. Using the Heisenberg equation of spin motion we derive general relativistic expressions for the tensorial Gilbert damping and magnetic inertia parameters, and show that these tensors can be expressed as series of higher-order relativistic correction terms. We further show that, in the case of a harmonic external driving field, these series can be summed and we provide closed analytical expressions for the Gilbert and inertial parameters that are functions of the frequency of the driving field.

  7. Generalisation of Gilbert damping and magnetic inertia parameter as a series of higher-order relativistic terms.

    PubMed

    Mondal, Ritwik; Berritta, Marco; Oppeneer, Peter M

    2018-05-17

    The phenomenological Landau-Lifshitz-Gilbert (LLG) equation of motion remains as the cornerstone of contemporary magnetisation dynamics studies, wherein the Gilbert damping parameter has been attributed to first-order relativistic effects. To include magnetic inertial effects the LLG equation has previously been extended with a supplemental inertia term; the arising inertial dynamics has been related to second-order relativistic effects. Here we start from the relativistic Dirac equation and, performing a Foldy-Wouthuysen transformation, derive a generalised Pauli spin Hamiltonian that contains relativistic correction terms to any higher order. Using the Heisenberg equation of spin motion we derive general relativistic expressions for the tensorial Gilbert damping and magnetic inertia parameters, and show that these tensors can be expressed as series of higher-order relativistic correction terms. We further show that, in the case of a harmonic external driving field, these series can be summed and we provide closed analytical expressions for the Gilbert and inertial parameters that are functions of the frequency of the driving field.

  8. An architecture for efficient gravitational wave parameter estimation with multimodal linear surrogate models

    NASA Astrophysics Data System (ADS)

    O'Shaughnessy, Richard; Blackman, Jonathan; Field, Scott E.

    2017-07-01

    The recent direct observation of gravitational waves has further emphasized the desire for fast, low-cost, and accurate methods to infer the parameters of gravitational wave sources. Due to expense in waveform generation and data handling, the cost of evaluating the likelihood function limits the computational performance of these calculations. Building on recently developed surrogate models and a novel parameter estimation pipeline, we show how to quickly generate the likelihood function as an analytic, closed-form expression. Using a straightforward variant of a production-scale parameter estimation code, we demonstrate our method using surrogate models of effective-one-body and numerical relativity waveforms. Our study is the first time these models have been used for parameter estimation and one of the first ever parameter estimation calculations with multi-modal numerical relativity waveforms, which include all \\ell ≤slant 4 modes. Our grid-free method enables rapid parameter estimation for any waveform with a suitable reduced-order model. The methods described in this paper may also find use in other data analysis studies, such as vetting coincident events or the computation of the coalescing-compact-binary detection statistic.

  9. Development of an online analyzer of atmospheric H 2O 2 and several organic hydroperoxides for field campaigns

    NASA Astrophysics Data System (ADS)

    François, S.; Sowka, I.; Monod, A.; Temime-Roussel, B.; Laugier, J. M.; Wortham, H.

    2005-03-01

    An online automated instrument was developed for atmospheric measurements of hydroperoxides with separation and quantification of H 2O 2 and several organic hydroperoxides. Samples were trapped in aqueous solutions in a scrubbing glass coil. Analyses were performed on an HPLC column followed by para-hydroxyphenylacetic acid (POPHA) acetic acid and peroxidase derivatization and fluorescence detection. Analytical and sampling tests were performed on different parameters to obtain optimum signal-to-noise ratios, high resolution and collection efficiencies higher than 95% for H 2O 2 and organic hydroperoxides. The obtained performances show large improvements compared to previous studies. The sampling and analytical devices can be coupled providing an online analyzer. The device was used during two field campaigns in the Marseilles area in June 2001 (offline analyzer) and in July 2002 (online analyzer) at rural sites at low and high altitudes, respectively, during the ESCOMPTE and BOND campaigns. During the ESCOMPTE campaign, H 2O 2 was detected occasionally, and no organic hydroperoxides was observed. During the BOND campaign, substantial amounts of H 2O 2 and 1-HEHP+MHP were often detected, and two other organic hydroperoxides were occasionally detected. These observations are discussed.

  10. Analytical template protection performance and maximum key size given a Gaussian-modeled biometric source

    NASA Astrophysics Data System (ADS)

    Kelkboom, Emile J. C.; Breebaart, Jeroen; Buhan, Ileana; Veldhuis, Raymond N. J.

    2010-04-01

    Template protection techniques are used within biometric systems in order to protect the stored biometric template against privacy and security threats. A great portion of template protection techniques are based on extracting a key from or binding a key to a biometric sample. The achieved protection depends on the size of the key and its closeness to being random. In the literature it can be observed that there is a large variation on the reported key lengths at similar classification performance of the same template protection system, even when based on the same biometric modality and database. In this work we determine the analytical relationship between the system performance and the theoretical maximum key size given a biometric source modeled by parallel Gaussian channels. We consider the case where the source capacity is evenly distributed across all channels and the channels are independent. We also determine the effect of the parameters such as the source capacity, the number of enrolment and verification samples, and the operating point selection on the maximum key size. We show that a trade-off exists between the privacy protection of the biometric system and its convenience for its users.

  11. Lithium target performance evaluation for low-energy accelerator-based in vivo measurements using gamma spectroscopy.

    PubMed

    Aslam; Prestwich, W V; McNeill, F E

    2003-03-01

    The operating conditions at McMaster KN Van de Graaf accelerator have been optimized to produce neutrons via the (7)Li(p, n)(7)Be reaction for in vivo neutron activation analysis. In a number of earlier studies (development of an accelerator based system for in vivo neutron activation analysis measurements of manganese in humans, Ph.D. Thesis, McMaster University, Hamilton, ON, Canada; Appl. Radiat. Isot. 53 (2000) 657; in vivo measurement of some trace elements in human Bone, Ph.D. Thesis. McMaster University, Hamilton, ON, Canada), a significant discrepancy between the experimental and the calculated neutron doses has been pointed out. The hypotheses formulated in the above references to explain the deviation of the experimental results from analytical calculations, have been tested experimentally. The performance of the lithium target for neutron production has been evaluated by measuring the (7)Be activity produced as a result of (p, n) interaction with (7)Li. In contradiction to the formulated hypotheses, lithium target performance was found to be mainly affected by inefficient target cooling and the presence of oxides layer on target surface. An appropriate choice of these parameters resulted in neutron yields same as predicated by analytical calculations.

  12. Self-Powered WSN for Distributed Data Center Monitoring

    PubMed Central

    Brunelli, Davide; Passerone, Roberto; Rizzon, Luca; Rossi, Maurizio; Sartori, Davide

    2016-01-01

    Monitoring environmental parameters in data centers is gathering nowadays increasing attention from industry, due to the need of high energy efficiency of cloud services. We present the design and the characterization of an energy neutral embedded wireless system, prototyped to monitor perpetually environmental parameters in servers and racks. It is powered by an energy harvesting module based on Thermoelectric Generators, which converts the heat dissipation from the servers. Starting from the empirical characterization of the energy harvester, we present a power conditioning circuit optimized for the specific application. The whole system has been enhanced with several sensors. An ultra-low-power micro-controller stacked over the energy harvesting provides an efficient power management. Performance have been assessed and compared with the analytical model for validation. PMID:26729135

  13. Dynamics of bow-tie shaped bursting: Forced pendulum with dynamic feedback.

    PubMed

    Hongray, Thotreithem; Balakrishnan, Janaki

    2016-12-01

    A detailed study is performed on the parameter space of the mechanical system of a driven pendulum with damping and constant torque under feedback control. We report an interesting bow-tie shaped bursting oscillatory behaviour, which is exhibited for small driving frequencies, in a certain parameter regime, which has not been reported earlier in this forced system with dynamic feedback. We show that the bursting oscillations are caused because of a transition of the quiescent state to the spiking state by a saddle-focus bifurcation, and because of another saddle-focus bifurcation, which leads to cessation of spiking, bringing the system back to the quiescent state. The resting period between two successive bursts (T rest ) is estimated analytically.

  14. Parametric Covariance Model for Horizon-Based Optical Navigation

    NASA Technical Reports Server (NTRS)

    Hikes, Jacob; Liounis, Andrew J.; Christian, John A.

    2016-01-01

    This Note presents an entirely parametric version of the covariance for horizon-based optical navigation measurements. The covariance can be written as a function of only the spacecraft position, two sensor design parameters, the illumination direction, the size of the observed planet, the size of the lit arc to be used, and the total number of observed horizon points. As a result, one may now more clearly understand the sensitivity of horizon-based optical navigation performance as a function of these key design parameters, which is insight that was obscured in previous (and nonparametric) versions of the covariance. Finally, the new parametric covariance is shown to agree with both the nonparametric analytic covariance and results from a Monte Carlo analysis.

  15. Self-Powered WSN for Distributed Data Center Monitoring.

    PubMed

    Brunelli, Davide; Passerone, Roberto; Rizzon, Luca; Rossi, Maurizio; Sartori, Davide

    2016-01-02

    Monitoring environmental parameters in data centers is gathering nowadays increasing attention from industry, due to the need of high energy efficiency of cloud services. We present the design and the characterization of an energy neutral embedded wireless system, prototyped to monitor perpetually environmental parameters in servers and racks. It is powered by an energy harvesting module based on Thermoelectric Generators, which converts the heat dissipation from the servers. Starting from the empirical characterization of the energy harvester, we present a power conditioning circuit optimized for the specific application. The whole system has been enhanced with several sensors. An ultra-low-power micro-controller stacked over the energy harvesting provides an efficient power management. Performance have been assessed and compared with the analytical model for validation.

  16. Radiation effects on the flow of Powell-Eyring fluid past an unsteady inclined stretching sheet with non-uniform heat source/sink.

    PubMed

    Hayat, Tasawar; Asad, Sadia; Mustafa, Meraj; Alsaedi, Ahmed

    2014-01-01

    This study investigates the unsteady flow of Powell-Eyring fluid past an inclined stretching sheet. Unsteadiness in the flow is due to the time-dependence of the stretching velocity and wall temperature. Mathematical analysis is performed in the presence of thermal radiation and non-uniform heat source/sink. The relevant boundary layer equations are reduced into self-similar forms by suitable transformations. The analytic solutions are constructed in a series form by homotopy analysis method (HAM). The convergence interval of the auxiliary parameter is obtained. Graphical results displaying the influence of interesting parameters are given. Numerical values of skin friction coefficient and local Nusselt number are computed and analyzed.

  17. Slow Crack Growth Analysis of Brittle Materials with Finite Thickness Subjected to Constant Stress-Rate Flexural Loading

    NASA Technical Reports Server (NTRS)

    Chio, S. R.; Gyekenyesi, J. P.

    1999-01-01

    A two-dimensional, numerical analysis of slow crack growth (SCG) was performed for brittle materials with finite thickness subjected to constant stress-rate ("dynamic fatigue") loading in flexure. The numerical solution showed that the conventional, simple, one-dimensional analytical solution can be used with a maximum error of about 5% in determining the SCG parameters of a brittle material with the conditions of a normalized thickness (a ratio of specimen thickness to initial crack size) T > 3.3 and of a SCG parameter n > 10. The change in crack shape from semicircular to elliptical configurations was significant particularly at both low stress rate and low T, attributed to predominant difference in stress intensity factor along the crack front. The numerical solution of SCG parameters was supported within the experimental range by the data obtained from constant stress-rate flexural testing for soda-lime glass microslides at ambient temperature.

  18. The portrait of eikonal instability in Lovelock theories

    NASA Astrophysics Data System (ADS)

    Konoplya, R. A.; Zhidenko, A.

    2017-05-01

    Perturbations and eikonal instabilities of black holes and branes in the Einstein-Gauss-Bonnet theory and its Lovelock generalization were considered in the literature for several particular cases, where the asymptotic conditions (flat, dS, AdS), the number of spacetime dimensions D, non-vanishing coupling constants (α1, α2, α3 etc.) and other parameters have been chosen in a specific way. Here we give a comprehensive analysis of the eikonal instabilities of black holes and branes for the most general Lovelock theory, not limited by any of the above cases. Although the part of the stability analysis is performed here purely analytically and formulated in terms of the inequalities for the black hole parameters, the most general case is treated numerically and the accurate regions of instabilities are presented. The shared Mathematica® code allows the reader to construct the regions of eikonal instability for any desired values of the parameters.

  19. A generalized analysis of solar space heating

    NASA Astrophysics Data System (ADS)

    Clark, J. A.

    A life-cycle model is developed for solar space heating within the United States. The model consists of an analytical relationship among five dimensionless parameters that include all pertinent technical, climatological, solar, operating and economic factors that influence the performance of a solar space heating system. An important optimum condition presented is the break-even metered cost of conventional fuel at which the cost of the solar system is equal to that of a conventional heating system. The effect of Federal (1980) and State (1979) income tax credits on these costs is determined. A parameter that includes both solar availability and solar system utilization is derived and plotted on a map of the U.S. This parameter shows the most favorable present locations for solar space heating application to be in the Central and Mountain States. The data employed are related to the rehabilitated solar data recently made available by the National Climatic Center.

  20. Graphene enhanced surface plasmon resonance sensing based on Goos-Hänchen shift

    NASA Astrophysics Data System (ADS)

    Chen, Huifang; Tong, Jinguang; Wang, Yiqin; Jiang, Li

    2018-03-01

    A graphene/Ag structure is engineered as an enhanced platform for surface plasmon resonance sensing due to the high impermeability nature of graphene and the superior surface plasmon resonance performance of Ag. This structure is ultrasensitive to even tiny refractive index change of analytes based on Goos-Hänchen shift measurement compared to the traditional SPR sensor with bare Au film. The graphene/Ag configuration is consisted of five components, including BK7 glass slide, titanium thin film, silver thin film, two-dimensional graphene layers and biomolecular analyte layer. We have optimized the parameters of each layer and theoretically analyzed Goos-Hänchen shift of the plasmonic structure under surface plasmon resonance effect. The optimized graphene/Ag structure is monolayer graphene coated on Ag thin film with the thickness of 42 nm.

Top