Science.gov

Sample records for analytical ultracentrifugation gel

  1. 3D-Printing for Analytical Ultracentrifugation

    PubMed Central

    Desai, Abhiksha; Krynitsky, Jonathan; Pohida, Thomas J.; Zhao, Huaying

    2016-01-01

    Analytical ultracentrifugation (AUC) is a classical technique of physical biochemistry providing information on size, shape, and interactions of macromolecules from the analysis of their migration in centrifugal fields while free in solution. A key mechanical element in AUC is the centerpiece, a component of the sample cell assembly that is mounted between the optical windows to allow imaging and to seal the sample solution column against high vacuum while exposed to gravitational forces in excess of 300,000 g. For sedimentation velocity it needs to be precisely sector-shaped to allow unimpeded radial macromolecular migration. During the history of AUC a great variety of centerpiece designs have been developed for different types of experiments. Here, we report that centerpieces can now be readily fabricated by 3D printing at low cost, from a variety of materials, and with customized designs. The new centerpieces can exhibit sufficient mechanical stability to withstand the gravitational forces at the highest rotor speeds and be sufficiently precise for sedimentation equilibrium and sedimentation velocity experiments. Sedimentation velocity experiments with bovine serum albumin as a reference molecule in 3D printed centerpieces with standard double-sector design result in sedimentation boundaries virtually indistinguishable from those in commercial double-sector epoxy centerpieces, with sedimentation coefficients well within the range of published values. The statistical error of the measurement is slightly above that obtained with commercial epoxy, but still below 1%. Facilitated by modern open-source design and fabrication paradigms, we believe 3D printed centerpieces and AUC accessories can spawn a variety of improvements in AUC experimental design, efficiency and resource allocation. PMID:27525659

  2. 3D-Printing for Analytical Ultracentrifugation.

    PubMed

    Desai, Abhiksha; Krynitsky, Jonathan; Pohida, Thomas J; Zhao, Huaying; Schuck, Peter

    2016-01-01

    Analytical ultracentrifugation (AUC) is a classical technique of physical biochemistry providing information on size, shape, and interactions of macromolecules from the analysis of their migration in centrifugal fields while free in solution. A key mechanical element in AUC is the centerpiece, a component of the sample cell assembly that is mounted between the optical windows to allow imaging and to seal the sample solution column against high vacuum while exposed to gravitational forces in excess of 300,000 g. For sedimentation velocity it needs to be precisely sector-shaped to allow unimpeded radial macromolecular migration. During the history of AUC a great variety of centerpiece designs have been developed for different types of experiments. Here, we report that centerpieces can now be readily fabricated by 3D printing at low cost, from a variety of materials, and with customized designs. The new centerpieces can exhibit sufficient mechanical stability to withstand the gravitational forces at the highest rotor speeds and be sufficiently precise for sedimentation equilibrium and sedimentation velocity experiments. Sedimentation velocity experiments with bovine serum albumin as a reference molecule in 3D printed centerpieces with standard double-sector design result in sedimentation boundaries virtually indistinguishable from those in commercial double-sector epoxy centerpieces, with sedimentation coefficients well within the range of published values. The statistical error of the measurement is slightly above that obtained with commercial epoxy, but still below 1%. Facilitated by modern open-source design and fabrication paradigms, we believe 3D printed centerpieces and AUC accessories can spawn a variety of improvements in AUC experimental design, efficiency and resource allocation.

  3. 3D-Printing for Analytical Ultracentrifugation.

    PubMed

    Desai, Abhiksha; Krynitsky, Jonathan; Pohida, Thomas J; Zhao, Huaying; Schuck, Peter

    2016-01-01

    Analytical ultracentrifugation (AUC) is a classical technique of physical biochemistry providing information on size, shape, and interactions of macromolecules from the analysis of their migration in centrifugal fields while free in solution. A key mechanical element in AUC is the centerpiece, a component of the sample cell assembly that is mounted between the optical windows to allow imaging and to seal the sample solution column against high vacuum while exposed to gravitational forces in excess of 300,000 g. For sedimentation velocity it needs to be precisely sector-shaped to allow unimpeded radial macromolecular migration. During the history of AUC a great variety of centerpiece designs have been developed for different types of experiments. Here, we report that centerpieces can now be readily fabricated by 3D printing at low cost, from a variety of materials, and with customized designs. The new centerpieces can exhibit sufficient mechanical stability to withstand the gravitational forces at the highest rotor speeds and be sufficiently precise for sedimentation equilibrium and sedimentation velocity experiments. Sedimentation velocity experiments with bovine serum albumin as a reference molecule in 3D printed centerpieces with standard double-sector design result in sedimentation boundaries virtually indistinguishable from those in commercial double-sector epoxy centerpieces, with sedimentation coefficients well within the range of published values. The statistical error of the measurement is slightly above that obtained with commercial epoxy, but still below 1%. Facilitated by modern open-source design and fabrication paradigms, we believe 3D printed centerpieces and AUC accessories can spawn a variety of improvements in AUC experimental design, efficiency and resource allocation. PMID:27525659

  4. Characterization of Intrinsically Disordered Proteins by Analytical Ultracentrifugation.

    PubMed

    Scott, David J; Winzor, Donald J

    2015-01-01

    Intrinsically disordered proteins have traditionally been largely neglected by structural biologists because a lack of rigid structure precludes their study by X-ray crystallography. Structural information must therefore be inferred from physicochemical studies of their solution behavior. Analytical ultracentrifugation yields important information about the gross conformation of an intrinsically disordered protein. Sedimentation velocity studies provide estimates of the weight-average sedimentation and diffusion coefficients of a given macromolecular state of the protein. PMID:26412654

  5. Improved Measurement of the Rotor Temperature in Analytical Ultracentrifugation

    PubMed Central

    Zhao, Huaying; Balbo, Andrea; Metger, Howard; Clary, Robert; Ghirlando, Rodolfo; Schuck, Peter

    2014-01-01

    Sedimentation velocity is a classical method for measuring the hydrodynamic, translational friction coefficient of biological macromolecules. In a recent study, comparing various analytical ultracentrifuges, we have shown that external calibration of the scan time, radial magnification, and temperature are critically important for accurate measurements (Anal. Biochem., 2013, doi: 10.1016/j.ab.2013.05.011). To achieve accurate temperature calibration, we have introduced the use of an autonomous miniature temperature logging integrated circuit (Maxim Thermochron iButton ™) that can be inserted in an ultracentrifugation cell assembly and spun at low rotor speeds. In the present work, we developed an improved holder for the temperature sensor located in the rotor handle. This has the advantage of not reducing the rotor capacity and allows for a direct temperature measurement of the spinning rotor during high-speed sedimentation velocity experiments up to 60,000 rpm. We demonstrate the sensitivity of this approach by monitoring the adiabatic cooling due to rotor stretching during rotor acceleration, and the reverse process upon rotor deceleration. Based on this, we developed a procedure to approximate isothermal rotor acceleration for better temperature control. PMID:24530285

  6. Calculations and Publication-Quality Illustrations for Analytical Ultracentrifugation Data.

    PubMed

    Brautigam, Chad A

    2015-01-01

    The analysis of analytical ultracentrifugation (AUC) data has been greatly facilitated by the advances accumulated in recent years. These improvements include refinements in AUC-based binding isotherms, advances in the fitting of both sedimentation velocity (SV) and sedimentation equilibrium (SE) data, and innovations in calculations related to posttranslationally modified proteins and to proteins with a large amount of associated cosolute, e.g., detergents. To capitalize on these advances, the experimenter often must prepare and collate multiple data sets and parameters for subsequent analyses; these tasks can be cumbersome and unclear, especially for new users. Examples are the sorting of concentration-profile scans for SE data, the integration of sedimentation velocity distributions (c(s)) to arrive at weighted-average binding isotherms, and the calculations to determine the oligomeric state of glycoproteins and membrane proteins. The significant organizational and logistical hurdles presented by these approaches are streamlined by the software described herein, called GUSSI. GUSSI also creates publication-quality graphics for documenting and illustrating AUC and other biophysical experiments with minimal effort on the user's part. The program contains three main modules, allowing for plotting and calculations on c(s) distributions, SV signal versus radius data, and general data/fit/residual plots. PMID:26412649

  7. Studying multiprotein complexes by multisignal sedimentation velocity analytical ultracentrifugation.

    PubMed

    Balbo, Andrea; Minor, Kenneth H; Velikovsky, Carlos A; Mariuzza, Roy A; Peterson, Cynthia B; Schuck, Peter

    2005-01-01

    Protein interactions can promote the reversible assembly of multiprotein complexes, which have been identified as critical elements in many regulatory processes in cells. The biophysical characterization of assembly products, their number and stoichiometry, and the dynamics of their interactions in solution can be very difficult. A classical first-principle approach for the study of purified proteins and their interactions is sedimentation velocity analytical ultracentrifugation. This approach allows one to distinguish different protein complexes based on their migration in the centrifugal field without isolating reversibly formed complexes from the individual components. An important existing limitation for systems with multiple components and assembly products is the identification of the species associated with the observed sedimentation rates. We developed a computational approach for integrating multiple optical signals into the sedimentation coefficient distribution analysis of components, which combines the size-dependent hydrodynamic separation with discrimination of the extinction properties of the sedimenting species. This approach allows one to deduce the stoichiometry and to assign the identity of the assembly products without prior assumptions of the number of species and the nature of their interaction. Although chromophoric labels may be used to enhance the spectral resolution, we demonstrate the ability to work label-free for three-component protein mixtures. We observed that the spectral discrimination can synergistically enhance the hydrodynamic resolution. This method can take advantage of differences in the absorbance spectra of interacting solution components, for example, for the study of protein-protein, protein-nucleic acid or protein-small molecule interactions, and can determine the size, hydrodynamic shape, and stoichiometry of multiple complexes in solution.

  8. Current Methods in Sedimentation Velocity and Sedimentation Equilibrium Analytical Ultracentrifugation

    PubMed Central

    Zhao, Huaying; Brautigam, Chad A.; Ghirlando, Rodolfo; Schuck, Peter

    2013-01-01

    Significant progress in the interpretation of analytical ultracentrifugation (AUC) data in the last decade has led to profound changes in the practice of AUC, both for sedimentation velocity (SV) and sedimentation equilibrium (SE). Modern computational strategies have allowed for the direct modeling of the sedimentation process of heterogeneous mixtures, resulting in SV size-distribution analyses with significantly improved detection limits and strongly enhanced resolution. These advances have transformed the practice of SV, rendering it the primary method of choice for most existing applications of AUC, such as the study of protein self- and hetero-association, the study of membrane proteins, and applications in biotechnology. New global multi-signal modeling and mass conservation approaches in SV and SE, in conjunction with the effective-particle framework for interpreting the sedimentation boundary structure of interacting systems, as well as tools for explicit modeling of the reaction/diffusion/sedimentation equations to experimental data, have led to more robust and more powerful strategies for the study of reversible protein interactions and multi-protein complexes. Furthermore, modern mathematical modeling capabilities have allowed for a detailed description of many experimental aspects of the acquired data, thus enabling novel experimental opportunities, with important implications for both sample preparation and data acquisition. The goal of the current commentary is to supplement previous AUC protocols, Current Protocols in Protein Science 20.3 (1999) and 20.7 (2003), and 7.12 (2008), and provide an update describing the current tools for the study of soluble proteins, detergent-solubilized membrane proteins and their interactions by SV and SE. PMID:23377850

  9. Variable Field Analytical Ultracentrifugation: II. Gravitational Sweep Sedimentation Velocity.

    PubMed

    Ma, Jia; Zhao, Huaying; Sandmaier, Julia; Alexander Liddle, J; Schuck, Peter

    2016-01-01

    Sedimentation velocity (SV) analytical ultracentrifugation is a classical biophysical technique for the determination of the size-distribution of macromolecules, macromolecular complexes, and nanoparticles. SV has traditionally been carried out at a constant rotor speed, which limits the range of sedimentation coefficients that can be detected in a single experiment. Recently we have introduced methods to implement experiments with variable rotor speeds, in combination with variable field solutions to the Lamm equation, with the application to expedite the approach to sedimentation equilibrium. Here, we describe the use of variable-field sedimentation analysis to increase the size-range covered in SV experiments by ∼100-fold with a quasi-continuous increase of rotor speed during the experiment. Such a gravitational-sweep sedimentation approach has previously been shown to be very effective in the study of nanoparticles with large size ranges. In the past, diffusion processes were not accounted for, thereby posing a lower limit of particle sizes and limiting the accuracy of the size distribution. In this work, we combine variable field solutions to the Lamm equation with diffusion-deconvoluted sedimentation coefficient distributions c(s), which further extend the macromolecular size range that can be observed in a single SV experiment while maintaining accuracy and resolution. In this way, approximately five orders of magnitude of sedimentation coefficients, or eight orders of magnitude of particle mass, can be probed in a single experiment. This can be useful, for example, in the study of proteins forming large assemblies, as in fibrillation process or capsid self-assembly, in studies of the interaction between very dissimilar-sized macromolecular species, or in the study of broadly distributed nanoparticles.

  10. Analytical ultracentrifugation: A versatile tool for the characterisation of macromolecular complexes in solution.

    PubMed

    Patel, Trushar R; Winzor, Donald J; Scott, David J

    2016-02-15

    Analytical ultracentrifugation, an early technique developed for characterizing quantitatively the solution properties of macromolecules, remains a powerful aid to structural biologists in their quest to understand the formation of biologically important protein complexes at the molecular level. Treatment of the basic tenets of the sedimentation velocity and sedimentation equilibrium variants of analytical ultracentrifugation is followed by considerations of the roles that it, in conjunction with other physicochemical procedures, has played in resolving problems encountered in the delineation of complex formation for three biological systems - the cytoplasmic dynein complex, mitogen-activated protein kinase (ERK2) self-interaction, and the terminal catalytic complex in selenocysteine synthesis. PMID:26555086

  11. Size determination of cyanobacterial and higher plant photosystem II by gel permeation chromatography, light scattering, and ultracentrifugation.

    PubMed

    Zouni, Athina; Kern, Jan; Frank, Joachim; Hellweg, Thomas; Behlke, Joachim; Saenger, Wolfram; Irrgang, Klaus-Dieter

    2005-03-22

    The oxygen-evolving photosystem II core complexes (PSIIcc) from the thermophilic cyanobacterium Thermosynechococcus elongatus (PSIIccTe) and the higher plant Spinacia oleracea (PSIIccSo) have been isolated from the thylakoid membrane by solubilization with n-dodecyl-beta-d-maltoside, purified and characterized by gel permeation chromatography (GPC), dynamic light scattering (DLS), and analytical ultracentrifugation (AUC). DLS suggests that PSIIcc from both organisms exists as a monomer in dilute solution and aggregates with increasing protein concentration. In contrast to DLS, GPC and AUC showed that PSIIcc of both organisms occur as monomers and dimers, and it became clear from our studies that calibration of GPC columns with soluble proteins leads to wrong estimates of the molecular masses of membrane proteins. At a PSIIcc protein concentration of 0.2 mg/mL, molar masses, M, of 756 +/- 18 kDa and 710 +/- 15 kDa for dimeric PSIIccTe and PSIIccSo, respectively, were determined by analytical ultracentrifugation. At very low protein concentrations, at or below 0.05 mg/mL, the dimeric form of PSIIccTe partially dissociates (20-30%) to form monomers. On the basis of these studies 3-dimensional crystals of PSIIccTe were obtained that contain dimers in the asymmetric unit [Zouni, A. et al. (2001) Nature 409, 739-743]. Using synchrotron radiation the crystals diffract to a resolution of 3.8 A, which has been improved recently to 3.2 A [Biesiadka, J., et al. (2004) Phys. Chem. Chem. Phys. 6, 4733-4736].

  12. Structural and binding properties of laminarin revealed by analytical ultracentrifugation and calorimetric analyses.

    PubMed

    Oda, Masayuki; Tanabe, Yoichi; Noda, Masanori; Inaba, Satomi; Krayukhina, Elena; Fukada, Harumi; Uchiyama, Susumu

    2016-08-01

    One of the β-1,3-glucans, laminarin, has been widely used as a substrate for enzymes including endo-1,3-β-glucanase. To obtain quantitative information about the molecular interaction between laminarin and endo-1,3-β-glucanase, the structural properties of laminarin should be determined. The results from pioneering work using analytical ultracentrifugation for carbohydrate analysis showed that laminarin from Laminaria digitata predominantly exists as a single-chain species with approximately 5% of triple-helical species. Differential scanning calorimetry experiments did not show a peak assignable to the transition from triple-helix to single-chain, supporting the notion that a large proportion of laminarin is the single-chain species. The interaction of laminarin with an inactive variant of endo-1,3-β-glucanase from Cellulosimicrobium cellulans, E119A, was quantitatively analyzed using isothermal titration calorimetry. The binding was enthalpically driven and the binding affinity was approximately 10(6) M(-1). The results from binding stoichiometric analysis indicated that on average, E119A binds to laminarin in a 2:1 ratio. This seems to be reasonable, because laminarin mainly exists as a monomer, the apparent molecular mass of laminarin is 3.6 kDa, and E119A would have substrate-binding subsites corresponding to 6 glucose units. The analytical ultracentrifugation experiments could detect different complex species of laminarin and endo-1,3-β-glucanase. PMID:27267066

  13. Analytical Ultracentrifugation as a Tool to Study Nonspecific Protein–DNA Interactions

    PubMed Central

    Yang, Teng-Chieh; Catalano, Carlos Enrique; Maluf, Nasib Karl

    2016-01-01

    Analytical ultracentrifugation (AUC) is a powerful tool that can provide thermodynamic information on associating systems. Here, we discuss how to use the two fundamental AUC applications, sedimentation velocity (SV), and sedimentation equilibrium (SE), to study nonspecific protein–nucleic acid interactions, with a special emphasis on how to analyze the experimental data to extract thermodynamic information. We discuss three specific applications of this approach: (i) determination of nonspecific binding stoichiometry of E. coli integration host factor protein to dsDNA, (ii) characterization of nonspecific binding properties of Adenoviral IVa2 protein to dsDNA using SE-AUC, and (iii) analysis of the competition between specific and nonspecific DNA-binding interactions observed for E. coli integration host factor protein assembly on dsDNA. These approaches provide powerful tools that allow thermodynamic interrogation and thus a mechanistic understanding of how proteins bind nucleic acids by both specific and nonspecific interactions. PMID:26412658

  14. A novel analytical ultracentrifugation based approach to the low resolution structure of gum arabic.

    PubMed

    Gillis, Richard B; Adams, Gary G; Alzahrani, Qushmua; Harding, Stephen E

    2016-09-01

    Under investigation are the structural properties of gum arabic, an industrially important biopolymer for use as a stabilizer or in drug delivery, using Analytical Ultracentrifugation-a well-established, matrix-free probe for macromolecular size and shape. These results are combined with chromatographically-coupled methods (multi-angle light scattering, differential press imbalance viscometry) to provide a global analysis of its structure in varying ionic strength conditions. This analysis indicates that gum Arabic may have a compact, elliptical structure in solution, the significance of which for biotechnological use is indicated. This modelling method can be applied to other biopolymers and synthetic polymers. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 618-625, 2016. PMID:26899968

  15. Routine titration of foot-and-mouth disease virus suspensions by analytical ultracentrifugation 2nd communication: sedimentation equilibrium method.

    PubMed

    Strobbe, R; Lacroix, C; Charlier, G; Debecq, J

    1977-01-01

    A routine method for the determination of the virus concentration in FMD virus cultures and vaccines was developed. This method was based on sedimentation equilibrium in the analytical ultraviolet scanning ultracentrifuge. The virus suspension was first clarified. The virions were then sedimented in a preparative ultracentrifuge. The resuspended virions were diluted in a Cesium chloride solution and brought to equilibrium in the density gradient generated in the analytical ultracentrifuge. The optical density of the virus band was measured by the UV scanning system. A calculation procedure was developed to compute the density at the limits and at the maximum of the virus band. The virus concentration expressed as weight, was calculated for the original virus suspension.

  16. Analytic ultracentrifuge calibration and determination of lipoprotein-specific refractive increments

    SciTech Connect

    Talwinder, S.K.; Adamson, G.L.; Glines, L.A.; Lindgren, F.T.; Laskaris, M.A.; Shore, V.G.

    1984-01-01

    Accurate quantification of the major classes and subfractions of human serum lipoproteins is an important analytical need in the characterization and evaluation of therapy of lipid and lipoprotein abnormalities. For calibrating the analytic ultracentrifuge (AnUC), the authors routinely use a Beckman calibration wedge cell with parallel scribed lines 1 cm apart. Such a cell give a rectangular pattern in the schlieren diagram, which determines magnification and also provides an area corresponding to an invariant refractive increment. Complete calibration for AnUC analysis of lipoproteins also requires accurate determination of the specific refractive increments (SRI) of the major lipoprotein classes, namely low density lipoprotein (LDL) and high density lipoprotein (HDL). These are measured in the density in which they are analyzed, i.e., 1.061 g/ml for LDL and 1.200 g/ml for HDL. Five fresh serum samples were fractionated for total LDL and total HDL and their SRI determined. Total lipoprotein mass was determined using precise CHN elemental analysis and compositional analyses. The results yielded corrected SRI of 0.00142 and 0.00135 ..delta..n/g/100 ml for LDL and HDL. Thus, their current values using 0.00154 and 0.00149 ..delta..n/g/100 ml underestimate LDL and HDL by 9% and 11%. Corrections of all previous LDL and HDL AnUC data can be made using appropriate factors of 1.087 and 1.106.

  17. Analytical Ultracentrifugation as an Approach to Characterize Recombinant Adeno-Associated Viral Vectors.

    PubMed

    Burnham, Brenda; Nass, Shelley; Kong, Elton; Mattingly, MaryEllen; Woodcock, Denise; Song, Antonius; Wadsworth, Samuel; Cheng, Seng H; Scaria, Abraham; O'Riordan, Catherine R

    2015-12-01

    Recombinant adeno-associated viral (rAAV) vectors represent a novel class of biopharmaceutical drugs. The production of clinical-grade rAAV vectors for gene therapy would benefit from analytical methods that are able to monitor drug product quality with regard to homogeneity, purity, and manufacturing consistency. Here, we demonstrate the novel application of analytical ultracentrifugation (AUC) to characterize the homogeneity of preparations of rAAV vectors. We show that a single sedimentation velocity run of rAAV vectors detected and quantified a number of different viral species, such as vectors harboring an intact genome, lacking a vector genome (empty particles), and containing fragmented or incomplete vector genomes. This information is obtained by direct boundary modeling of the AUC data generated from refractometric or UV detection systems using the computer program SEDFIT. Using AUC, we show that multiple parameters contributed to vector quality, including the AAV genome form (i.e., self-complementary vs. single-stranded), vector genome size, and the production and purification methods. Hence, AUC is a critical tool for identifying optimal production and purification processes and for monitoring the physical attributes of rAAV vectors to ensure their quality.

  18. Overview of current methods in sedimentation velocity and sedimentation equilibrium analytical ultracentrifugation.

    PubMed

    Zhao, Huaying; Brautigam, Chad A; Ghirlando, Rodolfo; Schuck, Peter

    2013-02-01

    Modern computational strategies have allowed for the direct modeling of the sedimentation process of heterogeneous mixtures, resulting in sedimentation velocity (SV) size-distribution analyses with significantly improved detection limits and strongly enhanced resolution. These advances have transformed the practice of SV, rendering it the primary method of choice for most existing applications of analytical ultracentrifugation (AUC), such as the study of protein self- and hetero-association, the study of membrane proteins, and applications in biotechnology. New global multisignal modeling and mass conservation approaches in SV and sedimentation equilibrium (SE), in conjunction with the effective-particle framework for interpreting the sedimentation boundary structure of interacting systems, as well as tools for explicit modeling of the reaction/diffusion/sedimentation equations to experimental data, have led to more robust and more powerful strategies for the study of reversible protein interactions and multiprotein complexes. Furthermore, modern mathematical modeling capabilities have allowed for a detailed description of many experimental aspects of the acquired data, thus enabling novel experimental opportunities, with important implications for both sample preparation and data acquisition. The goal of the current unit is to describe the current tools for the study of soluble proteins, detergent-solubilized membrane proteins and their interactions by SV and SE.

  19. Next-Generation AUC Adds a Spectral Dimension: Development of Multiwavelength Detectors for the Analytical Ultracentrifuge.

    PubMed

    Pearson, Joseph Z; Krause, Frank; Haffke, Dirk; Demeler, Borries; Schilling, Kristian; Cölfen, Helmut

    2015-01-01

    We describe important advances in analytical ultracentrifugation (AUC) hardware, which add new information to the hydrodynamic information observed in traditional AUC instruments. In contrast to the Beckman-Coulter XLA UV/visible detector, multiwavelength (MWL) detection is able to collect sedimentation data not just for one wavelength, but for a large wavelength range in a single experiment. The additional dimension increases the data density by orders of magnitude, significantly improving the statistics of the measurement and adding important information to the experiment since an additional dimension of spectral characterization is now available to complement the hydrodynamic information. The new detector avoids tedious repeats of experiments at different wavelengths and opens up new avenues for the solution-based investigation of complex mixtures. In this chapter, we describe the capabilities, characteristics, and applications of the new detector design with biopolymers as the focus of study. We show data from two different MWL detectors and discuss strengths and weaknesses of differences in the hardware and different data acquisition modes. Also, difficulties with fiber optic applications in the UV are discussed. Data quality is compared across platforms. PMID:26412645

  20. Simultaneous analysis of hydrodynamic and optical properties using analytical ultracentrifugation equipped with multiwavelength detection.

    PubMed

    Walter, Johannes; Sherwood, Peter J; Lin, Wei; Segets, Doris; Stafford, Walter F; Peukert, Wolfgang

    2015-03-17

    Analytical ultracentrifugation (AUC) has proven to be a powerful tool for the study of particle size distributions, particle shapes, and interactions with high accuracy and unrevealed resolution. In this work we show how the analysis of sedimentation velocity data from the AUC equipped with a multiwavelength detector (MWL) can be used to gain an even deeper understanding of colloidal and macromolecular mixtures. New data evaluation routines have been integrated in the software SEDANAL to allow for the handling of MWL data. This opens up a variety of new possibilities because spectroscopic information becomes available for individual components in mixtures at the same time using MWL-AUC. For systems of known optical properties information on the hydrodynamic properties of the individual components in a mixture becomes accessible. For the first time, the determination of individual extinction spectra of components in mixtures is demonstrated via MWL evaluation of sedimentation velocity data. In our paper we first provide the informational background for the data analysis and expose the accessible parameters of our methodology. We further demonstrate the data evaluation by means of simulated data. Finally, we give two examples which are highly relevant in the field of nanotechnology using colored silica and gold nanoparticles of different size and extinction properties.

  1. Dynamics of single polyelectrolyte chains in salt-free dilute solutions investigated by analytical ultracentrifugation.

    PubMed

    Cao, Zhonglin; Wu, Sha; Zhang, Guangzhao

    2015-06-28

    The dynamics of polyelectrolytes in salt-free solution is an unsolved problem. We have investigated the sedimentation and diffusion of xanthan and poly(N-methyl 4-vinyl pyridine iodide) (P4VPI) in salt-free dilute solutions by analytical ultracentrifugation (AUC) using sedimentation velocity (SV) as a function of polyelectrolyte concentration (Cp). Our study reveals two concentration regimes distinguished in either polyanion (xanthan) or polycation (P4VPI) dilute aqueous solution. When Cp is below the Debye concentration (Cd) at which the chain separation (d) is close to the debye length (lD), the interchain electrostatic repulsion is negligible, and the reciprocal apparent sedimentation coefficient (1/s), apparent diffusion coefficient (D) or reciprocal apparent molecular weight (1/Mw) is linearly related to Cp. In the range Cp > Cd with d < lD, the interchain electrostatic repulsion is present, and the dynamics of polyelectrolytes becomes complex. The real sedimentation coefficient (s0), the diffusion coefficient (D0) and the molecular weight (Mw,0) of the single polyelectrolyte chain in salt-free dilute solution can be obtained by extrapolating the concentration to zero. The present study reveals that the complex dynamics of polyelectrolytes in salt-free dilute solutions arises due to the interchain electrostatic repulsion.

  2. Shape Analysis of DNA-Au Hybrid Particles by Analytical Ultracentrifugation.

    PubMed

    Urban, Maximilan J; Holder, Isabelle T; Schmid, Marius; Fernandez Espin, Vanesa; Garcia de la Torre, Jose; Hartig, Jörg S; Cölfen, Helmut

    2016-08-23

    Current developments in nanotechnology have increased the demand for nanocrystal assemblies with well-defined shapes and tunable sizes. DNA is a particularly well-suited building block in nanoscale assemblies because of its scalable sizes, conformational variability, and convenient self-assembly capabilities via base pairing. In hybrid materials, gold nanoparticles (AuNPs) can be assembled into nanoparticle structures with programmable interparticle distances by applying appropriate DNA sequences. However, the development of stoichiometrically defined DNA/NP structures is still challenging since product mixtures are frequently obtained and their purification and characterization is the rate-limiting step in the development of DNA-NP hybrid assemblies. Improvements in nanostructure fractionation and characterization techniques offer great potential for nanotechnology applications in general. This study reports the application of analytical ultracentrifugation (AUC) for the characterization of anisotropic DNA-linked metal-crystal assemblies. On the basis of transmission electron microscopy data and the DNA primary sequence, hydrodynamic bead models are set up for the interpretation of the measured frictional ratios and sedimentation coefficients. We demonstrate that the presence of single DNA strands on particle surfaces as well as the shape factors of multiparticle structures in mixtures can be quantitatively described by AUC. This study will significantly broaden the possibilities to analyze mixtures of shape-anisotropic nanoparticle assemblies. By establishing insights into the analysis of nanostructure mixtures based on fundamental principles of sedimentation, a wide range of potential applications in basic research and industry become accessible. PMID:27459174

  3. Tools for the quantitative analysis of sedimentation boundaries detected by fluorescence optical analytical ultracentrifugation.

    PubMed

    Zhao, Huaying; Casillas, Ernesto; Shroff, Hari; Patterson, George H; Schuck, Peter

    2013-01-01

    Fluorescence optical detection in sedimentation velocity analytical ultracentrifugation allows the study of macromolecules at nanomolar concentrations and below. This has significant promise, for example, for the study of systems of high-affinity protein interactions. Here we describe adaptations of the direct boundary modeling analysis approach implemented in the software SEDFIT that were developed to accommodate unique characteristics of the confocal fluorescence detection system. These include spatial gradients of signal intensity due to scanner movements out of the plane of rotation, temporal intensity drifts due to instability of the laser and fluorophores, and masking of the finite excitation and detection cone by the sample holder. In an extensive series of experiments with enhanced green fluorescent protein ranging from low nanomolar to low micromolar concentrations, we show that the experimental data provide sufficient information to determine the parameters required for first-order approximation of the impact of these effects on the recorded data. Systematic deviations of fluorescence optical sedimentation velocity data analyzed using conventional sedimentation models developed for absorbance and interference optics are largely removed after these adaptations, resulting in excellent fits that highlight the high precision of fluorescence sedimentation velocity data, thus allowing a more detailed quantitative interpretation of the signal boundaries that is otherwise not possible for this system.

  4. A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation.

    PubMed

    Zhao, Huaying; Ghirlando, Rodolfo; Alfonso, Carlos; Arisaka, Fumio; Attali, Ilan; Bain, David L; Bakhtina, Marina M; Becker, Donald F; Bedwell, Gregory J; Bekdemir, Ahmet; Besong, Tabot M D; Birck, Catherine; Brautigam, Chad A; Brennerman, William; Byron, Olwyn; Bzowska, Agnieszka; Chaires, Jonathan B; Chaton, Catherine T; Cölfen, Helmut; Connaghan, Keith D; Crowley, Kimberly A; Curth, Ute; Daviter, Tina; Dean, William L; Díez, Ana I; Ebel, Christine; Eckert, Debra M; Eisele, Leslie E; Eisenstein, Edward; England, Patrick; Escalante, Carlos; Fagan, Jeffrey A; Fairman, Robert; Finn, Ron M; Fischle, Wolfgang; de la Torre, José García; Gor, Jayesh; Gustafsson, Henning; Hall, Damien; Harding, Stephen E; Cifre, José G Hernández; Herr, Andrew B; Howell, Elizabeth E; Isaac, Richard S; Jao, Shu-Chuan; Jose, Davis; Kim, Soon-Jong; Kokona, Bashkim; Kornblatt, Jack A; Kosek, Dalibor; Krayukhina, Elena; Krzizike, Daniel; Kusznir, Eric A; Kwon, Hyewon; Larson, Adam; Laue, Thomas M; Le Roy, Aline; Leech, Andrew P; Lilie, Hauke; Luger, Karolin; Luque-Ortega, Juan R; Ma, Jia; May, Carrie A; Maynard, Ernest L; Modrak-Wojcik, Anna; Mok, Yee-Foong; Mücke, Norbert; Nagel-Steger, Luitgard; Narlikar, Geeta J; Noda, Masanori; Nourse, Amanda; Obsil, Tomas; Park, Chad K; Park, Jin-Ku; Pawelek, Peter D; Perdue, Erby E; Perkins, Stephen J; Perugini, Matthew A; Peterson, Craig L; Peverelli, Martin G; Piszczek, Grzegorz; Prag, Gali; Prevelige, Peter E; Raynal, Bertrand D E; Rezabkova, Lenka; Richter, Klaus; Ringel, Alison E; Rosenberg, Rose; Rowe, Arthur J; Rufer, Arne C; Scott, David J; Seravalli, Javier G; Solovyova, Alexandra S; Song, Renjie; Staunton, David; Stoddard, Caitlin; Stott, Katherine; Strauss, Holger M; Streicher, Werner W; Sumida, John P; Swygert, Sarah G; Szczepanowski, Roman H; Tessmer, Ingrid; Toth, Ronald T; Tripathy, Ashutosh; Uchiyama, Susumu; Uebel, Stephan F W; Unzai, Satoru; Gruber, Anna Vitlin; von Hippel, Peter H; Wandrey, Christine; Wang, Szu-Huan; Weitzel, Steven E; Wielgus-Kutrowska, Beata; Wolberger, Cynthia; Wolff, Martin; Wright, Edward; Wu, Yu-Sung; Wubben, Jacinta M; Schuck, Peter

    2015-01-01

    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies.

  5. A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation.

    PubMed

    Zhao, Huaying; Ghirlando, Rodolfo; Alfonso, Carlos; Arisaka, Fumio; Attali, Ilan; Bain, David L; Bakhtina, Marina M; Becker, Donald F; Bedwell, Gregory J; Bekdemir, Ahmet; Besong, Tabot M D; Birck, Catherine; Brautigam, Chad A; Brennerman, William; Byron, Olwyn; Bzowska, Agnieszka; Chaires, Jonathan B; Chaton, Catherine T; Cölfen, Helmut; Connaghan, Keith D; Crowley, Kimberly A; Curth, Ute; Daviter, Tina; Dean, William L; Díez, Ana I; Ebel, Christine; Eckert, Debra M; Eisele, Leslie E; Eisenstein, Edward; England, Patrick; Escalante, Carlos; Fagan, Jeffrey A; Fairman, Robert; Finn, Ron M; Fischle, Wolfgang; de la Torre, José García; Gor, Jayesh; Gustafsson, Henning; Hall, Damien; Harding, Stephen E; Cifre, José G Hernández; Herr, Andrew B; Howell, Elizabeth E; Isaac, Richard S; Jao, Shu-Chuan; Jose, Davis; Kim, Soon-Jong; Kokona, Bashkim; Kornblatt, Jack A; Kosek, Dalibor; Krayukhina, Elena; Krzizike, Daniel; Kusznir, Eric A; Kwon, Hyewon; Larson, Adam; Laue, Thomas M; Le Roy, Aline; Leech, Andrew P; Lilie, Hauke; Luger, Karolin; Luque-Ortega, Juan R; Ma, Jia; May, Carrie A; Maynard, Ernest L; Modrak-Wojcik, Anna; Mok, Yee-Foong; Mücke, Norbert; Nagel-Steger, Luitgard; Narlikar, Geeta J; Noda, Masanori; Nourse, Amanda; Obsil, Tomas; Park, Chad K; Park, Jin-Ku; Pawelek, Peter D; Perdue, Erby E; Perkins, Stephen J; Perugini, Matthew A; Peterson, Craig L; Peverelli, Martin G; Piszczek, Grzegorz; Prag, Gali; Prevelige, Peter E; Raynal, Bertrand D E; Rezabkova, Lenka; Richter, Klaus; Ringel, Alison E; Rosenberg, Rose; Rowe, Arthur J; Rufer, Arne C; Scott, David J; Seravalli, Javier G; Solovyova, Alexandra S; Song, Renjie; Staunton, David; Stoddard, Caitlin; Stott, Katherine; Strauss, Holger M; Streicher, Werner W; Sumida, John P; Swygert, Sarah G; Szczepanowski, Roman H; Tessmer, Ingrid; Toth, Ronald T; Tripathy, Ashutosh; Uchiyama, Susumu; Uebel, Stephan F W; Unzai, Satoru; Gruber, Anna Vitlin; von Hippel, Peter H; Wandrey, Christine; Wang, Szu-Huan; Weitzel, Steven E; Wielgus-Kutrowska, Beata; Wolberger, Cynthia; Wolff, Martin; Wright, Edward; Wu, Yu-Sung; Wubben, Jacinta M; Schuck, Peter

    2015-01-01

    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies. PMID:25997164

  6. Investigating the early stages of mineral precipitation by potentiometric titration and analytical ultracentrifugation.

    PubMed

    Kellermeier, Matthias; Cölfen, Helmut; Gebauer, Denis

    2013-01-01

    Despite the importance of crystallization for various areas of research, our understanding of the early stages of the mineral precipitation from solution and of the actual mechanism of nucleation is still rather limited. Indeed, detailed insights into the processes underlying nucleation may enable a systematic development of novel strategies for controlling mineralization, which is highly relevant for fields ranging from materials chemistry to medicine. In this work, we describe experimental aspects of a quantitative assay, which relies on pH titrations combined with in situ metal ion potentiometry and conductivity measurements. The assay has originally been designed to study the crystallization of calcium carbonate, one of the most abundant biominerals. However, the developed procedures can also be readily applied to any compound containing cations for which ion-selective electrodes are available. Besides the possibility to quantitatively assess ion association prior to nucleation and to directly determine thermodynamic solubility products of precipitated phases, the main advantage of the crystallization assay is the unambiguous identification of the different stages of precipitation (i.e., prenucleation, nucleation, and early postnucleation) and the characterization of the multiple effects of additives. Furthermore, the experiments permit targeted access to distinct precursor species and intermediate stages, which thus can be analyzed by additional methods such as cryo-electron microscopy or analytical ultracentrifugation (AUC). Regarding ion association in solution, AUC detects entities significantly larger than simple ion pairs, so-called prenucleation clusters. Sedimentation coefficient values and distributions obtained for the calcium carbonate system are discussed in light of recent insights into the structural nature of prenucleation clusters.

  7. A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation

    PubMed Central

    Zhao, Huaying; Ghirlando, Rodolfo; Alfonso, Carlos; Arisaka, Fumio; Attali, Ilan; Bain, David L.; Bakhtina, Marina M.; Becker, Donald F.; Bedwell, Gregory J.; Bekdemir, Ahmet; Besong, Tabot M. D.; Birck, Catherine; Brautigam, Chad A.; Brennerman, William; Byron, Olwyn; Bzowska, Agnieszka; Chaires, Jonathan B.; Chaton, Catherine T.; Cölfen, Helmut; Connaghan, Keith D.; Crowley, Kimberly A.; Curth, Ute; Daviter, Tina; Dean, William L.; Díez, Ana I.; Ebel, Christine; Eckert, Debra M.; Eisele, Leslie E.; Eisenstein, Edward; England, Patrick; Escalante, Carlos; Fagan, Jeffrey A.; Fairman, Robert; Finn, Ron M.; Fischle, Wolfgang; de la Torre, José García; Gor, Jayesh; Gustafsson, Henning; Hall, Damien; Harding, Stephen E.; Cifre, José G. Hernández; Herr, Andrew B.; Howell, Elizabeth E.; Isaac, Richard S.; Jao, Shu-Chuan; Jose, Davis; Kim, Soon-Jong; Kokona, Bashkim; Kornblatt, Jack A.; Kosek, Dalibor; Krayukhina, Elena; Krzizike, Daniel; Kusznir, Eric A.; Kwon, Hyewon; Larson, Adam; Laue, Thomas M.; Le Roy, Aline; Leech, Andrew P.; Lilie, Hauke; Luger, Karolin; Luque-Ortega, Juan R.; Ma, Jia; May, Carrie A.; Maynard, Ernest L.; Modrak-Wojcik, Anna; Mok, Yee-Foong; Mücke, Norbert; Nagel-Steger, Luitgard; Narlikar, Geeta J.; Noda, Masanori; Nourse, Amanda; Obsil, Tomas; Park, Chad K.; Park, Jin-Ku; Pawelek, Peter D.; Perdue, Erby E.; Perkins, Stephen J.; Perugini, Matthew A.; Peterson, Craig L.; Peverelli, Martin G.; Piszczek, Grzegorz; Prag, Gali; Prevelige, Peter E.; Raynal, Bertrand D. E.; Rezabkova, Lenka; Richter, Klaus; Ringel, Alison E.; Rosenberg, Rose; Rowe, Arthur J.; Rufer, Arne C.; Scott, David J.; Seravalli, Javier G.; Solovyova, Alexandra S.; Song, Renjie; Staunton, David; Stoddard, Caitlin; Stott, Katherine; Strauss, Holger M.; Streicher, Werner W.; Sumida, John P.; Swygert, Sarah G.; Szczepanowski, Roman H.; Tessmer, Ingrid; Toth, Ronald T.; Tripathy, Ashutosh; Uchiyama, Susumu; Uebel, Stephan F. W.; Unzai, Satoru; Gruber, Anna Vitlin; von Hippel, Peter H.; Wandrey, Christine; Wang, Szu-Huan; Weitzel, Steven E.; Wielgus-Kutrowska, Beata; Wolberger, Cynthia; Wolff, Martin; Wright, Edward; Wu, Yu-Sung; Wubben, Jacinta M.; Schuck, Peter

    2015-01-01

    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies. PMID:25997164

  8. The effects of monovalent metal ions on the conformation of human telomere DNA using analytical ultracentrifugation.

    PubMed

    Gao, Yating; Wu, Sha; Ye, Xiaodong

    2016-07-21

    A human telomere DNA segment (HT-DNA) can fold into a G-quadruplex in the presence of some monovalent cations. These cations can interact with the phosphate groups of the DNA segment and/or with the O6 oxygen atom of guanines, which are called non-specific interactions and specific interactions, respectively. However, until now how these two interactions affect the structure of HT-DNA has not been well understood. In this study, a combination of analytical ultracentrifugation (AUC) and circular dichroism (CD) was used to explore the effects of these two interactions on the structure of a 22-mer single-stranded DNA with a sequence of 5'-AGGG(TTAGGG)3-3'. The results showed that the standard sedimentation coefficient (s20,w) of HT-DNA starts to increase when the concentration of potassium ions (CK(+)) is higher than 10.0 µM due to the formation of a G-quadruplex through specific interactions. Whereas, for a control DNA, a higher CK(+) value of 1.0 mM was needed for increasing s20,w due to non-specific interactions. Moreover, potassium ions could promote the formation of the G-quadruplex much more easily than lithium, sodium and cesium ions, presumably due to its appropriate size in the dehydrated state and easier dehydration. The molar mass of DNA at different cation concentrations was nearly a constant and close to the theoretical value of the molar mass of monomeric HT-DNA, indicating that what we observed is the structural change of individual DNA chains. PMID:27329676

  9. Quantifying Trace Amounts of Aggregates in Biopharmaceuticals Using Analytical Ultracentrifugation Sedimentation Velocity: Bayesian Analyses and F Statistics.

    PubMed

    Wafer, Lucas; Kloczewiak, Marek; Luo, Yin

    2016-07-01

    Analytical ultracentrifugation-sedimentation velocity (AUC-SV) is often used to quantify high molar mass species (HMMS) present in biopharmaceuticals. Although these species are often present in trace quantities, they have received significant attention due to their potential immunogenicity. Commonly, AUC-SV data is analyzed as a diffusion-corrected, sedimentation coefficient distribution, or c(s), using SEDFIT to numerically solve Lamm-type equations. SEDFIT also utilizes maximum entropy or Tikhonov-Phillips regularization to further allow the user to determine relevant sample information, including the number of species present, their sedimentation coefficients, and their relative abundance. However, this methodology has several, often unstated, limitations, which may impact the final analysis of protein therapeutics. These include regularization-specific effects, artificial "ripple peaks," and spurious shifts in the sedimentation coefficients. In this investigation, we experimentally verified that an explicit Bayesian approach, as implemented in SEDFIT, can largely correct for these effects. Clear guidelines on how to implement this technique and interpret the resulting data, especially for samples containing micro-heterogeneity (e.g., differential glycosylation), are also provided. In addition, we demonstrated how the Bayesian approach can be combined with F statistics to draw more accurate conclusions and rigorously exclude artifactual peaks. Numerous examples with an antibody and an antibody-drug conjugate were used to illustrate the strengths and drawbacks of each technique.

  10. Characterizing the Effect of Salt and Surfactant Concentration on the Counterion Atmosphere around Surfactant Stabilized SWCNTs Using Analytical Ultracentrifugation.

    PubMed

    Lam, Stephanie; Zheng, Ming; Fagan, Jeffrey A

    2016-04-26

    Accurate characterization of dispersed-phase nanoparticle properties such as density, size, solvation, and charge is necessary for their utilization in applications such as medicine, energy, and materials. Herein, analytical ultracentrifugation (AUC) is used to quantify bile salt surfactant adsorption on length sorted (7,6) single-wall carbon nanotubes (SWCNTs) as a function of bulk surfactant concentration and in the presence of varying quantities of a monovalent salt-sodium chloride. These measurements provide high precision adsorbed surfactant density values in the literature for only the second SWCNT structure to date and report the quantity of adsorbed surfactant across a broad range of bulk surfactant concentrations utilized in SWCNT dispersion processing. Second, the measurements presented herein unambiguously demonstrate, via AUC, a direct relation between the size of the counterion cloud around a surfactant-stabilized SWCNT and solution ionic strength. The results show that changes in the size of the counterion cloud around surfactant-stabilized SWCNT are attributable to electrostatic phenomenon and not to changes in the quantity of adsorbed surfactant with salt addition. These results provide important reference values for projecting SWCNT dispersion behavior as a function of solution conditions and extend the range of nanoparticle properties measurable via AUC. PMID:27031248

  11. Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles.

    PubMed

    Bootz, Alexander; Vogel, Vitali; Schubert, Dieter; Kreuter, Jörg

    2004-03-01

    Nanoparticles represent promising carriers for controlled drug delivery. This work focuses on the size and molecular mass characterization of polyalkylcyanoacrylate nanoparticles formed by anionic emulsion polymerization of butylcyanoacrylate in the presence of poloxamer 188 as a stabilizer. Three different methods were used to determine the size and size distribution of the particle populations: scanning electron microscopy (SEM), dynamic light scattering (DLS), and analytical ultracentrifugation (ANUC). SEM on freeze-dried and Au-shadowed samples showed a relatively narrow distribution of virtually spherical particles with a mean diameter of 167 nm. DLS yielded a monomodal distribution with hydrodynamic diameters around 199 nm (in the absence of additional stabilizer) or 184 nm (in the presence of 1% poloxamer 188). The size distribution determined by ANUC using sedimentation velocity analysis was somewhat more complex, the size of the most abundant particles being around 184 nm. Molar particle mass distributions centered around 2.3x10(9) g/mol. The advantages and disadvantages of the three sizing techniques are discussed.

  12. Resolving the challenge of measuring ligand binding to membrane proteins by combining analytical ultracentrifugation and light scattering photometry.

    PubMed

    Doran, J D; Mohanty, A K; Fox, T

    2012-01-01

    Membrane proteins are attractive therapeutic targets, however the presence of detergents complicates biophysical binding measurements. Difficulties in determining quantitative dissociation constants for problematic membrane proteins were addressed by combining analytical ultracentrifugation and classical light scattering techniques. Validation of the algorithm used to calculate dissociation constants from sedimentation equilibrium experiments was demonstrated by analyzing binding data of the inhibitor Y-27632 to rho-kinase (ROCK). Kd's of 1.3 ± 0.7 and 52 ± 27 µM were calculated for ROCK constructs (S6-R415) and (M71-E379) respectively, consistent with previously published Ki's of 1.4 ± 0.1 and > 30 µM. Extension of the algorithm to membrane proteins required the collection of light scattering data to determine the partial specific volume, ν, for the membrane protein-detergent complex. Vitamin B12 binding to the bacterial protein btuB in octyl β-D-glucopyranoside (β-OG) illustrates the applicability of the method. A ν of 0.781 ml/g was determined for the btuB-β-OG complex. Incorporating this value into the algorithm generated a Kd of 7.0 ± 1.5 µM for the vitamin B12-btuB affinity. A Kd of 9.7 ± 2.7 µM was determined by equilibrium dialysis under similar experimental conditions. Successfully applying AUC to quantifying small-molecule ligand affinities to membrane proteins represents a significant advance to the field.

  13. Analytical Ultracentrifugation Sedimentation Velocity for the Characterization of Detergent-Solubilized Membrane Proteins Ca++-ATPase and ExbB

    PubMed Central

    Salvay, Andrés G.; Santamaria, Monica; le Maire, Marc

    2008-01-01

    We have investigated the potential of new methods of analysis of sedimentation velocity (SV) analytical ultracentrifugation (AUC) for the characterization of detergent-solubilized membrane proteins. We analyze the membrane proteins Ca++-ATPase and ExbB solubilized with DDM (dodecyl-β-d-maltoside). SV is extremely well suited for characterizing sample heterogeneity. DDM micelles (s20w = 3.1 S) and complexes (Ca++-ATPase: s20w = 7.3 S; ExbB: s20w = 4 S) are easily distinguished. Using different detergent and protein concentrations, SV does not detect any evidence of self-association for the two proteins. An estimate of bound detergent of 0.9 g/g for Ca++-ATPase and 1.5 g/g for ExbB is obtained from the combined analysis of SV profiles obtained using absorbance and interference optics. Combining s20w with values of the hydrodynamic radius, Rs = 5.5 nm for Ca++-ATPase or Rs = 3.4 nm for ExbB, allows the determination of buoyant molar masses, Mb. In view of their Mb and composition, Ca++-ATPase and ExbB are monomers in our experimental conditions. We conclude that one of the main advantages of SV versus other techniques is the possibility to ascertain the homogeneity of the samples and to focus on a given complex even in the presence of other impurities or aggregates. The relative rapidity of SV measurements also allows experiments on unstable samples. PMID:19669527

  14. Sol-gel matrices for direct colorimetric detection of analytes

    DOEpatents

    Charych, Deborah H.; Sasaki, Darryl; Yamanaka, Stacey

    2000-01-01

    The present invention relates to methods and compositions for the direct detection of analytes using color changes that occur in immobilized biopolymeric material in response to selective binding of analytes to their surface. In particular, the present invention provides methods and compositions related to the encapsulation of biopolymeric material into metal oxide glass using the sol-gel method.

  15. Sol-Gel Matrices For Direct Colorimetric Detection Of Analytes

    DOEpatents

    Charych, Deborah H.; Sasaki, Darryl; Yamanaka, Stacey

    2002-11-26

    The present invention relates to methods and compositions for the direct detection of analytes using color changes that occur in immobilized biopolymeric material in response to selective binding of analytes to their surface. In particular, the present invention provides methods and compositions related to the encapsulation of biopolymeric material into metal oxide glass using the sol-gel method.

  16. Reversible dimer formation and stability of the anti-tumour single-chain Fv antibody MFE-23 by neutron scattering, analytical ultracentrifugation, and NMR and FT-IR spectroscopy.

    PubMed

    Lee, Yie Chia; Boehm, Mark K; Chester, Kerry A; Begent, Richard H J; Perkins, Stephen J

    2002-06-28

    MFE-23 is a single chain Fv (scFv) antibody molecule used to target colorectal cancer through its high affinity for the tumour marker carcinoembryonic antigen (CEA). ScFv molecules are formed from peptide-linked antibody V(H) and V(L) domains, and many of these form dimers. Our recent crystal structure for MFE-23 showed that this formed an unusual symmetric back-to-back association of two monomers that is consistent with a domain-swapped diabody structure. Neutron scattering and modelling fits showed that MFE-23 existed as compact V(H)-V(L)-linked monomers at therapeutically relevant concentrations below 1 mg/ml. Size-exclusion gel chromatography showed that the monomeric and dimeric forms of MFE-23 could be separated, and that the proportions of these two forms depended on the starting MFE-23 concentration. Sedimentation equilibrium experiments by analytical ultracentrifugation at nine concentrations of MFE-23 indicated a reversible monomer-dimer self-association equilibrium with an association constant of 1.9x10(3)-2.2x10(3) M(-1). Sedimentation velocity experiments using the time derivative g(s(*)) method showed that MFE-23-His has a concentration-dependent weight average sedimentation coefficient that increased from 1.8 S for the monomer to about 3-6 S for the dimer. Both values agreed with those calculated from the MFE-23 crystal structure. In relation to the thermal stability of MFE-23, denaturation experiments by (1)H NMR and FT-IR spectroscopy showed that the molecule is stable up to 47 degrees C, after which denaturation was irreversible. MFE-23 dimerisation is discussed in terms of a new model for diabody structures, in which the V(H) and V(L) domains in the monomer are able to dissociate and reassociate to form a dimer, or diabody, but in which symmetric back-to-back contacts between the two monomers are formed. This dimerisation in solution is attributed to the complementary nature of the C-terminal surface of the MFE-23 monomer. Crystal structures for

  17. Gel pad array chip for high throughput and multi-analyte microbead-based immunoassays.

    PubMed

    Zhu, Qingdi; Trau, Dieter

    2015-04-15

    We present here a gel pad array chip for high-throughput and multi-analyte microbead-based immunoassays. The chip is fabricated by photo-patterning of two polymeric gels, polyacrylamide gel and polyethylene glycol (PEG) gel, on a glass slide. The resulting chip consists of 40 polyacrylamide gel pad array units for the immobilization of microbeads and each gel pad array is surrounded with a PEG micropillar ring to confine the samples within the microarray. As a proof of concept, this chip was tested for quantitative immunoassays for two model cancer markers, human chorionic gonadotropin (hCG) and prostate specific antigen (PSA), in serum samples. Detection limits below the physiological threshold level for cancer diagnosis were achieved with good inter- and intra-chip reproducibility. Moreover, by using spatial encoded microbeads, simultaneous detection of both hCG and PSA on each gel pad array is achieved with single filter fluorescence imaging. This gel pad array chip is easy to use, easy to fabricate with low cost materials and minimal equipment and reusable. It could be a useful tool for common biolabs to customize their own microbead array for multi-analyte immunoassays.

  18. HORMONE STUDIES WITH THE ULTRACENTRIFUGE

    PubMed Central

    Chiles, James A.; Severinghaus, Aura E.

    1938-01-01

    1. An ultracentrifuge is described in which the rotor is driven by a compressed air turbine, and is spun in an evacuated chamber to minimize friction and heating. The rotating parts are supported by a cushion of air in an air bearing. 2. The centrifuge rotor holds 10 test tubes inclined at 45° to the axis, and has a capacity of 55 cc. It is operated at a maximum speed of 51,000 R.P.M., which develops at the top of the fluid column in the test tubes a centrifugal field of over 100,000 times gravity, and at the bottom of the fluid column a field of over 200,000 times gravity. 3. By means of a reverse turbine, the rotor can be brought to a stop from full speed in a relatively short time. 4. A precession damping device is described, which effectively damps the precession and wobbling of the rotor that usually occurs at certain speeds in machines of this type. 5. A relatively long section of shaft is used between the centrifuge rotor and lower bearings. This prevents vibrations from being appreciably transmitted through the shaft to the lower bearings and driving mechanism, and results in a negligible wear on the bearings. 6. The driving mechanism is designed so that the positions of its parts are adjustable, and so that the driving mechanism may be dismantled without disturbing these adjustments. PMID:19870769

  19. A Sedimentation Experiment Using a Preparative Ultracentrifuge

    ERIC Educational Resources Information Center

    Boudreau, Raymond E.; And Others

    1975-01-01

    Describes an experiment that illustrates the use of the preparative ultracentrifuge in isolating and purifying bacterial ribosomes, determines the sedimentation coefficients of the ribonucleoprotein particles, and demonstrates the subunit structure of the 70-S ribosome and the role of the magnesium ion in the association of subunits. (Author/GS)

  20. The extended multidomain solution structures of the complement protein Crry and its chimeric conjugate Crry-Ig by scattering, analytical ultracentrifugation and constrained modelling: implications for function and therapy.

    PubMed

    Aslam, Mohammed; Guthridge, Joel M; Hack, Bradley K; Quigg, Richard J; Holers, V Michael; Perkins, Stephen J

    2003-06-01

    Complement receptor-related gene/protein y (Crry) is a cell membrane-bound regulator of complement activation found in mouse and rat. Crry contains only short complement/consensus repeat (SCR) domains. X-ray and neutron scattering was performed on recombinant rat Crry containing the first five SCR domains (rCrry) and mouse Crry with five SCR domains conjugated to the Fc fragment of mouse IgG1 (mCrry-Ig) in order to determine their solution structures at medium resolution. The radius of gyration R(G) of rCrry was determined to be 4.9-5.0 nm, and the R(G) of the cross-section was 1.2-1.5 nm as determined by X-ray and neutron scattering. The R(G) of mCrry-Ig was 6.6-6.7 nm, and the R(G) of the cross-section were 2.3-2.4 nm and 1.3 nm. The maximum dimension of rCrry was 18 nm and that for mCrry-Ig was 26 nm. The neutron data indicated that rCrry and mCrry-Ig have molecular mass values of 45,000 Da and 140,000 Da, respectively, in agreement with their sequences, and sedimentation equilibrium data supported these determinations. Time-derivative velocity experiments gave sedimentation coefficients of 2.4S for rCrry and 5.4S for mCrry-Ig. A medium-resolution model of rCrry was determined using homology models that were constructed for the first five SCR domains of Crry from known crystal and NMR structures, and linked by randomly generated linker peptide conformations. These trial-and-error calculations revealed a small family of extended rCrry structures that best accounted for the scattering and ultracentrifugation data. These were shorter than the most extended rCrry models as the result of minor bends in the inter-SCR orientations. The mCrry-Ig solution data were modelled starting from a fixed structure for rCrry and the crystal structure of mouse IgG1, and was based on conformational searches of the hinge peptide joining the mCrry and Fc fragments. The best-fit models showed that the two mCrry antennae in mCrry-Ig were extended from the Fc fragment. No preferred

  1. Separation of the principal HDL subclasses by iodixanol ultracentrifugation

    PubMed Central

    Harman, Nicola L.; Griffin, Bruce A.; Davies, Ian G.

    2013-01-01

    HDL subclasses detection, in cardiovascular risk, has been limited due to the time-consuming nature of current techniques. We have developed a time-saving and reliable separation of the principal HDL subclasses employing iodixanol density gradient ultracentrifugation (IxDGUC) combined with digital photography. HDL subclasses were separated in 2.5 h from prestained plasma on a three-step iodixanol gradient. HDL subclass profiles were generated by digital photography and gel scan software. Plasma samples (n = 46) were used to optimize the gradient for the resolution of HDL heterogeneity and to compare profiles generated by IxDGUC with gradient gel electrophoresis (GGE); further characterization from participants (n = 548) with a range of lipid profiles was also performed. HDL subclass profiles generated by IxDGUC were comparable to those separated by GGE as indicated by a significant association between areas under the curve for both HDL2 and HDL3 (HDL2, r = 0.896, P < 0.01; HDL3, r = 0.894, P < 0.01). The method was highly reproducible, with intra- and interassay coefficient of variation percentage < 5 for percentage area under the curve HDL2 and HDL3, and < 1% for peak Rf and peak density. The method provides time-saving and cost-effective detection and preparation of the principal HDL subclasses. PMID:23690506

  2. Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation

    NASA Astrophysics Data System (ADS)

    Peng, Wei; Mahfouz, Remi; Pan, Jun; Hou, Yuanfang; Beaujuge, Pierre M.; Bakr, Osman M.

    2013-05-01

    Size is a defining characteristic of nanoparticles; it influences their optical and electronic properties as well as their interactions with molecules and macromolecules. Producing nanoparticles with narrow size distributions remains one of the main challenges to their utilization. At this time, the number of practical approaches to optimize the size distribution of nanoparticles in many interesting materials systems, including diamond nanocrystals, remains limited. Diamond nanocrystals synthesized by detonation protocols - so-called detonation nanodiamonds (DNDs) - are promising systems for drug delivery, photonics, and composites. DNDs are composed of primary particles with diameters mainly <10 nm and their aggregates (ca. 10-500 nm). Here, we introduce a large-scale approach to rate-zonal density gradient ultracentrifugation to obtain monodispersed fractions of nanoparticles in high yields. We use this method to fractionate a highly concentrated and stable aqueous solution of DNDs and to investigate the size distribution of various fractions by dynamic light scattering, analytical ultracentrifugation, transmission electron microscopy and powder X-ray diffraction. This fractionation method enabled us to separate gram-scale amounts of DNDs into several size ranges within a relatively short period of time. In addition, the high product yields obtained for each fraction allowed us to apply the fractionation method iteratively to a particular size range of particles and to collect various fractions of highly monodispersed primary particles. Our method paves the way for in-depth studies of the physical and optical properties, growth, and aggregation mechanism of DNDs. Applications requiring DNDs with specific particle or aggregate sizes are now within reach.Size is a defining characteristic of nanoparticles; it influences their optical and electronic properties as well as their interactions with molecules and macromolecules. Producing nanoparticles with narrow size

  3. Analytical isoelectric focusing using a high-voltage vertical slab polyacrylamide gel system.

    PubMed

    Giulian, G G; Moss, R L; Greaser, M

    1984-11-01

    A commercially supplied vertical slab electrophoresis system has been modified to permit electrofocusing of thin gels using electrical potentials of 3000 V and higher. Polyacrylamide gels (5.65% T, 2.65% C; 2.4-3.3% (w/v) ampholytes; 0.35 mm thick X 98-105 mm long X 140 mm wide) were run under native and denaturing conditions. Accurate temperature regulation and atmospheric control were obtained by casting the gel between two glass plates, and then completely submerging the gel in the lower tank buffer. As many as 18 samples were loaded into wells at the top of each gel. Protein standards and mouse ascites fluid were focused on gels in the native state using a broad-range blend of commercial ampholytes from pH 3.5 to 10. Narrow-range pH ampholyte blends were also used: pH 2.5 to 6 under denaturing conditions resolving bovine calmodulins; pH 4 to 6 under a native condition for human plasma proteins including immunoglobulin G, fibronectin, and fibrinogen; pH 4 to 6 under denaturing conditions for myosin light chains; pH 6 to 9 under native conditions for human hemoglobins; and pH 9 to 11 under denaturing conditions to separate 30 S ribosomal subunit proteins. High-voltage vertical slab electrofocusing provides a means for rapid resolution of multiple protein samples using stable pH gradients. The method is especially valuable in ranges near pH 2.5 and pH 10.5 in which difficulties have previously been encountered with regard to atmospheric control and temperature regulation using conventional focusing techniques. PMID:6528977

  4. Application of Cassette Ultracentrifugation Using Non-labeled Compounds and Liquid Chromatography-Tandem Mass Spectrometry Analysis for High-Throughput Protein Binding Determination.

    PubMed

    Kieltyka, Kasia; McAuliffe, Brian; Cianci, Christopher; Drexler, Dieter M; Shou, Wilson; Zhang, Jun

    2016-03-01

    Membrane-based devices typically used for serum protein binding determination are not fully applicable to highly lipophilic compounds because of nonspecific binding to the device membrane. Ultracentrifugation, however, completely eliminates the issue by using a membrane-free approach, although its wide application has been limited. This lack of utilization is mainly attributed to 2 factors: the high cost in acquiring and handling of radiolabeled compounds and low assay throughput owing to the difficulties in process automation. To overcome these challenges, we report a high-throughput workflow by cassette ultracentrifugation of nonradiolabeled compounds followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Twenty compounds with diverse physicochemical and protein binding properties were selected for the evaluation of the workflow. To streamline the working process, approaches of matrix balancing for all the samples for LC-MS/MS analysis and determining free fraction without analytical calibration curves were adopted. Both the discrete ultracentrifugation of individual compounds and cassette ultracentrifugation of all the test compounds followed by simultaneous LC-MS/MS analysis exhibited a linear correlation with literature values, demonstrating respectively the validity of the ultracentrifugation process and the cassette approach. The cassette ultracentrifugation using nonradiolabeled compounds followed by LC-MS/MS analysis has greatly facilitated its application for high-throughput protein binding screening in drug discovery.

  5. Analytical QbD: development of a native gel electrophoresis method for measurement of monoclonal antibody aggregates.

    PubMed

    Pathak, Mili; Dutta, Debayon; Rathore, Anurag

    2014-08-01

    This paper presents a quality by design (QbD) based development of a novel native PAGE (N-PAGE) method as a low-cost analytical tool for analysis of aggregates of monoclonal antibodies. Comparability to the present gold standard of SEC has been established. The motivation is the fact that SEC requires relatively expensive equipment and consumables, thus making N-PAGE relevant to those academicians and other small companies involved in early-stage development of biotherapeutics that do not have access to SEC, especially in developing countries. Furthermore, SEC suffers from certain disadvantages including the possibility of secondary interactions between the stationary phase and analyte resulting in higher elution time and therefore underestimation of the analyte size. The proposed N-PAGE method can also serve as an orthogonal analytical method for aggregate analysis. A QbD-based approach has been used for development and optimization of the protocol. First, initial screening studies were carried out with parameters including the running buffer pH, running buffer molarity, gel buffer pH, loading dye, sample concentration, and running voltage. Next, optimization of operating parameters was performed using principles of design of experiments. The final optimized protocol was compared to the traditional SEC method and the results were found to be comparable. While N-PAGE has been in use for protein analysis for several decades, use of N-PAGE for analysis of mAb aggregates with data comparable to SEC such as the case presented here is novel.

  6. Separation of colloidal two dimensional materials by density gradient ultracentrifugation

    SciTech Connect

    Kuang, Yun; Song, Sha; Huang, Jinyang; Sun, Xiaoming

    2015-04-15

    Two-dimensional (2D) materials have been made through various approaches but obtaining monodispersed simply by synthesis optimization gained little success, which highlighted the need for introducing nanoseparation methods. Density gradient ultracentrifugation method has emerged as a versatile and scalable method for sorting colloidal 2D nanomaterials. Isopycnic separation was applied on thickness-dependent separation of graphene nanosheets. And rate-zonal separation, as a more versatile separation method, demonstrated its capability in sorting nanosheets of chemically modified single layered graphene, layered double hydroxide, and even metallic Ag. Establishing such density gradient ultracentrifugation method not only achieves monodispersed nanosheets and provides new opportunities for investigation on size dependent properties of 2D materials, but also makes the surface modification possible by introducing “reaction zones” during sedimentation of the colloids. - Graphical abstract: Two-dimensional (2D) materials have been made through various approaches but obtaining monodispersed simply by synthesis optimization gained little success, which highlighted the need for introducing nanoseparation methods. Density gradient ultracentrifugation method has emerged as a versatile and scalable method for sorting colloidal 2D nanomaterials according to their size of thickness difference. Establishing such density gradient ultracentrifugation method not only achieves monodispersed nanosheets and provides new opportunities for investigation on size dependent properties of 2D materials, but also makes the surface modification possible by introducing “reaction zones” during sedimentation of the colloids. - Highlights: • Density gradient ultracentrifugation was applied on size separation of 2D material. • Isopycnic separation was applied on separation of low density materials. • Rate-zonal separation was applied on separation of large density materials. • Size

  7. Ultracentrifugation in completing oil removal from nuclear power station condensate

    SciTech Connect

    Kuleshov, N.F.; Kichik, V.A.; Masanov, O.A.; Malinin, A.A.; Nazarov, V.K.; Svittson, A.A.; Smirnov, L.M.

    1988-03-01

    When power reactor trap waters are processed by distillation a condensate is formed containing 1-20 mg/liter of oil. The final purification is done by means of a carbon filter but experience has shown that this does not provide the purification level of 0.1 mg/liter required to keep the ion-exchange resins from fouling. The purpose of the work described in this paper was to design and test a technique based on the same filters but using ultracentrifugation and ultrafiltration methods to bring the contamination level down to the acceptable limit. Laboratory and field tests are described. Filter regeneration scenarios are also given.

  8. Chemical and physicochemical properties of the high cohesive silicone gel from Poly Implant Prothèse (PIP) breast prostheses after explantation: a preliminary, comparative analytical investigation.

    PubMed

    Beretta, Giangiacomo; Malacco, Matteo

    2013-05-01

    Aim of this work was to gain a deeper insight into the analytical profile of the macromolecular and LMW fractions of polymeric silicones present in breast implants. The study was conducted on silicone gel samples from (i) breast prostheses (Poly Implant Prothèse, PIP) explanted from a patient that needed their therapeutical removal, (ii) from a virgin Mc Ghan 410 MX prosthesis and (iii) from a sample of technical-grade non-cohesive silicone. The gels were analysed using rheological techniques, attenuated total reflectance infrared spectroscopy (ATR-FT-IR), nuclear magnetic resonance ((1)H NMR), gas chromatography coupled to mass spectrometry (GC-MS) and flow injection electrospray mass spectrometry (FI-ESI-MS). Our results demonstrate that, compared to the virgin McGhan gel, the silicone present the PIP prostheses lacks a significant part of the cross-linking sites necessary for the high-cohesive properties of the gel, significant amounts of cholesterol have been absorbed from the breast tissue by the silicone material, demonstrating the lack of impermeability of its elastomer shell. The potential implications and consequences of these analytical results are discussed. PMID:23454600

  9. Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2016-01-01

    Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed in an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable.

  10. On the general concept of buoyancy in sedimentation and ultracentrifugation.

    PubMed

    Piazza, Roberto; Buzzaccaro, Stefano; Secchi, Eleonora; Parola, Alberto

    2013-08-01

    Gravity or ultracentrifuge settling of colloidal particles and macromolecules usually involves several disperse species, either because natural and industrial colloids display a large size polydispersity, or because additives are put in on purpose to allow for density-based fractionation of the suspension. Such 'macromolecular crowding', however, may have surprising effects on sedimentation, for it strongly affects the buoyant force felt by a settling particle. Here we show that, as a matter of fact, the standard Archimedes' principle is just a limiting law, valid only for mesoscopic particles settling in a molecular fluid, and we obtain a fully general expression for the actual buoyancy force providing a microscopic basis to the general thermodynamic analysis of sedimentation in multi-component mixtures. The effective buoyancy also depends on the particle shape, being much more pronounced for thin rods and discs. Our model is successfully tested on simple colloidal mixtures, and used to predict rather unexpected effects, such as denser particles floating on top of a lighter fluid, which we actually observe in targeted experiments. This 'generalized Archimedes principle' may provide a tool to devise novel separation methods sensitive to particle size and shape. PMID:23913160

  11. On the general concept of buoyancy in sedimentation and ultracentrifugation.

    PubMed

    Piazza, Roberto; Buzzaccaro, Stefano; Secchi, Eleonora; Parola, Alberto

    2013-08-02

    Gravity or ultracentrifuge settling of colloidal particles and macromolecules usually involves several disperse species, either because natural and industrial colloids display a large size polydispersity, or because additives are put in on purpose to allow for density-based fractionation of the suspension. Such 'macromolecular crowding', however, may have surprising effects on sedimentation, for it strongly affects the buoyant force felt by a settling particle. Here we show that, as a matter of fact, the standard Archimedes' principle is just a limiting law, valid only for mesoscopic particles settling in a molecular fluid, and we obtain a fully general expression for the actual buoyancy force providing a microscopic basis to the general thermodynamic analysis of sedimentation in multi-component mixtures. The effective buoyancy also depends on the particle shape, being much more pronounced for thin rods and discs. Our model is successfully tested on simple colloidal mixtures, and used to predict rather unexpected effects, such as denser particles floating on top of a lighter fluid, which we actually observe in targeted experiments. This 'generalized Archimedes principle' may provide a tool to devise novel separation methods sensitive to particle size and shape.

  12. On the general concept of buoyancy in sedimentation and ultracentrifugation

    NASA Astrophysics Data System (ADS)

    Piazza, Roberto; Buzzaccaro, Stefano; Secchi, Eleonora; Parola, Alberto

    2013-08-01

    Gravity or ultracentrifuge settling of colloidal particles and macromolecules usually involves several disperse species, either because natural and industrial colloids display a large size polydispersity, or because additives are put in on purpose to allow for density-based fractionation of the suspension. Such ‘macromolecular crowding’, however, may have surprising effects on sedimentation, for it strongly affects the buoyant force felt by a settling particle. Here we show that, as a matter of fact, the standard Archimedes' principle is just a limiting law, valid only for mesoscopic particles settling in a molecular fluid, and we obtain a fully general expression for the actual buoyancy force providing a microscopic basis to the general thermodynamic analysis of sedimentation in multi-component mixtures. The effective buoyancy also depends on the particle shape, being much more pronounced for thin rods and discs. Our model is successfully tested on simple colloidal mixtures, and used to predict rather unexpected effects, such as denser particles floating on top of a lighter fluid, which we actually observe in targeted experiments. This ‘generalized Archimedes principle’ may provide a tool to devise novel separation methods sensitive to particle size and shape.

  13. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling.

    PubMed Central

    Schuck, P

    2000-01-01

    A new method for the size-distribution analysis of polymers by sedimentation velocity analytical ultracentrifugation is described. It exploits the ability of Lamm equation modeling to discriminate between the spreading of the sedimentation boundary arising from sample heterogeneity and from diffusion. Finite element solutions of the Lamm equation for a large number of discrete noninteracting species are combined with maximum entropy regularization to represent a continuous size-distribution. As in the program CONTIN, the parameter governing the regularization constraint is adjusted by variance analysis to a predefined confidence level. Estimates of the partial specific volume and the frictional ratio of the macromolecules are used to calculate the diffusion coefficients, resulting in relatively high-resolution sedimentation coefficient distributions c(s) or molar mass distributions c(M). It can be applied to interference optical data that exhibit systematic noise components, and it does not require solution or solvent plateaus to be established. More details on the size-distribution can be obtained than from van Holde-Weischet analysis. The sensitivity to the values of the regularization parameter and to the shape parameters is explored with the help of simulated sedimentation data of discrete and continuous model size distributions, and by applications to experimental data of continuous and discrete protein mixtures. PMID:10692345

  14. Heavy metal adsorptivity of calcium-alginate-modified diethylenetriamine-silica gel and its application to a flow analytical system using flame atomic absorption spectrometry.

    PubMed

    Mori, Masanobu; Suzuki, Toshinobu; Sugita, Tsuyoshi; Nagai, Daisuke; Hirayama, Kazuo; Onozato, Makoto; Itabashi, Hideyuki

    2014-08-20

    This study aimed to evaluate the heavy metal adsorptivity of calcium-alginate-modified diethylenetriamine-silica gel (CaAD) and incorporate this biosorbent into a flow analytical system for heavy metal ions using flame atomic absorption spectrometry (FAAS). The biosorbent was synthesized by electrostatically coating calcium alginate onto diethylenetriamine (dien)-silica gel. Copper ion adsorption tests by a batch method showed that CaAD exhibited a higher adsorption rate compared with other biosorbents despite its low maximum adsorption capacity. Next, CaAD was packed into a 1mL microcolumn, which was connected to a flow analytical system equipped with an FAAS instrument. The flow system quantitatively adsorbed heavy metals and enriched their concentrations. This quantitative adsorption was achieved for pH 3-4 solutions containing 1.0×10(-6) M of heavy metal ions at a flow rate of 5.0 mL min(-1). Furthermore, the metal ions were successfully desorbed from CaAD at low nitric acid concentrations (0.05-0.15 M) than from the polyaminecarboxylic acid chelating resin (Chelex 100). Therefore, CaAD may be considered as a biosorbent that quickly adsorbs and easily desorbs analyte metal ions. In addition, the flow system enhanced the concentrations of heavy metals such as Cu(2+), Zn(2+), and Pb(2+) by 50-fold. This new enrichment system successfully performed the separation and determination of Cu(2+) (5.0×10(-8)M) and Zn(2+) (5.7×10(-8) M) in a river water sample and Pb(2+) (3.8×10(-9) M) in a ground water sample.

  15. Heavy metal adsorptivity of calcium-alginate-modified diethylenetriamine-silica gel and its application to a flow analytical system using flame atomic absorption spectrometry.

    PubMed

    Mori, Masanobu; Suzuki, Toshinobu; Sugita, Tsuyoshi; Nagai, Daisuke; Hirayama, Kazuo; Onozato, Makoto; Itabashi, Hideyuki

    2014-08-20

    This study aimed to evaluate the heavy metal adsorptivity of calcium-alginate-modified diethylenetriamine-silica gel (CaAD) and incorporate this biosorbent into a flow analytical system for heavy metal ions using flame atomic absorption spectrometry (FAAS). The biosorbent was synthesized by electrostatically coating calcium alginate onto diethylenetriamine (dien)-silica gel. Copper ion adsorption tests by a batch method showed that CaAD exhibited a higher adsorption rate compared with other biosorbents despite its low maximum adsorption capacity. Next, CaAD was packed into a 1mL microcolumn, which was connected to a flow analytical system equipped with an FAAS instrument. The flow system quantitatively adsorbed heavy metals and enriched their concentrations. This quantitative adsorption was achieved for pH 3-4 solutions containing 1.0×10(-6) M of heavy metal ions at a flow rate of 5.0 mL min(-1). Furthermore, the metal ions were successfully desorbed from CaAD at low nitric acid concentrations (0.05-0.15 M) than from the polyaminecarboxylic acid chelating resin (Chelex 100). Therefore, CaAD may be considered as a biosorbent that quickly adsorbs and easily desorbs analyte metal ions. In addition, the flow system enhanced the concentrations of heavy metals such as Cu(2+), Zn(2+), and Pb(2+) by 50-fold. This new enrichment system successfully performed the separation and determination of Cu(2+) (5.0×10(-8)M) and Zn(2+) (5.7×10(-8) M) in a river water sample and Pb(2+) (3.8×10(-9) M) in a ground water sample. PMID:25086892

  16. Application of two-dimensional gel electrophoresis to interrogate alterations in the proteome of genetically modified crops. 1. Assessing analytical validation.

    PubMed

    Ruebelt, Martin C; Leimgruber, Nancy K; Lipp, Markus; Reynolds, Tracey L; Nemeth, Margaret A; Astwood, James D; Engel, Karl-Heinz; Jany, Klaus-Dieter

    2006-03-22

    Current tools used to assess the safety of food and feed derived from modern biotechnology emphasize the investigation of possible unintended effects caused directly by the expression of transgenes or indirectly by pleiotropy. These tools include extensive multisite and multiyear agronomic evaluations, compositional analyses, animal nutrition, and classical toxicology evaluations. Because analytical technologies are rapidly developing, proteome analysis based on two-dimensional gel electrophoresis (2DE) was investigated as a complementary tool to the existing technologies. A 2DE method was established for the qualitative and quantitative analysis of the seed proteome of Arabidopsis thaliana with the following validation parameters examined: (1) source and scope of variation; (2) repeatability; (3) sensitivity; and (4) linearity of the method. The 2DE method resolves proteins with isoelectric points between 4 and 9 and molecular masses (MM) of 6-120 kDa and is sensitive enough to detect protein levels in the low nanogram range. The separation of the proteins was demonstrated to be very reliable with relative position variations of 1.7 and 1.1% for the pI and MM directions, respectively. The mean coefficient of variation of 254 matched spot qualities was found to be 24.8% for the gel-to-gel and 26% for the overall variability. A linear relationship (R2 > 0.9) between protein amount and spot volume was demonstrated over a 100-fold range for the majority of selected proteins. Therefore, this method could be used to interrogate proteome alterations such as a novel protein, fusion protein, or any other change that affects molecular mass, isoelectric point, and/or quantity of a protein.

  17. Ultracentrifugation-free chromatography-mediated large-scale purification of recombinant adeno-associated virus serotype 1 (rAAV1)

    PubMed Central

    Tomono, Taro; Hirai, Yukihiko; Okada, Hironori; Adachi, Kumi; Ishii, Akiko; Shimada, Takashi; Onodera, Masafumi; Tamaoka, Akira; Okada, Takashi

    2016-01-01

    Recombinant adeno-associated virus (rAAV) is an attractive tool for gene transfer and shows potential for use in human gene therapies. The current methods for the production and purification of rAAV from the transfected cell lysate are mainly based on cesium chloride and iodixanol density ultracentrifugation, although those are not scalable. Meanwhile, chromatography-based systems are more scalable. Therefore, in this study, we developed a novel method for the production and purification of rAAV serotype 1 (rAAV1) from serum-free culture supernatant based on ion-exchange and gel-filtration chromatography to obtain highly purified products with an ultracentrifugation-free technique towards Good Manufacturing Practice (GMP) production. The purified rAAV1 displayed three clear and sharp bands (VP1, VP2, and VP3) following sodium dodecyl sulfate–polyacrylamide gel electrophoresis, and more than 90% of rAAV1 particles contained fully packaged viral genomes according to negative-stain electron micrographic analysis. Consequently, the resultant genomic titer of the purified rAAV1 was 3.63 × 1013 v.g./ml (the total titer was 4.17 × 1013 v.g.) from the 4 × 109 HEK293 cells. This novel chromatography-based method will facilitate scale-up of manufacturing for clinical applications in gene therapy. PMID:26913289

  18. Quantification of PEGylated proteases with varying degree of conjugation in mixtures: An analytical protocol combining protein precipitation and capillary gel electrophoresis.

    PubMed

    Morgenstern, Josefine; Busch, Markus; Baumann, Pascal; Hubbuch, Jürgen

    2016-09-01

    PEGylation, i.e. the covalent attachment of chemically activated polyethylene glycol (PEG) to proteins, is a technique commonly used in biopharmaceutical industry to improve protein stability, pharmacokinetics and resistance to proteolytic degradation. Therefore, PEGylation represents a valuable strategy to reduce autocatalysis of biopharmaceutical relevant proteases during production, purification and storage. In case of non-specific random conjugation the existence of more than one accessible binding site results in conjugates which vary in position and number of attached PEG molecules. These conjugates may differ considerably in their physicochemical properties. Optimizing the reaction conditions with respect to the degree of PEGylation (number of linked PEG molecules) using high-throughput screening (HTS) technologies requires a fast and reliable analytical method which allows stopping the reaction at defined times. In this study an analytical protocol for PEGylated proteases is proposed combining preservation of sample composition by trichloroacetic acid (TCA) precipitation with high-throughput capillary gel electrophoresis (HT-CGE). The well-studied protein hen egg-white lysozyme served as a model system for validating the newly developed analytical protocol for 10kDa mPEG-aldehyde conjugates. PEGamer species were purified by chromatographic separation for calibrating the HT-CGE system. In a case study, the serine protease Savinase(®) which is highly sensitive to autocatalysis was randomly modified with 5kDa and 10kDa mPEG-aldehyde and analyzed. Using the presented TCA protocol baseline separation between PEGamer species was achieved allowing for the analysis of heterogeneous PEGamer mixtures while preventing protease autocatalysis. PMID:27521256

  19. Quantification of PEGylated proteases with varying degree of conjugation in mixtures: An analytical protocol combining protein precipitation and capillary gel electrophoresis.

    PubMed

    Morgenstern, Josefine; Busch, Markus; Baumann, Pascal; Hubbuch, Jürgen

    2016-09-01

    PEGylation, i.e. the covalent attachment of chemically activated polyethylene glycol (PEG) to proteins, is a technique commonly used in biopharmaceutical industry to improve protein stability, pharmacokinetics and resistance to proteolytic degradation. Therefore, PEGylation represents a valuable strategy to reduce autocatalysis of biopharmaceutical relevant proteases during production, purification and storage. In case of non-specific random conjugation the existence of more than one accessible binding site results in conjugates which vary in position and number of attached PEG molecules. These conjugates may differ considerably in their physicochemical properties. Optimizing the reaction conditions with respect to the degree of PEGylation (number of linked PEG molecules) using high-throughput screening (HTS) technologies requires a fast and reliable analytical method which allows stopping the reaction at defined times. In this study an analytical protocol for PEGylated proteases is proposed combining preservation of sample composition by trichloroacetic acid (TCA) precipitation with high-throughput capillary gel electrophoresis (HT-CGE). The well-studied protein hen egg-white lysozyme served as a model system for validating the newly developed analytical protocol for 10kDa mPEG-aldehyde conjugates. PEGamer species were purified by chromatographic separation for calibrating the HT-CGE system. In a case study, the serine protease Savinase(®) which is highly sensitive to autocatalysis was randomly modified with 5kDa and 10kDa mPEG-aldehyde and analyzed. Using the presented TCA protocol baseline separation between PEGamer species was achieved allowing for the analysis of heterogeneous PEGamer mixtures while preventing protease autocatalysis.

  20. Enrichment of calcifying extracellular vesicles using density-based ultracentrifugation protocol

    PubMed Central

    Hutcheson, Joshua D.; Goettsch, Claudia; Pham, Tan; Iwashita, Masaya; Aikawa, Masanori; Singh, Sasha A.; Aikawa, Elena

    2014-01-01

    Calcifying extracellular vesicles (EVs) released from cells within atherosclerotic plaques have received increased attention for their role in mediating vascular calcification, a major predictor of cardiovascular morbidity and mortality. However, little is known about the difference between this pathologic vesicle population and other EVs that contribute to physiological cellular processes. One major challenge that hinders research into these differences is the inability to selectively isolate calcifying EVs from other vesicle populations. In this study, we hypothesized that the formation of mineral within calcifying EVs would increase the density of the vesicles such that they would pellet at a faster rate during ultracentrifugation. We show that after 10 min of ultracentrifugation at 100,000×g, calcifying EVs are depleted from the conditioned media of calcifying coronary artery smooth muscle cells and are enriched in the pelleted portion. We utilized mass spectrometry to establish functional proteomic differences between the calcifying EVs enriched in the 10 min ultracentrifugation compared to other vesicle populations preferentially pelleted by longer ultracentrifugation times. The procedures established in this study will allow us to enrich the vesicle population of interest and perform advanced proteomic analyses to find subtle differences between calcifying EVs and other vesicle populations that may be translated into therapeutic targets for vascular calcification. Finally, we will show that the differences in ultracentrifugation times required to pellet the vesicle populations can also be used to estimate physical differences between the vesicles. PMID:25491249

  1. Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems.

    PubMed Central

    Schuck, Peter; Perugini, Matthew A; Gonzales, Noreen R; Howlett, Geoffrey J; Schubert, Dieter

    2002-01-01

    Strategies for the deconvolution of diffusion in the determination of size-distributions from sedimentation velocity experiments were examined and developed. On the basis of four different model systems, we studied the differential apparent sedimentation coefficient distributions by the time-derivative method, g(s*), and by least-squares direct boundary modeling, ls-g*(s), the integral sedimentation coefficient distribution by the van Holde-Weischet method, G(s), and the previously introduced differential distribution of Lamm equation solutions, c(s). It is shown that the least-squares approach ls-g*(s) can be extrapolated to infinite time by considering area divisions analogous to boundary divisions in the van Holde-Weischet method, thus allowing the transformation of interference optical data into an integral sedimentation coefficient distribution G(s). However, despite the model-free approach of G(s), for the systems considered, the direct boundary modeling with a distribution of Lamm equation solutions c(s) exhibited the highest resolution and sensitivity. The c(s) approach requires an estimate for the size-dependent diffusion coefficients D(s), which is usually incorporated in the form of a weight-average frictional ratio of all species, or in the form of prior knowledge of the molar mass of the main species. We studied the influence of the weight-average frictional ratio on the quality of the fit, and found that it is well-determined by the data. As a direct boundary model, the calculated c(s) distribution can be combined with a nonlinear regression to optimize distribution parameters, such as the exact meniscus position, and the weight-average frictional ratio. Although c(s) is computationally the most complex, it has the potential for the highest resolution and sensitivity of the methods described. PMID:11806949

  2. Improving the Thermal, Radial and Temporal Accuracy of the Analytical Ultracentrifuge through External References

    PubMed Central

    Ghirlando, Rodolfo; Balbo, Andrea; Piszczek, Grzegorz; Brown, Patrick H.; Lewis, Marc S.; Brautigam, Chad A.; Schuck, Peter; Zhao, Huaying

    2013-01-01

    Sedimentation velocity (SV) is a method based on first-principles that provides a precise hydrodynamic characterization of macromolecules in solution. Due to recent improvements in data analysis, the accuracy of experimental SV data emerges as a limiting factor in its interpretation. Our goal was to unravel the sources of experimental error and develop improved calibration procedures. We implemented the use of a Thermochron iButton® temperature logger to directly measure the temperature of a spinning rotor, and detected deviations that can translate into an error of as much as 10% in the sedimentation coefficient. We further designed a precision mask with equidistant markers to correct for instrumental errors in the radial calibration, which were observed to span a range of 8.6%. The need for an independent time calibration emerged with use of the current data acquisition software (Zhao et al., doi 10.1016/j.ab.2013.02.011) and we now show that smaller but significant time errors of up to 2% also occur with earlier versions. After application of these calibration corrections, the sedimentation coefficients obtained from eleven instruments displayed a significantly reduced standard deviation of ∼ 0.7 %. This study demonstrates the need for external calibration procedures and regular control experiments with a sedimentation coefficient standard. PMID:23711724

  3. Sol-gel approach for fabrication of coated anodized titanium wire for solid-phase microextraction: highly efficient adsorbents for enrichment of trace polar analytes.

    PubMed

    Jia, Jing; Xu, Lili; Wang, Shuai; Wang, Licheng; Liu, Xia

    2014-05-01

    Nanotubular titania film was prepared in situ on titanium wire and was used as the fiber substrate for solid-phase microextraction (SPME) because of its high surface-to-volume ratio, easy preparation, and mechanical stability. Three different functional coatings, β-cyclodextrin (β-CD), β-cyclodextrin-co-poly(ethylenepropylene glycol) (β-CD/PEG), and polyethylene glycol (PEG)-based sorbents were chemically bonded to the nanostructured wire surface via sol-gel technology to further enhance the absorbing capability and extraction selectivity. Coupled to gas chromatography-flame ionic detection (GC-FID), the prepared SPME fibers were investigated using diverse compounds. The results indicated that the fibers showed good mechanical strength, excellent thermal stability, and wonderful capacity and selectivity to polar compounds, including polar aromatic compounds, alcohols, and ketones. Combining the superior hydrophilic property of a bonded functional molecule and the highly porous structure of a fiber coating, the prepared PEG-coated SPME fiber showed much higher adsorption affinity to ephedrine and methylephedrine than β-CD and β-CD/PEG fibers. The as-established PEG-coated SPME-GC analytical method provided excellent sensitivity (LODs, 0.004 and 0.001 ng mL(-1) for ephedrine and methylephedrine, respectively) and better linear range (0.01-2 000 μg L(-1)). In addition, it has surprising repeatability and reproducibility. Finally, the present approach was used to analyze ephedrine and methylephedrine from real urine samples, and reliable results were obtained. PMID:24682230

  4. Ultracentrifugation and inductively coupled plasma mass spectrometry for metal-protein equilibrium studies

    NASA Astrophysics Data System (ADS)

    Arnquist, Isaac J.; Holcombe, James A.

    2012-10-01

    The coupling of separation by preparative ultracentrifugation and metal detection by inductively coupled plasma mass spectrometry (ICP-MS) has been explored for metal-protein equilibrium determinations. This study characterizes the stoichiometry as well as apparent (Kapp) and intrinsic (Kint) binding affinities of the metal-protein association for a model protein. In particular, the affinity of Cu2 + for the high affinity binding site in bovine serum albumin (BSA) is determined. Once equilibrium is established between Cu2 + and BSA, preparative ultracentrifugation moves the metalloprotein away from the meniscus, leaving unbound equilibrium copper in the protein free solution. Since the initial (total) concentrations of purified BSA and Cu2 + can be determined, the free copper concentration at equilibrium can also be determined by taking a small aliquot above the sedimenting boundary for analysis using ICP-MS. This analysis allows for the determination of free Cu2 + ion, which is identical to the equilibrium concentration prior to ultracentrifugation. From these data Kapp and Kint were determined at two different conditions, 100 mM Tris(hydroxymethyl)aminomethane (Tris) at pH 9.53 and pH 7.93. log Kapp values of 17.6 and 14.6 were determined at pH 9.53 and pH 7.93, respectively. Furthermore, pH-independent log Kint values of - 1.43 and - 1.04 were determined at pH 9.53 and 7.93, respectively. While the log Kint at pH 9.53 was in good agreement with literature values obtained from alternative methods, Kint at pH 7.93 was about 2.5 × larger than previously reported. BSA undergoes a structural rearrangement between pH 7-9, and the generally accepted pH-dependency of protein tertiary structure may be responsible for the variations in the "intrinsic" binding constant. The Cu-BSA binding affinity was also monitored in 100 mM Tris 0.1% sodium dodecyl sulfate (SDS) solution at pH 7.93 in order to determine the effect of a denaturant on metal binding. Results for both log

  5. Combining Ultracentrifugation and Peptide Termini Group-specific Immunoprecipitation for Multiplex Plasma Protein Analysis

    PubMed Central

    Volk, Sonja; Schreiber, Thomas D.; Eisen, David; Wiese, Calvin; Planatscher, Hannes; Pynn, Christopher J.; Stoll, Dieter; Templin, Markus F.; Joos, Thomas O.; Pötz, Oliver

    2012-01-01

    Blood plasma is a valuable source of potential biomarkers. However, its complexity and the huge dynamic concentration range of its constituents complicate its analysis. To tackle this problem, an immunoprecipitation strategy was employed using antibodies directed against short terminal epitope tags (triple X proteomics antibodies), which allow the enrichment of groups of signature peptides derived from trypsin-digested plasma. Isolated signature peptides are subsequently detected using MALDI-TOF/TOF mass spectrometry. Sensitivity of the immunoaffinity approach was, however, compromised by the presence of contaminant peaks derived from the peptides of nontargeted high abundant proteins. A closer analysis of the enrichment strategy revealed nonspecific peptide binding to the solid phase affinity matrix as the major source of the contaminating peptides. We therefore implemented a sucrose density gradient ultracentrifugation separation step into the procedure. This yielded a 99% depletion of contaminating peptides from a sucrose fraction containing 70% of the peptide-antibody complexes and enabled the detection of the previously undetected low abundance protein filamin-A. Assessment of this novel approach using 15 different triple X proteomics antibodies demonstrated a more consistent detection of a greater number of targeted peptides and a significant reduction in the intensity of nonspecific peptides. Ultracentrifugation coupled with immunoaffinity MS approaches presents a powerful tool for multiplexed plasma protein analysis without the requirement for demanding liquid chromatography separation techniques. PMID:22527512

  6. Universal Parameter Optimization of Density Gradient Ultracentrifugation Using CdSe Nanoparticles as Tracing Agents.

    PubMed

    Li, Pengsong; Huang, Jinyang; Luo, Liang; Kuang, Yun; Sun, Xiaoming

    2016-09-01

    Density gradient ultracentrifugation (DGUC) has recently emerged as an effective nanoseparation method to sort polydispersed colloidal NPs mainly according to their size differences to reach monodispersed fractions (NPs), but its separation modeling is still lack and the separation parameters' optimization mainly based on experience of operators. In this paper, we gave mathematical descriptions on the DGUC separation, which suggested the best separation parameters for a given system. The separation parameters, including media density, centrifuge speed and time, which affected the separation efficiency, were discussed in details. Further mathematical optimization model was established to calculate and yield the "best" (optimized) linear gradient for a colloidal system with given size and density. The practical experiment results matched well with theoretical prediction, demonstrating the DGUC method, an efficient, practical, and predictable separation technique with universal utilization for colloid sorting. PMID:27457445

  7. Affinity-mediated sorting order reversal of single-walled carbon nanotubes in density gradient ultracentrifugation.

    PubMed

    Jang, Myungsu; Kim, Somin; Jeong, Haneul; Ju, Sang-Yong

    2016-10-14

    Sorted single-walled carbon nanotubes (SWNTs) are of paramount importance for their utilization in high-end optoelectronic applications. Sodium cholate (SC)-based density gradient ultracentrifugation (DGU) has been instrumental in isolating small diameter (d t) SWNTs. Here, we show that SWNTs wrapped by flavin mononucleotide (FMN) as a dispersing agent are sorted in DGU, and show sorting order reversal behavior, departing from prototypical SC-SWNT trends. Larger d t SWNTs are sorted in lower density (ρ), and buoyant ρ distribution of FMN-SWNT ranges from 1.15-1.25 g cm(-3). Such a nanotube layering pattern originates from both the binding affinity between FMN and SWNT and the less-susceptible hydrated volume of remote phosphate sidechains of FMN according to nanotube d t change. PMID:27595315

  8. Interactions between rheumatoid factor and native γG-globulins studied in the ultracentrifuge

    PubMed Central

    Normansell, D. E.; Stanworth, D. R.

    1968-01-01

    Interactions between a rheumatoid factor preparation and native human (normal and myeloma) and animal γG-globulins have been studied in the ultracentrifuge. Using pooled normal γG-globulin or a myeloma γG-globulin, the extent of reaction has been shown to be dependent upon the reactant concentration employed, a four-fold excess, by weight, of γG-globulin over rheumatoid factor being required to ensure maximum production of 22S complex. All native myeloma γG-globulins tested reacted to give a 22S complex, the majority showing similar reactivity to the normal γG-globulin control. A small proportion, however, showed significantly different reactivities. Of the animal γG-globulins tested, only rhesus monkey γG-globulin showed reactivity similar to human γG-globulin. The other species showed decreased reactivity. The importance of these findings is discussed. ImagesFIG. 2 PMID:4972180

  9. Affinity-mediated sorting order reversal of single-walled carbon nanotubes in density gradient ultracentrifugation

    NASA Astrophysics Data System (ADS)

    Jang, Myungsu; Kim, Somin; Jeong, Haneul; Ju, Sang-Yong

    2016-10-01

    Sorted single-walled carbon nanotubes (SWNTs) are of paramount importance for their utilization in high-end optoelectronic applications. Sodium cholate (SC)-based density gradient ultracentrifugation (DGU) has been instrumental in isolating small diameter (d t) SWNTs. Here, we show that SWNTs wrapped by flavin mononucleotide (FMN) as a dispersing agent are sorted in DGU, and show sorting order reversal behavior, departing from prototypical SC-SWNT trends. Larger d t SWNTs are sorted in lower density (ρ), and buoyant ρ distribution of FMN-SWNT ranges from 1.15-1.25 g cm-3. Such a nanotube layering pattern originates from both the binding affinity between FMN and SWNT and the less-susceptible hydrated volume of remote phosphate sidechains of FMN according to nanotube d t change.

  10. Affinity-mediated sorting order reversal of single-walled carbon nanotubes in density gradient ultracentrifugation.

    PubMed

    Jang, Myungsu; Kim, Somin; Jeong, Haneul; Ju, Sang-Yong

    2016-10-14

    Sorted single-walled carbon nanotubes (SWNTs) are of paramount importance for their utilization in high-end optoelectronic applications. Sodium cholate (SC)-based density gradient ultracentrifugation (DGU) has been instrumental in isolating small diameter (d t) SWNTs. Here, we show that SWNTs wrapped by flavin mononucleotide (FMN) as a dispersing agent are sorted in DGU, and show sorting order reversal behavior, departing from prototypical SC-SWNT trends. Larger d t SWNTs are sorted in lower density (ρ), and buoyant ρ distribution of FMN-SWNT ranges from 1.15-1.25 g cm(-3). Such a nanotube layering pattern originates from both the binding affinity between FMN and SWNT and the less-susceptible hydrated volume of remote phosphate sidechains of FMN according to nanotube d t change.

  11. What buoyancy really is. A generalized Archimedes' principle for sedimentation and ultracentrifugation

    NASA Astrophysics Data System (ADS)

    Piazza, Roberto; Buzzaccaro, Stefano; Secchi, Eleonora; Parola, Alberto

    Particle settling is a pervasive process in nature, and centrifugation is a much versatile separation technique. Yet, the results of settling and ultracentrifugation experiments often appear to contradict the very law on which they are based: Archimedes Principle - arguably, the oldest Physical Law. The purpose of this paper is delving at the very roots of the concept of buoyancy by means of a combined experimental-theoretical study on sedimentation profiles in colloidal mixtures. Our analysis shows that the standard Archimedes' principle is only a limiting approximation, valid for mesoscopic particles settling in a molecular fluid, and we provide a general expression for the actual buoyancy force. This "Generalized Archimedes Principle" accounts for unexpected effects, such as denser particles floating on top of a lighter fluid, which in fact we observe in our experiments.

  12. Characterization of Homogeneous, Cooperative Protein-DNA Clusters by Sedimentation Equilibrium Analytical Ultracentrifugation and Atomic Force Microscopy.

    PubMed

    Tessmer, Ingrid; Fried, Michael G

    2015-01-01

    Strong, positively cooperative binding can lead to the clustering of proteins on DNA. Here, we describe one approach to the analysis of such clusters. Our example is based on recent studies of the interactions of O(6)-alkylguanine DNA alkyltransferase (AGT) with high-molecular-weight DNAs (Adams et al., 2009; Tessmer, Melikishvili, & Fried, 2012). Cooperative cluster size distributions are predicted using the simplest homogeneous binding and cooperativity (HBC) model, together with data obtained by sedimentation equilibrium analysis. These predictions are tested using atomic force microscopy imaging; for AGT, measured cluster sizes are found to be significantly smaller than those predicted by the HBC model. A mechanism that may account for cluster size limitation is briefly discussed.

  13. Characterization of Homogeneous, Cooperative Protein-DNA Clusters by Sedimentation Equilibrium Analytical Ultracentrifugation and Atomic Force Microscopy.

    PubMed

    Tessmer, Ingrid; Fried, Michael G

    2015-01-01

    Strong, positively cooperative binding can lead to the clustering of proteins on DNA. Here, we describe one approach to the analysis of such clusters. Our example is based on recent studies of the interactions of O(6)-alkylguanine DNA alkyltransferase (AGT) with high-molecular-weight DNAs (Adams et al., 2009; Tessmer, Melikishvili, & Fried, 2012). Cooperative cluster size distributions are predicted using the simplest homogeneous binding and cooperativity (HBC) model, together with data obtained by sedimentation equilibrium analysis. These predictions are tested using atomic force microscopy imaging; for AGT, measured cluster sizes are found to be significantly smaller than those predicted by the HBC model. A mechanism that may account for cluster size limitation is briefly discussed. PMID:26412659

  14. AN IMPROVED AIR-DRIVEN TYPE OF ULTRACENTRIFUGE FOR MOLECULAR SEDIMENTATION

    PubMed Central

    Bauer, Johannes H.; Pickels, Edward G.

    1937-01-01

    1. A description is given of the construction details and operation characteristics of an improved type of air-driven ultracentrifuge operating in vacuum and suitable for the determination of sedimentation constants of protein molecules. 2. The rotor of the centrifuge is made of a forged aluminum alloy; it is oval in shape, measures 185 mm. at its greatest diameter, and weighs 3,430 gm. It carries a transparent cell located at a distance of 65 mm. from the axis of rotation and designed to accommodate a fluid column 15 mm. high. 3. The rotor has been run repeatedly over long periods at a speed of 60,000 R.P.M., which corresponds to a centrifugal force of 260,000 times gravity in the center of the cell. At this speed no deformation of the rotor nor leakage of the cell has been observed. 4. The sharp definition of sedimentation photographs taken at high speed serves to indicate the absence of detectable vibrations in the centrifuge. 5. When a vacuum of less than 1 micron of mercury is maintained in the centrifuge chamber, the rise in the rotor temperature amounts to only 1 or 2°C. after several hours' run at high speed. 6. There has been no evidence of convection currents interfering with normal sedimentation of protein molecules in the centrifugal field. 7. A driving air pressure of about 18 pounds per square inch is sufficient to maintain the centrifuge at a steady speed of 60,000 R.P.M. With a driving pressure of 80 pounds per square inch, it can be accelerated to this speed in less than 20 minutes, and also brought to rest in about the same length of time by the application of the braking system. 8. The adaptation of Svedberg's optical systems to this centrifuge for photographically recording the movement of sedimentation boundaries is described. PMID:19870619

  15. AN IMPROVED AIR-DRIVEN TYPE OF ULTRACENTRIFUGE FOR MOLECULAR SEDIMENTATION.

    PubMed

    Bauer, J H; Pickels, E G

    1937-03-31

    1. A description is given of the construction details and operation characteristics of an improved type of air-driven ultracentrifuge operating in vacuum and suitable for the determination of sedimentation constants of protein molecules. 2. The rotor of the centrifuge is made of a forged aluminum alloy; it is oval in shape, measures 185 mm. at its greatest diameter, and weighs 3,430 gm. It carries a transparent cell located at a distance of 65 mm. from the axis of rotation and designed to accommodate a fluid column 15 mm. high. 3. The rotor has been run repeatedly over long periods at a speed of 60,000 R.P.M., which corresponds to a centrifugal force of 260,000 times gravity in the center of the cell. At this speed no deformation of the rotor nor leakage of the cell has been observed. 4. The sharp definition of sedimentation photographs taken at high speed serves to indicate the absence of detectable vibrations in the centrifuge. 5. When a vacuum of less than 1 micron of mercury is maintained in the centrifuge chamber, the rise in the rotor temperature amounts to only 1 or 2 degrees C. after several hours' run at high speed. 6. There has been no evidence of convection currents interfering with normal sedimentation of protein molecules in the centrifugal field. 7. A driving air pressure of about 18 pounds per square inch is sufficient to maintain the centrifuge at a steady speed of 60,000 R.P.M. With a driving pressure of 80 pounds per square inch, it can be accelerated to this speed in less than 20 minutes, and also brought to rest in about the same length of time by the application of the braking system. 8. The adaptation of Svedberg's optical systems to this centrifuge for photographically recording the movement of sedimentation boundaries is described.

  16. AN IMPROVED AIR-DRIVEN TYPE OF ULTRACENTRIFUGE FOR MOLECULAR SEDIMENTATION.

    PubMed

    Bauer, J H; Pickels, E G

    1937-03-31

    1. A description is given of the construction details and operation characteristics of an improved type of air-driven ultracentrifuge operating in vacuum and suitable for the determination of sedimentation constants of protein molecules. 2. The rotor of the centrifuge is made of a forged aluminum alloy; it is oval in shape, measures 185 mm. at its greatest diameter, and weighs 3,430 gm. It carries a transparent cell located at a distance of 65 mm. from the axis of rotation and designed to accommodate a fluid column 15 mm. high. 3. The rotor has been run repeatedly over long periods at a speed of 60,000 R.P.M., which corresponds to a centrifugal force of 260,000 times gravity in the center of the cell. At this speed no deformation of the rotor nor leakage of the cell has been observed. 4. The sharp definition of sedimentation photographs taken at high speed serves to indicate the absence of detectable vibrations in the centrifuge. 5. When a vacuum of less than 1 micron of mercury is maintained in the centrifuge chamber, the rise in the rotor temperature amounts to only 1 or 2 degrees C. after several hours' run at high speed. 6. There has been no evidence of convection currents interfering with normal sedimentation of protein molecules in the centrifugal field. 7. A driving air pressure of about 18 pounds per square inch is sufficient to maintain the centrifuge at a steady speed of 60,000 R.P.M. With a driving pressure of 80 pounds per square inch, it can be accelerated to this speed in less than 20 minutes, and also brought to rest in about the same length of time by the application of the braking system. 8. The adaptation of Svedberg's optical systems to this centrifuge for photographically recording the movement of sedimentation boundaries is described. PMID:19870619

  17. Ultracentrifugal isolation of vesicular carriers of biliary cholesterol in native human and rat bile.

    PubMed

    Ulloa, N; Garrido, J; Nervi, F

    1987-01-01

    We have utilized ultracentrifugation of native bile-Metrizamide density gradients to isolate a vesicular transport system of biliary lipids in both man and rat. We identified vesicular structures by electron microscopy. Fresh bile specimens were obtained from bile fistula rats (unsaturated bile) and from patients 1 week after bile duct surgery (supersaturated bile). Metrizamide was dissolved in bile (33% w/v), and continuous density gradients were performed with undiluted bile (density limits = 1.020 to 1.300 gm per ml). The relative distribution of biliary cholesterol, phospholipid and bile salt was studied as a function of the density of the fractions. Approximately 50% of total rat biliary cholesterol and between 61 and 90% of human biliary cholesterol was concentrated in the lightest fractions of the gradients (density less than 1.060 gm per ml). In contrast, less than 20% of bile salts was present in fractions with densities lower than 1.060 gm per ml. The highest amounts of bile salts and phospholipids of the bile-Metrizamide density gradients were found in the density range of 1.075 to 1.100 gm per ml in both human and rat bile. More than 80% of biliary proteins was found in fractions with densities greater than 1.075 gm per ml, and only 2% was found in the cholesterol-rich fraction with density less than 1.060 gm per ml in both species. When bile salt concentration was raised in rat bile from 38 to 97 mM by adding taurocholate, the low density cholesterol-rich fraction almost disappeared. Electron microscopy of negatively stained preparations of the fractions with density less than 1.060 gm per ml showed 40 to 120 nm vesicles, which were not apparent in the other fractions. Similar vesicles were demonstrated also in fresh rat bile and within the canaliculi after acute depletion of the bile salt pool (biliary bile salt concentration of 3.45 mM; total biliary lipid concentration of 0.25 gm%). The structure of these vesicles was shown in thin sections of liver

  18. Aerosol gels

    NASA Technical Reports Server (NTRS)

    Sorensen, Christopher M. (Inventor); Chakrabarti, Amitabha (Inventor); Dhaubhadel, Rajan (Inventor); Gerving, Corey (Inventor)

    2010-01-01

    An improved process for the production of ultralow density, high specific surface area gel products is provided which comprises providing, in an enclosed chamber, a mixture made up of small particles of material suspended in gas; the particles are then caused to aggregate in the chamber to form ramified fractal aggregate gels. The particles should have a radius (a) of up to about 50 nm and the aerosol should have a volume fraction (f.sub.v) of at least 10.sup.-4. In preferred practice, the mixture is created by a spark-induced explosion of a precursor material (e.g., a hydrocarbon) and oxygen within the chamber. New compositions of matter are disclosed having densities below 3.0 mg/cc.

  19. Characterization and comparative performance of lentiviral vector preparations concentrated by either one-step ultrafiltration or ultracentrifugation.

    PubMed

    Papanikolaou, Eleni; Kontostathi, Georgia; Drakopoulou, Ekati; Georgomanoli, Maria; Stamateris, Evangelos; Vougas, Kostas; Vlahou, Antonia; Maloy, Andrew; Ware, Mark; Anagnou, Nicholas P

    2013-07-01

    Gene therapy utilizing lentiviral vectors (LVs) constitutes a real therapeutic alternative for many inherited monogenic diseases. Therefore, the generation of functional vectors using fast, non-laborious and cost-effective strategies is imperative. Among the available concentration methods for VSV-G pseudotyped lentiviruses to achieve high therapeutic titers, ultracentrifugation represents the most common approach. However, the procedure requires special handling and access to special instrumentation, it is time-consuming, and most importantly, it is cost-ineffective due to the high maintenance expenses and consumables of the ultracentrifuge apparatus. Here we describe an improved protocol in which vector stocks are prepared by transient transfection using standard cell culture media and are then concentrated by ultrafiltration, resulting in functional vector titers of up to 6×10(9) transducing units per millilitre (TU/ml) without the involvement of any purification step. Although ultrafiltration per se for concentrating viruses is not a new procedure, our work displays one major novelty; we characterized the nature and the constituents of the viral batches produced by ultrafiltration using peptide mass fingerprint analysis. We also determined the viral functional titer by employing flow cytometry and evaluated the actual viral particle size and concentration in real time by using laser-based nanoparticle tracking analysis based on Brownian motion. Vectors generated by this production method are contained in intact virions and when tested to transduce in vitro either murine total bone marrow or human CD34(+) hematopoietic stem cells, resulted in equal transduction efficiency and reduced toxicity, compared to lentiviral vectors produced using standard ultracentrifugation-based methods. The data from this study can eventually lead to the improvement of protocols and technical modifications for the clinical trials for gene therapy.

  20. Associations of lipoproteins and apolipoproteins with gradient gel electrophoresis estimates of high density lipoprotein subfractions in men and women.

    PubMed

    Williams, P T; Krauss, R M; Vranizan, K M; Stefanick, M L; Wood, P D; Lindgren, F T

    1992-03-01

    We examined the relations of gender and lipoproteins to subclasses of high density lipoproteins (HDLs) in a cross-sectional sample of moderately overweight men (n = 116) and women (n = 78). The absorbance of protein-stained polyacrylamide gradient gels was used as an index of mass concentrations of HDL at intervals of 0.01 nm across the entire HDL particle size range (7.2-12 nm). At least five HDL subclasses have been identified by their particle sizes: HDL3c (7.2-7.8 nm), HDL3b (7.8-8.2 nm), HDL3a (8.2-8.8 nm), HDL2a (8.8-9.7 nm), and HDL2b (9.7-12 nm). Men had significantly higher HDL3b and significantly lower HDL2a and HDL2b than did women. Correlations of HDL subclasses with concentrations of other lipoprotein variables were generally as strong for gradient gel electrophoresis as for analytical ultracentrifugation measurements of HDL particle distributions. In both sexes, high levels of HDL3b were associated with coronary heart disease risk factors, including high concentrations of triglycerides, apolipoprotein B, small low density lipoproteins, intermediate density lipoproteins, and very low density lipoproteins and low concentrations of HDL2 cholesterol and HDL2 mass. Plasma concentrations of HDL3 cholesterol were unrelated to protein-stained HDL3b levels. HDL3 cholesterol concentrations also did not exhibit the sex difference or the relations with lipoprotein concentrations that characterized HDL3b. Thus, low HDL3b levels may contribute in part to the low heart disease risk in men and women who have high HDL cholesterol. Measurements of HDL3 cholesterol may not identify clinically important relations involving HDL3b.

  1. The binding of D-gluconohydroximo-1,5-lactone to glycogen phosphorylase. Kinetic, ultracentrifugation and crystallographic studies.

    PubMed Central

    Papageorgiou, A C; Oikonomakos, N G; Leonidas, D D; Bernet, B; Beer, D; Vasella, A

    1991-01-01

    Combined kinetic, ultracentrifugation and X-ray-crystallographic studies have characterized the effect of the beta-glucosidase inhibitor gluconohydroximo-1,5-lactone on the catalytic and structural properties of glycogen phosphorylase. In the direction of glycogen synthesis, gluconohydroximo-1,5-lactone was found to competitively inhibit both the b (Ki 0.92 mM) and the alpha form of the enzyme (Ki 0.76 mM) with respect to glucose 1-phosphate in synergism with caffeine. In the direction of glycogen breakdown, gluconohydroximo-1,5-lactone was found to inhibit phosphorylase b in a non-competitive mode with respect to phosphate, and no synergism with caffeine could be demonstrated. Ultracentrifugation and crystallization experiments demonstrated that gluconohydroximo-1,5-lactone was able to induce dissociation of tetrameric phosphorylase alpha and stabilization of the dimeric T-state conformation. A crystallographic binding study with 100 mM-gluconohydroximo-1,5-lactone at 0.24 nm (2.4 A) resolution showed a major peak at the catalytic site, and no significant conformational changes were observed. Analysis of the electron-density map indicated that the ligand adopts a chair conformation. The results are discussed with reference to the ability of the catalytic site of the enzyme to distinguish between two or more conformations of the glucopyranose ring. PMID:1900987

  2. Formulating a Sulfonated Anti-Viral Dendrimer in a Vaginal Microbicidal Gel having Dual Mechanisms of Action

    PubMed Central

    Mumper, Russell J.; Bell, Michael A.; Worthen, David R.; Cone, Richard A.; Lewis, Gareth R.; Moench, Thomas R.

    2009-01-01

    SPL7013 is the sodium salt of a sulfonated dendrimer that has potent antiviral properties. VivaGel®, a topical gel containing 3% w/w SPL7013, has been shown to be safe and well-tolerated in human clinical studies. BufferGel® is a Carbopol®-based acidic buffering gel that enhances the natural protective action of the vagina to produce a broad-spectrum microbicidal environment. The positive attributes of both gels were combined into a combination vaginal microbicidal gel having dual mechanisms of action. A 3% w/w SPL7013 combination gel, pH 3.7, was developed and fully characterized, and was shown to have more than 2-fold greater acidic buffering capacity than BufferGel. Ultracentrifugation experiments demonstrated that SPL7013 was not sequestered or entropically trapped in the viscous gel, thereby confirming, along with viral challenge studies, that SPL7013 has sufficient mobility in the viscous gel to exert antiviral properties. PMID:19040181

  3. Isolation of Exosome-Like Vesicles from Plants by Ultracentrifugation on Sucrose/Deuterium Oxide (D2O) Density Cushions.

    PubMed

    Stanly, Christopher; Fiume, Immacolata; Capasso, Giovambattista; Pocsfalvi, Gabriella

    2016-01-01

    Exosomes are nanovesicles of endocytic origin that are about 30-100 nm in diameter, surrounded by a lipid bilayer membrane, and contain proteins, nucleic acids, and other molecules. Mammalian cells- and biological fluids-derived exosomes have become the subject for a wide range of investigations in biological and biomedical sciences. More recently, a new interest is on the verge of rising: the presence of nanovesicles in plants. Lipoprotein vesicles from apoplastic fluid and exosome-like vesicles (ELVs) from fruit juice have been isolated and shown that they could be loaded with drugs and uptaken by recipient cells. In order to explore and analyze the contents and functions of ELVs, they must be isolated and purified with intense care. Isolation of ELVs can be a tedious process and often characterized by the co-purification of undesired contaminants. Here we describe a method which isolates ELVs based on their buoyant density. The method utilizes differential centrifugation in step 1 and 1 and 2 M sucrose/deuterium oxide double-cushion ultracentrifugation in step 2, to purify two diverse ELV subpopulations. In this method fruit juice is used as an example of starting material, although this protocol can be used for the isolation of vesicles from apoplastic fluid too. The quality and the quantity of ELV preparations have been found appropriate for downstream biological and structural studies, like proteomics, transcriptomics, and lipidomics. PMID:27665565

  4. Effects of ultracentrifugation on plasma biochemical values of prefledged wild peregrine falcons (Falco peregrinus) in northeastern Illinois.

    PubMed

    Pond, Joel; Thompson, Steve; Hennen, Mary; Pauley, John; Gamble, Kathryn C

    2012-09-01

    Centrifugation is performed on whole blood samples to obtain serum or plasma for biochemical analysis. Although blood samples centrifuged in a microhematocrit tube may maximize recovery of plasma from small-volume samples, plasma biochemical values from such samples have been implicated as causing erroneous results. To compare blood biochemical values obtained by microhematocrit centrifugation and centrifugation with a commercial tilt-rotor machine, blood samples were collected from peregrine falcon (Falco peregrinus) eyases aged 32-40 days (n=51). The samples were separated into 2 equal aliquots with 1 aliquot centrifuged in a tilt-rotor machine and the other aliquot ultracentrifuged in microhematocrit tubes. Separated plasma from both processes was sent to a commercial veterinary reference laboratory for routine clinical biochemical analysis. No significant differences were found in the biochemical results of the paired samples by the 2 centrifugation methods. These results show that the centrifugation method has no effect on the plasma quality for biochemical analysis in young peregrine falcons.

  5. Simultaneous Enrichment of Plasma Soluble and Extracellular Vesicular Glycoproteins Using Prolonged Ultracentrifugation-Electrostatic Repulsion-hydrophilic Interaction Chromatography (PUC-ERLIC) Approach*

    PubMed Central

    Sok Hwee Cheow, Esther; Hwan Sim, Kae; de Kleijn, Dominique; Neng Lee, Chuen; Sorokin, Vitaly; Sze, Siu Kwan

    2015-01-01

    Plasma glycoproteins and extracellular vesicles represent excellent sources of disease biomarkers, but laboratory detection of these circulating structures are limited by their relatively low abundance in complex biological fluids. Although intensive research has led to the development of effective methods for the enrichment and isolation of either plasma glycoproteins or extracellular vesicles from clinical materials, at present it is not possible to enrich both structures simultaneously from individual patient sample, a method that affords the identification of biomarker combinations from both entities for the prediction of clinical outcomes will be clinically useful. We have therefore developed an enrichment method for use in mass spectrometry-based proteomic profiling that couples prolonged ultracentrifugation with electrostatic repulsion-hydrophilic interaction chromatography, to facilitate the recovery of both glycoproteins and extracellular vesicles from nondepleted human plasma. Following prolonged ultracentrifugation, plasma glycoproteins and extracellular vesicles were concentrated as a yellow suspension, and simultaneous analyses of low abundant secretory and vesicular glycoproteins was achieved in a single LC-MS/MS run. Using this systematic prolonged ultracentrifugation-electrostatic repulsion-hydrophilic interaction chromatography approach, we identified a total of 127 plasma glycoproteins at a high level of confidence (FDR ≤ 1%), including 48 glycoproteins with concentrations ranging from pg to ng/ml. The novel enrichment method we report should facilitate future human plasma-based proteome and glycoproteome that will identify novel biomarkers, or combinations of secreted and vesicle-derived biomarkers, that can be used to predict clinical outcomes in human patients. PMID:25862729

  6. Isolation of Exosomes from Blood Plasma: Qualitative and Quantitative Comparison of Ultracentrifugation and Size Exclusion Chromatography Methods

    PubMed Central

    Baranyai, Tamás; Herczeg, Kata; Onódi, Zsófia; Voszka, István; Módos, Károly; Marton, Nikolett; Nagy, György; Mäger, Imre; Wood, Matthew J.; El Andaloussi, Samir; Pálinkás, Zoltán; Kumar, Vikas; Nagy, Péter; Kittel, Ágnes; Buzás, Edit Irén; Ferdinandy, Péter; Giricz, Zoltán

    2015-01-01

    Background Exosomes are emerging targets for biomedical research. However, suitable methods for the isolation of blood plasma-derived exosomes without impurities have not yet been described. Aim Therefore, we investigated the efficiency and purity of exosomes isolated with potentially suitable methods; differential ultracentrifugation (UC) and size exclusion chromatography (SEC). Methods and Results Exosomes were isolated from rat and human blood plasma by various UC and SEC conditions. Efficiency was investigated at serial UC of the supernatant, while in case of SEC by comparing the content of exosomal markers of various fractions. Purity was assessed based on the presence of albumin. We found that the diameter of the majority of isolated particles fell into the size range of exosomes, however, albumin was also present in the preparations, when 1h UC at 4°C was applied. Furthermore, with this method only a minor fraction of total exosomes could be isolated from blood as deduced from the constant amount of exosomal markers CD63 and TSG101 detected after serial UC of rat blood plasma samples. By using UC for longer time or with shorter sedimentation distance at 4°C, or UC performed at 37°C, exosomal yield increased, but albumin impurity was still observed in the isolates, as assessed by transmission electron microscopy, dynamic light scattering and immunoblotting against CD63, TSG101 and albumin. Efficiency and purity were not different in case of using further diluted samples. By using SEC with different columns, we have found that although a minor fraction of exosomes can be isolated without significant albumin content on Sepharose CL-4B or Sephacryl S-400 columns, but not on Sepharose 2B columns, the majority of exosomes co-eluted with albumin. Conclusion Here we show that it is feasible to isolate exosomes from blood plasma by SEC without significant albumin contamination albeit with low vesicle yield. PMID:26690353

  7. Sol-Gel Glasses

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  8. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2003-09-01

    This report describes work performed during the second year of the project, ''Conformance Improvement Using Gels.'' The project has two objectives. The first objective is to identify gel compositions and conditions that substantially reduce flow through fractures that allow direct channeling between wells, while leaving secondary fractures open so that high fluid injection and production rates can be maintained. The second objective is to optimize treatments in fractured production wells, where the gel must reduce permeability to water much more than that to oil. Pore-level images from X-ray computed microtomography were re-examined for Berea sandstone and porous polyethylene. This analysis suggests that oil penetration through gel-filled pores occurs by a gel-dehydration mechanism, rather than a gel-ripping mechanism. This finding helps to explain why aqueous gels can reduce permeability to water more than to oil. We analyzed a Cr(III)-acetate-HPAM gel treatment in a production well in the Arbuckle formation. The availability of accurate pressure data before, during, and after the treatment was critical for the analysis. After the gel treatment, water productivity was fairly constant at about 20% of the pre-treatment value. However, oil productivity was stimulated by a factor of 18 immediately after the treatment. During the six months after the treatment, oil productivity gradually decreased to approach the pre-treatment value. To explain this behavior, we proposed that the fracture area open to oil flow was increased substantially by the gel treatment, followed by a gradual closing of the fractures during subsequent production. For a conventional Cr(III)-acetate-HPAM gel, the delay between gelant preparation and injection into a fracture impacts the placement, leakoff, and permeability reduction behavior. Formulations placed as partially formed gels showed relatively low pressure gradients during placement, and yet substantially reduced the flow capacity of

  9. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2004-09-30

    This report describes work performed during the third and final year of the project, ''Conformance Improvement Using Gels.'' Corefloods revealed throughput dependencies of permeability reduction by polymers and gels that were much more prolonged during oil flow than water flow. This behavior was explained using simple mobility ratio arguments. A model was developed that quantitatively fits the results and predicts ''clean up'' times for oil productivity when production wells are returned to service after application of a polymer or gel treatment. X-ray computed microtomography studies of gels in strongly water-wet Berea sandstone and strongly oil-wet porous polyethylene suggested that oil penetration through gel-filled pores occurs by a gel-dehydration mechanism, rather than gel-ripping or gel-displacement mechanisms. In contrast, analysis of data from the University of Kansas suggests that the gel-ripping or displacement mechanisms are more important in more permeable, strongly water-wet sandpacks. These findings help to explain why aqueous gels can reduce permeability to water more than to oil under different conditions. Since cement is the most commonly used material for water shutoff, we considered when gels are preferred over cements. Our analysis and experimental results indicated that cement cannot be expected to completely fill (top to bottom) a vertical fracture of any width, except near the wellbore. For vertical fractures with apertures less than 4 mm, the cement slurry will simply not penetrate very far into the fracture. For vertical fractures with apertures greater than 4 mm, the slurry may penetrate a substantial distance into the bottom part of the fracture. However, except near the wellbore, the upper part of the fracture will remain open due to gravity segregation. We compared various approaches to plugging fractures using gels, including (1) varying polymer content, (2) varying placement (extrusion) rate, (3) using partially formed gels, (4

  10. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2004-03-01

    This technical progress report describes work performed from September 1, 2003, through February 29, 2004, for the project, ''Conformance Improvement Using Gels.'' We examined the properties of several ''partially formed'' gels that were formulated with a combination of high and low molecular weight HPAM polymers. After placement in 4-mm-wide fractures, these gels required about 25 psi/ft for brine to breach the gel (the best performance to date in fractures this wide). After this breach, stabilized residual resistance factors decreased significantly with increased flow rate. Also, residual resistance factors were up to 9 times greater for water than for oil. Nevertheless, permeability reduction factors were substantial for both water and oil flow. Gel with 2.5% chopped fiberglass effectively plugged 4-mm-wide fractures if a 0.5-mm-wide constriction was present. The ability to screen-out at a constriction appears crucial for particulate incorporation to be useful in plugging fractures. In addition to fiberglass, we examined incorporation of polypropylene fibers into gels. Once dispersed in brine or gelant, the polypropylene fibers exhibited the least gravity segregation of any particulate that we have tested to date. In fractures with widths of at least 2 mm, 24-hr-old gels (0.5% high molecular weight HPAM) with 0.5% fiber did not exhibit progressive plugging during placement and showed extrusion pressure gradients similar to those of gels without the fiber. The presence of the fiber roughly doubled the gel's resistance to first breach by brine flow. The breaching pressure gradients were not as large as for gels made with high and low molecular weight polymers (mentioned above). However, their material requirements and costs (i.e., polymer and/or particulate concentrations) were substantially lower than for those gels. A partially formed gel made with 0.5% HPAM did not enter a 0.052-mm-wide fracture when applying a pressure gradient of 65 psi/ft. This result

  11. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    SciTech Connect

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  12. Enhanced photocurrent generation in bacteriorhodopsin based bio-sensitized solar cells using gel electrolyte.

    PubMed

    Chellamuthu, Jeganathan; Nagaraj, Pavithra; Chidambaram, Sabari Girisun; Sambandam, Anandan; Muthupandian, Ashokkumar

    2016-09-01

    High purity light sensitive photoactive protein Bacteriorhodopsin (BR) was isolated successfully via a simple two phase extraction technique (ATPS) as an alternate method for the tedious sucrose gradient ultracentrifugation procedure (SGU). Bio sensitized solar cells (BSSCs) were fabricated by the integration of BR into TiO2 (photo anode) with acetamide based gel electrolytes and platinum (photo cathode) as a counter electrode. The structural and photoelectrical behaviours of BR and BSSCs were analyzed by Atomic Force Microscopy, Raman spectroscopy, photocurrent and photovoltage (IV) measurement and electrochemical impedance spectroscopy. The short circuit photocurrent (Jsc) and photoelectric conversion efficiency (η) of acetamide based gel electrolyte (AG) (1.08mAcm(-2), 0.49%) are twice higher than that of traditional triiodide based liquid electrolyte (LE) (0.62mAcm(-2), 0.19%). Also, quasi-Fermi level and lifetime of photogenerated electrons in acetamide based gel electrolyte is about four times higher than that observed in traditional triiodide redox electrolyte. A comparison of the observed results with similar BSSCs made of other natural photoactive protein systems shows that BR as sensitizer has better photovoltaic performance. The enhanced photocurrent generation of the BSSC constructed in our study could be due to the interaction of BR with acetamide based modified poly(ethylene)oxide (PEO) gel electrolyte.

  13. Enhanced photocurrent generation in bacteriorhodopsin based bio-sensitized solar cells using gel electrolyte.

    PubMed

    Chellamuthu, Jeganathan; Nagaraj, Pavithra; Chidambaram, Sabari Girisun; Sambandam, Anandan; Muthupandian, Ashokkumar

    2016-09-01

    High purity light sensitive photoactive protein Bacteriorhodopsin (BR) was isolated successfully via a simple two phase extraction technique (ATPS) as an alternate method for the tedious sucrose gradient ultracentrifugation procedure (SGU). Bio sensitized solar cells (BSSCs) were fabricated by the integration of BR into TiO2 (photo anode) with acetamide based gel electrolytes and platinum (photo cathode) as a counter electrode. The structural and photoelectrical behaviours of BR and BSSCs were analyzed by Atomic Force Microscopy, Raman spectroscopy, photocurrent and photovoltage (IV) measurement and electrochemical impedance spectroscopy. The short circuit photocurrent (Jsc) and photoelectric conversion efficiency (η) of acetamide based gel electrolyte (AG) (1.08mAcm(-2), 0.49%) are twice higher than that of traditional triiodide based liquid electrolyte (LE) (0.62mAcm(-2), 0.19%). Also, quasi-Fermi level and lifetime of photogenerated electrons in acetamide based gel electrolyte is about four times higher than that observed in traditional triiodide redox electrolyte. A comparison of the observed results with similar BSSCs made of other natural photoactive protein systems shows that BR as sensitizer has better photovoltaic performance. The enhanced photocurrent generation of the BSSC constructed in our study could be due to the interaction of BR with acetamide based modified poly(ethylene)oxide (PEO) gel electrolyte. PMID:27380296

  14. Viscoelasticity of silica gels

    SciTech Connect

    Scherer, G.W.

    1995-12-01

    The response of silica gels to mechanical loads depends on the properties of the solid phase and the permeability of the network. Understanding this behavior is essential for modeling of stresses developed during drying or heating of gels. The permeability and the mechanical properties are readily determined from a simple beam-bending experiment, by measuring the load relaxation that occurs at constant deflection. Load decay results from movement of the liquid within the network; in addition, there may be viscoelastic relaxation of the network itself. Silica gel is viscoelastic in chemically aggressive media, but in inert liquids (such as ethanol or acetone) it is elastic. Experiments show that the viscoelastic relaxation time decreases as the concentration and pH of the water in the pore liquid increase. During drying, the permeability decreases and the viscosity increases, both exhibiting a power-law dependence on density of the gel network.

  15. Analytical testing

    NASA Technical Reports Server (NTRS)

    Flannelly, W. G.; Fabunmi, J. A.; Nagy, E. J.

    1981-01-01

    Analytical methods for combining flight acceleration and strain data with shake test mobility data to predict the effects of structural changes on flight vibrations and strains are presented. This integration of structural dynamic analysis with flight performance is referred to as analytical testing. The objective of this methodology is to analytically estimate the results of flight testing contemplated structural changes with minimum flying and change trials. The category of changes to the aircraft includes mass, stiffness, absorbers, isolators, and active suppressors. Examples of applying the analytical testing methodology using flight test and shake test data measured on an AH-1G helicopter are included. The techniques and procedures for vibration testing and modal analysis are also described.

  16. Conformance Improvement Using Gels

    SciTech Connect

    Seright, Randall S.; Schrader; II Hagstrom, John; Wang, Ying; Al-Dahfeeri, Abdullah; Marin, Amaury

    2002-09-26

    This research project had two objectives. The first objective was to identify gel compositions and conditions that substantially reduce flow through fractures that allow direct channeling between wells, while leaving secondary fractures open so that high fluid injection and production rates can be maintained. The second objective was to optimize treatments in fractured production wells, where the gel must reduce permeability to water much more than that to oil.

  17. Crystallization from Gels

    NASA Astrophysics Data System (ADS)

    Narayana Kalkura, S.; Natarajan, Subramanian

    Among the various crystallization techniques, crystallization in gels has found wide applications in the fields of biomineralization and macromolecular crystallization in addition to crystallizing materials having nonlinear optical, ferroelectric, ferromagnetic, and other properties. Furthermore, by using this method it is possible to grow single crystals with very high perfection that are difficult to grow by other techniques. The gel method of crystallization provides an ideal technique to study crystal deposition diseases, which could lead to better understanding of their etiology. This chapter focuses on crystallization in gels of compounds that are responsible for crystal deposition diseases. The introduction is followed by a description of the various gels used, the mechanism of gelling, and the fascinating phenomenon of Liesegang ring formation, along with various gel growth techniques. The importance and scope of study on crystal deposition diseases and the need for crystal growth experiments using gel media are stressed. The various crystal deposition diseases, viz. (1) urolithiasis, (2) gout or arthritis, (3) cholelithiasis and atherosclerosis, and (4) pancreatitis and details regarding the constituents of the crystal deposits responsible for the pathological mineralization are discussed. Brief accounts of the theories of the formation of urinary stones and gallstones and the role of trace elements in urinary stone formation are also given. The crystallization in gels of (1) the urinary stone constituents, viz. calcium oxalate, calcium phosphates, uric acid, cystine, etc., (2) the constituents of the gallstones, viz. cholesterol, calcium carbonate, etc., (3) the major constituent of the pancreatic calculi, viz., calcium carbonate, and (4) cholic acid, a steroidal hormone are presented. The effect of various organic and inorganic ions, trace elements, and extracts from cereals, herbs, and fruits on the crystallization of major urinary stone and gallstone

  18. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2002-02-28

    This technical progress report describes work performed from June 20 through December 19, 2001, for the project, ''Conformance Improvement Using Gels''. Interest has increased in some new polymeric products that purport to substantially reduce permeability to water while causing minimum permeability reduction to oil. In view of this interest, we are currently studying BJ's Aqua Con. Results from six corefloods revealed that the Aqua Con gelant consistently reduced permeability to water more than that to oil. However, the magnitude of the disproportionate permeability reduction varied significantly for the various experiments. Thus, as with most materials tested to date, the issue of reproducibility and control of the disproportionate permeability remains to be resolved. Concern exists about the ability of gels to resist washout after placement in fractures. We examined whether a width constriction in the middle of a fracture would cause different gel washout behavior upstream versus downstream of the constriction. Tests were performed using a formed Cr(III)-acetate-HPAM gel in a 48-in.-long fracture with three sections of equal length, but with widths of 0.08-, 0.02-, and 0.08-in., respectively. The pressure gradients during gel extrusion (i.e., placement) were similar in the two 0.08-in.-wide fracture sections, even though they were separated by a 0.02-in.-wide fracture section. The constriction associated with the middle fracture section may have inhibited gel washout during the first pulse of brine injection after gel placement. However, during subsequent phases of brine injection, the constriction did not inhibit washout in the upstream fracture section any more than in the downstream section.

  19. Analytical Microscopy

    SciTech Connect

    Not Available

    2006-06-01

    In the Analytical Microscopy group, within the National Center for Photovoltaic's Measurements and Characterization Division, we combine two complementary areas of analytical microscopy--electron microscopy and proximal-probe techniques--and use a variety of state-of-the-art imaging and analytical tools. We also design and build custom instrumentation and develop novel techniques that provide unique capabilities for studying materials and devices. In our work, we collaborate with you to solve materials- and device-related R&D problems. This sheet summarizes the uses and features of four major tools: transmission electron microscopy, scanning electron microscopy, the dual-beam focused-ion-beam workstation, and scanning probe microscopy.

  20. Analytical Technology

    SciTech Connect

    Goheen, Steven C.

    2001-07-01

    Characterizing environmental samples has been exhaustively addressed in the literature for most analytes of environmental concern. One of the weak areas of environmental analytical chemistry is that of radionuclides and samples contaminated with radionuclides. The analysis of samples containing high levels of radionuclides can be far more complex than that of non-radioactive samples. This chapter addresses the analysis of samples with a wide range of radioactivity. The other areas of characterization examined in this chapter are the hazardous components of mixed waste, and special analytes often associated with radioactive materials. Characterizing mixed waste is often similar to characterizing waste components in non-radioactive materials. The largest differences are in associated safety precautions to minimize exposure to dangerous levels of radioactivity. One must attempt to keep radiological dose as low as reasonably achievable (ALARA). This chapter outlines recommended procedures to safely and accurately characterize regulated components of radioactive samples.

  1. Analytical sedimentology

    SciTech Connect

    Lewis, D.W. . Dept. of Geology); McConchie, D.M. . Centre for Coastal Management)

    1994-01-01

    Both a self instruction manual and a cookbook'' guide to field and laboratory analytical procedures, this book provides an essential reference for non-specialists. With a minimum of mathematics and virtually no theory, it introduces practitioners to easy, inexpensive options for sample collection and preparation, data acquisition, analytic protocols, result interpretation and verification techniques. This step-by-step guide considers the advantages and limitations of different procedures, discusses safety and troubleshooting, and explains support skills like mapping, photography and report writing. It also offers managers, off-site engineers and others using sediments data a quick course in commissioning studies and making the most of the reports. This manual will answer the growing needs of practitioners in the field, either alone or accompanied by Practical Sedimentology, which surveys the science of sedimentology and provides a basic overview of the principles behind the applications.

  2. Swelling-induced and controlled curving in layered gel beams

    PubMed Central

    Lucantonio, A.; Nardinocchi, P.; Pezzulla, M.

    2014-01-01

    We describe swelling-driven curving in originally straight and non-homogeneous beams. We present and verify a structural model of swollen beams, based on a new point of view adopted to describe swelling-induced deformation processes in bilayered gel beams, that is based on the split of the swelling-induced deformation of the beam at equilibrium into two components, both depending on the elastic properties of the gel. The method allows us to: (i) determine beam stretching and curving, once assigned the characteristics of the solvent bath and of the non-homogeneous beam, and (ii) estimate the characteristics of non-homogeneous flat gel beams in such a way as to obtain, under free-swelling conditions, three-dimensional shapes. The study was pursued by means of analytical, semi-analytical and numerical tools; excellent agreement of the outcomes of the different techniques was found, thus confirming the strength of the method. PMID:25383031

  3. Synchrotron radiation for direct analysis of metalloproteins on electrophoresis gels.

    PubMed

    Ortega, Richard

    2009-03-01

    Metalloproteomics requires analytical techniques able to assess and quantify the inorganic species in metalloproteins. The most widely used methods are hyphenated techniques, based on the coupling of a high resolution chromatographic method with a high sensitivity method for metal analysis in solution. An alternative approach is the use of methods for solid sample analysis, combining metalloprotein separation by gel electrophoresis and direct analysis of the gels. Direct methods are based on beam analysis, such as lasers, ion beams or synchrotron radiation beams. The aim of this review article is to present the main features of synchrotron radiation based methods and their applications for metalloprotein analysis directly on electrophoresis gels. Synchrotron radiation X-ray fluorescence has been successfully employed for sensitive metal identification, and X-ray absorption spectroscopy for metal local structure speciation in proteins. Synchrotron based methods will be compared to ion beam and mass spectrometry for direct analysis of metalloproteins in electrophoresis gels.

  4. MAGIC Gel Dosimetry

    NASA Astrophysics Data System (ADS)

    Mifflin, Rachel; Shahnazi, Kambiz; Jesseph, Rick

    2008-10-01

    Proton therapy has proven a very successful tool in treating certain tumors, but a three dimensional view of this fact has not yet been clearly demonstrated. In this experiment we have used MAGIC (Methacrylic and Ascorbic Acid in Gelatin Initiated by Copper) gel to represent brain tissue and gone through normal treatment planning for an Acoustic Neuroma to show the three dimensional dose distributions associated with such a tumor.

  5. Analytical toxicology.

    PubMed

    Flanagan, R J; Widdop, B; Ramsey, J D; Loveland, M

    1988-09-01

    1. Major advances in analytical toxicology followed the introduction of spectroscopic and chromatographic techniques in the 1940s and early 1950s and thin layer chromatography remains important together with some spectrophotometric and other tests. However, gas- and high performance-liquid chromatography together with a variety of immunoassay techniques are now widely used. 2. The scope and complexity of forensic and clinical toxicology continues to increase, although the compounds for which emergency analyses are needed to guide therapy are few. Exclusion of the presence of hypnotic drugs can be important in suspected 'brain death' cases. 3. Screening for drugs of abuse has assumed greater importance not only for the management of the habituated patient, but also in 'pre-employment' and 'employment' screening. The detection of illicit drug administration in sport is also an area of increasing importance. 4. In industrial toxicology, the range of compounds for which blood or urine measurements (so called 'biological monitoring') can indicate the degree of exposure is increasing. The monitoring of environmental contaminants (lead, chlorinated pesticides) in biological samples has also proved valuable. 5. In the near future a consensus as to the units of measurement to be used is urgently required and more emphasis will be placed on interpretation, especially as regards possible behavioural effects of drugs or other poisons. Despite many advances in analytical techniques there remains a need for reliable, simple tests to detect poisons for use in smaller hospital and other laboratories.

  6. Experimental and mathematical modeling studies of the separation of zinc blende and wurtzite phases of CdS nanorods by density gradient ultracentrifugation.

    PubMed

    Ma, Xiuju; Kuang, Yun; Bai, Lu; Chang, Zheng; Wang, Feng; Sun, Xiaoming; Evans, David G

    2011-04-26

    Identifying the phase purity of CdS nanorods (NRs) is complicated by the serious overlap between the X-ray diffraction peaks of zinc blende and wurtzite phases as well as anisotropic growth, which might hide a mixed phase. Here we show that the density gradient ultracentrifugation rate separation method can be used to sort CdS NRs synthesized under nitrogen according to differences in particle size and morphology. Furthermore, it was found that the different sized NRs formed in a single batch synthesis had different phases: the thinner ones (<3.5 nm in diameter) were predominantly wurtzite phase, while the thicker ones (>5 nm in diameter) were mainly zinc blende phase. Dark-field transmission electron microscopy (TEM) and high-resolution TEM images indicated the presence of numerous stacking faults in the thick zinc blende rods, while the wurtzite thin rods were exclusively single crystals. As a result of the differences in phase and stacking faults, the NRs showed different photoluminescent properties. The development of an effective way of separating such NRs thus leads to further insight into the differences in phase, structure, and optical properties between individual colloidal particles synthesized in a single batch. A preliminary mathematical model of the separation process has been proposed.

  7. Purification, separation and extraction of inner tubes from double-walled carbon nanotubes by tailoring density gradient ultracentrifugation using optical probes

    PubMed Central

    Rohringer, Philip; Shi, Lei; Liu, Xianjie; Yanagi, Kazuhiro; Pichler, Thomas

    2014-01-01

    We studied the effect of varying sonication and centrifugation parameters on double-walled carbon nanotubes (DWCNT) by measuring optical absorption and photoluminescence (PL) of the samples. We found that by using a low sonication intensity before applying density gradient ultracentrifugation (DGU), only inner tube species with a diameter ⩽0.8 nm can be identified in absorption measurements. This is in stark contrast to the result after sonicating at higher intensities, where also bigger inner tubes can be found. Furthermore, by comparing PL properties of samples centrifugated either with or without a gradient medium, we found that applying DGU greatly enhances the PL intensity, whereas centrifugation at even higher speeds but without a gradient medium results in lower intensities. This can be explained by extraction of inner tubes from their host outer tubes in a two-stage process: the different shearing forces from the sonication treatments result in some DWCNT to be opened, whereas others stay uncut. A subsequent application of DGU leads to the extraction of the inner tubes or not if the host nanotube stayed uncut or no gradient medium was used. This work shows a pathway to avoid this phenomenon to unravel the intrinsic PL from inner tubes of DWCNT. PMID:25843961

  8. Factors influencing alginate gel biocompatibility.

    PubMed

    Tam, Susan K; Dusseault, Julie; Bilodeau, Stéphanie; Langlois, Geneviève; Hallé, Jean-Pierre; Yahia, L'Hocine

    2011-07-01

    Alginate remains the most popular polymer used for cell encapsulation, yet its biocompatibility is inconsistent. Two commercially available alginates were compared, one with 71% guluronate (HiG), and the other with 44% (IntG). Both alginates were purified, and their purities were verified. After 2 days in the peritoneal cavity of C57BL/6J mice, barium (Ba)-gel and calcium (Ca)-gel beads of IntG alginate were clean, while host cells were adhered to beads of HiG alginate. IntG gel beads, however, showed fragmentation in vivo while HiG gel beads stayed firm. The physicochemical properties of the sodium alginates and their gels were thoroughly characterized. The intrinsic viscosity of IntG alginate was 2.5-fold higher than that of HiG alginate, suggesting a greater molecular mass. X-ray photoelectron spectroscopy indicated that both alginates were similar in elemental composition, including low levels of counterions in all gels. The wettabilities of the alginates and gels were also identical, as measured by contact angles of water on dry films. Ba-gel beads of HiG alginate resisted swelling and degradation when immersed in water, much more than the other gel beads. These results suggest that the main factors contributing to the biocompatibility of gels of purified alginate are the mannuronate/guluronate content and/or intrinsic viscosity.

  9. Rapid on-line determination of cholesterol distribution among plasma lipoproteins after high-performance gel filtration chromatography.

    PubMed

    Kieft, K A; Bocan, T M; Krause, B R

    1991-05-01

    A high-performance gel chromatography (HPGC) system has been developed which allows the unattended on-line determination of lipoprotein cholesterol distribution (VLDL-C, LDL-C, HDL-C), within 40 min, in microliter quantities of plasma using a single, relatively inexpensive column (Superose 6HR). The FAST cholesterol reagent (Sclavo) and a knitted PFTE Kratos reaction coil (Applied Biosystems) were found to provide optimal sensitivity, linearity, resolution, and dispersion characteristics. Validation is provided by comparison to target values for human quality control reference sera, and by comparing the values obtained by HPGC to the beta-quant method (LRC). The utility of the system is illustrated by comparing profiles from seven different species with normal or elevated plasma cholesterol concentrations. This technique allows rapid analysis of samples, regardless of species, without the use of precipitating agents or the ultracentrifuge. It could also be applied for the direct clinical determination of LDL-cholesterol. PMID:2072044

  10. High transparent shape memory gel

    NASA Astrophysics Data System (ADS)

    Gong, Jin; Arai, Masanori; Kabir, M. H.; Makino, Masato; Furukawa, Hidemitsu

    2014-03-01

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry. In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals, and the functional groups of thermoreversible Diels-Alder reaction were introduced into soft gels as crosslinkable pendent chains. The functionalization and strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals and thermoreversible pendent chains. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  11. Gel polymer electrolytes for batteries

    DOEpatents

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  12. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, D.B.; Shahinpoor, M.; Segalman, D.J.; Witkowski, W.R.

    1993-10-05

    Electrically controlled polymeric gel actuators or synthetic muscles are described capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots. 11 figures.

  13. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, Douglas B.; Shahinpoor, Mohsen; Segalman, Daniel J.; Witkowski, Walter R.

    1993-01-01

    Electrically controlled polymeric gel actuators or synthetic muscles capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots.

  14. Nanoparticle gel electrophoresis: bare charged spheres in polyelectrolyte hydrogels.

    PubMed

    Li, Fei; Hill, Reghan J

    2013-03-15

    Nanoparticle gel electrophoresis has recently emerged as an attractive means of separating and characterizing nanoparticles. Consequently, a theory that accounts for electroosmotic flow in the gel, and coupling of the nanoparticle and hydrogel electrostatics and hydrodynamics, is required, particularly for gels in which the mesh size is comparable to or smaller than the particle radii. Here, we present an electrokinetic model for charged, spherical colloidal particles undergoing electrophoresis in charged (polyelectrolyte) hydrogels: the gel-electrophoresis analogue of Henry's theory for electrophoresis in Newtonian electrolytes. We compare numerically exact solutions of the model with several independent asymptotic approximations, identifying regions in the parameter space where these approximations are accurate or break down. As previously assumed in the literature, Henry's formula, modified by the addition of a constant electroosmotic flow mobility, is accurate only for nanoparticles that are small compared to the hydrogel mesh size. We derived an exact analytical solution of the full model by judiciously modifying the theory of Allison et al. for uncharged gels, drawing on the superposition methodology of Doane et al. to account for hydrogel charge. This furnishes accurate and economical mobility predictions for the entire parameter space. The present model suggests that nanoparticle size separations (with diameters ≲40 nm) are optimal at low ionic strength, with a gel mesh size that is selected according to the particle charging mechanism. For weakly charged particles, optimal size separation is achieved when the Brinkman screening length is matched to the mean particle size. PMID:23153681

  15. Active gel physics

    NASA Astrophysics Data System (ADS)

    Prost, J.; Jülicher, F.; Joanny, J.-F.

    2015-02-01

    The mechanical behaviour of cells is largely controlled by a structure that is fundamentally out of thermodynamic equilibrium: a network of crosslinked filaments subjected to the action of energy-transducing molecular motors. The study of this kind of active system was absent from conventional physics and there was a need for both new theories and new experiments. The field that has emerged in recent years to fill this gap is underpinned by a theory that takes into account the transduction of chemical energy on the molecular scale. This formalism has advanced our understanding of living systems, but it has also had an impact on research in physics per se. Here, we describe this developing field, its relevance to biology, the novelty it conveys to other areas of physics and some of the challenges in store for the future of active gel physics.

  16. Antimicrobial Graft Copolymer Gels.

    PubMed

    Harvey, Amanda C; Madsen, Jeppe; Douglas, C W Ian; MacNeil, Sheila; Armes, Steven P

    2016-08-01

    In view of the growing worldwide rise in microbial resistance, there is considerable interest in designing new antimicrobial copolymers. The aim of the current study was to investigate the relationship between antimicrobial activity and copolymer composition/architecture to gain a better understanding of their mechanism of action. Specifically, the antibacterial activity of several copolymers based on 2-(methacryloyloxy)ethyl phosphorylcholine [MPC] and 2-hydroxypropyl methacrylate (HPMA) toward Staphylococcus aureus was examined. Both block and graft copolymers were synthesized using either atom transfer radical polymerization or reversible addition-fragmentation chain transfer polymerization and characterized via (1)H NMR, gel permeation chromatography, rheology, and surface tensiometry. Antimicrobial activity was assessed using a range of well-known assays, including direct contact, live/dead staining, and the release of lactate dehydrogenase (LDH), while transmission electron microscopy was used to study the morphology of the bacteria before and after the addition of various copolymers. As expected, PMPC homopolymer was biocompatible but possessed no discernible antimicrobial activity. PMPC-based graft copolymers comprising PHPMA side chains (i.e. PMPC-g-PHPMA) significantly reduced both bacterial growth and viability. In contrast, a PMPC-PHPMA diblock copolymer comprising a PMPC stabilizer block and a hydrophobic core-forming PHPMA block did not exhibit any antimicrobial activity, although it did form a biocompatible worm gel. Surface tensiometry studies and LDH release assays suggest that the PMPC-g-PHPMA graft copolymer exhibits surfactant-like activity. Thus, the observed antimicrobial activity is likely to be the result of the weakly hydrophobic PHPMA chains penetrating (and hence rupturing) the bacterial membrane. PMID:27409712

  17. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A.; Klimov, Victor L.

    2012-06-12

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites

  18. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A.; Klimov, Victor L.

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  19. Sucrose release from polysaccharide gels.

    PubMed

    Nishinari, Katsuyoshi; Fang, Yapeng

    2016-05-18

    Sucrose release from polysaccharide gels has been studied extensively because it is expected to be useful in understanding flavour release from solid foods and to find a new processing method which produces more palatable and healthier foods. We provide an overview of the release of sucrose and other sugars from gels of agar and related polysaccharides. The addition of sucrose to agar solutions leads to the increase in transparency of the resulting gels and the decrease in syneresis, which is attributed to the decrease in mesh size in gels. The syneresis occurring in the quiescent condition and fluid release induced by compression is discussed. The relationship between the sugar release and the structural, rheological and thermal properties of gels is also discussed. Finally, the future research direction is proposed.

  20. Sucrose release from polysaccharide gels.

    PubMed

    Nishinari, Katsuyoshi; Fang, Yapeng

    2016-05-18

    Sucrose release from polysaccharide gels has been studied extensively because it is expected to be useful in understanding flavour release from solid foods and to find a new processing method which produces more palatable and healthier foods. We provide an overview of the release of sucrose and other sugars from gels of agar and related polysaccharides. The addition of sucrose to agar solutions leads to the increase in transparency of the resulting gels and the decrease in syneresis, which is attributed to the decrease in mesh size in gels. The syneresis occurring in the quiescent condition and fluid release induced by compression is discussed. The relationship between the sugar release and the structural, rheological and thermal properties of gels is also discussed. Finally, the future research direction is proposed. PMID:26952168

  1. Ultracentrifuge for separating fluid mixtures

    DOEpatents

    Lowry, Ralph A.

    1976-01-01

    1. A centrifuge for the separation of fluid mixtures having light and heavy fractions comprising a cylindrical rotor, disc type end-plugs closing the ends of the rotor, means for mounting said rotor for rotation about its cylindrical axis, a housing member enclosing the rotor, a vacuum chamber in said housing about the central portion of the rotor, a collection chamber at each end of the housing, the innermost side of which is substantially formed by the outer face of the end-plug, means for preventing flow of the fluid from the collection chambers to said vacuum chamber, at least one of said end-plugs having a plurality of holes therethrough communicating between the collection chamber adjacent thereto and the inside of the rotor to induce countercurrent flow of the fluid in the centrifuge, means for feeding fluid to be processed into the centrifuge, means communicating with the collection chambers to extract the light and heavy separated fractions of the fluid, and means for rotating the rotor.

  2. Esterase activity (EA), total oxidant status (TOS) and total antioxidant capacity (TAC) in gills of Mytilus galloprovincialis exposed to pollutants: Analytical validation and effects evaluation by single and mixed heavy metal exposure.

    PubMed

    Franco, Lorena; Romero, Diego; García-Navarro, José A; Teles, Mariana; Tvarijonaviciute, Asta

    2016-01-15

    The aims of the present study were to optimize and validate methods for esterase activity (EA), total oxidant status (TOS) and total antioxidant capacity (TAC) determination in mussel' gills, and to establish the relationships between these biomarkers and Pb, Cd and Cu pollution, in single form and ternary mixture. Two different buffers for sample homogenization, the need of ultracentrifugation, and analytical validation were evaluated. Coefficients of variation, when buffer without additives and ultracentrifugation were used, were <15%, and recovery were 97%-109% in all cases. The EA response tends to decrease with treatments, TOS decreased significantly in Cd and ternary groups, while TAC tended to increase in treatments with Pb, Cd and ternary groups. In conclusion, the methods for EA, TOS and TAC measurements in gills of mussel were precise and accurate and could be interesting resources in biomonitoring programmes.

  3. Bouncing gel balls: Impact of soft gels onto rigid surface

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Yamazaki, Y.; Okumura, K.

    2003-07-01

    After being thrown onto a solid substrate, very soft spherical gels bounce repeatedly. Separate rheological measurements suggest that these balls can be treated as nearly elastic. The Hertz contact deformation expected in the static (elastic) limit was observed only at very small impact velocities. For larger velocities, the gel ball deformed into flattened forms like a pancake. We measured the size of the gel balls at the maximal deformation and the contact time as a function of velocities for samples different in the original spherical radius and the Young modulus. The experimental results revealed a number of scaling relations. To interpret these relations, we developed scaling arguments to propose a physical picture.

  4. Mechanical Failure in Colloidal Gels

    NASA Astrophysics Data System (ADS)

    Kodger, Thomas Edward

    When colloidal particles in a dispersion are made attractive, they aggregate into fractal clusters which grow to form a space-spanning network, or gel, even at low volume fractions. These gels are crucial to the rheological behavior of many personal care, food products and dispersion-based paints. The mechanical stability of these products relies on the stability of the colloidal gel network which acts as a scaffold to provide these products with desired mechanical properties and to prevent gravitational sedimentation of the dispersed components. Understanding the mechanical stability of such colloidal gels is thus of crucial importance to predict and control the properties of many soft solids. Once a colloidal gel forms, the heterogeneous structure bonded through weak physical interactions, is immediately subject to body forces, such as gravity, surface forces, such as adhesion to a container walls and shear forces; the interplay of these forces acting on the gel determines its stability. Even in the absence of external stresses, colloidal gels undergo internal rearrangements within the network that may cause the network structure to evolve gradually, in processes known as aging or coarsening or fail catastrophically, in a mechanical instability known as syneresis. Studying gel stability in the laboratory requires model colloidal system which may be tuned to eliminate these body or endogenous forces systematically. Using existing chemistry, I developed several systems to study delayed yielding by eliminating gravitational stresses through density matching and cyclic heating to induce attraction; and to study syneresis by eliminating adhesion to the container walls, altering the contact forces between colloids, and again, inducing gelation through heating. These results elucidate the varied yet concomitant mechanisms by which colloidal gels may locally or globally yield, but then reform due to the nature of the physical, or non-covalent, interactions which form

  5. Adhesive, elastomeric gel impregnating composition

    DOEpatents

    Shaw, David Glenn; Pollard, John Randolph; Brooks, Robert Aubrey

    2002-01-01

    An improved capacitor roll with alternating film and foil layers is impregnated with an adhesive, elastomeric gel composition. The gel composition is a blend of a plasticizer, a polyol, a maleic anhydride that reacts with the polyol to form a polyester, and a catalyst for the reaction. The impregnant composition is introduced to the film and foil layers while still in a liquid form and then pressure is applied to aid with impregnation. The impregnant composition is cured to form the adhesive, elastomeric gel. Pressure is maintained during curing.

  6. Blue native polyacrylamide gel electrophoresis (BN-PAGE) for analysis of multiprotein complexes from cellular lysates.

    PubMed

    Fiala, Gina J; Schamel, Wolfgang W A; Blumenthal, Britta

    2011-01-01

    Multiprotein complexes (MPCs) play a crucial role in cell signalling, since most proteins can be found in functional or regulatory complexes with other proteins (Sali, Glaeser et al. 2003). Thus, the study of protein-protein interaction networks requires the detailed characterization of MPCs to gain an integrative understanding of protein function and regulation. For identification and analysis, MPCs must be separated under native conditions. In this video, we describe the analysis of MPCs by blue native polyacrylamide gel electrophoresis (BN-PAGE). BN-PAGE is a technique that allows separation of MPCs in a native conformation with a higher resolution than offered by gel filtration or sucrose density ultracentrifugation, and is therefore useful to determine MPC size, composition, and relative abundance (Schägger and von Jagow 1991); (Schägger, Cramer et al. 1994). By this method, proteins are separated according to their hydrodynamic size and shape in a polyacrylamide matrix. Here, we demonstrate the analysis of MPCs of total cellular lysates, pointing out that lysate dialysis is the crucial step to make BN-PAGE applicable to these biological samples. Using a combination of first dimension BN- and second dimension SDS-PAGE, we show that MPCs separated by BN-PAGE can be further subdivided into their individual constituents by SDS-PAGE. Visualization of the MPC components upon gel separation is performed by standard immunoblotting. As an example for MPC analysis by BN-PAGE, we chose the well-characterized eukaryotic 19S, 20S, and 26S proteasomes. PMID:21403626

  7. Symmetry breaking in actin gels - Implications for cellular motility

    NASA Astrophysics Data System (ADS)

    John, Karin; Peyla, Philippe; Misbah, Chaouqi

    2007-03-01

    The physical origin of cell motility is not fully understood. Recently minimal model systems have shown, that polymerizing actin itself can produce a motile force, without the help of motor proteins. Pathogens like Shigella or Listeria use actin to propel themselves forward in their host cell. The same process can be mimicked with polystyrene beads covered with the activating protein ActA, which reside in a solution containing actin monomers. ActA induces the growth of an actin gel at the bead surface. Initially the gel grows symmetrically around the bead until a critical size is reached. Subsequently one observes a symmetry breaking and the gel starts to grow asymmetrically around the bead developing a tail of actin at one side. This symmetry breaking is accompanied by a directed movement of the bead, with the actin tail trailing behind the bead. Force generation relies on the combination of two properties: growth and elasticity of the actin gel. We study this phenomenon theoretically within the framework of a linear elasticity theory and linear flux-force relationships for the evolution of an elastic gel around a hard sphere. Conditions for a parity symmetry breaking are identified analytically and illustrated numerically with the help of a phasefield model.

  8. Sol-gel encapsulation for controlled drug release and biosensing

    NASA Astrophysics Data System (ADS)

    Fang, Jonathan

    The main focus of this dissertation is to investigate the use of sol-gel encapsulation of biomolecules for controlled drug release and biosensing. Controlled drug release has advantages over conventional therapies in that it maintains a constant, therapeutic drug level in the body for prolonged periods of time. The anti-hypertensive drug Captopril was encapsulated in sol-gel materials of various forms, such as silica xerogels and nanoparticles. The primary objective was to show that sol-gel silica materials are promising drug carriers for controlled release by releasing Captopril at a release rate that is within a therapeutic range. We were able to demonstrate desired release for over a week from Captopril-doped silica xerogels and overall release from Captopril-doped silica nanoparticles. As an aside, the antibiotic Vancomycin was also encapsulated in these porous silica nanoparticles and desired release was obtained for several days in-vitro. The second part of the dissertation focuses on immobilizing antibodies and proteins in sol-gel to detect various analytes, such as hormones and amino acids. Sol-gel competitive immunoassays on antibody-doped silica xerogels were used for hormone detection. Calibration for insulin and C-peptide in standard solutions was obtained in the nM range. In addition, NASA-Ames is also interested in developing a reagentless biosensor using bacterial periplasmic binding proteins (bPBPs) to detect specific biomarkers, such as amino acids and phosphate. These bPBPs were doubly labeled with two different fluorophores and encapsulated in silica xerogels. Ligand-binding experiments were performed on the bPBPs in solution and in sol-gel. Ligand-binding was monitored by fluorescence resonance energy transfer (FRET) between the two fluorophores on the bPBP. Titration data show that one bPBP has retained its ligand-binding properties in sol-gel.

  9. Dynamics of a DNA Gel

    NASA Astrophysics Data System (ADS)

    Adhikari, Ramesh; Bhattacharya, Aniket; Dogariu, Aristide

    We study in silico the properties of a gel consisting of DNA strands (modeled as semi-flexible chains) and linkers of varying flexibility, length, and topology. These linkers are envisioned and modeled as active components with additional attributes so as to mimic properties of a synthetic DNA gel containing motor proteins. We use Brownian dynamics to directly obtain frequency dependent complex shear moduli of the gel. We further carry out force spectroscopy on these computer generated gels and study the relaxation properties as a function of the important parameters of the model, e.g., densities and relative ratios of the DNAs and the linkers, the average life time of a link, etc. Our studies are relevant for designing synthetic bio-materials for both materials and medical applications.

  10. Multiple phases of protien gels

    NASA Astrophysics Data System (ADS)

    Annaka, Masahiko; Tanaka, Toyoichi

    1994-03-01

    A multiple phase transition was observed in gels made by covalently cross-linking proteins in either native or denatured state. The enzymatic activity of the gels prepared from native α-chymotrypsin was determined for each of the multiple phases. The reversibility of the swelling degrees and the enzymatic reaction rates upon phase transition suggests that the protein is at a free energy minimum and thus in a phase.

  11. Microchannel gel electrophoretic separation systems and methods for preparing and using

    DOEpatents

    Herr, Amy E; Singh, Anup K; Throckmorton, Daniel J

    2015-02-24

    A micro-analytical platform for performing electrophoresis-based immunoassays was developed by integrating photopolymerized cross-linked polyacrylamide gels within a microfluidic device. The microfluidic immunoassays are performed by gel electrophoretic separation and quantifying analyte concentration based upon conventional polyacrylamide gel electrophoresis (PAGE). To retain biological activity of proteins and maintain intact immune complexes, native PAGE conditions were employed. Both direct (non-competitive) and competitive immunoassay formats are demonstrated in microchips for detecting toxins and biomarkers (cytokines, c-reactive protein) in bodily fluids (serum, saliva, oral fluids). Further, a description of gradient gels fabrication is included, in an effort to describe methods we have developed for further optimization of on-chip PAGE immunoassays. The described chip-based PAGE immunoassay method enables immunoassays that are fast (minutes) and require very small amounts of sample (less than a few microliters). Use of microfabricated chips as a platform enables integration, parallel assays, automation and development of portable devices.

  12. Microchannel gel electrophoretic separation systems and methods for preparing and using

    DOEpatents

    Herr, Amy; Singh, Anup K; Throckmorton, Daniel J

    2013-09-03

    A micro-analytical platform for performing electrophoresis-based immunoassays was developed by integrating photopolymerized cross-linked polyacrylamide gels within a microfluidic device. The microfluidic immunoassays are performed by gel electrophoretic separation and quantifying analyte concentration based upon conventional polyacrylamide gel electrophoresis (PAGE). To retain biological activity of proteins and maintain intact immune complexes, native PAGE conditions were employed. Both direct (non-competitive) and competitive immunoassay formats are demonstrated in microchips for detecting toxins and biomarkers (cytokines, c-reactive protein) in bodily fluids (serum, saliva, oral fluids). Further, a description of gradient gels fabrication is included, in an effort to describe methods we have developed for further optimization of on-chip PAGE immunoassays. The described chip-based PAGE immunoassay method enables immunoassays that are fast (minutes) and require very small amounts of sample (less than a few microliters). Use of microfabricated chips as a platform enables integration, parallel assays, automation and development of portable devices.

  13. Topical Review: Polymer gel dosimetry

    PubMed Central

    Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J

    2010-01-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687

  14. Analytics for Education

    ERIC Educational Resources Information Center

    MacNeill, Sheila; Campbell, Lorna M.; Hawksey, Martin

    2014-01-01

    This article presents an overview of the development and use of analytics in the context of education. Using Buckingham Shum's three levels of analytics, the authors present a critical analysis of current developments in the domain of learning analytics, and contrast the potential value of analytics research and development with real world…

  15. Let's Talk... Analytics

    ERIC Educational Resources Information Center

    Oblinger, Diana G.

    2012-01-01

    Talk about analytics seems to be everywhere. Everyone is talking about analytics. Yet even with all the talk, many in higher education have questions about--and objections to--using analytics in colleges and universities. In this article, the author explores the use of analytics in, and all around, higher education. (Contains 1 note.)

  16. NMR mechanisms in gel dosimetry

    NASA Astrophysics Data System (ADS)

    Schreiner, L. J.

    2009-05-01

    Nuclear magnetic resonance was critical to the development of gel dosimetry, as it established the potential for three dimensional dosimetry with chemical dosimeter systems through magnetic resonance imaging [1]. In the last two decades MRI has served as the gold standard for imaging, while NMR relaxometry has played an important role in the development and understanding of the behaviour of new gel dosimetry systems. Therefore, an appreciation of the relaxation mechanisms determining the NMR behaviour of irradiated gel dosimeters is important for a full comprehension of a considerable component of the literature on gel dosimetry. A number of excellent papers have presented this important theory, this brief review will highlight some of the salient points made previously [1-5]. The spin relaxation of gel dosimeters (which determines the dose dependence in most conventional MR imaging) is determined principally by the protons on water molecules in the system. These water protons exist in different environments, or groups (see Figure 1): on bulk water, on water hydrating the chemical species that are being modified under irradiation, and on water hydrating the gel matrix used to spatially stabilize the dosimeter (e.g., gelatin, agarose, etc). The spin relaxation depends on the inherent relaxation rate of each spin group, that is, on the relaxation rate which would be observed for the specific group if it were isolated. Also, the different water environments are not isolated from each other, and the observed relaxation rate also depends on the rate of exchange of magnetization between the groups, and on the fraction of protons in each group. In fact, the water exchanges quickly between the environments, so that relaxation is in what is usually termed the fast exchange regime. In the limit of fast exchange, the relaxation of the water protons is well characterized by a single exponential and hence by a single apparent relaxation rate. In irradiated gel dosimeters this

  17. Electrostatics and aggregation: How charge can turn a crystal into a gel

    PubMed Central

    Schmit, Jeremy D.; Whitelam, Stephen; Dill, Ken

    2011-01-01

    The crystallization of proteins or colloids is often hindered by the appearance of aggregates of low fractal dimension called gels. Here we study the effect of electrostatics upon crystal and gel formation using an analytic model of hard spheres bearing point charges and short range attractive interactions. We find that the chief electrostatic free energy cost of forming assemblies comes from the entropic loss of counterions that render assemblies charge-neutral. Because there exists more accessible volume for these counterions around an open gel than a dense crystal, there exists an electrostatic entropic driving force favoring the gel over the crystal. This driving force increases with increasing sphere charge, but can be counteracted by increasing counterion concentration. We show that these effects cannot be fully captured by pairwise-additive macroion interactions of the kind often used in simulations, and we show where on the phase diagram to go in order to suppress gel formation. PMID:21895221

  18. Rheological behavior of Slide Ring Gels.

    NASA Astrophysics Data System (ADS)

    Sharma, Vivek; Park, Jong Seung; Park, Jung O.; Srinivasarao, Mohan

    2006-03-01

    Slide ring gels were synthesized by chemically crosslinking, sparsely populated α-cyclodextrin (α-CD) present on the polyrotaxanes consisting of α-CD and polyethylene glycol (PEG). [1] Unlike physically or chemically crosslinked gels, slide ring gels are topological gels where crosslinks can slide along the chain. [2] We investigate the rheological behavior of these gels swollen in water and compare their viscoelastic properties to those of physical and chemical gels. We also study the equilibrium swelling behavior of these gels. [1] Okumura and Ito, Adv. Mater. 2001, 13, 485 [2] C. Zhao et al, J. Phys. Cond. Mat. 2005, 17, S2841

  19. Fabrication and Characterization of Polysaccharide Ion Gels with Ionic Liquids and Their Further Conversion into Value-Added Sustainable Materials

    PubMed Central

    Takada, Akihiko; Kadokawa, Jun-ichi

    2015-01-01

    A review of the fabrication of polysaccharide ion gels with ionic liquids is presented. From various polysaccharides, the corresponding ion gels were fabricated through the dissolution with ionic liquids. As ionic liquids, in the most cases, 1-butyl-3-methylimidazolium chloride has been used, whereas 1-allyl-3methylimidazolium acetate was specifically used for chitin. The resulting ion gels have been characterized by suitable analytical measurements. Characterization of a pregel state by viscoelastic measurement provided the molecular weight information. Furthermore, the polysaccharide ion gels have been converted into value-added sustainable materials by appropriate procedures, such as exchange with other disperse media and regeneration. PMID:25793912

  20. Thixotropic gel for vadose zone remediation

    DOEpatents

    Riha, Brian D.

    2012-07-03

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  1. Thixotropic gel for vadose zone remediation

    DOEpatents

    Riha, Brian D.; Looney, Brian B.

    2015-10-27

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  2. Thixotropic gel for vadose zone remediation

    DOEpatents

    Rhia, Brian D.

    2011-03-01

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  3. Capillary fracture of soft gels

    NASA Astrophysics Data System (ADS)

    Bostwick, Joshua B.; Daniels, Karen E.

    2013-10-01

    A liquid droplet resting on a soft gel substrate can deform that substrate to the point of material failure, whereby fractures develop on the gel surface that propagate outwards from the contact line in a starburst pattern. In this paper, we characterize (i) the initiation process, in which the number of arms in the starburst is controlled by the ratio of the surface tension contrast to the gel's elastic modulus, and (ii) the propagation dynamics showing that once fractures are initiated they propagate with a universal power law L∝t3/4. We develop a model for crack initiation by treating the gel as a linear elastic solid and computing the deformations within the substrate from the liquid-solid wetting forces. The elastic solution shows that both the location and the magnitude of the wetting forces are critical in providing a quantitative prediction for the number of fractures and, hence, an interpretation of the initiation of capillary fractures. This solution also reveals that the depth of the gel is an important factor in the fracture process, as it can help mitigate large surface tractions; this finding is confirmed with experiments. We then develop a model for crack propagation by considering the transport of an inviscid fluid into the fracture tip of an incompressible material and find that a simple energy-conservation argument can explain the observed material-independent power law. We compare predictions for both linear elastic and neo-Hookean solids, finding that the latter better explains the observed exponent.

  4. Optical Sensors for Biomolecules Using Nanoporous Sol-Gel Materials

    NASA Technical Reports Server (NTRS)

    Fang, Jonathan; Zhou, Jing C.; Lan, Esther H.; Dunn, Bruce; Gillman, Patricia L.; Smith, Scott M.

    2004-01-01

    An important consideration for space missions to Mars is the ability to detect biosignatures. Solid-state sensing elements for optical detection of biological entities are possible using sol-gel based biologically active materials. We have used these materials as optical sensing elements in a variety of bioassays, including immunoassays and enzyme assays. By immobilizing an appropriate biomolecule in the sol-gel sensing element, we have successfully detected analytes such as amino acids and hormones. In the case of the amino acid glutamate, the enzyme glutamate dehydrogenase was the immobilized molecule, whereas in the case of the hormone cortisol, an anti-cortisol antibody was immobilized in the sensing element. In this previous work with immobilized enzymes and antibodies, excellent sensitivity and specificity were demonstrated in a variety of formats including bulk materials, thin films and fibers. We believe that the sol-gel approach is an attractive platform for bioastronautics sensing applications because of the ability to detect a wide range of entities such as amino acids, fatty acids, hopanes, porphyrins, etc. The sol-gel approach produces an optically transparent 3D silica matrix that forms around the biomolecule of interest, thus stabilizing its structure and functionality while allowing for optical detection. This encapsulation process protects the biomolecule and leads to a more "rugged" sensor. The nanoporous structure of the sol-gel matrix allows diffusion of small target molecules but keeps larger, biomolecules immobilized in the pores. We are currently developing these biologically active sol-gel materials into small portable devices for on-orbit cortisol detection

  5. Sol-gel derived sorbents

    DOEpatents

    Sigman, Michael E.; Dindal, Amy B.

    2003-11-11

    Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.

  6. Fundamentals of Polymer Gel Dosimeters

    NASA Astrophysics Data System (ADS)

    McAuley, Kim B.

    2006-12-01

    The recent literature on polymer gel dosimetry contains application papers and basic experimental studies involving polymethacrylic-acid-based and polyacrylamide-based gel dosimeters. The basic studies assess the relative merits of these two most commonly used dosimeters, and explore the effects of tetrakis hydroxymethyl phosphonium chloride (THPC) antioxidant on dosimeter performance. Polymer gel dosimeters that contain THPC or other oxygen scavengers are called normoxic dosimeters, because they can be prepared under normal atmospheric conditions, rather than in a glove box that excludes oxygen. In this review, an effort is made to explain some of the underlying chemical phenomena that affect dosimeter performance using THPC, and that lead to differences in behaviour between dosimeters made using the two types of monomer systems. Progress on the development of new more effective and less toxic dosimeters is also reported.

  7. Copolymers For Capillary Gel Electrophoresis

    DOEpatents

    Liu, Changsheng; Li, Qingbo

    2005-08-09

    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  8. Multimedia Analysis plus Visual Analytics = Multimedia Analytics

    SciTech Connect

    Chinchor, Nancy; Thomas, James J.; Wong, Pak C.; Christel, Michael; Ribarsky, Martin W.

    2010-10-01

    Multimedia analysis has focused on images, video, and to some extent audio and has made progress in single channels excluding text. Visual analytics has focused on the user interaction with data during the analytic process plus the fundamental mathematics and has continued to treat text as did its precursor, information visualization. The general problem we address in this tutorial is the combining of multimedia analysis and visual analytics to deal with multimedia information gathered from different sources, with different goals or objectives, and containing all media types and combinations in common usage.

  9. Analytical Challenges in Biotechnology.

    ERIC Educational Resources Information Center

    Glajch, Joseph L.

    1986-01-01

    Highlights five major analytical areas (electrophoresis, immunoassay, chromatographic separations, protein and DNA sequencing, and molecular structures determination) and discusses how analytical chemistry could further improve these techniques and thereby have a major impact on biotechnology. (JN)

  10. Analyticity without Differentiability

    ERIC Educational Resources Information Center

    Kirillova, Evgenia; Spindler, Karlheinz

    2008-01-01

    In this article we derive all salient properties of analytic functions, including the analytic version of the inverse function theorem, using only the most elementary convergence properties of series. Not even the notion of differentiability is required to do so. Instead, analytical arguments are replaced by combinatorial arguments exhibiting…

  11. Gluing gels: A nanoparticle solution

    NASA Astrophysics Data System (ADS)

    Appel, Eric A.; Scherman, Oren A.

    2014-03-01

    Synthetic polymer gels with certain surface chemistries can be glued together by a simple and inexpensive method that uses commercially available silica nanoparticles. Biological tissues can also be joined by this nanotechnological route, eliminating the need for sutures, additional adhesives or chemical reactions.

  12. Physicochemical behaviour of chitin gels.

    PubMed

    Vachoud, L; Zydowicz, N; Domard, A

    2000-06-30

    Syneresis of chitin gels formed in the course of N-acetylation of chitosan in hydroalcoholic media has been studied. A critical cross-linking density related to a critical acetylation degree for which the gel undergoes weak syneresis and swells in water was shown (degree of acetylation (DA) 88%). Above this value, the weight loss during syneresis increases with DA. Conversely, syneresis decreases on increasing the polymer concentration, but disappears at a macroscopic level for a polymer concentration close to the critical concentration of entanglement in the initial solution. An increase in temperature favours the formation of hydrophobic interactions and new inter- and intramolecular hydrogen bondings. Due to the weak polyelectrolyte character of chitin, the weight of the gel depends on the pH and ionic strength of the media. Swelling-deswelling experiments show that the swelling of the gel is not fully reversible in relation with the formation of new cross-links during the depletion of the network. Our results reveals that the balance between segment-segment and segment-solvent interactions as well as the molecular mobility play the major role.

  13. Nonlinear elasticity of alginate gels

    NASA Astrophysics Data System (ADS)

    Hashemnejad, Seyed Meysam; Kundu, Santanu

    Alginate is a naturally occurring anionic polysaccharide extracted from brown algae. Because of biocompatibility, low toxicity, and simple gelation process, alginate gels are used in biomedical and food applications. Here, we report the rheological behavior of ionically crosslinked alginate gels, which are obtained by in situ gelation of alginates with calcium salts, in between two parallel plates of a rheometer. Strain stiffening behavior was captured using large amplitude oscillatory shear (LAOS) experiments. In addition, negative normal stress was observed for these gels, which has not been reported earlier for any polysaccharide networks. The magnitude of negative normal stress increases with applied strain and can exceed that of the shear stress at large strain. Rheological results fitted with a constitutive model that considers both stretching and bending of chains indicate that nonlinearity is likely related to the stretching of the chains between the crosslink junctions. The results provide an improved understanding of the deformation mechanism of ionically crosslinked alginate gel and the results will be important in developing synthetic extracellular matrix (ECM) from these materials.

  14. Capillary fracture of soft gels.

    PubMed

    Bostwick, Joshua B; Daniels, Karen E

    2013-10-01

    A liquid droplet resting on a soft gel substrate can deform that substrate to the point of material failure, whereby fractures develop on the gel surface that propagate outwards from the contact line in a starburst pattern. In this paper, we characterize (i) the initiation process, in which the number of arms in the starburst is controlled by the ratio of the surface tension contrast to the gel's elastic modulus, and (ii) the propagation dynamics showing that once fractures are initiated they propagate with a universal power law L[proportional]t(3/4). We develop a model for crack initiation by treating the gel as a linear elastic solid and computing the deformations within the substrate from the liquid-solid wetting forces. The elastic solution shows that both the location and the magnitude of the wetting forces are critical in providing a quantitative prediction for the number of fractures and, hence, an interpretation of the initiation of capillary fractures. This solution also reveals that the depth of the gel is an important factor in the fracture process, as it can help mitigate large surface tractions; this finding is confirmed with experiments. We then develop a model for crack propagation by considering the transport of an inviscid fluid into the fracture tip of an incompressible material and find that a simple energy-conservation argument can explain the observed material-independent power law. We compare predictions for both linear elastic and neo-Hookean solids, finding that the latter better explains the observed exponent.

  15. Capillary fracture of soft gels.

    PubMed

    Bostwick, Joshua B; Daniels, Karen E

    2013-10-01

    A liquid droplet resting on a soft gel substrate can deform that substrate to the point of material failure, whereby fractures develop on the gel surface that propagate outwards from the contact line in a starburst pattern. In this paper, we characterize (i) the initiation process, in which the number of arms in the starburst is controlled by the ratio of the surface tension contrast to the gel's elastic modulus, and (ii) the propagation dynamics showing that once fractures are initiated they propagate with a universal power law L[proportional]t(3/4). We develop a model for crack initiation by treating the gel as a linear elastic solid and computing the deformations within the substrate from the liquid-solid wetting forces. The elastic solution shows that both the location and the magnitude of the wetting forces are critical in providing a quantitative prediction for the number of fractures and, hence, an interpretation of the initiation of capillary fractures. This solution also reveals that the depth of the gel is an important factor in the fracture process, as it can help mitigate large surface tractions; this finding is confirmed with experiments. We then develop a model for crack propagation by considering the transport of an inviscid fluid into the fracture tip of an incompressible material and find that a simple energy-conservation argument can explain the observed material-independent power law. We compare predictions for both linear elastic and neo-Hookean solids, finding that the latter better explains the observed exponent. PMID:24229192

  16. Sedimentation equilibria of ferrofluids: I. Analytical centrifugation in ultrathin glass capillaries.

    PubMed

    Luigjes, Bob; Thies-Weesie, Dominique M E; Philipse, Albert P; Erné, Ben H

    2012-06-20

    Analytical centrifugation is used for the first time to measure sedimentation equilibrium concentration profiles of a ferrofluid, a concentrated colloidal dispersion of strongly absorbing magnetic nanoparticles. To keep the optical absorbance from becoming too strong, the optical path length is restricted to 50 μm by placing the dispersion in a flat glass capillary. The concentration profile is kept from becoming too steep, despite the relatively high buoyant mass of the nanoparticles, by making novel use of a low-velocity analytical centrifuge that was not designed to measure equilibrium profiles. The experimental approach is validated by comparison with profiles obtained using an analytical ultracentrifuge. At concentrations of a few hundred grams per liter, the osmotic pressures calculated from the equilibrium profiles are lower than expected for hard spheres or non-interacting particles, due to magnetic dipolar interactions. By following the presented experimental approach, it will now also be possible to characterize the interparticle interactions of other strongly absorbing colloidal particles not studied before by analytical centrifugation.

  17. Sedimentation equilibria of ferrofluids: I. Analytical centrifugation in ultrathin glass capillaries.

    PubMed

    Luigjes, Bob; Thies-Weesie, Dominique M E; Philipse, Albert P; Erné, Ben H

    2012-06-20

    Analytical centrifugation is used for the first time to measure sedimentation equilibrium concentration profiles of a ferrofluid, a concentrated colloidal dispersion of strongly absorbing magnetic nanoparticles. To keep the optical absorbance from becoming too strong, the optical path length is restricted to 50 μm by placing the dispersion in a flat glass capillary. The concentration profile is kept from becoming too steep, despite the relatively high buoyant mass of the nanoparticles, by making novel use of a low-velocity analytical centrifuge that was not designed to measure equilibrium profiles. The experimental approach is validated by comparison with profiles obtained using an analytical ultracentrifuge. At concentrations of a few hundred grams per liter, the osmotic pressures calculated from the equilibrium profiles are lower than expected for hard spheres or non-interacting particles, due to magnetic dipolar interactions. By following the presented experimental approach, it will now also be possible to characterize the interparticle interactions of other strongly absorbing colloidal particles not studied before by analytical centrifugation. PMID:22617483

  18. Robust aptamer sol-gel solid phase microextraction of very polar adenosine from human plasma.

    PubMed

    Mu, Li; Hu, Xiangang; Wen, Jianping; Zhou, Qixing

    2013-03-01

    Conventional solid phase microextraction (SPME) has a limited capacity to extract very polar analytes, such as adenosine. To solve this problem, aptamer conjugating sol-gel methodology was coupled with an SPME fiber. According to the authors' knowledge, this is the first reported use of aptamer SPME. The fiber of aptamer sol-gel SPME with a mesoporous structure has high porosity, large surface area, and small water contact angle. Rather than employing direct entrapment, covalent immobilization was the dominant method of aptamer loading in sol-gel. Aptamer sol-gel fiber captured a specified analyte from among the analog molecules, thereby, exhibiting an excellent selective property. Compared with commercial SPME fibers, this aptamer fiber was suitable for extracting adenosine, presenting an extraction efficiency higher than 20-fold. The values of repeatability and reproducibility expressed by relative standard deviation were low (9.4%). Interestingly, the sol-gel network enhanced the resistance of aptamer SPME to both nuclease and nonspecific proteins. Furthermore, the aptamer sol-gel fiber was applied in human plasma with LOQ 1.5 μg/L, which is an acceptable level. This fiber also demonstrates durability and regeneration over 20-cycles without significant loss of efficiency. Given the various targets (from metal ions to biomacromolecules and cells) of aptamers, this methodology will extend the multi-domain applications of SPME.

  19. Study of Fricke gel dosimeter response for different gel quality

    NASA Astrophysics Data System (ADS)

    Cavinato, C. C.; Campos, L. L.

    2010-11-01

    The Fricke xylenol gel (FXG) dosimeter has been studied for application in radiotherapy because it is capable of to measure the spatial distribution of radiation doses. The dosimetry is based on the oxidation of ferrous (Fe2+) to ferric (Fe3+) ions radiation induced, related to the radiation dose. The gel material usually employed is the 300 Bloom gelatin, which is imported and very expensive in Brazil. Aiming to analyze the viability of to use a locally produced and low cost gel material, in this work the spectrophotometric responses of FXG solutions prepared using 270 Bloom gelatin commercially available and 300 Bloom gelatin imported were compared. The absorption spectra of solutions prepared with 5% by weight 270 and 300 Bloom gelatins non-irradiated and irradiated with 60Co gamma radiation in the dose range between 0.5 and 100 Gy were analysed, the dose-response curves were evaluated and the useful dose range was established. The obtained results indicate that the FXG solution prepared with 270 Bloom gelatin presents good performance, similar to that presented by the FXG solution prepared with 300 Bloom gelatin and its use can be recommended owing to the low cost and the availability in local market.

  20. 21 CFR 520.1452 - Moxidectin gel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Moxidectin gel. 520.1452 Section 520.1452 Food and..., FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1452 Moxidectin gel. (a) Specifications. Each milliliter of gel contains 20 milligrams (2 percent) moxidectin. (b) Sponsor. See No....

  1. Spring-loaded polymeric gel actuators

    DOEpatents

    Shahinpoor, Mohsen

    1995-01-01

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications.

  2. Spring-loaded polymeric gel actuators

    DOEpatents

    Shahinpoor, M.

    1995-02-14

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications. 5 figs.

  3. Two-dimensional Gel Electrophoresis (2DE)

    NASA Astrophysics Data System (ADS)

    Kłodzińska, Ewa; Buszewski, Bogusław

    The chemical compounds, which are present in the environment, increasingly cause bad effects on health. The most serious effects are tumors and various mutations at the cellular level. Such compounds, from the analytical point of view, can serve the function of biomarkers, constituting measurable changes in the organism's cells and biochemical processes occurring therein. The challenge of the twenty-first century is therefore searching for effective and reliable methods of identification of biomarkers as well as understanding bodily functions, which occur in living organisms at the molecular level. The irreplaceable tool for these examinations is proteomics, which includes both quality and quantity analysis of proteins composition, and also makes it possible to learn their functions and expressions. The success of proteomics examinations lies in the usage of innovative analytical techniques, such as electromigration technique, two-dimensional electrophoresis in polyacrylamide gel (2D PAGE), liquid chromatography, together with high resolution mass spectrometry and bio-informatical data analysis. Proteomics joins together a number of techniques used for analysis of hundreds or thousands of proteins. Its main task is not the examination of proteins inside the particular tissue but searching for the differences in the proteins' profile between bad and healthy tissues. These differences can tell us a lot regarding the cause of the sickness as well as its consequences. For instance, using the proteomics analysis it is possible to find relatively fast new biomarkers of tumor diseases, which in the future will be used for both screening and foreseeing the course of illness. In this chapter we focus on two-dimensional electrophoresis because as it seems, it may be of enormous importance when searching for biomarkers of cancer diseases.

  4. The Swelling of Olympic Gels

    NASA Astrophysics Data System (ADS)

    Lang, Michael; Fischer, Jakob; Werner, Marco; Sommer, Jens-Uwe

    2014-03-01

    The swelling equilibrium of Olympic gels is studied by Monte Carlo Simulations. We observe that gels consisting of flexible cyclic molecules of a higher degree of polymerization N show a smaller equilibrium swelling degree Q ~N - 0 . 28φ0- 0 . 72 for the same monomer volume fraction φ0 at network preparation. This observation is explained by a disinterpenetration process of overlapping non-concatenated polymers upon swelling. In the limit of a sufficiently large number of concatenations per cyclic molecule we expect that the equilibrium degree of swelling becomes proportional to φ0- 1 / 2 independent of N. Our results challenge current textbook models for the equilibrium degree of swelling of entangled polymer networks. Now at: Bio Systems Analysis Group, Jena Centre for Bioinformatics (JCB) and Department for Mathematics and Computer Sciences, Friedrich Schiller University of Jena, 07743 Jena, Germany.

  5. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Klimov, Victor L.; Petruska, Melissa A.

    2010-05-25

    The present invention is directed to a process for preparing a solid composite having colloidal nanocrystals dispersed within a sol-gel matrix, the process including admixing colloidal nanocrystals with an amphiphilic polymer including hydrophilic groups selected from the group consisting of --COOH, --OH, --SO.sub.3H, --NH.sub.2, and --PO.sub.3H.sub.2 within a solvent to form an alcohol-soluble colloidal nanocrystal-polymer complex, admixing the alcohol-soluble colloidal nanocrystal-polymer complex and a sol-gel precursor material, and, forming the solid composite from the admixture. The present invention is also directed to the resultant solid composites and to the alcohol-soluble colloidal nanocrystal-polymer complexes.

  6. Recovering DNA from agarose gels.

    PubMed

    Hegen, P N

    1994-09-01

    Methods and reagents is a unique monthly column that highlights current discussions in the newsgroup bionet.molbio.methds-reagnts, available on the internet. A commonly occurring theme on the net is the recovery of DNA, and this month's column discusses the pros and cons of various methods used to extract DNA fragments directly from agarose gels. For details on how to partake in the newsgroup, see the accompanying box. PMID:7985233

  7. Analytical Chemistry in Russia.

    PubMed

    Zolotov, Yuri

    2016-09-01

    Research in Russian analytical chemistry (AC) is carried out on a significant scale, and the analytical service solves practical tasks of geological survey, environmental protection, medicine, industry, agriculture, etc. The education system trains highly skilled professionals in AC. The development and especially manufacturing of analytical instruments should be improved; in spite of this, there are several good domestic instruments and other satisfy some requirements. Russian AC has rather good historical roots.

  8. Polymer networks and gels: Simulation and theory

    NASA Astrophysics Data System (ADS)

    Kenkare, Nirupama Ramamurthy

    1998-12-01

    network pressure is treated as the sum of liquid-like and elastic components. The liquid-like component is obtained by extending the Generalized Flory-Dimer theory to networks, and the elastic component is obtained by treating the network as a set of interpenetrated tree-like structures and using a ideal chain-spring analogy to calculate the free energy. The theoretical predictions for network pressure are in very good agreement with simulation data. Our simulation results for the network chain properties show that the chain end-to-end vectors scale affinely with macroscopic deformation at large densities, but show a weaker-than-affine scaling at low densities. A combined discontinuous molecular dynamics and Monte Carlo simulation technique is used to study the swelling of trifunctional networks of chain lengths 20 and 35 in an athermal solvent. The swelling simulations are conducted under conditions of constant pressure and chemical potential. The gel packing fraction and solvent fraction at swelling equilibrium were found to increase with pressure as expected. We present a simple, analytical theory for gel swelling, grounded in our previous theoretical work for solvent-free networks. The predictions of this theory for the gel properties at swelling equilibrium show remarkably good agreement with simulation results.

  9. Protein/Arabinoxylans Gels: Effect of Mass Ratio on the Rheological, Microstructural and Diffusional Characteristics

    PubMed Central

    Berlanga-Reyes, Claudia M.; Carvajal-Millan, Elizabeth; Hicks, Kevin B.; Yadav, Madhav P.; Rascón-Chu, Agustín; Lizardi-Mendoza, Jaime; Toledo-Guillén, Alma R.; Islas-Rubio, Alma R.

    2014-01-01

    Wheat bran arabinoxylan (WBAX) gels entrapping standard model proteins at different mass ratios were formed. The entrapment of protein affected the gel elasticity and viscosity values, which decreased from 177 to 138 Pa. The presence of protein did not modify the covalent cross-links content of the gel. The distribution of protein through the network was investigated by confocal laser scanning microscopy. In mixed gels, protein aggregates forming clusters were detected at protein/polysaccharide ratios higher than 0.25. These clusters were not homogeneously distributed, suggesting that WBAX and protein are located in two different phases. The apparent diffusion coefficient (Dm) of proteins during release from mixed gels was investigated for mass ratios of 0.06 and 0.12. For insulin, Dm increased significantly from 2.64 × 10−7 to 3.20 × 10−7 cm2/s as the mass ratio augmented from 0.06 to 0.12. No significant difference was found for Dm values of ovalbumin and bovine serum albumin released from the mixed gels. The results indicate that homogeneous protein/WBAX gels can be formed at low mass ratios, allowing the estimation of Dm by using an analytical solution of the second Fick’s law. PMID:25338049

  10. Sol-gel processing using aminofunctional silanes

    SciTech Connect

    Cao, W.; Hunt, A.J.

    1994-12-31

    Clear gels have been made from TEOS and the amino functional silane under acid-catalyzed conditions and light scattering of the gels has been related to pH and the concentration of fluoride ions in the sol as well as the amount of the amino silane used. The authors have succeeded in preparing a series of gels containing Ni{sup 2+} or Cu{sup 2+} ions immobilized by chelation either before or after the gel formation. Aerogels made from these gels in particular, doped by the method of impregnation, have had a homogeneous microstructure on the scale of only a few nanometers.

  11. Science Update: Analytical Chemistry.

    ERIC Educational Resources Information Center

    Worthy, Ward

    1980-01-01

    Briefly discusses new instrumentation in the field of analytical chemistry. Advances in liquid chromatography, photoacoustic spectroscopy, the use of lasers, and mass spectrometry are also discussed. (CS)

  12. Evaluation of an ambient air sampling system for tritium (as tritiated water vapor) using silica gel adsorbent columns

    SciTech Connect

    Patton, G.W.; Cooper, A.T.; Tinker, M.R.

    1995-08-01

    Ambient air samples for tritium analysis (as the tritiated water vapor [HTO] content of atmospheric moisture) are collected for the Hanford Site Surface Environmental Surveillance Project (SESP) using the solid adsorbent silica gel. The silica gel has a moisture sensitive indicator which allows for visual observation of moisture movement through a column. Despite using an established method, some silica gel columns showed a complete change in the color indicator for summertime samples suggesting that breakthrough had occurred; thus a series of tests was conducted on the sampling system in an environmental chamber. The purpose of this study was to determine the maximum practical sampling volume and overall collection efficiency for water vapor collected on silica gel columns. Another purpose was to demonstrate the use of an impinger-based system to load water vapor onto silica gel columns to provide realistic analytical spikes and blanks for the Hanford Site SESP. Breakthrough volumes (V{sub b}) were measured and the chromatographic efficiency (expressed as the number of theoretical plates [N]) was calculated for a range of environmental conditions. Tests involved visual observations of the change in the silica gel`s color indicator as a moist air stream was drawn through the column, measurement of the amount of a tritium tracer retained and then recovered from the silica gel, and gravimetric analysis for silica gel columns exposed in the environmental chamber.

  13. Learning Analytics Considered Harmful

    ERIC Educational Resources Information Center

    Dringus, Laurie P.

    2012-01-01

    This essay is written to present a prospective stance on how learning analytics, as a core evaluative approach, must help instructors uncover the important trends and evidence of quality learner data in the online course. A critique is presented of strategic and tactical issues of learning analytics. The approach to the critique is taken through…

  14. Validating Analytical Methods

    ERIC Educational Resources Information Center

    Ember, Lois R.

    1977-01-01

    The procedures utilized by the Association of Official Analytical Chemists (AOAC) to develop, evaluate, and validate analytical methods for the analysis of chemical pollutants are detailed. Methods validated by AOAC are used by the EPA and FDA in their enforcement programs and are granted preferential treatment by the courts. (BT)

  15. Analytical mass spectrometry

    SciTech Connect

    Not Available

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  16. Analytical mass spectrometry. Abstracts

    SciTech Connect

    Not Available

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  17. Extreme Scale Visual Analytics

    SciTech Connect

    Wong, Pak C.; Shen, Han-Wei; Pascucci, Valerio

    2012-05-08

    Extreme-scale visual analytics (VA) is about applying VA to extreme-scale data. The articles in this special issue examine advances related to extreme-scale VA problems, their analytical and computational challenges, and their real-world applications.

  18. Signals: Applying Academic Analytics

    ERIC Educational Resources Information Center

    Arnold, Kimberly E.

    2010-01-01

    Academic analytics helps address the public's desire for institutional accountability with regard to student success, given the widespread concern over the cost of higher education and the difficult economic and budgetary conditions prevailing worldwide. Purdue University's Signals project applies the principles of analytics widely used in…

  19. Teaching the Analytical Life

    ERIC Educational Resources Information Center

    Jackson, Brian

    2010-01-01

    Using a survey of 138 writing programs, I argue that we must be more explicit about what we think students should get out of analysis to make it more likely that students will transfer their analytical skills to different settings. To ensure our students take analytical skills with them at the end of the semester, we must simplify the task we…

  20. Quo vadis, analytical chemistry?

    PubMed

    Valcárcel, Miguel

    2016-01-01

    This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed. PMID:26631024

  1. Quo vadis, analytical chemistry?

    PubMed

    Valcárcel, Miguel

    2016-01-01

    This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed.

  2. Electrically induced dynamic contraction of ionic polymeric gels

    NASA Astrophysics Data System (ADS)

    Shahinpoor, Mohsen; Osada, Yoshihito

    1995-05-01

    An analytical model is presented for the dynamics of contraction of ionic polymeric gels with liquid exudation in the presence of an electrical field. The proposed model considers the dynamic balance between the internal forces during the contraction. These forces are assumed to be due to the viscous effects caused by the motion of the liquid, the inertial forces due to the motion of the liquid in and out of the network, and the electrophoretic forces due to the motion of the charged ions in the solvent as it exudes from the ionic polymeric gel network. The effects of rubber elasticity of the network as well as ion-ion interactions have been assumed negligible in this case compared with the inertial, viscous, and electrophoretic effects. The governing equations, thus obtained, are then solved exactly for the velocity of liquid exudation from within the network as a function of time and radial distance in cylindrical samples. The relative weight of the gel sample is then related to this velocity by an integral equation. This integral equation is then numerically solved to obtain a relationship between the amount of contraction as a function of time, electric field strength, and other pertinent material and geometrical parameters. The results of the numerical simulations are compared with some experimental results on PAMPS contractile fibers and satisfactory agreements are observed.

  3. Smart Polymeric Gels: Redefining the Limits of Biomedical Devices

    PubMed Central

    Chaterji, Somali; Kwon, Il Keun; Park, Kinam

    2007-01-01

    This review describes recent progresses in the development and applications of smart polymeric gels, especially in the context of biomedical devices. The review has been organized into three separate sections: defining the basis of smart properties in polymeric gels; describing representative stimuli to which these gels respond; and illustrating a sample application area, namely, microfluidics. One of the major limitations in the use of hydrogels in stimuli–responsive applications is the diffusion rate limited transduction of signals. This can be obviated by engineering interconnected pores in the polymer structure to form capillary networks in the matrix and by downscaling the size of hydrogels to significantly decrease diffusion paths. Reducing the lag time in the induction of smart responses can be highly useful in biomedical devices, such as sensors and actuators. This review also describes molecular imprinting techniques to fabricate hydrogels for specific molecular recognition of target analytes. Additionally, it describes the significant advances in bottom–up nanofabrication strategies, involving supramolecular chemistry. Learning to assemble supramolecular structures from nature has led to the rapid prototyping of functional supramolecular devices. In essence, the barriers in the current performance potential of biomedical devices can be lowered or removed by the rapid convergence of interdisciplinary technologies. PMID:18670584

  4. Effect of solvent on melting gel behavior

    NASA Astrophysics Data System (ADS)

    Degnah, Ahmed Abdulaziz

    Melting gel and hybrid glass are organic-inorganic materials derived from sol gel processing. The behavior of the melting gel is that it is a solid at room temperature, but when the melting gel is reheated to 110°C (T1) it becomes fluid. The melting gel has reversible behavior due to incomplete crosslinking between polysiloxane chains. When the melting gel is heated to its consolidation temperature of 150°C (T2) the gel no longer softens (T2>T1), because crosslinking is completed. The melting gel at the consolidation temperature becomes hybrid glass. Melting gel coatings were applied to titanium alloy substrates. Melting gels were prepared containing phenyl substitutions with 1.0 mole Phenyltrimethoxysilane (PhTMS) in ratio to 0.25 moles of Diphenyldimethoxysilane (DPhDMS). The methanol to DPhDMS ratio was varied to change the thickness of the coatings. The coatings were inspected visually to see that there is good adhesion between the coating and the substrate. Nanoindenter tests were performed to determine hardness. The coated samples were placed in an oven and heated to 150ºC for 24, 48 or 96 hours before cooling back to room temperature, which took about 4 hours. The measurements of the hardness on samples containing 3 levels of solvent and heat treatment were collected by indentation technique. The best combination of solvent and temperature was 1:8 PhTMS:MeOH for all temperatures.

  5. Sol/gel transition of chitosan solutions.

    PubMed

    Rwei, S P; Chen, T Y; Cheng, Y Y

    2005-01-01

    This work studies the occurrence of sol/gel transition and the gel rheology for chitosan solution under various conditions. Experiments were conducted in an oscillatory shear apparatus with small amplitude, using a Rheometrics SR-5 rheometer, with Couette and parallel plate geometries. The experimental results demonstrate that the sol/gel transition concentration and the elastic modulus (G') for CS gel decrease as the pH value and the molecular weight (Mw) increase. However, the sol/gel transition concentration and G' became independent of Mw when Mw exceeded a threshold. The higher ionization constant, Kp, is responsible for the higher sol/gel transition concentration in a formic acid solution than in an acetic acid solution with equivalent molar concentration. The elastic modulus G' of a CS gel increases with temperature, which relationship differs from that for many polysaccharides, and can be understood through classical rubber elastic theory. Finally, a gel whose concentration was barely above the sol/gel point exhibited aging, and its G' and G" declined rather than increase with time, accompanied by a reversal from the sol/gel state back to the sol state. This is an uncommon aging behavior for a polysaccharide and a detailed explanation is provided.

  6. Metal-silica sol-gel materials

    NASA Technical Reports Server (NTRS)

    Stiegman, Albert E. (Inventor)

    2002-01-01

    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.

  7. Gel barrier formation in unsaturated porous media

    NASA Astrophysics Data System (ADS)

    Kim, Meejeong; Corapcioglu, M. Yavuz

    2002-05-01

    The gel barrier formation by a gelling liquid (Colloidal Silica) injection in an unsaturated porous medium is investigated by developing a mathematical model and conducting numerical simulations. Gelation process is initiated by adding electrolytes such as NaCl, and the gel phase consisting of cross-linked colloidal silica particles grows as the gelation process proceeds. The mathematical model describing the transport and gelation of Colloidal Silica (CS) is based on coupled mass balance equations for the gel mixture (the sol phase plus the gel phase), gel phase (cross-linked colloidal silica particles plus water captured between cross-linked particles), and colloidal silica particles (discrete and cross-linked) and NaCl in the sol (suspension of discrete colloidal silica particles in water) and gel phases. The solutions in terms of volumetric fraction of the gel phase yield the gel mixture viscosity via the dependency on the volumetric fraction of gel phase. This dependency is determined from a kinetic gelation model with time-normalized viscosity curves. The proposed model is verified by comparing experimentally and numerically determined hydraulic conductivities of gel-treated soil columns at different CS injection volumes. The numerical experiments indicate that an impermeable gel layer is formed within the time period twice the gel-point in a one-dimensional flow system. At the same normalized time corresponding to twice the gel-point, the CS solutions with lower NaCl concentrations result in further migration and poor performance in plugging the pore space. The viscosity computation proposed in this study is compared with another method available in the literature. It is observed that the other method estimates the viscosity at the mixing zone higher than the one proposed by the authors. The proposed model can simulate realistic injection scenarios with various combinations of operating parameters such as NaCl concentration and NaCl mixing time, and thus

  8. Gel barrier formation in unsaturated porous media.

    PubMed

    Kim, Meejeong; Corapcioglu, M Yavuz

    2002-05-01

    The gel barrier formation by a gelling liquid (Colloidal Silica) injection in an unsaturated porous medium is investigated by developing a mathematical model and conducting numerical simulations. Gelation process is initiated by adding electrolytes such as NaCl, and the gel phase consisting of cross-linked colloidal silica particles grows as the gelation process proceeds. The mathematical model describing the transport and gelation of Colloidal Silica (CS) is based on coupled mass balance equations for the gel mixture (the sol phase plus the gel phase), gel phase (cross-linked colloidal silica particles plus water captured between cross-linked particles), and colloidal silica particles (discrete and cross-linked) and NaCl in the sol (suspension of discrete colloidal silica particles in water) and gel phases. The solutions in terms of volumetric fraction of the gel phase yield the gel mixture viscosity via the dependency on the volumetric fraction of gel phase. This dependency is determined from a kinetic gelation model with time-normalized viscosity curves. The proposed model is verified by comparing experimentally and numerically determined hydraulic conductivities of gel-treated soil columns at different CS injection volumes. The numerical experiments indicate that an impermeable gel layer is formed within the time period twice the gel-point in a one-dimensional flow system. At the same normalized time corresponding to twice the gel-point, the CS solutions with lower NaCl concentrations result in further migration and poor performance in plugging the pore space. The viscosity computation proposed in this study is compared with another method available in the literature. It is observed that the other method estimates the viscosity at the mixing zone higher than the one proposed by the authors. The proposed model can simulate realistic injection scenarios with various combinations of operating parameters such as NaCl concentration and NaCl mixing time, and thus

  9. Tailoring the properties of supramolecular gels

    NASA Astrophysics Data System (ADS)

    Buerkle, Lauren

    Supramolecular gels created from low molecular weight species (gelators) have gathered wide attention over the past few decades on account of their highly ordered assembly and ability to respond to external stimuli. These properties make such gels highly promising candidates for a diverse range of applications including biomaterials, viscosity modifiers, sensors, and liquid crystalline materials. We have focused on the design and tailoring of guanosine (the ribonucleoside of the nucleobase guanine) hydrogels. It is well known that in an aqueous environment, guanosine forms circular hydrogen-bonded quartets around a monovalent metal ion, most commonly potassium. These quartets then stack to form high-aspect ratio fibers that entangle and branch to form gels. Despite facile gel formation, crystallization of the guanosine molecules out of the gel is a common occurrence that leads to gel collapse within hours of fabrication. In addition, guanosine and related gelators often require a high potassium concentration or acidic pH to gel, which presents limited practical use in our target application of tissue engineering. We have focused on the modification and analysis of guanosine gels via an additive and/or a change in chemical structure to inhibit crystallization and promote gelation at physiological salt concentrations. Additionally, initial cell culture experiments suggest that these gel materials show great potential as an easily accessible and inexpensive tissue engineering scaffold. We also examined the potential for supramolecular gels for use in personal care formulations as electrolyte-resistant rheology modifiers for aqueous systems. Sugar-based gels fit the necessary criteria; however, many of these molecules also crystallize from the gel over time. We achieved lifetime stabilization again via a mixing approach and examined the resulting properties of the stabilized gels.

  10. "Gray Areas": Silica gels, amorphous silica and cryptocrystalline silica on fault surfaces

    NASA Astrophysics Data System (ADS)

    Rowe, C. D.; Kirkpatrick, J. D.; White, J. C.; Faber, C.; Caine, J. S.

    2012-12-01

    Silica gels, in the form of their solid-phase equivalents, are widely found in brittle fault zones and are commonly associated with mineral deposits. High- to moderate-velocity rotary friction experiments have produced silica gels on sliding surfaces coeval with dramatic slip weakening. In light of the latter, silica gel formation has been proposed as a potential mechanism of slip weakening during earthquakes in the shallow crust. However, low velocity sliding experiments have also produced significant amounts of amorphous material distributed throughout slipping layers, and dramatic weakening is not observed. Comparison of the products of laboratory experiments to geological examples is complicated by the diagenesis and lithification of silica gels. They may form hydrous and amorphous solids, hydrous crystalline solids, or dehydrate to quartz. In addition, the abundance and style of occurrence of these products in faults suggest that there are multiple origins for silica gels in faults. We review the mechanisms by which silica gels may form in fault zones and describe the solidification, crystallization and dehydration evolution of the silica. Analytical transmission electron microscope (TEM) observations of slip-surface silica deposits from the Corona Fault, San Francisco, the Dixie Valley Fault, Nevada, and the Olive Fault, Namibia typify the nano- to micro-structural evolution of the fault surface silica layers. We suggest criteria for identifying these materials in natural fault rocks. Some of these gels may form by comminution and hydrolization of silica-rich wall rocks, as has been observed in high-velocity experiments (Corona Fault). Others may form by depressurization and boiling of aqueous fluids, probably during fault valving (Olive Fault). Silica saturated hydrothermal fluids released during faulting may contribute in some cases (Dixie Valley Fault). Regardless of the mechanism of gel formation, the dramatic rheological weakening observed in friction

  11. Molecular thermodynamics for swelling of a mesoscopic ionomer gel in 1 : 1 salt solutions.

    PubMed

    Victorov, A; Radke, C; Prausnitz, J

    2006-01-14

    For a microphase-separated diblock copolymer ionic gel swollen in salt solution, a molecular-thermodynamic model is based on the self-consistent field theory in the limit of strongly segregated copolymer subchains. The geometry of microdomains is described using the Milner generic wedge construction neglecting the packing frustration. A geometry-dependent generalized analytical solution for the linearized Poisson-Boltzmann equation is obtained. This generalized solution not only reduces to those known previously for planar, cylindrical and spherical geometries, but is also applicable to saddle-like structures. Thermodynamic functions are expressed analytically for gels of lamellar, bicontinuous, cylindrical and spherical morphologies. Molecules are characterized by chain composition, length, rigidity, degree of ionization, and by effective polymer-polymer and polymer-solvent interaction parameters. The model predicts equilibrium solvent uptakes and the equilibrium microdomain spacing for gels swollen in salt solutions. Results are given for details of the gel structure: distribution of mobile ions and polymer segments, and the electric potential across microdomains. Apart from effects obtained by coupling the classical Flory-Rehner theory with Donnan equilibria, viz. increased swelling with polyelectrolyte charge and shrinking of gel upon addition of salt, the model predicts the effects of microphase morphology on swelling. PMID:16482269

  12. Self-Pumping Active Gel

    NASA Astrophysics Data System (ADS)

    Wu, Kun-Ta; Hishamunda, Jean Bernard; Fraden, Seth; Dogic, Zvonimir

    Isotropic active gels are the network which is consist of cross-linked building blocks and the structure of which changes randomly and isotropically with time. Dogic et. al. show that pairs of anti-parallel microtubules form extensile bundles, which merge, extend, and buckle. In an unconfined system, the dynamics of these bundles causes spontaneous turbulent-like flow driven by motion of microscopic molecular motors. We found that confining these active gels in a millimeter sized toroids causes a transition into a new dynamical state characterized by circulation currents persisting for hours until ATP is depleted. We show how toroid dimensions impact the properties of self-organized circular currents, how directions of circulation can be designed by engineering ratchet-shaped boundaries, and how circulations of connected toroids can be either synchronized or antisynchronized. Furthermore, we demonstrate that the flow rate in the circulation is independent of curvature and length of flow path. The flow rate persists for centimeters without decay, disregarding conventional pipe flow resistance. Such findings pave the path to self-pumping pipe transport and performing physical work with biological system.

  13. Development of novel Sol-Gel Indicators (SGI's) for in-situ environmental measurements: Part 1, Program and a new pH Sol-Gel Indicator

    SciTech Connect

    Livingston, R.R.; Baylor, L.; Wicks, G.G.

    1992-11-03

    The feasibility of incorporating analytical indicators into a sol-gel glassy matrix and then coating substrates with this composite material has bee demonstrated. Substrates coated include paper, wood, glass, and the lens of an analytical probe. The first SRTC sol-gel indicator, comprising bromophenol blue dispersed in a silica matrix, was fabricated and successfully used to measure solution pH in the range of pH 3.0 to 7.5. material exhibited a quick response time, as measured by color changes both qualitatively and quantitatively, and the measuring device was reversible or reusable. Additional indicators with responses over other ranges as well as indicators sensitive to the presence of elements of interest, are also under development. The new SGI composites possess promising properties and an excellent potential for performing a variety important in-situ environmental measurements and area discussed in this report.

  14. Automated apparatus for producing gradient gels

    DOEpatents

    Anderson, N.L.

    1983-11-10

    Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.

  15. Automated apparatus for producing gradient gels

    DOEpatents

    Anderson, Norman L.

    1986-01-01

    Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.

  16. Characteristics of polyacrylamide gel with THPC and Turnbull Blue gel dosimeters evaluated using optical tomography

    NASA Astrophysics Data System (ADS)

    Pilařová (Vávrů), Kateřina; Kozubíková, Petra; Šolc, Jaroslav; Spěváček, Václav

    2014-11-01

    The purpose of this study was to compare characteristics of radiochromic gel - Turnbull Blue gel (TB gel) with polymer gel - polyacrylamide gel and tetrakis hydroxymethyl phosphonium chloride (PAGAT) using optical tomography. Both types of gels were examined in terms of dose sensitivity, dose response linearity and background value of spectrophotometric absorbance. The calibration curve was obtained for 60Co irradiation performed on Gammacell 220 at predefined gamma dose levels between 0 and 140 Gy for TBG and 0-15 Gy for PAGAT. To measure relative dose distributions from stereotactic irradiation, dosimeters were irradiated on Leksell Gamma Knife Perfexion. The cylindrical glass housings filled with gel were attached to the stereotactic frame. They were exposed with single shot and 16 mm collimator by 65 Gy to a 50% prescription isodose for TB gel and 4 Gy to a 50% prescription isodose for PAGAT. Evaluations of dosimeters were performed on an UV-vis Spectrophotometer Helios β and an optical cone beam homemade tomography scanner with a 16-bit astronomy CCD camera with a set of color filters. The advantages and potential disadvantages for both types of gel dosimeters were summarized. Dose distribution in central slice and measured profiles of 16 mm shot shows excellent correspondence with treatment planning system Leksell GammaPlan® for both PAGAT and Turnbull Blue gels. Gel dosimeters are suitable for steep dose gradient verification. An optical tomography evaluation method is successful. Dose response characteristics of TB gel and PAGAT gel are presented.

  17. GEM printer: 3D gel printer for free shaping of functional gel engineering materials

    NASA Astrophysics Data System (ADS)

    Furukawa, Hidemitsu; Muroi, Hisato; Yamamoto, Kouki; Serizawa, Ryo; Gong, Jin

    2013-04-01

    In the past decade, several high-strength gels have been developed. These gels are expected to use as a kind of new engineering materials in the fields of industry and medical as substitutes to polyester fibers, which are materials of artificial blood vessels. The gels have both low surface friction and well permeability due to a large amount of water absorbed in the gels, which are superiority of the gels compering to the polyester fibers. It is, however, difficult for gels to be forked structure or cavity structure by using cutting or mold. Consequently, it is necessary to develop the additive manufacturing device to synthesize and mode freely gels at the same time. Here we try to develop an optical 3D gel printer that enables gels to be shaped precisely and freely. For the free forming of high-strength gels, the 1st gels are ground to particles and mixed with 2nd pregel solution, and the mixed solution is gelled by the irradiation of UV laser beam through an optical fiber. The use of the optical fiber makes one-point UV irradiation possible. Since the optical fiber is controlled by 3D-CAD, the precise and free molding in XYZ directions is easily realized. We successfully synthesized tough gels using the gel printer.

  18. Polymer gel electrolytes for lithium batteries

    NASA Astrophysics Data System (ADS)

    Baskakova, Yu V.; Yarmolenko, Ol'ga V.; Efimov, Oleg N.

    2012-04-01

    The data on the most promising polymer gel electrolytes for lithium batteries published in the past decade are surveyed and described systematically. Gel electrolytes with matrices of polyethylene oxide, poly(vinylidene fluoride) and its copolymer with hexafluoropropylene, poly(methyl methacrylate), polyacrylonitrile, poly(vinyl chloride) and polyacrylates are discussed. A special section is devoted to gel electrolytes with ionic liquids as the solvents. The bibliography includes 160 references.

  19. Conducting Polymer Electrodes for Gel Electrophoresis

    PubMed Central

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D.

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation. PMID:24586761

  20. Structure of chitosan gels mineralized by sorption

    NASA Astrophysics Data System (ADS)

    Modrzejewska, Z.; Skwarczyńska, A.; Douglas, T. E. L.; Biniaś, D.; Maniukiewicz, W.; Sielski, J.

    2015-10-01

    The paper presents the structural studies of mineralized chitosan hydrogels. Hydrogels produced by using sodium beta-glycerophosphate (Na-β-GP) as a neutralizing agent. Mineralization was performed method "post loading", which consisted in sorption to the gels structure Ca ions. In order to obtain - in the structure of gels - compounds similar to the hydroxyapatites present naturally in bone tissue, gels after sorption were modified in: pH 7 buffer and sodium hydrogen phosphate. In order to determine the structural properties of the gels, the following methods were used: infrared spectroscopy with Fourier transformation, FTIR, X-ray diffractometry, XRD, scanning electron microscopy, SEM.

  1. [Biological tests of sol-gel biomaterials].

    PubMed

    Ulatowska-Jarza, A; Podbielska, H; Szymonowicz, M; Staniszewska-Kuś, J; Paluch, D

    2000-01-01

    Recently, the sol-gel based biomaterials are extendedly investigated in emphasis on theirs medical applications. In this respect it is important to investigate the influence of sol-gel matrices on biological systems. The results of laboratory and biological testing of water extracts of sol-gels are presented in this work. It was proved that it is possible to construct the sol-gels that are not cytotoxic for which the haemolytic reactions fulfils the foreseen norms. This can be achieved by heating the materials in certain temperatures (higher than 350 degrees C). This effect can also be reached by suitably long aging (minimum 6 months).

  2. Ionic liquid based multifunctional double network gel

    NASA Astrophysics Data System (ADS)

    Ahmed, Kumkum; Higashihara, Tomoya; Arafune, Hiroyuki; Kamijo, Toshio; Morinaga, Takashi; Sato, Takaya; Furukawa, Hidemitsu

    2015-04-01

    Gels are a promising class of soft and wet materials with diverse application in tissue engineering and bio-medical purpose. In order to accelerate the development of gels, it is required to synthesize multi-functional gels of high mechanical strength, ultra low surface friction and suitable elastic modulus with a variety of methods and new materials. Among many types of gel ionic gel made from ionic liquids (ILs) could be used for diverse applications in electrochemical devices and in the field of tribology. IL, a promising materials for lubrication, is a salt with a melting point lower than 100 °C. As a lubricant, ILs are characterized by an extremely low vapor pressure, high thermal stability and high ion conductivity. In this work a novel approach of making double network DN ionic gel using IL has been made utilizing photo polymerization process. A hydrophobic monomer Methyl methacrylate (MMA) has been used as a first network and a hydrophobic IL monomer, N,N-diethyl-N-(2-mthacryloylethyl)-N-methylammonium bistrifluoromethylsulfonyl)imide (DEMM-TFSI) has been used as a second network using photo initiator benzophenon and crosslinker triethylene glycol dimethacrylate (TEGDMA). The resulting DN ionic gel shows transparency, flexibility, high thermal stability, good mechanical toughness and low friction coefficient value which can be a potential candidate as a gel slider in different mechanical devices and can open a new area in the field of gel tribology.

  3. Functional behavior of isotropic magnetorheological gels

    NASA Astrophysics Data System (ADS)

    Venkateswara Rao, P.; Maniprakash, S.; Srinivasan, S. M.; Srinivasa, A. R.

    2010-08-01

    Magnetorheological (MR) gels are a new class of soft polymers whose properties can be controlled using a magnetic field. The functional effectiveness of these gels depends on their magnetic controllability. In this paper, an experimental investigation on the functional behavior of a particular type of magnetorheological gels under dynamic and static shear conditions in the presence of a magnetic field is studied. MR gels are prepared with micron sized polarizable carbonyl iron particles interspersed in a polymer matrix gel. The compliance of this magnetic gel can be varied under the influence of an external magnetic field. Since dynamical mechanical analysis tests are difficult to conduct in the presence of large deformations of the order of 50% and strong magnetic fields, a free decay test apparatus is designed and fabricated for obtaining the magnetic field dependent shearing response under dynamic conditions at room temperature. It is observed that a significant change in the elastic modulus occurs in the gels under a magnetic field in the range of 0.1-0.4 T. However, no significant change in the damping ratio is observed under various magnitudes of magnetic field. It is shown that the increase in shear modulus of this kind of magnetic composite gel could be as high as 59% of the zero field value for a gel prepared with 50% by weight of carbonyl iron particles.

  4. Tissue simulating gel for medical research

    NASA Technical Reports Server (NTRS)

    Companion, John A. (Inventor)

    1991-01-01

    A tissue simulating gel and a method for preparing the tissue simulating gel are disclosed. The tissue simulating gel is prepared by a process using water, gelatin, ethylene glycol, and a cross-linking agent. In order to closely approximate the characteristics of the type of tissue being simulated, other material has been added to change the electrical, sound conducting, and wave scattering properties of the tissue simulating gel. The result of the entire process is a formulation that will not melt at the elevated temperatures involved in hyperthermia medical research. Furthermore, the tissue simulating gel will not support mold or bacterial growth, is of a sufficient mechanical strength to maintain a desired shape without a supporting shell, and is non-hardening and non-drying. Substances have been injected into the tissue simulating gel prior to the setting-up thereof just as they could be injected into actual tissue, and the tissue simulating gel is translucent so as to permit visual inspection of its interior. A polyurethane spray often used for coating circuit boards can be applied to the surface of the tissue simulating gel to give a texture similar to human skin, making the tissue simulating gel easier to handle and contributing to its longevity.

  5. Enzymes in Analytical Chemistry.

    ERIC Educational Resources Information Center

    Fishman, Myer M.

    1980-01-01

    Presents tabular information concerning recent research in the field of enzymes in analytic chemistry, with methods, substrate or reaction catalyzed, assay, comments and references listed. The table refers to 128 references. Also listed are 13 general citations. (CS)

  6. Extreme Scale Visual Analytics

    SciTech Connect

    Steed, Chad A; Potok, Thomas E; Pullum, Laura L; Ramanathan, Arvind; Shipman, Galen M; Thornton, Peter E; Potok, Thomas E

    2013-01-01

    Given the scale and complexity of today s data, visual analytics is rapidly becoming a necessity rather than an option for comprehensive exploratory analysis. In this paper, we provide an overview of three applications of visual analytics for addressing the challenges of analyzing climate, text streams, and biosurveilance data. These systems feature varying levels of interaction and high performance computing technology integration to permit exploratory analysis of large and complex data of global significance.

  7. Precise Tuning of Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis

    PubMed Central

    Shirahama, Hitomi; Lee, Bae Hoon; Tan, Lay Poh; Cho, Nam-Joon

    2016-01-01

    Gelatin-methacryloyl (GelMA) is one of the most commonly used photopolymerizable biomaterials in bio-applications. However, GelMA synthesis remains suboptimal, as its reaction parameters have not been fully investigated. The goal of this study is to establish an optimal route for effective and controllable GelMA synthesis by systematically examining reaction parameters including carbonate-bicarbonate (CB) buffer molarity, initial pH adjustment, MAA concentration, gelatin concentration, reaction temperature, and reaction time. We employed several analytical techniques in order to determine the degree of substitution (DS) and conducted detailed structural analysis of the synthesized polymer. The results enabled us to optimize GelMA synthesis, showing the optimal conditions to balance the deprotonation of amino groups with minimizing MAA hydrolysis, which led to nearly complete substitution. The optimized conditions (low feed ratio of MAA to gelatin (0.1 mL/g), 0.25 M CB buffer at pH 9, and a gelatin concentration of 10–20%) enable a simplified reaction scheme that produces GelMA with high substitution with just one-step addition of MAA in one pot. Looking forward, these optimal conditions not only enable facile one-pot GelMA synthesis but can also guide researchers to explore the efficient, high methacrylation of other biomacromolecules. PMID:27503340

  8. Precise Tuning of Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis

    NASA Astrophysics Data System (ADS)

    Shirahama, Hitomi; Lee, Bae Hoon; Tan, Lay Poh; Cho, Nam-Joon

    2016-08-01

    Gelatin-methacryloyl (GelMA) is one of the most commonly used photopolymerizable biomaterials in bio-applications. However, GelMA synthesis remains suboptimal, as its reaction parameters have not been fully investigated. The goal of this study is to establish an optimal route for effective and controllable GelMA synthesis by systematically examining reaction parameters including carbonate-bicarbonate (CB) buffer molarity, initial pH adjustment, MAA concentration, gelatin concentration, reaction temperature, and reaction time. We employed several analytical techniques in order to determine the degree of substitution (DS) and conducted detailed structural analysis of the synthesized polymer. The results enabled us to optimize GelMA synthesis, showing the optimal conditions to balance the deprotonation of amino groups with minimizing MAA hydrolysis, which led to nearly complete substitution. The optimized conditions (low feed ratio of MAA to gelatin (0.1 mL/g), 0.25 M CB buffer at pH 9, and a gelatin concentration of 10–20%) enable a simplified reaction scheme that produces GelMA with high substitution with just one-step addition of MAA in one pot. Looking forward, these optimal conditions not only enable facile one-pot GelMA synthesis but can also guide researchers to explore the efficient, high methacrylation of other biomacromolecules.

  9. Precise Tuning of Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis.

    PubMed

    Shirahama, Hitomi; Lee, Bae Hoon; Tan, Lay Poh; Cho, Nam-Joon

    2016-08-09

    Gelatin-methacryloyl (GelMA) is one of the most commonly used photopolymerizable biomaterials in bio-applications. However, GelMA synthesis remains suboptimal, as its reaction parameters have not been fully investigated. The goal of this study is to establish an optimal route for effective and controllable GelMA synthesis by systematically examining reaction parameters including carbonate-bicarbonate (CB) buffer molarity, initial pH adjustment, MAA concentration, gelatin concentration, reaction temperature, and reaction time. We employed several analytical techniques in order to determine the degree of substitution (DS) and conducted detailed structural analysis of the synthesized polymer. The results enabled us to optimize GelMA synthesis, showing the optimal conditions to balance the deprotonation of amino groups with minimizing MAA hydrolysis, which led to nearly complete substitution. The optimized conditions (low feed ratio of MAA to gelatin (0.1 mL/g), 0.25 M CB buffer at pH 9, and a gelatin concentration of 10-20%) enable a simplified reaction scheme that produces GelMA with high substitution with just one-step addition of MAA in one pot. Looking forward, these optimal conditions not only enable facile one-pot GelMA synthesis but can also guide researchers to explore the efficient, high methacrylation of other biomacromolecules.

  10. Precise Tuning of Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis.

    PubMed

    Shirahama, Hitomi; Lee, Bae Hoon; Tan, Lay Poh; Cho, Nam-Joon

    2016-01-01

    Gelatin-methacryloyl (GelMA) is one of the most commonly used photopolymerizable biomaterials in bio-applications. However, GelMA synthesis remains suboptimal, as its reaction parameters have not been fully investigated. The goal of this study is to establish an optimal route for effective and controllable GelMA synthesis by systematically examining reaction parameters including carbonate-bicarbonate (CB) buffer molarity, initial pH adjustment, MAA concentration, gelatin concentration, reaction temperature, and reaction time. We employed several analytical techniques in order to determine the degree of substitution (DS) and conducted detailed structural analysis of the synthesized polymer. The results enabled us to optimize GelMA synthesis, showing the optimal conditions to balance the deprotonation of amino groups with minimizing MAA hydrolysis, which led to nearly complete substitution. The optimized conditions (low feed ratio of MAA to gelatin (0.1 mL/g), 0.25 M CB buffer at pH 9, and a gelatin concentration of 10-20%) enable a simplified reaction scheme that produces GelMA with high substitution with just one-step addition of MAA in one pot. Looking forward, these optimal conditions not only enable facile one-pot GelMA synthesis but can also guide researchers to explore the efficient, high methacrylation of other biomacromolecules. PMID:27503340

  11. Terpolymer smart gels: synthesis and characterizations

    NASA Astrophysics Data System (ADS)

    Bag, Dibyendu S.; Alam, Sarfaraz; Mathur, G. N.

    2004-10-01

    Two smart terpolymer gels, MS-1 and MS-2, were synthesized such that the same gel can respond to more than one external environmental condition, such as pH, temperature, solvent composition, electric field. So two terpolymers gels of vinyl monomers such as sodium acrylate, acrylamide and N-isopropyl acrylamide were synthesized by using ammonium persulfate (APS) as an initiator, N,N,N',N'-tetramethyl ethylene diamine (TMEDA) as an accelerator and methylene bisacrylamide as a cross-linker. These terpolymers were characterized by elemental and Fourier transform infrared analysis. The swelling behavior of these terpolymer smart gels was evaluated by changing the pH, temperature and solvent composition. The variation of the swelling behavior with time was evaluated in an aqueous medium at room temperature. The time taken for maximum swelling (tm) was about 20 min for the gel MS-2. However the tm value for the gel MS-1 is higher than that of MS-2. The swelling behavior remains almost unchanged over a temperature range of 22-50 °C for both the gels. The discontinuous volume transitions were observed at pH 7.6 and 8.2 for the two gels, MS-1 and MS-2, respectively. The gel MS-1 suddenly shrinks below and swells above pH 7.6. Correspondingly, the pH is 8.2 for the case of MS-2. Volume transitions in an acetone-water mixture were also observed for these gels. The swelling behaviors of these two smart gels are almost parallel above the 40% acetone concentration.

  12. Capitalizing Resolving Power of Density Gradient Ultracentrifugation by Freezing and Precisely Slicing Centrifuged Solution: Enabling Identification of Complex Proteins from Mitochondria by Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry.

    PubMed

    Yu, Haiqing; Lu, Joann J; Rao, Wei; Liu, Shaorong

    2016-01-01

    Density gradient centrifugation is widely utilized for various high purity sample preparations, and density gradient ultracentrifugation (DGU) is often used for more resolution-demanding purification of organelles and protein complexes. Accurately locating different isopycnic layers and precisely extracting solutions from these layers play a critical role in achieving high-resolution DGU separations. In this technique note, we develop a DGU procedure by freezing the solution rapidly (but gently) after centrifugation to fix the resolved layers and by slicing the frozen solution to fractionate the sample. Because the thickness of each slice can be controlled to be as thin as 10 micrometers, we retain virtually all the resolution produced by DGU. To demonstrate the effectiveness of this method, we fractionate complex V from HeLa mitochondria using a conventional technique and this freezing-slicing (F-S) method. The comparison indicates that our F-S method can reduce complex V layer thicknesses by ~40%. After fractionation, we analyze complex V proteins directly on a matrix assisted laser desorption/ionization, time-of-flight mass spectrometer. Twelve out of fifteen subunits of complex V are positively identified. Our method provides a practical protocol to identify proteins from complexes, which is useful to investigate biomolecular complexes and pathways in various conditions and cell types.

  13. Capitalizing Resolving Power of Density Gradient Ultracentrifugation by Freezing and Precisely Slicing Centrifuged Solution: Enabling Identification of Complex Proteins from Mitochondria by Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry.

    PubMed

    Yu, Haiqing; Lu, Joann J; Rao, Wei; Liu, Shaorong

    2016-01-01

    Density gradient centrifugation is widely utilized for various high purity sample preparations, and density gradient ultracentrifugation (DGU) is often used for more resolution-demanding purification of organelles and protein complexes. Accurately locating different isopycnic layers and precisely extracting solutions from these layers play a critical role in achieving high-resolution DGU separations. In this technique note, we develop a DGU procedure by freezing the solution rapidly (but gently) after centrifugation to fix the resolved layers and by slicing the frozen solution to fractionate the sample. Because the thickness of each slice can be controlled to be as thin as 10 micrometers, we retain virtually all the resolution produced by DGU. To demonstrate the effectiveness of this method, we fractionate complex V from HeLa mitochondria using a conventional technique and this freezing-slicing (F-S) method. The comparison indicates that our F-S method can reduce complex V layer thicknesses by ~40%. After fractionation, we analyze complex V proteins directly on a matrix assisted laser desorption/ionization, time-of-flight mass spectrometer. Twelve out of fifteen subunits of complex V are positively identified. Our method provides a practical protocol to identify proteins from complexes, which is useful to investigate biomolecular complexes and pathways in various conditions and cell types. PMID:27668122

  14. Capitalizing Resolving Power of Density Gradient Ultracentrifugation by Freezing and Precisely Slicing Centrifuged Solution: Enabling Identification of Complex Proteins from Mitochondria by Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

    PubMed Central

    Yu, Haiqing; Lu, Joann J.; Rao, Wei

    2016-01-01

    Density gradient centrifugation is widely utilized for various high purity sample preparations, and density gradient ultracentrifugation (DGU) is often used for more resolution-demanding purification of organelles and protein complexes. Accurately locating different isopycnic layers and precisely extracting solutions from these layers play a critical role in achieving high-resolution DGU separations. In this technique note, we develop a DGU procedure by freezing the solution rapidly (but gently) after centrifugation to fix the resolved layers and by slicing the frozen solution to fractionate the sample. Because the thickness of each slice can be controlled to be as thin as 10 micrometers, we retain virtually all the resolution produced by DGU. To demonstrate the effectiveness of this method, we fractionate complex V from HeLa mitochondria using a conventional technique and this freezing-slicing (F-S) method. The comparison indicates that our F-S method can reduce complex V layer thicknesses by ~40%. After fractionation, we analyze complex V proteins directly on a matrix assisted laser desorption/ionization, time-of-flight mass spectrometer. Twelve out of fifteen subunits of complex V are positively identified. Our method provides a practical protocol to identify proteins from complexes, which is useful to investigate biomolecular complexes and pathways in various conditions and cell types. PMID:27668122

  15. Capitalizing Resolving Power of Density Gradient Ultracentrifugation by Freezing and Precisely Slicing Centrifuged Solution: Enabling Identification of Complex Proteins from Mitochondria by Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

    PubMed Central

    Yu, Haiqing; Lu, Joann J.; Rao, Wei

    2016-01-01

    Density gradient centrifugation is widely utilized for various high purity sample preparations, and density gradient ultracentrifugation (DGU) is often used for more resolution-demanding purification of organelles and protein complexes. Accurately locating different isopycnic layers and precisely extracting solutions from these layers play a critical role in achieving high-resolution DGU separations. In this technique note, we develop a DGU procedure by freezing the solution rapidly (but gently) after centrifugation to fix the resolved layers and by slicing the frozen solution to fractionate the sample. Because the thickness of each slice can be controlled to be as thin as 10 micrometers, we retain virtually all the resolution produced by DGU. To demonstrate the effectiveness of this method, we fractionate complex V from HeLa mitochondria using a conventional technique and this freezing-slicing (F-S) method. The comparison indicates that our F-S method can reduce complex V layer thicknesses by ~40%. After fractionation, we analyze complex V proteins directly on a matrix assisted laser desorption/ionization, time-of-flight mass spectrometer. Twelve out of fifteen subunits of complex V are positively identified. Our method provides a practical protocol to identify proteins from complexes, which is useful to investigate biomolecular complexes and pathways in various conditions and cell types.

  16. Modeling of fibrin gels based on confocal microscopy and light-scattering data.

    PubMed

    Magatti, Davide; Molteni, Matteo; Cardinali, Barbara; Rocco, Mattia; Ferri, Fabio

    2013-03-01

    Fibrin gels are biological networks that play a fundamental role in blood coagulation and other patho/physiological processes, such as thrombosis and cancer. Electron and confocal microscopies show a collection of fibers that are relatively monodisperse in diameter, not uniformly distributed, and connected at nodal points with a branching order of ∼3-4. Although in the confocal images the hydrated fibers appear to be quite straight (mass fractal dimension D(m) = 1), for the overall system 1gels made of cylindrical sticks of diameter d, density ρ, and average length , joined at randomly distributed nodal points. The resulting 3D network strikingly resembles real fibrin gels and can be sketched as an assembly of densely packed fractal blobs, i.e., regions of size ξ, where the fiber concentration is higher than average. The blobs are placed at a distance ξ0 between their centers of mass so that they are overlapped by a factor η =ξ/ξ0 and have D(m) ∼1.2-1.6. The in silico gels' structure is quantitatively analyzed by its 3D spatial correlation function g(3D)(r) and corresponding power spectrum I(q) = FFT(3D[g3D(r)]), from which ρ, d, D(m), η, and ξ0 can be extracted. In particular, ξ0 provides an excellent estimate of the gel mesh size. The in silico gels' I(q) compares quite well with real gels' elastic light-scattering measurements. We then derived an analytical form factor for accurately fitting the scattering data, which allowed us to directly recover the gels' structural parameters.

  17. A Simple Vertical Slab Gel Electrophoresis Apparatus.

    ERIC Educational Resources Information Center

    Carter, J. B.; And Others

    1983-01-01

    Describes an inexpensive, easily constructed, and safe vertical slab gel kit used routinely for sodium dodecyl sulphate-polyacrylamide gel electrophoresis research and student experiments. Five kits are run from a single transformer. Because toxic solutions are used, students are given plastic gloves and closely supervised during laboratory…

  18. Symmetries and elasticity of nematic gels

    NASA Astrophysics Data System (ADS)

    Lubensky, T. C.; Mukhopadhyay, Ranjan; Radzihovsky, Leo; Xing, Xiangjun

    2002-07-01

    A nematic liquid-crystal gel is a macroscopically homogeneous elastic medium with the rotational symmetry of a nematic liquid crystal. In this paper, we develop a general approach to the study of these gels that incorporates all underlying symmetries. After reviewing traditional elasticity and clarifying the role of broken rotational symmetries in both the reference space of points in the undistorted medium and the target space into which these points are mapped, we explore the unusual properties of nematic gels from a number of perspectives. We show how symmetries of nematic gels formed via spontaneous symmetry breaking from an isotropic gel enforce soft elastic response characterized by the vanishing of a shear modulus and the vanishing of stress up to a critical value of strain along certain directions. We also study the phase transition from isotropic to nematic gels. In addition to being fully consistent with approaches to nematic gels based on rubber elasticity, our description has the important advantages of being independent of a microscopic model, of emphasizing and clarifying the role of broken symmetries in determining elastic response, and of permitting easy incorporation of spatial variations, thermal fluctuations, and gel heterogeneity, thereby allowing a full statistical-mechanical treatment of these materials.

  19. Symmetries and elasticity of nematic gels.

    PubMed

    Lubensky, T C; Mukhopadhyay, Ranjan; Radzihovsky, Leo; Xing, Xiangjun

    2002-07-01

    A nematic liquid-crystal gel is a macroscopically homogeneous elastic medium with the rotational symmetry of a nematic liquid crystal. In this paper, we develop a general approach to the study of these gels that incorporates all underlying symmetries. After reviewing traditional elasticity and clarifying the role of broken rotational symmetries in both the reference space of points in the undistorted medium and the target space into which these points are mapped, we explore the unusual properties of nematic gels from a number of perspectives. We show how symmetries of nematic gels formed via spontaneous symmetry breaking from an isotropic gel enforce soft elastic response characterized by the vanishing of a shear modulus and the vanishing of stress up to a critical value of strain along certain directions. We also study the phase transition from isotropic to nematic gels. In addition to being fully consistent with approaches to nematic gels based on rubber elasticity, our description has the important advantages of being independent of a microscopic model, of emphasizing and clarifying the role of broken symmetries in determining elastic response, and of permitting easy incorporation of spatial variations, thermal fluctuations, and gel heterogeneity, thereby allowing a full statistical-mechanical treatment of these materials. PMID:12241370

  20. 21 CFR 866.4900 - Support gel.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Support gel. 866.4900 Section 866.4900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4900 Support gel....

  1. 21 CFR 866.4900 - Support gel.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Support gel. 866.4900 Section 866.4900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4900 Support gel....

  2. 21 CFR 866.4900 - Support gel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Support gel. 866.4900 Section 866.4900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4900 Support gel....

  3. 21 CFR 866.4900 - Support gel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Support gel. 866.4900 Section 866.4900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4900 Support gel....

  4. 21 CFR 866.4900 - Support gel.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Support gel. 866.4900 Section 866.4900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4900 Support gel....

  5. Catalytic control over supramolecular gel formation

    NASA Astrophysics Data System (ADS)

    Boekhoven, Job; Poolman, Jos M.; Maity, Chandan; Li, Feng; van der Mee, Lars; Minkenberg, Christophe B.; Mendes, Eduardo; van Esch, Jan H.; Eelkema, Rienk

    2013-05-01

    Low-molecular-weight gels show great potential for application in fields ranging from the petrochemical industry to healthcare and tissue engineering. These supramolecular gels are often metastable materials, which implies that their properties are, at least partially, kinetically controlled. Here we show how the mechanical properties and structure of these materials can be controlled directly by catalytic action. We show how in situ catalysis of the formation of gelator molecules can be used to accelerate the formation of supramolecular hydrogels, which drastically enhances their resulting mechanical properties. Using acid or nucleophilic aniline catalysis, it is possible to make supramolecular hydrogels with tunable gel-strength in a matter of minutes, under ambient conditions, starting from simple soluble building blocks. By changing the rate of formation of the gelator molecules using a catalyst, the overall rate of gelation and the resulting gel morphology are affected, which provides access to metastable gel states with improved mechanical strength and appearance despite an identical gelator composition.

  6. Photoswitchable gel assembly based on molecular recognition.

    PubMed

    Yamaguchi, Hiroyasu; Kobayashi, Yuichiro; Kobayashi, Ryosuke; Takashima, Yoshinori; Hashidzume, Akihito; Harada, Akira

    2012-01-03

    The formation of effective and precise linkages in bottom-up or top-down processes is important for the development of self-assembled materials. Self-assembly through molecular recognition events is a powerful tool for producing functionalized materials. Photoresponsive molecular recognition systems can permit the creation of photoregulated self-assembled macroscopic objects. Here we demonstrate that macroscopic gel assembly can be highly regulated through photoisomerization of an azobenzene moiety that interacts differently with two host molecules. A photoregulated gel assembly system is developed using polyacrylamide-based hydrogels functionalized with azobenzene (guest) or cyclodextrin (host) moieties. Reversible adhesion and dissociation of the host gel from the guest gel may be controlled by photoirradiation. The differential affinities of α-cyclodextrin or β-cyclodextrin for the trans-azobenzene and cis-azobenzene are employed in the construction of a photoswitchable gel assembly system.

  7. Photoswitchable gel assembly based on molecular recognition

    PubMed Central

    Yamaguchi, Hiroyasu; Kobayashi, Yuichiro; Kobayashi, Ryosuke; Takashima, Yoshinori; Hashidzume, Akihito; Harada, Akira

    2012-01-01

    The formation of effective and precise linkages in bottom-up or top-down processes is important for the development of self-assembled materials. Self-assembly through molecular recognition events is a powerful tool for producing functionalized materials. Photoresponsive molecular recognition systems can permit the creation of photoregulated self-assembled macroscopic objects. Here we demonstrate that macroscopic gel assembly can be highly regulated through photoisomerization of an azobenzene moiety that interacts differently with two host molecules. A photoregulated gel assembly system is developed using polyacrylamide-based hydrogels functionalized with azobenzene (guest) or cyclodextrin (host) moieties. Reversible adhesion and dissociation of the host gel from the guest gel may be controlled by photoirradiation. The differential affinities of α-cyclodextrin or β-cyclodextrin for the trans-azobenzene and cis-azobenzene are employed in the construction of a photoswitchable gel assembly system. PMID:22215078

  8. Surfactant-driven fracture of gels: Initiation

    NASA Astrophysics Data System (ADS)

    Bostwick, Joshua; Schillaci, Mark; Daniels, Karen

    2012-11-01

    A droplet of surfactant spreading on a gel substrate can produce fractures on the gel surface, which originate at the contact-line and propagate outwards in a star-burst pattern. Experiments show that the number of arms is controlled by the ratio of surface tension contrast to the gel's shear modulus. To further understand the mechanism behind crack initiation, we model the gel as a linear elastic solid and compute the state of stress that develops within the substrate from the uncompensated contact-line forces. The elastic solution yields an effective metric to predict the number of fractures. We also show that the depth of the gel is critical parameter in the fracture process, as it can help mitigate large surface tractions. This observation is confirmed in experiments.

  9. Photoswitchable gel assembly based on molecular recognition.

    PubMed

    Yamaguchi, Hiroyasu; Kobayashi, Yuichiro; Kobayashi, Ryosuke; Takashima, Yoshinori; Hashidzume, Akihito; Harada, Akira

    2012-01-01

    The formation of effective and precise linkages in bottom-up or top-down processes is important for the development of self-assembled materials. Self-assembly through molecular recognition events is a powerful tool for producing functionalized materials. Photoresponsive molecular recognition systems can permit the creation of photoregulated self-assembled macroscopic objects. Here we demonstrate that macroscopic gel assembly can be highly regulated through photoisomerization of an azobenzene moiety that interacts differently with two host molecules. A photoregulated gel assembly system is developed using polyacrylamide-based hydrogels functionalized with azobenzene (guest) or cyclodextrin (host) moieties. Reversible adhesion and dissociation of the host gel from the guest gel may be controlled by photoirradiation. The differential affinities of α-cyclodextrin or β-cyclodextrin for the trans-azobenzene and cis-azobenzene are employed in the construction of a photoswitchable gel assembly system. PMID:22215078

  10. Thermotropic nanostructured "gel in gel" systems for improved oil recovery and water shutoff

    NASA Astrophysics Data System (ADS)

    Altunina, L. K.; Kuvshinov, V. A.; Stasyeva, L. A.

    2015-10-01

    Thermotropic nanostructured system with two gel-forming components has been created based on inorganic hydroxypolymer and organic polymer with a lower critical solution temperature of "aluminum salt-cellulose ether-carbamide-water", forming at heating a bound-dispersed nano-sized "gel in gel" structure. The studies on the kinetics of gelation and rheological properties of solutions and gels in this system have shown that the gels have a higher viscosity and elasticity and thereby are promising for creating deflecting screens in oil reservoirs, redistribution of filtration flows, improved oil recovery and for water shutoff.

  11. Transparent poly(vinyl acetate)-silica gels by a sol-gel process

    NASA Astrophysics Data System (ADS)

    Wojcik, Anna B.; Klein, Lisa C.

    1993-12-01

    Rod shaped silica-poly(vinyl acetate) (PVAc) gels have been prepared by a sol gel process. In situ polymerization of tetraethoxysilane (TEOS) was accomplished in the presence of low molecular weight PVAc by dissolving various amounts of PVAc in a mixture of TEOS, ethanol, water and hydrochloric acid (HCl). Gelation of this mixture was carried out between room temperature and slightly above. Silica-PVAc rods recovered from cylindrical molds were homogeneous and transparent. Gels with weight percents of PVAc ranging from 2% to 50% were prepared. Silica-PVAc gels have higher flexure strengths, less brittle character and improved water durability in comparison with pure sol- gel silica.

  12. Advances in analytical chemistry

    NASA Technical Reports Server (NTRS)

    Arendale, W. F.; Congo, Richard T.; Nielsen, Bruce J.

    1991-01-01

    Implementation of computer programs based on multivariate statistical algorithms makes possible obtaining reliable information from long data vectors that contain large amounts of extraneous information, for example, noise and/or analytes that we do not wish to control. Three examples are described. Each of these applications requires the use of techniques characteristic of modern analytical chemistry. The first example, using a quantitative or analytical model, describes the determination of the acid dissociation constant for 2,2'-pyridyl thiophene using archived data. The second example describes an investigation to determine the active biocidal species of iodine in aqueous solutions. The third example is taken from a research program directed toward advanced fiber-optic chemical sensors. The second and third examples require heuristic or empirical models.

  13. Competing on talent analytics.

    PubMed

    Davenport, Thomas H; Harris, Jeanne; Shapiro, Jeremy

    2010-10-01

    Do investments in your employees actually affect workforce performance? Who are your top performers? How can you empower and motivate other employees to excel? Leading-edge companies such as Google, Best Buy, Procter & Gamble, and Sysco use sophisticated data-collection technology and analysis to answer these questions, leveraging a range of analytics to improve the way they attract and retain talent, connect their employee data to business performance, differentiate themselves from competitors, and more. The authors present the six key ways in which companies track, analyze, and use data about their people-ranging from a simple baseline of metrics to monitor the organization's overall health to custom modeling for predicting future head count depending on various "what if" scenarios. They go on to show that companies competing on talent analytics manage data and technology at an enterprise level, support what analytical leaders do, choose realistic targets for analysis, and hire analysts with strong interpersonal skills as well as broad expertise.

  14. Radiological properties of normoxic polymer gel dosimeters

    SciTech Connect

    Venning, A.J.; Nitschke, K.N.; Keall, P.J.; Baldock, C.

    2005-04-01

    The radiological properties of the normoxic polymer gel dosimeters MAGIC, MAGAS, and MAGAT [methacrylic and ascorbic acid in gelatin initiated by copper; methacrylic acid gelatine gel with ascorbic acid; and methacrylic acid gelatine and tetrakis (hydroxymethyl) phosphonium chloride, respectively] have been investigated. The radiological water equivalence was determined by comparing the polymer gel macroscopic photon and electron interaction cross sections over the energy range from 10 keV to 20 MeV and by Monte Carlo modeling of depth doses. Normoxic polymer gel dosimeters have a high gelatine and monomer concentration and therefore mass density (kg m{sup -3}) up to 3.8% higher than water. This results in differences between the cross-section ratios of the normoxic polymer gels and water of up to 3% for the attenuation, energy absorption, and collision stopping power coefficient ratios through the Compton dominant energy range. The mass cross-section ratios were within 2% of water except for the mass attenuation and energy absorption coefficients ratios, which showed differences with water of up to 6% for energies less than 100 keV. Monte Carlo modeling was undertaken for the polymer gel dosimeters to model the electron and photon transport resulting from a 6 MV photon beam. The absolute percentage differences between gel and water were within 1% and the relative percentage differences were within 3.5%. The results show that the MAGAT gel formulation is the most radiological water equivalent of the normoxic polymer gel dosimeters investigated due to its lower mass density measurement compared with MAGAS and MAGIC gels.

  15. Internal structure analysis of particle-double network gels used in a gel organ replica

    NASA Astrophysics Data System (ADS)

    Abe, Mei; Arai, Masanori; Saito, Azusa; Sakai, Kazuyuki; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    In recent years, the fabrication of patient organ replicas using 3D printers has been attracting a great deal of attention in medical fields. However, the cost of these organ replicas is very high as it is necessary to employ very expensive 3D printers and printing materials. Here we present a new gel organ replica, of human kidney, fabricated with a conventional molding technique, using a particle-double network hydrogel (P-DN gel). The replica is transparent and has the feel of a real kidney. It is expected that gel organ replicas produced this way will be a useful tool for the education of trainee surgeons and clinical ultrasonography technologists. In addition to developing a gel organ replica, the internal structure of the P-DN gel used is also discussed. Because the P-DN gel has a complex structure comprised of two different types of network, it has not been possible to investigate them internally in detail. Gels have an inhomogeneous network structure. If it is able to get a more uniform structure, it is considered that this would lead to higher strength in the gel. In the present study we investigate the structure of P-DN gel, using the gel organ replica. We investigated the internal structure of P-DN gel using Scanning Microscopic Light Scattering (SMILS), a non-contacting and non-destructive.

  16. Hyperspectral imaging of gel pen inks: an emerging tool in document analysis.

    PubMed

    Reed, G; Savage, K; Edwards, D; Nic Daeid, N

    2014-01-01

    Hyperspectral imaging (HSI) is a useful technique in the examination of writing inks, including gel pen inks, which combines digital imaging with % reflectance spectroscopy. This facilitates the detection of subtle differences between chemically similar inks. This study analysed a variety of blue, red and black gel inks on white office paper using HSI. The potential of the technique for ink discrimination compared to other analytical methods of examination is highlighted. Discriminating powers of 1.00, 0.90 and 0.40 were achieved using HSI for red, blue and black gel inks respectively. The overall discriminating power of 0.76 for the technique combined with its non-destructive nature and minimal sampling requirements demonstrates promise for this type of application. PMID:24438781

  17. Fractionation of SWNT/nucleic acid complexes by agarose gel electrophoresis

    NASA Astrophysics Data System (ADS)

    Vetcher, Alexandre A.; Srinivasan, Srimeenakshi; Vetcher, Ivan A.; Abramov, Semen M.; Kozlov, Mikhail; Baughman, Ray H.; Levene, Stephen D.

    2006-08-01

    We show that aqueous dispersions of single-walled carbon nanotubes (SWNTs), prepared with the aid of nucleic acids (NAs) such as RNA or DNA, can be separated into fractions using agarose gel electrophoresis. In a DC electric field, SWNT/NA complexes migrate in the gel in the direction of positive potential to form well-defined bands. Raman spectroscopy as a function of band position shows that nanotubes having different spectroscopic properties possess different electrophoretic mobilities. The migration patterns for SWNT/RNA and SWNT/DNA complexes differ. Parallel elution of the SWNT/NA complexes from the gel during electrophoresis and subsequent characterization by AFM reveals differences in nanotube diameter, length and curvature. The results suggest that fractionation of nanotubes can be achieved by this procedure. We discuss factors affecting the mobility of the nanotube complexes and propose analytical applications of this technique.

  18. Sol–gel composite material characteristics caused by different dielectric constant sol–gel phases

    NASA Astrophysics Data System (ADS)

    Kimoto, Keisuke; Matsumoto, Makoto; Kaneko, Tsukasa; Kobayashi, Makiko

    2016-07-01

    Ultrasonic transducers prepared by a sol–gel composite method have been investigated in the field of nondestructive testing (NDT). Sol–gel composite materials could be ideal piezoelectric materials for ultrasonic transducer applications in the NDT field, and a new sol–gel composite with desirable characteristics has been developed. Three kinds of sol–gel composite materials composed of different dielectric constant sol–gel phases, Pb(Zr,Ti)O3 (PZT), Bi4Ti3O12 (BiT), and BaTiO3 (BT), and the same piezoelectric powder phase, PbTiO3 (PT), were fabricated and their properties were compared quantitatively. As a result, the PT/BT, sol–gel composite with the highest dielectric constant sol–gel phase showed the highest d 33 and signal strength. In addition, only PT/BT was successfully poled by room-temperature corona poling with reasonable signal strength.

  19. Sol-gel composite material characteristics caused by different dielectric constant sol-gel phases

    NASA Astrophysics Data System (ADS)

    Kimoto, Keisuke; Matsumoto, Makoto; Kaneko, Tsukasa; Kobayashi, Makiko

    2016-07-01

    Ultrasonic transducers prepared by a sol-gel composite method have been investigated in the field of nondestructive testing (NDT). Sol-gel composite materials could be ideal piezoelectric materials for ultrasonic transducer applications in the NDT field, and a new sol-gel composite with desirable characteristics has been developed. Three kinds of sol-gel composite materials composed of different dielectric constant sol-gel phases, Pb(Zr,Ti)O3 (PZT), Bi4Ti3O12 (BiT), and BaTiO3 (BT), and the same piezoelectric powder phase, PbTiO3 (PT), were fabricated and their properties were compared quantitatively. As a result, the PT/BT, sol-gel composite with the highest dielectric constant sol-gel phase showed the highest d 33 and signal strength. In addition, only PT/BT was successfully poled by room-temperature corona poling with reasonable signal strength.

  20. Frontiers in analytical chemistry

    SciTech Connect

    Amato, I.

    1988-12-15

    Doing more with less was the modus operandi of R. Buckminster Fuller, the late science genius, and inventor of such things as the geodesic dome. In late September, chemists described their own version of this maxim--learning more chemistry from less material and in less time--in a symposium titled Frontiers in Analytical Chemistry at the 196th National Meeting of the American Chemical Society in Los Angeles. Symposium organizer Allen J. Bard of the University of Texas at Austin assembled six speakers, himself among them, to survey pretty widely different areas of analytical chemistry.

  1. Monitoring the analytic surface.

    PubMed

    Spence, D P; Mayes, L C; Dahl, H

    1994-01-01

    How do we listen during an analytic hour? Systematic analysis of the speech patterns of one patient (Mrs. C.) strongly suggests that the clustering of shared pronouns (e.g., you/me) represents an important aspect of the analytic surface, preconsciously sensed by the analyst and used by him to determine when to intervene. Sensitivity to these patterns increases over the course of treatment, and in a final block of 10 hours shows a striking degree of contingent responsivity: specific utterances by the patient are consistently echoed by the analyst's interventions. PMID:8182248

  2. Moisture Transport in Silica Gel Particle Beds: I. Theoretical Study

    SciTech Connect

    Pesaran, A. A.; Mills, A. F.

    1986-08-01

    Diffusion mechanisms of moisture within silica gel particles are investigated. It is found that for microporous silica gel surface diffusion is the dominant mechanism of moisture transport, while for macroporous silica gel both Knudsen and surface diffusion are important.

  3. Analytical Services Management System

    SciTech Connect

    Church, Shane; Nigbor, Mike; Hillman, Daniel

    2005-03-30

    Analytical Services Management System (ASMS) provides sample management services. Sample management includes sample planning for analytical requests, sample tracking for shipping and receiving by the laboratory, receipt of the analytical data deliverable, processing the deliverable and payment of the laboratory conducting the analyses. ASMS is a web based application that provides the ability to manage these activities at multiple locations for different customers. ASMS provides for the assignment of single to multiple samples for standard chemical and radiochemical analyses. ASMS is a flexible system which allows the users to request analyses by line item code. Line item codes are selected based on the Basic Ordering Agreement (BOA) format for contracting with participating laboratories. ASMS also allows contracting with non-BOA laboratories using a similar line item code contracting format for their services. ASMS allows sample and analysis tracking from sample planning and collection in the field through sample shipment, laboratory sample receipt, laboratory analysis and submittal of the requested analyses, electronic data transfer, and payment of the laboratories for the completed analyses. The software when in operation contains business sensitive material that is used as a principal portion of the Kaiser Analytical Management Services business model. The software version provided is the most recent version, however the copy of the application does not contain business sensitive data from the associated Oracle tables such as contract information or price per line item code.

  4. Analytical Services Management System

    2005-03-30

    Analytical Services Management System (ASMS) provides sample management services. Sample management includes sample planning for analytical requests, sample tracking for shipping and receiving by the laboratory, receipt of the analytical data deliverable, processing the deliverable and payment of the laboratory conducting the analyses. ASMS is a web based application that provides the ability to manage these activities at multiple locations for different customers. ASMS provides for the assignment of single to multiple samples for standardmore » chemical and radiochemical analyses. ASMS is a flexible system which allows the users to request analyses by line item code. Line item codes are selected based on the Basic Ordering Agreement (BOA) format for contracting with participating laboratories. ASMS also allows contracting with non-BOA laboratories using a similar line item code contracting format for their services. ASMS allows sample and analysis tracking from sample planning and collection in the field through sample shipment, laboratory sample receipt, laboratory analysis and submittal of the requested analyses, electronic data transfer, and payment of the laboratories for the completed analyses. The software when in operation contains business sensitive material that is used as a principal portion of the Kaiser Analytical Management Services business model. The software version provided is the most recent version, however the copy of the application does not contain business sensitive data from the associated Oracle tables such as contract information or price per line item code.« less

  5. Challenges for Visual Analytics

    SciTech Connect

    Thomas, James J.; Kielman, Joseph

    2009-09-23

    Visual analytics has seen unprecedented growth in its first five years of mainstream existence. Great progress has been made in a short time, yet great challenges must be met in the next decade to provide new technologies that will be widely accepted by societies throughout the world. This paper sets the stage for some of those challenges in an effort to provide the stimulus for the research, both basic and applied, to address and exceed the envisioned potential for visual analytics technologies. We start with a brief summary of the initial challenges, followed by a discussion of the initial driving domains and applications, as well as additional applications and domains that have been a part of recent rapid expansion of visual analytics usage. We look at the common characteristics of several tools illustrating emerging visual analytics technologies, and conclude with the top ten challenges for the field of study. We encourage feedback and collaborative participation by members of the research community, the wide array of user communities, and private industry.

  6. Analytical Chemistry Laboratory

    NASA Technical Reports Server (NTRS)

    Anderson, Mark

    2013-01-01

    The Analytical Chemistry and Material Development Group maintains a capability in chemical analysis, materials R&D failure analysis and contamination control. The uniquely qualified staff and facility support the needs of flight projects, science instrument development and various technical tasks, as well as Cal Tech.

  7. Analytics: Changing the Conversation

    ERIC Educational Resources Information Center

    Oblinger, Diana G.

    2013-01-01

    In this third and concluding discussion on analytics, the author notes that we live in an information culture. We are accustomed to having information instantly available and accessible, along with feedback and recommendations. We want to know what people think and like (or dislike). We want to know how we compare with "others like me."…

  8. Water equivalence of polymer gel dosimeters

    NASA Astrophysics Data System (ADS)

    Sellakumar, P.; James Jebaseelan Samuel, E.; Supe, Sanjay S.

    2007-07-01

    To evaluate the water equivalence and radiation transport properties of polymer gel dosimeters over the wide range of photon and electron energies 14 different types of polymer gels were considered. Their water equivalence was evaluated in terms of effective atomic number ( Zeff), electron density ( ρe), photon mass attenuation coefficient ( μ/ρ), photon mass energy absorption coefficient ( μen/ρ) and total stopping power (S/ρ)tot of electrons using the XCOM and the ESTAR database. The study showed that the effective atomic number of polymer gels were very close ( <1%) to that of water except PAGAT, MAGAT and NIPAM which had the variation of 3%, 2% and 3%, respectively. The value of μ/ρ and μen/ρ for all polymer gels were in close agreement ( <1%) with that of water beyond 80 keV. The value of (S/ρ)tot of electrons in polymer gel dosimeters were within 1% agreement with that of water. From the study we conclude that at lower energy ( <80 keV) the polymer gel dosimeters cannot be considered water equivalent and study has to be carried out before using the polymer gel for clinical application.

  9. Gel phantom in selective laser phototherapy

    NASA Astrophysics Data System (ADS)

    Chen, Yichao; Bailey, Christopher A.; Cowan, Thomas M.; Wu, Feng; Liu, Hong; Towner, Rheal A.; Chen, Wei R.

    2008-02-01

    Tissue-simulating gel phantoms have been used in selective laser photothermal interaction. The gelatin phantom provides a uniform tissue-simulating medium for analyzing thermal performance under laser radiation. The gelatin phantom gel is used particularly in measurements of thermal reactions in laser thermology. The gelatin phantom is made from gelatin and Liposyn. A special gel sphere with Indocyanine Green (ICG) laser absorption enhancement dye is embedded in normal gel to simulate the dye-enhanced tumor in normal tissue. The concentration of ICG within the dye sphere is optimized using simulation for selective phototherapy. As a first attempt, the concentration of ICG and laser power density was optimized using a temperature ratio of target tissue versus surrounding tissue. The gel thermal performance is also monitored using MRI thermology imaging technology. The thermal imaging shows in vivo, 3D temperature mapping inside the gel. The study of thermal distribution using gel phantom provides information to guide the future selective laser photothermal thermal therapy.

  10. Electroacoustics of Particles Dispersed in Polymer Gel

    SciTech Connect

    Bhosale, Prasad S.; Chun, Jaehun; Berg, John C.

    2011-06-27

    This study examines the acoustic electrophoresis of particles dispersed in polymer hydrogels, with the particle size either less than or greater than the gel mesh size. When the particles are smaller than the gel mesh size, their acoustic vibration is resisted by only the background water medium, and the measured dynamic electrophoretic mobility, μd (obtained in terms of colloid vibration current, CVI), is the same as in water. For the case of particles larger than the gel mesh size, μd is decreased due to trapping, and the net decrease depends on the viscoelastic properties of the gel. The gel mesh size was varied by varying its crosslink density, the latter being characterized as the storage modulus, G’. The dependence of mobility on G’, for systems of a given particle size, and on particle size, for gels of a given G’, are investigated. The measured mobility remains constant as G’ is increased (i.e., mesh size is decreased) up to a value of approximately 300 Pa, beyond which it decreases. In the second set of measurements, the trapped particle size was increased in a gel medium of constant mesh size, with G’ approximately 100 Pa. In this case, the measured μd is found to be effectively constant over the particle size range studied (14-120 nm), i.e., it is independent of the degree of trapping as expressed by the ratio of the particle size to the mesh size.

  11. Sol-gel manufactured energetic materials

    DOEpatents

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2003-12-23

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  12. Sol-Gel Manufactured Energetic Materials

    DOEpatents

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2005-05-17

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  13. Muscular Contraction Mimiced by Magnetic Gels

    NASA Astrophysics Data System (ADS)

    Zrínyi, Miklós; Szabó, Dénes

    The ability of magnetic-field-sensitive gels to undergo a quick controllable change of shape can be used to create an artificially designed system possessing sensor- and actuator functions internally in the gel itself. The peculiar magneto-elastic properties may be used to create a wide range of motion and to control the shape change and movement, that are smooth and gentle similar to that observed in muscle. Magnetic field sensitive gels provide attractive means of actuation as artificial muscle for biomechanics and biomimetic applications.

  14. Evaluation of radiochromic gel dosimetry and polymer gel dosimetry in a clinical dose verification

    NASA Astrophysics Data System (ADS)

    Vandecasteele, Jan; De Deene, Yves

    2013-09-01

    A quantitative comparison of two full three-dimensional (3D) gel dosimetry techniques was assessed in a clinical setting: radiochromic gel dosimetry with an in-house developed optical laser CT scanner and polymer gel dosimetry with magnetic resonance imaging (MRI). To benchmark both gel dosimeters, they were exposed to a 6 MV photon beam and the depth dose was compared against a diamond detector measurement that served as golden standard. Both gel dosimeters were found accurate within 4% accuracy. In the 3D dose matrix of the radiochromic gel, hotspot dose deviations up to 8% were observed which are attributed to the fabrication procedure. The polymer gel readout was shown to be sensitive to B0 field and B1 field non-uniformities as well as temperature variations during scanning. The performance of the two gel dosimeters was also evaluated for a brain tumour IMRT treatment. Both gel measured dose distributions were compared against treatment planning system predicted dose maps which were validated independently with ion chamber measurements and portal dosimetry. In the radiochromic gel measurement, two sources of deviations could be identified. Firstly, the dose in a cluster of voxels near the edge of the phantom deviated from the planned dose. Secondly, the presence of dose hotspots in the order of 10% related to inhomogeneities in the gel limit the clinical acceptance of this dosimetry technique. Based on the results of the micelle gel dosimeter prototype presented here, chemical optimization will be subject of future work. Polymer gel dosimetry is capable of measuring the absolute dose in the whole 3D volume within 5% accuracy. A temperature stabilization technique is incorporated to increase the accuracy during short measurements, however keeping the temperature stable during long measurement times in both calibration phantoms and the volumetric phantom is more challenging. The sensitivity of MRI readout to minimal temperature fluctuations is demonstrated which

  15. Augmentation of Cooling Output by Silica Gel-Water Adsorption Cycle Utilizing the Waste Heat of GHP

    NASA Astrophysics Data System (ADS)

    Homma, Hiroki; Araki, Nobuyuki

    The GHP (Gas engine Heat Pump) system is expected to have high energy-efficiency in utilizing the waste heat exhausted from a gas engine. In summer season, a silica gel-water adsorption cooling unit driven by the exhaust heat is considered as a cooling system for saving energy. In this work, an attempt was made to improve the COP of a silica gel-water adsorption cooling system by enhancing heat and mass transfer in the silica gel adsorption layer. A unit cell was introduced as a simplified model of adsorber for analyzing the phenomena of heat and mass transfer in the adsorbent. This cell was composed of a single tube with a silica gel layer bonded on its external surface. Optimization of heat and mass transfer characteristics for the unit cell was carried out by experimental and analytical approach.

  16. Sol-gel based sensor for selective formaldehyde determination.

    PubMed

    Bunkoed, Opas; Davis, Frank; Kanatharana, Proespichaya; Thavarungkul, Panote; Higson, Séamus P J

    2010-02-01

    We report the development of transparent sol-gels with entrapped sensitive and selective reagents for the detection of formaldehyde. The sampling method is based on the adsorption of formaldehyde from the air and reaction with beta-diketones (for example acetylacetone) in a sol-gel matrix to produce a yellow product, lutidine, which was detected directly. The proposed method does not require preparation of samples prior to analysis and allows both screening by visual detection and quantitative measurement by simple spectrophotometry. The detection limit of 0.03 ppmv formaldehyde is reported which is lower than the maximum exposure concentrations recommended by both the World Health Organisation (WHO) and the Occupational Safety and Health Administration (OSHA). This sampling method was found to give good reproducibility, the relative standard deviation at 0.2 and 1 ppmv being 6.3% and 4.6%, respectively. Other carbonyl compounds i.e. acetaldehyde, benzaldehyde, acetone and butanone do not interfere with this analytical approach. Results are provided for the determination of formaldehyde in indoor air.

  17. Heterogeneous integration of gels into microfluidics using a mesh carrier.

    PubMed

    Eker, Bilge; Temiz, Yuksel; Delamarche, Emmanuel

    2014-12-01

    The incorporation of hydrogels inside microfluidics is a promising method for localizing receptors inside microfluidic structures for many bio-analytical applications as well as for working with cells. However, current methods rely on the in situ polymerization of hydrogels and therefore necessitate optical masks and extensive post-polymerization steps for example for washing uncrosslinked gel precursors and receptors. Here, we report a simple and efficient method for the integration of hydrogels to microfluidic chips. Small volumes of poly(ethylene)glycol-based acrylamide (PEGACA) hydrogels are photopolymerized on a mesh, rinsed, partially dried and transferred to microfluidic structures by simple contact. The gels can be derivatized before transfer with receptors such as streptavidin, antibodies, or can entrap beads as small as 200 nm. We detail the role of meshes relative to the mesh density and wettability and demonstrate how hydrogels can be transferred into capillary-driven microfluidic chips, which are easily sealed using a dry-film resist. By analogy to microfabrication strategies wherein critical components are produced separately and then combined, our method introduces the concept of heterogeneous integration of critical (bio)chemicals to microfluidic chips using an intermediate mesh carrier. PMID:24999091

  18. Fractionation of salivary micelle-like structures by gel chromatography.

    PubMed

    Rykke, M; Young, A; Devold, T; Smistad, G; Rölla, G

    1997-10-01

    Globular structures have been demonstrated in human parotid saliva by transmission electron microscopy and photon correlation spectroscopy. The aim of this study was to fractionate these salivary globular structures for analytical and preparative purposes using a gel-filtration material capable of separating spherical particles up to 300-400 nm in diameter. Freshly obtained parotid saliva was applied to a Sephacryl S-1000 column. Peak fractions were collected and prepared for transmission electron microscopy (TEM) or for amino acid analysis. Bovine milk was included as the casein micelles by TEM appear to be similar to the salivary aggregates and their elution profiles are known. The salivary globular structures were eluted in one major peak. TEM of negatively stained samples from the peak fractions demonstrated globular protein aggregates consistent with the salivary structures in parotid saliva. Amino acid analysis showed characteristic amino acid profiles with unusual high levels of proline, 40-45%. The casein micelles were eluted in one major peak and separated from the whey proteins. This study indicates that the salivary globular structures can be isolated by gel chromatography. The amino acid analysis indicates that proline-rich proteins may be an important fraction of the salivary globular structures. PMID:9395115

  19. Use of gel retardation to analyze protein-nucleic acid interactions.

    PubMed Central

    Lane, D; Prentki, P; Chandler, M

    1992-01-01

    Protein-nucleic acid interactions are crucial in the regulation of many fundamental cellular processes. The nature of these interactions is susceptible to analysis by a variety of methods, but the combination of high analytical power and technical simplicity offered by the gel retardation (band shift) technique has made this perhaps the most widely used such method over the last decade. This procedure is based on the observation that the formation of protein-nucleic complexes generally reduces the electrophoretic mobility of the nucleic acid component in the gel matrix. This review attempts to give a simplified account of the physical basis of the behavior of protein-nucleic acid complexes in gels and an overview of many of the applications in which the technique has proved especially useful. The factors which contribute most to the resolution of the complex from the naked nucleic acid are the gel pore size, the relative mass of protein compared with nucleic acid, and changes in nucleic acid conformation (bending) induced by binding. The consequences of induced bending on the mobility of double-strand DNA fragments are similar to those arising from sequence-directed bends, and the latter can be used to help characterize the angle and direction of protein-induced bends. Whether a complex formed in solution is actually detected as a retarded band on a gel depends not only on resolution but also on complex stability within the gel. This is strongly influenced by the composition and, particularly, the ionic strength of the gel buffer. We discuss the applications of the technique to analyzing complex formation and stability, including characterizing cooperative binding, defining binding sites on nucleic acids, analyzing DNA conformation in complexes, assessing binding to supercoiled DNA, defining protein complexes by using cell extracts, and analyzing biological processes such as transcription and splicing. Images PMID:1480106

  20. Magnetic Hyperthermia in ferrofluid-gel composites

    NASA Astrophysics Data System (ADS)

    Nemala, Humeshkar; Wadehra, Anshu; Dixit, Ambesh; Regmi, Rajesh; Vaishnava, Prem; Lawes, Gavin; Naik, Ratna

    2012-02-01

    Magnetic hyperthermia is the generation of heat by an external magnetic field using superparamagnetic nanoparticles. However, there are still questions concerning magnetic hyperthermia in tissue; in particular the confinement of the nanoparticles at mesoscopic scales. We used Agarose and Alginate gels as models for human tissue and embedded magnetic nanoparticles in them. We report the synthesis and characterization of dextran coated iron oxide (Fe3O4) nanoparticles. Characterization of these nanoparticles was done using X-ray diffraction, transmission electron microscopy, magnetometry, and hyperthermia measurements. Temperature dependent susceptibility measurements reveal a sharp anomaly in the ferrofluid sample at the freezing temperature. This is conspicuously absent in the ferrofluid-gel composites. Heat generation studies on these superparamagnetic gel-composites revealed a larger heat production in the ferrofluids(˜4W/g) as compared to the gels(˜1W/g), which we attribute to a reduction in Brownian relaxation for the nanoparticles embedded in Agarose and Alginate.

  1. Sample collection system for gel electrophoresis

    DOEpatents

    Olivares, Jose A.; Stark, Peter C.; Dunbar, John M.; Hill, Karen K.; Kuske, Cheryl R.; Roybal, Gustavo

    2004-09-21

    An automatic sample collection system for use with an electrophoretic slab gel system is presented. The collection system can be used with a slab gel have one or more lanes. A detector is used to detect particle bands on the slab gel within a detection zone. Such detectors may use a laser to excite fluorescently labeled particles. The fluorescent light emitted from the excited particles is transmitted to low-level light detection electronics. Upon the detection of a particle of interest within the detection zone, a syringe pump is activated, sending a stream of buffer solution across the lane of the slab gel. The buffer solution collects the sample of interest and carries it through a collection port into a sample collection vial.

  2. Sol-gel antireflective coating on plastics

    DOEpatents

    Ashley, Carol S.; Reed, Scott T.

    1990-01-01

    An antireflection film made from a reliquified sol-gel hydrolyzation, condensation polymeric reaction product of a silicon, alkoxides and/or metal alkoxides, or mixtures thereof. The film is particularly useful for coating plastics.

  3. K-Basin gel formation studies

    SciTech Connect

    Beck, M.A.

    1998-07-23

    A key part of the proposed waste treatment for K Basin sludge is the elimination of reactive uranium metal by dissolution in nitric acid (Fkirnent, 1998). It has been found (Delegard, 1998a) that upon nitric acid dissolution of the sludge, a gel sometimes forms. Gels are known to sometimes impair solid/liquid separation and/or material transfer. The purpose of the work reported here is to determine the cause(s) of the gel formation and to determine operating parameters for the sludge dissolution that avoid formation of gel. This work and related work were planned in (Fkunent, 1998), (Jewett, 1998) and (Beck, 1998a). This report describes the results of the tests in (Beck, 1998a) with non-radioactive surrogates.

  4. Procedure to prepare transparent silica gels

    NASA Technical Reports Server (NTRS)

    Barber, Patrick G. (Inventor); Simpson, Norman R. (Inventor)

    1987-01-01

    This invention relates to the production of silica gels and in particular to a process for the preparation of silica gels which can be used as a crystal growth medium that simulates the convectionless environment of space to produce structurally perfect crystals. Modern utilizations of substances in electronics, such as radio transmitters and high frequency microphones, often require single crystals with controlled purity and structural perfection. The near convectionless environment of silica gel suppresses nucleation, thereby reducing the competitive nature of crystal growth. This competition limits the size and perfection of the crystal; and it is obviously desirable to suppress nucleation until, ideally, only one crystal grows in a predetermined location. A silica gel is not a completely convectionless environment like outer space, but is the closest known environment to that of outer space that can be created on Earth.

  5. Elastocapillary Deformations and Fracture of Soft Gels

    NASA Astrophysics Data System (ADS)

    Daniels, Karen; Grzelka, Marion; Bostwick, Joshua

    When a droplet is placed on the surface of a soft gel, the surface deforms by an amount proportional to the elastocapillary length calculated from the ratio of surface tension and elastic modulus. For sufficiently large deformations, the gel can fracture due to the forces generated under the liquid-gel contact line. We observe that a starburst of channel fractures forms at the surface of the gel, driven by fluid propagating away from the central droplet. To understand the initiation of these cracks, we model the substrate as an incompressible, linear-elastic solid and quantify the elastic response. This provides quantitative agreement with experimental measurements of the number of fracture arms as a function of material properties and geometric parameters. In addition, we find that the initiation process is thermally-activated, with delay time that decreases as a function of the elastocapillary length.

  6. Protein detection in gels without fixation.

    PubMed

    Joo, Won-A; Speicher, David W

    2007-05-01

    A number of alternative methods are described for detecting proteins in polyacrylamide gels that do not require fixation of the protein either prior to staining or in conjunction with staining. The primary advantage of avoiding fixation is that this makes it easier to remove proteins of interest from the gels for subsequent analysis. In general, the sensitivity of protein detection methods that avoid fixation is lower than for detection methods using fixation. For any given method, sensitivity is dependent on the volume of the protein band within the gel; hence, sensitivity is highest for sharp, narrow bands. Techniques described in this unit include protocols for protein detection in gels by SDS precipitation, preparation of contact blots, staining with imidazole-zinc, and use of the fluorescent labels IAEDANS and fluorescamine. Several additional methods, including the use of tryptophan fluorescence, guide strips, and minimal protein staining, are discussed in the Commentary.

  7. Surfactant-driven fracture of gels: Growth

    NASA Astrophysics Data System (ADS)

    Daniels, Karen; Schillaci, Mark; Bostwick, Joshua

    2012-11-01

    A droplet of surfactant spreading on a gel substrate can produce fractures on the gel surface, which originate at the contact-line and propagate outwards in a star-burst pattern. Fractures have previously been observed to initiate through a thermal process, with the number of fractures controlled by the ratio of surface tension differential to gel shear modulus. After the onset of fracture, experiments show the arm length grows with universal power law L =t 3 / 4 that does not scale with any material parameters (Daniels et al. 2007, PRL), including super-spreading surfactants (Spandangos et al. 2012, Langmuir). We develop a model for crack growth controlled by the transport of an inviscid fluid into the fracture tip. While treating the gel as a linear material correctly predicts power-law growth, we find that only by considering a Neo-Hookean (incompressible) material do we obtain agreement with the experiments.

  8. Turbidimetric studies of Limulus coagulin gel formation.

    PubMed Central

    Moody, T P; Donovan, M A; Laue, T M

    1996-01-01

    The turbidity during trypsin-induced coagulin gel formation was studied over a range of wavelengths. The range of wavelengths used (686-326 nm) also made it possible to investigate the dependence of turbidity on wavelength (the wavelength exponent). Using the results from that work, and structural information on coagulin and the coagulin gel from other studies, a model gel-forming system was designed that consists of species for which the turbidity can be calculated relatively simply. These species include small particles (small in all dimensions relative to the wavelength of incident light); long rods and long random coils (particles that are large in just one dimension relative to the wavelength of incident light); and reflective regions (aggregated material that is large in more than one dimension relative to the wavelength of incident light). The turbidimetric characteristics of the real coagulin gel-forming system are compared with those of the model system. PMID:8889175

  9. Sol-gel deposited electrochromic coatings

    SciTech Connect

    Ozer, N.; Lampert, C.M.

    1995-06-01

    Electrochromic devices have increasing application in display devices, switchable mirrors and smart windows. A variety of vacuum deposition technologies have been used to make electrochromic devices. The sol- gel process offers an alternative approach to the synthesis of optical quality and low cost electrochromic device layers. This study summarizes the developments in sol-gel deposited electrochromic films. The sol-gel process involves the formation of oxide networks upon hydrolysis-condensation of alkoxide precursors. In this study we cover the sol-gel deposited oxides of WO[sub 3], V[sub 2]O[sub 5], TiO[sub 2], Nb[sub 2]O[sub 5], and NiO[sub x].

  10. Sol-gel antireflective coating on plastics

    DOEpatents

    Ashley, C.S.; Reed, S.T.

    1988-01-26

    An antireflection film made from reliquified sol-gel hydrolyzation, condensation polymeric reaction product of a silicon, alkoxides and/or metal alkoxides, or mixtures thereof. The film is particularly useful for coating plastics.

  11. Advanced gel propulsion controls for kill vehicles

    NASA Astrophysics Data System (ADS)

    Yasuhara, W. K.; Olson, A.; Finato, S.

    1993-06-01

    A gel propulsion control concept for tactical applications is reviewed, and the status of the individual component technologies currently under development at the Aerojet Propulsion Division is discussed. It is concluded that a gel propellant Divert and Attitude Control Subsystem (DACS) provides a safe, insensitive munitions compliant alternative to current liquid Theater Missile Defense (TMD) DACS approaches. The gel kill vehicle (KV) control system packages a total impulse typical of a tactical weapon interceptor for the ground- or sea-based TMD systems. High density packaging makes it possible to increase firepower and to eliminate long-term high pressure gas storage associated with bipropellant systems. The integrated control subsystem technologies encompass solid propellant gas generators, insulated composite overwrapped propellant tanks, lightweight endoatmospheric thrusters, and insensitive munition gel propellants, which meet the requirements of a deployable, operationally safe KV.

  12. Formation of Anisotropic Block Copolymer Gels

    NASA Astrophysics Data System (ADS)

    Liaw, Chya Yan; Shull, Kenneth; Henderson, Kevin; Joester, Derk

    2011-03-01

    Anisotropic, fibrillar gels are important in a variety of processes. Biomineralization is one example, where the mineralization process often occurs within a matrix of collagen or chitin fibers that trap the mineral precursors and direct the mineralization process. We wish to replicate this type of behavior within block copolymer gels. Particularly, we are interested in employing gels composed of cylindrical micelles, which are anisotropic and closely mimic biological fibers. Micelle geometry is controlled in our system by manipulating the ratio of molecular weights of the two blocks and by controlling the detailed thermal processing history of the copolymer solutions. Small-Angle X-ray Scattering and Dynamic Light Scattering are used to determine the temperature dependence of the gel formation process. Initial experiments are based on a thermally-reversible alcohol-soluble system, that can be subsequently converted to a water soluble system by hydrolysis of a poly(t-butyl methacrylate) block to a poly (methacrylic acid) block. MRSEC.

  13. Analytical caustic surfaces

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1987-01-01

    This document discusses the determination of caustic surfaces in terms of rays, reflectors, and wavefronts. Analytical caustics are obtained as a family of lines, a set of points, and several types of equations for geometries encountered in optics and microwave applications. Standard methods of differential geometry are applied under different approaches: directly to reflector surfaces, and alternatively, to wavefronts, to obtain analytical caustics of two sheets or branches. Gauss/Seidel aberrations are introduced into the wavefront approach, forcing the retention of all three coefficients of both the first- and the second-fundamental forms of differential geometry. An existing method for obtaining caustic surfaces through exploitation of the singularities in flux density is examined, and several constant-intensity contour maps are developed using only the intrinsic Gaussian, mean, and normal curvatures of the reflector. Numerous references are provided for extending the material of the present document to the morphologies of caustics and their associated diffraction patterns.

  14. Requirements for Predictive Analytics

    SciTech Connect

    Troy Hiltbrand

    2012-03-01

    It is important to have a clear understanding of how traditional Business Intelligence (BI) and analytics are different and how they fit together in optimizing organizational decision making. With tradition BI, activities are focused primarily on providing context to enhance a known set of information through aggregation, data cleansing and delivery mechanisms. As these organizations mature their BI ecosystems, they achieve a clearer picture of the key performance indicators signaling the relative health of their operations. Organizations that embark on activities surrounding predictive analytics and data mining go beyond simply presenting the data in a manner that will allow decisions makers to have a complete context around the information. These organizations generate models based on known information and then apply other organizational data against these models to reveal unknown information.

  15. Analytic ICF Hohlraum Energetics

    SciTech Connect

    Rosen, M D; Hammer, J

    2003-08-27

    We apply recent analytic solutions to the radiation diffusion equation to problems of interest for ICF hohlraums. The solutions provide quantitative values for absorbed energy which are of use for generating a desired radiation temperature vs. time within the hohlraum. Comparison of supersonic and subsonic solutions (heat front velocity faster or slower, respectively, than the speed of sound in the x-ray heated material) suggests that there may be some advantage in using high Z metallic foams as hohlraum wall material to reduce hydrodynamic losses, and hence, net absorbed energy by the walls. Analytic and numerical calculations suggest that the loss per unit area might be reduced {approx} 20% through use of foam hohlraum walls. Reduced hydrodynamic motion of the wall material may also reduce symmetry swings, as found for heavy ion targets.

  16. Nuclear analytical chemistry

    SciTech Connect

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection.

  17. Analytical applications of aptamers

    NASA Astrophysics Data System (ADS)

    Tombelli, S.; Minunni, M.; Mascini, M.

    2007-05-01

    Aptamers are single stranded DNA or RNA ligands which can be selected for different targets starting from a library of molecules containing randomly created sequences. Aptamers have been selected to bind very different targets, from proteins to small organic dyes. Aptamers are proposed as alternatives to antibodies as biorecognition elements in analytical devices with ever increasing frequency. This in order to satisfy the demand for quick, cheap, simple and highly reproducible analytical devices, especially for protein detection in the medical field or for the detection of smaller molecules in environmental and food analysis. In our recent experience, DNA and RNA aptamers, specific for three different proteins (Tat, IgE and thrombin), have been exploited as bio-recognition elements to develop specific biosensors (aptasensors). These recognition elements have been coupled to piezoelectric quartz crystals and surface plasmon resonance (SPR) devices as transducers where the aptamers have been immobilized on the gold surface of the crystals electrodes or on SPR chips, respectively.

  18. Analytic holographic superconductor

    NASA Astrophysics Data System (ADS)

    Herzog, Christopher P.

    2010-06-01

    We investigate a holographic superconductor that admits an analytic treatment near the phase transition. In the dual 3+1-dimensional field theory, the phase transition occurs when a scalar operator of scaling dimension two gets a vacuum expectation value. We calculate current-current correlation functions along with the speed of second sound near the critical temperature. We also make some remarks about critical exponents. An analytic treatment is possible because an underlying Heun equation describing the zero mode of the phase transition has a polynomial solution. Amusingly, the treatment here may generalize for an order parameter with any integer spin, and we propose a Lagrangian for a spin-two holographic superconductor.

  19. Avatars in Analytical Gaming

    SciTech Connect

    Cowell, Andrew J.; Cowell, Amanda K.

    2009-08-29

    This paper discusses the design and use of anthropomorphic computer characters as nonplayer characters (NPC’s) within analytical games. These new environments allow avatars to play a central role in supporting training and education goals instead of planning the supporting cast role. This new ‘science’ of gaming, driven by high-powered but inexpensive computers, dedicated graphics processors and realistic game engines, enables game developers to create learning and training opportunities on par with expensive real-world training scenarios. However, there needs to be care and attention placed on how avatars are represented and thus perceived. A taxonomy of non-verbal behavior is presented and its application to analytical gaming discussed.

  20. Manual control of catalytic reactions: Reactions by an apoenzyme gel and a cofactor gel

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yuichiro; Takashima, Yoshinori; Hashidzume, Akihito; Yamaguchi, Hiroyasu; Harada, Akira

    2015-11-01

    Enzymes play a vital role in catalysing almost all chemical reactions that occur in biological systems. Some enzymes must form complexes with non-protein molecules called cofactors to express catalytic activities. Although the control of catalytic reactions via apoenzyme-cofactor complexes has attracted significant attention, the reports have been limited to the microscale. Here, we report a system to express catalytic activity by adhesion of an apoenzyme gel and a cofactor gel. The apoenzyme and cofactor gels act as catalysts when they form a gel assembly, but they lose catalytic ability upon manual dissociation. We successfully construct a system with switchable catalytic activity via adhesion and separation of the apoenzyme gel with the cofactor gel. We expect that this methodology can be applied to regulate the functional activities of enzymes that bear cofactors in their active sites, such as the oxygen transport of haemoglobin or myoglobin and the electron transport of cytochromes.

  1. Manual control of catalytic reactions: Reactions by an apoenzyme gel and a cofactor gel.

    PubMed

    Kobayashi, Yuichiro; Takashima, Yoshinori; Hashidzume, Akihito; Yamaguchi, Hiroyasu; Harada, Akira

    2015-11-05

    Enzymes play a vital role in catalysing almost all chemical reactions that occur in biological systems. Some enzymes must form complexes with non-protein molecules called cofactors to express catalytic activities. Although the control of catalytic reactions via apoenzyme-cofactor complexes has attracted significant attention, the reports have been limited to the microscale. Here, we report a system to express catalytic activity by adhesion of an apoenzyme gel and a cofactor gel. The apoenzyme and cofactor gels act as catalysts when they form a gel assembly, but they lose catalytic ability upon manual dissociation. We successfully construct a system with switchable catalytic activity via adhesion and separation of the apoenzyme gel with the cofactor gel. We expect that this methodology can be applied to regulate the functional activities of enzymes that bear cofactors in their active sites, such as the oxygen transport of haemoglobin or myoglobin and the electron transport of cytochromes.

  2. On the Existence of Gel-Glasslike Transition Point in Biopolymer Gels

    NASA Astrophysics Data System (ADS)

    Takushi, E.

    Existence of a gel-glasslike transition in biopolymer gels such as egg-white, DNA, RNA/DNA mixtures, gelatin, agarose is demonstrated in the drying process, and discussions are made on free water and bound water in the gel to glass change. A drastic decrease in the weight of egg-white gel was observed during drying at 25°C for 0 - 100 hours and a gradual decrease was observed for 100 - 450 hours. The first and second stages are due to the loss of free and bound water molecules in the egg-white gel, respectively. This was confirmed by a time domain reflectometry (TDR) measurement. Existence of a gel-glasslike transition may be a common phenomenon for materials in which the molecular network contains free and bound water molecules.

  3. Cell response to silica gels with varying mechanical properties

    NASA Astrophysics Data System (ADS)

    Lefebvre, Molly Ann

    Sol-gel encapsulation has a variety of applications in biotechnology and medicine: creating biosensors, biocatalysts, and bioartificial organs. However, encapsulated cell viability is a major challenge. Consequently, interactions between cells and their 3D microenvironment were studied through rheological, metabolic activity, and extraction studies to aid in the development of new gel protocols. The cells were encapsulated in variations of three silica sol-gels with varying stiffness. It was hypothesized that the cell viability and the amount of extracted cells would depend on gel stiffness. For two gels, there was no apparent correlation between the gel stiffness and the cell viability and extracted cell quantity. These gels did strongly depend on the varying gel ingredient, polyethylene glycol. The third gel appeared to follow the hypothesized correlation, but it was not statistically significant. Finally, one gel had a significantly longer period of cell viability and higher quantity of extracted cells than the other gels.

  4. Industrial Analytics Corporation

    SciTech Connect

    Industrial Analytics Corporation

    2004-01-30

    The lost foam casting process is sensitive to the properties of the EPS patterns used for the casting operation. In this project Industrial Analytics Corporation (IAC) has developed a new low voltage x-ray instrument for x-ray radiography of very low mass EPS patterns. IAC has also developed a transmitted visible light method for characterizing the properties of EPS patterns. The systems developed are also applicable to other low density materials including graphite foams.

  5. Competing on analytics.

    PubMed

    Davenport, Thomas H

    2006-01-01

    We all know the power of the killer app. It's not just a support tool; it's a strategic weapon. Companies questing for killer apps generally focus all their firepower on the one area that promises to create the greatest competitive advantage. But a new breed of organization has upped the stakes: Amazon, Harrah's, Capital One, and the Boston Red Sox have all dominated their fields by deploying industrial-strength analytics across a wide variety of activities. At a time when firms in many industries offer similar products and use comparable technologies, business processes are among the few remaining points of differentiation--and analytics competitors wring every last drop of value from those processes. Employees hired for their expertise with numbers or trained to recognize their importance are armed with the best evidence and the best quantitative tools. As a result, they make the best decisions. In companies that compete on analytics, senior executives make it clear--from the top down--that analytics is central to strategy. Such organizations launch multiple initiatives involving complex data and statistical analysis, and quantitative activity is managed atthe enterprise (not departmental) level. In this article, professor Thomas H. Davenport lays out the characteristics and practices of these statistical masters and describes some of the very substantial changes other companies must undergo in order to compete on quantitative turf. As one would expect, the transformation requires a significant investment in technology, the accumulation of massive stores of data, and the formulation of company-wide strategies for managing the data. But, at least as important, it also requires executives' vocal, unswerving commitment and willingness to change the way employees think, work, and are treated.

  6. Tissue-Simulating Gel For Medical Research

    NASA Technical Reports Server (NTRS)

    Companion, John A.

    1992-01-01

    Nonhardening, translucent gel more nearly simulates soft human or animal tissue. Modified to be softer or harder by altering proportions of ingredients. Fillers added to change electrical, mechanical, heat-conducting, or sound-conducting/scattering properties. Molded to any desired shape and has sufficient mechanical strength to maintain shape without supporting shell. Because of its thermal stability, gel especially useful for investigation of hyperthermia as treatment for cancer.

  7. Annular gel reactor for chemical pattern formation

    DOEpatents

    Nosticzius, Zoltan; Horsthemke, Werner; McCormick, William D.; Swinney, Harry L.; Tam, Wing Y.

    1990-01-01

    The present invention is directed to an annular gel reactor suitable for the production and observation of spatiotemporal patterns created during a chemical reaction. The apparatus comprises a vessel having at least a first and second chamber separated one from the other by an annular polymer gel layer (or other fine porous medium) which is inert to the materials to be reacted but capable of allowing diffusion of the chemicals into it.

  8. Rheological Characterization of Ethanolamine Gel Propellants

    NASA Astrophysics Data System (ADS)

    V. S Jyoti, Botchu; Baek, Seung Wook

    2016-07-01

    Ethanolamine is considered to be an environmentally friendly propellant system because it has low toxicity and is noncarcinogenic in nature. In this article, efforts are made to formulate and prepare ethanolamine gel systems, using pure agarose and hybrids of paired gelling agents (agarose + polyvinylpyrrolidine (PVP), agarose + SiO2, and PVP + SiO2), that exhibit a measurable yield stress, thixotropic behavior under shear rate ranges of 1-1,000 s-1 and a viscoelastic nature. To achieve these goals, multiple rheological experiments (including flow and dynamic studies) are performed. In this article, results are presented from experiments measuring the apparent viscosity, yield stress, thixotropy, dynamic strain, frequency sweep, and tan δ behaviors, as well as the effects of the test temperature, in the gel systems. The results show that the formulated ethanolamine gels are thixotropic in nature with yield stress between 30 and 60 Pa. The apparent viscosity of the gel decreases as the test temperature increases, and the apparent activation energy is the lowest for the ethanolamine-(PVP + SiO2) gel system. The dynamic rheology study shows that the type of gellant, choice of hybrid gelling materials and their concentration, applied frequencies, and strain all vitally affect the viscoelastic properties of the ethanolamine gel systems. In the frequency sweep experiment, the ethanolamine gels to which agarose, agarose + PVP, and agarose + SiO2 were added behave like linear frequency-dependent viscoelastic liquids, whereas the ethanolamine gel to which PVP + SiO2 was added behaves like a nearly frequency-independent viscoelastic solid. The variation in the tan δ of these gelled propellants as a function of frequency is also discussed.

  9. Sol-gel-based poliovirus-1 detector.

    PubMed

    Zolkov, Chen; Avnir, David; Armon, Robert

    2009-02-01

    Hybrid sol-gel films were used to grow Buffalo Green Monkey kidney cell tissues, which were used for poliovirus-1 detection. It is shown that the sol-gel approach allows cutting the standard EPA procedure from 48 to 24h of detection time; that better visualization of the plaques is obtained; that a variety of stains, including fluorescence, can be used; and that the shelf life of the resulting plaques system is well over a year.

  10. Actuator device utilizing a conductive polymer gel

    DOEpatents

    Chinn, Douglas A.; Irvin, David J.

    2004-02-03

    A valve actuator based on a conductive polymer gel is disclosed. A nonconductive housing is provided having two separate chambers separated by a porous frit. The conductive polymer is held in one chamber and an electrolyte solution, used as a source of charged ions, is held in the second chamber. The ends of the housing a sealed with a flexible elastomer. The polymer gel is further provide with electrodes with which to apply an electrical potential across the gel in order to initiate an oxidation reaction which in turn drives anions across the porous frit and into the polymer gel, swelling the volume of the gel and simultaneously contracting the volume of the electrolyte solution. Because the two end chambers are sealed the flexible elastomer expands or contracts with the chamber volume change. By manipulating the potential across the gel the motion of the elastomer can be controlled to act as a "gate" to open or close a fluid channel and thereby control flow through that channel.

  11. Cavitation of a Physically Associating Gel

    NASA Astrophysics Data System (ADS)

    Mishra, Satish; Kundu, Santanu

    Self-assembly of block copolymers in selective solvents form ordered structures such as micelles, vesicles, and physically crosslinked gels due to difference in their interaction with solvents. These gels have wide range of applications in tissue engineering, food science and biomedical field due to their tunable properties and responsiveness with changing environmental conditions. Pressurization of a defect inside a physically associating gel can lead to elastic instability (cavitation) leading to failure of the gel. The failure behavior involves dissociation of physical networks. A thermoreversible, physically associating gel with different volume fractions of a triblock copolymer, poly (methyl methacrylate)-poly (n-butyl acrylate)-poly (methyl methacrylate) [PMMA-PnBA-PMMA] in 2-ethyl 1-hexanol, a midblock selective solvent, is considered here. Mechanical properties were investigated using shear rheology and cavitation experiments. The experimental data is fitted with a constitutive model that captures the stiffening behavior followed by softening behavior of a physical gel. Finite element analysis has been performed on cavitation rheology geometry to capture the failure behavior and to calculate energy release rate during cavitation experiments.

  12. Actuation and ion transportation of polyelectrolyte gels

    NASA Astrophysics Data System (ADS)

    Hong, Wei; Wang, Xiao

    2010-04-01

    Consisting of charged network swollen with ionic solution, polyelectrolyte gels are known for their salient characters including ion exchange and stimuli responsiveness. The active properties of polyelectrolyte gels are mostly due to the migration of solvent molecules and solute ions, and their interactions with the fixed charges on the network. In this paper, we extend the recently developed nonlinear field theory of polyelectrolyte gels by assuming that the kinetic process is limited by the rate of the transportation of mobile species. To study the coupled mechanical deformation, ion migration, and electric field, we further specialize the model to the case of a laterally constrained gel sheet. By solving the field equations in two limiting cases: the equilibrium state and the steady state, we calculate the mechanical responses of the gel to the applied electric field, and study the dependency on various parameters. The results recover the behavior observed in experiments in which polyelectrolyte gels are used as actuators, such as the ionic polymer metal composite. In addition, the model reveals the mechanism of the selectivity in ion transportation. Although by assuming specific material laws, the reduced system resembles those in most existing models in the literature, the theory can be easily generalized by using more realistic free-energy functions and kinetic laws. The adaptability of the theory makes it suitable for studying many similar material systems and phenomena.

  13. Dynamics of surfactants spreading on gel layers

    NASA Astrophysics Data System (ADS)

    Spandagos, Constantine; Luckham, Paul; Matar, Omar

    2009-11-01

    Gel-like materials are of central importance to a large number of engineering, biological, biomedical and day-life applications. This work attempts to investigate the spreading of droplets of surfactant solutions on agar gels, which is accompanied by cracking of the gel layers. The cracking progresses via the formation of patterns that resemble ``starbursts,'' which have been reported recently in the literature by Daniels et al. Marangoni stresses generated by surface tension gradients between the surfactant droplet and the uncontaminated gel layer are identified to be the driving force behind these phenomena. The morphology and dynamics of the starburst patterns are investigated for droplets of different surfactant solutions, including sodiumdodecylsulphate, spreading on gel layers of different strengths. The instability is characterised in terms of the number of arms that form, and their mean width and length as a function of time. In addition, photoelasticity is used to provide information about the stress field of the material, which, combined with the results from our direct visualisation, can elucidate further the mechanisms underlying the pattern formation and the nature of the interactions between the liquid and the gel.

  14. Basic investigations on LCV micelle gel

    NASA Astrophysics Data System (ADS)

    Ebenezer, S. B.; Rafic, M. K.; Ravindran, P. B.

    2013-06-01

    The aim of this study was to investigate the feasibility of using Leuco Crystal Violet (LCV) based micelle gel dosimeter as a quality assurance tool in radiotherapy applications. Basic properties such as absorption coefficient and diffusion of LCV gel phantom over time were evaluated. The gel formulation consisted of 25 mM Trichloroacetic acid, 1mM LCV, 4 mM Triton X-100, 4% gelatin by mass and distilled water. The advantages of using this gel are its tissue equivalence, easy and less preparation time, lower diffusion rate and it can be read with an optical scanner. We were able to reproduce some of the results of Babic et al. The peak absorption was found to be at 600 nm and hence a matrix of yellow LEDs was used as light source. The profiles obtained from projection images confirmed the diffusion of LCV gel after 6 hours of irradiation. Hence the LCV gel phantom should be read before 6 hours post irradiation to get accurate dose information as suggested previously.

  15. Treatment of osteochondral injuries with platelet gel

    PubMed Central

    Danieli, Marcus Vinicius; da Rosa Pereira, Hamilton; de Sá Carneiro, Carlos Augusto; Felisbino, Sérgio Luiz; Deffune, Elenice

    2014-01-01

    OBJECTIVES: Treatments for injured articular cartilage have not advanced to the point that efficient regeneration is possible. However, there has been an increase in the use of platelet-rich plasma for the treatment of several orthopedic disorders, including chondral injuries. Our hypothesis is that the treatment of chondral injuries with platelet gel results in higher-quality repair tissue after 180 days compared with chondral injuries not treated with gel. METHODS: A controlled experimental laboratory study was performed on 30 male rabbits to evaluate osteochondral injury repair after treatment with or without platelet gel. Osteochondral injuries were surgically induced in both knees of each rabbit at the medial femoral condyle. The left knee injury was filled with the platelet gel, and the right knee was not treated. Microscopic analysis of both knee samples was performed after 180 days using a histological grading scale. RESULTS: The only histological evaluation criterion that was not significantly different between treatments was metachromasia. The group that was treated with platelet gel exhibited superior results in all other criteria (cell morphology, surface regularity, chondral thickness and repair tissue integration) and in the total score. CONCLUSION: The repair tissue was histologically superior after 180 days in the study group treated with platelet gel compared with the group of untreated injuries. PMID:25518022

  16. GelClust: a software tool for gel electrophoresis images analysis and dendrogram generation.

    PubMed

    Khakabimamaghani, Sahand; Najafi, Ali; Ranjbar, Reza; Raam, Monireh

    2013-08-01

    This paper presents GelClust, a new software that is designed for processing gel electrophoresis images and generating the corresponding phylogenetic trees. Unlike the most of commercial and non-commercial related softwares, we found that GelClust is very user-friendly and guides the user from image toward dendrogram through seven simple steps. Furthermore, the software, which is implemented in C# programming language under Windows operating system, is more accurate than similar software regarding image processing and is the only software able to detect and correct gel 'smile' effects completely automatically. These claims are supported with experiments.

  17. GelClust: a software tool for gel electrophoresis images analysis and dendrogram generation.

    PubMed

    Khakabimamaghani, Sahand; Najafi, Ali; Ranjbar, Reza; Raam, Monireh

    2013-08-01

    This paper presents GelClust, a new software that is designed for processing gel electrophoresis images and generating the corresponding phylogenetic trees. Unlike the most of commercial and non-commercial related softwares, we found that GelClust is very user-friendly and guides the user from image toward dendrogram through seven simple steps. Furthermore, the software, which is implemented in C# programming language under Windows operating system, is more accurate than similar software regarding image processing and is the only software able to detect and correct gel 'smile' effects completely automatically. These claims are supported with experiments. PMID:23727299

  18. Visual Analytics: How Much Visualization and How Much Analytics?

    SciTech Connect

    Keim, Daniel; Mansmann, Florian; Thomas, James J.

    2009-12-16

    The term Visual Analytics has been around for almost five years by now, but still there are on-going discussions about what it actually is and in particular what is new about it. The core of our view on Visual Analytics is the new enabling and accessible analytic reasoning interactions supported by the combination of automated and visual analytics. In this paper, we outline the scope of Visual Analytics using two problem and three methodological classes in order to work out the need for and purpose of Visual Analytics. Thereby, the respective methods are explained plus examples of analytic reasoning interaction leading to a glimpse into the future of how Visual Analytics methods will enable us to go beyond what is possible when separately using the two methods.

  19. MERRA Analytic Services

    NASA Astrophysics Data System (ADS)

    Schnase, J. L.; Duffy, D. Q.; McInerney, M. A.; Tamkin, G. S.; Thompson, J. H.; Gill, R.; Grieg, C. M.

    2012-12-01

    MERRA Analytic Services (MERRA/AS) is a cyberinfrastructure resource for developing and evaluating a new generation of climate data analysis capabilities. MERRA/AS supports OBS4MIP activities by reducing the time spent in the preparation of Modern Era Retrospective-Analysis for Research and Applications (MERRA) data used in data-model intercomparison. It also provides a testbed for experimental development of high-performance analytics. MERRA/AS is a cloud-based service built around the Virtual Climate Data Server (vCDS) technology that is currently used by the NASA Center for Climate Simulation (NCCS) to deliver Intergovernmental Panel on Climate Change (IPCC) data to the Earth System Grid Federation (ESGF). Crucial to its effectiveness, MERRA/AS's servers will use a workflow-generated realizable object capability to perform analyses over the MERRA data using the MapReduce approach to parallel storage-based computation. The results produced by these operations will be stored by the vCDS, which will also be able to host code sets for those who wish to explore the use of MapReduce for more advanced analytics. While the work described here will focus on the MERRA collection, these technologies can be used to publish other reanalysis, observational, and ancillary OBS4MIP data to ESGF and, importantly, offer an architectural approach to climate data services that can be generalized to applications and customers beyond the traditional climate research community. In this presentation, we describe our approach, experiences, lessons learned,and plans for the future.; (A) MERRA/AS software stack. (B) Example MERRA/AS interfaces.

  20. Proficiency analytical testing program

    SciTech Connect

    Groff, J.H.; Schlecht, P.C.

    1994-03-01

    The Proficiency Analytical Testing (PAT) Program is a collaborative effort of the American Industrial Hygiene Association (AIHA) and researchers at the Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH). The PAT Program provides quality control reference samples to over 1400 occupational health and environmental laboratories in over 15 countries. Although one objective of the PAT Program is to evaluate the analytical ability of participating laboratories, the primary objective is to assist these laboratories in improving their laboratory performance. Each calendar quarter (designated a round), samples are mailed to participating laboratories and the data are analyzed to evaluate laboratory performance on a series of analyses. Each mailing and subsequent data analysis are completed in time for participants to obtain repeat samples and to correct analytical problems before the next calendar quarter starts. The PAT Program currently includes four sets of samples. A mixture of 3 of the 4 possible metals, and 3 of the 15 possible organic solvents are rotated for each round. Laboratories are evaluated for each analysis by comparing their reported results against an acceptable performance limit for each PAT Program sample the laboratory analyses. Reference laboratories are preselected to provide the performance limits for each sample. These reference laboratories must meet the following criteria: (1) the laboratory was rated proficient in the last PAT evaluation of all the contaminants in the Program; and (2) the laboratory, if located in the United States, is AIHA accredited. Data are acceptable if they fall within the performance limits. Laboratories are rated based upon performance in the PAT Program over the last year (i.e., four calendar quarters), as well as on individual contaminant performance and overall performance. 1 ref., 3 tabs.

  1. Proficiency analytical testing program

    SciTech Connect

    Schlecht, P.C.; Groff, J.H.

    1994-06-01

    The Proficiency Analytical Testing (PAT) Program is a collaborative effort of the American Industrial Hygiene Association (AIHA) and researchers at the Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health (NIOSH). The PAT Program provides quality control reference samples to over 1400 occupational health and environmental laboratories in over 15 countries. Although one objective of the PAT Program is to evaluate the analytical ability of participating laboratories, the primary objective is to assist these laboratories in improving their laboratory performance. Each calendar quarter (designated a round), samples are mailed to participating laboratories and the data are analyzed to evaluate laboratory performance on a series of analyses. Each mailing and subsequent data analysis is completed in time for participants to obtain repeat samples and to correct analytical problems before the next calendar quarter starts. The PAT Program currently includes four sets of samples. A mixture of 3 of the 4 possible metals, and 3 of the 15 possible organic solvents are rotated for each round. Laboratories are evaluated for each analysis by comparing their reported results against an acceptable performance limit for each PAT Program sample the laboratory analyses. Reference laboratories are preselected to provide the performance limits for each sample. These reference laboratories must meet the following criteria: (1) the laboratory was rated proficient in the last PAT evaluation of all the contaminants in the Program; and (2) the laboratory, if located in the United States, is AIHA accredited. Data are acceptable if they fall within the performance limits. Laboratories are rated based upon performance in the PAT Program over the last year (i.e., four calendar quarters), as well as on individual contaminant performance and overall performance. 1 ref., 3 tabs.

  2. Solvent driven motion of lithographically fabricated gels.

    PubMed

    Bassik, Noy; Abebe, Beza T; Gracias, David H

    2008-11-01

    We investigated the solvent driven motion of lithographically structured poly- N-isopropylacrylamide (PNIPAm) gels. The gels were soaked in ethanol and then transferred to water, where they moved spontaneously. This movement was driven by the expulsion of the ethanol from the gel and subsequent ethanol spreading at the air-water interface. We utilized lithographic patterning of the gels at the micron-millimeter length scales to investigate the effect of size, shape and symmetry. Lithographic patterning allowed the structures to be fabricated in an identical manner, thereby allowing a single variable (such as shape, size, or symmetry) to be altered while minimizing change in other variables such as thickness, roughness and swelling characteristics. The diverse range of motions including translation, precession and rotation could be controlled and were recorded using videography. Gels were lithographically patterned with features less than 100 microm, and exhibited remarkably high linear and rotational velocities of up to 31 cm/s and 3529 rpm over time spans of seconds to minutes. We observed a reciprocal dependence of maximum rotational velocity on linear dimension. The linear velocity for all types of motion, along a line or curve, was analyzed and found to be similar across different shapes and sizes. This velocity was in the range of 17-39 cm/s even though our sizes and shapes varied across orders of magnitude. We postulate that this velocity is related to the velocity of spreading of ethanol on water, which is approximately 53 cm/s. Additionally, since this solvent powered motion is a clean, quiet and reusable source of motive power, with no need for on-board wiring or batteries, we explored applications in moving lithographically integrated metallic payloads on top of the gels and utilized the gels to move larger floating objects.

  3. Analytical chemistry of nickel.

    PubMed

    Stoeppler, M

    1984-01-01

    Analytical chemists are faced with nickel contents in environmental and biological materials ranging from the mg/kg down to the ng/kg level. Sampling and sample treatment have to be performed with great care at lower levels, and this also applies to enrichment and separation procedures. The classical determination methods formerly used have been replaced almost entirely by different forms of atomic absorption spectrometry. Electroanalytical methods are also of increasing importance and at present provide the most sensitive approach. Despite the powerful methods available, achieving reliable results is still a challenge for the analyst requiring proper quality control measures.

  4. Automation of analytical isotachophoresis

    NASA Technical Reports Server (NTRS)

    Thormann, Wolfgang

    1985-01-01

    The basic features of automation of analytical isotachophoresis (ITP) are reviewed. Experimental setups consisting of narrow bore tubes which are self-stabilized against thermal convection are considered. Sample detection in free solution is discussed, listing the detector systems presently used or expected to be of potential use in the near future. The combination of a universal detector measuring the evolution of ITP zone structures with detector systems specific to desired components is proposed as a concept of an automated chemical analyzer based on ITP. Possible miniaturization of such an instrument by means of microlithographic techniques is discussed.

  5. Fabricating porous materials using interpenetrating inorganic-organic composite gels

    DOEpatents

    Seo, Dong-Kyun; Volosin, Alex

    2016-06-14

    Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite material can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.

  6. Quality Indicators for Learning Analytics

    ERIC Educational Resources Information Center

    Scheffel, Maren; Drachsler, Hendrik; Stoyanov, Slavi; Specht, Marcus

    2014-01-01

    This article proposes a framework of quality indicators for learning analytics that aims to standardise the evaluation of learning analytics tools and to provide a mean to capture evidence for the impact of learning analytics on educational practices in a standardised manner. The criteria of the framework and its quality indicators are based on…

  7. Optimal processing for gel electrophoresis images: Applying Monte Carlo Tree Search in GelApp.

    PubMed

    Nguyen, Phi-Vu; Ghezal, Ali; Hsueh, Ya-Chih; Boudier, Thomas; Gan, Samuel Ken-En; Lee, Hwee Kuan

    2016-08-01

    In biomedical research, gel band size estimation in electrophoresis analysis is a routine process. To facilitate and automate this process, numerous software have been released, notably the GelApp mobile app. However, the band detection accuracy is limited due to a band detection algorithm that cannot adapt to the variations in input images. To address this, we used the Monte Carlo Tree Search with Upper Confidence Bound (MCTS-UCB) method to efficiently search for optimal image processing pipelines for the band detection task, thereby improving the segmentation algorithm. Incorporating this into GelApp, we report a significant enhancement of gel band detection accuracy by 55.9 ± 2.0% for protein polyacrylamide gels, and 35.9 ± 2.5% for DNA SYBR green agarose gels. This implementation is a proof-of-concept in demonstrating MCTS-UCB as a strategy to optimize general image segmentation. The improved version of GelApp-GelApp 2.0-is freely available on both Google Play Store (for Android platform), and Apple App Store (for iOS platform).

  8. Metastable two-component gel-exploring the gel-crystal interface.

    PubMed

    Moffat, Jamie R; Smith, David K

    2008-05-21

    This paper reports a two-component system in which molecular recognition rapidly leads to the formation of a homogeneous fibrillar gel that, over a period of hours, aggregates via fibre-fibre interactions to yield microcrystals--providing insight into the relationship between nanoscale gels and microscale crystals.

  9. Optimal processing for gel electrophoresis images: Applying Monte Carlo Tree Search in GelApp.

    PubMed

    Nguyen, Phi-Vu; Ghezal, Ali; Hsueh, Ya-Chih; Boudier, Thomas; Gan, Samuel Ken-En; Lee, Hwee Kuan

    2016-08-01

    In biomedical research, gel band size estimation in electrophoresis analysis is a routine process. To facilitate and automate this process, numerous software have been released, notably the GelApp mobile app. However, the band detection accuracy is limited due to a band detection algorithm that cannot adapt to the variations in input images. To address this, we used the Monte Carlo Tree Search with Upper Confidence Bound (MCTS-UCB) method to efficiently search for optimal image processing pipelines for the band detection task, thereby improving the segmentation algorithm. Incorporating this into GelApp, we report a significant enhancement of gel band detection accuracy by 55.9 ± 2.0% for protein polyacrylamide gels, and 35.9 ± 2.5% for DNA SYBR green agarose gels. This implementation is a proof-of-concept in demonstrating MCTS-UCB as a strategy to optimize general image segmentation. The improved version of GelApp-GelApp 2.0-is freely available on both Google Play Store (for Android platform), and Apple App Store (for iOS platform). PMID:27251892

  10. Evolution of gel structure during thermal processing of Na-geopolymer gels.

    PubMed

    Duxson, Peter; Lukey, Grant C; van Deventer, Jannie S J

    2006-10-10

    The present work examines how the gel structure and phase composition of Na-geopolymers derived from metakaolin with varied Si/Al ratio evolve with exposure to temperatures up to 1000 degrees C. Gels were thermally treated and characterized using quantitative XRD, DTA, and FTIR to elucidate the changes in gel structure, phase composition, and porosity at each stage of heating. It is found that the phase stability, defined by the amount and onset temperature of crystallization, is improved at higher Si/Al ratios. Two different mechanisms of densification have been isolated by FTIR, related to viscous flow and collapse of the highly distributed pore network in the gel. Gels with low Si/Al ratio only experience viscous flow that correlates with low thermal shrinkage. Gels at a higher Si/Al ratio, which have a homogeneous microstructure composed of a highly distributed porosity, undergo both densification processes corresponding to a large extent of thermal shrinkage during densification. This work elucidates the intimate relationship between gel microstructure, chemistry, and thermal evolution of Na-geopolymer gels.

  11. The analytic renormalization group

    NASA Astrophysics Data System (ADS)

    Ferrari, Frank

    2016-08-01

    Finite temperature Euclidean two-point functions in quantum mechanics or quantum field theory are characterized by a discrete set of Fourier coefficients Gk, k ∈ Z, associated with the Matsubara frequencies νk = 2 πk / β. We show that analyticity implies that the coefficients Gk must satisfy an infinite number of model-independent linear equations that we write down explicitly. In particular, we construct "Analytic Renormalization Group" linear maps Aμ which, for any choice of cut-off μ, allow to express the low energy Fourier coefficients for |νk | < μ (with the possible exception of the zero mode G0), together with the real-time correlators and spectral functions, in terms of the high energy Fourier coefficients for |νk | ≥ μ. Operating a simple numerical algorithm, we show that the exact universal linear constraints on Gk can be used to systematically improve any random approximate data set obtained, for example, from Monte-Carlo simulations. Our results are illustrated on several explicit examples.

  12. Reprogramming cellular phenotype by soft collagen gels.

    PubMed

    Ali, M Yakut; Chuang, Chih-Yuan; Saif, M Taher A

    2014-11-28

    A variety of cell types exhibit phenotype changes in response to the mechanical stiffness of the substrate. Many cells excluding neurons display an increase in the spread area, actin stress fiber formation and larger focal adhesion complexes as substrate stiffness increases in a sparsely populated culture. Cell proliferation is also known to directly correlate with these phenotype changes/changes in substrate stiffness. Augmented spreading and proliferation on stiffer substrates require nuclear transcriptional regulator YAP (Yes associated protein) localization in the cell nucleus and is tightly coupled to larger traction force generation. In this study, we show that different types of fibroblasts can exhibit spread morphology, well defined actin stress fibers, and larger focal adhesions even on very soft collagen gels (modulus in hundreds of Pascals) as if they are on hard glass substrates (modulus in GPa, several orders of magnitude higher). Strikingly, we show, for the first time, that augmented spreading and other hard substrate cytoskeleton architectures on soft collagen gels are not correlated with the cell proliferation pattern and do not require YAP localization in the cell nucleus. Finally, we examine the response of human colon carcinoma (HCT-8) cells on soft collagen gels. Recent studies show that human colon carcinoma (HCT-8) cells form multicellular clusters by 2-3 days when cultured on soft polyacrylamide (PA) gels with a wide range of stiffness (0.5-50 kPa) and coated with an extracellular matrix, ECM (collagen monomer/fibronectin). These clusters show limited spreading/wetting on PA gels, form 3D structures at the edges, and eventually display a remarkable, dissociative metastasis like phenotype (MLP), i.e., epithelial to rounded morphological transition after a week of culture on PA gels only, but not on collagen monomer coated stiff polystyrene/glass where they exhibit enhanced wetting and form confluent monolayers. Here, we show that HCT-8 cell

  13. Enhanced detection of glycoproteins in polyacrylamide gels.

    PubMed

    Muñoz, G; Marshall, S; Cabrera, M; Horvat, A

    1988-05-01

    A highly sensitive and simple method to enhance detection of glycoproteins resolved by either one- or two-dimensional polyacrylamide gel electrophoresis is described. The method is a modification of the procedure described by D. Fargeaud et al. (D. Fargeaud, J. C. Benoit, F. Kato, and G. Chappuis (1984) Arch. Virol. 80, 69-82) that uses concanavalin A conjugated with fluorescein isothyocyanate to detect the carbohydrate moiety of glycoproteins. Briefly, the electrophoresed gel is exposed to the fluorescent lectin, thoroughly washed, and sequentially transferred to 50% methanol in deionized water and to absolute methanol. The result is an abrupt dehydration of the gel which turns evenly white and stiff. At least a twofold enhancement of fluorescence is obtained as detected by exposing the treated gel to an appropriate uv source. The sensitivity of the procedure allows us to detect purified immunoglobulin molecules by their carbohydrate content in the range of 0.2 microgram of total protein. The specificity of the detection is demonstrated by a comparison with the corresponding polypeptide profile obtained by silver nitrate staining of the gel. PMID:3394948

  14. Enhanced detection of glycoproteins in polyacrylamide gels.

    PubMed

    Muñoz, G; Marshall, S; Cabrera, M; Horvat, A

    1988-05-01

    A highly sensitive and simple method to enhance detection of glycoproteins resolved by either one- or two-dimensional polyacrylamide gel electrophoresis is described. The method is a modification of the procedure described by D. Fargeaud et al. (D. Fargeaud, J. C. Benoit, F. Kato, and G. Chappuis (1984) Arch. Virol. 80, 69-82) that uses concanavalin A conjugated with fluorescein isothyocyanate to detect the carbohydrate moiety of glycoproteins. Briefly, the electrophoresed gel is exposed to the fluorescent lectin, thoroughly washed, and sequentially transferred to 50% methanol in deionized water and to absolute methanol. The result is an abrupt dehydration of the gel which turns evenly white and stiff. At least a twofold enhancement of fluorescence is obtained as detected by exposing the treated gel to an appropriate uv source. The sensitivity of the procedure allows us to detect purified immunoglobulin molecules by their carbohydrate content in the range of 0.2 microgram of total protein. The specificity of the detection is demonstrated by a comparison with the corresponding polypeptide profile obtained by silver nitrate staining of the gel.

  15. Structural evolution of Colloidal Gels under Flow

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Maia, Joao; Jamali, Safa

    Colloidal suspensions are ubiquitous in different industrial applications ranging from cosmetic and food industries to soft robotics and aerospace. Owing to the fact that mechanical properties of colloidal gels are controlled by its microstructure and network topology, we trace the particles in the networks formed under different attraction potentials and try to find a universal behavior in yielding of colloidal gels. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation and yielding mechanism in colloidal system with short-ranged attractive force. However, BD neglects multi-body hydrodynamic interactions (HI) which are believed to be responsible for the second yielding of colloidal gels. We envision using dissipative particle dynamics (DPD) with modified depletion potential and hydrodynamic interactions, as a coarse-grain model, can provide a robust simulation package to address the gel formation process and yielding in short ranged-attractive colloidal systems. The behavior of colloidal gels with different attraction potentials under flow is examined and structural fingerprints of yielding in these systems will be discussed.

  16. Mucosal effects of tenofovir 1% gel

    PubMed Central

    Hladik, Florian; Burgener, Adam; Ballweber, Lamar; Gottardo, Raphael; Vojtech, Lucia; Fourati, Slim; Dai, James Y; Cameron, Mark J; Strobl, Johanna; Hughes, Sean M; Hoesley, Craig; Andrew, Philip; Johnson, Sherri; Piper, Jeanna; Friend, David R; Ball, T Blake; Cranston, Ross D; Mayer, Kenneth H; McElrath, M Juliana; McGowan, Ian

    2015-01-01

    Tenofovir gel is being evaluated for vaginal and rectal pre-exposure prophylaxis against HIV transmission. Because this is a new prevention strategy, we broadly assessed its effects on the mucosa. In MTN-007, a phase-1, randomized, double-blinded rectal microbicide trial, we used systems genomics/proteomics to determine the effect of tenofovir 1% gel, nonoxynol-9 2% gel, placebo gel or no treatment on rectal biopsies (15 subjects/arm). We also treated primary vaginal epithelial cells from four healthy women with tenofovir in vitro. After seven days of administration, tenofovir 1% gel had broad-ranging effects on the rectal mucosa, which were more pronounced than, but different from, those of the detergent nonoxynol-9. Tenofovir suppressed anti-inflammatory mediators, increased T cell densities, caused mitochondrial dysfunction, altered regulatory pathways of cell differentiation and survival, and stimulated epithelial cell proliferation. The breadth of mucosal changes induced by tenofovir indicates that its safety over longer-term topical use should be carefully monitored. Clinical trial registration: NCT01232803. DOI: http://dx.doi.org/10.7554/eLife.04525.001 PMID:25647729

  17. Mucosal effects of tenofovir 1% gel.

    PubMed

    Hladik, Florian; Burgener, Adam; Ballweber, Lamar; Gottardo, Raphael; Vojtech, Lucia; Fourati, Slim; Dai, James Y; Cameron, Mark J; Strobl, Johanna; Hughes, Sean M; Hoesley, Craig; Andrew, Philip; Johnson, Sherri; Piper, Jeanna; Friend, David R; Ball, T Blake; Cranston, Ross D; Mayer, Kenneth H; McElrath, M Juliana; McGowan, Ian

    2015-01-01

    Tenofovir gel is being evaluated for vaginal and rectal pre-exposure prophylaxis against HIV transmission. Because this is a new prevention strategy, we broadly assessed its effects on the mucosa. In MTN-007, a phase-1, randomized, double-blinded rectal microbicide trial, we used systems genomics/proteomics to determine the effect of tenofovir 1% gel, nonoxynol-9 2% gel, placebo gel or no treatment on rectal biopsies (15 subjects/arm). We also treated primary vaginal epithelial cells from four healthy women with tenofovir in vitro. After seven days of administration, tenofovir 1% gel had broad-ranging effects on the rectal mucosa, which were more pronounced than, but different from, those of the detergent nonoxynol-9. Tenofovir suppressed anti-inflammatory mediators, increased T cell densities, caused mitochondrial dysfunction, altered regulatory pathways of cell differentiation and survival, and stimulated epithelial cell proliferation. The breadth of mucosal changes induced by tenofovir indicates that its safety over longer-term topical use should be carefully monitored. PMID:25647729

  18. Reversible Gel-Sol Transition of a Photo-Responsive DNA Gel.

    PubMed

    Kandatsu, Daisuke; Cervantes-Salguero, Keitel; Kawamata, Ibuki; Hamada, Shogo; Nomura, Shin-Ichiro M; Fujimoto, Kenzo; Murata, Satoshi

    2016-06-16

    Stimuli-responsive DNA gels that can undergo a sol-gel transition in response to photo-irradiation provide a way to engineer functional gel material with fully designed DNA base sequences. We propose an X-shaped DNA motif that turns into a gel by hybridization of self-complementary sticky ends. By embedding a photo-crosslinking artificial base in the sticky-end sequence, repetitive gel-sol transitions are achieved through UV irradiation at different wavelengths. The concentration of the DNA motif necessary for gelation is as low as 40 μm after modification of the geometrical properties of the motif. The physical properties, such as swelling degree and diffusion coefficient, were assessed experimentally. PMID:27123549

  19. Characterizing tunable dynamics in an active gel

    NASA Astrophysics Data System (ADS)

    Henkin, Gil; Decamp, Stephen; Chen, Daniel; Dogic, Zvonimir

    2014-03-01

    We experimentally investigate dynamics of an active gel of bundled microtubules that is driven to far-from-equilibrium steady states by clusters of kinesin molecular motors. Upon the addition of ATP, the coordinated action of thousands of molecular motors drives this gel to an active, percolating state that persists for hours and is only limited by the stability of constituent proteins and the availability of the chemical fuel ATP. We extensively characterize how enhanced transport in emergent macroscopic flows depends on relevant molecular parameters, including ATP, motor, and depletant concentrations, microtubule concentration and length, as well as structure of the motor clusters. Our results show that the properties and dynamics of this active isotropic gel are highly tunable, suggesting that this is an ideal system for studying the behavior of active materials.

  20. Writing in the granular gel medium.

    PubMed

    Bhattacharjee, Tapomoy; Zehnder, Steven M; Rowe, Kyle G; Jain, Suhani; Nixon, Ryan M; Sawyer, W Gregory; Angelini, Thomas E

    2015-09-01

    Gels made from soft microscale particles smoothly transition between the fluid and solid states, making them an ideal medium in which to create macroscopic structures with microscopic precision. While tracing out spatial paths with an injection tip, the granular gel fluidizes at the point of injection and then rapidly solidifies, trapping injected material in place. This physical approach to creating three-dimensional (3D) structures negates the effects of surface tension, gravity, and particle diffusion, allowing a limitless breadth of materials to be written. With this method, we used silicones, hydrogels, colloids, and living cells to create complex large aspect ratio 3D objects, thin closed shells, and hierarchically branched tubular networks. We crosslinked polymeric materials and removed them from the granular gel, whereas uncrosslinked particulate systems were left supported within the medium for long times. This approach can be immediately used in diverse areas, contributing to tissue engineering, flexible electronics, particle engineering, smart materials, and encapsulation technologies. PMID:26601274

  1. Ultraflexible organic amplifier with biocompatible gel electrodes.

    PubMed

    Sekitani, Tsuyoshi; Yokota, Tomoyuki; Kuribara, Kazunori; Kaltenbrunner, Martin; Fukushima, Takanori; Inoue, Yusuke; Sekino, Masaki; Isoyama, Takashi; Abe, Yusuke; Onodera, Hiroshi; Someya, Takao

    2016-01-01

    In vivo electronic monitoring systems are promising technology to obtain biosignals with high spatiotemporal resolution and sensitivity. Here we demonstrate the fabrication of a biocompatible highly conductive gel composite comprising multi-walled carbon nanotube-dispersed sheet with an aqueous hydrogel. This gel composite exhibits admittance of 100 mS cm(-2) and maintains high admittance even in a low-frequency range. On implantation into a living hypodermal tissue for 4 weeks, it showed a small foreign-body reaction compared with widely used metal electrodes. Capitalizing on the multi-functional gel composite, we fabricated an ultrathin and mechanically flexible organic active matrix amplifier on a 1.2-μm-thick polyethylene-naphthalate film to amplify (amplification factor: ∼200) weak biosignals. The composite was integrated to the amplifier to realize a direct lead epicardial electrocardiography that is easily spread over an uneven heart tissue. PMID:27125910

  2. Ultraflexible organic amplifier with biocompatible gel electrodes

    NASA Astrophysics Data System (ADS)

    Sekitani, Tsuyoshi; Yokota, Tomoyuki; Kuribara, Kazunori; Kaltenbrunner, Martin; Fukushima, Takanori; Inoue, Yusuke; Sekino, Masaki; Isoyama, Takashi; Abe, Yusuke; Onodera, Hiroshi; Someya, Takao

    2016-04-01

    In vivo electronic monitoring systems are promising technology to obtain biosignals with high spatiotemporal resolution and sensitivity. Here we demonstrate the fabrication of a biocompatible highly conductive gel composite comprising multi-walled carbon nanotube-dispersed sheet with an aqueous hydrogel. This gel composite exhibits admittance of 100 mS cm-2 and maintains high admittance even in a low-frequency range. On implantation into a living hypodermal tissue for 4 weeks, it showed a small foreign-body reaction compared with widely used metal electrodes. Capitalizing on the multi-functional gel composite, we fabricated an ultrathin and mechanically flexible organic active matrix amplifier on a 1.2-μm-thick polyethylene-naphthalate film to amplify (amplification factor: ~200) weak biosignals. The composite was integrated to the amplifier to realize a direct lead epicardial electrocardiography that is easily spread over an uneven heart tissue.

  3. Nail damage from gel polish manicure.

    PubMed

    Chen, Andrea F; Chimento, Stacy M; Hu, Shasa; Sanchez, Margaret; Zaiac, Martin; Tosti, Antonella

    2012-03-01

    Manicures can result in nail damage via instrumentation, nail polish, nail polish removers, and artificial nails. We report nail weakness, brittleness, and thinning in five subjects after the application of a new manicure system called gel polish and removal with acetone and manual peeling. All subjects complained that the polish was very difficult to remove and that their nails became much thinner after the procedure. Pseudoleukonychia and onychoschizia lamellina were noted on examination. One subject underwent ultrasound and reflectance confocal microscopy (RCM) measurements of nail plate before and after the gel polish application, which showed thinned nail plate (0.063 vs. 0.050 cm and 0.059 vs. 0.030 cm, respectively). Overall, we call attention to the adverse effects of gel polish manicures in five subjects. In addition, our case illustrates potential utility of ultrasound and RCM in measuring nail plate thickness. PMID:22360331

  4. Interaction of Surfactants with Block Polyelectrolyte Gels

    NASA Astrophysics Data System (ADS)

    Crichton, Mark; Bhatia, Surita

    2002-03-01

    We present SANS and rheology for poly(styrene)-poly(acrylic acid) polymers in aqueous solutions. These polymers self-assemble to form spherical micelles in aqueous solutions, and the micelles associate to create elastic, transparent gels at moderate polymer concentrations. The addition of cationic and anionic surfactants (DTAB and SDS) can be used to modify the associative interactions and solution rheology. Addition of an anionic surfactant acts to screen attractive interactions and causes a monotonic decrease in the elastic modulus. However, the addition of a cationic surfactant appears to initially induce a stronger intermicellar attraction, leading to gels with a higher elastic modulus. At higher surfactant concentrations, the cationic surfactant begins to screen intermicellar association, leading to a decrease in the strength of the gel.

  5. Gel-Filled Holders For Ultrasonic Transducers

    NASA Technical Reports Server (NTRS)

    Companion, John A.

    1992-01-01

    In new technique, ultrasonic transducer embedded in rubbery, castable, low-loss gel to enable transducer to "look" into surface of test object or human body at any desired angle. Composed of solution of water and ethylene glycol in collagen matrix. Provides total contact of water bath, also used on bodies or objects too large for water baths, even if moving. Also provides look angles of poly(methyl methacrylate) angle block with potential of reduced acoustic impedance and refraction. Custom-tailored to task at hand, and gel sufficiently inexpensive to be discarded upon completion. Easy to couple ultrasound in and out of gel, minimizing losses and artifacts of other types of standoffs employed in ultrasonic testing.

  6. Mechanical characterization and computational modeling of gels

    NASA Astrophysics Data System (ADS)

    Santos, Paulo Henrique da Silva

    Soft materials like gels have arisen as key component in a wide range of applications, ranging from rocket propellants to complex materials for biomedical devices and drug delivery. Experimental studies have focused on the characterization of a number of gels involving macromolecules such as proteins and polysaccharides; however the link between the microstructure of these systems with their resulting macroproperties is still lacking. From the experimental point of view, this research describes the rheological behavior of some complex systems using the appropriate rheological constitutive equations. Non-conventional rheological techniques are also considered to describe some fragile systems that are significantly disturbed during testing with conventional instruments. From the computational perspective, this research provides insights on how molecular conformation and interactions affect the rheological properties of colloidal and polymeric gels. Molecular and Brownian Dynamics simulation were performed to get a better understanding on gelation processes and to explore new applications for gelled materials.

  7. On the scattering properties of polyelectrolyte gels

    NASA Astrophysics Data System (ADS)

    Barrat, Jean-Louis; Joanny, Jean-François; Pincus, Phil

    1992-08-01

    We present a simple model for scattering properties of polyelectrolyte gels at swelling equilibrium. In the weak screening limit where the Debye-Hückel screening length is larger than the mesh size of the gel, the direct electrostatic interactions are negligible and the swelling is driven by the osmotic pressure of the counterions. The tension created by this pressure is transmitted through the crosslinks to the elastic chains which behave as isolated chains with an applied force at their end points. The structure factor of the gel can be split into a frozen component due to the average concentration heterogeneities and a thermodynamic component due to concentration fluctuations. The frozen component has a peak at a wavevector of the order of the mesh size of the gel, the thermodynamic component has a peak at a higher wavevector of the order of the inverse transverse radius of the chains. At infinite times the dynamic structure factor relaxes towards the frozen component of the static structure factor. In the limit of small wavevectors the relaxation is diffusive with a diffusion constant equal to the Stokes diffusion constant of the Pincus blobs of the stretched chains. The diffusion constant shows a minimum at a wavevector of the order of the inverse transverse radius of the chains. Nous présentons un modèle simple pour étudier la diffusion de rayonnement par des gels polylectrolytes à l'équilibre de gonflement. Dans la limite d'écrantage faible où la longueur d'écran de Debye-Hückel est plus grande que la maille du gel, les interactions électrostatiques directes sont négligeables et le gonflement est dû à la pression osmotique des contreions. La tension créée par cette pression est transmise par les noeuds du gel aux chaines élastiques qui se comportent comme des chaines isolées avec une force extérieure appliquée aux extrémités. Le facteur de structure du gel est la somme d'une composante gelée due aux hétérogénéités de concentration

  8. Hardening and yielding in colloidal gels

    NASA Astrophysics Data System (ADS)

    Del Gado, Emanuela; Colombo, Jader; Bouzid, Mehdi

    Attractive colloidal gel networks are disordered elastic solids that can form even in extremely dilute particle suspensions. With interaction strengths comparable to the thermal energy, their stress-bearing network can locally restructure via breaking and reforming inter-particle bonds. We use molecular dynamics simulations of a model system to investigate the strain hardening and the yielding process. During shear start up protocol, the system exhibits strong localization of tensile stresses that may be released through the breaking and formation of new bonds. In this regime, the small amplitude oscillatory shear analysis shows that the storage and the loss modulus follow a power law behavior that are closely reminiscent of experimental observations. At large accumulated strains, the strain-induced reorganization of the gel may trigger flow heterogeneities and eventually lead to the yielding of the gel via a quasi brittle damage of its structure.

  9. Writing in the granular gel medium

    PubMed Central

    Bhattacharjee, Tapomoy; Zehnder, Steven M.; Rowe, Kyle G.; Jain, Suhani; Nixon, Ryan M.; Sawyer, W. Gregory; Angelini, Thomas E.

    2015-01-01

    Gels made from soft microscale particles smoothly transition between the fluid and solid states, making them an ideal medium in which to create macroscopic structures with microscopic precision. While tracing out spatial paths with an injection tip, the granular gel fluidizes at the point of injection and then rapidly solidifies, trapping injected material in place. This physical approach to creating three-dimensional (3D) structures negates the effects of surface tension, gravity, and particle diffusion, allowing a limitless breadth of materials to be written. With this method, we used silicones, hydrogels, colloids, and living cells to create complex large aspect ratio 3D objects, thin closed shells, and hierarchically branched tubular networks. We crosslinked polymeric materials and removed them from the granular gel, whereas uncrosslinked particulate systems were left supported within the medium for long times. This approach can be immediately used in diverse areas, contributing to tissue engineering, flexible electronics, particle engineering, smart materials, and encapsulation technologies. PMID:26601274

  10. Sol-gel based biofuel cell architectures

    NASA Astrophysics Data System (ADS)

    Lim, James Robert

    Sol-gel based biofuel cell architectures were investigated and quantified for electrochemical performance. The flexible solution chemistry of the sol-gel process has been used to synthesize bio-hybrid materials in which a wide variety of biomolecules are encapsulated in a transparent, inorganic matrix. These biomolecules retain their characteristic reactivities and spectroscopic properties despite being immobilized in the pores of the inorganic matrix. Stability of the biomolecules is also improved because of the confinement in the rigid inorganic network. Sol-gel immobilization serves as the basis for the electrode architecture used in enzymatic biofuel cells. In this dissertation, the fabrication and characterization of an enzymatic glucoseoxygen biofuel cell that incorporates nanostructured silica sol-gel/carbon nanotube composite electrodes was evaluated. These novel electrodes combine the benefits of sol-gel encapsulation with the use of carbon nanotubes which provide enhanced electronic conduction pathways and increase the effective surface area of the electrode. With this immobilization approach, the silica sol-gel is sufficiently porous that both glucose and oxygen have access to enzymes and yet provide a protective cage that preserves biological structure and function, offers long-term stability and perhaps enables operation at elevated temperatures. In addition, direct electron transfer was exhibited by a nanostructured cathode. More notably, these nanostructured composites were developed for power generation. Analysis of electron transfer rates and enzyme kinetics were used to quantify encapsulation properties and explore potential opportunities for optimization. Another topic for biofuel cells is miniaturization. Through miniaturization, biofuel cell design and integration are major considerations for increasing power density and performance.

  11. Normality in analytical psychology.

    PubMed

    Myers, Steve

    2013-12-01

    Although C.G. Jung's interest in normality wavered throughout his career, it was one of the areas he identified in later life as worthy of further research. He began his career using a definition of normality which would have been the target of Foucault's criticism, had Foucault chosen to review Jung's work. However, Jung then evolved his thinking to a standpoint that was more aligned to Foucault's own. Thereafter, the post Jungian concept of normality has remained relatively undeveloped by comparison with psychoanalysis and mainstream psychology. Jung's disjecta membra on the subject suggest that, in contemporary analytical psychology, too much focus is placed on the process of individuation to the neglect of applications that consider collective processes. Also, there is potential for useful research and development into the nature of conflict between individuals and societies, and how normal people typically develop in relation to the spectrum between individuation and collectivity.

  12. Analytic pion form factor

    NASA Astrophysics Data System (ADS)

    Lomon, Earle L.; Pacetti, Simone

    2016-09-01

    The pion electromagnetic form factor and two-pion production in electron-positron collisions are simultaneously fitted by a vector dominance model evolving to perturbative QCD at large momentum transfer. This model was previously successful in simultaneously fitting the nucleon electromagnetic form factors (spacelike region) and the electromagnetic production of nucleon-antinucleon pairs (timelike region). For this pion case dispersion relations are used to produce the analytic connection of the spacelike and timelike regions. The fit to all the data is good, especially for the newer sets of timelike data. The description of high-q2 data, in the timelike region, requires one more meson with ρ quantum numbers than listed in the 2014 Particle Data Group review.

  13. ANALYTIC MODELING OF STARSHADES

    SciTech Connect

    Cash, Webster

    2011-09-01

    External occulters, otherwise known as starshades, have been proposed as a solution to one of the highest priority yet technically vexing problems facing astrophysics-the direct imaging and characterization of terrestrial planets around other stars. New apodization functions, developed over the past few years, now enable starshades of just a few tens of meters diameter to occult central stars so efficiently that the orbiting exoplanets can be revealed and other high-contrast imaging challenges addressed. In this paper, an analytic approach to the analysis of these apodization functions is presented. It is used to develop a tolerance analysis suitable for use in designing practical starshades. The results provide a mathematical basis for understanding starshades and a quantitative approach to setting tolerances.

  14. VERDE Analytic Modules

    2008-01-15

    The Verde Analytic Modules permit the user to ingest openly available data feeds about phenomenology (storm tracks, wind, precipitation, earthquake, wildfires, and similar natural and manmade power grid disruptions and forecast power outages, restoration times, customers outaged, and key facilities that will lose power. Damage areas are predicted using historic damage criteria of the affected area. The modules use a cellular automata approach to estimating the distribution circuits assigned to geo-located substations. Population estimates servedmore » within the service areas are located within 1 km grid cells and converted to customer counts by conversion through demographic estimation of households and commercial firms within the population cells. Restoration times are estimated by agent-based simulation of restoration crews working according to utility published prioritization calibrated by historic performance.« less

  15. Analytics for Metabolic Engineering.

    PubMed

    Petzold, Christopher J; Chan, Leanne Jade G; Nhan, Melissa; Adams, Paul D

    2015-01-01

    Realizing the promise of metabolic engineering has been slowed by challenges related to moving beyond proof-of-concept examples to robust and economically viable systems. Key to advancing metabolic engineering beyond trial-and-error research is access to parts with well-defined performance metrics that can be readily applied in vastly different contexts with predictable effects. As the field now stands, research depends greatly on analytical tools that assay target molecules, transcripts, proteins, and metabolites across different hosts and pathways. Screening technologies yield specific information for many thousands of strain variants, while deep omics analysis provides a systems-level view of the cell factory. Efforts focused on a combination of these analyses yield quantitative information of dynamic processes between parts and the host chassis that drive the next engineering steps. Overall, the data generated from these types of assays aid better decision-making at the design and strain construction stages to speed progress in metabolic engineering research.

  16. VERDE Analytic Modules

    SciTech Connect

    2008-01-15

    The Verde Analytic Modules permit the user to ingest openly available data feeds about phenomenology (storm tracks, wind, precipitation, earthquake, wildfires, and similar natural and manmade power grid disruptions and forecast power outages, restoration times, customers outaged, and key facilities that will lose power. Damage areas are predicted using historic damage criteria of the affected area. The modules use a cellular automata approach to estimating the distribution circuits assigned to geo-located substations. Population estimates served within the service areas are located within 1 km grid cells and converted to customer counts by conversion through demographic estimation of households and commercial firms within the population cells. Restoration times are estimated by agent-based simulation of restoration crews working according to utility published prioritization calibrated by historic performance.

  17. Normality in Analytical Psychology

    PubMed Central

    Myers, Steve

    2013-01-01

    Although C.G. Jung’s interest in normality wavered throughout his career, it was one of the areas he identified in later life as worthy of further research. He began his career using a definition of normality which would have been the target of Foucault’s criticism, had Foucault chosen to review Jung’s work. However, Jung then evolved his thinking to a standpoint that was more aligned to Foucault’s own. Thereafter, the post Jungian concept of normality has remained relatively undeveloped by comparison with psychoanalysis and mainstream psychology. Jung’s disjecta membra on the subject suggest that, in contemporary analytical psychology, too much focus is placed on the process of individuation to the neglect of applications that consider collective processes. Also, there is potential for useful research and development into the nature of conflict between individuals and societies, and how normal people typically develop in relation to the spectrum between individuation and collectivity. PMID:25379262

  18. A New Standard-Based Polynomial Interpolation (SBPIn) Method to Address Gel-to-Gel Variability for the Comparison of Multiple Denaturing Gradient Gel Electrophoresis Profile Matrices

    PubMed Central

    Valentín-Vargas, Alexis; Chorover, Jon; Maier, Raina M.

    2013-01-01

    The Standard-Based Polynomial Interpolation (SBPIn) method is a new simple three-step protocol proposed to address common gel-to-gel variations for the comparison of sample profiles across multiple DGGE gels. The advantages of this method include no requirement for additional software or modification of the standard DGGE protocol. PMID:23234884

  19. Dynamic Light Scattering From Colloidal Gels

    NASA Technical Reports Server (NTRS)

    Krall, A. H.; Weitz, David A.

    1996-01-01

    We present a brief, preliminary account of the interpretation of dynamic light scattering from fractal colloidal gels. For small scattering angles, and for high initial colloid particle volume fractions, the correlation functions exhibit arrested decay, reflecting the non-ergodic nature of these systems and allowing us to directly determine the elastic modulus of the gels. For smaller initial volume fractions, the correlation functions decay completely. In all cases, the initial decay is not exponential, but is instead described by a stretched exponential. We summarize the principles of a model that accounts for these data and discuss the scaling behavior of the measured parameters.

  20. Neutron detector using sol-gel absorber

    DOEpatents

    Hiller, John M.; Wallace, Steven A.; Dai, Sheng

    1999-01-01

    An neutron detector composed of fissionable material having ions of lithium, uranium, thorium, plutonium, or neptunium, contained within a glass film fabricated using a sol-gel method combined with a particle detector is disclosed. When the glass film is bombarded with neutrons, the fissionable material emits fission particles and electrons. Prompt emitting activated elements yielding a high energy electron contained within a sol-gel glass film in combination with a particle detector is also disclosed. The emissions resulting from neutron bombardment can then be detected using standard UV and particle detection methods well known in the art, such as microchannel plates, channeltrons, and silicon avalanche photodiodes.

  1. Hybrid sol-gel optical materials

    DOEpatents

    Zeigler, J.M.

    1993-04-20

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  2. Hybrid sol-gel optical materials

    DOEpatents

    Zeigler, John M.

    1992-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  3. Hybrid sol-gel optical materials

    DOEpatents

    Zeigler, John M.

    1993-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  4. Simple cloud chambers using gel ice packs

    NASA Astrophysics Data System (ADS)

    Kamata, Masahiro; Kubota, Miki

    2012-07-01

    Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry ice or liquid nitrogen. The gel can be frozen in normal domestic freezers, and can be used repeatedly by re-freezing. The tracks of alpha-ray particles can be observed continuously for about 20 min, and the operation is simple and easy.

  5. Aggregation-structure-elasticity relationship of gels

    NASA Astrophysics Data System (ADS)

    Ma, Hang-Shing

    Aerogel is a mesoporous, low-density material which is desirable for applications like thermal insulation and low-k interlayer dielectric. However, its lack of mechanical integrity hinders its development. Experiments have shown that aerogels exhibit a scaling relationship E ∝ rho m between modulus E and density rho, with the exponent m usually between 3 and 4. The objective of the dissertation is to use computer modeling to understand how the random aggregation process accounts for the fractal structure and the compliant nature of aerogels. Model gels were created by the diffusion-limited cluster-cluster aggregation (DLCA), which simulates random aggregation leading to the sol-gel transition. Then each resulting structure was modeled as an elastic beam network and numerically compressed using the finite element method (FEM). Analyses showed that the DLCA gels reproduced the scaling relationship after trimming the non-contributive dangling branches from the mechanically efficient looped networks. The dangling bond deflection (DEF) model was therefore developed to model the random rotational movement of the dangling branches and the subsequent loop structure formation. Model gels with extensive loops and negligible dangling branches were simulated by combining the DLCA and DEF models. Representation of the aerogel networks by the DLCADEF models was validated for the resemblance of the fractal geometry and elastic behavior. The lack of mechanical integrity in aerogels is a natural consequence of the random aggregation and the resulting fractal structure. Fractal clusters are created in the early stage of aggregation, each of which is characterized by a dense core and sparse perimeter. These clusters grow in size until they percolate at the gel point by knitting together at the perimeters. The gel structure possesses a "blob-and-link" architecture, with the blobs representing the rigid cores of the fractal clusters, and the links corresponding to the tenuous chains

  6. Electroactive polymer gels based on epoxy resin

    NASA Astrophysics Data System (ADS)

    Samui, A. B.; Jayakumar, S.; Jayalakshmi, C. G.; Pandey, K.; Sivaraman, P.

    2007-04-01

    Five types of epoxy gels have been synthesized from common epoxy resins and hardeners. Fumed silica and nanoclay, respectively, were used as fillers and butyl methacrylate/acrylamide were used as monomer(s) for making interpenetrating polymer networks (IPNs) in three compositions. Swelling study, tensile property evaluation, dynamic mechanical thermal analysis, thermo-gravimetric analysis, scanning electron microscopy and electroactive property evaluation were done. The gels have sufficient mechanical strength and the time taken for bending to 20° was found to be 22 min for forward bias whereas it was just 12 min for reverse bias.

  7. Analytical capillary isotachophoresis: a routine technique for the analysis of lipoproteins and lipoprotein subfractions in whole serum.

    PubMed

    Schmitz, G; Borgmann, U; Assmann, G

    1985-02-22

    A capillary isotachophoretic separation technique was developed for lipoproteins in native serum which, compared with previous electrophoretic techniques, has negligible molecular sieve effects, does not need gel casting, is suitable for whole serum and has a high discriminative power for lipoprotein subfractions. The technique is based on pre-staining whole serum lipoproteins for 30 min at 4 degrees C before separation of 0.5 microliter of the sample in a free-flow capillary system (0.5 mm I.D.) with discontinuous buffer system. In normolipidaemic sera, high-density (HDL) and low-density lipoproteins (VLDL) are separated into two major subpopulations according to their net electric mobility. The identification of these fractions was confirmed by substitution with ultracentrifugally isolated lipoproteins and by their complete absence from Tangier and abetalipoproteinaemic serum. Triglyceride-rich very low-density lipoproteins (VLDL) revealed a defined zone between the HDL and LDL subpopulations. Our preliminary results indicate that the separation of human whole serum lipoproteins by capillary isotachophoresis is a promising method for the determination of lipoprotein subfractions.

  8. Pouring and running a protein gel by reusing commercial cassettes.

    PubMed

    Hwang, Alexander C; Grey, Paris H; Cuddy, Katrina; Oppenheimer, David G

    2012-01-01

    The evaluation of proteins using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis is a common technique used by biochemistry and molecular biology researchers. For laboratories that perform daily analyses of proteins, the cost of commercially available polyacrylamide gels (~$10/gel) can be considerable over time. To mitigate this cost, some researchers prepare their own polyacrylamide gels. Traditional methods of pouring these gels typically utilize specialized equipment and glass gel plates that can be expensive and preclude pouring many gels and storing them for future use. Furthermore, handling of glass plates during cleaning or gel pouring can result in accidental breakage creating a safety hazard, which may preclude their use in undergraduate laboratory classes. Our protocol demonstrates how to pour multiple protein gels simultaneously by recycling Invitrogen Nupage Novex minigel cassettes, and inexpensive materials purchased at a home improvement store. This economical and streamlined method includes a way to store the gels at 4°C for a few weeks. By re-using the plastic gel cassettes from commercially available gels, labs that run frequent protein gels can save significant costs and help the environment. In addition, plastic gel cassettes are extremely resistant to breakage, which makes them ideal for undergraduate laboratory classrooms. PMID:22349047

  9. Gel-expanded to gel-condensed transition in neurofilament networks revealed by direct force measurements.

    PubMed

    Beck, Roy; Deek, Joanna; Jones, Jayna B; Safinya, Cyrus R

    2010-01-01

    Neurofilaments (NF)--the principal cytoskeletal constituent of myelinated axons in vertebrates--consist of three molecular-weight subunit proteins NF-L (low), NF-M (medium) and NF-H (high), assembled to form mature filaments with protruding unstructured C-terminus side arms. Liquid-crystal gel networks of side-arm-mediated neurofilament assemblies have a key role in the mechanical stability of neuronal processes. Disruptions of the neurofilament network, owing to neurofilament over-accumulation or incorrect side-arm interactions, are a hallmark of motor-neuron diseases including amyotrophic lateral sclerosis. Using synchrotron X-ray scattering, we report on a direct measurement of forces in reconstituted neurofilament gels under osmotic pressure (P). With increasing pressure near physiological salt and average phosphorylation conditions, NF-LMH, comprising the three subunits near in vivo composition, or NF-LH gels, undergo for P > P(c) approximately 10 kPa, an abrupt non-reversible gel-expanded to gel-condensed transition. The transition indicates side-arm-mediated attractions between neurofilaments consistent with an electrostatic model of interpenetrating chains. In contrast, NF-LM gels remain in a collapsed state for P < P(c) and transition to the gel-condensed state at P > P(c). These findings, which delineate the distinct roles of NF-M and NF-H in regulating neurofilament interactions, shed light on possible mechanisms for disruptions of optimal mechanical network properties. PMID:19915555

  10. Free forming of the gel by 3D gel printer SWIM-ER

    NASA Astrophysics Data System (ADS)

    Okada, Koji; Tase, Taishi; Saito, Azusa; Makino, Masato; Gong, Jin; Kawakami, Masaru; Furukawa, Hidemitsu

    2015-04-01

    Gels, soft and wet materials, have unique properties such as material permeability, biocompatibility and low friction, which are hardly found in hard and dry materials. These superior characteristics of hydrogels promise to expand the medical applications. In recent years, the optical 3D gel printer named SWIM-ER (Soft and Wet Industrial - Easy Realizer) was developed by our team in order to fabricate tough gels with free form. We are aiming to create artificial blood vessel of the gel material by 3D gel printer. Artificial blood vessel is expected to be used for vascular surgery practice. The artificial blood vessel made by 3D gel printer can be create to free form on the basis of the biological data of the patient. Therefore, we believe it is possible to contribute to increasing the success rate and safety of vascular surgery by creating artificial blood vessel with 3D gel printer. The modeling method of SWIM-ER is as follow. Pregel solution is polymerized by one-point UV irradiation with optical fiber. The irradiation area is controlled by computer program, so that exact 3D free forming is realized. In this study, synthesis conditions are re-examined in order to improve the degree of freedom of fabrication. The dimensional accuracy in height direction is improved by increasing the cross linker concentration. We examined the relationship of resolution to the pitch and UV irradiation time in order to improve the modeling accuracy.

  11. Gel-expanded to gel-condensed transition in neurofilament networks revealed by direct force measurements

    NASA Astrophysics Data System (ADS)

    Beck, Roy; Deek, Joanna; Jones, Jayna B.; Safinya, Cyrus R.

    2010-01-01

    Neurofilaments (NF)-the principal cytoskeletal constituent of myelinated axons in vertebrates-consist of three molecular-weight subunit proteins NF-L (low), NF-M (medium) and NF-H (high), assembled to form mature filaments with protruding unstructured C-terminus side arms. Liquid-crystal gel networks of side-arm-mediated neurofilament assemblies have a key role in the mechanical stability of neuronal processes. Disruptions of the neurofilament network, owing to neurofilament over-accumulation or incorrect side-arm interactions, are a hallmark of motor-neuron diseases including amyotrophic lateral sclerosis. Using synchrotron X-ray scattering, we report on a direct measurement of forces in reconstituted neurofilament gels under osmotic pressure (P). With increasing pressure near physiological salt and average phosphorylation conditions, NF-LMH, comprising the three subunits near in vivo composition, or NF-LH gels, undergo for P>Pc~10kPa, an abrupt non-reversible gel-expanded to gel-condensed transition. The transition indicates side-arm-mediated attractions between neurofilaments consistent with an electrostatic model of interpenetrating chains. In contrast, NF-LM gels remain in a collapsed state for Pgel-condensed state at P>Pc. These findings, which delineate the distinct roles of NF-M and NF-H in regulating neurofilament interactions, shed light on possible mechanisms for disruptions of optimal mechanical network properties.

  12. Speciation of protein-bound trace elements by gel electrophoresis and atomic spectrometry.

    PubMed

    Ma, Renli; McLeod, Cameron W; Tomlinson, Kerry; Poole, Robert K

    2004-08-01

    The metabolism of trace elements, in particular their binding to proteins in biological systems is of great importance in biochemical, toxicological, and pharmacological studies. As a result there has been a sustained interest over the last two decades in the speciation of protein-bound metals. Various analytical approaches have been employed, combining efficient separation of metalloproteins by liquid chromatography or electrophoresis with high-sensitivity elemental detection. Slab-gel electrophoresis (GE) is a key platform for high-resolution protein separation, and has been combined with autoradiography and various atomic spectrometric techniques for in-gel determination of protein-bound metals. Recently, the combination of GE with state-of-the-art inductively coupled plasma-mass spectrometry (ICP-MS), particularly when linked to laser ablation (LA) for direct gel interrogation, has opened up new opportunities for rapid characterization of metalloproteins. The use of GE and atomic spectrometry for the speciation of protein-bound trace elements is reviewed in this paper. Technical requirements for gel electrophoresis/atomic spectrometric measurement are considered in terms of method compatibilities, detection capability and potential usefulness. The literature is also surveyed to illustrate current status and future trends. PMID:15300764

  13. Solid state NMR studies of gels derived from low molecular mass gelators.

    PubMed

    Nonappa; Kolehmainen, E

    2016-07-13

    Since its invention more than six decades ago, nuclear magnetic resonance (NMR) spectroscopy has evolved as an inevitable part of chemical as well as structural analysis of small molecules, polymers, biomaterials and hybrid materials. In the solution state, due to the increased viscosity of complex viscoelastic fluids such as gels, liquid crystals and other soft materials, the rate of molecular tumbling is reduced, which in turn affects the chemical shift anisotropy, dipolar and quadrupolar interactions. As a consequence the solution state NMR spectra show broad lines, and therefore, extracting detailed structural information is a challenging task. In this context, solid state (SS) NMR has the ability to distinguish between a minute amount of polymorphic forms, conformational changes, and the number of non-equivalent molecules in an asymmetric unit of a crystal lattice, and to provide both qualitative as well as quantitative analytical data with a short-range order. Therefore, SS NMR has continued to evolve as an indispensable tool for structural analysis and gave birth to a new field called NMR crystallography. Solid state cross polarization (CP) and high resolution (HR) magic angle spinning (MAS) NMR spectroscopy has been used to study weak interactions in polymer gels. However, the application of SS NMR spectroscopy to study gels derived from low molecular weight gelators has been limited until recently. In this review, we will focus on the importance of solid state NMR spectroscopy in understanding and elucidating the structure of supramolecular gels derived from low molecular weight gelators with selected examples. PMID:27374054

  14. Solid state NMR studies of gels derived from low molecular mass gelators.

    PubMed

    Nonappa; Kolehmainen, E

    2016-07-13

    Since its invention more than six decades ago, nuclear magnetic resonance (NMR) spectroscopy has evolved as an inevitable part of chemical as well as structural analysis of small molecules, polymers, biomaterials and hybrid materials. In the solution state, due to the increased viscosity of complex viscoelastic fluids such as gels, liquid crystals and other soft materials, the rate of molecular tumbling is reduced, which in turn affects the chemical shift anisotropy, dipolar and quadrupolar interactions. As a consequence the solution state NMR spectra show broad lines, and therefore, extracting detailed structural information is a challenging task. In this context, solid state (SS) NMR has the ability to distinguish between a minute amount of polymorphic forms, conformational changes, and the number of non-equivalent molecules in an asymmetric unit of a crystal lattice, and to provide both qualitative as well as quantitative analytical data with a short-range order. Therefore, SS NMR has continued to evolve as an indispensable tool for structural analysis and gave birth to a new field called NMR crystallography. Solid state cross polarization (CP) and high resolution (HR) magic angle spinning (MAS) NMR spectroscopy has been used to study weak interactions in polymer gels. However, the application of SS NMR spectroscopy to study gels derived from low molecular weight gelators has been limited until recently. In this review, we will focus on the importance of solid state NMR spectroscopy in understanding and elucidating the structure of supramolecular gels derived from low molecular weight gelators with selected examples.

  15. A Sol-Gel-Modified Poly(methyl methacrylate) Electrophoresis Microchip with a Hydrophilic Channel Wall

    SciTech Connect

    Chen, Gang; Xu, Xuejiao; Lin, Yuehe; Wang, Joseph

    2007-07-27

    A sol-gel method was employed to fabricate a poly(methyl methacrylate) (PMMA) electrophoresis microchip that contains a hydrophilic channel wall. To fabricate such a device, tetraethoxysilane (TEOS) was injected into the PMMA channel and was allowed to diffuse into the surface layer for 24 h. After removing the excess TEOS, the channel was filled with an acidic solution for 3 h. Subsequently, the channel was flushed with water and was pretreated in an oven to obtain a sol-gel-modified PMMA microchip. The water contact angle for the sol-gel-modified PMMA was 27.4° compared with 66.3° for the pure PMMA. In addition, the electro-osmotic flow increased from 2.13×10-4 cm2 V-1 s-1 for the native-PMMA channel to 4.86×10-4 cm2 V-1 s-1 for the modified one. The analytical performance of the sol-gel-modified PMMA microchip was demonstrated for the electrophoretic separation of several purines, coupled with amperometric detection. The separation efficiency of uric acid increased to 74 882.3 m-1 compared with 14 730.5 m-1 for native-PMMA microchips. The result of this simple modification is a significant improvement in the performance of PMMA for microchip electrophoresis and microfluidic applications.

  16. Analytic integrable systems: Analytic normalization and embedding flows

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang

    In this paper we mainly study the existence of analytic normalization and the normal form of finite dimensional complete analytic integrable dynamical systems. More details, we will prove that any complete analytic integrable diffeomorphism F(x)=Bx+f(x) in (Cn,0) with B having eigenvalues not modulus 1 and f(x)=O(|) is locally analytically conjugate to its normal form. Meanwhile, we also prove that any complete analytic integrable differential system x˙=Ax+f(x) in (Cn,0) with A having nonzero eigenvalues and f(x)=O(|) is locally analytically conjugate to its normal form. Furthermore we will prove that any complete analytic integrable diffeomorphism defined on an analytic manifold can be embedded in a complete analytic integrable flow. We note that parts of our results are the improvement of Moser's one in J. Moser, The analytic invariants of an area-preserving mapping near a hyperbolic fixed point, Comm. Pure Appl. Math. 9 (1956) 673-692 and of Poincaré's one in H. Poincaré, Sur l'intégration des équations différentielles du premier order et du premier degré, II, Rend. Circ. Mat. Palermo 11 (1897) 193-239. These results also improve the ones in Xiang Zhang, Analytic normalization of analytic integrable systems and the embedding flows, J. Differential Equations 244 (2008) 1080-1092 in the sense that the linear part of the systems can be nonhyperbolic, and the one in N.T. Zung, Convergence versus integrability in Poincaré-Dulac normal form, Math. Res. Lett. 9 (2002) 217-228 in the way that our paper presents the concrete expression of the normal form in a restricted case.

  17. Protein electrophoretic migration data from custom and commercial gradient gels.

    PubMed

    Miller, Andrew J; Roman, Brandon; Norstrom, Eric M

    2016-12-01

    This paper presents data related to the article "A method for easily customizable gradient gel electrophoresis" (A.J. Miller, B. Roman, E.M. Norstrom, 2016) [1]. Data is presented on the rate of electrophoretic migration of proteins in both hand-poured and commercially acquired acrylamide gradient gels. For each gel, migration of 9 polypeptides of various masses was measured upon completion of gel electrophoresis. Data are presented on the migration of proteins within separate lanes of the same gel as well as migration rates from multiple gels. PMID:27622203

  18. Ionic Conduction Mechanism of Polymer Gel Electrolytes

    NASA Astrophysics Data System (ADS)

    Saito, Yuria; Kataoka, Hiroshi

    2002-12-01

    Carrier migration mechanism of polymer gel electrolyte for lithium secondary batteries was investigated through the dynamic behavior of diffusion coefficient and conductivity. The gel prepared with PEO showed a homogeneous structure with any fraction of the electrolyte solution. The diffusion coefficient of the ionic species decreased with the increase in the polymer fraction in the gel. Cation migration is closely associated with the polymer, showing the reduced activation energy for diffusion with polymer in contrast to the increasing feature of the activation energy of the anion diffusion. The PVDF-gel electrolytes have a solid solubility limit due to the swelling saturation. The excess solution was then trapped in the cavities of the swollen polymer network. As a result, the diffusion showed two components. One is the fast migration of the carriers similar to that in the solution and the other is the relatively slow migration in the swollen region. The latter was influenced by the polymer due to the physical blocking and chemical interactive effects.

  19. Growth of hydroxyapatite nanoparticles on silica gels.

    PubMed

    Rivera-Muñoz, E M; Huirache-Acuña, R; Velázquez, R; Alonso-Núñez, G; Eguía-Eguía, S

    2011-06-01

    Synthetic, hydroxyapatite nanoparticles were grown on the surface of silica gels. The synthesis of those nanoparticles was obtained by immersing silica gels in a simulated body fluid (SBF) at 37 degrees C. The SBF was replaced every week to keep constant the Ca and P ion concentration and subsequent growth of hydroxyapatite was evaluated after 1-6 weeks of total soaking time in SBF. Hydroxyapatite nanoparticles were observed by scanning electron microscopy (SEM) on the surface of silica gel samples and confirmed by energy dispersive X-ray spectroscopy (EDS), Fourier Transform Infra Red Spectroscopy (FTIR) and powder X-ray Diffractometry (XRD) analysis. These particles show a regular shape and uniform size every week, keeping within the nanoscale always. Both the size and morphology of hydroxyapatite nanoparticles obtained are the result of the use of different chemical additives in the synthesis of silica gels, since they affect the liquid-to-solid interface, and the growth could correspond to a diffusion limited aggregation (DLA) process. A more detailed analysis, with higher magnifications, showed that hydroxyapatite nanoparticles are not solid spheres, showing a branched texture and their size depends on the scale and resolution of the measure instrument. PMID:21770224

  20. Gel injection successfully shuts off excess water

    SciTech Connect

    1995-11-01

    Unocal applied a high-temperature organic polymer gel in Feather field Well H-43 in the UK North Sea to reduce water production in them more-permeable upper perforated section of the Brent Sand. The operation and technical details of the polymer system developed by Unocal, and how it was applied, are described in paper SPE 30426, ``Water shut off in the North Sea; Testing a new polymer system in the Heather field, UKCS Block 2/5.`` The authors concluded that the new gel system successfully isolated the Upper Brent water production, increasing oil production and decreasing water production. Lower perforations were successfully isolated using sized calcium carbonate suspended in an HEC polymer--a technique difficult to monitor in the deviated well. Batch mixing provided ``excellent`` quality gel, closely matching lab measured performance. And the gel required no pre-cooling in the near-wellbore area. Some 1,100 bbl were injected without excessive wellhead pressure, at 1 bpm. A summary of the paper`s highlights is presented here.

  1. Simple Cloud Chambers Using Gel Ice Packs

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Kubota, Miki

    2012-01-01

    Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry…

  2. Gel Filtration Chromatography: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Hurlbut, Jeffrey A.; Schonbeck, Niels D.

    1984-01-01

    Describes a rapid, visual demonstration of protein separation by gel filtration chromatography. The procedure separates two highly colored proteins of different molecular weights on a Sephadex G-75 in 45 minutes. This time includes packing the column as well. Background information, reagents needed, procedures used, and results obtained are…

  3. Non-diffusing radiochromic micelle gel

    NASA Astrophysics Data System (ADS)

    Jordan, Kevin; Sekimoto, Masaya

    2010-11-01

    The addition of Laponite, a synthetic clay nanoparticle material to radiochromic leuco Malachite Green micelle hydrogel eliminates diffusion of the cationic dye by electrostatic binding. The clay nanoparticles also increased dose sensitivity ten-fold relative to the parent gel formulation. This material is a suitable 3D water equivalent dosimeter with optical CT readout.

  4. Electrophoretic Porosimetry of Sol-Gels

    NASA Technical Reports Server (NTRS)

    Snow, L. A.; Smith, D. D.; Sibille, L.; Hunt, A. J.; Ng, J.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    It has been hypothesized that gravity has an effect on the formation and resulting microstructure of sol-gels. In order to more clearly resolve the effect of gravity, pores may be non-destructively analyzed in the wet gel, circumventing the shrinkage and coarsening associated with the drying procedure. We discuss the development of an electrophoretic technique, analogous to affinity chromatography, for the determination of pore size distribution and its application to silica gels. Specifically a monodisperse charged dye is monitored by an optical densitometer as it moves through the wet gel under the influence of an electric field. The transmittance data (output) represents the convolution of the dye concentration profile at the beginning of the run (input) with the pore size distribution (transfer function), i.e. linear systems theory applies. Because of the practical difficulty in producing a delta function input dye profile we prefer instead to use a step function. Average pore size is then related to the velocity of this dye front, while the pore size distribution is related to the spreading of the front. Preliminary results of this electrophoretic porosimetry and its application to ground and space-grown samples will be discussed.

  5. Gel bead composition for metal adsorption

    DOEpatents

    Scott, Charles D.; Woodward, Charlene A.; Byers, Charles H.

    1991-01-01

    The invention is a gel bead comprising propylene glycol alginate and bone gelatin and is capable of removing metals such as Sr and Cs from solution without adding other adsorbents. The invention could have application to the nuclear industry's waste removal activities.

  6. Gel bead composition for metal adsorption

    DOEpatents

    Scott, Charles D.; Woodward, Charlene A.; Byers, Charles H.

    1990-01-01

    The invention is a gel bead comprising propylene glycol alginate and bone gelatin and is capable of removing metals such as Sr and Cs from solution without adding other adsorbents. The invention could have application to the nuclear industry's waste removal activities.

  7. Analytical techniques for cell fractions

    SciTech Connect

    Pearson, T.; Anderson, L.

    1980-01-15

    Disposable microimmunoadsorbent columns containing Staphylococcus Protein A and monoclonal antibodies were used to bind antigenic proteins from a mixture. Eluates from these columns were directly analyzed by electrophoresis on two-dimensional (2-D) gels. In this way, biochemical and biophysical information on the bound antigen and on the specific antibody can be obtained simultaneously. The microimmunoadsorbents are easy to handle and in conjunction with multiple 2-D gel systems provide a means for screening large numbers of myeloma hybrids for specificity to antigens in complex mixtures.

  8. Hanford transuranic analytical capability

    SciTech Connect

    McVey, C.B.

    1995-02-24

    With the current DOE focus on ER/WM programs, an increase in the quantity of waste samples that requires detailed analysis is forecasted. One of the prime areas of growth is the demand for DOE environmental protocol analyses of TRU waste samples. Currently there is no laboratory capacity to support analysis of TRU waste samples in excess of 200 nCi/gm. This study recommends that an interim solution be undertaken to provide these services. By adding two glove boxes in room 11A of 222S the interim waste analytical needs can be met for a period of four to five years or until a front end facility is erected at or near the 222-S facility. The yearly average of samples is projected to be approximately 600 samples. The figure has changed significantly due to budget changes and has been downgraded from 10,000 samples to the 600 level. Until these budget and sample projection changes become firmer, a long term option is not recommended at this time. A revision to this document is recommended by March 1996 to review the long term option and sample projections.

  9. Analytics for Metabolic Engineering

    PubMed Central

    Petzold, Christopher J.; Chan, Leanne Jade G.; Nhan, Melissa; Adams, Paul D.

    2015-01-01

    Realizing the promise of metabolic engineering has been slowed by challenges related to moving beyond proof-of-concept examples to robust and economically viable systems. Key to advancing metabolic engineering beyond trial-and-error research is access to parts with well-defined performance metrics that can be readily applied in vastly different contexts with predictable effects. As the field now stands, research depends greatly on analytical tools that assay target molecules, transcripts, proteins, and metabolites across different hosts and pathways. Screening technologies yield specific information for many thousands of strain variants, while deep omics analysis provides a systems-level view of the cell factory. Efforts focused on a combination of these analyses yield quantitative information of dynamic processes between parts and the host chassis that drive the next engineering steps. Overall, the data generated from these types of assays aid better decision-making at the design and strain construction stages to speed progress in metabolic engineering research. PMID:26442249

  10. Synthetic and Biopolymer Gels - Similarities and Difference.

    NASA Astrophysics Data System (ADS)

    Horkay, Ferenc

    2006-03-01

    Ion exchange plays a central role in a variety of physiological processes, such as nerve excitation, muscle contraction and cell locomotion. Hydrogels can be used as model systems for identifying fundamental chemical and physical interactions that govern structure formation, phase transition, etc. in biopolymer systems. Polyelectrolyte gels are particularly well-suited to study ion-polymer interactions because their structure and physical-chemical properties (charge density, crosslink density, etc) can be carefully controlled. They are sensitive to different external stimuli such as temperature, ionic composition and pH. Surprisingly few investigations have been made on polyelectrolyte gels in salt solutions containing both monovalent and multivalent cations. We have developed an experimental approach that combines small angle neutron scattering and osmotic swelling pressure measurements. The osmotic pressure exerted on a macroscopic scale is a consequence of changes occurring at a molecular level. The intensity of the neutron scattering signal, which provides structural information as a function of spatial resolution, is directly related to the osmotic pressure. We have found a striking similarity in the scattering and osmotic behavior of polyacrylic acid gels and DNA gels swollen in nearly physiological salt solutions. Addition of calcium ions to both systems causes a sudden volume change. This volume transition, which occurs when the majority of the sodium counterions are replaced by calcium ions, is reversible. Such reversibility implies that the calcium ions are not strongly bound by the polyanion, but are free to move along the polymer chain, which allows these ions to form temporary bridges between negative charges on adjacent chains. Mechanical measurements reveal that the elastic modulus is practically unchanged in the calcium-containing gels, i.e., ion bridging is qualitatively different from covalent crosslinks.

  11. 3D gel printing for soft-matter systems innovation

    NASA Astrophysics Data System (ADS)

    Furukawa, Hidemitsu; Kawakami, Masaru; Gong, Jin; Makino, Masato; Kabir, M. Hasnat; Saito, Azusa

    2015-04-01

    In the past decade, several high-strength gels have been developed, especially from Japan. These gels are expected to use as a kind of new engineering materials in the fields of industry and medical as substitutes to polyester fibers, which are materials of artificial blood vessels. We consider if various gel materials including such high-strength gels are 3D-printable, many new soft and wet systems will be developed since the most intricate shape gels can be printed regardless of the quite softness and brittleness of gels. Recently we have tried to develop an optical 3D gel printer to realize the free-form formation of gel materials. We named this apparatus Easy Realizer of Soft and Wet Industrial Materials (SWIM-ER). The SWIM-ER will be applied to print bespoke artificial organs, including artificial blood vessels, which will be possibly used for both surgery trainings and actual surgery. The SWIM-ER can print one of the world strongest gels, called Double-Network (DN) gels, by using UV irradiation through an optical fiber. Now we also are developing another type of 3D gel printer for foods, named E-Chef. We believe these new 3D gel printers will broaden the applications of soft-matter gels.

  12. Modeling the dynamics of a tracer particle in an elastic active gel.

    PubMed

    Ben-Isaac, E; Fodor, É; Visco, P; van Wijland, F; Gov, Nir S

    2015-07-01

    The internal dynamics of active gels both in artificial (in vitro) model systems and inside the cytoskeleton of living cells has been extensively studied with experiments of recent years. These dynamics are probed using tracer particles embedded in the network of biopolymers together with molecular motors, and distinct nonthermal behavior is observed. We present a theoretical model of the dynamics of a trapped active particle, which allows us to quantify the deviations from equilibrium behavior, using both analytic and numerical calculations. We map the different regimes of dynamics in this system and highlight the different manifestations of activity: breakdown of the virial theorem and equipartition, different elasticity-dependent "effective temperatures," and distinct non-Gaussian distributions. Our results shed light on puzzling observations in active gel experiments and provide physical interpretation of existing observations, as well as predictions for future studies.

  13. Modeling the dynamics of a tracer particle in an elastic active gel

    NASA Astrophysics Data System (ADS)

    Ben-Isaac, E.; Fodor, É.; Visco, P.; van Wijland, F.; Gov, Nir S.

    2015-07-01

    The internal dynamics of active gels both in artificial (in vitro) model systems and inside the cytoskeleton of living cells has been extensively studied with experiments of recent years. These dynamics are probed using tracer particles embedded in the network of biopolymers together with molecular motors, and distinct nonthermal behavior is observed. We present a theoretical model of the dynamics of a trapped active particle, which allows us to quantify the deviations from equilibrium behavior, using both analytic and numerical calculations. We map the different regimes of dynamics in this system and highlight the different manifestations of activity: breakdown of the virial theorem and equipartition, different elasticity-dependent "effective temperatures," and distinct non-Gaussian distributions. Our results shed light on puzzling observations in active gel experiments and provide physical interpretation of existing observations, as well as predictions for future studies.

  14. Modeling the dynamics of a tracer particle in an elastic active gel.

    PubMed

    Ben-Isaac, E; Fodor, É; Visco, P; van Wijland, F; Gov, Nir S

    2015-07-01

    The internal dynamics of active gels both in artificial (in vitro) model systems and inside the cytoskeleton of living cells has been extensively studied with experiments of recent years. These dynamics are probed using tracer particles embedded in the network of biopolymers together with molecular motors, and distinct nonthermal behavior is observed. We present a theoretical model of the dynamics of a trapped active particle, which allows us to quantify the deviations from equilibrium behavior, using both analytic and numerical calculations. We map the different regimes of dynamics in this system and highlight the different manifestations of activity: breakdown of the virial theorem and equipartition, different elasticity-dependent "effective temperatures," and distinct non-Gaussian distributions. Our results shed light on puzzling observations in active gel experiments and provide physical interpretation of existing observations, as well as predictions for future studies. PMID:26274211

  15. The effective diffusion coefficient of a small molecule in a two-phase gel medium

    NASA Astrophysics Data System (ADS)

    Kingsburry, Christine; Slater, Gary W.

    2009-12-01

    Using simple theoretical arguments and exact numerical lattice calculations, Hickey et al. [J. Chem. Phys. 124, 204903 (2006)] derived and tested an expression for the effective diffusion coefficient of a probe molecule in a two-phase medium consisting of a hydrogel with large gel-free inclusions. Although providing accurate predictions, this expression neglects important characteristics that such two-phase systems can present. In this article, we extend the previously derived expression in order to include local interactions between the gel and the analyte, interfacial effects between the main phase and the inclusions, and finally a possible incomplete separation between the two phases. We test our new, generalized expressions using exact numerical calculations. These generalized equations should be a useful tool for the development of novel multiphase systems for specific applications, such as drug-delivery platforms.

  16. Enhanced sensitivity RNA gel loading buffer that enables efficient RNA separation on native gels.

    PubMed

    Gregg, Keqin; Zhou, Wenli; Ji, Wan; Davis, Sara

    2004-02-01

    RNA gel analysis is essential for quality assessment of RNA preparations for subsequent analysis such as microarrays and real-time PCRs. The routinely used standard electrophoresis of RNA through formaldehyde-containing agarose gels is not only labor-intensive and time-consuming, but also involves sizeable quantities of hazardous materials. Above all, it is not sensitive, requiring more than 1 microgram of RNA for the assay. Current gene expression profiling with microarrays and real-time PCR often involves limiting amounts of RNA. It is therefore important to have a more sensitive way to analyze RNA. Here we report an improved ethidium bromide-based RNA gel analysis system with our Superload buffer that increases sensitivity to 12.5 ng of total RNA and allows RNA analysis on a regular native Tris-acetate EDTA (TAE) agarose gel.

  17. Encapsulation of nanoclusters in dried gel materials via an inverse micelle/sol gel synthesis

    DOEpatents

    Martino, Anthony; Yamanaka, Stacey A.; Kawola, Jeffrey S.; Showalter, Steven K.; Loy, Douglas A.

    1998-01-01

    A dried gel material sterically entrapping nanoclusters of a catalytically active material and a process to make the material via an inverse micelle/sol-gel synthesis. A surfactant is mixed with an apolar solvent to form an inverse micelle solution. A salt of a catalytically active material, such as gold chloride, is added along with a silica gel precursor to the solution to form a mixture. To the mixture are then added a reducing agent for the purpose of reducing the gold in the gold chloride to atomic gold to form the nanoclusters and a condensing agent to form the gel which sterically entraps the nanoclusters. The nanoclusters are normally in the average size range of from 5-10 nm in diameter with a monodisperse size distribution.

  18. Encapsulation of nanoclusters in dried gel materials via an inverse micelle/sol gel synthesis

    DOEpatents

    Martino, A.; Yamanaka, S.A.; Kawola, J.S.; Showalter, S.K.; Loy, D.A.

    1998-09-29

    A dried gel material sterically entrapping nanoclusters of a catalytically active material and a process to make the material via an inverse micelle/sol-gel synthesis are disclosed. A surfactant is mixed with an apolar solvent to form an inverse micelle solution. A salt of a catalytically active material, such as gold chloride, is added along with a silica gel precursor to the solution to form a mixture. To the mixture are then added a reducing agent for the purpose of reducing the gold in the gold chloride to atomic gold to form the nanoclusters and a condensing agent to form the gel which sterically entraps the nanoclusters. The nanoclusters are normally in the average size range of from 5--10 nm in diameter with a monodisperse size distribution. 1 fig.

  19. Electrochemical impedimetric sensor based on molecularly imprinted polymers/sol-gel chemistry for methidathion organophosphorous insecticide recognition.

    PubMed

    Bakas, Idriss; Hayat, Akhtar; Piletsky, Sergey; Piletska, Elena; Chehimi, Mohamed M; Noguer, Thierry; Rouillon, Régis

    2014-12-01

    We report here a novel method to detect methidathion organophosphorous insecticides. The sensing platform was architected by the combination of molecularly imprinted polymers and sol-gel technique on inexpensive, portable and disposable screen printed carbon electrodes. Electrochemical impedimetric detection technique was employed to perform the label free detection of the target analyte on the designed MIP/sol-gel integrated platform. The selection of the target specific monomer by electrochemical impedimetric methods was consistent with the results obtained by the computational modelling method. The prepared electrochemical MIP/sol-gel based sensor exhibited a high recognition capability toward methidathion, as well as a broad linear range and a low detection limit under the optimized conditions. Satisfactory results were also obtained for the methidathion determination in waste water samples.

  20. Development of novel Sol-Gel Indicators (SGI`s) for in-situ environmental measurements: Part 1, Program and a new pH Sol-Gel Indicator

    SciTech Connect

    Livingston, R.R.; Baylor, L.; Wicks, G.G.

    1992-11-03

    The feasibility of incorporating analytical indicators into a sol-gel glassy matrix and then coating substrates with this composite material has bee demonstrated. Substrates coated include paper, wood, glass, and the lens of an analytical probe. The first SRTC sol-gel indicator, comprising bromophenol blue dispersed in a silica matrix, was fabricated and successfully used to measure solution pH in the range of pH 3.0 to 7.5. material exhibited a quick response time, as measured by color changes both qualitatively and quantitatively, and the measuring device was reversible or reusable. Additional indicators with responses over other ranges as well as indicators sensitive to the presence of elements of interest, are also under development. The new SGI composites possess promising properties and an excellent potential for performing a variety important in-situ environmental measurements and area discussed in this report.

  1. Preparation of silicon carbide from organosilicon gels: I. Synthesis and characterization of precursor gels

    SciTech Connect

    White, D.A.; Oleff, S.M.; Boyer, R.D.; Budinger, P.A.; Fox, J.R. )

    1987-01-01

    Polymeric organosilicon gel precursors to SiC have been prepared using trifunctional chloro and alkoxysilanes that contain both the Si and C necessary for SiC formation. Crosslinked gels having the ideal formula (RSiO{sub 1.5}){sub n} have been synthesized by a hydrolysis/condensation scheme for a series of saturated and unsaturated R groups. The starting gels have been characterized by elemental analysis and by a variety of spectroscopic and physical measurements including Fourier transform infrared spectroscopy, XRD, surface-area and pore-volume determination, and thermal gravimetric analysis. {sup 13}C and {sup 29}Si solid-state NMR analysis proved to be particularly powerful for characterizing these gels by showing the degree of crosslinking and the residual hydroxy/alkoxy content. Under an inert atmosphere, the gels decompose to produce an intimate mixture of C and SiO{sub 2} which can react to form SiC at higher temperatures. The pyrolysis of these gels to produce SiC is described in Part II.

  2. Establishment of gel materials with different mechanical properties by 3D gel printer SWIM-ER

    NASA Astrophysics Data System (ADS)

    Ota, Takafumi; Tase, Taishi; Okada, Koji; Saito, Azusa; Takamatsu, Kyuuichiro; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    A 3D printer is a device which can directly produce objects whose shape is the same as the original 3D digital data. Hydrogels have unique properties such as high water content, low frictional properties, biocompatibility, material permeability and high transparency, which are rare in hard and dry materials. These superior characteristics of gels promise useful medical applications. We have been working on the development of a 3D gel printer, SWIM-ER (Soft and Wet Industrial - Easy Realizer), which can make models of organs and artificial blood vessels with gel material. However, 3D printing has a problem: the mechanical properties of the printed object vary depending on printing conditions, and this matter was investigated with SWIM-ER. In the past, we found that mechanical properties of 3D gel objects depend on the deposition orientation in SWIM-ER. In this study, gels were printed with different laser scanning speeds. The mechanical properties of these gels were investigated by compression tests, water content measurements and SMILS (Scanning Microscopic Light Scattering).

  3. Covalent Fusion of layered Incompatible Gels in Immiscible Solvents

    NASA Astrophysics Data System (ADS)

    Biswas, Santidan; Singh, Awaneesh; Matyjaszewski, Krzysztof; Balazs, Anna C.

    We carry out dissipative particle dynamics (DPD) simulations to model a two layered stackable gel where the gels are incompatible and are present in immiscible solvent. The bottom layer of the gel is created first and then a solution of new initiators, monomers and cross-linkers is introduced on top of it. These components then undergo polymerization and form the second gel layer. We study all possible combinations of free radical polymerization (FRP) and atom transfer radical polymerization (ATRP) mechanisms with the two layers of the gel. For example, the bottom layer gel is created via ATRP, whereas the top layer gel follows FRP. Our focus is to do a systematic study of all these combinations and find out the factors responsible for combining two incompatible gels in immiscible solvents.

  4. Evaluation of Prosopis africana gum in the formulation of gels.

    PubMed

    Adikwu, M U; Attama, A A

    2000-01-01

    Prosopis africana gum was evaluated for use in the formulation of gels. The rate of release of salicylic acid from gels prepared from prosoopis gum was investigated. The rate of permeation of the drug through the gel was also evaluated. Surfactants were incorporated into the gels and the effect on the release and permeation was also investigated. Tragacanth gum gel was also prepared and used as the standard. The release and permeation of the drug from the gel was low. Incorporation of surfactants did not enhance the release of the drug. However the low release and permeation rates may be due to the poor water solubility of the incorporated drug. Correlation of the quantity of drug released with viscosity shows that drug release was dependent on the viscosity of the gels; the highly viscous gels showed slower release rates.

  5. Analytical laboratory quality audits

    SciTech Connect

    Kelley, William D.

    2001-06-11

    Analytical Laboratory Quality Audits are designed to improve laboratory performance. The success of the audit, as for many activities, is based on adequate preparation, precise performance, well documented and insightful reporting, and productive follow-up. Adequate preparation starts with definition of the purpose, scope, and authority for the audit and the primary standards against which the laboratory quality program will be tested. The scope and technical processes involved lead to determining the needed audit team resources. Contact is made with the auditee and a formal audit plan is developed, approved and sent to the auditee laboratory management. Review of the auditee's quality manual, key procedures and historical information during preparation leads to better checklist development and more efficient and effective use of the limited time for data gathering during the audit itself. The audit begins with the opening meeting that sets the stage for the interactions between the audit team and the laboratory staff. Arrangements are worked out for the necessary interviews and examination of processes and records. The information developed during the audit is recorded on the checklists. Laboratory management is kept informed of issues during the audit so there are no surprises at the closing meeting. The audit report documents whether the management control systems are effective. In addition to findings of nonconformance, positive reinforcement of exemplary practices provides balance and fairness. Audit closure begins with receipt and evaluation of proposed corrective actions from the nonconformances identified in the audit report. After corrective actions are accepted, their implementation is verified. Upon closure of the corrective actions, the audit is officially closed.

  6. Electric field-induced deformation of polyelectrolyte gels

    SciTech Connect

    Adolf, D.; Hance, B.G.

    1995-08-01

    Water-swollen polyelectrolyte gels deform in an electric field. We observed that the sign and magnitude of the deformation is dependent on the nature of the salt bath in which the gel is immersed and electrocuted. These results are compatible with a deformation mechanism based upon creation of ion density gradients by the field which, in turn, creates osmotic pressure gradients within the gel. A consistent interpretation results only if gel mobility is allowed as well as free ion diffusion and migration.

  7. Methods of Manufacturing Bioactive Gels from Extracellular Matrix Material

    NASA Technical Reports Server (NTRS)

    Kentner, Kimberly A. (Inventor); Stuart, Katherine A. (Inventor); Janis, Abram D. (Inventor)

    2016-01-01

    The present invention is directed to methods of manufacturing bioactive gels from ECM material, i.e., gels which retain bioactivity, and can serve as scaffolds for preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. The manufacturing methods take advantage of a new recognition that bioactive gels from ECM material can be created by digesting particularized ECM material in an alkaline environment and neutralizing to provide bioactive gels.

  8. Methods of Manufacturing Bioactive Gels from Extracellular Matrix Material

    NASA Technical Reports Server (NTRS)

    Kentner, Kimberly A. (Inventor); Stuart, Katherine A. (Inventor); Janis, Abram D. (Inventor)

    2014-01-01

    The present invention is directed to methods of manufacturing bioactive gels from ECM material, i.e., gels which retain bioactivity, and can serve as scaffolds for preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. The manufacturing methods take advantage of a new recognition that bioactive gels from ECM material can be created by digesting particularized ECM material in an alkaline environment and neutralizing to provide bioactive gels.

  9. Methods of Manufacturing Bioactive Gels from Extracellular Matrix Material

    NASA Technical Reports Server (NTRS)

    Kentner, Kimberly A. (Inventor); Stuart, Katherine A. (Inventor); Janis, Abram D. (Inventor)

    2015-01-01

    The present invention is directed to methods of manufacturing bioactive gels from ECM material, i.e., gels which retain bioactivity, and can serve as scaffolds for preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. The manufacturing methods take advantage of a new recognition that bioactive gels from ECM material can be created by digesting particularized ECM material in an alkaline environment and neutralizing to provide bioactive gels.

  10. Metal-doped organic gels and method thereof

    DOEpatents

    Satcher, Jr., Joe H.; Baumann, Theodore F.

    2007-10-23

    Disclosed herein is a sol-gel polymerization process for synthesizing metal-doped organic gels. The process polymerizes metal salts of hydroxylated benzenes or hydroxylated benzene derivatives with alkyl or aryl aldehydes to form metal-doped, wet, organic gels. The gels can then be dried by supercritical solvent extraction to form metal-doped aerogels or by evaporation to form metal-doped xerogels. The aerogels and xerogels can then be pyrolyzed.

  11. Metal-doped organic gels and method thereof

    DOEpatents

    Satcher, Jr., Joe H.; Baumann, Theodore F.

    2003-09-02

    Disclosed herein is a sol-gel polymerization process for synthesizing metal-doped organic gels. The process polymerizes metal salts of hydroxylated benzenes or hydroxylated benzene derivatives with alkyl or aryl aldehydes to form metal-doped, wet, organic gels. The gels can then be dried by supercritical solvent extraction to form metal-doped aerogels or by evaporation to form metal-doped xerogels. The aerogels and xerogels can then be pyrolyzed.

  12. Gel-forming reagents and uses thereof for preparing microarrays

    DOEpatents

    Golova, Julia; Chernov, Boris; Perov, Alexander

    2010-11-09

    New gel-forming reagents including monomers and cross-linkers, which can be applied to gel-drop microarray manufacturing by using co-polymerization approaches are disclosed. Compositions for the preparation of co-polymerization mixtures with new gel-forming monomers and cross-linker reagents are described herein. New co-polymerization compositions and cross-linkers with variable length linker groups between unsaturated C.dbd.C bonds that participate in the formation of gel networks are disclosed.

  13. The Case for Assessment Analytics

    ERIC Educational Resources Information Center

    Ellis, Cath

    2013-01-01

    Learning analytics is a relatively new field of inquiry and its precise meaning is both contested and fluid (Johnson, Smith, Willis, Levine & Haywood, 2011; LAK, n.d.). Ferguson (2012) suggests that the best working definition is that offered by the first Learning Analytics and Knowledge (LAK) conference: "the measurement, collection,…

  14. Understanding Education Involving Geovisual Analytics

    ERIC Educational Resources Information Center

    Stenliden, Linnea

    2013-01-01

    Handling the vast amounts of data and information available in contemporary society is a challenge. Geovisual Analytics provides technology designed to increase the effectiveness of information interpretation and analytical task solving. To date, little attention has been paid to the role such tools can play in education and to the extent to which…

  15. [Photonic crystals for analytical chemistry].

    PubMed

    Chen, Yi; Li, Jincheng

    2009-09-01

    Photonic crystals, originally created to control the transmission of light, have found their increasing value in the field of analytical chemistry and are probable to become a hot research area soon. This review is hence composed, focusing on their analytical chemistry-oriented applications, including especially their use in chromatography, capillary- and chip-based electrophoresis.

  16. Information Theory in Analytical Chemistry.

    ERIC Educational Resources Information Center

    Eckschlager, Karel; Stepanek, Vladimir

    1982-01-01

    Discusses information theory in analytical practice. Topics include information quantities; ways of obtaining formulas for the amount of information in structural, qualitative, and trace analyses; and information measures in comparing and optimizing analytical methods and procedures. Includes tables outlining applications of information theory to…

  17. Iron specificity of a biosensor based on fluorescent pyoverdin immobilized in sol-gel glass

    PubMed Central

    2011-01-01

    Two current technologies used in biosensor development are very promising: 1. The sol-gel process of making microporous glass at room temperature, and 2. Using a fluorescent compound that undergoes fluorescence quenching in response to a specific analyte. These technologies have been combined to produce an iron biosensor. To optimize the iron (II or III) specificity of an iron biosensor, pyoverdin (a fluorescent siderophore produced by Pseudomonas spp.) was immobilized in 3 formulations of porous sol-gel glass. The formulations, A, B, and C, varied in the amount of water added, resulting in respective R values (molar ratio of water:silicon) of 5.6, 8.2, and 10.8. Pyoverdin-doped sol-gel pellets were placed in a flow cell in a fluorometer and the fluorescence quenching was measured as pellets were exposed to 0.28 - 0.56 mM iron (II or III). After 10 minutes of exposure to iron, ferrous ion caused a small fluorescence quenching (89 - 97% of the initial fluorescence, over the range of iron tested) while ferric ion caused much greater quenching (65 - 88%). The most specific and linear response was observed for pyoverdin immobilized in sol-gel C. In contrast, a solution of pyoverdin (3.0 μM) exposed to iron (II or III) for 10 minutes showed an increase in fluorescence (101 - 114%) at low ferrous concentrations (0.45 - 2.18 μM) while exposure to all ferric ion concentrations (0.45 - 3.03 μM) caused quenching. In summary, the iron specificity of pyoverdin was improved by immobilizing it in sol-gel glass C. PMID:21554740

  18. 21 CFR 520.1453 - Moxidectin and praziquantel gel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Moxidectin and praziquantel gel. 520.1453 Section 520.1453 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... and praziquantel gel. (a) Specifications. Each milliliter of gel contains 20 milligrams (mg)...

  19. 21 CFR 872.1730 - Electrode gel for pulp testers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrode gel for pulp testers. 872.1730 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1730 Electrode gel for pulp testers. (a) Identification. An electrode gel for pulp testers is a device intended to be applied to the surface of a...

  20. 21 CFR 872.1730 - Electrode gel for pulp testers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrode gel for pulp testers. 872.1730 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1730 Electrode gel for pulp testers. (a) Identification. An electrode gel for pulp testers is a device intended to be applied to the surface of a...

  1. Formulation and method for preparing gels comprising hydrous aluminum oxide

    SciTech Connect

    Collins, Jack L.

    2014-06-17

    Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.

  2. Formulation and method for preparing gels comprising hydrous hafnium oxide

    SciTech Connect

    Collins, Jack L; Hunt, Rodney D; Montgomery, Frederick C

    2013-08-06

    Formulations useful for preparing hydrous hafnium oxide gels contain a metal salt including hafnium, an acid, an organic base, and a complexing agent. Methods for preparing gels containing hydrous hafnium oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including hafnium, an acid, an organic base, and a complexing agent.

  3. Responsive supramolecular gels constructed by crown ether based molecular recognition.

    PubMed

    Ge, Zhishen; Hu, Jinming; Huang, Feihe; Liu, Shiyong

    2009-01-01

    Responsive supramolecular gels were constructed from crown ether terminated four-arm star poly(epsilon-caprolactone) (PCL-DB24C8) and dibenzylammonium-terminated two-arm PCL-DBAS (see scheme), exploiting the formation of pseudorotaxane linkages between crown ether and ammonium moieties. The resultant supramolecular gels exhibit thermo- and pH-induced reversible gel-sol transition.

  4. Formulation and method for preparing gels comprising hydrous cerium oxide

    DOEpatents

    Collins, Jack L; Chi, Anthony

    2013-05-07

    Formulations useful for preparing hydrous cerium oxide gels contain a metal salt including cerium, an organic base, and a complexing agent. Methods for preparing gels containing hydrous cerium oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including cerium, an organic base, and a complexing agent.

  5. Laser based on dye-activated silica gel

    SciTech Connect

    Altshuler, G.B.; Bakhanov, V.A.; Dulneva, E.G.; Erofeev, A.V.; Mazurin, O.V.; Roskova, G.P.; Tsekhomskaya, T.S.

    1987-06-01

    Silica gel activated by a dye is used as a new laser medium. The lasin characteristics of rhodamine 6G in silica gel are reported. An important characteristic of the dye laser is its long service life, which is determined by the photostability of the dye in silic gel.(AIP)

  6. 21 CFR 520.1720d - Phenylbutazone gel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Phenylbutazone gel. 520.1720d Section 520.1720d... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1720d Phenylbutazone gel. (a) Specifications. Each 30 grams of gel contains 4 grams of phenylbutazone. (b) Sponsor. See No. 061623 in §...

  7. 21 CFR 520.1720d - Phenylbutazone gel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Phenylbutazone gel. 520.1720d Section 520.1720d... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1720d Phenylbutazone gel. (a) Specifications. Each 30 grams of gel contains 4 grams of phenylbutazone. (b) Sponsor. See No. 061623 in §...

  8. Electrochemical stimulation and control of electroactive polymer gels

    NASA Astrophysics Data System (ADS)

    Guelch, Rainer W.; Holdenried, Jens; Weible, Andrea; Wallmersperger, Thomas; Kroeplin, Bernd

    2001-07-01

    Direct effects of electrical currents on polyelectrolyte gels are always associated with changes in their Donnan potential. Thus electrical stimulation of gels can be only completely understood if the direct effect of electric fields on the potential profile within the gels are known. The purpose of this study is to present recordings of Donnan potentials in electroactive gels of various compositions, especially under the influence of electric fields. An important finding is that opposite alterations in the Donnan potential simultaneously occur at the current inflow and outflow region of the gel. In anionic gels hyperpolarization, i.e. higher negativity, is induced on the anode-side of the gel, whereas depolarization is found on the cathode-side. As these shifts in the potential are supposed to affect swelling or deswelling of polyelectrolyte gels, they will primarily promote bending motions of the gel. To demonstrate the opposite bending behavior of anionic and cationic polymer gels under the influence of an electric field a short video sequence of an EAP gripper in action is presented. It is made exclusively of polyelectrolyte gel strips taking advantage of the fact that anionic and cationic polyacrylamide gels can be attached firmly to each other without any adhesive.

  9. 21 CFR 872.1730 - Electrode gel for pulp testers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrode gel for pulp testers. 872.1730 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1730 Electrode gel for pulp testers. (a) Identification. An electrode gel for pulp testers is a device intended to be applied to the surface of a...

  10. 21 CFR 872.1730 - Electrode gel for pulp testers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrode gel for pulp testers. 872.1730 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1730 Electrode gel for pulp testers. (a) Identification. An electrode gel for pulp testers is a device intended to be applied to the surface of a...

  11. 21 CFR 872.1730 - Electrode gel for pulp testers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrode gel for pulp testers. 872.1730 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1730 Electrode gel for pulp testers. (a) Identification. An electrode gel for pulp testers is a device intended to be applied to the surface of a...

  12. Schiff base mediated sol-gel polymerization

    SciTech Connect

    Lindquist, D.A.; Harrison, C.M.; Williams, B.; Morris, R.D.

    1996-12-31

    Formation of a Schiff base imine by reacting a primary amine with either an aldehyde or ketone was initiated by an aluminum compound acting as a Lewis acid catalyst. The water byproduct of the reaction then was used as an in situ reagent for subsequent hydrolysis and sol-gel condensation of the aluminum species. These reactions yielded a gel network containing the entrained Schiff base. Two examples of this synthetic approach are described with two different aluminum catalyst/reagents: a diethylaluminum diethylphosphate ester [(CH{sub 3}CH{sub 2}){sub 2}Al-O-P(O)(OCH{sub 2}CH{sub 3}){sub 2}] and triethyl aluminum [Al(CH{sub 3}CH{sub 2}){sub 3}]. Anhydrous ammonia and acetone were used as the Schiff base precursors.

  13. Structural hierarchy governs fibrin gel mechanics.

    PubMed

    Piechocka, Izabela K; Bacabac, Rommel G; Potters, Max; Mackintosh, Fred C; Koenderink, Gijsje H

    2010-05-19

    Fibrin gels are responsible for the mechanical strength of blood clots, which are among the most resilient protein materials in nature. Here we investigate the physical origin of this mechanical behavior by performing rheology measurements on reconstituted fibrin gels. We find that increasing levels of shear strain induce a succession of distinct elastic responses that reflect stretching processes on different length scales. We present a theoretical model that explains these observations in terms of the unique hierarchical architecture of the fibers. The fibers are bundles of semiflexible protofibrils that are loosely connected by flexible linker chains. This architecture makes the fibers 100-fold more flexible to bending than anticipated based on their large diameter. Moreover, in contrast with other biopolymers, fibrin fibers intrinsically stiffen when stretched. The resulting hierarchy of elastic regimes explains the incredible resilience of fibrin clots against large deformations.

  14. Novel carboxy functionalized sol-gel precursors

    SciTech Connect

    Wolter, H.; Storch, W.; Gellermann, C.

    1996-12-31

    A novel family of inorganic-organic copolymers (ORMOCER`s) derived from urethane- and thioether(meth)acrylate alkoxysilanes has been successfully exploited for a variety of diverse applications. In order to widen the range of applications an additional functionality (carboxy group) has been incorporated int his silane type. Conventional sol-gel processing facilitates the formation of an inorganic Si-O-Si-network via hydrolysis and polycondensation reactions of alkoxysilyl moieties and in addition, the (meth)acrylate groups are available for radically induced polymerization to obtain a complementary organic polymer structure. The presence of a carboxy group would appear to have great potential for a range of diverse areas of application, such as an internal catalyst for the sol-gel process, complexation of elements such as Zr and Ti, increasing the adhesion to various substrates and modification of solubility. A number of novel silanes and their syntheses will be described in this paper.

  15. Polymeric Gel Electrolytes for Electrochemical Capacitors

    NASA Astrophysics Data System (ADS)

    Morita, Masayuki; Qiao, Jin-Li; Ohsumi, Naoki; Yoshimoto, Nobuko; Egashira, Minato

    2006-06-01

    Three kinds of the polymer matrix, poly(ethylene oxide)-grafted polymethacrylate (PEO-PMA), poly(vinyldene fluoride) (PVdF) and poly(vinyldene-co-hexafluoropripylene) (PVdF-HFP), were used for gel preparation. A proper amount of organic salts or acids were dissolved in the polymer matrix together with organic plasticizers, dimethylformamide (DMF) and/or poly-(efhylene glycol)-dimethylether (PEGDE), without water. Thin films of the polymeric gel were obtained by either direct polymerization of the mixed monomer solution or a thermal casting method. The composition of the polymer-electrolyte complex system is optimized to obtain good capacitor performances of the electrochemical capacitor (ECC) system.

  16. Electrodeposited gels prepared from protein alloys

    PubMed Central

    Lin, Yinan; Wang, Siran; Chen, Ying; Wang, Qianrui; Burke, Kelly A; Spedden, Elise M; Staii, Cristian; Weiss, Anthony S; Kaplan, David L

    2015-01-01

    Aim Silk-tropoelastin alloys, composed of recombinant human tropoelastin and regenerated Bombyx mori silk fibroin, are an emerging, versatile class of biomaterials endowed with tunable combinations of physical and biological properties. Electrodeposition of these alloys provides a programmable means to assemble functional gels with both spatial and temporal controllability. Materials & methods Tropoelastin-modified silk was prepared by enzymatic coupling between tyrosine residues. Hydrogel coatings were electrodeposited using two wire electrodes. Results & discussion Mechanical characterization and in vitro cell culture revealed enhanced adhesive capability and cellular response of these alloy gels as compared with electrogelled silk alone. Conclusion These electro-depositable silk-tropoelastin alloys constitute a suitable coating material for nanoparticle-based drug carriers and offer a novel opportunity for on-demand encapsulation/release of nanomedicine. PMID:25816881

  17. Transaxillary endoscopic silicone gel breast augmentation.

    PubMed

    Strock, Louis L

    2010-09-01

    Following the return of silicone gel breast implants to the US market in 2006, augmentation with these implants has become increasingly popular. Surgeons have an array of refined techniques from which to choose when performing these procedures, many of which offer the advantage of reduced or less-obvious postoperative scarring. For obvious reasons, many patients are requesting placement of the implants through incisions that are removed from the breast area (and thereby hidden). The challenge of these approaches is to provide a level of technical control that matches what is afforded with the traditional inframammary approach. The addition of endoscopic assistance has provided a level of tissue visualization and technical control not previously possible with the transaxillary approach, with results that rival those of an inframammary procedure. In this article, the author presents his current operative technique, which has allowed for the routine placement of silicone gel breast implants through a transaxillary incision using endoscopic assistance.

  18. Ballistic penetration of Perma-Gel

    NASA Astrophysics Data System (ADS)

    Ryckman, Raymond Albert; Powell, David Arthur; Lew, Adrian

    2012-03-01

    In this study a number of experiments were performed by taking high-speed footage of the firing spherical steel bullets at different speeds into Perma-Gel, a new synthetic thermoplastic material touted to exhibit similar properties to ordnance ballistic gelatin. We found that the gel undergoes very large and recoverable elastic deformations, which could strongly affect the dynamics of the temporary cavity formed behind the projectile. As with ordnance ballistic gelatin, the diameter of the temporary cavity can be many times the diameter of the projectile, in contrast with that of the permanent cavity which is several times smaller.We also observed that the closure of the cavity chokes the air inside, which could affect its dynamics in noticeable ways. Finally, one of the experiments suggest that the precise model of material failure may not be important to determine the dynamics of the temporary cavity.

  19. Carbon Redox-Polymer-Gel Hybrid Supercapacitors

    PubMed Central

    Vlad, A.; Singh, N.; Melinte, S.; Gohy, J.-F.; Ajayan, P.M.

    2016-01-01

    Energy storage devices that provide high specific power without compromising on specific energy are highly desirable for many electric-powered applications. Here, we demonstrate that polymer organic radical gel materials support fast bulk-redox charge storage, commensurate to surface double layer ion exchange at carbon electrodes. When integrated with a carbon-based electrical double layer capacitor, nearly ideal electrode properties such as high electrical and ionic conductivity, fast bulk redox and surface charge storage as well as excellent cycling stability are attained. Such hybrid carbon redox-polymer-gel electrodes support unprecedented discharge rate of 1,000C with 50% of the nominal capacity delivered in less than 2 seconds. Devices made with such electrodes hold the potential for battery-scale energy storage while attaining supercapacitor-like power performances. PMID:26917470

  20. Carbon Redox-Polymer-Gel Hybrid Supercapacitors

    NASA Astrophysics Data System (ADS)

    Vlad, A.; Singh, N.; Melinte, S.; Gohy, J.-F.; Ajayan, P. M.

    2016-02-01

    Energy storage devices that provide high specific power without compromising on specific energy are highly desirable for many electric-powered applications. Here, we demonstrate that polymer organic radical gel materials support fast bulk-redox charge storage, commensurate to surface double layer ion exchange at carbon electrodes. When integrated with a carbon-based electrical double layer capacitor, nearly ideal electrode properties such as high electrical and ionic conductivity, fast bulk redox and surface charge storage as well as excellent cycling stability are attained. Such hybrid carbon redox-polymer-gel electrodes support unprecedented discharge rate of 1,000C with 50% of the nominal capacity delivered in less than 2 seconds. Devices made with such electrodes hold the potential for battery-scale energy storage while attaining supercapacitor-like power performances.

  1. Analysis and simulation of a model of polyelectrolyte gel in one spatial dimension

    NASA Astrophysics Data System (ADS)

    Chen, Haoran; Calderer, Maria-Carme; Mori, Yoichiro

    2014-06-01

    We analyse a model of polyelectrolyte gels that was proposed by the authors in previous work. We first demonstrate that the model can be derived using Onsager's variational principle, a general procedure for obtaining equations in soft condensed matter physics. The model is shown to have a unique steady state under the assumption that a suitably defined mechanical energy density satisfies a convexity condition. We then perform a detailed study of the stability of the steady state in the spatially one-dimensional case, obtaining bounds on the relaxation rate. Numerical simulations for the spatially one-dimensional problem are presented, confirming the analytical calculations on stability.

  2. Ring-Resonator/Sol-Gel Interferometric Immunosensor

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory; Cohen, David

    2007-01-01

    A proposed biosensing system would be based on a combination of (1) a sensing volume containing antibodies immobilized in a sol-gel matrix and (2) an optical interferometer having a ring resonator configuration. The antibodies would be specific to an antigen species that one seeks to detect. In the ring resonator of the proposed system, light would make multiple passes through the sensing volume, affording greater interaction length and, hence, greater antibody- detection sensitivity.

  3. Ultrasensitive fluorescence detection of DNA sequencing gels

    SciTech Connect

    Mathies, R.A.

    1991-01-01

    During the three years of this grant we have: (1) Developed and applied a new theory for optimizing high-sensitivity fluorescence detection. (2) Developed and patented a new high-sensitivity confocal-fluorescence laser-excited gel-scanner. (3) Applied this scanner to the development of a new class of versatile and sensitive fluorescent dyes for DNA detection. (4) Developed methods for the detection of single fluorescent molecules by fluorescence burst detection. 11 refs., 10 figs.

  4. Diffusion of polyelectrolytes in polyelectrolyte gels

    NASA Astrophysics Data System (ADS)

    Rahalkar, Anand; Muthukumar, Murugappan

    2015-03-01

    Using dynamic light scattering, we have investigated the diffusion coefficient of sodium poly(styrene sulfonate) in a matrix of poly(acrylamide-co-acrylate) gels. The diffusion coefficient of the probe polyelectrolyte exhibits a crossover behavior from a particle-diffusion to entropic-barrier dominated diffusion, as the molecular weight is increased. The effect of electrostatics, by varying the charge density of the matrix, on probe diffusion constant will be presented.

  5. Gel Electrophoresis of Gold-DNA Nanoconjugates

    DOE PAGES

    Pellegrino, T.; Sperling, R. A.; Alivisatos, A. P.; Parak, W. J.

    2007-01-01

    Gold-DNA conjugates were investigated in detail by a comprehensive gel electrophoresis study based on 1200 gels. A controlled number of single-stranded DNA of different length was attached specifically via thiol-Au bonds to phosphine-stabilized colloidal gold nanoparticles. Alternatively, the surface of the gold particles was saturated with single stranded DNA of different length either specifically via thiol-Au bonds or by nonspecific adsorption. From the experimentally determined electrophoretic mobilities, estimates for the effective diameters of the gold-DNA conjugates were derived by applying two different data treatment approaches. The first method is based on making a calibration curve for the relation between effectivemore » diameters and mobilities with gold nanoparticles of known diameter. The second method is based on Ferguson analysis which uses gold nanoparticles of known diameter as reference database. Our study shows that effective diameters derived from gel electrophoresis measurements are affected with a high error bar as the determined values strongly depend on the method of evaluation, though relative changes in size upon binding of molecules can be detected with high precision. Furthermore, in this study, the specific attachment of DNA via gold-thiol bonds to Au nanoparticles is compared to nonspecific adsorption of DNA. Also, the maximum number of DNA molecules that can be bound per particle was determined.« less

  6. State of water in gelatin Gels

    SciTech Connect

    Naryshkina, E.P.; Izmailova, V.N.; Polinnyi, A.I.

    1986-03-01

    It has been shown on the basis of the variation of the linewidth of water with time in high-resolution NMR spectra of gelatin gels in D/sub 2/O that there is a decrease in the mobility of the water molecules during the formation of the collagen-like helix in the initial stages of gelation. As the concentration of the protein is increased, the linewidth of the water signal ..delta.. increases, and the spin-spin (T/sub 2/) and spin-lattice (T/sub 1/) relaxation times and the self-diffusion coefficient of the water molecules D /SUB S/ in the fully formed gels of gelatin in H/sub 2/O decreases as a result of the immobilization of water by the gelatin macromolecules and the presence of a three-dimensional gel network. The aforementioned parameters vary as a function of the gelatin concentration in parallel with the value of the Flory-Huggins parameter /CHI/.

  7. Microfabricated polymer chip for capillary gel electrophoresis.

    PubMed

    Hong, J W; Hosokawa, K; Fujii, T; Seki, M; Endo, I

    2001-01-01

    A polymer (PDMS: poly(dimethylsiloxane)) microchip for capillary gel electrophoresis that can separate different sizes of DNA molecules in a small experimental scale is presented. This microchip can be easily produced by a simple PDMS molding method against a microfabricated master without the use of elaborate bonding processes. This PDMS microchip could be used as a single use device unlike conventional microchips made of glass, quartz or silicon. The capillary channel on the chip was partially filled with agarose gel that can enhance separation resolution of different sizes of DNA molecules and can shorten the channel length required for the separation of the sample compared to capillary electrophoresis in free-flow or polymer solution format. We discuss the optimal conditions for the gel preparation that could be used in the microchannel. DNA molecules were successfully driven by an electric field and separated to form bands in the range of 100 bp to 1 kbp in a 2.0% agarose-filled microchannel with 8 mm of effective separation length.

  8. Bucky gel actuators optimization towards haptic applications

    NASA Astrophysics Data System (ADS)

    Bubak, Grzegorz; Ansaldo, Alberto; Ceseracciu, Luca; Hata, Kenji; Ricci, Davide

    2014-03-01

    An ideal plastic actuator for haptic applications should generate a relatively large displacement (minimum 0.2-0.6 mm, force (~50 mN/cm2) and a fast actuation response to the applied voltage. Although many different types of flexible, plastic actuators based on electroactive polymers (EAP) are currently under investigation, the ionic EAPs are the only ones that can be operated at low voltage. This property makes them suitable for applications that require inherently safe actuators. Among the ionic EAPs, bucky gel based actuators are very promising. Bucky gel is a physical gel made by grounding imidazolium ionic liquids with carbon nanotubes, which can then be incorporated in a polymeric composite matrix to prepare the active electrode layers of linear and bending actuators. Anyhow, many conflicting factors have to be balanced to obtain required performance. In order to produce high force a large stiffness is preferable but this limits the displacement. Moreover, the bigger the active electrode the larger the force. However the thicker an actuator is, the slower the charging process becomes (it is diffusion limited). In order to increase the charging speed a thin electrolyte would be desirable, but this increases the probability of pinholes and device failure. In this paper we will present how different approaches in electrolyte and electrode preparation influence actuator performance and properties taking particularly into account the device ionic conductivity (which influences the charging speed) and the electrode surface resistance (which influences both the recruitment of the whole actuator length and its speed).

  9. Sol-gel method for encapsulating molecules

    DOEpatents

    Brinker, C. Jeffrey; Ashley, Carol S.; Bhatia, Rimple; Singh, Anup K.

    2002-01-01

    A method for encapsulating organic molecules, and in particular, biomolecules using sol-gel chemistry. A silica sol is prepared from an aqueous alkali metal silicate solution, such as a mixture of silicon dioxide and sodium or potassium oxide in water. The pH is adjusted to a suitably low value to stabilize the sol by minimizing the rate of siloxane condensation, thereby allowing storage stability of the sol prior to gelation. The organic molecules, generally in solution, is then added with the organic molecules being encapsulated in the sol matrix. After aging, either a thin film can be prepared or a gel can be formed with the encapsulated molecules. Depending upon the acid used, pH, and other processing conditions, the gelation time can be from one minute up to several days. In the method of the present invention, no alcohols are generated as by-products during the sol-gel and encapsulation steps. The organic molecules can be added at any desired pH value, where the pH value is generally chosen to achieve the desired reactivity of the organic molecules. The method of the present invention thereby presents a sufficiently mild encapsulation method to retain a significant portion of the activity of the biomolecules, compared with the activity of the biomolecules in free solution.

  10. Dielectric properties of gel collected from shark electrosensors

    NASA Astrophysics Data System (ADS)

    Hughes, Mary E.; Brown, Brandon R.; Hutchison, John C.; Murray, Royce W.

    2003-03-01

    To investigate the physical mechanism of the electric sense, we present an initial characterization of the dielectric properties of the glycoprotein gel that fills the electrosensitive organs of marine elasmobranches (sharks, skates, and rays). To ascertain the properties of the gel, low-frequency impedance spectroscopy is used. The impedance data collected from a dialyzed sample show large values of static permittivity and a loss peak corresponding to a long relaxation time (about 1 ms). Impedance measurements of the native (nondialyzed) gel reliable to 0.1 Hz will be presented and compared to the dialyzed gel. Ramifications of the gel's dielectric properties for the electric sense will be explored.

  11. Ionogel Electrolytes through Sol-Gel Processing

    NASA Astrophysics Data System (ADS)

    Horowitz, Ariel I.

    Electrical energy needs have intensified due to the ubiquity of personal electronics, the decarbonization of energy services through electrification, and the use of intermittent renewable energy sources. Despite developments in mechanical and thermal methods, electrochemical technologies are the most convenient and effective means of storing electrical energy. These technologies include both electrochemical cells, commonly called batteries, and electrochemical double-layer capacitors, or "supercapacitors", which store energy electrostatically. Both device types require an ion-conducting electrolyte. Current devices use solutions of complex salts in organic solvents, leading to both toxicity and flammability concerns. These drawbacks can be avoided by replacing conventional electrolytes with room-temperature molten salts, known as ionic liquids (ILs). ILs are non-volatile, non-flammable, and offer high conductivity and good electrochemical stability. Device mass can be reduced by combining ILs with a solid scaffold material to form an "ionogel," further improving performance metrics. In this work, sol-gel chemistry is explored as a means of forming ionogel electrolytes. Sol-gel chemistry is a solution-based, industrially-relevant, well-studied technique by which solids such as silica can be formed in situ. Previous works used a simple acid-catalyzed sol-gel reaction to create brittle, glassy ionogels. Here, both the range of products that can be accomplished through sol-gel processing and the understanding of interactions between ILs and the sol-gel reaction network are greatly expanded. This work introduces novel ionogel materials, including soft and compliant silica-supported ionogels and PDMS-supported ionogels. The impacts of the reactive formulation, IL identity, and casting time are detailed. It is demonstrated that variations in formulation can lead to rapid gelation and open pore structures in the silica scaffold or slow gelation and more dense silica

  12. Direct Force Measurements on Neurofilaments: Gel Expanded to Gel Condensed Transition

    NASA Astrophysics Data System (ADS)

    Beck, R.; Deek, J.; Jones, J. B.; Safinya, C. R.

    2010-03-01

    Neurofilaments (NFs)--the major cytoskeletal constituent of axons in vertebrates, consist of three subunit proteins assembled to form filaments with protruding unstructured C-terminus sidearms. Liquid crystal gel networks of sidearm-mediated NF assemblies play a key role in the mechanical while disruptions of this network, due to over-accumulation or incorrect sidearm interactions, are a hallmark of motor neuron diseases. Using synchrotron SAXS [1,2] and microscopy techniques [1,3] we report a direct force measurement of reconstituted NF-gels under osmotic pressure (P), which revealed the role of subunit sidearms on structure and interaction of NFs. With increasing P, near physiological condition, the gels undergo an abrupt nonreversible gel expanded to gel condensed transition that indicates sidearm-mediated attractions between NFs. This attraction is consistent with an electrostatic model of interpenetrating chains.[4pt] [1] J.B. Jones, C.R. Safinya, Biophys. J. 95, 823 (2008);[0pt] [2] R. Beck et al., Nature Mat. (2009) in press;[0pt] [3] H. Hess et al. Langmuir 24, 8397 (2008)

  13. Responsive Gel-Gel Phase Transitions in Artificially Engineered Protein Hydrogels

    NASA Astrophysics Data System (ADS)

    Olsen, B. D.

    2012-02-01

    Artificially engineered protein hydrogels provide an attractive platform for biomedical materials due to their similarity to components of the native extracellular matrix. Engineering responsive transitions between shear-thinning and tough gel phases in these materials could potentially enable gels that are both shear-thinning and tough to be produced as novel injectable biomaterials. To engineer a gel with such transitions, a triblock copolymer with thermoresponsive polymer endblocks and an artificially engineered protein gel midblock is designed. Temperature is used to trigger a transition from a single network protein hydrogel phase to a double network phase with both protein and block copolymer networks present at different length scales. The thermodynamics of network formation and resulting structural changes are established using small-angle scattering, birefringence, and dynamic scanning calorimetry. The formation of the second network is shown to produce a large, nonlinear increase in the elastic modulus as well as enhancements in creep compliance and toughness. Although the gels show yielding behavior in both the single and double network regimes, a qualitative change in the deformation mechanism is observed due to the structural changes.

  14. Fabrication, modeling and optimization of an ionic polymer gel actuator

    NASA Astrophysics Data System (ADS)

    Jo, Choonghee; Naguib, Hani E.; Kwon, Roy H.

    2011-04-01

    The modeling of the electro-active behavior of ionic polymer gel is studied and the optimum conditions that maximize the deflection of the gel are investigated. The bending deformation of polymer gel under an electric field is formulated by using chemo-electro-mechanical parameters. In the modeling, swelling and shrinking phenomena due to the differences in ion concentration at the boundary between the gel and solution are considered prior to the application of an electric field, and then bending actuation is applied. As the driving force of swelling, shrinking and bending deformation, differential osmotic pressure at the boundary of the gel and solution is considered. From this behavior, the strain or deflection of the gel is calculated. To find the optimum design parameter settings (electric voltage, thickness of gel, concentration of polyion in the gel, ion concentration in the solution, and degree of cross-linking in the gel) for bending deformation, a nonlinear constrained optimization model is formulated. In the optimization model, a bending deflection equation of the gel is used as an objective function, and a range of decision variables and their relationships are used as constraint equations. Also, actuation experiments are conducted using poly(2-acrylamido-2-methylpropane sulfonic acid) (PAMPS) gel and the optimum conditions predicted by the proposed model have been verified by the experiments.

  15. Modelling of the inhomogeneous interior of polymer gels

    NASA Astrophysics Data System (ADS)

    Shew, Chwen-Yang; Iwaki, Takafumi

    2006-04-01

    A simple model has been investigated to elucidate the mean squared displacement (MSD) of probe molecules in cross-linked polymer gels. In the model, we assume that numerous cavities distribute in the inhomogeneous interior of a gel, and probe molecules are confined within these cavities. The individual probe molecules trapped in a gel are treated as Brownian particles confined to a spherical harmonic potential. The harmonic potential is chosen to model the effective potential experienced by the probe particle in the cavity of a gel. Each field strength is corresponding to the characteristic of one type of effective cavity. Since the statistical distribution of different effective cavity sizes is unknown, several distribution functions are examined. Meanwhile, the calculated averaged MSDs are compared to the experimental data by Nisato et al (2000 Phys. Rev. E 61 2879). We find that the theoretical results of the MSD are sensitive to the shape of the distribution function. For low cross-linked gels, the best fit is obtained when the interior cavities of a gel follow a bimodal distribution. Such a result may be attributed to the presence of at least two distinct classes of cavity in gels. For high cross-linked gels, the cavities in the gel can be depicted by a single-modal uniform distribution function, suggesting that the range of cavity sizes becomes smaller. These results manifest the voids inside a gel, and the shape of distribution functions may provide the insight into the inhomogeneous interior of a gel.

  16. Anion-switchable supramolecular gels for controlling pharmaceutical crystal growth

    NASA Astrophysics Data System (ADS)

    Foster, Jonathan A.; Piepenbrock, Marc-Oliver M.; Lloyd, Gareth O.; Clarke, Nigel; Howard, Judith A. K.; Steed, Jonathan W.

    2010-12-01

    We describe the use of low-molecular-weight supramolecular gels as media for the growth of molecular crystals. Growth of a range of crystals of organic compounds, including pharmaceuticals, was achieved in bis(urea) gels. Low-molecular-weight supramolecular gelators allow access to an unlimited range of solvent systems, in contrast to conventional aqueous gels such as gelatin and agarose. A detailed study of carbamazepine crystal growth in four different bis(urea) gelators, including a metallogelator, is reported. The crystallization of a range of other drug substances, namely sparfloxacin, piroxicam, theophylline, caffeine, ibuprofen, acetaminophen (paracetamol), sulindac and indomethacin, was also achieved in supramolecular gel media without co-crystal formation. In many cases, crystals can be conveniently recovered from the gels by using supramolecular anion-triggered gel dissolution; however, crystals of substances that themselves bind to anions are dissolved by them. Overall, supramolecular gel-phase crystallization offers an extremely versatile new tool in pharmaceutical polymorph screening.

  17. Photo- and electroactive color changeable acrylamide gel actuator

    NASA Astrophysics Data System (ADS)

    Xu, Chunye; Tamagawa, Hirohisa; Uchida, Mikio; Popovic, Suzana; Taya, Minoru

    2001-07-01

    Polyacrylamide hydrogels containing bis-[4- {dimethylamine}phenyl]{4-vinyl-phenyl}methyl leucohydroxide which is so called vinyl derivative of Malachite Green have been studied as color changeable gels. The response times of the color and the volume changes of the gel were measured under 6 and 2 different stimuli, respectively. We found a way to increase their color change speed upon applied electric current (E-current), and designed a gel actuator using Nafion film as a separator between two compartments and as a cation conductor. In addition acrylamide gel swollen with Na2SO4 solution was used as a medium for increasing electric conductivity. We varied the concentration of dvMG in the gel to control the degree of color change. Furthermore, we have studied the influence of gel thickness on the color change rate. In light of the results obtained, we have proposed one device consisting of this color changeable gel.

  18. Antioxidant effect of green tea on polymer gel dosimeter

    NASA Astrophysics Data System (ADS)

    Samuel, E. J. J.; Sathiyaraj, P.; Deena, T.; Kumar, D. S.

    2015-01-01

    Extract from Green Tea (GTE) acts as an antioxidant in acrylamide based polymer gel dosimeter. In this work, PAGAT gel was used for investigation of antioxidant effect of GTE.PAGAT was called PAGTEG (Polyacrylamide green tea extract gel dosimeter) after adding GTE. Free radicals in water cause pre polymerization of polymer gel before irradiation. Polyphenols from GTE are highly effective to absorb the free radicals in water. THPC is used as an antioxidant in polymer gel dosimeter but here we were replaced it by GTE and investigated its effect by spectrophotometer. GTE added PAGAT samples response was lower compared to THPC added sample. To increase the sensitivity of the PAGTEG, sugar was added. This study confirmed that THPC was a good antioxidant for polymer gel dosimeter. However, GTE also can be used as an antioxidant in polymer gel if use less quantity (GTE) and add sugar as sensitivity enhancer.

  19. Stability of capillary gels for automated sequencing of DNA.

    PubMed

    Swerdlow, H; Dew-Jager, K E; Brady, K; Grey, R; Dovichi, N J; Gesteland, R

    1992-08-01

    Recent interest in capillary gel electrophoresis has been fueled by the Human Genome Project and other large-scale sequencing projects. Advances in gel polymerization techniques and detector design have enabled sequencing of DNA directly in capillaries. Efforts to exploit this technology have been hampered by problems with the reproducibility and stability of gels. Gel instability manifests itself during electrophoresis as a decrease in the current passing through the capillary under a constant voltage. Upon subsequent microscopic examination, bubbles are often visible at or near the injection (cathodic) end of the capillary gel. Gels have been prepared with the polyacrylamide matrix covalently attached to the silica walls of the capillary. These gels, although more stable, still suffer from problems with bubbles. The use of actual DNA sequencing samples also adversely affects gel stability. We examined the mechanisms underlying these disruptive processes by employing polyacrylamide gel-filled capillaries in which the gel was not attached to the capillary wall. Three sources of gel instability were identified. Bubbles occurring in the absence of sample introduction were attributed to electroosmotic force; replacing the denaturant urea with formamide was shown to reduce the frequency of these bubbles. The slow, steady decline in current through capillary sequencing gels interferes with the ability to detect other gel problems. This phenomenon was shown to be a result of ionic depletion at the gel-liquid interface. The decline was ameliorated by adding denaturant and acrylamide monomers to the buffer reservoirs. Sample-induced problems were shown to be due to the presence of template DNA; elimination of the template allowed sample loading to occur without complications.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Cautions Concerning Electronic Analytical Balances.

    ERIC Educational Resources Information Center

    Johnson, Bruce B.; Wells, John D.

    1986-01-01

    Cautions chemists to be wary of ferromagnetic samples (especially magnetized samples), stray electromagnetic radiation, dusty environments, and changing weather conditions. These and other conditions may alter readings obtained from electronic analytical balances. (JN)

  1. Numerical integration of analytic functions

    NASA Astrophysics Data System (ADS)

    Milovanović, Gradimir V.; Tošić, Dobrilo ð.; Albijanić, Miloljub

    2012-09-01

    A weighted generalized N-point Birkhoff-Young quadrature of interpolatory type for numerical integration of analytic functions is considered. Special cases of such quadratures with respect to the generalized Gegenbauer weight function are derived.

  2. Analytic Methods in Investigative Geometry.

    ERIC Educational Resources Information Center

    Dobbs, David E.

    2001-01-01

    Suggests an alternative proof by analytic methods, which is more accessible than rigorous proof based on Euclid's Elements, in which students need only apply standard methods of trigonometry to the data without introducing new points or lines. (KHR)

  3. Trends in Analytical Scale Separations.

    ERIC Educational Resources Information Center

    Jorgenson, James W.

    1984-01-01

    Discusses recent developments in the instrumentation and practice of analytical scale operations. Emphasizes detection devices and procedures in gas chromatography, liquid chromatography, electrophoresis, supercritical fluid chromatography, and field-flow fractionation. (JN)

  4. Laboratory Workhorse: The Analytical Balance.

    ERIC Educational Resources Information Center

    Clark, Douglas W.

    1979-01-01

    This report explains the importance of various analytical balances in the water or wastewater laboratory. Stressed is the proper procedure for utilizing the equipment as well as the mechanics involved in its operation. (CS)

  5. Liposomes: Technologies and Analytical Applications

    NASA Astrophysics Data System (ADS)

    Jesorka, Aldo; Orwar, Owe

    2008-07-01

    Liposomes are structurally and functionally some of the most versatile supramolecular assemblies in existence. Since the beginning of active research on lipid vesicles in 1965, the field has progressed enormously and applications are well established in several areas, such as drug and gene delivery. In the analytical sciences, liposomes serve a dual purpose: Either they are analytes, typically in quality-assessment procedures of liposome preparations, or they are functional components in a variety of new analytical systems. Liposome immunoassays, for example, benefit greatly from the amplification provided by encapsulated markers, and nanotube-interconnected liposome networks have emerged as ultrasmall-scale analytical devices. This review provides information about new developments in some of the most actively researched liposome-related topics.

  6. The biophysical properties of Basal lamina gels depend on the biochemical composition of the gel.

    PubMed

    Arends, Fabienna; Nowald, Constantin; Pflieger, Kerstin; Boettcher, Kathrin; Zahler, Stefan; Lieleg, Oliver

    2015-01-01

    The migration of cells within a three-dimensional extracellular matrix (ECM) depends sensitively on the biochemical and biophysical properties of the matrix. An example for a biological ECM is given by reconstituted basal lamina gels purified from the Engelbreth-Holm-Swarm sarcoma of mice. Here, we compare four different commercial variants of this ECM, which have all been purified according to the same protocol. Nevertheless, in those gels, we detect strong differences in the migration behavior of leukocyte cells as well as in the Brownian motion of nanoparticles. We show that these differences correlate with the mechanical properties and the microarchitecture of the gels which in turn arise from small variations in their biochemical composition. PMID:25689062

  7. The Biophysical Properties of Basal Lamina Gels Depend on the Biochemical Composition of the Gel

    PubMed Central

    Pflieger, Kerstin; Boettcher, Kathrin; Zahler, Stefan; Lieleg, Oliver

    2015-01-01

    The migration of cells within a three-dimensional extracellular matrix (ECM) depends sensitively on the biochemical and biophysical properties of the matrix. An example for a biological ECM is given by reconstituted basal lamina gels purified from the Engelbreth-Holm-Swarm sarcoma of mice. Here, we compare four different commercial variants of this ECM, which have all been purified according to the same protocol. Nevertheless, in those gels, we detect strong differences in the migration behavior of leukocyte cells as well as in the Brownian motion of nanoparticles. We show that these differences correlate with the mechanical properties and the microarchitecture of the gels which in turn arise from small variations in their biochemical composition. PMID:25689062

  8. Investigation of the Peroxovanadate Sol-Gel Process and Characterization of the Gels

    SciTech Connect

    Craig Joseph Fontenot

    2001-12-31

    In general, the peroxovanadate solution sol-gel process can be thought of as consisting of two parts: (1) the decomposition of the peroxo species and (2) cation hydrolysis leading to gelation. By controlling the synthesis conditions, both layered and amorphous compounds can be created. However, the type of water coordination observed in these gels was found to be identical no matter what the long-range order. The current work clarified many of the discrepancies found in the literature and offered much new valuable information. Highlights include the types of vanadium environments present at various stages of hydration, the role of adsorbed water, oxygen exchange from adsorbed water into the gel sites, and the ability to create metastable VMoO solid solution phases. These results could have a variety of impacts on future catalysis research.

  9. Analytical multikinks in smooth potentials

    NASA Astrophysics Data System (ADS)

    de Brito, G. P.; Correa, R. A. C.; de Souza Dutra, A.

    2014-03-01

    In this work we present an approach that can be systematically used to construct nonlinear systems possessing analytical multikink profile configurations. In contrast with previous approaches to the problem, we are able to do it by using field potentials that are considerably smoother than the ones of the doubly quadratic family of potentials. This is done without losing the capacity of writing exact analytical solutions. The resulting field configurations can be applied to the study of problems from condensed matter to braneworld scenarios.

  10. Functionalized magnetic nanoparticle analyte sensor

    DOEpatents

    Yantasee, Wassana; Warner, Maryin G; Warner, Cynthia L; Addleman, Raymond S; Fryxell, Glen E; Timchalk, Charles; Toloczko, Mychailo B

    2014-03-25

    A method and system for simply and efficiently determining quantities of a preselected material in a particular solution by the placement of at least one superparamagnetic nanoparticle having a specified functionalized organic material connected thereto into a particular sample solution, wherein preselected analytes attach to the functionalized organic groups, these superparamagnetic nanoparticles are then collected at a collection site and analyzed for the presence of a particular analyte.

  11. Visual Analytics Technology Transition Progress

    SciTech Connect

    Scholtz, Jean; Cook, Kristin A.; Whiting, Mark A.; Lemon, Douglas K.; Greenblatt, Howard

    2009-09-23

    The authors provide a description of the transition process for visual analytic tools and contrast this with the transition process for more traditional software tools. This paper takes this into account and describes a user-oriented approach to technology transition including a discussion of key factors that should be considered and adapted to each situation. The progress made in transitioning visual analytic tools in the past five years is described and the challenges that remain are enumerated.

  12. High-temperature solvent stability of sol-gel germania triblock polymer coatings in capillary microextraction on-line coupled to high-performance liquid chromatography.

    PubMed

    Segro, Scott S; Malik, Abdul

    2010-09-10

    Germania-based sol-gel organic-inorganic hybrid coatings were prepared for on-line coupling of capillary microextraction with high-performance liquid chromatography. For this, a germania-based sol-gel precursor, tetra-n-butoxygermane and a hydroxy-terminated triblock copolymer, poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) were used. These sol-gel germania triblock polymer coatings were chemically anchored to the inner walls of a fused silica capillary (0.25 mm I.D.) in course of its evolution from the sol solution. Scanning electron microscopy images of the sol-gel germania triblock polymer coating were obtained to estimate the coating thickness. For the first time, the analyte distribution constants between a sol-gel germania organic-inorganic hybrid coating and the samples (K(cs)) were determined. For a variety of analytes from different chemical classes, including polycyclic aromatic hydrocarbons (PAHs), ketones, alcohols, phenols and amines, the K(cs) values ranged from 8.1 x 10(1) to 5.6 x 10(4). Also, for the first time, the stability of the sol-gel germania-based coating in high-temperature reversed-phase solvent environment was evaluated. The sol-gel germania triblock polymer coatings were capable of surviving exposure to high-temperature solvent conditions (200 degrees C) with little change in extraction capabilities. This demonstrates that sol-gel germania triblock polymer hybrid materials might be suitable for further applications in high-temperature HPLC. The reproducibility of the method for preparation of the sol-gel germania triblock polymer coatings was also evaluated, and the capillary-to-capillary RSD values ranged from 5.3 to 6.5%. The use of higher flow rates in extraction was found to significantly reduce the time required (from 30-40 to 10-15 min) to reach equilibrium between the sol-gel germania triblock polymer coating and the analytes in the sample solution.

  13. Investigations on gel forming media for use in low gravity bioseparations research

    NASA Astrophysics Data System (ADS)

    Todd, Paul; Szlag, David C.; Plank, Lindsay D.; Delcourt, Scott G.; Kunze, M. Elaine; Kirkpatrick, Francis H.; Pike, Roland G.

    Microgravity research includes investigations designed to gain insight on methods of separating living cells. During a typical separation certain real-time measurements can be made by optical methods, but some materials must also be subjected to subsequent analyses, sometimes including cultivation of the separated cells. In the absence of on-orbit analytical or fraction collecting procedures, some means is required to ``capture'' cells after separation. The use of solutions that form gels was therefore investigated as a means of maintaining cells and/or macromolecules in the separated state after two types of simple ground-based experiments. Microgravity electrophoresis experiments were simulated by separating model cell types (rat, chicken, human and rabbit erythrocytes) in a vertical density gradient containing low-conductivity buffer, 1.7%-6.5% Ficoll, 6.8-5.0% sucrose, and 1% SeaPrep low-melting temperature agarose and demonstrating that, upon cooling, a gel formed in the column, and cells could be captured in the positions to which they had migrated. Two-phase extraction experiments were simulated by choosing two-polymer solutions in which phase separation occurs in normal saline at temperatures compatible with cell viability and in which one or both phases form a gel upon cooling. Suitable polymers included commercial agaroses (1-2%), maltodextrin (5-7%) and gelatin (5-20%).

  14. Isoelectric focusing of human von Willebrand factor in urea-agarose gels

    SciTech Connect

    Fulcher, C.A.; Ruggeri, Z.M.; Zimmerman, T.S.

    1983-02-01

    An analytical technique has been developed for the isoelectric focusing (IEF) of plasma von Willebrand factor (vWF) in agarose gels containing urea. Under these conditions, vWF freely enters the gel and focuses without artifact. The focused vWF is visualized by staining fixed gels with /sup 125/I-labeled affinity-purified heterologous antibody. Utilizing a pH gradient of 5.0-6.5, normal vWF in plasma or purified preparations focuses into at least three bands with apparent isoelectric points (pI) between pH 5.7 and 5.9. A reproducible difference in the IEF pattern of vWF has been established between normal plasmas and those of individuals with variant von Willebrand's disease (vWd) type IIA and type IIB. In type IIA, vWF has a distinctly lower pI than normal. This difference may be related to the presence of smaller vWF multimers in IIA plasma because forms of vWF of corresponding size contained in normal cryoprecipitate supernatant have a similar pI. Type IIB von Willebrand factor has a pI intermediate between normal and IIA. Neuraminidase treatment of plasma samples before IEF results in an increase in pI in normal, type IIA, and type IIB vWF. The data suggest that none of the 16 type IIA and 9 IIB plasmas studied here contain significantly decreased amounts of sialic acid.

  15. Comparing two-dimensional electrophoretic gel images across the Internet.

    PubMed

    Lemkin, P F

    1997-01-01

    Scientists around the world often work on similar data so the need to share results and compare data arises periodically. We describe a method of comparing two two-dimensional (2-D) protein gels of similar samples created in different laboratories to help identify or suggest protein spot identification. Now that 2-D gels and associated databases frequently appear on the Internet, this opens up the possibility of visually comparing one's own experimental 2-D gel image data with data from another gel in a remote Internet database. In general, there are a few ways to compare images: (i) slide one gel (autoradiograph or stained gel) over the other while back-illuminated, or (ii) build a 2-D gel computer database from both gels after scanning and analyzing these gels. These are impractical since in the first case the gel from the Internet database is not locally available. In the second, the costs of building a multi-gel database solely to answer the question of whether a spot is the same spot may be excessive if only a single visual comparison is needed. We describe a distributed gel comparison program (URL: http://www-lmmb.ncifcrf.gov/flicker) which runs on any World Wide Web (WWW) connected computer and is invoked from a Java-capable web browser. One gel image is read from any Internet 2-D gel database (e.g. SWISS-2DPAGE) and the other may reside on the investigator's computer. Images may be more easily compared by first applying spatial warping or other transforms interactively on the user's computer. First, regions of interest are "landmarked" with several corresponding points in each gel image, then one gel image is warped to the geometry of the other. As the two gels are rapidly alternated, or flickered, in the same window, the user can slide one gel past the other to visually align corresponding spots by matching local morphology. This flicker-comparison technique may be applied to analyzing other types of one-dimensional and 2-D biomedical images.

  16. Adsorption of pesticidal compounds bearing a single carboxyl functional group and biogenic amines by humic fraction-immobilized silica gel.

    PubMed

    Chen, Cheng-Sheng; Chen, Shushi

    2013-04-17

    Fractions collected from humic acids under acidic and basic conditions were immobilized on silica gel and used as adsorbents for a variety of agricultural pesticide compounds bearing a single carboxyl functional group and biogenic amines in acetonitrile. Among these compounds examined under the same conditions, the percentage of adsorption varies considerably from 0 to almost 100%. The percentage is found to be highly related to the structure of the analyte and the type of functional group attached to it. The adsorption, better performed on adsorbent immobilized with the fraction collected under acidic conditions, is believed to result from the reversible interaction between the functional moieties of the analyte and humic acids (e.g., amino or carboxyl group of analyte vs carboxyl group of humic acids, etc.) as no adsorption is observed under the same conditions for analytes that are derivatives of alcohol, amide, and ester. Given the nature of the analyte, the time needed to reach the maximum percent of adsorption decreases as the amount of adsorbent is increased. Also, the longer the time that has elapsed, the higher the percentage of analyte adsorbed, thus indicating that the adsorption process is surface-oriented. Factors such as the acidic or basic origin of the additive in the liquid phase of the matrix also affect the percentage of analyte adsorbed. PMID:23521499

  17. Reversible gels for electrophoresis and isolation of DNA.

    PubMed

    Cole, K D

    1999-04-01

    Here, the application of the gel-forming carbohydrate polymer, gellan gum, for the electrophoresis and isolation of DNA is detailed. Gellan gun forms gels in the presence of divalent metal cations, and the gels can be converted back to a solution by the addition of a chelating agent such as EDTA. Also, gellan electrophoresis gels can be formed using diamines. These gels are reversible by increasing the pH, which results in the deprotonation of the diamine. Gellan electrophoresis gels were used for separations at concentrations as low as 0.03%. Native gellan electrophoresis gels have significant electroosmosis and were generally run overnight. A gellan electrophoresis gel (0.1%) showed good resolution of DNA from approximately 50-1 kbp. The addition of linear polymers, such as hydroxethyl cellulose, to the gellan gum before casting greatly reduced the electroosmosis. The additional polymer increased the resolution of low-molecular-weight DNA down to approximately 200 bp and allowed gels to be run in a few hours. DNA isolated from gellan electrophoresis gels could be cut by common restriction enzymes and ligated in the presence of the gellan gum. The presence of gellan gum did not significantly inhibit the transformation of competent E. coli cells by plasmid DNA.

  18. Friction and wear evaluation of high-strength gel

    NASA Astrophysics Data System (ADS)

    Kameyama, Toshiki; Wada, Masato; Makino, Masato; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    In the last decade, several innovative polymer gel materials with enhanced mechanical proper ties have been invented by Japanese researches. In 2003, a most effective but simple way was proposed to synthesize double network gels, with compression fracture stress of about 30MPa, compared to several tens of kPa for common gels. In this study, we evaluate the wear of a double network gel, both with and without water lubrication. In the un-lubricated experiment, the gel surface is worn with a stainless steel ball. In the other experiment with water lubrication, the gel surface is worn by different counter surfaces because the stainless steel ball was too smooth to wear. It was found that frictional vibration of wear gel is transitioning to steady sliding in lubricated. As conventional reduction method of the friction by the contact between general solids, there are surface processing such as the texturing, attachment of lubrication materials. In the case of gel, the minute processing to the surface such as the texturing is difficult, because the gel is soft in comparison with the hard materials such as the metal. By proceeding with this study, the surface processing of low-frictional gels will be enabled.

  19. Swelling kinetics of poly(N-isopropylacrylamide) gel.

    PubMed

    Andersson, M; Axelsson, A; Zacchi, G

    1998-01-01

    In many gel applications the swelling and shrinking kinetics are very important, e.g. in controlled/slow release, where the kinetics determined the rate of out-diffusion of the active component, and in gel extraction where the gel is swollen and shrunk several times. In this study swelling kinetics of poly(N-isopropylacrylamide) gel (NiPAAm gel) was determined by monitoring the swelling process using a stereo microscope and a video camera. The swelling of spherical gel bodies could conveniently be studied after a temperature change. The results obtained were treated according to the approach of Tanaka and Fillmore, in which the swelling and shrinking of a gel is described as a motion of the gel network according to the diffusion equation. This was shown to be valid when the temperature changes are kept below the critical point of the gel. However, the model fails to describe the shrinking process when passing from below to above the critical temperature. The collective diffusion coefficient (D), defined as the osmotic bulk modulus divided by the friction factor, was determined by fitting to the experimental data. D was found to increase with temperature according to the Wilke-Chang relation D = 2.0.10(-11) + 7.6.10(-17).T/mu. The results were used to simulate the swelling/shrinking process. The simulations show the importance of having sufficiently small gel bodies to achieve a short swelling time.

  20. Absorption of isoflurane by silica gel.

    PubMed

    Lumb, A B; Landon, M J

    1991-07-01

    We have studied the capacity of the drying agent silica gel (SG) to absorb isoflurane from gas samples. When dry, SG was able to absorb 31 times its own volume of isoflurane vapour, which could be recovered almost completely from the SG by displacement with water vapour. However, we were unable to demonstrate any significant absorption of isoflurane by wet SG. Care must be taken, therefore, when using SG as a drying agent in the sampling line of an analyser during research involving volatile anaesthetic agents. PMID:1650238

  1. Hybrid slab-microchannel gel electrophoresis system

    DOEpatents

    Balch, Joseph W.; Carrano, Anthony V.; Davidson, James C.; Koo, Jackson C.

    1998-01-01

    A hybrid slab-microchannel gel electrophoresis system. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate.

  2. Soluble polymers in sol-gel silica

    NASA Astrophysics Data System (ADS)

    Beaudry, Christopher Laurent

    In the last few years, the inherent versatility of sol-gel processing has led to a significant research effort on inorganic/organic materials. One method of incorporating an organic phase into sol-gel silica is dissolving an organic polymer in a tetraethylorthosilicate (TEOS) solution, followed by in situ polymerization of silica in the presence of organic polymer. The first part of the study involved the development of a two-step (acid-base) synthesis procedure to allow systematic control of acidity in TEOS solutions. With this procedure, it was possible to increase the pH of the TEOS solution while correlating the acidity and properties. The properties were the gelation time, syneresis rate, drying behavior, and xerogel pore structure, as determined by nitrogen sorption. Furthermore, controlling the acidity was shown to control the silica xerogel pore structure. In the second part of the study, the two-step procedure was used to synthesize silica/poly(ethylene glycol) (PEG), and silica/poly(vinyl acetate) (PVAc) composite materials. The content of organic polymer and the molecular weight were varied. The gelation time, the syneresis rate, the drying behavior, and the pore structure were determined for compositions with 10% PEG (M.W. 2,000), 5, 10, and 15% PEG (M.W. 3,400), and 10 and 25% PVAc (M.W. 83,000). Other compositions and molecular weights of PEG lead to sedimentation. In the PEG compositions, the tendency to phase separate was correlated with the effects of the processing variables on the segregation strength and polymerization rate. The PVAc compositions did not show any visible phase separation during processing, giving the composite xerogels an appearance similar to pure silica. The property differences between gels with PEG and gels with PVAc show the relative strength of the interactions with silica. Both polymers exhibit hydrogen bonding between the phases. In the case of PEG, hydrogen bonding between the ether oxygens of the polymer and silanol

  3. Pulsed field gel electrophoresis for dairy propionibacteria.

    PubMed

    Chuat, Victoria; de Freitas, Rosangela; Dalmasso, Marion

    2015-01-01

    Pulsed field gel electrophoresis (PFGE) is a technique using alternating electric fields to migrate high molecular weight DNA fragments with a high resolution. This method consists of the digestion of bacterial chromosomal DNA with rare-cutting restriction enzymes and in applying an alternating electrical current between spatially distinct pairs of electrodes. DNA molecules migrate at different speeds according to the size of the fragments. Among other things, this technique is considered as the "gold standard" for genotyping, genetic fingerprinting, epidemiological studies, genome size estimation, and studying radiation-induced DNA damage and repair. This chapter describes a PFGE method that can be used to differentiate dairy propionibacteria. PMID:25862063

  4. Lavender fragrance cleansing gel effects on relaxation.

    PubMed

    Field, Tiffany; Diego, Miguel; Hernandez-Reif, Maria; Cisneros, Wendy; Feijo, Larissa; Vera, Yanexy; Gil, Karla; Grina, Diana; Claire He, Qing

    2005-02-01

    Alertness, mood, and math computations were assessed in 11 healthy adults who sniffed a cosmetic cleansing gel with lavender floral blend aroma, developed to be relaxing using Mood Mapping. EEG patterns and heart rate were also recorded before, during, and after the aroma session. The lavender fragrance blend had a significant transient effect of improving mood, making people feel more relaxed, and performing the math computation faster. The self-report and physiological data are consistent with relaxation profiles during other sensory stimuli such as massage and music, as reported in the literature. The data suggest that a specific cosmetic fragrance can have a significant role in enhancing relaxation.

  5. Universal Elasticity and Fluctuations of Nematic Gels

    NASA Astrophysics Data System (ADS)

    Xing, Xiangjun; Radzihovsky, Leo

    2003-04-01

    We study elasticity of spontaneously orientationally ordered amorphous solids, characterized by a vanishing transverse shear modulus, as realized by nematic elastomers and gels. We show that local heterogeneities and elastic nonlinearities conspire to lead to anomalous nonlocal universal elasticity controlled by a nontrivial infrared fixed point. Namely, such solids are characterized by universal shear and bending moduli that, respectively, vanish and diverge at long scales, are universally incompressible, and exhibit a universal negative Poisson ratio and a non-Hookean elasticity down to arbitrarily low strains. Based on expansion about five dimensions, we argue that the nematic order is stable to thermal fluctuation and local heterogeneities down to dlc<3.

  6. Pectin gel vehicles for controlled fragrance delivery.

    PubMed

    Liu, LinShu; Chen, Guoying; Fishman, Marshall L; Hicks, Kevin B

    2005-01-01

    Using citronellal as a model compound, pectin gels formulations were evaluated for the controlled fragrance release by kinetic and static methods. The pectins with higher degrees of esterification induced a stronger molecular association with the nonpolar fragrance. This resulted in a prolonged duration of fragrance release and the limitation of fragrance adsorption to the receptor skin layers. The increase in pectin concentrations suppressed the fragrance release by a diffusion mechanism. Blocking the carboxyl groups of pectin with calcium ions reduces the hydrophilicity of pectin and provides physical barriers for citronellal diffusion. The pectin/calcium microparticles are promising materials for controlled fragrance release.

  7. Bradyrhizobium japonicum Survival in and Soybean Inoculation with Fluid Gels.

    PubMed

    Jawson, M D; Franzluebbers, A J; Berg, R K

    1989-03-01

    The utilization of gels, which are used for fluid drilling of seeds, as carriers of Bradyrhizobium japonicum for soybean (Glycine max (L.) Merr.) inoculation was studied. Gels of various chemical composition (magnesium silicate, potassium acrylate-acrylamide, grafted starch, and hydroxyethyl cellulose) were used, although the hydroxyethyl cellulose gels were more extensively investigated. Gel inocula were prepared by mixing gel powder with liquid cultures of B. japonicum (2% [wt/vol]). The population of B. japonicum USDA 110 did not change in each gel type during 8 days of incubation at 28 degrees C. These fluid gels were prepared with late-exponential-growth-phase cells that were washed and suspended in physiological saline. Mid-exponential-growth-phase B. japonicum USDA 110, 123, and 138 grew in cellulose gels prepared with yeast extract-mannitol broth as well as or better than in yeast extract-mannitol broth alone for the first 10 days at 28 degrees C. Populations in these cellulose gels after 35 days were as large as when the gels had originally been prepared, and survival occurred for at least 70 days. Soybeans grown in sand in the greenhouse had greater nodule numbers, nodule weights, and top weights with gel inoculants compared with a peat inoculant. In soil containing 10 indigenous B. japonicum per g of soil, inoculation resulted in increased soybean nodule numbers, nodule weights, and top weights, but only nodule numbers were greater with gel than with peat inoculation. The gel-treated seeds carried 10 to 10 more bacteria per seed (10 to 10) than did the peat-treated seeds. PMID:16347870

  8. Sol-gel processing to form doped sol-gel monoliths inside hollow core optical fiber and sol-gel core fiber devices made thereby

    NASA Technical Reports Server (NTRS)

    Shaw, Harry C. (Inventor); Ott, Melanie N. (Inventor); Manuel, Michele V. (Inventor)

    2002-01-01

    A process of fabricating a fiber device includes providing a hollow core fiber, and forming a sol-gel material inside the hollow core fiber. The hollow core fiber is preferably an optical fiber, and the sol-gel material is doped with a dopant. Devices made in this manner includes a wide variety of sensors.

  9. [Preparation and chromatographic performance of a eugenol-bonded silica gel stationary phase for high performance liquid chromatography].

    PubMed

    Xu, Lili; Zhong, Minghua; Chen, Xiaojing

    2015-05-01

    A eugenol-bonded silica gel stationary phase (EGSP) for high performance liquid chromatography ( HPLC) has been synthesized by the solid-liquid successive reaction method. The preparation process included two steps: firstly, γ-glycidoxypropyltrimethoxy-silane (KH-560) was covalently attached to the surface of spherical silica gel. Then the bonded silica gel continued to react with eugenol ligand, which was a plant active component, and obtained EGSP. The structure of EGSP was characterized by elemental analysis, thermogravimetric analysis and Fourier transform infrared spectroscopy. Using naphthalene as a probe, the column efficiency was tested under the mobile phase of acetonitrile-water (35:65, v/v) at a flow rate of 0.8 mL/min. The chromatographic properties and the retention mechanism of EGSP were evaluated by using neutral, basic and acidic analytes as solute probes. Meanwhile, the comparative study with C18 column and phenyl column was also carried out under the same chromatographic conditions. The result showed that the eugenol ligand was successfully bonded to the surface of silica gel with a 0.28 mmol/g of bonded amount, and the theoretical plate number of EGSP column was about 24 707 N/m. The EGSP appeared to be a kind of excellent reversed-phase stationary phase with suitable hydrophobicity and various synergistic sites. The eugenol ligand bonded on silica gel could first provide π-π interaction sites for different analytes because of its benzene ring and alkenyl. In addition, the methoxy groups of eugenol were responsible for dipole-dipole and hydrogen-bonding interactions between the ligand and solutes in the effective separation process. Comparing with traditional C18 column and phenyl column, EGSP has an advantage in the fast separation of polar compounds under simple experimental conditions. PMID:26387202

  10. [Preparation and chromatographic performance of a eugenol-bonded silica gel stationary phase for high performance liquid chromatography].

    PubMed

    Xu, Lili; Zhong, Minghua; Chen, Xiaojing

    2015-05-01

    A eugenol-bonded silica gel stationary phase (EGSP) for high performance liquid chromatography ( HPLC) has been synthesized by the solid-liquid successive reaction method. The preparation process included two steps: firstly, γ-glycidoxypropyltrimethoxy-silane (KH-560) was covalently attached to the surface of spherical silica gel. Then the bonded silica gel continued to react with eugenol ligand, which was a plant active component, and obtained EGSP. The structure of EGSP was characterized by elemental analysis, thermogravimetric analysis and Fourier transform infrared spectroscopy. Using naphthalene as a probe, the column efficiency was tested under the mobile phase of acetonitrile-water (35:65, v/v) at a flow rate of 0.8 mL/min. The chromatographic properties and the retention mechanism of EGSP were evaluated by using neutral, basic and acidic analytes as solute probes. Meanwhile, the comparative study with C18 column and phenyl column was also carried out under the same chromatographic conditions. The result showed that the eugenol ligand was successfully bonded to the surface of silica gel with a 0.28 mmol/g of bonded amount, and the theoretical plate number of EGSP column was about 24 707 N/m. The EGSP appeared to be a kind of excellent reversed-phase stationary phase with suitable hydrophobicity and various synergistic sites. The eugenol ligand bonded on silica gel could first provide π-π interaction sites for different analytes because of its benzene ring and alkenyl. In addition, the methoxy groups of eugenol were responsible for dipole-dipole and hydrogen-bonding interactions between the ligand and solutes in the effective separation process. Comparing with traditional C18 column and phenyl column, EGSP has an advantage in the fast separation of polar compounds under simple experimental conditions.

  11. Analytical Methods for Biomass Characterization during Pretreatment and Bioconversion

    SciTech Connect

    Pu, Yunqiao; Meng, Xianzhi; Yoo, Chang Geun; Li, Mi; Ragauskas, Arthur J

    2016-01-01

    Lignocellulosic biomass has been introduced as a promising resource for alternative fuels and chemicals because of its abundance and complement for petroleum resources. Biomass is a complex biopolymer and its compositional and structural characteristics largely vary depending on its species as well as growth environments. Because of complexity and variety of biomass, understanding its physicochemical characteristics is a key for effective biomass utilization. Characterization of biomass does not only provide critical information of biomass during pretreatment and bioconversion, but also give valuable insights on how to utilize the biomass. For better understanding biomass characteristics, good grasp and proper selection of analytical methods are necessary. This chapter introduces existing analytical approaches that are widely employed for biomass characterization during biomass pretreatment and conversion process. Diverse analytical methods using Fourier transform infrared (FTIR) spectroscopy, gel permeation chromatography (GPC), and nuclear magnetic resonance (NMR) spectroscopy for biomass characterization are reviewed. In addition, biomass accessibility methods by analyzing surface properties of biomass are also summarized in this chapter.

  12. Analytical Method for Measuring Cosmogenic (35)S in Natural Waters.

    PubMed

    Urióstegui, Stephanie H; Bibby, Richard K; Esser, Bradley K; Clark, Jordan F

    2015-06-16

    Cosmogenic sulfur-35 in water as dissolved sulfate ((35)SO4) has successfully been used as an intrinsic hydrologic tracer in low-SO4, high-elevation basins. Its application in environmental waters containing high SO4 concentrations has been limited because only small amounts of SO4 can be analyzed using current liquid scintillation counting (LSC) techniques. We present a new analytical method for analyzing large amounts of BaSO4 for (35)S. We quantify efficiency gains when suspending BaSO4 precipitate in Inta-Gel Plus cocktail, purify BaSO4 precipitate to remove dissolved organic matter, mitigate interference of radium-226 and its daughter products by selection of high purity barium chloride, and optimize LSC counting parameters for (35)S determination in larger masses of BaSO4. Using this improved procedure, we achieved counting efficiencies that are comparable to published LSC techniques despite a 10-fold increase in the SO4 sample load. (35)SO4 was successfully measured in high SO4 surface waters and groundwaters containing low ratios of (35)S activity to SO4 mass demonstrating that this new analytical method expands the analytical range of (35)SO4 and broadens the utility of (35)SO4 as an intrinsic tracer in hydrologic settings. PMID:25981756

  13. Comparison effect of azithromycin gel 2% with clindamycin gel 1% in patients with acne

    PubMed Central

    Mokhtari, Fatemeh; Faghihi, Gita; Basiri, Akram; Farhadi, Sadaf; Nilforoushzadeh, Mohammadali; Behfar, Shadi

    2016-01-01

    Background: Acne vulgaris is the most common skin disease. Local and systemic antimicrobial drugs are used for its treatment. But increasing resistance of Propionibacterium acnes to antibiotics has been reported. Materials and Methods: In a double-blind clinical trial, 40 patients with mild to moderate acne vulgaris were recruited. one side of the face was treated with Clindamycin Gel 1% and the other side with Azithromycin Topical Gel 2% BID for 8 weeks and then they were assessed. Results: Average age was 21. 8 ± 7 years. 82.5% of them were female. Average number of papules, pustules and comedones was similarly reduced in both groups and, no significant difference was observed between the two groups (P > 0.05, repeated measurs ANOVA). The mean indexes of ASI and TLC also significantly decreased during treatment in both groups, no significant difference was observed between the two groups. (P > 0.05, repeated measurs ANOVA). Also, impact of both drugs on papules and pustules was 2-3 times greater than the effect on comedones. Average satisfaction score was not significant between the two groups (P = 0.6, repeated measurs ANOVA). finally, frequency distribution of complications was not significant between the two groups (P > 0.05, Fisher Exact test). Conclusion: Azithromycin gel has medical impact at least similar to Clindamycin Gel in treatment of mild to moderate acne vulgaris, and it may be consider as suitable drug for resistant acne to conventional topical therapy. PMID:27169103

  14. Investigation of the peroxovanadate sol-gel process and characterization of the gels

    NASA Astrophysics Data System (ADS)

    Fontenot, Craig Joseph

    Vanadium oxide gels derived from aqueous solution of V2O 5 and H2O2 have been investigated using in situ 51V NMR and laser Raman spectroscopic techniques. On the basis of this characterization, a pathway for peroxovanadate decomposition has been proposed, including the presence of two peroxovanadate dieters. New Raman bands and assignments for these species are reported. Experimental 51V NMR evidence suggested the VO2+ species was directly involved in the formation of the gel. The vanadia xerogels were studied using 51V and 17O MAS NMR, 17 O 3QMAS NMR, TGA, DSC, XRD, SEM and laser Raman spectroscopy. Based primarily on the 51V MAS NMR and TGA results, the coordination of five distinct vanadia sites has been detailed, which possibly include a previously unreported dieter. The relative concentration of these sites changed as dehydration progressed, and a model of this process has been proposed based on the numerical analysis of the NMR MAS spectra. Depending on sample treatment, it was possible to synthesize both layered and non-layered materials. The laser Raman spectra revealed differences between layered and non-layered materials. These differences have been attributed to the interaction of coordinated water molecules, which were trapped between layers and held firmly in place, thus restricting or altering certain Raman-active vibrations. The environments of oxygen sites in crystalline V2O5 and in vanadia produced via sol-gel synthesis were also investigated using 17O MAS and 3QMAS NMR. For crystalline V2O5, three sites were observed: V=O (vanadyl), V2O (bridging), and V 3O (corner sharing). Line shape parameters for these sites were determined from numerical simulation of the MAS spectrum. For the vanadia gel, assignments have been proposed for several oxygen sites including bridging and corner sharing oxygen, along with several vanadyl sites. Based on the 17O MQMAS NMR results, the coordination of the water sites has been detailed. Upon re-hydration of the

  15. Analytical Sociology: A Bungean Appreciation

    NASA Astrophysics Data System (ADS)

    Wan, Poe Yu-ze

    2012-10-01

    Analytical sociology, an intellectual project that has garnered considerable attention across a variety of disciplines in recent years, aims to explain complex social processes by dissecting them, accentuating their most important constituent parts, and constructing appropriate models to understand the emergence of what is observed. To achieve this goal, analytical sociologists demonstrate an unequivocal focus on the mechanism-based explanation grounded in action theory. In this article I attempt a critical appreciation of analytical sociology from the perspective of Mario Bunge's philosophical system, which I characterize as emergentist systemism. I submit that while the principles of analytical sociology and those of Bunge's approach share a lot in common, the latter brings to the fore the ontological status and explanatory importance of supra-individual actors (as concrete systems endowed with emergent causal powers) and macro-social mechanisms (as processes unfolding in and among social systems), and therefore it does not stipulate that every causal explanation of social facts has to include explicit references to individual-level actors and mechanisms. In this sense, Bunge's approach provides a reasonable middle course between the Scylla of sociological reification and the Charybdis of ontological individualism, and thus serves as an antidote to the untenable "strong program of microfoundations" to which some analytical sociologists are committed.

  16. Climate Analytics as a Service

    NASA Technical Reports Server (NTRS)

    Schnase, John L.; Duffy, Daniel Q.; McInerney, Mark A.; Webster, W. Phillip; Lee, Tsengdar J.

    2014-01-01

    Climate science is a big data domain that is experiencing unprecedented growth. In our efforts to address the big data challenges of climate science, we are moving toward a notion of Climate Analytics-as-a-Service (CAaaS). CAaaS combines high-performance computing and data-proximal analytics with scalable data management, cloud computing virtualization, the notion of adaptive analytics, and a domain-harmonized API to improve the accessibility and usability of large collections of climate data. MERRA Analytic Services (MERRA/AS) provides an example of CAaaS. MERRA/AS enables MapReduce analytics over NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) data collection. The MERRA reanalysis integrates observational data with numerical models to produce a global temporally and spatially consistent synthesis of key climate variables. The effectiveness of MERRA/AS has been demonstrated in several applications. In our experience, CAaaS is providing the agility required to meet our customers' increasing and changing data management and data analysis needs.

  17. Crosslinking of gels to flat surfaces

    NASA Astrophysics Data System (ADS)

    Vandoolaeghe, Wendy Leigh; Müller-Nedebock, Kristian

    2002-03-01

    The formation and properties of a polymer gel on and at a surface are investigated. Most treatments of a polymer network formed at a surface have been limited to scaling theory. In the present investigation it is proposed to probe the physics of the system by means of a mathematical description of the random crosslinking. Firstly, the partition function for a system comprising a gel formed at a flat wall is presented. This is done by adapting an existing model of network formation (R.T. Deam, S.F. Edwards, phPhil. Trans. R. Soc. London A. Math. Phys. Sciences, 280, (1976)). The model of Deam and Edwards, with polymer-polymer crosslinks, is extended to incorporate a surface and polymer-surface crosslinks. In prefatory calculations, the Green's function approach without the so-called phreplica-trick, is applied to simpler, related models, such as parallel plates and confining boxes. Within the framework of replica theory, statistical averages and physical properties of the system such as the elasticity coefficient may be computed.

  18. Microfluidic dielectrophoretic sorter using gel vertical electrodes

    PubMed Central

    Luo, Jason; Nelson, Edward L.; Li, G. P.; Bachman, Mark

    2014-01-01

    We report the development and results of a two-step method for sorting cells and small particles in a microfluidic device. This approach uses a single microfluidic channel that has (1) a microfabricated sieve which efficiently focuses particles into a thin stream, followed by (2) a dielectrophoresis (DEP) section consisting of electrodes along the channel walls for efficient continuous sorting based on dielectric properties of the particles. For our demonstration, the device was constructed of polydimethylsiloxane, bonded to a glass surface, and conductive agarose gel electrodes. Gold traces were used to make electrical connections to the conductive gel. The device had several novel features that aided performance of the sorting. These included a sieving structure that performed continuous displacement of particles into a single stream within the microfluidic channel (improving the performance of downstream DEP, and avoiding the need for additional focusing flow inlets), and DEP electrodes that were the full height of the microfluidic walls (“vertical electrodes”), allowing for improved formation and control of electric field gradients in the microfluidic device. The device was used to sort polymer particles and HeLa cells, demonstrating that this unique combination provides improved capability for continuous DEP sorting of particles in a microfluidic device. PMID:24926390

  19. Microfluidic dielectrophoretic sorter using gel vertical electrodes.

    PubMed

    Luo, Jason; Nelson, Edward L; Li, G P; Bachman, Mark

    2014-05-01

    We report the development and results of a two-step method for sorting cells and small particles in a microfluidic device. This approach uses a single microfluidic channel that has (1) a microfabricated sieve which efficiently focuses particles into a thin stream, followed by (2) a dielectrophoresis (DEP) section consisting of electrodes along the channel walls for efficient continuous sorting based on dielectric properties of the particles. For our demonstration, the device was constructed of polydimethylsiloxane, bonded to a glass surface, and conductive agarose gel electrodes. Gold traces were used to make electrical connections to the conductive gel. The device had several novel features that aided performance of the sorting. These included a sieving structure that performed continuous displacement of particles into a single stream within the microfluidic channel (improving the performance of downstream DEP, and avoiding the need for additional focusing flow inlets), and DEP electrodes that were the full height of the microfluidic walls ("vertical electrodes"), allowing for improved formation and control of electric field gradients in the microfluidic device. The device was used to sort polymer particles and HeLa cells, demonstrating that this unique combination provides improved capability for continuous DEP sorting of particles in a microfluidic device.

  20. Transformation of Aluminosilicate Wet Gel to Solid State

    NASA Astrophysics Data System (ADS)

    Sinkó, Katalin; Pöppl, László

    2002-04-01

    Optically clear, homogeneous, monolithic aluminosilicate gels were prepared directly from solutions of inorganic aluminum salt, tetraethoxysilane, and alcohol. The dried aluminosilicate gels show new special properties, e.g. piezoelectricity and variable porosity (1-2000 m 2/g) due to the fractal-like gel structure. Ceramic products, which keep the chemical bonds and structure of the gels, were produced by heat treatment at 300-350°C. The processes that occurred during heat treatment were investigated by thermal analysis and mass spectrometry. The temperature limits of the gel state were determined by differential scanning calorimetry and small angle X-ray scattering. The collapse of the gel structure began around 350°C; however, the amorphous character remained until the temperature (ca. 970°C) of the phase transmission.

  1. Bending a beam by a generalized ideal elastomeric gel

    PubMed Central

    Cai, Shengqiang

    2015-01-01

    A hybrid beam with a gel layer bonded on the top of an elastic non-swellable substrate has been commonly adopted to make various sensors and actuators. Usually, different models need to be developed for the hybrid beam when different gels are used in the system. In this article, based on the generalized ideal elastomeric gel model, we formulate a unified relationship between the swelling of hydrogels and the bending curvature of the elastic beam, which is independent of specific swelling mechanisms of gels. We further illustrate that the equations derived in the article can be used to validate the ideal elastomeric gel model and measure the elasticity of polymer networks of the gels. PMID:25792965

  2. Analyzing cements and completion gels using dynamic modulus

    SciTech Connect

    Lacy, L.L.; Rickards, A.

    1996-12-31

    The measurement and control of the physical properties of completion fluids are important problems to the oil and gas industry. A new laboratory instrument, a dynamic modulus analyzer (DMA), has been developed that analyses the physical and mechanical properties of fluids and cement slurries under downhole conditions by using high resolution ultrasonics. A dynamic modulus analyzer can measure compressive strength, dynamic Young`s modulus, and the shrinkage or expansion of cements. The DMA can also be used to determine viscosity changes and changes in the density of fracturing and completion gels under static (10{sup -4} s{sup -1}) or zero shear conditions. Test data indicate the DMA is 20 to 100 times more sensitive than current laboratory instruments in evaluating changes in cements or gel properties. Cement shrinkage was measured simultaneously with compressive strength and dynamic modulus. The times required to achieve maximum gel strength and gel breaking were also determined for Fracturing gels and a temporary blocking gel.

  3. Trial participation disclosure and gel use behavior in the CAPRISA 004 tenofovir gel trial.

    PubMed

    Succop, Stacey M; MacQueen, Kathleen M; van Loggerenberg, Francois; Majola, Nelisile; Karim, Quarraisha Abdool; Karim, Salim S Abdool

    2014-01-01

    Disclosure, or open communication, by female microbicide trial participants of their trial participation and use of an investigational HIV prevention drug to a sexual partner may affect participants' trial product usage behavior and contribute to poor adherence. With mixed results from recent microbicide clinical trials being linked to differing participant adherence, insights into the communication dynamics between trial participants and their sexual partners are particularly important. We examined the quantitative association between (1) communication of trial participation to a partner and participant adherence to gel and (2) communication of trial participation to a partner and participant HIV status. An in-depth adherence and product acceptability assessment was administered to the women participating in the CAPRISA 004 trial. Additionally, we collected qualitative data related to communication of trial participation and gel use. Qualitatively, among 165 women who had reported that they had discussed trial participation with others, most (68%) stated that they communicated participation to their sexual partner. Most of the women who had communicated study participation with their partners had received a positive/neutral response from their partner. Some of these women stated that gel use was easy; only a small number said that gel use was difficult. Among women who did not communicate their study participation to their partners, difficulty with gel use was more common and some women stated that they feared communicating their participation. Quantitatively, there was no statistically significant difference in the proportions of women who had communicated study participation to a partner across different adherence levels or HIV status. A deeper knowledge of the dynamics surrounding trial participation communication to male partners will be critical to understanding the spectrum of trial product usage behavior, and ultimately to designing tailored strategies to

  4. Burns and injuries resulting from the use of gel candles.

    PubMed

    Pickus, E J; Lionelli, G T; Parmele, J B; Lawrence, W T; Korentager, R A

    2001-01-01

    Scented gel candles are common decorative household items composed of gelled mineral oil, fragrances, and dye. Like traditional wax candles, they have an open flame. Because of defective design, there have been several burns and injuries caused by these products. Here we report our experience with a scald burn from a gel candle and describe 34 additional injuries attributed to gel candles previously unreported in the medical literature.

  5. Burns and injuries resulting from the use of gel candles.

    PubMed

    Pickus, E J; Lionelli, G T; Parmele, J B; Lawrence, W T; Korentager, R A

    2001-01-01

    Scented gel candles are common decorative household items composed of gelled mineral oil, fragrances, and dye. Like traditional wax candles, they have an open flame. Because of defective design, there have been several burns and injuries caused by these products. Here we report our experience with a scald burn from a gel candle and describe 34 additional injuries attributed to gel candles previously unreported in the medical literature. PMID:11403248

  6. Alternative to polyacrylamide gels improves the electrophoretic mobility shift assay.

    PubMed

    Vanek, P G; Fabian, S J; Fisher, C L; Chirikjian, J G; Collier, G B

    1995-04-01

    In this paper we outline a simplified protocol for the electrophoretic mobility shift assay utilizing TreviGel 500, a nontoxic alternative to polyacrylamide. The TreviGel 500 matrix combines the strength and resolution of polyacrylamide with the simplicity and flexibility of agarose in the casting of gels. Therefore, this method provides a simple, rapid and nontoxic alternative to current protocols for the investigation of protein: DNA interactions.

  7. Big Data Analytics in Healthcare

    PubMed Central

    Belle, Ashwin; Thiagarajan, Raghuram; Soroushmehr, S. M. Reza; Navidi, Fatemeh; Beard, Daniel A.; Najarian, Kayvan

    2015-01-01

    The rapidly expanding field of big data analytics has started to play a pivotal role in the evolution of healthcare practices and research. It has provided tools to accumulate, manage, analyze, and assimilate large volumes of disparate, structured, and unstructured data produced by current healthcare systems. Big data analytics has been recently applied towards aiding the process of care delivery and disease exploration. However, the adoption rate and research development in this space is still hindered by some fundamental problems inherent within the big data paradigm. In this paper, we discuss some of these major challenges with a focus on three upcoming and promising areas of medical research: image, signal, and genomics based analytics. Recent research which targets utilization of large volumes of medical data while combining multimodal data from disparate sources is discussed. Potential areas of research within this field which have the ability to provide meaningful impact on healthcare delivery are also examined. PMID:26229957

  8. Authenticity and the analytic process.

    PubMed

    Boccara, Paolo; Gaddini, Andrea; Riefolo, Giuseppe

    2009-12-01

    In this paper we first make a differentiation between phenomena that can be defined as spontaneous and others that can be defined as authentic. We then attempt to present authenticity as a process rather than an outcome. Finally, we try to understand the location of authentic phenomena in the sensorial and pre-symbolic communicative register. We situate authentic phenomena in the register of sensorial and pre-symbolic communication. The authentic process becomes manifest, step by step in the analytic process (Borgogno, 1999), through the vivid iconic and sensorial elements that happen to cross the analytic field. Through two brief clinical vignettes, we seek to document the progression of the analytic process, in one case through the analyst's capacity for rêverie (Bion, 1962; Ogden, 1994, 1997; Ferro, 2002, 2007), and in the other through the sensorial elements with which analyst and patient are able to tune in to each other.

  9. Big Data Analytics in Healthcare.

    PubMed

    Belle, Ashwin; Thiagarajan, Raghuram; Soroushmehr, S M Reza; Navidi, Fatemeh; Beard, Daniel A; Najarian, Kayvan

    2015-01-01

    The rapidly expanding field of big data analytics has started to play a pivotal role in the evolution of healthcare practices and research. It has provided tools to accumulate, manage, analyze, and assimilate large volumes of disparate, structured, and unstructured data produced by current healthcare systems. Big data analytics has been recently applied towards aiding the process of care delivery and disease exploration. However, the adoption rate and research development in this space is still hindered by some fundamental problems inherent within the big data paradigm. In this paper, we discuss some of these major challenges with a focus on three upcoming and promising areas of medical research: image, signal, and genomics based analytics. Recent research which targets utilization of large volumes of medical data while combining multimodal data from disparate sources is discussed. Potential areas of research within this field which have the ability to provide meaningful impact on healthcare delivery are also examined.

  10. Analytical Chemistry of Nitric Oxide

    PubMed Central

    Hetrick, Evan M.

    2013-01-01

    Nitric oxide (NO) is the focus of intense research, owing primarily to its wide-ranging biological and physiological actions. A requirement for understanding its origin, activity, and regulation is the need for accurate and precise measurement techniques. Unfortunately, analytical assays for monitoring NO are challenged by NO’s unique chemical and physical properties, including its reactivity, rapid diffusion, and short half-life. Moreover, NO concentrations may span pM to µM in physiological milieu, requiring techniques with wide dynamic response ranges. Despite such challenges, many analytical techniques have emerged for the detection of NO. Herein, we review the most common spectroscopic and electrochemical methods, with special focus on the fundamentals behind each technique and approaches that have been coupled with modern analytical measurement tools or exploited to create novel NO sensors. PMID:20636069

  11. Analytical Applications of NMR: Summer Symposium on Analytical Chemistry.

    ERIC Educational Resources Information Center

    Borman, Stuart A.

    1982-01-01

    Highlights a symposium on analytical applications of nuclear magnetic resonance spectroscopy (NMR), discussing pulse Fourier transformation technique, two-dimensional NMR, solid state NMR, and multinuclear NMR. Includes description of ORACLE, an NMR data processing system at Syracuse University using real-time color graphics, and algorithms for…

  12. Polyacrylamide gel miniaturization improves protein visualization and autoradiographic detection

    SciTech Connect

    Mohamed, M.A.; Lerro, K.A.; Prestwich, G.D.

    1989-03-01

    Polyacrylamide gels shrink to one-quarter of their original area when soaked in a 50% (w/v) solution of polyethylene glycol. Gel miniaturization improves the contrast of protein bands, with four valuable consequences. (i) A 5- to 10-fold increase in sensitivity for Coomassie blue is observed. (ii) Gels are more durable; i.e., they resist tearing when wet and they do not crack during drying under vacuum. (iii) Shrunken gels give sharper photographic images and provide better interlane protein band comparisons. (iv) Condensed protein bands lead to an increased sensitivity for detecting low-abundance, radioactively-labeled proteins by fluorography.

  13. Mechanical properties characterization and modeling of active polymer gels

    NASA Astrophysics Data System (ADS)

    Marra, Steven Paul

    Active polymer gels expand and contract in response to certain environmental stimuli, such as the application of an electric field or a change in the pH level of the surroundings. This ability to achieve large, reversible deformations with no external mechanical loading has generated much interest in the use of these gels as actuators and "artificial muscles." While much work has been done to study the behavior and properties of these gels, little information is available regarding the full constitutive description of the mechanical and actuation properties. This work focuses on developing a means of characterizing the mechanical properties of active polymer gels and describing how these properties evolve as the gel actuates. Poly(vinyl alcohol)-poly(acrylic acid) (PVA-PAA) gel was chosen as the model material for this work because it is relatively simple and safe to both fabricate and actuate. PVA-PAA gels are fabricated on-site using a solvent-casting technique. These gels expand when moved from acidic to basic solutions, and contract when moved from basic to acidic solutions. Citric acid and sodium bicarbonate were used as the testing solutions for this work. The mechanical properties of the gel were characterized by conducting uniaxial and biaxial tests on thin PVA-PAA gel films. A biaxial testing system has been developed which can measure stresses and deformations of these films in a variety of liquid environments. The experimental results on PVA-PAA gels show these materials to be relatively compliant, and slightly viscoelastic and compressible. These gels are also capable of large recoverable deformations in both acidic and basic environments. A thermodynamically consistent finite-elastic constitutive model was developed to describe the mechanical and actuation behaviors of active polymer gels. The mechanical properties of the gel are characterized by a free-energy function, and the model utilizes an evolving internal variable to describe the actuation

  14. Dual-frequency liquid crystal gels with submillisecond response time

    NASA Astrophysics Data System (ADS)

    Fan, Yun-Hsing; Ren, Hongwen; Liang, Xiao; Lin, Yi-Hsin; Wu, Shin-Tson

    2004-09-01

    Two types of gels using dual-frequency liquid crystal are demonstrated. The one using a homogeneous cell shows anisotropic scattering behavior while the other prepared using a cell without polyimide alignment layers exhibits isotropic scattering properties. Both liquid crystal gels are highly transparent in the voltage-off state. Light scattering occurs when a high frequency voltage is applied. The isotropic gel exhibits a high contrast ratio and submillisecond response time. Potential applications of these gels for switchable polarizer, telecom optical switch, and reflective displays are emphasized.

  15. Electrophoretic separation of DNA in gels and nanostructures.

    PubMed

    Salieb-Beugelaar, G B; Dorfman, K D; van den Berg, A; Eijkel, J C T

    2009-09-01

    The development of nanostructure devices has opened the door to new DNA separation techniques and fundamental investigations. With advanced nanotechnologies, artificial gels (e.g. nanopillar arrays, nanofilters) can be manufactured with controlled and ordered geometries. This contrast with gels, where the pores are disordered and the range of available pore sizes is limited by the level of cross-linking and the mechanical properties of the gel. In this review, we recall the theories developed for free-solution and gel electrophoresis (extended Ogston model, biased reptation and entropic trapping) and from this perspective, suggestions for future concepts for fast DNA separation using nanostructures will be given.

  16. Preparation and release of ibuprofen from polyacrylamide gels.

    PubMed

    Hussain, M D; Rogers, J A; Mehvar, R; Vudathala, G K

    1999-03-01

    The conditions of preparation of polyacrylamide (polyAC) gels, the incorporation of ibuprofen (IB), and the kinetics of IB release under various conditions have been evaluated. Transparent, opaque, or elastic gels were prepared depending on the concentration of acrylamide (AC) and the cross-linking agent, N,N'-methylenebisacrylamide (BIS). Release studies in media below pH 5.0 resulted in opaque gels. The kinetics of IB release was a function of the AC, BIS, and the pH of the medium, but the optimum composition, in terms of gel integrity and release characteristics, was 7% AC cross-linked with BIS at a 50:1 ratio. Modulation of the release rate was possible with the incorporation of 10% of certain polymers. The amount of IB that could be incorporated per gram of transparent gel was a function of the amount of polymer initiator N,N,N',N'-tetramethylene diamine (TEMED) used per gram of gel. More than 200 mg of IB could be incorporated per gram of transparent gel by using 100 microliters of TEMED. The release of IB obeyed matrix/swelling-controlled kinetics and 70-80% of the IB was released from gels containing 10 to 40 mg IB per gram of gel in 5 hr at pH 7.4 and 37 degrees C.

  17. Examination of the haemolytic activity of sol-gel materials

    NASA Astrophysics Data System (ADS)

    Ulatowska-Jarza, Agnieszka; Podbielska, Halina; Holowacz, Iwona; Lechna-Marczynska, Monika I.; Szymonowicz, Maria; Staniszewska-Kus, Jolanta; Paluch, Danuta

    2001-10-01

    Recently, the sol-gel based biomaterials are extendedly investigated with emphasis on theirs various applications, including medical ones. In this respect it is important to investigate the influence of sol-gel matrices on biological systems. The results of laboratory and biological testing of aqueous extracts of sol-gels are presented in this work. It was proved that it is possible to produce the sol-gel derived materials that will be non-haemolytic. This can be achieved by heating the materials in elevated temperatures. This effect can also be reached by suitably long aging (minimum 6 months).

  18. Aging and nonlinear rheology of thermoreversible colloidal gels

    NASA Astrophysics Data System (ADS)

    Wagner, Norman; Gordon, Melissa; Kloxin, Christopher

    Colloidal dispersions are found in a wide variety of consumer products such as paint, food and pharmaceuticals. We investigate gel formation and aging in a thermoreverible gel consisting of octadecyl-coated silica nanoparticles suspended in n-tetradecane. In this system, the octadecyl brush can undergo a phase change allowing the attractions between particles to be tuned by temperature (1,2). By probing the system with steady shear and large amplitude oscillatory shear, we have studied the effect of thermal history and shear history on gel formation and gel mechanical properties during aging. Gels were formed by approaching a common temperature from above and below to determine a reference state from which creep tests were conducted. Creep ringing was observed as expected for the viscoelastic gel. The rheological aging is interpreted in terms of the gel microstructure formed with differing thermal and shear histories to determine how processing affects structure. Recently proposed scaling laws for the rheology and structure under flow are explored within the context of gel aging (3). Through rheological and microstructural measurements, we will further the understanding of gel formation and aging in this model system which may be applied to processing conditions in an industrial setting.

  19. Multiwalled carbon nanotube reinforced biomimetic bundled gel fibres.

    PubMed

    Kim, Young-Jin; Yamamoto, Seiichiro; Takahashi, Haruko; Sasaki, Naruo; Matsunaga, Yukiko T

    2016-08-19

    This work describes the fabrication and characterization of hydroxypropyl cellulose (HPC)-based biomimetic bundled gel fibres. The bundled gel fibres were reinforced with multiwalled carbon nanotubes (MWCNTs). A phase-separated aqueous solution with MWCNT and HPC was transformed into a bundled fibrous structure after being injected into a co-flow microfluidic device and applying the sheath flow. The resulting MWCNT-bundled gel fibres consist of multiple parallel microfibres. The mechanical and electrical properties of MWCNT-bundled gel fibres were improved and their potential for tissue engineering applications as a cell scaffold was demonstrated. PMID:27200527

  20. PCR amplification on microarrays of gel immobilized oligonucleotides

    SciTech Connect

    Strizhkov, Boris; Tillib, Sergei; Mikhailovich, Vladimir; Mirzabekov, Andrei

    2003-11-04

    The invention relates two general methods for performing PCR amplification, combined with the detection and analysis of the PCR products on a microchip. In the first method, the amplification occurs both outside and within a plurality of gel pads on a microchip, with at least one oligonucleotide primer immobilized in a gel pad. In the second method, PCR amplification also takes place within gel pads on a microchip, but the pads are surrounded by a hydrophobic liquid such as that which separates the individual gel pads into environments which resemble micro-miniaturized test tubes.