Sample records for analytical problems characteristic

  1. NASTRAN analysis of the 1/8-scale space shuttle dynamic model

    NASA Technical Reports Server (NTRS)

    Bernstein, M.; Mason, P. W.; Zalesak, J.; Gregory, D. J.; Levy, A.

    1973-01-01

    The space shuttle configuration has more complex structural dynamic characteristics than previous launch vehicles primarily because of the high model density at low frequencies and the high degree of coupling between the lateral and longitudinal motions. An accurate analytical representation of these characteristics is a primary means for treating structural dynamics problems during the design phase of the shuttle program. The 1/8-scale model program was developed to explore the adequacy of available analytical modeling technology and to provide the means for investigating problems which are more readily treated experimentally. The basic objectives of the 1/8-scale model program are: (1) to provide early verification of analytical modeling procedures on a shuttle-like structure, (2) to demonstrate important vehicle dynamic characteristics of a typical shuttle design, (3) to disclose any previously unanticipated structural dynamic characteristics, and (4) to provide for development and demonstration of cost effective prototype testing procedures.

  2. Assessment regarding the use of the computer aided analytical models in the calculus of the general strength of a ship hull

    NASA Astrophysics Data System (ADS)

    Hreniuc, V.; Hreniuc, A.; Pescaru, A.

    2017-08-01

    Solving a general strength problem of a ship hull may be done using analytical approaches which are useful to deduce the buoyancy forces distribution, the weighting forces distribution along the hull and the geometrical characteristics of the sections. These data are used to draw the free body diagrams and to compute the stresses. The general strength problems require a large amount of calculi, therefore it is interesting how a computer may be used to solve such problems. Using computer programming an engineer may conceive software instruments based on analytical approaches. However, before developing the computer code the research topic must be thoroughly analysed, in this way being reached a meta-level of understanding of the problem. The following stage is to conceive an appropriate development strategy of the original software instruments useful for the rapid development of computer aided analytical models. The geometrical characteristics of the sections may be computed using a bool algebra that operates with ‘simple’ geometrical shapes. By ‘simple’ we mean that for the according shapes we have direct calculus relations. In the set of ‘simple’ shapes we also have geometrical entities bounded by curves approximated as spline functions or as polygons. To conclude, computer programming offers the necessary support to solve general strength ship hull problems using analytical methods.

  3. The limited relevance of analytical ethics to the problems of bioethics.

    PubMed

    Holmes, R L

    1990-04-01

    Philosophical ethics comprises metaethics, normative ethics and applied ethics. These have characteristically received analytic treatment by twentieth-century Anglo-American philosophy. But there has been disagreement over their interrelationship to one another and the relationship of analytical ethics to substantive morality--the making of moral judgments. I contend that the expertise philosophers have in either theoretical or applied ethics does not equip them to make sounder moral judgments on the problems of bioethics than nonphilosophers. One cannot "apply" theories like Kantianism or consequentialism to get solutions to practical moral problems unless one knows which theory is correct, and that is a metaethical question over which there is no consensus. On the other hand, to presume to be able to reach solutions through neutral analysis of problems is unavoidably to beg controversial theoretical issues in the process. Thus, while analytical ethics can play an important clarificatory role in bioethics, it can neither provide, nor substitute for, moral wisdom.

  4. Dual nozzle aerodynamic and cooling analysis study

    NASA Technical Reports Server (NTRS)

    Meagher, G. M.

    1981-01-01

    Analytical models to predict performance and operating characteristics of dual nozzle concepts were developed and improved. Aerodynamic models are available to define flow characteristics and bleed requirements for both the dual throat and dual expander concepts. Advanced analytical techniques were utilized to provide quantitative estimates of the bleed flow, boundary layer, and shock effects within dual nozzle engines. Thermal analyses were performed to define cooling requirements for baseline configurations, and special studies of unique dual nozzle cooling problems defined feasible means of achieving adequate cooling.

  5. A methodology for the assessment of manned flight simulator fidelity

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.; Malsbury, Terry N.

    1989-01-01

    A relatively simple analytical methodology for assessing the fidelity of manned flight simulators for specific vehicles and tasks is offered. The methodology is based upon an application of a structural model of the human pilot, including motion cue effects. In particular, predicted pilot/vehicle dynamic characteristics are obtained with and without simulator limitations. A procedure for selecting model parameters can be implemented, given a probable pilot control strategy. In analyzing a pair of piloting tasks for which flight and simulation data are available, the methodology correctly predicted the existence of simulator fidelity problems. The methodology permitted the analytical evaluation of a change in simulator characteristics and indicated that a major source of the fidelity problems was a visual time delay in the simulation.

  6. Construction Method of Analytical Solutions to the Mathematical Physics Boundary Problems for Non-Canonical Domains

    NASA Astrophysics Data System (ADS)

    Mobarakeh, Pouyan Shakeri; Grinchenko, Victor T.

    2015-06-01

    The majority of practical cases of acoustics problems requires solving the boundary problems in non-canonical domains. Therefore construction of analytical solutions of mathematical physics boundary problems for non-canonical domains is both lucrative from the academic viewpoint, and very instrumental for elaboration of efficient algorithms of quantitative estimation of the field characteristics under study. One of the main solving ideologies for such problems is based on the superposition method that allows one to analyze a wide class of specific problems with domains which can be constructed as the union of canonically-shaped subdomains. It is also assumed that an analytical solution (or quasi-solution) can be constructed for each subdomain in one form or another. However, this case implies some difficulties in the construction of calculation algorithms, insofar as the boundary conditions are incompletely defined in the intervals, where the functions appearing in the general solution are orthogonal to each other. We discuss several typical examples of problems with such difficulties, we study their nature and identify the optimal methods to overcome them.

  7. Functional Analytic Psychotherapy (FAP) in Ibero-America: Review of Current Status and Some Proposals

    ERIC Educational Resources Information Center

    Munoz-Martinez, Amanda; Novoa-Gomez, Monica; Gutierrez, Rochy Vargas

    2012-01-01

    Functional Analytic Psychotherapy (FAP) has been making an important rise in Ibero-America in recent years. This paper presents a review of different contributions, problems and some proposals. Three principal topics are reviewed: (a) general characteristics and theoretical bases of FAP, (b) the uses of FAP and its relationship with other…

  8. The formaldehyde problem in wood-based products : an annotated bibliography

    Treesearch

    F. H. Max Nestler

    1977-01-01

    Urea-formaldehyde-type adhesives have the inherent characteristic of giving off free formaldehyde under some conditions of use. The vapor can build up to concentrations which can be a nuisance, uncomfortable, or an actual health hazard. The "formaldehyde problem" is reviewed, from literature sources, in five respects : oriqins, analytical, control and removal...

  9. Space Shuttle Plume and Plume Impingement Study

    NASA Technical Reports Server (NTRS)

    Tevepaugh, J. A.; Penny, M. M.

    1977-01-01

    The extent of the influence of the propulsion system exhaust plumes on the vehicle performance and control characteristics is a complex function of vehicle geometry, propulsion system geometry, engine operating conditions and vehicle flight trajectory were investigated. Analytical support of the plume technology test program was directed at the two latter problem areas: (1) definition of the full-scale exhaust plume characteristics, (2) application of appropriate similarity parameters; and (3) analysis of wind tunnel test data. Verification of the two-phase plume and plume impingement models was directed toward the definition of the full-scale exhaust plume characteristics and the separation motor impingement problem.

  10. Elasticity Theory Solution of the Problem on Plane Bending of a Narrow Layered Cantilever Beam by Loads at Its Free End

    NASA Astrophysics Data System (ADS)

    Goryk, A. V.; Koval'chuk, S. B.

    2018-05-01

    An exact elasticity theory solution for the problem on plane bending of a narrow layered composite cantilever beam by tangential and normal loads distributed on its free end is presented. Components of the stress-strain state are found for the whole layers package by directly integrating differential equations of the plane elasticity theory problem by using an analytic representation of piecewise constant functions of the mechanical characteristics of layer materials. The continuous solution obtained is realized for a four-layer beam with account of kinematic boundary conditions simulating the rigid fixation of its one end. The solution obtained allows one to predict the strength and stiffness of composite cantilever beams and to construct applied analytical solutions for various problems on the elastic bending of layered beams.

  11. Numerical modelling and experimental analysis of acoustic emission

    NASA Astrophysics Data System (ADS)

    Gerasimov, S. I.; Sych, T. V.

    2018-05-01

    In the present paper, the authors report on the application of non-destructive acoustic waves technologies to determine the structural integrity of engineering components. In particular, a finite element (FE) system COSMOS/M is used to investigate propagation characteristics of ultrasonic waves in linear, plane and three-dimensional structures without and with geometric concentrators. In addition, the FE results obtained are compared to the analytical and experimental ones. The study illustrates the efficient use of the FE method to model guided wave propagation problems and demonstrates the FE method’s potential to solve problems when an analytical solution is not possible due to “complicated” geometry.

  12. Rotordynamic Instability Problems in High-Performance Turbomachinery, 1986

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The first rotordynamics workshop proceedings (NASA CP-2133, 1980) emphasized a feeling of uncertainty in predicting the stability of characteristics of high-performance turbomachinery. In the second workshop proceedings (NASA CP-2250, 1982) these uncertainities were reduced through programs established to systematically resolve problems, with emphasis on experimental validiation of the forces that influence rotordynamics. In third proceedings (NASA CP-2338, 1984) many programs for predicting or measuring forces and force coefficients in high-performance turbomachinery produced results. Data became available for designing new machines with enhanced stability characteristics or for upgrading existing machines. The present workshop proceedings illustrates a continued trend toward a more unified view of rotordynamic instability problems and several encouraging new analytical developments.

  13. In-orbit evaluation of the control system/structural mode interactions of the OSO-8 spacecraft

    NASA Technical Reports Server (NTRS)

    Slafer, L. I.

    1979-01-01

    The Orbiting Solar Observatory-8 experienced severe structural mode/control loop interaction problems during the spacecraft development. Extensive analytical studies, using the hybrid coordinate modeling approach, and comprehensive ground testing were carried out in order to achieve the system's precision pointing performance requirements. A recent series of flight tests were conducted with the spacecraft in which a wide bandwidth, high resolution telemetry system was utilized to evaluate the on-orbit flexible dynamics characteristics of the vehicle along with the control system performance. The paper describes the results of these tests, reviewing the basic design problem, analytical approach taken, ground test philosophy, and on-orbit testing. Data from the tests was used to determine the primary mode frequency, damping, and servo coupling dynamics for the on-orbit condition. Additionally, the test results have verified analytically predicted differences between the on-orbit and ground test environments, and have led to a validation of both the analytical modeling and servo design techniques used during the development of the control system.

  14. Analytical and simulator study of advanced transport

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Rickard, W. W.

    1982-01-01

    An analytic methodology, based on the optimal-control pilot model, was demonstrated for assessing longitidunal-axis handling qualities of transport aircraft in final approach. Calibration of the methodology is largely in terms of closed-loop performance requirements, rather than specific vehicle response characteristics, and is based on a combination of published criteria, pilot preferences, physical limitations, and engineering judgment. Six longitudinal-axis approach configurations were studied covering a range of handling qualities problems, including the presence of flexible aircraft modes. The analytical procedure was used to obtain predictions of Cooper-Harper ratings, a solar quadratic performance index, and rms excursions of important system variables.

  15. Material property analytical relations for the case of an AFM probe tapping a viscoelastic surface containing multiple characteristic times

    PubMed Central

    López-Guerra, Enrique A

    2017-01-01

    We explore the contact problem of a flat-end indenter penetrating intermittently a generalized viscoelastic surface, containing multiple characteristic times. This problem is especially relevant for nanoprobing of viscoelastic surfaces with the highly popular tapping-mode AFM imaging technique. By focusing on the material perspective and employing a rigorous rheological approach, we deliver analytical closed-form solutions that provide physical insight into the viscoelastic sources of repulsive forces, tip–sample dissipation and virial of the interaction. We also offer a systematic comparison to the well-established standard harmonic excitation, which is the case relevant for dynamic mechanical analysis (DMA) and for AFM techniques where tip–sample sinusoidal interaction is permanent. This comparison highlights the substantial complexity added by the intermittent-contact nature of the interaction, which precludes the derivation of straightforward equations as is the case for the well-known harmonic excitations. The derivations offered have been thoroughly validated through numerical simulations. Despite the complexities inherent to the intermittent-contact nature of the technique, the analytical findings highlight the potential feasibility of extracting meaningful viscoelastic properties with this imaging method. PMID:29114450

  16. Assessing organizational change in multisector community health alliances.

    PubMed

    Alexander, Jeffrey A; Hearld, Larry R; Shi, Yunfeng

    2015-02-01

    The purpose of this article was to identify some common organizational features of multisector health care alliances (MHCAs) and the analytic challenges presented by those characteristics in assessing organizational change. Two rounds of an Internet-based survey of participants in 14 MHCAs. We highlight three analytic challenges that can arise when quantitatively studying the organizational characteristics of MHCAs-assessing change in MHCA organization, assessment of construct reliability, and aggregation of individual responses to reflect organizational characteristics. We illustrate these issues using a leadership effectiveness scale (12 items) validated in previous research and data from 14 MHCAs participating in the Robert Wood Johnson Foundation's Aligning Forces for Quality (AF4Q) program. High levels of instability and turnover in MHCA membership create challenges in using survey data to study changes in key organizational characteristics of MHCAs. We offer several recommendations to diagnose the source and extent of these problems. © Health Research and Educational Trust.

  17. Conceptual Design Study on Bolts for Self-Loosing Preventable Threaded Fasteners

    NASA Astrophysics Data System (ADS)

    Noma, Atsushi; He, Jianmei

    2017-11-01

    Threaded fasteners using bolts is widely applied in industrial field as well as various fields. However, threaded fasteners using bolts have loosing problems and cause many accidents. In this study, the purpose is to obtain self-loosing preventable threaded fasteners by applying spring characteristic effects on bolt structures. Helical-cutting applied bolt structures is introduced through three dimensional (3D) CAD modeling tools. Analytical approaches for evaluations on the spring characteristic effects helical-cutting applied bolt structures and self-loosing preventable performance of threaded fasteners were performed using finite element method and results are reported. Comparing slackness test results with analytical results and more details on evaluating mechanical properties will be executed in future study.

  18. A proposal to encourage intuitive learning in a senior-level analogue electronics course

    NASA Astrophysics Data System (ADS)

    Berjano, E.; Lozano-Nieto, A.

    2011-05-01

    One of the most important issues in the reorganisation of engineering education is to consider new pedagogical techniques to help students develop skills and an adaptive expertise. This expertise consists of being able to recognise the nature of a problem intuitively, and also recognising recurring patterns in different types of problems. In the particular case of analogue electronics, an additional difficulty seems to be that understanding involves both analytic skills and an intuitive grasp of circuit characteristics. This paper presents a proposal to help senior students to think intuitively in order to identify the common issue involved in a group of problems of analogue electronics and build an abstract concept based on, for example, a theory or a mathematical model in order to use it to solve future problems. The preliminary results suggest that this proposal could be useful to promote intuitive reasoning in analogue electronics courses. The experience would later be useful to graduates in analytically solving new types of problems or in designing new electronic circuits.

  19. Optimization techniques applied to passive measures for in-orbit spacecraft survivability

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.; Price, D. Marvin

    1991-01-01

    Spacecraft designers have always been concerned about the effects of meteoroid impacts on mission safety. The engineering solution to this problem has generally been to erect a bumper or shield placed outboard from the spacecraft wall to disrupt/deflect the incoming projectiles. Spacecraft designers have a number of tools at their disposal to aid in the design process. These include hypervelocity impact testing, analytic impact predictors, and hydrodynamic codes. Analytic impact predictors generally provide the best quick-look estimate of design tradeoffs. The most complete way to determine the characteristics of an analytic impact predictor is through optimization of the protective structures design problem formulated with the predictor of interest. Space Station Freedom protective structures design insight is provided through the coupling of design/material requirements, hypervelocity impact phenomenology, meteoroid and space debris environment sensitivities, optimization techniques and operations research strategies, and mission scenarios. Major results are presented.

  20. On the Coplanar Integrable Case of the Twice-Averaged Hill Problem with Central Body Oblateness

    NASA Astrophysics Data System (ADS)

    Vashkov'yak, M. A.

    2018-01-01

    The twice-averaged Hill problem with the oblateness of the central planet is considered in the case where its equatorial plane coincides with the plane of its orbital motion relative to the perturbing body. A qualitative study of this so-called coplanar integrable case was begun by Y. Kozai in 1963 and continued by M.L. Lidov and M.V. Yarskaya in 1974. However, no rigorous analytical solution of the problem can be obtained due to the complexity of the integrals. In this paper we obtain some quantitative evolution characteristics and propose an approximate constructive-analytical solution of the evolution system in the form of explicit time dependences of satellite orbit elements. The methodical accuracy has been estimated for several orbits of artificial lunar satellites by comparison with the numerical solution of the evolution system.

  1. Asymptotic analysis of corona discharge from thin electrodes

    NASA Technical Reports Server (NTRS)

    Durbin, P. A.

    1986-01-01

    The steady discharge of a high-voltage corona is analyzed as a singular perturbation problem. The small parameter is the ratio of the length of the ionization region to the total gap length. By this method, current versus voltage characteristics can be calculated analytically.

  2. The 1981 NASA ASEE Summer Faculty Fellowship Program, volume 2

    NASA Technical Reports Server (NTRS)

    Robertson, N. G.; Huang, C. J.

    1981-01-01

    A collection of papers on miscellaneous subjects in aerospace research is presented. Topics discussed are: (1) Langmuir probe theory and the problem of anisotropic collection; (2) anthropometric program analysis of reach and body movement; (3) analysis of IV characteristics of negatively biased panels in a magnetoplasma; (4) analytic solution to classical two body drag problem; (5) fast variable step size integration algorithm for computer simulations of physiological systems; (6) spectroscopic experimental computer assisted empirical model for the production of energetics of excited oxygen molecules formed by atom recombination shuttle tile surfaces; and (7) capillary priming characteristics of dual passage heat pipe in zero-g.

  3. The Riemann problem for longitudinal motion in an elastic-plastic bar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trangenstein, J.A.; Pember, R.B.

    In this paper the analytical solution to the Riemann problem for the Antman-Szymczak model of longitudinal motion in an elastic-plastic bar is constructed. The model involves two surfaces corresponding to plastic yield in tension and compression, and exhibits the appropriate limiting behavior for total compressions. The solution of the Riemann problem involves discontinuous changes in characteristic speeds due to transitions from elastic to plastic response. Illustrations are presented, in both state-space and self-similar coordinates, of the variety of possible solutions to the Riemann problem for possible use with numerical algorithms.

  4. On-orbit evaluation of the control system/structural mode interactions on OSO-8

    NASA Technical Reports Server (NTRS)

    Slafer, L. I.

    1980-01-01

    The Orbiting Solar Observatory-8 experienced severe structural mode/control loop interaction problems during the spacecraft development. Extensive analytical studies, using the hybrid coordinate modeling approach, and comprehensive ground testing were carried out in order to achieve the system's precision pointing performance requirements. A recent series of flight tests were conducted with the spacecraft in which a wide bandwidth, high resolution telemetry system was utilized to evaluate the on-orbit flexible dynamics characteristics of the vehicle along with the control system performance. This paper describes the results of these tests, reviewing the basic design problem, analytical approach taken, ground test philosophy, and on-orbit testing. Data from the tests was used to determine the primary mode frequency, damping, and servo coupling dynamics for the on-orbit condition. Additionally, the test results have verified analytically predicted differences between the on-orbit and ground test environments. The test results have led to a validation of both the analytical modeling and servo design techniques used during the development of the control system, and also verified the approach taken to vehicle and servo ground testing.

  5. Past developments and future directions for the AHP in natural resources

    Treesearch

    Daniel L. Schmoldt; G.A. Mendoza; Jyrki Kangas

    2001-01-01

    The analytic hierarchy process (AHP) possesses certain characteristics that make it a useful tool for natural resource decision making. The AHP’s capabilities include: participatory decision making, problem structuring and alternative development, group facilitation, consensus building, fairness, qualitative and quantitative information, conflict resolution, decision...

  6. Kramers problem: Numerical Wiener-Hopf-like model characteristics

    NASA Astrophysics Data System (ADS)

    Ezin, A. N.; Samgin, A. L.

    2010-11-01

    Since the Kramers problem cannot be, in general, solved in terms of elementary functions, various numerical techniques or approximate methods must be employed. We present a study of characteristics for a particle in a damped well, which can be considered as a discretized version of the Melnikov [Phys. Rev. E 48, 3271 (1993)]10.1103/PhysRevE.48.3271 turnover theory. The main goal is to justify the direct computational scheme to the basic Wiener-Hopf model. In contrast to the Melnikov approach, which implements factorization through a Cauchy-theorem-based formulation, we employ the Wiener-Levy theorem to reduce the Kramers problem to a Wiener-Hopf sum equation written in terms of Toeplitz matrices. This latter can provide a stringent test for the reliability of analytic approximations for energy distribution functions occurring in the Kramers problems at arbitrary damping. For certain conditions, the simulated characteristics are compared well with those determined using the conventional Fourier-integral formulas, but sometimes may differ slightly depending on the value of a dissipation parameter. Another important feature is that, with our method, we can avoid some complications inherent to the Melnikov method. The calculational technique reported in the present paper may gain particular importance in situations where the energy losses of the particle to the bath are a complex-shaped function of the particle energy and analytic solutions of desired accuracy are not at hand. In order to appreciate more readily the significance and scope of the present numerical approach, we also discuss concrete aspects relating to the field of superionic conductors.

  7. Portfolio optimization problem with nonidentical variances of asset returns using statistical mechanical informatics.

    PubMed

    Shinzato, Takashi

    2016-12-01

    The portfolio optimization problem in which the variances of the return rates of assets are not identical is analyzed in this paper using the methodology of statistical mechanical informatics, specifically, replica analysis. We defined two characteristic quantities of an optimal portfolio, namely, minimal investment risk and investment concentration, in order to solve the portfolio optimization problem and analytically determined their asymptotical behaviors using replica analysis. Numerical experiments were also performed, and a comparison between the results of our simulation and those obtained via replica analysis validated our proposed method.

  8. Portfolio optimization problem with nonidentical variances of asset returns using statistical mechanical informatics

    NASA Astrophysics Data System (ADS)

    Shinzato, Takashi

    2016-12-01

    The portfolio optimization problem in which the variances of the return rates of assets are not identical is analyzed in this paper using the methodology of statistical mechanical informatics, specifically, replica analysis. We defined two characteristic quantities of an optimal portfolio, namely, minimal investment risk and investment concentration, in order to solve the portfolio optimization problem and analytically determined their asymptotical behaviors using replica analysis. Numerical experiments were also performed, and a comparison between the results of our simulation and those obtained via replica analysis validated our proposed method.

  9. Complete analytical solution of electromagnetic field problem of high-speed spinning ball

    NASA Astrophysics Data System (ADS)

    Reichert, T.; Nussbaumer, T.; Kolar, J. W.

    2012-11-01

    In this article, a small sphere spinning in a rotating magnetic field is analyzed in terms of the resulting magnetic flux density distribution and the current density distribution inside the ball. From these densities, the motor torque and the eddy current losses can be calculated. An analytical model is derived, and its results are compared to a 3D finite element analysis. The model gives insight into the torque and loss characteristics of a solid rotor induction machine setup, which aims at rotating the sphere beyond 25 Mrpm.

  10. Flight simulator fidelity assessment in a rotorcraft lateral translation maneuver

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Malsbury, T.; Atencio, A., Jr.

    1992-01-01

    A model-based methodology for assessing flight simulator fidelity in closed-loop fashion is exercised in analyzing a rotorcraft low-altitude maneuver for which flight test and simulation results were available. The addition of a handling qualities sensitivity function to a previously developed model-based assessment criteria allows an analytical comparison of both performance and handling qualities between simulation and flight test. Model predictions regarding the existence of simulator fidelity problems are corroborated by experiment. The modeling approach is used to assess analytically the effects of modifying simulator characteristics on simulator fidelity.

  11. Pseudo-beam method for compressive buckling characteristics analysis of space inflatable load-carrying structures

    NASA Astrophysics Data System (ADS)

    Wang, Changguo; Tan, Huifeng; Du, Xingwen

    2009-10-01

    This paper extends Le van’s work to the case of nonlinear problem and the complicated configuration. The wrinkling stress distribution and the pressure effects are also included in our analysis. Pseudo-beam method is presented based on the inflatable beam theory to model the inflatable structures as a set of inflatable beam elements with a pre-stressed state. In this method, the discretized nonlinear equations are given based upon the virtual work principle with a 3-node Timoshenko’s beam model. Finite element simulation is performed by using a 3-node BEAM189 element incorporating ANSYS nonlinear program. The pressure effect is equivalent included in our method by modifying beam element cross-section parameters related to pressure. A benchmark example, the bending case of an inflatable cantilever beam, is performed to verify the accuracy of our proposed method. The comparisons reveal that the numerical results obtained with our method are close to open published analytical and membrane finite element results. The method is then used to evaluate the whole buckling and the load-carrying characteristics of an inflatable support frame subjected to a compression force. The wrinkling stress and region characteristics are also shown in the end. This method gives better convergence characteristics, and requires much less computation time. It is very effective to deal with the whole load-carrying ability analytical problems for large scale inflatable structures with complex configuration.

  12. An evolution based biosensor receptor DNA sequence generation algorithm.

    PubMed

    Kim, Eungyeong; Lee, Malrey; Gatton, Thomas M; Lee, Jaewan; Zang, Yupeng

    2010-01-01

    A biosensor is composed of a bioreceptor, an associated recognition molecule, and a signal transducer that can selectively detect target substances for analysis. DNA based biosensors utilize receptor molecules that allow hybridization with the target analyte. However, most DNA biosensor research uses oligonucleotides as the target analytes and does not address the potential problems of real samples. The identification of recognition molecules suitable for real target analyte samples is an important step towards further development of DNA biosensors. This study examines the characteristics of DNA used as bioreceptors and proposes a hybrid evolution-based DNA sequence generating algorithm, based on DNA computing, to identify suitable DNA bioreceptor recognition molecules for stable hybridization with real target substances. The Traveling Salesman Problem (TSP) approach is applied in the proposed algorithm to evaluate the safety and fitness of the generated DNA sequences. This approach improves efficiency and stability for enhanced and variable-length DNA sequence generation and allows extension to generation of variable-length DNA sequences with diverse receptor recognition requirements.

  13. Network-Cognizant Design of Decentralized Volt/VAR Controllers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Kyri A; Bernstein, Andrey; Zhao, Changhong

    This paper considers the problem of designing decentralized Volt/VAR controllers for distributed energy resources (DERs). The voltage-reactive power characteristics of individual DERs are obtained by solving a convex optimization problem, where given performance objectives (e.g., minimization of the voltage deviations from a given profile) are specified and stability constraints are enforced. The resultant Volt/VAR characteristics are network-cognizant, in the sense that they embed information on the location of the DERs and, consequently, on the effect of reactive-power adjustments on the voltages throughout the feeder. Bounds on the maximum voltage deviation incurred by the controllers are analytically established. Numerical results aremore » reported to corroborate the technical findings.« less

  14. Calculated Dynamic Characteristics of a Soft-Inplane Hingeless Rotor Helicopter

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1977-01-01

    Calculated dynamic characteristics of a representative soft-inplane hingeless rotor helicopter are presented. The flight dynamics as a function of speed and gross weight are given. The requirements for accurate analytical modelling of this helicopter are established. The influence of the horizontal tail size, the rotor precone, the blade sweep, and the blade center of gravity/aerodynamic center offset on the calculated flight dynamics and aeroelastic stability are examined. The calculations show no evidence of an air resonance stability problem with this aircraft.

  15. Review of design and operational characteristics of the 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Ray, E. J.; Ladson, C. L.; Adcock, J. B.; Lawing, P. L.; Hall, R. M.

    1979-01-01

    The fundamentals of cryogenic testing are validated both analytically and experimentally employing the 0.3-m transonic cryogenic tunnel. The tunnel with its unique Reynolds number capability has been used for a wide variety of aerodynamic tests. Techniques regarding real-gas effects have been developed and cryogenic tunnel conditions are set and maintained accurately. It is shown that cryogenic cooling, by injecting nitrogen directly into the tunnel circuit, imposes no problems with temperature distribution or dynamic response characteristics.

  16. [A governance approach applied to analysing research into unemployed workers in the city of Medellin in Colombia].

    PubMed

    Cardona, Alvaro; Nieto, Emmanuel; Mejía, Luz M

    2010-01-01

    Performing an academic exercise aimed at applying the analytical categories from the governance approach developed by Marc Hufty et al., to understand social actors’ relationships in an investigation and intervention project studying so-cioeconomic conditions and seeking to guarantee health insurance continuity for those workers who had lost their work in the city of Medellin, Colombia, from 2004 to 2007. A process of investigation and intervention was examined as a casestudy in which researchers were one of the actors so involved. Characterising stake-holders included: their level of inclusion/involvement in the problem; their power for influencing public policy proposals; their perceptions and proposals’ characteristics, power and dynamics regarding the problem of unemployment and health insurance when someone has lost her/his work; and the characteristics of their interaction with other actors. The results showed that the four analytical dimensions proposed by Hufty (actors, social norms, nodal points and processes) were useful for describing and understanding the interaction of the actors involved in the research and intervention proposal being analysed here (i.e. the case-study). It was concluded that the analytical governance framework proposed by Hufty was useful for understanding how the social subjects interacted; these were the rules which were taken for describing their interaction, being the most important nodes for interaction and progresses achieved whilst implementing the intervention proposal.

  17. Effects of a finite aperture on the Inverse Born Approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kogan, V.G.; Rose, J.H.

    1983-01-01

    One of the most important effects of complex part geometry is that the available entrance and exit angles for ultrasound are limited. We will present a study of the Inverse Born approximation in which we have data for incident (and exit) directions confined to a conical aperture. Modeling the direct problem by the Born Approximation, we obtained analytical results for (1) a weak spherical inclusion, and (2) a penny shaped crack (modeled by an oblate spheroid). General results are: (a) the value of the characteristic function ..gamma.. is constant in the interior of the flaw, but reduced in value; (b)more » the discontinuity at the boundary of the flaw occurs over the lighted portion of the flaw; (c) this discontinuity is contrasted by a region where ..gamma.. is negative; and (d) new non-physical discontinuities and non-analyticities appear in the reconstructed characteristic function. These general features also appear in numerical calculations which use as input strong scattering data from a spherical void and a flat penny shaped crack in Titanium. The numerical results can be straightforwardly interpreted in terms of the analytical calculation mentioned above, indicating that they will be useful in the study of realistic flaws. We conclude by discussing the stabilization of the aperture limited inversion problem and the removal of non-physical features in the reconstruction.« less

  18. Numerical implementation of complex orthogonalization, parallel transport on Stiefel bundles, and analyticity

    NASA Astrophysics Data System (ADS)

    Avitabile, Daniele; Bridges, Thomas J.

    2010-06-01

    Numerical integration of complex linear systems of ODEs depending analytically on an eigenvalue parameter are considered. Complex orthogonalization, which is required to stabilize the numerical integration, results in non-analytic systems. It is shown that properties of eigenvalues are still efficiently recoverable by extracting information from a non-analytic characteristic function. The orthonormal systems are constructed using the geometry of Stiefel bundles. Different forms of continuous orthogonalization in the literature are shown to correspond to different choices of connection one-form on the Stiefel bundle. For the numerical integration, Gauss-Legendre Runge-Kutta algorithms are the principal choice for preserving orthogonality, and performance results are shown for a range of GLRK methods. The theory and methods are tested by application to example boundary value problems including the Orr-Sommerfeld equation in hydrodynamic stability.

  19. Distribution-centric 3-parameter thermodynamic models of partition gas chromatography.

    PubMed

    Blumberg, Leonid M

    2017-03-31

    If both parameters (the entropy, ΔS, and the enthalpy, ΔH) of the classic van't Hoff model of dependence of distribution coefficients (K) of analytes on temperature (T) are treated as the temperature-independent constants then the accuracy of the model is known to be insufficient for the needed accuracy of retention time prediction. A more accurate 3-parameter Clarke-Glew model offers a way to treat ΔS and ΔH as functions, ΔS(T) and ΔH(T), of T. A known T-centric construction of these functions is based on relating them to the reference values (ΔS ref and ΔH ref ) corresponding to a predetermined reference temperature (T ref ). Choosing a single T ref for all analytes in a complex sample or in a large database might lead to practically irrelevant values of ΔS ref and ΔH ref for those analytes that have too small or too large retention factors at T ref . Breaking all analytes in several subsets each with its own T ref leads to discontinuities in the analyte parameters. These problems are avoided in the K-centric modeling where ΔS(T) and ΔS(T) and other analyte parameters are described in relation to their values corresponding to a predetermined reference distribution coefficient (K Ref ) - the same for all analytes. In this report, the mathematics of the K-centric modeling are described and the properties of several types of K-centric parameters are discussed. It has been shown that the earlier introduced characteristic parameters of the analyte-column interaction (the characteristic temperature, T char , and the characteristic thermal constant, θ char ) are a special chromatographically convenient case of the K-centric parameters. Transformations of T-centric parameters into K-centric ones and vice-versa as well as the transformations of one set of K-centric parameters into another set and vice-versa are described. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Analytical Approach to Large Deformation Problems of Frame Structures

    NASA Astrophysics Data System (ADS)

    Ohtsuki, Atsumi; Ellyin, Fernand

    In elements used as flexible linking devices and structures, the main characteristic is a fairly large deformation without exceeding the elastic limit of the material. This property is of both analytical and technological interests. Previous studies of large deformation have been generally concerned with a single member (e.g. a cantilever beam, a simply supported beam, etc.). However, there are very few large deformation studies of assembled members such as frames. This paper deals with a square frame with rigid joints, loaded diagonally in either tension or compression by a pair of opposite forces. Analytical solutions for large deformation are obtained in terms of elliptic integrals, and are compared with the experimental data. The agreement is found to be fairly close.

  1. On solving wave equations on fixed bounded intervals involving Robin boundary conditions with time-dependent coefficients

    NASA Astrophysics Data System (ADS)

    van Horssen, Wim T.; Wang, Yandong; Cao, Guohua

    2018-06-01

    In this paper, it is shown how characteristic coordinates, or equivalently how the well-known formula of d'Alembert, can be used to solve initial-boundary value problems for wave equations on fixed, bounded intervals involving Robin type of boundary conditions with time-dependent coefficients. A Robin boundary condition is a condition that specifies a linear combination of the dependent variable and its first order space-derivative on a boundary of the interval. Analytical methods, such as the method of separation of variables (SOV) or the Laplace transform method, are not applicable to those types of problems. The obtained analytical results by applying the proposed method, are in complete agreement with those obtained by using the numerical, finite difference method. For problems with time-independent coefficients in the Robin boundary condition(s), the results of the proposed method also completely agree with those as for instance obtained by the method of separation of variables, or by the finite difference method.

  2. The effect of wall interference upon the aerodynamic characteristics of an airfoil spanning a closed-throat circular wind tunnel

    NASA Technical Reports Server (NTRS)

    Vincenti, Walter G; Graham, Donald J

    1946-01-01

    The results of a theoretical and experimental investigation of wall interference for an airfoil spanning a closed-throat circular wind tunnel are presented. Analytical equations are derived which relate the characteristics of an airfoil in the tunnel at subsonic speeds with the characteristics in free air. The analysis takes into consideration the effect of fluid compressibility and is based upon the assumption that the chord of the airfoil is small as compared with the diameter of the tunnel. The development is restricted to an untwisted, constant-chord airfoil spanning the middle of the tunnel. Brief theoretical consideration is also given to the problem of choking at high speeds. Results are then presented of tests to determine the low-speed characteristics of an NACA 4412 airfoil for two chord-diameter ratios. While, on the basis of these experiments, no appraisal is possible of the accuracy of the corrections at high speeds, the data indicate that at low Mach numbers the analytical results are valid, even for relatively large values of the chord-diameter ratio.

  3. Analytic Solution of the Problem of Additive Formation of an Inhomogeneous Elastic Spherical Body in an Arbitrary Nonstationary Central Force Field

    NASA Astrophysics Data System (ADS)

    Parshin, D. A.

    2017-09-01

    We study the processes of additive formation of spherically shaped rigid bodies due to the uniform accretion of additional matter to their surface in an arbitrary centrally symmetric force field. A special case of such a field can be the gravitational or electrostatic force field. We consider the elastic deformation of the formed body. The body is assumed to be isotropic with elasticmoduli arbitrarily varying along the radial coordinate.We assume that arbitrary initial circular stresses can arise in the additional material added to the body in the process of its formation. In the framework of linear mechanics of growing bodies, the mathematical model of the processes under study is constructed in the quasistatic approximation. The boundary value problems describing the development of stress-strain state of the object under study before the beginning of the process and during the entire process of its formation are posed. The closed analytic solutions of the posed problems are constructed by quadratures for some general types of material inhomogeneity. Important typical characteristics of the mechanical behavior of spherical bodies additively formed in the central force field are revealed. These characteristics substantially distinguish such bodies from the already completely composed bodies similar in dimensions and properties which are placed in the force field and are described by problems of mechanics of deformable solids in the classical statement disregarding the mechanical aspects of additive processes.

  4. Metformin: A Review of Characteristics, Properties, Analytical Methods and Impact in the Green Chemistry.

    PubMed

    da Trindade, Mariana Teixeira; Kogawa, Ana Carolina; Salgado, Hérida Regina Nunes

    2018-01-02

    Diabetes mellitus (DM) is considered a public health problem. The initial treatment consists of improving the lifestyle and making changes in the diet. When these changes are not enough, the use of medication becomes necessary. The metformin aims to reduce the hepatic production of glucose and is the preferred treatment for type 2. The objective is to survey the characteristics and properties of metformin, as well as hold a discussion on the existing analytical methods to green chemistry and their impacts for both the operator and the environment. For the survey, data searches were conducted by scientific papers in the literature as well as in official compendium. The characteristics and properties are shown, also, methods using liquid chromatography techniques, titration, absorption spectrophotometry in the ultraviolet and the infrared region. Most of the methods presented are not green chemistry oriented. It is necessary the awareness of everyone involved in the optimization of the methods applied through the implementation of green chemistry to determine the metformin.

  5. Finite analytic numerical solution of heat transfer and flow past a square channel cavity

    NASA Technical Reports Server (NTRS)

    Chen, C.-J.; Obasih, K.

    1982-01-01

    A numerical solution of flow and heat transfer characteristics is obtained by the finite analytic method for a two dimensional laminar channel flow over a two-dimensional square cavity. The finite analytic method utilizes the local analytic solution in a small element of the problem region to form the algebraic equation relating an interior nodal value with its surrounding nodal values. Stable and rapidly converged solutions were obtained for Reynolds numbers ranging to 1000 and Prandtl number to 10. Streamfunction, vorticity and temperature profiles are solved. Local and mean Nusselt number are given. It is found that the separation streamlines between the cavity and channel flow are concave into the cavity at low Reynolds number and convex at high Reynolds number (Re greater than 100) and for square cavity the mean Nusselt number may be approximately correlated with Peclet number as Nu(m) = 0.365 Pe exp 0.2.

  6. On the Problem of Filtration to an Imperfect Gallery in a Pressureless Bed

    NASA Astrophysics Data System (ADS)

    Bereslavskii, É. N.; Dudina, L. M.

    2018-01-01

    The problem of plane steady-state filtration in a pressureless bed to an imperfect gallery in the presence of evaporation from the flow free surface is considered. To study such type of flow, a mixed boundary-value problem of the theory of analytical functions is formulated and solved with application of the Polubarinova-Kochina method. Based on the model suggested, an algorithm for computing the discharge of the gallery and the ordinate of free surface emergence to the impermeable screen is developed. A detailed hydrodynamic analysis of the influence of all physical parameters of the model on the desired filtration characteristics is given.

  7. Approximate Formula for the Vertical Asymptote of Projectile Motion in Midair

    ERIC Educational Resources Information Center

    Chudinov, Peter Sergey

    2010-01-01

    The classic problem of the motion of a point mass (projectile) thrown at an angle to the horizon is reviewed. The air drag force is taken into account with the drag factor assumed to be constant. An analytical approach is used for the investigation. An approximate formula is obtained for one of the characteristics of the motion--the vertical…

  8. On Heat Transfer through a Solid Slab Heated Uniformly and Periodically: Determination of Thermal Properties

    ERIC Educational Resources Information Center

    Rojas-Trigos, J. B.; Bermejo-Arenas, J. A.; Marin, E.

    2012-01-01

    In this paper, some heat transfer characteristics through a sample that is uniformly heated on one of its surfaces by a power density modulated by a periodical square wave are discussed. The solution of this problem has two contributions, comprising a transient term and an oscillatory term, superposed to it. The analytical solution is compared to…

  9. Secondary lithium batteries for space applications

    NASA Technical Reports Server (NTRS)

    Carter, B.; Khanna, S. K.; Yen, S. P. S.; Shen, D.; Somoano, R. B.

    1981-01-01

    Secondary lithium cells which use a LiAsF6-2-Me-THF electrolyte and a TiS2 intercalatable cathode exhibit encouraging cycle life at ambient temperature. Electrochemical and surface analytical studies indicate that the electrolyte is unstable in the presence of metallic lithium, leading to the formation of a lithium passivating film composed of lithium arsenic oxyfluorides and lithium fluorsilicates. The lithium cyclability remains as the most important problem to solve. Different electrolyte solvents, such as sulfolane, exhibit promising characteristics but lead to new compatibility problems with the other cell component materials.

  10. A combined analytical and numerical analysis of the flow-acoustic coupling in a cavity-pipe system

    NASA Astrophysics Data System (ADS)

    Langthjem, Mikael A.; Nakano, Masami

    2018-05-01

    The generation of sound by flow through a closed, cylindrical cavity (expansion chamber) accommodated with a long tailpipe is investigated analytically and numerically. The sound generation is due to self-sustained flow oscillations in the cavity. These oscillations may, in turn, generate standing (resonant) acoustic waves in the tailpipe. The main interest of the paper is in the interaction between these two sound sources. An analytical, approximate solution of the acoustic part of the problem is obtained via the method of matched asymptotic expansions. The sound-generating flow is represented by a discrete vortex method, based on axisymmetric vortex rings. It is demonstrated through numerical examples that inclusion of acoustic feedback from the tailpipe is essential for a good representation of the sound characteristics.

  11. The Integration of Production-Distribution on Newspapers Supply Chain for Cost Minimization using Analytic Models: Case Study

    NASA Astrophysics Data System (ADS)

    Febriana Aqidawati, Era; Sutopo, Wahyudi; Hisjam, Muh.

    2018-03-01

    Newspapers are products with special characteristics which are perishable, have a shorter range of time between the production and distribution, zero inventory, and decreasing sales value along with increasing in time. Generally, the problem of production and distribution in the paper supply chain is the integration of production planning and distribution to minimize the total cost. The approach used in this article to solve the problem is using an analytical model. In this article, several parameters and constraints have been considered in the calculation of the total cost of the integration of production and distribution of newspapers during the determined time horizon. This model can be used by production and marketing managers as decision support in determining the optimal quantity of production and distribution in order to obtain minimum cost so that company's competitiveness level can be increased.

  12. NIR and UV-vis spectroscopy, artificial nose and tongue: comparison of four fingerprinting techniques for the characterisation of Italian red wines.

    PubMed

    Casale, M; Oliveri, P; Armanino, C; Lanteri, S; Forina, M

    2010-06-04

    Four rapid and low-cost vanguard analytical systems (NIR and UV-vis spectroscopy, a headspace-mass based artificial nose and a voltammetric artificial tongue), together with chemometric pattern recognition techniques, were applied and compared in addressing a food authentication problem: the distinction between wine samples from the same Italian oenological region, according to the grape variety. Specifically, 59 certified samples belonging to the Barbera d'Alba and Dolcetto d'Alba appellations and collected from the same vintage (2007) were analysed. The instrumental responses, after proper data pre-processing, were used as fingerprints of the characteristics of the samples: the results from principal component analysis and linear discriminant analysis were discussed, comparing the capability of the four analytical strategies in addressing the problem studied. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Problem-based learning on quantitative analytical chemistry course

    NASA Astrophysics Data System (ADS)

    Fitri, Noor

    2017-12-01

    This research applies problem-based learning method on chemical quantitative analytical chemistry, so called as "Analytical Chemistry II" course, especially related to essential oil analysis. The learning outcomes of this course include aspects of understanding of lectures, the skills of applying course materials, and the ability to identify, formulate and solve chemical analysis problems. The role of study groups is quite important in improving students' learning ability and in completing independent tasks and group tasks. Thus, students are not only aware of the basic concepts of Analytical Chemistry II, but also able to understand and apply analytical concepts that have been studied to solve given analytical chemistry problems, and have the attitude and ability to work together to solve the problems. Based on the learning outcome, it can be concluded that the problem-based learning method in Analytical Chemistry II course has been proven to improve students' knowledge, skill, ability and attitude. Students are not only skilled at solving problems in analytical chemistry especially in essential oil analysis in accordance with local genius of Chemistry Department, Universitas Islam Indonesia, but also have skilled work with computer program and able to understand material and problem in English.

  14. The Role of Teamwork in the Analysis of Big Data: A Study of Visual Analytics and Box Office Prediction.

    PubMed

    Buchanan, Verica; Lu, Yafeng; McNeese, Nathan; Steptoe, Michael; Maciejewski, Ross; Cooke, Nancy

    2017-03-01

    Historically, domains such as business intelligence would require a single analyst to engage with data, develop a model, answer operational questions, and predict future behaviors. However, as the problems and domains become more complex, organizations are employing teams of analysts to explore and model data to generate knowledge. Furthermore, given the rapid increase in data collection, organizations are struggling to develop practices for intelligence analysis in the era of big data. Currently, a variety of machine learning and data mining techniques are available to model data and to generate insights and predictions, and developments in the field of visual analytics have focused on how to effectively link data mining algorithms with interactive visuals to enable analysts to explore, understand, and interact with data and data models. Although studies have explored the role of single analysts in the visual analytics pipeline, little work has explored the role of teamwork and visual analytics in the analysis of big data. In this article, we present an experiment integrating statistical models, visual analytics techniques, and user experiments to study the role of teamwork in predictive analytics. We frame our experiment around the analysis of social media data for box office prediction problems and compare the prediction performance of teams, groups, and individuals. Our results indicate that a team's performance is mediated by the team's characteristics such as openness of individual members to others' positions and the type of planning that goes into the team's analysis. These findings have important implications for how organizations should create teams in order to make effective use of information from their analytic models.

  15. Parallel Aircraft Trajectory Optimization with Analytic Derivatives

    NASA Technical Reports Server (NTRS)

    Falck, Robert D.; Gray, Justin S.; Naylor, Bret

    2016-01-01

    Trajectory optimization is an integral component for the design of aerospace vehicles, but emerging aircraft technologies have introduced new demands on trajectory analysis that current tools are not well suited to address. Designing aircraft with technologies such as hybrid electric propulsion and morphing wings requires consideration of the operational behavior as well as the physical design characteristics of the aircraft. The addition of operational variables can dramatically increase the number of design variables which motivates the use of gradient based optimization with analytic derivatives to solve the larger optimization problems. In this work we develop an aircraft trajectory analysis tool using a Legendre-Gauss-Lobatto based collocation scheme, providing analytic derivatives via the OpenMDAO multidisciplinary optimization framework. This collocation method uses an implicit time integration scheme that provides a high degree of sparsity and thus several potential options for parallelization. The performance of the new implementation was investigated via a series of single and multi-trajectory optimizations using a combination of parallel computing and constraint aggregation. The computational performance results show that in order to take full advantage of the sparsity in the problem it is vital to parallelize both the non-linear analysis evaluations and the derivative computations themselves. The constraint aggregation results showed a significant numerical challenge due to difficulty in achieving tight convergence tolerances. Overall, the results demonstrate the value of applying analytic derivatives to trajectory optimization problems and lay the foundation for future application of this collocation based method to the design of aircraft with where operational scheduling of technologies is key to achieving good performance.

  16. A study of methods to predict and measure the transmission of sound through the walls of light aircraft. Integration of certain singular boundary element integrals for applications in linear acoustics

    NASA Technical Reports Server (NTRS)

    Zimmerle, D.; Bernhard, R. J.

    1985-01-01

    An alternative method for performing singular boundary element integrals for applications in linear acoustics is discussed. The method separates the integral of the characteristic solution into a singular and nonsingular part. The singular portion is integrated with a combination of analytic and numerical techniques while the nonsingular portion is integrated with standard Gaussian quadrature. The method may be generalized to many types of subparametric elements. The integrals over elements containing the root node are considered, and the characteristic solution for linear acoustic problems are examined. The method may be generalized to most characteristic solutions.

  17. Analytic Theory and Control of the Motion of Spinning Rigid Bodies

    NASA Technical Reports Server (NTRS)

    Tsiotras, Panagiotis

    1993-01-01

    Numerical simulations are often resorted to, in order to understand the attitude response and control characteristics of a rigid body. However, this approach in performing sensitivity and/or error analyses may be prohibitively expensive and time consuming, especially when a large number of problem parameters are involved. Thus, there is an important role for analytical models in obtaining an understanding of the complex dynamical behavior. In this dissertation, new analytic solutions are derived for the complete attitude motion of spinning rigid bodies, under minimal assumptions. Hence, we obtain the most general solutions reported in the literature so far. Specifically, large external torques and large asymmetries are included in the problem statement. Moreover, problems involving large angular excursions are treated in detail. A new tractable formulation of the kinematics is introduced which proves to be extremely helpful in the search for analytic solutions of the attitude history of such kinds of problems. The main utility of the new formulation becomes apparent however, when searching for feedback control laws for stabilization and/or reorientation of spinning spacecraft. This is an inherently nonlinear problem, where standard linear control techniques fail. We derive a class of control laws for spin axis stabilization of symmetric spacecraft using only two pairs of gas jet actuators. Practically, this could correspond to a spacecraft operating in failure mode, for example. Theoretically, it is also an important control problem which, because of its difficulty, has received little, if any, attention in the literature. The proposed control laws are especially simple and elegant. A feedback control law that achieves arbitrary reorientation of the spacecraft is also derived, using ideas from invariant manifold theory. The significance of this research is twofold. First, it provides a deeper understanding of the fundamental behavior of rigid bodies subject to body-fixed torques. Assessment of the analytic solutions reveals that they are very accurate; for symmetric bodies the solutions of Euler's equations of motion are, in fact, exact. Second, the results of this research have a fundamental impact on practical scientific and mechanical applications in terms of the analysis and control of all finite-sized rigid bodies ranging from nanomachines to very large bodies, both man made and natural. After all, Euler's equations of motion apply to all physical bodies, barring only the extreme limits of quantum mechanics and relativity.

  18. Analytical sizing methods for behind-the-meter battery storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Di; Kintner-Meyer, Michael; Yang, Tao

    In behind-the-meter application, battery storage system (BSS) is utilized to reduce a commercial or industrial customer’s payment for electricity use, including energy charge and demand charge. The potential value of BSS in payment reduction and the most economic size can be determined by formulating and solving standard mathematical programming problems. In this method, users input system information such as load profiles, energy/demand charge rates, and battery characteristics to construct a standard programming problem that typically involve a large number of constraints and decision variables. Such a large scale programming problem is then solved by optimization solvers to obtain numerical solutions.more » Such a method cannot directly link the obtained optimal battery sizes to input parameters and requires case-by-case analysis. In this paper, we present an objective quantitative analysis of costs and benefits of customer-side energy storage, and thereby identify key factors that affect battery sizing. Based on the analysis, we then develop simple but effective guidelines that can be used to determine the most cost-effective battery size or guide utility rate design for stimulating energy storage development. The proposed analytical sizing methods are innovative, and offer engineering insights on how the optimal battery size varies with system characteristics. We illustrate the proposed methods using practical building load profile and utility rate. The obtained results are compared with the ones using mathematical programming based methods for validation.« less

  19. Review of design and operational characteristics of the 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Ray, E. J.; Ladson, C. L.; Adcock, J. B.; Lawing, P. L.; Hall, R. M.

    1979-01-01

    The past 6 years of operation with the NASA Langley 0.3 m transonic cryogenic tunnel (TCT) show that there are no insurmountable problems associated with cryogenic testing with gaseous nitrogen at transonic Mach numbers. The fundamentals of the concept were validated both analytically and experimentally and the 0.3 m TCT, with its unique Reynolds number capability, was used for a wide variety of aerodynamic tests. Techniques regarding real-gas effects were developed and cryogenic tunnel conditions can be set and maintained accurately. Cryogenic cooling by injecting liquid nitrogen directly into the tunnel circuit imposes no problems with temperature distribution or dynamic response characteristics. Experience with the 0.3 m TCT, indicates that there is a significant learning process associated with cryogenic, high Reynolds number testing. Many of the questions have already been answered; however, factors such as tunnel control, run logic, economics, instrumentation, and model technology present many new and challenging problems.

  20. Stepwise Iterative Fourier Transform: The SIFT

    NASA Technical Reports Server (NTRS)

    Benignus, V. A.; Benignus, G.

    1975-01-01

    A program, designed specifically to study the respective effects of some common data problems on results obtained through stepwise iterative Fourier transformation of synthetic data with known waveform composition, was outlined. Included in this group were the problems of gaps in the data, different time-series lengths, periodic but nonsinusoidal waveforms, and noisy (low signal-to-noise) data. Results on sinusoidal data were also compared with results obtained on narrow band noise with similar characteristics. The findings showed that the analytic procedure under study can reliably reduce data in the nature of (1) sinusoids in noise, (2) asymmetric but periodic waves in noise, and (3) sinusoids in noise with substantial gaps in the data. The program was also able to analyze narrow-band noise well, but with increased interpretational problems. The procedure was shown to be a powerful technique for analysis of periodicities, in comparison with classical spectrum analysis techniques. However, informed use of the stepwise procedure nevertheless requires some background of knowledge concerning characteristics of the biological processes under study.

  1. Root finding in the complex plane for seismo-acoustic propagation scenarios with Green's function solutions.

    PubMed

    McCollom, Brittany A; Collis, Jon M

    2014-09-01

    A normal mode solution to the ocean acoustic problem of the Pekeris waveguide with an elastic bottom using a Green's function formulation for a compressional wave point source is considered. Analytic solutions to these types of waveguide propagation problems are strongly dependent on the eigenvalues of the problem; these eigenvalues represent horizontal wavenumbers, corresponding to propagating modes of energy. The eigenvalues arise as singularities in the inverse Hankel transform integral and are specified by roots to a characteristic equation. These roots manifest themselves as poles in the inverse transform integral and can be both subtle and difficult to determine. Following methods previously developed [S. Ivansson et al., J. Sound Vib. 161 (1993)], a root finding routine has been implemented using the argument principle. Using the roots to the characteristic equation in the Green's function formulation, full-field solutions are calculated for scenarios where an acoustic source lies in either the water column or elastic half space. Solutions are benchmarked against laboratory data and existing numerical solutions.

  2. The mineralogy of global magnetic anomalies. [rock magnetic signatures and MAGSAT geological, and gravity correlations in West Africa

    NASA Technical Reports Server (NTRS)

    Haggerty, S. E. (Principal Investigator)

    1982-01-01

    Problems with the Curie balance, which severely hindered the acquisition of data, were rectified. Chemical analytical activities are proceeding satisfactorily. The magnetization characteristics of metamorphic suites were analyzed and susceptibility data for a wide range of metamorphic and igneous rocks. These rock magnetic signatures are discussed as well as the relationships between geology, gravity and MAGSAT anomalies of West Africa.

  3. Revisiting the positive DC corona discharge theory: Beyond Peek's and Townsend's law

    NASA Astrophysics Data System (ADS)

    Monrolin, Nicolas; Praud, Olivier; Plouraboué, Franck

    2018-06-01

    The classical positive Corona Discharge theory in a cylindrical axisymmetric configuration is revisited in order to find analytically the influence of gas properties and thermodynamic conditions on the corona current. The matched asymptotic expansion of Durbin and Turyn [J. Phys. D: Appl. Phys. 20, 1490-1495 (1987)] of a simplified but self-consistent problem is performed and explicit analytical solutions are derived. The mathematical derivation enables us to express a new positive DC corona current-voltage characteristic, choosing either a dimensionless or dimensional formulation. In dimensional variables, the current voltage law and the corona inception voltage explicitly depend on the electrode size and physical gas properties such as ionization and photoionization parameters. The analytical predictions are successfully confronted with experiments and Peek's and Townsend's laws. An analytical expression of the corona inception voltage φ o n is proposed, which depends on the known values of physical parameters without adjustable parameters. As a proof of consistency, the classical Townsend current-voltage law I = C φ ( φ - φ o n ) is retrieved by linearizing the non-dimensional analytical solution. A brief parametric study showcases the interest in this analytical current model, especially for exploring small corona wires or considering various thermodynamic conditions.

  4. Investigation on Tensile Fatigue Characteristics of Meshed GUM Metal Plates for Bone Graft Applications

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Koki; He, Jianmei

    2017-11-01

    GUM Metal has characteristics of lower elasticity rigidity, large elastic deformation, higher strength and biocompatibility etc. When it is used for implant applications, there is still problem like overloading on the natural-bone because of its high rigidity compared with the human bones. Therefore, the purpose of this study is to create more flexible meshed plates for implant applications from the viewpoints of elastic rigidity and volume density. Basic mesh shapes are designed, devised and applied for meshed GUM Metal plates using three dimensional (3D) CAD tools. Experimental evaluation on tensile fatigue characteristics of meshed GUM Metal plate specimens are carried out. Analytical approaches on stress evaluation are also executed through finite element method to obtain the S-N curve for fatigue characteristic evaluation.

  5. On finding the analytic dependencies of the external field potential on the control function when optimizing the beam dynamics

    NASA Astrophysics Data System (ADS)

    Ovsyannikov, A. D.; Kozynchenko, S. A.; Kozynchenko, V. A.

    2017-12-01

    When developing a particle accelerator for generating the high-precision beams, the injection system design is of importance, because it largely determines the output characteristics of the beam. At the present paper we consider the injection systems consisting of electrodes with given potentials. The design of such systems requires carrying out simulation of beam dynamics in the electrostatic fields. For external field simulation we use the new approach, proposed by A.D. Ovsyannikov, which is based on analytical approximations, or finite difference method, taking into account the real geometry of the injection system. The software designed for solving the problems of beam dynamics simulation and optimization in the injection system for non-relativistic beams has been developed. Both beam dynamics and electric field simulations in the injection system which use analytical approach and finite difference method have been made and the results presented in this paper.

  6. 1. On note taking.

    PubMed

    Plaut, Alfred B J

    2005-02-01

    In this paper the author explores the theoretical and technical issues relating to taking notes of analytic sessions, using an introspective approach. The paper discusses the lack of a consistent approach to note taking amongst analysts and sets out to demonstrate that systematic note taking can be helpful to the analyst. The author describes his discovery that an initial phase where as much data was recorded as possible did not prove to be reliably helpful in clinical work and initially actively interfered with recall in subsequent sessions. The impact of the nature of the analytic session itself and the focus of the analyst's interest on recall is discussed. The author then describes how he modified his note taking technique to classify information from sessions into four categories which enabled the analyst to select which information to record in notes. The characteristics of memory and its constructive nature are discussed in relation to the problems that arise in making accurate notes of analytic sessions.

  7. Blood venous sample collection: Recommendations overview and a checklist to improve quality.

    PubMed

    Giavarina, Davide; Lippi, Giuseppe

    2017-07-01

    The extra-analytical phases of the total testing process have substantial impact on managed care, as well as an inherent high risk of vulnerability to errors which is often greater than that of the analytical phase. The collection of biological samples is a crucial preanalytical activity. Problems or errors occurring shortly before, or soon after, this preanalytical step may impair sample quality and characteristics, or else modify the final results of testing. The standardization of fasting requirements, rest, patient position and psychological state of the patient are therefore crucial for mitigating the impact of preanalytical variability. Moreover, the quality of materials used for collecting specimens, along with their compatibility, can guarantee sample quality and persistence of chemical and physical characteristics of the analytes over time, so safeguarding the reliability of testing. Appropriate techniques and sampling procedures are effective to prevent problems such as hemolysis, undue clotting in the blood tube, draw of insufficient sample volume and modification of analyte concentration. An accurate identification of both patient and blood samples is a key priority as for other healthcare activities. Good laboratory practice and appropriate training of operators, by specifically targeting collection of biological samples, blood in particular, may greatly improve this issue, thus lowering the risk of errors and their adverse clinical consequences. The implementation of a simple and rapid check-list, including verification of blood collection devices, patient preparation and sampling techniques, was found to be effective for enhancing sample quality and reducing some preanalytical errors associated with these procedures. The use of this tool, along with implementation of objective and standardized systems for detecting non-conformities related to unsuitable samples, can be helpful for standardizing preanalytical activities and improving the quality of laboratory diagnostics, ultimately helping to reaffirm a "preanalytical" culture founded on knowledge and real risk perception. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  8. [Amanitine determination as an example of peptide analysis in the biological samples with HPLC-MS technique].

    PubMed

    Janus, Tomasz; Jasionowicz, Ewa; Potocka-Banaś, Barbara; Borowiak, Krzysztof

    Routine toxicological analysis is mostly focused on the identification of non-organic and organic, chemically different compounds, but generally with low mass, usually not greater than 500–600 Da. Peptide compounds with atomic mass higher than 900 Da are a specific analytical group. Several dozen of them are highly-toxic substances well known in toxicological practice, for example mushroom toxin and animal venoms. In the paper the authors present an example of alpha-amanitin to explain the analytical problems and different original solutions in identifying peptides in urine samples with the use of the universal LC MS/MS procedure. The analyzed material was urine samples collected from patients with potential mushroom intoxication, routinely diagnosed for amanitin determination. Ultra filtration with centrifuge filter tubes (limited mass cutoff 3 kDa) was used. Filtrate fluid was directly injected on the chromatographic column and analyzed with a mass detector (MS/MS). The separation of peptides as organic, amphoteric compounds from biological material with the use of the SPE technique is well known but requires dedicated, specific columns. The presented paper proved that with the fast and simple ultra filtration technique amanitin can be effectively isolated from urine, and the procedure offers satisfactory sensitivity of detection and eliminates the influence of the biological matrix on analytical results. Another problem which had to be solved was the non-characteristic fragmentation of peptides in the MS/MS procedure providing non-selective chromatograms. It is possible to use higher collision energies in the analytical procedure, which results in more characteristic mass spectres, although it offers lower sensitivity. The ultra filtration technique as a procedure of sample preparation is effective for the isolation of amanitin from the biological matrix. The monitoring of selected mass corresponding to transition with the loss of water molecule offers satisfactory sensitivity of determination.

  9. Training conservation practitioners to be better decision makers

    USGS Publications Warehouse

    Johnson, Fred A.; Eaton, Mitchell J.; Williams, James H.; Jensen, Gitte H.; Madsen, Jesper

    2015-01-01

    Traditional conservation curricula and training typically emphasizes only one part of systematic decision making (i.e., the science), at the expense of preparing conservation practitioners with critical skills in values-setting, working with decision makers and stakeholders, and effective problem framing. In this article we describe how the application of decision science is relevant to conservation problems and suggest how current and future conservation practitioners can be trained to be better decision makers. Though decision-analytic approaches vary considerably, they all involve: (1) properly formulating the decision problem; (2) specifying feasible alternative actions; and (3) selecting criteria for evaluating potential outcomes. Two approaches are available for providing training in decision science, with each serving different needs. Formal education is useful for providing simple, well-defined problems that allow demonstrations of the structure, axioms and general characteristics of a decision-analytic approach. In contrast, practical training can offer complex, realistic decision problems requiring more careful structuring and analysis than those used for formal training purposes. Ultimately, the kinds and degree of training necessary depend on the role conservation practitioners play in a decision-making process. Those attempting to facilitate decision-making processes will need advanced training in both technical aspects of decision science and in facilitation techniques, as well as opportunities to apprentice under decision analysts/consultants. Our primary goal should be an attempt to ingrain a discipline for applying clarity of thought to all decisions.

  10. What makes us think? A three-stage dual-process model of analytic engagement.

    PubMed

    Pennycook, Gordon; Fugelsang, Jonathan A; Koehler, Derek J

    2015-08-01

    The distinction between intuitive and analytic thinking is common in psychology. However, while often being quite clear on the characteristics of the two processes ('Type 1' processes are fast, autonomous, intuitive, etc. and 'Type 2' processes are slow, deliberative, analytic, etc.), dual-process theorists have been heavily criticized for being unclear on the factors that determine when an individual will think analytically or rely on their intuition. We address this issue by introducing a three-stage model that elucidates the bottom-up factors that cause individuals to engage Type 2 processing. According to the model, multiple Type 1 processes may be cued by a stimulus (Stage 1), leading to the potential for conflict detection (Stage 2). If successful, conflict detection leads to Type 2 processing (Stage 3), which may take the form of rationalization (i.e., the Type 1 output is verified post hoc) or decoupling (i.e., the Type 1 output is falsified). We tested key aspects of the model using a novel base-rate task where stereotypes and base-rate probabilities cued the same (non-conflict problems) or different (conflict problems) responses about group membership. Our results support two key predictions derived from the model: (1) conflict detection and decoupling are dissociable sources of Type 2 processing and (2) conflict detection sometimes fails. We argue that considering the potential stages of reasoning allows us to distinguish early (conflict detection) and late (decoupling) sources of analytic thought. Errors may occur at both stages and, as a consequence, bias arises from both conflict monitoring and decoupling failures. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Prediction of Sound Waves Propagating Through a Nozzle Without/With a Shock Wave Using the Space-Time CE/SE Method

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Chang, Sin-Chung; Jorgenson, Philip C. E.

    2000-01-01

    The benchmark problems in Category 1 (Internal Propagation) of the third Computational Aeroacoustics (CAA) Work-shop sponsored by NASA Glenn Research Center are solved using the space-time conservation element and solution element (CE/SE) method. The first problem addresses the propagation of sound waves through a nearly choked transonic nozzle. The second one concerns shock-sound interaction in a supersonic nozzle. A quasi one-dimension CE/SE Euler solver for a nonuniform mesh is developed and employed to solve both problems. Numerical solutions are compared with the analytical solution for both problems. It is demonstrated that the CE/SE method is capable of solving aeroacoustic problems with/without shock waves in a simple way. Furthermore, the simple nonreflecting boundary condition used in the CE/SE method which is not based on the characteristic theory works very well.

  12. Design Investigation on Applicable Mesh Structures for Medical Stent Applications

    NASA Astrophysics Data System (ADS)

    Asano, Shoji; He, Jianmei

    2017-11-01

    In recent years, utilization of medical stents is one of effective treatments for stenosis and occlusion occurring in a living body’s lumen indispensable for maintenance of human life such as superficial femoral artery (SFA) occlusion. However, there are concerns about the occurrence of fatigue fractures caused by stress concentrations, neointimal hyperplasia and the like due to the shape structure and the manufacturing method in the conventional stents, and a stent having high strength and high flexibility is required. Therefore, in this research, applicable mesh structures for medical stents based on the design concepts of high strength, high flexibility are interested to solve various problem of conventional stent. According to the shape and dimensions of SFA occlusion therapy stent and indwelling delivery catheter, shape design of the meshed stent are performed using 3-dimensional CAD software Solid Works first. Then analytical examination on storage characteristics and compression characteristics of such mesh structure applied stent models were carried out through finite element analysis software ANSYS Workbench. Meshed stent models with higher strength and higher flexibility with integral molding are investigated analytically. It was found that the storage characteristics and compression characteristics of meshed stent modles are highly dependent on the basic mesh shapes with same surface void ratio. Trade-off relationship between flexibility and storage characteristics is found exited, it is required to provide appropriate curvatures during basic mesh shape design.

  13. Hydrodynamic stability

    NASA Astrophysics Data System (ADS)

    Drazin, P. G.; Reid, W. H.

    The book is written from the point of view intrinsic to fluid mechanics and applied mathematics. The analytical aspects of the theory are emphasized. However, it has also been tried, wherever possible, to relate the theory to experimental and numerical results. Mechanisms of instability are considered along with fundamental concepts of hydrodynamic stability, the Kelvin-Helmholtz instability, and the break-up of a liquid jet in air. Aspects of thermal instability are investigated, taking into account the equations of motion, the stability problem, general stability characteristics, particular stability characteristics, the cells, and experimental results. The inviscid theory and the viscous theory are examined in connection with a study of parallel shear flows. Centrifugal instability is discussed along with uniform asymptotic approximations, and problems of nonlinear stability. Attention is also given to baroclinic instability, the instability of the pinch, the development of linear instability in time and space, and the instability of unsteady flows.

  14. Application of the superposition principle to solar-cell analysis

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.; Fossum, J. G.; Burgess, E. L.

    1979-01-01

    The superposition principle of differential-equation theory - which applies if and only if the relevant boundary-value problems are linear - is used to derive the widely used shifting approximation that the current-voltage characteristic of an illuminated solar cell is the dark current-voltage characteristic shifted by the short-circuit photocurrent. Analytical methods are presented to treat cases where shifting is not strictly valid. Well-defined conditions necessary for superposition to apply are established. For high injection in the base region, the method of analysis accurately yields the dependence of the open-circuit voltage on the short-circuit current (or the illumination level).

  15. An Investigation to Manufacturing Analytical Services Composition using the Analytical Target Cascading Method.

    PubMed

    Tien, Kai-Wen; Kulvatunyou, Boonserm; Jung, Kiwook; Prabhu, Vittaldas

    2017-01-01

    As cloud computing is increasingly adopted, the trend is to offer software functions as modular services and compose them into larger, more meaningful ones. The trend is attractive to analytical problems in the manufacturing system design and performance improvement domain because 1) finding a global optimization for the system is a complex problem; and 2) sub-problems are typically compartmentalized by the organizational structure. However, solving sub-problems by independent services can result in a sub-optimal solution at the system level. This paper investigates the technique called Analytical Target Cascading (ATC) to coordinate the optimization of loosely-coupled sub-problems, each may be modularly formulated by differing departments and be solved by modular analytical services. The result demonstrates that ATC is a promising method in that it offers system-level optimal solutions that can scale up by exploiting distributed and modular executions while allowing easier management of the problem formulation.

  16. Least-squares Legendre spectral element solutions to sound propagation problems.

    PubMed

    Lin, W H

    2001-02-01

    This paper presents a novel algorithm and numerical results of sound wave propagation. The method is based on a least-squares Legendre spectral element approach for spatial discretization and the Crank-Nicolson [Proc. Cambridge Philos. Soc. 43, 50-67 (1947)] and Adams-Bashforth [D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications (CBMS-NSF Monograph, Siam 1977)] schemes for temporal discretization to solve the linearized acoustic field equations for sound propagation. Two types of NASA Computational Aeroacoustics (CAA) Workshop benchmark problems [ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics, edited by J. C. Hardin, J. R. Ristorcelli, and C. K. W. Tam, NASA Conference Publication 3300, 1995a] are considered: a narrow Gaussian sound wave propagating in a one-dimensional space without flows, and the reflection of a two-dimensional acoustic pulse off a rigid wall in the presence of a uniform flow of Mach 0.5 in a semi-infinite space. The first problem was used to examine the numerical dispersion and dissipation characteristics of the proposed algorithm. The second problem was to demonstrate the capability of the algorithm in treating sound propagation in a flow. Comparisons were made of the computed results with analytical results and results obtained by other methods. It is shown that all results computed by the present method are in good agreement with the analytical solutions and results of the first problem agree very well with those predicted by other schemes.

  17. Design and Simulation of a MEMS Structure for Electrophoretic and Dielectrophoretic Separation of Particles by Contactless Electrodes

    NASA Technical Reports Server (NTRS)

    Shaw, Harry C.

    2007-01-01

    Rapid identification of pathogenic bacterial species is an important factor in combating public health problems such as E. coli contamination. Food and waterborne pathogens account for sickness in 76 million people annually (CDC). Diarrheagenic E. coli is a major source of gastrointestinal illness. Severe sepsis and Septicemia within the hospital environment are also major problems. 75 1,000 cases annually with a 30-50% mortality rate (Crit Care Med, July '01, Vol. 29, 1303-10). Patient risks run the continuum from fever to organ failure and death. Misdiagnosis or inappropriate treatment increases mortality. There exists a need for rapid screening of samples for identification of pathogenic species (Certain E. coli strains are essential for health). Critical to the identification process is the ability to isolate analytes of interest rapidly. This poster discusses novel devices for the separation of particles on the basis of the dielectric properties, mass and surface charge characteristics is presented. Existing designs involve contact between electrode surfaces and analyte medium resulting in contamination of the electrode bearing elements Two different device designs using different bulk micromachining MEMS processes (PolyMUMPS and a PyrexBIGold electrode design) are presented. These designs cover a range of particle sizes from small molecules through eucaryotic cells. The application of separation of bacteria is discussed in detail. Simulation data for electrostatic and microfluidic characteristics are provided. Detailed design characteristics and physical features of the as fabricated PolyMUMPS design are provided. Analysis of the simulation data relative to the expected performance of the devices will be provided and subsequent conclusions discussed.

  18. Spherical Pendulum Small Oscillations for Slewing Crane Motion

    PubMed Central

    Perig, Alexander V.; Stadnik, Alexander N.; Deriglazov, Alexander I.

    2014-01-01

    The present paper focuses on the Lagrange mechanics-based description of small oscillations of a spherical pendulum with a uniformly rotating suspension center. The analytical solution of the natural frequencies' problem has been derived for the case of uniform rotation of a crane boom. The payload paths have been found in the inertial reference frame fixed on earth and in the noninertial reference frame, which is connected with the rotating crane boom. The numerical amplitude-frequency characteristics of the relative payload motion have been found. The mechanical interpretation of the terms in Lagrange equations has been outlined. The analytical expression and numerical estimation for cable tension force have been proposed. The numerical computational results, which correlate very accurately with the experimental observations, have been shown. PMID:24526891

  19. An analytical theory of radio-wave scattering from meteoric ionization - I. Basic equation

    NASA Astrophysics Data System (ADS)

    Pecina, P.

    2016-01-01

    We have developed an analytical theory of radio-wave scattering from ionization of meteoric origin. It is based on an integro-differential equation for the polarization vector, P, inside the meteor trail, representing an analytical solution of the set of Maxwell equations, in combination with a generalized radar equation involving an integral of the trail volume electron density, Ne, and P represented by an auxiliary vector, Q, taken over the whole trail volume. During the derivation of the final formulae, the following assumptions were applied: transversal as well as longitudinal dimensions of the meteor trail are small compared with the distances of the relevant trail point to both the transmitter and receiver and the ratio of these distances to the wavelength of the wave emitted by the radar is very large, so that the stationary-phase method can be employed for evaluation of the relevant integrals. Further, it is shown that in the case of sufficiently low electron density, Ne, corresponding to the case of underdense trails, the classical McKinley's radar equation results as a special case of the general theory. The same also applies regarding the Fresnel characteristics. Our approach is also capable of yielding solutions to the problems of the formation of Fresnel characteristics on trails having any electron density, forward scattering and scattering on trails immersed in the magnetic field. However, we have also shown that the geomagnetic field can be removed from consideration, due to its low strength. The full solution of the above integro-differential equation, valid for any electron volume densities, has been left to subsequent works dealing with this particular problem, due to its complexity.

  20. Convective heat transfer for a gaseous slip flow in micropipe and parallel-plate microchannel with uniform wall heat flux: effect of axial heat conduction

    NASA Astrophysics Data System (ADS)

    Haddout, Y.; Essaghir, E.; Oubarra, A.; Lahjomri, J.

    2017-12-01

    Thermally developing laminar slip flow through a micropipe and a parallel plate microchannel, with axial heat conduction and uniform wall heat flux, is studied analytically by using a powerful method of self-adjoint formalism. This method results from a decomposition of the elliptic energy equation into a system of two first-order partial differential equations. The advantage of this method over other methods, resides in the fact that the decomposition procedure leads to a selfadjoint problem although the initial problem is apparently not a self-adjoint one. The solution is an extension of prior studies and considers a first order slip model boundary conditions at the fluid-wall interface. The analytical expressions for the developing temperature and local Nusselt number in the thermal entrance region are obtained in the general case. Therefore, the solution obtained could be extended easily to any hydrodynamically developed flow and arbitrary heat flux distribution. The analytical results obtained are compared for select simplified cases with available numerical calculations and they both agree. The results show that the heat transfer characteristics of flow in the thermal entrance region are strongly influenced by the axial heat conduction and rarefaction effects which are respectively characterized by Péclet and Knudsen numbers.

  1. Convective heat transfer for a gaseous slip flow in micropipe and parallel-plate microchannel with uniform wall heat flux: effect of axial heat conduction

    NASA Astrophysics Data System (ADS)

    Haddout, Y.; Essaghir, E.; Oubarra, A.; Lahjomri, J.

    2018-06-01

    Thermally developing laminar slip flow through a micropipe and a parallel plate microchannel, with axial heat conduction and uniform wall heat flux, is studied analytically by using a powerful method of self-adjoint formalism. This method results from a decomposition of the elliptic energy equation into a system of two first-order partial differential equations. The advantage of this method over other methods, resides in the fact that the decomposition procedure leads to a selfadjoint problem although the initial problem is apparently not a self-adjoint one. The solution is an extension of prior studies and considers a first order slip model boundary conditions at the fluid-wall interface. The analytical expressions for the developing temperature and local Nusselt number in the thermal entrance region are obtained in the general case. Therefore, the solution obtained could be extended easily to any hydrodynamically developed flow and arbitrary heat flux distribution. The analytical results obtained are compared for select simplified cases with available numerical calculations and they both agree. The results show that the heat transfer characteristics of flow in the thermal entrance region are strongly influenced by the axial heat conduction and rarefaction effects which are respectively characterized by Péclet and Knudsen numbers.

  2. Development of Multi-slice Analytical Tool to Support BIM-based Design Process

    NASA Astrophysics Data System (ADS)

    Atmodiwirjo, P.; Johanes, M.; Yatmo, Y. A.

    2017-03-01

    This paper describes the on-going development of computational tool to analyse architecture and interior space based on multi-slice representation approach that is integrated with Building Information Modelling (BIM). Architecture and interior space is experienced as a dynamic entity, which have the spatial properties that might be variable from one part of space to another, therefore the representation of space through standard architectural drawings is sometimes not sufficient. The representation of space as a series of slices with certain properties in each slice becomes important, so that the different characteristics in each part of space could inform the design process. The analytical tool is developed for use as a stand-alone application that utilises the data exported from generic BIM modelling tool. The tool would be useful to assist design development process that applies BIM, particularly for the design of architecture and interior spaces that are experienced as continuous spaces. The tool allows the identification of how the spatial properties change dynamically throughout the space and allows the prediction of the potential design problems. Integrating the multi-slice analytical tool in BIM-based design process thereby could assist the architects to generate better design and to avoid unnecessary costs that are often caused by failure to identify problems during design development stages.

  3. Eco-analytical Methodology in Environmental Problems Monitoring

    NASA Astrophysics Data System (ADS)

    Agienko, M. I.; Bondareva, E. P.; Chistyakova, G. V.; Zhironkina, O. V.; Kalinina, O. I.

    2017-01-01

    Among the problems common to all mankind, which solutions influence the prospects of civilization, the problem of ecological situation monitoring takes very important place. Solution of this problem requires specific methodology based on eco-analytical comprehension of global issues. Eco-analytical methodology should help searching for the optimum balance between environmental problems and accelerating scientific and technical progress. The fact that Governments, corporations, scientists and nations focus on the production and consumption of material goods cause great damage to environment. As a result, the activity of environmentalists is developing quite spontaneously, as a complement to productive activities. Therefore, the challenge posed by the environmental problems for the science is the formation of geo-analytical reasoning and the monitoring of global problems common for the whole humanity. So it is expected to find the optimal trajectory of industrial development to prevent irreversible problems in the biosphere that could stop progress of civilization.

  4. An analysis of hypercritical states in elastic and inelastic systems

    NASA Astrophysics Data System (ADS)

    Kowalczk, Maciej

    The author raises a wide range of problems whose common characteristic is an analysis of hypercritical states in elastic and inelastic systems. the article consists of two basic parts. The first part primarily discusses problems of modelling hypercritical states, while the second analyzes numerical methods (so-called continuation methods) used to solve non-linear problems. The original approaches for modelling hypercritical states found in this article include the combination of plasticity theory and an energy condition for cracking, accounting for the variability and cyclical nature of the forms of fracture of a brittle material under a die, and the combination of plasticity theory and a simplified description of the phenomenon of localization along a discontinuity line. The author presents analytical solutions of three non-linear problems for systems made of elastic/brittle/plastic and elastic/ideally plastic materials. The author proceeds to discuss the analytical basics of continuation methods and analyzes the significance of the parameterization of non-linear problems, provides a method for selecting control parameters based on an analysis of the rank of a rectangular matrix of a uniform system of increment equations, and also provides a new method for selecting an equilibrium path originating from a bifurcation point. The author provides a general outline of continuation methods based on an analysis of the rank of a matrix of a corrective system of equations. The author supplements his theoretical solutions with numerical solutions of non-linear problems for rod systems and problems of the plastic disintegration of a notched rectangular plastic plate.

  5. Models of formation and some algorithms of hyperspectral image processing

    NASA Astrophysics Data System (ADS)

    Achmetov, R. N.; Stratilatov, N. R.; Yudakov, A. A.; Vezenov, V. I.; Eremeev, V. V.

    2014-12-01

    Algorithms and information technologies for processing Earth hyperspectral imagery are presented. Several new approaches are discussed. Peculiar properties of processing the hyperspectral imagery, such as multifold signal-to-noise reduction, atmospheric distortions, access to spectral characteristics of every image point, and high dimensionality of data, were studied. Different measures of similarity between individual hyperspectral image points and the effect of additive uncorrelated noise on these measures were analyzed. It was shown that these measures are substantially affected by noise, and a new measure free of this disadvantage was proposed. The problem of detecting the observed scene object boundaries, based on comparing the spectral characteristics of image points, is considered. It was shown that contours are processed much better when spectral characteristics are used instead of energy brightness. A statistical approach to the correction of atmospheric distortions, which makes it possible to solve the stated problem based on analysis of a distorted image in contrast to analytical multiparametric models, was proposed. Several algorithms used to integrate spectral zonal images with data from other survey systems, which make it possible to image observed scene objects with a higher quality, are considered. Quality characteristics of hyperspectral data processing were proposed and studied.

  6. On the calculation of resonances by analytic continuation of eigenvalues from the stabilization graph

    NASA Astrophysics Data System (ADS)

    Haritan, Idan; Moiseyev, Nimrod

    2017-07-01

    Resonances play a major role in a large variety of fields in physics and chemistry. Accordingly, there is a growing interest in methods designed to calculate them. Recently, Landau et al. proposed a new approach to analytically dilate a single eigenvalue from the stabilization graph into the complex plane. This approach, termed Resonances Via Padé (RVP), utilizes the Padé approximant and is based on a unique analysis of the stabilization graph. Yet, analytic continuation of eigenvalues from the stabilization graph into the complex plane is not a new idea. In 1975, Jordan suggested an analytic continuation method based on the branch point structure of the stabilization graph. The method was later modified by McCurdy and McNutt, and it is still being used today. We refer to this method as the Truncated Characteristic Polynomial (TCP) method. In this manuscript, we perform an in-depth comparison between the RVP and the TCP methods. We demonstrate that while both methods are important and complementary, the advantage of one method over the other is problem-dependent. Illustrative examples are provided in the manuscript.

  7. Hall effects on peristaltic flow of couple stress fluid in a vertical asymmetric channel

    NASA Astrophysics Data System (ADS)

    Maninaga Kumar, P.; Kavitha, A.; Saravana, R.

    2017-11-01

    The influence of Hall effect on peristaltic transport of a couple stress fluid in a vertical asymmetric channel is examined. The problem is solved under the assumptions of low Reynolds number and long wavelength. The velocity, temperature and concentration are obtained by using analytical solutions. Effect of Hall parameter, couple stress fluid parameter, Froude number, Hartmann number and the phase difference on the pumping characteristics, temperature and concentration are discussed graphically.

  8. Tsunami Wave Run-up on a Vertical Wall in Tidal Environment

    NASA Astrophysics Data System (ADS)

    Didenkulova, Ira; Pelinovsky, Efim

    2018-04-01

    We solve analytically a nonlinear problem of shallow water theory for the tsunami wave run-up on a vertical wall in tidal environment. Shown that the tide can be considered static in the process of tsunami wave run-up. In this approximation, it is possible to obtain the exact solution for the run-up height as a function of the incident wave height. This allows us to investigate the tide influence on the run-up characteristics.

  9. The role of light microscopy in aerospace analytical laboratories

    NASA Technical Reports Server (NTRS)

    Crutcher, E. R.

    1977-01-01

    Light microscopy has greatly reduced analytical flow time and added new dimensions to laboratory capability. Aerospace analytical laboratories are often confronted with problems involving contamination, wear, or material inhomogeneity. The detection of potential problems and the solution of those that develop necessitate the most sensitive and selective applications of sophisticated analytical techniques and instrumentation. This inevitably involves light microscopy. The microscope can characterize and often identify the cause of a problem in 5-15 minutes with confirmatory tests generally less than one hour. Light microscopy has and will make a very significant contribution to the analytical capabilities of aerospace laboratories.

  10. SSME turbopump technology improvements via transient rotordynamic analysis

    NASA Technical Reports Server (NTRS)

    Childs, D. W.

    1975-01-01

    The rotordynamic behavior of the high pressure oxygen turbopump and high pressure fuel pump was analyzed for the Space Shuttle Main Engine. The identification of potential rotordynamic problem areas which might arise during operation of these units prior to their testing was accomplished. Alternative procedures for correcting potential rotordynamic problems should they occur were investigated. An adequate analytic and physical understanding of the turbopump rotordynamics was developed to improve the probability of a correct diagnosis of rotordynamic problems from test data. Transient rotordynamic models were developed for both turbopumps. The transient models model the hydrodynamic forces of the turbopump seals. A linear stability analysis was performed for the turbopump rotordynamics models, which included gyroscopic effects, seal forces, speed-dependent bearing characteristics, and internal rotor damping. Results are presented and discussed.

  11. A meta-analysis of research on science teacher education practices associated with inquiry strategy

    NASA Astrophysics Data System (ADS)

    Sweitzer, Gary L.; Anderson, Ronald D.

    A meta-analysis was conducted of studies of teacher education having as measured outcomes one or more variables associated with inquiry teaching. Inquiry addresses those teacher behaviors that facilitate student acquisition of concepts and processes through strategies such as problem solving, uses of evidence, logical and analytical reasoning, clarification of values, and decision making. Studies which contained sufficient data for the calculation of an effect size were coded for 114 variables. These variables were divided into the following six major categories: study information and design characteristics, teacher and teacher trainee characteristics, student characteristics, treatment description, outcome description, and effect size calculation. A total of 68 studies resulting in 177 effect size calculations were coded. Mean effect sizes broken across selected variables were calculated.

  12. Which helper behaviors and intervention styles are related to better short-term outcomes in telephone crisis intervention? Results from a Silent Monitoring Study of Calls to the U.S. 1-800-SUICIDE Network.

    PubMed

    Mishara, Brian L; Chagnon, François; Daigle, Marc; Balan, Bogdan; Raymond, Sylvaine; Marcoux, Isabelle; Bardon, Cécile; Campbell, Julie K; Berman, Alan

    2007-06-01

    A total of 2,611 calls to 14 helplines were monitored to observe helper behaviors and caller characteristics and changes during the calls. The relationship between intervention characteristics and call outcomes are reported for 1,431 crisis calls. Empathy and respect, as well as factor-analytically derived scales of supportive approach and good contact and collaborative problem solving were significantly related to positive outcomes, but not active listening. We recommend recruitment of helpers with these characteristics, development of standardized training in those methods that are empirically shown to be effective, and the need for research relating short-term outcomes to long-term effects.

  13. A Conserving Discretization for the Free Boundary in a Two-Dimensional Stefan Problem

    NASA Astrophysics Data System (ADS)

    Segal, Guus; Vuik, Kees; Vermolen, Fred

    1998-03-01

    The dissolution of a disk-likeAl2Cuparticle is considered. A characteristic property is that initially the particle has a nonsmooth boundary. The mathematical model of this dissolution process contains a description of the particle interface, of which the position varies in time. Such a model is called a Stefan problem. It is impossible to obtain an analytical solution for a general two-dimensional Stefan problem, so we use the finite element method to solve this problem numerically. First, we apply a classical moving mesh method. Computations show that after some time steps the predicted particle interface becomes very unrealistic. Therefore, we derive a new method for the displacement of the free boundary based on the balance of atoms. This method leads to good results, also, for nonsmooth boundaries. Some numerical experiments are given for the dissolution of anAl2Cuparticle in anAl-Cualloy.

  14. Solution of the Eshelby problem in gradient elasticity for multilayer spherical inclusions

    NASA Astrophysics Data System (ADS)

    Volkov-Bogorodskii, D. B.; Lurie, S. A.

    2016-03-01

    We consider gradient models of elasticity which permit taking into account the characteristic scale parameters of the material. We prove the Papkovich-Neuber theorems, which determine the general form of the gradient solution and the structure of scale effects. We derive the Eshelby integral formula for the gradient moduli of elasticity, which plays the role of the closing equation in the self-consistent three-phase method. In the gradient theory of deformations, we consider the fundamental Eshelby-Christensen problem of determining the effective elastic properties of dispersed composites with spherical inclusions; the exact solution of this problem for classical models was obtained in 1976. This paper is the first to present the exact analytical solution of the Eshelby-Christensen problem for the gradient theory, which permits estimating the influence of scale effects on the stress state and the effective properties of the dispersed composites under study.We also analyze the influence of scale factors.

  15. Prediction of vortex shedding from circular and noncircular bodies in subsonic flow

    NASA Technical Reports Server (NTRS)

    Mendenhall, Michael R.; Lesieutre, Daniel J.

    1987-01-01

    An engineering prediction method and associated computer code VTXCLD are presented which predict nose vortex shedding from circular and noncircular bodies in subsonic flow at angles of attack and roll. The axisymmetric body is represented by point sources and doublets, and noncircular cross sections are transformed to a circle by either analytical or numerical conformal transformations. The leeward vortices are modeled by discrete vortices in crossflow planes along the body; thus, the three-dimensional steady flow problem is reduced to a two-dimensional, unsteady, separated flow problem for solution. Comparison of measured and predicted surface pressure distributions, flowfield surveys, and aerodynamic characteristics are presented for bodies with circular and noncircular cross sectional shapes.

  16. A Delphi survey of traits of effective physiatric leaders.

    PubMed

    Braddom, C L; Braddom, R L

    1986-11-01

    A Delphi study of 14 physiatric leaders, 10 men and 4 women, ages 30 to 65, to determine their most important leadership characteristics, asked them to list the characteristics they considered most important for effective leadership. Responses were collated and any trait mentioned by at least three was put into a second survey, in which they were asked to rank the traits. A third survey gave them the results of the second, and asked for a final ranking. Fourteen traits made the final survey, in which the ten most important (in descending order of importance) were Organizational Skill, Commitment, Vision/Purpose, Communication Ability, Ability to Delegate, Sense of Ethics, Decisiveness, Knowledgeable, Flexibility/Adaptability and Analytical/Problem Solving Skill.

  17. An atmosphere protection subsystem in the thermal power station automated process control system

    NASA Astrophysics Data System (ADS)

    Parchevskii, V. M.; Kislov, E. A.

    2014-03-01

    Matters concerned with development of methodical and mathematical support for an atmosphere protection subsystem in the thermal power station automated process control system are considered taking as an example the problem of controlling nitrogen oxide emissions at a gas-and-oil-fired thermal power station. The combined environmental-and-economic characteristics of boilers, which correlate the costs for suppressing emissions with the boiler steam load and mass discharge of nitrogen oxides in analytic form, are used as the main tool for optimal control. A procedure for constructing and applying environmental-and-economic characteristics on the basis of technical facilities available in modern instrumentation and control systems is presented.

  18. Assessment of heart rate variability based on mobile device for planning physical activity

    NASA Astrophysics Data System (ADS)

    Svirin, I. S.; Epishina, E. V.; Voronin, V. V.; Semenishchev, E. A.; Solodova, E. N.; Nabilskaya, N. V.

    2015-05-01

    In this paper we present a method for the functional analysis of human heart based on electrocardiography (ECG) signals. The approach using the apparatus of analytical and differential geometry and correlation and regression analysis. ECG contains information on the current condition of the cardiovascular system as well as on the pathological changes in the heart. Mathematical processing of the heart rate variability allows to obtain a great set of mathematical and statistical characteristics. These characteristics of the heart rate are used when solving research problems to study physiological changes that determine functional changes of an individual. The proposed method implemented for up-to-date mobile Android and iOS based devices.

  19. An analytical-numerical approach for parameter determination of a five-parameter single-diode model of photovoltaic cells and modules

    NASA Astrophysics Data System (ADS)

    Hejri, Mohammad; Mokhtari, Hossein; Azizian, Mohammad Reza; Söder, Lennart

    2016-04-01

    Parameter extraction of the five-parameter single-diode model of solar cells and modules from experimental data is a challenging problem. These parameters are evaluated from a set of nonlinear equations that cannot be solved analytically. On the other hand, a numerical solution of such equations needs a suitable initial guess to converge to a solution. This paper presents a new set of approximate analytical solutions for the parameters of a five-parameter single-diode model of photovoltaic (PV) cells and modules. The proposed solutions provide a good initial point which guarantees numerical analysis convergence. The proposed technique needs only a few data from the PV current-voltage characteristics, i.e. open circuit voltage Voc, short circuit current Isc and maximum power point current and voltage Im; Vm making it a fast and low cost parameter determination technique. The accuracy of the presented theoretical I-V curves is verified by experimental data.

  20. Effectiveness evaluation of double-layered satellite network with laser and microwave hybrid links based on fuzzy analytic hierarchy process

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Rao, Qiaomeng

    2018-01-01

    In order to solve the problem of high speed, large capacity and limited spectrum resources of satellite communication network, a double-layered satellite network with global seamless coverage based on laser and microwave hybrid links is proposed in this paper. By analyzing the characteristics of the double-layered satellite network with laser and microwave hybrid links, an effectiveness evaluation index system for the network is established. And then, the fuzzy analytic hierarchy process, which combines the analytic hierarchy process and the fuzzy comprehensive evaluation theory, is used to evaluate the effectiveness of the double-layered satellite network with laser and microwave hybrid links. Furthermore, the evaluation result of the proposed hybrid link network is obtained by simulation. The effectiveness evaluation process of the proposed double-layered satellite network with laser and microwave hybrid links can help to optimize the design of hybrid link double-layered satellite network and improve the operating efficiency of the satellite system.

  1. A complete analytical solution for the inverse instantaneous kinematics of a spherical-revolute-spherical (7R) redundant manipulator

    NASA Technical Reports Server (NTRS)

    Podhorodeski, R. P.; Fenton, R. G.; Goldenberg, A. A.

    1989-01-01

    Using a method based upon resolving joint velocities using reciprocal screw quantities, compact analytical expressions are generated for the inverse solution of the joint rates of a seven revolute (spherical-revolute-spherical) manipulator. The method uses a sequential decomposition of screw coordinates to identify reciprocal screw quantities used in the resolution of a particular joint rate solution, and also to identify a Jacobian null-space basis used for the direct solution of optimal joint rates. The results of the screw decomposition are used to study special configurations of the manipulator, generating expressions for the inverse velocity solution for all non-singular configurations of the manipulator, and identifying singular configurations and their characteristics. Two functions are therefore served: a new general method for the solution of the inverse velocity problem is presented; and complete analytical expressions are derived for the resolution of the joint rates of a seven degree of freedom manipulator useful for telerobotic and industrial robotic application.

  2. Non-linear analytic and coanalytic problems ( L_p-theory, Clifford analysis, examples)

    NASA Astrophysics Data System (ADS)

    Dubinskii, Yu A.; Osipenko, A. S.

    2000-02-01

    Two kinds of new mathematical model of variational type are put forward: non-linear analytic and coanalytic problems. The formulation of these non-linear boundary-value problems is based on a decomposition of the complete scale of Sobolev spaces into the "orthogonal" sum of analytic and coanalytic subspaces. A similar decomposition is considered in the framework of Clifford analysis. Explicit examples are presented.

  3. On the formation of Friedlander waves in a compressed-gas-driven shock tube

    PubMed Central

    Tasissa, Abiy F.; Hautefeuille, Martin; Fitek, John H.; Radovitzky, Raúl A.

    2016-01-01

    Compressed-gas-driven shock tubes have become popular as a laboratory-scale replacement for field blast tests. The well-known initial structure of the Riemann problem eventually evolves into a shock structure thought to resemble a Friedlander wave, although this remains to be demonstrated theoretically. In this paper, we develop a semi-analytical model to predict the key characteristics of pseudo blast waves forming in a shock tube: location where the wave first forms, peak over-pressure, decay time and impulse. The approach is based on combining the solutions of the two different types of wave interactions that arise in the shock tube after the family of rarefaction waves in the Riemann solution interacts with the closed end of the tube. The results of the analytical model are verified against numerical simulations obtained with a finite volume method. The model furnishes a rational approach to relate shock tube parameters to desired blast wave characteristics, and thus constitutes a useful tool for the design of shock tubes for blast testing. PMID:27118888

  4. Approximated analytical solution to an Ebola optimal control problem

    NASA Astrophysics Data System (ADS)

    Hincapié-Palacio, Doracelly; Ospina, Juan; Torres, Delfim F. M.

    2016-11-01

    An analytical expression for the optimal control of an Ebola problem is obtained. The analytical solution is found as a first-order approximation to the Pontryagin Maximum Principle via the Euler-Lagrange equation. An implementation of the method is given using the computer algebra system Maple. Our analytical solutions confirm the results recently reported in the literature using numerical methods.

  5. Simulation and statistics: Like rhythm and song

    NASA Astrophysics Data System (ADS)

    Othman, Abdul Rahman

    2013-04-01

    Simulation has been introduced to solve problems in the form of systems. By using this technique the following two problems can be overcome. First, a problem that has an analytical solution but the cost of running an experiment to solve is high in terms of money and lives. Second, a problem exists but has no analytical solution. In the field of statistical inference the second problem is often encountered. With the advent of high-speed computing devices, a statistician can now use resampling techniques such as the bootstrap and permutations to form pseudo sampling distribution that will lead to the solution of the problem that cannot be solved analytically. This paper discusses how a Monte Carlo simulation was and still being used to verify the analytical solution in inference. This paper also discusses the resampling techniques as simulation techniques. The misunderstandings about these two techniques are examined. The successful usages of both techniques are also explained.

  6. Numerical methods for coupled fracture problems

    NASA Astrophysics Data System (ADS)

    Viesca, Robert C.; Garagash, Dmitry I.

    2018-04-01

    We consider numerical solutions in which the linear elastic response to an opening- or sliding-mode fracture couples with one or more processes. Classic examples of such problems include traction-free cracks leading to stress singularities or cracks with cohesive-zone strength requirements leading to non-singular stress distributions. These classical problems have characteristic square-root asymptotic behavior for stress, relative displacement, or their derivatives. Prior work has shown that such asymptotics lead to a natural quadrature of the singular integrals at roots of Chebyhsev polynomials of the first, second, third, or fourth kind. We show that such quadratures lead to convenient techniques for interpolation, differentiation, and integration, with the potential for spectral accuracy. We further show that these techniques, with slight amendment, may continue to be used for non-classical problems which lack the classical asymptotic behavior. We consider solutions to example problems of both the classical and non-classical variety (e.g., fluid-driven opening-mode fracture and fault shear rupture driven by thermal weakening), with comparisons to analytical solutions or asymptotes, where available.

  7. The role of analytical science in natural resource decision making

    NASA Astrophysics Data System (ADS)

    Miller, Alan

    1993-09-01

    There is a continuing debate about the proper role of analytical (positivist) science in natural resource decision making. Two diametrically opposed views are evident, arguing for and against a more extended role for scientific information. The debate takes on a different complexion if one recognizes that certain kinds of problem, referred to here as “wicked” or “trans-science” problems, may not be amenable to the analytical process. Indeed, the mistaken application of analytical methods to trans-science problems may not only be a waste of time and money but also serve to hinder policy development. Since many environmental issues are trans-science in nature, then it follows that alternatives to analytical science need to be developed. In this article, the issues involved in the debate are clarified by examining the impact of the use of analytical methods in a particular case, the spruce budworm controversy in New Brunswick. The article ends with some suggestions about a “holistic” approach to the problem.

  8. Happy software developers solve problems better: psychological measurements in empirical software engineering

    PubMed Central

    Wang, Xiaofeng; Abrahamsson, Pekka

    2014-01-01

    For more than thirty years, it has been claimed that a way to improve software developers’ productivity and software quality is to focus on people and to provide incentives to make developers satisfied and happy. This claim has rarely been verified in software engineering research, which faces an additional challenge in comparison to more traditional engineering fields: software development is an intellectual activity and is dominated by often-neglected human factors (called human aspects in software engineering research). Among the many skills required for software development, developers must possess high analytical problem-solving skills and creativity for the software construction process. According to psychology research, affective states—emotions and moods—deeply influence the cognitive processing abilities and performance of workers, including creativity and analytical problem solving. Nonetheless, little research has investigated the correlation between the affective states, creativity, and analytical problem-solving performance of programmers. This article echoes the call to employ psychological measurements in software engineering research. We report a study with 42 participants to investigate the relationship between the affective states, creativity, and analytical problem-solving skills of software developers. The results offer support for the claim that happy developers are indeed better problem solvers in terms of their analytical abilities. The following contributions are made by this study: (1) providing a better understanding of the impact of affective states on the creativity and analytical problem-solving capacities of developers, (2) introducing and validating psychological measurements, theories, and concepts of affective states, creativity, and analytical-problem-solving skills in empirical software engineering, and (3) raising the need for studying the human factors of software engineering by employing a multidisciplinary viewpoint. PMID:24688866

  9. Happy software developers solve problems better: psychological measurements in empirical software engineering.

    PubMed

    Graziotin, Daniel; Wang, Xiaofeng; Abrahamsson, Pekka

    2014-01-01

    For more than thirty years, it has been claimed that a way to improve software developers' productivity and software quality is to focus on people and to provide incentives to make developers satisfied and happy. This claim has rarely been verified in software engineering research, which faces an additional challenge in comparison to more traditional engineering fields: software development is an intellectual activity and is dominated by often-neglected human factors (called human aspects in software engineering research). Among the many skills required for software development, developers must possess high analytical problem-solving skills and creativity for the software construction process. According to psychology research, affective states-emotions and moods-deeply influence the cognitive processing abilities and performance of workers, including creativity and analytical problem solving. Nonetheless, little research has investigated the correlation between the affective states, creativity, and analytical problem-solving performance of programmers. This article echoes the call to employ psychological measurements in software engineering research. We report a study with 42 participants to investigate the relationship between the affective states, creativity, and analytical problem-solving skills of software developers. The results offer support for the claim that happy developers are indeed better problem solvers in terms of their analytical abilities. The following contributions are made by this study: (1) providing a better understanding of the impact of affective states on the creativity and analytical problem-solving capacities of developers, (2) introducing and validating psychological measurements, theories, and concepts of affective states, creativity, and analytical-problem-solving skills in empirical software engineering, and (3) raising the need for studying the human factors of software engineering by employing a multidisciplinary viewpoint.

  10. Problem Formulation in Knowledge Discovery via Data Analytics (KDDA) for Environmental Risk Management

    PubMed Central

    Li, Yan; Thomas, Manoj; Osei-Bryson, Kweku-Muata; Levy, Jason

    2016-01-01

    With the growing popularity of data analytics and data science in the field of environmental risk management, a formalized Knowledge Discovery via Data Analytics (KDDA) process that incorporates all applicable analytical techniques for a specific environmental risk management problem is essential. In this emerging field, there is limited research dealing with the use of decision support to elicit environmental risk management (ERM) objectives and identify analytical goals from ERM decision makers. In this paper, we address problem formulation in the ERM understanding phase of the KDDA process. We build a DM3 ontology to capture ERM objectives and to inference analytical goals and associated analytical techniques. A framework to assist decision making in the problem formulation process is developed. It is shown how the ontology-based knowledge system can provide structured guidance to retrieve relevant knowledge during problem formulation. The importance of not only operationalizing the KDDA approach in a real-world environment but also evaluating the effectiveness of the proposed procedure is emphasized. We demonstrate how ontology inferencing may be used to discover analytical goals and techniques by conceptualizing Hazardous Air Pollutants (HAPs) exposure shifts based on a multilevel analysis of the level of urbanization (and related economic activity) and the degree of Socio-Economic Deprivation (SED) at the local neighborhood level. The HAPs case highlights not only the role of complexity in problem formulation but also the need for integrating data from multiple sources and the importance of employing appropriate KDDA modeling techniques. Challenges and opportunities for KDDA are summarized with an emphasis on environmental risk management and HAPs. PMID:27983713

  11. Problem Formulation in Knowledge Discovery via Data Analytics (KDDA) for Environmental Risk Management.

    PubMed

    Li, Yan; Thomas, Manoj; Osei-Bryson, Kweku-Muata; Levy, Jason

    2016-12-15

    With the growing popularity of data analytics and data science in the field of environmental risk management, a formalized Knowledge Discovery via Data Analytics (KDDA) process that incorporates all applicable analytical techniques for a specific environmental risk management problem is essential. In this emerging field, there is limited research dealing with the use of decision support to elicit environmental risk management (ERM) objectives and identify analytical goals from ERM decision makers. In this paper, we address problem formulation in the ERM understanding phase of the KDDA process. We build a DM³ ontology to capture ERM objectives and to inference analytical goals and associated analytical techniques. A framework to assist decision making in the problem formulation process is developed. It is shown how the ontology-based knowledge system can provide structured guidance to retrieve relevant knowledge during problem formulation. The importance of not only operationalizing the KDDA approach in a real-world environment but also evaluating the effectiveness of the proposed procedure is emphasized. We demonstrate how ontology inferencing may be used to discover analytical goals and techniques by conceptualizing Hazardous Air Pollutants (HAPs) exposure shifts based on a multilevel analysis of the level of urbanization (and related economic activity) and the degree of Socio-Economic Deprivation (SED) at the local neighborhood level. The HAPs case highlights not only the role of complexity in problem formulation but also the need for integrating data from multiple sources and the importance of employing appropriate KDDA modeling techniques. Challenges and opportunities for KDDA are summarized with an emphasis on environmental risk management and HAPs.

  12. Mature red blood cells: from optical model to inverse light-scattering problem.

    PubMed

    Gilev, Konstantin V; Yurkin, Maxim A; Chernyshova, Ekaterina S; Strokotov, Dmitry I; Chernyshev, Andrei V; Maltsev, Valeri P

    2016-04-01

    We propose a method for characterization of mature red blood cells (RBCs) morphology, based on measurement of light-scattering patterns (LSPs) of individual RBCs with the scanning flow cytometer and on solution of the inverse light-scattering (ILS) problem for each LSP. We considered a RBC shape model, corresponding to the minimal bending energy of the membrane with isotropic elasticity, and constructed an analytical approximation, which allows rapid simulation of the shape, given the diameter and minimal and maximal thicknesses. The ILS problem was solved by the nearest-neighbor interpolation using a preliminary calculated database of 250,000 theoretical LSPs. For each RBC in blood sample we determined three abovementioned shape characteristics and refractive index, which also allows us to calculate volume, surface area, sphericity index, spontaneous curvature, hemoglobin concentration and content.

  13. Mature red blood cells: from optical model to inverse light-scattering problem

    PubMed Central

    Gilev, Konstantin V.; Yurkin, Maxim A.; Chernyshova, Ekaterina S.; Strokotov, Dmitry I.; Chernyshev, Andrei V.; Maltsev, Valeri P.

    2016-01-01

    We propose a method for characterization of mature red blood cells (RBCs) morphology, based on measurement of light-scattering patterns (LSPs) of individual RBCs with the scanning flow cytometer and on solution of the inverse light-scattering (ILS) problem for each LSP. We considered a RBC shape model, corresponding to the minimal bending energy of the membrane with isotropic elasticity, and constructed an analytical approximation, which allows rapid simulation of the shape, given the diameter and minimal and maximal thicknesses. The ILS problem was solved by the nearest-neighbor interpolation using a preliminary calculated database of 250,000 theoretical LSPs. For each RBC in blood sample we determined three abovementioned shape characteristics and refractive index, which also allows us to calculate volume, surface area, sphericity index, spontaneous curvature, hemoglobin concentration and content. PMID:27446656

  14. Green design assessment of electromechanical products based on group weighted-AHP

    NASA Astrophysics Data System (ADS)

    Guo, Jinwei; Zhou, MengChu; Li, Zhiwu; Xie, Huiguang

    2015-11-01

    Manufacturing industry is the backbone of a country's economy while environmental pollution is a serious problem that human beings must face today. The green design of electromechanical products based on enterprise information systems is an important method to solve the environmental problem. The question on how to design green products must be answered by excellent designers via both advanced design methods and effective assessment methods of electromechanical products. Making an objective and precise assessment of green design is one of the problems that must be solved when green design is conducted. An assessment method of green design on electromechanical products based on Group Weighted-AHP (Analytic Hierarchy Process) is proposed in this paper, together with the characteristics of green products. The assessment steps of green design are also established. The results are illustrated via the assessment of a refrigerator design.

  15. Collaborative Visual Analytics: A Health Analytics Approach to Injury Prevention

    PubMed Central

    Fisher, Brian; Smith, Jennifer; Pike, Ian

    2017-01-01

    Background: Accurate understanding of complex health data is critical in order to deal with wicked health problems and make timely decisions. Wicked problems refer to ill-structured and dynamic problems that combine multidimensional elements, which often preclude the conventional problem solving approach. This pilot study introduces visual analytics (VA) methods to multi-stakeholder decision-making sessions about child injury prevention; Methods: Inspired by the Delphi method, we introduced a novel methodology—group analytics (GA). GA was pilot-tested to evaluate the impact of collaborative visual analytics on facilitating problem solving and supporting decision-making. We conducted two GA sessions. Collected data included stakeholders’ observations, audio and video recordings, questionnaires, and follow up interviews. The GA sessions were analyzed using the Joint Activity Theory protocol analysis methods; Results: The GA methodology triggered the emergence of ‘common ground’ among stakeholders. This common ground evolved throughout the sessions to enhance stakeholders’ verbal and non-verbal communication, as well as coordination of joint activities and ultimately collaboration on problem solving and decision-making; Conclusions: Understanding complex health data is necessary for informed decisions. Equally important, in this case, is the use of the group analytics methodology to achieve ‘common ground’ among diverse stakeholders about health data and their implications. PMID:28895928

  16. Collaborative Visual Analytics: A Health Analytics Approach to Injury Prevention.

    PubMed

    Al-Hajj, Samar; Fisher, Brian; Smith, Jennifer; Pike, Ian

    2017-09-12

    Background : Accurate understanding of complex health data is critical in order to deal with wicked health problems and make timely decisions. Wicked problems refer to ill-structured and dynamic problems that combine multidimensional elements, which often preclude the conventional problem solving approach. This pilot study introduces visual analytics (VA) methods to multi-stakeholder decision-making sessions about child injury prevention; Methods : Inspired by the Delphi method, we introduced a novel methodology-group analytics (GA). GA was pilot-tested to evaluate the impact of collaborative visual analytics on facilitating problem solving and supporting decision-making. We conducted two GA sessions. Collected data included stakeholders' observations, audio and video recordings, questionnaires, and follow up interviews. The GA sessions were analyzed using the Joint Activity Theory protocol analysis methods; Results : The GA methodology triggered the emergence of ' common g round ' among stakeholders. This common ground evolved throughout the sessions to enhance stakeholders' verbal and non-verbal communication, as well as coordination of joint activities and ultimately collaboration on problem solving and decision-making; Conclusion s : Understanding complex health data is necessary for informed decisions. Equally important, in this case, is the use of the group analytics methodology to achieve ' common ground' among diverse stakeholders about health data and their implications.

  17. Development of Multiobjective Optimization Techniques for Sonic Boom Minimization

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Rajadas, John Narayan; Pagaldipti, Naryanan S.

    1996-01-01

    A discrete, semi-analytical sensitivity analysis procedure has been developed for calculating aerodynamic design sensitivities. The sensitivities of the flow variables and the grid coordinates are numerically calculated using direct differentiation of the respective discretized governing equations. The sensitivity analysis techniques are adapted within a parabolized Navier Stokes equations solver. Aerodynamic design sensitivities for high speed wing-body configurations are calculated using the semi-analytical sensitivity analysis procedures. Representative results obtained compare well with those obtained using the finite difference approach and establish the computational efficiency and accuracy of the semi-analytical procedures. Multidisciplinary design optimization procedures have been developed for aerospace applications namely, gas turbine blades and high speed wing-body configurations. In complex applications, the coupled optimization problems are decomposed into sublevels using multilevel decomposition techniques. In cases with multiple objective functions, formal multiobjective formulation such as the Kreisselmeier-Steinhauser function approach and the modified global criteria approach have been used. Nonlinear programming techniques for continuous design variables and a hybrid optimization technique, based on a simulated annealing algorithm, for discrete design variables have been used for solving the optimization problems. The optimization procedure for gas turbine blades improves the aerodynamic and heat transfer characteristics of the blades. The two-dimensional, blade-to-blade aerodynamic analysis is performed using a panel code. The blade heat transfer analysis is performed using an in-house developed finite element procedure. The optimization procedure yields blade shapes with significantly improved velocity and temperature distributions. The multidisciplinary design optimization procedures for high speed wing-body configurations simultaneously improve the aerodynamic, the sonic boom and the structural characteristics of the aircraft. The flow solution is obtained using a comprehensive parabolized Navier Stokes solver. Sonic boom analysis is performed using an extrapolation procedure. The aircraft wing load carrying member is modeled as either an isotropic or a composite box beam. The isotropic box beam is analyzed using thin wall theory. The composite box beam is analyzed using a finite element procedure. The developed optimization procedures yield significant improvements in all the performance criteria and provide interesting design trade-offs. The semi-analytical sensitivity analysis techniques offer significant computational savings and allow the use of comprehensive analysis procedures within design optimization studies.

  18. Diagnostic reasoning by hospital pharmacists: assessment of attitudes, knowledge, and skills.

    PubMed

    Chernushkin, Kseniya; Loewen, Peter; de Lemos, Jane; Aulakh, Amneet; Jung, Joanne; Dahri, Karen

    2012-07-01

    Hospital pharmacists participate in activities that may be considered diagnostic. Two reasoning approaches to diagnosis have been described: non-analytic and analytic. Of the 6 analytic traditions, the probabilistic tradition has been shown to improve diagnostic accuracy and reduce unnecessary testing. To the authors' knowledge, pharmacists' attitudes toward having a diagnostic role and their diagnostic knowledge and skills have never been studied. To describe pharmacists' attitudes toward the role of diagnosis in pharmacotherapeutic problem-solving and to characterize the extent of pharmacists' knowledge and skills related to diagnostic literacy. Pharmacists working within Lower Mainland Pharmacy Services (British Columbia) who spent at least 33% of their time in direct patient care were invited to participate in a prospective observational survey. The survey sought information about demographic characteristics and attitudes toward diagnosis. Diagnostic knowledge and skills were tested by means of 3 case scenarios. The analysis included simple descriptive statistics and inferential statistics to evaluate relationships between responses and experience and training. Of 266 pharmacists invited to participate, 94 responded. The attitudes section of the survey was completed by 90 pharmacists; of these, 80 (89%) agreed with the definition of "diagnosis" proposed in the survey, and 83 (92%) agreed that it is important for pharmacists to have diagnosis-related skills. Respondents preferred an analytic to a non-analytic approach to diagnostic decision-making. The probabilistic tradition was not the preferred method in any of the 3 cases. In evaluating 5 clinical scenarios that might require diagnostic skills, on average 84% of respondents agreed that they should be involved in assessing such problems. Respondents' knowledge of and ability to apply probabilistic diagnostic tools were highest for test sensitivity (average of 61% of respondents with the correct answers) and lower for test specificity (average of 48% with correct answers) and likelihood ratios (average of 39% with correct answers). Respondents to this survey strongly believed that diagnostic skills were important for solving drug-related problems, but they demonstrated low levels of knowledge and ability to apply concepts of probabilistic diagnostic reasoning. Opportunities to expand pharmacists' knowledge of diagnostic reasoning exist, and the findings reported here indicate that pharmacists would consider such professional development valuable.

  19. Review of Thawing Time Prediction Models Depending
on Process Conditions and Product Characteristics

    PubMed Central

    Kluza, Franciszek; Spiess, Walter E. L.; Kozłowicz, Katarzyna

    2016-01-01

    Summary Determining thawing times of frozen foods is a challenging problem as the thermophysical properties of the product change during thawing. A number of calculation models and solutions have been developed. The proposed solutions range from relatively simple analytical equations based on a number of assumptions to a group of empirical approaches that sometimes require complex calculations. In this paper analytical, empirical and graphical models are presented and critically reviewed. The conditions of solution, limitations and possible applications of the models are discussed. The graphical and semi--graphical models are derived from numerical methods. Using the numerical methods is not always possible as running calculations takes time, whereas the specialized software and equipment are not always cheap. For these reasons, the application of analytical-empirical models is more useful for engineering. It is demonstrated that there is no simple, accurate and feasible analytical method for thawing time prediction. Consequently, simplified methods are needed for thawing time estimation of agricultural and food products. The review reveals the need for further improvement of the existing solutions or development of new ones that will enable accurate determination of thawing time within a wide range of practical conditions of heat transfer during processing. PMID:27904387

  20. Practical solution for control of the pre-analytical phase in decentralized clinical laboratories for meeting the requirements of the medical laboratory accreditation standard DIN EN ISO 15189.

    PubMed

    Vacata, Vladimir; Jahns-Streubel, Gerlinde; Baldus, Mirjana; Wood, William Graham

    2007-01-01

    This report was written in response to the article by Wood published recently in this journal. It describes a practical solution to the problems of controlling the pre-analytical phase in the clinical diagnostic laboratory. As an indicator of quality in the pre-analytical phase of sample processing, a target analyte was chosen which is sensitive to delay in centrifugation and/or analysis. The results of analyses of the samples sent by satellite medical practitioners were compared with those from an on-site hospital laboratory with a controllable optimized pre-analytical phase. The aim of the comparison was: (a) to identify those medical practices whose mean/median sample values significantly deviate from those of the control situation in the hospital laboratory due to the possible problems in the pre-analytical phase; (b) to aid these laboratories in the process of rectifying these problems. A Microsoft Excel-based Pre-Analytical Survey tool (PAS tool) has been developed which addresses the above mentioned problems. It has been tested on serum potassium which is known to be sensitive to delay and/or irregularities in sample treatment. The PAS tool has been shown to be one possibility for improving the quality of the analyses by identifying the sources of problems within the pre-analytical phase, thus allowing them to be rectified. Additionally, the PAS tool has an educational value and can also be adopted for use in other decentralized laboratories.

  1. The Students Decision Making in Solving Discount Problem

    ERIC Educational Resources Information Center

    Abdillah; Nusantara, Toto; Subanji; Susanto, Hery; Abadyo

    2016-01-01

    This research is reviewing students' process of decision making intuitively, analytically, and interactively. The research done by using discount problem which specially created to explore student's intuition, analytically, and interactively. In solving discount problems, researcher exploring student's decision in determining their attitude which…

  2. Kinetic corrections from analytic non-Maxwellian distribution functions in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Izacard, Olivier

    2016-08-01

    In magnetized plasma physics, almost all developed analytic theories assume a Maxwellian distribution function (MDF) and in some cases small deviations are described using the perturbation theory. The deviations with respect to the Maxwellian equilibrium, called kinetic effects, are required to be taken into account especially for fusion reactor plasmas. Generally, because the perturbation theory is not consistent with observed steady-state non-Maxwellians, these kinetic effects are numerically evaluated by very central processing unit (CPU)-expensive codes, avoiding the analytic complexity of velocity phase space integrals. We develop here a new method based on analytic non-Maxwellian distribution functions constructed from non-orthogonal basis sets in order to (i) use as few parameters as possible, (ii) increase the efficiency to model numerical and experimental non-Maxwellians, (iii) help to understand unsolved problems such as diagnostics discrepancies from the physical interpretation of the parameters, and (iv) obtain analytic corrections due to kinetic effects given by a small number of terms and removing the numerical error of the evaluation of velocity phase space integrals. This work does not attempt to derive new physical effects even if it could be possible to discover one from the better understandings of some unsolved problems, but here we focus on the analytic prediction of kinetic corrections from analytic non-Maxwellians. As applications, examples of analytic kinetic corrections are shown for the secondary electron emission, the Langmuir probe characteristic curve, and the entropy. This is done by using three analytic representations of the distribution function: the Kappa distribution function, the bi-modal or a new interpreted non-Maxwellian distribution function (INMDF). The existence of INMDFs is proved by new understandings of the experimental discrepancy of the measured electron temperature between two diagnostics in JET. As main results, it is shown that (i) the empirical formula for the secondary electron emission is not consistent with a MDF due to the presence of super-thermal particles, (ii) the super-thermal particles can replace a diffusion parameter in the Langmuir probe current formula, and (iii) the entropy can explicitly decrease in presence of sources only for the introduced INMDF without violating the second law of thermodynamics. Moreover, the first order entropy of an infinite number of super-thermal tails stays the same as the entropy of a MDF. The latter demystifies the Maxwell's demon by statistically describing non-isolated systems.

  3. Kinetic corrections from analytic non-Maxwellian distribution functions in magnetized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izacard, Olivier, E-mail: izacard@llnl.gov

    In magnetized plasma physics, almost all developed analytic theories assume a Maxwellian distribution function (MDF) and in some cases small deviations are described using the perturbation theory. The deviations with respect to the Maxwellian equilibrium, called kinetic effects, are required to be taken into account especially for fusion reactor plasmas. Generally, because the perturbation theory is not consistent with observed steady-state non-Maxwellians, these kinetic effects are numerically evaluated by very central processing unit (CPU)-expensive codes, avoiding the analytic complexity of velocity phase space integrals. We develop here a new method based on analytic non-Maxwellian distribution functions constructed from non-orthogonal basismore » sets in order to (i) use as few parameters as possible, (ii) increase the efficiency to model numerical and experimental non-Maxwellians, (iii) help to understand unsolved problems such as diagnostics discrepancies from the physical interpretation of the parameters, and (iv) obtain analytic corrections due to kinetic effects given by a small number of terms and removing the numerical error of the evaluation of velocity phase space integrals. This work does not attempt to derive new physical effects even if it could be possible to discover one from the better understandings of some unsolved problems, but here we focus on the analytic prediction of kinetic corrections from analytic non-Maxwellians. As applications, examples of analytic kinetic corrections are shown for the secondary electron emission, the Langmuir probe characteristic curve, and the entropy. This is done by using three analytic representations of the distribution function: the Kappa distribution function, the bi-modal or a new interpreted non-Maxwellian distribution function (INMDF). The existence of INMDFs is proved by new understandings of the experimental discrepancy of the measured electron temperature between two diagnostics in JET. As main results, it is shown that (i) the empirical formula for the secondary electron emission is not consistent with a MDF due to the presence of super-thermal particles, (ii) the super-thermal particles can replace a diffusion parameter in the Langmuir probe current formula, and (iii) the entropy can explicitly decrease in presence of sources only for the introduced INMDF without violating the second law of thermodynamics. Moreover, the first order entropy of an infinite number of super-thermal tails stays the same as the entropy of a MDF. The latter demystifies the Maxwell's demon by statistically describing non-isolated systems.« less

  4. Prediction of subsonic vortex shedding from forebodies with chines

    NASA Technical Reports Server (NTRS)

    Mendenhall, Michael R.; Lesieutre, Daniel J.

    1990-01-01

    An engineering prediction method and associated computer code VTXCHN to predict nose vortex shedding from circular and noncircular forebodies with sharp chine edges in subsonic flow at angles of attack and roll are presented. Axisymmetric bodies are represented by point sources and doublets, and noncircular cross sections are transformed to a circle by either analytical or numerical conformal transformations. The lee side vortex wake is modeled by discrete vortices in crossflow planes along the body; thus the three-dimensional steady flow problem is reduced to a two-dimensional, unsteady, separated flow problem for solution. Comparison of measured and predicted surface pressure distributions, flow field surveys, and aerodynamic characteristics are presented for noncircular bodies alone and forebodies with sharp chines.

  5. Specific and social fears in children and adolescents: separating normative fears from problem indicators and phobias.

    PubMed

    Laporte, Paola P; Pan, Pedro M; Hoffmann, Mauricio S; Wakschlag, Lauren S; Rohde, Luis A; Miguel, Euripedes C; Pine, Daniel S; Manfro, Gisele G; Salum, Giovanni A

    2017-01-01

    To distinguish normative fears from problematic fears and phobias. We investigated 2,512 children and adolescents from a large community school-based study, the High Risk Study for Psychiatric Disorders. Parent reports of 18 fears and psychiatric diagnosis were investigated. We used two analytical approaches: confirmatory factor analysis (CFA)/item response theory (IRT) and nonparametric receiver operating characteristic (ROC) curve. According to IRT and ROC analyses, social fears are more likely to indicate problems and phobias than specific fears. Most specific fears were normative when mild; all specific fears indicate problems when pervasive. In addition, the situational fear of toilets and people who look unusual were highly indicative of specific phobia. Among social fears, those not restricted to performance and fear of writing in front of others indicate problems when mild. All social fears indicate problems and are highly indicative of social phobia when pervasive. These preliminary findings provide guidance for clinicians and researchers to determine the boundaries that separate normative fears from problem indicators in children and adolescents, and indicate a differential severity threshold for specific and social fears.

  6. Analytic semigroups: Applications to inverse problems for flexible structures

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Rebnord, D. A.

    1990-01-01

    Convergence and stability results for least squares inverse problems involving systems described by analytic semigroups are presented. The practical importance of these results is demonstrated by application to several examples from problems of estimation of material parameters in flexible structures using accelerometer data.

  7. Development of a particle method of characteristics (PMOC) for one-dimensional shock waves

    NASA Astrophysics Data System (ADS)

    Hwang, Y.-H.

    2018-03-01

    In the present study, a particle method of characteristics is put forward to simulate the evolution of one-dimensional shock waves in barotropic gaseous, closed-conduit, open-channel, and two-phase flows. All these flow phenomena can be described with the same set of governing equations. The proposed scheme is established based on the characteristic equations and formulated by assigning the computational particles to move along the characteristic curves. Both the right- and left-running characteristics are traced and represented by their associated computational particles. It inherits the computational merits from the conventional method of characteristics (MOC) and moving particle method, but without their individual deficiencies. In addition, special particles with dual states deduced to the enforcement of the Rankine-Hugoniot relation are deliberately imposed to emulate the shock structure. Numerical tests are carried out by solving some benchmark problems, and the computational results are compared with available analytical solutions. From the derivation procedure and obtained computational results, it is concluded that the proposed PMOC will be a useful tool to replicate one-dimensional shock waves.

  8. Dynamic remapping of parallel computations with varying resource demands

    NASA Technical Reports Server (NTRS)

    Nicol, D. M.; Saltz, J. H.

    1986-01-01

    A large class of computational problems is characterized by frequent synchronization, and computational requirements which change as a function of time. When such a problem must be solved on a message passing multiprocessor machine, the combination of these characteristics lead to system performance which decreases in time. Performance can be improved with periodic redistribution of computational load; however, redistribution can exact a sometimes large delay cost. We study the issue of deciding when to invoke a global load remapping mechanism. Such a decision policy must effectively weigh the costs of remapping against the performance benefits. We treat this problem by constructing two analytic models which exhibit stochastically decreasing performance. One model is quite tractable; we are able to describe the optimal remapping algorithm, and the optimal decision policy governing when to invoke that algorithm. However, computational complexity prohibits the use of the optimal remapping decision policy. We then study the performance of a general remapping policy on both analytic models. This policy attempts to minimize a statistic W(n) which measures the system degradation (including the cost of remapping) per computation step over a period of n steps. We show that as a function of time, the expected value of W(n) has at most one minimum, and that when this minimum exists it defines the optimal fixed-interval remapping policy. Our decision policy appeals to this result by remapping when it estimates that W(n) is minimized. Our performance data suggests that this policy effectively finds the natural frequency of remapping. We also use the analytic models to express the relationship between performance and remapping cost, number of processors, and the computation's stochastic activity.

  9. Building the analytical response in frequency domain of AC biased bolometers. Application to Planck/HFI

    NASA Astrophysics Data System (ADS)

    Sauvé, Alexandre; Montier, Ludovic

    2016-12-01

    Context: Bolometers are high sensitivity detector commonly used in Infrared astronomy. The HFI instrument of the Planck satellite makes extensive use of them, but after the satellite launch two electronic related problems revealed critical. First an unexpected excess response of detectors at low optical excitation frequency for ν < 1 Hz, and secondly the Analog To digital Converter (ADC) component had been insufficiently characterized on-ground. These two problems require an exquisite knowledge of detector response. However bolometers have highly nonlinear characteristics, coming from their electrical and thermal coupling making them very difficult to model. Goal: We present a method to build the analytical transfer function in frequency domain which describe the voltage response of an Alternative Current (AC) biased bolometer to optical excitation, based on the standard bolometer model. This model is built using the setup of the Planck/HFI instrument and offers the major improvement of being based on a physical model rather than the currently in use had-hoc model based on Direct Current (DC) bolometer theory. Method: The analytical transfer function expression will be presented in matrix form. For this purpose, we build linearized versions of the bolometer electro thermal equilibrium. A custom description of signals in frequency is used to solve the problem with linear algebra. The model performances is validated using time domain simulations. Results: The provided expression is suitable for calibration and data processing. It can also be used to provide constraints for fitting optical transfer function using real data from steady state electronic response and optical response. The accurate description of electronic response can also be used to improve the ADC nonlinearity correction for quickly varying optical signals.

  10. Analytical solution of the optimal three dimensional reentry problem using Chapman's exact equations

    NASA Technical Reports Server (NTRS)

    Vinh, N. X.; Busemann, A.; Culp, R. D.

    1974-01-01

    This paper presents the general solution for the optimal three dimensional aerodynamic control of a lifting vehicle entering a planetary atmosphere. A set of dimensionless variables is introduced, and the resulting exact equations of motion have the distinctive advantage that they are completely free of the physical characteristics of the vehicle. Furthermore, a general lift-drag polar is used to define the aerodynamic control. Hence, the results obtained apply to any type of vehicle of arbitrary weight, dimensions and shape, having an arbitrary polar and entering any planetary atmosphere.

  11. The Role of Functional Foods, Nutraceuticals, and Food Supplements in Intestinal Health

    PubMed Central

    Cencic, Avrelija; Chingwaru, Walter

    2010-01-01

    New eating habits, actual trends in production and consumption have a health, environmental and social impact. The European Union is fighting diseases characteristic of a modern age, such as obesity, osteoporosis, cancer, diabetes, allergies and dental problems. Developed countries are also faced with problems relating to aging populations, high energy foods, and unbalanced diets. The potential of nutraceuticals/functional foods/food supplements in mitigating health problems, especially in the gastrointestinal (GI) tract, is discussed. Certain members of gut microflora (e.g., probiotic/protective strains) play a role in the host health due to its involvement in nutritional, immunologic and physiological functions. The potential mechanisms by which nutraceuticals/functional foods/food supplements may alter a host’s health are also highlighted in this paper. The establishment of novel functional cell models of the GI and analytical tools that allow tests in controlled experiments are highly desired for gut research. PMID:22254045

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for fiscal year 1988 (October 1987 through September 1988). The Analytical Chemistry Laboratory is a full-cost recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routinemore » standard analyses to unique problems that require significant development of methods and techniques.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1989 (October 1988 through September 1989). The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standardmore » analyses to unique problems that require significant development of methods and techniques.« less

  14. Analytical-numerical solution of a nonlinear integrodifferential equation in econometrics

    NASA Astrophysics Data System (ADS)

    Kakhktsyan, V. M.; Khachatryan, A. Kh.

    2013-07-01

    A mixed problem for a nonlinear integrodifferential equation arising in econometrics is considered. An analytical-numerical method is proposed for solving the problem. Some numerical results are presented.

  15. Rotordynamic Instability Problems in High-Performance Turbomachinery 1996

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The first rotordynamics workshop proceedings emphasized a feeling of uncertainty in predicting the stability of characteristics of high-performance turbomachinery. In the second workshop proceedings these uncertainties were reduced through programs established to systematically resolve problems, with emphasis on experimental validation of the forces that influence rotordynamics. In the third proceedings many programs for predicting or measuring forces and force coefficients in high-performance turbomachinery produced results. Data became available for designing new machines with enhanced stability characteristics or for upgrading existing machines. In the fourth proceedings there emerged trends towards a more unified view of rotordynamic instability problems and several encouraging new analytical developments. The fifth workshop supported the continuing trend toward a unified view with several new developments in the design and manufacture of new turbomachineries with enhanced stability characteristics along with new data and associated numerical/theoretical results. The sixth workshop report provided field experience and experimental results, and expanded the use of computational and control techniques with integration of damper, bearing, and eccentric seal operation results. The seventh workshop report provided field experiences, numerical, theoretical, and experimental results and control methods for seals, bearings, and dampers with some attention given to variable thermophysical properties and turbulence measurements, and introduction of two-phase flow results. In the present workshop, active magnetic bearings (AMB's) evolve into a new method of measuring rotordynamic coefficients with discussions on honeycomb seals, drop of magnetically supported rotors, seals, bearings and dampers with new data being reported. The intent of the workshop and this proceedings is to provide a continuing impetus for an understanding and resolution of these problems.

  16. New analytical solutions to the two-phase water faucet problem

    DOE PAGES

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2016-06-17

    Here, the one-dimensional water faucet problem is one of the classical benchmark problems originally proposed by Ransom to study the two-fluid two-phase flow model. With certain simplifications, such as massless gas phase and no wall and interfacial frictions, analytical solutions had been previously obtained for the transient liquid velocity and void fraction distribution. The water faucet problem and its analytical solutions have been widely used for the purposes of code assessment, benchmark and numerical verifications. In our previous study, the Ransom’s solutions were used for the mesh convergence study of a high-resolution spatial discretization scheme. It was found that, atmore » the steady state, an anticipated second-order spatial accuracy could not be achieved, when compared to the existing Ransom’s analytical solutions. A further investigation showed that the existing analytical solutions do not actually satisfy the commonly used two-fluid single-pressure two-phase flow equations. In this work, we present a new set of analytical solutions of the water faucet problem at the steady state, considering the gas phase density’s effect on pressure distribution. This new set of analytical solutions are used for mesh convergence studies, from which anticipated second-order of accuracy is achieved for the 2nd order spatial discretization scheme. In addition, extended Ransom’s transient solutions for the gas phase velocity and pressure are derived, with the assumption of decoupled liquid and gas pressures. Numerical verifications on the extended Ransom’s solutions are also presented.« less

  17. On analytic design of loudspeaker arrays with uniform radiation characteristics

    PubMed

    Aarts; Janssen

    2000-01-01

    Some notes on analytical derived loudspeaker arrays with uniform radiation characteristics are presented. The array coefficients are derived via analytical means and compared with so-called maximal flat sequences known from telecommunications and information theory. It appears that the newly derived array, i.e., the quadratic phase array, has a higher efficiency than the Bessel array and a flatter response than the Barker array. The method discussed admits generalization to the design of arrays with desired nonuniform radiating characteristics.

  18. Semi-analytical discontinuous Galerkin finite element method for the calculation of dispersion properties of guided waves in plates.

    PubMed

    Hebaz, Salah-Eddine; Benmeddour, Farouk; Moulin, Emmanuel; Assaad, Jamal

    2018-01-01

    The development of reliable guided waves inspection systems is conditioned by an accurate knowledge of their dispersive properties. The semi-analytical finite element method has been proven to be very practical for modeling wave propagation in arbitrary cross-section waveguides. However, when it comes to computations on complex geometries to a given accuracy, it still has a major drawback: the high consumption of resources. Recently, discontinuous Galerkin finite element method (DG-FEM) has been found advantageous over the standard finite element method when applied as well in the frequency domain. In this work, a high-order method for the computation of Lamb mode characteristics in plates is proposed. The problem is discretised using a class of DG-FEM, namely, the interior penalty methods family. The analytical validation is performed through the homogeneous isotropic case with traction-free boundary conditions. Afterwards, functionally graded material plates are analysed and a numerical example is presented. It was found that the obtained results are in good agreement with those found in the literature.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izacard, Olivier

    In magnetized plasma physics, almost all developed analytic theories assume a Maxwellian distribution function (MDF) and in some cases small deviations are described using the perturbation theory. The deviations with respect to the Maxwellian equilibrium, called kinetic effects, are required to be taken into account especially for fusion reactor plasmas. Generally, because the perturbation theory is not consistent with observed steady-state non-Maxwellians, these kinetic effects are numerically evaluated by very central processing unit (CPU)-expensive codes, avoiding the analytic complexity of velocity phase space integrals. We develop here a new method based on analytic non-Maxwellian distribution functions constructed from non-orthogonal basismore » sets in order to (i) use as few parameters as possible, (ii) increase the efficiency to model numerical and experimental non-Maxwellians, (iii) help to understand unsolved problems such as diagnostics discrepancies from the physical interpretation of the parameters, and (iv) obtain analytic corrections due to kinetic effects given by a small number of terms and removing the numerical error of the evaluation of velocity phase space integrals. This work does not attempt to derive new physical effects even if it could be possible to discover one from the better understandings of some unsolved problems, but here we focus on the analytic prediction of kinetic corrections from analytic non-Maxwellians. As applications, examples of analytic kinetic corrections are shown for the secondary electron emission, the Langmuir probe characteristic curve, and the entropy. This is done by using three analytic representations of the distribution function: the Kappa distribution function, the bi-modal or a new interpreted non-Maxwellian distribution function (INMDF). The existence of INMDFs is proved by new understandings of the experimental discrepancy of the measured electron temperature between two diagnostics in JET. As main results, it is shown that (i) the empirical formula for the secondary electron emission is not consistent with a MDF due to the presence of super-thermal particles, (ii) the super-thermal particles can replace a diffusion parameter in the Langmuir probe current formula, and (iii) the entropy can explicitly decrease in presence of sources only for the introduced INMDF without violating the second law of thermodynamics. Moreover, the first order entropy of an infinite number of super-thermal tails stays the same as the entropy of a MDF. In conclusion, the latter demystifies the Maxwell's demon by statistically describing non-isolated systems.« less

  20. Actual Romanian research in post-newtonian dynamics

    NASA Astrophysics Data System (ADS)

    Mioc, V.; Stavinschi, M.

    2007-05-01

    We survey the recent Romanian results in the study of the two-body problem in post-Newtonian fields. Such a field is characterized, in general, by a potential of the form U(q)=|q|^{-1}+ something (small, but not compulsorily). We distinguish some classes of post-Newtonian models: relativistic (Schwarzschild, Fock, Einstein PN, Reissner-Nordström, Schwarzschild - de Sitter, etc.) and nonrelativistic (Manev, Mücket-Treder, Seeliger, gravito-elastic, etc.). Generalized models (the zonal-satellite problem, quasihomogeneous fields), as well as special cases (anisotropic Manev-type and Schwarzschild-type models, Popovici or Popovici-Manev photogravitational problem), were also tackled. The methods used in such studies are various: analytical (using mainly the theory of perturbations, but also other theories: functions of complex variable, variational calculus, etc.), geometric (qualitative approach of the theory of dynamical systems), and numerical (especially using the Poincaré-section technique). The areas of interest and the general results obtained focus on: exact or approximate analytical solutions; characteristics of local flows (especially at limit situations: collision and escape); quasiperiodic and periodic orbits; equilibria; symmetries; chaoticity; geometric description of the global flow (and physical interpretation of the phase-space structure). We emphasize some special features, which cannot be met within the Newtonian framework: black-hole effect, oscillatory collisions, radial librations, bounded orbits for nonnegative energy, existence of unstable circular motion (or unstable rest), symmetric periodic orbits within anisotropic models, etc.

  1. A novel control algorithm for interaction between surface waves and a permeable floating structure

    NASA Astrophysics Data System (ADS)

    Tsai, Pei-Wei; Alsaedi, A.; Hayat, T.; Chen, Cheng-Wu

    2016-04-01

    An analytical solution is undertaken to describe the wave-induced flow field and the surge motion of a permeable platform structure with fuzzy controllers in an oceanic environment. In the design procedure of the controller, a parallel distributed compensation (PDC) scheme is utilized to construct a global fuzzy logic controller by blending all local state feedback controllers. A stability analysis is carried out for a real structure system by using Lyapunov method. The corresponding boundary value problems are then incorporated into scattering and radiation problems. They are analytically solved, based on separation of variables, to obtain series solutions in terms of the harmonic incident wave motion and surge motion. The dependence of the wave-induced flow field and its resonant frequency on wave characteristics and structure properties including platform width, thickness and mass has been thus drawn with a parametric approach. From which mathematical models are applied for the wave-induced displacement of the surge motion. A nonlinearly inverted pendulum system is employed to demonstrate that the controller tuned by swarm intelligence method can not only stabilize the nonlinear system, but has the robustness against external disturbance.

  2. High frequency flow-structural interaction in dense subsonic fluids

    NASA Technical Reports Server (NTRS)

    Liu, Baw-Lin; Ofarrell, J. M.

    1995-01-01

    Prediction of the detailed dynamic behavior in rocket propellant feed systems and engines and other such high-energy fluid systems requires precise analysis to assure structural performance. Designs sometimes require placement of bluff bodies in a flow passage. Additionally, there are flexibilities in ducts, liners, and piping systems. A design handbook and interactive data base have been developed for assessing flow/structural interactions to be used as a tool in design and development, to evaluate applicable geometries before problems develop, or to eliminate or minimize problems with existing hardware. This is a compilation of analytical/empirical data and techniques to evaluate detailed dynamic characteristics of both the fluid and structures. These techniques have direct applicability to rocket engine internal flow passages, hot gas drive systems, and vehicle propellant feed systems. Organization of the handbook is by basic geometries for estimating Strouhal numbers, added mass effects, mode shapes for various end constraints, critical onset flow conditions, and possible structural response amplitudes. Emphasis is on dense fluids and high structural loading potential for fatigue at low subsonic flow speeds where high-frequency excitations are possible. Avoidance and corrective measure illustrations are presented together with analytical curve fits for predictions compiled from a comprehensive data base.

  3. Low speed hybrid generalized predictive control of a gasoline-propelled car.

    PubMed

    Romero, M; de Madrid, A P; Mañoso, C; Milanés, V

    2015-07-01

    Low-speed driving in traffic jams causes significant pollution and wasted time for commuters. Additionally, from the passengers׳ standpoint, this is an uncomfortable, stressful and tedious scene that is suitable to be automated. The highly nonlinear dynamics of car engines at low-speed turn its automation in a complex problem that still remains as unsolved. Considering the hybrid nature of the vehicle longitudinal control at low-speed, constantly switching between throttle and brake pedal actions, hybrid control is a good candidate to solve this problem. This work presents the analytical formulation of a hybrid predictive controller for automated low-speed driving. It takes advantage of valuable characteristics supplied by predictive control strategies both for compensating un-modeled dynamics and for keeping passengers security and comfort analytically by means of the treatment of constraints. The proposed controller was implemented in a gas-propelled vehicle to experimentally validate the adopted solution. To this end, different scenarios were analyzed varying road layouts and vehicle speeds within a private test track. The production vehicle is a commercial Citroën C3 Pluriel which has been modified to automatically act over its throttle and brake pedals. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  4. The Efficacy of Problem-Based Learning in an Analytical Laboratory Course for Pre-Service Chemistry Teachers

    ERIC Educational Resources Information Center

    Yoon, Heojeong; Woo, Ae Ja; Treagust, David; Chandrasegaran, A. L.

    2014-01-01

    The efficacy of problem-based learning (PBL) in an analytical chemistry laboratory course was studied using a programme that was designed and implemented with 20 students in a treatment group over 10 weeks. Data from 26 students in a traditional analytical chemistry laboratory course were used for comparison. Differences in the creative thinking…

  5. An Eye Tracking Study of High- and Low-Performing Students in Solving Interactive and Analytical Problems

    ERIC Educational Resources Information Center

    Hu, Yiling; Wu, Bian; Gu, Xiaoqing

    2017-01-01

    Test results from the Program for International Student Assessment (PISA) reveal that Shanghai students performed less well in solving interactive problems (those that require uncovering necessary information) than in solving analytical problems (those having all information disclosed at the outset). Accordingly, this study investigates…

  6. Unifying Approach to Analytical Chemistry and Chemical Analysis: Problem-Oriented Role of Chemical Analysis.

    ERIC Educational Resources Information Center

    Pardue, Harry L.; Woo, Jannie

    1984-01-01

    Proposes an approach to teaching analytical chemistry and chemical analysis in which a problem to be resolved is the focus of a course. Indicates that this problem-oriented approach is intended to complement detailed discussions of fundamental and applied aspects of chemical determinations and not replace such discussions. (JN)

  7. Analytical Derivation: An Epistemic Game for Solving Mathematically Based Physics Problems

    ERIC Educational Resources Information Center

    Bajracharya, Rabindra R.; Thompson, John R.

    2016-01-01

    Problem solving, which often involves multiple steps, is an integral part of physics learning and teaching. Using the perspective of the epistemic game, we documented a specific game that is commonly pursued by students while solving mathematically based physics problems: the "analytical derivation" game. This game involves deriving an…

  8. Convergence analysis of two-node CMFD method for two-group neutron diffusion eigenvalue problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Yongjin; Park, Jinsu; Lee, Hyun Chul

    2015-12-01

    In this paper, the nonlinear coarse-mesh finite difference method with two-node local problem (CMFD2N) is proven to be unconditionally stable for neutron diffusion eigenvalue problems. The explicit current correction factor (CCF) is derived based on the two-node analytic nodal method (ANM2N), and a Fourier stability analysis is applied to the linearized algorithm. It is shown that the analytic convergence rate obtained by the Fourier analysis compares very well with the numerically measured convergence rate. It is also shown that the theoretical convergence rate is only governed by the converged second harmonic buckling and the mesh size. It is also notedmore » that the convergence rate of the CCF of the CMFD2N algorithm is dependent on the mesh size, but not on the total problem size. This is contrary to expectation for eigenvalue problem. The novel points of this paper are the analytical derivation of the convergence rate of the CMFD2N algorithm for eigenvalue problem, and the convergence analysis based on the analytic derivations.« less

  9. Personal genome testing: Test characteristics to clarify the discourse on ethical, legal and societal issues

    PubMed Central

    2011-01-01

    Background As genetics technology proceeds, practices of genetic testing have become more heterogeneous: many different types of tests are finding their way to the public in different settings and for a variety of purposes. This diversification is relevant to the discourse on ethical, legal and societal issues (ELSI) surrounding genetic testing, which must evolve to encompass these differences. One important development is the rise of personal genome testing on the basis of genetic profiling: the testing of multiple genetic variants simultaneously for the prediction of common multifactorial diseases. Currently, an increasing number of companies are offering personal genome tests directly to consumers and are spurring ELSI-discussions, which stand in need of clarification. This paper presents a systematic approach to the ELSI-evaluation of personal genome testing for multifactorial diseases along the lines of its test characteristics. Discussion This paper addresses four test characteristics of personal genome testing: its being a non-targeted type of testing, its high analytical validity, low clinical validity and problematic clinical utility. These characteristics raise their own specific ELSI, for example: non-targeted genetic profiling poses serious problems for information provision and informed consent. Questions about the quantity and quality of the necessary information, as well as about moral responsibilities with regard to the provision of information are therefore becoming central themes within ELSI-discussions of personal genome testing. Further, the current low level of clinical validity of genetic profiles raises questions concerning societal risks and regulatory requirements, whereas simultaneously it causes traditional ELSI-issues of clinical genetics, such as psychological and health risks, discrimination, and stigmatization, to lose part of their relevance. Also, classic notions of clinical utility are challenged by the newer notion of 'personal utility.' Summary Consideration of test characteristics is essential to any valuable discourse on the ELSI of personal genome testing for multifactorial diseases. Four key characteristics of the test - targeted/non-targeted testing, analytical validity, clinical validity and clinical utility - together determine the applicability and the relevance of ELSI to specific tests. The paper identifies and discusses four areas of interest for the ELSI-debate on personal genome testing: informational problems, risks, regulatory issues, and the notion of personal utility. PMID:21672210

  10. New trends in astrodynamics and applications: optimal trajectories for space guidance.

    PubMed

    Azimov, Dilmurat; Bishop, Robert

    2005-12-01

    This paper represents recent results on the development of optimal analytic solutions to the variation problem of trajectory optimization and their application in the construction of on-board guidance laws. The importance of employing the analytically integrated trajectories in a mission design is discussed. It is assumed that the spacecraft is equipped with a power-limited propulsion and moving in a central Newtonian field. Satisfaction of the necessary and sufficient conditions for optimality of trajectories is analyzed. All possible thrust arcs and corresponding classes of the analytical solutions are classified based on the propulsion system parameters and performance index of the problem. The solutions are presented in a form convenient for applications in escape, capture, and interorbital transfer problems. Optimal guidance and neighboring optimal guidance problems are considered. It is shown that the analytic solutions can be used as reference trajectories in constructing the guidance algorithms for the maneuver problems mentioned above. An illustrative example of a spiral trajectory that terminates on a given elliptical parking orbit is discussed.

  11. Design of the stabilizing control of the orbital motion in the vicinity of the collinear libration point L1 using the analytical representation of the invariant manifold

    NASA Astrophysics Data System (ADS)

    Maliavkin, G. P.; Shmyrov, A. S.; Shmyrov, V. A.

    2018-05-01

    Vicinities of collinear libration points of the Sun-Earth system are currently quite attractive for the space navigation. Today, various projects on placing of spacecrafts observing the Sun in the L1 libration point and telescopes in L2 have been implemented (e.g. spacecrafts "WIND", "SOHO", "Herschel", "Planck"). Collinear libration points being unstable leads to the problem of stabilization of a spacecraft's motion. Laws of stabilizing motion control in vicinity of L1 point can be constructed using the analytical representation of a stable invariant manifold. Efficiency of these control laws depends on the precision of the representation. Within the model of Hill's approximation of the circular restricted three-body problem in the rotating geocentric coordinate system one can obtain the analytical representation of an invariant manifold filled with bounded trajectories in a form of series in terms of powers of the phase variables. Approximate representations of the orders from the first to the fourth inclusive can be used to construct four laws of stabilizing feedback motion control under which trajectories approach the manifold. By virtue of numerical simulation the comparison can be made: how the precision of the representation of the invariant manifold influences the efficiency of the control, expressed by energy consumptions (characteristic velocity). It shows that using approximations of higher orders in constructing the control laws can significantly reduce the energy consumptions on implementing the control compared to the linear approximation.

  12. Aptamer-Based Analysis: A Promising Alternative for Food Safety Control

    PubMed Central

    Amaya-González, Sonia; de-los-Santos-Álvarez, Noemí; Miranda-Ordieres, Arturo J.; Lobo-Castañón, Maria Jesús

    2013-01-01

    Ensuring food safety is nowadays a top priority of authorities and professional players in the food supply chain. One of the key challenges to determine the safety of food and guarantee a high level of consumer protection is the availability of fast, sensitive and reliable analytical methods to identify specific hazards associated to food before they become a health problem. The limitations of existing methods have encouraged the development of new technologies, among them biosensors. Success in biosensor design depends largely on the development of novel receptors with enhanced affinity to the target, while being stable and economical. Aptamers fulfill these characteristics, and thus have surfaced as promising alternatives to natural receptors. This Review describes analytical strategies developed so far using aptamers for the control of pathogens, allergens, adulterants, toxins and other forbidden contaminants to ensure food safety. The main progresses to date are presented, highlighting potential prospects for the future. PMID:24287543

  13. Instrumentation for analytical scale supercritical fluid chromatography.

    PubMed

    Berger, Terry A

    2015-11-20

    Analytical scale supercritical fluid chromatography (SFC) is largely a sub-discipline of high performance liquid chromatography (HPLC), in that most of the hardware and software can be used for either technique. The aspects that separate the 2 techniques stem from the use of carbon dioxide (CO2) as the main component of the mobile phase in SFC. The high compressibility and low viscosity of CO2 mean that pumps, and autosamplers designed for HPLC either need to be modified or an alternate means of dealing with compressibility needs to be found. The inclusion of a back pressure regulator and a high pressure flow cell for any UV-Vis detector are also necessary. Details of the various approaches, problems and solutions are described. Characteristics, such as adiabatic vs. isothermal compressibility, thermal gradients, and refractive index issues are dealt with in detail. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Constrained Optimization Methods in Health Services Research-An Introduction: Report 1 of the ISPOR Optimization Methods Emerging Good Practices Task Force.

    PubMed

    Crown, William; Buyukkaramikli, Nasuh; Thokala, Praveen; Morton, Alec; Sir, Mustafa Y; Marshall, Deborah A; Tosh, Jon; Padula, William V; Ijzerman, Maarten J; Wong, Peter K; Pasupathy, Kalyan S

    2017-03-01

    Providing health services with the greatest possible value to patients and society given the constraints imposed by patient characteristics, health care system characteristics, budgets, and so forth relies heavily on the design of structures and processes. Such problems are complex and require a rigorous and systematic approach to identify the best solution. Constrained optimization is a set of methods designed to identify efficiently and systematically the best solution (the optimal solution) to a problem characterized by a number of potential solutions in the presence of identified constraints. This report identifies 1) key concepts and the main steps in building an optimization model; 2) the types of problems for which optimal solutions can be determined in real-world health applications; and 3) the appropriate optimization methods for these problems. We first present a simple graphical model based on the treatment of "regular" and "severe" patients, which maximizes the overall health benefit subject to time and budget constraints. We then relate it back to how optimization is relevant in health services research for addressing present day challenges. We also explain how these mathematical optimization methods relate to simulation methods, to standard health economic analysis techniques, and to the emergent fields of analytics and machine learning. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  15. ["How goes it, Awa?" Nutritional deficiency, emotional deprivation, severe depressive state in an child under 2 years of age. Diagnostic and therapeutic problems].

    PubMed

    Buffet, Y; Mazet, P

    1983-12-15

    The authors report a very illustrative case of analytic depression in an infant under two years of age. The significance of this observation is in the overwhelming nature of symptoms with a characteristic marasmus syndrome fitting classic descriptions, and in the deliberate approach which led a pedo-psychiatric team to an understanding of the problems and to a rapid and dramatic reparation. By the ascription of a significant role to the impact of mother-child, mother-family and social circle relationships, involved members were able to determine their place and reassume their role and function. This approach also draws attention to the susceptibility and vulnerability of children to separation and severance of bonds.

  16. Rayleigh convective instability in the presence of phase transitions of water vapor. The formation of large-scale eddies and cloud structures

    NASA Astrophysics Data System (ADS)

    Shmerlin, B. Ya; Kalashnik, M. V.

    2013-05-01

    Convective motions in moist saturated air are accompanied by the release of latent heat of condensation. Taking this effect into account, we consider the problem of convective instability of a moist saturated air layer, generalizing the formulation of the classical Rayleigh problem. An analytic solution demonstrating the fundamental difference between moist convection and Rayleigh convection is obtained. Upon losing stability in the two-dimensional case, localized convective rolls or spatially periodic chains of rollers with localized areas of upward motion evolve. In the case of axial symmetry, the growth of localized convective vortices with circulation characteristic of tropical cyclones (hurricanes) is possible at the early stages of development and on the scale of tornados to tropical cyclones.

  17. Energy dissipation in a friction-controlled slide of a body excited by random motions of the foundation

    NASA Astrophysics Data System (ADS)

    Berezin, Sergey; Zayats, Oleg

    2018-01-01

    We study a friction-controlled slide of a body excited by random motions of the foundation it is placed on. Specifically, we are interested in such quantities as displacement, traveled distance, and energy loss due to friction. We assume that the random excitation is switched off at some time (possibly infinite) and show that the problem can be treated in an analytic, explicit, manner. Particularly, we derive formulas for the moments of the displacement and distance, and also for the average energy loss. To accomplish that we use the Pugachev-Sveshnikov equation for the characteristic function of a continuous random process given by a system of SDEs. This equation is solved by reduction to a parametric Riemann boundary value problem of complex analysis.

  18. Combined optimization of image-gathering and image-processing systems for scene feature detection

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Arduini, Robert F.; Samms, Richard W.

    1987-01-01

    The relationship between the image gathering and image processing systems for minimum mean squared error estimation of scene characteristics is investigated. A stochastic optimization problem is formulated where the objective is to determine a spatial characteristic of the scene rather than a feature of the already blurred, sampled and noisy image data. An analytical solution for the optimal characteristic image processor is developed. The Wiener filter for the sampled image case is obtained as a special case, where the desired characteristic is scene restoration. Optimal edge detection is investigated using the Laplacian operator x G as the desired characteristic, where G is a two dimensional Gaussian distribution function. It is shown that the optimal edge detector compensates for the blurring introduced by the image gathering optics, and notably, that it is not circularly symmetric. The lack of circular symmetry is largely due to the geometric effects of the sampling lattice used in image acquisition. The optimal image gathering optical transfer function is also investigated and the results of a sensitivity analysis are shown.

  19. Analysis of satellite altimeter signal characteristics and investigation of sea-truth data requirements

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Results are presented of analysis of satellite signal characteristics as influenced by ocean surface roughness and an investigation of sea truth data requirements. The first subject treated is that of postflight waveform reconstruction for the Skylab S-193 radar altimeter. Sea state estimation accuracies are derived based on analytical and hybrid computer simulation techniques. An analysis of near-normal incidence, microwave backscattering from the ocean's surface is accomplished in order to obtain the minimum sea truth data necessary for good agreement between theoretical and experimental scattering results. Sea state bias is examined from the point of view of designing an experiment which will lead to a resolution of the problem. A discussion is given of some deficiencies which were found in the theory underlying the Stilwell technique for spectral measurements.

  20. Pattern matching through Chaos Game Representation: bridging numerical and discrete data structures for biological sequence analysis

    PubMed Central

    2012-01-01

    Background Chaos Game Representation (CGR) is an iterated function that bijectively maps discrete sequences into a continuous domain. As a result, discrete sequences can be object of statistical and topological analyses otherwise reserved to numerical systems. Characteristically, CGR coordinates of substrings sharing an L-long suffix will be located within 2-L distance of each other. In the two decades since its original proposal, CGR has been generalized beyond its original focus on genomic sequences and has been successfully applied to a wide range of problems in bioinformatics. This report explores the possibility that it can be further extended to approach algorithms that rely on discrete, graph-based representations. Results The exploratory analysis described here consisted of selecting foundational string problems and refactoring them using CGR-based algorithms. We found that CGR can take the role of suffix trees and emulate sophisticated string algorithms, efficiently solving exact and approximate string matching problems such as finding all palindromes and tandem repeats, and matching with mismatches. The common feature of these problems is that they use longest common extension (LCE) queries as subtasks of their procedures, which we show to have a constant time solution with CGR. Additionally, we show that CGR can be used as a rolling hash function within the Rabin-Karp algorithm. Conclusions The analysis of biological sequences relies on algorithmic foundations facing mounting challenges, both logistic (performance) and analytical (lack of unifying mathematical framework). CGR is found to provide the latter and to promise the former: graph-based data structures for sequence analysis operations are entailed by numerical-based data structures produced by CGR maps, providing a unifying analytical framework for a diversity of pattern matching problems. PMID:22551152

  1. Does Incubation Enhance Problem Solving? A Meta-Analytic Review

    ERIC Educational Resources Information Center

    Sio, Ut Na; Ormerod, Thomas C.

    2009-01-01

    A meta-analytic review of empirical studies that have investigated incubation effects on problem solving is reported. Although some researchers have reported increased solution rates after an incubation period (i.e., a period of time in which a problem is set aside prior to further attempts to solve), others have failed to find effects. The…

  2. Analytical derivation: An epistemic game for solving mathematically based physics problems

    NASA Astrophysics Data System (ADS)

    Bajracharya, Rabindra R.; Thompson, John R.

    2016-06-01

    Problem solving, which often involves multiple steps, is an integral part of physics learning and teaching. Using the perspective of the epistemic game, we documented a specific game that is commonly pursued by students while solving mathematically based physics problems: the analytical derivation game. This game involves deriving an equation through symbolic manipulations and routine mathematical operations, usually without any physical interpretation of the processes. This game often creates cognitive obstacles in students, preventing them from using alternative resources or better approaches during problem solving. We conducted hour-long, semi-structured, individual interviews with fourteen introductory physics students. Students were asked to solve four "pseudophysics" problems containing algebraic and graphical representations. The problems required the application of the fundamental theorem of calculus (FTC), which is one of the most frequently used mathematical concepts in physics problem solving. We show that the analytical derivation game is necessary, but not sufficient, to solve mathematically based physics problems, specifically those involving graphical representations.

  3. Generalized bipartite quantum state discrimination problems with sequential measurements

    NASA Astrophysics Data System (ADS)

    Nakahira, Kenji; Kato, Kentaro; Usuda, Tsuyoshi Sasaki

    2018-02-01

    We investigate an optimization problem of finding quantum sequential measurements, which forms a wide class of state discrimination problems with the restriction that only local operations and one-way classical communication are allowed. Sequential measurements from Alice to Bob on a bipartite system are considered. Using the fact that the optimization problem can be formulated as a problem with only Alice's measurement and is convex programming, we derive its dual problem and necessary and sufficient conditions for an optimal solution. Our results are applicable to various practical optimization criteria, including the Bayes criterion, the Neyman-Pearson criterion, and the minimax criterion. In the setting of the problem of finding an optimal global measurement, its dual problem and necessary and sufficient conditions for an optimal solution have been widely used to obtain analytical and numerical expressions for optimal solutions. Similarly, our results are useful to obtain analytical and numerical expressions for optimal sequential measurements. Examples in which our results can be used to obtain an analytical expression for an optimal sequential measurement are provided.

  4. Kinetic corrections from analytic non-Maxwellian distribution functions in magnetized plasmas

    DOE PAGES

    Izacard, Olivier

    2016-08-02

    In magnetized plasma physics, almost all developed analytic theories assume a Maxwellian distribution function (MDF) and in some cases small deviations are described using the perturbation theory. The deviations with respect to the Maxwellian equilibrium, called kinetic effects, are required to be taken into account especially for fusion reactor plasmas. Generally, because the perturbation theory is not consistent with observed steady-state non-Maxwellians, these kinetic effects are numerically evaluated by very central processing unit (CPU)-expensive codes, avoiding the analytic complexity of velocity phase space integrals. We develop here a new method based on analytic non-Maxwellian distribution functions constructed from non-orthogonal basismore » sets in order to (i) use as few parameters as possible, (ii) increase the efficiency to model numerical and experimental non-Maxwellians, (iii) help to understand unsolved problems such as diagnostics discrepancies from the physical interpretation of the parameters, and (iv) obtain analytic corrections due to kinetic effects given by a small number of terms and removing the numerical error of the evaluation of velocity phase space integrals. This work does not attempt to derive new physical effects even if it could be possible to discover one from the better understandings of some unsolved problems, but here we focus on the analytic prediction of kinetic corrections from analytic non-Maxwellians. As applications, examples of analytic kinetic corrections are shown for the secondary electron emission, the Langmuir probe characteristic curve, and the entropy. This is done by using three analytic representations of the distribution function: the Kappa distribution function, the bi-modal or a new interpreted non-Maxwellian distribution function (INMDF). The existence of INMDFs is proved by new understandings of the experimental discrepancy of the measured electron temperature between two diagnostics in JET. As main results, it is shown that (i) the empirical formula for the secondary electron emission is not consistent with a MDF due to the presence of super-thermal particles, (ii) the super-thermal particles can replace a diffusion parameter in the Langmuir probe current formula, and (iii) the entropy can explicitly decrease in presence of sources only for the introduced INMDF without violating the second law of thermodynamics. Moreover, the first order entropy of an infinite number of super-thermal tails stays the same as the entropy of a MDF. In conclusion, the latter demystifies the Maxwell's demon by statistically describing non-isolated systems.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1991 (October 1990 through September 1991). This is the eighth annual report for the ACL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handlesmore » a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.« less

  6. A convergent series expansion for hyperbolic systems of conservation laws

    NASA Technical Reports Server (NTRS)

    Harabetian, E.

    1985-01-01

    The discontinuities piecewise analytic initial value problem for a wide class of conservation laws is considered which includes the full three-dimensional Euler equations. The initial interaction at an arbitrary curved surface is resolved in time by a convergent series. Among other features the solution exhibits shock, contact, and expansion waves as well as sound waves propagating on characteristic surfaces. The expansion waves correspond to he one-dimensional rarefactions but have a more complicated structure. The sound waves are generated in place of zero strength shocks, and they are caused by mismatches in derivatives.

  7. Caustic Singularities Of High-Gain, Dual-Shaped Reflectors

    NASA Technical Reports Server (NTRS)

    Galindo, Victor; Veruttipong, Thavath W.; Imbriale, William A.; Rengarajan, Sambiam

    1991-01-01

    Report presents study of some sources of error in analysis, by geometric theory of diffraction (GTD), of performance of high-gain, dual-shaped antenna reflector. Study probes into underlying analytic causes of singularity, with view toward devising and testing practical methods to avoid problems caused by singularity. Hybrid physical optics (PO) approach used to study near-field spillover or noise-temperature characteristics of high-gain relector antenna efficiently and accurately. Report illustrates this approach and underlying principles by presenting numerical results, for both offset and symmetrical reflector systems, computed by GTD, PO, and PO/GO methods.

  8. Identification of Patient Zero in Static and Temporal Networks: Robustness and Limitations

    NASA Astrophysics Data System (ADS)

    Antulov-Fantulin, Nino; Lančić, Alen; Šmuc, Tomislav; Štefančić, Hrvoje; Šikić, Mile

    2015-06-01

    Detection of patient zero can give new insights to epidemiologists about the nature of first transmissions into a population. In this Letter, we study the statistical inference problem of detecting the source of epidemics from a snapshot of spreading on an arbitrary network structure. By using exact analytic calculations and Monte Carlo estimators, we demonstrate the detectability limits for the susceptible-infected-recovered model, which primarily depend on the spreading process characteristics. Finally, we demonstrate the applicability of the approach in a case of a simulated sexually transmitted infection spreading over an empirical temporal network of sexual interactions.

  9. Continuum mathematical modelling of pathological growth of blood vessels

    NASA Astrophysics Data System (ADS)

    Stadnik, N. E.; Dats, E. P.

    2018-04-01

    The present study is devoted to the mathematical modelling of a human blood vessel pathological growth. The vessels are simulated as the thin-walled circular tube. The boundary value problem of the surface growth of an elastic thin-walled cylinder is solved. The analytical solution is obtained in terms of velocities of stress strain state parameters. The condition of thinness allows us to study finite displacements of cylinder surfaces by means of infinitesimal deformations. The stress-strain state characteristics, which depend on the mechanical parameters of the biological processes, are numerically computed and graphically analysed.

  10. Changes of instability thresholds of rotor due to bearing misalignments

    NASA Technical Reports Server (NTRS)

    Springer, H.; Ecker, H.; Gunter, E. J.

    1985-01-01

    The influence of bearing misalignment upon the dynamic characteristics of statistically indeterminant rotor bearing systems is investigated. Both bearing loads and stability speed limits of a rotor may be changed significantly by magnitude and direction of bearing misalignment. The useful theory of short journal bearings is introduced and simple analytical expressions, governing the misalignment problem, are carried out. Polar plots for the bearing load capacities and stability maps, describing the speed limit in terms of misalignment, are presented. These plots can be used by the designer to estimate deviations between calculation and experimental data due to misalignment effects.

  11. Others' Anger Makes People Work Harder Not Smarter: The Effect of Observing Anger and Sarcasm on Creative and Analytic Thinking

    ERIC Educational Resources Information Center

    Miron-Spektor, Ella; Efrat-Treister, Dorit; Rafaeli, Anat; Schwarz-Cohen, Orit

    2011-01-01

    The authors examine whether and how observing anger influences thinking processes and problem-solving ability. In 3 studies, the authors show that participants who listened to an angry customer were more successful in solving analytic problems, but less successful in solving creative problems compared with participants who listened to an…

  12. The analytic solution of the firm's cost-minimization problem with box constraints and the Cobb-Douglas model

    NASA Astrophysics Data System (ADS)

    Bayón, L.; Grau, J. M.; Ruiz, M. M.; Suárez, P. M.

    2012-12-01

    One of the most well-known problems in the field of Microeconomics is the Firm's Cost-Minimization Problem. In this paper we establish the analytical expression for the cost function using the Cobb-Douglas model and considering maximum constraints for the inputs. Moreover we prove that it belongs to the class C1.

  13. Permeation absorption sampler with multiple detection

    DOEpatents

    Zaromb, Solomon

    1990-01-01

    A system for detecting analytes in air or aqueous systems includes a permeation absorption preconcentrator sampler for the analytes and analyte detectors. The preconcentrator has an inner fluid-permeable container into which a charge of analyte-sorbing liquid is intermittently injected, and a fluid-impermeable outer container. The sample is passed through the outer container and around the inner container for trapping and preconcentrating the analyte in the sorbing liquid. The analyte can be detected photometrically by injecting with the sorbing material a reagent which reacts with the analyte to produce a characteristic color or fluorescence which is detected by illuminating the contents of the inner container with a light source and measuring the absorbed or emitted light, or by producing a characteristic chemiluminescence which can be detected by a suitable light sensor. The analyte can also be detected amperometrically. Multiple inner containers may be provided into which a plurality of sorbing liquids are respectively introduced for simultaneously detecting different analytes. Baffles may be provided in the outer container. A calibration technique is disclosed.

  14. Review of analytical models to stream depletion induced by pumping: Guide to model selection

    NASA Astrophysics Data System (ADS)

    Huang, Ching-Sheng; Yang, Tao; Yeh, Hund-Der

    2018-06-01

    Stream depletion due to groundwater extraction by wells may cause impact on aquatic ecosystem in streams, conflict over water rights, and contamination of water from irrigation wells near polluted streams. A variety of studies have been devoted to addressing the issue of stream depletion, but a fundamental framework for analytical modeling developed from aquifer viewpoint has not yet been found. This review shows key differences in existing models regarding the stream depletion problem and provides some guidelines for choosing a proper analytical model in solving the problem of concern. We introduce commonly used models composed of flow equations, boundary conditions, well representations and stream treatments for confined, unconfined, and leaky aquifers. They are briefly evaluated and classified according to six categories of aquifer type, flow dimension, aquifer domain, stream representation, stream channel geometry, and well type. Finally, we recommend promising analytical approaches that can solve stream depletion problem in reality with aquifer heterogeneity and irregular geometry of stream channel. Several unsolved stream depletion problems are also recommended.

  15. Effects of rotation and magnetic field on the onset of convective instability in a liquid layer due to buoyancy and surface tension

    NASA Technical Reports Server (NTRS)

    Sarma, G. S. R.

    1982-01-01

    Thermocapillary stability characteristics of a horizontal liquid layer heated from below rotating about a vertical axis and subjected to a uniform vertical magnetic field are analyzed under a variety of thermal and electromagnetic boundary conditions. Results based on analytical solutions to the pertinent eigenvalue problems are discussed in the light of earlier work on special cases of the more general problem considered here to show in particular the effects of the heat transfer, nonzero curvature and gravity waves at the two-fluid interface. Although the expected stabilizing action of the Coriolis and Lorentz force fields in this configuration are in evidence the optimal choice of an appropriate range for the relevant parameters is shown to be critically dependent on the interfacial effects mentioned above.

  16. Mixed formulation for frictionless contact problems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Kim, Kyun O.

    1989-01-01

    Simple mixed finite element models and a computational precedure are presented for the solution of frictionless contact problems. The analytical formulation is based on a form of Reissner's large rotation theory of the structure with the effects of transverse shear deformation included. The contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the internal forces (stress resultants), the generalized displacements, and the Lagrange multipliers associated with the contact conditions. The element characteristic array are obtained by using a modified form of the two-field Hellinger-Reissner mixed variational principle. The internal forces and the Lagrange multipliers are allowed to be discontinuous at interelement boundaries. The Newton-Raphson iterative scheme is used for the solution of the nonlinear algebraic equations, and the determination of the contact area and the contact pressures.

  17. Geodynamics for Everyone: Robust Finite-Difference Heat Transfer Models using MS Excel 2007 Spreadsheets

    NASA Astrophysics Data System (ADS)

    Grose, C. J.

    2008-05-01

    Numerical geodynamics models of heat transfer are typically thought of as specialized topics of research requiring knowledge of specialized modelling software, linux platforms, and state-of-the-art finite-element codes. I have implemented analytical and numerical finite-difference techniques with Microsoft Excel 2007 spreadsheets to solve for complex solid-earth heat transfer problems for use by students, teachers, and practicing scientists without specialty in geodynamics modelling techniques and applications. While implementation of equations for use in Excel spreadsheets is occasionally cumbersome, once case boundary structure and node equations are developed, spreadsheet manipulation becomes routine. Model experimentation by modifying parameter values, geometry, and grid resolution makes Excel a useful tool whether in the classroom at the undergraduate or graduate level or for more engaging student projects. Furthermore, the ability to incorporate complex geometries and heat-transfer characteristics makes it ideal for first and occasionally higher order geodynamics simulations to better understand and constrain the results of professional field research in a setting that does not require the constraints of state-of-the-art modelling codes. The straightforward expression and manipulation of model equations in excel can also serve as a medium to better understand the confusing notations of advanced mathematical problems. To illustrate the power and robustness of computation and visualization in spreadsheet models I focus primarily on one-dimensional analytical and two-dimensional numerical solutions to two case problems: (i) the cooling of oceanic lithosphere and (ii) temperatures within subducting slabs. Excel source documents will be made available.

  18. The PAC-MAN model: Benchmark case for linear acoustics in computational physics

    NASA Astrophysics Data System (ADS)

    Ziegelwanger, Harald; Reiter, Paul

    2017-10-01

    Benchmark cases in the field of computational physics, on the one hand, have to contain a certain complexity to test numerical edge cases and, on the other hand, require the existence of an analytical solution, because an analytical solution allows the exact quantification of the accuracy of a numerical simulation method. This dilemma causes a need for analytical sound field formulations of complex acoustic problems. A well known example for such a benchmark case for harmonic linear acoustics is the ;Cat's Eye model;, which describes the three-dimensional sound field radiated from a sphere with a missing octant analytically. In this paper, a benchmark case for two-dimensional (2D) harmonic linear acoustic problems, viz., the ;PAC-MAN model;, is proposed. The PAC-MAN model describes the radiated and scattered sound field around an infinitely long cylinder with a cut out sector of variable angular width. While the analytical calculation of the 2D sound field allows different angular cut-out widths and arbitrarily positioned line sources, the computational cost associated with the solution of this problem is similar to a 1D problem because of a modal formulation of the sound field in the PAC-MAN model.

  19. Regression models for analyzing costs and their determinants in health care: an introductory review.

    PubMed

    Gregori, Dario; Petrinco, Michele; Bo, Simona; Desideri, Alessandro; Merletti, Franco; Pagano, Eva

    2011-06-01

    This article aims to describe the various approaches in multivariable modelling of healthcare costs data and to synthesize the respective criticisms as proposed in the literature. We present regression methods suitable for the analysis of healthcare costs and then apply them to an experimental setting in cardiovascular treatment (COSTAMI study) and an observational setting in diabetes hospital care. We show how methods can produce different results depending on the degree of matching between the underlying assumptions of each method and the specific characteristics of the healthcare problem. The matching of healthcare cost models to the analytic objectives and characteristics of the data available to a study requires caution. The study results and interpretation can be heavily dependent on the choice of model with a real risk of spurious results and conclusions.

  20. Program of policy studies in science and technology

    NASA Technical Reports Server (NTRS)

    Mayo, L. H.

    1973-01-01

    The application of an interdisciplinary, problem-oriented capability to the performance of total social impact evaluations is discussed. The consequences of introducing new configurations, technological or otherwise into future social environments are presented. The primary characteristics of the program are summarized: (1) emphasis on interdisciplinary, problem-oriented analysis; (2) development of intra- and inter-institutional arrangements for the purpose of analyzing social problems, evaluating existing programs, and assessing the social impacts of prospective policies, programs, and other public actions; (3) focus on methodological approaches to the projection of alternative future social environments, the identification of the effects of the introduction of new policies, programs, or other actions into the social system, and the evaluation of the social impacts of such effects; (4) availability of analytical resources for advisory and research tasks, and provision for use of program facilities as a neutral forum for the discussion of public issues involving involving the impact of advancing technology on social value-institutional processes.

  1. Limitless Analytic Elements

    NASA Astrophysics Data System (ADS)

    Strack, O. D. L.

    2018-02-01

    We present equations for new limitless analytic line elements. These elements possess a virtually unlimited number of degrees of freedom. We apply these new limitless analytic elements to head-specified boundaries and to problems with inhomogeneities in hydraulic conductivity. Applications of these new analytic elements to practical problems involving head-specified boundaries require the solution of a very large number of equations. To make the new elements useful in practice, an efficient iterative scheme is required. We present an improved version of the scheme presented by Bandilla et al. (2007), based on the application of Cauchy integrals. The limitless analytic elements are useful when modeling strings of elements, rivers for example, where local conditions are difficult to model, e.g., when a well is close to a river. The solution of such problems is facilitated by increasing the order of the elements to obtain a good solution. This makes it unnecessary to resort to dividing the element in question into many smaller elements to obtain a satisfactory solution.

  2. Researching Mental Health Disorders in the Era of Social Media: Systematic Review

    PubMed Central

    Vadillo, Miguel A; Curcin, Vasa

    2017-01-01

    Background Mental illness is quickly becoming one of the most prevalent public health problems worldwide. Social network platforms, where users can express their emotions, feelings, and thoughts, are a valuable source of data for researching mental health, and techniques based on machine learning are increasingly used for this purpose. Objective The objective of this review was to explore the scope and limits of cutting-edge techniques that researchers are using for predictive analytics in mental health and to review associated issues, such as ethical concerns, in this area of research. Methods We performed a systematic literature review in March 2017, using keywords to search articles on data mining of social network data in the context of common mental health disorders, published between 2010 and March 8, 2017 in medical and computer science journals. Results The initial search returned a total of 5386 articles. Following a careful analysis of the titles, abstracts, and main texts, we selected 48 articles for review. We coded the articles according to key characteristics, techniques used for data collection, data preprocessing, feature extraction, feature selection, model construction, and model verification. The most common analytical method was text analysis, with several studies using different flavors of image analysis and social interaction graph analysis. Conclusions Despite an increasing number of studies investigating mental health issues using social network data, some common problems persist. Assembling large, high-quality datasets of social media users with mental disorder is problematic, not only due to biases associated with the collection methods, but also with regard to managing consent and selecting appropriate analytics techniques. PMID:28663166

  3. Distribution of velocities and acceleration for a particle in Brownian correlated disorder: Inertial case

    NASA Astrophysics Data System (ADS)

    Le Doussal, Pierre; Petković, Aleksandra; Wiese, Kay Jörg

    2012-06-01

    We study the motion of an elastic object driven in a disordered environment in presence of both dissipation and inertia. We consider random forces with the statistics of random walks and reduce the problem to a single degree of freedom. It is the extension of the mean-field Alessandro-Beatrice- Bertotti-Montorsi (ABBM) model in presence of an inertial mass m. While the ABBM model can be solved exactly, its extension to inertia exhibits complicated history dependence due to oscillations and backward motion. The characteristic scales for avalanche motion are studied from numerics and qualitative arguments. To make analytical progress, we consider two variants which coincide with the original model whenever the particle moves only forward. Using a combination of analytical and numerical methods together with simulations, we characterize the distributions of instantaneous acceleration and velocity, and compare them in these three models. We show that for large driving velocity, all three models share the same large-deviation function for positive velocities, which is obtained analytically for small and large m, as well as for m=6/25. The effect of small additional thermal and quantum fluctuations can be treated within an approximate method.

  4. An overview of the environmental applicability of vermicompost: from wastewater treatment to the development of sensitive analytical methods.

    PubMed

    Pereira, Madson de Godoi; Neta, Lourdes Cardoso de Souza; Fontes, Maurício Paulo Ferreira; Souza, Adriana Nascimento; Matos, Thaionara Carvalho; Sachdev, Raquel de Lima; dos Santos, Arnaud Victor; da Guarda Souza, Marluce Oliveira; de Andrade, Marta Valéria Almeida Santana; Paulo, Gabriela Marinho Maciel; Ribeiro, Joselito Nardy; Ribeiro, Araceli Verónica Flores Nardy

    2014-01-01

    The use of vermicompost (humified material) for treating wastewaters, remediating polluted soils, improving agricultural productivity, protecting crop production, and developing sensitive analytical methods is reviewed here, covering the past 17 years. The main advantages of vermicompost, considering all applications covered in this paper, comprise (i) easy acquisition, (ii) low costs, (iii) structural, chemical, and biological characteristics responsible for exceptional adsorptive capacities as well as pollutant degradation, and (iv) the promotion of biocontrol. Specifically, for wastewater decontamination, a considerable number of works have verified the adsorption of toxic metals, but the application of vermicompost is still scarce for the retention of organic compounds. Problems related to the final disposal of enriched vermicompost (after treatment steps) are often found, in spite of some successful destinations such as organic fertilizer. For decontaminating soils, the use of vermicompost is quite scarce, mainly for inorganic pollutants. In agricultural productivity and biocontrol, vermicompost imparts remarkable benefits regarding soil aggregation, plant nutrition, and the development of beneficial microorganisms against phytopathogens. Finally, the use of vermicompost in sensitive analytical methods for quantifying toxic metals is the newest application of this adsorbent.

  5. Computing Platforms for Big Biological Data Analytics: Perspectives and Challenges.

    PubMed

    Yin, Zekun; Lan, Haidong; Tan, Guangming; Lu, Mian; Vasilakos, Athanasios V; Liu, Weiguo

    2017-01-01

    The last decade has witnessed an explosion in the amount of available biological sequence data, due to the rapid progress of high-throughput sequencing projects. However, the biological data amount is becoming so great that traditional data analysis platforms and methods can no longer meet the need to rapidly perform data analysis tasks in life sciences. As a result, both biologists and computer scientists are facing the challenge of gaining a profound insight into the deepest biological functions from big biological data. This in turn requires massive computational resources. Therefore, high performance computing (HPC) platforms are highly needed as well as efficient and scalable algorithms that can take advantage of these platforms. In this paper, we survey the state-of-the-art HPC platforms for big biological data analytics. We first list the characteristics of big biological data and popular computing platforms. Then we provide a taxonomy of different biological data analysis applications and a survey of the way they have been mapped onto various computing platforms. After that, we present a case study to compare the efficiency of different computing platforms for handling the classical biological sequence alignment problem. At last we discuss the open issues in big biological data analytics.

  6. Big Data Analytics for Demand Response: Clustering Over Space and Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chelmis, Charalampos; Kolte, Jahanvi; Prasanna, Viktor K.

    The pervasive deployment of advanced sensing infrastructure in Cyber-Physical systems, such as the Smart Grid, has resulted in an unprecedented data explosion. Such data exhibit both large volumes and high velocity characteristics, two of the three pillars of Big Data, and have a time-series notion as datasets in this context typically consist of successive measurements made over a time interval. Time-series data can be valuable for data mining and analytics tasks such as identifying the “right” customers among a diverse population, to target for Demand Response programs. However, time series are challenging to mine due to their high dimensionality. Inmore » this paper, we motivate this problem using a real application from the smart grid domain. We explore novel representations of time-series data for BigData analytics, and propose a clustering technique for determining natural segmentation of customers and identification of temporal consumption patterns. Our method is generizable to large-scale, real-world scenarios, without making any assumptions about the data. We evaluate our technique using real datasets from smart meters, totaling ~ 18,200,000 data points, and show the efficacy of our technique in efficiency detecting the number of optimal number of clusters.« less

  7. An Overview of the Environmental Applicability of Vermicompost: From Wastewater Treatment to the Development of Sensitive Analytical Methods

    PubMed Central

    Pereira, Madson de Godoi; Cardoso de Souza Neta, Lourdes; Fontes, Maurício Paulo Ferreira; Souza, Adriana Nascimento; Carvalho Matos, Thaionara; de Lima Sachdev, Raquel; dos Santos, Arnaud Victor; Oliveira da Guarda Souza, Marluce; de Andrade, Marta Valéria Almeida Santana; Marinho Maciel Paulo, Gabriela; Ribeiro, Joselito Nardy; Verónica Flores Nardy Ribeiro, Araceli

    2014-01-01

    The use of vermicompost (humified material) for treating wastewaters, remediating polluted soils, improving agricultural productivity, protecting crop production, and developing sensitive analytical methods is reviewed here, covering the past 17 years. The main advantages of vermicompost, considering all applications covered in this paper, comprise (i) easy acquisition, (ii) low costs, (iii) structural, chemical, and biological characteristics responsible for exceptional adsorptive capacities as well as pollutant degradation, and (iv) the promotion of biocontrol. Specifically, for wastewater decontamination, a considerable number of works have verified the adsorption of toxic metals, but the application of vermicompost is still scarce for the retention of organic compounds. Problems related to the final disposal of enriched vermicompost (after treatment steps) are often found, in spite of some successful destinations such as organic fertilizer. For decontaminating soils, the use of vermicompost is quite scarce, mainly for inorganic pollutants. In agricultural productivity and biocontrol, vermicompost imparts remarkable benefits regarding soil aggregation, plant nutrition, and the development of beneficial microorganisms against phytopathogens. Finally, the use of vermicompost in sensitive analytical methods for quantifying toxic metals is the newest application of this adsorbent. PMID:24578668

  8. Photoplasma of optically excited metal vapors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezuglov, N.N.; Llyucharev, A.N.; Stacewicz, T.

    1994-09-01

    A wide range of questions associated with various aspects of photoplasma physics is considered. A comprehensive analysis of processes of optical excitation and de-excitation depending on optical characteristics of an absorbing gas medium is given. Analytical methods used for determining the excitation degree of photoresonance plasma in conditions of resonance radiation transfer are described. The accuracy of the Biberman approximation for effective lifetimes in population kinetics of resonance plasma states is analyzed for many experimental conditions. A detailed discussion of primary ionization mechanisms in photoplasma is given; the kinetics of ionization processes is discussed; and systematization of various types ofmore » photoresonance plasma is presented. Basis aspects of the LIBORS model, which is widely used for studying ionization kinetics of laser photoresonance plasma, and its limitations are considered. An ingenious method used to analytically solve a class of decay-type nonlinear problems, which arise for the capture equation in the case of noticeable saturation of a resonance transition by a short laser pulse, is described. A reliable quantitative description of fluorescence decay curve peculiarities that are associated with the bleaching of gases at resonance line frequencies can be obtained by this method. Some possible applications of photoplasma in problems of optics and spectroscopy are considered. 75 refs., 24 figs., 1 tab.« less

  9. Electron Beam Melting and Refining of Metals: Computational Modeling and Optimization

    PubMed Central

    Vutova, Katia; Donchev, Veliko

    2013-01-01

    Computational modeling offers an opportunity for a better understanding and investigation of thermal transfer mechanisms. It can be used for the optimization of the electron beam melting process and for obtaining new materials with improved characteristics that have many applications in the power industry, medicine, instrument engineering, electronics, etc. A time-dependent 3D axis-symmetrical heat model for simulation of thermal transfer in metal ingots solidified in a water-cooled crucible at electron beam melting and refining (EBMR) is developed. The model predicts the change in the temperature field in the casting ingot during the interaction of the beam with the material. A modified Pismen-Rekford numerical scheme to discretize the analytical model is developed. These equation systems, describing the thermal processes and main characteristics of the developed numerical method, are presented. In order to optimize the technological regimes, different criteria for better refinement and obtaining dendrite crystal structures are proposed. Analytical problems of mathematical optimization are formulated, discretized and heuristically solved by cluster methods. Using important for the practice simulation results, suggestions can be made for EBMR technology optimization. The proposed tool is important and useful for studying, control, optimization of EBMR process parameters and improving of the quality of the newly produced materials. PMID:28788351

  10. Analytical study of sandwich structures using Euler-Bernoulli beam equation

    NASA Astrophysics Data System (ADS)

    Xue, Hui; Khawaja, H.

    2017-01-01

    This paper presents an analytical study of sandwich structures. In this study, the Euler-Bernoulli beam equation is solved analytically for a four-point bending problem. Appropriate initial and boundary conditions are specified to enclose the problem. In addition, the balance coefficient is calculated and the Rule of Mixtures is applied. The focus of this study is to determine the effective material properties and geometric features such as the moment of inertia of a sandwich beam. The effective parameters help in the development of a generic analytical correlation for complex sandwich structures from the perspective of four-point bending calculations. The main outcomes of these analytical calculations are the lateral displacements and longitudinal stresses for each particular material in the sandwich structure.

  11. Approximate analytical description of the elastic strain field due to an inclusion in a continuous medium with cubic anisotropy

    NASA Astrophysics Data System (ADS)

    Nenashev, A. V.; Koshkarev, A. A.; Dvurechenskii, A. V.

    2018-03-01

    We suggest an approach to the analytical calculation of the strain distribution due to an inclusion in elastically anisotropic media for the case of cubic anisotropy. The idea consists in the approximate reduction of the anisotropic problem to a (simpler) isotropic problem. This gives, for typical semiconductors, an improvement in accuracy by an order of magnitude, compared to the isotropic approximation. Our method allows using, in the case of elastically anisotropic media, analytical solutions obtained for isotropic media only, such as analytical formulas for the strain due to polyhedral inclusions. The present work substantially extends the applicability of analytical results, making them more suitable for describing real systems, such as epitaxial quantum dots.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, D.W.; Heinrich, R.R.; Jensen, K.J.

    The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques. The purpose of this report is to summarize the technical and administrative activities of the Analytical Chemistry Laboratory (ACL) atmore » Argonne National Laboratory (ANL) for Fiscal Year 1985 (October 1984 through September 1985). This is the second annual report for the ACL. 4 figs., 1 tab.« less

  13. Analytical Chemistry Laboratory. Progress report for FY 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1996. This annual report is the thirteenth for the ACL. It describes effort on continuing and new projects and contributions of the ACL staff to various programs at ANL. The ACL operates in the ANL system as a full-cost-recovery service center, but has a mission that includes a complementary research and development component: The Analytical Chemistry Laboratory will provide high-quality, cost-effective chemical analysis and related technical support to solve research problems of our clients --more » Argonne National Laboratory, the Department of Energy, and others -- and will conduct world-class research and development in analytical chemistry and its applications. Because of the diversity of research and development work at ANL, the ACL handles a wide range of analytical chemistry problems. Some routine or standard analyses are done, but the ACL usually works with commercial laboratories if our clients require high-volume, production-type analyses. It is common for ANL programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. Thus, much of the support work done by the ACL is very similar to our applied analytical chemistry research.« less

  14. AN ACCURATE AND EFFICIENT ALGORITHM FOR NUMERICAL SIMULATION OF CONDUCTION-TYPE PROBLEMS. (R824801)

    EPA Science Inventory

    Abstract

    A modification of the finite analytic numerical method for conduction-type (diffusion) problems is presented. The finite analytic discretization scheme is derived by means of the Fourier series expansion for the most general case of nonuniform grid and variabl...

  15. Fluid mechanics of dynamic stall. II - Prediction of full scale characteristics

    NASA Technical Reports Server (NTRS)

    Ericsson, L. E.; Reding, J. P.

    1988-01-01

    Analytical extrapolations are made from experimental subscale dynamics to predict full scale characteristics of dynamic stall. The method proceeds by establishing analytic relationships between dynamic and static aerodynamic characteristics induced by viscous flow effects. The method is then validated by predicting dynamic test results on the basis of corresponding static test data obtained at the same subscale flow conditions, and the effect of Reynolds number on the static aerodynamic characteristics are determined from subscale to full scale flow conditions.

  16. Differential homogeneous immunosensor device

    DOEpatents

    Malmros, Mark K.; Gulbinski, III, Julian

    1990-04-10

    There is provided a novel method of testing for the presence of an analyte in a fluid suspected of containing the same. In this method, in the presence of the analyte, a substance capable of modifying certain characteristics of the substrate is bound to the substrate and the change in these qualities is measured. While the method may be modified for carrying out quantitative differential analyses, it eliminates the need for washing analyte from the substrate which is characteristic of prior art methods.

  17. Exact analytical solution of a classical Josephson tunnel junction problem

    NASA Astrophysics Data System (ADS)

    Kuplevakhsky, S. V.; Glukhov, A. M.

    2010-10-01

    We give an exact and complete analytical solution of the classical problem of a Josephson tunnel junction of arbitrary length W ɛ(0,∞) in the presence of external magnetic fields and transport currents. Contrary to a wide-spread belief, the exact analytical solution unambiguously proves that there is no qualitative difference between so-called "small" (W≪1) and "large" junctions (W≫1). Another unexpected physical implication of the exact analytical solution is the existence (in the current-carrying state) of unquantized Josephson vortices carrying fractional flux and located near one of the edges of the junction. We also refine the mathematical definition of critical transport current.

  18. Transient well flow in leaky multiple-aquifer systems

    NASA Astrophysics Data System (ADS)

    Hemker, C. J.

    1985-10-01

    A previously developed eigenvalue analysis approach to groundwater flow in leaky multiple aquifers is used to derive exact solutions for transient well flow problems in leaky and confined systems comprising any number of aquifers. Equations are presented for the drawdown distribution in systems of infinite extent, caused by wells penetrating one or more of the aquifers completely and discharging each layer at a constant rate. Since the solution obtained may be regarded as a combined analytical-numerical technique, a type of one-dimensional modelling can be applied to find approximate solutions for several complicating conditions. Numerical evaluations are presented as time-drawdown curves and include effects of storage in the aquitard, unconfined conditions, partially penetrating wells and stratified aquifers. The outcome of calculations for relatively simple systems compares very well with published corresponding results. The proposed multilayer solution can be a valuable tool in aquifer test evaluation, as it provides the analytical expression required to enable the application of existing computer methods to the determination of aquifer characteristics.

  19. Analytical and numerical solutions for mass diffusion in a composite cylindrical body

    NASA Astrophysics Data System (ADS)

    Kumar, A.

    1980-12-01

    The analytical and numerical solution techniques were investigated to study moisture diffusion problems in cylindrical bodies that are assumed to be composed of a finite number of layers of different materials. A generalized diffusion model for an n-layer cylindrical body with discontinuous moisture content at the interfaces was developed and the formal solutions were obtained. The model is to be used for describing mass transfer rates of any composite body, such as an ear of corn which could be assumed of consisting two different layers: the inner core represents the woody cob and the outer cylinder represents the kernel layer. Data describing the fully exposed drying characteristics of ear corn at high air velocity were obtained under different drying conditions. Ear corns were modeled as homogeneous bodies since composite model did not improve the fit substantially. A computer program using multidimensional optimization technique showed that diffusivity was an exponential function of moisture content and an arrhenius function of temperature of drying air.

  20. Hill Problem Analytical Theory to the Order Four. Application to the Computation of Frozen Orbits around Planetary Satellites

    NASA Technical Reports Server (NTRS)

    Lara, Martin; Palacian, Jesus F.

    2007-01-01

    Frozen orbits of the Hill problem are determined in the double averaged problem, where short and long period terms are removed by means of Lie transforms. The computation of initial conditions of corresponding quasi periodic solutions in the non-averaged problem is straightforward for the perturbation method used provides the explicit equations of the transformation that connects the averaged and non-averaged models. A fourth order analytical theory reveals necessary for the accurate computation of quasi periodic, frozen orbits.

  1. Dispersive distortions of a radio-wave pulse in a double-resonance gaseous medium

    NASA Astrophysics Data System (ADS)

    Strelkov, G. M.

    2017-03-01

    The problem on dispersive distortions of an electromagnetic pulse in a gaseous medium with two isolated resonant frequencies is solved analytically. The solution is obtained directly in the time region and, thus, is not the result of calculations of the Fourier integral. Without introducing additional assumptions, it is possible to study the regularities and the features of the process of propagation of pulses caused by variations of both their initial characteristics and the parameters of the propagation medium. As an example, the solution is applied to describe the distortions of the two-frequency pulse of subnanosecond duration in the terrestrial atmosphere.

  2. Non-universal critical exponents in earthquake complex networks

    NASA Astrophysics Data System (ADS)

    Pastén, Denisse; Torres, Felipe; Toledo, Benjamín A.; Muñoz, Víctor; Rogan, José; Valdivia, Juan Alejandro

    2018-02-01

    The problem of universality of critical exponents in complex networks is studied based on networks built from seismic data sets. Using two data sets corresponding to Chilean seismicity (northern zone, including the 2014 Mw = 8 . 2 earthquake in Iquique; and central zone without major earthquakes), directed networks for each set are constructed. Connectivity and betweenness centrality distributions are calculated and found to be scale-free, with respective exponents γ and δ. The expected relation between both characteristic exponents, δ >(γ + 1) / 2, is verified for both data sets. However, unlike the expectation for certain scale-free analytical complex networks, the value of δ is found to be non-universal.

  3. Differential homogeneous immunosensor device

    DOEpatents

    Malmros, M.K.; Gulbinski, J. III.

    1990-04-10

    There is provided a novel method of testing for the presence of an analyte in a fluid suspected of containing the same. In this method, in the presence of the analyte, a substance capable of modifying certain characteristics of the substrate is bound to the substrate and the change in these qualities is measured. While the method may be modified for carrying out quantitative differential analyses, it eliminates the need for washing the analyte from the substrate which is characteristic of prior art methods. 12 figs.

  4. Random Forest as a Predictive Analytics Alternative to Regression in Institutional Research

    ERIC Educational Resources Information Center

    He, Lingjun; Levine, Richard A.; Fan, Juanjuan; Beemer, Joshua; Stronach, Jeanne

    2018-01-01

    In institutional research, modern data mining approaches are seldom considered to address predictive analytics problems. The goal of this paper is to highlight the advantages of tree-based machine learning algorithms over classic (logistic) regression methods for data-informed decision making in higher education problems, and stress the success of…

  5. Intimacy Is a Transdiagnostic Problem for Cognitive Behavior Therapy: Functional Analytical Psychotherapy Is a Solution

    ERIC Educational Resources Information Center

    Wetterneck, Chad T.; Hart, John M.

    2012-01-01

    Problems with intimacy and interpersonal issues are exhibited across most psychiatric disorders. However, most of the targets in Cognitive Behavioral Therapy are primarily intrapersonal in nature, with few directly involved in interpersonal functioning and effective intimacy. Functional Analytic Psychotherapy (FAP) provides a behavioral basis for…

  6. Big Data Analytics with Datalog Queries on Spark.

    PubMed

    Shkapsky, Alexander; Yang, Mohan; Interlandi, Matteo; Chiu, Hsuan; Condie, Tyson; Zaniolo, Carlo

    2016-01-01

    There is great interest in exploiting the opportunity provided by cloud computing platforms for large-scale analytics. Among these platforms, Apache Spark is growing in popularity for machine learning and graph analytics. Developing efficient complex analytics in Spark requires deep understanding of both the algorithm at hand and the Spark API or subsystem APIs (e.g., Spark SQL, GraphX). Our BigDatalog system addresses the problem by providing concise declarative specification of complex queries amenable to efficient evaluation. Towards this goal, we propose compilation and optimization techniques that tackle the important problem of efficiently supporting recursion in Spark. We perform an experimental comparison with other state-of-the-art large-scale Datalog systems and verify the efficacy of our techniques and effectiveness of Spark in supporting Datalog-based analytics.

  7. Big Data Analytics with Datalog Queries on Spark

    PubMed Central

    Shkapsky, Alexander; Yang, Mohan; Interlandi, Matteo; Chiu, Hsuan; Condie, Tyson; Zaniolo, Carlo

    2017-01-01

    There is great interest in exploiting the opportunity provided by cloud computing platforms for large-scale analytics. Among these platforms, Apache Spark is growing in popularity for machine learning and graph analytics. Developing efficient complex analytics in Spark requires deep understanding of both the algorithm at hand and the Spark API or subsystem APIs (e.g., Spark SQL, GraphX). Our BigDatalog system addresses the problem by providing concise declarative specification of complex queries amenable to efficient evaluation. Towards this goal, we propose compilation and optimization techniques that tackle the important problem of efficiently supporting recursion in Spark. We perform an experimental comparison with other state-of-the-art large-scale Datalog systems and verify the efficacy of our techniques and effectiveness of Spark in supporting Datalog-based analytics. PMID:28626296

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    Here, the one-dimensional water faucet problem is one of the classical benchmark problems originally proposed by Ransom to study the two-fluid two-phase flow model. With certain simplifications, such as massless gas phase and no wall and interfacial frictions, analytical solutions had been previously obtained for the transient liquid velocity and void fraction distribution. The water faucet problem and its analytical solutions have been widely used for the purposes of code assessment, benchmark and numerical verifications. In our previous study, the Ransom’s solutions were used for the mesh convergence study of a high-resolution spatial discretization scheme. It was found that, atmore » the steady state, an anticipated second-order spatial accuracy could not be achieved, when compared to the existing Ransom’s analytical solutions. A further investigation showed that the existing analytical solutions do not actually satisfy the commonly used two-fluid single-pressure two-phase flow equations. In this work, we present a new set of analytical solutions of the water faucet problem at the steady state, considering the gas phase density’s effect on pressure distribution. This new set of analytical solutions are used for mesh convergence studies, from which anticipated second-order of accuracy is achieved for the 2nd order spatial discretization scheme. In addition, extended Ransom’s transient solutions for the gas phase velocity and pressure are derived, with the assumption of decoupled liquid and gas pressures. Numerical verifications on the extended Ransom’s solutions are also presented.« less

  9. Analytic Formulation and Numerical Implementation of an Acoustic Pressure Gradient Prediction

    NASA Technical Reports Server (NTRS)

    Lee, Seongkyu; Brentner, Kenneth S.; Farassat, F.; Morris, Philip J.

    2008-01-01

    Two new analytical formulations of the acoustic pressure gradient have been developed and implemented in the PSU-WOPWOP rotor noise prediction code. The pressure gradient can be used to solve the boundary condition for scattering problems and it is a key aspect to solve acoustic scattering problems. The first formulation is derived from the gradient of the Ffowcs Williams-Hawkings (FW-H) equation. This formulation has a form involving the observer time differentiation outside the integrals. In the second formulation, the time differentiation is taken inside the integrals analytically. This formulation avoids the numerical time differentiation with respect to the observer time, which is computationally more efficient. The acoustic pressure gradient predicted by these new formulations is validated through comparison with available exact solutions for a stationary and moving monopole sources. The agreement between the predictions and exact solutions is excellent. The formulations are applied to the rotor noise problems for two model rotors. A purely numerical approach is compared with the analytical formulations. The agreement between the analytical formulations and the numerical method is excellent for both stationary and moving observer cases.

  10. [Working conditions for supermarket employees: from experimental data to best practices].

    PubMed

    Martellotta, Francesco; Della Crociata, Sabrina; Simone, Antonio; Calderoni, Leonardo; D'Alba, Michele; Cervellati, Massimo; Papapietro, Nunzio

    2014-07-15

    Thermal, acoustic and visual comfort conditions for hypermarket workers have never been investigated with scientific methods. taking advantage of a case study, with characteristics capable of generalizing the results, analytically measure the actual comfort conditions to which workers are exposed and point out possible ameliorative proposals. Carry out a detailed survey based on instrumental measurements combined with subjective questionnaires to assess the indoor environment. Even though the analysis pointed out no significant risk conditions, several smaller problems appeared in terms of local discomfort (such as cold limbs, higher sound level exposure, limited glare phenomena) for cashier workers. The origin of these problems appeared to be the pivotal position of the cash registers. Taking into account observed phenomena and their causes a list of "best practices" has been defined hoping that their adoption could further limit any impact on workers comfort conditions.

  11. DROMO formulation for planar motions: solution to the Tsien problem

    NASA Astrophysics Data System (ADS)

    Urrutxua, Hodei; Morante, David; Sanjurjo-Rivo, Manuel; Peláez, Jesús

    2015-06-01

    The two-body problem subject to a constant radial thrust is analyzed as a planar motion. The description of the problem is performed in terms of three perturbation methods: DROMO and two others due to Deprit. All of them rely on Hansen's ideal frame concept. An explicit, analytic, closed-form solution is obtained for this problem when the initial orbit is circular (Tsien problem), based on the DROMO special perturbation method, and expressed in terms of elliptic integral functions. The analytical solution to the Tsien problem is later used as a reference to test the numerical performance of various orbit propagation methods, including DROMO and Deprit methods, as well as Cowell and Kustaanheimo-Stiefel methods.

  12. Exact solution for an optimal impermeable parachute problem

    NASA Astrophysics Data System (ADS)

    Lupu, Mircea; Scheiber, Ernest

    2002-10-01

    In the paper there are solved direct and inverse boundary problems and analytical solutions are obtained for optimization problems in the case of some nonlinear integral operators. It is modeled the plane potential flow of an inviscid, incompressible and nonlimited fluid jet, witch encounters a symmetrical, curvilinear obstacle--the deflector of maximal drag. There are derived integral singular equations, for direct and inverse problems and the movement in the auxiliary canonical half-plane is obtained. Next, the optimization problem is solved in an analytical manner. The design of the optimal airfoil is performed and finally, numerical computations concerning the drag coefficient and other geometrical and aerodynamical parameters are carried out. This model corresponds to the Helmholtz impermeable parachute problem.

  13. Comparative study of engineering properties of two-lime waste tire particle soil and soil with lime/loess ratio of 3:7

    NASA Astrophysics Data System (ADS)

    Tiecheng, Yan; Xingyuan, Zhang; Hongping, Yang

    2018-03-01

    This study describes an analytical comparison of the engineering characteristics of two-lime waste tire particle soil and soil with lime/loess ratio of 3:7 using density measurements, results of indoor consolidation tests, and direct shear tests to examine the strength and deformation characteristics. It investigates the engineering performance of collapsible loess treated with waste tire particles and lime. The results indicate that (1) the shear strength of the two-lime waste tire particle soils increases continuously with soil age; and (2) the two-lime waste tire particle soils are light-weight, strong, and low-deformation soils, and can be applied primarily to improve the foundation soil conditions in areas with collapsible loess soils. This could address the problem of used tire disposal, while providing a new method to consider and manage collapsible loess soils.

  14. Heat Transfer Characteristics of Mixed Electroosmotic and Pressure Driven Micro-Flows

    NASA Astrophysics Data System (ADS)

    Horiuchi, Keisuke; Dutta, Prashanta

    We analyze heat transfer characteristics of steady electroosmotic flows with an arbitrary pressure gradient in two-dimensional straight microchannels considering the effects of Joule heating in electroosmotic pumping. Both the temperature distribution and local Nusselt number are mathematically derived in this study. The thermal analysis takes into consideration of the interaction among advective, diffusive, and Joule heating terms to obtain the thermally developing behavior. Unlike macro-scale pipes, axial conduction in micro-scale cannot be negligible, and the governing energy equation is not separable. Thus, a method that considers an extended Graetz problem is introduced. Analytical results show that the Nusselt number of pure electrooosmotic flow is higher than that of plane Poiseulle flow. Moreover, when the electroosmotic flow and pressure driven flow coexist, it is found that adverse pressure gradient to the electroosmotic flow makes the thermal entrance length smaller and the heat transfer ability stronger than pure electroosmotic flow case.

  15. a New Golf-Swing Robot Model Utilizing Shaft Elasticity

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Inooka, H.

    1998-10-01

    The performance of golf clubs and balls is generally evaluated by using golf-swing robots that conventionally have two or three joints with completely interrelated motion. This interrelation allows the user of this robot to specify only the initial posture and swing velocity of the robot and therefore the swing motion of this type of robot cannot be subtly adjusted to the specific characteristics of individual golf clubs. Consequently, golf-swing robots cannot accurately emulate advanced golfers, and this causes serious problems for the evaluation of golf club performance. In this study, a new golf-swing robot that can adjust its motion to both a specified value of swing velocity and the specific characteristics of individual golf clubs was analytically investigated. This robot utilizes the dynamic interference force produced by its swing motion and by shaft vibration and can therefore emulate advanced golfers and perform highly reliable evaluations of golf clubs.

  16. Non-linear vibrating systems excited by a nonideal energy source with a large slope characteristic

    NASA Astrophysics Data System (ADS)

    González-Carbajal, Javier; Domínguez, Jaime

    2017-11-01

    This paper revisits the problem of an unbalanced motor attached to a fixed frame by means of a nonlinear spring and a linear damper. The excitation provided by the motor is, in general, nonideal, which means it is affected by the vibratory response. Since the system behaviour is highly dependent on the order of magnitude of the motor characteristic slope, the case of large slope is considered herein. Some Perturbation Methods are applied to the system of equations, which allows transforming the original 4D system into a much simpler 2D system. The fixed points of this reduced system and their stability are carefully studied. We find the existence of a Hopf bifurcation which, to the authors' knowledge, has not been addressed before in the literature. These analytical results are supported by numerical simulations. We also compare our approach and results with those published by other authors.

  17. A simplified model for the determination of current-voltage characteristics of a high pressure hydrogen plasma arc

    NASA Astrophysics Data System (ADS)

    Gueye, P.; Cressault, Y.; Rohani, V.; Fulcheri, L.

    2017-02-01

    This paper focuses on the modeling of a hydrogen arc column at very high pressure (20 bar). The problem is solved from Elenbaas-Heller equation where the radiation is carefully considered with the net emission coefficient. The absorption spectrum requires the integration of background continuum, molecular bands, and line spectra. This work directly aims to predict the electric current-voltage characteristics which is key for the design of new processes. We propose also a new analytic solution which generalizes the channel model of electric arc to the case when the volume radiation makes a significant contribution to the energy balance. The presented formalism allows a better determination of the plasma thickness parameter Rp for net emission coefficient method in cylindrical arcs and gives satisfactory results in comparison to earlier experimental works on high pressure hydrogen plasma.

  18. Analytical stability criteria for the Caledonian Symmetric Four and Five Body Problems

    NASA Astrophysics Data System (ADS)

    Steves, Bonnie; Shoaib Afridi, Mohammad; Sweatman, Winston

    2017-06-01

    Analytical studies of the stability of three or more body gravitational systems are difficult because of the greater number of variables involved with the increasing number of bodies and the limitation of 10 integrals that exist in the gravitational n-body problem. Utilisation of symmetries or the neglecting of the masses of some of the bodies compared to others can simplify the dynamical problem and enable global analytical stability solutions to be derived. These symmetric and restricted few body systems with their analytical stability criterion can then provide useful information on the stability of the general few body system when near symmetry or the restricted situation. Even with symmetrical reductions, analytical stability derivations for four and five body problems are rare. In this paper, we develop an analytical stability criterion for the Caledonian Symmetric Five Body Problem (CS5BP) , a dynamically symmetrical planar problem with two pairs of equal masses and a fifth mass located at the centre of mass. Sundman’s inequality is applied to derive boundary surfaces to the allowed real motion of the system. This enables the derivation of a stability criterion valid for all time for the hierarchical stability of the CS5BP and its subset the Caledonian Symmetric Four Body Problem (CSFBP), where the central mass is taken to be equal to zero. We show that the hierarchical stability depends solely on the Szebehely constant C0, which is a function of the total energy H and angular momentum c. The critical value Ccrit at which the system becomes hierarchically stable for all time depends only on the two mass ratios of the symmetric five body system. We then explore the effect on the stability of the whole system of adding an increasing massive central body. It is shown both analytically and numerically that all CS5BPs and CSFBPs of different mass ratios are hierarchically stable if C0 > 0.0659 and C0 > 0.0465, respectively. The Caledonian Symmetric Four and Five Body gravitational models are relevant to the study of the stability and evolution of symmetric quadruple/quintuple stellar clusters and symmetric exoplanetary systems of two planets orbiting a binary/triplet of stars.

  19. Statistically Qualified Neuro-Analytic system and Method for Process Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilim, Richard B.; Garcia, Humberto E.; Chen, Frederick W.

    1998-11-04

    An apparatus and method for monitoring a process involves development and application of a statistically qualified neuro-analytic (SQNA) model to accurately and reliably identify process change. The development of the SQNA model is accomplished in two steps: deterministic model adaption and stochastic model adaptation. Deterministic model adaption involves formulating an analytic model of the process representing known process characteristics,augmenting the analytic model with a neural network that captures unknown process characteristics, and training the resulting neuro-analytic model by adjusting the neural network weights according to a unique scaled equation emor minimization technique. Stochastic model adaptation involves qualifying any remaining uncertaintymore » in the trained neuro-analytic model by formulating a likelihood function, given an error propagation equation, for computing the probability that the neuro-analytic model generates measured process output. Preferably, the developed SQNA model is validated using known sequential probability ratio tests and applied to the process as an on-line monitoring system.« less

  20. An analytically iterative method for solving problems of cosmic-ray modulation

    NASA Astrophysics Data System (ADS)

    Kolesnyk, Yuriy L.; Bobik, Pavol; Shakhov, Boris A.; Putis, Marian

    2017-09-01

    The development of an analytically iterative method for solving steady-state as well as unsteady-state problems of cosmic-ray (CR) modulation is proposed. Iterations for obtaining the solutions are constructed for the spherically symmetric form of the CR propagation equation. The main solution of the considered problem consists of the zero-order solution that is obtained during the initial iteration and amendments that may be obtained by subsequent iterations. The finding of the zero-order solution is based on the CR isotropy during propagation in the space, whereas the anisotropy is taken into account when finding the next amendments. To begin with, the method is applied to solve the problem of CR modulation where the diffusion coefficient κ and the solar wind speed u are constants with an Local Interstellar Spectra (LIS) spectrum. The solution obtained with two iterations was compared with an analytical solution and with numerical solutions. Finally, solutions that have only one iteration for two problems of CR modulation with u = constant and the same form of LIS spectrum were obtained and tested against numerical solutions. For the first problem, κ is proportional to the momentum of the particle p, so it has the form κ = k0η, where η =p/m_0c. For the second problem, the diffusion coefficient is given in the form κ = k0βη, where β =v/c is the particle speed relative to the speed of light. There was a good matching of the obtained solutions with the numerical solutions as well as with the analytical solution for the problem where κ = constant.

  1. Numerical and analytical approaches to an advection-diffusion problem at small Reynolds number and large Péclet number

    NASA Astrophysics Data System (ADS)

    Fuller, Nathaniel J.; Licata, Nicholas A.

    2018-05-01

    Obtaining a detailed understanding of the physical interactions between a cell and its environment often requires information about the flow of fluid surrounding the cell. Cells must be able to effectively absorb and discard material in order to survive. Strategies for nutrient acquisition and toxin disposal, which have been evolutionarily selected for their efficacy, should reflect knowledge of the physics underlying this mass transport problem. Motivated by these considerations, in this paper we discuss the results from an undergraduate research project on the advection-diffusion equation at small Reynolds number and large Péclet number. In particular, we consider the problem of mass transport for a Stokesian spherical swimmer. We approach the problem numerically and analytically through a rescaling of the concentration boundary layer. A biophysically motivated first-passage problem for the absorption of material by the swimming cell demonstrates quantitative agreement between the numerical and analytical approaches. We conclude by discussing the connections between our results and the design of smart toxin disposal systems.

  2. Impulsive-Analytic Disposition in Mathematical Problem Solving: A Survey and a Mathematics Test

    ERIC Educational Resources Information Center

    Lim, Kien H.; Wagler, Amy

    2012-01-01

    The Likelihood-to-Act (LtA) survey and a mathematics test were used in this study to assess students' impulsive-analytic disposition in the context of mathematical problem solving. The results obtained from these two instruments were compared to those obtained using two widely-used scales: Need for Cognition (NFC) and Barratt Impulsivity Scale…

  3. Student Learning and Evaluation in Analytical Chemistry Using a Problem-Oriented Approach and Portfolio Assessment

    ERIC Educational Resources Information Center

    Boyce, Mary C.; Singh, Kuki

    2008-01-01

    This paper describes a student-focused activity that promotes effective learning in analytical chemistry. Providing an environment where students were responsible for their own learning allowed them to participate at all levels from designing the problem to be addressed, planning the laboratory work to support their learning, to providing evidence…

  4. Similarity solution of the Boussinesq equation

    NASA Astrophysics Data System (ADS)

    Lockington, D. A.; Parlange, J.-Y.; Parlange, M. B.; Selker, J.

    Similarity transforms of the Boussinesq equation in a semi-infinite medium are available when the boundary conditions are a power of time. The Boussinesq equation is reduced from a partial differential equation to a boundary-value problem. Chen et al. [Trans Porous Media 1995;18:15-36] use a hodograph method to derive an integral equation formulation of the new differential equation which they solve by numerical iteration. In the present paper, the convergence of their scheme is improved such that numerical iteration can be avoided for all practical purposes. However, a simpler analytical approach is also presented which is based on Shampine's transformation of the boundary value problem to an initial value problem. This analytical approximation is remarkably simple and yet more accurate than the analytical hodograph approximations.

  5. On the integral manifold approach to a flame propagation problem

    NASA Astrophysics Data System (ADS)

    Bykov, Viatcheslav; Goldfarb, Igor; Gol'Dshtein, Vladimir

    2004-08-01

    The problem of a pressure-driven flame in an inert porous medium filled with a flammable gaseous mixture is considered. In the frame of reference attached to an advancing combustion wave and after a suitable non-dimensionalization the corresponding mathematical description of the problem includes three highly nonlinear ordinary differential equations. The system is rewritten in the form of a singularly perturbed system of ordinary differential equations and is analysed analytically by the geometrical version of the asymptotic method of integral manifolds (MIM). The paper focuses on an analysis of the fine structure of the flame and its velocity on the basis of an asymptotical consideration of an arbitrary trajectory of the considered system in the phase space. It is shown that two different stages of the trajectory correspond to the two various sub-zones of the flame: the first stage (fast motion from the initial point to the slow integral) is interpreted as a preheat sub-zone and the second stage of the path corresponds to a reaction sub-zone. It is shown that an inter-zone boundary plays an important role in a determination of the flame properties: characteristics of the gaseous mixture at that point determine the flame velocity. The accepted approach of the investigation allows us to gain an analytical expression for the flame velocity. It appears that the velocity formula represents a cubic-root dependence on the Arrhenius exponent, which in turn contains the parameters of the boundary point. The theoretical predictions are found to coincide rather well with the data of direct numerical simulations.

  6. Spatial problem-solving strategies of middle school students: Wayfinding with geographic information systems

    NASA Astrophysics Data System (ADS)

    Wigglesworth, John C.

    2000-06-01

    Geographic Information Systems (GIS) is a powerful computer software package that emphasizes the use of maps and the management of spatially referenced environmental data archived in a systems data base. Professional applications of GIS have been in place since the 1980's, but only recently has GIS gained significant attention in the K--12 classroom. Students using GIS are able to manipulate and query data in order to solve all manners of spatial problems. Very few studies have examined how this technological innovation can support classroom learning. In particular, there has been little research on how experience in using the software correlates with a child's spatial cognition and his/her ability to understand spatial relationships. This study investigates the strategies used by middle school students to solve a wayfinding (route-finding) problem using the ArcView GIS software. The research design combined an individual background questionnaire, results from the Group Assessment of Logical Thinking (GALT) test, and analysis of reflective think-aloud sessions to define the characteristics of the strategies students' used to solve this particular class of spatial problem. Three uniquely different spatial problem solving strategies were identified. Visual/Concrete Wayfinders used a highly visual strategy; Logical/Abstract Wayfinders used GIS software tools to apply a more analytical and systematic approach; Transitional Wayfinders used an approach that showed evidence of one that was shifting from a visual strategy to one that was more analytical. The triangulation of data sources indicates that this progression of wayfinding strategy can be correlated both to Piagetian stages of logical thought and to experience with the use of maps. These findings suggest that GIS teachers must be aware that their students' performance will lie on a continuum that is based on cognitive development, spatial ability, and prior experience with maps. To be most effective, GIS teaching strategies and curriculum development should also represent a progression that correlates to the learners' current skills and experience.

  7. Researching Mental Health Disorders in the Era of Social Media: Systematic Review.

    PubMed

    Wongkoblap, Akkapon; Vadillo, Miguel A; Curcin, Vasa

    2017-06-29

    Mental illness is quickly becoming one of the most prevalent public health problems worldwide. Social network platforms, where users can express their emotions, feelings, and thoughts, are a valuable source of data for researching mental health, and techniques based on machine learning are increasingly used for this purpose. The objective of this review was to explore the scope and limits of cutting-edge techniques that researchers are using for predictive analytics in mental health and to review associated issues, such as ethical concerns, in this area of research. We performed a systematic literature review in March 2017, using keywords to search articles on data mining of social network data in the context of common mental health disorders, published between 2010 and March 8, 2017 in medical and computer science journals. The initial search returned a total of 5386 articles. Following a careful analysis of the titles, abstracts, and main texts, we selected 48 articles for review. We coded the articles according to key characteristics, techniques used for data collection, data preprocessing, feature extraction, feature selection, model construction, and model verification. The most common analytical method was text analysis, with several studies using different flavors of image analysis and social interaction graph analysis. Despite an increasing number of studies investigating mental health issues using social network data, some common problems persist. Assembling large, high-quality datasets of social media users with mental disorder is problematic, not only due to biases associated with the collection methods, but also with regard to managing consent and selecting appropriate analytics techniques. ©Akkapon Wongkoblap, Miguel A Vadillo, Vasa Curcin. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 29.06.2017.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 2000 (October 1999 through September 2000). This annual progress report, which is the seventeenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The ACL operates within the ANL system as a full-cost-recovery service center, but it has a mission that includes a complementary research and development component: The Analytical Chemistry Laboratory will provide high-quality, cost-effective chemical analysis and related technical support tomore » solve research problems of our clients--Argonne National Laboratory, the Department of Energy, and others--and will conduct world-class research and development in analytical chemistry and its applications. The ACL handles a wide range of analytical problems that reflects the diversity of research and development (R&D) work at ANL. Some routine or standard analyses are done, but the ACL operates more typically in a problem-solving mode in which development of methods is required or adaptation of techniques is needed to obtain useful analytical data. The ACL works with clients and commercial laboratories if a large number of routine analyses are required. Much of the support work done by the ACL is very similar to applied analytical chemistry research work.« less

  9. Cognitive Characteristics of Strategic and Non-strategic Gamblers.

    PubMed

    Mouneyrac, Aurélie; Lemercier, Céline; Le Floch, Valérie; Challet-Bouju, Gaëlle; Moreau, Axelle; Jacques, Christian; Giroux, Isabelle

    2018-03-01

    Participation in strategic and non-strategic games is mostly explained in the literature by gender: men gamble on strategic games, while women gamble on non-strategic games. However, little is known about the underlying cognitive factors that could also distinguish strategic and non-strategic gamblers. We suggest that cognitive style and need for cognition also explain participation in gambling subtypes. From a dual-process perspective, cognitive style is the tendency to reject or accept the fast, automatic answer that comes immediately in response to a problem. Individuals that preferentially reject the automatic response use an analytic style, which suggest processing information in a slow way, with deep treatment. The intuitive style supposes a reliance on fast, automatic answers. The need for cognition provides a motivation to engage in effortful activities. One hundred and forty-nine gamblers (53 strategic and 96 non-strategic) answered the Cognitive Reflection Test, Need For Cognition Scale, and socio-demographic questions. A logistic regression was conducted to evaluate the influence of gender, cognitive style and need for cognition on participation in strategic and non-strategic games. Our results show that a model with both gender and cognitive variables is more accurate than a model with gender alone. Analytic (vs. intuitive) style, high (vs. low) need for cognition and being male (vs. female) are characteristics of strategic gamblers (vs. non-strategic gamblers). This study highlights the importance of considering the cognitive characteristics of strategic and non-strategic gamblers in order to develop preventive campaigns and treatments that fit the best profiles for gamblers.

  10. The effect of density-of-state tails on band-to-band tunneling: Theory and application to tunnel field effect transistors

    NASA Astrophysics Data System (ADS)

    Sant, S.; Schenk, A.

    2017-10-01

    It is demonstrated how band tail states in the semiconductor influence the performance of a Tunnel Field Effect Transistor (TFET). As a consequence of the smoothened density of states (DOS) around the band edges, the energetic overlap of conduction and valence band states occurs gradually at the onset of band-to-band tunneling (BTBT), thus degrading the sub-threshold swing (SS) of the TFET. The effect of the band tail states on the current-voltage characteristics is modelled quantum-mechanically based on the idea of zero-phonon trap-assisted tunneling between band and tail states. The latter are assumed to arise from a 3-dimensional pseudo-delta potential proposed by Vinogradov [1]. This model potential allows the derivation of analytical expressions for the generation rate covering the whole range from very strong to very weak localization of the tail states. Comparison with direct BTBT in the one-band effective mass approximation reveals the essential features of tail-to-band tunneling. Furthermore, an analytical solution for the problem of tunneling from continuum states of the disturbed DOS to states in the opposite band is found, and the differences to direct BTBT are worked out. Based on the analytical expressions, a semi-classical model is implemented in a commercial device simulator which involves numerical integration along the tunnel paths. The impact of the tail states on the device performance is analyzed for a nanowire Gate-All-Around TFET. The simulations show that tail states notably impact the transfer characteristics of a TFET. It is found that exponentially decaying band tails result in a stronger degradation of the SS than tail states with a Gaussian decay of their density. The developed model allows more realistic simulations of TFETs including their non-idealities.

  11. Aerosol-based detectors for liquid chromatography.

    PubMed

    Magnusson, Lars-Erik; Risley, Donald S; Koropchak, John A

    2015-11-20

    Aerosol-based detectors developed within the last few decades have increasingly addressed the need for sensitive, universal liquid chromatography detection in a wide variety of applications. Herein, we review the operating principles, instrumentation, analytical characteristics, and recent applications of the three general types of such detectors: evaporative light scattering detection (ELSD), condensation nucleation light scattering detection (CNLSD); commercially known as the nano-quantity analyte detector (NQAD), and charged aerosol detection (CAD). Included is a comparative evaluation of the operational and analytical characteristics of these detectors. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Big Data Analytics in Medicine and Healthcare.

    PubMed

    Ristevski, Blagoj; Chen, Ming

    2018-05-10

    This paper surveys big data with highlighting the big data analytics in medicine and healthcare. Big data characteristics: value, volume, velocity, variety, veracity and variability are described. Big data analytics in medicine and healthcare covers integration and analysis of large amount of complex heterogeneous data such as various - omics data (genomics, epigenomics, transcriptomics, proteomics, metabolomics, interactomics, pharmacogenomics, diseasomics), biomedical data and electronic health records data. We underline the challenging issues about big data privacy and security. Regarding big data characteristics, some directions of using suitable and promising open-source distributed data processing software platform are given.

  13. Choice of optimal working fluid for binary power plants at extremely low temperature brine

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2016-12-01

    The geothermal energy development problems based on using binary power plants utilizing lowpotential geothermal resources are considered. It is shown that one of the possible ways of increasing the efficiency of heat utilization of geothermal brine in a wide temperature range is the use of multistage power systems with series-connected binary power plants based on incremental primary energy conversion. Some practically significant results of design-analytical investigations of physicochemical properties of various organic substances and their influence on the main parameters of the flowsheet and the technical and operational characteristics of heat-mechanical and heat-exchange equipment for binary power plant operating on extremely-low temperature geothermal brine (70°C) are presented. The calculation results of geothermal brine specific flow rate, capacity (net), and other operation characteristics of binary power plants with the capacity of 2.5 MW at using various organic substances are a practical interest. It is shown that the working fluid selection significantly influences on the parameters of the flowsheet and the operational characteristics of the binary power plant, and the problem of selection of working fluid is in the search for compromise based on the priorities in the field of efficiency, safety, and ecology criteria of a binary power plant. It is proposed in the investigations on the working fluid selection of the binary plant to use the plotting method of multiaxis complex diagrams of relative parameters and characteristic of binary power plants. Some examples of plotting and analyzing these diagrams intended to choose the working fluid provided that the efficiency of geothermal brine is taken as main priority.

  14. Stress intensity factors in two bonded elastic layers containing cracks perpendicular to and on the interface. Part 1: Analysis

    NASA Technical Reports Server (NTRS)

    Lu, M. C.; Erdogan, F.

    1980-01-01

    The basic crack problem which is essential for the study of subcritical crack propagation and fracture of layered structural materials is considered. Because of the apparent analytical difficulties, the problem is idealized as one of plane strain or plane stress. An additional simplifying assumption is made by restricting the formulation of the problem to crack geometries and loading conditions which have a plane of symmetry perpendicular to the interface. The general problem is formulated in terms of a coupled system of four integral equations. For each relevant crack configuration of practical interest, the singular behavior of the solution near and at the ends and points of intersection of the cracks is investigated and the related characteristic equations are obtained. The edge crack terminating at and crossing the interface, the T-shaped crack consisting of a broken layer and a delamination crack, the cross-shaped crack which consists of a delamination crack intersecting a crack which is perpendicular to the interface, and a delamination crack initiating from a stress-free boundary of the bonded layers are some of the practical crack geometries considered.

  15. Analytical development of disturbed matrix eigenvalue problem applied to mixed convection stability analysis in Darcy media

    NASA Astrophysics Data System (ADS)

    Hamed, Haikel Ben; Bennacer, Rachid

    2008-08-01

    This work consists in evaluating algebraically and numerically the influence of a disturbance on the spectral values of a diagonalizable matrix. Thus, two approaches will be possible; to use the theorem of disturbances of a matrix depending on a parameter, due to Lidskii and primarily based on the structure of Jordan of the no disturbed matrix. The second approach consists in factorizing the matrix system, and then carrying out a numerical calculation of the roots of the disturbances matrix characteristic polynomial. This problem can be a standard model in the equations of the continuous media mechanics. During this work, we chose to use the second approach and in order to illustrate the application, we choose the Rayleigh-Bénard problem in Darcy media, disturbed by a filtering through flow. The matrix form of the problem is calculated starting from a linear stability analysis by a finite elements method. We show that it is possible to break up the general phenomenon into other elementary ones described respectively by a disturbed matrix and a disturbance. A good agreement between the two methods was seen. To cite this article: H.B. Hamed, R. Bennacer, C. R. Mecanique 336 (2008).

  16. Semi-analytical Karhunen-Loeve representation of irregular waves based on the prolate spheroidal wave functions

    NASA Astrophysics Data System (ADS)

    Lee, Gibbeum; Cho, Yeunwoo

    2018-01-01

    A new semi-analytical approach is presented to solving the matrix eigenvalue problem or the integral equation in Karhunen-Loeve (K-L) representation of random data such as irregular ocean waves. Instead of direct numerical approach to this matrix eigenvalue problem, which may suffer from the computational inaccuracy for big data, a pair of integral and differential equations are considered, which are related to the so-called prolate spheroidal wave functions (PSWF). First, the PSWF is expressed as a summation of a small number of the analytical Legendre functions. After substituting them into the PSWF differential equation, a much smaller size matrix eigenvalue problem is obtained than the direct numerical K-L matrix eigenvalue problem. By solving this with a minimal numerical effort, the PSWF and the associated eigenvalue of the PSWF differential equation are obtained. Then, the eigenvalue of the PSWF integral equation is analytically expressed by the functional values of the PSWF and the eigenvalues obtained in the PSWF differential equation. Finally, the analytically expressed PSWFs and the eigenvalues in the PWSF integral equation are used to form the kernel matrix in the K-L integral equation for the representation of exemplary wave data such as ordinary irregular waves. It is found that, with the same accuracy, the required memory size of the present method is smaller than that of the direct numerical K-L representation and the computation time of the present method is shorter than that of the semi-analytical method based on the sinusoidal functions.

  17. [Pre-hospital adverse events: a way to go].

    PubMed

    Alvarez-Ortiz, Nancy Jezzi; Aranaz Andrés, Jesús María; Gea Velázquez De Castro, María Teresa; Miralles Bueno, Juan José

    2010-01-01

    The occurrence of adverse events is a problem at all levels of care and creates a significant burden of morbidity and mortality. In Spain there have been significant investigations of adverse effects (AE) in hospitals and primary care, however, studies of pre-hospital care are not yet developed. The aim of this study was to determine the frequency, type, preventability, severity and impact of "pre-hospital" adverse events, which were detected in the hospitalization index and the comparing those that occurred in ambulatory and non-ambulatory care. Case Series Study, with analytical components, of a sample of subjects included in the "National study of adverse events related to hospitalization (ENEAS). Qualitative data are presented as proportions with confidence intervals. For comparative analysis of qualitative data, we used the chi-square test. Of a total of 5624 patients, 2.3% (N=131) ((95%)CI: 1.94-2.72) had an AE that occurred prior to hospitalization or "pre-hospital", and 40.5% of these (N=53) ((95%)CI: 32.05-48.86) were preventable. In 44 patients the AE had its origin in ambulatory care and 85 patients in non-ambulatory care. The characteristic of patients with ambulatory AE are men and older women (median 76 years) who consulted for medical problems (84.1%) and the AE were related to medication in 77.8%. The characteristic of patients with non-ambulatory AE, were men (median 73 years), consulting for medical and surgical problems (44,7-55,3%) and the EA is related to medications, infections and procedures. The characteristics of patients with AE and undesirable effects that occurred during pre-hospitalization period depended on whether they originated during ambulatory care or non-ambulatory care. Therefore prevention strategies should take these differences into account. Copyright 2009 SECA. Published by Elsevier Espana. All rights reserved.

  18. FDVIBSPC16: Sheath Flow SERS for Chemical Profiling in Urine

    PubMed Central

    Riordan, Colleen M.; Jacobs, Kevin T.; Negri, Pierre; Schultz, Zachary D.

    2016-01-01

    The molecular specificity and sensitivity of surface enhanced Raman scattering (SERS) makes it an attractive method for biomedical diagnostics. Here we present results demonstrating the utility and complications for SERS characterization in urine. The chemical fingerprint characteristic of Raman spectra suggests use as a label free diagnostic; however, the complex composition of biological fluids presents a tremendous challenge. In particular, the limited number of surface sites and competing absorption tend to mask the presence of analytes in solution, particularly when the solution contains multiple analytes. To address these problems and characterize biological fluids we have demonstrated a sheath-flow interface for SERS detection. This sheath-flow SERS interface uses hydrodynamic focusing to confine analyte molecules eluting out of a column onto a planar SERS substrate where the molecules are detected by their intrinsic SERS signal. In this report we compare direct detection of benzoylecgonine in urine using DSERS with chemical profiling by capillary zone electrophoresis and sheath-flow SERS detection. The SERS spectrum from the observed migration peaks can identify benzoylecgonine and other distinct spectra are also observed, suggesting improved chemical diagnostics in urine. With over 2000 reported compounds in urine, identification of each of the detected species is an enormous task. Nonetheless, these samples provide a benchmark to establish the potential clinical utility of sheath-flow SERS detection. PMID:27034996

  19. One-Dimensional and Two-Dimensional Analytical Solutions for Functionally Graded Beams with Different Moduli in Tension and Compression

    PubMed Central

    Li, Xue; Dong, Jiao

    2018-01-01

    The material considered in this study not only has a functionally graded characteristic but also exhibits different tensile and compressive moduli of elasticity. One-dimensional and two-dimensional mechanical models for a functionally graded beam with a bimodular effect were established first. By taking the grade function as an exponential expression, the analytical solutions of a bimodular functionally graded beam under pure bending and lateral-force bending were obtained. The regression from a two-dimensional solution to a one-dimensional solution is verified. The physical quantities in a bimodular functionally graded beam are compared with their counterparts in a classical problem and a functionally graded beam without a bimodular effect. The validity of the plane section assumption under pure bending and lateral-force bending is analyzed. Three typical cases that the tensile modulus is greater than, equal to, or less than the compressive modulus are discussed. The result indicates that due to the introduction of the bimodular functionally graded effect of the materials, the maximum tensile and compressive bending stresses may not take place at the bottom and top of the beam. The real location at which the maximum bending stress takes place is determined via the extreme condition for the analytical solution. PMID:29772835

  20. Growing geometric reasoning in solving problems of analytical geometry through the mathematical communication problems to state Islamic university students

    NASA Astrophysics Data System (ADS)

    Mujiasih; Waluya, S. B.; Kartono; Mariani

    2018-03-01

    Skills in working on the geometry problems great needs of the competence of Geometric Reasoning. As a teacher candidate, State Islamic University (UIN) students need to have the competence of this Geometric Reasoning. When the geometric reasoning in solving of geometry problems has grown well, it is expected the students are able to write their ideas to be communicative for the reader. The ability of a student's mathematical communication is supposed to be used as a marker of the growth of their Geometric Reasoning. Thus, the search for the growth of geometric reasoning in solving of analytic geometry problems will be characterized by the growth of mathematical communication abilities whose work is complete, correct and sequential, especially in writing. Preceded with qualitative research, this article was the result of a study that explores the problem: Was the search for the growth of geometric reasoning in solving analytic geometry problems could be characterized by the growth of mathematical communication abilities? The main activities in this research were done through a series of activities: (1) Lecturer trains the students to work on analytic geometry problems that were not routine and algorithmic process but many problems that the process requires high reasoning and divergent/open ended. (2) Students were asked to do the problems independently, in detail, complete, order, and correct. (3) Student answers were then corrected each its stage. (4) Then taken 6 students as the subject of this research. (5) Research subjects were interviewed and researchers conducted triangulation. The results of this research, (1) Mathematics Education student of UIN Semarang, had adequate the mathematical communication ability, (2) the ability of this mathematical communication, could be a marker of the geometric reasoning in solving of problems, and (3) the geometric reasoning of UIN students had grown in a category that tends to be good.

  1. New approach of a traditional analysis for predicting near-exit jet liquid instabilities

    NASA Astrophysics Data System (ADS)

    Jaramillo, Guillermo; Collicott, Steven

    2015-11-01

    Traditional linear instability theory for round liquid jets requires an exit-plane velocity profile be assumed so as to derive the characteristic growth rates and wavelengths of instabilities. This requires solving an eigenvalue problem for the Rayleigh Equation. In this new approach, a hyperbolic tangent velocity profile is assumed at the exit-plane of a round jet and a comparison is made with a hyperbolic secant profile. Temporal and Spatial Stability Analysis (TSA and SSA respectively) are the employed analytical tools to compare results of predicted most-unstable wavelengths from the given analytical velocity profiles and from previous experimental work. The local relevance of the velocity profile in the near-exit region of a liquid jet and the validity of an inviscid formulation through the Rayleigh equation are discussed as well. A comparison of numerical accuracy is made between two different mathematical approaches for the hyperbolic tangent profile with and without the Ricatti transformation. Reynolds number based on the momentum thickness of the boundary layer at the exit plane non-dimensionalizes the problem and, the Re range, based on measurements by Portillo in 2011, is 185 to 600. Wavelength measurements are taken from Portillo's experiment. School of Mechanical Engineering at Universidad del Valle, supported by a grant from Fulbright and Colciencias. Ph.D. student at the School of Aeronautics and Astronautics Purdue University.

  2. Analytical Tools in School Finance Reform.

    ERIC Educational Resources Information Center

    Johns, R. L.

    This paper discusses the problem of analyzing variations in the educational opportunities provided by different school districts and describes how to assess the impact of school finance alternatives through use of various analytical tools. The author first examines relatively simple analytical methods, including calculation of per-pupil…

  3. Learning Analytics: Challenges and Limitations

    ERIC Educational Resources Information Center

    Wilson, Anna; Watson, Cate; Thompson, Terrie Lynn; Drew, Valerie; Doyle, Sarah

    2017-01-01

    Learning analytic implementations are increasingly being included in learning management systems in higher education. We lay out some concerns with the way learning analytics--both data and algorithms--are often presented within an unproblematized Big Data discourse. We describe some potential problems with the often implicit assumptions about…

  4. Back analysis of geomechanical parameters in underground engineering using artificial bee colony.

    PubMed

    Zhu, Changxing; Zhao, Hongbo; Zhao, Ming

    2014-01-01

    Accurate geomechanical parameters are critical in tunneling excavation, design, and supporting. In this paper, a displacements back analysis based on artificial bee colony (ABC) algorithm is proposed to identify geomechanical parameters from monitored displacements. ABC was used as global optimal algorithm to search the unknown geomechanical parameters for the problem with analytical solution. To the problem without analytical solution, optimal back analysis is time-consuming, and least square support vector machine (LSSVM) was used to build the relationship between unknown geomechanical parameters and displacement and improve the efficiency of back analysis. The proposed method was applied to a tunnel with analytical solution and a tunnel without analytical solution. The results show the proposed method is feasible.

  5. Methods for geochemical analysis

    USGS Publications Warehouse

    Baedecker, Philip A.

    1987-01-01

    The laboratories for analytical chemistry within the Geologic Division of the U.S. Geological Survey are administered by the Office of Mineral Resources. The laboratory analysts provide analytical support to those programs of the Geologic Division that require chemical information and conduct basic research in analytical and geochemical areas vital to the furtherance of Division program goals. Laboratories for research and geochemical analysis are maintained at the three major centers in Reston, Virginia, Denver, Colorado, and Menlo Park, California. The Division has an expertise in a broad spectrum of analytical techniques, and the analytical research is designed to advance the state of the art of existing techniques and to develop new methods of analysis in response to special problems in geochemical analysis. The geochemical research and analytical results are applied to the solution of fundamental geochemical problems relating to the origin of mineral deposits and fossil fuels, as well as to studies relating to the distribution of elements in varied geologic systems, the mechanisms by which they are transported, and their impact on the environment.

  6. Robust Feedback Control of Flow Induced Structural Radiation of Sound

    NASA Technical Reports Server (NTRS)

    Heatwole, Craig M.; Bernhard, Robert J.; Franchek, Matthew A.

    1997-01-01

    A significant component of the interior noise of aircraft and automobiles is a result of turbulent boundary layer excitation of the vehicular structure. In this work, active robust feedback control of the noise due to this non-predictable excitation is investigated. Both an analytical model and experimental investigations are used to determine the characteristics of the flow induced structural sound radiation problem. The problem is shown to be broadband in nature with large system uncertainties associated with the various operating conditions. Furthermore the delay associated with sound propagation is shown to restrict the use of microphone feedback. The state of the art control methodologies, IL synthesis and adaptive feedback control, are evaluated and shown to have limited success for solving this problem. A robust frequency domain controller design methodology is developed for the problem of sound radiated from turbulent flow driven plates. The control design methodology uses frequency domain sequential loop shaping techniques. System uncertainty, sound pressure level reduction performance, and actuator constraints are included in the design process. Using this design method, phase lag was added using non-minimum phase zeros such that the beneficial plant dynamics could be used. This general control approach has application to lightly damped vibration and sound radiation problems where there are high bandwidth control objectives requiring a low controller DC gain and controller order.

  7. The Characteristics of Earth System Thinking of Science Gifted Students in relation to Climate Changes

    NASA Astrophysics Data System (ADS)

    Chung, Duk Ho; Cho, Kyu Seong; Hong, Deok Pyo; Park, Kyeong Jin

    2016-04-01

    This study aimed to investigate the perception of earth system thinking of science gifted students in future problem solving (FPS) in relation to climate changes. In order to this study, the research problem associated with climate changes was developed through a literature review. The thirty seven science gifted students participated in lessons. The ideas in problem solving process of science gifted students were analyzed using the semantic network analysis method. The results are as follows. In the problem solving processes, science gifted students are ''changes of the sunlight by water layer'', ''changes of the Earth''s temperature'', ''changes of the air pressure'', '' change of the wind and weather''were represented in order. On other hand, regard to earth system thinking for climate changes, while science gifted students were used sub components related to atmospheres frequently, they were used sub components related to biosphere, geosphere, and hydrosphere a little. But, the analytical results of the structural relationship between the sub components related to earth system, they were recognised that biosphere, geosphere, and hydrosphere used very important in network structures. In conclusion, science gifted students were understood well that components of the earth system are influencing each other. Keywords : Science gifted students, Future problem solving, Climate change, Earth system thinking

  8. Electroosmosis modulated biomechanical transport through asymmetric microfluidics channel

    NASA Astrophysics Data System (ADS)

    Jhorar, R.; Tripathi, D.; Bhatti, M. M.; Ellahi, R.

    2018-05-01

    This article addresses the electrokinetically modulated biomechanical transport through a two-dimensional asymmetric microchannel induced by peristaltic waves. Electrokinetic transport with peristaltic phenomena grabbed a significant attention due to its novel applications in engineering. Electrical fields also provide an excellent mode for regulating flows. The electrohydrodynamics problem is modified by means of Debye-Hückel linearization. Firstly, the governing flow problem is described by continuity and momentum equations in the presence of electrokinetic forces in Cartesian coordinates, then long wavelength and low/zero Reynolds ("neglecting the inertial forces") approximations are applied to modify the governing flow problem. The resulting differential equations are solved analytically in order to obtain exact solutions for velocity profile whereas the numerical integration is carried out to analyze the pumping characteristics. The physical behaviour of sundry parameters is discussed for velocity profile, pressure rise and volume flow rate. In particular, the behaviour of electro-osmotic parameter, phase difference, and Helmholtz-Smoluchowski velocity is examined and discussed. The trapping mechanism is also visualized by drawing streamlines against the governing parameters. The present study offers various interesting results that warrant further study on electrokinetic transport with peristalsis.

  9. Analytical and experimental studies on detection of longitudinal, L and inverted T cracks in isotropic and bi-material beams based on changes in natural frequencies

    NASA Astrophysics Data System (ADS)

    Ravi, J. T.; Nidhan, S.; Muthu, N.; Maiti, S. K.

    2018-02-01

    An analytical method for determination of dimensions of longitudinal crack in monolithic beams, based on frequency measurements, has been extended to model L and inverted T cracks. Such cracks including longitudinal crack arise in beams made of layered isotropic or composite materials. A new formulation for modelling cracks in bi-material beams is presented. Longitudinal crack segment sizes, for L and inverted T cracks, varying from 2.7% to 13.6% of length of Euler-Bernoulli beams are considered. Both forward and inverse problems have been examined. In the forward problems, the analytical results are compared with finite element (FE) solutions. In the inverse problems, the accuracy of prediction of crack dimensions is verified using FE results as input for virtual testing. The analytical results show good agreement with the actual crack dimensions. Further, experimental studies have been done to verify the accuracy of the analytical method for prediction of dimensions of three types of crack in isotropic and bi-material beams. The results show that the proposed formulation is reliable and can be employed for crack detection in slender beam like structures in practice.

  10. An improved 3D MoF method based on analytical partial derivatives

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Zhang, Xiong

    2016-12-01

    MoF (Moment of Fluid) method is one of the most accurate approaches among various surface reconstruction algorithms. As other second order methods, MoF method needs to solve an implicit optimization problem to obtain the optimal approximate surface. Therefore, the partial derivatives of the objective function have to be involved during the iteration for efficiency and accuracy. However, to the best of our knowledge, the derivatives are currently estimated numerically by finite difference approximation because it is very difficult to obtain the analytical derivatives of the object function for an implicit optimization problem. Employing numerical derivatives in an iteration not only increase the computational cost, but also deteriorate the convergence rate and robustness of the iteration due to their numerical error. In this paper, the analytical first order partial derivatives of the objective function are deduced for 3D problems. The analytical derivatives can be calculated accurately, so they are incorporated into the MoF method to improve its accuracy, efficiency and robustness. Numerical studies show that by using the analytical derivatives the iterations are converged in all mixed cells with the efficiency improvement of 3 to 4 times.

  11. Heat Transfer Analysis of Thermal Protection Structures for Hypersonic Vehicles

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Wang, Zhijin; Hou, Tianjiao

    2017-11-01

    This research aims to develop an analytical approach to study the heat transfer problem of thermal protection systems (TPS) for hypersonic vehicles. Laplace transform and integral method are used to describe the temperature distribution through the TPS subject to aerodynamic heating during flight. Time-dependent incident heat flux is also taken into account. Two different cases with heat flux and radiation boundary conditions are studied and discussed. The results are compared with those obtained by finite element analyses and show a good agreement. Although temperature profiles of such problems can be readily accessed via numerical simulations, analytical solutions give a greater insight into the physical essence of the heat transfer problem. Furthermore, with the analytical approach, rapid thermal analyses and even thermal optimization can be achieved during the preliminary TPS design.

  12. Comparisons of characteristic timescales and approximate models for Brownian magnetic nanoparticle rotations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeves, Daniel B., E-mail: dbr@Dartmouth.edu; Weaver, John B.

    2015-06-21

    Magnetic nanoparticles are promising tools for a host of therapeutic and diagnostic medical applications. The dynamics of rotating magnetic nanoparticles in applied magnetic fields depend strongly on the type and strength of the field applied. There are two possible rotation mechanisms and the decision for the dominant mechanism is often made by comparing the equilibrium relaxation times. This is a problem when particles are driven with high-amplitude fields because they are not necessarily at equilibrium at all. Instead, it is more appropriate to consider the “characteristic timescales” that arise in various applied fields. Approximate forms for the characteristic time ofmore » Brownian particle rotations do exist and we show agreement between several analytical and phenomenological-fit models to simulated data from a stochastic Langevin equation approach. We also compare several approximate models with solutions of the Fokker-Planck equation to determine their range of validity for general fields and relaxation times. The effective field model is an excellent approximation, while the linear response solution is only useful for very low fields and frequencies for realistic Brownian particle rotations.« less

  13. Nature and Nurturing: Parenting in the Context of Child Temperament

    PubMed Central

    Kiff, Cara J.; Lengua, Liliana J.; Zalewski, Maureen

    2011-01-01

    Accounting for both bidirectional and interactive effects between parenting and child temperament can fine-tune theoretical models of the role of parenting and temperament in children's development of adjustment problems. Evidence for bidirectional and interactive effects between parenting and children's characteristics of frustration, fear, self-regulation, and impulsivity was reviewed, and an overall model of children's individual differences in response to parenting is proposed. In general, children high in frustration, impulsivity and low in effortful control are more vulnerable to the adverse effects of negative parenting, while in turn, many negative parenting behaviors predict increases in these characteristics. Frustration, fearfulness, and effortful control also appear to elicit parenting behaviors that can predict increases in these characteristics. Irritability renders children more susceptible to negative parenting behaviors. Fearfulness operates in a very complex manner, sometimes increasing children's responses to parenting behaviors and sometimes mitigating them and apparently operating differently across gender. Important directions for future research include the use of study designs and analytic approaches that account for the direction of effects and for developmental changes in parenting and temperament over time. PMID:21461681

  14. Modeling of the Light Speckle Field Structure Inside a Multilayer Human Skin Tissue

    NASA Astrophysics Data System (ADS)

    Barun, V. V.; Dik, S. K.; Ivanov, A. P.; Abramovich, N. D.

    2013-11-01

    We present an analytic method and the results of investigating the characteristics of the interference pattern formed by multiply scattered light in a multilayer biological tissue of the type of human skin at the wavelengths of the visible and neat IR spectral regions under laser irradiation. Calculations were performed with the use of the known solutions of the equations of radiation transfer in the biotissue and the relation between the theory of propagation of light in a scattering medium and the coherence theory. The radial structure of the light field in the depth of the human skin formed by coherent and incoherent radiation depending on its biophysical parameters has been investigated. The characteristic sizes of speckles in each layer of the skin have been estimated. The biophysical factors connected with the volume concentration of blood in the dermis and the degree of its oxygenation influencing the contrast of the speckle pattern in the dermis have been discussed. The possibility of formulating and solving inverse problems of biomedical optics on the restoration of blood parameters from measurements of speckle characteristics has been shown.

  15. Analytical Methods for Biomass Characterization during Pretreatment and Bioconversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu, Yunqiao; Meng, Xianzhi; Yoo, Chang Geun

    2016-01-01

    Lignocellulosic biomass has been introduced as a promising resource for alternative fuels and chemicals because of its abundance and complement for petroleum resources. Biomass is a complex biopolymer and its compositional and structural characteristics largely vary depending on its species as well as growth environments. Because of complexity and variety of biomass, understanding its physicochemical characteristics is a key for effective biomass utilization. Characterization of biomass does not only provide critical information of biomass during pretreatment and bioconversion, but also give valuable insights on how to utilize the biomass. For better understanding biomass characteristics, good grasp and proper selection ofmore » analytical methods are necessary. This chapter introduces existing analytical approaches that are widely employed for biomass characterization during biomass pretreatment and conversion process. Diverse analytical methods using Fourier transform infrared (FTIR) spectroscopy, gel permeation chromatography (GPC), and nuclear magnetic resonance (NMR) spectroscopy for biomass characterization are reviewed. In addition, biomass accessibility methods by analyzing surface properties of biomass are also summarized in this chapter.« less

  16. New Tools to Prepare ACE Cross-section Files for MCNP Analytic Test Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.

    Monte Carlo calculations using one-group cross sections, multigroup cross sections, or simple continuous energy cross sections are often used to: (1) verify production codes against known analytical solutions, (2) verify new methods and algorithms that do not involve detailed collision physics, (3) compare Monte Carlo calculation methods with deterministic methods, and (4) teach fundamentals to students. In this work we describe 2 new tools for preparing the ACE cross-section files to be used by MCNP ® for these analytic test problems, simple_ace.pl and simple_ace_mg.pl.

  17. Statistically qualified neuro-analytic failure detection method and system

    DOEpatents

    Vilim, Richard B.; Garcia, Humberto E.; Chen, Frederick W.

    2002-03-02

    An apparatus and method for monitoring a process involve development and application of a statistically qualified neuro-analytic (SQNA) model to accurately and reliably identify process change. The development of the SQNA model is accomplished in two stages: deterministic model adaption and stochastic model modification of the deterministic model adaptation. Deterministic model adaption involves formulating an analytic model of the process representing known process characteristics, augmenting the analytic model with a neural network that captures unknown process characteristics, and training the resulting neuro-analytic model by adjusting the neural network weights according to a unique scaled equation error minimization technique. Stochastic model modification involves qualifying any remaining uncertainty in the trained neuro-analytic model by formulating a likelihood function, given an error propagation equation, for computing the probability that the neuro-analytic model generates measured process output. Preferably, the developed SQNA model is validated using known sequential probability ratio tests and applied to the process as an on-line monitoring system. Illustrative of the method and apparatus, the method is applied to a peristaltic pump system.

  18. Curriculum Innovation for Marketing Analytics

    ERIC Educational Resources Information Center

    Wilson, Elizabeth J.; McCabe, Catherine; Smith, Robert S.

    2018-01-01

    College graduates need better preparation for and experience in data analytics for higher-quality problem solving. Using the curriculum innovation framework of Borin, Metcalf, and Tietje (2007) and case study research methods, we offer rich insights about one higher education institution's work to address the marketing analytics skills gap.…

  19. The Exchange-Correlation Field Effect over the Magnetoacoustic-Gravitational Instability in Plasmas

    NASA Astrophysics Data System (ADS)

    Rasheed, A.; Jamil, M.; Jung, Young-Dae; Sahar, A.; Asif, M.

    2017-09-01

    Jeans instability with magnetosonic perturbations is discussed in quantum dusty magnetoplasmas. The quantum and smaller thermal effects are associated only with electrons. The quantum characteristics include exchange-correlation potential, recoil effect, and Fermi degenerate pressure. The multifluid model of plasmas is used for the analytical study of this problem. The significant contribution of electron exchange is noticed on the threshold value of wave vector and Jeans instability. The presence of electron exchange and correlation effects reduce the time to stabilise the phenomenon of self-gravitational collapse of massive species. The results of Jeans instability by magnetosonic perturbations at quantum scale help to disclose the details of the self-gravitating dusty magnetoplasma systems.

  20. Structural and thermal testing of lightweight reflector panels

    NASA Technical Reports Server (NTRS)

    Mcgregor, J.; Helms, R.; Hill, T.

    1992-01-01

    The paper describes the test facility developed for testing large lightweight reflective panels with very accurate and stable surfaces, such as the mirror panels of composite construction developed for the NASA's Precision Segmented Reflector (PSR). Special attention is given to the panel construction and the special problems posed by the characteristics of these panels; the design of the Optical/Thermal Vacuum test facility for structural and thermal testing, developed at the U.S. AFPL; and the testing procedure. The results of the PSR panel test program to date are presented. The test data showed that the analytical approaches used for the panel design and for the prediction of the on-orbit panel behavior were adequate.

  1. Advanced ETC/LSS computerized analytical models, CO2 concentration. Volume 1: Summary document

    NASA Technical Reports Server (NTRS)

    Taylor, B. N.; Loscutoff, A. V.

    1972-01-01

    Computer simulations have been prepared for the concepts of C02 concentration which have the potential for maintaining a C02 partial pressure of 3.0 mmHg, or less, in a spacecraft environment. The simulations were performed using the G-189A Generalized Environmental Control computer program. In preparing the simulations, new subroutines to model the principal functional components for each concept were prepared and integrated into the existing program. Sample problems were run to demonstrate the methods of simulation and performance characteristics of the individual concepts. Comparison runs for each concept can be made for parametric values of cabin pressure, crew size, cabin air dry and wet bulb temperatures, and mission duration.

  2. Kinetic theory analysis of rarefied gas flow through finite length slots

    NASA Technical Reports Server (NTRS)

    Raghuraman, P.

    1972-01-01

    An analytic study is made of the flow a rarefied monatomic gas through a two dimensional slot. The parameters of the problem are the ratios of downstream to upstream pressures, the Knudsen number at the high pressure end (based on slot half width) and the length to slot half width ratio. A moment method of solution is used by assuming a discontinuous distribution function consisting of four Maxwellians split equally in angular space. Numerical solutions are obtained for the resulting equations. The characteristics of the transition regime are portrayed. The solutions in the free molecule limit are systematically lower than the results obtained in that limit by more accurate numerical methods.

  3. Recent advances in computational-analytical integral transforms for convection-diffusion problems

    NASA Astrophysics Data System (ADS)

    Cotta, R. M.; Naveira-Cotta, C. P.; Knupp, D. C.; Zotin, J. L. Z.; Pontes, P. C.; Almeida, A. P.

    2017-10-01

    An unifying overview of the Generalized Integral Transform Technique (GITT) as a computational-analytical approach for solving convection-diffusion problems is presented. This work is aimed at bringing together some of the most recent developments on both accuracy and convergence improvements on this well-established hybrid numerical-analytical methodology for partial differential equations. Special emphasis is given to novel algorithm implementations, all directly connected to enhancing the eigenfunction expansion basis, such as a single domain reformulation strategy for handling complex geometries, an integral balance scheme in dealing with multiscale problems, the adoption of convective eigenvalue problems in formulations with significant convection effects, and the direct integral transformation of nonlinear convection-diffusion problems based on nonlinear eigenvalue problems. Then, selected examples are presented that illustrate the improvement achieved in each class of extension, in terms of convergence acceleration and accuracy gain, which are related to conjugated heat transfer in complex or multiscale microchannel-substrate geometries, multidimensional Burgers equation model, and diffusive metal extraction through polymeric hollow fiber membranes. Numerical results are reported for each application and, where appropriate, critically compared against the traditional GITT scheme without convergence enhancement schemes and commercial or dedicated purely numerical approaches.

  4. Frechet derivatives for shallow water ocean acoustic inverse problems

    NASA Astrophysics Data System (ADS)

    Odom, Robert I.

    2003-04-01

    For any inverse problem, finding a model fitting the data is only half the problem. Most inverse problems of interest in ocean acoustics yield nonunique model solutions, and involve inevitable trade-offs between model and data resolution and variance. Problems of uniqueness and resolution and variance trade-offs can be addressed by examining the Frechet derivatives of the model-data functional with respect to the model variables. Tarantola [Inverse Problem Theory (Elsevier, Amsterdam, 1987), p. 613] published analytical formulas for the basic derivatives, e.g., derivatives of pressure with respect to elastic moduli and density. Other derivatives of interest, such as the derivative of transmission loss with respect to attenuation, can be easily constructed using the chain rule. For a range independent medium the analytical formulas involve only the Green's function and the vertical derivative of the Green's function for the medium. A crucial advantage of the analytical formulas for the Frechet derivatives over numerical differencing is that they can be computed with a single pass of any program which supplies the Green's function. Various derivatives of interest in shallow water ocean acoustics are presented and illustrated by an application to the sensitivity of measured pressure to shallow water sediment properties. [Work supported by ONR.

  5. Solving Differential Equations Analytically. Elementary Differential Equations. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Unit 335.

    ERIC Educational Resources Information Center

    Goldston, J. W.

    This unit introduces analytic solutions of ordinary differential equations. The objective is to enable the student to decide whether a given function solves a given differential equation. Examples of problems from biology and chemistry are covered. Problem sets, quizzes, and a model exam are included, and answers to all items are provided. The…

  6. Analytic theory of the selection mechanism in the Saffman-Taylor problem. [concerning shape of fingers in Hele-Shaw cell

    NASA Technical Reports Server (NTRS)

    Hong, D. C.; Langer, J. S.

    1986-01-01

    An analytic approach to the problem of predicting the widths of fingers in a Hele-Shaw cell is presented. The analysis is based on the WKB technique developed recently for dealing with the effects of surface tension in the problem of dendritic solidification. It is found that the relation between the dimensionless width lambda and the dimensionless group of parameters containing the surface tension, nu, has the form lambda - 1/2 = nu exp 2/3 in the limit of small nu.

  7. Acoustic plane wave diffraction from a truncated semi-infinite cone in axial irradiation

    NASA Astrophysics Data System (ADS)

    Kuryliak, Dozyslav; Lysechko, Victor

    2017-11-01

    The diffraction problem of the plane acoustic wave on the semi-infinite truncated soft and rigid cones in the case of axial incidence is solved. The problem is formulated as a boundary-value problem in terms of Helmholtz equation, with Dirichlet and Neumann boundary conditions, for scattered velocity potential. The incident field is taken to be the total field of semi-infinite cone, the expression of which is obtained by solving the auxiliary diffraction problem by the use of Kontorovich-Lebedev integral transformation. The diffracted field is sought via the expansion in series of the eigenfunctions for subdomains of the Helmholtz equation taking into account the edge condition. The corresponding diffraction problem is reduced to infinite system of linear algebraic equations (ISLAE) making use of mode matching technique and orthogonality properties of the Legendre functions. The method of analytical regularization is applied in order to extract the singular part in ISLAE, invert it exactly and reduce the problem to ISLAE of the second kind, which is readily amenable to calculation. The numerical solution of this system relies on the reduction method; and its accuracy depends on the truncation order. The case of degeneration of the truncated semi-infinite cone into an aperture in infinite plane is considered. Characteristic features of diffracted field in near and far fields as functions of cone's parameters are examined.

  8. HERO - A 3D general relativistic radiative post-processor for accretion discs around black holes

    NASA Astrophysics Data System (ADS)

    Zhu, Yucong; Narayan, Ramesh; Sadowski, Aleksander; Psaltis, Dimitrios

    2015-08-01

    HERO (Hybrid Evaluator for Radiative Objects) is a 3D general relativistic radiative transfer code which has been tailored to the problem of analysing radiation from simulations of relativistic accretion discs around black holes. HERO is designed to be used as a post-processor. Given some fixed fluid structure for the disc (i.e. density and velocity as a function of position from a hydrodynamic or magnetohydrodynamic simulation), the code obtains a self-consistent solution for the radiation field and for the gas temperatures using the condition of radiative equilibrium. The novel aspect of HERO is that it combines two techniques: (1) a short-characteristics (SC) solver that quickly converges to a self-consistent disc temperature and radiation field, with (2) a long-characteristics (LC) solver that provides a more accurate solution for the radiation near the photosphere and in the optically thin regions. By combining these two techniques, we gain both the computational speed of SC and the high accuracy of LC. We present tests of HERO on a range of 1D, 2D, and 3D problems in flat space and show that the results agree well with both analytical and benchmark solutions. We also test the ability of the code to handle relativistic problems in curved space. Finally, we discuss the important topic of ray defects, a major limitation of the SC method, and describe our strategy for minimizing the induced error.

  9. Teaching Analytical Chemistry to Pharmacy Students: A Combined, Iterative Approach

    ERIC Educational Resources Information Center

    Masania, Jinit; Grootveld, Martin; Wilson, Philippe B.

    2018-01-01

    Analytical chemistry has often been a difficult subject to teach in a classroom or lecture-based context. Numerous strategies for overcoming the inherently practical-based difficulties have been suggested, each with differing pedagogical theories. Here, we present a combined approach to tackling the problem of teaching analytical chemistry, with…

  10. Analytic Cognitive Style Predicts Religious and Paranormal Belief

    ERIC Educational Resources Information Center

    Pennycook, Gordon; Cheyne, James Allan; Seli, Paul; Koehler, Derek J.; Fugelsang, Jonathan A.

    2012-01-01

    An analytic cognitive style denotes a propensity to set aside highly salient intuitions when engaging in problem solving. We assess the hypothesis that an analytic cognitive style is associated with a history of questioning, altering, and rejecting (i.e., unbelieving) supernatural claims, both religious and paranormal. In two studies, we examined…

  11. Jackknife variance of the partial area under the empirical receiver operating characteristic curve.

    PubMed

    Bandos, Andriy I; Guo, Ben; Gur, David

    2017-04-01

    Receiver operating characteristic analysis provides an important methodology for assessing traditional (e.g., imaging technologies and clinical practices) and new (e.g., genomic studies, biomarker development) diagnostic problems. The area under the clinically/practically relevant part of the receiver operating characteristic curve (partial area or partial area under the receiver operating characteristic curve) is an important performance index summarizing diagnostic accuracy at multiple operating points (decision thresholds) that are relevant to actual clinical practice. A robust estimate of the partial area under the receiver operating characteristic curve is provided by the area under the corresponding part of the empirical receiver operating characteristic curve. We derive a closed-form expression for the jackknife variance of the partial area under the empirical receiver operating characteristic curve. Using the derived analytical expression, we investigate the differences between the jackknife variance and a conventional variance estimator. The relative properties in finite samples are demonstrated in a simulation study. The developed formula enables an easy way to estimate the variance of the empirical partial area under the receiver operating characteristic curve, thereby substantially reducing the computation burden, and provides important insight into the structure of the variability. We demonstrate that when compared with the conventional approach, the jackknife variance has substantially smaller bias, and leads to a more appropriate type I error rate of the Wald-type test. The use of the jackknife variance is illustrated in the analysis of a data set from a diagnostic imaging study.

  12. An analytically solvable three-body break-up model problem in hyperspherical coordinates

    NASA Astrophysics Data System (ADS)

    Ancarani, L. U.; Gasaneo, G.; Mitnik, D. M.

    2012-10-01

    An analytically solvable S-wave model for three particles break-up processes is presented. The scattering process is represented by a non-homogeneous Coulombic Schrödinger equation where the driven term is given by a Coulomb-like interaction multiplied by the product of a continuum wave function and a bound state in the particles coordinates. The closed form solution is derived in hyperspherical coordinates leading to an analytic expression for the associated scattering transition amplitude. The proposed scattering model contains most of the difficulties encountered in real three-body scattering problem, e.g., non-separability in the electrons' spherical coordinates and Coulombic asymptotic behavior. Since the coordinates' coupling is completely different, the model provides an alternative test to that given by the Temkin-Poet model. The knowledge of the analytic solution provides an interesting benchmark to test numerical methods dealing with the double continuum, in particular in the asymptotic regions. An hyperspherical Sturmian approach recently developed for three-body collisional problems is used to reproduce to high accuracy the analytical results. In addition to this, we generalized the model generating an approximate wave function possessing the correct radial asymptotic behavior corresponding to an S-wave three-body Coulomb problem. The model allows us to explore the typical structure of the solution of a three-body driven equation, to identify three regions (the driven, the Coulombic and the asymptotic), and to analyze how far one has to go to extract the transition amplitude.

  13. Estimating Tsunami Runup with Fault Plane Parameters

    NASA Astrophysics Data System (ADS)

    Sepulveda, I.; Liu, P. L. F.

    2016-12-01

    The forecasting of tsunami runup has often been done by solving numerical models. The execution times, however, make them unsuitable for the purpose of warning. We offer an alternative method that provides analytical relationship between the runup height, the fault plane parameters and the characteristic of coastal bathymetry. The method uses the model of Okada (1985) to estimate the coseismic deformation and the corresponding sea surface displacement (η(x,0)). Once the tsunami waves are generated, Carrier & Greenspan (1958) solution (C&G) is adopted to yield analytical expressions for the shoreline elevation and velocity. Two types of problems are investigated. In the first, the bathymetry is modeled as a constant slope that is connected to a constant depth region, where a seismic event occurs. This is a boundary value problem (BVP). In the second, the bathymetry is further simplified as a constant slope, on which a seismic event occurs. This is an initial value problem (IVP). Both problems are depicted in Figure 1. We derive runup solutions in terms of the fault parameters. The earthquake is associated with vertical coseismic seafloor displacements by using Okada's elastic model. In addition to the simplifications considered in Okada's model, we further assume (1) a strike parallel to the shoreline, (2) a very long rupture area and (3) a fast earthquake so surface elevation mimics the seafloor displacements. Then the tsunami origin is modeled in terms of the fault depth (d), fault width (W), fault slip (s) and dip angle (δ). We describe the solution for the BVP. Madsen & Schaeffer (2010) utilized C&G to derive solutions for the shoreline elevation of sinusoidal waves imposed in the offshore boundary. A linear superposition of this solution represents any arbitrary incident wave. Furthermore, we can prescribe the boundary condition at the toe of sloping beach by adopting the linear shallow wave equations in the constant depth area. By means of a dimensional analysis, the runup R is determined by Eq.1. Kanoglu (2004) derived a non-dimensional expression for long wave runup originated over a sloping beach. In our work we determine an analytical expression for a sinusoidal initial condition. Following the same procedure as the BVP, the expression for the runup R in the IVP is given by Eq.2. The curves F1 and F2 are plotted in Figure 2.

  14. Numerical simulations of strongly correlated electron and spin systems

    NASA Astrophysics Data System (ADS)

    Changlani, Hitesh Jaiprakash

    Developing analytical and numerical tools for strongly correlated systems is a central challenge for the condensed matter physics community. In the absence of exact solutions and controlled analytical approximations, numerical techniques have often contributed to our understanding of these systems. Exact Diagonalization (ED) requires the storage of at least two vectors the size of the Hilbert space under consideration (which grows exponentially with system size) which makes it affordable only for small systems. The Density Matrix Renormalization Group (DMRG) uses an intelligent Hilbert space truncation procedure to significantly reduce this cost, but in its present formulation is limited to quasi-1D systems. Quantum Monte Carlo (QMC) maps the Schrodinger equation to the diffusion equation (in imaginary time) and only samples the eigenvector over time, thereby avoiding the memory limitation. However, the stochasticity involved in the method gives rise to the "sign problem" characteristic of fermion and frustrated spin systems. The first part of this thesis is an effort to make progress in the development of a numerical technique which overcomes the above mentioned problems. We consider novel variational wavefunctions, christened "Correlator Product States" (CPS), that have a general functional form which hopes to capture essential correlations in the ground states of spin and fermion systems in any dimension. We also consider a recent proposal to modify projector (Green's Function) Quantum Monte Carlo to ameliorate the sign problem for realistic and model Hamiltonians (such as the Hubbard model). This exploration led to our own set of improvements, primarily a semistochastic formulation of projector Quantum Monte Carlo. Despite their limitations, existing numerical techniques can yield physical insights into a wide variety of problems. The second part of this thesis considers one such numerical technique - DMRG - and adapts it to study the Heisenberg antiferromagnet on a generic tree graph. Our attention turns to a systematic numerical and semi-analytical study of the effect of local even/odd sublattice imbalance on the low energy spectrum of antiferromagnets on regular Cayley trees. Finally, motivated by previous experiments and theories of randomly diluted antiferromagnets (where an even/odd sublattice imbalance naturally occurs), we present our study of the Heisenberg antiferromagnet on the Cayley tree at the percolation threshold. Our work shows how to detect "emergent" low energy degrees of freedom and compute the effective interactions between them by using data from DMRG calculations.

  15. The MCNP6 Analytic Criticality Benchmark Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.

    2016-06-16

    Analytical benchmarks provide an invaluable tool for verifying computer codes used to simulate neutron transport. Several collections of analytical benchmark problems [1-4] are used routinely in the verification of production Monte Carlo codes such as MCNP® [5,6]. Verification of a computer code is a necessary prerequisite to the more complex validation process. The verification process confirms that a code performs its intended functions correctly. The validation process involves determining the absolute accuracy of code results vs. nature. In typical validations, results are computed for a set of benchmark experiments using a particular methodology (code, cross-section data with uncertainties, and modeling)more » and compared to the measured results from the set of benchmark experiments. The validation process determines bias, bias uncertainty, and possibly additional margins. Verification is generally performed by the code developers, while validation is generally performed by code users for a particular application space. The VERIFICATION_KEFF suite of criticality problems [1,2] was originally a set of 75 criticality problems found in the literature for which exact analytical solutions are available. Even though the spatial and energy detail is necessarily limited in analytical benchmarks, typically to a few regions or energy groups, the exact solutions obtained can be used to verify that the basic algorithms, mathematics, and methods used in complex production codes perform correctly. The present work has focused on revisiting this benchmark suite. A thorough review of the problems resulted in discarding some of them as not suitable for MCNP benchmarking. For the remaining problems, many of them were reformulated to permit execution in either multigroup mode or in the normal continuous-energy mode for MCNP. Execution of the benchmarks in continuous-energy mode provides a significant advance to MCNP verification methods.« less

  16. Strategies in Forecasting Outcomes in Ethical Decision-making: Identifying and Analyzing the Causes of the Problem

    PubMed Central

    Beeler, Cheryl K.; Antes, Alison L.; Wang, Xiaoqian; Caughron, Jared J.; Thiel, Chase E.; Mumford, Michael D.

    2010-01-01

    This study examined the role of key causal analysis strategies in forecasting and ethical decision-making. Undergraduate participants took on the role of the key actor in several ethical problems and were asked to identify and analyze the causes, forecast potential outcomes, and make a decision about each problem. Time pressure and analytic mindset were manipulated while participants worked through these problems. The results indicated that forecast quality was associated with decision ethicality, and the identification of the critical causes of the problem was associated with both higher quality forecasts and higher ethicality of decisions. Neither time pressure nor analytic mindset impacted forecasts or ethicality of decisions. Theoretical and practical implications of these findings are discussed. PMID:20352056

  17. Analytical solutions for sequentially coupled one-dimensional reactive transport problems Part I: Mathematical derivations

    NASA Astrophysics Data System (ADS)

    Srinivasan, V.; Clement, T. P.

    2008-02-01

    Multi-species reactive transport equations coupled through sorption and sequential first-order reactions are commonly used to model sites contaminated with radioactive wastes, chlorinated solvents and nitrogenous species. Although researchers have been attempting to solve various forms of these reactive transport equations for over 50 years, a general closed-form analytical solution to this problem is not available in the published literature. In Part I of this two-part article, we derive a closed-form analytical solution to this problem for spatially-varying initial conditions. The proposed solution procedure employs a combination of Laplace and linear transform methods to uncouple and solve the system of partial differential equations. Two distinct solutions are derived for Dirichlet and Cauchy boundary conditions each with Bateman-type source terms. We organize and present the final solutions in a common format that represents the solutions to both boundary conditions. In addition, we provide the mathematical concepts for deriving the solution within a generic framework that can be used for solving similar transport problems.

  18. Why does the sign problem occur in evaluating the overlap of HFB wave functions?

    NASA Astrophysics Data System (ADS)

    Mizusaki, Takahiro; Oi, Makito; Shimizu, Noritaka

    2018-04-01

    For the overlap matrix element between Hartree-Fock-Bogoliubov states, there are two analytically different formulae: one with the square root of the determinant (the Onishi formula) and the other with the Pfaffian (Robledo's Pfaffian formula). The former formula is two-valued as a complex function, hence it leaves the sign of the norm overlap undetermined (i.e., the so-called sign problem of the Onishi formula). On the other hand, the latter formula does not suffer from the sign problem. The derivations for these two formulae are so different that the reasons are obscured why the resultant formulae possess different analytical properties. In this paper, we discuss the reason why the difference occurs by means of the consistent framework, which is based on the linked cluster theorem and the product-sum identity for the Pfaffian. Through this discussion, we elucidate the source of the sign problem in the Onishi formula. We also point out that different summation methods of series expansions may result in analytically different formulae.

  19. [Precarious employment in undocumented immigrants in Spain and its relationship with health].

    PubMed

    Porthé, Victoria; Benavides, Fernando G; Vázquez, M Luisa; Ruiz-Frutos, Carlos; García, Ana M; Ahonen, Emily; Agudelo-Suárez, Andrés A; Benach, Joan

    2009-12-01

    To describe the characteristics of precarious employment in undocumented immigrants in Spain and its relationship with health. A qualitative study was conducted using analytic induction. Criterion sampling, based on the Immigration, Work and Health project (Inmigración, Trabajo y Salud [ITSAL]) criterion (current definitions of 'legal immigrant' in Spain and in the literature) was used to recruit 44 undocumented immigrant workers from four different countries, living in four Spanish cities. The characteristics of precariousness perceived by undocumented immigrants included high job instability; disempowerment due to lack of legal protection; high vulnerability exacerbated by their legal and immigrant status; perceived insufficient wages and lower wages than coworkers; limited social benefits and difficulty in exercising their rights; and finally, long hours and fast-paced work. Our informants reported they had no serious health problems but did describe physical and mental problems associated with their employment conditions and legal situation. Our results suggest that undocumented immigrants' situation may not fit the model of precarious employment exactly. However, the model's dimensions can be expanded to better represent undocumented immigrants' situation, thus strengthening the general model. Precarious employment in this group can be defined as , as it affects their working and social lives. If these workers continue to be exposed to such precarious conditions, the impact on their health may increase.

  20. Solution of magnetic field and eddy current problem induced by rotating magnetic poles (abstract)

    NASA Astrophysics Data System (ADS)

    Liu, Z. J.; Low, T. S.

    1996-04-01

    The magnetic field and eddy current problems induced by rotating permanent magnet poles occur in electromagnetic dampers, magnetic couplings, and many other devices. Whereas numerical techniques, for example, finite element methods can be exploited to study various features of these problems, such as heat generation and drag torque development, etc., the analytical solution is always of interest to the designers since it helps them to gain the insight into the interdependence of the parameters involved and provides an efficient tool for designing. Some of the previous work showed that the solution of the eddy current problem due to the linearly moving magnet poles can give satisfactory approximation for the eddy current problem due to rotating fields. However, in many practical cases, especially when the number of magnet poles is small, there is significant effect of flux focusing due to the geometry. The above approximation can therefore lead to marked errors in the theoretical predictions of the device performance. Bernot et al. recently described an analytical solution in a polar coordinate system where the radial field is excited by a time-varying source. A discussion of an analytical solution of the magnetic field and eddy current problems induced by moving magnet poles in radial field machines will be given in this article. The theoretical predictions obtained from this method is compared with the results obtained from finite element calculations. The validity of the method is also checked by the comparison of the theoretical predictions and the measurements from a test machine. It is shown that the introduced solution leads to a significant improvement in the air gap field prediction as compared with the results obtained from the analytical solution that models the eddy current problems induced by linearly moving magnet poles.

  1. An Analytical Hierarchy Process Model for the Evaluation of College Experimental Teaching Quality

    ERIC Educational Resources Information Center

    Yin, Qingli

    2013-01-01

    Taking into account the characteristics of college experimental teaching, through investigaton and analysis, evaluation indices and an Analytical Hierarchy Process (AHP) model of experimental teaching quality have been established following the analytical hierarchy process method, and the evaluation indices have been given reasonable weights. An…

  2. 21 CFR 809.30 - Restrictions on the sale, distribution and use of analyte specific reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... other than providing diagnostic information to patients and practitioners, e.g., forensic, academic... include the statement for class I exempt ASR's: “Analyte Specific Reagent. Analytical and performance... and performance characteristics are not established”; and (4) Shall not make any statement regarding...

  3. Combinatorial Formulas for Characteristic Classes, and Localization of Secondary Topological Invariants.

    NASA Astrophysics Data System (ADS)

    Smirnov, Mikhail

    1995-01-01

    The problems solved in this thesis originated from combinatorial formulas for characteristic classes. This thesis deals with Chern-Simons classes, their generalizations and related algebraic and analytic problems. (1) In this thesis, I describe a new class of algebras whose elements contain Chern and generalized Chern -Simons classes. There is a Poisson bracket in these algebras, similar to the bracket in Kontsevich's noncommutative symplectic geometry (Kon). I prove that the Poisson bracket gives rise to a graded Lie algebra containing differential forms representing Chern and Chern-Simons classes. This is a new result. I describe algebraic analogs of the dilogarithm and higher polylogarithms in the algebra corresponding to Chern-Simons classes. (2) I study the properties of this bracket. It is possible to write the exterior differential and other operations in the algebra using this bracket. The bracket of any two Chern classes is zero and the bracket of a Chern class and a Chern-Simons class is d-closed. The construction developed here easily gives explicit formulas for known secondary classes and makes it possible to construct new ones. (3) I develop an algebraic model for the action of the gauge group and describe how elements of algebra corresponding to the secondary characteristic classes change under this action (see theorem 3 page xi). (4) It is possible give new explicit formulas for cocycles on a gauge group of a bundle and for the corresponding cocycles on the Lie algebra of the gauge group. I use formulas for secondary characteristic classes and an algebraic approach developed in chapter 1. I also use the work of Faddeev, Reiman and Semyonov-Tian-Shanskii (FRS) on cocycles as quantum anomalies. (5) I apply the methods of differential geometry of formal power series to construct universal characteristic and secondary characteristic classes. Given a pair of gauge equivalent connections using local formulas I obtain dilogarithmic and trilogarithmic analogs of Chern-Simons classes.

  4. Analytical and numerical investigations of bubble behavior in electric fields

    NASA Astrophysics Data System (ADS)

    Vorreiter, Janelle Orae

    The behavior of gas bubbles in liquids is important in a wide range of applications. This study is motivated by a desire to understand the motion of bubbles in the absence of gravity, as in many aerospace applications. Phase-change devices, cryogenic tanks and life-support systems are some of the applications where bubbles exist in space environments. One of the main difficulties in employing devices with bubbles in zero gravity environments is the absence of a buoyancy force. The use of an electric field is found to be an effective means of replacing the buoyancy force, improving the control of bubbles in space environments. In this study, analytical and numerical investigations of bubble behavior under the influence of electric fields are performed. The problem is a difficult one in that the physics of the liquid and the electric field need to be considered simultaneously to model the dynamics of the bubble. Simplifications are required to reduce the problem to a tractable form. In this work, for the liquid and the electric field, assumptions are made which reduce the problem to one requiring only the solution of potentials in the domain of interest. Analytical models are developed using a perturbation analysis applicable for small deviations from a spherical shape. Numerical investigations are performed using a boundary integral code. A number of configurations are found to be successful in promoting bubble motion by varying properties of the electric fields. In one configuration, the natural frequencies of a bubble are excited using time-varying electric and pressure fields. The applied electric field is spatially uniform with frequencies corresponding to shape modes of the bubble. The resulting bubble velocity is related to the strength of the electric field as well as the characteristics of the applied fields. In another configuration, static non-uniform fields are used to encourage bubble motion. The resulting motion is related to the degree of non-uniformity of the applied field. Several geometries are investigated to study the relationship between electrode geometry and bubble behavior.

  5. A multigroup radiation diffusion test problem: Comparison of code results with analytic solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shestakov, A I; Harte, J A; Bolstad, J H

    2006-12-21

    We consider a 1D, slab-symmetric test problem for the multigroup radiation diffusion and matter energy balance equations. The test simulates diffusion of energy from a hot central region. Opacities vary with the cube of the frequency and radiation emission is given by a Wien spectrum. We compare results from two LLNL codes, Raptor and Lasnex, with tabular data that define the analytic solution.

  6. Improving the biological nitrogen removal process in pharmaceutical wastewater treatment plants: a case study.

    PubMed

    Torrijos, M; Carrera, J; Lafuente, J

    2004-04-01

    The Biological Nitrogen Removal (BNR) process of some pharmaceutical wastewater treatment plants has important operational problems. This study shows that, in order to solve these problems, the design of industrial BNR processes should start by analysing three key parameters: the characteristics of the wastewater load, the determination of the maximum TKN removal rate and the detection of toxic or inhibitory compounds in the wastewater. A case study of this analysis in pharmaceutical wastewater is presented here. In this case, the conventional TKN analytical method does not make an accurate characterisation of the wastewater load because it measures a concentration of 100 mg TKN l(-1) whereas the real concentration, determined with a modified TKN analytical method, is 150-500 mg TKN l(-1). Also, the TKN removal of the treatment system is insufficient in some periods because it falls below legal requirements. This problem might be a consequence of the wrong characterisation of wastewater during the design process. The maximum TKN removal at 27 degrees C (24 mg N g VSS(-1) d(-1) or 197 mg N l(-1) d(-1)) was evaluated in a pilot-scale plant. This value is six times greater than the average NLR applied in the full-scale plant. Finally, some of the components of the wastewater, such as p-phenylenediamine, might have inhibitory or toxic effects on the biological process. P-phenylenediamine causes a large decrease in the nitrification rate. This effect was determined by respirometry. This methodology shows that the effect is mainly inhibitory with a contact time of 30 min and if the contact time is longer, 14 hours, a toxic effect is observed.

  7. Implementation of a computationally efficient least-squares algorithm for highly under-determined three-dimensional diffuse optical tomography problems.

    PubMed

    Yalavarthy, Phaneendra K; Lynch, Daniel R; Pogue, Brian W; Dehghani, Hamid; Paulsen, Keith D

    2008-05-01

    Three-dimensional (3D) diffuse optical tomography is known to be a nonlinear, ill-posed and sometimes under-determined problem, where regularization is added to the minimization to allow convergence to a unique solution. In this work, a generalized least-squares (GLS) minimization method was implemented, which employs weight matrices for both data-model misfit and optical properties to include their variances and covariances, using a computationally efficient scheme. This allows inversion of a matrix that is of a dimension dictated by the number of measurements, instead of by the number of imaging parameters. This increases the computation speed up to four times per iteration in most of the under-determined 3D imaging problems. An analytic derivation, using the Sherman-Morrison-Woodbury identity, is shown for this efficient alternative form and it is proven to be equivalent, not only analytically, but also numerically. Equivalent alternative forms for other minimization methods, like Levenberg-Marquardt (LM) and Tikhonov, are also derived. Three-dimensional reconstruction results indicate that the poor recovery of quantitatively accurate values in 3D optical images can also be a characteristic of the reconstruction algorithm, along with the target size. Interestingly, usage of GLS reconstruction methods reduces error in the periphery of the image, as expected, and improves by 20% the ability to quantify local interior regions in terms of the recovered optical contrast, as compared to LM methods. Characterization of detector photo-multiplier tubes noise has enabled the use of the GLS method for reconstructing experimental data and showed a promise for better quantification of target in 3D optical imaging. Use of these new alternative forms becomes effective when the ratio of the number of imaging property parameters exceeds the number of measurements by a factor greater than 2.

  8. Pitting intuitive and analytical thinking against each other: the case of transitivity.

    PubMed

    Rusou, Zohar; Zakay, Dan; Usher, Marius

    2013-06-01

    Identifying which thinking mode, intuitive or analytical, yields better decisions has been a major subject of inquiry by decision-making researchers. Yet studies show contradictory results. One possibility is that the ambiguity is due to the variability in experimental conditions across studies. Our hypothesis is that decision quality depends critically on the level of compatibility between the thinking mode employed in the decision and the nature of the decision-making task. In two experiments, we pitted intuition and analytical thinking against each other on tasks that were either mainly intuitive or mainly analytical. Thinking modes, as well as task characteristics, were manipulated in a factorial design, with choice transitivity as the dependent measure. Results showed higher choice consistency (transitivity) when thinking mode and the characteristics of the decision task were compatible.

  9. Flexible aircraft dynamic modeling for dynamic analysis and control synthesis

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.

    1989-01-01

    The linearization and simplification of a nonlinear, literal model for flexible aircraft is highlighted. Areas of model fidelity that are critical if the model is to be used for control system synthesis are developed and several simplification techniques that can deliver the necessary model fidelity are discussed. These techniques include both numerical and analytical approaches. An analytical approach, based on first-order sensitivity theory is shown to lead not only to excellent numerical results, but also to closed-form analytical expressions for key system dynamic properties such as the pole/zero factors of the vehicle transfer-function matrix. The analytical results are expressed in terms of vehicle mass properties, vibrational characteristics, and rigid-body and aeroelastic stability derivatives, thus leading to the underlying causes for critical dynamic characteristics.

  10. Zarya Energy Balance Analysis: The Effect of Spacecraft Shadowing on Solar Array Performance

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Kolosov, Vladimir

    1999-01-01

    The first element of the International Space Station (ISS). Zarya, was funded by NASA and built by the Russian aerospace company Khrunichev State Research and Production Space Center (KhSC). NASA Glenn Research Center (GRC) and KhSC collaborated in performing analytical predictions of the on-orbit electrical performance of Zarya's solar arrays. GRC assessed the pointing characteristics of and shadow patterns on Zarya's solar arrays to determine the average solar energy incident on the arrays. KHSC used the incident energy results to determine Zarya's electrical power generation capability and orbit-average power balance. The power balance analysis was performed over a range of solar beta angles and vehicle operational conditions. This analysis enabled identification of problems that could impact the power balance for specific flights during ISS assembly and was also used as the primary means of verifying that Zarya complied with electrical power requirements. Analytical results are presented for select stages in the ISS assembly sequence along with a discussion of the impact of shadowing on the electrical performance of Zarya's solar arrays.

  11. Heat and mass transfer in combustion - Fundamental concepts and analytical techniques

    NASA Technical Reports Server (NTRS)

    Law, C. K.

    1984-01-01

    Fundamental combustion phenomena and the associated flame structures in laminar gaseous flows are discussed on physical bases within the framework of the three nondimensional parameters of interest to heat and mass transfer in chemically-reacting flows, namely the Damkoehler number, the Lewis number, and the Arrhenius number which is the ratio of the reaction activation energy to the characteristic thermal energy. The model problems selected for illustration are droplet combustion, boundary layer combustion, and the propagation, flammability, and stability of premixed flames. Fundamental concepts discussed include the flame structures for large activation energy reactions, S-curve interpretation of the ignition and extinctin states, reaction-induced local-similarity and non-similarity in boundary layer flows, the origin and removal of the cold boundary difficulty in modeling flame propagation, and effects of flame stretch and preferential diffusion on flame extinction and stability. Analytical techniques introduced include the Shvab-Zeldovich formulation, the local Shvab-Zeldovich formulation, flame-sheet approximation and the associated jump formulation, and large activation energy matched asymptotic analysis. Potentially promising research areas are suggested.

  12. Experimental and analytical determination of characteristics affecting light aircraft landing-gear dynamics

    NASA Technical Reports Server (NTRS)

    Fasanella, E. L.; Mcgehee, J. R.; Pappas, M. S.

    1977-01-01

    An experimental and analytical investigation was conducted to determine which characteristics of a light aircraft landing gear influence gear dynamic behavior significantly. The investigation focused particularly on possible modification for load control. Pseudostatic tests were conducted to determine the gear fore-and-aft spring constant, axial friction as a function of drag load, brake pressure-torque characteristics, and tire force-deflection characteristics. To study dynamic tire response, vertical drops were conducted at impact velocities of 1.2, 1.5, and 1.8 m/s onto a level surface; to determine axial-friction effects, a second series of vertical drops were made at 1.5 m/s onto surfaces inclined 5 deg and 10 deg to the horizontal. An average dynamic axial-friction coefficient of 0.15 was obtained by comparing analytical data with inclined surface drop test data. Dynamic strut bending and associated axial friction were found to be severe for the drop tests on the 10 deg surface.

  13. Derivation of phase functions from multiply scattered sunlight transmitted through a hazy atmosphere

    NASA Technical Reports Server (NTRS)

    Weinman, J. A.; Twitty, J. T.; Browning, S. R.; Herman, B. M.

    1975-01-01

    The intensity of sunlight multiply scattered in model atmospheres is derived from the equation of radiative transfer by an analytical small-angle approximation. The approximate analytical solutions are compared to rigorous numerical solutions of the same problem. Results obtained from an aerosol-laden model atmosphere are presented. Agreement between the rigorous and the approximate solutions is found to be within a few per cent. The analytical solution to the problem which considers an aerosol-laden atmosphere is then inverted to yield a phase function which describes a single scattering event at small angles. The effect of noisy data on the derived phase function is discussed.

  14. Swarm intelligence metaheuristics for enhanced data analysis and optimization.

    PubMed

    Hanrahan, Grady

    2011-09-21

    The swarm intelligence (SI) computing paradigm has proven itself as a comprehensive means of solving complicated analytical chemistry problems by emulating biologically-inspired processes. As global optimum search metaheuristics, associated algorithms have been widely used in training neural networks, function optimization, prediction and classification, and in a variety of process-based analytical applications. The goal of this review is to provide readers with critical insight into the utility of swarm intelligence tools as methods for solving complex chemical problems. Consideration will be given to algorithm development, ease of implementation and model performance, detailing subsequent influences on a number of application areas in the analytical, bioanalytical and detection sciences.

  15. Optimum design of structures subject to general periodic loads

    NASA Technical Reports Server (NTRS)

    Reiss, Robert; Qian, B.

    1989-01-01

    A simplified version of Icerman's problem regarding the design of structures subject to a single harmonic load is discussed. The nature of the restrictive conditions that must be placed on the design space in order to ensure an analytic optimum are discussed in detail. Icerman's problem is then extended to include multiple forcing functions with different driving frequencies. And the conditions that now must be placed upon the design space to ensure an analytic optimum are again discussed. An important finding is that all solutions to the optimality condition (analytic stationary design) are local optima, but the global optimum may well be non-analytic. The more general problem of distributing the fixed mass of a linear elastic structure subject to general periodic loads in order to minimize some measure of the steady state deflection is also considered. This response is explicitly expressed in terms of Green's functional and the abstract operators defining the structure. The optimality criterion is derived by differentiating the response with respect to the design parameters. The theory is applicable to finite element as well as distributed parameter models.

  16. On N. Park's Analytical solution for steady state density- and mixing regime—dependent solute transport in a vertical soil column

    NASA Astrophysics Data System (ADS)

    Thiele, Michael

    1998-04-01

    Recently, Park [1996] presented an analytical solution for stationary one-dimensional solute transport in a variable-density fluid flow through a vertical soil column. He used the widespread Bear-Scheidegger dispersion model describing solute mixing as a sum of molecular diffusion and velocity-proportional mechanical dispersion effects. His closed-form implicit concentration and pressure distributions thus allow for a discussion of the combined impact of molecular diffusion and mechanical dispersion in a variable-density environment. Whereas Park only considered the example of vanishing molecular diffusion in detail, both phenomena are taken into account simultaneously in the present study in order to elucidate their different influences on concentration distribution characteristics. The boundary value problem dealt with herein is based on an upward inflow of high-density fluid of constant solute concentration and corresponding outflow of a lower constant concentration fluid at the upper end of the column when dispersivity does not change along the flow path. The thickness of the transition zone between the two fluids appeared to strongly depend on the prevailing share of the molecular diffusion and mechanical dispersion mechanisms. The latter can be characterized by a molecular Peclet number Pe, which here is defined as the ratio of the column outflow velocity multiplied by a characteristic pore size and the molecular diffusion coefficient. For very small values of Pe, when molecular diffusion represents the exclusive mixing process, density differences have no impact on transition zone thicknesses. A relative density-;dependent thickness increases with flow velocities (increasing Pe values) very rapidly compared to the density-independent case, and after having passed a maximum decreases asymptotically to a constant value for the large Peclet number limit when mechanical dispersion is the only mixing mechanism. Hence the special transport problem analyzed gives further evidence for the importance of simultaneously considering molecular diffusion and mechanical dispersion in gravity-affected solute transport in porous media.

  17. Downward continuation of airborne gravity data by means of the change of boundary approach

    NASA Astrophysics Data System (ADS)

    Mansi, A. H.; Capponi, M.; Sampietro, D.

    2018-03-01

    Within the modelling of gravity data, a common practice is the upward/downward continuation of the signal, i.e. the process of continuing the gravitational signal in the vertical direction away or closer to the sources, respectively. The gravity field, being a potential field, satisfies the Laplace's equation outside the masses and this means that it allows to unambiguously perform this analytical continuation only in a source-free domain. The analytical continuation problem has been solved both in the space and spectral domains by exploiting different algorithms. As well known, the downward continuation operator, differently from the upward one, is an unstable operator, due to its spectral characteristics similar to those of a high-pass filter, and several regularization methods have been proposed in order to stabilize it. In this work, an iterative procedure to downward/upward continue the gravity field observations, acquired at different altitudes, is proposed. This methodology is based on the change of boundary principle and it has been expressively thought for aerogravimetric observations for geophysical exploration purposes. Within this field of application, usually several simplifications can be applied, basically due to the specific characteristics of the airborne surveys which are usually flown at almost constant altitude as close as possible to the terrain. For instance, these characteristics, as shown in the present work, allow to perform the downward continuation without the need of any regularization. The goodness of the proposed methodology has been evaluated by means of a numerical test on real data, acquired in the South of Australia. The test shows that it is possible to move the aerogravimetric data, acquired along tracks with a maximum height difference of about 250 m, with accuracies of the order of 10^{-3} mGal.

  18. Clinical and audiologic characteristics of patients with sensorineural tinnitus and its association with psychological aspects: an analytic retrospective study.

    PubMed

    Al-Swiahb, Jamil Nasser; Hwang, Eul Seung; Kong, Ji Sun; Kim, Woo Jin; Yeo, Sang Won; Park, Shi Nae

    2016-12-01

    This study was performed to analyze clinical and audiologic characteristics of sensorineural tinnitus and to investigate the associating factors reflecting psychological aspects of stress and depression of the patients. This is a retrospective analytical study conducted in a tinnitus clinic of a tertiary referral center of a university hospital. The medical records of 216 patients suffering from sensorineural tinnitus were thoroughly evaluated to determine correlations between clinical and audiological characteristics, including age, sex, predisposing or etiologic factors, hearing levels up to extended high frequencies, and tinnitus severity. Psychological aspects of stress and depression were also evaluated and analyzed to seek the associations with tinnitus severity. All data were stored in our database bank and were statistically analyzed. Our study subjects showed a slight male predominance. The highest percentage of tinnitus was found in patients of 60-80 years old. Only 32.5 % of tinnitus patients were subjectively aware of their hearing loss, whereas 73 % of subjects had hearing deficits in some frequencies in their audiogram. Hearing impairments were of the low-frequency sensorineural type in 18.2 % of patients and were limited to the high frequencies in 77.9 % of patients. Tinnitus was unilateral in 51 % of patients and had a tonal nature in 45 % of patients. In total, 45.8 % of patients with high-frequency sensorineural hearing loss had high-pitched tinnitus. There were significant correlations between tinnitus severity, loudness and annoyance. Correlations with THI (Tinnitus Handicap Inventory) and Beck depression index scores were also found. Sensorineural tinnitus was related with hearing loss in some frequencies nevertheless of patients' own awareness of hearing loss. Loudness and annoyance of tinnitus seems to be two important factors reflecting psychological problems of patients' stress and depression.

  19. The Purpose of Analytical Models from the Perspective of a Data Provider.

    ERIC Educational Resources Information Center

    Sheehan, Bernard S.

    The purpose of analytical models is to reduce complex institutional management problems and situations to simpler proportions and compressed time frames so that human skills of decision makers can be brought to bear most effectively. Also, modeling cultivates the art of management by forcing explicit and analytical consideration of important…

  20. Odor Recognition vs. Classification in Artificial Olfaction

    NASA Astrophysics Data System (ADS)

    Raman, Baranidharan; Hertz, Joshua; Benkstein, Kurt; Semancik, Steve

    2011-09-01

    Most studies in chemical sensing have focused on the problem of precise identification of chemical species that were exposed during the training phase (the recognition problem). However, generalization of training to predict the chemical composition of untrained gases based on their similarity with analytes in the training set (the classification problem) has received very limited attention. These two analytical tasks pose conflicting constraints on the system. While correct recognition requires detection of molecular features that are unique to an analyte, generalization to untrained chemicals requires detection of features that are common across a desired class of analytes. A simple solution that addresses both issues simultaneously can be obtained from biological olfaction, where the odor class and identity information are decoupled and extracted individually over time. Mimicking this approach, we proposed a hierarchical scheme that allowed initial discrimination between broad chemical classes (e.g. contains oxygen) followed by finer refinements using additional data into sub-classes (e.g. ketones vs. alcohols) and, eventually, specific compositions (e.g. ethanol vs. methanol) [1]. We validated this approach using an array of temperature-controlled chemiresistors. We demonstrated that a small set of training analytes is sufficient to allow generalization to novel chemicals and that the scheme provides robust categorization despite aging. Here, we provide further characterization of this approach.

  1. External Standards or Standard Addition? Selecting and Validating a Method of Standardization

    NASA Astrophysics Data System (ADS)

    Harvey, David T.

    2002-05-01

    A common feature of many problem-based laboratories in analytical chemistry is a lengthy independent project involving the analysis of "real-world" samples. Students research the literature, adapting and developing a method suitable for their analyte, sample matrix, and problem scenario. Because these projects encompass the complete analytical process, students must consider issues such as obtaining a representative sample, selecting a method of analysis, developing a suitable standardization, validating results, and implementing appropriate quality assessment/quality control practices. Most textbooks and monographs suitable for an undergraduate course in analytical chemistry, however, provide only limited coverage of these important topics. The need for short laboratory experiments emphasizing important facets of method development, such as selecting a method of standardization, is evident. The experiment reported here, which is suitable for an introductory course in analytical chemistry, illustrates the importance of matrix effects when selecting a method of standardization. Students also learn how a spike recovery is used to validate an analytical method, and obtain a practical experience in the difference between performing an external standardization and a standard addition.

  2. Current status and prospect: Coal water mixture technology in Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sastrawinata, T.; Suwono, A.

    1996-12-31

    This paper covers the status of Coal Water Mixture (CWM) technology in Indonesia and also the prospect for implementing this technology. Advantageous use of a pipeline for coal transportation is geographically inconvenient. Characteristics of CWM for Indonesian coal and combustion characteristics of CWM for Indonesian coal are reviewed. The coal reserve estimated in Indonesia is about 36 billions tons with ratio of lignite and higher rank is 60:40. The main problems faced in the coal utilization in Indonesia is the transportation from the mines to the users. Remote, limited infrastructure and the geographic conditions are factors which contribute to themore » problems. The CWM made of Indonesian low rank coal from various origins has been prepared for further study. The CWM of various coal concentration up to 66% with good handling and storage stability was obtained. Rheological measurements of the obtained CWM shows that for high coal concentration (greater than about 40%), in addition to the yield stress, the solution also behaves as the power law model of fluid. Energy Technology Laboratory has just started to investigate the combustion characteristics of CWM. CWM in Indonesia has not been utilized commercially in the industrial boiler, so that needs to be studied comprehensively. The technical aspects in this is stressed on the combustion characteristics in the boiler furnace. LSDE has a state of the art coal combustion facility that includes a chemical analytic laboratory and a boiler simulator equipped with complete data acquisition. The experiments will have several numerical criteria to characterize CWS combustion process, i.e., Maximum Furnace Exit Temperature, firing rate, pressure drop in the test section, deposit strength and deposit weight, swirl flow number.« less

  3. Optimal design of piezoelectric transformers: a rational approach based on an analytical model and a deterministic global optimization.

    PubMed

    Pigache, Francois; Messine, Frédéric; Nogarede, Bertrand

    2007-07-01

    This paper deals with a deterministic and rational way to design piezoelectric transformers in radial mode. The proposed approach is based on the study of the inverse problem of design and on its reformulation as a mixed constrained global optimization problem. The methodology relies on the association of the analytical models for describing the corresponding optimization problem and on an exact global optimization software, named IBBA and developed by the second author to solve it. Numerical experiments are presented and compared in order to validate the proposed approach.

  4. Integration of QFD, AHP, and LPP methods in supplier development problems under uncertainty

    NASA Astrophysics Data System (ADS)

    Shad, Zahra; Roghanian, Emad; Mojibian, Fatemeh

    2014-04-01

    Quality function deployment (QFD) is a customer-driven approach, widely used to develop or process new product to maximize customer satisfaction. Last researches used linear physical programming (LPP) procedure to optimize QFD; however, QFD issue involved uncertainties, or fuzziness, which requires taking them into account for more realistic study. In this paper, a set of fuzzy data is used to address linguistic values parameterized by triangular fuzzy numbers. Proposed integrated approach including analytic hierarchy process (AHP), QFD, and LPP to maximize overall customer satisfaction under uncertain conditions and apply them in the supplier development problem. The fuzzy AHP approach is adopted as a powerful method to obtain the relationship between the customer requirements and engineering characteristics (ECs) to construct house of quality in QFD method. LPP is used to obtain the optimal achievement level of the ECs and subsequently the customer satisfaction level under different degrees of uncertainty. The effectiveness of proposed method will be illustrated by an example.

  5. Design of a tokamak fusion reactor first wall armor against neutral beam impingement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, R.A.

    1977-12-01

    The maximum temperatures and thermal stresses are calculated for various first wall design proposals, using both analytical solutions and the TRUMP and SAP IV Computer Codes. Beam parameters, such as pulse time, cycle time, and beam power, are varied. It is found that uncooled plates should be adequate for near-term devices, while cooled protection will be necessary for fusion power reactors. Graphite and tungsten are selected for analysis because of their desirable characteristics. Graphite allows for higher heat fluxes compared to tungsten for similar pulse times. Anticipated erosion (due to surface effects) and plasma impurity fraction are estimated. Neutron irradiationmore » damage is also discussed. Neutron irradiation damage (rather than erosion, fatigue, or creep) is estimated to be the lifetime-limiting factor on the lifetime of the component in fusion power reactors. It is found that the use of tungsten in fusion power reactors, when directly exposed to the plasma, will cause serious plasma impurity problems; graphite should not present such an impurity problem.« less

  6. Singular value decomposition for the truncated Hilbert transform

    NASA Astrophysics Data System (ADS)

    Katsevich, A.

    2010-11-01

    Starting from a breakthrough result by Gelfand and Graev, inversion of the Hilbert transform became a very important tool for image reconstruction in tomography. In particular, their result is useful when the tomographic data are truncated and one deals with an interior problem. As was established recently, the interior problem admits a stable and unique solution when some a priori information about the object being scanned is available. The most common approach to solving the interior problem is based on converting it to the Hilbert transform and performing analytic continuation. Depending on what type of tomographic data are available, one gets different Hilbert inversion problems. In this paper, we consider two such problems and establish singular value decomposition for the operators involved. We also propose algorithms for performing analytic continuation.

  7. An analytics of electricity consumption characteristics based on principal component analysis

    NASA Astrophysics Data System (ADS)

    Feng, Junshu

    2018-02-01

    Abstract . More detailed analysis of the electricity consumption characteristics can make demand side management (DSM) much more targeted. In this paper, an analytics of electricity consumption characteristics based on principal component analysis (PCA) is given, which the PCA method can be used in to extract the main typical characteristics of electricity consumers. Then, electricity consumption characteristics matrix is designed, which can make a comparison of different typical electricity consumption characteristics between different types of consumers, such as industrial consumers, commercial consumers and residents. In our case study, the electricity consumption has been mainly divided into four characteristics: extreme peak using, peak using, peak-shifting using and others. Moreover, it has been found that industrial consumers shift their peak load often, meanwhile commercial and residential consumers have more peak-time consumption. The conclusions can provide decision support of DSM for the government and power providers.

  8. Symbolic computation of the Birkhoff normal form in the problem of stability of the triangular libration points

    NASA Astrophysics Data System (ADS)

    Shevchenko, I. I.

    2008-05-01

    The problem of stability of the triangular libration points in the planar circular restricted three-body problem is considered. A software package, intended for normalization of autonomous Hamiltonian systems by means of computer algebra, is designed so that normalization problems of high analytical complexity could be solved. It is used to obtain the Birkhoff normal form of the Hamiltonian in the given problem. The normalization is carried out up to the 6th order of expansion of the Hamiltonian in the coordinates and momenta. Analytical expressions for the coefficients of the normal form of the 6th order are derived. Though intermediary expressions occupy gigabytes of the computer memory, the obtained coefficients of the normal form are compact enough for presentation in typographic format. The analogue of the Deprit formula for the stability criterion is derived in the 6th order of normalization. The obtained floating-point numerical values for the normal form coefficients and the stability criterion confirm the results by Markeev (1969) and Coppola and Rand (1989), while the obtained analytical and exact numeric expressions confirm the results by Meyer and Schmidt (1986) and Schmidt (1989). The given computational problem is solved without constructing a specialized algebraic processor, i.e., the designed computer algebra package has a broad field of applicability.

  9. Theoretical study of the transonic lift of a double-wedge profile with detached bow wave

    NASA Technical Reports Server (NTRS)

    Vincenti, Walter G; Wagoner, Cleo B

    1954-01-01

    A theoretical study is described of the aerodynamic characteristics at small angle of attack of a thin, double-wedge profile in the range of supersonic flight speed in which the bow wave is detached. The analysis is carried out within the framework of the transonic (nonlinear) small-disturbance theory, and the effects of angle of attack are regarded as a small perturbation on the flow previously calculated at zero angle. The mixed flow about the front half of the profile is calculated by relaxation solution of a suitably defined boundary-value problem for transonic small-disturbance equation in the hodograph plane (i.e., the Tricomi equation). The purely supersonic flow about the rear half is found by an extension of the usual numerical method of characteristics. Analytical results are also obtained, within the framework of the same theory, for the range of speed in which the bow wave is attached and the flow is completely supersonic.

  10. Sierra/SolidMechanics 4.48 Verification Tests Manual.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plews, Julia A.; Crane, Nathan K; de Frias, Gabriel Jose

    2018-03-01

    Presented in this document is a small portion of the tests that exist in the Sierra / SolidMechanics (Sierra / SM) verification test suite. Most of these tests are run nightly with the Sierra / SM code suite, and the results of the test are checked versus the correct analytical result. For each of the tests presented in this document, the test setup, a description of the analytic solution, and comparison of the Sierra / SM code results to the analytic solution is provided. Mesh convergence is also checked on a nightly basis for several of these tests. This documentmore » can be used to confirm that a given code capability is verified or referenced as a compilation of example problems. Additional example problems are provided in the Sierra / SM Example Problems Manual. Note, many other verification tests exist in the Sierra / SM test suite, but have not yet been included in this manual.« less

  11. Sierra/SolidMechanics 4.48 Verification Tests Manual.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plews, Julia A.; Crane, Nathan K.; de Frias, Gabriel Jose

    Presented in this document is a small portion of the tests that exist in the Sierra / SolidMechanics (Sierra / SM) verification test suite. Most of these tests are run nightly with the Sierra / SM code suite, and the results of the test are checked versus the correct analytical result. For each of the tests presented in this document, the test setup, a description of the analytic solution, and comparison of the Sierra / SM code results to the analytic solution is provided. Mesh convergence is also checked on a nightly basis for several of these tests. This documentmore » can be used to confirm that a given code capability is verified or referenced as a compilation of example problems. Additional example problems are provided in the Sierra / SM Example Problems Manual. Note, many other verification tests exist in the Sierra / SM test suite, but have not yet been included in this manual.« less

  12. A methodology to enhance electromagnetic compatibility in joint military operations

    NASA Astrophysics Data System (ADS)

    Buckellew, William R.

    The development and validation of an improved methodology to identify, characterize, and prioritize potential joint EMI (electromagnetic interference) interactions and identify and develop solutions to reduce the effects of the interference are discussed. The methodology identifies potential EMI problems using results from field operations, historical data bases, and analytical modeling. Operational expertise, engineering analysis, and testing are used to characterize and prioritize the potential EMI problems. Results can be used to resolve potential EMI during the development and acquisition of new systems and to develop engineering fixes and operational workarounds for systems already employed. The analytic modeling portion of the methodology is a predictive process that uses progressive refinement of the analysis and the operational electronic environment to eliminate noninterfering equipment pairs, defer further analysis on pairs lacking operational significance, and resolve the remaining EMI problems. Tests are conducted on equipment pairs to ensure that the analytical models provide a realistic description of the predicted interference.

  13. Analytical and Computational Properties of Distributed Approaches to MDO

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia M.; Lewis, Robert Michael

    2000-01-01

    Historical evolution of engineering disciplines and the complexity of the MDO problem suggest that disciplinary autonomy is a desirable goal in formulating and solving MDO problems. We examine the notion of disciplinary autonomy and discuss the analytical properties of three approaches to formulating and solving MDO problems that achieve varying degrees of autonomy by distributing the problem along disciplinary lines. Two of the approaches-Optimization by Linear Decomposition and Collaborative Optimization-are based on bi-level optimization and reflect what we call a structural perspective. The third approach, Distributed Analysis Optimization, is a single-level approach that arises from what we call an algorithmic perspective. The main conclusion of the paper is that disciplinary autonomy may come at a price: in the bi-level approaches, the system-level constraints introduced to relax the interdisciplinary coupling and enable disciplinary autonomy can cause analytical and computational difficulties for optimization algorithms. The single-level alternative we discuss affords a more limited degree of autonomy than that of the bi-level approaches, but without the computational difficulties of the bi-level methods. Key Words: Autonomy, bi-level optimization, distributed optimization, multidisciplinary optimization, multilevel optimization, nonlinear programming, problem integration, system synthesis

  14. Wind flow characteristics in the wakes of large wind turbines. Volume 1: Analytical model development

    NASA Technical Reports Server (NTRS)

    Eberle, W. R.

    1981-01-01

    A computer program to calculate the wake downwind of a wind turbine was developed. Turbine wake characteristics are useful for determining optimum arrays for wind turbine farms. The analytical model is based on the characteristics of a turbulent coflowing jet with modification for the effects of atmospheric turbulence. The program calculates overall wake characteristics, wind profiles, and power recovery for a wind turbine directly in the wake of another turbine, as functions of distance downwind of the turbine. The calculation procedure is described in detail, and sample results are presented to illustrate the general behavior of the wake and the effects of principal input parameters.

  15. The analytical calibration in (bio)imaging/mapping of the metallic elements in biological samples--definitions, nomenclature and strategies: state of the art.

    PubMed

    Jurowski, Kamil; Buszewski, Bogusław; Piekoszewski, Wojciech

    2015-01-01

    Nowadays, studies related to the distribution of metallic elements in biological samples are one of the most important issues. There are many articles dedicated to specific analytical atomic spectrometry techniques used for mapping/(bio)imaging the metallic elements in various kinds of biological samples. However, in such literature, there is a lack of articles dedicated to reviewing calibration strategies, and their problems, nomenclature, definitions, ways and methods used to obtain quantitative distribution maps. The aim of this article was to characterize the analytical calibration in the (bio)imaging/mapping of the metallic elements in biological samples including (1) nomenclature; (2) definitions, and (3) selected and sophisticated, examples of calibration strategies with analytical calibration procedures applied in the different analytical methods currently used to study an element's distribution in biological samples/materials such as LA ICP-MS, SIMS, EDS, XRF and others. The main emphasis was placed on the procedures and methodology of the analytical calibration strategy. Additionally, the aim of this work is to systematize the nomenclature for the calibration terms: analytical calibration, analytical calibration method, analytical calibration procedure and analytical calibration strategy. The authors also want to popularize the division of calibration methods that are different than those hitherto used. This article is the first work in literature that refers to and emphasizes many different and complex aspects of analytical calibration problems in studies related to (bio)imaging/mapping metallic elements in different kinds of biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Stress intensity factors in two bonded elastic layers containing cracks perpendicular to and on the interface. I Analysis. II - Solution and results

    NASA Technical Reports Server (NTRS)

    Lu, M.-C.; Erdogan, F.

    1983-01-01

    The basic crack problem which is essential for the study of subcritical crack propagation and fracture of layered structural materials is considered. Because of the apparent analytical difficulties, the problem is idealized as one of plane strain or plane stress. An additional simplifying assumption is made by restricting the formulation of the problem to crack geometries and loading conditions which have a plane of symmetry perpendicular to the interface. The general problem is formulated in terms of a coupled systems of four integral equations. For each relevant crack configuration of practical interest, the singular behavior of the solution near and at the ends and points of intersection of the cracks is investigated and the related characteristic equations are obtained. The edge crack terminating at and crossing the interface, the T-shaped crack consisting of a broken layer and a delamination crack, the cross-shaped crack which consists of a delamination crack intersecting a crack which is perpendicular to the interface, and a delamination crack initiating from a stress-free boundary of the bonded layers are some of the practical crack geometries considered. Previously announced in STAR as N80-18428 and N80-18429

  17. [The validity of radioimmunologic determination of bioavailability of beta-escin in horse chestnut extracts].

    PubMed

    Schrödter, A; Loew, D; Schwankl, W; Rietbrock, N

    1998-09-01

    The bioavailability under steady state conditions of a standard, slow-release horse chestnut seed extract (HCSE)-containing product was compared with that of an analogous, fast-release test preparation (Noricaven novo) in a prospective, randomised, double-blind study in a double cross-over design. The serum concentration of beta-escin (CAS 6805-41-0) was measured by radioimmunoassay. In addition, the biopharmaceutical properties of the HCSEs present in the products were investigated, the amount and composition of the active ingredient, escin, being analysed with a validated HPLC method. The pharmacokinetics of this study were compared with the corresponding data of a similar investigation carried out under analogous conditions concerning study design, analytical methods and reference preparation. Comparison of the similar studies revealed differences in characteristic pharmakokinetic values of beta-escin in terms of a shift of the concentration time curves as could be demonstrated for the reference product. The total amounts of escin in the two products investigated did not differ significantly. However, quantitative and qualitative differences were detected in the constituents of the two different extract preparations. It is concluded that the high specificity of the validated beta-escin radioimmunoassay leads to analytical imprecision due to the variable constituents of the extract preparations used. It is necessary to test whether this problem can be solved using an analytical approach, which is specific for each extract.

  18. Radiophysical methods of diagnostics the Earth's ionosphere and the underlying earth's surface by remote sensing in the short-wave range of radio waves

    NASA Astrophysics Data System (ADS)

    Belov, S. Yu.; Belova, I. N.

    2017-11-01

    Monitoring of the earth's surface by remote sensing in the short-wave band can provide quick identification of some characteristics of natural systems. This band range allows one to diagnose subsurface aspects of the earth, as the scattering parameter is affected by irregularities in the dielectric permittivity of subsurface structures. This method based on the organization of the monitoring probe may detect changes in these environments, for example, to assess seismic hazard, hazardous natural phenomena such as earthquakes, as well as some man-made hazards and etc. The problem of measuring and accounting for the scattering power of the earth's surface in the short-range of radio waves is important for a number of purposes, such as diagnosing properties of the medium, which is of interest for geological, environmental studies. In this paper, we propose a new method for estimating the parameters of incoherent signal/noise ratio. The paper presents the results of comparison of the measurement method from the point of view of their admissible relative analytical errors. The new method is suggested. Analysis of analytical error of estimation of this parameter allowed to recommend new method instead of standard method. A comparative analysis and shows that the analytical (relative) accuracy of the determination of this parameter new method on the order exceeds the widely-used standard method.

  19. SVM-Based System for Prediction of Epileptic Seizures from iEEG Signal

    PubMed Central

    Cherkassky, Vladimir; Lee, Jieun; Veber, Brandon; Patterson, Edward E.; Brinkmann, Benjamin H.; Worrell, Gregory A.

    2017-01-01

    Objective This paper describes a data-analytic modeling approach for prediction of epileptic seizures from intracranial electroencephalogram (iEEG) recording of brain activity. Even though it is widely accepted that statistical characteristics of iEEG signal change prior to seizures, robust seizure prediction remains a challenging problem due to subject-specific nature of data-analytic modeling. Methods Our work emphasizes understanding of clinical considerations important for iEEG-based seizure prediction, and proper translation of these clinical considerations into data-analytic modeling assumptions. Several design choices during pre-processing and post-processing are considered and investigated for their effect on seizure prediction accuracy. Results Our empirical results show that the proposed SVM-based seizure prediction system can achieve robust prediction of preictal and interictal iEEG segments from dogs with epilepsy. The sensitivity is about 90–100%, and the false-positive rate is about 0–0.3 times per day. The results also suggest good prediction is subject-specific (dog or human), in agreement with earlier studies. Conclusion Good prediction performance is possible only if the training data contain sufficiently many seizure episodes, i.e., at least 5–7 seizures. Significance The proposed system uses subject-specific modeling and unbalanced training data. This system also utilizes three different time scales during training and testing stages. PMID:27362758

  20. Self-similar space-time evolution of an initial density discontinuity

    NASA Astrophysics Data System (ADS)

    Rekaa, V. L.; Pécseli, H. L.; Trulsen, J. K.

    2013-07-01

    The space-time evolution of an initial step-like plasma density variation is studied. We give particular attention to formulate the problem in a way that opens for the possibility of realizing the conditions experimentally. After a short transient time interval of the order of the electron plasma period, the solution is self-similar as illustrated by a video where the space-time evolution is reduced to be a function of the ratio x/t. Solutions of this form are usually found for problems without characteristic length and time scales, in our case the quasi-neutral limit. By introducing ion collisions with neutrals into the numerical analysis, we introduce a length scale, the collisional mean free path. We study the breakdown of the self-similarity of the solution as the mean free path is made shorter than the system length. Analytical results are presented for charge exchange collisions, demonstrating a short time collisionless evolution with an ensuing long time diffusive relaxation of the initial perturbation. For large times, we find a diffusion equation as the limiting analytical form for a charge-exchange collisional plasma, with a diffusion coefficient defined as the square of the ion sound speed divided by the (constant) ion collision frequency. The ion-neutral collision frequency acts as a parameter that allows a collisionless result to be obtained in one limit, while the solution of a diffusion equation is recovered in the opposite limit of large collision frequencies.

  1. Impact of environmental colored noise in single-species population dynamics

    NASA Astrophysics Data System (ADS)

    Spanio, Tommaso; Hidalgo, Jorge; Muñoz, Miguel A.

    2017-10-01

    Variability on external conditions has important consequences for the dynamics and the organization of biological systems. In many cases, the characteristic timescale of environmental changes as well as their correlations play a fundamental role in the way living systems adapt and respond to it. A proper mathematical approach to understand population dynamics, thus, requires approaches more refined than, e.g., simple white-noise approximations. To shed further light onto this problem, in this paper we propose a unifying framework based on different analytical and numerical tools available to deal with "colored" environmental noise. In particular, we employ a "unified colored noise approximation" to map the original problem into an effective one with white noise, and then we apply a standard path integral approach to gain analytical understanding. For the sake of specificity, we present our approach using as a guideline a variation of the contact process—which can also be seen as a birth-death process of the Malthus-Verhulst class—where the propagation or birth rate varies stochastically in time. Our approach allows us to tackle in a systematic manner some of the relevant questions concerning population dynamics under environmental variability, such as determining the stationary population density, establishing the conditions under which a population may become extinct, and estimating extinction times. We focus on the emerging phase diagram and its possible phase transitions, underlying how these are affected by the presence of environmental noise time-correlations.

  2. The behavior of plasma with an arbitrary degree of degeneracy of electron gas in the conductive layer

    NASA Astrophysics Data System (ADS)

    Latyshev, A. V.; Gordeeva, N. M.

    2017-09-01

    We obtain an analytic solution of the boundary problem for the behavior (fluctuations) of an electron plasma with an arbitrary degree of degeneracy of the electron gas in the conductive layer in an external electric field. We use the kinetic Vlasov-Boltzmann equation with the Bhatnagar-Gross-Krook collision integral and the Maxwell equation for the electric field. We use the mirror boundary conditions for the reflections of electrons from the layer boundary. The boundary problem reduces to a one-dimensional problem with a single velocity. For this, we use the method of consecutive approximations, linearization of the equations with respect to the absolute distribution of the Fermi-Dirac electrons, and the conservation law for the number of particles. Separation of variables then helps reduce the problem equations to a characteristic system of equations. In the space of generalized functions, we find the eigensolutions of the initial system, which correspond to the continuous spectrum (Van Kampen mode). Solving the dispersion equation, we then find the eigensolutions corresponding to the adjoint and discrete spectra (Drude and Debye modes). We then construct the general solution of the boundary problem by decomposing it into the eigensolutions. The coefficients of the decomposition are given by the boundary conditions. This allows obtaining the decompositions of the distribution function and the electric field in explicit form.

  3. High altitude aerodynamic platform concept evaluation and prototype engine testing

    NASA Technical Reports Server (NTRS)

    Akkerman, J. W.

    1984-01-01

    A design concept has been developed for maintaining a 150-pound payload at 60,000 feet altitude for about 50 hours. A 600-pound liftoff weight aerodynamic vehicle is used which operates at sufficient speeds to withstand prevailing winds. It is powered by a turbocharged four-stoke cycle gasoline fueled engine. Endurance time of 100 hours or more appears to be feasible with hydrogen fuel and a lighter payload. A prototype engine has been tested to 40,000 feet simulated altitude. Mismatch of the engine and the turbocharger system flow and problems with fuel/air mixture ratio control characteristics prohibited operation beyond 40,000 feet. But there seems to be no reason why the concept cannot be developed to function as analytically predicted.

  4. Effect of structure and morphology on thermal and electrical properties of polycarbonate film capacitors

    NASA Astrophysics Data System (ADS)

    Yen, S. P. S.; Lewis, C. R.

    Research is reported to identify polycarbonate (PC) film characteristics and fabrication procedures which extend the reliable performance range of PC capacitors to 125 C without derating, and establish quality control techniques and transfer technology to US PC film manufacturers. The approach chosen to solve these problems was to develop techniques for fabricating biaxially oriented (BX) 2 microns or thinner PC film with a low dissipation factor up to 140 C; isotropic dimensional stability; high crystallinity; and high voltage breakdown strength. The PC film structure and morphology was then correlated to thermal and electrical capacitor behavior. Analytical techniques were developed to monitor film quality during capacitor fabrication, and as a result, excellent performance was demonstrated during initial capacitor testing.

  5. Magnetic field twist driven by remote convective motions: Characteristics and twist rates

    NASA Technical Reports Server (NTRS)

    Wang, Zheng-Zhi; Hassam, A. B.

    1987-01-01

    It is generally believed that convective motions below the solar photosphere induce a twist in the coronal magnetic field as a result of frozen-in physics. A question of interest is how much twist can one expect from a persistent convective motion, given the fact that dissipative effects will eventually figure. This question is examined by considering a model problem: two conducting plates, with finite resistivity, are set in sheared motion and forced at constant relative speed. A resistive plasma is between the plates and an initially vertical magnetic field connects the plates. The time rate of tilt experienced by the field is obtained as a function of Hartmann number and the resistivity ratio. Both analytical and numerical approaches are considered.

  6. Wave radiation and diffraction by a two-dimensional floating body with an opening near a side wall

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-sheng; Zhou, Hua-wei

    2013-08-01

    The radiation and diffraction problem of a two-dimensional rectangular body with an opening floating on a semi-infinite fluid domain of finite water depth is analysed based on the linearized velocity potential theory through an analytical solution procedure. The expressions for potentials are obtained by the method of variation separation, in which the unknown coefficients are determined by the boundary condition and matching requirement on the interface. The effects of the position of the hole and the gap between the body and side wall on hydrodynamic characteristics are investigated. Some resonance is observed like piston motion in a moon pool and sloshing in a closed tank because of the existence of restricted fluid domains.

  7. Gamma Rays from Classical Novae

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA at the University of Chicago, provided support for a program of theoretical research into the nature of the thermonuclear outbursts of the classical novae and their implications for gamma ray astronomy. In particular, problems which have been addressed include the role of convection in the earliest stages of nova runaway, the influence of opacity on the characteristics of novae, and the nucleosynthesis expected to accompany nova outbursts on massive Oxygen-Neon-Magnesium (ONeMg) white dwarfs. In the following report, I will identify several critical projects on which considerable progress has been achieved and provide brief summaries of the results obtained:(1) two dimensional simulation of nova runaway; (2) nucleosynthesis of nova modeling; and (3) a quasi-analytic study of nucleosynthesis in ONeMg novae.

  8. Geometric quantification of features in large flow fields.

    PubMed

    Kendall, Wesley; Huang, Jian; Peterka, Tom

    2012-01-01

    Interactive exploration of flow features in large-scale 3D unsteady-flow data is one of the most challenging visualization problems today. To comprehensively explore the complex feature spaces in these datasets, a proposed system employs a scalable framework for investigating a multitude of characteristics from traced field lines. This capability supports the examination of various neighborhood-based geometric attributes in concert with other scalar quantities. Such an analysis wasn't previously possible because of the large computational overhead and I/O requirements. The system integrates visual analytics methods by letting users procedurally and interactively describe and extract high-level flow features. An exploration of various phenomena in a large global ocean-modeling simulation demonstrates the approach's generality and expressiveness as well as its efficacy.

  9. Multimedia Analysis plus Visual Analytics = Multimedia Analytics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinchor, Nancy; Thomas, James J.; Wong, Pak C.

    2010-10-01

    Multimedia analysis has focused on images, video, and to some extent audio and has made progress in single channels excluding text. Visual analytics has focused on the user interaction with data during the analytic process plus the fundamental mathematics and has continued to treat text as did its precursor, information visualization. The general problem we address in this tutorial is the combining of multimedia analysis and visual analytics to deal with multimedia information gathered from different sources, with different goals or objectives, and containing all media types and combinations in common usage.

  10. High-temperature ratchets with sawtooth potentials

    NASA Astrophysics Data System (ADS)

    Rozenbaum, Viktor M.; Shapochkina, Irina V.; Sheu, Sheh-Yi; Yang, Dah-Yen; Lin, Sheng Hsien

    2016-11-01

    The concept of the effective potential is suggested as an efficient instrument to get a uniform analytical description of stochastic high-temperature on-off flashing and rocking ratchets. The analytical representation for the average particle velocity, obtained within this technique, allows description of ratchets with sharp potentials (and potentials with jumps in particular). For sawtooth potentials, the explicit analytical expressions for the average velocity of on-off flashing and rocking ratchets valid for arbitrary frequencies of potential energy fluctuations are derived; the difference in their high-frequency asymptotics is explored for the smooth and cusped profiles, and profiles with jumps. The origin of the difference as well as the appearance of the jump behavior in ratchet characteristics are interpreted in terms of self-similar universal solutions which give the continuous description of the effect. It is shown how the jump behavior in motor characteristics arises from the competition between the characteristic times of the system.

  11. REVIEWS OF TOPICAL PROBLEMS: Analytic calculations on digital computers for applications in physics and mathematics

    NASA Astrophysics Data System (ADS)

    Gerdt, V. P.; Tarasov, O. V.; Shirkov, Dmitrii V.

    1980-01-01

    The present state of analytic calculations on computers is reviewed. Several programming systems which are used for analytic calculations are discussed: SCHOONSCHIP, CLAM, REDUCE-2, SYMBAL, CAMAL, AVTO-ANALITIK, MACSYMA, etc. It is shown that these systems can be used to solve a wide range of problems in physics and mathematics. Some physical applications are discussed in celestial mechanics, the general theory of relativity, quantum field theory, plasma physics, hydrodynamics, atomic and molecular physics, and quantum chemistry. Some mathematical applications which are discussed are evaluating indefinite integrals, solving differential equations, and analyzing mathematical expressions. This review is addressed to physicists and mathematicians working in a wide range of fields.

  12. Hypergeometric Series Solution to a Class of Second-Order Boundary Value Problems via Laplace Transform with Applications to Nanofluids

    NASA Astrophysics Data System (ADS)

    Ebaid, Abdelhalim; Wazwaz, Abdul-Majid; Alali, Elham; Masaedeh, Basem S.

    2017-03-01

    Very recently, it was observed that the temperature of nanofluids is finally governed by second-order ordinary differential equations with variable coefficients of exponential orders. Such coefficients were then transformed to polynomials type by using new independent variables. In this paper, a class of second-order ordinary differential equations with variable coefficients of polynomials type has been solved analytically. The analytical solution is expressed in terms of a hypergeometric function with generalized parameters. Moreover, applications of the present results have been applied on some selected nanofluids problems in the literature. The exact solutions in the literature were derived as special cases of our generalized analytical solution.

  13. Andrei Andreevich Bolibrukh's works on the analytic theory of differential equations

    NASA Astrophysics Data System (ADS)

    Anosov, Dmitry V.; Leksin, Vladimir P.

    2011-02-01

    This paper contains an account of A.A. Bolibrukh's results obtained in the new directions of research that arose in the analytic theory of differential equations as a consequence of his sensational counterexample to the Riemann-Hilbert problem. A survey of results of his students in developing topics first considered by Bolibrukh is also presented. The main focus is on the role of the reducibility/irreducibility of systems of linear differential equations and their monodromy representations. A brief synopsis of results on the multidimensional Riemann-Hilbert problem and on isomonodromic deformations of Fuchsian systems is presented, and the main methods in the modern analytic theory of differential equations are sketched. Bibliography: 69 titles.

  14. Analytical Cost Metrics : Days of Future Past

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prajapati, Nirmal; Rajopadhye, Sanjay; Djidjev, Hristo Nikolov

    As we move towards the exascale era, the new architectures must be capable of running the massive computational problems efficiently. Scientists and researchers are continuously investing in tuning the performance of extreme-scale computational problems. These problems arise in almost all areas of computing, ranging from big data analytics, artificial intelligence, search, machine learning, virtual/augmented reality, computer vision, image/signal processing to computational science and bioinformatics. With Moore’s law driving the evolution of hardware platforms towards exascale, the dominant performance metric (time efficiency) has now expanded to also incorporate power/energy efficiency. Therefore the major challenge that we face in computing systems researchmore » is: “how to solve massive-scale computational problems in the most time/power/energy efficient manner?”« less

  15. Application of the boundary integral method to immiscible displacement problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masukawa, J.; Horne, R.N.

    1988-08-01

    This paper presents an application of the boundary integral method (BIM) to fluid displacement problems to demonstrate its usefulness in reservoir simulation. A method for solving two-dimensional (2D), piston-like displacement for incompressible fluids with good accuracy has been developed. Several typical example problems with repeated five-spot patterns were solved for various mobility ratios. The solutions were compared with the analytical solutions to demonstrate accuracy. Singularity programming was found to be a major advantage in handling flow in the vicinity of wells. The BIM was found to be an excellent way to solve immiscible displacement problems. Unlike analytic methods, it canmore » accommodate complex boundary shapes and does not suffer from numerical dispersion at the front.« less

  16. Applications of the Analytical Electron Microscope to Materials Science

    NASA Technical Reports Server (NTRS)

    Goldstein, J. I.

    1992-01-01

    In the last 20 years, the analytical electron microscope (AEM) as allowed investigators to obtain chemical and structural information from less than 50 nanometer diameter regions in thin samples of materials and to explore problems where reactions occur at boundaries and interfaces or within small particles or phases in bulk samples. Examples of the application of the AEM to materials science problems are presented in this paper and demonstrate the usefulness and the future potential of this instrument.

  17. Synthesis of Feedback Controller for Chaotic Systems by Means of Evolutionary Techniques

    NASA Astrophysics Data System (ADS)

    Senkerik, Roman; Oplatkova, Zuzana; Zelinka, Ivan; Davendra, Donald; Jasek, Roman

    2011-06-01

    This research deals with a synthesis of control law for three selected discrete chaotic systems by means of analytic programming. The novality of the approach is that a tool for symbolic regression—analytic programming—is used for such kind of difficult problem. The paper consists of the descriptions of analytic programming as well as chaotic systems and used cost function. For experimentation, Self-Organizing Migrating Algorithm (SOMA) with analytic programming was used.

  18. A two-dimensional approach to relationship conflict: meta-analytic findings.

    PubMed

    Woodin, Erica M

    2011-06-01

    This meta-analysis of 64 studies (5,071 couples) used a metacoding system to categorize observed couple conflict behaviors into categories differing in terms of valence (positive to negative) and intensity (high to low) and resulting in five behavioral categories: hostility, distress, withdrawal, problem solving, and intimacy. Aggregate effect sizes indicated that women were somewhat more likely to display hostility, distress, and intimacy during conflict, whereas men were somewhat more likely to display withdrawal and problem solving. Gender differences were of a small magnitude. For both men and women, hostility was robustly associated with lower relationship satisfaction (medium effect), distress and withdrawal were somewhat associated (small effect), and intimacy and problem solving were both closely associated with relationship satisfaction (medium effect). Effect sizes were moderated in several cases by study characteristics including year of publication, developmental period of the sample, recruitment design, duration of observed conflict, method used to induce conflict, and type of coding system used. Findings from this meta-analysis suggest that high-intensity conflict behaviors of both a positive and negative nature are important correlates of relationship satisfaction and underscore the relatively small gender differences in many conflict behaviors. 2011 APA, all rights reserved

  19. The Robin Hood method - A novel numerical method for electrostatic problems based on a non-local charge transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazic, Predrag; Stefancic, Hrvoje; Abraham, Hrvoje

    2006-03-20

    We introduce a novel numerical method, named the Robin Hood method, of solving electrostatic problems. The approach of the method is closest to the boundary element methods, although significant conceptual differences exist with respect to this class of methods. The method achieves equipotentiality of conducting surfaces by iterative non-local charge transfer. For each of the conducting surfaces, non-local charge transfers are performed between surface elements, which differ the most from the targeted equipotentiality of the surface. The method is tested against analytical solutions and its wide range of application is demonstrated. The method has appealing technical characteristics. For the problemmore » with N surface elements, the computational complexity of the method essentially scales with N {sup {alpha}}, where {alpha} < 2, the required computer memory scales with N, while the error of the potential decreases exponentially with the number of iterations for many orders of magnitude of the error, without the presence of the Critical Slowing Down. The Robin Hood method could prove useful in other classical or even quantum problems. Some future development ideas for possible applications outside electrostatics are addressed.« less

  20. Electronic aroma detection technology for forensic and law enforcement applications

    NASA Astrophysics Data System (ADS)

    Barshick, Stacy-Ann; Griest, Wayne H.; Vass, Arpad A.

    1997-02-01

    A major problem hindering criminal investigations is the lack of appropriate tools for proper crime scene investigations. Often locating important pieces of evidence means relying on the ability of trained detection canines. Development of analytical technology to uncover and analyze evidence, potentially at the scene, could serve to expedite criminal investigations, searches, and court proceedings. To address this problem, a new technology based on gas sensor arrays was investigated for its applicability to forensic and law enforcement problems. The technology employs an array of sensors that respond to volatile chemical components yielding a characteristic 'fingerprint' pattern representative of the vapor-phase composition of a sample. Sample aromas can be analyzed and identified using artificial neural networks that are trained on known aroma patterns. Several candidate applications based on known technological needs of the forensic and law enforcement communities have been investigated. These applications have included the detection of aromas emanating from cadavers to aid in determining time since death, drug detection for deterring the manufacture, sale, and use of drugs of abuse, and the analysis of fire debris for accelerant identification. The result to date for these applications have been extremely promising and demonstrate the potential applicability of this technology for forensic use.

  1. [Marketing research in health service].

    PubMed

    Ameri, Cinzia; Fiorini, Fulvio

    2015-01-01

    Marketing research is the systematic and objective search for, and analysis of, information relevant to the identification and solution of any problem in the field of marketing. The key words in this definition are: systematic, objective and analysis. Marketing research seeks to set about its task in a systematic and objective fashion. This means that a detailed and carefully designed research plan is developed in which each stage of the research is specified. Such a research plan is only considered adequate if it specifies: the research problem in concise and precise terms, the information necessary to address the problem, the methods to be employed in gathering the information and the analytical techniques to be used to interpret it. Maintaining objectivity in marketing research is essential if marketing management is to have sufficient confidence in its results to be prepared to take risky decisions based upon those results. To this end, as far as possible, marketing researchers employ the scientific method. The characteristics of the scientific method are that it translates personal prejudices, notions and opinions into explicit propositions (or hypotheses). These are tested empirically. At the same time alternative explanations of the event or phenomena of interest are given equal consideration.

  2. Current Status of Mycotoxin Analysis: A Critical Review.

    PubMed

    Shephard, Gordon S

    2016-07-01

    It is over 50 years since the discovery of aflatoxins focused the attention of food safety specialists on fungal toxins in the feed and food supply. Since then, analysis of this important group of natural contaminants has advanced in parallel with general developments in analytical science, and current MS methods are capable of simultaneously analyzing hundreds of compounds, including mycotoxins, pesticides, and drugs. This profusion of data may advance our understanding of human exposure, yet constitutes an interpretive challenge to toxicologists and food safety regulators. Despite these advances in analytical science, the basic problem of the extreme heterogeneity of mycotoxin contamination, although now well understood, cannot be circumvented. The real health challenges posed by mycotoxin exposure occur in the developing world, especially among small-scale and subsistence farmers. Addressing these problems requires innovative approaches in which analytical science must also play a role in providing suitable out-of-laboratory analytical techniques.

  3. Modeling of heat flow and effective thermal conductivity of fractured media: Analytical and numerical methods

    NASA Astrophysics Data System (ADS)

    Nguyen, S. T.; Vu, M.-H.; Vu, M. N.; Tang, A. M.

    2017-05-01

    The present work aims to modeling the thermal conductivity of fractured materials using homogenization-based analytical and pattern-based numerical methods. These materials are considered as a network of cracks distributed inside a solid matrix. Heat flow through such media is perturbed by the crack system. The problem of heat flow across a single crack is firstly investigated. The classical Eshelby's solution, extended to the thermal conduction problem of an ellipsoidal inclusion embedding in an infinite homogeneous matrix, gives an analytical solution of temperature discontinuity across a non-conducting penny-shaped crack. This solution is then validated by the numerical simulation based on the finite elements method. The numerical simulation allows analyzing the effect of crack conductivity. The problem of a single crack is then extended to a medium containing multiple cracks. Analytical estimations for effective thermal conductivity, that take into account the interaction between cracks and their spatial distribution, are developed for the case of non-conducting cracks. Pattern-based numerical method is then employed for both cases non-conducting and conducting cracks. In the case of non-conducting cracks, numerical and analytical methods, both account for the spatial distribution of the cracks, fit perfectly. In the case of conducting cracks, the numerical analyzing of crack conductivity effect shows that highly conducting cracks weakly affect heat flow and the effective thermal conductivity of fractured media.

  4. Analytical study on a two-dimensional plane of the off-design flow properties of tandem-bladed compressor stators

    NASA Technical Reports Server (NTRS)

    Sanger, N. L.

    1973-01-01

    The flow characteristics of several tandem bladed compressor stators were analytically evaluated over a range of inlet incidence angles. The ratios of rear-segment to front-segment chord and camber were varied. Results were also compared to the analytical performance of a reference solid blade section. All tandem blade sections exhibited lower calculated losses than the solid stator. But no one geometric configuration exhibited clearly superior characteristics. The front segment accepts the major effect of overall incidence angle change. Rear- to front-segment camber ratios of 4 and greater appeared to be limited by boundary-layer separation from the pressure surface of the rear segment.

  5. Partial discharge characteristics of polymer nanocomposite materials in electrical insulation: a review of sample preparation techniques, analysis methods, potential applications, and future trends.

    PubMed

    Izzati, Wan Akmal; Arief, Yanuar Z; Adzis, Zuraimy; Shafanizam, Mohd

    2014-01-01

    Polymer nanocomposites have recently been attracting attention among researchers in electrical insulating applications from energy storage to power delivery. However, partial discharge has always been a predecessor to major faults and problems in this field. In addition, there is a lot more to explore, as neither the partial discharge characteristic in nanocomposites nor their electrical properties are clearly understood. By adding a small amount of weight percentage (wt%) of nanofillers, the physical, mechanical, and electrical properties of polymers can be greatly enhanced. For instance, nanofillers in nanocomposites such as silica (SiO2), alumina (Al2O3) and titania (TiO2) play a big role in providing a good approach to increasing the dielectric breakdown strength and partial discharge resistance of nanocomposites. Such polymer nanocomposites will be reviewed thoroughly in this paper, with the different experimental and analytical techniques used in previous studies. This paper also provides an academic review about partial discharge in polymer nanocomposites used as electrical insulating material from previous research, covering aspects of preparation, characteristics of the nanocomposite based on experimental works, application in power systems, methods and techniques of experiment and analysis, and future trends.

  6. Assessment of environmental risk for red mud storage facility in China: a case study in Shandong Province.

    PubMed

    Wen, Zhi-Chao; Ma, Shu-Hua; Zheng, Shi-Li; Zhang, Yi; Liang, Yan

    2016-06-01

    Red mud storage facility (RM-SF) pollution remains a serious problem in China mainly due to the RM's huge quantity, little recyclability, and high alkalinity. And, there is also a risk of dam failure because almost all RM-SFs are processed by damming. In order to address this challenge and improve the level of risk management, it is necessary to evaluate the environmental risk of RM-SFs systematically. So, this paper firstly designs a comprehensive evaluation index system with a three-level evaluation index in the terms of RM characteristics, RM-SF characteristics, ambient environment of RM-SF, the management of RM-SF, and the application aspect of RM by the analytic hierarchy process (AHP) method. Then, a case of RM-SF from a typical alumina production enterprise is studied according to this system, as is assisted by several experts from different fields when determining the weights of all indicators. The results show that the risk of selected RM-SF primarily depends on the former factors, that is, RM and RM-SF characteristics, while the contributions of the other factors are quite smaller.

  7. Applied behavior analysis: behavior management of children with autism spectrum disorders in dental environments.

    PubMed

    Hernandez, Purnima; Ikkanda, Zachary

    2011-03-01

    There are a limited number of studies addressing behavior management techniques and procedural modifications that dentists can use to treat people with an autism spectrum disorder (ASD). The authors conducted a search of the dental and behavioral analytic literature to identify management techniques that address problem behaviors exhibited by children with ASDs in dental and other health-related environments. Applied behavior analysis (ABA) is a science in which procedures are based on the principles of behavior through systematic experimentation. Clinicians have used ABA procedures successfully to modify socially significant behaviors of people with ASD. Basic behavior management techniques currently used in dentistry may not encourage people with cognitive and behavioral disabilities, such as ASD, to tolerate simple in-office dental procedures consistently. Instead, dental care providers often are required to use advanced behavior management techniques to complete simple in-office procedures such as prophylaxis, sealant placement and obtaining radiographs. ABA procedures can be integrated in the dental environment to manage problem behaviors often exhibited by children with an ASD. The authors found no evidence-based procedural modifications that address the behavioral characteristics and problematic behaviors of children with an ASD in a dental environment. Further research in this area should be conducted. Knowledge and in-depth understanding of behavioral principles is essential when a dentist is concerned with modifying behaviors. Using ABA procedures can help dentists manage problem behaviors effectively and systematically when performing routine dental treatment. Being knowledgeable about each patient's behavioral characteristics and the parents' level of involvement is important in the successful integration of the procedures and reduction of in-office time.

  8. The Identification and Significance of Intuitive and Analytic Problem Solving Approaches Among College Physics Students

    ERIC Educational Resources Information Center

    Thorsland, Martin N.; Novak, Joseph D.

    1974-01-01

    Described is an approach to assessment of intuitive and analytic modes of thinking in physics. These modes of thinking are associated with Ausubel's theory of learning. High ability in either intuitive or analytic thinking was associated with success in college physics, with high learning efficiency following a pattern expected on the basis of…

  9. The problem of self-disclosure in psychoanalysis.

    PubMed

    Meissner, W W

    2002-01-01

    The problem of self-disclosure is explored in relation to currently shifting paradigms of the nature of the analytic relation and analytic interaction. Relational and intersubjective perspectives emphasize the role of self-disclosure as not merely allowable, but as an essential facilitating aspect of the analytic dialogue, in keeping with the role of the analyst as a contributing partner in the process. At the opposite extreme, advocates of classical anonymity stress the importance of neutrality and abstinence. The paper seeks to chart a course between unconstrained self-disclosure and absolute anonymity, both of which foster misalliances. Self-disclosure is seen as at times contributory to the analytic process, and at times deleterious. The decision whether to self-disclose, what to disclose, and when and how, should be guided by the analyst's perspective on neutrality, conceived as a mental stance in which the analyst assesses and decides what, at any given point, seems to contribute to the analytic process and the patient's therapeutic benefit. The major risk in self-disclosure is the tendency to draw the analytic interaction into the real relation between analyst and patient, thus diminishing or distorting the therapeutic alliance, mitigating transference expression, and compromising therapeutic effectiveness.

  10. An Open-source Community Web Site To Support Ground-Water Model Testing

    NASA Astrophysics Data System (ADS)

    Kraemer, S. R.; Bakker, M.; Craig, J. R.

    2007-12-01

    A community wiki wiki web site has been created as a resource to support ground-water model development and testing. The Groundwater Gourmet wiki is a repository for user supplied analytical and numerical recipes, howtos, and examples. Members are encouraged to submit analytical solutions, including source code and documentation. A diversity of code snippets are sought in a variety of languages, including Fortran, C, C++, Matlab, Python. In the spirit of a wiki, all contributions may be edited and altered by other users, and open source licensing is promoted. Community accepted contributions are graduated into the library of analytic solutions and organized into either a Strack (Groundwater Mechanics, 1989) or Bruggeman (Analytical Solutions of Geohydrological Problems, 1999) classification. The examples section of the wiki are meant to include laboratory experiments (e.g., Hele Shaw), classical benchmark problems (e.g., Henry Problem), and controlled field experiments (e.g., Borden landfill and Cape Cod tracer tests). Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

  11. Analysis of random point images with the use of symbolic computation codes and generalized Catalan numbers

    NASA Astrophysics Data System (ADS)

    Reznik, A. L.; Tuzikov, A. V.; Solov'ev, A. A.; Torgov, A. V.

    2016-11-01

    Original codes and combinatorial-geometrical computational schemes are presented, which are developed and applied for finding exact analytical formulas that describe the probability of errorless readout of random point images recorded by a scanning aperture with a limited number of threshold levels. Combinatorial problems encountered in the course of the study and associated with the new generalization of Catalan numbers are formulated and solved. An attempt is made to find the explicit analytical form of these numbers, which is, on the one hand, a necessary stage of solving the basic research problem and, on the other hand, an independent self-consistent problem.

  12. An Analytical Design Method for a Regenerative Braking Control System for DC-electrified Railway Systems under Light Load Conditions

    NASA Astrophysics Data System (ADS)

    Saito, Tatsuhito; Kondo, Keiichiro; Koseki, Takafumi

    A DC-electrified railway system that is fed by diode rectifiers at a substation is unable to return the electric power to an AC grid. Accordingly, the braking cars have to restrict regenerative braking power when the power consumption of the powering cars is not sufficient. However, the characteristics of a DC-electrified railway system, including the powering cars, is not known, and a mathematical model for designing a controller has not been established yet. Hence, the object of this study is to obtain the mathematical model for an analytical design method of the regenerative braking control system. In the first part of this paper, the static characteristics of this system are presented to show the position of the equilibrium point. The linearization of this system at the equilibrium point is then performed to describe the dynamic characteristics of the system. An analytical design method is then proposed on the basis of these characteristics. The proposed design method is verified by experimental tests with a 1kW class miniature model, and numerical simulations.

  13. Problem-Solving during Shared Reading at Kindergarten

    ERIC Educational Resources Information Center

    Gosen, Myrte N.; Berenst, Jan; de Glopper, Kees

    2015-01-01

    This paper reports on a conversation analytic study of problem-solving interactions during shared reading at three kindergartens in the Netherlands. It illustrates how teachers and pupils discuss book characters' problems that arise in the events in the picture books. A close analysis of the data demonstrates that problem-solving interactions do…

  14. Characteristics of foodborne outbreaks in which use of analytical epidemiological studies contributed to identification of suspected vehicles, European Union, 2007 to 2011.

    PubMed

    Schlinkmann, K M; Razum, O; Werber, D

    2017-04-01

    Foodborne disease outbreaks (FBDOs) occur frequently in Europe. Employing analytical epidemiological study designs increases the likelihood of identifying the suspected vehicle(s), but these studies are rarely applied in FBDO investigations. We used multivariable binary logistic regression analysis to identify characteristics of investigated FBDOs reported to the European Food Safety Authority (2007-2011) that were associated with analytical epidemiological evidence (compared to evidence from microbiological investigations/descriptive epidemiology only). The analysis was restricted to FBDO investigations, where the evidence for the suspected vehicle was considered 'strong', i.e. convincing. The presence of analytical epidemiological evidence was reported in 2012 (50%) of these 4038 outbreaks. In multivariable analysis, increasing outbreak size, number of hospitalizations, causative (i.e. aetiological) agent (whether identified and, if so, which one), and the setting in which these outbreaks occurred (e.g. geographically dispersed outbreaks) were independently associated with presence of analytical evidence. The number of investigations with reported analytical epidemiological evidence was unexpectedly high, likely indicating the need for quality assurance within the European Union foodborne outbreak reporting system, and warranting cautious interpretation of our findings. This first analysis of evidence implicating a food vehicle in FBDOs may help to inform public health authorities on when to use analytical epidemiological study designs.

  15. The Analytical Solution of the Transient Radial Diffusion Equation with a Nonuniform Loss Term.

    NASA Astrophysics Data System (ADS)

    Loridan, V.; Ripoll, J. F.; De Vuyst, F.

    2017-12-01

    Many works have been done during the past 40 years to perform the analytical solution of the radial diffusion equation that models the transport and loss of electrons in the magnetosphere, considering a diffusion coefficient proportional to a power law in shell and a constant loss term. Here, we propose an original analytical method to address this challenge with a nonuniform loss term. The strategy is to match any L-dependent electron losses with a piecewise constant function on M subintervals, i.e., dealing with a constant lifetime on each subinterval. Applying an eigenfunction expansion method, the eigenvalue problem becomes presently a Sturm-Liouville problem with M interfaces. Assuming the continuity of both the distribution function and its first spatial derivatives, we are able to deal with a well-posed problem and to find the full analytical solution. We further show an excellent agreement between both the analytical solutions and the solutions obtained directly from numerical simulations for different loss terms of various shapes and with a diffusion coefficient DLL L6. We also give two expressions for the required number of eigenmodes N to get an accurate snapshot of the analytical solution, highlighting that N is proportional to 1/√t0, where t0 is a time of interest, and that N increases with the diffusion power. Finally, the equilibrium time, defined as the time to nearly reach the steady solution, is estimated by a closed-form expression and discussed. Applications to Earth and also Jupiter and Saturn are discussed.

  16. Mathematical model of polyethylene pipe bending stress state

    NASA Astrophysics Data System (ADS)

    Serebrennikov, Anatoly; Serebrennikov, Daniil

    2018-03-01

    Introduction of new machines and new technologies of polyethylene pipeline installation is usually based on the polyethylene pipe flexibility. It is necessary that existing bending stresses do not lead to an irreversible polyethylene pipe deformation and to violation of its strength characteristics. Derivation of the mathematical model which allows calculating analytically the bending stress level of polyethylene pipes with consideration of nonlinear characteristics is presented below. All analytical calculations made with the mathematical model are experimentally proved and confirmed.

  17. A Comparative Study of Single-pulse and Double-pulse Laser-Induced Breakdown Spectroscopy with Uranium-containing Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skrodzki, P. J.; Becker, J. R.; Diwakar, P. K.

    Laser-induced breakdown spectroscopy (LIBS) holds potential advantages in special nuclear material (SNM) sensing and nuclear forensics which require rapid analysis, minimal sample preparation and stand-off distance capability. SNM, such as U, however, result in crowded emission spectra with LIBS, and characteristic emission lines are challenging to discern. It is well-known that double-pulse LIBS (DPLIBS) improves the signal intensity for analytes over conventional single-pulse LIBS (SPLIBS). This study investigates U signal in a glass matrix using DPLIBS and compares to signal features obtained using SPLIBS. DPLIBS involves sequential firing of 1.06 µm Nd:YAG pre-pulse and 10.6 µm TEA CO2 heating pulsemore » in near collinear geometry. Optimization of experimental parameters including inter-pulse delay and energy follows identification of characteristic lines and signals for bulk analyte Ca and minor constituent analyte U for both DPLIBS and SPLIBS. Spatial and temporal coupling of the two pulses in the proposed DPLIBS technique yields improvements in analytical merits with negligible further damage to the sample compared to SPLIBS. Subsequently, the study discusses optimum plasma emission conditions of U lines and relative figures of merit in both SPLIBS and DPLIBS. Investigation into plasma characteristics also addresses plausible mechanisms related to observed U analyte signal variation between SPLIBS and DPLIBS.« less

  18. An Analytic Approach to Projectile Motion in a Linear Resisting Medium

    ERIC Educational Resources Information Center

    Stewart, Sean M.

    2006-01-01

    The time of flight, range and the angle which maximizes the range of a projectile in a linear resisting medium are expressed in analytic form in terms of the recently defined Lambert W function. From the closed-form solutions a number of results characteristic to the motion of the projectile in a linear resisting medium are analytically confirmed,…

  19. Analytical approximations to seawater optical phase functions of scattering

    NASA Astrophysics Data System (ADS)

    Haltrin, Vladimir I.

    2004-11-01

    This paper proposes a number of analytical approximations to the classic and recently measured seawater light scattering phase functions. The three types of analytical phase functions are derived: individual representations for 15 Petzold, 41 Mankovsky, and 91 Gulf of Mexico phase functions; collective fits to Petzold phase functions; and analytical representations that take into account dependencies between inherent optical properties of seawater. The proposed phase functions may be used for problems of radiative transfer, remote sensing, visibility and image propagation in natural waters of various turbidity.

  20. Numerical Problems and Agent-Based Models for a Mass Transfer Course

    ERIC Educational Resources Information Center

    Murthi, Manohar; Shea, Lonnie D.; Snurr, Randall Q.

    2009-01-01

    Problems requiring numerical solutions of differential equations or the use of agent-based modeling are presented for use in a course on mass transfer. These problems were solved using the popular technical computing language MATLABTM. Students were introduced to MATLAB via a problem with an analytical solution. A more complex problem to which no…

  1. Siewert solutions of transcendental equations, generalized Lambert functions and physical applications

    NASA Astrophysics Data System (ADS)

    Barsan, Victor

    2018-05-01

    Several classes of transcendental equations, mainly eigenvalue equations associated to non-relativistic quantum mechanical problems, are analyzed. Siewert's systematic approach of such equations is discussed from the perspective of the new results recently obtained in the theory of generalized Lambert functions and of algebraic approximations of various special or elementary functions. Combining exact and approximate analytical methods, quite precise analytical outputs are obtained for apparently untractable problems. The results can be applied in quantum and classical mechanics, magnetism, elasticity, solar energy conversion, etc.

  2. Influence of consumers' cognitive style on results from projective mapping.

    PubMed

    Varela, Paula; Antúnez, Lucía; Berget, Ingunn; Oliveira, Denize; Christensen, Kasper; Vidal, Leticia; Naes, Tormod; Ares, Gastón

    2017-09-01

    Projective mapping (PM), one of the most holistic product profiling methods in approach, is increasingly being used to uncover consumers' perception of products and packages. Assessors rely on a process of synthesis for evaluating product information, which would determine the relative importance of the perceived characteristics they use for mapping them. Individual differences are expected, as participants are not instructed on the characteristics to consider for evaluating the degree of difference among samples, generating different perceptual spaces. Individual differences in cognitive style can affect synthesis processes and thus their perception of similarities and differences among samples. In this study, the influence of the cognitive style in the results of PM was explored. Two consumer studies were performed, one aimed at describing intrinsic sensory characteristics of chocolate flavoured milk and the other one looking into extrinsic (package only) of blueberry yogurts. Consumers completed the wholistic-analytic module of the extended Verbal Imagery Cognitive Styles Test & Extended Cognitive Style Analysis-Wholistic Analytic Test, to characterize their cognitive style. Differences between wholistic and analytic consumers in how they evaluated samples using projective mapping were found in both studies. Analytics separated the samples more in the PM perceptual space than wholistic consumers, showing more discriminating abilities. This may come from a deeper analysis of the samples, both from intrinsic and extrinsic point of views. From a sensory perspective (intrinsic), analytic consumers relied on more sensory characteristics, while wholistic mainly discriminated samples according to sweetness and bitterness/chocolate flavour. In the extrinsic study however, even if analytic consumers discriminated more between packs, they described the products using similar words in the descriptive step. One important recommendation coming from this study is the need to consider higher dimensions in the interpretation of projective mapping tasks, as the first dimensions could underestimate the complexity of the perceptual space; currently, most applications of PM consider two dimensions only, which may not uncover the perception of specific groups of consumers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Accurate Estimate of Some Propagation Characteristics for the First Higher Order Mode in Graded Index Fiber with Simple Analytic Chebyshev Method

    NASA Astrophysics Data System (ADS)

    Dutta, Ivy; Chowdhury, Anirban Roy; Kumbhakar, Dharmadas

    2013-03-01

    Using Chebyshev power series approach, accurate description for the first higher order (LP11) mode of graded index fibers having three different profile shape functions are presented in this paper and applied to predict their propagation characteristics. These characteristics include fractional power guided through the core, excitation efficiency and Petermann I and II spot sizes with their approximate analytic formulations. We have shown that where two and three Chebyshev points in LP11 mode approximation present fairly accurate results, the values based on our calculations involving four Chebyshev points match excellently with available exact numerical results.

  4. Development of models of the magnetorheological fluid damper

    NASA Astrophysics Data System (ADS)

    Kazakov, Yu. B.; Morozov, N. A.; Nesterov, S. A.

    2017-06-01

    The algorithm for analytical calculation of a power characteristic of magnetorheological (MR) dampers taking into account the rheological properties of MR fluid is considered. The nonlinear magnetorheological characteristics are represented by piecewise linear approximation to MR fluid areas with different viscosities. The extended calculated power characteristics of a MR damper are received and they coincide with actual results. The finite element model of a MR damper is developed; it allows carrying out the analysis of a MR damper taking into account the mutual influence of electromagnetic, hydrodynamic and thermal fields. The results of finite element simulation coincide with analytical solutions that allows using them for design development of a MR damper.

  5. Disturbance characteristics of half-selected cells in a cross-point resistive switching memory array

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Li, Haitong; Chen, Hong-Yu; Chen, Bing; Liu, Rui; Huang, Peng; Zhang, Feifei; Jiang, Zizhen; Ye, Hongfei; Gao, Bin; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng; Wong, H.-S. Philip; Yu, Shimeng

    2016-05-01

    Disturbance characteristics of cross-point resistive random access memory (RRAM) arrays are comprehensively studied in this paper. An analytical model is developed to quantify the number of pulses (#Pulse) the cell can bear before disturbance occurs under various sub-switching voltage stresses based on physical understanding. An evaluation methodology is proposed to assess the disturb behavior of half-selected (HS) cells in cross-point RRAM arrays by combining the analytical model and SPICE simulation. The characteristics of cross-point RRAM arrays such as energy consumption, reliable operating cycles and total error bits are evaluated by the methodology. A possible solution to mitigate disturbance is proposed.

  6. Observability during planetary approach navigation

    NASA Technical Reports Server (NTRS)

    Bishop, Robert H.; Burkhart, P. Daniel; Thurman, Sam W.

    1993-01-01

    The objective of the research is to develop an analytic technique to predict the relative navigation capability of different Earth-based radio navigation measurements. In particular, the problem is to determine the relative ability of geocentric range and Doppler measurements to detect the effects of the target planet gravitational attraction on the spacecraft during the planetary approach and near-encounter mission phases. A complete solution to the two-dimensional problem has been developed. Relatively simple analytic formulas are obtained for range and Doppler measurements which describe the observability content of the measurement data along the approach trajectories. An observability measure is defined which is based on the observability matrix for nonlinear systems. The results show good agreement between the analytic observability analysis and the computational batch processing method.

  7. A three-dimensional method-of-characteristics solute-transport model (MOC3D)

    USGS Publications Warehouse

    Konikow, Leonard F.; Goode, D.J.; Hornberger, G.Z.

    1996-01-01

    This report presents a model, MOC3D, that simulates three-dimensional solute transport in flowing ground water. The model computes changes in concentration of a single dissolved chemical constituent over time that are caused by advective transport, hydrodynamic dispersion (including both mechanical dispersion and diffusion), mixing (or dilution) from fluid sources, and mathematically simple chemical reactions (including linear sorption, which is represented by a retardation factor, and decay). The transport model is integrated with MODFLOW, a three-dimensional ground-water flow model that uses implicit finite-difference methods to solve the transient flow equation. MOC3D uses the method of characteristics to solve the transport equation on the basis of the hydraulic gradients computed with MODFLOW for a given time step. This implementation of the method of characteristics uses particle tracking to represent advective transport and explicit finite-difference methods to calculate the effects of other processes. However, the explicit procedure has several stability criteria that may limit the size of time increments for solving the transport equation; these are automatically determined by the program. For improved efficiency, the user can apply MOC3D to a subgrid of the primary MODFLOW grid that is used to solve the flow equation. However, the transport subgrid must have uniform grid spacing along rows and columns. The report includes a description of the theoretical basis of the model, a detailed description of input requirements and output options, and the results of model testing and evaluation. The model was evaluated for several problems for which exact analytical solutions are available and by benchmarking against other numerical codes for selected complex problems for which no exact solutions are available. These test results indicate that the model is very accurate for a wide range of conditions and yields minimal numerical dispersion for advection-dominated problems. Mass-balance errors are generally less than 10 percent, and tend to decrease and stabilize with time.

  8. Re-thinking barriers to organizational change in public hospitals.

    PubMed

    Edwards, Nigel; Saltman, Richard B

    2017-01-01

    Public hospitals are well known to be difficult to reform. This paper provides a comprehensive six-part analytic framework that can help policymakers and managers better shape their organizational and institutional behavior. The paper first describes three separate structural characteristics which, together, inhibit effective problem description and policy design for public hospitals. These three structural constraints are i) the dysfunctional characteristics found in most organizations, ii) the particular dysfunctions of professional health sector organizations, and iii) the additional dysfunctional dimensions of politically managed organizations. While the problems in each of these three dimensions of public hospital organization are well-known, and the first two dimensions clearly affect private as well as publicly run hospitals, insufficient attention has been paid to the combined impact of all three factors in making public hospitals particularly difficult to manage and steer. Further, these three structural dimensions interact in an institutional environment defined by three restrictive context limitations, again two of which also affect private hospitals but all three of which compound the management dilemmas in public hospitals. The first contextual limitation is the inherent complexity of delivering high quality, safe, and affordable modern inpatient care in a hospital setting. The second contextual limitation is a set of specific market failures in public hospitals, which limit the scope of the standard financial incentives and reform measures. The third and last contextual limitation is the unique problem of generalized and localized anxiety , which accompanies the delivery of medical services, and which suffuses decision-making on the part of patients, medical staff, hospital management, and political actors alike. This combination of six institutional characteristics - three structural dimensions and three contextual dimensions - can help explain why public hospitals are different in character from other parts of the public sector, and the scale of the challenge they present to political decision-makers.

  9. The program FANS-3D (finite analytic numerical simulation 3-dimensional) and its applications

    NASA Technical Reports Server (NTRS)

    Bravo, Ramiro H.; Chen, Ching-Jen

    1992-01-01

    In this study, the program named FANS-3D (Finite Analytic Numerical Simulation-3 Dimensional) is presented. FANS-3D was designed to solve problems of incompressible fluid flow and combined modes of heat transfer. It solves problems with conduction and convection modes of heat transfer in laminar flow, with provisions for radiation and turbulent flows. It can solve singular or conjugate modes of heat transfer. It also solves problems in natural convection, using the Boussinesq approximation. FANS-3D was designed to solve heat transfer problems inside one, two and three dimensional geometries that can be represented by orthogonal planes in a Cartesian coordinate system. It can solve internal and external flows using appropriate boundary conditions such as symmetric, periodic and user specified.

  10. Analytical Chemistry of Surfaces: Part II. Electron Spectroscopy.

    ERIC Educational Resources Information Center

    Hercules, David M.; Hercules, Shirley H.

    1984-01-01

    Discusses two surface techniques: X-ray photoelectron spectroscopy (ESCA) and Auger electron spectroscopy (AES). Focuses on fundamental aspects of each technique, important features of instrumentation, and some examples of how ESCA and AES have been applied to analytical surface problems. (JN)

  11. Experimental issues related to frequency response function measurements for frequency-based substructuring

    NASA Astrophysics Data System (ADS)

    Nicgorski, Dana; Avitabile, Peter

    2010-07-01

    Frequency-based substructuring is a very popular approach for the generation of system models from component measured data. Analytically the approach has been shown to produce accurate results. However, implementation with actual test data can cause difficulties and cause problems with the system response prediction. In order to produce good results, extreme care is needed in the measurement of the drive point and transfer impedances of the structure as well as observe all the conditions for a linear time invariant system. Several studies have been conducted to show the sensitivity of the technique to small variations that often occur during typical testing of structures. These variations have been observed in actual tested configurations and have been substantiated with analytical models to replicate the problems typically encountered. The use of analytically simulated issues helps to clearly see the effects of typical measurement difficulties often observed in test data. This paper presents some of these common problems observed and provides guidance and recommendations for data to be used for this modeling approach.

  12. An analytic-geometric model of the effect of spherically distributed injection errors for Galileo and Ulysses spacecraft - The multi-stage problem

    NASA Technical Reports Server (NTRS)

    Longuski, James M.; Mcronald, Angus D.

    1988-01-01

    In previous work the problem of injecting the Galileo and Ulysses spacecraft from low earth orbit into their respective interplanetary trajectories has been discussed for the single stage (Centaur) vehicle. The central issue, in the event of spherically distributed injection errors, is what happens to the vehicle? The difficulties addressed in this paper involve the multi-stage problem since both Galileo and Ulysses will be utilizing the two-stage IUS system. Ulysses will also include a third stage: the PAM-S. The solution is expressed in terms of probabilities for total percentage of escape, orbit decay and reentry trajectories. Analytic solutions are found for Hill's Equations of Relative Motion (more recently called Clohessy-Wiltshire Equations) for multi-stage injections. These solutions are interpreted geometrically on the injection sphere. The analytic-geometric models compare well with numerical solutions, provide insight into the behavior of trajectories mapped on the injection sphere and simplify the numerical two-dimensional search for trajectory families.

  13. An analytical method for the inverse Cauchy problem of Lame equation in a rectangle

    NASA Astrophysics Data System (ADS)

    Grigor’ev, Yu

    2018-04-01

    In this paper, we present an analytical computational method for the inverse Cauchy problem of Lame equation in the elasticity theory. A rectangular domain is frequently used in engineering structures and we only consider the analytical solution in a two-dimensional rectangle, wherein a missing boundary condition is recovered from the full measurement of stresses and displacements on an accessible boundary. The essence of the method consists in solving three independent Cauchy problems for the Laplace and Poisson equations. For each of them, the Fourier series is used to formulate a first-kind Fredholm integral equation for the unknown function of data. Then, we use a Lavrentiev regularization method, and the termwise separable property of kernel function allows us to obtain a closed-form regularized solution. As a result, for the displacement components, we obtain solutions in the form of a sum of series with three regularization parameters. The uniform convergence and error estimation of the regularized solutions are proved.

  14. Axisymmetric capillary-gravity waves at the interface of two viscous, immiscible fluids - Initial value problem

    NASA Astrophysics Data System (ADS)

    Farsoiya, Palas Kumar; Dasgupta, Ratul

    2017-11-01

    When the interface between two radially unbounded, viscous fluids lying vertically in a stable configuration (denser fluid below) at rest, is perturbed, radially propagating capillary-gravity waves are formed which damp out with time. We study this process analytically using a recently developed linearised theory. For small amplitude initial perturbations, the analytical solution to the initial value problem, represented as a linear superposition of Bessel modes at time t = 0 , is found to agree very well with results obtained from direct numerical simulations of the Navier-Stokes equations, for a range of initial conditions. Our study extends the earlier work by John W. Miles who studied this initial value problem analytically, taking into account, a single viscous fluid only. Implications of this study for the mechanistic understanding of droplet impact into a deep pool, will be discussed. Some preliminary, qualitative comparison with experiments will also be presented. We thank SERB Dept. Science & Technology, Govt. of India, Grant No. EMR/2016/000830 for financial support.

  15. A Comparison of Geometry Problems in Middle-Grade Mathematics Textbooks from Taiwan, Singapore, Finland, and the United States

    ERIC Educational Resources Information Center

    Yang, Der-Ching; Tseng, Yi-Kuan; Wang, Tzu-Ling

    2017-01-01

    This study analyzed geometry problems in four middle-grade mathematics textbook series from Taiwan, Singapore, Finland, and the United States, while exploring the expectations for students' learning experiences with these problems. An analytical framework developed for mathematics textbook problem analysis had three dimensions: representation…

  16. Stochastic modelling of the hydrologic operation of rainwater harvesting systems

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Guo, Yiping

    2018-07-01

    Rainwater harvesting (RWH) systems are an effective low impact development practice that provides both water supply and runoff reduction benefits. A stochastic modelling approach is proposed in this paper to quantify the water supply reliability and stormwater capture efficiency of RWH systems. The input rainfall series is represented as a marked Poisson process and two typical water use patterns are analytically described. The stochastic mass balance equation is solved analytically, and based on this, explicit expressions relating system performance to system characteristics are derived. The performances of a wide variety of RWH systems located in five representative climatic regions of the United States are examined using the newly derived analytical equations. Close agreements between analytical and continuous simulation results are shown for all the compared cases. In addition, an analytical equation is obtained expressing the required storage size as a function of the desired water supply reliability, average water use rate, as well as rainfall and catchment characteristics. The equations developed herein constitute a convenient and effective tool for sizing RWH systems and evaluating their performances.

  17. Evaluation of Copper-1,3,5-benzenetricarboxylate Metal-organic Framework (Cu-MOF) as a Selective Sorbent for Lewis-base Analytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Scott D.; Eckberg, Alison D.; Thallapally, Praveen K.

    2011-09-01

    The metal-organic framework Cu-BTC was evaluated for its ability to selectively interact with Lewis-base analytes, including explosives, by examining retention on GC columns packed with Chromosorb W HP that contained 3.0% SE-30 along with various loadings of Cu-BTC. SEM images of the support material showed the characteristic Cu-BTC crystals embedded in the SE-30 coating on the diatomaceous support. Results indicated that the Cu-BTC-containing stationary phase had limited thermal stability (220°C) and strong general retention for analytes. Kováts index calculations showed selective retention (amounting to about 300 Kováts units) relative to n-alkanes for many small Lewis-base analytes on a column thatmore » contained 0.75% Cu-BTC compared to an SE-30 control. Short columns that contained lower loadings of Cu-BTC (0.10%) were necessary to elute explosives and related analytes; however, selectivity was not observed for aromatic compounds (including nitroaromatics) or nitroalkanes. Observed retention characteristics are discussed.« less

  18. Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community.

    PubMed

    Hahn, David W; Omenetto, Nicoló

    2010-12-01

    Laser-induced breakdown spectroscopy (LIBS) has become a very popular analytical method in the last decade in view of some of its unique features such as applicability to any type of sample, practically no sample preparation, remote sensing capability, and speed of analysis. The technique has a remarkably wide applicability in many fields, and the number of applications is still growing. From an analytical point of view, the quantitative aspects of LIBS may be considered its Achilles' heel, first due to the complex nature of the laser-sample interaction processes, which depend upon both the laser characteristics and the sample material properties, and second due to the plasma-particle interaction processes, which are space and time dependent. Together, these may cause undesirable matrix effects. Ways of alleviating these problems rely upon the description of the plasma excitation-ionization processes through the use of classical equilibrium relations and therefore on the assumption that the laser-induced plasma is in local thermodynamic equilibrium (LTE). Even in this case, the transient nature of the plasma and its spatial inhomogeneity need to be considered and overcome in order to justify the theoretical assumptions made. This first article focuses on the basic diagnostics aspects and presents a review of the past and recent LIBS literature pertinent to this topic. Previous research on non-laser-based plasma literature, and the resulting knowledge, is also emphasized. The aim is, on one hand, to make the readers aware of such knowledge and on the other hand to trigger the interest of the LIBS community, as well as the larger analytical plasma community, in attempting some diagnostic approaches that have not yet been fully exploited in LIBS.

  19. Factors of Problem-Solving Competency in a Virtual Chemistry Environment: The Role of Metacognitive Knowledge about Strategies

    ERIC Educational Resources Information Center

    Scherer, Ronny; Tiemann, Rudiger

    2012-01-01

    The ability to solve complex scientific problems is regarded as one of the key competencies in science education. Until now, research on problem solving focused on the relationship between analytical and complex problem solving, but rarely took into account the structure of problem-solving processes and metacognitive aspects. This paper,…

  20. Teaching Analytical Thinking

    ERIC Educational Resources Information Center

    Behn, Robert D.; Vaupel, James W.

    1976-01-01

    Description of the philosophy and general nature of a course at Drake University that emphasizes basic concepts of analytical thinking, including think, decompose, simplify, specify, and rethink problems. Some sample homework exercises are included. The journal is available from University of California Press, Berkeley, California 94720.…

  1. BIOMOLECULAR SENSING FOR BIOLOGICAL PROCESSES AND ENVIRONMENTAL MONITORING APPLICATIONS

    EPA Science Inventory

    Biomolecular recognition is being increasingly employed as the basis for a variety of analytical methods such as biosensors. he sensitivity, selectivity, and format versatility inherent in these methods may allow them to be adapted to solving a number of analytical problems. ltho...

  2. Two solvable problems of planar geometrical optics.

    PubMed

    Borghero, Francesco; Bozis, George

    2006-12-01

    In the framework of geometrical optics we consider a two-dimensional transparent inhomogeneous isotropic medium (dispersive or not). We show that (i) for any family belonging to a certain class of planar monoparametric families of monochromatic light rays given in the form f(x,y)=c of any definite color and satisfying a differential condition, all the refractive index profiles n=n(x,y) allowing for the creation of the given family can be found analytically (inverse problem) and that (ii) for any member of a class of two-dimensional refractive index profiles n=n(x,y) satisfying a differential condition, all the compatible families of light rays can be found analytically (direct problem). We present appropriate examples.

  3. Simplified computational methods for elastic and elastic-plastic fracture problems

    NASA Technical Reports Server (NTRS)

    Atluri, Satya N.

    1992-01-01

    An overview is given of some of the recent (1984-1991) developments in computational/analytical methods in the mechanics of fractures. Topics covered include analytical solutions for elliptical or circular cracks embedded in isotropic or transversely isotropic solids, with crack faces being subjected to arbitrary tractions; finite element or boundary element alternating methods for two or three dimensional crack problems; a 'direct stiffness' method for stiffened panels with flexible fasteners and with multiple cracks; multiple site damage near a row of fastener holes; an analysis of cracks with bonded repair patches; methods for the generation of weight functions for two and three dimensional crack problems; and domain-integral methods for elastic-plastic or inelastic crack mechanics.

  4. Dynamic analysis of submerged microscale plates: the effects of acoustic radiation and viscous dissipation

    PubMed Central

    Ma, Xianghong

    2016-01-01

    The aim of this paper is to study the dynamic characteristics of micromechanical rectangular plates used as sensing elements in a viscous compressible fluid. A novel modelling procedure for the plate–fluid interaction problem is developed on the basis of linearized Navier–Stokes equations and no-slip conditions. Analytical expression for the fluid-loading impedance is obtained using a double Fourier transform approach. This modelling work provides us an analytical means to study the effects of inertial loading, acoustic radiation and viscous dissipation of the fluid acting on the vibration of microplates. The numerical simulation is conducted on microplates with different boundary conditions and fluids with different viscosities. The simulation results reveal that the acoustic radiation dominates the damping mechanism of the submerged microplates. It is also proved that microplates offer better sensitivities (Q-factors) than the conventional beam type microcantilevers being mass sensing platforms in a viscous fluid environment. The frequency response features of microplates under highly viscous fluid loading are studied using the present model. The dynamics of the microplates with all edges clamped are less influenced by the highly viscous dissipation of the fluid than the microplates with other types of boundary conditions. PMID:27118914

  5. Dynamic analysis of submerged microscale plates: the effects of acoustic radiation and viscous dissipation.

    PubMed

    Wu, Zhangming; Ma, Xianghong

    2016-03-01

    The aim of this paper is to study the dynamic characteristics of micromechanical rectangular plates used as sensing elements in a viscous compressible fluid. A novel modelling procedure for the plate-fluid interaction problem is developed on the basis of linearized Navier-Stokes equations and no-slip conditions. Analytical expression for the fluid-loading impedance is obtained using a double Fourier transform approach. This modelling work provides us an analytical means to study the effects of inertial loading, acoustic radiation and viscous dissipation of the fluid acting on the vibration of microplates. The numerical simulation is conducted on microplates with different boundary conditions and fluids with different viscosities. The simulation results reveal that the acoustic radiation dominates the damping mechanism of the submerged microplates. It is also proved that microplates offer better sensitivities (Q-factors) than the conventional beam type microcantilevers being mass sensing platforms in a viscous fluid environment. The frequency response features of microplates under highly viscous fluid loading are studied using the present model. The dynamics of the microplates with all edges clamped are less influenced by the highly viscous dissipation of the fluid than the microplates with other types of boundary conditions.

  6. Tripropellant combustion process

    NASA Technical Reports Server (NTRS)

    Kmiec, T. D.; Carroll, R. G.

    1988-01-01

    The addition of small amounts of hydrogen to the combustion of LOX/hydrocarbon propellants in large rocket booster engines has the potential to enhance the system stability. Programs being conducted to evaluate the effects of hydrogen on the combustion of LOX/hydrocarbon propellants at supercritical pressures are described. Combustion instability has been a problem during the development of large hydrocarbon fueled rocket engines. At the higher combustion chamber pressures expected for the next generation of booster engines, the effect of unstable combustion could be even more destructive. The tripropellant engine cycle takes advantage of the superior cooling characteristics of hydrogen to cool the combustion chamber and a small amount of the hydrogen coolant can be used in the combustion process to enhance the system stability. Three aspects of work that will be accomplished to evaluate tripropellant combustion are described. The first is laboratory demonstration of the benefits through the evaluation of drop size, ignition delay and burning rate. The second is analytical modeling of the combustion process using the empirical relationship determined in the laboratory. The third is a subscale demonstration in which the system stability will be evaluated. The approach for each aspect is described and the analytical models that will be used are presented.

  7. Behavior analytic approaches to problem behavior in intellectual disabilities.

    PubMed

    Hagopian, Louis P; Gregory, Meagan K

    2016-03-01

    The purpose of the current review is to summarize recent behavior analytic research on problem behavior in individuals with intellectual disabilities. We have focused our review on studies published from 2013 to 2015, but also included earlier studies that were relevant. Behavior analytic research on problem behavior continues to focus on the use and refinement of functional behavioral assessment procedures and function-based interventions. During the review period, a number of studies reported on procedures aimed at making functional analysis procedures more time efficient. Behavioral interventions continue to evolve, and there were several larger scale clinical studies reporting on multiple individuals. There was increased attention on the part of behavioral researchers to develop statistical methods for analysis of within subject data and continued efforts to aggregate findings across studies through evaluative reviews and meta-analyses. Findings support continued utility of functional analysis for guiding individualized interventions and for classifying problem behavior. Modifications designed to make functional analysis more efficient relative to the standard method of functional analysis were reported; however, these require further validation. Larger scale studies on behavioral assessment and treatment procedures provided additional empirical support for effectiveness of these approaches and their sustainability outside controlled clinical settings.

  8. Class and Home Problems. The Lambert W Function in Ultrafiltration and Diafiltration

    ERIC Educational Resources Information Center

    Foley, Greg

    2016-01-01

    Novel analytical solutions based on the Lambert W function for two problems in ultrafiltration and diafiltration are described. Example problems, suitable for incorporation into an introductory module in unit operations, membrane processing, or numerical methods are provided in each case.

  9. Variational Trajectory Optimization Tool Set: Technical description and user's manual

    NASA Technical Reports Server (NTRS)

    Bless, Robert R.; Queen, Eric M.; Cavanaugh, Michael D.; Wetzel, Todd A.; Moerder, Daniel D.

    1993-01-01

    The algorithms that comprise the Variational Trajectory Optimization Tool Set (VTOTS) package are briefly described. The VTOTS is a software package for solving nonlinear constrained optimal control problems from a wide range of engineering and scientific disciplines. The VTOTS package was specifically designed to minimize the amount of user programming; in fact, for problems that may be expressed in terms of analytical functions, the user needs only to define the problem in terms of symbolic variables. This version of the VTOTS does not support tabular data; thus, problems must be expressed in terms of analytical functions. The VTOTS package consists of two methods for solving nonlinear optimal control problems: a time-domain finite-element algorithm and a multiple shooting algorithm. These two algorithms, under the VTOTS package, may be run independently or jointly. The finite-element algorithm generates approximate solutions, whereas the shooting algorithm provides a more accurate solution to the optimization problem. A user's manual, some examples with results, and a brief description of the individual subroutines are included.

  10. The politics of insight

    PubMed Central

    Salvi, Carola; Cristofori, Irene; Grafman, Jordan; Beeman, Mark

    2016-01-01

    Previous studies showed that liberals and conservatives differ in cognitive style. Liberals are more flexible, and tolerant of complexity and novelty, whereas conservatives are more rigid, are more resistant to change, and prefer clear answers. We administered a set of compound remote associate problems, a task extensively used to differentiate problem-solving styles (via insight or analysis). Using this task, several researches have proven that self-reports, which differentiate between insight and analytic problem-solving, are reliable and are associated with two different neural circuits. In our research we found that participants self-identifying with distinct political orientations demonstrated differences in problem-solving strategy. Liberals solved significantly more problems via insight instead of in a step-by-step analytic fashion. Our findings extend previous observations that self-identified political orientations reflect differences in cognitive styles. More specifically, we show that type of political orientation is associated with problem-solving strategy. The data converge with previous neurobehavioural and cognitive studies indicating a link between cognitive style and the psychological mechanisms that mediate political beliefs. PMID:26810954

  11. The politics of insight.

    PubMed

    Salvi, Carola; Cristofori, Irene; Grafman, Jordan; Beeman, Mark

    2016-01-01

    Previous studies showed that liberals and conservatives differ in cognitive style. Liberals are more flexible, and tolerant of complexity and novelty, whereas conservatives are more rigid, are more resistant to change, and prefer clear answers. We administered a set of compound remote associate problems, a task extensively used to differentiate problem-solving styles (via insight or analysis). Using this task, several researches have proven that self-reports, which differentiate between insight and analytic problem-solving, are reliable and are associated with two different neural circuits. In our research we found that participants self-identifying with distinct political orientations demonstrated differences in problem-solving strategy. Liberals solved significantly more problems via insight instead of in a step-by-step analytic fashion. Our findings extend previous observations that self-identified political orientations reflect differences in cognitive styles. More specifically, we show that type of political orientation is associated with problem-solving strategy. The data converge with previous neurobehavioural and cognitive studies indicating a link between cognitive style and the psychological mechanisms that mediate political beliefs.

  12. A General Solution for Groundwater Flow in Estuarine Leaky Aquifer System with Considering Aquifer Anisotropy

    NASA Astrophysics Data System (ADS)

    Chen, Po-Chia; Chuang, Mo-Hsiung; Tan, Yih-Chi

    2014-05-01

    In recent years the urban and industrial developments near the coastal area are rapid and therefore the associated population grows dramatically. More and more water demand for human activities, agriculture irrigation, and aquaculture relies on heavy pumping in coastal area. The decline of groundwater table may result in the problems of seawater intrusion and/or land subsidence. Since the 1950s, numerous studies focused on the effect of tidal fluctuation on the groundwater flow in the coastal area. Many studies concentrated on the developments of one-dimensional (1D) and two-dimensional (2D) analytical solutions describing the tide-induced head fluctuations. For example, Jacob (1950) derived an analytical solution of 1D groundwater flow in a confined aquifer with a boundary condition subject to sinusoidal oscillation. Jiao and Tang (1999) derived a 1D analytical solution of a leaky confined aquifer by considered a constant groundwater head in the overlying unconfined aquifer. Jeng et al. (2002) studied the tidal propagation in a coupled unconfined and confined costal aquifer system. Sun (1997) presented a 2D solution for groundwater response to tidal loading in an estuary. Tang and Jiao (2001) derived a 2D analytical solution in a leaky confined aquifer system near open tidal water. This study aims at developing a general analytical solution describing the head fluctuations in a 2D estuarine aquifer system consisted of an unconfined aquifer, a confined aquifer, and an aquitard between them. Both the confined and unconfined aquifers are considered to be anisotropic. The predicted head fluctuations from this solution will compare with the simulation results from the MODFLOW program. In addition, the solutions mentioned above will be shown to be special cases of the present solution. Some hypothetical cases regarding the head fluctuation in costal aquifers will be made to investigate the dynamic effects of water table fluctuation, hydrogeological conditions, and characteristics of soil on the groundwater level fluctuations in the 2D estuarine leaky aquifer system.

  13. Epidemiology of multiple childhood traumatic events: child abuse, parental psychopathology, and other family-level stressors.

    PubMed

    Menard, C B; Bandeen-Roche, K J; Chilcoat, H D

    2004-11-01

    Multiple family-level childhood stressors are common and are correlated. It is unknown if clusters of commonly co-occurring stressors are identifiable. The study was designed to explore family-level stressor clustering in the general population, to estimate the prevalence of exposure classes, and to examine the correlation of sociodemographic characteristics with class prevalence. Data were collected from an epidemiological sample and analyzed using latent class regression. A six-class solution was identified. Classes were characterized by low risk (prevalence=23%), universal high risk (7 %), family conflict (11 %), household substance problems (22 %), non-nuclear family structure (24 %), parent's mental illness (13 %). Class prevalence varied with race and welfare status, not gender. Interventions for childhood stressors are person-focused; the analytic approach may uniquely inform resource allocation.

  14. The transformation of weak saturated soils using piles-drains for improving its mechanical properties

    NASA Astrophysics Data System (ADS)

    Ter-Martirosyan, Z. G.; Ter-Martirosyan, A. Z.; Sidorov, V. V.

    2018-04-01

    In practice of increased responsibility structures design there are often weak saturated clayey soils with low characteristics of deformability and strength take place on the construction site. In these cases, foundations using piles-drains of sandy or coarse material are recommended by norms, which is able to bear the load and to accelerate the consolidation process. The presented solutions include an analytical solution of the interaction problem between piles and slab raft foundation with the surrounding soil of the base with the possibility of extension of pile shaft. The closed-form solutions to determine the stresses in pile shaft and in the soil under the foundation slab are obtained. The article presents the results of large scale tests in the pilot area construction of major energy facilities in Russia.

  15. Time-frequency signal analysis and synthesis - The choice of a method and its application

    NASA Astrophysics Data System (ADS)

    Boashash, Boualem

    In this paper, the problem of choosing a method for time-frequency signal analysis is discussed. It is shown that a natural approach leads to the introduction of the concepts of the analytic signal and instantaneous frequency. The Wigner-Ville Distribution (WVD) is a method of analysis based upon these concepts and it is shown that an accurate Time-Frequency representation of a signal can be obtained by using the WVD for the analysis of a class of signals referred to as 'asymptotic'. For this class of signals, the instantaneous frequency describes an important physical parameter characteristic of the process under investigation. The WVD procedure for signal analysis and synthesis is outlined and its properties are reviewed for deterministic and random signals.

  16. Time-Frequency Signal Analysis And Synthesis The Choice Of A Method And Its Application

    NASA Astrophysics Data System (ADS)

    Boashash, Boualem

    1988-02-01

    In this paper, the problem of choosing a method for time-frequency signal analysis is discussed. It is shown that a natural approach leads to the introduction of the concepts of the analytic signal and in-stantaneous frequency. The Wigner-Ville Distribution (WVD) is a method of analysis based upon these concepts and it is shown that an accurate Time-Frequency representation of a signal can be obtained by using the WVD for the analysis of a class of signals referred to as "asymptotic". For this class of signals, the instantaneous frequency describes an important physical parameter characteristic of the process under investigation. The WVD procedure for signal analysis and synthesis is outlined and its properties are reviewed for deterministic and random signals.

  17. Use of Laser-Induced Breakdown Spectroscopy for the Detection of Glycemic Elements in Indian Medicinal Plants

    PubMed Central

    Rai, Prashant Kumar; Srivastava, Amrita Kumari; Sharma, Bechan; Dhar, Preeti; Mishra, Ajay Kumar; Watal, Geeta

    2013-01-01

    The demand for interdisciplinary research is increasing in the new millennium to help us understand complex problems and find solutions by integrating the knowledge from different disciplines. The present review is an excellent example of this and shows how unique combination of physics, chemistry, and biological techniques can be used for the evaluation of Indian medicinal herbs used for treating diabetes mellitus. Laser-induced breakdown spectroscopy (LIBS) is a sensitive optical technique that is widely used for its simplicity and versatility. This review presents the most recent application of LIBS for detection of glycemic elements in medicinal plants. The characteristics of matrices, object analysis, use of laser system, and analytical performances with respect to Indian herbs are discussed. PMID:24228060

  18. Organic materials able to detect analytes

    NASA Technical Reports Server (NTRS)

    Swager, Timothy M. (Inventor); Zhu, Zhengguo (Inventor); Bulovic, Vladimir (Inventor); Rose, Aimee (Inventor); Madigan, Conor Francis (Inventor)

    2012-01-01

    The present invention generally relates to polymers with lasing characteristics that allow the polymers to be useful in detecting analytes. In one aspect, the polymer, upon an interaction with an analyte, may exhibit a change in a lasing characteristic that can be determined in some fashion. For example, interaction of an analyte with the polymer may affect the ability of the polymer to reach an excited state that allows stimulated emission of photons to occur, which may be determined, thereby determining the analyte. In another aspect, the polymer, upon interaction with an analyte, may exhibit a change in stimulated emission that is at least 10 times greater with respect to a change in the spontaneous emission of the polymer upon interaction with the analyte. The polymer may be a conjugated polymer in some cases. In one set of embodiments, the polymer includes one or more hydrocarbon side chains, which may be parallel to the polymer backbone in some instances. In another set of embodiments, the polymer may include one or more pendant aromatic rings. In yet another set of embodiments, the polymer may be substantially encapsulated in a hydrocarbon. In still another set of embodiments, the polymer may be substantially resistant to photobleaching. In certain aspects, the polymer may be useful in the detection of explosive agents, such as 2,4,6-trinitrotoluene (TNT) and 2,4-dinitrotoluene (DNT).

  19. Capillary Driven Flows Along Differentially Wetted Interior Corners

    NASA Technical Reports Server (NTRS)

    Golliher, Eric L. (Technical Monitor); Nardin, C. L.; Weislogel, M. M.

    2005-01-01

    Closed-form analytic solutions useful for the design of capillary flows in a variety of containers possessing interior corners were recently collected and reviewed. Low-g drop tower and aircraft experiments performed at NASA to date show excellent agreement between theory and experiment for perfectly wetting fluids. The analytical expressions are general in terms of contact angle, but do not account for variations in contact angle between the various surfaces within the system. Such conditions may be desirable for capillary containment or to compute the behavior of capillary corner flows in containers consisting of different materials with widely varying wetting characteristics. A simple coordinate rotation is employed to recast the governing system of equations for flows in containers with interior corners with differing contact angles on the faces of the corner. The result is that a large number of capillary driven corner flows may be predicted with only slightly modified geometric functions dependent on corner angle and the two (or more) contact angles of the system. A numerical solution is employed to verify the new problem formulation. The benchmarked computations support the use of the existing theoretical approach to geometries with variable wettability. Simple experiments to confirm the theoretical findings are recommended. Favorable agreement between such experiments and the present theory may argue well for the extension of the analytic results to predict fluid performance in future large length scale capillary fluid systems for spacecraft as well as for small scale capillary systems on Earth.

  20. Analogue solution for electrical capacity of membrane covered square cylinders in square array at high concentration.

    PubMed

    Cole, K S

    1975-12-01

    Analytical solutions of Laplace equations have given the electrical characteristics of membranes and interiors of spherical, ellipsoidal, and cylindrical cells in suspensions and tissues from impedance measurements, but the underlying assumptions may be invalid above 50% volume concentrations. However, resistance measurements on several nonconducting, close-packing forms in two and three dimensions closely predicted volume concentrations up to 100% by equations derived from Maxwell and Rayleigh. Calculations of membrane capacities of cells in suspensions and tissues from extensions of theory, as developed by Fricke and by Cole, have been useful but of unknown validity at high concentrations. A resistor analogue has been used to solve the finite difference approximation to the Laplace equation for the resistance and capacity of a square array of square cylindrical cells with surface capacity. An 11 x 11 array of resistors, simulating a quarter of the unit structure, was separated into intra- and extra-cellular regions by rows of capacitors corresponding to surface membrane areas from 3 x 3 to 11 x 11 or 7.5% to 100%. The extended Rayleigh equation predicted the cell concentrations and membrane capacities to within a few percent from boundary resistance and capacity measurements at low frequencies. This single example suggests that analytical solutions for other, similar two- and three-dimensional problems may be approximated up to near 100% concentrations and that there may be analytical justifications for such analogue solutions of Laplace equations.

  1. Stress state of rocks with a system of workings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikiforovskii, V.S.; Seryakov, V.M.

    1979-09-01

    An investigation of the state of rocks in undisturbed form, and during disturbance by drivage of development workings and the working of seams or ore beds, is both important and also extremely complex in practice. The complete physical and mathematical formulation of the problem must take into account the complex geological structure (allowing for tectonics) of the region, the mutual influence of the systems of workings, the change in the mechanical characteristics in the vicinity of the workings, etc. All these factors make it necessary to solve spatial problems with inclusions and workings of arbitrary form. The literature gives datamore » on the stress in the rock in the vicinity of a working remote from the free surface and in its vicinity. However, the possibilities of an analytical investigation of the problem are limited to the simplest cases under conditions of plane deformation. Considerable success in the solution of problems of geomechanics has been attained using numerical methods, particularly the finite-element method, which enables us, without altering the algorithm, to change fairly rapidly and simply the outer and inner boundaries of the region and the properties of the medium, or to assign various boundary conditions. In this article we calculate the stress in the rocks around mining-out and development workings during mining of the Talnakh and Oktyabr' deposits by the longwall slicing system with stowing of the worked-out area.« less

  2. Surface-Enhanced Raman Spectroscopy.

    ERIC Educational Resources Information Center

    Garrell, Robin L.

    1989-01-01

    Reviews the basis for the technique and its experimental requirements. Describes a few examples of the analytical problems to which surface-enhanced Raman spectroscopy (SERS) has been and can be applied. Provides a perspective on the current limitations and frontiers in developing SERS as an analytical technique. (MVL)

  3. Geometric model of pseudo-distance measurement in satellite location systems

    NASA Astrophysics Data System (ADS)

    Panchuk, K. L.; Lyashkov, A. A.; Lyubchinov, E. V.

    2018-04-01

    The existing mathematical model of pseudo-distance measurement in satellite location systems does not provide a precise solution of the problem, but rather an approximate one. The existence of such inaccuracy, as well as bias in measurement of distance from satellite to receiver, results in inaccuracy level of several meters. Thereupon, relevance of refinement of the current mathematical model becomes obvious. The solution of the system of quadratic equations used in the current mathematical model is based on linearization. The objective of the paper is refinement of current mathematical model and derivation of analytical solution of the system of equations on its basis. In order to attain the objective, geometric analysis is performed; geometric interpretation of the equations is given. As a result, an equivalent system of equations, which allows analytical solution, is derived. An example of analytical solution implementation is presented. Application of analytical solution algorithm to the problem of pseudo-distance measurement in satellite location systems allows to improve the accuracy such measurements.

  4. Short-time quantum dynamics of sharp boundaries potentials

    NASA Astrophysics Data System (ADS)

    Granot, Er'el; Marchewka, Avi

    2015-02-01

    Despite the high prevalence of singular potential in general, and rectangular potentials in particular, in applied scattering models, to date little is known about their short time effects. The reason is that singular potentials cause a mixture of complicated local as well as non-local effects. The object of this work is to derive a generic method to calculate analytically the short-time impact of any singular potential. In this paper it is shown that the scattering of a smooth wavefunction on a singular potential is totally equivalent, in the short-time regime, to the free propagation of a singular wavefunction. However, the latter problem was totally addressed analytically in Ref. [7]. Therefore, this equivalency can be utilized in solving analytically the short time dynamics of any smooth wavefunction at the presence of a singular potentials. In particular, with this method the short-time dynamics of any problem where a sharp boundaries potential (e.g., a rectangular barrier) is turned on instantaneously can easily be solved analytically.

  5. Incorporating Emotional Intelligence in Legal Education: A Theoretical Perspective

    ERIC Educational Resources Information Center

    Douglas, Susan

    2015-01-01

    "Thinking like a lawyer" is traditionally associated with rational-analytical problem solving and an adversarial approach to conflict. These features have been correlated with problems of psychological, or emotional, distress amongst lawyers and law students. These problems provide a strong argument for incorporating a consideration of…

  6. An analytical model for bio-electronic organic field-effect transistor sensors

    NASA Astrophysics Data System (ADS)

    Macchia, Eleonora; Giordano, Francesco; Magliulo, Maria; Palazzo, Gerardo; Torsi, Luisa

    2013-09-01

    A model for the electrical characteristics of Functional-Bio-Interlayer Organic Field-Effect Transistors (FBI-OFETs) electronic sensors is here proposed. Specifically, the output current-voltage characteristics of a streptavidin (SA) embedding FBI-OFET are modeled by means of the analytical equations of an enhancement mode p-channel OFET modified according to an ad hoc designed equivalent circuit that is also independently simulated with pspice. An excellent agreement between the model and the experimental current-voltage output characteristics has been found upon exposure to 5 nM of biotin. A good agreement is also found with the SA OFET parameters graphically extracted from the device transfer I-V curves.

  7. An integrated radiation physics computer code system.

    NASA Technical Reports Server (NTRS)

    Steyn, J. J.; Harris, D. W.

    1972-01-01

    An integrated computer code system for the semi-automatic and rapid analysis of experimental and analytic problems in gamma photon and fast neutron radiation physics is presented. Such problems as the design of optimum radiation shields and radioisotope power source configurations may be studied. The system codes allow for the unfolding of complex neutron and gamma photon experimental spectra. Monte Carlo and analytic techniques are used for the theoretical prediction of radiation transport. The system includes a multichannel pulse-height analyzer scintillation and semiconductor spectrometer coupled to an on-line digital computer with appropriate peripheral equipment. The system is geometry generalized as well as self-contained with respect to material nuclear cross sections and the determination of the spectrometer response functions. Input data may be either analytic or experimental.

  8. An explicit analytical solution for sound propagation in a three-dimensional penetrable wedge with small apex angle.

    PubMed

    Petrov, Pavel S; Sturm, Frédéric

    2016-03-01

    A problem of sound propagation in a shallow-water waveguide with a weakly sloping penetrable bottom is considered. The adiabatic mode parabolic equations are used to approximate the solution of the three-dimensional (3D) Helmholtz equation by modal decomposition of the acoustic pressure field. The mode amplitudes satisfy parabolic equations that admit analytical solutions in the special case of the 3D wedge. Using the analytical formula for modal amplitudes, an explicit and remarkably simple expression for the acoustic pressure in the wedge is obtained. The proposed solution is validated by the comparison with a solution of the 3D penetrable wedge problem obtained using a fully 3D parabolic equation that includes a leading-order cross term correction.

  9. Identifying problems and generating recommendations for enhancing complex systems: applying the abstraction hierarchy framework as an analytical tool.

    PubMed

    Xu, Wei

    2007-12-01

    This study adopts J. Rasmussen's (1985) abstraction hierarchy (AH) framework as an analytical tool to identify problems and pinpoint opportunities to enhance complex systems. The process of identifying problems and generating recommendations for complex systems using conventional methods is usually conducted based on incompletely defined work requirements. As the complexity of systems rises, the sheer mass of data generated from these methods becomes unwieldy to manage in a coherent, systematic form for analysis. There is little known work on adopting a broader perspective to fill these gaps. AH was used to analyze an aircraft-automation system in order to further identify breakdowns in pilot-automation interactions. Four steps follow: developing an AH model for the system, mapping the data generated by various methods onto the AH, identifying problems based on the mapped data, and presenting recommendations. The breakdowns lay primarily with automation operations that were more goal directed. Identified root causes include incomplete knowledge content and ineffective knowledge structure in pilots' mental models, lack of effective higher-order functional domain information displayed in the interface, and lack of sufficient automation procedures for pilots to effectively cope with unfamiliar situations. The AH is a valuable analytical tool to systematically identify problems and suggest opportunities for enhancing complex systems. It helps further examine the automation awareness problems and identify improvement areas from a work domain perspective. Applications include the identification of problems and generation of recommendations for complex systems as well as specific recommendations regarding pilot training, flight deck interfaces, and automation procedures.

  10. Insight in the Brain: The Cognitive and Neural Bases of Eureka Moments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beeman, Mark

    Where do new ideas come from? Although all new ideas build on old, this can happen in different ways. Some new ideas, or solutions to old problems, are achieved through methodical, analytical processing. Other new ideas come about in a sudden burst of insight, often based on or generating a restructured view of the problem itself. Behavioral, brain imaging, and eye-tracking results all reveal distinct cortical networks contributing to insight solving, as contrasted with analytic solving. Consistently, the way in which people solve problems appears to relate to the way they engage attention and cognitive control: across time, across moods,more » and across individuals. Insight is favored when people can disengage from strong stimuli and associations - figuratively and literally looking "outside the box" of the problem to suddenly solve with a new idea.« less

  11. Direct Linearization and Adjoint Approaches to Evaluation of Atmospheric Weighting Functions and Surface Partial Derivatives: General Principles, Synergy and Areas of Application

    NASA Technical Reports Server (NTRS)

    Ustino, Eugene A.

    2006-01-01

    This slide presentation reviews the observable radiances as functions of atmospheric parameters and of surface parameters; the mathematics of atmospheric weighting functions (WFs) and surface partial derivatives (PDs) are presented; and the equation of the forward radiative transfer (RT) problem is presented. For non-scattering atmospheres this can be done analytically, and all WFs and PDs can be computed analytically using the direct linearization approach. For scattering atmospheres, in general case, the solution of the forward RT problem can be obtained only numerically, but we need only two numerical solutions: one of the forward RT problem and one of the adjoint RT problem to compute all WFs and PDs we can think of. In this presentation we discuss applications of both the linearization and adjoint approaches

  12. Nitsche’s Method For Helmholtz Problems with Embedded Interfaces

    PubMed Central

    Zou, Zilong; Aquino, Wilkins; Harari, Isaac

    2016-01-01

    SUMMARY In this work, we use Nitsche’s formulation to weakly enforce kinematic constraints at an embedded interface in Helmholtz problems. Allowing embedded interfaces in a mesh provides significant ease for discretization, especially when material interfaces have complex geometries. We provide analytical results that establish the well-posedness of Helmholtz variational problems and convergence of the corresponding finite element discretizations when Nitsche’s method is used to enforce kinematic constraints. As in the analysis of conventional Helmholtz problems, we show that the inf-sup constant remains positive provided that the Nitsche’s stabilization parameter is judiciously chosen. We then apply our formulation to several 2D plane-wave examples that confirm our analytical findings. Doing so, we demonstrate the asymptotic convergence of the proposed method and show that numerical results are in accordance with the theoretical analysis. PMID:28713177

  13. Analytical methods for solving boundary value heat conduction problems with heterogeneous boundary conditions on lines. I - Review

    NASA Astrophysics Data System (ADS)

    Kartashov, E. M.

    1986-10-01

    Analytical methods for solving boundary value problems for the heat conduction equation with heterogeneous boundary conditions on lines, on a plane, and in space are briefly reviewed. In particular, the method of dual integral equations and summator series is examined with reference to stationary processes. A table of principal solutions to dual integral equations and pair summator series is proposed which presents the known results in a systematic manner. Newly obtained results are presented in addition to the known ones.

  14. Stability of sequences generated by nonlinear differential systems. [for analysis of glider jet aircraft motion

    NASA Technical Reports Server (NTRS)

    Brown, R. L.

    1979-01-01

    A local stability analysis is presented for both the analytic and numerical solutions of the initial value problem for a system of ordinary differential equations. It is shown that, using a proper choice of Liapunov function, a connected region of stable initial values of both the analytic solution and the one-leg k-step numerical solution can be approximated. Attention is given to the example of the two-dimensional problem involving the stability of the longitudinal equations of motion of a gliding jet aircraft.

  15. Effect of mass variation on dynamics of tethered system in orbital maneuvering

    NASA Astrophysics Data System (ADS)

    Sun, Liang; Zhao, Guowei; Huang, Hai

    2018-05-01

    In orbital maneuvering, the mass variation due to fuel consumption has an obvious impact on the dynamics of tethered system, which cannot be neglected. The contributions of the work are mainly shown in two aspects: 1) the improvement of the model; 2) the analysis of dynamics characteristics. As the mass is variable, and the derivative of the mass is directly considered in the traditional Lagrange equation, the expression of generalized force is complicated. To solve this problem, the coagulated derivative is adopted in the paper; besides, the attitude dynamics equations derived in this paper take into account the effect of mass variation and the drift of orbital trajectory at the same time. The bifurcation phenomenon, the pendular motion angular frequency, and amplitudes of tether vibration revealed in this paper can provide a reference for the parameters and controller design in practical engineering. In the article, a dumbbell model is adopted to analyze the dynamics of tethered system, in which the mass variation of base satellite is fully considered. Considering the practical application, the case of orbital transfer under a transversal thrust is mainly studied. Besides, compared with the analytical solutions of librational angles, the effects of mass variation on stability and librational characteristic are studied. Finally, in order to make an analysis of the effect on vibrational characteristic, a lumped model is introduced, which reveals a strong coupling of librational and vibrational characteristics.

  16. Structural response of bead-stiffened thermoplastic shear webs

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall

    1991-01-01

    The results of an experimental and analytical study of the structural response and failure characteristics of selected bead-stiffened thermoplastic shear-webs are presented. Results are given for specimens with one stiffeneer, with two stiffeners, and different stiffener geometries. Selected analytical results that were obtained with the Computational Structural Mechanics (CSM) Testbed computer code are presented. Analytical results that describe normal and transverse shear stress are also presented.

  17. Bi-material plane with interface crack for the model of semi-linear material

    NASA Astrophysics Data System (ADS)

    Domanskaya, T. O.; Malkov, V. M.; Malkova, Yu. V.

    2018-05-01

    The singular plane problems of nonlinear elasticity (plane strain and plane stress) are considered for bi-material infinite plane with interface crack. The plane is formed of two half-planes. Mechanical properties of half-planes are described by the model of semi-linear material. Using model of this harmonic material has allowed to apply the theory of complex functions and to obtain exact analytical global solutions of some nonlinear problems. Among them the problem of bi-material plane with the stresses and strains jumps at an interface is considered. As an application of the problem of jumps, the problem of interface crack is solved. The values of nominal (Piola) and Cauchy stresses and displacements are founded. Based on the global solutions the asymptotic expansions are constructed for stresses and displacements in a vicinity of crack tip. As an example the case of a free crack in bi-material plane subjected to constant stresses at infinity is studied. As a special case, the analytical solution of the problem of a crack in a homogeneous plane is obtained from the problem for bi-material plane with interface crack.

  18. Introduction to the IWA task group on biofilm modeling.

    PubMed

    Noguera, D R; Morgenroth, E

    2004-01-01

    An International Water Association (IWA) Task Group on Biofilm Modeling was created with the purpose of comparatively evaluating different biofilm modeling approaches. The task group developed three benchmark problems for this comparison, and used a diversity of modeling techniques that included analytical, pseudo-analytical, and numerical solutions to the biofilm problems. Models in one, two, and three dimensional domains were also compared. The first benchmark problem (BM1) described a monospecies biofilm growing in a completely mixed reactor environment and had the purpose of comparing the ability of the models to predict substrate fluxes and concentrations for a biofilm system of fixed total biomass and fixed biomass density. The second problem (BM2) represented a situation in which substrate mass transport by convection was influenced by the hydrodynamic conditions of the liquid in contact with the biofilm. The third problem (BM3) was designed to compare the ability of the models to simulate multispecies and multisubstrate biofilms. These three benchmark problems allowed identification of the specific advantages and disadvantages of each modeling approach. A detailed presentation of the comparative analyses for each problem is provided elsewhere in these proceedings.

  19. Empirically Optimized Flow Cytometric Immunoassay Validates Ambient Analyte Theory

    PubMed Central

    Parpia, Zaheer A.; Kelso, David M.

    2010-01-01

    Ekins’ ambient analyte theory predicts, counter intuitively, that an immunoassay’s limit of detection can be improved by reducing the amount of capture antibody. In addition, it also anticipates that results should be insensitive to the volume of sample as well as the amount of capture antibody added. The objective of this study is to empirically validate all of the performance characteristics predicted by Ekins’ theory. Flow cytometric analysis was used to detect binding between a fluorescent ligand and capture microparticles since it can directly measure fractional occupancy, the primary response variable in ambient analyte theory. After experimentally determining ambient analyte conditions, comparisons were carried out between ambient and non-ambient assays in terms of their signal strengths, limits of detection, and their sensitivity to variations in reaction volume and number of particles. The critical number of binding sites required for an assay to be in the ambient analyte region was estimated to be 0.1VKd. As predicted, such assays exhibited superior signal/noise levels and limits of detection; and were not affected by variations in sample volume and number of binding sites. When the signal detected measures fractional occupancy, ambient analyte theory is an excellent guide to developing assays with superior performance characteristics. PMID:20152793

  20. Location of Biomarkers and Reagents within Agarose Beads of a Programmable Bio-nano-chip

    PubMed Central

    Jokerst, Jesse V.; Chou, Jie; Camp, James P.; Wong, Jorge; Lennart, Alexis; Pollard, Amanda A.; Floriano, Pierre N.; Christodoulides, Nicolaos; Simmons, Glennon W.; Zhou, Yanjie; Ali, Mehnaaz F.

    2012-01-01

    The slow development of cost-effective medical microdevices with strong analytical performance characteristics is due to a lack of selective and efficient analyte capture and signaling. The recently developed programmable bio-nano-chip (PBNC) is a flexible detection device with analytical behavior rivaling established macroscopic methods. The PBNC system employs ≈300 μm-diameter bead sensors composed of agarose “nanonets” that populate a microelectromechanical support structure with integrated microfluidic elements. The beads are an efficient and selective protein-capture medium suitable for the analysis of complex fluid samples. Microscopy and computational studies probe the 3D interior of the beads. The relative contributions that the capture and detection of moieties, analyte size, and bead porosity make to signal distribution and intensity are reported. Agarose pore sizes ranging from 45 to 620 nm are examined and those near 140 nm provide optimal transport characteristics for rapid (<15 min) tests. The system exhibits efficient (99.5%) detection of bead-bound analyte along with low (≈2%) nonspecific immobilization of the detection probe for carcinoembryonic antigen assay. Furthermore, the role analyte dimensions play in signal distribution is explored, and enhanced methods for assay building that consider the unique features of biomarker size are offered. PMID:21290601

  1. Application of multiplex arrays for cytokine and chemokine profiling of bile.

    PubMed

    Kemp, Troy J; Castro, Felipe A; Gao, Yu-Tang; Hildesheim, Allan; Nogueira, Leticia; Wang, Bing-Sheng; Sun, Lu; Shelton, Gloriana; Pfeiffer, Ruth M; Hsing, Ann W; Pinto, Ligia A; Koshiol, Jill

    2015-05-01

    Gallbladder disease is highly related to inflammation, but the inflammatory processes are not well understood. Bile provides a direct substrate in assessing the local inflammatory response that develops in the gallbladder. To assess the reproducibility of measuring inflammatory markers in bile, we designed a methods study of 69 multiplexed immune-related markers measured in bile obtained from gallstone patients. To evaluate assay performance, a total of 18 bile samples were tested twice within the same plate for each analyte, and the 18 bile samples were tested on two different days for each analyte. We used the following performance parameters: detectability, coefficient of variation (CV), intraclass correlation coefficient (ICC), and percent agreement (concordance among replicate measures above and below detection limit). Furthermore, we examined the association of analyte levels with gallstone characteristics such as type, numbers, and size. All but 3 analytes (Stem Cell Factor, SCF; Thrombopoietin, TPO; sIL-1RI) were detectable in bile. 52 of 69 (75.4%) analytes had detectable levels for at least 50% of the subjects tested. The within-plate CVs were ⩽25% for 53 of 66 (80.3%) detectable analytes, and across-plate CVs were ⩽25% for 32 of 66 (48.5%) detectable analytes. Moreover, 64 of 66 (97.0%) analytes had ICC values of at least 0.8. Lastly, the percent agreement was high between replicates for all of the analytes (median; within plate, 97.2%; across plate, 97.2%). In exploratory analyses, we assessed analyte levels by gallstone characteristics and found that levels for several analytes decreased with increasing size of the largest gallstone per patient. Our data suggest that multiplex assays can be used to reliably measure cytokines and chemokines in bile. In addition, gallstone size was inversely related to the levels of select analytes, which may aid in identifying critical pathways and mechanisms associated with the pathogenesis of gallbladder diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Electrostatic point charge fitting as an inverse problem: Revealing the underlying ill-conditioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, Maxim V.; Talipov, Marat R.; Timerghazin, Qadir K., E-mail: qadir.timerghazin@marquette.edu

    2015-10-07

    Atom-centered point charge (PC) model of the molecular electrostatics—a major workhorse of the atomistic biomolecular simulations—is usually parameterized by least-squares (LS) fitting of the point charge values to a reference electrostatic potential, a procedure that suffers from numerical instabilities due to the ill-conditioned nature of the LS problem. To reveal the origins of this ill-conditioning, we start with a general treatment of the point charge fitting problem as an inverse problem and construct an analytical model with the point charges spherically arranged according to Lebedev quadrature which is naturally suited for the inverse electrostatic problem. This analytical model is contrastedmore » to the atom-centered point-charge model that can be viewed as an irregular quadrature poorly suited for the problem. This analysis shows that the numerical problems of the point charge fitting are due to the decay of the curvatures corresponding to the eigenvectors of LS sum Hessian matrix. In part, this ill-conditioning is intrinsic to the problem and is related to decreasing electrostatic contribution of the higher multipole moments, that are, in the case of Lebedev grid model, directly associated with the Hessian eigenvectors. For the atom-centered model, this association breaks down beyond the first few eigenvectors related to the high-curvature monopole and dipole terms; this leads to even wider spread-out of the Hessian curvature values. Using these insights, it is possible to alleviate the ill-conditioning of the LS point-charge fitting without introducing external restraints and/or constraints. Also, as the analytical Lebedev grid PC model proposed here can reproduce multipole moments up to a given rank, it may provide a promising alternative to including explicit multipole terms in a force field.« less

  3. Overview of Aro Program on Network Science for Human Decision Making

    NASA Astrophysics Data System (ADS)

    West, Bruce J.

    This program brings together researchers from disparate disciplines to work on a complex research problem that defies confinement within any single discipline. Consequently, not only are new and rewarding solutions sought and obtained for a problem of importance to society and the Army, that is, the human dimension of complex networks, but, in addition, collaborations are established that would not otherwise have formed given the traditional disciplinary compartmentalization of research. This program develops the basic research foundation of a science of networks supporting the linkage between the physical and human (cognitive and social) domains as they relate to human decision making. The strategy is to extend the recent methods of non-equilibrium statistical physics to non-stationary, renewal stochastic processes that appear to be characteristic of the interactions among nodes in complex networks. We also pursue understanding of the phenomenon of synchronization, whose mathematical formulation has recently provided insight into how complex networks reach accommodation and cooperation. The theoretical analyses of complex networks, although mathematically rigorous, often elude analytic solutions and require computer simulation and computation to analyze the underlying dynamic process.

  4. Hard Constraints in Optimization Under Uncertainty

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Giesy, Daniel P.; Kenny, Sean P.

    2008-01-01

    This paper proposes a methodology for the analysis and design of systems subject to parametric uncertainty where design requirements are specified via hard inequality constraints. Hard constraints are those that must be satisfied for all parameter realizations within a given uncertainty model. Uncertainty models given by norm-bounded perturbations from a nominal parameter value, i.e., hyper-spheres, and by sets of independently bounded uncertain variables, i.e., hyper-rectangles, are the focus of this paper. These models, which are also quite practical, allow for a rigorous mathematical treatment within the proposed framework. Hard constraint feasibility is determined by sizing the largest uncertainty set for which the design requirements are satisfied. Analytically verifiable assessments of robustness are attained by comparing this set with the actual uncertainty model. Strategies that enable the comparison of the robustness characteristics of competing design alternatives, the description and approximation of the robust design space, and the systematic search for designs with improved robustness are also proposed. Since the problem formulation is generic and the tools derived only require standard optimization algorithms for their implementation, this methodology is applicable to a broad range of engineering problems.

  5. Application of the method of lines for solutions of the Navier-Stokes equations using a nonuniform grid distribution

    NASA Technical Reports Server (NTRS)

    Abolhassani, J. S.; Tiwari, S. N.

    1983-01-01

    The feasibility of the method of lines for solutions of physical problems requiring nonuniform grid distributions is investigated. To attain this, it is also necessary to investigate the stiffness characteristics of the pertinent equations. For specific applications, the governing equations considered are those for viscous, incompressible, two dimensional and axisymmetric flows. These equations are transformed from the physical domain having a variable mesh to a computational domain with a uniform mesh. The two governing partial differential equations are the vorticity and stream function equations. The method of lines is used to solve the vorticity equation and the successive over relaxation technique is used to solve the stream function equation. The method is applied to three laminar flow problems: the flow in ducts, curved-wall diffusers, and a driven cavity. Results obtained for different flow conditions are in good agreement with available analytical and numerical solutions. The viability and validity of the method of lines are demonstrated by its application to Navier-Stokes equations in the physical domain having a variable mesh.

  6. Characteristics, Properties and Analytical Methods of Amoxicillin: A Review with Green Approach.

    PubMed

    de Marco, Bianca Aparecida; Natori, Jéssica Sayuri Hisano; Fanelli, Stefany; Tótoli, Eliane Gandolpho; Salgado, Hérida Regina Nunes

    2017-05-04

    Bacterial infections are the second leading cause of global mortality. Considering this fact, it is extremely important studying the antimicrobial agents. Amoxicillin is an antimicrobial agent that belongs to the class of penicillins; it has bactericidal activity and is widely used in the Brazilian health system. In literature, some analytical methods are found for the identification and quantification of this penicillin, which are essential for its quality control, which ensures maintaining the product characteristics, therapeutic efficacy and patient's safety. Thus, this study presents a brief literature review on amoxicillin and the analytical methods developed for the analysis of this drug in official and scientific papers. The major analytical methods found were high-performance liquid chromatography (HPLC), ultra-performance liquid chromatography (U-HPLC), capillary electrophoresis and iodometry and diffuse reflectance infrared Fourier transform. It is essential to note that most of the developed methods used toxic and hazardous solvents, which makes necessary industries and researchers choose to develop environmental-friendly techniques to provide enhanced benefits to environment and staff.

  7. Modeling of phonon scattering in n-type nanowire transistors using one-shot analytic continuation technique

    NASA Astrophysics Data System (ADS)

    Bescond, Marc; Li, Changsheng; Mera, Hector; Cavassilas, Nicolas; Lannoo, Michel

    2013-10-01

    We present a one-shot current-conserving approach to model the influence of electron-phonon scattering in nano-transistors using the non-equilibrium Green's function formalism. The approach is based on the lowest order approximation (LOA) to the current and its simplest analytic continuation (LOA+AC). By means of a scaling argument, we show how both LOA and LOA+AC can be easily obtained from the first iteration of the usual self-consistent Born approximation (SCBA) algorithm. Both LOA and LOA+AC are then applied to model n-type silicon nanowire field-effect-transistors and are compared to SCBA current characteristics. In this system, the LOA fails to describe electron-phonon scattering, mainly because of the interactions with acoustic phonons at the band edges. In contrast, the LOA+AC still well approximates the SCBA current characteristics, thus demonstrating the power of analytic continuation techniques. The limits of validity of LOA+AC are also discussed, and more sophisticated and general analytic continuation techniques are suggested for more demanding cases.

  8. Visual Attention Modulates Insight versus Analytic Solving of Verbal Problems

    ERIC Educational Resources Information Center

    Wegbreit, Ezra; Suzuki, Satoru; Grabowecky, Marcia; Kounios, John; Beeman, Mark

    2012-01-01

    Behavioral and neuroimaging findings indicate that distinct cognitive and neural processes underlie solving problems with sudden insight. Moreover, people with less focused attention sometimes perform better on tests of insight and creative problem solving. However, it remains unclear whether different states of attention, within individuals,…

  9. An Evaluation of a Training Program in Industry.

    ERIC Educational Resources Information Center

    White, Stroller Tod

    This study investigated the extent to which the Analytic Trouble Shooting Program (ATS) trained troubleshooters in an automobile assembly plant (1) to use information about a problem to determine the cause of that problem and (2) to anticipate and prevent problems. Troubleshooters in two specific departments were general foremen, foremen, process…

  10. Monitoring Affect States during Effortful Problem Solving Activities

    ERIC Educational Resources Information Center

    D'Mello, Sidney K.; Lehman, Blair; Person, Natalie

    2010-01-01

    We explored the affective states that students experienced during effortful problem solving activities. We conducted a study where 41 students solved difficult analytical reasoning problems from the Law School Admission Test. Students viewed videos of their faces and screen captures and judged their emotions from a set of 14 states (basic…

  11. Freud, Adler, Jung: From Womb to Tomb.

    ERIC Educational Resources Information Center

    Pedrini, D. T.; Pedrini, Bonnie C.

    This paper briefly introduces outlines of psychoanalysis (Freud), individual psychology (Adler), and analytical psychology (Jung). Freud focused on problems of adults as they related to childhood; Adler on problems of adults as they related to adulthood; and Jung on problems of adults as they related to middle and later years. Jungian analytical…

  12. Correlation and evaluation of inplane stability characteristics for an advanced bearingless main rotor

    NASA Technical Reports Server (NTRS)

    Weller, W. H.

    1983-01-01

    A program of experimental and analytical research was performed to demonstrate the degree of correlation achieved between measured and computed rotor inplane stability characteristics. The experimental data were obtained from hover and wind tunnel tests of a scaled bearingless main rotor model. Both isolated rotor and free-hub conditions were tested. Test parameters included blade built-in cone and sweep angles; rotor inplane structural stiffness and damping; pitch link stiffness and location; and fuselage damping, inertia, and natural frequency. Analytical results for many test conditions were obtained. In addition, the analytical and experimental results were examined to ascertain the effects of the test parameters on rotor ground and air resonance stability. The results from this program are presented herein in tabular and graphical form.

  13. Toward an integrative theory of training motivation: a meta-analytic path analysis of 20 years of research.

    PubMed

    Colquitt, J A; LePine, J A; Noe, R A

    2000-10-01

    This article meta-analytically summarizes the literature on training motivation, its antecedents, and its relationships with training outcomes such as declarative knowledge, skill acquisition, and transfer. Significant predictors of training motivation and outcomes included individual characteristics (e.g., locus of control, conscientiousness, anxiety, age, cognitive ability, self-efficacy, valence, job involvement) and situational characteristics (e.g., climate). Moreover, training motivation explained incremental variance in training outcomes beyond the effects of cognitive ability. Meta-analytic path analyses further showed that the effects of personality, climate, and age on training outcomes were only partially mediated by self-efficacy, valence, and job involvement. These findings are discussed in terms of their practical significance and their implications for an integrative theory of training motivation.

  14. ANALYTIC ELEMENT GROUND WATER MODELING AS A RESEARCH PROGRAM (1980-2006)

    EPA Science Inventory

    Scientists and engineers who use the analytic element method (AEM) for solving problems of regional ground water flow may be considered a community, and this community can be studied from the perspective of history and philosophy of science. Applying the methods of the Hungarian...

  15. The position of the analyst as expert: yesterday and today.

    PubMed

    Fresenius, W

    2000-11-01

    The interrelation between law and analytical chemistry 150 years ago is outlined, showing that similar problems to today already existed at that time. Examples of present-day cases of judicial investigations are given and consequences for the duty of the analytical chemist are discussed.

  16. Analytical solution for the advection-dispersion transport equation in layered media

    USDA-ARS?s Scientific Manuscript database

    The advection-dispersion transport equation with first-order decay was solved analytically for multi-layered media using the classic integral transform technique (CITT). The solution procedure used an associated non-self-adjoint advection-diffusion eigenvalue problem that had the same form and coef...

  17. 42 CFR 493.1250 - Condition: Analytic systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Analytic systems. 493.1250 Section 493.1250 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES... correct identified problems as specified in § 493.1289 for each specialty and subspecialty of testing...

  18. Biochemical Applications in the Analytical Chemistry Lab

    ERIC Educational Resources Information Center

    Strong, Cynthia; Ruttencutter, Jeffrey

    2004-01-01

    An HPLC and a UV-visible spectrophotometer are identified as instruments that helps to incorporate more biologically-relevant experiments into the course, in order to increase the students understanding of selected biochemistry topics and enhances their ability to apply an analytical approach to biochemical problems. The experiment teaches…

  19. Message Framing in Vaccine Communication: A Systematic Review of Published Literature.

    PubMed

    Penţa, Marcela A; Băban, Adriana

    2018-03-01

    Suboptimal vaccination rates are a significant problem in many countries today, in spite of improved access to vaccine services. As a result, there has been a recent expansion of research on how best to communicate about vaccines. The purpose of the present article is to provide an updated review of published, peer-reviewed empirical studies that examined the effectiveness of gain versus loss framing (i.e., goal framing) in the context of vaccine communication. To locate studies, we examined the reference list from the previous meta-analytic review (O'Keefe & Nan, 2012), and we conducted systematic searches across multiple databases. We included 34 studies in the qualitative synthesis. The relative effectiveness of goal-framed vaccine messages was often shown to depend on characteristics of the message recipient, perceived risk, or situational factors, yet most effects were inconsistent across studies, or simply limited by an insufficient number of studies. Methodological characteristics and variations are noted and discussed. The review points to several directions concerning moderators and mediators of framing effects where additional rigorous studies would be needed.

  20. Evaluation on Compressive Characteristics of Medical Stents Applied by Mesh Structures

    NASA Astrophysics Data System (ADS)

    Hirayama, Kazuki; He, Jianmei

    2017-11-01

    There are concerns about strength reduction and fatigue fracture due to stress concentration in currently used medical stents. To address these problems, meshed stents applied by mesh structures were interested for achieving long life and high strength perfromance of medical stents. The purpose of this study is to design basic mesh shapes to obatin three dimensional (3D) meshed stent models for mechanical property evaluation. The influence of introduced design variables on compressive characteristics of meshed stent models are evaluated through finite element analysis using ANSYS Workbench code. From the analytical results, the compressive stiffness are changed periodically with compressive directions, average results need to be introduced as the mean value of compressive stiffness of meshed stents. Secondly, compressive flexibility of meshed stents can be improved by increasing the angle proportional to the arm length of the mesh basic shape. By increasing the number of basic mesh shapes arranged in stent’s circumferential direction, compressive rigidity of meshed stent tends to be increased. Finaly reducing the mesh line width is found effective to improve compressive flexibility of meshed stents.

  1. Vertical amplitude phase structure of a low-frequency acoustic field in shallow water

    NASA Astrophysics Data System (ADS)

    Kuznetsov, G. N.; Lebedev, O. V.; Stepanov, A. N.

    2016-11-01

    We obtain in integral and analytic form the relations for calculating the amplitude and phase characteristics of an interference structure of orthogonal projections of the oscillation velocity vector in shallow water. For different frequencies and receiver depths, we numerically study the source depth dependences of the effective phase velocities of an equivalent plane wave, the orthogonal projections of the sound pressure phase gradient, and the projections of the oscillation velocity vector. We establish that at low frequencies in zones of interference maxima, independently of source depth, weakly varying effective phase velocity values are observed, which exceed the sound velocity in water by 5-12%. We show that the angles of arrival of the equivalent plane wave and the oscillation velocity vector in the general case differ; however, they virtually coincide in the zone of the interference maximum of the sound pressure under the condition that the horizontal projections of the oscillation velocity appreciably exceed the value of the vertical projection. We give recommendations on using the sound field characteristics in zones with maximum values for solving rangefinding and signal-detection problems.

  2. Subtypes in bulimia nervosa: the role of eating disorder symptomatology, negative affect, and interpersonal functioning.

    PubMed

    Lunn, Susanne; Poulsen, Stig; Daniel, Sarah I F

    2012-11-01

    The aim of the study was to investigate whether patients with bulimia nervosa (BN) could be subdivided into clinically meaningful groups reflecting the complex patterns of eating disorder symptoms and personality characteristics that face the clinician. Seventy patients diagnosed with BN using the Eating Disorder Examination were assessed with measures of negative affect, attachment patterns, and interpersonal problems. An exploratory hierarchical cluster analysis was performed. The study found two main subtypes differing primarily in terms of symptom severity and level of negative affect, but these subtypes were further subdivided into four clinically relevant subtypes: A dietary restraint/negative affect/high symptomatic group, an emotionally overcontrolled group, a low dietary restraint/emotionally underregulated group, and a high functioning/securely attached group. The study indicates that cluster-analytic studies, including a broad range of instruments measuring eating disorder symptoms as well as negative affect, relational patterns, and other personality characteristics, may contribute to an integration of previously suggested models of subtypes in BN. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Mixed kernel function support vector regression for global sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Cheng, Kai; Lu, Zhenzhou; Wei, Yuhao; Shi, Yan; Zhou, Yicheng

    2017-11-01

    Global sensitivity analysis (GSA) plays an important role in exploring the respective effects of input variables on an assigned output response. Amongst the wide sensitivity analyses in literature, the Sobol indices have attracted much attention since they can provide accurate information for most models. In this paper, a mixed kernel function (MKF) based support vector regression (SVR) model is employed to evaluate the Sobol indices at low computational cost. By the proposed derivation, the estimation of the Sobol indices can be obtained by post-processing the coefficients of the SVR meta-model. The MKF is constituted by the orthogonal polynomials kernel function and Gaussian radial basis kernel function, thus the MKF possesses both the global characteristic advantage of the polynomials kernel function and the local characteristic advantage of the Gaussian radial basis kernel function. The proposed approach is suitable for high-dimensional and non-linear problems. Performance of the proposed approach is validated by various analytical functions and compared with the popular polynomial chaos expansion (PCE). Results demonstrate that the proposed approach is an efficient method for global sensitivity analysis.

  4. Optimum profit model considering production, quality and sale problem

    NASA Astrophysics Data System (ADS)

    Chen, Chung-Ho; Lu, Chih-Lun

    2011-12-01

    Chen and Liu ['Procurement Strategies in the Presence of the Spot Market-an Analytical Framework', Production Planning and Control, 18, 297-309] presented the optimum profit model between the producers and the purchasers for the supply chain system with a pure procurement policy. However, their model with a simple manufacturing cost did not consider the used cost of the customer. In this study, the modified Chen and Liu's model will be addressed for determining the optimum product and process parameters. The authors propose a modified Chen and Liu's model under the two-stage screening procedure. The surrogate variable having a high correlation with the measurable quality characteristic will be directly measured in the first stage. The measurable quality characteristic will be directly measured in the second stage when the product decision cannot be determined in the first stage. The used cost of the customer will be measured by adopting Taguchi's quadratic quality loss function. The optimum purchaser's order quantity, the producer's product price and the process quality level will be jointly determined by maximising the expected profit between them.

  5. Generalized analytical solutions to sequentially coupled multi-species advective-dispersive transport equations in a finite domain subject to an arbitrary time-dependent source boundary condition

    NASA Astrophysics Data System (ADS)

    Chen, Jui-Sheng; Liu, Chen-Wuing; Liang, Ching-Ping; Lai, Keng-Hsin

    2012-08-01

    SummaryMulti-species advective-dispersive transport equations sequentially coupled with first-order decay reactions are widely used to describe the transport and fate of the decay chain contaminants such as radionuclide, chlorinated solvents, and nitrogen. Although researchers attempted to present various types of methods for analytically solving this transport equation system, the currently available solutions are mostly limited to an infinite or a semi-infinite domain. A generalized analytical solution for the coupled multi-species transport problem in a finite domain associated with an arbitrary time-dependent source boundary is not available in the published literature. In this study, we first derive generalized analytical solutions for this transport problem in a finite domain involving arbitrary number of species subject to an arbitrary time-dependent source boundary. Subsequently, we adopt these derived generalized analytical solutions to obtain explicit analytical solutions for a special-case transport scenario involving an exponentially decaying Bateman type time-dependent source boundary. We test the derived special-case solutions against the previously published coupled 4-species transport solution and the corresponding numerical solution with coupled 10-species transport to conduct the solution verification. Finally, we compare the new analytical solutions derived for a finite domain against the published analytical solutions derived for a semi-infinite domain to illustrate the effect of the exit boundary condition on coupled multi-species transport with an exponential decaying source boundary. The results show noticeable discrepancies between the breakthrough curves of all the species in the immediate vicinity of the exit boundary obtained from the analytical solutions for a finite domain and a semi-infinite domain for the dispersion-dominated condition.

  6. Improving a complex finite-difference ground water flow model through the use of an analytic element screening model

    USGS Publications Warehouse

    Hunt, R.J.; Anderson, M.P.; Kelson, V.A.

    1998-01-01

    This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite-difference and finite-element models. We demonstrate how a two-dimensional analytic element model was used to identify errors in a complex three-dimensional finite-difference model caused by incorrect specification of boundary conditions. An improved finite-difference model was developed using boundary conditions developed from a far-field analytic element model. Calibration of a revised finite-difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite-difference model. Calibration statistics were also improved in that simulated base-flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far-field problem with an analytic element model.This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite-difference and finite-element models. We demonstrate how a two-dimensional analytic element model was used to identify errors in a complex three-dimensional finite-difference model caused by incorrect specification of boundary conditions. An improved finite-difference model was developed using boundary conditions developed from a far-field analytic element model. Calibration of a revised finite-difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite-difference model. Calibration statistics were also improved in that simulated base-flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far-field problem with an analytic element model.

  7. Analytical Chemistry Laboratory Progress Report for FY 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1994 (October 1993 through September 1994). This annual report is the eleventh for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has a research program inmore » analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis -- which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL. The Chemical Analysis Group uses wet- chemical and instrumental methods for elemental, compositional, and isotopic determinations in solid, liquid, and gaseous samples and provides specialized analytical services. Major instruments in this group include an ion chromatograph (IC), an inductively coupled plasma/atomic emission spectrometer (ICP/AES), spectrophotometers, mass spectrometers (including gas-analysis and thermal-ionization mass spectrometers), emission spectrographs, autotitrators, sulfur and carbon determinators, and a kinetic phosphorescence uranium analyzer.« less

  8. A Critical Review on Clinical Application of Separation Techniques for Selective Recognition of Uracil and 5-Fluorouracil.

    PubMed

    Pandey, Khushaboo; Dubey, Rama Shankar; Prasad, Bhim Bali

    2016-03-01

    The most important objectives that are frequently found in bio-analytical chemistry involve applying tools to relevant medical/biological problems and refining these applications. Developing a reliable sample preparation step, for the medical and biological fields is another primary objective in analytical chemistry, in order to extract and isolate the analytes of interest from complex biological matrices. Since, main inborn errors of metabolism (IEM) diagnosable through uracil analysis and the therapeutic monitoring of toxic 5-fluoruracil (an important anti-cancerous drug) in dihydropyrimidine dehydrogenase deficient patients, require an ultra-sensitive, reproducible, selective, and accurate analytical techniques for their measurements. Therefore, keeping in view, the diagnostic value of uracil and 5-fluoruracil measurements, this article refines several analytical techniques involved in selective recognition and quantification of uracil and 5-fluoruracil from biological and pharmaceutical samples. The prospective study revealed that implementation of molecularly imprinted polymer as a solid-phase material for sample preparation and preconcentration of uracil and 5-fluoruracil had proven to be effective as it could obviates problems related to tedious separation techniques, owing to protein binding and drastic interferences, from the complex matrices in real samples such as blood plasma, serum samples.

  9. Management Reviewing Literature: An Evaluation of Selected Characteristics.

    ERIC Educational Resources Information Center

    Rehman, Sajjad ur

    1987-01-01

    Reports results of a study which compared the treatment of selected characteristics of the reviewing literature of management in professional and trade journals. The characteristics examined included lag time, review length, descriptive or analytic nature of reviews, positive or negative evaluations, and affiliation of the reviewer. (CLB)

  10. Substrate mass transfer: analytical approach for immobilized enzyme reactions

    NASA Astrophysics Data System (ADS)

    Senthamarai, R.; Saibavani, T. N.

    2018-04-01

    In this paper, the boundary value problem in immobilized enzyme reactions is formulated and approximate expression for substrate concentration without external mass transfer resistance is presented. He’s variational iteration method is used to give approximate and analytical solutions of non-linear differential equation containing a non linear term related to enzymatic reaction. The relevant analytical solution for the dimensionless substrate concentration profile is discussed in terms of dimensionless reaction parameters α and β.

  11. GRADIENT: Graph Analytic Approach for Discovering Irregular Events, Nascent and Temporal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, Emilie

    2015-03-31

    Finding a time-ordered signature within large graphs is a computationally complex problem due to the combinatorial explosion of potential patterns. GRADIENT is designed to search and understand that problem space.

  12. GRADIENT: Graph Analytic Approach for Discovering Irregular Events, Nascent and Temporal

    ScienceCinema

    Hogan, Emilie

    2018-01-16

    Finding a time-ordered signature within large graphs is a computationally complex problem due to the combinatorial explosion of potential patterns. GRADIENT is designed to search and understand that problem space.

  13. On the analytic and numeric optimisation of airplane trajectories under real atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Gonzalo, J.; Domínguez, D.; López, D.

    2014-12-01

    From the beginning of aviation era, economic constraints have forced operators to continuously improve the planning of the flights. The revenue is proportional to the cost per flight and the airspace occupancy. Many methods, the first started in the middle of last century, have explore analytical, numerical and artificial intelligence resources to reach the optimal flight planning. In parallel, advances in meteorology and communications allow an almost real-time knowledge of the atmospheric conditions and a reliable, error-bounded forecast for the near future. Thus, apart from weather risks to be avoided, airplanes can dynamically adapt their trajectories to minimise their costs. International regulators are aware about these capabilities, so it is reasonable to envisage some changes to allow this dynamic planning negotiation to soon become operational. Moreover, current unmanned airplanes, very popular and often small, suffer the impact of winds and other weather conditions in form of dramatic changes in their performance. The present paper reviews analytic and numeric solutions for typical trajectory planning problems. Analytic methods are those trying to solve the problem using the Pontryagin principle, where influence parameters are added to state variables to form a split condition differential equation problem. The system can be solved numerically -indirect optimisation- or using parameterised functions -direct optimisation-. On the other hand, numerical methods are based on Bellman's dynamic programming (or Dijkstra algorithms), where the fact that two optimal trajectories can be concatenated to form a new optimal one if the joint point is demonstrated to belong to the final optimal solution. There is no a-priori conditions for the best method. Traditionally, analytic has been more employed for continuous problems whereas numeric for discrete ones. In the current problem, airplane behaviour is defined by continuous equations, while wind fields are given in a discrete grid at certain time intervals. The research demonstrates advantages and disadvantages of each method as well as performance figures of the solutions found for typical flight conditions under static and dynamic atmospheres. This provides significant parameters to be used in the selection of solvers for optimal trajectories.

  14. Phase Transitions in Combinatorial Optimization Problems: Basics, Algorithms and Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Hartmann, Alexander K.; Weigt, Martin

    2005-10-01

    A concise, comprehensive introduction to the topic of statistical physics of combinatorial optimization, bringing together theoretical concepts and algorithms from computer science with analytical methods from physics. The result bridges the gap between statistical physics and combinatorial optimization, investigating problems taken from theoretical computing, such as the vertex-cover problem, with the concepts and methods of theoretical physics. The authors cover rapid developments and analytical methods that are both extremely complex and spread by word-of-mouth, providing all the necessary basics in required detail. Throughout, the algorithms are shown with examples and calculations, while the proofs are given in a way suitable for graduate students, post-docs, and researchers. Ideal for newcomers to this young, multidisciplinary field.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall-Anese, Emiliano; Simonetto, Andrea

    This paper focuses on the design of online algorithms based on prediction-correction steps to track the optimal solution of a time-varying constrained problem. Existing prediction-correction methods have been shown to work well for unconstrained convex problems and for settings where obtaining the inverse of the Hessian of the cost function can be computationally affordable. The prediction-correction algorithm proposed in this paper addresses the limitations of existing methods by tackling constrained problems and by designing a first-order prediction step that relies on the Hessian of the cost function (and do not require the computation of its inverse). Analytical results are establishedmore » to quantify the tracking error. Numerical simulations corroborate the analytical results and showcase performance and benefits of the algorithms.« less

  16. Analytic Approximations to the Free Boundary and Multi-dimensional Problems in Financial Derivatives Pricing

    NASA Astrophysics Data System (ADS)

    Lau, Chun Sing

    This thesis studies two types of problems in financial derivatives pricing. The first type is the free boundary problem, which can be formulated as a partial differential equation (PDE) subject to a set of free boundary condition. Although the functional form of the free boundary condition is given explicitly, the location of the free boundary is unknown and can only be determined implicitly by imposing continuity conditions on the solution. Two specific problems are studied in details, namely the valuation of fixed-rate mortgages and CEV American options. The second type is the multi-dimensional problem, which involves multiple correlated stochastic variables and their governing PDE. One typical problem we focus on is the valuation of basket-spread options, whose underlying asset prices are driven by correlated geometric Brownian motions (GBMs). Analytic approximate solutions are derived for each of these three problems. For each of the two free boundary problems, we propose a parametric moving boundary to approximate the unknown free boundary, so that the original problem transforms into a moving boundary problem which can be solved analytically. The governing parameter of the moving boundary is determined by imposing the first derivative continuity condition on the solution. The analytic form of the solution allows the price and the hedging parameters to be computed very efficiently. When compared against the benchmark finite-difference method, the computational time is significantly reduced without compromising the accuracy. The multi-stage scheme further allows the approximate results to systematically converge to the benchmark results as one recasts the moving boundary into a piecewise smooth continuous function. For the multi-dimensional problem, we generalize the Kirk (1995) approximate two-asset spread option formula to the case of multi-asset basket-spread option. Since the final formula is in closed form, all the hedging parameters can also be derived in closed form. Numerical examples demonstrate that the pricing and hedging errors are in general less than 1% relative to the benchmark prices obtained by numerical integration or Monte Carlo simulation. By exploiting an explicit relationship between the option price and the underlying probability distribution, we further derive an approximate distribution function for the general basket-spread variable. It can be used to approximate the transition probability distribution of any linear combination of correlated GBMs. Finally, an implicit perturbation is applied to reduce the pricing errors by factors of up to 100. When compared against the existing methods, the basket-spread option formula coupled with the implicit perturbation turns out to be one of the most robust and accurate approximation methods.

  17. Applications of hybrid genetic algorithms in seismic tomography

    NASA Astrophysics Data System (ADS)

    Soupios, Pantelis; Akca, Irfan; Mpogiatzis, Petros; Basokur, Ahmet T.; Papazachos, Constantinos

    2011-11-01

    Almost all earth sciences inverse problems are nonlinear and involve a large number of unknown parameters, making the application of analytical inversion methods quite restrictive. In practice, most analytical methods are local in nature and rely on a linearized form of the problem equations, adopting an iterative procedure which typically employs partial derivatives in order to optimize the starting (initial) model by minimizing a misfit (penalty) function. Unfortunately, especially for highly non-linear cases, the final model strongly depends on the initial model, hence it is prone to solution-entrapment in local minima of the misfit function, while the derivative calculation is often computationally inefficient and creates instabilities when numerical approximations are used. An alternative is to employ global techniques which do not rely on partial derivatives, are independent of the misfit form and are computationally robust. Such methods employ pseudo-randomly generated models (sampling an appropriately selected section of the model space) which are assessed in terms of their data-fit. A typical example is the class of methods known as genetic algorithms (GA), which achieves the aforementioned approximation through model representation and manipulations, and has attracted the attention of the earth sciences community during the last decade, with several applications already presented for several geophysical problems. In this paper, we examine the efficiency of the combination of the typical regularized least-squares and genetic methods for a typical seismic tomography problem. The proposed approach combines a local (LOM) and a global (GOM) optimization method, in an attempt to overcome the limitations of each individual approach, such as local minima and slow convergence, respectively. The potential of both optimization methods is tested and compared, both independently and jointly, using the several test models and synthetic refraction travel-time date sets that employ the same experimental geometry, wavelength and geometrical characteristics of the model anomalies. Moreover, real data from a crosswell tomographic project for the subsurface mapping of an ancient wall foundation are used for testing the efficiency of the proposed algorithm. The results show that the combined use of both methods can exploit the benefits of each approach, leading to improved final models and producing realistic velocity models, without significantly increasing the required computation time.

  18. Optimizing spread dynamics on graphs by message passing

    NASA Astrophysics Data System (ADS)

    Altarelli, F.; Braunstein, A.; Dall'Asta, L.; Zecchina, R.

    2013-09-01

    Cascade processes are responsible for many important phenomena in natural and social sciences. Simple models of irreversible dynamics on graphs, in which nodes activate depending on the state of their neighbors, have been successfully applied to describe cascades in a large variety of contexts. Over the past decades, much effort has been devoted to understanding the typical behavior of the cascades arising from initial conditions extracted at random from some given ensemble. However, the problem of optimizing the trajectory of the system, i.e. of identifying appropriate initial conditions to maximize (or minimize) the final number of active nodes, is still considered to be practically intractable, with the only exception being models that satisfy a sort of diminishing returns property called submodularity. Submodular models can be approximately solved by means of greedy strategies, but by definition they lack cooperative characteristics which are fundamental in many real systems. Here we introduce an efficient algorithm based on statistical physics for the optimization of trajectories in cascade processes on graphs. We show that for a wide class of irreversible dynamics, even in the absence of submodularity, the spread optimization problem can be solved efficiently on large networks. Analytic and algorithmic results on random graphs are complemented by the solution of the spread maximization problem on a real-world network (the Epinions consumer reviews network).

  19. Task-Analytic Design of Graphic Presentations

    DTIC Science & Technology

    1990-05-18

    important premise of Larkin and Simon’s work is that, when comparing alternative presentations, it is fruitful to characterize graphic-based problem solving...using the same information-processing models used to help understand problem solving using other representations [Newell and Simon, 19721...luring execution of graphic presentation- 4 based problem -solving procedures. Chapter 2 reviews other work related to the problem of designing graphic

  20. State-of-the-Art of (Bio)Chemical Sensor Developments in Analytical Spanish Groups

    PubMed Central

    Plata, María Reyes; Contento, Ana María; Ríos, Angel

    2010-01-01

    (Bio)chemical sensors are one of the most exciting fields in analytical chemistry today. The development of these analytical devices simplifies and miniaturizes the whole analytical process. Although the initial expectation of the massive incorporation of sensors in routine analytical work has been truncated to some extent, in many other cases analytical methods based on sensor technology have solved important analytical problems. Many research groups are working in this field world-wide, reporting interesting results so far. Modestly, Spanish researchers have contributed to these recent developments. In this review, we summarize the more representative achievements carried out for these groups. They cover a wide variety of sensors, including optical, electrochemical, piezoelectric or electro-mechanical devices, used for laboratory or field analyses. The capabilities to be used in different applied areas are also critically discussed. PMID:22319260

  1. Finite-analytic numerical solution of heat transfer in two-dimensional cavity flow

    NASA Technical Reports Server (NTRS)

    Chen, C.-J.; Naseri-Neshat, H.; Ho, K.-S.

    1981-01-01

    Heat transfer in cavity flow is numerically analyzed by a new numerical method called the finite-analytic method. The basic idea of the finite-analytic method is the incorporation of local analytic solutions in the numerical solutions of linear or nonlinear partial differential equations. In the present investigation, the local analytic solutions for temperature, stream function, and vorticity distributions are derived. When the local analytic solution is evaluated at a given nodal point, it gives an algebraic relationship between a nodal value in a subregion and its neighboring nodal points. A system of algebraic equations is solved to provide the numerical solution of the problem. The finite-analytic method is used to solve heat transfer in the cavity flow at high Reynolds number (1000) for Prandtl numbers of 0.1, 1, and 10.

  2. A maximum power point tracking algorithm for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Nelatury, Sudarshan R.; Gray, Robert

    2013-05-01

    The voltage and current characteristic of a photovoltaic (PV) cell is highly nonlinear and operating a PV cell for maximum power transfer has been a challenge for a long time. Several techniques have been proposed to estimate and track the maximum power point (MPP) in order to improve the overall efficiency of a PV panel. A strategic use of the mean value theorem permits obtaining an analytical expression for a point that lies in a close neighborhood of the true MPP. But hitherto, an exact solution in closed form for the MPP is not published. This problem can be formulated analytically as a constrained optimization, which can be solved using the Lagrange method. This method results in a system of simultaneous nonlinear equations. Solving them directly is quite difficult. However, we can employ a recursive algorithm to yield a reasonably good solution. In graphical terms, suppose the voltage current characteristic and the constant power contours are plotted on the same voltage current plane, the point of tangency between the device characteristic and the constant power contours is the sought for MPP. It is subject to change with the incident irradiation and temperature and hence the algorithm that attempts to maintain the MPP should be adaptive in nature and is supposed to have fast convergence and the least misadjustment. There are two parts in its implementation. First, one needs to estimate the MPP. The second task is to have a DC-DC converter to match the given load to the MPP thus obtained. Availability of power electronics circuits made it possible to design efficient converters. In this paper although we do not show the results from a real circuit, we use MATLAB to obtain the MPP and a buck-boost converter to match the load. Under varying conditions of load resistance and irradiance we demonstrate MPP tracking in case of a commercially available solar panel MSX-60. The power electronics circuit is simulated by PSIM software.

  3. A survey on platforms for big data analytics.

    PubMed

    Singh, Dilpreet; Reddy, Chandan K

    The primary purpose of this paper is to provide an in-depth analysis of different platforms available for performing big data analytics. This paper surveys different hardware platforms available for big data analytics and assesses the advantages and drawbacks of each of these platforms based on various metrics such as scalability, data I/O rate, fault tolerance, real-time processing, data size supported and iterative task support. In addition to the hardware, a detailed description of the software frameworks used within each of these platforms is also discussed along with their strengths and drawbacks. Some of the critical characteristics described here can potentially aid the readers in making an informed decision about the right choice of platforms depending on their computational needs. Using a star ratings table, a rigorous qualitative comparison between different platforms is also discussed for each of the six characteristics that are critical for the algorithms of big data analytics. In order to provide more insights into the effectiveness of each of the platform in the context of big data analytics, specific implementation level details of the widely used k-means clustering algorithm on various platforms are also described in the form pseudocode.

  4. Development of Processing Techniques for Advanced Thermal Protection Materials

    NASA Technical Reports Server (NTRS)

    Selvaduray, Guna; Cox, Michael; Srinivasan, Vijayakumar

    1997-01-01

    Thermal Protection Materials Branch (TPMB) has been involved in various research programs to improve the properties and structural integrity of the existing aerospace high temperature materials. Specimens from various research programs were brought into the analytical laboratory for the purpose of obtaining and refining the material characterization. The analytical laboratory in TPMB has many different instruments which were utilized to determine the physical and chemical characteristics of materials. Some of the instruments that were utilized by the SJSU students are: Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDX), X-ray Diffraction Spectrometer (XRD), Fourier Transform-Infrared Spectroscopy (FTIR), Ultra Violet Spectroscopy/Visible Spectroscopy (UV/VIS), Particle Size Analyzer (PSA), and Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES). The above mentioned analytical instruments were utilized in the material characterization process of the specimens from research programs such as: aerogel ceramics (I) and (II), X-33 Blankets, ARC-Jet specimens, QUICFIX specimens and gas permeability of lightweight ceramic ablators. In addition to analytical instruments in the analytical laboratory at TPMB, there are several on-going experiments. One particular experiment allows the measurement of permeability of ceramic ablators. From these measurements, physical characteristics of the ceramic ablators can be derived.

  5. Psychometric Structure of a Comprehensive Objective Structured Clinical Examination: A Factor Analytic Approach

    ERIC Educational Resources Information Center

    Volkan, Kevin; Simon, Steven R.; Baker, Harley; Todres, I. David

    2004-01-01

    Problem Statement and Background: While the psychometric properties of Objective Structured Clinical Examinations (OSCEs) have been studied, their latent structures have not been well characterized. This study examines a factor analytic model of a comprehensive OSCE and addresses implications for measurement of clinical performance. Methods: An…

  6. APPROXIMATE AND ANALYTICAL SOLUTIONS FOR SOLUTE TRANSPORT FROM AN INJECTION WELL INTO A SINGLE FRACTURE

    EPA Science Inventory

    In dealing with problems related to land-based nuclear waste management, a number of analytical and approximate solutions were developed to quantify radionuclide transport through fractures contained in the porous formation. t has been reported that by treating the radioactive de...

  7. Efficient analytical implementation of the DOT Riemann solver for the de Saint Venant-Exner morphodynamic model

    NASA Astrophysics Data System (ADS)

    Carraro, F.; Valiani, A.; Caleffi, V.

    2018-03-01

    Within the framework of the de Saint Venant equations coupled with the Exner equation for morphodynamic evolution, this work presents a new efficient implementation of the Dumbser-Osher-Toro (DOT) scheme for non-conservative problems. The DOT path-conservative scheme is a robust upwind method based on a complete Riemann solver, but it has the drawback of requiring expensive numerical computations. Indeed, to compute the non-linear time evolution in each time step, the DOT scheme requires numerical computation of the flux matrix eigenstructure (the totality of eigenvalues and eigenvectors) several times at each cell edge. In this work, an analytical and compact formulation of the eigenstructure for the de Saint Venant-Exner (dSVE) model is introduced and tested in terms of numerical efficiency and stability. Using the original DOT and PRICE-C (a very efficient FORCE-type method) as reference methods, we present a convergence analysis (error against CPU time) to study the performance of the DOT method with our new analytical implementation of eigenstructure calculations (A-DOT). In particular, the numerical performance of the three methods is tested in three test cases: a movable bed Riemann problem with analytical solution; a problem with smooth analytical solution; a test in which the water flow is characterised by subcritical and supercritical regions. For a given target error, the A-DOT method is always the most efficient choice. Finally, two experimental data sets and different transport formulae are considered to test the A-DOT model in more practical case studies.

  8. Preparation and in vitro/in vivo evaluation of metformin hydrochloride rectal dosage forms for treatment of patients with type II diabetes.

    PubMed

    Zaghloul, Abdel-Azim; Lila, Ahmad; Abd-Allah, Fathy; Nada, Aly

    2017-06-01

    Metformin hydrochloride (MtHCL) is an oral antidiabetic drug and has many other therapeutic benefits. It has poor bioavailability, narrow absorption window and extensive liver metabolism. Moreover, children and elders face difficulty to swallow the commercial oral tablets. Preparation, in vitro/in vivo evaluation of MtHCL suppositories for rectal administration to solve some of these problems. Suppository fatty bases (Witepsol ® , Suppocire ® and Massa ® ; different grades) and PEG bases 1000, 4000 and 6000 (different ratios), were used to prepare rectal suppository formulations each containing 500 mg drug. These were characterized for manufacturing defects, and pharmacotechnical performance and formulations showing superior results were subjected to bioavailability testing in human volunteers compared with the commercial oral tablet (Ref) applying LC-MS/MS developed analytical technique. The preparation method produced suppositories with satisfactory characteristics and free of manufacturing defects. The fatty bases were superior compared with PEG bases regarding the physical characteristics. Three formulations were chosen for bioavailability testing and the results showed comparable bioavailability compared to the Ref. The fatty bases showed superior characteristics compared with the PEG bases. MtHCL formulated in selected fatty bases could be a potential alternative to the commercial oral tablets particularly for pediatric and geriatric patients.

  9. Partial Discharge Characteristics of Polymer Nanocomposite Materials in Electrical Insulation: A Review of Sample Preparation Techniques, Analysis Methods, Potential Applications, and Future Trends

    PubMed Central

    Izzati, Wan Akmal; Adzis, Zuraimy; Shafanizam, Mohd

    2014-01-01

    Polymer nanocomposites have recently been attracting attention among researchers in electrical insulating applications from energy storage to power delivery. However, partial discharge has always been a predecessor to major faults and problems in this field. In addition, there is a lot more to explore, as neither the partial discharge characteristic in nanocomposites nor their electrical properties are clearly understood. By adding a small amount of weight percentage (wt%) of nanofillers, the physical, mechanical, and electrical properties of polymers can be greatly enhanced. For instance, nanofillers in nanocomposites such as silica (SiO2), alumina (Al2O3) and titania (TiO2) play a big role in providing a good approach to increasing the dielectric breakdown strength and partial discharge resistance of nanocomposites. Such polymer nanocomposites will be reviewed thoroughly in this paper, with the different experimental and analytical techniques used in previous studies. This paper also provides an academic review about partial discharge in polymer nanocomposites used as electrical insulating material from previous research, covering aspects of preparation, characteristics of the nanocomposite based on experimental works, application in power systems, methods and techniques of experiment and analysis, and future trends. PMID:24558326

  10. Energy analysis in the elliptic restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Qi, Yi; de Ruiter, Anton

    2018-07-01

    The gravity assist or flyby is investigated by analysing the inertial energy of a test particle in the elliptic restricted three-body problem (ERTBP), where two primary bodies are moving in elliptic orbits. First, the expression of the derivation of energy is obtained and discussed. Then, the approximate expressions of energy change in a circular neighbourhood of the smaller primary are derived. Numerical computation indicates that the obtained expressions can be applied to study the flyby problem of the nine planets and the Moon in the Solar system. Parameters related to the flyby are discussed analytically and numerically. The optimal conditions, including the position and time of the periapsis, for a flyby orbit are found to make a maximum energy gain or loss. Finally, the mechanical process of a flyby orbit is uncovered by an approximate expression in the ERTBP. Numerical computations testify that our analytical results well approximate the mechanical process of flyby orbits obtained by the numerical simulation in the ERTBP. Compared with the previous research established in the patched-conic method and numerical calculation, our analytical investigations based on a more elaborate derivation get more original results.

  11. Energy Analysis in the Elliptic Restricted Three-body Problem

    NASA Astrophysics Data System (ADS)

    Qi, Yi; de Ruiter, Anton

    2018-05-01

    The gravity assist or flyby is investigated by analyzing the inertial energy of a test particle in the elliptic restricted three-body problem (ERTBP), where two primary bodies are moving in elliptic orbits. Firstly, the expression of the derivation of energy is obtained and discussed. Then, the approximate expressions of energy change in a circular neighborhood of the smaller primary are derived. Numerical computation indicates that the obtained expressions can be applied to study the flyby problem of the nine planets and the Moon in the solar system. Parameters related to the flyby are discussed analytically and numerically. The optimal conditions, including the position and time of the periapsis, for a flyby orbit are found to make a maximum energy gain or loss. Finally, the mechanical process of a flyby orbit is uncovered by an approximate expression in the ERTBP. Numerical computations testify that our analytical results well approximate the mechanical process of flyby orbits obtained by the numerical simulation in the ERTBP. Compared with the previous research established in the patched-conic method and numerical calculation, our analytical investigations based on a more elaborate derivation get more original results.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y. B.; Zhu, X. W., E-mail: xiaowuzhu1026@znufe.edu.cn; Dai, H. H.

    Though widely used in modelling nano- and micro- structures, Eringen’s differential model shows some inconsistencies and recent study has demonstrated its differences between the integral model, which then implies the necessity of using the latter model. In this paper, an analytical study is taken to analyze static bending of nonlocal Euler-Bernoulli beams using Eringen’s two-phase local/nonlocal model. Firstly, a reduction method is proved rigorously, with which the integral equation in consideration can be reduced to a differential equation with mixed boundary value conditions. Then, the static bending problem is formulated and four types of boundary conditions with various loadings aremore » considered. By solving the corresponding differential equations, exact solutions are obtained explicitly in all of the cases, especially for the paradoxical cantilever beam problem. Finally, asymptotic analysis of the exact solutions reveals clearly that, unlike the differential model, the integral model adopted herein has a consistent softening effect. Comparisons are also made with existing analytical and numerical results, which further shows the advantages of the analytical results obtained. Additionally, it seems that the once controversial nonlocal bar problem in the literature is well resolved by the reduction method.« less

  13. Skin friction enhancement in a model problem of undulatory swimming

    NASA Astrophysics Data System (ADS)

    Ehrenstein, Uwe; Eloy, Christophe

    2013-10-01

    To calculate the energy costs of swimming, it is crucial to evaluate the drag force originating from skin friction. In this paper we examine the assumption, known as the 'Bone-Lighthill boundary-layer thinning hypothesis', that undulatory swimming motions induce a drag increase because of the compression of the boundary layer. Studying analytically an incoming flow along a flat plate moving at a normal velocity as a limit case of a yawed cylinder in uniform flow under the laminar boundary layer assumption, we demonstrate that the longitudinal drag scales as the square root of the normal velocity component. This analytical prediction is interpreted in the light of a three-dimensional numerical simulation result for a plate of finite length and width. An analogous two-dimensional Navier-Stokes problem by artificially accelerating the flow in a channel of finite height is proposed and solved numerically, showing the robustness of the analytical results. Solving the problem for an undulatory plate motion similar to fish swimming, we find a drag enhancement which can be estimated to be of the order of 20 %.

  14. Symmetric tridiagonal structure preserving finite element model updating problem for the quadratic model

    NASA Astrophysics Data System (ADS)

    Rakshit, Suman; Khare, Swanand R.; Datta, Biswa Nath

    2018-07-01

    One of the most important yet difficult aspect of the Finite Element Model Updating Problem is to preserve the finite element inherited structures in the updated model. Finite element matrices are in general symmetric, positive definite (or semi-definite) and banded (tridiagonal, diagonal, penta-diagonal, etc.). Though a large number of papers have been published in recent years on various aspects of solutions of this problem, papers dealing with structure preservation almost do not exist. A novel optimization based approach that preserves the symmetric tridiagonal structures of the stiffness and damping matrices is proposed in this paper. An analytical expression for the global minimum solution of the associated optimization problem along with the results of numerical experiments obtained by both the analytical expressions and by an appropriate numerical optimization algorithm are presented. The results of numerical experiments support the validity of the proposed method.

  15. Others' anger makes people work harder not smarter: the effect of observing anger and sarcasm on creative and analytic thinking.

    PubMed

    Miron-Spektor, Ella; Efrat-Treister, Dorit; Rafaeli, Anat; Schwarz-Cohen, Orit

    2011-09-01

    The authors examine whether and how observing anger influences thinking processes and problem-solving ability. In 3 studies, the authors show that participants who listened to an angry customer were more successful in solving analytic problems, but less successful in solving creative problems compared with participants who listened to an emotionally neutral customer. In Studies 2 and 3, the authors further show that observing anger communicated through sarcasm enhances complex thinking and solving of creative problems. Prevention orientation is argued to be the latent variable that mediated the effect of observing anger on complex thinking. The present findings help reconcile inconsistent findings in previous research, promote theory about the effects of observing anger and sarcasm, and contribute to understanding the effects of anger in the workplace. PsycINFO Database Record (c) 2011 APA, all rights reserved

  16. Development and application of an information-analytic system on the problem of flow accelerated corrosion of pipeline elements in the secondary coolant circuit of VVER-440-based power units at the Novovoronezh nuclear power plant

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Povarov, V. P.; Shipkov, A. A.; Gromov, A. F.; Kiselev, A. N.; Shepelev, S. V.; Galanin, A. V.

    2015-02-01

    Specific features relating to development of the information-analytical system on the problem of flow-accelerated corrosion of pipeline elements in the secondary coolant circuit of the VVER-440-based power units at the Novovoronezh nuclear power plant are considered. The results from a statistical analysis of data on the quantity, location, and operating conditions of the elements and preinserted segments of pipelines used in the condensate-feedwater and wet steam paths are presented. The principles of preparing and using the information-analytical system for determining the lifetime to reaching inadmissible wall thinning in elements of pipelines used in the secondary coolant circuit of the VVER-440-based power units at the Novovoronezh NPP are considered.

  17. Analytical approaches to optimizing system "Semiconductor converter-electric drive complex"

    NASA Astrophysics Data System (ADS)

    Kormilicin, N. V.; Zhuravlev, A. M.; Khayatov, E. S.

    2018-03-01

    In the electric drives of the machine-building industry, the problem of optimizing the drive in terms of mass-size indicators is acute. The article offers analytical methods that ensure the minimization of the mass of a multiphase semiconductor converter. In multiphase electric drives, the form of the phase current at which the best possible use of the "semiconductor converter-electric drive complex" for active materials is different from the sinusoidal form. It is shown that under certain restrictions on the phase current form, it is possible to obtain an analytical solution. In particular, if one assumes the shape of the phase current to be rectangular, the optimal shape of the control actions will depend on the width of the interpolar gap. In the general case, the proposed algorithm can be used to solve the problem under consideration by numerical methods.

  18. A knowledge engineering taxonomy for intelligent tutoring system development

    NASA Technical Reports Server (NTRS)

    Fink, Pamela K.; Herren, L. Tandy

    1993-01-01

    This paper describes a study addressing the issue of developing an appropriate mapping of knowledge acquisition methods to problem types for intelligent tutoring system development. Recent research has recognized that knowledge acquisition methodologies are not general across problem domains; the effectiveness of a method for obtaining knowledge depends on the characteristics of the domain and problem solving task. Southwest Research Institute developed a taxonomy of problem types by evaluating the characteristics that discriminate between problems and grouping problems that share critical characteristics. Along with the problem taxonomy, heuristics that guide the knowledge acquisition process based on the characteristics of the class are provided.

  19. Trapped Field Characteristics of Stacked YBCO Thin Plates for Compact NMR Magnets: Spatial Field Distribution and Temporal Stability

    PubMed Central

    Hahn, Seungyong; Kim, Seok Beom; Ahn, Min Cheol; Voccio, John; Bascuñán, Juan; Iwasa, Yukikazu

    2010-01-01

    This paper presents experimental and analytical results of trapped field characteristics of a stack of square YBCO thin film plates for compact NMR magnets. Each YBCO plate, 40 mm × 40 mm × 0.08 mm, has a 25-mm diameter hole at its center. A total of 500 stacked plates were used to build a 40-mm long magnet. Its trapped field, in a bath of liquid nitrogen, was measured for spatial field distribution and temporal stability. Comparison of measured and analytical results is presented: the effects on trapped field characteristics of the unsaturated nickel substrate and the non-uniform current distribution in the YBCO plate are discussed. PMID:20585463

  20. Analytical Ultrasonics in Materials Research and Testing

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1986-01-01

    Research results in analytical ultrasonics for characterizing structural materials from metals and ceramics to composites are presented. General topics covered by the conference included: status and advances in analytical ultrasonics for characterizing material microstructures and mechanical properties; status and prospects for ultrasonic measurements of microdamage, degradation, and underlying morphological factors; status and problems in precision measurements of frequency-dependent velocity and attenuation for materials analysis; procedures and requirements for automated, digital signal acquisition, processing, analysis, and interpretation; incentives for analytical ultrasonics in materials research and materials processing, testing, and inspection; and examples of progress in ultrasonics for interrelating microstructure, mechanical properites, and dynamic response.

  1. Exploratory Bifactor Analysis: The Schmid-Leiman Orthogonalization and Jennrich-Bentler Analytic Rotations

    PubMed Central

    Mansolf, Maxwell; Reise, Steven P.

    2017-01-01

    Analytic bifactor rotations (Jennrich & Bentler, 2011, 2012) have been recently developed and made generally available, but are not well understood. The Jennrich-Bentler analytic bifactor rotations (bi-quartimin and bi-geomin) are an alternative to, and arguably an improvement upon, the less technically sophisticated Schmid-Leiman orthogonalization (Schmid & Leiman, 1957). We review the technical details that underlie the Schmid-Leiman and Jennrich-Bentler bifactor rotations, using simulated data structures to illustrate important features and limitations. For the Schmid-Leiman, we review the problem of inaccurate parameter estimates caused by the linear dependencies, sometimes called “proportionality constraints,” that are required to expand a p correlated factors solution into a (p+1) (bi)factor space. We also review the complexities involved when the data depart from perfect cluster structure (e.g., item cross-loading on group factors). For the Jennrich-Bentler rotations, we describe problems in parameter estimation caused by departures from perfect cluster structure. In addition, we illustrate the related problems of: (a) solutions that are not invariant under different starting values (i.e., local minima problems); and, (b) group factors collapsing onto the general factor. Recommendations are made for substantive researchers including examining all local minima and applying multiple exploratory techniques in an effort to identify an accurate model. PMID:27612521

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1993 (October 1992 through September 1993). This annual report is the tenth for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has research programs in analyticalmore » chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require development or modification of methods and adaption of techniques to obtain useful analytical data. The ACL is administratively within the Chemical Technology Division (CMT), its principal ANL client, but provides technical support for many of the technical divisions and programs at ANL. The ACL has four technical groups--Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis--which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL.« less

  3. Benchmark problems and solutions

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.

    1995-01-01

    The scientific committee, after careful consideration, adopted six categories of benchmark problems for the workshop. These problems do not cover all the important computational issues relevant to Computational Aeroacoustics (CAA). The deciding factor to limit the number of categories to six was the amount of effort needed to solve these problems. For reference purpose, the benchmark problems are provided here. They are followed by the exact or approximate analytical solutions. At present, an exact solution for the Category 6 problem is not available.

  4. The role of analytical chemistry in Niger Delta petroleum exploration: a review.

    PubMed

    Akinlua, Akinsehinwa

    2012-06-12

    Petroleum and organic matter from which the petroleum is derived are composed of organic compounds with some trace elements. These compounds give an insight into the origin, thermal maturity and paleoenvironmental history of petroleum, which are essential elements in petroleum exploration. The main tool to acquire the geochemical data is analytical techniques. Due to progress in the development of new analytical techniques, many hitherto petroleum exploration problems have been resolved. Analytical chemistry has played a significant role in the development of petroleum resources of Niger Delta. Various analytical techniques that have aided the success of petroleum exploration in the Niger Delta are discussed. The analytical techniques that have helped to understand the petroleum system of the basin are also described. Recent and emerging analytical methodologies including green analytical methods as applicable to petroleum exploration particularly Niger Delta petroleum province are discussed in this paper. Analytical chemistry is an invaluable tool in finding the Niger Delta oils. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Modern analytical chemistry in the contemporary world

    NASA Astrophysics Data System (ADS)

    Šíma, Jan

    2016-12-01

    Students not familiar with chemistry tend to misinterpret analytical chemistry as some kind of the sorcery where analytical chemists working as modern wizards handle magical black boxes able to provide fascinating results. However, this approach is evidently improper and misleading. Therefore, the position of modern analytical chemistry among sciences and in the contemporary world is discussed. Its interdisciplinary character and the necessity of the collaboration between analytical chemists and other experts in order to effectively solve the actual problems of the human society and the environment are emphasized. The importance of the analytical method validation in order to obtain the accurate and precise results is highlighted. The invalid results are not only useless; they can often be even fatal (e.g., in clinical laboratories). The curriculum of analytical chemistry at schools and universities is discussed. It is referred to be much broader than traditional equilibrium chemistry coupled with a simple description of individual analytical methods. Actually, the schooling of analytical chemistry should closely connect theory and practice.

  6. The Unanticipated Explosion: Private Higher Education's Global Surge

    ERIC Educational Resources Information Center

    Levy, Daniel C.

    2006-01-01

    This article provides a broad and analytical overview of the private higher education explosion. It concentrates on a crucial yet generally ignored characteristic: the largely unanticipated emergence, not following a broad preconception or systemic design. The article's main conceptual thrust is to identify and provide analytical perspectives on…

  7. JPRS Report, Science & Technology, USSR: Engineering & Equipment

    DTIC Science & Technology

    1987-08-05

    working successfully in the " Veda " PO and at the analytical instruments plant. Characteristically, it was these very enterprises which were on top in...the 1985 review: the analytical instruments plant collective came in first, the " Veda " PO collective came in second, and the "Elektronmash" PO

  8. Adaptive finite element methods for two-dimensional problems in computational fracture mechanics

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Bass, J. M.; Spradley, L. W.

    1994-01-01

    Some recent results obtained using solution-adaptive finite element methods in two-dimensional problems in linear elastic fracture mechanics are presented. The focus is on the basic issue of adaptive finite element methods for validating the new methodology by computing demonstration problems and comparing the stress intensity factors to analytical results.

  9. Planning for airport access: An analysis of the San Francisco Bay area. Three subsystem designs

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The outcomes of three analytical studies are presented. Areas of concentration presented include: (1) Zonal Airport Transit System designed to address the problem of airport access options, (2) the issues and problems of airport parking and circulation, and (3) the problems of effectively providing airport access information.

  10. The Problem Solving Studio: An Apprenticeship Environment for Aspiring Engineers

    ERIC Educational Resources Information Center

    Le Doux, Joseph M.; Waller, Alisha A.

    2016-01-01

    This paper describes the problem-solving studio (PSS) learning environment. PSS was designed to teach students how to solve difficult analytical engineering problems without resorting to rote memorization of algorithms, while at the same time developing their deep conceptual understanding of the course topics. There are several key features of…

  11. The Effects of Consequence Manipulation during Functional Analysis of Problem Behavior Maintained by Negative Reinforcement

    ERIC Educational Resources Information Center

    Potoczak, Kathryn; Carr, James E.; Michael, Jack

    2007-01-01

    Two distinct analytic methods have been used to identify the function of problem behavior. The antecedent-behavior-consequence (ABC) method (Iwata, Dorsey, Slifer, Bauman, & Richman, 1982/1994) includes the delivery of consequences for problem behavior. The AB method (Carr & Durand, 1985) does not include consequence delivery, instead relying…

  12. Analytical study of the reflection and transmission coefficient of the submarine interface

    NASA Astrophysics Data System (ADS)

    Zhang, Guangli; Hao, Chongtao; Yao, Chen

    2018-05-01

    The analytical study of the reflection and transmission coefficient of the seafloor interface is essential for the characterization of the ocean bottom in marine seismic exploration. Based on the boundary conditions of the seafloor interface, the analytical expression of the reflection and transmission coefficient at the submarine interface is derived in this study by using the steady-state wave solution of the elastic wave in a homogeneous, isotropic medium. With this analytical expression, the characteristics of the reflection and transmission coefficient at the submarine interface are analysed and discussed using critical angles. The results show that the change in the reflection and transmission coefficient with the incidence angle presents a "segmented" characteristic, in which the critical angle is the dividing point. The amplitude value and phase angle of the coefficient at the submarine interface change dramatically at the critical angle, which is related to the P- and S-wave velocities in the seabed layer. Compared with the stiff seabed, the soft seabed has a larger P-wave critical angle and an absence of the converted S-wave critical angle, owing to the low P- and S-wave velocities in the solid seabed layer. By analysing and discussing the special changes that occur in the coefficient values at the critical angle, the reflection and transmission characteristics of the different incident angles are obtained. Synthetic models of both stiff and soft seafloors are provided in this study to verify the analytical results. Finally, we compared our synthetic results with real data from the Gulf of Mexico, which enabled the validation of our conclusions.

  13. Analytical and molecular dynamics studies on the impact loading of single-layered graphene sheet by fullerene

    NASA Astrophysics Data System (ADS)

    Hosseini-Hashemi, Shahrokh; Sepahi-Boroujeni, Amin; Sepahi-Boroujeni, Saeid

    2018-04-01

    Normal impact performance of a system including a fullerene molecule and a single-layered graphene sheet is studied in the present paper. Firstly, through a mathematical approach, a new contact law is derived to describe the overall non-bonding interaction forces of the "hollow indenter-target" system. Preliminary verifications show that the derived contact law gives a reliable picture of force field of the system which is in good agreements with the results of molecular dynamics (MD) simulations. Afterwards, equation of the transversal motion of graphene sheet is utilized on the basis of both the nonlocal theory of elasticity and the assumptions of classical plate theory. Then, to derive dynamic behavior of the system, a set including the proposed contact law and the equations of motion of both graphene sheet and fullerene molecule is solved numerically. In order to evaluate outcomes of this method, the problem is modeled by MD simulation. Despite intrinsic differences between analytical and MD methods as well as various errors arise due to transient nature of the problem, acceptable agreements are established between analytical and MD outcomes. As a result, the proposed analytical method can be reliably used to address similar impact problems. Furthermore, it is found that a single-layered graphene sheet is capable of trapping fullerenes approaching with low velocities. Otherwise, in case of rebound, the sheet effectively absorbs predominant portion of fullerene energy.

  14. Reading comprehension and its underlying components in second-language learners: A meta-analysis of studies comparing first- and second-language learners.

    PubMed

    Melby-Lervåg, Monica; Lervåg, Arne

    2014-03-01

    We report a systematic meta-analytic review of studies comparing reading comprehension and its underlying components (language comprehension, decoding, and phonological awareness) in first- and second-language learners. The review included 82 studies, and 576 effect sizes were calculated for reading comprehension and underlying components. Key findings were that, compared to first-language learners, second-language learners display a medium-sized deficit in reading comprehension (pooled effect size d = -0.62), a large deficit in language comprehension (pooled effect size d = -1.12), but only small differences in phonological awareness (pooled effect size d = -0.08) and decoding (pooled effect size d = -0.12). A moderator analysis showed that characteristics related to the type of reading comprehension test reliably explained the variation in the differences in reading comprehension between first- and second-language learners. For language comprehension, studies of samples from low socioeconomic backgrounds and samples where only the first language was used at home generated the largest group differences in favor of first-language learners. Test characteristics and study origin reliably contributed to the variations between the studies of language comprehension. For decoding, Canadian studies showed group differences in favor of second-language learners, whereas the opposite was the case for U.S. studies. Regarding implications, unless specific decoding problems are detected, interventions that aim to ameliorate reading comprehension problems among second-language learners should focus on language comprehension skills.

  15. Cross-Disciplinary Consultancy to Bridge Public Health Technical Needs and Analytic Developers: Asyndromic Surveillance Use Case

    PubMed Central

    Faigen, Zachary; Deyneka, Lana; Ising, Amy; Neill, Daniel; Conway, Mike; Fairchild, Geoffrey; Gunn, Julia; Swenson, David; Painter, Ian; Johnson, Lauren; Kiley, Chris; Streichert, Laura

    2015-01-01

    Introduction: We document a funded effort to bridge the gap between constrained scientific challenges of public health surveillance and methodologies from academia and industry. Component tasks are the collection of epidemiologists’ use case problems, multidisciplinary consultancies to refine them, and dissemination of problem requirements and shareable datasets. We describe an initial use case and consultancy as a concrete example and challenge to developers. Materials and Methods: Supported by the Defense Threat Reduction Agency Biosurveillance Ecosystem project, the International Society for Disease Surveillance formed an advisory group to select tractable use case problems and convene inter-disciplinary consultancies to translate analytic needs into well-defined problems and to promote development of applicable solution methods. The initial consultancy’s focus was a problem originated by the North Carolina Department of Health and its NC DETECT surveillance system: Derive a method for detection of patient record clusters worthy of follow-up based on free-text chief complaints and without syndromic classification. Results: Direct communication between public health problem owners and analytic developers was informative to both groups and constructive for the solution development process. The consultancy achieved refinement of the asyndromic detection challenge and of solution requirements. Participants summarized and evaluated solution approaches and discussed dissemination and collaboration strategies. Practice Implications: A solution meeting the specification of the use case described above could improve human monitoring efficiency with expedited warning of events requiring follow-up, including otherwise overlooked events with no syndromic indicators. This approach can remove obstacles to collaboration with efficient, minimal data-sharing and without costly overhead. PMID:26834939

  16. Cross-Disciplinary Consultancy to Bridge Public Health Technical Needs and Analytic Developers: Asyndromic Surveillance Use Case.

    PubMed

    Faigen, Zachary; Deyneka, Lana; Ising, Amy; Neill, Daniel; Conway, Mike; Fairchild, Geoffrey; Gunn, Julia; Swenson, David; Painter, Ian; Johnson, Lauren; Kiley, Chris; Streichert, Laura; Burkom, Howard

    2015-01-01

    We document a funded effort to bridge the gap between constrained scientific challenges of public health surveillance and methodologies from academia and industry. Component tasks are the collection of epidemiologists' use case problems, multidisciplinary consultancies to refine them, and dissemination of problem requirements and shareable datasets. We describe an initial use case and consultancy as a concrete example and challenge to developers. Supported by the Defense Threat Reduction Agency Biosurveillance Ecosystem project, the International Society for Disease Surveillance formed an advisory group to select tractable use case problems and convene inter-disciplinary consultancies to translate analytic needs into well-defined problems and to promote development of applicable solution methods. The initial consultancy's focus was a problem originated by the North Carolina Department of Health and its NC DETECT surveillance system: Derive a method for detection of patient record clusters worthy of follow-up based on free-text chief complaints and without syndromic classification. Direct communication between public health problem owners and analytic developers was informative to both groups and constructive for the solution development process. The consultancy achieved refinement of the asyndromic detection challenge and of solution requirements. Participants summarized and evaluated solution approaches and discussed dissemination and collaboration strategies. A solution meeting the specification of the use case described above could improve human monitoring efficiency with expedited warning of events requiring follow-up, including otherwise overlooked events with no syndromic indicators. This approach can remove obstacles to collaboration with efficient, minimal data-sharing and without costly overhead.

  17. Analysis and identification of subsynchronous vibration for a high pressure parallel flow centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Kirk, R. G.; Nicholas, J. C.; Donald, G. H.; Murphy, R. C.

    1980-01-01

    The summary of a complete analytical design evaluation of an existing parallel flow compressor is presented and a field vibration problem that manifested itself as a subsynchronous vibration that tracked at approximately 2/3 of compressor speed is reviewed. The comparison of predicted and observed peak response speeds, frequency spectrum content, and the performance of the bearing-seal systems are presented as the events of the field problem are reviewed. Conclusions and recommendations are made as to the degree of accuracy of the analytical techniques used to evaluate the compressor design.

  18. Rockets for spin recovery

    NASA Technical Reports Server (NTRS)

    Whipple, R. D.

    1980-01-01

    The potential effectiveness of rockets as an auxiliary means for an aircraft to effect recovery from spins was investigated. The advances in rocket technology produced by the space effort suggested that currently available systems might obviate many of the problems encountered in earlier rocket systems. A modern fighter configuration known to exhibit a flat spin mode was selected. An analytical study was made of the thrust requirements for a rocket spin recovery system for the subject configuration. These results were then applied to a preliminary systems study of rocket components appropriate to the problem. Subsequent spin tunnel tests were run to evaluate the analytical results.

  19. A review of analytical methods for the treatment of flows with detached shocks

    NASA Technical Reports Server (NTRS)

    Busemann, Adolf

    1949-01-01

    The transonic flow theory has been considerably improved in recent years. The problems at subsonic speeds of a moving body concern chiefly the drag and the problems at supersonic speeds, the detached and attached shock waves. Inasmuch as the literature contains some information that is valuable and some other information that is misleading, the purpose of this paper is to discuss those analytical methods and their applications which are regarded as reliable in the transonic range. After these methods are reviewed, a short discussion without details and proofs follows to round out the picture. (author)

  20. Light aircraft crash safety program

    NASA Technical Reports Server (NTRS)

    Thomson, R. G.; Hayduk, R. J.

    1974-01-01

    NASA is embarked upon research and development tasks aimed at providing the general aviation industry with a reliable crashworthy airframe design technology. The goals of the NASA program are: reliable analytical techniques for predicting the nonlinear behavior of structures; significant design improvements of airframes; and simulated full-scale crash test data. The analytical tools will include both simplified procedures for estimating energy absorption characteristics and more complex computer programs for analysis of general airframe structures under crash loading conditions. The analytical techniques being developed both in-house and under contract are described, and a comparison of some analytical predictions with experimental results is shown.

Top