Brain-Congruent Instruction: Does the Computer Make It Feasible?
ERIC Educational Resources Information Center
Stewart, William J.
1984-01-01
Based on the premise that computers could translate brain research findings into classroom practice, this article presents discoveries concerning human brain development, organization, and operation, and describes brain activity monitoring devices, brain function and structure variables, and a procedure for monitoring and analyzing brain activity…
Mapping social behavior-induced brain activation at cellular resolution in the mouse
Kim, Yongsoo; Venkataraju, Kannan Umadevi; Pradhan, Kith; Mende, Carolin; Taranda, Julian; Turaga, Srinivas C.; Arganda-Carreras, Ignacio; Ng, Lydia; Hawrylycz, Michael J.; Rockland, Kathleen; Seung, H. Sebastian; Osten, Pavel
2014-01-01
Understanding how brain activation mediates behaviors is a central goal of systems neuroscience. Here we apply an automated method for mapping brain activation in the mouse in order to probe how sex-specific social behaviors are represented in the male brain. Our method uses the immediate early gene c-fos, a marker of neuronal activation, visualized by serial two-photon tomography: the c-fos-GFP-positive neurons are computationally detected, their distribution is registered to a reference brain and a brain atlas, and their numbers are analyzed by statistical tests. Our results reveal distinct and shared female and male interaction-evoked patterns of male brain activation representing sex discrimination and social recognition. We also identify brain regions whose degree of activity correlates to specific features of social behaviors and estimate the total numbers and the densities of activated neurons per brain areas. Our study opens the door to automated screening of behavior-evoked brain activation in the mouse. PMID:25558063
Invisible Brain: Knowledge in Research Works and Neuron Activity.
Segev, Aviv; Curtis, Dorothy; Jung, Sukhwan; Chae, Suhyun
2016-01-01
If the market has an invisible hand, does knowledge creation and representation have an "invisible brain"? While knowledge is viewed as a product of neuron activity in the brain, can we identify knowledge that is outside the brain but reflects the activity of neurons in the brain? This work suggests that the patterns of neuron activity in the brain can be seen in the representation of knowledge-related activity. Here we show that the neuron activity mechanism seems to represent much of the knowledge learned in the past decades based on published articles, in what can be viewed as an "invisible brain" or collective hidden neural networks. Similar results appear when analyzing knowledge activity in patents. Our work also tries to characterize knowledge increase as neuron network activity growth. The results propose that knowledge-related activity can be seen outside of the neuron activity mechanism. Consequently, knowledge might exist as an independent mechanism.
Spatial working memory in heavy cannabis users: a functional magnetic resonance imaging study.
Kanayama, Gen; Rogowska, Jadwiga; Pope, Harrison G; Gruber, Staci A; Yurgelun-Todd, Deborah A
2004-11-01
Many neuropsychological studies have documented deficits in working memory among recent heavy cannabis users. However, little is known about the effects of cannabis on brain activity. We assessed brain function among recent heavy cannabis users while they performed a working memory task. Functional magnetic resonance imaging was used to examine brain activity in 12 long-term heavy cannabis users, 6-36 h after last use, and in 10 control subjects while they performed a spatial working memory task. Regional brain activation was analyzed and compared using statistical parametric mapping techniques. Compared with controls, cannabis users exhibited increased activation of brain regions typically used for spatial working memory tasks (such as prefrontal cortex and anterior cingulate). Users also recruited additional regions not typically used for spatial working memory (such as regions in the basal ganglia). These findings remained essentially unchanged when re-analyzed using subjects' ages as a covariate. Brain activation showed little or no significant correlation with subjects' years of education, verbal IQ, lifetime episodes of cannabis use, or urinary cannabinoid levels at the time of scanning. Recent cannabis users displayed greater and more widespread brain activation than normal subjects when attempting to perform a spatial working memory task. This observation suggests that recent cannabis users may experience subtle neurophysiological deficits, and that they compensate for these deficits by "working harder"-calling upon additional brain regions to meet the demands of the task.
Sánchez-Lara, Karla; Arrieta, Oscar; Pasaye, Eric; Laviano, Alessandro; Mercadillo, Roberto E; Sosa-Sánchez, Ricardo; Méndez-Sánchez, Nahum
2013-01-01
The aim of this study was to examine the brain activity manifested while non-small cell lung cancer (NSCLC) patients with and without anorexia were exposed to visual food stimuli. We included 26 treatment-naïve patients who had been recently diagnosed with advanced NSCLC. Patients with brain metastasis were excluded. The patients were classified into anorectic and non-anorectic groups. Data from functional magnetic resonance imaging based on blood oxygen level-dependent (BOLD) signals were analyzed while the patients perceived pleasant and unpleasant food pictures. The brain records were analyzed with SPM 5 using a voxelwise multiple regression analysis. The non-anorexic patients demonstrated BOLD activation, comprising frontal brain regions in the premotor and the prefrontal cortices, only while watching unpleasant stimuli. The anorectic patients demonstrated no activation while watching the pleasant and unpleasant food pictures. Anorectic patients with lung cancer present a lack of activation in the brain regions associated with food stimuli processing. These results are consistent with experiences in the clinical environment: Patients describe themselves as not experiencing sensations of hunger or having an appetite. Copyright © 2013 Elsevier Inc. All rights reserved.
Dores, A R; Almeida, I; Barbosa, F; Castelo-Branco, M; Monteiro, L; Reis, M; de Sousa, L; Caldas, A Castro
2013-01-01
Examining changes in brain activation linked with emotion-inducing stimuli is essential to the study of emotions. Due to the ecological potential of techniques such as virtual reality (VR), inspection of whether brain activation in response to emotional stimuli can be modulated by the three-dimensional (3D) properties of the images is important. The current study sought to test whether the activation of brain areas involved in the emotional processing of scenarios of different valences can be modulated by 3D. Therefore, the focus was made on the interaction effect between emotion-inducing stimuli of different emotional valences (pleasant, unpleasant and neutral valences) and visualization types (2D, 3D). However, main effects were also analyzed. The effect of emotional valence and visualization types and their interaction were analyzed through a 3 × 2 repeated measures ANOVA. Post-hoc t-tests were performed under a ROI-analysis approach. The results show increased brain activation for the 3D affective-inducing stimuli in comparison with the same stimuli in 2D scenarios, mostly in cortical and subcortical regions that are related to emotional processing, in addition to visual processing regions. This study has the potential of clarify brain mechanisms involved in the processing of emotional stimuli (scenarios' valence) and their interaction with three-dimensionality.
Invisible Brain: Knowledge in Research Works and Neuron Activity
Segev, Aviv; Curtis, Dorothy; Jung, Sukhwan; Chae, Suhyun
2016-01-01
If the market has an invisible hand, does knowledge creation and representation have an “invisible brain”? While knowledge is viewed as a product of neuron activity in the brain, can we identify knowledge that is outside the brain but reflects the activity of neurons in the brain? This work suggests that the patterns of neuron activity in the brain can be seen in the representation of knowledge-related activity. Here we show that the neuron activity mechanism seems to represent much of the knowledge learned in the past decades based on published articles, in what can be viewed as an “invisible brain” or collective hidden neural networks. Similar results appear when analyzing knowledge activity in patents. Our work also tries to characterize knowledge increase as neuron network activity growth. The results propose that knowledge-related activity can be seen outside of the neuron activity mechanism. Consequently, knowledge might exist as an independent mechanism. PMID:27439199
Review of Research: Neuroscience and the Impact of Brain Plasticity on Braille Reading
ERIC Educational Resources Information Center
Hannan, Cheryl Kamei
2006-01-01
In this systematic review of research, the author analyzes studies of neural cortical activation, brain plasticity, and braille reading. The conclusions regarding the brain's plasticity and ability to reorganize are encouraging for individuals with degenerative eye conditions or late-onset blindness because they indicate that the brain can make…
Asphyxia-activated corticocardiac signaling accelerates onset of cardiac arrest.
Li, Duan; Mabrouk, Omar S; Liu, Tiecheng; Tian, Fangyun; Xu, Gang; Rengifo, Santiago; Choi, Sarah J; Mathur, Abhay; Crooks, Charles P; Kennedy, Robert T; Wang, Michael M; Ghanbari, Hamid; Borjigin, Jimo
2015-04-21
The mechanism by which the healthy heart and brain die rapidly in the absence of oxygen is not well understood. We performed continuous electrocardiography and electroencephalography in rats undergoing experimental asphyxia and analyzed cortical release of core neurotransmitters, changes in brain and heart electrical activity, and brain-heart connectivity. Asphyxia stimulates a robust and sustained increase of functional and effective cortical connectivity, an immediate increase in cortical release of a large set of neurotransmitters, and a delayed activation of corticocardiac functional and effective connectivity that persists until the onset of ventricular fibrillation. Blocking the brain's autonomic outflow significantly delayed terminal ventricular fibrillation and lengthened the duration of detectable cortical activities despite the continued absence of oxygen. These results demonstrate that asphyxia activates a brainstorm, which accelerates premature death of the heart and the brain.
Abdelnour, A. Farras; Huppert, Theodore
2009-01-01
Near-infrared spectroscopy is a non-invasive neuroimaging method which uses light to measure changes in cerebral blood oxygenation associated with brain activity. In this work, we demonstrate the ability to record and analyze images of brain activity in real-time using a 16-channel continuous wave optical NIRS system. We propose a novel real-time analysis framework using an adaptive Kalman filter and a state–space model based on a canonical general linear model of brain activity. We show that our adaptive model has the ability to estimate single-trial brain activity events as we apply this method to track and classify experimental data acquired during an alternating bilateral self-paced finger tapping task. PMID:19457389
Ling, Changying; Verbny, Yakov I.; Banks, Matthew I.; Sandor, Matyas; Fabry, Zsuzsanna
2012-01-01
The activation of Ag-specific T cells locally in the CNS could potentially contribute to the development of immune-mediated brain diseases. We addressed whether Ag-specific T cells could be stimulated in the CNS in the absence of peripheral lymphoid tissues by analyzing Ag-specific T cell responses in organotypic brain slice cultures. Organotypic brain slice cultures were established 1 h after intracerebral OVA Ag microinjection. We showed that when OVA-specific CD8+ T cells were added to Ag-containing brain slices, these cells became activated and migrated into the brain to the sites of their specific Ags. This activation of OVA-specific T cells was abrogated by the deletion of CD11c+ cells from the brain slices of the donor mice. These data suggest that brain-resident CD11c+ cells stimulate Ag-specific naive CD8+ T cells locally in the CNS and may contribute to immune responses in the brain. PMID:18523307
Artifact suppression and analysis of brain activities with electroencephalography signals.
Rashed-Al-Mahfuz, Md; Islam, Md Rabiul; Hirose, Keikichi; Molla, Md Khademul Islam
2013-06-05
Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle). Electro-oculogram is a dominant artifact which has a significant negative influence on further analysis of real electroencephalography data. This paper presented a data adaptive technique for artifact suppression and brain wave extraction from electroencephalography signals to detect regional brain activities. Empirical mode decomposition based adaptive thresholding approach was employed here to suppress the electro-oculogram artifact. Fractional Gaussian noise was used to determine the threshold level derived from the analysis data without any training. The purified electroencephalography signal was composed of the brain waves also called rhythmic components which represent the brain activities. The rhythmic components were extracted from each electroencephalography channel using adaptive wiener filter with the original scale. The regional brain activities were mapped on the basis of the spatial distribution of rhythmic components, and the results showed that different regions of the brain are activated in response to different stimuli. This research analyzed the activities of a single rhythmic component, alpha with respect to different motor imaginations. The experimental results showed that the proposed method is very efficient in artifact suppression and identifying individual motor imagery based on the activities of alpha component.
Weak Higher-Order Interactions in Macroscopic Functional Networks of the Resting Brain.
Huang, Xuhui; Xu, Kaibin; Chu, Congying; Jiang, Tianzi; Yu, Shan
2017-10-25
Interactions among different brain regions are usually examined through functional connectivity (FC) analysis, which is exclusively based on measuring pairwise correlations in activities. However, interactions beyond the pairwise level, that is, higher-order interactions (HOIs), are vital in understanding the behavior of many complex systems. So far, whether HOIs exist among brain regions and how they can affect the brain's activities remains largely elusive. To address these issues, here, we analyzed blood oxygenation level-dependent (BOLD) signals recorded from six typical macroscopic functional networks of the brain in 100 human subjects (46 males and 54 females) during the resting state. Through examining the binarized BOLD signals, we found that HOIs within and across individual networks were both very weak regardless of the network size, topology, degree of spatial proximity, spatial scales, and whether the global signal was regressed. To investigate the potential mechanisms underlying the weak HOIs, we analyzed the dynamics of a network model and also found that HOIs were generally weak within a wide range of key parameters provided that the overall dynamic feature of the model was similar to the empirical data and it was operating close to a linear fluctuation regime. Our results suggest that weak HOI may be a general property of brain's macroscopic functional networks, which implies the dominance of pairwise interactions in shaping brain activities at such a scale and warrants the validity of widely used pairwise-based FC approaches. SIGNIFICANCE STATEMENT To explain how activities of different brain areas are coordinated through interactions is essential to revealing the mechanisms underlying various brain functions. Traditionally, such an interaction structure is commonly studied using pairwise-based functional network analyses. It is unclear whether the interactions beyond the pairwise level (higher-order interactions or HOIs) play any role in this process. Here, we show that HOIs are generally weak in macroscopic brain networks. We also suggest a possible dynamical mechanism that may underlie this phenomenon. These results provide plausible explanation for the effectiveness of widely used pairwise-based approaches in analyzing brain networks. More importantly, it reveals a previously unknown, simple organization of the brain's macroscopic functional systems. Copyright © 2017 the authors 0270-6474/17/3710481-17$15.00/0.
Multifractal analysis of real and imaginary movements: EEG study
NASA Astrophysics Data System (ADS)
Pavlov, Alexey N.; Maksimenko, Vladimir A.; Runnova, Anastasiya E.; Khramova, Marina V.; Pisarchik, Alexander N.
2018-04-01
We study abilities of the wavelet-based multifractal analysis in recognition specific dynamics of electrical brain activity associated with real and imaginary movements. Based on the singularity spectra we analyze electroencephalograms (EEGs) acquired in untrained humans (operators) during imagination of hands movements, and show a possibility to distinguish between the related EEG patterns and the recordings performed during real movements or the background electrical brain activity. We discuss how such recognition depends on the selected brain region.
NASA Astrophysics Data System (ADS)
Shimomura, S.; Ijiri, K.
The immediate-early genes serve as useful neurobiological tools for mapping brain activity induced by a sensory stimulation. In this study, we have examined brain activity related to gravity perception of medaka (Oryzias latipes) by use of c-fos. The gene, which is homologous to the c-fos genes of other vertebrates, was identified in medaka. Functionally important domains are highly conserved among all the vertebrate species analyzed. Intraperitoneal administration of kainic acid transiently induced the c-fos mRNAs in medaka brain. The results indicate that the expression of c-fos can be utilized as a suitable anatomical marker for the increased neural activities in the central nervous system of medaka. Fish were continuously exposed to 3G hypergravity by centrifugation. Investigation of c-fos mRNA expression showed that c-fos mRNA significantly increased 30 minutes after a start of 3G exposure. The distribution of its transcripts within brains was analyzed by an in situ hybridization method. The 3G-treated medakas displayed c-fos positive cells in their brainstem regions, which are related to vestibular function, such as torus semicircularis, posterior octavu nucleus, nucleus tangentialis and inferior olive. Our results established the method to trace the activated area in the fish brain following gravity stimulation. The method will be a useful tool for understanding gravity perception in the brain.
How the Brain's Performance during Mathematics and Reading Fluency Tests Compare
ERIC Educational Resources Information Center
Ortiz, Enrique
2011-01-01
The purpose of this study was to analyze how participants' levels of hemoglobin as they performed mathematics fluency and reading fluency (reading comprehension) compare. We used Optical Topography (OT, helmet type brain-scanning system, also known as Functional Near-Infrared Spectroscopy or fNIRS) to measure levels of brain activity. A central…
Regional brain activity that determines successful and unsuccessful working memory formation.
Teramoto, Shohei; Inaoka, Tsubasa; Ono, Yumie
2016-08-01
Using EEG source reconstruction with Multiple Sparse Priors (MSP), we investigated the regional brain activity that determines successful memory encoding in two participant groups of high and low accuracy rates. Eighteen healthy young adults performed a sequential fashion of visual Sternberg memory task. The 32-channel EEG was continuously measured during participants performed two 70 trials of memory task. The regional brain activity corresponding to the oscillatory EEG activity in the alpha band (8-13 Hz) during encoding period was analyzed by MSP implemented in SPM8. We divided the data of all participants into 2 groups (low- and highperformance group) and analyzed differences in regional brain activity between trials in which participants answered correctly and incorrectly within each of the group. Participants in low-performance group showed significant activity increase in the visual cortices in their successful trials compared to unsuccessful ones. On the other hand, those in high-performance group showed a significant activity increase in widely distributed cortical regions in the frontal, temporal, and parietal areas including those suggested as Baddeley's working memory model. Further comparison of activated cortical volumes and mean current source intensities within the cortical regions of Baddeley's model during memory encoding demonstrated that participants in high-performance group showed enhanced activity in the right premotor cortex, which plays an important role in maintaining visuospatial attention, compared to those in low performance group. Our results suggest that better ability in memory encoding is associated with distributed and stronger regional brain activities including the premotor cortex, possibly indicating efficient allocation of cognitive load and maintenance of attention.
Listening to humans walking together activates the social brain circuitry.
Saarela, Miiamaaria V; Hari, Riitta
2008-01-01
Human footsteps carry a vast amount of social information, which is often unconsciously noted. Using functional magnetic resonance imaging, we analyzed brain networks activated by footstep sounds of one or two persons walking. Listening to two persons walking together activated brain areas previously associated with affective states and social interaction, such as the subcallosal gyrus bilaterally, the right temporal pole, and the right amygdala. These areas seem to be involved in the analysis of persons' identity and complex social stimuli on the basis of auditory cues. Single footsteps activated only the biological motion area in the posterior STS region. Thus, hearing two persons walking together involved a more widespread brain network than did hearing footsteps from a single person.
Astolfi, Laura; Vecchiato, Giovanni; De Vico Fallani, Fabrizio; Salinari, Serenella; Cincotti, Febo; Aloise, Fabio; Mattia, Donatella; Marciani, Maria Grazia; Bianchi, Luigi; Soranzo, Ramon; Babiloni, Fabio
2009-01-01
We estimate cortical activity in normal subjects during the observation of TV commercials inserted within a movie by using high-resolution EEG techniques. The brain activity was evaluated in both time and frequency domains by solving the associate inverse problem of EEG with the use of realistic head models. In particular, we recover statistically significant information about cortical areas engaged by particular scenes inserted within the TV commercial proposed with respect to the brain activity estimated while watching a documentary. Results obtained in the population investigated suggest that the statistically significant brain activity during the observation of the TV commercial was mainly concentrated in frontoparietal cortical areas, roughly coincident with the Brodmann areas 8, 9, and 7, in the analyzed population. PMID:19584910
Pesaran, Bijan; Vinck, Martin; Einevoll, Gaute T; Sirota, Anton; Fries, Pascal; Siegel, Markus; Truccolo, Wilson; Schroeder, Charles E; Srinivasan, Ramesh
2018-06-25
New technologies to record electrical activity from the brain on a massive scale offer tremendous opportunities for discovery. Electrical measurements of large-scale brain dynamics, termed field potentials, are especially important to understanding and treating the human brain. Here, our goal is to provide best practices on how field potential recordings (electroencephalograms, magnetoencephalograms, electrocorticograms and local field potentials) can be analyzed to identify large-scale brain dynamics, and to highlight critical issues and limitations of interpretation in current work. We focus our discussion of analyses around the broad themes of activation, correlation, communication and coding. We provide recommendations for interpreting the data using forward and inverse models. The forward model describes how field potentials are generated by the activity of populations of neurons. The inverse model describes how to infer the activity of populations of neurons from field potential recordings. A recurring theme is the challenge of understanding how field potentials reflect neuronal population activity given the complexity of the underlying brain systems.
Silva, Aniélen D; Bottari, Nathieli B; do Carmo, Guilherme M; Baldissera, Matheus D; Souza, Carine F; Machado, Vanessa S; Morsch, Vera M; Schetinger, Maria Rosa C; Mendes, Ricardo E; Monteiro, Silvia G; Da Silva, Aleksandro S
2018-01-01
Chagas disease is an acute or chronic illness that causes severe inflammatory response, and consequently, it may activate the inflammatory cholinergic pathway, which is regulated by cholinesterases, including the acetylcholinesterase. This enzyme is responsible for the regulation of acetylcholine levels, an anti-inflammatory molecule linked to the inflammatory response during parasitic diseases. Thus, the aim of this study was to investigate whether Trypanosoma cruzi infection can alter the activity of acetylcholinesterase and acetylcholine levels in mice, and whether these alterations are linked to the inflammatory cholinergic signaling pathway. Twenty-four mice were divided into two groups: uninfected (control group, n = 12) and infected by T. cruzi, Y strain (n = 12). The animals developed acute disease with a peak of parasitemia on day 7 post-infection (PI). Blood, lymphocytes, and brain were analyzed on days 6 and 12 post-infection. In the brain, acetylcholine and nitric oxide levels, myeloperoxidase activity, and histopathology were analyzed. In total blood and brain, acetylcholinesterase activity decreased at both times. On the other hand, acetylcholinesterase activity in lymphocytes increased on day 6 PI compared with the control group. Infection by T. cruzi increased acetylcholine and nitric oxide levels and histopathological damage in the brain of mice associated to increased myeloperoxidase activity. Therefore, an intense inflammatory response in mice with acute Chagas disease in the central nervous system caused an anti-inflammatory response by the activation of the cholinergic inflammatory pathway.
Chaos in the brain: imaging via chaoticity of EEG/MEG signals
NASA Astrophysics Data System (ADS)
Kowalik, Zbigniew J.; Elbert, Thomas; Rockstroh, Brigitte; Hoke, Manfried
1995-03-01
Brain electro- (EEG) or magnetoencephalogram (MEG) can be analyzed by using methods of the nonlinear system theory. We show that even for very short and nonstationary time series it is possible to functionally differentiate various brain activities. Usually the analysis assumes that the analyzed signals are both long and stationary, so that the classic spectral methods can be used. Even more convincing results can be obtained under these circumstances when the dimensional analysis or estimation of the Kolmogorov entropy or the Lyapunov exponent are performed. When measuring the spontaneous activity of a human brain the assumption of stationarity is questionable and `static' methods (correlation dimension, entropy, etc.) are then not adequate. In this case `dynamic' methods like pointwise-D2 dimension or chaoticity measures should be applied. Predictability measures in the form of local Lyapunov exponents are capable of revealing directly the chaoticity of a given process, and can practically be applied for functional differentiation of brain activity. We exemplify these in cases of apallic syndrome, tinnitus and schizophrenia. We show that: the average chaoticity in apallic syndrome differentiates brain states both in space and time, chaoticity changes temporally in case of schizophrenia (critical jumps of chaoticity), chaoticity changes locally in space, i.e., in the cortex plane in case of tinnitus.
Simulated driving and brain imaging: combining behavior, brain activity, and virtual reality.
Carvalho, Kara N; Pearlson, Godfrey D; Astur, Robert S; Calhoun, Vince D
2006-01-01
Virtual reality in the form of simulated driving is a useful tool for studying the brain. Various clinical questions can be addressed, including both the role of alcohol as a modulator of brain function and regional brain activation related to elements of driving. We reviewed a study of the neural correlates of alcohol intoxication through the use of a simulated-driving paradigm and wished to demonstrate the utility of recording continuous-driving behavior through a new study using a programmable driving simulator developed at our center. Functional magnetic resonance imaging data was collected from subjects while operating a driving simulator. Independent component analysis (ICA) was used to analyze the data. Specific brain regions modulated by alcohol, and relationships between behavior, brain function, and alcohol blood levels were examined with aggregate behavioral measures. Fifteen driving epochs taken from two subjects while also recording continuously recorded driving variables were analyzed with ICA. Preliminary findings reveal that four independent components correlate with various aspects of behavior. An increase in braking while driving was found to increase activation in motor areas, while cerebellar areas showed signal increases during steering maintenance, yet signal decreases during steering changes. Additional components and significant findings are further outlined. In summary, continuous behavioral variables conjoined with ICA may offer new insight into the neural correlates of complex human behavior.
Analyzing and Assessing Brain Structure with Graph Connectivity Measures
2014-05-09
structural brain networks, i.e. determining which regions of the brain are physically connected. Meanwhile, functional MRI ( fMRI ) yields an image of...produced by fMRI is a map of which parts are of the brain are active and which are not at a given time. In creating functional networks, regions of...the brain which often activitate together, i.e., often show up on fMRI as deoxygenated regions together, are considered connected. DTI allows the
Hagenbeek, R E; Rombouts, S A R B; Veltman, D J; Van Strien, J W; Witter, M P; Scheltens, P; Barkhof, F
2007-10-01
Changes in brain activation as a function of continuous multiparametric word recognition have not been studied before by using functional MR imaging (fMRI), to our knowledge. Our aim was to identify linear changes in brain activation and, what is more interesting, nonlinear changes in brain activation as a function of extended word repetition. Fifteen healthy young right-handed individuals participated in this study. An event-related extended continuous word-recognition task with 30 target words was used to study the parametric effect of word recognition on brain activation. Word-recognition-related brain activation was studied as a function of 9 word repetitions. fMRI data were analyzed with a general linear model with regressors for linearly changing signal intensity and nonlinearly changing signal intensity, according to group average reaction time (RT) and individual RTs. A network generally associated with episodic memory recognition showed either constant or linearly decreasing brain activation as a function of word repetition. Furthermore, both anterior and posterior cingulate cortices and the left middle frontal gyrus followed the nonlinear curve of the group RT, whereas the anterior cingulate cortex was also associated with individual RT. Linear alteration in brain activation as a function of word repetition explained most changes in blood oxygen level-dependent signal intensity. Using a hierarchically orthogonalized model, we found evidence for nonlinear activation associated with both group and individual RTs.
Complex network analysis of brain functional connectivity under a multi-step cognitive task
NASA Astrophysics Data System (ADS)
Cai, Shi-Min; Chen, Wei; Liu, Dong-Bai; Tang, Ming; Chen, Xun
2017-01-01
Functional brain network has been widely studied to understand the relationship between brain organization and behavior. In this paper, we aim to explore the functional connectivity of brain network under a multi-step cognitive task involving consecutive behaviors, and further understand the effect of behaviors on the brain organization. The functional brain networks are constructed based on a high spatial and temporal resolution fMRI dataset and analyzed via complex network based approach. We find that at voxel level the functional brain network shows robust small-worldness and scale-free characteristics, while its assortativity and rich-club organization are slightly restricted to the order of behaviors performed. More interestingly, the functional connectivity of brain network in activated ROIs strongly correlates with behaviors and is obviously restricted to the order of behaviors performed. These empirical results suggest that the brain organization has the generic properties of small-worldness and scale-free characteristics, and its diverse functional connectivity emerging from activated ROIs is strongly driven by these behavioral activities via the plasticity of brain.
Analysis of Time-Dependent Brain Network on Active and MI Tasks for Chronic Stroke Patients
Chang, Won Hyuk; Kim, Yun-Hee; Lee, Seong-Whan; Kwon, Gyu Hyun
2015-01-01
Several researchers have analyzed brain activities by investigating brain networks. However, there is a lack of the research on the temporal characteristics of the brain network during a stroke by EEG and the comparative studies between motor execution and imagery, which became known to have similar motor functions and pathways. In this study, we proposed the possibility of temporal characteristics on the brain networks of a stroke. We analyzed the temporal properties of the brain networks for nine chronic stroke patients by the active and motor imagery tasks by EEG. High beta band has a specific role in the brain network during motor tasks. In the high beta band, for the active task, there were significant characteristics of centrality and small-worldness on bilateral primary motor cortices at the initial motor execution. The degree centrality significantly increased on the contralateral primary motor cortex, and local efficiency increased on the ipsilateral primary motor cortex. These results indicate that the ipsilateral primary motor cortex constructed a powerful subnetwork by influencing the linked channels as compensatory effect, although the contralateral primary motor cortex organized an inefficient network by using the connected channels due to lesions. For the MI task, degree centrality and local efficiency significantly decreased on the somatosensory area at the initial motor imagery. Then, there were significant correlations between the properties of brain networks and motor function on the contralateral primary motor cortex and somatosensory area for each motor execution/imagery task. Our results represented that the active and MI tasks have different mechanisms of motor acts. Based on these results, we indicated the possibility of customized rehabilitation according to different motor tasks. We expect these results to help in the construction of the customized rehabilitation system depending on motor tasks by understanding temporal functional characteristics on brain network for a stroke. PMID:26656269
Yamaguchi, Shinji; Iikubo, Eiji; Hirose, Naoki; Kitajima, Takaaki; Katagiri, Sachiko; Kawamori, Ai; Fujii-Taira, Ikuko; Matsushima, Toshiya; Homma, Koichi J
2010-06-01
Bioluminescence imaging is a powerful tool for examining gene expression in living animals. Previously, we reported that exogenous DNA could be successfully delivered into neurons in the newly hatched chick brain using electroporation. Here, we show the in vivo bioluminescence imaging of c-fos promoter activity and its upregulation, which is associated with filial imprinting. The upregulation of c-fos gene expression correlated with both the strength of the chicks' approach activity to the training object and the acquisition of memory. The present technique should be a powerful tool for analyzing the time changes in neural activity of certain brain areas in real-time during memory formation, using brains of living animals.
NASA Astrophysics Data System (ADS)
Yu, Haitao; Liu, Jing; Cai, Lihui; Wang, Jiang; Cao, Yibin; Hao, Chongqing
2017-02-01
Electroencephalogram (EEG) signal evoked by acupuncture stimulation at "Zusanli" acupoint is analyzed to investigate the modulatory effect of manual acupuncture on the functional brain activity. Power spectral density of EEG signal is first calculated based on the autoregressive Burg method. It is shown that the EEG power is significantly increased during and after acupuncture in delta and theta bands, but decreased in alpha band. Furthermore, synchronization likelihood is used to estimate the nonlinear correlation between each pairwise EEG signals. By applying a threshold to resulting synchronization matrices, functional networks for each band are reconstructed and further quantitatively analyzed to study the impact of acupuncture on network structure. Graph theoretical analysis demonstrates that the functional connectivity of the brain undergoes obvious change under different conditions: pre-acupuncture, acupuncture, and post-acupuncture. The minimum path length is largely decreased and the clustering coefficient keeps increasing during and after acupuncture in delta and theta bands. It is indicated that acupuncture can significantly modulate the functional activity of the brain, and facilitate the information transmission within different brain areas. The obtained results may facilitate our understanding of the long-lasting effect of acupuncture on the brain function.
Towards brain-activity-controlled information retrieval: Decoding image relevance from MEG signals.
Kauppi, Jukka-Pekka; Kandemir, Melih; Saarinen, Veli-Matti; Hirvenkari, Lotta; Parkkonen, Lauri; Klami, Arto; Hari, Riitta; Kaski, Samuel
2015-05-15
We hypothesize that brain activity can be used to control future information retrieval systems. To this end, we conducted a feasibility study on predicting the relevance of visual objects from brain activity. We analyze both magnetoencephalographic (MEG) and gaze signals from nine subjects who were viewing image collages, a subset of which was relevant to a predetermined task. We report three findings: i) the relevance of an image a subject looks at can be decoded from MEG signals with performance significantly better than chance, ii) fusion of gaze-based and MEG-based classifiers significantly improves the prediction performance compared to using either signal alone, and iii) non-linear classification of the MEG signals using Gaussian process classifiers outperforms linear classification. These findings break new ground for building brain-activity-based interactive image retrieval systems, as well as for systems utilizing feedback both from brain activity and eye movements. Copyright © 2015 Elsevier Inc. All rights reserved.
Test-Retest Reliability of fMRI Brain Activity during Memory Encoding
Brandt, David J.; Sommer, Jens; Krach, Sören; Bedenbender, Johannes; Kircher, Tilo; Paulus, Frieder M.; Jansen, Andreas
2013-01-01
The mechanisms underlying hemispheric specialization of memory are not completely understood. Functional magnetic resonance imaging (fMRI) can be used to develop and test models of hemispheric specialization. In particular for memory tasks however, the interpretation of fMRI results is often hampered by the low reliability of the data. In the present study we therefore analyzed the test-retest reliability of fMRI brain activation related to an implicit memory encoding task, with a particular focus on brain activity of the medial temporal lobe (MTL). Fifteen healthy subjects were scanned with fMRI on two sessions (average retest interval 35 days) using a commonly applied novelty encoding paradigm contrasting known and unknown stimuli. To assess brain lateralization, we used three different stimuli classes that differed in their verbalizability (words, scenes, fractals). Test-retest reliability of fMRI brain activation was assessed by an intraclass-correlation coefficient (ICC), describing the stability of inter-individual differences in the brain activation magnitude over time. We found as expected a left-lateralized brain activation network for the words paradigm, a bilateral network for the scenes paradigm, and predominantly right-hemispheric brain activation for the fractals paradigm. Although these networks were consistently activated in both sessions on the group level, across-subject reliabilities were only poor to fair (ICCs ≤ 0.45). Overall, the highest ICC values were obtained for the scenes paradigm, but only in strongly activated brain regions. In particular the reliability of brain activity of the MTL was poor for all paradigms. In conclusion, for novelty encoding paradigms the interpretation of fMRI results on a single subject level is hampered by its low reliability. More studies are needed to optimize the retest reliability of fMRI activation for memory tasks. PMID:24367338
Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity.
Napadow, Vitaly; LaCount, Lauren; Park, Kyungmo; As-Sanie, Sawsan; Clauw, Daniel J; Harris, Richard E
2010-08-01
Fibromyalgia (FM) is considered to be the prototypical central chronic pain syndrome and is associated with widespread pain that fluctuates spontaneously. Multiple studies have demonstrated altered brain activity in these patients. The objective of this study was to investigate the degree of connectivity between multiple brain networks in patients with FM, as well as how activity in these networks correlates with the level of spontaneous pain. Resting-state functional magnetic resonance imaging (FMRI) data from 18 patients with FM and 18 age-matched healthy control subjects were analyzed using dual-regression independent components analysis, which is a data-driven approach for the identification of independent brain networks. Intrinsic, or resting-state, connectivity was evaluated in multiple brain networks: the default mode network (DMN), the executive attention network (EAN), and the medial visual network (MVN), with the MVN serving as a negative control. Spontaneous pain levels were also analyzed for covariance with intrinsic connectivity. Patients with FM had greater connectivity within the DMN and right EAN (corrected P [P(corr)] < 0.05 versus controls), and greater connectivity between the DMN and the insular cortex, which is a brain region known to process evoked pain. Furthermore, greater intensity of spontaneous pain at the time of the FMRI scan correlated with greater intrinsic connectivity between the insula and both the DMN and right EAN (P(corr) < 0.05). These findings indicate that resting brain activity within multiple networks is associated with spontaneous clinical pain in patients with FM. These findings may also have broader implications for how subjective experiences such as pain arise from a complex interplay among multiple brain networks.
Rodrigues, Johannes; Müller, Mathias; Mühlberger, Andreas; Hewig, Johannes
2018-01-01
Frontal asymmetry has been investigated over the past 30 years, and several theories have been developed about its meaning. The original theory of Davidson and its diversification by Harmon-Jones & Allen allocated approach motivation to relative left frontal brain activity and withdrawal motivation to relative right frontal brain activity. Hewig and colleagues extended this theory by adding bilateral frontal activation representing a biological correlate of the behavioral activation system if actual behavior is shown. Wacker and colleagues formulated a theory related to the revised reinforcement sensitivity theory by Gray & McNaughton. Here, relative left frontal brain activation represents the revised behavioral activation system and behavior, while relative right frontal brain activation represents the revised behavioral inhibition system, representing the experience of conflict. These theories were investigated with a newly developed paradigm where participants were able to move around freely in a virtual T maze via joystick while having their EEG recorded. Analyzing the influence of frontal brain activation during this virtual reality task on observable behavior for 30 participants, we found more relative left frontal brain activation during approach behavior and more relative right brain activation for withdrawal behavior of any kind. Additionally, there was more bilateral frontal brain activation when participants were engaged in behavior compared to doing nothing. Hence, this study provides evidence for the idea that frontal asymmetry stands for behavioral approach or avoidance motivation, and bilateral frontal activation stands for behavior. Additionally, observable behavior is not only determined by frontal asymmetry, but also by relevant traits. © 2017 Society for Psychophysiological Research.
Zhou, S; Cao, H X; Yu, L C; Jin, Y J; Jia, R H; Wen, Y R; Chen, X F
2016-02-23
To investigate the functional brain pain center and default mode network response to electro acupuncture stimulate in weizhong acupoints(BL40) and dachangshu acupoints(BL25). During January to February 2015, volunteers were enrolled in this study from the staff and student interns of Gansu Province Traditional Chinese Medicine Hospital. A total of 20 healthy, right-handed subjects, male 9, female 11, age (23±3) years, participated in this study. Block design task functional magnetic resonance imaging(fMRI) 3.0 T was performed in all subjects by electro acupuncture stimulating at BL40 and BL25 from the same experienced acupuncturist.The needle connected electric acupuncture apparatus through tow long coaxial-cable. A block design with five 120 s blocks of rest time (OFF block, electric acupuncture turn off ) interspersed between five 60 s blocks of stimulation (ON block, electric acupuncture turn on) fMRI scan. Magnetic resonance data of brain function was collected and FSL(fMRI Software Library) software was used to analyze the data. All subjects' data were analyzed except 2 cases whose head movement were more than 2 mm. Activated brain function regions by electro acupuncture stimulate included temporal lobe lateral sulcus, lobus insularis, thalamus, supramarginal gyrus, prefrontal medial frontal gyrus. Negative activated brain regions included middle frontal gyrus, parahippocampal gyrus, cingulate cortex abdominal segment, parietal cortex.The functional pain central and default mode network were changed when electro acupuncture stimulate in(BL40) and(BL25). There are several brain activation regions and negative activated brain regions when administering electro acupuncture stimulation at BL40 and BL25.
Analysis of brain patterns using temporal measures
Georgopoulos, Apostolos
2015-08-11
A set of brain data representing a time series of neurophysiologic activity acquired by spatially distributed sensors arranged to detect neural signaling of a brain (such as by the use of magnetoencephalography) is obtained. The set of brain data is processed to obtain a dynamic brain model based on a set of statistically-independent temporal measures, such as partial cross correlations, among groupings of different time series within the set of brain data. The dynamic brain model represents interactions between neural populations of the brain occurring close in time, such as with zero lag, for example. The dynamic brain model can be analyzed to obtain the neurophysiologic assessment of the brain. Data processing techniques may be used to assess structural or neurochemical brain pathologies.
[Functional magnetic resonance imaging of brain of college students with internet addiction].
DU, Wanping; Liu, Jun; Gao, Xunping; Li, Lingjiang; Li, Weihui; Li, Xin; Zhang, Yan; Zhou, Shunke
2011-08-01
To explore the functional locations of brain regions related to internet addiction (IA)with task-functional magnetic resonance imaging (fMRI). Nineteen college students who had internet game addition and 19 controls accepted the stimuli of videos via computer. The 3.0 Tesla MRI was used to record the Results of echo plannar imaging. The block design method was used. Intragroup and intergroup analysis Results in the 2 groups were obtained. The differences between the 2 groups were analyzed. The internet game videos markedly activated the brain regions of the college students who had or had no internet game addiction. Compared with the control group, the IA group showed increased activation in the right superior parietal lobule, right insular lobe, right precuneus, right cingulated gyrus, and right superior temporal gyrus. Internet game tasks can activate the vision, space, attention and execution center which are composed of temporal occipital gyrus and frontal parietal gyrus. Abnormal brain function and lateral activation of the right brain may exist in IA.
Functional characteristics of the brain in college students with internet gaming disorder.
Liu, Jun; Li, Weihui; Zhou, Shunke; Zhang, Li; Wang, Zhiyuan; Zhang, Yan; Jiang, Yebin; Li, Lingjiang
2016-03-01
Internet gaming disorder (IGD) is a subtype of internet addiction disorder (IAD), but its pathogenesis remains unclear. This study investigated brain function in IGD individuals using task-state functional magnetic resonance imaging (fMRI). It is a prospective study in 19 IGD individuals and 19 matched healthy controls. They all received internet videogame stimuli while a 3.0 T fMRI was used to assess echo planar imaging. Brain activity was analyzed using the Brain Voyager software package. Functional data were spatially smoothed using Gaussian kernel. The threshold level was positioned at 10 pixels, and the activation range threshold was set to 10 voxels. Activated brain regions were compared between the two groups, as well as the amount of activated voxels. The internet videogame stimuli activated brain regions in both groups. Compared with controls, the IGD group showed increased activation in the right superior parietal lobule, right insular lobe, right precuneus, right cingulated gyrus, right superior temporal gyrus, and left brainstem. There was a significant difference in the number of activated voxels between the two groups. An average of 1078 voxels was activated in the IGD group compared with only 232 in the control group. Internet videogame play activates the vision, space, attention, and execution centers located in the occipital, temporal, parietal, and frontal gyri. Abnormal brain function was noted in IGD subjects, with hypofunction of the frontal cortex. IGD subjects showed laterality activation of the right cerebral hemisphere.
Functional Magnetic Resonance Imaging Methods
Chen, Jingyuan E.; Glover, Gary H.
2015-01-01
Since its inception in 1992, Functional Magnetic Resonance Imaging (fMRI) has become an indispensible tool for studying cognition in both the healthy and dysfunctional brain. FMRI monitors changes in the oxygenation of brain tissue resulting from altered metabolism consequent to a task-based evoked neural response or from spontaneous fluctuations in neural activity in the absence of conscious mentation (the “resting state”). Task-based studies have revealed neural correlates of a large number of important cognitive processes, while fMRI studies performed in the resting state have demonstrated brain-wide networks that result from brain regions with synchronized, apparently spontaneous activity. In this article, we review the methods used to acquire and analyze fMRI signals. PMID:26248581
A wireless neural recording system with a precision motorized microdrive for freely behaving animals
Hasegawa, Taku; Fujimoto, Hisataka; Tashiro, Koichiro; Nonomura, Mayu; Tsuchiya, Akira; Watanabe, Dai
2015-01-01
The brain is composed of many different types of neurons. Therefore, analysis of brain activity with single-cell resolution could provide fundamental insights into brain mechanisms. However, the electrical signal of an individual neuron is very small, and precise isolation of single neuronal activity from moving subjects is still challenging. To measure single-unit signals in actively behaving states, establishment of technologies that enable fine control of electrode positioning and strict spike sorting is essential. To further apply such a single-cell recording approach to small brain areas in naturally behaving animals in large spaces or during social interaction, we developed a compact wireless recording system with a motorized microdrive. Wireless control of electrode placement facilitates the exploration of single neuronal activity without affecting animal behaviors. Because the system is equipped with a newly developed data-encoding program, the recorded data are readily compressed almost to theoretical limits and securely transmitted to a host computer. Brain activity can thereby be stably monitored in real time and further analyzed using online or offline spike sorting. Our wireless recording approach using a precision motorized microdrive will become a powerful tool for studying brain mechanisms underlying natural or social behaviors. PMID:25597933
Graph Theory at the Service of Electroencephalograms.
Iakovidou, Nantia D
2017-04-01
The brain is one of the largest and most complex organs in the human body and EEG is a noninvasive electrophysiological monitoring method that is used to record the electrical activity of the brain. Lately, the functional connectivity in human brain has been regarded and studied as a complex network using EEG signals. This means that the brain is studied as a connected system where nodes, or units, represent different specialized brain regions and links, or connections, represent communication pathways between the nodes. Graph theory and theory of complex networks provide a variety of measures, methods, and tools that can be useful to efficiently model, analyze, and study EEG networks. This article is addressed to computer scientists who wish to be acquainted and deal with the study of EEG data and also to neuroscientists who would like to become familiar with graph theoretic approaches and tools to analyze EEG data.
Towards the utilization of EEG as a brain imaging tool.
Michel, Christoph M; Murray, Micah M
2012-06-01
Recent advances in signal analysis have engendered EEG with the status of a true brain mapping and brain imaging method capable of providing spatio-temporal information regarding brain (dys)function. Because of the increasing interest in the temporal dynamics of brain networks, and because of the straightforward compatibility of the EEG with other brain imaging techniques, EEG is increasingly used in the neuroimaging community. However, the full capability of EEG is highly underestimated. Many combined EEG-fMRI studies use the EEG only as a spike-counter or an oscilloscope. Many cognitive and clinical EEG studies use the EEG still in its traditional way and analyze grapho-elements at certain electrodes and latencies. We here show that this way of using the EEG is not only dangerous because it leads to misinterpretations, but it is also largely ignoring the spatial aspects of the signals. In fact, EEG primarily measures the electric potential field at the scalp surface in the same way as MEG measures the magnetic field. By properly sampling and correctly analyzing this electric field, EEG can provide reliable information about the neuronal activity in the brain and the temporal dynamics of this activity in the millisecond range. This review explains some of these analysis methods and illustrates their potential in clinical and experimental applications. Copyright © 2011 Elsevier Inc. All rights reserved.
Chen, Guotao; Yang, Baibing; Chen, Jianhuai; Zhu, Leilei; Jiang, Hesong; Yu, Wen; Zang, Fengchao; Chen, Yun; Dai, Yutian
2018-02-01
Non-organic erectile dysfunction (noED) at functional imaging has been related to abnormal brain activity and requires animal models for further research on the associated molecular mechanisms. To develop a noED animal model based on chronic mild stress and investigate brain activity changes. We used 6 weeks of chronic mild stress to induce depression. The sucrose consumption test was used to assess the hedonic state. The apomorphine test and sexual behavior test were used to select male rats with ED. Rats with depression and ED were considered to have noED. Blood oxygen level-dependent-based resting-state functional magnetic resonance imaging (fMRI) studies were conducted on these rats, and the amplitude of low-frequency fluctuations and functional connectivity were analyzed to determine brain activity changes. The sexual behavior test and resting-state fMRI were used for outcome measures. The induction of depression was confirmed by the sucrose consumption test. A low intromission ratio and increased mount and intromission latencies were observed in male rats with depression. No erection was observed in male rats with depression during the apomorphine test. Male rats with depression and ED were considered to have noED. The possible central pathologic mechanism shown by fMRI involved the amygdaloid body, dorsal thalamus, hypothalamus, caudate-putamen, cingulate gyrus, insular cortex, visual cortex, sensory cortex, motor cortex, and cerebellum. Similar findings have been found in humans. The present study provided a novel noED rat model for further research on the central mechanism of noED. The present study developed a novel noED rat model and analyzed brain activity changes based at fMRI. The observed brain activity alterations might not extend to humans. The present study developed a novel noED rat model with brain activity alterations related to sexual arousal and erection, which will be helpful for further research involving the central mechanism of noED. Chen G, Yang B, Chen J, et al. Changes in Male Rat Sexual Behavior and Brain Activity Revealed by Functional Magnetic Resonance Imaging in Response to Chronic Mild Stress. J Sex Med 2018;15:136-147. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Neuroimaging of Human Balance Control: A Systematic Review
Wittenberg, Ellen; Thompson, Jessica; Nam, Chang S.; Franz, Jason R.
2017-01-01
This review examined 83 articles using neuroimaging modalities to investigate the neural correlates underlying static and dynamic human balance control, with aims to support future mobile neuroimaging research in the balance control domain. Furthermore, this review analyzed the mobility of the neuroimaging hardware and research paradigms as well as the analytical methodology to identify and remove movement artifact in the acquired brain signal. We found that the majority of static balance control tasks utilized mechanical perturbations to invoke feet-in-place responses (27 out of 38 studies), while cognitive dual-task conditions were commonly used to challenge balance in dynamic balance control tasks (20 out of 32 studies). While frequency analysis and event related potential characteristics supported enhanced brain activation during static balance control, that in dynamic balance control studies was supported by spatial and frequency analysis. Twenty-three of the 50 studies utilizing EEG utilized independent component analysis to remove movement artifacts from the acquired brain signals. Lastly, only eight studies used truly mobile neuroimaging hardware systems. This review provides evidence to support an increase in brain activation in balance control tasks, regardless of mechanical, cognitive, or sensory challenges. Furthermore, the current body of literature demonstrates the use of advanced signal processing methodologies to analyze brain activity during movement. However, the static nature of neuroimaging hardware and conventional balance control paradigms prevent full mobility and limit our knowledge of neural mechanisms underlying balance control. PMID:28443007
Brain Death and Transplant in Islamic Countries.
Altınörs, Nur; Haberal, Mehmet
2016-11-01
The aim of this study was to investigate the present status regarding brain death, its consequences, and transplant activities in Islamic countries. A thorough literature survey was conducted about transplant activities in Islamic countries, and the Turkish Ministry of Health Web site was analyzed. Expert opinions about the issue were obtained. The present status of brain death and transplant activities has shown a heterogeneous appearance in the Islamic world. Our literature survey clearly revealed that transplant is still in its early stages in many Islamic states. The legislative framework, infrastructure, and related education needs radical improvements in these states. The concept of death has to be redefined and a consensus should be reached about brain death. The pioneer countries like Turkey, Iran, and Saudi Arabia. which already have considerable experience in transplant, should share their expertise and knowledge with the countries that need guidance.
Appu, Abhilash P; Arun, Peethambaran; Krishnan, Jishnu K S; Moffett, John R; Namboodiri, Aryan M A
2016-02-01
The blood brain barrier (BBB) is critical for maintaining central nervous system (CNS) homeostasis by restricting entry of potentially toxic substances. However, the BBB is a major obstacle in the treatment of neurotoxicity and neurological disorders due to the restrictive nature of the barrier to many medications. Intranasal delivery of active enzymes to the brain has therapeutic potential for the treatment of numerous CNS enzyme deficiency disorders and CNS toxicity caused by chemical threat agents. The aim of this work is to provide a sensitive model system for analyzing the rapid delivery of active enzymes into various regions of the brain with therapeutic bioavailability. We tested intranasal delivery of chloramphenicol acetyltransferase (CAT), a relatively large (75kD) enzyme, in its active form into different regions of the brain. CAT was delivered intranasally to anaesthetized rats and enzyme activity was measured in different regions using a highly specific High Performance Thin Layer Chromatography (HP-TLC)-radiometry coupled assay. Active enzyme reached all examined areas of the brain within 15min (the earliest time point tested). In addition, the yield of enzyme activity in the brain was almost doubled in the brains of rats pre-treated with matrix metalloproteinase-9 (MMP-9). Intranasal administration of active enzymes in conjunction with MMP-9 to the CNS is both rapid and effective. The present results suggest that intranasal enzyme therapy is a promising method for counteracting CNS chemical threat poisoning, as well as for treating CNS enzyme deficiency disorders. Published by Elsevier B.V.
Cell diversity and network dynamics in photosensitive human brain organoids
Quadrato, Giorgia; Nguyen, Tuan; Macosko, Evan Z.; Sherwood, John L.; Yang, Sung Min; Berger, Daniel; Maria, Natalie; Scholvin, Jorg; Goldman, Melissa; Kinney, Justin; Boyden, Edward S.; Lichtman, Jeff; Williams, Ziv M.; McCarroll, Steven A.; Arlotta, Paola
2017-01-01
In vitro models of the developing brain such as 3D brain organoids offer an unprecedented opportunity to study aspects of human brain development and disease. However, it remains undefined what cells are generated within organoids and to what extent they recapitulate the regional complexity, cellular diversity, and circuit functionality of the brain. Here, we analyzed gene expression in over 80,000 individual cells isolated from 31 human brain organoids. We find that organoids can generate a broad diversity of cells, which are related to endogenous classes, including cells from the cerebral cortex and the retina. Organoids could be developed over extended periods (over 9 months) enabling unprecedented levels of maturity including the formation of dendritic spines and of spontaneously-active neuronal networks. Finally, neuronal activity within organoids could be controlled using light stimulation of photoreceptor-like cells, which may offer ways to probe the functionality of human neuronal circuits using physiological sensory stimuli. PMID:28445462
Altered Cortical Activation in Adolescents With Acute Migraine: A Magnetoencephalography Study
Xiang, Jing; deGrauw, Xinyao; Korostenskaja, Milena; Korman, Abraham M.; O’Brien, Hope L.; Kabbouche, Marielle A.; Powers, Scott W.; Hershey, Andrew D.
2013-01-01
To quantitatively assess cortical dysfunction in pediatric migraine, 31 adolescents with acute migraine and age- and gender-matched controls were studied using a magnetoencephalography (MEG) system at a sampling rate of 6,000 Hz. Neuromagnetic brain activation was elicited by a finger-tapping task. The spectral and spatial signatures of magnetoencephalography data in 5 to 2,884 Hz were analyzed using Morlet wavelet and beamformers. Compared with controls, 31 migraine subjects during their headache attack phases (ictal) showed significantly prolonged latencies of neuromagnetic activation in 5 to 30 Hz, increased spectral power in 100 to 200 Hz, and a higher likelihood of neuromagnetic activation in the supplementary motor area, the occipital and ipsilateral sensorimotor cortices, in 2,200 to 2,800 Hz. Of the 31 migraine subjects, 16 migraine subjects during their headache-free phases (interictal) showed that there were no significant differences between interictal and control MEG data except that interictal spectral power in 100 to 200 Hz was significantly decreased. The results demonstrated that migraine subjects had significantly aberrant ictal brain activation, which can normalize interictally. The spread of abnormal ictal brain activation in both low- and high-frequency ranges triggered by movements may play a key role in the cascade of migraine attacks. Perspective This is the first study focusing on the spectral and spatial signatures of cortical dysfunction in adolescents with migraine using MEG signals in a frequency range of 5 to 2,884 Hz. This analyzing aberrant brain activation may be important for developing new therapeutic interventions for migraine in the future. PMID:23792072
Asphyxia-activated corticocardiac signaling accelerates onset of cardiac arrest
Li, Duan; Mabrouk, Omar S.; Liu, Tiecheng; Tian, Fangyun; Xu, Gang; Rengifo, Santiago; Choi, Sarah J.; Mathur, Abhay; Crooks, Charles P.; Kennedy, Robert T.; Wang, Michael M.; Ghanbari, Hamid; Borjigin, Jimo
2015-01-01
The mechanism by which the healthy heart and brain die rapidly in the absence of oxygen is not well understood. We performed continuous electrocardiography and electroencephalography in rats undergoing experimental asphyxia and analyzed cortical release of core neurotransmitters, changes in brain and heart electrical activity, and brain–heart connectivity. Asphyxia stimulates a robust and sustained increase of functional and effective cortical connectivity, an immediate increase in cortical release of a large set of neurotransmitters, and a delayed activation of corticocardiac functional and effective connectivity that persists until the onset of ventricular fibrillation. Blocking the brain’s autonomic outflow significantly delayed terminal ventricular fibrillation and lengthened the duration of detectable cortical activities despite the continued absence of oxygen. These results demonstrate that asphyxia activates a brainstorm, which accelerates premature death of the heart and the brain. PMID:25848007
Brain-Mind Operational Architectonics Imaging: Technical and Methodological Aspects
Fingelkurts, Andrew A; Fingelkurts, Alexander A
2008-01-01
This review paper deals with methodological and technical foundations of the Operational Architectonics framework of brain and mind functioning. This theory provides a framework for mapping and understanding important aspects of the brain mechanisms that constitute perception, cognition, and eventually consciousness. The methods utilized within Operational Architectonics framework allow analyzing with an incredible detail the operational behavior of local neuronal assemblies and their joint activity in the form of unified and metastable operational modules, which constitute the whole hierarchy of brain operations, operations of cognition and phenomenal consciousness. PMID:19526071
Mu, Xuetao; Wang, Zhiqun; Nie, Binbin; Duan, Shaofeng; Ma, Qiaozhi; Dai, Guanghui; Wu, Chunnan; Dong, Yuru; Shan, Baoci; Ma, Lin
2017-10-07
Very few studies have been made to investigate functional activity changes in occult spastic diplegic cerebral palsy (SDCP). The purpose of this study was to analyze whole-brain resting state regional brain activity and functional connectivity (FC) changes in patients with SDCP. We examined 12 occult SDCP and 14 healthy control subjects using resting-state functional magnetic resonance imaging. The data were analyzed using Resting-State fMRI Data Analysis Toolkit (REST) software. The regional homogeneity (ReHo), amplitude of low-frequency fluctuations (ALFF), and whole brain FC of the motor cortex and thalamus were analyzed and compared between the occult SDCP and control groups. Compared with the control group, the occult SDCP group showed decreased ReHo regions, including the bilateral frontal, parietal, and temporal lobes, the cerebellum, right cingulate gyrus, and right lenticular nucleus, whereas an increased ReHo value was observed in the left precuneus, calcarine, fusiform gyrus, and right precuneus. Compared with the control group, no significant differences in ALFF were noted in the occult SDCP group. With the motor cortex as the region of interest, the occult SDCP group showed decreased connectivity regions in the bilateral fusiform and lingual gyrus, but increased connectivity regions in the contralateral precentral and postcentral gyrus, supplementary motor area, and the ipsilateral postcentral gyrus. With the thalamus being regarded as the region of interest, the occult SDCP group showed decreased connectivity regions in the bilateral basal ganglia, cingulate, and prefrontal cortex, but increased connectivity regions in the bilateral precentral gyrus, the contralateral cerebellum, and inferior temporal gyrus. Resting-state regional brain activities and FC changes in the patients with occult SDCP exhibited a special distribution pattern, which is consistent with the pathology of the disease. Copyright © 2017. Published by Elsevier B.V.
Córdova-Palomera, Aldo; Tornador, Cristian; Falcón, Carles; Bargalló, Nuria; Nenadic, Igor; Deco, Gustavo; Fañanás, Lourdes
2015-10-01
Recent findings indicate that alterations of the amygdalar resting-state fMRI connectivity play an important role in the etiology of depression. While both depression and resting-state brain activity are shaped by genes and environment, the relative contribution of genetic and environmental factors mediating the relationship between amygdalar resting-state connectivity and depression remain largely unexplored. Likewise, novel neuroimaging research indicates that different mathematical representations of resting-state fMRI activity patterns are able to embed distinct information relevant to brain health and disease. The present study analyzed the influence of genes and environment on amygdalar resting-state fMRI connectivity, in relation to depression risk. High-resolution resting-state fMRI scans were analyzed to estimate functional connectivity patterns in a sample of 48 twins (24 monozygotic pairs) informative for depressive psychopathology (6 concordant, 8 discordant and 10 healthy control pairs). A graph-theoretical framework was employed to construct brain networks using two methods: (i) the conventional approach of filtered BOLD fMRI time-series and (ii) analytic components of this fMRI activity. Results using both methods indicate that depression risk is increased by environmental factors altering amygdalar connectivity. When analyzing the analytic components of the BOLD fMRI time-series, genetic factors altering the amygdala neural activity at rest show an important contribution to depression risk. Overall, these findings show that both genes and environment modify different patterns the amygdala resting-state connectivity to increase depression risk. The genetic relationship between amygdalar connectivity and depression may be better elicited by examining analytic components of the brain resting-state BOLD fMRI signals. © 2015 Wiley Periodicals, Inc.
Jean-Xavier, Céline; Perreault, Marie-Claude
2018-01-01
The trunk plays a pivotal role in limbed locomotion. Yet, little is known about how the brain stem controls trunk activity during walking. In this study, we assessed the spatiotemporal activity patterns of axial and hindlimb motoneurons (MNs) during drug-induced fictive locomotor-like activity (LLA) in an isolated brain stem-spinal cord preparation of the neonatal mouse. We also evaluated the extent to which these activity patterns are affected by removal of brain stem. Recordings were made in the segments T7, L2, and L5 using calcium imaging from individual axial MNs in the medial motor column (MMC) and hindlimb MNs in lateral motor column (LMC). The MN activities were analyzed during both the rhythmic and the tonic components of LLA, the tonic component being used as a readout of generalized increase in excitability in spinal locomotor networks. The most salient effect of brain stem removal was an increase in locomotor rhythm frequency and a concomitant reduction in burst durations in both MMC and LMC MNs. The lack of effect on the tonic component of LLA indicated specificity of action during the rhythmic component. Cooling-induced silencing of the brain stem reproduced the increase in rhythm frequency and accompanying decrease in burst durations in L2 MMC and LMC, suggesting a dependency on brain stem neuron activity. The work supports the idea that the brain stem locomotor circuits are operational already at birth and further suggests an important role in modulating trunk activity. The brain stem may influence the axial and hindlimb spinal locomotor rhythm generating circuits by extending their range of operation. This may represent a critical step of locomotor development when learning how to walk in different conditions and environments is a major endeavor.
Jean-Xavier, Céline; Perreault, Marie-Claude
2018-01-01
The trunk plays a pivotal role in limbed locomotion. Yet, little is known about how the brain stem controls trunk activity during walking. In this study, we assessed the spatiotemporal activity patterns of axial and hindlimb motoneurons (MNs) during drug-induced fictive locomotor-like activity (LLA) in an isolated brain stem-spinal cord preparation of the neonatal mouse. We also evaluated the extent to which these activity patterns are affected by removal of brain stem. Recordings were made in the segments T7, L2, and L5 using calcium imaging from individual axial MNs in the medial motor column (MMC) and hindlimb MNs in lateral motor column (LMC). The MN activities were analyzed during both the rhythmic and the tonic components of LLA, the tonic component being used as a readout of generalized increase in excitability in spinal locomotor networks. The most salient effect of brain stem removal was an increase in locomotor rhythm frequency and a concomitant reduction in burst durations in both MMC and LMC MNs. The lack of effect on the tonic component of LLA indicated specificity of action during the rhythmic component. Cooling-induced silencing of the brain stem reproduced the increase in rhythm frequency and accompanying decrease in burst durations in L2 MMC and LMC, suggesting a dependency on brain stem neuron activity. The work supports the idea that the brain stem locomotor circuits are operational already at birth and further suggests an important role in modulating trunk activity. The brain stem may influence the axial and hindlimb spinal locomotor rhythm generating circuits by extending their range of operation. This may represent a critical step of locomotor development when learning how to walk in different conditions and environments is a major endeavor. PMID:29479302
Macrì, Simone; Ceci, Chiara; Onori, Martina Proietti; Invernizzi, Roberto William; Bartolini, Erika; Altabella, Luisa; Canese, Rossella; Imperi, Monica; Orefici, Graziella; Creti, Roberta; Margarit, Immaculada; Magliozzi, Roberta; Laviola, Giovanni
2015-01-01
Repeated exposure to Group-A β-Haemolytic Streptococcus (GAS) may constitute a vulnerability factor in the onset and course of pediatric motor disturbances. GAS infections/colonization can stimulate the production of antibodies, which may cross the blood brain barrier, target selected brain areas (e.g. basal ganglia), and exacerbate motor alterations. Here, we exposed developing SJL male mice to four injections with a GAS homogenate and evaluated the following domains: motor coordination; general locomotion; repetitive behaviors; perseverative responses; and sensorimotor gating (pre-pulse inhibition, PPI). To demonstrate that behavioral changes were associated with immune-mediated brain alterations, we analyzed, in selected brain areas, the presence of infiltrates and microglial activation (immunohistochemistry), monoamines (HPLC), and brain metabolites (in vivo Magnetic Resonance Spectroscopy). GAS-exposed mice showed increased repetitive and perseverative behaviors, impaired PPI, and reduced concentrations of serotonin in prefrontal cortex, a brain area linked to the behavioral domains investigated, wherein they also showed remarkable elevations in lactate. Active inflammatory processes were substantiated by the observation of infiltrates and microglial activation in the white matter of the anterior diencephalon. These data support the hypothesis that repeated GAS exposure may elicit inflammatory responses in brain areas involved in motor control and perseverative behavior, and result in phenotypic abnormalities. PMID:26304458
Macrì, Simone; Ceci, Chiara; Onori, Martina Proietti; Invernizzi, Roberto William; Bartolini, Erika; Altabella, Luisa; Canese, Rossella; Imperi, Monica; Orefici, Graziella; Creti, Roberta; Margarit, Immaculada; Magliozzi, Roberta; Laviola, Giovanni
2015-08-25
Repeated exposure to Group-A β-Haemolytic Streptococcus (GAS) may constitute a vulnerability factor in the onset and course of pediatric motor disturbances. GAS infections/colonization can stimulate the production of antibodies, which may cross the blood brain barrier, target selected brain areas (e.g. basal ganglia), and exacerbate motor alterations. Here, we exposed developing SJL male mice to four injections with a GAS homogenate and evaluated the following domains: motor coordination; general locomotion; repetitive behaviors; perseverative responses; and sensorimotor gating (pre-pulse inhibition, PPI). To demonstrate that behavioral changes were associated with immune-mediated brain alterations, we analyzed, in selected brain areas, the presence of infiltrates and microglial activation (immunohistochemistry), monoamines (HPLC), and brain metabolites (in vivo Magnetic Resonance Spectroscopy). GAS-exposed mice showed increased repetitive and perseverative behaviors, impaired PPI, and reduced concentrations of serotonin in prefrontal cortex, a brain area linked to the behavioral domains investigated, wherein they also showed remarkable elevations in lactate. Active inflammatory processes were substantiated by the observation of infiltrates and microglial activation in the white matter of the anterior diencephalon. These data support the hypothesis that repeated GAS exposure may elicit inflammatory responses in brain areas involved in motor control and perseverative behavior, and result in phenotypic abnormalities.
Altered regional homogeneity of spontaneous brain activity in idiopathic trigeminal neuralgia.
Wang, Yanping; Zhang, Xiaoling; Guan, Qiaobing; Wan, Lihong; Yi, Yahui; Liu, Chun-Feng
2015-01-01
The pathophysiology of idiopathic trigeminal neuralgia (ITN) has conventionally been thought to be induced by neurovascular compression theory. Recent structural brain imaging evidence has suggested an additional central component for ITN pathophysiology. However, far less attention has been given to investigations of the basis of abnormal resting-state brain activity in these patients. The objective of this study was to investigate local brain activity in patients with ITN and its correlation with clinical variables of pain. Resting-state functional magnetic resonance imaging data from 17 patients with ITN and 19 age- and sex-matched healthy controls were analyzed using regional homogeneity (ReHo) analysis, which is a data-driven approach used to measure the regional synchronization of spontaneous brain activity. Patients with ITN had decreased ReHo in the left amygdala, right parahippocampal gyrus, and left cerebellum and increased ReHo in the right inferior temporal gyrus, right thalamus, right inferior parietal lobule, and left postcentral gyrus (corrected). Furthermore, the increase in ReHo in the left precentral gyrus was positively correlated with visual analog scale (r=0.54; P=0.002). Our study found abnormal functional homogeneity of intrinsic brain activity in several regions in ITN, suggesting the maladaptivity of the process of daily pain attacks and a central role for the pathophysiology of ITN.
Pop-Jordanova, Nada; Zorcec, Tatjana; Demerdzieva, Aneta; Gucev, Zoran
2010-09-30
Autistic spectrum disorders are a group of neurological and developmental disorders associated with social, communication, sensory, behavioral and cognitive impairments, as well as restricted, repetitive patterns of behavior, activities, or interests.The aim of this study was a) to analyze QEEG findings of autistic patients and to compare the results with data base; and b) to introduce the calculation of spectrum weighted frequency (brain rate) as an indicator of general mental arousal in these patients. Results for Q-EEG shows generally increased delta-theta activity in frontal region of the brain. Changes in QEEG pattern appeared to be in a non-linear correlation with maturational processes.Brain rate measured in CZ shows slow brain activity (5. 86) which is significantly lower than normal and corresponds to low general mental arousal.Recent research has shown that autistic disorders have as their basis disturbances of neural connectivity. Neurofeedback seems capable of remediating such disturbances when these data are considered as part of treatment planning. Prognosis of this pervasive disorder depends on the intellectual abilities: the better intellectual functioning, the possibilities for life adaptation are higherQEEG shows generally increased delta-theta activity in frontal region of the brain which is related to poor cognitive abilities.Brain rate measured in CZ shows slow brain activity related to under arousal.Pharmacotherapy combined with behavior therapy, social support and especially neurofeedback technique promise slight improvements.
The relationship between brain reaction and English reading tests for non-native English speakers.
Cheng, Pei-Wen; Tian, Yu-Jie; Kuo, Ting-Hua; Sun, Koun-Tem
2016-07-01
This research analyzed the brain activity of non-native English speakers while engaged in English reading tests. The brain wave event-related potentials (ERPs) of participants were used to analyze the difference between making correct and incorrect choices on English reading test items. Three English reading tests of differing levels were designed and 20 participants, 10 males and 10 females whose ages ranged from 20 to 24, voluntarily participated in the experiment. Experimental results were analyzed by performing independent t-tests on the ERPs of participants for gender, difficulty level, and correct versus wrong options. Participants who chose incorrect options elicited a larger N600, verifying results found in the literature. Another interesting result was found: For incorrectly answered items, different areas of brain showing a significant difference in ERPs between the chosen and non-chosen options corresponded to gender differences; for males, this area was located in the right hemisphere whereas for females, it was located in the left. Experimental results imply that non-native English speaking males and females employ different areas of the brain to comprehend the meaning of difficult items. Copyright © 2016 Elsevier B.V. All rights reserved.
Vecchiato, Giovanni; Astolfi, Laura; Tabarrini, Alessandro; Salinari, Serenella; Mattia, Donatella; Cincotti, Febo; Bianchi, Luigi; Sorrentino, Domenica; Aloise, Fabio; Soranzo, Ramon; Babiloni, Fabio
2010-01-01
The use of modern brain imaging techniques could be useful to understand what brain areas are involved in the observation of video clips related to commercial advertising, as well as for the support of political campaigns, and also the areas of Public Service Announcements (PSAs). In this paper we describe the capability of tracking brain activity during the observation of commercials, political spots, and PSAs with advanced high-resolution EEG statistical techniques in time and frequency domains in a group of normal subjects. We analyzed the statistically significant cortical spectral power activity in different frequency bands during the observation of a commercial video clip related to the use of a beer in a group of 13 normal subjects. In addition, a TV speech of the Prime Minister of Italy was analyzed in two groups of swing and "supporter" voters. Results suggested that the cortical activity during the observation of commercial spots could vary consistently across the spot. This fact suggest the possibility to remove the parts of the spot that are not particularly attractive by using those cerebral indexes. The cortical activity during the observation of the political speech indicated a major cortical activity in the supporters group when compared to the swing voters. In this case, it is possible to conclude that the communication proposed has failed to raise attention or interest on swing voters. In conclusions, high-resolution EEG statistical techniques have been proved to able to generate useful insights about the particular fruition of TV messages, related to both commercial as well as political fields.
Vecchiato, Giovanni; Astolfi, Laura; Tabarrini, Alessandro; Salinari, Serenella; Mattia, Donatella; Cincotti, Febo; Bianchi, Luigi; Sorrentino, Domenica; Aloise, Fabio; Soranzo, Ramon; Babiloni, Fabio
2010-01-01
The use of modern brain imaging techniques could be useful to understand what brain areas are involved in the observation of video clips related to commercial advertising, as well as for the support of political campaigns, and also the areas of Public Service Announcements (PSAs). In this paper we describe the capability of tracking brain activity during the observation of commercials, political spots, and PSAs with advanced high-resolution EEG statistical techniques in time and frequency domains in a group of normal subjects. We analyzed the statistically significant cortical spectral power activity in different frequency bands during the observation of a commercial video clip related to the use of a beer in a group of 13 normal subjects. In addition, a TV speech of the Prime Minister of Italy was analyzed in two groups of swing and “supporter” voters. Results suggested that the cortical activity during the observation of commercial spots could vary consistently across the spot. This fact suggest the possibility to remove the parts of the spot that are not particularly attractive by using those cerebral indexes. The cortical activity during the observation of the political speech indicated a major cortical activity in the supporters group when compared to the swing voters. In this case, it is possible to conclude that the communication proposed has failed to raise attention or interest on swing voters. In conclusions, high-resolution EEG statistical techniques have been proved to able to generate useful insights about the particular fruition of TV messages, related to both commercial as well as political fields. PMID:20069055
Clemente, Miriam; Rey, Beatriz; Rodriguez-Pujadas, Aina; Breton-Lopez, Juani; Barros-Loscertales, Alfonso; Baños, Rosa M; Botella, Cristina; Alcañiz, Mariano; Avila, Cesar
2014-06-27
To date, still images or videos of real animals have been used in functional magnetic resonance imaging protocols to evaluate the brain activations associated with small animals' phobia. The objective of our study was to evaluate the brain activations associated with small animals' phobia through the use of virtual environments. This context will have the added benefit of allowing the subject to move and interact with the environment, giving the subject the illusion of being there. We have analyzed the brain activation in a group of phobic people while they navigated in a virtual environment that included the small animals that were the object of their phobia. We have found brain activation mainly in the left occipital inferior lobe (P<.05 corrected, cluster size=36), related to the enhanced visual attention to the phobic stimuli; and in the superior frontal gyrus (P<.005 uncorrected, cluster size=13), which is an area that has been previously related to the feeling of self-awareness. In our opinion, these results demonstrate that virtual stimulus can enhance brain activations consistent with previous studies with still images, but in an environment closer to the real situation the subject would face in their daily lives.
Human Exploration of Enclosed Spaces through Echolocation.
Flanagin, Virginia L; Schörnich, Sven; Schranner, Michael; Hummel, Nadine; Wallmeier, Ludwig; Wahlberg, Magnus; Stephan, Thomas; Wiegrebe, Lutz
2017-02-08
Some blind humans have developed echolocation, as a method of navigation in space. Echolocation is a truly active sense because subjects analyze echoes of dedicated, self-generated sounds to assess space around them. Using a special virtual space technique, we assess how humans perceive enclosed spaces through echolocation, thereby revealing the interplay between sensory and vocal-motor neural activity while humans perform this task. Sighted subjects were trained to detect small changes in virtual-room size analyzing real-time generated echoes of their vocalizations. Individual differences in performance were related to the type and number of vocalizations produced. We then asked subjects to estimate virtual-room size with either active or passive sounds while measuring their brain activity with fMRI. Subjects were better at estimating room size when actively vocalizing. This was reflected in the hemodynamic activity of vocal-motor cortices, even after individual motor and sensory components were removed. Activity in these areas also varied with perceived room size, although the vocal-motor output was unchanged. In addition, thalamic and auditory-midbrain activity was correlated with perceived room size; a likely result of top-down auditory pathways for human echolocation, comparable with those described in echolocating bats. Our data provide evidence that human echolocation is supported by active sensing, both behaviorally and in terms of brain activity. The neural sensory-motor coupling complements the fundamental acoustic motor-sensory coupling via the environment in echolocation. SIGNIFICANCE STATEMENT Passive listening is the predominant method for examining brain activity during echolocation, the auditory analysis of self-generated sounds. We show that sighted humans perform better when they actively vocalize than during passive listening. Correspondingly, vocal motor and cerebellar activity is greater during active echolocation than vocalization alone. Motor and subcortical auditory brain activity covaries with the auditory percept, although motor output is unchanged. Our results reveal behaviorally relevant neural sensory-motor coupling during echolocation. Copyright © 2017 the authors 0270-6474/17/371614-14$15.00/0.
Continuous High Frequency Activity: A peculiar SEEG pattern related to specific brain regions
Melani, Federico; Zelmann, Rina; Mari, Francesco; Gotman, Jean
2015-01-01
Objective While visually marking the high frequency oscillations in the stereo-EEG of epileptic patients, we observed a continuous/semicontinuous activity in the ripple band (80–250 Hz), which we defined continuous High Frequency Activity (HFA). We aim to analyze in all brain regions the occurrence and significance of this particular pattern. Methods Twenty patients implanted in mesial temporal and neocortical areas were studied. One minute of slow-wave sleep was reviewed. The background was classified as continuous/semicontinuous, irregular, or sporadic based on the duration of the fast oscillations. Each channel was classified as inside/outside the seizure onset zone (SOZ) or a lesion. Results The continuous/semicontinuous HFA occurred in 54 of the 790 channels analyzed, with a clearly higher prevalence in hippocampus and occipital lobe. No correlation was found with the SOZ or lesions. In the occipital lobe the continuous/semicontinuous HFA was present independently of whether eyes were open or closed. Conclusions We describe what appears to be a new physiological High Frequency Activity, independent of epileptogenicity, present almost exclusively in the hippocampus and occipital cortex but independent of the alpha rhythm. Significance The continuous HFA may be an intrinsic characteristic of specific brain regions, reflecting a particular type of physiological neuronal activity. PMID:23768436
Paret, Christian; Zähringer, Jenny; Ruf, Matthias; Gerchen, Martin Fungisai; Mall, Stephanie; Hendler, Talma; Schmahl, Christian; Ende, Gabriele
2018-03-30
Brain-computer interfaces provide conscious access to neural activity by means of brain-derived feedback ("neurofeedback"). An individual's abilities to monitor and control feedback are two necessary processes for effective neurofeedback therapy, yet their underlying functional neuroanatomy is still being debated. In this study, healthy subjects received visual feedback from their amygdala response to negative pictures. Activation and functional connectivity were analyzed to disentangle the role of brain regions in different processes. Feedback monitoring was mapped to the thalamus, ventromedial prefrontal cortex (vmPFC), ventral striatum (VS), and rostral PFC. The VS responded to feedback corresponding to instructions while rPFC activity differentiated between conditions and predicted amygdala regulation. Control involved the lateral PFC, anterior cingulate, and insula. Monitoring and control activity overlapped in the VS and thalamus. Extending current neural models of neurofeedback, this study introduces monitoring and control of feedback as anatomically dissociated processes, and suggests their important role in voluntary neuromodulation. © 2018 Wiley Periodicals, Inc.
Cao, Song; Li, Ying; Deng, Wenwen; Qin, Bangyong; Zhang, Yi; Xie, Peng; Yuan, Jie; Yu, Buwei; Yu, Tian
2017-07-01
Herpes zoster (HZ) can develop into postherpetic neuralgia (PHN), both of which are painful diseases. PHN patients suffer chronic pain and emotional disorders. Previous studies showed that the PHN brain displayed abnormal activity and structural change, but the difference in brain activity between HZ and PHN is still not known. To identify regional brain activity changes in HZ and PHN brains with resting-state functional magnetic resonance imaging (rs-fMRI) technique, and to observe the differences between HZ and PHN patients. Observational study. University hospital. Regional homogeneity (ReHo) and fractional aptitude of low-frequency fluctuation (fALFF) methods were employed to analysis resting-state brain activity. Seventy-three age and gender matched patients (50 HZ, 23 PHN) and 55 healthy controls were enrolled. ReHo and fALFF changes were analyzed to detect the functional abnormality in HZ and PHN brains. Compared with healthy controls, HZ and PHN patients exhibited abnormal ReHo and fALFF values in classic pain-related brain regions (such as the frontal lobe, thalamus, insular, and cerebellum) as well as the brainstem, limbic lobe, and temporal lobe. When HZ developed to PHN, the activity in the vast area of the cerebellum significantly increased while that of some regions in the occipital lobe, temporal lobe, parietal lobe, and limbic lobe showed an apparent decrease. (a) Relatively short pain duration (mean 12.2 months) and small sample size (n = 23) for PHN group. (b) Comparisons at different time points (with paired t-tests) for each patient may minimize individual differences. HZ and PHN induced local brain activity changed in the pain matrix, brainstem, and limbic system. HZ chronification induced functional change in the cerebellum, occipital lobe, temporal lobe, parietal lobe, and limbic lobe. These brain activity changes may be correlated with HZ-PHN transition. Herpes zoster, postherpetic neuralgia, resting-state fMRI (rs-fMRI), regional homogeneity (ReHo), fractional aptitude of low-frequency fluctuation (fALFF).
Effect of visual feedback on brain activation during motor tasks: an FMRI study.
Noble, Jeremy W; Eng, Janice J; Boyd, Lara A
2013-07-01
This study examined the effect of visual feedback and force level on the neural mechanisms responsible for the performance of a motor task. We used a voxel-wise fMRI approach to determine the effect of visual feedback (with and without) during a grip force task at 35% and 70% of maximum voluntary contraction. Two areas (contralateral rostral premotor cortex and putamen) displayed an interaction between force and feedback conditions. When the main effect of feedback condition was analyzed, higher activation when visual feedback was available was found in 22 of the 24 active brain areas, while the two other regions (contralateral lingual gyrus and ipsilateral precuneus) showed greater levels of activity when no visual feedback was available. The results suggest that there is a potentially confounding influence of visual feedback on brain activation during a motor task, and for some regions, this is dependent on the level of force applied.
Dynamics of brain networks in the aesthetic appreciation
Cela-Conde, Camilo J.; García-Prieto, Juan; Ramasco, José J.; Mirasso, Claudio R.; Bajo, Ricardo; Munar, Enric; Flexas, Albert; del-Pozo, Francisco; Maestú, Fernando
2013-01-01
Neuroimage experiments have been essential for identifying active brain networks. During cognitive tasks as in, e.g., aesthetic appreciation, such networks include regions that belong to the default mode network (DMN). Theoretically, DMN activity should be interrupted during cognitive tasks demanding attention, as is the case for aesthetic appreciation. Analyzing the functional connectivity dynamics along three temporal windows and two conditions, beautiful and not beautiful stimuli, here we report experimental support for the hypothesis that aesthetic appreciation relies on the activation of two different networks, an initial aesthetic network and a delayed aesthetic network, engaged within distinct time frames. Activation of the DMN might correspond mainly to the delayed aesthetic network. We discuss adaptive and evolutionary explanations for the relationships existing between the DMN and aesthetic networks and offer unique inputs to debates on the mind/brain interaction. PMID:23754437
Arzouan, Yossi; Solomon, Sorin; Faust, Miriam; Goldstein, Abraham
2011-04-27
Language comprehension is a complex task that involves a wide network of brain regions. We used topological measures to qualify and quantify the functional connectivity of the networks used under various comprehension conditions. To that aim we developed a technique to represent functional networks based on EEG recordings, taking advantage of their excellent time resolution in order to capture the fast processes that occur during language comprehension. Networks were created by searching for a specific causal relation between areas, the negative feedback loop, which is ubiquitous in many systems. This method is a simple way to construct directed graphs using event-related activity, which can then be analyzed topologically. Brain activity was recorded while subjects read expressions of various types and indicated whether they found them meaningful. Slightly different functional networks were obtained for event-related activity evoked by each expression type. The differences reflect the special contribution of specific regions in each condition and the balance of hemispheric activity involved in comprehending different types of expressions and are consistent with the literature in the field. Our results indicate that representing event-related brain activity as a network using a simple temporal relation, such as the negative feedback loop, to indicate directional connectivity is a viable option for investigation which also derives new information about aspects not reflected in the classical methods for investigating brain activity.
Kim, Ji-Eun; Son, Jung-Woo; Choi, Won-Hee; Kim, Yeoung-Rang; Oh, Jong-Hyun; Lee, Seungbok; Kim, Jang-Kyu
2014-06-01
This study aimed to examine differences in brain activation for various types of reward and feedback in adolescent Internet addicts (AIA) and normal adolescents (NA) using functional magnetic resonance imaging (fMRI). AIA (n = 15) and NA (n = 15) underwent fMRI while performing easy tasks for which performance feedback (PF), social reward (SR) (such as compliments), or monetary reward (MR) was given. Using the no reward (NR) condition, three types of contrasts (PF-NR, SR-NR, and MR-NR) were analyzed. In NA, we observed activation in the reward-related subcortical system, self-related brain region, and other brain areas for the three contrasts, but these brain areas showed almost no activation in AIA. Instead, AIA showed significant activation in the dorsolateral prefrontal cortex for the PF-NR contrast and the negative correlation was found between the level of activation in the left superior temporal gyrus (BA 22) and the duration of Internet game use per day in AIA. These findings suggest that AIA show reduced levels of self-related brain activation and decreased reward sensitivity irrespective of the type of reward and feedback. AIA may be only sensitive to error monitoring regardless of positive feelings, such as sense of satisfaction or achievement. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.
Analysis of brain activity and response during monoscopic and stereoscopic visualization
NASA Astrophysics Data System (ADS)
Calore, Enrico; Folgieri, Raffaella; Gadia, Davide; Marini, Daniele
2012-03-01
Stereoscopic visualization in cinematography and Virtual Reality (VR) creates an illusion of depth by means of two bidimensional images corresponding to different views of a scene. This perceptual trick is used to enhance the emotional response and the sense of presence and immersivity of the observers. An interesting question is if and how it is possible to measure and analyze the level of emotional involvement and attention of the observers during a stereoscopic visualization of a movie or of a virtual environment. The research aims represent a challenge, due to the large number of sensorial, physiological and cognitive stimuli involved. In this paper we begin this research by analyzing possible differences in the brain activity of subjects during the viewing of monoscopic or stereoscopic contents. To this aim, we have performed some preliminary experiments collecting electroencephalographic (EEG) data of a group of users using a Brain- Computer Interface (BCI) during the viewing of stereoscopic and monoscopic short movies in a VR immersive installation.
Predicting consumer behavior: using novel mind-reading approaches.
Calvert, Gemma A; Brammer, Michael J
2012-01-01
Advances in machine learning as applied to functional magnetic resonance imaging (fMRI) data offer the possibility of pretesting and classifying marketing communications using unbiased pattern recognition algorithms. By using these algorithms to analyze brain responses to brands, products, or existing marketing communications that either failed or succeeded in the marketplace and identifying the patterns of brain activity that characterize success or failure, future planned campaigns or new products can now be pretested to determine how well the resulting brain responses match the desired (successful) pattern of brain activity without the need for verbal feedback. This major advance in signal processing is poised to revolutionize the application of these brain-imaging techniques in the marketing sector by offering greater accuracy of prediction in terms of consumer acceptance of new brands, products, and campaigns at a speed that makes them accessible as routine pretesting tools that will clearly demonstrate return on investment.
The in vitro isolated whole guinea pig brain as a model to study epileptiform activity patterns.
de Curtis, Marco; Librizzi, Laura; Uva, Laura
2016-02-15
Research on ictogenesis is based on the study of activity between seizures and during seizures in animal models of epilepsy (chronic condition) or in in vitro slices obtained from naïve non-epileptic brains after treatment with pro-convulsive drugs, manipulations of the extracellular medium and specific stimulation protocols. The in vitro isolated guinea pig brain retains the functional connectivity between brain structures and maintains interactions between neuronal, glial and vascular compartments. It is a close-to-in vivo preparation that offers experimental advantages not achieved with the use of other experimental models. Neurophysiological and imaging techniques can be utilized in this preparation to study brain activity during and between seizures induced by pharmacological or functional manipulations. Cellular and network determinants of interictal and ictal discharges that reproduce abnormal patterns observed in human focal epilepsies and the associated changes in extracellular ion and blood-brain permeability can be identified and analyzed in the isolated guinea pig brain. Ictal and interictal patterns recorded in in vitro slices may show substantial differences from seizure activity recorded in vivo due to slicing procedure itself. The isolated guinea pig brain maintained in vitro by arterial perfusion combines the typical facilitated access of in vitro preparations, that are difficult to approach during in vivo experiments, with the preservation of larger neuronal networks. The in vitro whole isolated guinea pig brain preparation offers an unique experimental model to study systemic and neurovascular changes during ictogenesis. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Kwak, Byung-Joon
2013-07-01
This study aimed to quantitatively analyze data from diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) in patients with brain disorders and to assess its potential utility for analyzing brain function. DTI was obtained by performing 3.0-T magnetic resonance imaging for patients with Alzheimer's disease (AD) and vascular dementia (VD), and the data were analyzed using Matlab-based SPM software. The two-sample t-test was used for error analysis of the location of the activated pixels. We compared regions of white matter where the fractional anisotropy (FA) values were low and the apparent diffusion coefficients (ADCs) were increased. In the AD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right sub-lobar insula, and right occipital lingual gyrus whereas the ADCs were significantly increased in the right inferior frontal gyrus and right middle frontal gyrus. In the VD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right limbic cingulate gyrus, and right sub-lobar caudate tail whereas the ADCs were significantly increased in the left lateral globus pallidus and left medial globus pallidus. In conclusion by using DTI and SPM analysis, we were able to not only determine the structural state of the regions affected by brain disorders but also quantitatively analyze and assess brain function.
Analysis of evoked deep brain connectivity.
Klimeš, Petr; Janeček, Jiři; Jurák, Pavel; Halámek, Josef; Chládek, Han; Brázdil, Milan
2013-01-01
Establishing dependencies and connectivity among different structures in the human brain is an extremely complex issue. Methods that are often used for connectivity analysis are based on correlation mechanisms. Correlation methods can analyze changes in signal shape or instantaneous power level. Although recent studies imply that observation of results from both groups of methods together can disclose some of the basic functions and behavior of the human brain during mental activity and decision-making, there is no technique covering changes in the shape of signals along with changes in their power levels. We present a method using a time evaluation of the correlation along with a comparison of power levels in every available contact pair from intracranial electrodes placed in deep brain structures. Observing shape changes in signals after stimulation together with their power levels provides us with new information about signal character between different structures in the brain during task-related events - visual stimulation with motor response. The results for a subject with 95 intracerebral contacts used in this paper demonstrate a clear methodology capable of spatially analyzing connectivity among deep brain structures.
The PennBMBI: Design of a General Purpose Wireless Brain-Machine-Brain Interface System.
Liu, Xilin; Zhang, Milin; Subei, Basheer; Richardson, Andrew G; Lucas, Timothy H; Van der Spiegel, Jan
2015-04-01
In this paper, a general purpose wireless Brain-Machine-Brain Interface (BMBI) system is presented. The system integrates four battery-powered wireless devices for the implementation of a closed-loop sensorimotor neural interface, including a neural signal analyzer, a neural stimulator, a body-area sensor node and a graphic user interface implemented on the PC end. The neural signal analyzer features a four channel analog front-end with configurable bandpass filter, gain stage, digitization resolution, and sampling rate. The target frequency band is configurable from EEG to single unit activity. A noise floor of 4.69 μVrms is achieved over a bandwidth from 0.05 Hz to 6 kHz. Digital filtering, neural feature extraction, spike detection, sensing-stimulating modulation, and compressed sensing measurement are realized in a central processing unit integrated in the analyzer. A flash memory card is also integrated in the analyzer. A 2-channel neural stimulator with a compliance voltage up to ± 12 V is included. The stimulator is capable of delivering unipolar or bipolar, charge-balanced current pulses with programmable pulse shape, amplitude, width, pulse train frequency and latency. A multi-functional sensor node, including an accelerometer, a temperature sensor, a flexiforce sensor and a general sensor extension port has been designed. A computer interface is designed to monitor, control and configure all aforementioned devices via a wireless link, according to a custom designed communication protocol. Wireless closed-loop operation between the sensory devices, neural stimulator, and neural signal analyzer can be configured. The proposed system was designed to link two sites in the brain, bridging the brain and external hardware, as well as creating new sensory and motor pathways for clinical practice. Bench test and in vivo experiments are performed to verify the functions and performances of the system.
Han, Yuwei; Su, Jingyuan; Liu, Xiujuan; Zhao, Yuan; Wang, Chenchen; Li, Xiaoming
2017-07-01
This study aims to clarify the neuroprotective effect of naringin on early brain injury (EBI) following subarachnoid hemorrhage (SAH) and the possible mechanisms of naringin in the treatment of SAH. The endovascular puncture model was performed to induce SAH model in rats and the efficacy of 40mg/kg and 80mg/kg naringin were tested by intraperitoneally administration. SAH grade, neurological score, brain edema, blood-brain barrier permeability, the changes of oxidative stress related factors, apoptosis-related proteins, mitogen-activated protein kinase (MAPK) signaling pathway and neuronal morphology were detected to analyze the potential effect of naringin against SAH. The results demonstrated that naringin significantly ameliorated EBI, including SAH severity, neurologic deficits, brain edema and blood-brain barrier integrity by attenuating SAH-induced oxidative stress and apoptosis, and reduced the oxidant damage and apoptosis by inhibiting the activation of MAPK signaling pathway, which suggested a therapeutic potential of naringin in providing neuroprotection after SAH. Copyright © 2016 Elsevier Inc. All rights reserved.
Exposure to organophosphate pesticides (OP) has been associated with sleep disorders: insomnia and ?excessive dreaming'. However neuronal mechanisms of these effects have not been analyzed. OP inhibit acetylcholinesterase activity leading to a hyperativity of the brain cholin...
Nerurkar, Pratibha V; Johns, Lisa M; Buesa, Lance M; Kipyakwai, Gideon; Volper, Esther; Sato, Ryuei; Shah, Pranjal; Feher, Domonkos; Williams, Philip G; Nerurkar, Vivek R
2011-06-03
The rising epidemic of obesity is associated with cognitive decline and is considered as one of the major risk factors for neurodegenerative diseases. Neuroinflammation is a critical component in the progression of several neurological and neurodegenerative diseases. Increased metabolic flux to the brain during overnutrition and obesity can orchestrate stress response, blood-brain barrier (BBB) disruption, recruitment of inflammatory immune cells from peripheral blood and microglial cells activation leading to neuroinflammation. The lack of an effective treatment for obesity-associated brain dysfunction may have far-reaching public health ramifications, urgently necessitating the identification of appropriate preventive and therapeutic strategies. The objective of our study was to investigate the neuroprotective effects of Momordica charantia (bitter melon) on high-fat diet (HFD)-associated BBB disruption, stress and neuroinflammatory cytokines. C57BL/6 female mice were fed HFD with and without bitter melon (BM) for 16 weeks. BBB disruption was analyzed using Evans blue dye. Phosphate-buffered saline (PBS) perfused brains were analyzed for neuroinflammatory markers such as interleukin-22 (IL-22), IL-17R, IL-16, NF-κB1, and glial cells activation markers such as Iba1, CD11b, GFAP and S100β. Additionally, antioxidant enzymes, ER-stress proteins, and stress-resistant transcription factors, sirtuin 1 (Sirt1) and forkhead box class O transcription factor (FoxO) were analyzed using microarray, quantitative real-time RT-PCR, western immunoblotting and enzymatic assays. Systemic inflammation was analyzed using cytokine antibody array. BM ameliorated HFD-associated changes in BBB permeability as evident by reduced leakage of Evans blue dye. HFD-induced glial cells activation and expression of neuroinflammatory markers such as NF-κB1, IL-16, IL-22 as well as IL-17R were normalized in the brains of mice supplemented with BM. Similarly, HFD-induced brain oxidative stress was significantly reduced by BM supplementation with a concomitant reduction in FoxO, normalization of Sirt1 protein expression and up-regulation of Sirt3 mRNA expression. Furthermore, plasma antioxidant enzymes and pro-inflammatory cytokines were also normalized in mice fed HFD with BM as compared to HFD-fed mice. Functional foods such as BM offer a unique therapeutic strategy to improve obesity-associated peripheral inflammation and neuroinflammation.
Vilela, Márcia Carvalho; Lima, Graciela Kunrath; Rodrigues, David Henrique; Lacerda-Queiroz, Norinne; Pedroso, Vinicius Sousa Pietra; de Miranda, Aline Silva; Rachid, Milene Alvarenga; Kroon, Erna Geessien; Campos, Marco Antônio; Teixeira, Mauro Martins; Teixeira, Antonio Lucio
2016-12-01
Herpes simplex virus type 1 (HSV-1) is a human pathogen that may cause severe encephalitis. The exacerbated immune response against the virus contributes to the disease severity and death. Platelet activating factor (PAF) is a mediator capable of inducing increase in vascular permeability, production of cytokines on endothelial cells and leukocytes. We aimed to investigate the activation of PAF receptor (PAFR) and its contribution to the severity of the inflammatory response in the brain following HSV-1 infection. C57BL/6 wild-type (WT) and PAFR deficient (PAFR -/- ) mice were inoculated intracranially with 10 4 plaque-forming units (PFU) of HSV-1. Visualization of leukocyte recruitment was performed using intravital microscopy. Cells infiltration in the brain tissue were analyzed by flow cytometry. Brain was removed for chemokine assessment by ELISA and for histopathological analysis. The pharmacological inhibition by the PAFR antagonist UK-74,505 was also analyzed. In PAFR -/- mice, there was delayed lethality but no difference in viral load. Histopathological analysis of infected PAFR -/- mice showed that brain lesions were less severe when compared to their WT counterparts. Moreover, PAFR -/- mice showed less TCD4 + , TCD8 + and macrophages in brain tissue. This reduction of the presence of leukocytes in parenchyma may be mechanistically explained by a decrease in leukocytes rolling and adhesion. PAFR -/- mice also presented a reduction of the chemokine CXCL9 in the brain. In addition, by antagonizing PAFR, survival of C57BL/6 infected mice increased. Altogether, our data suggest that PAFR plays a role in the pathogenesis of experimental HSV-1 meningoencephalitis, and its blockade prevents severe disease manifestation.
Li, Shuang; Wang, S U; Guo, Zhi-Gang; Huang, Ning; Zhao, Fan-Rong; Zhu, Mo-Li; Ma, Li-Juan; Liang, Jin-Ying; Zhang, Yu-Lin; Huang, Zhong-Lin; Wan, Guang-Rui
2015-11-01
The aim of this study was to observe the effect of a formulation of traditional Chinese medicine extracts known as Xingnaojia (XNJ) on the liver function, learning ability and memory of rats with chronic alcoholism and to verify the mechanism by which it protects the brain and liver. A rat model of chronic alcoholism was used in the study. The spatial learning ability and memory of the rats were tested. The rats were then sacrificed and their brains and hepatic tissues were isolated. The activity of superoxide dismutase (SOD) and levels of glutamate (Glu), N-methyl D-aspartate receptor subtype 2B (NR2B), cyclin-dependent kinase 5 (CDK5) and cannabinoid receptor 1 (CB1) in the hippocampus were analyzed. The ultrastructure of the hepatic tissue was observed by electron microscopy. In addition, the activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in serum were tested and the levels of low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TG) and total cholesterol (TCHOL) were analyzed. XNJ enhanced the learning and memory of rats with chronic alcoholism. Treatment with XNJ increased the activity of SOD, and decreased the expression levels of NR2B mRNA and NR2B, CB1 and CDK5 proteins in the brain tissues compared with those in the model rats. It also increased the activity of ALDH in the serum and liver, decreased the serum levels of LDL, TG and TCHOL and increased the serum level of HDL. These results indicate that XNJ exhibited a protective effect against brain and liver damage in rats with chronic alcoholism.
Dumais, Kelly M; Kulkarni, Praveen P; Ferris, Craig F; Veenema, Alexa H
2017-07-01
The neuropeptide oxytocin (OT) regulates social behavior in sex-specific ways across species. OT has promising effects on alleviating social deficits in sex-biased neuropsychiatric disorders. However little is known about potential sexually dimorphic effects of OT on brain function. Using the rat as a model organism, we determined whether OT administered centrally or peripherally induces sex differences in brain activation. Functional magnetic resonance imaging was used to examine blood oxygen level-dependent (BOLD) signal intensity changes in the brains of awake rats during the 20min following intracerebroventricular (ICV; 1μg/5μl) or intraperitoneal (IP; 0.1mg/kg) OT administration as compared to baseline. ICV OT induced sex differences in BOLD activation in 26 out of 172 brain regions analyzed, with 20 regions showing a greater volume of activation in males (most notably the nucleus accumbens and insular cortex), and 6 regions showing a greater volume of activation in females (including the lateral and central amygdala). IP OT also elicited sex differences in BOLD activation with a greater volume of activation in males, but this activation was found in different and fewer (10) brain regions compared to ICV OT. In conclusion, exogenous OT modulates neural activation differently in male versus female rats with the pattern and magnitude, but not the direction, of sex differences depending on the route of administration. These findings highlight the need to include both sexes in basic and clinical studies to fully understand the role of OT on brain function. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dinkel, Philipp Johannes; Willmes, Klaus; Krinzinger, Helga; Konrad, Kerstin; Koten Jr, Jan Willem
2013-01-01
FMRI-studies are mostly based on a group study approach, either analyzing one group or comparing multiple groups, or on approaches that correlate brain activation with clinically relevant criteria or behavioral measures. In this study we investigate the potential of fMRI-techniques focusing on individual differences in brain activation within a test-retest reliability context. We employ a single-case analysis approach, which contrasts dyscalculic children with a control group of typically developing children. In a second step, a support-vector machine analysis and cluster analysis techniques served to investigate similarities in multivariate brain activation patterns. Children were confronted with a non-symbolic number comparison and a non-symbolic exact calculation task during fMRI acquisition. Conventional second level group comparison analysis only showed small differences around the angular gyrus bilaterally and the left parieto-occipital sulcus. Analyses based on single-case statistical procedures revealed that developmental dyscalculia is characterized by individual differences predominantly in visual processing areas. Dyscalculic children seemed to compensate for relative under-activation in the primary visual cortex through an upregulation in higher visual areas. However, overlap in deviant activation was low for the dyscalculic children, indicating that developmental dyscalculia is a disorder characterized by heterogeneous brain activation differences. Using support vector machine analysis and cluster analysis, we tried to group dyscalculic and typically developing children according to brain activation. Fronto-parietal systems seem to qualify for a distinction between the two groups. However, this was only effective when reliable brain activations of both tasks were employed simultaneously. Results suggest that deficits in number representation in the visual-parietal cortex get compensated for through finger related aspects of number representation in fronto-parietal cortex. We conclude that dyscalculic children show large individual differences in brain activation patterns. Nonetheless, the majority of dyscalculic children can be differentiated from controls employing brain activation patterns when appropriate methods are used. PMID:24349547
Dinkel, Philipp Johannes; Willmes, Klaus; Krinzinger, Helga; Konrad, Kerstin; Koten, Jan Willem
2013-01-01
FMRI-studies are mostly based on a group study approach, either analyzing one group or comparing multiple groups, or on approaches that correlate brain activation with clinically relevant criteria or behavioral measures. In this study we investigate the potential of fMRI-techniques focusing on individual differences in brain activation within a test-retest reliability context. We employ a single-case analysis approach, which contrasts dyscalculic children with a control group of typically developing children. In a second step, a support-vector machine analysis and cluster analysis techniques served to investigate similarities in multivariate brain activation patterns. Children were confronted with a non-symbolic number comparison and a non-symbolic exact calculation task during fMRI acquisition. Conventional second level group comparison analysis only showed small differences around the angular gyrus bilaterally and the left parieto-occipital sulcus. Analyses based on single-case statistical procedures revealed that developmental dyscalculia is characterized by individual differences predominantly in visual processing areas. Dyscalculic children seemed to compensate for relative under-activation in the primary visual cortex through an upregulation in higher visual areas. However, overlap in deviant activation was low for the dyscalculic children, indicating that developmental dyscalculia is a disorder characterized by heterogeneous brain activation differences. Using support vector machine analysis and cluster analysis, we tried to group dyscalculic and typically developing children according to brain activation. Fronto-parietal systems seem to qualify for a distinction between the two groups. However, this was only effective when reliable brain activations of both tasks were employed simultaneously. Results suggest that deficits in number representation in the visual-parietal cortex get compensated for through finger related aspects of number representation in fronto-parietal cortex. We conclude that dyscalculic children show large individual differences in brain activation patterns. Nonetheless, the majority of dyscalculic children can be differentiated from controls employing brain activation patterns when appropriate methods are used.
2010-01-01
Background Autistic spectrum disorders are a group of neurological and developmental disorders associated with social, communication, sensory, behavioral and cognitive impairments, as well as restricted, repetitive patterns of behavior, activities, or interests. The aim of this study was a) to analyze QEEG findings of autistic patients and to compare the results with data base; and b) to introduce the calculation of spectrum weighted frequency (brain rate) as an indicator of general mental arousal in these patients. Results Results for Q-EEG shows generally increased delta-theta activity in frontal region of the brain. Changes in QEEG pattern appeared to be in a non-linear correlation with maturational processes. Brain rate measured in CZ shows slow brain activity (5. 86) which is significantly lower than normal and corresponds to low general mental arousal. Recent research has shown that autistic disorders have as their basis disturbances of neural connectivity. Neurofeedback seems capable of remediating such disturbances when these data are considered as part of treatment planning. Conclusions Prognosis of this pervasive disorder depends on the intellectual abilities: the better intellectual functioning, the possibilities for life adaptation are higher QEEG shows generally increased delta-theta activity in frontal region of the brain which is related to poor cognitive abilities. Brain rate measured in CZ shows slow brain activity related to under arousal. Pharmacotherapy combined with behavior therapy, social support and especially neurofeedback technique promise slight improvements PMID:20920283
NASA Astrophysics Data System (ADS)
Sayaka, Shimomura-Umemura; Ijiri, Kenichi
2006-01-01
Immediate-early genes serve as useful neurobiological tools for mapping brain activity induced by a sensory stimulation. In this study, we have examined brain activity related to gravity perception of medaka (Oryzias latipes) by use of c-fos. The gene, which is homologous to the c-fos genes of other vertebrates, was identified in medaka. Functionally important domains are highly conserved among all the vertebrate species analyzed. Intraperitoneal administration of kainic acid transiently induced the c-fos mRNAs in medaka brains. The results indicate that the expression of c-fos can be utilized as a suitable anatomical marker for the increased neural activities in the central nervous system of medaka. Fish were continuously exposed to 3 g hypergravity by centrifugation. Investigation of c-fos mRNA expression indicated that c-fos mRNA significantly increased 30 min after a start of 3 g exposure. The distribution of its transcripts within the brains was analyzed by an in situ hybridization method. The 3-g treated medakas displayed c-fos positive cells in their brainstem regions, which are related to vestibular function, such as torus semicircularis, nucleus tangentialis, posterior octavu nucleus, and inferior olive. Our results established a method to follow the effect of gravity stimulation, which can be used to investigate gravity perception.
Mendes, Niele D; Fernandes, Artur; Almeida, Glaucia M; Santos, Luis E; Selles, Maria Clara; Lyra-Silva, Natalia; Machado, Carla M; Horta-Júnior, José A C; Louzada, Paulo R; De Felice, Fernanda G; Alvez-Leon, Soniza; Marcondes, Jorge; Assirati, João Alberto; Matias, Caio M; Klein, William L; Garcia-Cairasco, Norberto; Ferreira, Sergio T; Neder, Luciano; Sebollela, Adriano
2018-05-31
Slice cultures have been prepared from several organs. With respect to the brain, advantages of slice cultures over dissociated cell cultures include maintenance of the cytoarchitecture and neuronal connectivity. Slice cultures from adult human brain have been reported and constitute a promising method to study neurological diseases. Despite this potential, few studies have characterized in detail cell survival and function along time in short-term, free-floating cultures. We used tissue from adult human brain cortex from patients undergoing temporal lobectomy to prepare 200 μm-thick slices. Along the period in culture, we evaluated neuronal survival, histological modifications, and neurotransmitter release. The toxicity of Alzheimer's-associated Aβ oligomers (AβOs) to cultured slices was also analyzed. Neurons in human brain slices remain viable and neurochemically active for at least four days in vitro, which allowed detection of binding of AβOs. We further found that slices exposed to AβOs presented elevated levels of hyperphosphorylated Tau, a hallmark of Alzheimer's disease. Although slice cultures from adult human brain have been previously prepared, this is the first report to analyze cell viability and neuronal activity in short-term free-floating cultures as a function of days in vitro. Once surgical tissue is available, the current protocol is easy to perform and produces functional slices from adult human brain. These slice cultures may represent a preferred model for translational studies of neurodegenerative disorders when long term culturing in not required, as in investigations on AβO neurotoxicity. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somani, S.M.; Dube, S.N.
1989-01-01
Dose response of physostigmine (Phy) was studied in rat using various doses. Rats were sacrificed 15 min after Phy administration. Blood and tissues were analyzed for ChE activity by radiometric method and Phy concentration by HPLC method. A comparison of ChE values in different tissues of rats indicated that ChE activity was highest in brain and least in diaphragm. The enzyme activity was eleven times more in brain as compared to diaphragm. Phy produced a dose-dependent inhibition of ChE in RBC, brain and diaphragm from 50 to 200 {mu}g/kg, then ChE inhibition was plateaued from 200 to 500 {mu}g/kg inmore » these tissues. A dose related ChE inhibition was seen in heart and thigh muscle from 50 to 500 {mu}g/kg. Phy concentration increased linearly from 50 to 400 {mu}g/kg in plasma, brain, heart and thigh muscle. These results indicate that ChE inhibition is linear up to 200 {mu}g/kg in RBC, 150 {mu}g/kg in brain and 300 {mu}g/kg in heart. This linearity is not consistent in other tissues.« less
Anticholinesterase Effect on Motor Kinematic Measures and Brain Activation in Parkinson’s Disease
Mentis, Marc J.; Delalot, Dominique; Naqvi, Hassan; Gordon, Mark F.; Gudesblatt, Mark; Edwards, Christine; Donatelli, Luke; Dhawan, Vijay; Eidelberg, David
2015-01-01
Anticholinesterase (AChE) drugs are being prescribed off label for nonmotor symptoms in Parkinson’s disease (PD). Theoretically, these drugs can impair motor function. A small literature suggests AChE therapy has little effect on clinical motor evaluation; however, no study has made objective motor kinematic measures or evaluated brain function. We hypothesized that even if clinical examination was normal in PD patients on dopamine therapy, (1) sensitive kinematic measures would be abnormal during AChE therapy or (2) normal kinematic measures would be maintained by compensatory brain activation. We carried out a randomized, double-blind, placebo-controlled trial of 8 weeks donepezil (10 mg/day) in 17 PD subjects. Subjects carried out a computerized motor task during a positron emission tomography (PET) scan before starting the drug and again after 8 weeks of donepezil or placebo. Kinematic measures of motor function and PET scans were analyzed to compare the effects of donepezil and placebo. Neither placebo nor donepezil altered motor kinematic measures. Furthermore, movement integrity while on donepezil was maintained without compensatory brain activity. Donepezil 10 mg/day can be given for nonmotor symptoms in PD without adverse motor effects or compensatory brain activity. PMID:16228997
Tissue enzyme studies in Macaca nemestrina monkeys.
NASA Technical Reports Server (NTRS)
Hubbard, R. W.; Hoffman, R. A.; Jenkins, D.
1971-01-01
Total enzyme activities in fresh tissue specimens from major organs of Macaca nemestrina were analyzed for lactic dehydrogenase (LDH), creatine phosphokinase (CPK), and aldolase. The concentration of these enzymes varied among the different tissue with skeletal muscle, heart, and brain having the highest activities. LDH isozymes determinations for the various tissues were also made. The spectrum of LDH isozyme distribution appears to be quite specific and characteristic for at least some of the tissues analyzed.
Mapping the human brain during a specific Vojta's tactile input: the ipsilateral putamen's role.
Sanz-Esteban, Ismael; Calvo-Lobo, Cesar; Ríos-Lago, Marcos; Álvarez-Linera, Juan; Muñoz-García, Daniel; Rodríguez-Sanz, David
2018-03-01
A century of research in human brain parcellation has demonstrated that different brain areas are associated with functional tasks. New neuroscientist perspectives to achieve the parcellation of the human brain have been developed to know the brain areas activation and its relationship with different stimuli. This descriptive study aimed to compare brain regions activation by specific tactile input (STI) stimuli according to the Vojta protocol (STI-group) to a non-STI stimulation (non-STI-group). An exploratory functional magnetic resonance imaging (fMRI) study was performed. The 2 groups of participants were passively stimulated by an expert physical therapist using the same paradigm structure, although differing in the place of stimulation. The stimulation was presented to participants using a block design in all cases. A sample of 16 healthy participants, 5 men and 11 women, with mean age 31.31 ± 8.13 years was recruited. Indeed, 12 participants were allocated in the STI-group and 4 participants in the non-STI-group. fMRI was used to map the human brain in vivo while these tactile stimuli were being applied. Data were analyzed using a general linear model in SPM12 implemented in MATLAB. Differences between groups showed a greater activation in the right cortical areas (temporal and frontal lobes), subcortical regions (thalamus, brainstem, and basal nuclei), and in the cerebellum (anterior lobe). STI-group had specific difference brain activation areas, such as the ipsilateral putamen. Future studies should study clinical implications in neurorehabilitation patients.
The effect of observers on behavior and the brain during aggressive encounters
Desjardins, Julie K.; Becker, Lisa; Fernald, Russell D.
2015-01-01
What effect does an audience have on an animal’s behavior and where is this influence registered in the brain? To answer these questions, we analyzed male cichlid fish fighting in the presence of audiences of various compositions and measured expression of immediate early genes in the brain as a proxy for neural activity. We hypothesized their behavior would change depending on who was watching them. We measured behavioral responses from both the “watchers” and the “watched” during aggressive encounters and found that males fighting in the presence of an audience were more aggressive than males fighting without an audience. Depending on the nature of the audience, immediate early gene expression in key brain nuclei was differentially influenced. Both when an audience of larger males watched fighting males, and when they were watching larger males fighting, nuclei in the brain considered homologous with mammalian nuclei known to be associated with anxiety showed increased activity. When males were in the presence of any audience or when males saw any other males fighting, nuclei in the brain known to be involved in reproduction and aggression were differentially activated relative to control animals. In all cases, there was a close relationship between patterns of brain gene expression between fighters and observers. This suggests that the network of brain regions known as the social behavior network, common across vertebrates, are activated not only in association with the expression of social behavior but also by the reception of social information. PMID:26097004
Balconi, Michela; Vanutelli, Maria Elide
2016-01-01
The present research explored the effect of cross-modal integration of emotional cues (auditory and visual (AV)) compared with only visual (V) emotional cues in observing interspecies interactions. The brain activity was monitored when subjects processed AV and V situations, which represented an emotional (positive or negative), interspecies (human-animal) interaction. Congruence (emotionally congruous or incongruous visual and auditory patterns) was also modulated. electroencephalography brain oscillations (from delta to beta) were analyzed and the cortical source localization (by standardized Low Resolution Brain Electromagnetic Tomography) was applied to the data. Frequency band (mainly low-frequency delta and theta) showed a significant brain activity increasing in response to negative compared to positive interactions within the right hemisphere. Moreover, differences were found based on stimulation type, with an increased effect for AV compared with V. Finally, delta band supported a lateralized right dorsolateral prefrontal cortex (DLPFC) activity in response to negative and incongruous interspecies interactions, mainly for AV. The contribution of cross-modality, congruence (incongruous patterns), and lateralization (right DLPFC) in response to interspecies emotional interactions was discussed at light of a "negative lateralized effect."
Effect of Pilates Training on Alpha Rhythm
Bian, Zhijie; Sun, Hongmin; Lu, Chengbiao; Yao, Li; Chen, Shengyong; Li, Xiaoli
2013-01-01
In this study, the effect of Pilates training on the brain function was investigated through five case studies. Alpha rhythm changes during the Pilates training over the different regions and the whole brain were mainly analyzed, including power spectral density and global synchronization index (GSI). It was found that the neural network of the brain was more active, and the synchronization strength reduced in the frontal and temporal regions due to the Pilates training. These results supported that the Pilates training is very beneficial for improving brain function or intelligence. These findings maybe give us some line evidence to suggest that the Pilates training is very helpful for the intervention of brain degenerative diseases and cogitative dysfunction rehabilitation. PMID:23861723
Programming an offline-analyzer of motor imagery signals via python language.
Alonso-Valerdi, Luz María; Sepulveda, Francisco
2011-01-01
Brain Computer Interface (BCI) systems control the user's environment via his/her brain signals. Brain signals related to motor imagery (MI) have become a widespread method employed by the BCI community. Despite the large number of references describing the MI signal treatment, there is not enough information related to the available programming languages that could be suitable to develop a specific-purpose MI-based BCI. The present paper describes the development of an offline-analysis system based on MI-EEG signals via open-source programming languages, and the assessment of the system using electrical activity recorded from three subjects. The analyzer recognized at least 63% of the MI signals corresponding to three classes. The results of the offline analysis showed a promising performance considering that the subjects have never undergone MI trainings.
Zheng, Yu; Wang, Yuying; Lan, Yujun; Qu, Xiaodong; Lin, Kelin; Zhang, Jiping; Qu, Shanshan; Wang, Yanjie; Tang, Chunzhi; Huang, Yong
2016-01-01
This Study observed the relevant brain areas activated by acupuncture at the Taichong acupoint (LR3) and analyzed the functional connectivity among brain areas using resting state functional magnetic resonance imaging (fMRI) to explore the acupoint specificity of the Taichong acupoint. A total of 45 healthy subjects were randomly divided into the Taichong (LR3) group, sham acupuncture group and sham acupoint group. Subjects received resting state fMRI before acupuncture, after true (sham) acupuncture in each group. Analysis of changes in connectivity among the brain areas was performed using the brain functional connectivity method. The right cerebrum temporal lobe was selected as the seed point to analyze the functional connectivity. It had a functional connectivity with right cerebrum superior frontal gyrus, limbic lobe cingulate gyrus and left cerebrum inferior temporal gyrus (BA 37), inferior parietal lobule compared by before vs. after acupuncture at LR3, and right cerebrum sub-lobar insula and left cerebrum middle frontal gyrus, medial frontal gyrus compared by true vs. sham acupuncture at LR3, and right cerebrum occipital lobe cuneus, occipital lobe sub-gyral, parietal lobe precuneus and left cerebellum anterior lobe culmen by acupuncture at LR3 vs. sham acupoint. Acupuncture at LR3 mainly specifically activated the brain functional network that participates in visual function, associative function, and emotion cognition, which are similar to the features on LR3 in tradition Chinese medicine. These brain areas constituted a neural network structure with specific functions that had specific reference values for the interpretation of the acupoint specificity of the Taichong acupoint.
Separating brain processing of pain from that of stimulus intensity.
Oertel, Bruno G; Preibisch, Christine; Martin, Till; Walter, Carmen; Gamer, Matthias; Deichmann, Ralf; Lötsch, Jörn
2012-04-01
Regions of the brain network activated by painful stimuli are also activated by nonpainful and even nonsomatosensory stimuli. We therefore analyzed where the qualitative change from nonpainful to painful perception at the pain thresholds is coded. Noxious stimuli of gaseous carbon dioxide (n = 50) were applied to the nasal mucosa of 24 healthy volunteers at various concentrations from 10% below to 10% above the individual pain threshold. Functional magnetic resonance images showed that these trigeminal stimuli activated brain regions regarded as the "pain matrix." However, most of these activations, including the posterior insula, the primary and secondary somatosensory cortex, the amygdala, and the middle cingulate cortex, were associated with quantitative changes in stimulus intensity and did not exclusively reflect the qualitative change from nonpainful to pain. After subtracting brain activations associated with quantitative changes in the stimuli, the qualitative change, reflecting pain-exclusive activations, could be localized mainly in the posterior insular cortex. This shows that cerebral processing of noxious stimuli focuses predominately on the quantitative properties of stimulus intensity in both their sensory and affective dimensions, whereas the integration of this information into the perception of pain is restricted to a small part of the pain matrix. Copyright © 2011 Wiley Periodicals, Inc.
Rey, Beatriz; Rodriguez-Pujadas, Aina; Breton-Lopez, Juani; Barros-Loscertales, Alfonso; Baños, Rosa M; Botella, Cristina; Alcañiz, Mariano; Avila, Cesar
2014-01-01
Background To date, still images or videos of real animals have been used in functional magnetic resonance imaging protocols to evaluate the brain activations associated with small animals’ phobia. Objective The objective of our study was to evaluate the brain activations associated with small animals’ phobia through the use of virtual environments. This context will have the added benefit of allowing the subject to move and interact with the environment, giving the subject the illusion of being there. Methods We have analyzed the brain activation in a group of phobic people while they navigated in a virtual environment that included the small animals that were the object of their phobia. Results We have found brain activation mainly in the left occipital inferior lobe (P<.05 corrected, cluster size=36), related to the enhanced visual attention to the phobic stimuli; and in the superior frontal gyrus (P<.005 uncorrected, cluster size=13), which is an area that has been previously related to the feeling of self-awareness. Conclusions In our opinion, these results demonstrate that virtual stimulus can enhance brain activations consistent with previous studies with still images, but in an environment closer to the real situation the subject would face in their daily lives. PMID:25654753
Spatiotemporal patterns of ERP based on combined ICA-LORETA analysis
NASA Astrophysics Data System (ADS)
Zhang, Jiacai; Guo, Taomei; Xu, Yaqin; Zhao, Xiaojie; Yao, Li
2007-03-01
In contrast to the FMRI methods widely used up to now, this method try to understand more profoundly how the brain systems work under sentence processing task map accurately the spatiotemporal patterns of activity of the large neuronal populations in the human brain from the analysis of ERP data recorded on the brain scalp. In this study, an event-related brain potential (ERP) paradigm to record the on-line responses to the processing of sentences is chosen as an example. In order to give attention to both utilizing the ERPs' temporal resolution of milliseconds and overcoming the insensibility of cerebral location ERP sources, we separate these sources in space and time based on a combined method of independent component analysis (ICA) and low-resolution tomography (LORETA) algorithms. ICA blindly separate the input ERP data into a sum of temporally independent and spatially fixed components arising from distinct or overlapping brain or extra-brain sources. And then the spatial maps associated with each ICA component are analyzed, with use of LORETA to uniquely locate its cerebral sources throughout the full brain according to the assumption that neighboring neurons are simultaneously and synchronously activated. Our results show that the cerebral computation mechanism underlies content words reading is mediated by the orchestrated activity of several spatially distributed brain sources located in the temporal, frontal, and parietal areas, and activate at distinct time intervals and are grouped into different statistically independent components. Thus ICA-LORETA analysis provides an encouraging and effective method to study brain dynamics from ERP.
NASA Astrophysics Data System (ADS)
Forbes, Angus; Villegas, Javier; Almryde, Kyle R.; Plante, Elena
2014-03-01
In this paper, we present a novel application, 3D+Time Brain View, for the stereoscopic visualization of functional Magnetic Resonance Imaging (fMRI) data gathered from participants exposed to unfamiliar spoken languages. An analysis technique based on Independent Component Analysis (ICA) is used to identify statistically significant clusters of brain activity and their changes over time during different testing sessions. That is, our system illustrates the temporal evolution of participants' brain activity as they are introduced to a foreign language through displaying these clusters as they change over time. The raw fMRI data is presented as a stereoscopic pair in an immersive environment utilizing passive stereo rendering. The clusters are presented using a ray casting technique for volume rendering. Our system incorporates the temporal information and the results of the ICA into the stereoscopic 3D rendering, making it easier for domain experts to explore and analyze the data.
Safonova, O A; Popova, T N; Kryl'skii, D V
2016-01-01
It was studied the total antioxidant activity, content of primary lipid peroxidation (LPO) products and reduced glutathione, and the activity of glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase, and NADP-isocitrate dehydrogenase in rat tissues under phenylethyl biguanide (phenfor- min) action on the background of experimental brain ischemia/reperfusion development. It is stablished the analyzed parameters, increasing under ischemia/reperfusion conditions in the brain and blood serum of animals, exhibit a decrease upon the introduction of this biguanide derivative. The obtained data can be explained by a decrease in degree of mobilization of the antioxidant system--in particular, of its glutathione chain--in the pathologic state. Hence, there is a need in NADPH supply for the system functioning compared with the pathology. Thus, phenylethyl biguanide demonstrates its antioxidant and protective properties under oxidative stress development that is accompanied by accumulation of the products of free radical oxidation of biomolecules during the ischemic brain injury.
Baranowska-Bosiacka, Irena; Falkowska, Anna; Gutowska, Izabela; Gąssowska, Magdalena; Kolasa-Wołosiuk, Agnieszka; Tarnowski, Maciej; Chibowska, Karina; Goschorska, Marta; Lubkowska, Anna; Chlubek, Dariusz
2017-09-01
Lead (Pb) is an environmental neurotoxin which particularly affects the developing brain but the molecular mechanism of its neurotoxicity still needs clarification. The aim of this paper was to examine whether pre- and neonatal exposure to Pb (concentration of Pb in rat offspring blood below the "threshold level") may affect the brain's energy metabolism in neurons and astrocytes via the amount of available glycogen. We investigated the glycogen concentration in the brain, as well as the expression of the key enzymes involved in glycogen metabolism in brain: glycogen synthase 1 (Gys1), glycogen phosphorylase (PYGM, an isoform active in astrocytes; and PYGB, an isoform active in neurons) and phosphorylase kinase β (PHKB). Moreover, the expression of connexin 43 (Cx43) was evaluated to analyze whether Pb poisoning during the early phase of life may affect the neuron-astrocytes' metabolic cooperation. This work shows for the first time that exposure to Pb in early life can impair brain energy metabolism by reducing the amount of glycogen and decreasing the rate of its metabolism. This reduction in brain glycogen level was accompanied by a decrease in Gys1 expression. We noted a reduction in the immunoreactivity and the gene expression of both PYGB and PYGM isoform, as well as an increase in the expression of PHKB in Pb-treated rats. Moreover, exposure to Pb induced decrease in connexin 43 immunoexpression in all the brain structures analyzed, both in astrocytes as well as in neurons. Our data suggests that exposure to Pb in the pre- and neonatal periods results in a decrease in the level of brain glycogen and a reduction in the rate of its metabolism, thereby reducing glucose availability, which as a further consequence may lead to the impairment of brain energy metabolism and the metabolic cooperation between neurons and astrocytes. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhu, Xi; He, Zhongqiong; Luo, Cheng; Qiu, Xiangmiao; He, Shixu; Peng, Anjiao; Zhang, Lin; Chen, Lei
2018-03-15
To investigate alterations in spontaneous brain activity in MRI-negative refractory temporal lobe epilepsy patients with major depressive disorder using resting-state functional magnetic resonance imaging (RS-fMRI). Eighteen MRI-negative refractory temporal lobe epilepsy patients with major depressive disorder (PDD), 17 MRI-negative refractory temporal lobe epilepsy patients without major depressive disorder (nPDD), and 21 matched healthy controls (HC) were recruited from West China Hospital of SiChuan University from April 2016 to June 2017. The Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) and 17-item Hamilton Depression Rating Scale were employed to confirm the diagnosis of major depressive disorder and assess the severity of depression. All participants underwent RS-fMRI scans using a 3.0T MRI system. MRI data were compared and analyzed using the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) to measure spontaneous brain activity. These two methods were both used to evaluate spontaneous cerebral activity. The PDD group showed significantly altered spontaneous brain activity in the bilateral mesial prefrontal cortex, precuneus, angular gyrus, right parahippocampal gyrus, and right temporal pole. Meanwhile, compared with HC, the nPDD group demonstrated altered spontaneous brain activity in the temporal neocortex but no changes in mesial temporal structures. The PDD group showed regional brain activity alterations in the prefrontal-limbic system and dysfunction of the default mode network. The underlying pathophysiology of PDD may be provided for further studies. Copyright © 2018 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Han, Hyemin
2017-01-01
The present study meta-analyzed 45 experiments with 959 subjects and 463 activation foci reported in 43 published articles that investigated the neural mechanism of moral functions by comparing neural activity between the moral task conditions and non-moral task conditions with the Activation Likelihood Estimation method. The present study…
Grape seed and skin extract prevents high-fat diet-induced brain lipotoxicity in rat.
Charradi, Kamel; Elkahoui, Salem; Karkouch, Ines; Limam, Ferid; Hassine, Fethy Ben; Aouani, Ezzedine
2012-09-01
Obesity is related to an elevated risk of dementia and the physiologic mechanisms whereby fat adversely affects the brain are poorly understood. The present investigation analyzed the effect of a high fat diet (HFD) on brain steatosis and oxidative stress and the intracellular mediators involved in signal transduction, as well as the protection offered by grape seed and skin extract (GSSE). HFD induced ectopic deposition of cholesterol and phospholipid but not triglyceride. Moreover brain lipotoxicity is linked to an oxidative stress characterized by increased lipoperoxidation and carbonylation, inhibition of glutathione peroxidase and superoxide dismutase activities, depletion of manganese and a concomitant increase in ionizable calcium and acetylcholinesterase activity. Importantly GSSE alleviated all the deleterious effects of HFD treatment. Altogether our data indicated that HFD could find some potential application in the treatment of manganism and that GSSE should be used as a safe anti-lipotoxic agent in the prevention and treatment of fat-induced brain injury.
Horikawa, Tomoyasu; Kamitani, Yukiyasu
2017-01-01
Dreaming is generally thought to be generated by spontaneous brain activity during sleep with patterns common to waking experience. This view is supported by a recent study demonstrating that dreamed objects can be predicted from brain activity during sleep using statistical decoders trained with stimulus-induced brain activity. However, it remains unclear whether and how visual image features associated with dreamed objects are represented in the brain. In this study, we used a deep neural network (DNN) model for object recognition as a proxy for hierarchical visual feature representation, and DNN features for dreamed objects were analyzed with brain decoding of fMRI data collected during dreaming. The decoders were first trained with stimulus-induced brain activity labeled with the feature values of the stimulus image from multiple DNN layers. The decoders were then used to decode DNN features from the dream fMRI data, and the decoded features were compared with the averaged features of each object category calculated from a large-scale image database. We found that the feature values decoded from the dream fMRI data positively correlated with those associated with dreamed object categories at mid- to high-level DNN layers. Using the decoded features, the dreamed object category could be identified at above-chance levels by matching them to the averaged features for candidate categories. The results suggest that dreaming recruits hierarchical visual feature representations associated with objects, which may support phenomenal aspects of dream experience.
A Bayesian Model of Category-Specific Emotional Brain Responses
Wager, Tor D.; Kang, Jian; Johnson, Timothy D.; Nichols, Thomas E.; Satpute, Ajay B.; Barrett, Lisa Feldman
2015-01-01
Understanding emotion is critical for a science of healthy and disordered brain function, but the neurophysiological basis of emotional experience is still poorly understood. We analyzed human brain activity patterns from 148 studies of emotion categories (2159 total participants) using a novel hierarchical Bayesian model. The model allowed us to classify which of five categories—fear, anger, disgust, sadness, or happiness—is engaged by a study with 66% accuracy (43-86% across categories). Analyses of the activity patterns encoded in the model revealed that each emotion category is associated with unique, prototypical patterns of activity across multiple brain systems including the cortex, thalamus, amygdala, and other structures. The results indicate that emotion categories are not contained within any one region or system, but are represented as configurations across multiple brain networks. The model provides a precise summary of the prototypical patterns for each emotion category, and demonstrates that a sufficient characterization of emotion categories relies on (a) differential patterns of involvement in neocortical systems that differ between humans and other species, and (b) distinctive patterns of cortical-subcortical interactions. Thus, these findings are incompatible with several contemporary theories of emotion, including those that emphasize emotion-dedicated brain systems and those that propose emotion is localized primarily in subcortical activity. They are consistent with componential and constructionist views, which propose that emotions are differentiated by a combination of perceptual, mnemonic, prospective, and motivational elements. Such brain-based models of emotion provide a foundation for new translational and clinical approaches. PMID:25853490
Salmina, Alla B; Lopatina, Olga; Kuvacheva, Natalia V; Higashida, Haruhiro
2013-01-01
This review summarizes the literature and our own data regarding the role of NAD⁺-glycohydrolase/CD38-controlled molecular mechanisms of hypothalamic and pituitary oxytocin secretion in social behavior regulation. Current approaches to the modulation of both CD38 expression and brain cell activity that represent prospective treatments for disorders associated with altered social behavior are discussed.
Effects of lithium on brain glucose metabolism in healthy men.
Kohno, Tomoya; Shiga, Tohru; Toyomaki, Atsuhito; Kusumi, Ichiro; Matsuyama, Tetsuaki; Inoue, Tetsuya; Katoh, Chietsugu; Koyama, Tsukasa; Tamaki, Nagara
2007-12-01
Lithium is clinically available for the treatment of mood disorders. However, it has remained unclear how lithium acts on the brain to produce its effects. The aim of this study was to evaluate the effects of chronic lithium on human brain activity using positron emission tomography and clarify the correlation between brain activity changes and cognitive functional changes as induced by chronic lithium administration. A total of 20 healthy male subjects (mean age, 32 +/- 6 years) underwent positron emission tomographic scans with F-fluorodeoxyglucose and a battery of neuropsychological tests at baseline condition and after 4 weeks of lithium administration. Brain metabolic data were analyzed using statistical parametric mapping. Lithium increased relative regional cerebral glucose metabolism (rCMRglc) in the bilateral dorsomedial frontal cortices including the anterior cingulate gyrus and decreased rCMRglc in the right cerebellum and left lingual gyrus/cuneus. There was no difference in any of the variables of cognitive functions between the baseline condition and after chronic lithium administration. There was no correlation between rCMRglc changes in any of the brain regions and individual variable changes in any of the neuropsychological tests. The results suggest that the effects of chronic lithium are associated with increased activity in the bilateral dorsomedial frontal cortices including the anterior cingulate gyrus and decreased activity in the right cerebellum and left lingual gyrus/cuneus.
Mapping the human brain during a specific Vojta's tactile input: the ipsilateral putamen's role
Sanz-Esteban, Ismael; Calvo-Lobo, Cesar; Ríos-Lago, Marcos; Álvarez-Linera, Juan; Muñoz-García, Daniel; Rodríguez-Sanz, David
2018-01-01
Abstract A century of research in human brain parcellation has demonstrated that different brain areas are associated with functional tasks. New neuroscientist perspectives to achieve the parcellation of the human brain have been developed to know the brain areas activation and its relationship with different stimuli. This descriptive study aimed to compare brain regions activation by specific tactile input (STI) stimuli according to the Vojta protocol (STI-group) to a non-STI stimulation (non-STI-group). An exploratory functional magnetic resonance imaging (fMRI) study was performed. The 2 groups of participants were passively stimulated by an expert physical therapist using the same paradigm structure, although differing in the place of stimulation. The stimulation was presented to participants using a block design in all cases. A sample of 16 healthy participants, 5 men and 11 women, with mean age 31.31 ± 8.13 years was recruited. Indeed, 12 participants were allocated in the STI-group and 4 participants in the non-STI-group. fMRI was used to map the human brain in vivo while these tactile stimuli were being applied. Data were analyzed using a general linear model in SPM12 implemented in MATLAB. Differences between groups showed a greater activation in the right cortical areas (temporal and frontal lobes), subcortical regions (thalamus, brainstem, and basal nuclei), and in the cerebellum (anterior lobe). STI-group had specific difference brain activation areas, such as the ipsilateral putamen. Future studies should study clinical implications in neurorehabilitation patients. PMID:29595683
The effect of observers on behavior and the brain during aggressive encounters.
Desjardins, Julie K; Becker, Lisa; Fernald, Russell D
2015-10-01
What effect does an audience have on an animal's behavior and where is this influence registered in the brain? To answer these questions, we analyzed male cichlid fish fighting in the presence of audiences of various compositions and measured expression of immediate early genes in the brain as a proxy for neural activity. We hypothesized their behavior would change depending on who was watching them. We measured behavioral responses from both the "watchers" and the "watched" during aggressive encounters and found that males fighting in the presence of an audience were more aggressive than males fighting without an audience. Depending on the nature of the audience, immediate early gene expression in key brain nuclei was differentially influenced. Both when an audience of larger males watched fighting males, and when they were watching larger males fighting, nuclei in the brain considered homologous with mammalian nuclei known to be associated with anxiety showed increased activity. When males were in the presence of any audience or when males saw any other males fighting, nuclei in the brain known to be involved in reproduction and aggression were differentially activated relative to control animals. In all cases, there was a close relationship between patterns of brain gene expression between fighters and observers. This suggests that the network of brain regions known as the social behavior network, common across vertebrates, are activated not only in association with the expression of social behavior but also by the reception of social information. Copyright © 2015 Elsevier B.V. All rights reserved.
Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Deuschl, G; Raethjen, J; Heute, U; Muthuraman, M
2012-01-01
Directionality analysis of signals originating from different parts of brain during motor tasks has gained a lot of interest. Since brain activity can be recorded over time, methods of time series analysis can be applied to medical time series as well. Granger Causality is a method to find a causal relationship between time series. Such causality can be referred to as a directional connection and is not necessarily bidirectional. The aim of this study is to differentiate between different motor tasks on the basis of activation maps and also to understand the nature of connections present between different parts of the brain. In this paper, three different motor tasks (finger tapping, simple finger sequencing, and complex finger sequencing) are analyzed. Time series for each task were extracted from functional magnetic resonance imaging (fMRI) data, which have a very good spatial resolution and can look into the sub-cortical regions of the brain. Activation maps based on fMRI images show that, in case of complex finger sequencing, most parts of the brain are active, unlike finger tapping during which only limited regions show activity. Directionality analysis on time series extracted from contralateral motor cortex (CMC), supplementary motor area (SMA), and cerebellum (CER) show bidirectional connections between these parts of the brain. In case of simple finger sequencing and complex finger sequencing, the strongest connections originate from SMA and CMC, while connections originating from CER in either direction are the weakest ones in magnitude during all paradigms.
Lindholm, C; Gustavsson, A; Jönsson, L; Wimo, A
2013-05-01
Because the prevalence of many brain disorders rises with age, and brain disorders are costly, the economic burden of brain disorders will increase markedly during the next decades. The purpose of this study is to analyze how the costs to society vary with different levels of functioning and with the presence of a brain disorder. Resource utilization and costs from a societal viewpoint were analyzed versus cognition, activities of daily living (ADL), instrumental activities of daily living (IADL), brain disorder diagnosis and age in a population-based cohort of people aged 65 years and older in Nordanstig in Northern Sweden. Descriptive statistics, non-parametric bootstrapping and a generalized linear model (GLM) were used for the statistical analyses. Most people were zero users of care. Societal costs of dementia were by far the highest, ranging from SEK 262,000 (mild) to SEK 519,000 per year (severe dementia). In univariate analysis, all measures of functioning were significantly related to costs. When controlling for ADL and IADL in the multivariate GLM, cognition did not have a statistically significant effect on total cost. The presence of a brain disorder did not impact total cost when controlling for function. The greatest shift in costs was seen when comparing no dependency in ADL and dependency in one basic ADL function. It is the level of functioning, rather than the presence of a brain disorder diagnosis, which predicts costs. ADLs are better explanatory variables of costs than Mini mental state examination. Most people in a population-based cohort are zero users of care. Copyright © 2012 John Wiley & Sons, Ltd.
Schulze-Krebs, Anja; Canneva, Fabio; Schnepf, Rebecca; Dobner, Julia; Dieterich, Walburga; von Hörsten, Stephan
2016-01-15
Mammalian transglutaminases (TGs) catalyze the irreversible post-translational modifications of proteins, the most prominent of which is the calcium-dependent formation of covalent acyl transfers between the γ-carboxamide group of glutamine and the ε-amino-group of lysine (GGEL-linkage). In the central nervous system, at least four TG isoforms are present and some of them are differentially expressed under pathological conditions in human patients. However, the precise TG-isoform-dependent enzymatic activities in the brain as well as their anatomical distribution are unknown. Specificity of the used biotinylated peptides was analyzed using an in vitro assay. Isoform-specific TG activity was evaluated in in vitro and in situ studies, using brain extracts and native brain tissue obtained from rodents. Our method allowed us to reveal in vitro and in situ TG-isoform-dependent enzymatic activity in brain extracts and tissue of rats and mice, with a specific focus on TG6. In situ activity of this isoform varied between BACHD mice in comparison to their wt controls. TG isozyme-specific activity can be detected by isoform-specific biotinylated peptides in brain tissue sections of rodents to reveal differences in the anatomical and/or subcellular distribution of TG activity. Our findings yield the basis for a broader application of this method for the screening of pathological expression and activity of TGs in a variety of animal models of human diseases, as in the case of neurodegenerative conditions such as Huntington׳s, Parkinson׳s and Alzheimer׳s, where protein modification is involved as a key mechanism of disease progression. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Laurence, Audrey; Pichette, Julien; Angulo-Rodríguez, Leticia M.; Saint Pierre, Catherine; Lesage, Frédéric; Bouthillier, Alain; Nguyen, Dang Khoa; Leblond, Frédéric
2016-03-01
Following normal neuronal activity, there is an increase in cerebral blood flow and cerebral blood volume to provide oxygenated hemoglobin to active neurons. For abnormal activity such as epileptiform discharges, this hemodynamic response may be inadequate to meet the high metabolic demands. To verify this hypothesis, we developed a novel hyperspectral imaging system able to monitor real-time cortical hemodynamic changes during brain surgery. The imaging system is directly integrated into a surgical microscope, using the white-light source for illumination. A snapshot hyperspectral camera is used for detection (4x4 mosaic filter array detecting 16 wavelengths simultaneously). We present calibration experiments where phantoms made of intralipid and food dyes were imaged. Relative concentrations of three dyes were recovered at a video rate of 30 frames per second. We also present hyperspectral recordings during brain surgery of epileptic patients with concurrent electrocorticography recordings. Relative concentration maps of oxygenated and deoxygenated hemoglobin were extracted from the data, allowing real-time studies of hemodynamic changes with a good spatial resolution. Finally, we present preliminary results on phantoms obtained with an integrated spatial frequency domain imaging system to recover tissue optical properties. This additional module, used together with the hyperspectral imaging system, will allow quantification of hemoglobin concentrations maps. Our hyperspectral imaging system offers a new tool to analyze hemodynamic changes, especially in the case of epileptiform discharges. It also offers an opportunity to study brain connectivity by analyzing correlations between hemodynamic responses of different tissue regions.
The regulation of catalase activity by PPAR γ is affected by α-synuclein
Yakunin, Eugenia; Kisos, Haya; Kulik, Willem; Grigoletto, Jessica; Wanders, Ronald J A; Sharon, Ronit
2014-01-01
Objective While evidence for oxidative injury is frequently detected in brains of humans affected by Parkinson's disease (PD) and in relevant animal models, there is uncertainty regarding its cause. We tested the potential role of catalase in the oxidative injury that characterizes PD. Methods Utilizing brains of A53T α-Syn and ntg mice, and cultured cells, we analyzed catalase activity and expression, and performed biochemical analyses of peroxisomal metabolites. Results Lower catalase expression and lower activity levels were detected in A53T α-Syn brains and α-Syn-expressing cells. The effect on catalase activity was independent of disease progression, represented by mouse age and α-Syn mutation, suggesting a potential physiological function for α-Syn. Notably, catalase activity and expression were unaffected in brains of mice modeling Alzheimer's disease. Moreover, we found that α-Syn expression downregulate the peroxisome proliferator-activated receptor (PPAR)γ, which controls catalase transcription. Importantly, activation of either PPARγ2, PPARα or retinoic X receptor eliminated the inhibiting effect of α-Syn on catalase activity. In addition, activation of these nuclear receptors enhanced the accumulation of soluble α-Syn oligomers, resulting in a positive association between the degree of soluble α-Syn oligomers and catalase activity. Of note, a comprehensive biochemical analysis of specific peroxisomal metabolites indicated no signs of dysfunction in specific peroxisomal activities in brains of A53T α-Syn mice. Interpretation Our results suggest that α-Syn expression may interfere with the complex and overlapping network of nuclear receptors transcription activation. In result, catalase activity is affected through mechanisms involved in the regulation of soluble α-Syn oligomers. PMID:25356396
Dickerson, B C; Miller, S L; Greve, D N; Dale, A M; Albert, M S; Schacter, D L; Sperling, R A
2007-01-01
The ability to spontaneously recall recently learned information is a fundamental mnemonic activity of daily life, but has received little study using functional neuroimaging. We developed a functional MRI (fMRI) paradigm to study regional brain activity during encoding that predicts free recall. In this event-related fMRI study, ten lists of fourteen pictures of common objects were shown to healthy young individuals and regional brain activity during encoding was analyzed based on subsequent free recall performance. Free recall of items was predicted by activity during encoding in hippocampal, fusiform, and inferior prefrontal cortical regions. Within-subject variance in free recall performance for the ten lists was predicted by a linear combination of condition-specific inferior prefrontal, hippocampal, and fusiform activity. Recall performance was better for lists in which prefrontal activity was greater for all items of the list and hippocampal and fusiform activity were greater specifically for items that were recalled from the list. Thus, the activity of medial temporal, fusiform, and prefrontal brain regions during the learning of new information is important for the subsequent free recall of this information. These fronto-temporal brain regions act together as a large-scale memory-related network, the components of which make distinct yet interacting contributions during encoding that predict subsequent successful free recall performance.
Dickerson, B.C.; Miller, S.L.; Greve, D.N.; Dale, A.M.; Albert, M.S.; Schacter, D.L.; Sperling, R.A.
2009-01-01
The ability to spontaneously recall recently learned information is a fundamental mnemonic activity of daily life, but has received little study using functional neuroimaging. We developed a functional MRI (fMRI) paradigm to study regional brain activity during encoding that predicts free recall. In this event-related fMRI study, ten lists of fourteen pictures of common objects were shown to healthy young individuals and regional brain activity during encoding was analyzed based on subsequent free recall performance. Free recall of items was predicted by activity during encoding in hippocampal, fusiform, and inferior prefrontal cortical regions. Within-subject variance in free recall performance for the ten lists was predicted by a linear combination of condition-specific inferior prefrontal, hippocampal, and fusiform activity. Recall performance was better for lists in which pre-frontal activity was greater for all items of the list and hippocampal and fusi-form activity were greater specifically for items that were recalled from the list. Thus, the activity of medial temporal, fusiform, and prefrontal brain regions during the learning of new information is important for the subsequent free recall of this information. These fronto-temporal brain regions act together as a large-scale memory-related network, the components of which make distinct yet interacting contributions during encoding that predict subsequent successful free recall performance. PMID:17604356
Yuan, Wang; Ming, Zhang; Rana, Netra; Hai, Liu; Chen-wang, Jin; Shao-hui, Ma
2010-01-01
Pain-related studies have mainly been performed through traditional methods, which lack the rigorous analysis of anatomical locations. Functional magnetic resonance imaging (fMRI) is a noninvasive method detecting neural activity, and has the ability to precisely locate related activations in vivo. Moreover, few studies have used painful stimulation of changed intensity to investigate relevant functioning nuclei in the human brain. This study mainly focused on the pain-related activations induced by electrical stimulation with different intensities using fMRI. Furthermore, the electrophysiological characteristics of different pain-susceptible-neurons were analyzed to construct the pain modulatory network, which was corresponding to painful stimulus of changed intensity. Twelve volunteers underwent functional scanning receiving different electrical stimulation. The data were collected and analyzed to generate the corresponding functional activation maps and response time curves related to pain. The common activations were mainly located in several specific regions, including the secondary somatosensory cortex (SII), insula, anterior cingulate cortex (ACC), thalamus, and other cerebral regions. Moreover, innocuous electrical stimulation primarily activated the lateral portions of SII and thalamus, as well as the posterior insula, anterior ACC, whereas noxious electrical stimulation primarily activated the medial portions of SII and thalamus, as well as the anterior insula, the posterior ACC, with larger extensions and greater intensities. Several specified cerebral regions displayed different response patterns during electrical stimulation by means of fMRI, which implied that the corresponding pain-susceptible-neurons might process specific aspects of pain. Elucidation of functions on pain-related regions will help to understand the delicate pain modulation of human brain.
Luna-Lario, P; Ojeda, N; Tirapu-Ustarroz, J; Pena, J
2016-06-16
To analyze the impact of acquired brain injury towards the community integration (professional career, disability, and dependence) in a sample of people affected by vascular, traumatic and tumor etiology acquired brain damage, over a two year time period after the original injury, and also to examine what sociodemographic variables, premorbid and injury related clinical data can predict the level of the person's integration into the community. 106 adults sample suffering from acquired brain injury who were attended by the Neuropsychology and Neuropsychiatry Department at Hospital of Navarra (Spain) affected by memory deficit as their main sequel. Differences among groups have been analyzed by using t by Student, chi squared and U by Mann-Whitney tests. 19% and 29% of the participants who were actively working before the injury got back their previous status within one and two years time respectively. 45% of the total sample were recognized disabled and 17% dependant. No relationship between sociodemographic and clinical variables and functional parameters observed were found. Acquired brain damage presents a high intensity impact on affected person's life trajectory. Nevertheless, in Spain, its consequences at sociolaboral adjustment over the the two years following the damage through functional parameters analyzed with official governmental means over a vascular, traumatic and tumor etiology sample had never been studied before.
Gómez, Carlos; Poza, Jesús; Gutiérrez, María T; Prada, Esther; Mendoza, Nuria; Hornero, Roberto
2016-11-01
The aim of this study was to assess the changes induced in electroencephalographic (EEG) activity by a Snoezelen(®) intervention on individuals with brain-injury and control subjects. EEG activity was recorded preceding and following a Snoezelen(®) session in 18 people with cerebral palsy (CP), 18 subjects who have sustained traumatic brain-injury (TBI) and 18 controls. EEG data were analyzed by means of spectral and nonlinear measures: median frequency (MF), individual alpha frequency (IAF), sample entropy (SampEn) and Lempel-Ziv complexity (LZC). Our results showed decreased values for MF, IAF, SampEn and LZC as a consequence of the therapy. The main changes between pre-stimulation and post-stimulation conditions were found in occipital and parietal brain areas. Additionally, these changes are more widespread in controls than in brain-injured subjects, which can be due to cognitive deficits in TBI and CP groups. Our findings support the notion that Snoezelen(®) therapy affects central nervous system, inducing a slowing of oscillatory activity, as well as a decrease of EEG complexity and irregularity. These alterations seem to be related with higher levels of relaxation of the participants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Neural activations associated with feedback and retrieval success
NASA Astrophysics Data System (ADS)
Wiklund-Hörnqvist, Carola; Andersson, Micael; Jonsson, Bert; Nyberg, Lars
2017-11-01
There is substantial behavioral evidence for a phenomenon commonly called "the testing effect", i.e. superior memory performance after repeated testing compared to re-study of to-be-learned materials. However, considerably less is known about the underlying neuro-cognitive processes that are involved in the initial testing phase, and thus underlies the actual testing effect. Here, we investigated functional brain activity related to test-enhanced learning with feedback. Subjects learned foreign vocabulary across three consecutive tests with correct-answer feedback. Functional brain-activity responses were analyzed in relation to retrieval and feedback events, respectively. Results revealed up-regulated activity in fronto-striatal regions during the first successful retrieval, followed by a marked reduction in activity as a function of improved learning. Whereas feedback improved behavioral performance across consecutive tests, feedback had a negligable role after the first successful retrieval for functional brain-activity modulations. It is suggested that the beneficial effects of test-enhanced learning is regulated by feedback-induced updating of memory representations, mediated via the striatum, that might underlie the stabilization of memory commonly seen in behavioral studies of the testing effect.
Inferior frontal cortex activity is modulated by reward sensitivity and performance variability.
Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Costumero, Víctor; Ventura-Campos, Noelia; Bustamante, Juan Carlos; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso
2016-02-01
High reward sensitivity has been linked with motivational and cognitive disorders related with prefrontal and striatal brain function during inhibitory control. However, few studies have analyzed the interaction among reward sensitivity, task performance and neural activity. Participants (N=57) underwent fMRI while performing a Go/No-go task with Frequent-go (77.5%), Infrequent-go (11.25%) and No-go (11.25%) stimuli. Task-associated activity was found in inhibition-related brain regions, with different activity patterns for right and left inferior frontal gyri (IFG): right IFG responded more strongly to No-go stimuli, while left IFG responded similarly to all infrequent stimuli. Reward sensitivity correlated with omission errors in Go trials and reaction time (RT) variability, and with increased activity in right and left IFG for No-go and Infrequent-go stimuli compared with Frequent-go. Bilateral IFG activity was associated with RT variability, with reward sensitivity mediating this association. These results suggest that reward sensitivity modulates behavior and brain function during executive control. Copyright © 2016 Elsevier B.V. All rights reserved.
Pal, Dilipkumar; Mazumder, Upal Kanti
2014-12-01
Mikania scandens, a twining herb that grows as a weed in India and Bangladesh is used as vegetables and is a good source of vitamin A, C, B complex, mikanin, sesquiterpenes, betasitosterin, stigmasterol and friedelin. The present communication reports CNS depressant activities with special emphasis to brain biogenic amines in mice. Ethanol extract of leaves of M. scandens (EEMS) was prepared by Soxhalation and analyzed chemically. EEMS potentiated sleeping time induced by pentobarbitone, diazepam and meprobamate and showed significant reduction in the number of writhes and stretches. EEMS caused significant protection against pentylene tetrazole-induced convulsion and increased catecholamines and brain amino acids level significantly. Results showed that EEMS produced good CNS depressant effects in mice.
Diffuse and Focal Brain Injury in a Large Animal Model of PTE: Mechanisms Underlying Epileptogenesis
2017-10-01
subacute and chronic post -injury periods as a potential prognostic marker for PTE. The SNTF blood test is an electrochemiluminescence-based sandwich...contribution of each of these types of injury to epileptogenic brain activity and ultimately post traumatic epilepsy (PTE) is unclear, as are the mechanisms...nine months post injury, and blood biomarkers are being analyzed throughout in order to evaluate them as potential prognostic measures for the
Fingolimod's Impact on MRI Brain Volume Measures in Multiple Sclerosis: Results from MS-MRIUS.
Zivadinov, Robert; Medin, Jennie; Khan, Nasreen; Korn, Jonathan R; Bergsland, Niels; Dwyer, Michael G; Chitnis, Tanuja; Naismith, Robert T; Alvarez, Enrique; Kinkel, Peter; Cohan, Stanley; Hunter, Samuel F; Silva, Diego; Weinstock-Guttman, Bianca
2018-05-11
Evidence is needed to understand the effect of fingolimod on slowing down brain atrophy progression in multiple sclerosis (MS) patients in clinical practice. We investigated the effect of fingolimod on brain atrophy in MS patients with active disease (clinically and/or magnetic resonance imaging [MRI]) versus no evidence of active disease (NEAD). MS and clinical outcome and MRI in the United States (MS-MRIUS) is a multicenter, retrospective study that included 590 relapsing-remitting MS patients, who initiated fingolimod, and were followed for a median of 16 months. Patients with active disease at baseline (245, 41.5%) were defined as those who had one or more relapses in the year previous starting fingolimod, and/or displayed gadolinium enhancing lesions(s) at baseline MRI scan, whereas patients with NEAD at baseline (345, 58.5%) did not fulfill these criteria. Annualized percentage brain volume change (PBVC) and percentage lateral ventricle volume change (PLVVC) over the follow-up were analyzed in both groups. Over the follow-up, the rate of PBVC was -.38% in active disease and -.25% in NEAD patients (P = .076), whereas PLLVC was 1.76% in active disease and .28% in NEAD patients (P = .046). No changes in timed 25-foot walk (P = .619) and Expanded Disability Status Scale (P = .275) scores or MRI lesion accumulation (P > 0.08) were detected, although the active disease group had a higher proportion of relapses during the follow-up period (P = .02). The study provides real-world evidence that rate of brain atrophy in MS patients with underlying active disease and NEAD in fingolimod treated patients is below the established pathological cutoff for loss of whole brain volume (>-.4%) or expansion of lateral ventricles (> 3.5%). Copyright © 2018 by the American Society of Neuroimaging.
Locomotor activity and tissue levels following acute ...
Pyrethroids produce neurotoxicity that depends, in part, on the chemical structure. Common behavioral effects include locomotor activity changes and specific toxic syndromes (types I and II). In general these neurobehavioral effects correlate well with peak internal dose metrics. Products of cyhalothrin, a type II pyrethroid, include mixtures of isomers (e.g., λ-cyhalothrin) as well as enriched active isomers (e.g., γ-cyhalothrin). We measured acute changes in locomotor activity in adult male rats and directly correlated these changes to peak brain and plasma concentrations of λ- and γ-cyhalothrin using a within-subject design. One-hour locomotor activity studies were conducted 1.5 h after oral gavage dosing, and immediately thereafter plasma and brains were collected for analyzing tissue levels using LC/MS/MS methods. Both isomers produced dose-related decreases in activity counts, and the effective dose range for γ-cyhalothrin was lower than for λ-cyhalothrin. Doses calculated to decrease activity by 50% were 2-fold lower for the γ-isomer (1.29 mg/kg) compared to λ-cyhalothrin (2.65 mg/kg). Salivation, typical of type II pyrethroids, was also observed at lower doses of γ-cyhalothrin. Administered dose correlated well with brain and plasma concentrations, which furthermore showed good correlations with activity changes. Brain and plasma levels were tightly correlated across doses. While γ-cyhalothrin was 2-fold more potent based on administ
[Three-dimensional reconstruction of functional brain images].
Inoue, M; Shoji, K; Kojima, H; Hirano, S; Naito, Y; Honjo, I
1999-08-01
We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: 1) routine images by SPM, 2) three-dimensional static images, and 3) three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface model is the most common method of three-dimensional display. However, the volume rendering method may be more effective for imaging regions such as the brain.
Törnbom, Karin; Sunnerhagen, Katharina S; Danielsson, Anna
2017-01-01
Physical activity has been established as being highly beneficial for health after stroke. There are considerable global efforts to find rehabilitation programs that encourage increased physical activity for persons with stroke. However, many persons with stroke or acquired brain injury do not reach recommended levels of physical activity and increased knowledge about why is needed. We aimed to explore views and experiences of physical activity and walking among persons with stroke or acquired brain injury. A qualitative study was conducted, among persons with stroke (n = 8) or acquired brain injury (n = 2) from a rehabilitation unit at Sahlgrenska University Hospital in Sweden. Semi-structured in-depth interviews were held about perceptions and experiences of walking and physical activity in general. Data were analyzed using qualitative content analysis, with categories that were determined inductively. Physical activity in general and walking ability more specifically were considered very important by the participants. However, physical activity was, regardless of exercising habits pre-injury, associated with different kinds of negative feelings and experiences. Commonly reported internal barriers in the current study were; fatigue, fear of falling or getting hurt in traffic, lack of motivation and depression. Reported external barriers were mostly related to walking, for example; bad weather, uneven ground, lack of company or noisy or too busy surroundings. Persons with stroke or acquired brain injury found it difficult to engage in and sustain an eligible level of physical activity. Understanding individual concerns about motivators and barriers surrounding physical activity may facilitate the work of forming tailor-made rehabilitation for these groups, so that the levels of physical activity and walking can increase.
Image Statistics and the Representation of Material Properties in the Visual Cortex
Baumgartner, Elisabeth; Gegenfurtner, Karl R.
2016-01-01
We explored perceived material properties (roughness, texturedness, and hardness) with a novel approach that compares perception, image statistics and brain activation, as measured with fMRI. We initially asked participants to rate 84 material images with respect to the above mentioned properties, and then scanned 15 of the participants with fMRI while they viewed the material images. The images were analyzed with a set of image statistics capturing their spatial frequency and texture properties. Linear classifiers were then applied to the image statistics as well as the voxel patterns of visually responsive voxels and early visual areas to discriminate between images with high and low perceptual ratings. Roughness and texturedness could be classified above chance level based on image statistics. Roughness and texturedness could also be classified based on the brain activation patterns in visual cortex, whereas hardness could not. Importantly, the agreement in classification based on image statistics and brain activation was also above chance level. Our results show that information about visual material properties is to a large degree contained in low-level image statistics, and that these image statistics are also partially reflected in brain activity patterns induced by the perception of material images. PMID:27582714
Image Statistics and the Representation of Material Properties in the Visual Cortex.
Baumgartner, Elisabeth; Gegenfurtner, Karl R
2016-01-01
We explored perceived material properties (roughness, texturedness, and hardness) with a novel approach that compares perception, image statistics and brain activation, as measured with fMRI. We initially asked participants to rate 84 material images with respect to the above mentioned properties, and then scanned 15 of the participants with fMRI while they viewed the material images. The images were analyzed with a set of image statistics capturing their spatial frequency and texture properties. Linear classifiers were then applied to the image statistics as well as the voxel patterns of visually responsive voxels and early visual areas to discriminate between images with high and low perceptual ratings. Roughness and texturedness could be classified above chance level based on image statistics. Roughness and texturedness could also be classified based on the brain activation patterns in visual cortex, whereas hardness could not. Importantly, the agreement in classification based on image statistics and brain activation was also above chance level. Our results show that information about visual material properties is to a large degree contained in low-level image statistics, and that these image statistics are also partially reflected in brain activity patterns induced by the perception of material images.
Zuberer, Agnieszka; Brandeis, Daniel; Drechsler, Renate
2015-01-01
While issues of efficacy and specificity are crucial for the future of neurofeedback training, there may be alternative designs and control analyses to circumvent the methodological and ethical problems associated with double-blind placebo studies. Surprisingly, most NF studies do not report the most immediate result of their NF training, i.e., whether or not children with ADHD gain control over their brain activity during the training sessions. For the investigation of specificity, however, it seems essential to analyze the learning and adaptation processes that take place in the course of the training and to relate improvements in self-regulated brain activity across training sessions to behavioral, neuropsychological and electrophysiological outcomes. To this aim, a review of studies on neurofeedback training with ADHD patients which include the analysis of learning across training sessions or relate training performance to outcome is presented. Methods on how to evaluate and quantify learning of EEG regulation over time are discussed. “Non-learning” has been reported in a small number of ADHD-studies, but has not been a focus of general methodological discussion so far. For this reason, selected results from the brain-computer interface (BCI) research on the so-called “brain-computer illiteracy”, the inability to gain control over one’s brain activity, are also included. It is concluded that in the discussion on specificity, more attention should be devoted to the analysis of EEG regulation performance in the course of the training and its impact on clinical outcome. It is necessary to improve the knowledge on characteristic cross-session and within-session learning trajectories in ADHD and to provide the best conditions for learning. PMID:25870550
Differential and brain region-specific regulation of Rap-1 and Epac in depressed suicide victims.
Dwivedi, Yogesh; Mondal, Amal C; Rizavi, Hooriyah S; Faludi, Gabor; Palkovits, Miklos; Sarosi, Andrea; Conley, Robert R; Pandey, Ghanshyam N
2006-06-01
Depression is a major public health problem. Despite many years of research, the molecular mechanisms associated with depression remain unclear. Rap-1, activated in response to many extracellular stimuli, is one of the major substrates of protein kinase A, which participates in myriad physiologic functions in the brain, including cell survival and synaptic plasticity. Rap-1 is also activated directly by cyclic adenosine monophosphate through Epac, and thus participates in mediating physiologic functions independent of protein kinase A. To examine whether the pathogenesis of depression is associated with altered activation and expression of Rap-1, as well as expression of Epac, in depressed suicide victims. Postmortem study. Tissues were obtained from the Lenhossek Human Brain Program, Semmelweis University, Budapest, Hungary, and the Brain Collection Program of the Maryland Psychiatric Research Center, Baltimore. Postmortem brains of 28 depressed suicide victims and 28 nonpsychiatric control subjects. Examination of brain tissues. Rap-1 activation as well as messenger RNA and protein levels of Rap-1 and Epac in prefrontal cortex, hippocampus, and cerebellum. Rap-1 activation was significantly reduced (P<.001) in prefrontal cortex and hippocampus in the suicide group. This was associated with significant reductions in Rap-1 messenger RNA and protein levels (P<.001). In contrast, protein level of only Epac-2 (P<.001) but not Epac-1 (P = .89) was significantly increased in prefrontal cortex and hippocampus of these subjects. These changes were present whether the 2 cohorts were analyzed together or separately. None of the measures showed any significant change in cerebellum in the suicide group. Given the importance of Rap-1 in neuroprotection and synaptic plasticity, our findings of differential regulation of Rap-1 and Epac between brain regions suggest the relevance of these molecules in the pathophysiology of depression.
Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu
2015-05-01
The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical regions. Graph theory-based methods were employed to further analyze their topological properties. As expected, all participants demonstrated small-world topology, suggesting a highly efficient topological structure. Furthermore, we found that smaller brains showed higher local efficiency, whereas larger brains showed higher global efficiency, reflecting a suitable efficiency balance between local specialization and global integration of brain functional activity. Compared with right-handers, significant alterations in nodal efficiency were revealed in left-handers, involving the anterior and median cingulate gyrus, middle temporal gyrus, angular gyrus, and amygdala. Our findings indicated that the functional network organization in the human brain was associated with handedness and brain size.
Alteration of Spontaneous Brain Activity After Hypoxia-Reoxygenation: A Resting-State fMRI Study.
Zhang, Jiaxing; Chen, Ji; Fan, Cunxiu; Li, Jinqiang; Lin, Jianzhong; Yang, Tianhe; Fan, Ming
2017-03-01
Zhang, Jiaxing, Ji Chen, Cunxiu Fan, Jinqiang Li, Jianzhong Lin, Tianhe Yang, and Ming Fan. Alteration of spontaneous brain activity after hypoxia-reoxygenation: A resting-state fMRI study. High Alt Med Biol. 18:20-26, 2017.-The present study was designed to investigate the effect of hypoxia-reoxygenation on the spontaneous neuronal activity in brain. Sixteen sea-level (SL) soldiers (20.5 ± 0.7 years), who garrisoned the frontiers in high altitude (HA) (2300-4400 m) for two years and subsequently descended to sea level for one to seven days, were recruited. Control group consisted of 16 matched SL natives. The amplitude of low-frequency fluctuations (ALFF) of regional brain functional magnetic resonance imaging signal in resting state and functional connectivity (FC) between brain regions was analyzed. HA subjects showed significant increases of ALFF at several sites within the bilateral occipital cortices and significant decreases of ALFF in the right anterior insula and extending to the caudate, putamen, inferior frontal orbital cortex, temporal pole, and superior temporal gyrus; lower ALFF values in the right insula were positively correlated with low respiratory measurements. The right insula in HA subjects had increases of FC with the right superior temporal gyrus, postcentral gyrus, rolandic operculum, supramarginal gyrus, and inferior frontal triangular area. We thus demonstrated that hypoxia-reoxygenation had influence on the spontaneous neuronal activity in brain. The decrease of insular neuronal activity may be related to the reduction of ventilatory drive, while the increase of FC with insula may indicate a central compensation.
The association between cortisol and the BOLD response in male adolescents undergoing fMRI.
Keulers, Esther H H; Stiers, Peter; Nicolson, Nancy A; Jolles, Jelle
2015-02-19
MRI participation has been shown to induce subjective and neuroendocrine stress reactions. A recent aging study showed that cortisol levels during fMRI have an age-dependent effect on cognitive performance and brain functioning. The present study examined whether this age-specific influence of cortisol on behavioral and brain activation levels also applies to adolescence. Salivary cortisol as well as subjective experienced anxiety were assessed during the practice session, at home, and before, during and after the fMRI session in young versus old male adolescents. Cortisol levels were enhanced pre-imaging relative to during and post-imaging in both age groups, suggesting anticipatory stress and anxiety. Overall, a negative correlation was found between cortisol output during the fMRI experiment and brain activation magnitude during performance of a gambling task. In young but not in old adolescents, higher cortisol output was related to stronger deactivation of clusters in the anterior and posterior cingulate cortex. In old but not in young adolescents, a negative correlation was found between cortisol and activation in the inferior parietal and in the superior frontal cortex. In sum, cortisol increased the deactivation of several brain areas, although the location of the affected areas in the brain was age-dependent. The present findings suggest that cortisol output during fMRI should be considered as confounder and integrated in analyzing developmental changes in brain activation during adolescence. Copyright © 2014 Elsevier B.V. All rights reserved.
Epileptic rat brain tissue analyzed by 2D correlation Raman spectroscopy
NASA Astrophysics Data System (ADS)
Sacharz, Julia; Wesełucha-Birczyńska, Aleksandra; Zięba-Palus, Janina; Lewandowski, Marian H.; Kowalski, Rafał; Palus, Katarzyna; Chrobok, Łukasz; Moskal, Paulina; Birczyńska, Malwina; Sozańska, Agnieszka
2018-01-01
Absence epilepsy is the neurological disorder characterized by the pathological spike-and wave discharges present in the electroencephalogram, accompanying a sudden loss of consciousness. Experiments were performed on brain slices obtained from young male WAG/Rij rats (2-3 weeks old), so that they were sampled before the appearance of brain-damaging seizures symptoms. Two differing brain areas of the rats' brain tissue were studied: the somatosensory cortex (Sc) and the dorsal lateral geniculate nucleus of the thalamus (DLG). The Raman spectra of the fresh brain scraps, kept during measurements in artificial cerebrospinal fluid, were collected using as an excitation source 442 nm, 514.5 nm, 785 nm and 1064 nm laser line. The average spectra were analyzed by 2D correlation method regarding laser line as an external perturbation. In 2D synchronous spectra positive auto-peaks corresponding to the Cdbnd C stretching and amide I band vibrations show maxima at 1660 cm- 1 and 1662 cm- 1 for Sc and DLG, respectively. The prominent auto-peak at 2937 cm- 1, originated from the CH3 mode in DLG brain area, seems to indicate the importance of methylation, considered to be significant in epileptogenesis. Synchronous and asynchronous correlations peaks, glutamic acid and gamma-aminobutyric acid (GABA), appear in Sc and DLG, respectively. In the 1730-1600 cm- 1 range occur cross-peaks which appearance might be triggered by glial fibrillary acidic protein (GFAP) activation.
A novel approach to analyzing fMRI and SNP data via parallel independent component analysis
NASA Astrophysics Data System (ADS)
Liu, Jingyu; Pearlson, Godfrey; Calhoun, Vince; Windemuth, Andreas
2007-03-01
There is current interest in understanding genetic influences on brain function in both the healthy and the disordered brain. Parallel independent component analysis, a new method for analyzing multimodal data, is proposed in this paper and applied to functional magnetic resonance imaging (fMRI) and a single nucleotide polymorphism (SNP) array. The method aims to identify the independent components of each modality and the relationship between the two modalities. We analyzed 92 participants, including 29 schizophrenia (SZ) patients, 13 unaffected SZ relatives, and 50 healthy controls. We found a correlation of 0.79 between one fMRI component and one SNP component. The fMRI component consists of activations in cingulate gyrus, multiple frontal gyri, and superior temporal gyrus. The related SNP component is contributed to significantly by 9 SNPs located in sets of genes, including those coding for apolipoprotein A-I, and C-III, malate dehydrogenase 1 and the gamma-aminobutyric acid alpha-2 receptor. A significant difference in the presences of this SNP component is found between the SZ group (SZ patients and their relatives) and the control group. In summary, we constructed a framework to identify the interactions between brain functional and genetic information; our findings provide new insight into understanding genetic influences on brain function in a common mental disorder.
Irradiation Alters MMP-2/TIMP-2 System and Collagen Type IV Degradation in Brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Won Hee; Warrington, Junie P.; Sonntag, William E.
Purpose: Blood-brain barrier (BBB) disruption is one of the major consequences of radiation-induced normal tissue injury in the central nervous system. We examined the effects of whole-brain irradiation on matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) and extracellular matrix (ECM) degradation in the brain. Methods and Materials: Animals received either whole-brain irradiation (a single dose of 10 Gy {gamma}-rays or a fractionated dose of 40 Gy {gamma}-rays, total) or sham-irradiation and were maintained for 4, 8, and 24 h following irradiation. mRNA expression levels of MMPs and TIMPs in the brain were analyzed by real-time reverse transcriptase-polymerase chain reaction (PCR).more » The functional activity of MMPs was measured by in situ zymography, and degradation of ECM was visualized by collagen type IV immunofluorescent staining. Results: A significant increase in mRNA expression levels of MMP-2, MMP-9, and TIMP-1 was observed in irradiated brains compared to that in sham-irradiated controls. In situ zymography revealed a strong gelatinolytic activity in the brain 24 h postirradiation, and the enhanced gelatinolytic activity mediated by irradiation was significantly attenuated in the presence of anti-MMP-2 antibody. A significant reduction in collagen type IV immunoreactivity was also detected in the brain at 24 h after irradiation. In contrast, the levels of collagen type IV were not significantly changed at 4 and 8 h after irradiation compared with the sham-irradiated controls. Conclusions: The present study demonstrates for the first time that radiation induces an imbalance between MMP-2 and TIMP-2 levels and suggests that degradation of collagen type IV, a major ECM component of BBB basement membrane, may have a role in the pathogenesis of brain injury.« less
Decoding magnetoencephalographic rhythmic activity using spectrospatial information.
Kauppi, Jukka-Pekka; Parkkonen, Lauri; Hari, Riitta; Hyvärinen, Aapo
2013-12-01
We propose a new data-driven decoding method called Spectral Linear Discriminant Analysis (Spectral LDA) for the analysis of magnetoencephalography (MEG). The method allows investigation of changes in rhythmic neural activity as a result of different stimuli and tasks. The introduced classification model only assumes that each "brain state" can be characterized as a combination of neural sources, each of which shows rhythmic activity at one or several frequency bands. Furthermore, the model allows the oscillation frequencies to be different for each such state. We present decoding results from 9 subjects in a four-category classification problem defined by an experiment involving randomly alternating epochs of auditory, visual and tactile stimuli interspersed with rest periods. The performance of Spectral LDA was very competitive compared with four alternative classifiers based on different assumptions concerning the organization of rhythmic brain activity. In addition, the spectral and spatial patterns extracted automatically on the basis of trained classifiers showed that Spectral LDA offers a novel and interesting way of analyzing spectrospatial oscillatory neural activity across the brain. All the presented classification methods and visualization tools are freely available as a Matlab toolbox. © 2013.
Robot-assisted motor activation monitored by time-domain optical brain imaging
NASA Astrophysics Data System (ADS)
Steinkellner, O.; Wabnitz, H.; Schmid, S.; Steingräber, R.; Schmidt, H.; Krüger, J.; Macdonald, R.
2011-07-01
Robot-assisted motor rehabilitation proved to be an effective supplement to conventional hand-to-hand therapy in stroke patients. In order to analyze and understand motor learning and performance during rehabilitation it is desirable to develop a monitor to provide objective measures of the corresponding brain activity at the rehabilitation progress. We used a portable time-domain near-infrared reflectometer to monitor the hemodynamic brain response to distal upper extremity activities. Four healthy volunteers performed two different robot-assisted wrist/forearm movements, flexion-extension and pronation-supination in comparison with an unassisted squeeze ball exercise. A special headgear with four optical measurement positions to include parts of the pre- and postcentral gyrus provided a good overlap with the expected activation areas. Data analysis based on variance of time-of-flight distributions of photons through tissue was chosen to provide a suitable representation of intracerebral signals. In all subjects several of the four detection channels showed a response. In some cases indications were found of differences in localization of the activated areas for the various tasks.
Regional Brain Activity in Abstinent Methamphetamine Dependent Males Following Cue Exposure.
Malcolm, Robert; Myrick, Hugh; Li, Xingbao; Henderson, Scott; Brady, Kathleen T; George, Mark S; See, Ronald E
Neuroimaging of drug-associated cue presentations has aided in understanding the neurobiological substrates of craving and relapse for cocaine, alcohol, and nicotine. However, imaging of cue-reactivity in methamphetamine addiction has been much less studied. Nine caucasian male methamphetamine-dependent subjects and nine healthy controls were scanned in a Phillips 3.0T MRI scan when they viewed a randomized presentation of visual cues of methamphetamine, neutral objects, and rest conditions. Functional Imaging data were analyzed with Statistical Parametric Mapping software 5 (SPM 5). Methamphetamine subjects had significant brain activation in the ventral striatum and medial frontal cortex in comparison to meth pictures and neutral pictures in healthy controls (p<0.005, threshold 15 voxels). Interestingly the ventral striatum activation significantly correlated with the days since the last use of meth (r=-0.76, p=0.017). No significant activity was found in healthy control group. The preliminary data suggest that methamphetamine dependent subjects, when exposed to methamphetamine-associated visual cues, have increased brain activity in ventral striatum, caudate nucleus and medial frontal cortex which subserve craving, drug-seeking, and drug use.
Disturbed temporal dynamics of brain synchronization in vision loss.
Bola, Michał; Gall, Carolin; Sabel, Bernhard A
2015-06-01
Damage along the visual pathway prevents bottom-up visual input from reaching further processing stages and consequently leads to loss of vision. But perception is not a simple bottom-up process - rather it emerges from activity of widespread cortical networks which coordinate visual processing in space and time. Here we set out to study how vision loss affects activity of brain visual networks and how networks' activity is related to perception. Specifically, we focused on studying temporal patterns of brain activity. To this end, resting-state eyes-closed EEG was recorded from partially blind patients suffering from chronic retina and/or optic-nerve damage (n = 19) and healthy controls (n = 13). Amplitude (power) of oscillatory activity and phase locking value (PLV) were used as measures of local and distant synchronization, respectively. Synchronization time series were created for the low- (7-9 Hz) and high-alpha band (11-13 Hz) and analyzed with three measures of temporal patterns: (i) length of synchronized-/desynchronized-periods, (ii) Higuchi Fractal Dimension (HFD), and (iii) Detrended Fluctuation Analysis (DFA). We revealed that patients exhibit less complex, more random and noise-like temporal dynamics of high-alpha band activity. More random temporal patterns were associated with worse performance in static (r = -.54, p = .017) and kinetic perimetry (r = .47, p = .041). We conclude that disturbed temporal patterns of neural synchronization in vision loss patients indicate disrupted communication within brain visual networks caused by prolonged deafferentation. We propose that because the state of brain networks is essential for normal perception, impaired brain synchronization in patients with vision loss might aggravate the functional consequences of reduced visual input. Copyright © 2015 Elsevier Ltd. All rights reserved.
Building an organic computing device with multiple interconnected brains
Pais-Vieira, Miguel; Chiuffa, Gabriela; Lebedev, Mikhail; Yadav, Amol; Nicolelis, Miguel A. L.
2015-01-01
Recently, we proposed that Brainets, i.e. networks formed by multiple animal brains, cooperating and exchanging information in real time through direct brain-to-brain interfaces, could provide the core of a new type of computing device: an organic computer. Here, we describe the first experimental demonstration of such a Brainet, built by interconnecting four adult rat brains. Brainets worked by concurrently recording the extracellular electrical activity generated by populations of cortical neurons distributed across multiple rats chronically implanted with multi-electrode arrays. Cortical neuronal activity was recorded and analyzed in real time, and then delivered to the somatosensory cortices of other animals that participated in the Brainet using intracortical microstimulation (ICMS). Using this approach, different Brainet architectures solved a number of useful computational problems, such as discrete classification, image processing, storage and retrieval of tactile information, and even weather forecasting. Brainets consistently performed at the same or higher levels than single rats in these tasks. Based on these findings, we propose that Brainets could be used to investigate animal social behaviors as well as a test bed for exploring the properties and potential applications of organic computers. PMID:26158615
Source space analysis of event-related dynamic reorganization of brain networks.
Ioannides, Andreas A; Dimitriadis, Stavros I; Saridis, George A; Voultsidou, Marotesa; Poghosyan, Vahe; Liu, Lichan; Laskaris, Nikolaos A
2012-01-01
How the brain works is nowadays synonymous with how different parts of the brain work together and the derivation of mathematical descriptions for the functional connectivity patterns that can be objectively derived from data of different neuroimaging techniques. In most cases static networks are studied, often relying on resting state recordings. Here, we present a quantitative study of dynamic reconfiguration of connectivity for event-related experiments. Our motivation is the development of a methodology that can be used for personalized monitoring of brain activity. In line with this motivation, we use data with visual stimuli from a typical subject that participated in different experiments that were previously analyzed with traditional methods. The earlier studies identified well-defined changes in specific brain areas at specific latencies related to attention, properties of stimuli, and tasks demands. Using a recently introduced methodology, we track the event-related changes in network organization, at source space level, thus providing a more global and complete view of the stages of processing associated with the regional changes in activity. The results suggest the time evolving modularity as an additional brain code that is accessible with noninvasive means and hence available for personalized monitoring and clinical applications.
The development of Human Functional Brain Networks
Power, Jonathan D; Fair, Damien A; Schlaggar, Bradley L
2010-01-01
Recent advances in MRI technology have enabled precise measurements of correlated activity throughout the brain, leading to the first comprehensive descriptions of functional brain networks in humans. This article reviews the growing literature on the development of functional networks, from infancy through adolescence, as measured by resting state functional connectivity MRI. We note several limitations of traditional approaches to describing brain networks, and describe a powerful framework for analyzing networks, called graph theory. We argue that characterization of the development of brain systems (e.g. the default mode network) should be comprehensive, considering not only relationships within a given system, but also how these relationships are situated within wider network contexts. We note that, despite substantial reorganization of functional connectivity, several large-scale network properties appear to be preserved across development, suggesting that functional brain networks, even in children, are organized in manners similar to other complex systems. PMID:20826306
Fan, Kai; Wu, Xuefei; Fan, Bin; Li, Ning; Lin, Yongzhong; Yao, Yiwen; Ma, Jianmei
2012-05-20
Cathepsin C (Cat C) functions as a central coordinator for activation of many serine proteases in inflammatory cells. It has been recognized that Cat C is responsible for neutrophil recruitment and production of chemokines and cytokines in many inflammatory diseases. However, Cat C expression and its functional role in the brain under normal conditions or in neuroinflammatory processes remain unclear. Our previous study showed that Cat C promoted the progress of brain demyelination in cuprizone-treated mice. The present study further investigated the Cat C expression and activity in lipopolysaccharide (LPS)-induced neuroinflammation in vivo and in vitro. C57BL/6 J mice were intraperitoneally injected with either 0.9% saline or lipopolysaccharide (LPS, 5 mg/kg). Immunohistochemistry (IHC) and in situ hybridization (ISH) were used to analyze microglial activation, TNF-α, IL-1β, IL-6, iNOS mRNAs expressions and cellular localization of Cat C in the brain. Nitrite assay was used to examine microglial activation in vitro; RT-PCR and ELISA were used to determine the expression and release of Cat C. Cat C activity was analyzed by cellular Cat C assay kit. Data were evaluated for statistical significance with paired t test. Cat C was predominantly expressed in hippocampal CA2 neurons in C57BL/6 J mice under normal conditions. Six hours after LPS injection, Cat C expression was detected in cerebral cortical neurons; whereas, twenty-four hours later, Cat C expression was captured in activated microglial cells throughout the entire brain. The duration of induced Cat C expression in neurons and in microglial cells was ten days and three days, respectively. In vitro, LPS, IL-1β and IL-6 treatments increased microglial Cat C expression in a dose-dependent manner and upregulated Cat C secretion and its activity. Taken together, these data indicate that LPS and proinflammatory cytokines IL-1β, IL-6 induce the expression, release and upregulate enzymatic activity of Cat C in microglial cells. Further investigation is required to determine the functional role of Cat C in the progression of neuroinflammation, which may have implications for therapeutics for the prevention of neuroinflammation-involved neurological disorders in the future.
Face-elicited ERPs and affective attitude: brain electric microstate and tomography analyses.
Pizzagalli, D; Lehmann, D; Koenig, T; Regard, M; Pascual-Marqui, R D
2000-03-01
Although behavioral studies have demonstrated that normative affective traits modulate the processing of facial and emotionally charged stimuli, direct electrophysiological evidence for this modulation is still lacking. Event-related potential (ERP) data associated with personal, traitlike approach- or withdrawal-related attitude (assessed post-recording and 14 months later) were investigated in 18 subjects during task-free (i.e. unrequested, spontaneous) emotional evaluation of faces. Temporal and spatial aspects of 27 channel ERP were analyzed with microstate analysis and low resolution electromagnetic tomography (LORETA), a new method to compute 3 dimensional cortical current density implemented in the Talairach brain atlas. Microstate analysis showed group differences 132-196 and 196-272 ms poststimulus, with right-shifted electric gravity centers for subjects with negative affective attitude. During these (over subjects reliably identifiable) personality-modulated, face-elicited microstates, LORETA revealed activation of bilateral occipito-temporal regions, reportedly associated with facial configuration extraction processes. Negative compared to positive affective attitude showed higher activity right temporal; positive compared to negative attitude showed higher activity left temporo-parieto-occipital. These temporal and spatial aspects suggest that the subject groups differed in brain activity at early, automatic, stimulus-related face processing steps when structural face encoding (configuration extraction) occurs. In sum, the brain functional microstates associated with affect-related personality features modulate brain mechanisms during face processing already at early information processing stages.
Study on Brain Dynamics by Non Linear Analysis of Music Induced EEG Signals
NASA Astrophysics Data System (ADS)
Banerjee, Archi; Sanyal, Shankha; Patranabis, Anirban; Banerjee, Kaushik; Guhathakurta, Tarit; Sengupta, Ranjan; Ghosh, Dipak; Ghose, Partha
2016-02-01
Music has been proven to be a valuable tool for the understanding of human cognition, human emotion, and their underlying brain mechanisms. The objective of this study is to analyze the effect of Hindustani music on brain activity during normal relaxing conditions using electroencephalography (EEG). Ten male healthy subjects without special musical education participated in the study. EEG signals were acquired at the frontal (F3/F4) lobes of the brain while listening to music at three experimental conditions (rest, with music and without music). Frequency analysis was done for the alpha, theta and gamma brain rhythms. The finding shows that arousal based activities were enhanced while listening to Hindustani music of contrasting emotions (romantic/sorrow) for all the subjects in case of alpha frequency bands while no significant changes were observed in gamma and theta frequency ranges. It has been observed that when the music stimulus is removed, arousal activities as evident from alpha brain rhythms remain for some time, showing residual arousal. This is analogous to the conventional 'Hysteresis' loop where the system retains some 'memory' of the former state. This is corroborated in the non linear analysis (Detrended Fluctuation Analysis) of the alpha rhythms as manifested in values of fractal dimension. After an input of music conveying contrast emotions, withdrawal of music shows more retention as evidenced by the values of fractal dimension.
Resting state cerebral blood flow with arterial spin labeling MRI in developing human brains.
Liu, Feng; Duan, Yunsuo; Peterson, Bradley S; Asllani, Iris; Zelaya, Fernando; Lythgoe, David; Kangarlu, Alayar
2018-07-01
The development of brain circuits is coupled with changes in neurovascular coupling, which refers to the close relationship between neural activity and cerebral blood flow (CBF). Studying the characteristics of CBF during resting state in developing brain can be a complementary way to understand the functional connectivity of the developing brain. Arterial spin labeling (ASL), as a noninvasive MR technique, is particularly attractive for studying cerebral perfusion in children and even newborns. We have collected pulsed ASL data in resting state for 47 healthy subjects from young children to adolescence (aged from 6 to 20 years old). In addition to studying the developmental change of static CBF maps during resting state, we also analyzed the CBF time series to reveal the dynamic characteristics of CBF in differing age groups. We used the seed-based correlation analysis to examine the temporal relationship of CBF time series between the selected ROIs and other brain regions. We have shown the developmental patterns in both static CBF maps and dynamic characteristics of CBF. While higher CBF of default mode network (DMN) in all age groups supports that DMN is the prominent active network during the resting state, the CBF connectivity patterns of some typical resting state networks show distinct patterns of metabolic activity during the resting state in the developing brains. Copyright © 2018 European Paediatric Neurology Society. All rights reserved.
The treatment of Parkinson's disease with deep brain stimulation: current issues.
Moldovan, Alexia-Sabine; Groiss, Stefan Jun; Elben, Saskia; Südmeyer, Martin; Schnitzler, Alfons; Wojtecki, Lars
2015-07-01
Deep brain stimulation has become a well-established symptomatic treatment for Parkinson's disease during the last 25 years. Besides improving motor symptoms and long-term motor complications, positive effects on patients' mobility, activities of daily living, emotional well-being and health-related quality of life have been recognized. Apart from that, numerous clinical trials analyzed effects on non-motor symptoms and side effects of deep brain stimulation. Several technical issues and stimulation paradigms have been and are still being developed to optimize the therapeutic effects, minimize the side effects and facilitate handling. This review summarizes current therapeutic issues, i.e., patient and target selection, surgical procedure and programming paradigms. In addition it focuses on neuropsychological effects and side effects of deep brain stimulation.
Effects of BDNF Val66Met polymorphism on brain metabolism in Alzheimer's disease.
Xu, Cunlu; Wang, Zhenhua; Fan, Ming; Liu, Bing; Song, Ming; Zhen, Xiantong; Jiang, Tianzi
2010-08-23
Earlier studies showed that the Val66Met polymorphisms of the brain-derived neurotrophic factor differentially affect gray matter volume and brain region activities. This study used resting positron emission tomography to investigate the relationship between the polymorphisms of Val66Met and the regional cerebral metabolic rate in the brain. We analyzed the positron emission tomography images of 215 patients from the Alzheimer's Disease Neuroimaging Initiative and found significant differences in the parahippocampal gyrus, superior temporal gyrus, prefrontal cortex, and inferior parietal lobule when comparing Met carriers with noncarriers among both the normal controls and those with mild cognitive impairment. For those with Alzheimer's disease, we also found additional differences in the bilateral insula between the carriers and noncarriers.
Bettinardi, Ruggero G.; Tort-Colet, Núria; Ruiz-Mejias, Marcel; Sanchez-Vives, Maria V.; Deco, Gustavo
2015-01-01
Intrinsic brain activity is characterized by the presence of highly structured networks of correlated fluctuations between different regions of the brain. Such networks encompass different functions, whose properties are known to be modulated by the ongoing global brain state and are altered in several neurobiological disorders. In the present study, we induced a deep state of anesthesia in rats by means of a ketamine/medetomidine peritoneal injection, and analyzed the time course of the correlation between the brain activity in different areas while anesthesia spontaneously decreased over time. We compared results separately obtained from fMRI and local field potentials (LFPs) under the same anesthesia protocol, finding that while most profound phases of anesthesia can be described by overall sparse connectivity, stereotypical activity and poor functional integration, during lighter states different frequency-specific functional networks emerge, endowing the gradual restoration of structured large-scale activity seen during rest. Noteworthy, our in vivo results show that those areas belonging to the same functional network (the default-mode) exhibited sustained correlated oscillations around 10 Hz throughout the protocol, suggesting the presence of a specific functional backbone that is preserved even during deeper phases of anesthesia. Finally, the overall pattern of results obtained from both imaging and in vivo-recordings suggests that the progressive emergence from deep anesthesia is reflected by a corresponding gradual increase of organized correlated oscillations across the cortex. PMID:25804643
Intrinsic Brain Connectivity in Fibromyalgia is Associated with Chronic Pain Intensity
Napadow, Vitaly; LaCount, Lauren; Park, Kyungmo; As-Sanie, Suzie; Clauw, Daniel J; Harris, Richard E
2010-01-01
OBJECTIVE Fibromyalgia (FM) is considered to be the prototypical central chronic pain syndrome and is associated with widespread pain that fluctuates spontaneously. Multiple studies have demonstrated altered brain activity in these patients. Our objective was to investigate the degree of connectivity between multiple brain networks in FM, as well as how activity in these networks correlates with spontaneous pain. METHODS Resting functional magnetic resonance imaging (fMRI) data in FM patients (n=18) and age-matched healthy controls (HC, n=18) were analyzed using dual regression independent component analysis (ICA) - a data driven approach used to identify independent brain networks. We evaluated intrinsic, or resting, connectivity in multiple brain networks: the default mode network (DMN), the executive attention network (EAN), and the medial visual network (MVN), with the MVN serving as a negative control. Spontaneous pain levels were also covaried with intrinsic connectivity. RESULTS We found that FM patients had greater connectivity within the DMN and right EAN (rEAN; p<0.05, corrected), and greater connectivity between the DMN and the insular cortex – a brain region known to process evoked pain. Furthermore, greater spontaneous pain at the time of the scan correlated with greater intrinsic connectivity between the insula and both the DMN and rEAN (p<0.05, corrected). CONCLUSION Our findings indicate that resting brain activity within multiple networks is associated with spontaneous clinical pain in FM. These findings may also have broader implications for how subjective experiences such as pain arise from a complex interplay amongst multiple brain networks. PMID:20506181
Montes, Pedro; Ruiz-Sánchez, Elizabeth; Calvillo, Minerva; Rojas, Patricia
2016-09-01
Depending on genetic predisposition, prenatal stress may result in vulnerability or resilience to develop psychiatric disorders in adulthood. Nurr1 is an immediate early gene, important in the brain for the stress response. We tested the hypothesis that prenatal stress and the decrease of hippocampal Nurr1 alter offspring behavioral responses in the forced swimming test (FST). Pregnant Wistar rats were exposed to restraint stress (45 min, thrice daily) from gestation day 14. Prenatally stressed (PS) and non-prenatally stressed (NPS) male offspring were treated bilaterally with a Nurr1 antisense oligodeoxynucleotide (ODN; or control) into the hippocampus at 97 d of age. After 1 h, the rats were exposed to the FST (acute stressor) to analyze their behavioral responses. Thirty minutes after the FST, we analyzed the gene expression of Nurr1, Bdnf and Nr3c1 (genes for Nurr1, brain-derived neurotrophic factor (BDNF) and glucocorticoid receptor (GR), respectively) in the hippocampus, prefrontal cortex (PFC) and hypothalamus. Results showed that the decrease of hippocampal Nurr1 after the antisense ODN in adult NPS rats induces immobility (indicating depressive-like behavior). The PS adult rats, including the group with decreased hippocampal Nurr1, presented low immobility in the FST. This low immobility was concordant with maintenance of Nurr1 and Bdnf expression levels in the three analyzed brain regions; Nr3c1 gene expression was also maintained in the PFC and hypothalamus. These findings suggest that Nurr1 and associated genes could participate in the brain modifications induced by prenatal stress, allowing active coping (resilience) with acute stress in adulthood.
GDNF family receptor α-1 in the catfish: Possible implication to brain dopaminergic activity.
Mamta, Sajwan-Khatri; Senthilkumaran, Balasubramanian
2018-05-31
Glial cell line-derived neurotrophic factor (GDNF)is a potent trophic factor that preferentially binds to GDNF family receptor α-1 (GFRα-1)by regulating dopaminergic (DA-ergic) neuronsin brain. Present study aimed to evaluate the significance of GFRα-1 expression during early brain development in catfish. Initially, the full-length cDNA of GFRα-1 was cloned from adult brain which showed high homology with other vertebrate counterparts. Quantitative PCR analysis of tissue distribution revealed ubiquitous expression of GFRα-1 in the tissues analyzed with high levels in female brain and ovary. Significant high expression was evident in brain at 75 and 100 days post hatch females than the respective age-match males. Expression of GFRα-1 was high in brain during the spawning phase when compared to other reproductive phases. Localization of GFRα-1 revealed its presence in preoptic area-hypothalamus which correlated well with the expression profile in discrete areas of brain in adult catfish. Transient silencing of GFRα-1through siRNA lowered expression levels of GFRα-1, which further down regulated the expression of certain brain-specific genes. Expression of GFRα-1 in brain declined significantly upon treatment with the 1-methyl-1,2,3,6-tetrahydropyridinecausing neurodegeneration which further correlated with catecholamines (CA), L-3,4-dihydroxyphenylalanine, DA and norepinephrine levels. Taken together, GFRα-1 plausibly entrains gonadotropin-releasing hormone and gonadotropin axiseither directly or indirectly, at least by partially targeting CA-ergic activity. Copyright © 2018 Elsevier Inc. All rights reserved.
Lavigne, Katie M; Woodward, Todd S
2018-04-01
Hypercoupling of activity in speech-perception-specific brain networks has been proposed to play a role in the generation of auditory-verbal hallucinations (AVHs) in schizophrenia; however, it is unclear whether this hypercoupling extends to nonverbal auditory perception. We investigated this by comparing schizophrenia patients with and without AVHs, and healthy controls, on task-based functional magnetic resonance imaging (fMRI) data combining verbal speech perception (SP), inner verbal thought generation (VTG), and nonverbal auditory oddball detection (AO). Data from two previously published fMRI studies were simultaneously analyzed using group constrained principal component analysis for fMRI (group fMRI-CPCA), which allowed for comparison of task-related functional brain networks across groups and tasks while holding the brain networks under study constant, leading to determination of the degree to which networks are common to verbal and nonverbal perception conditions, and which show coordinated hyperactivity in hallucinations. Three functional brain networks emerged: (a) auditory-motor, (b) language processing, and (c) default-mode (DMN) networks. Combining the AO and sentence tasks allowed the auditory-motor and language networks to separately emerge, whereas they were aggregated when individual tasks were analyzed. AVH patients showed greater coordinated activity (deactivity for DMN regions) than non-AVH patients during SP in all networks, but this did not extend to VTG or AO. This suggests that the hypercoupling in AVH patients in speech-perception-related brain networks is specific to perceived speech, and does not extend to perceived nonspeech or inner verbal thought generation. © 2017 Wiley Periodicals, Inc.
Real-time position reconstruction with hippocampal place cells.
Guger, Christoph; Gener, Thomas; Pennartz, Cyriel M A; Brotons-Mas, Jorge R; Edlinger, Günter; Bermúdez I Badia, S; Verschure, Paul; Schaffelhofer, Stefan; Sanchez-Vives, Maria V
2011-01-01
Brain-computer interfaces (BCI) are using the electroencephalogram, the electrocorticogram and trains of action potentials as inputs to analyze brain activity for communication purposes and/or the control of external devices. Thus far it is not known whether a BCI system can be developed that utilizes the states of brain structures that are situated well below the cortical surface, such as the hippocampus. In order to address this question we used the activity of hippocampal place cells (PCs) to predict the position of an rodent in real-time. First, spike activity was recorded from the hippocampus during foraging and analyzed off-line to optimize the spike sorting and position reconstruction algorithm of rats. Then the spike activity was recorded and analyzed in real-time. The rat was running in a box of 80 cm × 80 cm and its locomotor movement was captured with a video tracking system. Data were acquired to calculate the rat's trajectories and to identify place fields. Then a Bayesian classifier was trained to predict the position of the rat given its neural activity. This information was used in subsequent trials to predict the rat's position in real-time. The real-time experiments were successfully performed and yielded an error between 12.2 and 17.4% using 5-6 neurons. It must be noted here that the encoding step was done with data recorded before the real-time experiment and comparable accuracies between off-line (mean error of 15.9% for three rats) and real-time experiments (mean error of 14.7%) were achieved. The experiment shows proof of principle that position reconstruction can be done in real-time, that PCs were stable and spike sorting was robust enough to generalize from the training run to the real-time reconstruction phase of the experiment. Real-time reconstruction may be used for a variety of purposes, including creating behavioral-neuronal feedback loops or for implementing neuroprosthetic control.
Zhu, Haitao; Zhu, Jinlong; Bao, Forrest Sheng; Liu, Hongyi; Zhu, Xuchuang; Wu, Ting; Yang, Lu; Zou, Yuanjie; Zhang, Rui; Zheng, Gang
2016-01-01
Frontal lobe epilepsy is a common epileptic disorder and is characterized by recurring seizures that arise in the frontal lobes. The purpose of this study is to identify the epileptogenic regions and other abnormal regions in patients with left frontal lobe epilepsy (LFLE) based on the magnetoencephalogram (MEG), and to understand the effects of clinical variables on brain activities in patients with LFLE. Fifteen patients with LFLE (23.20 ± 8.68 years, 6 female and 9 male) and 16 healthy controls (23.13 ± 7.66 years, 6 female and 10 male) were included in resting-stage MEG examinations. Epileptogenic regions of LFLE patients were confirmed by surgery. Regional brain activations were quantified using statistical parametric mapping (SPM). The correlation between the activations of the abnormal brain regions and the clinical seizure parameters were computed for LFLE patients. Brain activations of LFLE patients were significantly elevated in left superior/middle/inferior frontal gyri, postcentral gyrus, inferior temporal gyrus, insula, parahippocampal gyrus and amygdala, including the epileptogenic regions. Remarkable decreased activations were found mainly in the left parietal gyrus and precuneus. There is a positive correlation between the duration of the epilepsy (in month) and activations of the abnormal regions, while no relation was found between age of seizure onset (year), seizure frequency and the regions of the abnormal activity of the epileptic patients. Our findings suggest that the aberrant brain activities of LFLE patients were not restricted to the epileptogenic zones. Long duration of epilepsy might induce further functional damage in patients with LFLE. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Hattori, Naoya; Swan, Megan; Stobbe, Gary A; Uomoto, Jay M; Minoshima, Satoshi; Djang, David; Krishnananthan, Ruben; Lewis, David H
2009-07-01
Patients with mild traumatic brain injury (TBI) often complain of cognitive fatigue during the chronic recovery phase. The Paced Auditory Serial Addition Test (PASAT) is a complex psychologic measure that may demonstrate subtle deficiencies in higher cognitive functions. The purpose of this study was to investigate the brain activation of regional cerebral blood flow (rCBF) with PASAT in patients with mild TBI to explore mechanisms for the cognitive fatigue. Two groups consisting of 15 patients with mild TBI and 15 healthy control subjects underwent (99m)Tc-ethylene cysteine dimer SPECT at rest and during PASAT on a separate day. Cortical rCBF was extracted using a 3-dimensional stereotactic surface projection and statistically analyzed to identify areas of activation, which were compared with PASAT performance scores. Image analysis demonstrated a difference in the pattern of activation between patients with mild TBI and healthy control subjects. Healthy control subjects activated the superior temporal cortex (Brodmann area [BA] 22) bilaterally, the precentral gyrus (BA 9) on the left, and the precentral gyrus (BA 6) and cerebellum bilaterally. Patients with mild TBI demonstrated a larger area of supratentorial activation (BAs 9, 10, 13, and 46) but a smaller area of activation in the cerebellum, indicating frontocerebellar dissociation. Patients with mild TBI and cognitive fatigue demonstrated a different pattern of activation during PASAT. Frontocerebellar dissociation may explain cognitive impairment and cognitive fatigue in the chronic recovery phase of mild traumatic brain injury.
NASA Astrophysics Data System (ADS)
Park, Choongseok; Worth, Robert M.; Rubchinsky, Leonid L.
2011-04-01
Synchronous oscillatory dynamics is frequently observed in the human brain. We analyze the fine temporal structure of phase-locking in a realistic network model and match it with the experimental data from Parkinsonian patients. We show that the experimentally observed intermittent synchrony can be generated just by moderately increased coupling strength in the basal ganglia circuits due to the lack of dopamine. Comparison of the experimental and modeling data suggest that brain activity in Parkinson's disease resides in the large boundary region between synchronized and nonsynchronized dynamics. Being on the edge of synchrony may allow for easy formation of transient neuronal assemblies.
Mannan, Malik M Naeem; Jeong, Myung Y; Kamran, Muhammad A
2016-01-01
Electroencephalography (EEG) is a portable brain-imaging technique with the advantage of high-temporal resolution that can be used to record electrical activity of the brain. However, it is difficult to analyze EEG signals due to the contamination of ocular artifacts, and which potentially results in misleading conclusions. Also, it is a proven fact that the contamination of ocular artifacts cause to reduce the classification accuracy of a brain-computer interface (BCI). It is therefore very important to remove/reduce these artifacts before the analysis of EEG signals for applications like BCI. In this paper, a hybrid framework that combines independent component analysis (ICA), regression and high-order statistics has been proposed to identify and eliminate artifactual activities from EEG data. We used simulated, experimental and standard EEG signals to evaluate and analyze the effectiveness of the proposed method. Results demonstrate that the proposed method can effectively remove ocular artifacts as well as it can preserve the neuronal signals present in EEG data. A comparison with four methods from literature namely ICA, regression analysis, wavelet-ICA (wICA), and regression-ICA (REGICA) confirms the significantly enhanced performance and effectiveness of the proposed method for removal of ocular activities from EEG, in terms of lower mean square error and mean absolute error values and higher mutual information between reconstructed and original EEG.
Mannan, Malik M. Naeem; Jeong, Myung Y.; Kamran, Muhammad A.
2016-01-01
Electroencephalography (EEG) is a portable brain-imaging technique with the advantage of high-temporal resolution that can be used to record electrical activity of the brain. However, it is difficult to analyze EEG signals due to the contamination of ocular artifacts, and which potentially results in misleading conclusions. Also, it is a proven fact that the contamination of ocular artifacts cause to reduce the classification accuracy of a brain-computer interface (BCI). It is therefore very important to remove/reduce these artifacts before the analysis of EEG signals for applications like BCI. In this paper, a hybrid framework that combines independent component analysis (ICA), regression and high-order statistics has been proposed to identify and eliminate artifactual activities from EEG data. We used simulated, experimental and standard EEG signals to evaluate and analyze the effectiveness of the proposed method. Results demonstrate that the proposed method can effectively remove ocular artifacts as well as it can preserve the neuronal signals present in EEG data. A comparison with four methods from literature namely ICA, regression analysis, wavelet-ICA (wICA), and regression-ICA (REGICA) confirms the significantly enhanced performance and effectiveness of the proposed method for removal of ocular activities from EEG, in terms of lower mean square error and mean absolute error values and higher mutual information between reconstructed and original EEG. PMID:27199714
Vecchiato, Giovanni; Astolfi, Laura; De Vico Fallani, Fabrizio; Salinari, Serenella; Cincotti, Febo; Aloise, Fabio; Mattia, Donatella; Marciani, Maria Grazia; Bianchi, Luigi; Soranzo, Ramon; Babiloni, Fabio
2009-01-01
In this paper we illustrate the capability of tracking brain activity during the observation of commercial TV spots by using advanced high resolution EEG statistical techniques in time and frequency domains. In particular, we analyzed the statistically significant cortical spectral power activity in different frequency bands during the observation of a commercial video clip related to the use of a beer in a group of 13 normal subjects. In addition, a TV speech of the prime minister of Italy was analyzed in two groups of swing and "supporter" voters. Results suggested that the cortical activity during the observation of commercial spots could vary consistently across the spot. This fact suggest the possibility to remove the part of the spot that are not particularly attractive by using those cerebral indexes. The cortical activity during the observation of the political speech indicated a major cortical activity in the supporters group when compared to the swing voters. In this case, it is possible to conclude that the communication proposed has failed to raise attention or interest on swing voters. In conclusions, high resolution EEG have been proved able to generate useful insights about the particular fruition of TV messages, related to both commercial as well as political fields.
Ganoderma Lucidum Protects Rat Brain Tissue Against Trauma-Induced Oxidative Stress.
Özevren, Hüseyin; İrtegün, Sevgi; Deveci, Engin; Aşır, Fırat; Pektanç, Gülsüm; Deveci, Şenay
2017-10-01
Traumatic brain injury causes tissue damage, breakdown of cerebral blood flow and metabolic regulation. This study aims to investigate the protective influence of antioxidant Ganoderma lucidum ( G. lucidum ) polysaccharides (GLPs) on brain injury in brain-traumatized rats. Sprague-Dawley conducted a head-traumatized method on rats by dropping off 300 g weight from 1 m height. Groups were categorized as control, G. lucidum , trauma, trauma+ G. lucidum (20 mL/kg per day via gastric gavage). Brain tissues were dissected from anesthetized rats 7 days after injury. For biochemical analysis, malondialdehyde, glutathione and myeloperoxidase values were measured. In histopathological examination, neuronal damage in brain cortex and changes in blood brain barrier were observed. In the analysis of immunohistochemical and western blot, p38 mitogen-activated protein kinase, vascular endothelial growth factor and cluster of differentiation 68 expression levels were shown. These analyzes demonstrated the beneficial effects of GLPs on brain injury. We propose that GLPs treatment after brain injury could be an alternative treatment to decraseing inflammation and edema, preventing neuronal and glial cells degeneration if given in appropriate dosage and in particular time intervals.
Memory activation in healthy nonagenarians.
Beeri, Michal Schnaider; Lee, Hedok; Cheng, Hu; Wollman, Daniel; Silverman, Jeremy M; Prohovnik, Isak
2011-03-01
Little is known about brain function in the oldest old, although this is the fastest growing segment of the population in developed countries and is of paramount importance in public health considerations. In this study, we investigated the cerebral response to a memory task in healthy subjects over age 90 compared with healthy younger elderly. We studied 29 healthy elderly subjects, 12 over age 90 and 17 between age 70 and 80. All subjects were cognitively intact, as verified by a neuropsychological battery, and performed a nonverbal memory task while undergoing a functional MRI (fMRI). Activation results were analyzed by a random-effects ANCOVA using SPM5. The task resulted in activation of similar areas of the posterior temporal, parietal, and posterior frontal cortexes, but the activation was more robust in the younger subjects, especially in the right hippocampus, and parietal and temporal cortices. This finding remained after controlling for education, cognition, task performance or cerebral atrophy. The phenomenon of relatively maintained performance, despite significant brain atrophy and lower activation is consistent with the cognitive reserve theory and may be specific to subjects with extremely successful aging. Further investigation of brain activation patterns in the oldest old is warranted. Copyright © 2009 Elsevier Inc. All rights reserved.
Tessadori, Jacopo; Ghirardi, Mirella
2015-01-01
Brain functions are strictly dependent on neural connections formed during development and modified during life. The cellular and molecular mechanisms underlying synaptogenesis and plastic changes involved in learning and memory have been analyzed in detail in simple animals such as invertebrates and in circuits of mammalian brains mainly by intracellular recordings of neuronal activity. In the last decades, the evolution of techniques such as microelectrode arrays (MEAs) that allow simultaneous, long-lasting, noninvasive, extracellular recordings from a large number of neurons has proven very useful to study long-term processes in neuronal networks in vivo and in vitro. In this work, we start off by briefly reviewing the microelectrode array technology and the optimization of the coupling between neurons and microtransducers to detect subthreshold synaptic signals. Then, we report MEA studies of circuit formation and activity in invertebrate models such as Lymnaea, Aplysia, and Helix. In the following sections, we analyze plasticity and connectivity in cultures of mammalian dissociated neurons, focusing on spontaneous activity and electrical stimulation. We conclude by discussing plasticity in closed-loop experiments. PMID:25866681
Majidi, Shahram; Rahim, Basit; Gilani, Sarwat I; Gilani, Waqas I; Adil, Malik M; Qureshi, Adnan I
2016-05-01
The evolution of intracerebral hematoma and perihematoma edema in the ultra-early period on computed tomographic (CT) scans in patients with intracerebral hemorrhage (ICH) is not well understood. We aimed to investigate hematoma and perihematoma changes in "neutral brain" models of ICH. One human and five goat cadaveric heads were used as "neutral brains" to provide physical properties of brain without any biological activity or new bleeding. ICH was induced by slow injection of 4 ml of fresh human blood into the right basal ganglia of the goat brains. Similarly, 20 ml of fresh blood was injected deep into the white matter of the human cadaver head in each hemisphere. Serial CT scans of the heads were obtained immediately after hematoma induction and then 1, 3, and 5 hours afterward. Analyze software (AnalyzeDirect, Overland Park, KS, USA) was used to measure hematoma and perihematoma hypodensity volumes in the baseline and follow-up CT scans. The initial hematoma volumes of 11.6 ml and 10.5 ml in the right and left hemispheres of the cadaver brains gradually decreased to 6.6 ml and 5.4 ml at 5 hours, showing 43% and 48% retraction of hematoma, respectively. The volume of the perihematoma hypodensity in the right and left hemisphere increased from 2.6 ml and 2.2 ml in the 1-hour follow-up CT scans to 4.9 ml and 4.4 ml in the 5-hour CT scan, respectively. Hematoma retraction was also observed in all five goat brains ICH models with the mean ICH volume decreasing from 1.49 ml at baseline scan to 1.01 ml at the 5-hour follow-up CT scan (29.6% hematoma retraction). Perihematoma hypodensity was visualized in 70% of ICH in goat brains, with an increasing mean hypodensity volume of 0.4 ml in the baseline CT scan to 0.8 ml in the 5-hour follow-up CT scan. Our study demonstrated that substantial hematoma retraction and perihematoma hypodensity occurs in ICH in the absence of any new bleeding or biological activity of surrounding brain. Such observations suggest that active bleeding is underestimated in patients with no or small hematoma expansion and our understanding of perihematoma hypodensity needs to be reconsidered. Copyright © 2015 by the American Society of Neuroimaging.
Lamba, Vishal; Yasuda, Kazuto; Lamba, Jatinder K; Assem, Mahfoud; Davila, Julio; Strom, Stephen; Schuetz, Erin G
2004-09-15
To gain insight on the expression of pregnane X receptor (PXR), we analyzed PXR.1 and PXR alternatively spliced transcripts in a panel of 36 human tissues. PXR.1 was expressed in many more tissues than previously determined, including human bone marrow and select regions of the human brain. In each of these tissues, we observed alternative splicing of various exons of PXR that generated multiple distinct PXR isoforms. The most abundant PXR alternative mRNA transcripts lacked 111 nucleotides, deleting 37 amino acids from the PXR LBD (PXR.2), or lacked 123 nt, deleting 41 amino acids from the PXR LBD (PXR.3). CYP3A4, a gene transcriptionally regulated by PXR, showed incomplete overlap with PXR in its tissue distribution. Quantitation of PXR mRNAs in human liver demonstrated that PXR.2 and PXR.3 represented 6.7% and 0.32% of total PXR mRNA transcripts. Brain expression of PXR prompted analysis of whether some brain acting chemicals were PXR ligands. The neurosteroids allopregnanolone and pregnanolone activated PXR and induced transcription of a CYP3A4-luciferase reporter. Nicotine, the psychoactive and addictive chemical in cigarettes, and a known inducer of brain CYP2B6, was an efficacious activator of PXR and inducer of CYP3A4 transcription. Because nicotine activation of PXR will enhance metabolism of nicotine to the non-psychoactive cotinine, these results provide one molecular mechanism for the development of tolerance to nicotine. Moreover, the identification of PXR in many human tissues, such as brain, and activation by tissue specific ligands (such as neurosteroids) suggests additional biological roles for this receptor in these tissues.
Degradation of stored movement representations in the Parkinsonian brain and the impact of levodopa.
D'Andrea, Jolyn N A; Haffenden, Angela M; Furtado, Sarah; Suchowersky, Oksana; Goodyear, Bradley G
2013-06-01
Parkinson's disease (PD) results from the depletion of dopamine and other neurotransmitters within the basal ganglia, and is typically characterized by motor impairment (e.g., bradykinesia) and difficulty initiating voluntary movements. Difficulty initiating a movement may result from a deficit in accessing or executing a stored representation of the movement, or having to create a new representation each time a movement is required. To date, it is unclear which may be responsible for movement initiation impairments observed in PD. In this study, we used functional magnetic resonance imaging and a task in which participants passively viewed familiar and unfamiliar graspable objects, with no confounding motor task component. Our results show that the brains of PD patients implicitly analyze familiar graspable objects as if the brain has little or no motor experience with the objects. This was observed as a lack of differential activity within brain regions associated with stored movement representations for familiar objects relative to unfamiliar objects, as well as significantly greater activity for familiar objects when off levodopa relative to on medication. Symptom severity modulated this activity difference within the basal ganglia. Levodopa appears to normalize brain activity, but its effect may be one of attenuation of brain hyperactivity within the basal ganglia network, which is responsible for controlling motor behavior and the integration of visuomotor information. Overall, this study demonstrates that difficulty initiating voluntary movements experienced by PD patients may be the result of degradation in stored representations responsible for the movement. Copyright © 2013 Elsevier Ltd. All rights reserved.
Altered Brain Microstate Dynamics in Adolescents with Narcolepsy
Drissi, Natasha M.; Szakács, Attila; Witt, Suzanne T.; Wretman, Anna; Ulander, Martin; Ståhlbrandt, Henriettae; Darin, Niklas; Hallböök, Tove; Landtblom, Anne-Marie; Engström, Maria
2016-01-01
Narcolepsy is a chronic sleep disorder caused by a loss of hypocretin-1 producing neurons in the hypothalamus. Previous neuroimaging studies have investigated brain function in narcolepsy during rest using positron emission tomography (PET) and single photon emission computed tomography (SPECT). In addition to hypothalamic and thalamic dysfunction they showed aberrant prefrontal perfusion and glucose metabolism in narcolepsy. Given these findings in brain structure and metabolism in narcolepsy, we anticipated that changes in functional magnetic resonance imaging (fMRI) resting state network (RSN) dynamics might also be apparent in patients with narcolepsy. The objective of this study was to investigate and describe brain microstate activity in adolescents with narcolepsy and correlate these to RSNs using simultaneous fMRI and electroencephalography (EEG). Sixteen adolescents (ages 13–20) with a confirmed diagnosis of narcolepsy were recruited and compared to age-matched healthy controls. Simultaneous EEG and fMRI data were collected during 10 min of wakeful rest. EEG data were analyzed for microstates, which are discrete epochs of stable global brain states obtained from topographical EEG analysis. Functional MRI data were analyzed for RSNs. Data showed that narcolepsy patients were less likely than controls to spend time in a microstate which we found to be related to the default mode network and may suggest a disruption of this network that is disease specific. We concluded that adolescents with narcolepsy have altered resting state brain dynamics. PMID:27536225
Altenhofen, Stefani; Nabinger, Débora Dreher; Pereira, Talita Carneiro Brandão; Leite, Carlos Eduardo; Bogo, Maurício Reis; Bonan, Carla Denise
2018-05-01
ATP and adenosine, the main signaling molecules of purinergic system, are involved in toxicological effects induced by metals. The manganese (Mn) exposure induces several cellular changes, which could interfere with signaling pathways, such as the purinergic system. In this study, we evaluated the effects of exposure to manganese(II) chloride (MnCl 2 ) during 96 h on nucleoside triphosphate diphosphohydrolase (NTPDase), ecto-5'-nucleotidase, and adenosine deaminase (ADA) activities, followed by analyzing the gene expression patterns of NTPDases (entpd1, entpd2a.1, entpd2a.2, entpd2-like, entpd3) and ADA (ADA 1 , ADA 2.1 , ADA 2.2 , ADAasi, ADAL) families in zebrafish brain. In addition, the brain metabolism of nucleotides and nucleosides was evaluated after MnCl 2 exposure. The results showed that MnCl 2 exposure during 96 h inhibited the NTPDase (1.0 and 1.5 mM) and ecto-ADA (0.5, 1.0, and 1.5 mM) activities, further decreasing ADA2.1 expression at all MnCl 2 concentrations analyzed. Purine metabolism was also altered by the action of MnCl 2 . An increased amount of ADP appeared at all MnCl 2 concentrations analyzed; however, AMP and adenosine levels are decreased at the concentrations of 1.0 and 1.5 mM MnCl 2 , whereas decreased inosine (INO) levels were observed at all concentrations tested. The findings of this study demonstrated that MnCl 2 may inhibit NTPDase and ecto-ADA activities, consequently modulating nucleotide and nucleoside levels, which may contribute for the toxicological effects induced by this metal.
Postnatal brain development of the pulse type, weakly electric gymnotid fish Gymnotus omarorum.
Iribarne, Leticia; Castelló, María E
2014-01-01
Teleosts are a numerous and diverse group of fish showing great variation in body shape, ecological niches and behaviors, and a correspondent diversity in brain morphology, usually associated with their functional specialization. Weakly electric fish are a paradigmatic example of functional specialization, as these teleosts use self-generated electric fields to sense the nearby environment and communicate with conspecifics, enabling fish to better exploit particular ecological niches. We analyzed the development of the brain of the pulse type gymnotid Gymnotus omarorum, focusing on the brain regions involved directly or indirectly in electrosensory information processing. A morphometric analysis has been made of the whole brain and of brain regions of interest, based on volumetric data obtained from 3-D reconstructions to study the growth of the whole brain and the relative growth of brain regions, from late larvae to adulthood. In the smallest studied larvae some components of the electrosensory pathway appeared to be already organized and functional, as evidenced by tract-tracing and in vivo field potential recordings of electrosensory-evoked activity. From late larval to adult stages, rombencephalic brain regions (cerebellum and electrosensory lateral line lobe) showed a positive allometric growth, mesencephalic brain regions showed a negative allometric growth, and the telencephalon showed an isometric growth. In a first step towards elucidating the role of cell proliferation in the relative growth of the analyzed brain regions, we also studied the spatial distribution of proliferation zones by means of pulse type BrdU labeling revealed by immunohistochemistry. The brain of G. omarorum late larvae showed a widespread distribution of proliferating zones, most of which were located at the ventricular-cisternal lining. Interestingly, we also found extra ventricular-cisternal proliferation zones at in the rombencephalic cerebellum and electrosensory lateral line lobe. We discuss the role of extraventricular-cisternal proliferation in the relative growth of the latter brain regions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Barrós-Loscertales, Alfonso; Ventura-Campos, Noelia; Sanjuán-Tomás, Ana; Belloch, Vicente; Parcet, Maria-Antònia; Avila, César
2010-03-01
The reinforcement sensitivity theory (RST) proposed the behavioral activation system (BAS) as a neurobehavioral system that is dependent on dopamine-irrigated structures and that mediates the individual differences in sensitivity and reactivity to appetitive stimuli associated with BAS-related personality traits. Theoretical developments propose that high BAS sensitivity is associated with both enhanced appetitive stimuli processing and the diminished processing of aversive stimuli. The objective of this study was to analyze how individual differences in BAS functioning were associated with brain activation during erotic and aversive picture processing while subjects were involved in a simple goal-directed task. Forty-five male participants took part in this study. The task activation results confirm the activation of the reward and punishment brain-related structures while viewing erotic and aversive pictures, respectively. The SR scores show a positive correlation with activation of the left lateral prefrontal cortex, the mesial prefrontal cortex and the right occipital cortex while viewing erotic pictures, and a negative correlation with the right lateral prefrontal cortex and the left occipital cortex while viewing aversive pictures. In summary, the SR scores modulate the activity of the cortical areas in the prefrontal and the occipital cortices that are proposed to modulate the BAS and the BIS-FFFS.
Sensory memory for odors is encoded in spontaneous correlated activity between olfactory glomeruli.
Galán, Roberto F; Weidert, Marcel; Menzel, Randolf; Herz, Andreas V M; Galizia, C Giovanni
2006-01-01
Sensory memory is a short-lived persistence of a sensory stimulus in the nervous system, such as iconic memory in the visual system. However, little is known about the mechanisms underlying olfactory sensory memory. We have therefore analyzed the effect of odor stimuli on the first odor-processing network in the honeybee brain, the antennal lobe, which corresponds to the vertebrate olfactory bulb. We stained output neurons with a calcium-sensitive dye and measured across-glomerular patterns of spontaneous activity before and after a stimulus. Such a single-odor presentation changed the relative timing of spontaneous activity across glomeruli in accordance with Hebb's theory of learning. Moreover, during the first few minutes after odor presentation, correlations between the spontaneous activity fluctuations suffice to reconstruct the stimulus. As spontaneous activity is ubiquitous in the brain, modifiable fluctuations could provide an ideal substrate for Hebbian reverberations and sensory memory in other neural systems.
Fang, Weirong; Zhang, Rui; Sha, Lan; Lv, Peng; Shang, Erxin; Han, Dan; Wei, Jie; Geng, Xiaohan; Yang, Qichuan; Li, Yunman
2014-03-01
The blood-brain barrier (BBB) greatly limits the efficacy of many neuroprotective drugs' delivery to the brain, so improving drug penetration through the BBB has been an important focus of research. Here we report that platelet activating factor (PAF) transiently opened BBB and facilitated neuroprotectant edaravone penetration into the brain. Intravenous infusion with PAF induced a transient BBB opening in rats, reflected by increased Evans blue leakage and mild edema formation, which ceased within 6 h. Furthermore, rat regional cerebral blood flow (rCBF) declined acutely during PAF infusion, but recovered slowly. More importantly, this transient BBB opening significantly increased the penetration of edaravone into the brain, evidenced by increased edaravone concentrations in tissue interstitial fluid collected by microdialysis and analyzed by Ultra-performance liquid chromatograph combined with a hybrid quadrupole time-of-flight mass spectrometer (UPLC-MS/MS). Similarly, incubation of rat brain microvessel endothelial cells monolayer with 1 μM PAF for 1 h significantly increased monolayer permeability to (125)I-albumin, which recovered 1 h after PAF elimination. However, PAF incubation with rat brain microvessel endothelial cells for 1 h did not cause detectable cytotoxicity, and did not regulate intercellular adhesion molecule-1, matrix-metalloproteinase-9 and P-glycoprotein expression. In conclusion, PAF could induce transient and reversible BBB opening through abrupt rCBF decline, which significantly improved edaravone penetration into the brain. Platelet activating factor (PAF) transiently induces BBB dysfunction and increases BBB permeability, which may be due to vessel contraction and a temporary decline of regional cerebral blood flow (rCBF) triggered by PAF. More importantly, the PAF induced transient BBB opening facilitates neuroprotectant edaravone penetration into brain. The results of this study may provide a new approach to improve drug delivery into the brain. © 2013 International Society for Neurochemistry.
Li, Chuanfu; Yang, Jun; Park, Kyungmo; Wu, Hongli; Hu, Sheng; Zhang, Wei; Bu, Junjie; Xu, Chunsheng; Qiu, Bensheng; Zhang, Xiaochu
2014-01-01
Most previous studies of brain responses to acupuncture were designed to investigate the acupuncture instant effect while the cumulative effect that should be more important in clinical practice has seldom been discussed. In this study, the neural basis of the acupuncture cumulative effect was analyzed. For this experiment, forty healthy volunteers were recruited, in which more than 40 minutes of repeated acupuncture stimulation was implemented at acupoint Zhusanli (ST36). Three runs of acupuncture fMRI datasets were acquired, with each run consisting of two blocks of acupuncture stimulation. Besides general linear model (GLM) analysis, the cumulative effects of acupuncture were analyzed with analysis of covariance (ANCOVA) to find the association between the brain response and the cumulative duration of acupuncture stimulation in each stimulation block. The experimental results showed that the brain response in the initial stage was the strongest although the brain response to acupuncture was time-variant. In particular, the brain areas that were activated in the first block and the brain areas that demonstrated cumulative effects in the course of repeated acupuncture stimulation overlapped in the pain-related areas, including the bilateral middle cingulate cortex, the bilateral paracentral lobule, the SII, and the right thalamus. Furthermore, the cumulative effects demonstrated bimodal characteristics, i.e. the brain response was positive at the beginning, and became negative at the end. It was suggested that the cumulative effect of repeated acupuncture stimulation was consistent with the characteristic of habituation effects. This finding may explain the neurophysiologic mechanism underlying acupuncture analgesia. PMID:24821143
Lu, Hanbing; Scholl, Clara A.; Zuo, Yantao; Demny, Steven; Rea, William; Stein, Elliot A.; Yang, Yihong
2009-01-01
The value of analyzing neuroimaging data on a group level has been well established in human studies. However, there is no standard procedure for registering and analyzing fMRI data into common space in rodent functional magnetic resonance imaging (fMRI) studies. An approach for performing rat imaging data analysis in the stereotaxic framework is presented. This method is rooted in the biological observation that the skull shape and size of rat brain are essentially the same as long as their weights are within certain range. Registration is performed using rigid-body transformations without scaling or shearing, preserving the unique properties of the stable shape and size inherent in rat brain structure. Also, it does not require brain tissue masking, and is not biased towards surface coil sensitivity profile. A standard rat brain atlas is used to facilitate the identification of activated areas in common space, allowing accurate region-of-interest (ROI) analysis. This technique is evaluated from a group of rats (n = 11) undergoing routine MRI scans; the registration accuracy is estimated to be within 400 μm. The analysis of fMRI data acquired with an electrical forepaw stimulation model demonstrates the utility of this technique. The method is implemented within the AFNI framework and can be readily extended to other studies. PMID:19608368
Brain processing of meter and rhythm in music. Electrophysiological evidence of a common network.
Kuck, Heleln; Grossbach, Michael; Bangert, Marc; Altenmüller, Eckart
2003-11-01
To determine cortical structures involved in "global" meter and "local" rhythm processing, slow brain potentials (DC potentials) were recorded from the scalp of 18 musically trained subjects while listening to pairs of monophonic sequences with both metric structure and rhythmic variations. The second sequence could be either identical to or different from the first one. Differences were either of a metric or a rhythmic nature. The subjects' task was to judge whether the sequences were identical or not. During processing of the auditory tasks, brain activation patterns along with the subjects' performance were assessed using 32-channel DC electroencephalography. Data were statistically analyzed using MANOVA. Processing of both meter and rhythm produced sustained cortical activation over bilateral frontal and temporal brain regions. A shift towards right hemispheric activation was pronounced during presentation of the second stimulus. Processing of rhythmic differences yielded a more centroparietal activation compared to metric processing. These results do not support Lerdhal and Jackendoff's two-component model, predicting a dissociation of left hemispheric rhythm and right hemispheric meter processing. We suggest that the uniform right temporofrontal predominance reflects auditory working memory and a pattern recognition module, which participates in both rhythm and meter processing. More pronounced parietal activation during rhythm processing may be related to switching of task-solving strategies towards mental imagination of the score.
Modafinil augments brain activation associated with reward anticipation in the nucleus accumbens.
Funayama, Takuya; Ikeda, Yumiko; Tateno, Amane; Takahashi, Hidehiko; Okubo, Yoshiro; Fukayama, Haruhisa; Suzuki, Hidenori
2014-08-01
The nucleus accumbens (NAc) works as a key brain structure of the reward system, in which reward-related neural activity is well correlated with dopamine release from mesolimbic dopaminergic neurons. Since modafinil can modulate dopaminergic transmission through re-uptake inhibition of dopamine, we investigated whether modafinil affects the reward-related brain activity in the NAc in healthy subjects. Twenty healthy participants underwent two series of functional magnetic resonance imaging while performing monetary incentive delay task in which they were cued to anticipate and respond to a rapidly presented target to gain or avoid losing varying amounts of money, under modafinil or placebo condition. Blood oxygenation-level dependent (BOLD) activation signals during gain and loss anticipations were analyzed in the NAc as an a priori region of interest as well as the whole brain. Modafinil significantly changed subjective feelings toward positive ones. The activation of BOLD signals was observed during gain anticipation under the placebo and modafinil conditions in the left and bilateral NAc, respectively. The modafinil condition showed significantly higher BOLD signal change at the highest gain (+¥500) cue compared to the placebo condition. The present study showed that modafinil affects reward processing in the NAc in healthy subjects through enhancing more positive anticipation, and it may provide a basis for the use of this drug for treating anhedonia observed in psychiatric disorders.
NASA Astrophysics Data System (ADS)
Uno, Tominori; Wang, Li-Qun; Miwakeichi, Fumikazu; Tonoike, Mitsuo; Kaneda, Teruo
In order to establish a new diagnostic method for central olfactory disorders and to identify objective indicators, we measured and analyzed brain activities in the parahippocampal gyrus and uncus, region of responsibility for central olfactory disorders. The relationship between olfactory stimulation and brain response at region of responsibility can be examined in terms of fitted responses (FR). FR in these regions may be individual indicators of changes in brain olfactory responses. In the present study, in order to non-invasively and objectively measure olfactory responses, an odor oddball task was conducted on four healthy volunteers using functional magnetic resonance imaging (fMRI) and a odorant stimulator with blast-method. The results showed favorable FR and activation in the parahippocampal gyrus or uncus in all subjects. In some subjects, both the parahippocampal gyrus and uncus were activated. Furthermore, activation was also confirmed in the cingulate gyrus, middle frontal gyrus, precentral gyrus, postcentral gyrus, superior temporal gyrus and insula. The hippocampus and uncus are known to be involved in the olfactory disorders associated with early-stage Alzheimer's disease and other olfactory disorders. In the future, it will be necessary to further develop the present measurement and analysis method to clarify the relationship between central olfactory disorders and brain activities and establish objective indicators that are useful for diagnosis.
The treatment of Parkinson's disease with deep brain stimulation: current issues
Moldovan, Alexia-Sabine; Groiss, Stefan Jun; Elben, Saskia; Südmeyer, Martin; Schnitzler, Alfons; Wojtecki, Lars
2015-01-01
Deep brain stimulation has become a well-established symptomatic treatment for Parkinson's disease during the last 25 years. Besides improving motor symptoms and long-term motor complications, positive effects on patients’ mobility, activities of daily living, emotional well-being and health-related quality of life have been recognized. Apart from that, numerous clinical trials analyzed effects on non-motor symptoms and side effects of deep brain stimulation. Several technical issues and stimulation paradigms have been and are still being developed to optimize the therapeutic effects, minimize the side effects and facilitate handling. This review summarizes current therapeutic issues, i.e., patient and target selection, surgical procedure and programming paradigms. In addition it focuses on neuropsychological effects and side effects of deep brain stimulation. PMID:26330809
Choy, Cecilia; Ansari, Khairul I; Neman, Josh; Hsu, Sarah; Duenas, Matthew J; Li, Hubert; Vaidehi, Nagarajan; Jandial, Rahul
2017-04-26
Patients with primary breast cancer that is positive for human epidermal growth factor receptor 2 (Her2+) have a high risk of developing metastases in the brain. Despite gains with systemic control of Her2+ disease using molecular therapies, brain metastases remain recalcitrant to therapeutic discovery. The clinical predilection of Her2+ breast cancer cells to colonize the brain likely relies on paracrine mechanisms. The neural niche poses unique selection pressures, and neoplastic cells that utilize the brain microenvironment may have a survival advantage. Tropomyosin-related kinase B (TrkB), Her2, and downstream targets were analyzed in primary breast cancer, breast-to-brain metastasis (BBM) tissues, and tumor-derived cell lines using quantitative real-time PCR, western blot, and immunohistochemical assessment. TrkB function on BBM was confirmed with intracranial, intracardiac, or mammary fat pad xenografts in non-obese diabetic/severe combined immunodeficiency mice. The function of brain-derived neurotrophic factor (BDNF) on cell proliferation and TrkB/Her2 signaling and interactions were confirmed using selective shRNA knockdown and selective inhibitors. The physical interaction of Her2-TrkB was analyzed using electron microscopy, co-immunoprecipitation, and in silico analysis. Dual targeting of Her2 and TrkB was analyzed using clinically utilized treatments. We observed that patient tissues and cell lines derived from Her2+ human BBM displayed increased activation of TrkB, a neurotrophin receptor. BDNF, an extracellular neurotrophin, with roles in neuronal maturation and homeostasis, specifically binds to TrkB. TrkB knockdown in breast cancer cells led to decreased frequency and growth of brain metastasis in animal models, suggesting that circulating breast cancer cells entering the brain may take advantage of paracrine BDNF-TrkB signaling for colonization. In addition, we investigated a possible interaction between TrkB and Her2 receptors on brain metastatic breast cancer cells, and found that BDNF phosphorylated both its cognate TrkB receptor and the Her2 receptor in brain metastatic breast cancer cells. Collectively, our findings suggest that heterodimerization of Her2 and TrkB receptors gives breast cancer cells a survival advantage in the brain and that dual inhibition of these receptors may hold therapeutic potential.
Ketogenic diet and childhood neurological disorders other than epilepsy: an overview.
Verrotti, Alberto; Iapadre, Giulia; Pisano, Simone; Coppola, Giangennaro
2017-05-01
In the last years, ketogenic diet (KD) has been experimentally utilized in various childhood neurologic disorders such as mitochondriopathies, alternating hemiplegia of childhood (AHC), brain tumors, migraine, and autism spectrum disorder (ASD). The aim of this review is to analyze how KD can target these different medical conditions, highlighting possible mechanisms involved. Areas covered: We have conducted an analysis on literature concerning KD use in mitochondriopathies, AHC, brain tumors, migraine, and ASD. Expert commentary: The role of KD in reducing seizure activity in some mitochondriopathies and its efficacy in pyruvate dehydrogenase deficiency is known. Recently, few cases suggest the potentiality of KD in decreasing paroxysmal activity in children affected by AHC. A few data support its potential use as co-adjuvant and alternative therapeutic option for brain cancer, while any beneficial effect of KD on migraine remains unclear. KD could improve cognitive and social skills in a subset of children with ASD.
Kolodziej, Angela; Lippert, Michael; Angenstein, Frank; Neubert, Jenni; Pethe, Annette; Grosser, Oliver S; Amthauer, Holger; Schroeder, Ulrich H; Reymann, Klaus G; Scheich, Henning; Ohl, Frank W; Goldschmidt, Jürgen
2014-12-01
Electrical and optogenetic methods for brain stimulation are widely used in rodents for manipulating behavior and analyzing functional connectivities in neuronal circuits. High-resolution in vivo imaging of the global, brain-wide, activation patterns induced by these stimulations has remained challenging, in particular in awake behaving mice. We here mapped brain activation patterns in awake, intracranially self-stimulating mice using a novel protocol for single-photon emission computed tomography (SPECT) imaging of regional cerebral blood flow (rCBF). Mice were implanted with either electrodes for electrical stimulation of the medial forebrain bundle (mfb-microstim) or with optical fibers for blue-light stimulation of channelrhodopsin-2 expressing neurons in the ventral tegmental area (vta-optostim). After training for self-stimulation by current or light application, respectively, mice were implanted with jugular vein catheters and intravenously injected with the flow tracer 99m-technetium hexamethylpropyleneamine oxime (99mTc-HMPAO) during seven to ten minutes of intracranial self-stimulation or ongoing behavior without stimulation. The 99mTc-brain distributions were mapped in anesthetized animals after stimulation using multipinhole SPECT. Upon self-stimulation rCBF strongly increased at the electrode tip in mfb-microstim mice. In vta-optostim mice peak activations were found outside the stimulation site. Partly overlapping brain-wide networks of activations and deactivations were found in both groups. When testing all self-stimulating mice against all controls highly significant activations were found in the rostromedial nucleus accumbens shell. SPECT-imaging of rCBF using intravenous tracer-injection during ongoing behavior is a new tool for imaging regional brain activation patterns in awake behaving rodents providing higher spatial and temporal resolutions than 18F-2-fluoro-2-dexoyglucose positron emission tomography. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Berman, Brian D.; Horovitz, Silvina G.; Venkataraman, Gaurav; Hallett, Mark
2011-01-01
Advances in fMRI data acquisition and processing have made it possible to analyze brain activity as rapidly as the images are acquired allowing this information to be fed back to subjects in the scanner. The ability of subjects to learn to volitionally control localized brain activity within motor cortex using such real-time fMRI-based neurofeedback (NF) is actively being investigated as it may have clinical implications for motor rehabilitation after central nervous system injury and brain-computer interfaces. We investigated the ability of fifteen healthy volunteers to use NF to modulate brain activity within the primary motor cortex (M1) during a finger tapping and tapping imagery task. The M1 hand area ROI (ROIm) was functionally localized during finger tapping and a visual representation of BOLD signal changes within the ROIm fed back to the subject in the scanner. Surface EMG was used to assess motor output during tapping and ensure no motor activity was present during motor imagery task. Subjects quickly learned to modulate brain activity within their ROIm during the finger-tapping task, which could be dissociated from the magnitude of the tapping, but did not show a significant increase within the ROIm during the hand motor imagery task at the group level despite strongly activating a network consistent with the performance of motor imagery. The inability of subjects to modulate M1 proper with motor imagery may reflect an inherent difficulty in activating synapses in this area, with or without NF, since such activation may lead to M1 neuronal output and obligatory muscle activity. Future real-time fMRI-based NF investigations involving motor cortex may benefit from focusing attention on cortical regions other than M1 for feedback training or alternative feedback strategies such as measures of functional connectivity within the motor system. PMID:21803163
Osten, Jaime Rendón-von; Soares, Amadeu M V M; Guilhermino, Lucia
2005-02-01
Rice is the main crop in the subbasin of the fluvial lagoon system of Palizada River (FLSPR) in the state of Campeche, Mexico. The pesticides used to control pests of this crop mainly are carbofuran, chlorpyrifos, and glyphosate. Black-bellied whistling duck (Dendrocygna autumnalis) is an ecologically and economically important species in the area. This duck is consumed by local inhabitants throughout the year, despite its potential exposure to pesticides. Due to its feeding habits, abundance, and nutritional value, D. autumnalis is a good indicator of environmental contamination and a potential route of human exposure to organophosphate and carbamate pesticides. In this study, the brain cholinesterase (ChE) in the frontal cerebral cortex of autochthonous ducks was characterized. In addition, the potential of the three locally used pesticides and mixtures to inhibit ChE activity was investigated and the exposure of the wild duck population during intensive pesticide applications in rice fields was evaluated. We found that acetylcholinesterase (AChE) seems to be the predominant ChE form in the biological fraction analyzed. Carbofuran was the most potent ChE inhibitor of D. autumnalis brain ChE activity from the three pesticides analyzed. Cholinesterase inhibition after exposure to pesticide mixtures predominantly was due to carbofuran. A decrease (p < 0.05) in AChE activity (>30%) was apparent in wild ducks compared to reference ducks, with recovery of ChE inhibition in wild ducks occurring months later when no pesticides were applied in the field. Dendrocygna autumnalis brain ChE is a suitable parameter for inclusion in biomonitoring programs for both environmental protection and human safety.
Barshad, Gilad; Blumberg, Amit; Cohen, Tal; Mishmar, Dan
2018-06-14
Oxidative phosphorylation (OXPHOS), a fundamental energy source in all human tissues, requires interactions between mitochondrial (mtDNA)- and nuclear (nDNA)-encoded protein subunits. Although such interactions are fundamental to OXPHOS, bi-genomic coregulation is poorly understood. To address this question, we analyzed ∼8500 RNA-seq experiments from 48 human body sites. Despite well-known variation in mitochondrial activity, quantity, and morphology, we found overall positive mtDNA-nDNA OXPHOS genes' co-expression across human tissues. Nevertheless, negative mtDNA-nDNA gene expression correlation was identified in the hypothalamus, basal ganglia, and amygdala (subcortical brain regions, collectively termed the "primitive" brain). Single-cell RNA-seq analysis of mouse and human brains revealed that this phenomenon is evolutionarily conserved, and both are influenced by brain cell types (involving excitatory/inhibitory neurons and nonneuronal cells) and by their spatial brain location. As the "primitive" brain is highly oxidative, we hypothesized that such negative mtDNA-nDNA co-expression likely controls for the high mtDNA transcript levels, which enforce tight OXPHOS regulation, rather than rewiring toward glycolysis. Accordingly, we found "primitive" brain-specific up-regulation of lactate dehydrogenase B ( LDHB ), which associates with high OXPHOS activity, at the expense of LDHA , which promotes glycolysis. Analyses of co-expression, DNase-seq, and ChIP-seq experiments revealed candidate RNA-binding proteins and CEBPB as the best regulatory candidates to explain these phenomena. Finally, cross-tissue expression analysis unearthed tissue-dependent splice variants and OXPHOS subunit paralogs and allowed revising the list of canonical OXPHOS transcripts. Taken together, our analysis provides a comprehensive view of mito-nuclear gene co-expression across human tissues and provides overall insights into the bi-genomic regulation of mitochondrial activities. © 2018 Barshad et al.; Published by Cold Spring Harbor Laboratory Press.
Mainardi, Marco; Di Garbo, Angelo; Caleo, Matteo; Berardi, Nicoletta; Sale, Alessandro; Maffei, Lamberto
2013-01-01
Brain aging is characterized by global changes which are thought to underlie age-related cognitive decline. These include variations in brain activity and the progressive increase in the concentration of soluble amyloid-β (Aβ) oligomers, directly impairing synaptic function and plasticity even in the absence of any neurodegenerative disorder. Considering the high social impact of the decline in brain performance associated to aging, there is an urgent need to better understand how it can be prevented or contrasted. Lifestyle components, such as social interaction, motor exercise and cognitive activity, are thought to modulate brain physiology and its susceptibility to age-related pathologies. However, the precise functional and molecular factors that respond to environmental stimuli and might mediate their protective action again pathological aging still need to be clearly identified. To address this issue, we exploited environmental enrichment (EE), a reliable model for studying the effect of experience on the brain based on the enhancement of cognitive, social and motor experience, in aged wild-type mice. We analyzed the functional consequences of EE on aged brain physiology by performing in vivo local field potential (LFP) recordings with chronic implants. In addition, we also investigated changes induced by EE on molecular markers of neural plasticity and on the levels of soluble Aβ oligomers. We report that EE induced profound changes in the activity of the primary visual and auditory cortices and in their functional interaction. At the molecular level, EE enhanced plasticity by an upward shift of the cortical excitation/inhibition balance. In addition, EE reduced brain Aβ oligomers and increased synthesis of the Aβ-degrading enzyme neprilysin. Our findings strengthen the potential of EE procedures as a non-invasive paradigm for counteracting brain aging processes. PMID:24478697
Mainardi, Marco; Di Garbo, Angelo; Caleo, Matteo; Berardi, Nicoletta; Sale, Alessandro; Maffei, Lamberto
2014-01-01
Brain aging is characterized by global changes which are thought to underlie age-related cognitive decline. These include variations in brain activity and the progressive increase in the concentration of soluble amyloid-β (Aβ) oligomers, directly impairing synaptic function and plasticity even in the absence of any neurodegenerative disorder. Considering the high social impact of the decline in brain performance associated to aging, there is an urgent need to better understand how it can be prevented or contrasted. Lifestyle components, such as social interaction, motor exercise and cognitive activity, are thought to modulate brain physiology and its susceptibility to age-related pathologies. However, the precise functional and molecular factors that respond to environmental stimuli and might mediate their protective action again pathological aging still need to be clearly identified. To address this issue, we exploited environmental enrichment (EE), a reliable model for studying the effect of experience on the brain based on the enhancement of cognitive, social and motor experience, in aged wild-type mice. We analyzed the functional consequences of EE on aged brain physiology by performing in vivo local field potential (LFP) recordings with chronic implants. In addition, we also investigated changes induced by EE on molecular markers of neural plasticity and on the levels of soluble Aβ oligomers. We report that EE induced profound changes in the activity of the primary visual and auditory cortices and in their functional interaction. At the molecular level, EE enhanced plasticity by an upward shift of the cortical excitation/inhibition balance. In addition, EE reduced brain Aβ oligomers and increased synthesis of the Aβ-degrading enzyme neprilysin. Our findings strengthen the potential of EE procedures as a non-invasive paradigm for counteracting brain aging processes.
Ventura, Anabela Carraca; Persinger, Michael A
2014-08-01
The study objective was to discern whether the coherence between brain activities of the "patient" and practitioner differ between Reiki experts and novices. If the physical process associated with Reiki involves "convergence" between the practitioner and subject, then this congruence should be evident in time-dependent shared power within specific and meaningful frequency electroencephalographic bands. Simultaneous quantitative electroencephalogram measures (19 channels) were recorded from 9 pairs of subjects when 1 of the pairs was an experienced Reiki practitioner or had just been shown the procedure. Pairs recorded their experiences and images. The "practitioner" and "patient" pairs were measured within a quiet, comfortable acoustic chamber. Real-time correlations and coherence between pairs of brains for power (μV(2)·Hz(-1)) within the various frequency bands over the 10-min sessions were recorded and analyzed for each pair. Descriptors of experiences were analyzed for word meanings. Only the coherence within the theta range increased over time between the brains of the Reiki pairs relative to the Sham pairs, particularly over the left hemisphere. The pleasantness-unpleasantness rating for the words employed to describe experiences written after the experiment were more congruent for the Reiki pairs compared to the reference pairs. The increased synchronization of the cerebral activity of the participant and the practitioner during proximal therapies involving touch such as Reiki may be an important component of any subsequent beneficial effects.
[The noncoherent components of evoked brain activity].
Kovalev, V P; Novototskiĭ-Vlasov, V Iu
1998-01-01
Poststimulus spectral EEG changes and their correlation with evoked potential (EP) were analyzed. The non-stationary components of the brain evoked activity were revealed in 32 volunteers during simple motor reaction and choice reaction to visual stimuli. This nonstationary activity was manifested in poststimulus changes in the mean wave half-period duration (MWHPD) and mean wave half-period power of the delta- and beta-frequency oscillations computed in the EEG realizations after the EP subtraction. The latencies of high-frequency EP components fell into the intervals of the MWHPD decrease and increase in the power of beta-oscillations, and the latencies of low-frequency EP components coincided with the intervals of the MWHPD increase and decrease in the power of delta and beta-oscillations, which pointed to correlation of these changes with the EP.
Rachmiel, M; Cohen, M; Heymen, E; Lezinger, M; Inbar, D; Gilat, S; Bistritzer, T; Leshem, G; Kan-Dror, E; Lahat, E; Ekstein, D
2016-02-01
To assess the association between hyperglycemia and electrical brain activity in type 1 diabetes mellitus (T1DM). Nine youths with T1DM were monitored simultaneously and continuously by EEG and continuous glucose monitor system, for 40 h. EEG powers of 0.5-80 Hz frequency bands in all the different brain regions were analyzed according to interstitial glucose concentration (IGC) ranges of 4-11 mmol/l, 11-15.5 mmol/l and >15.5 mmol/l. Analysis of variance was used to examine the differences in EEG power of each frequency band between the subgroups of IGC. Analysis was performed separately during wakefulness and sleep, controlling for age, gender and HbA1c. Mean IGC was 11.49 ± 5.26 mmol/l in 1253 combined measurements. IGC>15.5 mmol/l compared to 4-11 mmol/l was associated during wakefulness with increased EEG power of low frequencies and with decreased EEG power of high frequencies. During sleep, it was associated with increased EEG power of low frequencies in all brain areas and of high frequencies in frontal and central areas. Asymptomatic transient hyperglycemia in youth with T1DM is associated with simultaneous alterations in electrical brain activity during wakefulness and sleep. The clinical implications of immediate electrical brain alterations under hyperglycemia need to be studied and may lead to adaptations of management. Copyright © 2015. Published by Elsevier Ireland Ltd.
Hamoud Al-Tamimi, Mohammed Sabbih; Sulong, Ghazali; Shuaib, Ibrahim Lutfi
2015-07-01
Resection of brain tumors is a tricky task in surgery due to its direct influence on the patients' survival rate. Determining the tumor resection extent for its complete information via-à-vis volume and dimensions in pre- and post-operative Magnetic Resonance Images (MRI) requires accurate estimation and comparison. The active contour segmentation technique is used to segment brain tumors on pre-operative MR images using self-developed software. Tumor volume is acquired from its contours via alpha shape theory. The graphical user interface is developed for rendering, visualizing and estimating the volume of a brain tumor. Internet Brain Segmentation Repository dataset (IBSR) is employed to analyze and determine the repeatability and reproducibility of tumor volume. Accuracy of the method is validated by comparing the estimated volume using the proposed method with that of gold-standard. Segmentation by active contour technique is found to be capable of detecting the brain tumor boundaries. Furthermore, the volume description and visualization enable an interactive examination of tumor tissue and its surrounding. Admirable features of our results demonstrate that alpha shape theory in comparison to other existing standard methods is superior for precise volumetric measurement of tumor. Copyright © 2015 Elsevier Inc. All rights reserved.
Nosti-Palacios, Rosario; Gómez-Garduño, Josefina; Molina-Ortiz, Dora; Calzada-León, Raúl; Dorado-González, Víctor Manuel; Vences-Mejía, Araceli
2014-07-01
This study demonstrates that aspartame consumption and insulin treatment in a juvenile diabetic rat model leads to increase in cytochrome P450 (CYP) 2E1 and CYP3A2 isozymes in brain. Diabetes mellitus was induced in postweaned 21-day-old Wistar male rat by streptozotocin. Animals were randomly assigned to one of the following groups: untreated control, diabetic (D), D-insulin, D-aspartame, or the D-insulin + aspartame-treated group. Brain and liver tissue samples were used to analyze the activity of CYP2E1 and CYP3A2 and protein levels. Our results indicate that combined treatment with insulin and aspartame in juvenile diabetic rats significantly induced CYP2E1 in the cerebrum and cerebellum without modifying it in the liver, while CYP3A2 protein activity increased both in the brain and in the liver. The induction of CYP2E1 in the brain could have important in situ toxicological effects, given that this CYP isoform is capable of bioactivating various toxic substances. Additionally, CYP3A2 induction in the liver and brain could be considered a decisive factor in the variation of drug response and toxicity. © The Author(s) 2014.
Wei, Ling; Li, Yingjie; Yang, Xiaoli; Xue, Qing; Wang, Yuping
2015-10-01
The present study evaluated the topological properties of whole brain networks using graph theoretical concepts and investigated the time-evolution characteristic of brain network in mild cognitive impairment patients during a selective attention task. Electroencephalography (EEG) activities were recorded in 10 MCI patients and 17 healthy subjects when they performed a color match task. We calculated the phase synchrony index between each possible pairs of EEG channels in alpha and beta frequency bands and analyzed the local interconnectedness, overall connectedness and small-world characteristic of brain network in different degree for two groups. Relative to healthy normal controls, the properties of cortical networks in MCI patients tend to be a shift of randomization. Lower σ of MCI had suggested that patients had a further loss of small-world attribute both during active and resting states. Our results provide evidence for the functional disconnection of brain regions in MCI. Furthermore, we found the properties of cortical networks could reflect the processing of conflict information in the selective attention task. The human brain tends to be a more regular and efficient neural architecture in the late stage of information processing. In addition, the processing of conflict information needs stronger information integration and transfer between cortical areas. Copyright © 2015 Elsevier B.V. All rights reserved.
Baumgartner, Thomas; Valko, Lilian; Esslen, Michaela; Jäncke, Lutz
2006-02-01
Using electroencephalography (EEG), psychophysiology, and psychometric measures, this is the first study which investigated the neurophysiological underpinnings of spatial presence. Spatial presence is considered a sense of being physically situated within a spatial environment portrayed by a medium (e.g., television, virtual reality). Twelve healthy children and 11 healthy adolescents were watching different virtual roller coaster scenarios. During a control session, the roller coaster cab drove through a horizontal roundabout track. The following realistic roller coaster rides consisted of spectacular ups, downs, and loops. Low-resolution brain electromagnetic tomography (LORETA) and event-related desynchronization (ERD) were used to analyze the EEG data. As expected, we found that, compared to the control condition, experiencing a virtual roller coaster ride evoked in both groups strong SP experiences, increased electrodermal reactions, and activations in parietal brain areas known to be involved in spatial navigation. In addition, brain areas that receive homeostatic afferents from somatic and visceral sensations of the body were strongly activated. Most interesting, children (as compared to adolescents) reported higher spatial presence experiences and demonstrated a different frontal activation pattern. While adolescents showed increased activation in prefrontal areas known to be involved in the control of executive functions, children demonstrated a decreased activity in these brain regions. Interestingly, recent neuroanatomical and neurophysiological studies have shown that the frontal brain continues to develop to adult status well into adolescence. Thus, the result of our study implies that the increased spatial presence experience in children may result from the not fully developed control functions of the frontal cortex.
Brain response to visual sexual stimuli in homosexual pedophiles
Schiffer, Boris; Krueger, Tillmann; Paul, Thomas; de Greiff, Armin; Forsting, Michael; Leygraf, Norbert; Schedlowski, Manfred; Gizewski, Elke
2008-01-01
Objective The neurobiological mechanisms of deviant sexual preferences such as pedophilia are largely unknown. The objective of this study was to analyze whether brain activation patterns of homosexual pedophiles differed from those of a nonpedophile homosexual control group during visual sexual stimulation. Method A consecutive sample of 11 pedophile forensic inpatients exclusively attracted to boys and 12 age-matched homosexual control participants from a comparable socioeconomic stratum underwent functional magnetic resonance imaging during a visual sexual stimulation procedure that used sexually stimulating and emotionally neutral photographs. Sexual arousal was assessed according to a subjective rating scale. Results In contrast to sexually neutral pictures, in both groups sexually arousing pictures having both homosexual and pedophile content activated brain areas known to be involved in processing visual stimuli containing emotional content, including the occipitotemporal and prefrontal cortices. However, during presentation of the respective sexual stimuli, the thalamus, globus pallidus and striatum, which correspond to the key areas of the brain involved in sexual arousal and behaviour, showed significant activation in pedophiles, but not in control subjects. Conclusions Central processing of visual sexual stimuli in homosexual pedophiles seems to be comparable to that in nonpedophile control subjects. However, compared with homosexual control subjects, activation patterns in pedophiles refer more strongly to subcortical regions, which have previously been discussed in the context of processing reward signals and also play an important role in addictive and stimulus-controlled behaviour. Thus future studies should further elucidate the specificity of these brain regions for the processing of sexual stimuli in pedophilia and should address the generally weaker activation pattern in homosexual men. PMID:18197269
Brain response to visual sexual stimuli in homosexual pedophiles.
Schiffer, Boris; Krueger, Tillmann; Paul, Thomas; de Greiff, Armin; Forsting, Michael; Leygraf, Norbert; Schedlowski, Manfred; Gizewski, Elke
2008-01-01
The neurobiological mechanisms of deviant sexual preferences such as pedophilia are largely unknown. The objective of this study was to analyze whether brain activation patterns of homosexual pedophiles differed from those of a nonpedophile homosexual control group during visual sexual stimulation. A consecutive sample of 11 pedophile forensic inpatients exclusively attracted to boys and 12 age-matched homosexual control participants from a comparable socioeconomic stratum underwent functional magnetic resonance imaging during a visual sexual stimulation procedure that used sexually stimulating and emotionally neutral photographs. Sexual arousal was assessed according to a subjective rating scale. In contrast to sexually neutral pictures, in both groups sexually arousing pictures having both homosexual and pedophile content activated brain areas known to be involved in processing visual stimuli containing emotional content, including the occipitotemporal and prefrontal cortices. However, during presentation of the respective sexual stimuli, the thalamus, globus pallidus and striatum, which correspond to the key areas of the brain involved in sexual arousal and behaviour, showed significant activation in pedophiles, but not in control subjects. Central processing of visual sexual stimuli in homosexual pedophiles seems to be comparable to that in nonpedophile control subjects. However, compared with homosexual control subjects, activation patterns in pedophiles refer more strongly to subcortical regions, which have previously been discussed in the context of processing reward signals and also play an important role in addictive and stimulus-controlled behaviour. Thus future studies should further elucidate the specificity of these brain regions for the processing of sexual stimuli in pedophilia and should address the generally weaker activation pattern in homosexual men.
Setsu, Rikukage; Hirano, Yoshiyuki; Tokunaga, Miki; Takahashi, Toru; Numata, Noriko; Matsumoto, Koji; Masuda, Yoshitada; Matsuzawa, Daisuke; Iyo, Masaomi; Shimizu, Eiji; Nakazato, Michiko
2017-01-01
The aim of this study was to examine differences in brain neural activation in response to monosodium glutamate (MSG), the representative component of umami, between patients with bulimia nervosa (BN) and healthy women (HW) controls. We analyzed brain activity after ingestion of an MSG solution using functional magnetic resonance imaging (fMRI) in a group of women with BN (n = 18) and a group of HW participants (n = 18). Both groups also provided a subjective assessment of the MSG solution via a numerical rating scale. The BN group subjectively rated the MSG solution lower in pleasantness and liking than the control group, although no difference in subjective intensity was noted. The fMRI results demonstrated greater activation of the right insula in the BN group versus the control group. Compared with the HW controls, the BN patients demonstrated both altered taste perception-related brain activity and more negative hedonic scores in response to MSG stimuli. Different hedonic evaluation, expressed as the relative low pleasing taste of umami tastant and associated with altered insula function, may explain disturbed eating behaviors, including the imbalance in food choices, in BN patients. PMID:28993739
Setsu, Rikukage; Hirano, Yoshiyuki; Tokunaga, Miki; Takahashi, Toru; Numata, Noriko; Matsumoto, Koji; Masuda, Yoshitada; Matsuzawa, Daisuke; Iyo, Masaomi; Shimizu, Eiji; Nakazato, Michiko
2017-01-01
The aim of this study was to examine differences in brain neural activation in response to monosodium glutamate (MSG), the representative component of umami, between patients with bulimia nervosa (BN) and healthy women (HW) controls. We analyzed brain activity after ingestion of an MSG solution using functional magnetic resonance imaging (fMRI) in a group of women with BN ( n = 18) and a group of HW participants ( n = 18). Both groups also provided a subjective assessment of the MSG solution via a numerical rating scale. The BN group subjectively rated the MSG solution lower in pleasantness and liking than the control group, although no difference in subjective intensity was noted. The fMRI results demonstrated greater activation of the right insula in the BN group versus the control group. Compared with the HW controls, the BN patients demonstrated both altered taste perception-related brain activity and more negative hedonic scores in response to MSG stimuli. Different hedonic evaluation, expressed as the relative low pleasing taste of umami tastant and associated with altered insula function, may explain disturbed eating behaviors, including the imbalance in food choices, in BN patients.
Neural contributions to flow experience during video game playing.
Klasen, Martin; Weber, René; Kircher, Tilo T J; Mathiak, Krystyna A; Mathiak, Klaus
2012-04-01
Video games are an exciting part of new media. Although game play has been intensively studied, the underlying neurobiology is still poorly understood. Flow theory is a well-established model developed to describe subjective game experience. In 13 healthy male subjects, we acquired fMRI data during free play of a video game and analyzed brain activity based on the game content. In accordance with flow theory, we extracted the following factors from the game content: (i) balance between ability and challenge; (ii) concentration and focus; (iii) direct feedback of action results; (iv) clear goals; and (v) control over the situation/activity. We suggest that flow is characterized by specific neural activation patterns and that the latter can be assessed-at least partially-by content factors contributing to the emergence of flow. Each of the content factors was characterized by specific and distinguishable brain activation patterns, encompassing reward-related midbrain structures, as well as cognitive and sensorimotor networks. The activation of sensory and motor networks in the conjunction analyses underpinned the central role of simulation for flow experience. Flow factors can be validated with functional brain imaging which can improve the understanding of human emotions and motivational processes during media entertainment.
Neural contributions to flow experience during video game playing
Weber, René; Kircher, Tilo T. J.; Mathiak, Krystyna A.; Mathiak, Klaus
2012-01-01
Video games are an exciting part of new media. Although game play has been intensively studied, the underlying neurobiology is still poorly understood. Flow theory is a well-established model developed to describe subjective game experience. In 13 healthy male subjects, we acquired fMRI data during free play of a video game and analyzed brain activity based on the game content. In accordance with flow theory, we extracted the following factors from the game content: (i) balance between ability and challenge; (ii) concentration and focus; (iii) direct feedback of action results; (iv) clear goals; and (v) control over the situation/activity. We suggest that flow is characterized by specific neural activation patterns and that the latter can be assessed—at least partially—by content factors contributing to the emergence of flow. Each of the content factors was characterized by specific and distinguishable brain activation patterns, encompassing reward-related midbrain structures, as well as cognitive and sensorimotor networks. The activation of sensory and motor networks in the conjunction analyses underpinned the central role of simulation for flow experience. Flow factors can be validated with functional brain imaging which can improve the understanding of human emotions and motivational processes during media entertainment. PMID:21596764
Shinkareva, Svetlana V; Mason, Robert A; Malave, Vicente L; Wang, Wei; Mitchell, Tom M; Just, Marcel Adam
2008-01-02
Previous studies have succeeded in identifying the cognitive state corresponding to the perception of a set of depicted categories, such as tools, by analyzing the accompanying pattern of brain activity, measured with fMRI. The current research focused on identifying the cognitive state associated with a 4s viewing of an individual line drawing (1 of 10 familiar objects, 5 tools and 5 dwellings, such as a hammer or a castle). Here we demonstrate the ability to reliably (1) identify which of the 10 drawings a participant was viewing, based on that participant's characteristic whole-brain neural activation patterns, excluding visual areas; (2) identify the category of the object with even higher accuracy, based on that participant's activation; and (3) identify, for the first time, both individual objects and the category of the object the participant was viewing, based only on other participants' activation patterns. The voxels important for category identification were located similarly across participants, and distributed throughout the cortex, focused in ventral temporal perceptual areas but also including more frontal association areas (and somewhat left-lateralized). These findings indicate the presence of stable, distributed, communal, and identifiable neural states corresponding to object concepts.
CEREBRA: a 3-D visualization tool for brain network extracted from fMRI data.
Nasir, Baris; Yarman Vural, Fatos T
2016-08-01
In this paper, we introduce a new tool, CEREBRA, to visualize the 3D network of human brain, extracted from the fMRI data. The tool aims to analyze the brain connectivity by representing the selected voxels as the nodes of the network. The edge weights among the voxels are estimated by considering the relationships among the voxel time series. The tool enables the researchers to observe the active brain regions and the interactions among them by using graph theoretic measures, such as, the edge weight and node degree distributions. CEREBRA provides an interactive interface with basic display and editing options for the researchers to study their hypotheses about the connectivity of the brain network. CEREBRA interactively simplifies the network by selecting the active voxels and the most correlated edge weights. The researchers may remove the voxels and edges by using local and global thresholds selected on the window. The built-in graph reduction algorithms are then eliminate the irrelevant regions, voxels and edges and display various properties of the network. The toolbox is capable of space-time representation of the voxel time series and estimated arc weights by using the animated heat maps.
Kimble, Christopher J.; Boesche, Joshua B.; Eaker, Diane R.; Kressin, Kenneth R.; Trevathan, James K.; Paek, Seungleal; Asp, Anders J.; McIntosh, Malcolm B.; Lujan, J. Luis
2017-01-01
The ability to measure neurotransmitter activity using implanted electrochemical sensors offers researchers a potent technique for analyzing neural activity across specific neural circuitry. We have developed a wirelessly controlled device, WINCS Harmoni, to observe and measure neurotransmitter dynamics at up to four separate sensors, with high temporal and spatial resolution. WINCS Harmoni also incorporates a versatile neurostimulator that can be synchronized with electrochemical recording. The WINCS Harmoni platform is thus optimally suited for probing the neurochemical effects of neurostimulation, and may in turn enable the development of personalized therapies for multiple brain disorders. PMID:29202131
Shumay, Elena; Logan, Jean; Volkow, Nora D; Fowler, Joanna S
2012-10-01
Human brain function is mediated by biochemical processes, many of which can be visualized and quantified by positron emission tomography (PET). PET brain imaging of monoamine oxidase A (MAO A)-an enzyme metabolizing neurotransmitters-revealed that MAO A levels vary widely between healthy men and this variability was not explained by the common MAOA genotype (VNTR genotype), suggesting that environmental factors, through epigenetic modifications, may mediate it. Here, we analyzed MAOA methylation in white blood cells (by bisulphite conversion of genomic DNA and subsequent sequencing of cloned DNA products) and measured brain MAO A levels (using PET and [(11)C]clorgyline, a radiotracer with specificity for MAO A) in 34 healthy non-smoking male volunteers. We found significant interindividual differences in methylation status and methylation patterns of the core MAOA promoter. The VNTR genotype did not influence the methylation status of the gene or brain MAO A activity. In contrast, we found a robust association of the regional and CpG site-specific methylation of the core MAOA promoter with brain MAO A levels. These results suggest that the methylation status of the MAOA promoter (detected in white blood cells) can reliably predict the brain endophenotype. Therefore, the status of MAOA methylation observed in healthy males merits consideration as a variable contributing to interindividual differences in behavior.
Shumay, Elena; Logan, Jean; Volkow, Nora D.; Fowler, Joanna S.
2012-01-01
Human brain function is mediated by biochemical processes, many of which can be visualized and quantified by positron emission tomography (PET). PET brain imaging of monoamine oxidase A (MAOA)—an enzyme metabolizing neurotransmitters—revealed that MAOA levels vary widely between healthy men and this variability was not explained by the common MAOA genotype (VNTR genotype), suggesting that environmental factors, through epigenetic modifications, may mediate it. Here, we analyzed MAOA methylation in white blood cells (by bisulphite conversion of genomic DNA and subsequent sequencing of cloned DNA products) and measured brain MAOA levels (using PET and [11C]clorgyline, a radiotracer with specificity for MAOA) in 34 healthy non-smoking male volunteers. We found significant interindividual differences in methylation status and methylation patterns of the core MAOA promoter. The VNTR genotype did not influence the methylation status of the gene or brain MAOA activity. In contrast, we found a robust association of the regional and CpG site-specific methylation of the core MAOA promoter with brain MAOA levels. These results suggest that the methylation status of the MAOA promoter (detected in white blood cells) can reliably predict the brain endophenotype. Therefore, the status of MAOA methylation observed in healthy males merits consideration as a variable contributing to interindividual differences in behavior. PMID:22948232
The physics of functional magnetic resonance imaging (fMRI)
NASA Astrophysics Data System (ADS)
Buxton, Richard B.
2013-09-01
Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm3 spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology.
The physics of functional magnetic resonance imaging (fMRI)
Buxton, Richard B
2015-01-01
Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm3 spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology. PMID:24006360
The physics of functional magnetic resonance imaging (fMRI).
Buxton, Richard B
2013-09-01
Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm(3) spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moser, Virginia C., E-mail: Moser.ginger@epa.gov
Pyrethroids produce neurotoxicity that depends, in part, on the chemical structure. Common behavioral effects include locomotor activity changes and specific toxic syndromes (types I and II). In general these neurobehavioral effects correlate well with peak internal dose metrics. Products of cyhalothrin, a type II pyrethroid, include mixtures of isomers (e.g., λ-cyhalothrin) as well as enriched active isomers (e.g., γ-cyhalothrin). We measured acute changes in locomotor activity in adult male rats and directly correlated these changes to peak brain and plasma concentrations of λ- and γ-cyhalothrin using a within-subject design. One-hour locomotor activity studies were conducted 1.5 h after oral gavagemore » dosing, and immediately thereafter plasma and brains were collected for analyzing tissue levels using LC/MS/MS methods. Both isomers produced dose-related decreases in activity counts, and the effective dose range for γ-cyhalothrin was lower than for λ-cyhalothrin. Doses calculated to decrease activity by 50% were 2-fold lower for the γ-isomer (1.29 mg/kg) compared to λ-cyhalothrin (2.65 mg/kg). Salivation, typical of type II pyrethroids, was also observed at lower doses of γ-cyhalothrin. Administered dose correlated well with brain and plasma concentrations, which furthermore showed good correlations with activity changes. Brain and plasma levels were tightly correlated across doses. While γ-cyhalothrin was 2-fold more potent based on administered dose, the differences based on internal concentrations were less, with γ-cyhalothrin being 1.3- to 1.6-fold more potent than λ-cyhalothrin. These potency differences are consistent with the purity of the λ-isomer (approximately 43%) compared to the enriched isomer γ-cyhalothrin (approximately 98%). Thus, administered dose as well as differences in cyhalothrin isomers is a good predictor of behavioral effects. - Highlights: • Acute changes in locomotor activity were produced by λ- and γ-cyhalothrin. • γ-Cyhalothrin was about 2-fold more potent than λ-cyhalothrin. • Brain and plasma levels were tightly correlated across doses. • Activity changes correlated well with brain and plasma concentrations.« less
Multivariate Heteroscedasticity Models for Functional Brain Connectivity.
Seiler, Christof; Holmes, Susan
2017-01-01
Functional brain connectivity is the co-occurrence of brain activity in different areas during resting and while doing tasks. The data of interest are multivariate timeseries measured simultaneously across brain parcels using resting-state fMRI (rfMRI). We analyze functional connectivity using two heteroscedasticity models. Our first model is low-dimensional and scales linearly in the number of brain parcels. Our second model scales quadratically. We apply both models to data from the Human Connectome Project (HCP) comparing connectivity between short and conventional sleepers. We find stronger functional connectivity in short than conventional sleepers in brain areas consistent with previous findings. This might be due to subjects falling asleep in the scanner. Consequently, we recommend the inclusion of average sleep duration as a covariate to remove unwanted variation in rfMRI studies. A power analysis using the HCP data shows that a sample size of 40 detects 50% of the connectivity at a false discovery rate of 20%. We provide implementations using R and the probabilistic programming language Stan.
Canivet, Anne; Albinet, Cédric T.; Rodríguez-Ballesteros, Montserrat; Chicherio, Christian; Fagot, Delphine; André, Nathalie; Audiffren, Michel
2017-01-01
Background: In the elderly, physical activity (PA) enhances cognitive performances, increases brain plasticity and improves brain health. The neurotrophic hypothesis is that the release of brain-derived neurotrophic factor (BDNF), which is implicated in brain plasticity and cognition, is triggered by PA because motoneurons secrete BDNF into the bloodstream during exercise. Individual differences in cognitive performance may be explained by individual differences in genetic predisposition. A single nucleotide polymorphism on the BDNF gene, BDNFVal66Met, affects activity-dependent BDNF secretion. This study investigated the influence of the BDNFVal66Met polymorphism on the relationship between PA and controlled inhibition performance in older adults. Methods: A total of 114 healthy elderly volunteers (mean age = 71.53 years old) were evaluated. Participants were genotyped for the BDNFVal66Met polymorphism. We evaluated inhibitory performance using choice reaction times (RT) and error rates from a Simon-like task and estimated their PA using two self-reported questionnaires. We established four groups according to PA level (active vs. inactive) and BDNFVal66Met genotype (Met carriers vs. Val-homozygous). The results were analyzed using ANOVA and ANCOVA, including age, gender and body mass index as covariates. Results: The BDNFVal66Met polymorphism interacted with PA on controlled inhibition performance. More specifically, inactive Val-homozygous participants exhibited a lower inhibition performance than active Val homozygotes and inactive Met carriers; the former had a higher error rate without differences in RT. Conclusion: Differences between individuals on inhibitory performance may be partially understood by the interaction between genetic influence in BDNF secretion and PA level. The results of this study clearly support the neurotrophic hypothesis that BDNF synthesis is an important mechanism underlying the influence of physical activity on brain structure and functions. PMID:29163114
Canivet, Anne; Albinet, Cédric T; Rodríguez-Ballesteros, Montserrat; Chicherio, Christian; Fagot, Delphine; André, Nathalie; Audiffren, Michel
2017-01-01
Background: In the elderly, physical activity (PA) enhances cognitive performances, increases brain plasticity and improves brain health. The neurotrophic hypothesis is that the release of brain-derived neurotrophic factor (BDNF), which is implicated in brain plasticity and cognition, is triggered by PA because motoneurons secrete BDNF into the bloodstream during exercise. Individual differences in cognitive performance may be explained by individual differences in genetic predisposition. A single nucleotide polymorphism on the BDNF gene, BDNF Val66Met, affects activity-dependent BDNF secretion. This study investigated the influence of the BDNFVal66Met polymorphism on the relationship between PA and controlled inhibition performance in older adults. Methods: A total of 114 healthy elderly volunteers (mean age = 71.53 years old) were evaluated. Participants were genotyped for the BDNFVal66Met polymorphism. We evaluated inhibitory performance using choice reaction times (RT) and error rates from a Simon-like task and estimated their PA using two self-reported questionnaires. We established four groups according to PA level (active vs. inactive) and BDNFVal66Met genotype (Met carriers vs. Val-homozygous). The results were analyzed using ANOVA and ANCOVA, including age, gender and body mass index as covariates. Results: The BDNFVal66Met polymorphism interacted with PA on controlled inhibition performance. More specifically, inactive Val-homozygous participants exhibited a lower inhibition performance than active Val homozygotes and inactive Met carriers; the former had a higher error rate without differences in RT. Conclusion: Differences between individuals on inhibitory performance may be partially understood by the interaction between genetic influence in BDNF secretion and PA level. The results of this study clearly support the neurotrophic hypothesis that BDNF synthesis is an important mechanism underlying the influence of physical activity on brain structure and functions.
Spatio-Temporal Information Analysis of Event-Related BOLD Responses
Alpert, Galit Fuhrmann; Handwerker, Dan; Sun, Felice T.; D’Esposito, Mark; Knight, Robert T.
2009-01-01
A new approach for analysis of event related fMRI (BOLD) signals is proposed. The technique is based on measures from information theory and is used both for spatial localization of task related activity, as well as for extracting temporal information regarding the task dependent propagation of activation across different brain regions. This approach enables whole brain visualization of voxels (areas) most involved in coding of a specific task condition, the time at which they are most informative about the condition, as well as their average amplitude at that preferred time. The approach does not require prior assumptions about the shape of the hemodynamic response function (HRF), nor about linear relations between BOLD response and presented stimuli (or task conditions). We show that relative delays between different brain regions can also be computed without prior knowledge of the experimental design, suggesting a general method that could be applied for analysis of differential time delays that occur during natural, uncontrolled conditions. Here we analyze BOLD signals recorded during performance of a motor learning task. We show that during motor learning, the BOLD response of unimodal motor cortical areas precedes the response in higher-order multimodal association areas, including posterior parietal cortex. Brain areas found to be associated with reduced activity during motor learning, predominantly in prefrontal brain regions, are informative about the task typically at significantly later times. PMID:17188515
Tsien, Joe Z; Li, Meng; Osan, Remus; Chen, Guifen; Lin, Longnian; Wang, Phillip Lei; Frey, Sabine; Frey, Julietta; Zhu, Dajiang; Liu, Tianming; Zhao, Fang; Kuang, Hui
2013-09-01
The BRAIN project recently announced by the president Obama is the reflection of unrelenting human quest for cracking the brain code, the patterns of neuronal activity that define who we are and what we are. While the Brain Activity Mapping proposal has rightly emphasized on the need to develop new technologies for measuring every spike from every neuron, it might be helpful to consider both the theoretical and experimental aspects that would accelerate our search for the organizing principles of the brain code. Here we share several insights and lessons from the similar proposal, namely, Brain Decoding Project that we initiated since 2007. We provide a specific example in our initial mapping of real-time memory traces from one part of the memory circuit, namely, the CA1 region of the mouse hippocampus. We show how innovative behavioral tasks and appropriate mathematical analyses of large datasets can play equally, if not more, important roles in uncovering the specific-to-general feature-coding cell assembly mechanism by which episodic memory, semantic knowledge, and imagination are generated and organized. Our own experiences suggest that the bottleneck of the Brain Project is not only at merely developing additional new technologies, but also the lack of efficient avenues to disseminate cutting edge platforms and decoding expertise to neuroscience community. Therefore, we propose that in order to harness unique insights and extensive knowledge from various investigators working in diverse neuroscience subfields, ranging from perception and emotion to memory and social behaviors, the BRAIN project should create a set of International and National Brain Decoding Centers at which cutting-edge recording technologies and expertise on analyzing large datasets analyses can be made readily available to the entire community of neuroscientists who can apply and schedule to perform cutting-edge research.
Neural Entrainment to Auditory Imagery of Rhythms.
Okawa, Haruki; Suefusa, Kaori; Tanaka, Toshihisa
2017-01-01
A method of reconstructing perceived or imagined music by analyzing brain activity has not yet been established. As a first step toward developing such a method, we aimed to reconstruct the imagery of rhythm, which is one element of music. It has been reported that a periodic electroencephalogram (EEG) response is elicited while a human imagines a binary or ternary meter on a musical beat. However, it is not clear whether or not brain activity synchronizes with fully imagined beat and meter without auditory stimuli. To investigate neural entrainment to imagined rhythm during auditory imagery of beat and meter, we recorded EEG while nine participants (eight males and one female) imagined three types of rhythm without auditory stimuli but with visual timing, and then we analyzed the amplitude spectra of the EEG. We also recorded EEG while the participants only gazed at the visual timing as a control condition to confirm the visual effect. Furthermore, we derived features of the EEG using canonical correlation analysis (CCA) and conducted an experiment to individually classify the three types of imagined rhythm from the EEG. The results showed that classification accuracies exceeded the chance level in all participants. These results suggest that auditory imagery of meter elicits a periodic EEG response that changes at the imagined beat and meter frequency even in the fully imagined conditions. This study represents the first step toward the realization of a method for reconstructing the imagined music from brain activity.
EEG during pedaling: Evidence for cortical control of locomotor tasks
Jain, Sanket; Gourab, Krishnaj; Schindler-Ivens, Sheila; Schmit, Brian D.
2014-01-01
Objective This study characterized the brain electrical activity during pedaling, a locomotor-like task, in humans. We postulated that phasic brain activity would be associated with active pedaling, consistent with a cortical role in locomotor tasks. Methods Sixty four channels of electroencephalogram (EEG) and 10 channels of electromyogram (EMG) data were recorded from 10 neurologically-intact volunteers while they performed active and passive (no effort) pedaling on a custom-designed stationary bicycle. Ensemble averaged waveforms, 2 dimensional topographic maps and amplitude of the β (13–35 Hz) frequency band were analyzed and compared between active and passive trials. Results The peak-to-peak amplitude (peak positive–peak negative) of the EEG waveform recorded at the Cz electrode was higher in the passive than the active trials (p < 0.01). β-band oscillations in electrodes overlying the leg representation area of the cortex were significantly desynchronized during active compared to the passive pedaling (p < 0.01). A significant negative correlation was observed between the average EEG waveform for active trials and the composite EMG (summated EMG from both limbs for each muscle) of the rectus femoris (r = −0.77, p < 0.01) the medial hamstrings (r = −0.85, p < 0.01) and the tibialis anterior (r = −0.70, p < 0.01) muscles. Conclusions These results demonstrated that substantial sensorimotor processing occurs in the brain during pedaling in humans. Further, cortical activity seemed to be greatest during recruitment of the muscles critical for transitioning the legs from flexion to extension and vice versa. Significance This is the first study demonstrating the feasibility of EEG recording during pedaling, and owing to similarities between pedaling and bipedal walking, may provide valuable insight into brain activity during locomotion in humans. PMID:23036179
2012-01-01
Background Cathepsin C (Cat C) functions as a central coordinator for activation of many serine proteases in inflammatory cells. It has been recognized that Cat C is responsible for neutrophil recruitment and production of chemokines and cytokines in many inflammatory diseases. However, Cat C expression and its functional role in the brain under normal conditions or in neuroinflammatory processes remain unclear. Our previous study showed that Cat C promoted the progress of brain demyelination in cuprizone-treated mice. The present study further investigated the Cat C expression and activity in lipopolysaccharide (LPS)-induced neuroinflammation in vivo and in vitro. Methods C57BL/6 J mice were intraperitoneally injected with either 0.9% saline or lipopolysaccharide (LPS, 5 mg/kg). Immunohistochemistry (IHC) and in situ hybridization (ISH) were used to analyze microglial activation, TNF-α, IL-1β, IL-6, iNOS mRNAs expressions and cellular localization of Cat C in the brain. Nitrite assay was used to examine microglial activation in vitro; RT-PCR and ELISA were used to determine the expression and release of Cat C. Cat C activity was analyzed by cellular Cat C assay kit. Data were evaluated for statistical significance with paired t test. Results Cat C was predominantly expressed in hippocampal CA2 neurons in C57BL/6 J mice under normal conditions. Six hours after LPS injection, Cat C expression was detected in cerebral cortical neurons; whereas, twenty-four hours later, Cat C expression was captured in activated microglial cells throughout the entire brain. The duration of induced Cat C expression in neurons and in microglial cells was ten days and three days, respectively. In vitro, LPS, IL-1β and IL-6 treatments increased microglial Cat C expression in a dose-dependent manner and upregulated Cat C secretion and its activity. Conclusions Taken together, these data indicate that LPS and proinflammatory cytokines IL-1β, IL-6 induce the expression, release and upregulate enzymatic activity of Cat C in microglial cells. Further investigation is required to determine the functional role of Cat C in the progression of neuroinflammation, which may have implications for therapeutics for the prevention of neuroinflammation-involved neurological disorders in the future. PMID:22607609
Reduced brain response to a sweet taste in Hispanic young adults.
Szajer, Jacquelyn; Jacobson, Aaron; Green, Erin; Murphy, Claire
2017-11-01
Hispanics have an increased risk for metabolic disorders, which evidence suggests may be due to interactions between lifespan biological, genetic, and lifestyle factors. Studies show the diet of many U.S. Hispanic groups have high sugar consumption, which has been shown to influence future preference for and consumption of high-sugar foods, and is associated with increased risk for insulin-related disorders and obesity. Taste is a primary determinant of food preference and selection. Differences in neural response to taste have been associated with obesity. Understanding brain response to sweet taste stimuli in healthy Hispanic adults is an important first step in characterizing the potential neural mechanisms for this behavior. We used fMRI to examine brain activation during the hedonic evaluation of sucrose as a function of ethnicity in Hispanic and non-Hispanic young adults. Taste stimuli were administered orally while subjects were scanned at 3T. Data were analyzed with AFNI via 3dROIstats and 3dMEMA, a mixed effects multi-level analysis of whole brain activation. The Hispanic group had significantly lower ROI activation in the left amygdala and significantly lower whole brain activation in regions critical for reward processing, and hedonic evaluation (e.g. frontal, orbitofrontal, and anterior cingulate cortices) than the non-Hispanic group. Differences in processing of sweet tastes have important clinical and public health implications, especially considering increased risk of metabolic syndrome and cognitive decline in Hispanic populations. Future research to better understanding relationships between health risk and brain function in Hispanic populations is warranted to better conceptualize and develop interventions for these populations. Copyright © 2017. Published by Elsevier B.V.
Khan, Muhammad Sohail; Ali, Tahir; Abid, Muhammad Noman; Jo, Myeung Hoon; Khan, Amjad; Kim, Min Woo; Yoon, Gwang Ho; Cheon, Eun Woo; Rehman, Shafiq Ur; Kim, Myeong Ok
2017-09-01
Lithium an effective mood stabilizer, primary used in the treatment of bipolar disorders, has been reported as a protective agent in various neurological disorders. In this study, we examined the neuroprotective role of lithium chloride (LiCl) against lipopolysaccharide (LPS) in the cortex and hippocampus of the adult rat brain. We determined that LiCl -attenuated LPS-induced activated toll-like receptor 4 (TLR4) signalling and significantly reduced the nuclear factor- k B (NF- K B) translation factor and various other inflammatory mediators such as interleukin-1 beta (IL-1β) and tumour necrosis factor alpha (TNF-α). We also analyzed that LiCl significantly abrogated activated gliosis via attenuation of specific markers for activated microglia, ionized calcium-binding adaptor molecule (Iba-1) and astrocytes, glial fibrillary acidic protein (GFAP) in both the cortex and hippocampus of the adult rat brain. Furthermore, we also observed that LiCl treatment significantly ameliorated the increase expression level of apoptotic neurodegeneration protein markers Bax/Bcl2, activated caspase-3 and poly (ADP-ribose) polymerase-1 (PARP-1) in the cortex and hippocampus regions of the LPS-treated adult rat brain. In addition, the morphological results of the fluoro-jade B (FJB) and Nissl staining showed that LiCl attenuated the neuronal degeneration in the cortex and hippocampus regions of the LPS-treated adult rat brain. Taken together, our Western blot and morphological results indicated that LiCl significantly prevents the LPS-induced neurotoxicity via attenuation of neuroinflammation and apoptotic neurodegeneration in the cortex and hippocampus of the adult rat brain. Copyright © 2017 Elsevier Ltd. All rights reserved.
Burkhart, Annette; Skjørringe, Tina; Johnsen, Kasper Bendix; Siupka, Piotr; Thomsen, Louiza Bohn; Nielsen, Morten Schallburg; Thomsen, Lars Lykke; Moos, Torben
2016-12-01
The mechanisms for iron transport through the blood-brain barrier (BBB) remain a controversy. We analyzed for expression of mRNA and proteins involved in oxidation and transport of iron in isolated brain capillaries from dietary normal, iron-deficient, and iron-reverted rats. The expression was also investigated in isolated rat brain endothelial cells (RBECs) and in immortalized rat brain endothelial (RBE4) cells grown as monoculture or in hanging culture inserts with defined BBB properties. Transferrin receptor 1, ferrireductases Steap 2 and 3, divalent metal transporter 1 (DMT1), ferroportin, soluble and glycosylphosphatidylinositol (GPI)-anchored ceruloplasmin, and hephaestin were all expressed in brain capillaries in vivo and in isolated RBECs and RBE4 cells. Gene expression of DMT1, ferroportin, and soluble and GPI-anchored ceruloplasmin were significantly higher in isolated RBECs with induced BBB properties. Primary pericytes and astrocytes both expressed ceruloplasmin and hephaestin, and RBECs, pericytes, and astrocytes all exhibited ferrous oxidase activity. The coherent protein expression of these genes was demonstrated by immunocytochemistry. The data show that brain endothelial cells provide the machinery for receptor-mediated uptake of ferric iron-containing transferrin. Ferric iron can then undergo reduction to ferrous iron by ferrireductases inside endosomes followed by DMT1-mediated pumping into the cytosol and subsequently cellular export by ferroportin. The expression of soluble ceruloplasmin by brain endothelial cells, pericytes, and astrocytes that together form the neurovascular unit (NVU) provides the ferroxidase activity necessary to reoxidize ferrous iron once released inside the brain.
Schwieler, Lilly; Larsson, Markus K.; Skogh, Elisabeth; Kegel, Magdalena E.; Orhan, Funda; Abdelmoaty, Sally; Finn, Anja; Bhat, Maria; Samuelsson, Martin; Lundberg, Kristina; Dahl, Marja-Liisa; Sellgren, Carl; Schuppe-Koistinen, Ina; Svensson, Camilla I.; Erhardt, Sophie; Engberg, Göran
2015-01-01
Background Accumulating evidence indicates that schizophrenia is associated with brain immune activation. While a number of reports suggest increased cytokine levels in patients with schizophrenia, many of these studies have been limited by their focus on peripheral cytokines or confounded by various antipsychotic treatments. Here, well-characterized patients with schizophrenia, all receiving olanzapine treatment, and healthy volunteers were analyzed with regard to cerebrospinal fluid (CSF) levels of cytokines. We correlated the CSF cytokine levels to previously analyzed metabolites of the kynurenine (KYN) pathway. Methods We analyzed the CSF from patients and controls using electrochemiluminescence detection with regard to cytokines. Cell culture media from human cortical astrocytes were analyzed for KYN and kynurenic acid (KYNA) using high-pressure liquid chromatography or liquid chromatography/mass spectrometry. Results We included 23 patients and 37 controls in our study. Patients with schizophrenia had increased CSF levels of interleukin (IL)-6 compared with healthy volunteers. In patients, we also observed a positive correlation between IL-6 and the tryptophan:KYNA ratio, indicating that IL-6 activates the KYN pathway. In line with this, application of IL-6 to cultured human astrocytes increased cell medium concentration of KYNA. Limitations The CSF samples had been frozen and thawed twice before analysis of cytokines. Median age differed between patients and controls. When appropriate, all present analyses were adjusted for age. Conclusion We have shown that IL-6, KYN and KYNA are elevated in patients with chronic schizophrenia, strengthening the idea of brain immune activation in patients with this disease. Our concurrent cell culture and clinical findings suggest that IL-6 induces the KYN pathway, leading to increased production of the N-methyl-d-aspartate receptor antagonist KYNA in patients with schizophrenia. PMID:25455350
Segmentation propagation for the automated quantification of ventricle volume from serial MRI
NASA Astrophysics Data System (ADS)
Linguraru, Marius George; Butman, John A.
2009-02-01
Accurate ventricle volume estimates could potentially improve the understanding and diagnosis of communicating hydrocephalus. Postoperative communicating hydrocephalus has been recognized in patients with brain tumors where the changes in ventricle volume can be difficult to identify, particularly over short time intervals. Because of the complex alterations of brain morphology in these patients, the segmentation of brain ventricles is challenging. Our method evaluates ventricle size from serial brain MRI examinations; we (i) combined serial images to increase SNR, (ii) automatically segmented this image to generate a ventricle template using fast marching methods and geodesic active contours, and (iii) propagated the segmentation using deformable registration of the original MRI datasets. By applying this deformation to the ventricle template, serial volume estimates were obtained in a robust manner from routine clinical images (0.93 overlap) and their variation analyzed.
Gaignard, Pauline; Savouroux, Stéphane; Liere, Philippe; Pianos, Antoine; Thérond, Patrice; Schumacher, Michael; Slama, Abdelhamid; Guennoun, Rachida
2015-08-01
Sex steroids regulate brain function in both normal and pathological states. Mitochondria are an essential target of steroids, as demonstrated by the experimental administration of 17β-estradiol or progesterone (PROG) to ovariectomized female rodents, but the influence of endogenous sex steroids remains understudied. To address this issue, mitochondrial oxidative stress, the oxidative phosphorylation system, and brain steroid levels were analyzed under 3 different experimental sets of endocrine conditions. The first set was designed to study steroid-mediated sex differences in young male and female mice, intact and after gonadectomy. The second set concerned young female mice at 3 time points of the estrous cycle in order to analyze the influence of transient variations in steroid levels. The third set involved the evaluation of the effects of a permanent decrease in gonadal steroids in aged male and female mice. Our results show that young adult females have lower oxidative stress and a higher reduced nicotinamide adenine dinucleotide (NADH)-linked respiration rate, which is related to a higher pyruvate dehydrogenase complex activity as compared with young adult males. This sex difference did not depend on phases of the estrous cycle, was suppressed by ovariectomy but not by orchidectomy, and no longer existed in aged mice. Concomitant analysis of brain steroids showed that pregnenolone and PROG brain levels were higher in females during the reproductive period than in males and decreased with aging in females. These findings suggest that the major male/female differences in brain pregnenolone and PROG levels may contribute to the sex differences observed in brain mitochondrial function.
Lindner, Katja; Neubert, Jörg; Pfannmöller, Jörg; Lotze, Martin; Hamm, Alfons O; Wendt, Julia
2015-12-01
Studying neural networks and behavioral indices such as potentiated startle responses during fear conditioning has a long tradition in both animal and human research. However, most of the studies in humans do not link startle potentiation and neural activity during fear acquisition and extinction. Therefore, we examined startle blink responses measured with electromyography (EMG) and brain activity measured with functional MRI simultaneously during differential conditioning. Furthermore, we combined these behavioral fear indices with brain network activity by analyzing the brain activity evoked by the startle probe stimulus presented during conditioned visual threat and safety cues as well as in the absence of visual stimulation. In line with previous research, we found a fear-induced potentiation of the startle blink responses when elicited during a conditioned threat stimulus and a rapid decline of amygdala activity after an initial differentiation of threat and safety cues in early acquisition trials. Increased activation during processing of threat cues was also found in the anterior insula, the anterior cingulate cortex (ACC), and the periaqueductal gray (PAG). More importantly, our results depict an increase of brain activity to probes presented during threatening in comparison to safety cues indicating an involvement of the anterior insula, the ACC, the thalamus, and the PAG in fear-potentiated startle processing during early extinction trials. Our study underlines that parallel assessment of fear-potentiated startle in fMRI paradigms can provide a helpful method to investigate common and distinct processing pathways in humans and animals and, thus, contributes to translational research. Copyright © 2015 Elsevier B.V. All rights reserved.
Monophasic demyelination reduces brain growth in children
Weier, Katrin; Longoni, Giulia; Fonov, Vladimir S.; Bar-Or, Amit; Marrie, Ruth Ann; Yeh, E. Ann; Narayanan, Sridar; Arnold, Douglas L.; Verhey, Leonard H.; Banwell, Brenda; Collins, D. Louis
2017-01-01
Objective: To investigate how monophasic acquired demyelinating syndromes (ADS) affect age-expected brain growth over time. Methods: We analyzed 83 pediatric patients imaged serially from initial demyelinating attack: 18 with acute disseminated encephalomyelitis (ADEM) and 65 with other monophasic ADS presentations (monoADS). We further subdivided the monoADS group by the presence (n = 33; monoADSlesion) or absence (n = 32; monoADSnolesion) of T2 lesions involving the brain at onset. We used normative data to compare brain volumes and calculate age- and sex-specific z scores, and used mixed-effect models to investigate their relationship with time from demyelinating illness. Results: Children with monophasic demyelination (ADEM, non-ADEM with brain lesions, and those without brain involvement) demonstrated reduced age-expected brain growth on serial images, driven by reduced age-expected white matter growth. Cortical gray matter volumes were not reduced at onset but demonstrated reduced age-expected growth afterwards in all groups. Brain volumes differed from age- and sex-expected values to the greatest extent in children with ADEM. All patient groups failed to recover age-expected brain growth trajectories. Conclusions: Brain volume, and more importantly age-expected brain growth, is negatively affected by acquired demyelination, even in the absence of chronicity, implicating factors other than active inflammation as operative in this process. PMID:28381515
Monophasic demyelination reduces brain growth in children.
Aubert-Broche, Bérengère; Weier, Katrin; Longoni, Giulia; Fonov, Vladimir S; Bar-Or, Amit; Marrie, Ruth Ann; Yeh, E Ann; Narayanan, Sridar; Arnold, Douglas L; Verhey, Leonard H; Banwell, Brenda; Collins, D Louis
2017-05-02
To investigate how monophasic acquired demyelinating syndromes (ADS) affect age-expected brain growth over time. We analyzed 83 pediatric patients imaged serially from initial demyelinating attack: 18 with acute disseminated encephalomyelitis (ADEM) and 65 with other monophasic ADS presentations (monoADS). We further subdivided the monoADS group by the presence (n = 33; monoADSlesion) or absence (n = 32; monoADSnolesion) of T2 lesions involving the brain at onset. We used normative data to compare brain volumes and calculate age- and sex-specific z scores, and used mixed-effect models to investigate their relationship with time from demyelinating illness. Children with monophasic demyelination (ADEM, non-ADEM with brain lesions, and those without brain involvement) demonstrated reduced age-expected brain growth on serial images, driven by reduced age-expected white matter growth. Cortical gray matter volumes were not reduced at onset but demonstrated reduced age-expected growth afterwards in all groups. Brain volumes differed from age- and sex-expected values to the greatest extent in children with ADEM. All patient groups failed to recover age-expected brain growth trajectories. Brain volume, and more importantly age-expected brain growth, is negatively affected by acquired demyelination, even in the absence of chronicity, implicating factors other than active inflammation as operative in this process. © 2017 American Academy of Neurology.
Balconi, Michela; Mazza, Guido
2009-11-01
Alpha brain oscillation modulation was analyzed in response to masked emotional facial expressions. In addition, behavioural activation (BAS) and behavioural inhibition systems (BIS) were considered as an explicative factor to verify the effect of motivational significance on cortical activity. Nineteen subjects were submitted to an ample range of facial expressions of emotions (anger, fear, surprise, disgust, happiness, sadness, and neutral). The results demonstrated that anterior frontal sites were more active than central and posterior sites in response to facial stimuli. Moreover, right-side responses varied as a function of emotional types, with an increased right-frontal activity for negative emotions. Finally, whereas higher BIS subjects generated a more right hemisphere activation for some negative emotions (such as fear, anger, and surprise), Reward-BAS subjects were more responsive to positive emotion (happiness) within the left hemisphere. Valence and potential threatening power of facial expressions were considered to elucidate these cortical differences.
Neural Correlates of Birth: Labor Contractions Induce C-Fos Expression In Newborn Rat Brain
NASA Technical Reports Server (NTRS)
Ronca, A. E.; Daly, M. E.; Baer, L. A.; Hills, E. M.; Conway, G.; Dalton, Bonnie (Technical Monitor)
2002-01-01
At birth, the newborn mammal must make rapid adaptations to the extrauterine environment to survive. We have previously shown that labor contractions augment the appearance of adaptive responses at birth, viz., postpartum breathing and the onset of suckling. Since neuronal activity has been shown to upregulate the activity of immediate early genes (IEGs) in the brain, we analyzed the neural distribution of c-Fos protein expression in newborn rats using immunohistochemistry. Previous studies have reported a burst of c-Fos mRNA expression in mouse and rat brain at birth however relationships to labor and delivery have not been examined. In the present study, we exposed near-term rat fetuses to elements of the vaginal birth process: 1) Simulated labor contractions. 2) Postpartum cooling (22 deg C). 3) Umbilical cord occlusion. and 4) Stroking to mimic postpartum licking by the dam. Cardinally delivered newborns (VG) were compared with those delivered by cesarean section following either prenatal exposure to compressions (C) [simulated labor contractions], or no compressions (NC) [no labor contractions]. Similar patterns of c-fos activation were observed throughout hypothalamic and thalamic nuclei, hippocampus and cerebral cortex in VG and C newborns that were not apparent in NC newborns. Our results indicate that labor contractions play a role in the induction of widespread neural activation in the newborn brain.
Danish, Shabbar F; Baltuch, Gordon H; Jaggi, Jurg L; Wong, Stephen
2008-04-01
Microelectrode recording during deep brain stimulation surgery is a useful adjunct for subthalamic nucleus (STN) localization. We hypothesize that information in the nonspike background activity can help identify STN boundaries. We present results from a novel quantitative analysis that accomplishes this goal. Thirteen consecutive microelectrode recordings were retrospectively analyzed. Spikes were removed from the recordings with an automated algorithm. The remaining "despiked" signals were converted via root mean square amplitude and curve length calculations into "feature profile" time series. Subthalamic nucleus boundaries determined by inspection, based on sustained deviations from baseline for each feature profile, were compared against those determined intraoperatively by the clinical neurophysiologist. Feature profile activity within STN exhibited a sustained rise in 10 of 13 tracks (77%). The sensitivity of STN entry was 60% and 90% for curve length and root mean square amplitude, respectively, when agreement within 0.5 mm of the neurophysiologist's prediction was used. Sensitivities were 70% and 100% for 1 mm accuracy. Exit point sensitivities were 80% and 90% for both features within 0.5 mm and 1.0 mm, respectively. Reproducible activity patterns in deep brain stimulation microelectrode recordings can allow accurate identification of STN boundaries. Quantitative analyses of this type may provide useful adjunctive information for electrode placement in deep brain stimulation surgery.
NASA Astrophysics Data System (ADS)
Gollas, Frank; Tetzlaff, Ronald
2009-05-01
Epilepsy is the most common chronic disorder of the nervous system. Generally, epileptic seizures appear without foregoing sign or warning. The problem of detecting a possible pre-seizure state in epilepsy from EEG signals has been addressed by many authors over the past decades. Different approaches of time series analysis of brain electrical activity already are providing valuable insights into the underlying complex dynamics. But the main goal the identification of an impending epileptic seizure with a sufficient specificity and reliability, has not been achieved up to now. An algorithm for a reliable, automated prediction of epileptic seizures would enable the realization of implantable seizure warning devices, which could provide valuable information to the patient and time/event specific drug delivery or possibly a direct electrical nerve stimulation. Cellular Nonlinear Networks (CNN) are promising candidates for future seizure warning devices. CNN are characterized by local couplings of comparatively simple dynamical systems. With this property these networks are well suited to be realized as highly parallel, analog computer chips. Today available CNN hardware realizations exhibit a processing speed in the range of TeraOps combined with low power consumption. In this contribution new algorithms based on the spatio-temporal dynamics of CNN are considered in order to analyze intracranial EEG signals and thus taking into account mutual dependencies between neighboring regions of the brain. In an identification procedure Reaction-Diffusion CNN (RD-CNN) are determined for short segments of brain electrical activity, by means of a supervised parameter optimization. RD-CNN are deduced from Reaction-Diffusion Systems, which usually are applied to investigate complex phenomena like nonlinear wave propagation or pattern formation. The Local Activity Theory provides a necessary condition for emergent behavior in RD-CNN. In comparison linear spatio-temporal autoregressive filter models are considered, for a prediction of EEG signal values. Thus Signal features values for successive, short, quasi stationary segments of brain electrical activity can be obtained, with the objective of detecting distinct changes prior to impending epileptic seizures. Furthermore long term recordings gained during presurgical diagnostics in temporal lobe epilepsy are analyzed and the predictive performance of the extracted features is evaluated statistically. Therefore a Receiver Operating Characteristic analysis is considered, assessing the distinguishability between distributions of supposed preictal and interictal periods.
Blancas, A; González-García, S D; Rodríguez, K; Escobar, C
2014-12-05
Scheduled and restricted access to a palatable snack, i.e. chocolate, elicits a brief and strong anticipatory activation and entrains brain areas related with reward and motivation. This behavioral and neuronal activation persists for more than 7days when this protocol is interrupted, suggesting the participation of a time-keeping system. The process that initiates this anticipation may provide a further understanding of the time-keeping system underlying palatable food entrainment. The aim of this study was to analyze how this entraining protocol starts and to dissect neuronal structures that initiate a chocolate-entrained activation. We assessed the development of anticipation of 5g of chocolate during the first 8days of the entrainment protocol. General activity of control and chocolate-entrained rats was continuously monitored with movement sensors. Moreover, motivation to obtain the chocolate was assessed by measuring approaches and interaction responses toward a wire-mesh box containing chocolate. Neuronal activation was determined with c-Fos in reward-related brain areas. We report a progressive increase in the interaction with a box to obtain chocolate parallel to a progressive neuronal activation. A significant anticipatory activation was observed in the prefrontal cortex on day 3 of entrainment and in the nucleus accumbens on day 5, while the arcuate nucleus and pyriform cortex reached significant activation on day 8. The gradual response observed with this protocol indicates that anticipation of a rewarding food requires repetitive and predictable experiences in order to acquire a temporal estimation. We also confirm that anticipation of palatable food involves diverse brain regions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Electroencephalograph (EEG) study on self-contemplating image formation
NASA Astrophysics Data System (ADS)
Meng, Qinglei; Hong, Elliot; Choa, Fow-Sen
2016-05-01
Electroencephalography (EEG) is one of the most widely used electrophysiological monitoring methods and plays a significant role in studies of human brain electrical activities. Default mode network (DMN), is a functional connection of brain regions that are activated while subjects are not in task positive state or not focused on the outside world. In this study, EEG was used for human brain signals recording while all subjects were asked to sit down quietly on a chair with eyes closed and thinking about some parts of their own body, such as left and right hands, left and right ears, lips, nose, and the images of faces that they were familiar with as well as doing some simple mathematical calculation. The time is marker when the image is formed in the subject's mind. By analyzing brain activity maps 300ms right before the time marked instant for each of the 4 wave bands, Delta, Theta, Alpha and Beta waves. We found that for most EEG datasets during this 300ms, Delta wave activity would mostly locate at the frontal lobe or the visual cortex, and the change and movement of activities are slow. Theta wave activity tended to rotate along the edge of cortex either clockwise or counterclockwise. Beta wave behaved like inquiry types of oscillations between any two regions spread over the cortex. Alpha wave activity looks like a mix of the Theta and Beta activities but more close to Theta activity. From the observation we feel that Beta and high Alpha are playing utility role for information inquiry. Theta and low Alpha are likely playing the role of binding and imagination formation in DMN operations.
Chang, Moon-Young; Kim, Hwan-Hee; Kim, Kyeong-Mi; Oh, Jae-Seop; Jang, Chel; Yoon, Tae-Hyung
2017-01-01
[Purpose] The purpose of this study was to examine what changes occur in brain waves when patients with stroke receive mirror therapy intervention. [Subjects and Methods] The subjects of this study were 14 patients with stroke (6 females and 8 males). The subjects were assessed by measuring the alpha and beta waves of the EEG (QEEG-32 system CANS 3000). The mirror therapy intervention was delivered over the course of four weeks (a total of 20 sessions). [Results] Relative alpha power showed statistically significant differences in the F3, F4, O1, and O2 channels in the situation comparison and higher for hand observation than for mirror observation. Relative beta power showed statistically significant differences in the F3, F4, C3, and C4 channels. [Conclusion] This study analyzed activity of the brain in each area when patients with stroke observed movements reflected in a mirror, and future research on diverse tasks and stimuli to heighten activity of the brain should be carried out. PMID:28210035
Chang, Moon-Young; Kim, Hwan-Hee; Kim, Kyeong-Mi; Oh, Jae-Seop; Jang, Chel; Yoon, Tae-Hyung
2017-01-01
[Purpose] The purpose of this study was to examine what changes occur in brain waves when patients with stroke receive mirror therapy intervention. [Subjects and Methods] The subjects of this study were 14 patients with stroke (6 females and 8 males). The subjects were assessed by measuring the alpha and beta waves of the EEG (QEEG-32 system CANS 3000). The mirror therapy intervention was delivered over the course of four weeks (a total of 20 sessions). [Results] Relative alpha power showed statistically significant differences in the F3, F4, O1, and O2 channels in the situation comparison and higher for hand observation than for mirror observation. Relative beta power showed statistically significant differences in the F3, F4, C3, and C4 channels. [Conclusion] This study analyzed activity of the brain in each area when patients with stroke observed movements reflected in a mirror, and future research on diverse tasks and stimuli to heighten activity of the brain should be carried out.
Lee, Chao Yu; Wang, Liang-Fei; Wu, Chun-Hu; Ke, Chia-Hua; Chen, Szu-Fu
2014-01-01
Traumatic brain injury (TBI) triggers a series of neuroinflammatory processes that contribute to evolution of neuronal injury. The present study investigated the neuroprotective effects and anti-inflammatory actions of berberine, an isoquinoline alkaloid, in both in vitro and in vivo TBI models. Mice subjected to controlled cortical impact injury were injected with berberine (10 mg·kg−1) or vehicle 10 min after injury. In addition to behavioral studies and histology analysis, blood-brain barrier (BBB) permeability and brain water content were determined. Expression of PI3K/Akt and Erk signaling and inflammatory mediators were also analyzed. The protective effect of berberine was also investigated in cultured neurons either subjected to stretch injury or exposed to conditioned media with activated microglia. Berberine significantly attenuated functional deficits and brain damage associated with TBI up to day 28 post-injury. Berberine also reduced neuronal death, apoptosis, BBB permeability, and brain edema at day 1 post-injury. These changes coincided with a marked reduction in leukocyte infiltration, microglial activation, matrix metalloproteinase-9 activity, and expression of inflammatory mediators. Berberine had no effect on Akt or Erk 1/2 phosphorylation. In mixed glial cultures, berberine reduced TLR4/MyD88/NF-κB signaling. Berberine also attenuated neuronal death induced by microglial conditioned media; however, it did not directly protect cultured neurons subjected to stretch injury. Moreover, administration of berberine at 3 h post-injury also reduced TBI-induced neuronal damage, apoptosis and inflammation in vivo. Berberine reduces TBI-induced brain damage by limiting the production of inflammatory mediators by glial cells, rather than by a direct neuroprotective effect. PMID:25546475
Spectrally Resolved Fiber Photometry for Multi-component Analysis of Brain Circuits.
Meng, Chengbo; Zhou, Jingheng; Papaneri, Amy; Peddada, Teja; Xu, Karen; Cui, Guohong
2018-04-25
To achieve simultaneous measurement of multiple cellular events in molecularly defined groups of neurons in vivo, we designed a spectrometer-based fiber photometry system that allows for spectral unmixing of multiple fluorescence signals recorded from deep brain structures in behaving animals. Using green and red Ca 2+ indicators differentially expressed in striatal direct- and indirect-pathway neurons, we were able to simultaneously monitor the neural activity in these two pathways in freely moving animals. We found that the activities were highly synchronized between the direct and indirect pathways within one hemisphere and were desynchronized between the two hemispheres. We further analyzed the relationship between the movement patterns and the magnitude of activation in direct- and indirect-pathway neurons and found that the striatal direct and indirect pathways coordinately control the dynamics and fate of movement. Published by Elsevier Inc.
Cellular stress and apoptosis contribute to the pathogenesis of autism spectrum disorder.
Dong, Daoyin; Zielke, Horst Ronald; Yeh, David; Yang, Peixin
2018-05-15
The molecular pathogenesis of autism spectrum disorder, a neurodevelopmental disorder, is still elusive. In this study, we investigated the possible roles of endoplasmic reticulum (ER) stress, oxidative stress, and apoptosis as molecular mechanisms underlying autism. This study compared the activation of ER stress signals (protein kinase R-like endoplasmic reticulum kinase [PERK], activating transcription factor 6 [ATF6], inositol-requiring enzyme 1 alpha [IRE1α]) in different brain regions (prefrontal cortex, hippocampus, cerebellum) in subjects with autism and in age-matched controls. Our data showed that the activation of three signals of ER stress varies in different regions of the autistic brain. IRE1α was activated in cerebellum and prefrontal cortex but ATF6 was activated in hippocampus. PERK was not activated in the three regions. Furthermore, the activation of ER stress was confirmed because the expression of C/EBP-homologous protein (CHOP), which is the common downstream indicators of ER stress signals, and most of ER chaperones were upregulated in the three regions. Consistent with the induction of ER stress, apoptosis was found in the three regions by detecting the cleavage of caspase 8 and poly(ADP-ribose) polymerase as well as using the transferase dUTP nick end labeling assay. Moreover, our data showed that oxidative stress was responsible for ER stress and apoptosis because the levels of 4-Hydroxynonenal and nitrotyrosine-modified proteins were significantly increased in the three regions. In conclusion, these data indicate that cellular stress and apoptosis may play important roles in the pathogenesis of autism. Autism Res 2018. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. Autism results in significant morbidity and mortality in children. The functional and molecular changes in the autistic brains are unclear. The present study utilized autistic brain tissues from the National Institute of Child Health and Human Development's Brain Tissue Bank for the analysis of cellular and molecular changes in autistic brains. Three key brain regions, the hippocampus, the cerebellum, and the frontal cortex, in six cases of autistic brains and six cases of non-autistic brains from 6 to 16 years old deceased children, were analyzed. The current study investigated the possible roles of endoplasmic reticulum (ER) stress, oxidative stress, and apoptosis as molecular mechanisms underlying autism. The activation of three signals of ER stress (protein kinase R-like endoplasmic reticulum kinase, activating transcription factor 6, inositol-requiring enzyme 1 alpha) varies in different regions. The occurrence of ER stress leads to apoptosis in autistic brains. ER stress may result from oxidative stress because of elevated levels of the oxidative stress markers: 4-Hydroxynonenal and nitrotyrosine-modified proteins in autistic brains. These findings suggest that cellular stress and apoptosis may contribute to the autistic phenotype. Pharmaceuticals and/or dietary supplements, which can alleviate ER stress, oxidative stress and apoptosis, may be effective in ameliorating adverse phenotypes associated with autism. © 2018 International Society for Autism Research, Wiley Periodicals, Inc.
Innate defense regulator peptide 1018 protects against perinatal brain injury.
Bolouri, Hayde; Sävman, Karin; Wang, Wei; Thomas, Anitha; Maurer, Norbert; Dullaghan, Edie; Fjell, Christopher D; Ek, C Joakim; Hagberg, Henrik; Hancock, Robert E W; Brown, Kelly L; Mallard, Carina
2014-03-01
There is currently no pharmacological treatment that provides protection against brain injury in neonates. It is known that activation of an innate immune response is a key, contributing factor in perinatal brain injury; therefore, the neuroprotective therapeutic potential of innate defense regulator peptides (IDRs) was investigated. The anti-inflammatory effects of 3 IDRs was measured in lipopolysaccharide (LPS)-activated murine microglia. IDRs were then assessed for their ability to confer neuroprotection in vivo when given 3 hours after neonatal brain injury in a clinically relevant model that combines an inflammatory challenge (LPS) with hypoxia-ischemia (HI). To gain insight into peptide-mediated effects on LPS-induced inflammation and neuroprotective mechanisms, global cerebral gene expression patterns were analyzed in pups that were treated with IDR-1018 either 4 hours before LPS or 3 hours after LPS+HI. IDR-1018 reduced inflammatory mediators produced by LPS-stimulated microglia cells in vitro and modulated LPS-induced neuroinflammation in vivo. When administered 3 hours after LPS+HI, IDR-1018 exerted effects on regulatory molecules of apoptotic (for, eg, Fadd and Tnfsf9) and inflammatory (for, eg, interleukin 1, tumor necrosis factor α, chemokines, and cell adhesion molecules) pathways and showed marked protection of both white and gray brain matter. IDR-1018 suppresses proinflammatory mediators and cell injurious mechanisms in the developing brain, and postinsult treatment is efficacious in reducing LPS-induced hypoxic-ischemic brain damage. IDR-1018 is effective in the brain when given systemically, confers neuroprotection of both gray and white matter, and lacks significant effects on the brain under normal conditions. Thus, this peptide provides the features of a promising neuroprotective agent in newborns with brain injury. © 2014 Child Neurology Society/American Neurological Association.
NASA Astrophysics Data System (ADS)
Slenzka, K.; Appel, R.; Hilbig, R.; Kappel, Th.; Vetter, S.; Freischütz, B.; Rahmann, H.
1994-08-01
Quantitative data are presented on the influences of hyper-gravity (3+/-1g) and of simulated weightlessness (~0g) during early ontogeny of cichild fish (Oreochromis mossambicus) and clawed toad (Xenopus laevis, Daudin) demonstrating changes in the swimming behaviour and the brain energy and plasma membrane metabolism. After return to 1g conditions, hyper-g reared fish and toads express the well known ``loop-swimming'' behaviour. By means of a computer based video analyzing system different types of swimming movements and velocities were quantitatively determined. Analyses of the brain energy and plasma-membrane metabolism of hyper-g fish larvae demonstrated an increase in energy availability (glucose 6Pi dehydrogenase, G-6P-DH), a decrease of cellular energy transformation (creatine kinase activity, CK) but no changes in energy consumptive processes (e.g. ATPases) and cytochrome oxidase activity (Cyt.-Ox). In contrast hypo-g fish larvae showed a slight increase in brain CK activity. In addition, unlike 1g controls, hyper-g fish larvae showed pronounced variations in the composition (=polarity) of sialoglycosphingolipids (=gangliosides), typical constituents of the nerve cell membranes, and a slight increase in the activity of sialidase, the enzyme responsible for ganglioside degradation.
Sozda, Christopher N.; Larson, Michael J.; Kaufman, David A.S.; Schmalfuss, Ilona M.; Perlstein, William M.
2011-01-01
Continuous monitoring of one’s performance is invaluable for guiding behavior towards successful goal attainment by identifying deficits and strategically adjusting responses when performance is inadequate. In the present study, we exploited the advantages of event-related functional magnetic resonance imaging (fMRI) to examine brain activity associated with error-related processing after severe traumatic brain injury (sTBI). fMRI and behavioral data were acquired while 10 sTBI participants and 12 neurologically-healthy controls performed a task-switching cued-Stroop task. fMRI data were analyzed using a random-effects whole-brain voxel-wise general linear model and planned linear contrasts. Behaviorally, sTBI patients showed greater error-rate interference than neurologically-normal controls. fMRI data revealed that, compared to controls, sTBI patients showed greater magnitude error-related activation in the anterior cingulate cortex (ACC) and an increase in the overall spatial extent of error-related activation across cortical and subcortical regions. Implications for future research and potential limitations in conducting fMRI research in neurologically-impaired populations are discussed, as well as some potential benefits of employing multimodal imaging (e.g., fMRI and event-related potentials) of cognitive control processes in TBI. PMID:21756946
Berns, G S; Song, A W; Mao, H
1999-07-15
Linear experimental designs have dominated the field of functional neuroimaging, but although successful at mapping regions of relative brain activation, the technique assumes that both cognition and brain activation are linear processes. To test these assumptions, we performed a continuous functional magnetic resonance imaging (MRI) experiment of finger opposition. Subjects performed a visually paced bimanual finger-tapping task. The frequency of finger tapping was continuously varied between 1 and 5 Hz, without any rest blocks. After continuous acquisition of fMRI images, the task-related brain regions were identified with independent components analysis (ICA). When the time courses of the task-related components were plotted against tapping frequency, nonlinear "dose- response" curves were obtained for most subjects. Nonlinearities appeared in both the static and dynamic sense, with hysteresis being prominent in several subjects. The ICA decomposition also demonstrated the spatial dynamics with different components active at different times. These results suggest that the brain response to tapping frequency does not scale linearly, and that it is history-dependent even after accounting for the hemodynamic response function. This implies that finger tapping, as measured with fMRI, is a nonstationary process. When analyzed with a conventional general linear model, a strong correlation to tapping frequency was identified, but the spatiotemporal dynamics were not apparent.
AbdAlla, Said; Langer, Andreas; Fu, Xuebin; Quitterer, Ursula
2013-08-16
Increased generation of reactive oxygen species (ROS) is a significant pathological feature in the brains of patients with Alzheimer's disease (AD). Experimental evidence indicates that inhibition of brain ROS could be beneficial in slowing the neurodegenerative process triggered by amyloid-beta (Abeta) aggregates. The angiotensin II AT1 receptor is a significant source of brain ROS, and AD patients have an increased brain angiotensin-converting enzyme (ACE) level, which could account for an excessive angiotensin-dependent AT1-induced ROS generation. Therefore, we analyzed the impact of ACE inhibition on signs of neurodegeneration of aged Tg2576 mice as a transgenic animal model of AD. Whole genome microarray gene expression profiling and biochemical analyses demonstrated that the centrally active ACE inhibitor captopril normalized the excessive hippocampal ACE activity of AD mice. Concomitantly, the development of signs of neurodegeneration was retarded by six months of captopril treatment. The neuroprotective profile triggered by captopril was accompanied by reduced amyloidogenic processing of the amyloid precursor protein (APP), and decreased hippocampal ROS, which is known to enhance Abeta generation by increased activation of beta- and gamma-secretases. Taken together, our data present strong evidence that ACE inhibition with a widely used cardiovascular drug could interfere with Abeta-dependent neurodegeneration.
AbdAlla, Said; Langer, Andreas; Fu, Xuebin; Quitterer, Ursula
2013-01-01
Increased generation of reactive oxygen species (ROS) is a significant pathological feature in the brains of patients with Alzheimer’s disease (AD). Experimental evidence indicates that inhibition of brain ROS could be beneficial in slowing the neurodegenerative process triggered by amyloid-beta (Abeta) aggregates. The angiotensin II AT1 receptor is a significant source of brain ROS, and AD patients have an increased brain angiotensin-converting enzyme (ACE) level, which could account for an excessive angiotensin-dependent AT1-induced ROS generation. Therefore, we analyzed the impact of ACE inhibition on signs of neurodegeneration of aged Tg2576 mice as a transgenic animal model of AD. Whole genome microarray gene expression profiling and biochemical analyses demonstrated that the centrally active ACE inhibitor captopril normalized the excessive hippocampal ACE activity of AD mice. Concomitantly, the development of signs of neurodegeneration was retarded by six months of captopril treatment. The neuroprotective profile triggered by captopril was accompanied by reduced amyloidogenic processing of the amyloid precursor protein (APP), and decreased hippocampal ROS, which is known to enhance Abeta generation by increased activation of beta- and gamma-secretases. Taken together, our data present strong evidence that ACE inhibition with a widely used cardiovascular drug could interfere with Abeta-dependent neurodegeneration. PMID:23959119
Sozda, Christopher N; Larson, Michael J; Kaufman, David A S; Schmalfuss, Ilona M; Perlstein, William M
2011-10-01
Continuous monitoring of one's performance is invaluable for guiding behavior towards successful goal attainment by identifying deficits and strategically adjusting responses when performance is inadequate. In the present study, we exploited the advantages of event-related functional magnetic resonance imaging (fMRI) to examine brain activity associated with error-related processing after severe traumatic brain injury (sTBI). fMRI and behavioral data were acquired while 10 sTBI participants and 12 neurologically-healthy controls performed a task-switching cued-Stroop task. fMRI data were analyzed using a random-effects whole-brain voxel-wise general linear model and planned linear contrasts. Behaviorally, sTBI patients showed greater error-rate interference than neurologically-normal controls. fMRI data revealed that, compared to controls, sTBI patients showed greater magnitude error-related activation in the anterior cingulate cortex (ACC) and an increase in the overall spatial extent of error-related activation across cortical and subcortical regions. Implications for future research and potential limitations in conducting fMRI research in neurologically-impaired populations are discussed, as well as some potential benefits of employing multimodal imaging (e.g., fMRI and event-related potentials) of cognitive control processes in TBI. Copyright © 2011 Elsevier B.V. All rights reserved.
[Features of brain biopotentials' spatial organization in adolescents].
Kruchinina, O V; Gal'perina, E I; Shepoval'nikov, A N
2014-01-01
Adolescence is characterized by an intensive formation of inter-regional cortical fields interaction, in this period significantly reorganized the activities of deep brain structures and cortical-subcortical interaction are enhanced. Our objectives were to evaluate the nature of changes in the spatial organization of brain bioelectric potentials with age and characteristics of such an organization in adolescents. For this purpose, EEG studies have been conducted in 230 subjects of both sexes aged 4 to 35 years. We estimated interdependent changes of biopotentials correlations fluctuations in 20-lead EEG, using the integral index Vol. Analyzed age-related changes of EEG correlations in rest condition and during verbal activity (Russian and English texts audition). Verbal tasks were sued in subjects over 8 years. It was found that the spatial synchronization of the EEG both in background and verbal activity increases with age, but after 20 years the rate of change is significantly reduced. In adolescence (12-17 years old), sex differences appear between the degree of EEG coherence processes occurring in the left and right hemispheres in subjects performing verbal tasks. In males 12 to 14 years nonlinear changes in overall correlation (indicators VOL) was observed, whereas in females of this age systemic reorganization of the brain interrelations occurs more smoothly, ahead of 1.5-2 years.
Akdeniz, Gülsüm
2016-01-01
Background: Few studies have been conducted that have compared electrical source localization (ESL) results obtained by analyzing ictal patterns in scalp electroencephalogram (EEG) with the brain areas that are found to be responsible for seizures using other brain imaging techniques. Additionally, adequate studies have not been performed to confirm the accuracy of ESL methods. Materials and Methods: In this study, ESL was conducted using LORETA (Low Resolution Brain Electromagnetic Tomography) in 9 patients with lesions apparent on magnetic resonance imaging (MRI) and in 6 patients who did not exhibit lesions on their MRIs. EEGs of patients who underwent surgery for epilepsy and had follow-ups for at least 1 year after operations were analyzed for ictal spike, rhythmic, paroxysmal fast, and obscured EEG activities. Epileptogenic zones identified in postoperative MRIs were then compared with localizations obtained by LORETA model we employed. Results: We found that brain areas determined via ESL were in concordance with resected brain areas for 13 of the 15 patients evaluated, and those 13 patients were post-operatively determined as being seizure-free. Conclusion: ESL, which is a noninvasive technique, may contribute to the correct delineation of epileptogenic zones in patients who will eventually undergo surgery to treat epilepsy, (regardless of neuroimaging status). Moreover, ESL may aid in deciding on the number and localization of intracranial electrodes to be used in patients who are candidates for invasive recording. PMID:27011626
Akdeniz, Gülsüm
2016-01-01
Few studies have been conducted that have compared electrical source localization (ESL) results obtained by analyzing ictal patterns in scalp electroencephalogram (EEG) with the brain areas that are found to be responsible for seizures using other brain imaging techniques. Additionally, adequate studies have not been performed to confirm the accuracy of ESL methods. In this study, ESL was conducted using LORETA (Low Resolution Brain Electromagnetic Tomography) in 9 patients with lesions apparent on magnetic resonance imaging (MRI) and in 6 patients who did not exhibit lesions on their MRIs. EEGs of patients who underwent surgery for epilepsy and had follow-ups for at least 1 year after operations were analyzed for ictal spike, rhythmic, paroxysmal fast, and obscured EEG activities. Epileptogenic zones identified in postoperative MRIs were then compared with localizations obtained by LORETA model we employed. We found that brain areas determined via ESL were in concordance with resected brain areas for 13 of the 15 patients evaluated, and those 13 patients were post-operatively determined as being seizure-free. ESL, which is a noninvasive technique, may contribute to the correct delineation of epileptogenic zones in patients who will eventually undergo surgery to treat epilepsy, (regardless of neuroimaging status). Moreover, ESL may aid in deciding on the number and localization of intracranial electrodes to be used in patients who are candidates for invasive recording.
Lemmen, Julia; Tozakidis, Iasson E P; Bele, Prachee; Galla, Hans-Joachim
2013-03-21
ATP-driven efflux transporters are considered to be the major hurdle in the treatment of central nervous system (CNS) diseases. Abcb1 (P-glycoprotein) and Abcg2 (breast cancer resistance protein/brain multidrug resistance protein) belong to the best known ABC-transporters. These ABC-transporters limit the permeability of the blood-brain barrier and protect the brain against toxic compounds in the blood but on the other hand they also reduce the efficacy of CNS pharmacotherapy. Even after 40 years of extensive research, the regulatory mechanisms of these efflux transporters are still not completely understood. To unravel the efflux transporter regulation, we analyzed the effect of the nuclear receptor CAR (constitutive androstane receptor) on the expression of Abcb1 and Abcg2 in primary cultures of porcine brain capillary endothelial cells (PBCEC). CAR is a xenobiotic-activated transcription factor, which is, like the other important nuclear receptor pregnane X receptor (PXR), highly expressed in barrier tissue and known to be a positive regulator of ABC-transporters. We demonstrate that activation of porcine CAR by the human CAR (hCAR) ligand CITCO (6-(4-chlorophenyl)-imidazo[2,1-b]thiazole-5-carbaldehyde) leads to an up-regulation of both transporters, whereas the mouse-specific CAR ligand TCPOBOP (1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene) had no effect on transporter expression. The stimulation of PBCEC with CITCO caused a significant up-regulation of both efflux-transporters on RNA-level, protein level and transport level. Furthermore the additional application of a CAR inhibitor significantly decreased the transporter expression to control niveau. In conclusion our data prove CAR activation only by the human ligand CITCO leading to an increased ABC-transporter expression and transport activity. Copyright © 2013 Elsevier B.V. All rights reserved.
Moreira, Eduardo Luiz Gasnhar; de Oliveira, Jade; Nunes, Jean Costa; Santos, Danúbia Bonfanti; Nunes, Fernanda Costa; Vieira, Daniella Serafim Couto; Ribeiro-do-Valle, Rosa Maria; Pamplona, Fabrício Alano; de Bem, Andreza Fabro; Farina, Marcelo; Walz, Roger; Prediger, Rui Daniel
2012-01-01
There is increasing evidence that hypercholesterolemia during midlife may represent a predictor of subsequent mild cognitive impairments and dementia decades later. However, the exact mechanism underlying this phenomenon remains unknown since plasmatic cholesterol is not able to cross the blood-brain barrier. In the present study, we evaluated the hypothesis that cognitive impairments triggered by hypercholesterolemia during aging may be related to brain oxidative stress and altered brain acetylcholinesterase (AChE) activity. We also performed a neuropathological investigation in order to analyze whether the cognitive impairments may be associated with stroke-related features. To address these questions we used three- and fourteen-month-old low-density lipoprotein receptor-deficient mice (LDLr-/-). The current findings provide new evidence that aged LDLr-/- mice, exposed to over three-fold cholesterol levels from early life, show working, spatial reference, and procedural memory impairments, without alterations in motor function. Antioxidant imbalance and oxidative damage were evidenced by a marked increase in lipid peroxidation (thiobarbituric acid reactive substances levels) and glutathione metabolism (increase in glutathione levels, glutathione reductase, and glutathione peroxidase activities) together with a significant increase in the AChE activity in the prefrontal cortex of aged hypercholesterolemic LDLr-/- mice. Notably, hypercholesterolemia was not related to brain infarcts and neurodegeneration in mice, independent of their age. These observations provide new evidence that hypercholesterolemia during aging triggers cognitive impairments on different types of learning and memory, accompanied by antioxidant imbalance, oxidative damage, and alterations of cholinergic signaling in brain areas associated with learning and memory processes, particularly in the prefrontal cortex.
Vakorin, Vasily A.; Mišić, Bratislav; Krakovska, Olga; McIntosh, Anthony Randal
2011-01-01
Variability in source dynamics across the sources in an activated network may be indicative of how the information is processed within a network. Information-theoretic tools allow one not only to characterize local brain dynamics but also to describe interactions between distributed brain activity. This study follows such a framework and explores the relations between signal variability and asymmetry in mutual interdependencies in a data-driven pipeline of non-linear analysis of neuromagnetic sources reconstructed from human magnetoencephalographic (MEG) data collected as a reaction to a face recognition task. Asymmetry in non-linear interdependencies in the network was analyzed using transfer entropy, which quantifies predictive information transfer between the sources. Variability of the source activity was estimated using multi-scale entropy, quantifying the rate of which information is generated. The empirical results are supported by an analysis of synthetic data based on the dynamics of coupled systems with time delay in coupling. We found that the amount of information transferred from one source to another was correlated with the difference in variability between the dynamics of these two sources, with the directionality of net information transfer depending on the time scale at which the sample entropy was computed. The results based on synthetic data suggest that both time delay and strength of coupling can contribute to the relations between variability of brain signals and information transfer between them. Our findings support the previous attempts to characterize functional organization of the activated brain, based on a combination of non-linear dynamics and temporal features of brain connectivity, such as time delay. PMID:22131968
Licata, Stephanie C.; Nickerson, Lisa D.; Lowen, Steven B.; Trksak, George H.; MacLean, Robert R.; Lukas, Scott E.
2013-01-01
Networks of brain regions having synchronized fluctuations of the blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) time-series at rest, or “resting state networks” (RSNs), are emerging as a basis for understanding intrinsic brain activity. RSNs are topographically consistent with activity-related networks subserving sensory, motor, and cognitive processes, and studying their spontaneous fluctuations following acute drug challenge may provide a way to understand better the neuroanatomical substrates of drug action. The present within-subject double-blind study used BOLD fMRI at 3T to investigate the functional networks influenced by the non-benzodiazepine hypnotic zolpidem (Ambien®). Zolpidem is a positive modulator of γ-aminobutyric acidA (GABAA) receptors, and engenders sedative effects that may be explained in part by how it modulates intrinsic brain activity. Healthy participants (n= 12) underwent fMRI scanning 45 min after acute oral administration of zolpidem (0, 5, 10, or 20 mg), and changes in BOLD signal were measured while participants gazed at a static fixation point (i.e., at rest). Data were analyzed using group independent component analysis (ICA) with dual regression and results indicated that compared to placebo, the highest dose of zolpidem increased functional connectivity within a number of sensory, motor, and limbic networks. These results are consistent with previous studies showing an increase in functional connectivity at rest following administration of the positive GABAA receptor modulators midazolam and alcohol, and suggest that investigating how zolpidem modulates intrinsic brain activity may have implications for understanding the etiology of its powerful sedative effects. PMID:23296183
Haptic contents of a movie dynamically engage the spectator's sensorimotor cortex.
Lankinen, Kaisu; Smeds, Eero; Tikka, Pia; Pihko, Elina; Hari, Riitta; Koskinen, Miika
2016-11-01
Observation of another person's actions and feelings activates brain areas that support similar functions in the observer, thereby facilitating inferences about the other's mental and bodily states. In real life, events eliciting this kind of vicarious brain activations are intermingled with other complex, ever-changing stimuli in the environment. One practical approach to study the neural underpinnings of real-life vicarious perception is to image brain activity during movie viewing. Here the goal was to find out how observed haptic events in a silent movie would affect the spectator's sensorimotor cortex. The functional state of the sensorimotor cortex was monitored by analyzing, in 16 healthy subjects, magnetoencephalographic (MEG) responses to tactile finger stimuli that were presented once per second throughout the session. Using canonical correlation analysis and spatial filtering, consistent single-trial responses across subjects were uncovered, and their waveform changes throughout the movie were quantified. The long-latency (85-175 ms) parts of the responses were modulated in concordance with the participants' average moment-by-moment ratings of own engagement in the haptic content of the movie (correlation r = 0.49; ratings collected after the MEG session). The results, obtained by using novel signal-analysis approaches, demonstrate that the functional state of the human sensorimotor cortex fluctuates in a fine-grained manner even during passive observation of temporally varying haptic events. Hum Brain Mapp 37:4061-4068, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Bola, Michał; Barrett, Adam B; Pigorini, Andrea; Nobili, Lino; Seth, Anil K; Marchewka, Artur
2018-02-15
Loss of consciousness can result from a wide range of causes, including natural sleep and pharmacologically induced anesthesia. Important insights might thus come from identifying neuronal mechanisms of loss and re-emergence of consciousness independent of a specific manipulation. Therefore, to seek neuronal signatures of loss of consciousness common to sleep and anesthesia we analyzed spontaneous electrophysiological activity recorded in two experiments. First, electrocorticography (ECoG) acquired from 4 macaque monkeys anesthetized with different anesthetic agents (ketamine, medetomidine, propofol) and, second, stereo-electroencephalography (sEEG) from 10 epilepsy patients in different wake-sleep stages (wakefulness, NREM, REM). Specifically, we investigated co-activation patterns among brain areas, defined as correlations between local amplitudes of gamma-band activity. We found that resting wakefulness was associated with intermediate levels of gamma-band coupling, indicating neither complete dependence, nor full independence among brain regions. In contrast, loss of consciousness during NREM sleep and propofol anesthesia was associated with excessively correlated brain activity, as indicated by a robust increase of number and strength of positive correlations. However, such excessively correlated brain signals were not observed during REM sleep, and were present only to a limited extent during ketamine anesthesia. This might be related to the fact that, despite suppression of behavioral responsiveness, REM sleep and ketamine anesthesia often involve presence of dream-like conscious experiences. We conclude that hyper-correlated gamma-band activity might be a signature of loss of consciousness common across various manipulations and independent of behavioral responsiveness. Copyright © 2017 Elsevier Inc. All rights reserved.
Muller, Angela M; Mérillat, Susan; Jäncke, Lutz
2016-02-15
A major part of our knowledge about the functioning of the aging brain comes from task-induced activation paradigms. However, the aging brain's intrinsic functional organization may be already a limiting factor for the outcome of an actual behavior. In order to get a better understanding of how this functional baseline configuration of the aging brain may affect cognitive performance, we analyzed task-free fMRI data of older 186 participants (mean age=70.4, 97 female) and their performance data in verbal fluency: First, we conducted an intrinsic connectivity contrast analysis (ICC) for the purpose of evaluating the brain regions whose degree of connectedness was significantly correlated with fluency performance. Secondly, using connectivity analyses we investigated how the clusters from the ICC functionally related to the other major resting-state networks. Apart from the importance of intact fronto-parietal long-range connections, the preserved capacity of the DMN for a finely attuned interaction with the executive-control network and the language network seems to be crucial for successful verbal fluency performance in older people. We provide further evidence that the right frontal regions might be more prominently affected by age-related decline. Copyright © 2015 Elsevier Inc. All rights reserved.
Gratton, Caterina; Laumann, Timothy O; Nielsen, Ashley N; Greene, Deanna J; Gordon, Evan M; Gilmore, Adrian W; Nelson, Steven M; Coalson, Rebecca S; Snyder, Abraham Z; Schlaggar, Bradley L; Dosenbach, Nico U F; Petersen, Steven E
2018-04-18
The organization of human brain networks can be measured by capturing correlated brain activity with fMRI. There is considerable interest in understanding how brain networks vary across individuals or neuropsychiatric populations or are altered during the performance of specific behaviors. However, the plausibility and validity of such measurements is dependent on the extent to which functional networks are stable over time or are state dependent. We analyzed data from nine high-quality, highly sampled individuals to parse the magnitude and anatomical distribution of network variability across subjects, sessions, and tasks. Critically, we find that functional networks are dominated by common organizational principles and stable individual features, with substantially more modest contributions from task-state and day-to-day variability. Sources of variation were differentially distributed across the brain and differentially linked to intrinsic and task-evoked sources. We conclude that functional networks are suited to measuring stable individual characteristics, suggesting utility in personalized medicine. Copyright © 2018 Elsevier Inc. All rights reserved.
Nakamura, Yuko; Goto, Tazuko K; Tokumori, Kenji; Yoshiura, Takashi; Kobayashi, Koji; Nakamura, Yasuhiko; Honda, Hiroshi; Ninomiya, Yuzo; Yoshiura, Kazunori
2012-04-18
It remains unclear how the cerebral cortex of humans perceives taste temporally, and whether or not such objective data about the brain show a correlation with the current widely used conventional methods of taste-intensity sensory evaluation. The aim of this study was to investigate the difference in the time-intensity profile between salty and sweet tastes in the human brain. The time-intensity profiles of functional MRI (fMRI) data of the human taste cortex were analyzed using finite impulse response analysis for a direct interpretation in terms of the peristimulus time signal. Also, time-intensity sensory evaluations for tastes were performed under the same condition as fMRI to confirm the reliability of the temporal profile in the fMRI data. The time-intensity profile for the brain activations due to a salty taste changed more rapidly than those due to a sweet taste in the human brain cortex and was also similar to the time-intensity sensory evaluation, confirming the reliability of the temporal profile of the fMRI data. In conclusion, the time-intensity profile using finite impulse response analysis for fMRI data showed that there was a temporal difference in the neural responses between salty and sweet tastes over a given period of time. This indicates that there might be taste-specific temporal profiles of activations in the human brain.
Multifunctional and Context-Dependent Control of Vocal Acoustics by Individual Muscles
Srivastava, Kyle H.; Elemans, Coen P.H.
2015-01-01
The relationship between muscle activity and behavioral output determines how the brain controls and modifies complex skills. In vocal control, ensembles of muscles are used to precisely tune single acoustic parameters such as fundamental frequency and sound amplitude. If individual vocal muscles were dedicated to the control of single parameters, then the brain could control each parameter independently by modulating the appropriate muscle or muscles. Alternatively, if each muscle influenced multiple parameters, a more complex control strategy would be required to selectively modulate a single parameter. Additionally, it is unknown whether the function of single muscles is fixed or varies across different vocal gestures. A fixed relationship would allow the brain to use the same changes in muscle activation to, for example, increase the fundamental frequency of different vocal gestures, whereas a context-dependent scheme would require the brain to calculate different motor modifications in each case. We tested the hypothesis that single muscles control multiple acoustic parameters and that the function of single muscles varies across gestures using three complementary approaches. First, we recorded electromyographic data from vocal muscles in singing Bengalese finches. Second, we electrically perturbed the activity of single muscles during song. Third, we developed an ex vivo technique to analyze the biomechanical and acoustic consequences of single-muscle perturbations. We found that single muscles drive changes in multiple parameters and that the function of single muscles differs across vocal gestures, suggesting that the brain uses a complex, gesture-dependent control scheme to regulate vocal output. PMID:26490859
Haptic contents of a movie dynamically engage the spectator's sensorimotor cortex
Smeds, Eero; Tikka, Pia; Pihko, Elina; Hari, Riitta; Koskinen, Miika
2016-01-01
Abstract Observation of another person's actions and feelings activates brain areas that support similar functions in the observer, thereby facilitating inferences about the other's mental and bodily states. In real life, events eliciting this kind of vicarious brain activations are intermingled with other complex, ever‐changing stimuli in the environment. One practical approach to study the neural underpinnings of real‐life vicarious perception is to image brain activity during movie viewing. Here the goal was to find out how observed haptic events in a silent movie would affect the spectator's sensorimotor cortex. The functional state of the sensorimotor cortex was monitored by analyzing, in 16 healthy subjects, magnetoencephalographic (MEG) responses to tactile finger stimuli that were presented once per second throughout the session. Using canonical correlation analysis and spatial filtering, consistent single‐trial responses across subjects were uncovered, and their waveform changes throughout the movie were quantified. The long‐latency (85–175 ms) parts of the responses were modulated in concordance with the participants’ average moment‐by‐moment ratings of own engagement in the haptic content of the movie (correlation r = 0.49; ratings collected after the MEG session). The results, obtained by using novel signal‐analysis approaches, demonstrate that the functional state of the human sensorimotor cortex fluctuates in a fine‐grained manner even during passive observation of temporally varying haptic events. Hum Brain Mapp 37:4061–4068, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:27364184
Feierstein, C E; Portugues, R; Orger, M B
2015-06-18
In recent years, the zebrafish has emerged as an appealing model system to tackle questions relating to the neural circuit basis of behavior. This can be attributed not just to the growing use of genetically tractable model organisms, but also in large part to the rapid advances in optical techniques for neuroscience, which are ideally suited for application to the small, transparent brain of the larval fish. Many characteristic features of vertebrate brains, from gross anatomy down to particular circuit motifs and cell-types, as well as conserved behaviors, can be found in zebrafish even just a few days post fertilization, and, at this early stage, the physical size of the brain makes it possible to analyze neural activity in a comprehensive fashion. In a recent study, we used a systematic and unbiased imaging method to record the pattern of activity dynamics throughout the whole brain of larval zebrafish during a simple visual behavior, the optokinetic response (OKR). This approach revealed the broadly distributed network of neurons that were active during the behavior and provided insights into the fine-scale functional architecture in the brain, inter-individual variability, and the spatial distribution of behaviorally relevant signals. Combined with mapping anatomical and functional connectivity, targeted electrophysiological recordings, and genetic labeling of specific populations, this comprehensive approach in zebrafish provides an unparalleled opportunity to study complete circuits in a behaving vertebrate animal. Copyright © 2014. Published by Elsevier Ltd.
Liu, Yansong; Zhao, Xudong; Cheng, Zaohuo; Zhang, Fuquan; Chang, Jun; Wang, Haosen; Xie, Rukui; Wang, Zhiqiang; Cao, Leiming; Wang, Guoqiang
2017-02-01
Overgeneral autobiographical memory (OGM) is involved in the onset and maintenance of depression. Recent studies have shown correlations between OGM and alterations of some brain regions by using task-state functional magnetic resonance imaging (fMRI). However, the correlation between OGM and spontaneous brain activity in depression remains unclear. The purpose of this study was to determine whether patients with major depressive disorder (MDD) show abnormal regional homogeneity (ReHo) and, if so, whether the brain areas with abnormal ReHo are associated with OGM. Twenty five patients with MDD and 25 age-matched, sex-matched, and education-matched healthy controls underwent resting-state fMRI. All participants were also assessed by 17-item Hamilton Depression Rating Scale and autobiographical memory test. The ReHo method was used to analyze regional synchronization of spontaneous neuronal activity. Patients with MDD, compared to healthy controls, exhibited extensive ReHo abnormalities in some brain regions, including the frontal, temporal, and occipital cortex. Moreover, ReHo value of the orbitofrontal cortex was negatively correlated with OGM scores in patients with MDD. The sample size of this study was relatively small, and the influence of physiological noise was not completely excluded. These results suggest that abnormal ReHo of spontaneous brain activity in the orbitofrontal cortex may be involved in the pathophysiology of OGM in patients with MDD. Copyright © 2016 Elsevier B.V. All rights reserved.
Learning a common dictionary for subject-transfer decoding with resting calibration.
Morioka, Hiroshi; Kanemura, Atsunori; Hirayama, Jun-ichiro; Shikauchi, Manabu; Ogawa, Takeshi; Ikeda, Shigeyuki; Kawanabe, Motoaki; Ishii, Shin
2015-05-01
Brain signals measured over a series of experiments have inherent variability because of different physical and mental conditions among multiple subjects and sessions. Such variability complicates the analysis of data from multiple subjects and sessions in a consistent way, and degrades the performance of subject-transfer decoding in a brain-machine interface (BMI). To accommodate the variability in brain signals, we propose 1) a method for extracting spatial bases (or a dictionary) shared by multiple subjects, by employing a signal-processing technique of dictionary learning modified to compensate for variations between subjects and sessions, and 2) an approach to subject-transfer decoding that uses the resting-state activity of a previously unseen target subject as calibration data for compensating for variations, eliminating the need for a standard calibration based on task sessions. Applying our methodology to a dataset of electroencephalography (EEG) recordings during a selective visual-spatial attention task from multiple subjects and sessions, where the variability compensation was essential for reducing the redundancy of the dictionary, we found that the extracted common brain activities were reasonable in the light of neuroscience knowledge. The applicability to subject-transfer decoding was confirmed by improved performance over existing decoding methods. These results suggest that analyzing multisubject brain activities on common bases by the proposed method enables information sharing across subjects with low-burden resting calibration, and is effective for practical use of BMI in variable environments. Copyright © 2015 Elsevier Inc. All rights reserved.
Dehydration enhances pain-evoked activation in the human brain compared with rehydration.
Ogino, Yuichi; Kakeda, Takahiro; Nakamura, Koji; Saito, Shigeru
2014-06-01
Negative effects of dehydration on the human brain and cognitive function have been reported. In this study, we examined the effects of dehydration on pain thresholds and cortical activations in response to pain, compared with rehydration with an oral rehydration solution (ORS) by functional magnetic resonance imaging. Five healthy adult men were subjected to dehydration and rehydration on 2 different days. The condition on the first day was randomly assigned to each subject. They completed a 40-minute exercise protocol using a walking machine after 12 hours of fasting under both conditions. For rehydration, the subjects consumed up to 3000 mL ORS starting from the night before the test day. After exercise, a painful stimulus (cold pressor test) was applied to the subjects' medial forearm in a magnetic resonance imaging scanning gantry, and pain-evoked brain activation was analyzed. On the rehydration day, each of the subjects consumed an average of 2040 mL (range; 1800-2500 mL) ORS. Physiological data revealed that subjects when dehydrated lost more weight from exercise than subjects when rehydrated had a larger heart rate increase, a higher tympanic temperature, and a higher urine osmolality. Subjective data revealed that the subjects reported significantly stronger thirst while dehydrated than while rehydrated with ORS, although the levels of hunger and anxiety and mood did not significantly differ between conditions. The cold pressor test robustly activated the pain-related neural network, notably the anterior cingulate cortex, insula, and thalamus. Such activations in the dehydrated subjects were greater than those in the rehydrated subjects in terms of peak and cluster, accompanied by a decrease in pain threshold (P = 0.001). Our findings suggest that dehydration brings about increased brain activity related to painful stimuli together with enhanced thirst, whereas rehydration with ORS alleviates thirst and decreases brain activity related to painful stimuli.
Siddiqui, Pirzada Jamal Ahmed; Khan, Adnan; Uddin, Nizam; Khaliq, Saima; Rasheed, Munawwer; Nawaz, Shazia; Hanif, Muhammad; Dar, Ahsana
2017-07-01
Brown seaweeds exhibit several health benefits in treating and managing wide array of ailments. In this study, the antidepressant-like effect of methaolic extracts from Sargassum swartzii (SS), Stoechospermum marginatum (SM), and Nizamuddinia zanardinii (NZ) was examined in forced swimming test (FST), in rats. Oral administration of SS, SM, and NZ extract (30-60 mg/kg) exhibited antidepressant-like activity in FST by reducing immobility time as compared to control group, without inducing significant change in ambulatory behavior in open field test. In order to evaluate the involvement of monoaminergic system, rats were pretreated with the inhibitor of brain serotonin stores p-chlorophenylalanin (PCPA), dopamine (SCH23390 and sulpiride), and adrenoceptor (prazosin and propranolol) antagonists. Rats receiving treatment for 28 days were decapitated and brains were analyzed for monoamine levels. It may be concluded that the extracts of SS, SM, and NZ produces antidepressant-like activity via modulation of brain monoaminergic system in a rat model.
Custer, Thomas W.; Hines, Randy K.; Stewart, Paul M.; Melancon, Mark J.; Henshel, Diane S.; Spearks, Daniel W.
1998-01-01
In 1993, 20 great blue heron (Ardea herodias; GBH) eggs (one per nest) were collected from a colony at the Indiana Dunes National Lakeshore, Indiana (INDU). The eggs were artificially incubated until pipping and were then analyzed for organochlorines, mercury, and selenium. Livers of embryos were analyzed for hepatic microsomal ethoxyresorufin-O-dealkylase (EROD) activity. Brains were measured for asymmetry. Egg-laying began in early April and the mean clutch size was 4.2 eggs per clutch. Organochlorine concentrations were generally low (geometric mean p,p’-DDE = 1.6 /μg/g wet weight; polychlorinated biphenyl [PCB] = 4.9 μg/g); however, one egg had elevated concentrations of p,p -DDE (13 /μg/g) and PCBs (56 /μg/g). EROD activity in the embryos analyzed from INDU was not elevated. The frequency (11%) of brain asymmetry was low. Eggshells averaged 3.4% thinner than eggshells collected prior to the use of DDT. Mercury (geometric mean = 0.9 μg/g dry weight) concentrations in GBH eggs were within background levels. Selenium (4.0 μg/g dry weight) concentrations in eggs were above background levels, but below a concentration threshold associated with reproductive impairment.
Jones, Taryn M; Dean, Catherine M; Dear, Blake F; Hush, Julia M; Titov, Nickolai
2016-01-01
Individuals with acquired brain injury (ABI) are more likely to be physically inactive and experience barriers to accessing services to address inactivity. This study was designed to guide the development of an internet-delivered self-management program to increase physical activity after ABI. The aims of this study were to examine the current physical activity status of community-dwelling Australian adults with ABI, the barriers to physical activity they experience and to explore interest an internet-delivered self-management program aimed at increasing physical activity. An online survey of Australian adults with ABI was used to collect information about demographic characteristics; general health; emotional well-being; mobility and physical activity status, and satisfaction; barriers to physical activity; confidence in overcoming barriers, and; interest in an internet self-management program. Data were analyzed descriptively and correlational analyses examined relationships between variables. Data were analyzed from 59 respondents. Over half were not satisfied with their current physical activity status. The most frequently reported barriers were pain/discomfort, fatigue and fear, and confidence to overcome these barriers was very low. Interest in an internet-delivered self-management program was high (74%) and not related to the amount of physical activity, satisfaction with physical activity and mobility status or total number of barriers. Australian adults with ABI are not satisfied with their activity levels and experience barriers in maintaining their physical activity levels. Participants were interested in accessing an internet-delivered self-management program aimed at improving physical activity levels. Therefore such a program warrants development and evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.
Metabolic adaptation to long term changes in gravity environment
NASA Astrophysics Data System (ADS)
Slenzka, K.; Appel, R.; Rahmann, H.
Biochemical analyses of the brain of Cichlid fish larvae, exposed during their very early development for 7 days to an increased acceleration of 3g (hyper-gravity), revealed a decrease in brain nucleoside diphosphate kinase (NDPK) as well as creatine kinase (BB-CK) activity. Using high performance liquid chromatography (HPLC) the concentrations of adenine nucleotides (AMP, ADP, ATP), phosphocreatine (CP), as well as of nicotineamide adenine dinucleotides (NAD, NADP) were analyzed in the brain of hyper-g exposed larvae vs. 1g controls. A slight reduction in the total adenine nucleotides (TAN) as well as the adenylate energy charge (AEC) was found. In parallel a significant increase in the NAD concentration and a corresponding decrease in NADP concentration occurred in larva's hyper-g brains vs. 1g controls. These results give further evidence for an influence of gravity on cellular level and furthermore contribute to a clarification of the cellular signal-response chain for gravity perception.
REVIEWS OF TOPICAL PROBLEMS: Nonlinear dynamics of the brain: emotion and cognition
NASA Astrophysics Data System (ADS)
Rabinovich, Mikhail I.; Muezzinoglu, M. K.
2010-07-01
Experimental investigations of neural system functioning and brain activity are standardly based on the assumption that perceptions, emotions, and cognitive functions can be understood by analyzing steady-state neural processes and static tomographic snapshots. The new approaches discussed in this review are based on the analysis of transient processes and metastable states. Transient dynamics is characterized by two basic properties, structural stability and information sensitivity. The ideas and methods that we discuss provide an explanation for the occurrence of and successive transitions between metastable states observed in experiments, and offer new approaches to behavior analysis. Models of the emotional and cognitive functions of the brain are suggested. The mathematical object that represents the observed transient brain processes in the phase space of the model is a structurally stable heteroclinic channel. The possibility of using the suggested models to construct a quantitative theory of some emotional and cognitive functions is illustrated.
Brain mechanisms of social comparison and their influence on the reward system.
Kedia, Gayannée; Mussweiler, Thomas; Linden, David E J
2014-11-12
Whenever we interact with others, we judge them and whenever we make such judgments, we compare them with ourselves, other people, or internalized standards. Countless social psychological experiments have shown that comparative thinking plays a ubiquitous role in person perception and social cognition as a whole. The topic of social comparison has recently aroused the interest of social neuroscientists, who have begun to investigate its neural underpinnings. The present article provides an overview of these neuroimaging and electrophysiological studies. We discuss recent findings on the consequences of social comparison on the brain processing of outcomes and highlight the role of the brain's reward system. Moreover, we analyze the relationship between the brain networks involved in social comparisons and those active during other forms of cognitive and perceptual comparison. Finally, we discuss potential future questions that research on the neural correlates of social comparison could address.
Complementary aspects of diffusion imaging and fMRI; I: structure and function.
Mulkern, Robert V; Davis, Peter E; Haker, Steven J; Estepar, Raul San Jose; Panych, Lawrence P; Maier, Stephan E; Rivkin, Michael J
2006-05-01
Studying the intersection of brain structure and function is an important aspect of modern neuroscience. The development of magnetic resonance imaging (MRI) over the last 25 years has provided new and powerful tools for the study of brain structure and function. Two tools in particular, diffusion imaging and functional MRI (fMRI), are playing increasingly important roles in elucidating the complementary aspects of brain structure and function. In this work, we review basic technical features of diffusion imaging and fMRI for studying the integrity of white matter structural components and for determining the location and extent of cortical activation in gray matter, respectively. We then review a growing body of literature in which the complementary aspects of diffusion imaging and fMRI, applied as separate examinations but analyzed in tandem, have been exploited to enhance our knowledge of brain structure and function.
Friedenberg, David A; Bouton, Chad E; Annetta, Nicholas V; Skomrock, Nicholas; Mingming Zhang; Schwemmer, Michael; Bockbrader, Marcia A; Mysiw, W Jerry; Rezai, Ali R; Bresler, Herbert S; Sharma, Gaurav
2016-08-01
Recent advances in Brain Computer Interfaces (BCIs) have created hope that one day paralyzed patients will be able to regain control of their paralyzed limbs. As part of an ongoing clinical study, we have implanted a 96-electrode Utah array in the motor cortex of a paralyzed human. The array generates almost 3 million data points from the brain every second. This presents several big data challenges towards developing algorithms that should not only process the data in real-time (for the BCI to be responsive) but are also robust to temporal variations and non-stationarities in the sensor data. We demonstrate an algorithmic approach to analyze such data and present a novel method to evaluate such algorithms. We present our methodology with examples of decoding human brain data in real-time to inform a BCI.
Nicotine increases brain functional network efficiency.
Wylie, Korey P; Rojas, Donald C; Tanabe, Jody; Martin, Laura F; Tregellas, Jason R
2012-10-15
Despite the use of cholinergic therapies in Alzheimer's disease and the development of cholinergic strategies for schizophrenia, relatively little is known about how the system modulates the connectivity and structure of large-scale brain networks. To better understand how nicotinic cholinergic systems alter these networks, this study examined the effects of nicotine on measures of whole-brain network communication efficiency. Resting state fMRI was acquired from fifteen healthy subjects before and after the application of nicotine or placebo transdermal patches in a single blind, crossover design. Data, which were previously examined for default network activity, were analyzed with network topology techniques to measure changes in the communication efficiency of whole-brain networks. Nicotine significantly increased local efficiency, a parameter that estimates the network's tolerance to local errors in communication. Nicotine also significantly enhanced the regional efficiency of limbic and paralimbic areas of the brain, areas which are especially altered in diseases such as Alzheimer's disease and schizophrenia. These changes in network topology may be one mechanism by which cholinergic therapies improve brain function. Published by Elsevier Inc.
The Causal Inference of Cortical Neural Networks during Music Improvisations
Wan, Xiaogeng; Crüts, Björn; Jensen, Henrik Jeldtoft
2014-01-01
We present an EEG study of two music improvisation experiments. Professional musicians with high level of improvisation skills were asked to perform music either according to notes (composed music) or in improvisation. Each piece of music was performed in two different modes: strict mode and “let-go” mode. Synchronized EEG data was measured from both musicians and listeners. We used one of the most reliable causality measures: conditional Mutual Information from Mixed Embedding (MIME), to analyze directed correlations between different EEG channels, which was combined with network theory to construct both intra-brain and cross-brain networks. Differences were identified in intra-brain neural networks between composed music and improvisation and between strict mode and “let-go” mode. Particular brain regions such as frontal, parietal and temporal regions were found to play a key role in differentiating the brain activities between different playing conditions. By comparing the level of degree centralities in intra-brain neural networks, we found a difference between the response of musicians and the listeners when comparing the different playing conditions. PMID:25489852
The causal inference of cortical neural networks during music improvisations.
Wan, Xiaogeng; Crüts, Björn; Jensen, Henrik Jeldtoft
2014-01-01
We present an EEG study of two music improvisation experiments. Professional musicians with high level of improvisation skills were asked to perform music either according to notes (composed music) or in improvisation. Each piece of music was performed in two different modes: strict mode and "let-go" mode. Synchronized EEG data was measured from both musicians and listeners. We used one of the most reliable causality measures: conditional Mutual Information from Mixed Embedding (MIME), to analyze directed correlations between different EEG channels, which was combined with network theory to construct both intra-brain and cross-brain networks. Differences were identified in intra-brain neural networks between composed music and improvisation and between strict mode and "let-go" mode. Particular brain regions such as frontal, parietal and temporal regions were found to play a key role in differentiating the brain activities between different playing conditions. By comparing the level of degree centralities in intra-brain neural networks, we found a difference between the response of musicians and the listeners when comparing the different playing conditions.
Nicotine Increases Brain Functional Network Efficiency
Wylie, Korey P.; Rojas, Donald C.; Tanabe, Jody; Martin, Laura F.; Tregellas, Jason R.
2012-01-01
Despite the use of cholinergic therapies in Alzheimer’s disease and the development of cholinergic strategies for schizophrenia, relatively little is known about how the system modulates the connectivity and structure of large-scale brain networks. To better understand how nicotinic cholinergic systems alter these networks, this study examined the effects of nicotine on measures of whole-brain network communication efficiency. Resting-state fMRI was acquired from fifteen healthy subjects before and after the application of nicotine or placebo transdermal patches in a single blind, crossover design. Data, which were previously examined for default network activity, were analyzed with network topology techniques to measure changes in the communication efficiency of whole-brain networks. Nicotine significantly increased local efficiency, a parameter that estimates the network’s tolerance to local errors in communication. Nicotine also significantly enhanced the regional efficiency of limbic and paralimbic areas of the brain, areas which are especially altered in diseases such as Alzheimer’s disease and schizophrenia. These changes in network topology may be one mechanism by which cholinergic therapies improve brain function. PMID:22796985
Wang, Nancy X. R.; Olson, Jared D.; Ojemann, Jeffrey G.; Rao, Rajesh P. N.; Brunton, Bingni W.
2016-01-01
Fully automated decoding of human activities and intentions from direct neural recordings is a tantalizing challenge in brain-computer interfacing. Implementing Brain Computer Interfaces (BCIs) outside carefully controlled experiments in laboratory settings requires adaptive and scalable strategies with minimal supervision. Here we describe an unsupervised approach to decoding neural states from naturalistic human brain recordings. We analyzed continuous, long-term electrocorticography (ECoG) data recorded over many days from the brain of subjects in a hospital room, with simultaneous audio and video recordings. We discovered coherent clusters in high-dimensional ECoG recordings using hierarchical clustering and automatically annotated them using speech and movement labels extracted from audio and video. To our knowledge, this represents the first time techniques from computer vision and speech processing have been used for natural ECoG decoding. Interpretable behaviors were decoded from ECoG data, including moving, speaking and resting; the results were assessed by comparison with manual annotation. Discovered clusters were projected back onto the brain revealing features consistent with known functional areas, opening the door to automated functional brain mapping in natural settings. PMID:27148018
Cadmium concentrations in the brains of Alzheimer cases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spyrou, N.M.; Stedman, J.D.
1996-12-31
There is ongoing research in relating the concentration of elements in the brain with Alzheimer`s disease. The presence of particular elements, such as aluminum and vanadium, has been considered as a possible environmental factor, creating significant interest and controversy in the field. We have been analyzing brain tissue from the MRC Alzheimer`s Disease Brain Bank, Institute of Psychiatry, from a number of cortical regions of the brain, namely, the frontal, occipital, parietal, and temporal lobes, as well as from the left and right hemispheres of the same brain whenever possible. The techniques employed have been proton-induced X-ray emission (PIXE) analysis,more » proton-induced gamma-ray emission (PIGE) analysis, Rutherford backscattering (RBS), and instrumental neutron activation analysis. Neutron irradiations were carried out at the Imperial College Consort II reactor, whereas for PIXE, PIGE, and RBS, the University of Surrey Accelerator Laboratories were used employing a Van de Graaff accelerator. In this paper, we present the cadmium results from the frontal lobe of Alzheimer cases and controls determined by PIXE analysis.« less
Custer, T.W.; Hines, R.K.; Melancon, M.J.; Hoffman, D.J.; Wickliffe, J.K.; Bickham, J.W.; Martin, J.W.; Henshel, D.S.
1997-01-01
In 1993, great blue heron (Ardea herodias; GBH) eggs were collected from 10 colonies on the upper Mississippi River (UMR). They were then artificially incubated until pipping and analyzed for mercury, selenium, and organochlorines. Livers of embryos were analyzed for hepatic microsomal ethoxyresorufin-O-dealkylase (EROD) and four measures of oxidative stress. Brains were measured for asymmetry and blood was measured for the coefficient of variation of DNA (DNA VC). Organochlorine concentrations were generally low (geometric mean DDE = 1.3 ug/g wet weight; polychlorinated biphenyl [PCB] = 3.0 ug/g; 2,3,7,8-tetrachloro- -dioxin [TCDD] = 11.5 pg/g). Eggshell thickness was negatively correlated with DDE concentrations. Mercury (geometric mean = 0.8 ug/g dry weight) and selenium (3.1 ug/g dry weight) concentrations in GBH eggs were within background levels. EROD activity was not correlated with total PCBs, TCDD or toxic equivalents (TEQs) based on the relative contribution of individual PCB congeners, dibenzodioxins (PCDDs), and dibenzofurans (PCDFs) to calculated TEQs. Three of the four measures of oxidative stress were correlated with mercury concentrations. Twenty of 43 (47%) embryo brains were asymmetrical and the embryos with asymmetrical brains had higher EROD concentrations in the liver and higher DNA CV in the blood than embryos with symmetrical brains.
Low Activity Microstates During Sleep.
Miyawaki, Hiroyuki; Billeh, Yazan N; Diba, Kamran
2017-06-01
To better understand the distinct activity patterns of the brain during sleep, we observed and investigated periods of diminished oscillatory and population spiking activity lasting for seconds during non-rapid eye movement (non-REM) sleep, which we call "LOW" activity sleep. We analyzed spiking and local field potential (LFP) activity of hippocampal CA1 region alongside neocortical electroencephalogram (EEG) and electromyogram (EMG) in 19 sessions from four male Long-Evans rats (260-360 g) during natural wake/sleep across the 24-hr cycle as well as data from other brain regions obtained from http://crcns.org.1,2. LOW states lasted longer than OFF/DOWN states and were distinguished by a subset of "LOW-active" cells. LOW activity sleep was preceded and followed by increased sharp-wave ripple activity. We also observed decreased slow-wave activity and sleep spindles in the hippocampal LFP and neocortical EEG upon LOW onset, with a partial rebound immediately after LOW. LOW states demonstrated activity patterns consistent with sleep but frequently transitioned into microarousals and showed EMG and LFP differences from small-amplitude irregular activity during quiet waking. Their likelihood decreased within individual non-REM epochs yet increased over the course of sleep. By analyzing data from the entorhinal cortex of rats,1 as well as the hippocampus, the medial prefrontal cortex, the postsubiculum, and the anterior thalamus of mice,2 obtained from http://crcns.org, we confirmed that LOW states corresponded to markedly diminished activity simultaneously in all of these regions. We propose that LOW states are an important microstate within non-REM sleep that provide respite from high-activity sleep and may serve a restorative function. © Sleep Research Society 2017. Published by Oxford University Press [on behalf of the Sleep Research Society].
Changes in spontaneous brain activity in early Parkinson's disease.
Yang, Hong; Zhou, Xiaohong Joe; Zhang, Min-Ming; Zheng, Xu-Ning; Zhao, Yi-Lei; Wang, Jue
2013-08-09
Resting state brain activity can provide valuable insights into the pathophysiology of Parkinson's disease (PD). The purpose of the present study was (a) to investigate abnormal spontaneous neuronal activity in early PD patients using resting-state functional MRI (fMRI) with a regional homogeneity (ReHo) method and (b) to demonstrate the potential of using changes in abnormal spontaneous neuronal activity for monitoring the progression of PD during its early stages. Seventeen early PD patients were assessed with the Unified Parkinson's Disease Rating Scale (UPDRS), the Hoehn and Yahr disability scale and the Mini-mental State Examination (MMSE) were compared with seventeen gender- and age-matched healthy controls. All subjects underwent MRI scans using a 1.5T General Electric Signa Excite II scanner. The MRI scan protocol included whole-brain volumetric imaging using a 3D inversion recovery prepared (IR-Prep) fast spoiled gradient-echo pulse sequence and 2D multi-slice (22 axial slices covering the whole brain) resting-state fMRI using an echo planar imaging (EPI) sequence. Images were analyzed in SPM5 together with a ReHo algorithm using the in-house software program REST. A corrected threshold of p<0.05 was determined by AlphaSim and used in statistical analysis. Compared with the healthy controls, the early PD group showed significantly increased ReHo in a number of brain regions, including the left cerebellum, left parietal lobe, right middle temporal lobe, right sub-thalamic nucleus areas, right superior frontal gyrus, middle frontal gyrus (MFG), right inferior parietal lobe (IPL), right precuneus lobe, left MFG and left IPL. Additionally, significantly reduced ReHo was also observed in the early PD patients in the following brain regions: the left putamen, left inferior frontal gyrus, right hippocampus, right anterior cingulum, and bilateral lingual gyrus. Moreover, in PD patients, ReHo in the left putamen was negatively correlated with the UPDRS scores (r=-0.69). These results indicate that the abnormal resting state spontaneous brain activity associated with patients with early PD can be revealed by Reho analysis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Sirtuins and Their Roles in Brain Aging and Neurodegenerative Disorders.
Jęśko, Henryk; Wencel, Przemysław; Strosznajder, Robert P; Strosznajder, Joanna B
2017-03-01
Sirtuins (SIRT1-SIRT7) are unique histone deacetylases (HDACs) whose activity depends on NAD + levels and thus on the cellular metabolic status. SIRTs regulate energy metabolism and mitochondrial function. They orchestrate the stress response and damage repair. Through these functions sirtuins modulate the course of aging and affect neurodegenerative diseases. SIRTSs interact with multiple signaling proteins, transcription factors (TFs) and poly(ADP-ribose) polymerases (PARPs) another class of NAD + -dependent post-translational protein modifiers. The cross-talk between SIRTs TFs and PARPs is a highly promising research target in a number of brain pathologies. This review describes updated results on sirtuins in brain aging/neurodegeneration. It focuses on SIRT1 but also on the roles of mitochondrial SIRTs (SIRT3, 4, 5) and on SIRT6 and SIRT2 localized in the nucleus and in cytosol, respectively. The involvement of SIRTs in regulation of insulin-like growth factor signaling in the brain during aging and in Alzheimer's disease was also focused. Moreover, we analyze the mechanism(s) and potential significance of interactions between SIRTs and several TFs in the regulation of cell survival and death. A critical view is given on the application of SIRT activators/modulators in therapy of neurodegenerative diseases.
Food-induced changes of lipids in rat neuronal tissue visualized by ToF-SIMS imaging.
Dowlatshahi Pour, Masoumeh; Jennische, Eva; Lange, Stefan; Ewing, Andrew G; Malmberg, Per
2016-09-06
Time of flight secondary ion mass spectrometry (ToF-SIMS) was used to image the lipid localization in brain tissue sections from rats fed specially processed cereals (SPC). An IonTof 5 instrument equipped with a Bi cluster ion gun was used to analyze the tissue sections. Data from 15 brain samples from control and cereal-fed rats were recorded and exported to principal components analysis (PCA). The data clearly show changes of certain lipids in the brain following cereal feeding. PCA score plots show a good separation in lipid distribution between the control and the SPC-fed group. The loadings plot reveal that the groups separated mainly due to changes in cholesterol, vitamin E and c18:2, c16:0 fatty acid distribution as well as some short chain monocarboxylic fatty acid compositions. These insights relate to the working mechanism of SPC as a dietary supplement. SPC is thought to activate antisecretory factor (AF), an endogenous protein with regulatory function for inflammation and fluid secretion. These data provide insights into lipid content in brain following SPC feeding and suggest a relation to activating AF.
Dong, Li; Li, Hechun; He, Zhongqiong; Jiang, Sisi; Klugah-Brown, Benjamin; Chen, Lin; Wang, Pu; Tan, Song; Luo, Cheng; Yao, Dezhong
2016-11-01
The purpose of this study was to investigate the local spatiotemporal consistency of spontaneous brain activity in patients with frontal lobe epilepsy (FLE). Eyes closed resting-state functional magnetic resonance imaging (fMRI) data were collected from 19 FLE patients and 19 age- and gender-matched healthy controls. A novel measure, named FOur-dimensional (spatiotemporal) Consistency of local neural Activities (FOCA) was used to assess the spatiotemporal consistency of local spontaneous activity (emphasizing both local temporal homogeneity and regional stability of brain activity states). Then, two-sample t test was performed to detect the FOCA differences between two groups. Partial correlations between the FOCA values and durations of epilepsy were further analyzed. Compared with controls, FLE patients demonstrated increased FOCA in distant brain regions including the frontal and parietal cortices, as well as the basal ganglia. The decreased FOCA was located in the temporal cortex, posterior default model regions, and cerebellum. In addition, the FOCA measure was linked to the duration of epilepsy in basal ganglia. Our study suggested that alterations of local spontaneous activity in frontoparietal cortex and basal ganglia was associated with the pathophysiology of FLE; and the abnormality in frontal and default model regions might account for the potential cognitive impairment in FLE. We also presumed that the FOCA measure had potential to provide important insights into understanding epilepsy such as FLE.
Hughes, Michael F; Ross, David G; Starr, James M; Scollon, Edward J; Wolansky, Marcelo J; Crofton, Kevin M; DeVito, Michael J
2016-06-01
Human exposure to multiple pyrethroid insecticides may occur because of their broad use on crops and for residential pest control. To address the potential health risk from co-exposure to pyrethroids, it is important to understand their disposition and toxicity in target organs such as the brain, and surrogates such as the blood when administered as a mixture. The objective of this study was to assess the correlation between blood and brain concentrations of pyrethroids and neurobehavioral effects in the rat following an acute oral administration of the pyrethroids as a mixture. Male Long-Evans rats were administered a mixture of β-cyfluthrin, cypermethrin, deltamethrin, esfenvalerate and cis- and trans-permethrin in corn oil at seven dose levels. The pyrethroid with the highest percentage in the dosing solution was trans-permethrin (31% of total mixture dose) while deltamethrin and esfenvalerate had the lowest percentage (3%). Motor activity of the rats was then monitored for 1h. At 3.5h post-dosing, the animals were euthanized and blood and brain were collected. These tissues were extracted and analyzed for parent pyrethroid using HPLC-tandem mass spectrometry. Cypermethrin and cis-permethrin were the predominate pyrethroids detected in blood and brain, respectively, at all dosage levels. The relationship of total pyrethroid concentration between blood and brain was linear (r=0.93). The pyrethroids with the lowest fraction in blood were trans-permethrin and β-cyfluthrin and in brain were deltamethrin and esfenvalerate. The relationship between motor activity of the treated rats and summed pyrethroid blood and brain concentration was described using a sigmoidal Emax model with the Effective Concentration50 being more sensitive for brain than blood. The data suggests summed pyrethroid rat blood concentration could be used as a surrogate for brain concentration as an aid to study the neurotoxic effects of pyrethroids administered as a mixture under the conditions used in this study. Published by Elsevier Ireland Ltd.
Peptidomics of Cpefat/fat mouse brain regions: Implications for neuropeptide processing
Zhang, Xin; Che, Fa-Yun; Berezniuk, Iryna; Sonmez, Kemal; Toll, Lawrence; Fricker, Lloyd D.
2009-01-01
SUMMARY Quantitative peptidomics was used to compare levels of peptides in wild type and Cpefat/fat mice, which lack carboxypeptidase E (CPE) activity due to a point mutation. Six different brain regions were analyzed: amygdala, hippocampus, hypothalamus, prefrontal cortex, striatum, and thalamus. Altogether, 111 neuropeptides or other peptides derived from secretory pathway proteins were identified in wild type mouse brain extracts by tandem mass spectrometry, and another 47 peptides were tentatively identified based on mass and other criteria. Most secretory pathway peptides were much lower in Cpefat/fat mouse brain, relative to wild type mouse brain, indicating that CPE plays a major role in their biosynthesis. Other peptides were only partially reduced in the Cpefat/fat mice, indicating that another enzyme (presumably carboxypeptidase D) contributes to their biosynthesis. Approximately 10% of the secretory pathway peptides were present in the Cpefat/fat mouse brain at levels similar to those in wild type mouse brain. Many peptides were greatly elevated in the Cpefat/fat mice; these peptide processing intermediates with C-terminal Lys and/or Arg were generally not detectable in wild type mice. Taken together, these results indicate that CPE contributes, either directly or indirectly, to the production of the majority of neuropeptides. PMID:19014391
Girotra, Priti; Thakur, Aman; Kumar, Ajay; Singh, Shailendra Kumar
2017-03-01
The complex pathophysiology involved in migraine necessitates the drug treatment to act on several receptors simultaneously. The present investigation was an attempt to discover the unidentified anti-migraine activity of the already marketed drugs. Shared featured pharmacophore modeling was employed for this purpose on six target receptors (β 2 adrenoceptor, Dopamine D 3 , 5HT 1B , TRPV1, iGluR5 kainate and CGRP), resulting in the generation of five shared featured pharmacophores, which were further subjected to virtual screening of the ligands obtained from Drugbank database. Molecular docking, performed on the obtained hit compounds from virtual screening, indicated nystatin to be the only active lead against the receptors iGluR5 kainate receptor (1VSO), CGRP (3N7R), β 2 adrenoceptor (3NYA) and Dopamine D 3 (3PBL) with a high binding energy of -11.1, -10.9, -10.2 and -12kcal/mole respectively. The anti-migraine activity of nystatin was then adjudged by fabricating its brain targeted chitosan nanoparticles. Its brain targeting efficacy, analyzed qualitatively by confocal laser scanning microscopy, demonstrated a significant amount of drug reaching the brain. The pharmacodynamic models on Swiss male albino mice revealed significant anti-migraine activity of the nanoformulation. The present study reports for the first time the therapeutic potential of nystatin in migraine management, hence opening avenues for its future exploration. Copyright © 2016 Elsevier B.V. All rights reserved.
Mannewitz, A; Bock, J; Kreitz, S; Hess, A; Goldschmidt, J; Scheich, H; Braun, Katharina
2018-05-01
Learning can be categorized into cue-instructed and spontaneous learning types; however, so far, there is no detailed comparative analysis of specific brain pathways involved in these learning types. The aim of this study was to compare brain activity patterns during these learning tasks using the in vivo imaging technique of single photon-emission computed tomography (SPECT) of regional cerebral blood flow (rCBF). During spontaneous exploratory learning, higher levels of rCBF compared to cue-instructed learning were observed in motor control regions, including specific subregions of the motor cortex and the striatum, as well as in regions of sensory pathways including olfactory, somatosensory, and visual modalities. In addition, elevated activity was found in limbic areas, including specific subregions of the hippocampal formation, the amygdala, and the insula. The main difference between the two learning paradigms analyzed in this study was the higher rCBF observed in prefrontal cortical regions during cue-instructed learning when compared to spontaneous learning. Higher rCBF during cue-instructed learning was also observed in the anterior insular cortex and in limbic areas, including the ectorhinal and entorhinal cortexes, subregions of the hippocampus, subnuclei of the amygdala, and the septum. Many of the rCBF changes showed hemispheric lateralization. Taken together, our study is the first to compare partly lateralized brain activity patterns during two different types of learning.
Dubey, Mohit; Brouwers, Eelke; Hamilton, Eline M.C.; Stiedl, Oliver; Bugiani, Marianna; Koch, Henner; Kole, Maarten H.P.; Boschert, Ursula; Wykes, Robert C.; Mansvelder, Huibert D.; van der Knaap, Marjo S.
2018-01-01
Objective Loss of function of the astrocyte‐specific protein MLC1 leads to the childhood‐onset leukodystrophy “megalencephalic leukoencephalopathy with subcortical cysts” (MLC). Studies on isolated cells show a role for MLC1 in astrocyte volume regulation and suggest that disturbed brain ion and water homeostasis is central to the disease. Excitability of neuronal networks is particularly sensitive to ion and water homeostasis. In line with this, reports of seizures and epilepsy in MLC patients exist. However, systematic assessment and mechanistic understanding of seizures in MLC are lacking. Methods We analyzed an MLC patient inventory to study occurrence of seizures in MLC. We used two distinct genetic mouse models of MLC to further study epileptiform activity and seizure threshold through wireless extracellular field potential recordings. Whole‐cell patch‐clamp recordings and K+‐sensitive electrode recordings in mouse brain slices were used to explore the underlying mechanisms of epilepsy in MLC. Results An early onset of seizures is common in MLC. Similarly, in MLC mice, we uncovered spontaneous epileptiform brain activity and a lowered threshold for induced seizures. At the cellular level, we found that although passive and active properties of individual pyramidal neurons are unchanged, extracellular K+ dynamics and neuronal network activity are abnormal in MLC mice. Interpretation Disturbed astrocyte regulation of ion and water homeostasis in MLC causes hyperexcitability of neuronal networks and seizures. These findings suggest a role for defective astrocyte volume regulation in epilepsy. Ann Neurol 2018;83:636–649 PMID:29466841
Neuronal and oscillatory activity during reward processing in the human ventral striatum.
Lega, Bradley C; Kahana, Michael J; Jaggi, Jurg; Baltuch, Gordon H; Zaghloul, Kareem
2011-11-16
Accumulated evidence from animal studies implicates the ventral striatum in the processing of reward information. Recently, deep brain stimulation (DBS) surgery has enabled researchers to analyze neurophysiological recordings from humans engaged in reward tasks. We present data recorded from the human ventral striatum during deep brain stimulation surgery as a participant played a video game coupled to the receipt of visual reward images. To our knowledge, we identify the first instances of reward-sensitive single unit activity in the human ventral striatum. Local field potential data suggest that alpha oscillations are sensitive to positive feedback, whereas beta oscillations exhibit significantly higher power during unrewarded trials. We report evidence of alpha-gamma cross-frequency coupling that differentiates between positive and negative feedback. © 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins.
Lee, Junghee; Cohen, Mark S; Engel, Stephen A; Glahn, David; Nuechterlein, Keith H; Wynn, Jonathan K; Green, Michael F
2010-07-01
Visual masking paradigms assess the early part of visual information processing, which may reflect vulnerability measures for schizophrenia. We examined the neural substrates of visual backward performance in unaffected sibling of schizophrenia patients using functional magnetic resonance imaging (fMRI). Twenty-one unaffected siblings of schizophrenia patients and 19 healthy controls performed a backward masking task and three functional localizer tasks to identify three visual processing regions of interest (ROI): lateral occipital complex (LO), the motion-sensitive area, and retinotopic areas. In the masking task, we systematically manipulated stimulus onset asynchronies (SOAs). We analyzed fMRI data in two complementary ways: 1) an ROI approach for three visual areas, and 2) a whole-brain analysis. The groups did not differ in behavioral performance. For ROI analysis, both groups increased activation as SOAs increased in LO. Groups did not differ in activation levels of the three ROIs. For whole-brain analysis, controls increased activation as a function of SOAs, compared with siblings in several regions (i.e., anterior cingulate cortex, posterior cingulate cortex, inferior prefrontal cortex, inferior parietal lobule). The study found: 1) area LO showed sensitivity to the masking effect in both groups; 2) siblings did not differ from controls in activation of LO; and 3) groups differed significantly in several brain regions outside visual processing areas that have been related to attentional or re-entrant processes. These findings suggest that LO dysfunction may be a disease indicator rather than a risk indicator for schizophrenia. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Chyl, Katarzyna; Kossowski, Bartosz; Dębska, Agnieszka; Łuniewska, Magdalena; Banaszkiewicz, Anna; Żelechowska, Agata; Frost, Stephen J; Mencl, William Einar; Wypych, Marek; Marchewka, Artur; Pugh, Kenneth R; Jednoróg, Katarzyna
2018-01-01
Literacy acquisition is a demanding process that induces significant changes in the brain, especially in the spoken and written language networks. Nevertheless, large-scale paediatric fMRI studies are still limited. We analyzed fMRI data to show how individual differences in reading performance correlate with brain activation for speech and print in 111 children attending kindergarten or first grade and examined group differences between a matched subset of emergent-readers and prereaders. Across the entire cohort, individual differences analysis revealed that reading skill was positively correlated with the magnitude of activation difference between words and symbol strings in left superior temporal, inferior frontal and fusiform gyri. Group comparisons of the matched subset of pre- and emergent-readers showed higher activity for emergent-readers in left inferior frontal, precentral, and postcentral gyri. Individual differences in activation for natural versus vocoded speech were also positively correlated with reading skill, primarily in the left temporal cortex. However, in contrast to studies on adult illiterates, group comparisons revealed higher activity in prereaders compared to readers in the frontal lobes. Print-speech coactivation was observed only in readers and individual differences analyses revealed a positive correlation between convergence and reading skill in the left superior temporal sulcus. These results emphasise that a child's brain undergoes several modifications to both visual and oral language systems in the process of learning to read. They also suggest that print-speech convergence is a hallmark of acquiring literacy. © 2017 Association for Child and Adolescent Mental Health.
Physical principles for scalable neural recording
Zamft, Bradley M.; Maguire, Yael G.; Shapiro, Mikhail G.; Cybulski, Thaddeus R.; Glaser, Joshua I.; Amodei, Dario; Stranges, P. Benjamin; Kalhor, Reza; Dalrymple, David A.; Seo, Dongjin; Alon, Elad; Maharbiz, Michel M.; Carmena, Jose M.; Rabaey, Jan M.; Boyden, Edward S.; Church, George M.; Kording, Konrad P.
2013-01-01
Simultaneously measuring the activities of all neurons in a mammalian brain at millisecond resolution is a challenge beyond the limits of existing techniques in neuroscience. Entirely new approaches may be required, motivating an analysis of the fundamental physical constraints on the problem. We outline the physical principles governing brain activity mapping using optical, electrical, magnetic resonance, and molecular modalities of neural recording. Focusing on the mouse brain, we analyze the scalability of each method, concentrating on the limitations imposed by spatiotemporal resolution, energy dissipation, and volume displacement. Based on this analysis, all existing approaches require orders of magnitude improvement in key parameters. Electrical recording is limited by the low multiplexing capacity of electrodes and their lack of intrinsic spatial resolution, optical methods are constrained by the scattering of visible light in brain tissue, magnetic resonance is hindered by the diffusion and relaxation timescales of water protons, and the implementation of molecular recording is complicated by the stochastic kinetics of enzymes. Understanding the physical limits of brain activity mapping may provide insight into opportunities for novel solutions. For example, unconventional methods for delivering electrodes may enable unprecedented numbers of recording sites, embedded optical devices could allow optical detectors to be placed within a few scattering lengths of the measured neurons, and new classes of molecularly engineered sensors might obviate cumbersome hardware architectures. We also study the physics of powering and communicating with microscale devices embedded in brain tissue and find that, while radio-frequency electromagnetic data transmission suffers from a severe power–bandwidth tradeoff, communication via infrared light or ultrasound may allow high data rates due to the possibility of spatial multiplexing. The use of embedded local recording and wireless data transmission would only be viable, however, given major improvements to the power efficiency of microelectronic devices. PMID:24187539
Ju, M K; Sim, M K; Son, S Y
2018-05-01
The purpose of this study was to identify the knowledge, attitude, educational needs, and will of nursing students on organ donation from brain-dead donors. Data were collected by using a 40-item questionnaire to measure knowledge, attitude, educational needs, and will for organ donation of 215 nursing college students in one university in Dangjin city from May 11 to May 31, 2017. The data were analyzed using SPSS 22 program (Data Solution Inc, Seoul). In the general characteristics, 85.1% of the subjects did not receive education on donation, and 99.5% of the subjects responded that education is needed. The desired methods of education were special lecture in school (55.3%), "webtoons" on the Internet (19.5%), formal curriculum (15.8%). Points to improve to increase brain-death organ transplantation and donation included "active publicity through pan-national campaign activities" (56.3%), "respecting prior consent from brain-dead donors" (21.9%), and "encouragement and increased support for organ donors" (12.1%). There was a significant difference in knowledge according to will for organ donation (t = 3.29, P = .001) and consent to brain-death organ donation in family members (t = 3.29, P = .001). There was a statistically significant positive correlation between attitude and knowledge of the subjects regarding brain-death organ donation. The knowledge, attitude, educational need, and will for organ donation of nursing students revealed in this study will be used as basic data to provide systematic transplant education including contents about organ transplantation in the regular nursing curriculum in the future. It will contribute to the activation of organ donation. Copyright © 2018 Elsevier Inc. All rights reserved.
Klijn, Eva; Hulscher, Hester C; Balvers, Rutger K; Holland, Wim P J; Bakker, Jan; Vincent, Arnaud J P E; Dirven, Clemens M F; Ince, Can
2013-02-01
The goal of awake neurosurgery is to maximize resection of brain lesions with minimal injury to functional brain areas. Laser speckle imaging (LSI) is a noninvasive macroscopic technique with high spatial and temporal resolution used to monitor changes in capillary perfusion. In this study, the authors hypothesized that LSI can be useful as a noncontact method of functional brain mapping during awake craniotomy for tumor removal. Such a modality would be an advance in this type of neurosurgery since current practice involves the application of invasive intraoperative single-point electrocortical (electrode) stimulation and measurements. After opening the dura mater, patients were woken up, and LSI was set up to image the exposed brain area. Patients were instructed to follow a rest-activation-rest protocol in which activation consisted of the hand-clenching motor task. Subsequently, exposed brain areas were mapped for functional motor areas by using standard electrocortical stimulation (ECS). Changes in the LSI signal were analyzed offline and compared with the results of ECS. In functional motor areas of the hand mapped with ECS, cortical blood flow measured using LSI significantly increased from 2052 ± 818 AU to 2471 ± 675 AU during hand clenching, whereas capillary blood flow did not change in the control regions (areas mapped using ECS with no functional activity). The main finding of this study was that changes in laser speckle perfusion as a measure of cortical microvascular blood flow when performing a motor task with the hand relate well to the ECS map. The authors have shown the feasibility of using LSI for direct visualization of cortical microcirculatory blood flow changes during neurosurgery.
Berger, Barbara; Minarik, Tamas; Griesmayr, Birgit; Stelzig-Schoeler, Renate; Aichhorn, Wolfgang; Sauseng, Paul
2016-01-01
Working Memory and executive functioning deficits are core characteristics of patients suffering from schizophrenia. Electrophysiological research indicates that altered patterns of neural oscillatory mechanisms underpinning executive functioning are associated with the psychiatric disorder. Such brain oscillatory changes have been found in local amplitude differences at gamma and theta frequencies in task-specific cortical areas. Moreover, interregional interactions are also disrupted as signified by decreased phase coherence of fronto-posterior theta activity in schizophrenia patients. However, schizophrenia is not a one-dimensional psychiatric disorder but has various forms and expressions. A common distinction is between positive and negative symptomatology but most patients have both negative and positive symptoms to some extent. Here, we examined three groups-healthy controls, predominantly negative, and predominantly positive symptomatic schizophrenia patients-when performing a working memory task with increasing cognitive demand and increasing need for executive control. We analyzed brain oscillatory activity in the three groups separately and investigated how predominant symptomatology might explain differences in brain oscillatory patterns. Our results indicate that differences in task specific fronto-posterior network activity (i.e., executive control network) expressed by interregional phase synchronization are able to account for working memory dysfunctions between groups. Local changes in the theta and gamma frequency range also show differences between patients and healthy controls, and more importantly, between the two patient groups. We conclude that differences in oscillatory brain activation patterns related to executive processing can be an indicator for positive and negative symptomatology in schizophrenia. Furthermore, changes in cognitive and especially executive functioning in patients are expressed by alterations in a task-specific fronto-posterior connectivity even in the absence of behavioral impairment.
ViSimpl: Multi-View Visual Analysis of Brain Simulation Data
Galindo, Sergio E.; Toharia, Pablo; Robles, Oscar D.; Pastor, Luis
2016-01-01
After decades of independent morphological and functional brain research, a key point in neuroscience nowadays is to understand the combined relationships between the structure of the brain and its components and their dynamics on multiple scales, ranging from circuits of neurons at micro or mesoscale to brain regions at macroscale. With such a goal in mind, there is a vast amount of research focusing on modeling and simulating activity within neuronal structures, and these simulations generate large and complex datasets which have to be analyzed in order to gain the desired insight. In such context, this paper presents ViSimpl, which integrates a set of visualization and interaction tools that provide a semantic view of brain data with the aim of improving its analysis procedures. ViSimpl provides 3D particle-based rendering that allows visualizing simulation data with their associated spatial and temporal information, enhancing the knowledge extraction process. It also provides abstract representations of the time-varying magnitudes supporting different data aggregation and disaggregation operations and giving also focus and context clues. In addition, ViSimpl tools provide synchronized playback control of the simulation being analyzed. Finally, ViSimpl allows performing selection and filtering operations relying on an application called NeuroScheme. All these views are loosely coupled and can be used independently, but they can also work together as linked views, both in centralized and distributed computing environments, enhancing the data exploration and analysis procedures. PMID:27774062
ViSimpl: Multi-View Visual Analysis of Brain Simulation Data.
Galindo, Sergio E; Toharia, Pablo; Robles, Oscar D; Pastor, Luis
2016-01-01
After decades of independent morphological and functional brain research, a key point in neuroscience nowadays is to understand the combined relationships between the structure of the brain and its components and their dynamics on multiple scales, ranging from circuits of neurons at micro or mesoscale to brain regions at macroscale. With such a goal in mind, there is a vast amount of research focusing on modeling and simulating activity within neuronal structures, and these simulations generate large and complex datasets which have to be analyzed in order to gain the desired insight. In such context, this paper presents ViSimpl, which integrates a set of visualization and interaction tools that provide a semantic view of brain data with the aim of improving its analysis procedures. ViSimpl provides 3D particle-based rendering that allows visualizing simulation data with their associated spatial and temporal information, enhancing the knowledge extraction process. It also provides abstract representations of the time-varying magnitudes supporting different data aggregation and disaggregation operations and giving also focus and context clues. In addition, ViSimpl tools provide synchronized playback control of the simulation being analyzed. Finally, ViSimpl allows performing selection and filtering operations relying on an application called NeuroScheme. All these views are loosely coupled and can be used independently, but they can also work together as linked views, both in centralized and distributed computing environments, enhancing the data exploration and analysis procedures.
Jin, Xinchun; Sun, Yanyun; Xu, Ji; Liu, Wenlan
2015-03-01
Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase-9 (MMP-9) activity in the ischemic brain, which exacerbates blood-brain barrier injury and increases the risk of symptomatic cerebral hemorrhage. The mechanism through which tPA enhances MMP-9 activity is not well understood. Here we report an important role of caveolin-1 in mediating tPA-induced MMP-9 synthesis. Brain microvascular endothelial cell line bEnd3 cells were incubated with 5 or 20 μg/ml tPA for 24 hrs before analyzing MMP-9 levels in the conditioned media and cellular extracts by gelatin zymography. tPA at a dose of 20 μg/mL tPA, but not 5 μg/mL, significantly increased MMP-9 level in cultured media while decreasing it in cellular extracts. Concurrently, tPA treatment induced a 2.3-fold increase of caveolin-1 protein levels in endothelial cells. Interestingly, knockdown of Cav-1 with siRNA inhibited tPA-induced MMP-9 mRNA up-regulation and MMP-9 increase in the conditioned media, but did not affect MMP-9 decrease in cellular extracts. These results suggest that caveolin-1 critically contributes to tPA-mediated MMP-9 up-regulation, but may not facilitate MMP-9 secretion in endothelial cells. Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase-9 (MMP-9) activity in the ischemic brain, which exacerbates ischemic blood brain barrier (BBB) injury and increases the risk of symptomatic cerebral hemorrhage. Our results suggest a novel mechanism underlying this tPA-MMP 9 axis. In response to tPA treatment, caveolin-1 protein levels increased in endothelial cells, which mediate MMP-9 mRNA up-regulation and its secretion into extracellular space. Caveolin-1 may, however, not facilitate MMP-9 secretion in endothelial cells. Our data suggest caveolin-1 as a novel therapeutic target for protecting the BBB against ischemic damage. The schematic outlines tPA-induced MMP-9 upreguation. © 2015 International Society for Neurochemistry.
Gomez, Carlos; Poza, Jesus; Gomez-Pilar, Javier; Bachiller, Alejandro; Juan-Cruz, Celia; Tola-Arribas, Miguel A; Carreres, Alicia; Cano, Monica; Hornero, Roberto
2016-08-01
The aim of this pilot study was to analyze spontaneous electroencephalography (EEG) activity in Alzheimer's disease (AD) by means of Cross-Sample Entropy (Cross-SampEn) and two local measures derived from graph theory: clustering coefficient (CC) and characteristic path length (PL). Five minutes of EEG activity were recorded from 37 patients with dementia due to AD and 29 elderly controls. Our results showed that Cross-SampEn values were lower in the AD group than in the control one for all the interactions among EEG channels. This finding indicates that EEG activity in AD is characterized by a lower statistical dissimilarity among channels. Significant differences were found mainly for fronto-central interactions (p <; 0.01, permutation test). Additionally, the application of graph theory measures revealed diverse neural network changes, i.e. lower CC and higher PL values in AD group, leading to a less efficient brain organization. This study suggests the usefulness of our approach to provide further insights into the underlying brain dynamics associated with AD.
Neural correlates of reappraisal considering working memory capacity and cognitive flexibility.
Zaehringer, Jenny; Falquez, Rosalux; Schubert, Anna-Lena; Nees, Frauke; Barnow, Sven
2018-01-09
Cognitive reappraisal of emotion is strongly related to long-term mental health. Therefore, the exploration of underlying cognitive and neural mechanisms has become an essential focus of research. Considering that reappraisal and executive functions rely on a similar brain network, the question arises whether behavioral differences in executive functions modulate neural activity during reappraisal. Using functional neuroimaging, the present study aimed to analyze the role of working memory capacity (WMC) and cognitive flexibility in brain activity during down-regulation of negative emotions by reappraisal in N = 20 healthy participants. Results suggests that WMC and cognitive flexibility were negatively correlated with prefrontal activity during reappraisal condition. Here, results also revealed a negative correlation between cognitive flexibility and amygdala activation. These findings provide first hints that (1) individuals with lower WMC and lower cognitive flexibility might need more higher-order cognitive neural resources in order to down-regulate negative emotions and (2) cognitive flexibility relates to emotional reactivity during reappraisal.
Pain anticipation: an activation likelihood estimation meta-analysis of brain imaging studies.
Palermo, Sara; Benedetti, Fabrizio; Costa, Tommaso; Amanzio, Martina
2015-05-01
The anticipation of pain has been investigated in a variety of brain imaging studies. Importantly, today there is no clear overall picture of the areas that are involved in different studies and the exact role of these regions in pain expectation remains especially unexploited. To address this issue, we used activation likelihood estimation meta-analysis to analyze pain anticipation in several neuroimaging studies. A total of 19 functional magnetic resonance imaging were included in the analysis to search for the cortical areas involved in pain anticipation in human experimental models. During anticipation, activated foci were found in the dorsolateral prefrontal, midcingulate and anterior insula cortices, medial and inferior frontal gyri, inferior parietal lobule, middle and superior temporal gyrus, thalamus, and caudate. Deactivated foci were found in the anterior cingulate, superior frontal gyrus, parahippocampal gyrus and in the claustrum. The results of the meta-analytic connectivity analysis provide an overall view of the brain responses triggered by the anticipation of a noxious stimulus. Such a highly distributed perceptual set of self-regulation may prime brain regions to process information where emotion, action and perception as well as their related subcategories play a central role. Not only do these findings provide important information on the neural events when anticipating pain, but also they may give a perspective into nocebo responses, whereby negative expectations may lead to pain worsening. © 2014 Wiley Periodicals, Inc.
Wu, Kerui; Fukuda, Koji; Xing, Fei; Zhang, Yingyu; Sharma, Sambad; Liu, Yin; Chan, Michael D; Zhou, Xiaobo; Qasem, Shadi A; Pochampally, Radhika; Mo, Yin-Yuan; Watabe, Kounosuke
2015-04-10
Brain is one of the major sites of metastasis in breast cancer; however, the pathological mechanism of brain metastasis is poorly understood. One of the critical rate-limiting steps of brain metastasis is the breaching of blood-brain barrier, which acts as a selective interface between the circulation and the central nervous system, and this process is considered to involve tumor-secreted proteinases. We analyzed clinical significance of 21 matrix metalloproteinases on brain metastasis-free survival of breast cancer followed by verification in brain metastatic cell lines and found that only matrix metalloproteinase 1 (MMP1) is significantly correlated with brain metastasis. We have shown that MMP1 is highly expressed in brain metastatic cells and is capable of degrading Claudin and Occludin but not Zo-1, which are key components of blood-brain barrier. Knockdown of MMP1 in brain metastatic cells significantly suppressed their ability of brain metastasis in vivo, whereas ectopic expression of MMP1 significantly increased the brain metastatic ability of the cells that are not brain metastatic. We also found that COX2 was highly up-regulated in brain metastatic cells and that COX2-induced prostaglandins were directly able to promote the expression of MMP1 followed by augmenting brain metastasis. Furthermore, we found that COX2 and prostaglandin were able to activate astrocytes to release chemokine (C-C motif) ligand 7 (CCL7), which in turn promoted self-renewal of tumor-initiating cells in the brain and that knockdown of COX2 significantly reduced the brain metastatic ability of tumor cells. Our results suggest the COX2-MMP1/CCL7 axis as a novel therapeutic target for brain metastasis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Wu, Kerui; Fukuda, Koji; Xing, Fei; Zhang, Yingyu; Sharma, Sambad; Liu, Yin; Chan, Michael D.; Zhou, Xiaobo; Qasem, Shadi A.; Pochampally, Radhika; Mo, Yin-Yuan; Watabe, Kounosuke
2015-01-01
Brain is one of the major sites of metastasis in breast cancer; however, the pathological mechanism of brain metastasis is poorly understood. One of the critical rate-limiting steps of brain metastasis is the breaching of blood-brain barrier, which acts as a selective interface between the circulation and the central nervous system, and this process is considered to involve tumor-secreted proteinases. We analyzed clinical significance of 21 matrix metalloproteinases on brain metastasis-free survival of breast cancer followed by verification in brain metastatic cell lines and found that only matrix metalloproteinase 1 (MMP1) is significantly correlated with brain metastasis. We have shown that MMP1 is highly expressed in brain metastatic cells and is capable of degrading Claudin and Occludin but not Zo-1, which are key components of blood-brain barrier. Knockdown of MMP1 in brain metastatic cells significantly suppressed their ability of brain metastasis in vivo, whereas ectopic expression of MMP1 significantly increased the brain metastatic ability of the cells that are not brain metastatic. We also found that COX2 was highly up-regulated in brain metastatic cells and that COX2-induced prostaglandins were directly able to promote the expression of MMP1 followed by augmenting brain metastasis. Furthermore, we found that COX2 and prostaglandin were able to activate astrocytes to release chemokine (C-C motif) ligand 7 (CCL7), which in turn promoted self-renewal of tumor-initiating cells in the brain and that knockdown of COX2 significantly reduced the brain metastatic ability of tumor cells. Our results suggest the COX2-MMP1/CCL7 axis as a novel therapeutic target for brain metastasis. PMID:25691572
Biodegradable seeds of holmium don't change neurological function after implant in brain of rats.
Diniz, Mirla Fiuza; Ferreira, Diogo Milioli; de Lima, Wanderson Geraldo; Pedrosa, Maria Lucia; Silva, Marcelo Eustáquio; de Almeida Araujo, Stanley; Sampaio, Kinulpe Honorato; de Campos, Tarcisio Passos Ribeiro; Siqueira, Savio Lana
2017-01-01
To evaluate the surgical procedure and parenchymal abnormalities related to implantation of ceramic seeds with holmium-165 in rats' brain. An effective method of cancer treatment is brachytherapy in which radioactive seeds are implanted in the tumor, generating a high local dose of ionizing radiation that can eliminate tumor cells while protecting the surrounding healthy tissue. Biodegradable Ho 166 -ceramic-seeds have been addressed recently. The experiments in this study were approved by the Ethics Committee on Animal Use at the Federal University of Ouro Preto, protocol number 2012/034. Twenty-one adult Fischer rats were divided into Naive Group, Sham Group and Group for seed implants (ISH). Surgical procedures for implantation of biodegradable seeds were done and 30 days after the implant radiographic examination and biopsy of the brain were performed. Neurological assays were also accomplished to exclude any injury resulting from either surgery or implantation of the seeds. Radiographic examination confirmed the location of the seeds in the brain. Neurological assays showed animals with regular spontaneous activity. The histological analysis showed an increase of inflammatory cells in the brain of the ISH group. Electron microscopy evidenced cytoplasmic organelles to be unchanged. Biochemical analyzes indicate there was neither oxidative stress nor oxidative damage in the ISH brain. CAT activity showed no difference between the groups as well as lipid peroxidation measured by TBARS. The analysis of the data pointed out that the performed procedure is safe as no animal showed alterations of the neurological parameters and the seeds did not promote histological architectural changes in the brain tissue.
Wiśniewski, Jacek R; Gizak, Agnieszka; Rakus, Dariusz
2015-08-07
Glycolysis is the core metabolic pathway supplying energy to cells. Whereas the vast majority of studies focus on specific aspects of the process, global analyses characterizing simultaneously all enzymes involved in the process are scarce. Here, we demonstrate that quantitative label- and standard-free proteomics allows accurate determination of titers of metabolic enzymes and enables simultaneous measurements of titers and maximal enzymatic activities (Amax) of all glycolytic enzymes and the gluconeogenic fructose 1,6-bisphosphatase in mouse brain, liver and muscle. Despite occurrence of tissue-specific isoenzymes bearing different kinetic properties, the enzyme titers often correlated well with the Amax values. To provide a more general picture of energy metabolism, we analyzed titers of the enzymes in additional 7 mouse organs and in human cells. Across the analyzed samples, we identified two basic profiles: a "fast glucose uptake" one in brain and heart, and a "gluconeogenic rich" one occurring in liver. In skeletal muscles and other organs, we found intermediate profiles. Obtained data highlighted the glucose-flux-limiting role of hexokinase which activity was always 10- to 100-fold lower than the average activity of all other glycolytic enzymes. A parallel determination of enzyme titers and maximal enzymatic activities allowed determination of kcat values without enzyme purification. Results of our in-depth proteomic analysis of the mouse organs did not support the concepts of regulation of glycolysis by lysine acetylation.
Plitt, Mark; Savjani, Ricky R; Eagleman, David M
2015-04-01
To investigate whether the legal concept of "corporate personhood" mirrors an inherent similarity in the neural processing of the actions of corporations and people, we measured brain responses to vignettes about corporations and people while participants underwent functional magnetic resonance imaging. We found that anti-social actions of corporations elicited more intense negative emotions and that pro-social actions of people elicited more intense positive emotions. However, the networks underlying the moral decisions about corporations and people are strikingly similar, including regions of the canonical theory of mind network. In analyzing the activity in these networks, we found differences in the emotional processing of these two types of vignettes: neutral actions of corporations showed neural correlates that more closely resembled negative actions than positive actions. Collectively, these findings indicate that our brains understand and analyze the actions of corporations and people very similarly, with a small emotional bias against corporations.
Minimalistic toy robot to analyze a scenery of speaker-listener condition in autism.
Giannopulu, Irini; Montreynaud, Valérie; Watanabe, Tomio
2016-05-01
Atypical neural architecture causes impairment in communication capabilities and reduces the ability of representing the referential statements of other people in children with autism. During a scenery of "speaker-listener" communication, we have analyzed verbal and emotional expressions in neurotypical children (n = 20) and in children with autism (n = 20). The speaker was always a child, and the listener was a human or a minimalistic robot which reacts to speech expression by nodding only. Although both groups performed the task, everything happens as if the robot could allow children with autism to elaborate a multivariate equation encoding and conceptualizing within his/her brain, and externalizing into unconscious emotion (heart rate) and conscious verbal speech (words). Such a behavior would indicate that minimalistic artificial environments such as toy robots could be considered as the root of neuronal organization and reorganization with the potential to improve brain activity.
Single-trial EEG-informed fMRI analysis of emotional decision problems in hot executive function.
Guo, Qian; Zhou, Tiantong; Li, Wenjie; Dong, Li; Wang, Suhong; Zou, Ling
2017-07-01
Executive function refers to conscious control in psychological process which relates to thinking and action. Emotional decision is a part of hot executive function and contains emotion and logic elements. As a kind of important social adaptation ability, more and more attention has been paid in recent years. Gambling task can be well performed in the study of emotional decision. As fMRI researches focused on gambling task show not completely consistent brain activation regions, this study adopted EEG-fMRI fusion technology to reveal brain neural activity related with feedback stimuli. In this study, an EEG-informed fMRI analysis was applied to process simultaneous EEG-fMRI data. First, relative power-spectrum analysis and K-means clustering method were performed separately to extract EEG-fMRI features. Then, Generalized linear models were structured using fMRI data and using different EEG features as regressors. The results showed that in the win versus loss stimuli, the activated regions almost covered the caudate, the ventral striatum (VS), the orbital frontal cortex (OFC), and the cingulate. Wide activation areas associated with reward and punishment were revealed by the EEG-fMRI integration analysis than the conventional fMRI results, such as the posterior cingulate and the OFC. The VS and the medial prefrontal cortex (mPFC) were found when EEG power features were performed as regressors of GLM compared with results entering the amplitudes of feedback-related negativity (FRN) as regressors. Furthermore, the brain region activation intensity was the strongest when theta-band power was used as a regressor compared with the other two fusion results. The EEG-based fMRI analysis can more accurately depict the whole-brain activation map and analyze emotional decision problems.
Sleep characteristics in the quail Coturnix coturnix.
Mexicano, Graciela; Montoya-Loaiza, Bibiana; Ayala-Guerrero, Fructuoso
2014-04-22
As mammals, birds exhibit two sleep phases, slow wave sleep (SWS) and REM (Rapid Eye Movement) sleep characterized by presenting different electrophysiological patterns of brain activity. During SWS a high amplitude slow wave pattern in brain activity is observed. This activity is substituted by a low amplitude fast frequency pattern during REM sleep. Common quail (Coturnix coturnix) is an animal model that has provided information related to different physiological mechanisms present in man. There are reports related to its electrophysiological brain activity, however the sleep characteristics that have been described are not. The objectives of this study is describing the sleep characteristics throughout the nychthemeral cycle of the common quail and consider this bird species as an avian model to analyze the regulatory mechanisms of sleep. Experiments were carried out in implanted exemplars of C. coturnix. Under general anesthesia induced by ether inhalation, stainless steel electrodes were placed to register brain activity from the anterior and posterior areas during 24 continuous hours throughout the sleep-wake cycle. Ocular and motor activities were visually monitored. Quail showed four electrophysiologically and behaviorally different states of vigilance: wakefulness (53.28%), drowsiness (14.27%), slow wave sleep (30.47%) and REM sleep (1.98%). The animals presented 202 REM sleep episodes throughout the nychthemeral cycle. Sleep distribution was polyphasic; however sleep amount was significantly greater during the period corresponding to the night. The number of nocturnal REM sleep episodes was significantly greater than that of diurnal one. The quail C. coturnix shows a polyphasic distribution of sleep; however the amount of this state of vigilance is significantly greater during the nocturnal period. Copyright © 2014 Elsevier Inc. All rights reserved.
Quantitative complexity analysis in multi-channel intracranial EEG recordings form epilepsy brains
Liu, Chang-Chia; Pardalos, Panos M.; Chaovalitwongse, W. Art; Shiau, Deng-Shan; Ghacibeh, Georges; Suharitdamrong, Wichai; Sackellares, J. Chris
2008-01-01
Epilepsy is a brain disorder characterized clinically by temporary but recurrent disturbances of brain function that may or may not be associated with destruction or loss of consciousness and abnormal behavior. Human brain is composed of more than 10 to the power 10 neurons, each of which receives electrical impulses known as action potentials from others neurons via synapses and sends electrical impulses via a sing output line to a similar (the axon) number of neurons. When neuronal networks are active, they produced a change in voltage potential, which can be captured by an electroencephalogram (EEG). The EEG recordings represent the time series that match up to neurological activity as a function of time. By analyzing the EEG recordings, we sought to evaluate the degree of underlining dynamical complexity prior to progression of seizure onset. Through the utilization of the dynamical measurements, it is possible to classify the state of the brain according to the underlying dynamical properties of EEG recordings. The results from two patients with temporal lobe epilepsy (TLE), the degree of complexity start converging to lower value prior to the epileptic seizures was observed from epileptic regions as well as non-epileptic regions. The dynamical measurements appear to reflect the changes of EEG’s dynamical structure. We suggest that the nonlinear dynamical analysis can provide a useful information for detecting relative changes in brain dynamics, which cannot be detected by conventional linear analysis. PMID:19079790
Embryonic blood-cerebrospinal fluid barrier formation and function
Bueno, David; Parvas, Maryam; Hermelo, Ismaïl; Garcia-Fernàndez, Jordi
2014-01-01
During embryonic development and adult life, brain cavities and ventricles are filled with cerebrospinal fluid (CSF). CSF has attracted interest as an active signaling medium that regulates brain development, homeostasis and disease. CSF is a complex protein-rich fluid containing growth factors and signaling molecules that regulate multiple cell functions in the central nervous system (CNS). The composition and substance concentrations of CSF are tightly controlled. In recent years, it has been demonstrated that embryonic CSF (eCSF) has a key function as a fluid pathway for delivering diffusible signals to the developing brain, thus contributing to the proliferation, differentiation and survival of neural progenitor cells, and to the expansion and patterning of the brain. From fetal stages through to adult life, CSF is primarily produced by the choroid plexus. The development and functional activities of the choroid plexus and other blood–brain barrier (BBB) systems in adults and fetuses have been extensively analyzed. However, eCSF production and control of its homeostasis in embryos, from the closure of the anterior neuropore when the brain cavities become physiologically sealed, to the formation of the functional fetal choroid plexus, has not been studied in as much depth and remains open to debate. This review brings together the existing literature, some of which is based on experiments conducted by our research group, concerning the formation and function of a temporary embryonic blood–CSF barrier in the context of the crucial roles played by the molecules in eCSF. PMID:25389383
Anderson, Andrew James; Bruni, Elia; Lopopolo, Alessandro; Poesio, Massimo; Baroni, Marco
2015-10-15
Embodiment theory predicts that mental imagery of object words recruits neural circuits involved in object perception. The degree of visual imagery present in routine thought and how it is encoded in the brain is largely unknown. We test whether fMRI activity patterns elicited by participants reading objects' names include embodied visual-object representations, and whether we can decode the representations using novel computational image-based semantic models. We first apply the image models in conjunction with text-based semantic models to test predictions of visual-specificity of semantic representations in different brain regions. Representational similarity analysis confirms that fMRI structure within ventral-temporal and lateral-occipital regions correlates most strongly with the image models and conversely text models correlate better with posterior-parietal/lateral-temporal/inferior-frontal regions. We use an unsupervised decoding algorithm that exploits commonalities in representational similarity structure found within both image model and brain data sets to classify embodied visual representations with high accuracy (8/10) and then extend it to exploit model combinations to robustly decode different brain regions in parallel. By capturing latent visual-semantic structure our models provide a route into analyzing neural representations derived from past perceptual experience rather than stimulus-driven brain activity. Our results also verify the benefit of combining multimodal data to model human-like semantic representations. Copyright © 2015 Elsevier Inc. All rights reserved.
Resting-state functional connectivity and motor imagery brain activation
Saiote, Catarina; Tacchino, Andrea; Brichetto, Giampaolo; Roccatagliata, Luca; Bommarito, Giulia; Cordano, Christian; Battaglia, Mario; Mancardi, Giovanni Luigi; Inglese, Matilde
2016-01-01
Motor imagery (MI) relies on the mental simulation of an action without any overt motor execution (ME), and can facilitate motor learning and enhance the effect of rehabilitation in patients with neurological conditions. While functional magnetic resonance imaging (fMRI) during MI and ME reveals shared cortical representations, the role and functional relevance of the resting-state functional connectivity (RSFC) of brain regions involved in MI is yet unknown. Here, we performed resting-state fMRI followed by fMRI during ME and MI with the dominant hand. We used a behavioral chronometry test to measure ME and MI movement duration and compute an index of performance (IP). Then, we analyzed the voxel-matched correlation between the individual MI parameter estimates and seed-based RSFC maps in the MI network to measure the correspondence between RSFC and MI fMRI activation. We found that inter-individual differences in intrinsic connectivity in the MI network predicted several clusters of activation. Taken together, present findings provide first evidence that RSFC within the MI network is predictive of the activation of MI brain regions, including those associated with behavioral performance, thus suggesting a role for RSFC in obtaining a deeper understanding of neural substrates of MI and of MI ability. PMID:27273577
Using psychophysiological indices to estimate the effect of cosmophysical factors (Review)
NASA Astrophysics Data System (ADS)
Khorseva, N. I.
2013-12-01
This review first summarizes estimates of the functional response of the central nervous system (CNS) to variations in cosmophysical factors using different psychophysiological indices (electrical activity of the brain, sensorimotor and motor reactions, and higher mental functions such as attention and memory). We analyze the applicability of information technologies to record different physiological parameters.
Li, Qing-Xin; Shen, Yu-Xian; Ahmad, Akhlaq; Shen, Yu-Jun; Zhang, Yi-Quan; Xu, Pei-Kun; Chen, Wei-Wei; Yu, Yong-Qiang
2018-06-05
Our previous studies have shown that MANF provides neuroprotective effect against ischemia/reperfusion injury and is also involved in inflammatory disease models. This work investigates the potential role and mechanism of MANF in acute brain damage after traumatic brain injury (TBI). The model of TBI was induced by Feeney free falling methods with male Sprauge-Dawley rats. The expression of MANF, 24 hrs after TBI, was detected by the immunohistochemistry, immunofluorescence, Western blot and Reverse transcription PCR(RT-PCR) techniques. After treatment with recombinant human MANF following TBI, assessment was conducted - 24 hrs later for brain water content(BWC), cerebral edema volume in MRI, neurobehavioral testing and Evans blue extravasation. Moreover, by the techniques of Western blot and RT-PCR, the expression of inflammatory cytokines(IL-1β, TNF-α) and P65 was also analyzed to explore the underlying protective mechanism of MANF. At 24 hrs after TBI, we found that endogenous MANF was widely expressed in the rat's brain tissues and different types of cells. Treatment with high dose of recombinant human MANF(20 μg/20 μL) - significantly increased the modified Garcia score, and reduced BWC as well as cerebral edema volume in MRI. Furthermore, MANF alleviated not only the blood-brain barrier(BBB) permeability, but also the expressions of IL-1β and TNF-α mRNA and protein. Besides, the activation of P65 was also inhibited. These results suggest that MANF provides neuroprotective effect against acute brain injury after TBI, via attenuating BBB disruption and intracranial neuroinflammation, while the inhibition of NF-κB signaling pathway might be a potential mechanism. Copyright © 2018 Elsevier Inc. All rights reserved.
Titration of biologically active amyloid–β seeds in a transgenic mouse model of Alzheimer's disease
Morales, Rodrigo; Bravo-Alegria, Javiera; Duran-Aniotz, Claudia; Soto, Claudio
2015-01-01
Experimental evidence in animal models suggests that misfolded Amyloid-β (Aβ) spreads in disease following a prion-like mechanism. Several properties characteristics of infectious prions have been shown for the induction of Aβ aggregates. However, a detailed titration of Aβ misfolding transmissibility and estimation of the minimum concentration of biologically active Aβ seeds able to accelerate pathological changes has not yet been performed. In this study, brain extracts from old tg2576 animals were serially diluted and intra-cerebrally injected into young subjects from the same transgenic line. Animals were sacrificed several months after treatment and brain slices were analyzed for amyloid pathology. We observed that administration of misfolded Aβ was able to significantly accelerate amyloid deposition in young mice, even when the original sample was diluted a million times. The titration curve obtained in this experiment was compared to the natural Aβ load spontaneously accumulated by these mice overtime. Our findings suggest that administration of the largest dose of Aβ seeds led to an acceleration of pathology equivalent to over a year. These results show that active Aβ seeds present in the brain can seed amyloidosis in a titratable manner, similarly as observed for infectious prions. PMID:25879692
Combined ICA-LORETA analysis of mismatch negativity.
Marco-Pallarés, J; Grau, C; Ruffini, G
2005-04-01
A major challenge for neuroscience is to map accurately the spatiotemporal patterns of activity of the large neuronal populations that are believed to underlie computing in the human brain. To study a specific example, we selected the mismatch negativity (MMN) brain wave (an event-related potential, ERP) because it gives an electrophysiological index of a "primitive intelligence" capable of detecting changes, even abstract ones, in a regular auditory pattern. ERPs have a temporal resolution of milliseconds but appear to result from mixed neuronal contributions whose spatial location is not fully understood. Thus, it is important to separate these sources in space and time. To tackle this problem, a two-step approach was designed combining the independent component analysis (ICA) and low-resolution tomography (LORETA) algorithms. Here we implement this approach to analyze the subsecond spatiotemporal dynamics of MMN cerebral sources using trial-by-trial experimental data. We show evidence that a cerebral computation mechanism underlies MMN. This mechanism is mediated by the orchestrated activity of several spatially distributed brain sources located in the temporal, frontal, and parietal areas, which activate at distinct time intervals and are grouped in six main statistically independent components.
Balconi, Michela; Lucchiari, Claudio
2008-01-01
It remains an open question whether it is possible to assign a single brain operation or psychological function for facial emotion decoding to a certain type of oscillatory activity. Gamma band activity (GBA) offers an adequate tool for studying cortical activation patterns during emotional face information processing. In the present study brain oscillations were analyzed in response to facial expression of emotions. Specifically, GBA modulation was measured when twenty subjects looked at emotional (angry, fearful, happy, and sad faces) or neutral faces in two different conditions: supraliminal (10 ms) vs subliminal (150 ms) stimulation (100 target-mask pairs for each condition). The results showed that both consciousness and significance of the stimulus in terms of arousal can modulate the power synchronization (ERD decrease) during 150-350 time range: an early oscillatory event showed its peak at about 200 ms post-stimulus. GBA was enhanced by supraliminal more than subliminal elaboration, as well as more by high arousal (anger and fear) than low arousal (happiness and sadness) emotions. Finally a left-posterior dominance for conscious elaboration was found, whereas right hemisphere was discriminant in emotional processing of face in comparison with neutral face.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaiswal, R.; Huang, T.; Obih, P.
1995-12-31
The objectives of this study are to investigate the sensitivity of different classes of esterases in various aquatic species to environmental contaminants and the possible use of these enzymes as biomarkers for monitoring the effects of pollutants. Acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and the non-specific carboxylesterases (CaE) were analyzed in three fish species, Ictiobus bubalus (small mouth buffalo), Ictiobus cyprinellus (big mouth buffalo) and Lepisosteus oculatus (spotted gar) and the green tree frog, Hyla cinerea. These samples were collected from the Devil`s Swamp Site (DSS), an industrial site known to be highly contaminated at the Mississippi River Basin, and Lake Tunica,more » a nonindustrial site. ACHE and BuChE activities in the subcellular fractions of liver and brain were significantly lower in fishes and frogs obtained from DSS when compared to the same species obtained from Tunica swamp site. The greatest decrease was observed with ACHE activity in the liver and brain of Ictiobus bubalus from DSS. CaE activity analyzed with p-nitrophenyl acetate was found to be significantly lower in the liver of all three fish species collected from DSS when compared to the same fish species obtained from the Tunica swamp site.« less
Brain Activity Unique to Orgasm in Women: An fMRI Analysis.
Wise, Nan J; Frangos, Eleni; Komisaruk, Barry R
2017-11-01
Although the literature on imaging of regional brain activity during sexual arousal in women and men is extensive and largely consistent, that on orgasm is relatively limited and variable, owing in part to the methodologic challenges posed by variability in latency to orgasm in participants and head movement. To compare brain activity at orgasm (self- and partner-induced) with that at the onset of genital stimulation, immediately before the onset of orgasm, and immediately after the cessation of orgasm and to upgrade the methodology for obtaining and analyzing functional magnetic resonance imaging (fMRI) findings. Using fMRI, we sampled equivalent time points across female participants' variable durations of stimulation and orgasm in response to self- and partner-induced clitoral stimulation. The first 20-second epoch of orgasm was contrasted with the 20-second epochs at the beginning of stimulation and immediately before and after orgasm. Separate analyses were conducted for whole-brain and brainstem regions of interest. For a finer-grained analysis of the peri-orgasm phase, we conducted a time-course analysis on regions of interest. Head movement was minimized to a mean less than 1.3 mm using a custom-fitted thermoplastic whole-head and neck brace stabilizer. Ten women experienced orgasm elicited by self- and partner-induced genital stimulation in a Siemens 3-T Trio fMRI scanner. Brain activity gradually increased leading up to orgasm, peaked at orgasm, and then decreased. We found no evidence of deactivation of brain regions leading up to or during orgasm. The activated brain regions included sensory, motor, reward, frontal cortical, and brainstem regions (eg, nucleus accumbens, insula, anterior cingulate cortex, orbitofrontal cortex, operculum, right angular gyrus, paracentral lobule, cerebellum, hippocampus, amygdala, hypothalamus, ventral tegmental area, and dorsal raphe). Insight gained from the present findings could provide guidance toward a rational basis for treatment of orgasmic disorders, including anorgasmia. This is evidently the first fMRI study of orgasm elicited by self- and partner-induced genital stimulation in women. Methodologic solutions to the technical issues posed by excessive head movement and variable latencies to orgasm were successfully applied in the present study, enabling identification of brain regions involved in orgasm. Limitations include the small sample (N = 10), which combined self- and partner-induced stimulation datasets for analysis and which qualify the generalization of our conclusions. Extensive cortical, subcortical, and brainstem regions reach peak levels of activity at orgasm. Wise NJ, Frangos E, Komisaruk BR. Brain Activity Unique to Orgasm in Women: An fMRI Analysis. J Sex Med 2017;14:1380-1391. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Chen, Fangfang; Lv, Xueyu; Fang, Jiliang; Yu, Shan; Sui, Jing; Fan, Lingzhong; Li, Tao; Hong, Yang; Wang, XiaoLing; Wang, Weidong; Jiang, Tianzi
2015-09-01
Meditation has been increasingly evaluated as an important complementary therapeutic tool for the treatment of depression. The present study employed resting-state functional magnetic resonance imaging (rs-fMRI) to examine the effect of body-mind relaxation meditation induction (BMRMI) on the brain activity of depressed patients and to investigate possible mechanisms of action for this complex intervention. 21 major depressive disorder patients (MDDs) and 24 age and gender-matched healthy controls (HCs) received rs-fMRI scans at baseline and after listening to a selection of audio designed to induce body-mind relaxation meditation. The rs-fMRI data were analyzed using Matlab toolbox to obtain the amplitude of low-frequency fluctuations (ALFF) of the BOLD signal for the whole brain. A mixed-design repeated measures analysis of variance (ANOVA) was performed on the whole brain to find which brain regions were affected by the BMRMI. An additional functional connectivity analysis was used to identify any atypical connection patterns after the BMRMI. After the BMRMI experience, both the MDDs and HCs showed decreased ALFF values in the bilateral frontal pole (BA10). Additionally, increased functional connectivity from the right dorsal medial prefrontal cortex (dmPFC) to the left dorsal lateral prefrontal cortex (dlPFC) and the left lateral orbitofrontal cortex (OFC) was identified only in the MDDs after the BMRMI. In order to exclude the impact of other events on the participants׳ brain activity, the Hamilton Rating Scales for Depression (HDRS) was not measured after the body-mind relaxation induction. Our findings support the hypothesis that body-mind relaxation meditation induction may regulate the activities of the prefrontal cortex and thus may have the potential to help patients construct reappraisal strategies that can modulate the brain activity in multiple emotion-processing systems. Copyright © 2015 Elsevier B.V. All rights reserved.
Modulation of the COMT Val(158)Met polymorphism on resting-state EEG power.
Solís-Ortiz, Silvia; Pérez-Luque, Elva; Gutiérrez-Muñoz, Mayra
2015-01-01
The catechol-O-methyltransferase (COMT) Val(158)Met polymorphism impacts cortical dopamine (DA) levels and may influence cortical electrical activity in the human brain. This study investigated whether COMT genotype influences resting-state electroencephalogram (EEG) power in the frontal, parietal and midline regions in healthy volunteers. EEG recordings were conducted in the resting-state in 13 postmenopausal healthy woman carriers of the Val/Val genotype and 11 with the Met/Met genotype. The resting EEG spectral absolute power in the frontal (F3, F4, F7, F8, FC3 and FC4), parietal (CP3, CP4, P3 and P4) and midline (Fz, FCz, Cz, CPz, Pz and Oz) was analyzed during the eyes-open and eyes-closed conditions. The frequency bands considered were the delta, theta, alpha1, alpha2, beta1 and beta2. EEG data of the Val/Val and Met/Met genotypes, brain regions and conditions were analyzed using a general linear model analysis. In the individuals with the Met/Met genotype, delta activity was increased in the eyes-closed condition, theta activity was increased in the eyes-closed and in the eyes-open conditions, and alpha1 band, alpha2 band and beta1band activity was increased in the eyes-closed condition. A significant interaction between COMT genotypes and spectral bands was observed. Met homozygote individuals exhibited more delta, theta and beta1 activity than individuals with the Val/Val genotype. No significant interaction between COMT genotypes and the resting-state EEG regional power and conditions were observed for the three brain regions studied. Our findings indicate that the COMT Val(158)Met polymorphism does not directly impact resting-state EEG regional power, but instead suggest that COMT genotype can modulate resting-state EEG spectral power in postmenopausal healthy women.
Modulation of the COMT Val158Met polymorphism on resting-state EEG power
Solís-Ortiz, Silvia; Pérez-Luque, Elva; Gutiérrez-Muñoz, Mayra
2015-01-01
The catechol-O-methyltransferase (COMT) Val158Met polymorphism impacts cortical dopamine (DA) levels and may influence cortical electrical activity in the human brain. This study investigated whether COMT genotype influences resting-state electroencephalogram (EEG) power in the frontal, parietal and midline regions in healthy volunteers. EEG recordings were conducted in the resting-state in 13 postmenopausal healthy woman carriers of the Val/Val genotype and 11 with the Met/Met genotype. The resting EEG spectral absolute power in the frontal (F3, F4, F7, F8, FC3 and FC4), parietal (CP3, CP4, P3 and P4) and midline (Fz, FCz, Cz, CPz, Pz and Oz) was analyzed during the eyes-open and eyes-closed conditions. The frequency bands considered were the delta, theta, alpha1, alpha2, beta1 and beta2. EEG data of the Val/Val and Met/Met genotypes, brain regions and conditions were analyzed using a general linear model analysis. In the individuals with the Met/Met genotype, delta activity was increased in the eyes-closed condition, theta activity was increased in the eyes-closed and in the eyes-open conditions, and alpha1 band, alpha2 band and beta1band activity was increased in the eyes-closed condition. A significant interaction between COMT genotypes and spectral bands was observed. Met homozygote individuals exhibited more delta, theta and beta1 activity than individuals with the Val/Val genotype. No significant interaction between COMT genotypes and the resting-state EEG regional power and conditions were observed for the three brain regions studied. Our findings indicate that the COMT Val158Met polymorphism does not directly impact resting-state EEG regional power, but instead suggest that COMT genotype can modulate resting-state EEG spectral power in postmenopausal healthy women. PMID:25883560
Emotional modulation of experimental pain: a source imaging study of laser evoked potentials
Stancak, Andrej; Fallon, Nicholas
2013-01-01
Negative emotions have been shown to augment experimental pain. As induced emotions alter brain activity, it is not clear whether pain augmentation during noxious stimulation would be related to neural activation existing prior to onset of a noxious stimulus or alternatively, whether emotional stimuli would only alter neural activity during the period of nociceptive processing. We analyzed the spatio-temporal patterns of laser evoked potentials (LEPs) occurring prior to and during the period of cortical processing of noxious laser stimuli during passive viewing of negative, positive, or neutral emotional pictures. Independent component analysis (ICA) was applied to series of source activation volumes, reconstructed using local autoregressive average model (LAURA). Pain was the strongest when laser stimuli were associated with negative emotional pictures. Prior to laser stimulus and during the first 100 ms after onset of laser stimulus, activations were seen in the left and right medial temporal cortex, cerebellum, posterior cingulate, and rostral cingulate/prefrontal cortex. In all these regions, positive or neutral pictures showed stronger activations than negative pictures. During laser stimulation, activations in the right and left anterior insula, temporal cortex and right anterior and posterior parietal cortex were stronger during negative than neutral or positive emotional pictures. Results suggest that negative emotional stimuli increase activation in the left and right anterior insula and temporal cortex, and right posterior and anterior parietal cortex only during the period of nociceptive processing. The role of background brain activation in emotional modulation of pain appears to be only permissive, and consisting in attenuation of activation in structures maintaining the resting state of the brain. PMID:24062659
Immunomodulatory effect of Hawthorn extract in an experimental stroke model.
Elango, Chinnasamy; Devaraj, Sivasithambaram Niranjali
2010-12-30
Recently, we reported a neuroprotective effect for Hawthorn (Crataegus oxyacantha) ethanolic extract in middle cerebral artery occlusion-(MCAO) induced stroke in rats. The present study sheds more light on the extract's mechanism of neuroprotection, especially its immunomodulatory effect. After 15 days of treatment with Hawthorn extract [100 mg/kg, pretreatment (oral)], male Sprague Dawley rats underwent transient MCAO for 75 mins followed by reperfusion (either 3 or 24 hrs). We measured pro-inflammatory cytokines (IL-1β, TNF-α, IL-6), ICAM-1, IL-10 and pSTAT-3 expression in the brain by appropriate methods. We also looked at the cytotoxic T cell sub-population among leukocytes (FACS) and inflammatory cell activation and recruitment in brain (using a myeloperoxidase activity assay) after ischemia and reperfusion (I/R). Apoptosis (TUNEL), and Bcl-xL- and Foxp3- (T(reg) marker) positive cells in the ipsilateral hemisphere of the brain were analyzed separately using immunofluorescence. Our results indicate that occlusion followed by 3 hrs of reperfusion increased pro-inflammatory cytokine and ICAM-1 gene expressions in the ipsilateral hemisphere, and that Hawthorn pre-treatment significantly (p ≤ 0.01) lowered these levels. Furthermore, such pre-treatment was able to increase IL-10 levels and Foxp3-positive cells in brain after 24 hrs of reperfusion. The increase in cytotoxic T cell population in vehicle rats after 24 hrs of reperfusion was decreased by at least 40% with Hawthorn pretreatment. In addition, there was a decrease in inflammatory cell activation and infiltration in pretreated brain. Hawthorn pretreatment elevated pSTAT-3 levels in brain after I/R. We also observed an increase in Bcl-xL-positive cells, which in turn may have influenced the reduction in TUNEL-positive cells compared to vehicle-treated brain. In summary, Hawthorn extract helped alleviate pro-inflammatory immune responses associated with I/R-induced injury, boosted IL-10 levels, and increased Foxp3-positive T(regs) in the brain, which may have aided in suppression of activated inflammatory cells. Such treatment also minimizes apoptotic cell death by influencing STAT-3 phosphorylation and Bcl-xL expression in the brain. Taken together, the immunomodulatory effect of Hawthorn extract may play a critical role in the neuroprotection observed in this MCAO-induced stroke model.
Immunomodulatory effect of Hawthorn extract in an experimental stroke model
2010-01-01
Background Recently, we reported a neuroprotective effect for Hawthorn (Crataegus oxyacantha) ethanolic extract in middle cerebral artery occlusion-(MCAO) induced stroke in rats. The present study sheds more light on the extract's mechanism of neuroprotection, especially its immunomodulatory effect. Methods After 15 days of treatment with Hawthorn extract [100 mg/kg, pretreatment (oral)], male Sprague Dawley rats underwent transient MCAO for 75 mins followed by reperfusion (either 3 or 24 hrs). We measured pro-inflammatory cytokines (IL-1β, TNF-α, IL-6), ICAM-1, IL-10 and pSTAT-3 expression in the brain by appropriate methods. We also looked at the cytotoxic T cell sub-population among leukocytes (FACS) and inflammatory cell activation and recruitment in brain (using a myeloperoxidase activity assay) after ischemia and reperfusion (I/R). Apoptosis (TUNEL), and Bcl-xL- and Foxp3- (Treg marker) positive cells in the ipsilateral hemisphere of the brain were analyzed separately using immunofluorescence. Results Our results indicate that occlusion followed by 3 hrs of reperfusion increased pro-inflammatory cytokine and ICAM-1 gene expressions in the ipsilateral hemisphere, and that Hawthorn pre-treatment significantly (p ≤ 0.01) lowered these levels. Furthermore, such pre-treatment was able to increase IL-10 levels and Foxp3-positive cells in brain after 24 hrs of reperfusion. The increase in cytotoxic T cell population in vehicle rats after 24 hrs of reperfusion was decreased by at least 40% with Hawthorn pretreatment. In addition, there was a decrease in inflammatory cell activation and infiltration in pretreated brain. Hawthorn pretreatment elevated pSTAT-3 levels in brain after I/R. We also observed an increase in Bcl-xL-positive cells, which in turn may have influenced the reduction in TUNEL-positive cells compared to vehicle-treated brain. Conclusions In summary, Hawthorn extract helped alleviate pro-inflammatory immune responses associated with I/R-induced injury, boosted IL-10 levels, and increased Foxp3-positive Tregs in the brain, which may have aided in suppression of activated inflammatory cells. Such treatment also minimizes apoptotic cell death by influencing STAT-3 phosphorylation and Bcl-xL expression in the brain. Taken together, the immunomodulatory effect of Hawthorn extract may play a critical role in the neuroprotection observed in this MCAO-induced stroke model. PMID:21192826
Forgacs, Peter B; Conte, Mary M; Fridman, Esteban A; Voss, Henning U; Victor, Jonathan D; Schiff, Nicholas D
2014-12-01
Standard clinical characterization of patients with disorders of consciousness (DOC) relies on observation of motor output and may therefore lead to the misdiagnosis of vegetative state or minimally conscious state in patients with preserved cognition. We used conventional electroencephalographic (EEG) measures to assess a cohort of DOC patients with and without functional magnetic resonance imaging (fMRI)-based evidence of command-following, and correlated the findings with standard clinical behavioral evaluation and brain metabolic activity. We enrolled 44 patients with severe brain injury. Behavioral diagnosis was established using standardized clinical assessments. Long-term EEG recordings were analyzed to determine wakeful background organization and presence of elements of sleep architecture. A subset of patients had fMRI testing of command-following using motor imagery paradigms (26 patients) and resting brain metabolism measurement using (18) fluorodeoxyglucose positron emission tomography (31 patients). All 4 patients with fMRI evidence of covert command-following consistently demonstrated well-organized EEG background during wakefulness, spindling activity during sleep, and relative preservation of cortical metabolic activity. In the entire cohort, EEG organization and overall brain metabolism showed no significant association with bedside behavioral testing, except in a few cases when EEG was severely abnormal. These findings suggest that conventional EEG is a simple strategy that complements behavioral and imaging characterization of DOC patients. Preservation of specific EEG features may be used to assess the likelihood of unrecognized cognitive abilities in severely brain-injured patients with very limited or no motor responses. © 2014 American Neurological Association.
Resting-State Brain Activity in Adult Males Who Stutter
Zhu, Chaozhe; Wang, Liang; Yan, Qian; Lin, Chunlan; Yu, Chunshui
2012-01-01
Although developmental stuttering has been extensively studied with structural and task-based functional magnetic resonance imaging (fMRI), few studies have focused on resting-state brain activity in this disorder. We investigated resting-state brain activity of stuttering subjects by analyzing the amplitude of low-frequency fluctuation (ALFF), region of interest (ROI)-based functional connectivity (FC) and independent component analysis (ICA)-based FC. Forty-four adult males with developmental stuttering and 46 age-matched fluent male controls were scanned using resting-state fMRI. ALFF, ROI-based FCs and ICA-based FCs were compared between male stuttering subjects and fluent controls in a voxel-wise manner. Compared with fluent controls, stuttering subjects showed increased ALFF in left brain areas related to speech motor and auditory functions and bilateral prefrontal cortices related to cognitive control. However, stuttering subjects showed decreased ALFF in the left posterior language reception area and bilateral non-speech motor areas. ROI-based FC analysis revealed decreased FC between the posterior language area involved in the perception and decoding of sensory information and anterior brain area involved in the initiation of speech motor function, as well as increased FC within anterior or posterior speech- and language-associated areas and between the prefrontal areas and default-mode network (DMN) in stuttering subjects. ICA showed that stuttering subjects had decreased FC in the DMN and increased FC in the sensorimotor network. Our findings support the concept that stuttering subjects have deficits in multiple functional systems (motor, language, auditory and DMN) and in the connections between them. PMID:22276215
Iznak, E V; Iznak, A F; Pankratova, E A; Zavadenko, N N; Guzilova, L S; Guzilova, Iu I
2010-01-01
To assess objectively a dynamics of brain functional state, EEG spectral power and peak latency of the P300 component of cognitive auditory evoked potentials have been analyzed in adolescents during the course of nootropic therapy of residual asthenic consequences of traumatic brain injury (ICD-10 F07.2). The study included 76 adolescents, aged 12-18 years, who have undergone severe closed head trauma with brain commotion 1/2--5 years ago. Patients have been divided into 3 groups treated during one month with cerebrolysin, piracetam or magne-B6, respectively. After the end of the nootropic therapy, 77% of patients treated with cerebrolysin as well as 50% of patients treated with piracetam and magne-B6 have demonstrated the positive dynamics of their brain functional state that manifested itself in the appearance of occipital EEG alpha rhythm or in the increase of its spectral power; in the normalization of alpha rhythm frequency; in the decrease in the spectral power of slow wave (theta and delta) EEG activity, in the amount (up to the disappearance) of paroxysmal EEG activity, in the EEG response to hyperventilation and in the shortening of the P300 peak latency. Such positive changes of neurophysiological parameters have been associated with the improvement of clinical conditions of patients and correlated significantly with the dynamics of psychometric scores of attention and memory.
NASA Astrophysics Data System (ADS)
Mohammed, Ali Ibrahim Ali
The understanding and treatment of brain disorders as well as the development of intelligent machines is hampered by the lack of knowledge of how the brain fundamentally functions. Over the past century, we have learned much about how individual neurons and neural networks behave, however new tools are critically needed to interrogate how neural networks give rise to complex brain processes and disease conditions. Recent innovations in molecular techniques, such as optogenetics, have enabled neuroscientists unprecedented precision to excite, inhibit and record defined neurons. The impressive sensitivity of currently available optogenetic sensors and actuators has now enabled the possibility of analyzing a large number of individual neurons in the brains of behaving animals. To promote the use of these optogenetic tools, this thesis integrates cutting edge optogenetic molecular sensors which is ultrasensitive for imaging neuronal activity with custom wide field optical microscope to analyze a large number of individual neurons in living brains. Wide-field microscopy provides a large field of view and better spatial resolution approaching the Abbe diffraction limit of fluorescent microscope. To demonstrate the advantages of this optical platform, we imaged a deep brain structure, the Hippocampus, and tracked hundreds of neurons over time while mouse was performing a memory task to investigate how those individual neurons related to behavior. In addition, we tested our optical platform in investigating transient neural network changes upon mechanical perturbation related to blast injuries. In this experiment, all blasted mice show a consistent change in neural network. A small portion of neurons showed a sustained calcium increase for an extended period of time, whereas the majority lost their activities. Finally, using optogenetic silencer to control selective motor cortex neurons, we examined their contributions to the network pathology of basal ganglia related to Parkinson's disease. We found that inhibition of motor cortex does not alter exaggerated beta oscillations in the striatum that are associated with parkinsonianism. Together, these results demonstrate the potential of developing integrated optogenetic system to advance our understanding of the principles underlying neural network computation, which would have broad applications from advancing artificial intelligence to disease diagnosis and treatment.
Abdul-Muneer, P M; Long, Mathew; Conte, Adriano Andrea; Santhakumar, Vijayalakshmi; Pfister, Bryan J
2017-08-01
We investigated the hypothesis that high Ca 2+ influx during traumatic brain injury induces the activation of the caspase-1 enzyme, which triggers neuroinflammation and cell apoptosis in a cell culture model of neuronal stretch injury and an in vivo model of fluid percussion injury (FPI). We first established that stretch injury causes a rapid increase in the intracellular Ca 2+ level, which activates interleukin-converting enzyme caspase-1. The increase in the intracellular Ca 2+ level and subsequent caspase-1 activation culminates into neuroinflammation via the maturation of IL-1β. Further, we analyzed caspase-1-mediated apoptosis by TUNEL staining and PARP western blotting. The voltage-gated sodium channel blocker, tetrodotoxin, mitigated the stretch injury-induced neuroinflammation and subsequent apoptosis by blocking Ca 2+ influx during the injury. The effect of tetrodotoxin was similar to the caspase-1 inhibitor, zYVAD-fmk, in neuronal culture. To validate the in vitro results, we demonstrated an increase in caspase-1 activity, neuroinflammation and neurodegeneration in fluid percussion-injured animals. Our data suggest that neuronal injury/traumatic brain injury (TBI) can induce a high influx of Ca 2+ to the cells that cause neuroinflammation and cell death by activating caspase-1, IL-1β, and intrinsic apoptotic pathways. We conclude that excess IL-1β production and cell death may contribute to neuronal dysfunction and cognitive impairment associated with TBI.
Kao, Chia-Hung; Hsiang, Chien-Yun; Ho, Tin-Yun
2012-01-01
Chitosan has been widely used in food industry as a weight-loss aid and a cholesterol-lowering agent. Previous studies have shown that chitosan affects metabolic responses and contributes to anti-diabetic, hypocholesteremic, and blood glucose-lowering effects; however, the in vivo targeting sites and mechanisms of chitosan remain to be clarified. In this study, we constructed transgenic mice, which carried the luciferase genes driven by peroxisome proliferator-activated receptor (PPAR), a key regulator of fatty acid and glucose metabolism. Bioluminescent imaging of PPAR transgenic mice was applied to report the organs that chitosan acted on, and gene expression profiles of chitosan-targeted organs were further analyzed to elucidate the mechanisms of chitosan. Bioluminescent imaging showed that constitutive PPAR activities were detected in brain and gastrointestinal tract. Administration of chitosan significantly activated the PPAR activities in brain and stomach. Microarray analysis of brain and stomach showed that several pathways involved in lipid and glucose metabolism were regulated by chitosan. Moreover, the expression levels of metabolism-associated genes like apolipoprotein B (apoB) and ghrelin genes were down-regulated by chitosan. In conclusion, these findings suggested the feasibility of PPAR bioluminescent imaging-guided transcriptomic analysis on the evaluation of chitosan-affected metabolic responses in vivo. Moreover, we newly identified that downregulated expression of apoB and ghrelin genes were novel mechanisms for chitosan-affected metabolic responses in vivo. PMID:22496881
SPECT study of low intensity He-Ne laser intravascular irradiation therapy for brain infarction
NASA Astrophysics Data System (ADS)
Xiao, Xue-Chang; Dong, Jia-Zheng; Chu, Xiao-Fan; Jia, Shao-Wei; Liu, Timon C.; Jiao, Jian-Ling; Zheng, Xi-Yuan; Zhou, Ci-Xiong
2003-12-01
We used single photon emission computed tomography (SPECT) in brain perfusion imaging to study the changes of regional cerebral blood flow (rCBF) and cerebral function in brain infarction patients treated with intravascular laser irradiation of blood (ILIB). 17 of 35 patients with brain infarction were admitted to be treated by ILIB on the base of standard drug therapy, and SPECT brain perfusion imaging was performed before and after ILIB therapy with self-comparison. The results were analyzed in quantity with brain blood flow function change rate (BFCR%) model. Effect of ILIB during the therapy process in the other 18 patients were also observed. In the 18 patients, SPECT indicated an improvement of rCBF (both in focus and in total brain) and cerebral function after a 30 min-ILIB therapy. And the 17 patients showed an enhancement of total brain rCBF and cerebral function after ILIB therapy in comparison with that before, especially for the focus side of the brain. The enhancement for focus itself was extremely obvious with a higher significant difference (P<0.0001). The mirror regions had no significant change (P>0.05). BFCR% of foci was prominently higher than that of mirror regions (P<0.0001). In conclusion, the ILIB therapy can improve rCBF and cerebral function and activate brain cells of patients with brain infarction. The results denote new evidence of ILIB therapy for those patients with cerebral ischemia.
Dai, Xi-Jian; Nie, Xiao; Liu, Xuming; Pei, Li; Jiang, Jian; Peng, De-chang; Gong, Hong-Han; Zeng, Xian-Jun; Wáng, Yì-Xiáng J.; Zhan, Yang
2016-01-01
Study Objectives: To explore the regional brain activities in patients with chronic primary insomnia (PCPIs) and their sex differences. Methods: Forty-two PCPIs (27 females, 15 males) and 42 good sleepers (GSs; 24 females, 18 males) were recruited. Six PCPIs (3 males, 3 females) were scanned twice by MRI to examine the test-retest reliability. Amplitude of low frequency fluctuation (ALFF) method was used to assess the local brain features. The mean signal values of the different ALFF areas were analyzed with a receiver operating characteristic (ROC) curve. Simple linear regression analysis was performed to investigate the relationships between clinical features and different brain areas. Results: Both female and male PCPIs showed higher ALFF in the temporal lobe and occipital lobe, especially in female PCPIs. Female PCPIs had lower ALFF in the bilateral cerebellum posterior lobe, left dorsolateral prefrontal cortex, and bilateral limbic lobe; however, male PCPIs showed lower ALFF in the left occipital gyrus. The mean signal value of the cerebellum in female PCPIs showed negative correlations with negative emotions. Compared with male PCPIs, female PCPIs showed higher ALFF in the bilateral middle temporal gyrus and lower ALFF in the left limbic lobe. The different areas showed high test-retest stability (Clusters of contiguous volumes ≥ 1080 mm3 with an intraclass correlation coefficient ≥ 0.80) and high degree of sensitivity and specificity. Conclusions: Female PCPIs showed more regional brain differences with higher and lower ALFF responses than male PCPIs. However, they shared analogous excessive hyperarousal mechanism and wide variations in aberrant brain areas. Citation: Dai XJ, Nie X, Liu X, Pei L, Jiang J, Peng D, Gong HH, Zeng XJ, Wáng YX, Zhan Y. Gender differences in regional brain activity in patients with chronic primary insomnia: evidence from a resting-state fMRI study. J Clin Sleep Med 2016;12(3):363–374. PMID:26715399
Brain fMRI study of crave induced by cue pictures in online game addicts (male adolescents).
Sun, Yueji; Ying, Huang; Seetohul, Ravi M; Xuemei, Wang; Ya, Zheng; Qian, Li; Guoqing, Xu; Ye, Sun
2012-08-01
To study crave-related cerebral regions induced by game figure cues in online game addicts. fMRI brain imaging was done when the subjects were shown picture cues of the WoW (World of Warcraft, Version: 4.1.014250) game. 10 male addicts of WoW were selected as addicts' group, and 10 other healthy male non-addicts who were matched by age, were used as non-game addicts' group. All volunteers participated in fMRI paradigms. WoW associated cue pictures and neutral pictures were shown. We examined functional cerebral regions activated by the pictures with 3.0 T Philips MRI. The imaging signals' database was analyzed by SPM5. The correlation between game craving scores and different image results were assessed. When the game addicts watch the pictures, some brain areas show increased signal activity namely: dorsolateral prefrontal cortex, bilateral temporal cortex, cerebellum, right inferior parietal lobule, right cuneus, right hippocampus, parahippocampal gyrus, left caudate nucleus. But in these same brain regions we did not observe remarkable activities in the control group. Differential image signal densities of the addict group were subtracted from the health control group, results of which were expressed in the bilateral dorsolateral prefrontal cortex, anterior cingulate cortex, inferior parietal lobe and inferior temporal gyrus, cerebellum, right insular and the right angular gyrus. The increased imaging signal densities were significant and positively correlated with the craving scale scores in the bilateral prefrontal cortex, anterior cingulate cortex and right inferior parietal lobe. Craving of online game addicts was successfully induced by game cue pictures. Crave related brain areas are: dorsolateral prefrontal cortex, anterior cingulate cortex, and right inferior parietal lobe. The brain regions are overlapped with cognitive and emotion related processing brain areas. Copyright © 2012 Elsevier B.V. All rights reserved.
Huang, Tao; Gejl, Anne Kær; Tarp, Jakob; Andersen, Lars Bo; Peijs, Lone; Bugge, Anna
2017-03-15
The purpose of this study was to examine the associations between objectively measured physical activity and serum brain-derived neurotrophic factor (BDNF) in adolescents. Cross-sectional analyses were performed using data from 415 adolescents who participated in the 2015 follow-up of the Childhood Health Activity and Motor Performance School Study Denmark (the CHAMPS-study DK). Physical activity was objectively measured by accelerometry monitors. Serum BDNF levels were analyzed using the Enzyme-linked immunosorbent assay (ELISA). Anthropometrics and pubertal status were measured using standardized procedures. With adjustment for age, pubertal status and body mass index, mean physical activity (counts per minute) was negatively associated with serum BDNF in boys (P=0.013). Similarly, moderate-to-vigorous physical activity (MVPA) was negatively associated with serum BDNF in boys (P=0.035). In girls, mean physical activity and MVPA were not associated with serum BDNF. Without adjustment for wear time, sedentary time was not associated with serum BDNF in either sex. These findings indicate that higher physical activity is associated with lower serum BDNF in boys, but not in girls. Copyright © 2016 Elsevier Inc. All rights reserved.
Construction and comparative evaluation of different activity detection methods in brain FDG-PET.
Buchholz, Hans-Georg; Wenzel, Fabian; Gartenschläger, Martin; Thiele, Frank; Young, Stewart; Reuss, Stefan; Schreckenberger, Mathias
2015-08-18
We constructed and evaluated reference brain FDG-PET databases for usage by three software programs (Computer-aided diagnosis for dementia (CAD4D), Statistical Parametric Mapping (SPM) and NEUROSTAT), which allow a user-independent detection of dementia-related hypometabolism in patients' brain FDG-PET. Thirty-seven healthy volunteers were scanned in order to construct brain FDG reference databases, which reflect the normal, age-dependent glucose consumption in human brain, using either software. Databases were compared to each other to assess the impact of different stereotactic normalization algorithms used by either software package. In addition, performance of the new reference databases in the detection of altered glucose consumption in the brains of patients was evaluated by calculating statistical maps of regional hypometabolism in FDG-PET of 20 patients with confirmed Alzheimer's dementia (AD) and of 10 non-AD patients. Extent (hypometabolic volume referred to as cluster size) and magnitude (peak z-score) of detected hypometabolism was statistically analyzed. Differences between the reference databases built by CAD4D, SPM or NEUROSTAT were observed. Due to the different normalization methods, altered spatial FDG patterns were found. When analyzing patient data with the reference databases created using CAD4D, SPM or NEUROSTAT, similar characteristic clusters of hypometabolism in the same brain regions were found in the AD group with either software. However, larger z-scores were observed with CAD4D and NEUROSTAT than those reported by SPM. Better concordance with CAD4D and NEUROSTAT was achieved using the spatially normalized images of SPM and an independent z-score calculation. The three software packages identified the peak z-scores in the same brain region in 11 of 20 AD cases, and there was concordance between CAD4D and SPM in 16 AD subjects. The clinical evaluation of brain FDG-PET of 20 AD patients with either CAD4D-, SPM- or NEUROSTAT-generated databases from an identical reference dataset showed similar patterns of hypometabolism in the brain regions known to be involved in AD. The extent of hypometabolism and peak z-score appeared to be influenced by the calculation method used in each software package rather than by different spatial normalization parameters.
Spee, Blanca; Ishizu, Tomohiro; Leder, Helmut; Mikuni, Jan; Kawabata, Hideaki; Pelowski, Matthew
2018-01-01
Recent developments in neuroaesthetics have heightened the need for causative approaches to more deeply understand the mechanism underlying perception, emotion, and aesthetic experiences. This has recently been the topic for empirical work, employing several causative methods for changing brain activity, as well as comparative assessments of individuals with brain damage or disease. However, one area of study with high potential, and indeed a long history of often nonscientific use in the area of aesthetics and art, employing psychopharmacological chemicals as means of changing brain function, has not been systematically utilized. This chapter reviews the literature on this topic, analyzing neuroendocrinological (neurochemical) approaches and mechanisms that might be used to causatively study the aesthetic brain. We focus on four relevant neuromodulatory systems potentially related to aesthetic experience: the dopaminergic, serotonergic, cannabinoid, and the opioidergic system. We build a bridge to psychopharmacological methods and review drug-induced behavioral and neurobiological consequences. We conclude with a discussion of hypotheses and suggestions for future research. © 2018 Elsevier B.V. All rights reserved.
Sex differences in brain activation elicited by humor.
Azim, Eiman; Mobbs, Dean; Jo, Booil; Menon, Vinod; Reiss, Allan L
2005-11-08
With recent investigation beginning to reveal the cortical and subcortical neuroanatomical correlates of humor appreciation, the present event-related functional MRI (fMRI) study was designed to elucidate sex-specific recruitment of these humor related networks. Twenty healthy subjects (10 females) underwent fMRI scanning while subjectively rating 70 verbal and nonverbal achromatic cartoons as funny or unfunny. Data were analyzed by comparing blood oxygenation-level-dependent signal activation during funny and unfunny stimuli. Males and females share an extensive humor-response strategy as indicated by recruitment of similar brain regions: both activate the temporal-occipital junction and temporal pole, structures implicated in semantic knowledge and juxtaposition, and the inferior frontal gyrus, likely to be involved in language processing. Females, however, activate the left prefrontal cortex more than males, suggesting a greater degree of executive processing and language-based decoding. Females also exhibit greater activation of mesolimbic regions, including the nucleus accumbens, implying greater reward network response and possibly less reward expectation. These results indicate sex-specific differences in neural response to humor with implications for sex-based disparities in the integration of cognition and emotion.
Jing, Xin-yue; Ou, Chen; Lu, Sheng-feng; Zhu, Bing-mei
2015-12-01
Clinical practice shows that thiazolidinediones (TZDs) induce weight gain in patients with type-II diabetes mellitus during treatment, which restrains its application and generalization clinically. It has been demonstrated that acupuncture therapy is useful in easing obesity in clinical trials. In the present paper, we summarize the underlying mechanism of weight gain induced by TZDs through food intake-related targets in the central nervous system and analyze the possible effects of acupuncture therapy. Acupuncture therapy is expected to reduce weight gain side effect of TZDs through 1) lowering permeability of blood brain barrier to reduce TZDs concentration in the brain, 2) upregulating the expression of hypothalamic leptin and inhibiting hypothalamic neuropiptide Y expression, and 3) down-regulating activities of peroxisome proliferator-activated receptor to reduce energy intake and fat syntheses.
Ferritin (FER), isoferritins and aluminum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, J.; Cho, S.W.; Clauberg, M.
FER from Alzheimer's brain contains more Al. One source of Al is beverages. Of the several common beverages analyzed, Pepsi, sold in bottles but not in cans, contained the highest conc. of Al (10..mu..M). Male albino rats were fed 10..mu..M Al in drinking water for one year. They were then sacrificed and their brain homogenates were analyzed for FER, Al and several enzymes. The results: compared to controls, the homogenates of the Al fed rats had 276.5% more Al bound to Fer (114.2 +/- 25.3 g atoms/mol) and 30% less hexokinase activity (150 units/mg protein). Acetyl choline esterase and alkalinemore » ribonuclease levels remained unchanged. Isoelectrofocusing (pH 4-6.5) of human-brain FER yielded at least five bands. None corresponded with those from human liver FER or horse spleen FER. Horse spleen FER was applied to DEAE sephadex and eluted by NaCl-batchwise gradient. Five distinct fractions were obtained. The most acidic eluted last. It contained least Fe, tended to precipitate on standing and required less Al or Be to ppt. Thus, isoferritins may differ in their metal binding capacity and perhaps in their related physiological functions.« less
Neuroprotective mechanisms activated in non-seizing rats exposed to sarin.
Te, Jerez A; Spradling-Reeves, Kimberly D; Dillman, James F; Wallqvist, Anders
2015-08-27
Exposure to organophosphate (OP) nerve agents, such as sarin, may lead to uncontrolled seizures and irreversible brain injury and neuropathology. In rat studies, a median lethal dose of sarin leads to approximately half of the animals developing seizures. Whereas previous studies analyzed transcriptomic effects associated with seizing sarin-exposed rats, our study focused on the cohort of sarin-exposed rats that did not develop seizures. We analyzed the genomic changes occurring in sarin-exposed, non-seizing rats and compared differentially expressed genes and pathway activation to those of seizing rats. At the earliest time point (0.25 h) and in multiple sarin-sensitive brain regions, defense response genes were commonly expressed in both groups of animals as compared to the control groups. All sarin-exposed animals activated the MAPK signaling pathway, but only the seizing rats activated the apoptotic-associated JNK and p38 MAPK signaling sub-pathway. A unique phenotype of the non-seizing rats was the altered expression levels of genes that generally suppress inflammation or apoptosis. Importantly, the early transcriptional response for inflammation- and apoptosis-related genes in the thalamus showed opposite trends, with significantly down-regulated genes being up-regulated, and vice versa, between the seizing and non-seizing rats. These observations lend support to the hypothesis that regulation of anti-inflammatory genes might be part of an active and sufficient response in the non-seizing group to protect against the onset of seizures. As such, stimulating or activating these responses via pretreatment strategies could boost resilience against nerve agent exposures. Published by Elsevier B.V.
Carrasco-Gallardo, Carlos; Farías, Gonzalo A; Fuentes, Patricio; Crespo, Fernando; Maccioni, Ricardo B
2012-11-01
Alzheimer's disease (AD) is a brain disorder displaying a prevalence and impact in constant expansion. This expansive and epidemic behavior is concerning medical and public opinion while focusing efforts on its prevention and treatment. One important strategy to prevent this brain impairment is based on dietary changes and nutritional supplements, functional foods and nutraceuticals. In this review we discuss the potential contributions of shilajit and complex B vitamins to AD prevention. We analyze the status of biological studies and present data of a clinical trial developed in patients with mild AD. Studies suggest that shilajit and its active principle fulvic acid, as well as a formula of shilajit with B complex vitamins, emerge as novel nutraceutical with potential uses against this brain disorder. Copyright © 2012 IMSS. Published by Elsevier Inc. All rights reserved.
Brain-wave Dynamics Related to Cognitive Tasks and Neurofeedback Information Flow
NASA Astrophysics Data System (ADS)
Pop-Jordanova, Nada; Pop-Jordanov, Jordan; Dimitrovski, Darko; Markovska, Natasa
2003-08-01
Synchronization of oscillating neuronal discharges has been recently correlated to the moment of perception and the ensuing motor response, with transition between these two cognitive acts "through cellular mechanisms that remain to be established"[1]. Last year, using genetic strategies, it was found that the switching off persistent electric activity in the brain blocks memory recall [2]. On the other hand, analyzing mental-neural information flow, the nobelist Eccles has formulated a fundamental hypotheses that mental events may change the probability of quantum vesicular emissions of transmitters analogously to probability functions of quantum mechanics [3]. Applying the advanced quantum modeling to molecular rotational states exposed to electric activity in brain cells, we found that the probability of transitions does not depend on the field amplitude, suggesting the electric field frequency as the possible information-bearing physical quantity [4]. In this paper, an attempt is made to inter-correlate the above results on frequency aspects of neural transitions induced by cognitive tasks. Furthermore, considering the consecutive steps of mental-neural information flow during the biofeedback training to normalize EEG frequencies, the rationales for neurofeedback efficiency have been deduced.
Functional connectivity analysis of brain hemodynamics during rubber hand illusion.
Arizono, Naoki; Kondo, Toshiyuki
2015-08-01
Embodied cognition has been eagerly studied in the recent neuroscience research field. In particular, hand ownership has been investigated through the rubber hand illusion (RHI). Most of the research measured the brain activities during the RHI by using EEG, fMRI, etc., however, near-infrared spectroscopy (NIRS) has not yet been utilized. Here we attempt to measure the brain activities during the RHI task with NIRS, and analyze the functional connectivity so as to understand the relationship between NIRS features and the state of embodied cognition. For the purpose, we developed a visuo-tactile stimulator in the study. As a result, we found that the subjects felt illusory experience showed significant peaks of oxy-Hb in both prefrontal and premotor cortices during RHI. Furthermore, we confirmed a reliable causality connection from right prefrontal to right premotor cortex. This result suggests that the RHI is associated with the neural circuits underlying motor control. Therefore, we considered that the RHI with the functional connectivity analysis will become an appropriate model investigating a biomarker for neurorehabilitation, and the diagnosis of the mental disorders.
Contrasting Specializations for Facial Motion Within the Macaque Face-Processing System
Fisher, Clark; Freiwald, Winrich A.
2014-01-01
SUMMARY Facial motion transmits rich and ethologically vital information [1, 2], but how the brain interprets this complex signal is poorly understood. Facial form is analyzed by anatomically distinct face patches in the macaque brain [3, 4], and facial motion activates these patches and surrounding areas [5, 6]. Yet it is not known whether facial motion is processed by its own distinct and specialized neural machinery, and if so, what that machinery’s organization might be. To address these questions, we used functional magnetic resonance imaging (fMRI) to monitor the brain activity of macaque monkeys while they viewed low- and high-level motion and form stimuli. We found that, beyond classical motion areas and the known face patch system, moving faces recruited a heretofore-unrecognized face patch. Although all face patches displayed distinctive selectivity for face motion over object motion, only two face patches preferred naturally moving faces, while three others preferred randomized, rapidly varying sequences of facial form. This functional divide was anatomically specific, segregating dorsal from ventral face patches, thereby revealing a new organizational principle of the macaque face-processing system. PMID:25578903
NASA Astrophysics Data System (ADS)
Muzafar Shah, Mazlina; Fatah Wahab, Abdul
2017-09-01
There are an abnormal electric activities or irregular interference in brain of epilepsy patient. Then a sensor will be put in patient’s scalp to measure and records all electric activities in brain. The result of the records known as Electroencephalography (EEG). The EEG has been transfer to flat EEG because it’s easier to analyze. In this study, the uncertainty in flat EEG data will be considered as fuzzy digital space. The purpose of this research is to show that the flat EEG is fuzzy topological digital space. Therefore, the main focus for this research is to introduce fuzzy topological digital space concepts with their properties such as neighbourhood, interior and closure by using fuzzy set digital concept and Chang’s fuzzy topology approach. The product fuzzy topology digital also will be shown. By introduce this concept, the data in flat EEG can considering having fuzzy topology digital properties and can identify the area in fuzzy digital space that has been affected by epilepsy seizure in epileptic patient’s brain.
Seke Etet, Paul F; Palomba, Maria; Colavito, Valeria; Grassi-Zucconi, Gigliola; Bentivoglio, Marina; Bertini, Giuseppe
2012-05-01
Human African trypanosomiasis (HAT), or sleeping sickness, is a severe disease caused by Trypanosoma brucei (T.b.). The disease hallmark is sleep alterations. Brain involvement in HAT is a crucial pathogenetic step for disease diagnosis and therapy. In this study, a rat model of African trypanosomiasis was used to assess changes of sleep-wake, rest-activity, and body temperature rhythms in the time window previously shown as crucial for brain parenchyma invasion by T.b. to determine potential biomarkers of this event. Chronic radiotelemetric monitoring in Sprague-Dawley rats was used to continuously record electroencephalogram, electromyogram, rest-activity, and body temperature in the same animals before (baseline recording) and after infection. Rats were infected with T.b. brucei. Data were acquired from 1 to 20 d after infection (parasite neuroinvasion initiates at 11-13 d post-infection in this model), and were compared to baseline values. Sleep parameters were manually scored from electroencephalographic-electromyographic tracings. Circadian rhythms of sleep time, slow-wave activity, rest-activity, and body temperature were studied using cosinor rhythmometry. Results revealed alterations of most of the analyzed parameters. In particular, sleep pattern and sleep-wake organization plus rest-activity and body temperature rhythms exhibited early quantitative and qualitative alterations, which became marked around the time interval crucial for parasite neuroinvasion or shortly after. Data derived from actigrams showed close correspondence with those from hypnograms, suggesting that rest-activity could be useful to monitor sleep-wake alterations in African trypanosomiasis.
Polspoel, Brecht; Peters, Lien; Vandermosten, Maaike; De Smedt, Bert
2017-09-01
Arithmetic development is characterized by strategy shifts between procedural strategy use and fact retrieval. This study is the first to explicitly investigate children's neural activation associated with the use of these different strategies. Participants were 26 typically developing 4th graders (9- to 10-year-olds), who, in a behavioral session, were asked to verbally report on a trial-by-trial basis how they had solved 100 subtraction and multiplication items. These items were subsequently presented during functional magnetic resonance imaging. An event-related design allowed us to analyze the brain responses during retrieval and procedural trials, based on the children's verbal reports. During procedural strategy use, and more specifically for the decomposition of operands strategy, activation increases were observed in the inferior and superior parietal lobes (intraparietal sulci), inferior to superior frontal gyri, bilateral areas in the occipital lobe, and insular cortex. For retrieval, in comparison to procedural strategy use, we observed increased activity in the bilateral angular and supramarginal gyri, left middle to inferior temporal gyrus, right superior temporal gyrus, and superior medial frontal gyrus. No neural differences were found between the two operations under study. These results are the first in children to provide direct evidence for alternate neural activation when different arithmetic strategies are used and further unravel that previously found effects of operation on brain activity reflect differences in arithmetic strategy use. Hum Brain Mapp 38:4657-4670, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Tissue redox activity as a hallmark of carcinogenesis: from early to terminal stages of cancer.
Bakalova, Rumiana; Zhelev, Zhivko; Aoki, Ichio; Saga, Tsuneo
2013-05-01
The study aimed to clarify the dynamics of tissue redox activity (TRA) in cancer progression and assess the importance of this parameter for therapeutic strategies. The experiments were carried out on brain tissues of neuroblastoma-bearing, glioma-bearing, and healthy mice. TRA was visualized in vivo by nitroxide-enhanced MRI on anesthetized animals or in vitro by electron paramagnetic resonance spectroscopy on isolated tissue specimens. Two biochemical parameters were analyzed in parallel: tissue total antioxidant capacity (TTAC) and plasma levels of matrix metalloproteinases (MMP). In the early stage of cancer, the brain tissues were characterized by a shorter-lived MRI signal than that from healthy brains (indicating a higher reducing activity for the nitroxide radical), which was accompanied by an enhancement of TTAC and MMP9 plasma levels. In the terminal stage of cancer, tissues in both hemispheres were characterized by a longer-lived MRI signal than in healthy brains (indicating a high-oxidative activity) that was accompanied by a decrease in TTAC and an increase in the MMP2/MMP9 plasma levels. Cancer progression also affected the redox potential of tissues distant from the primary tumor locus (liver and lung). Their oxidative status increased in both stages of cancer. The study shows that tissue redox balance is very sensitive to the progression of cancer and can be used as a diagnostic marker of carcinogenesis. The study also suggests that the noncancerous tissues of a cancer-bearing organism are susceptible to oxidative damage and should be considered a therapeutic target. ©2013 AACR.
Brain oscillatory signatures of motor tasks
Birbaumer, Niels
2015-01-01
Noninvasive brain-computer-interfaces (BCI) coupled with prosthetic devices were recently introduced in the rehabilitation of chronic stroke and other disorders of the motor system. These BCI systems and motor rehabilitation in general involve several motor tasks for training. This study investigates the neurophysiological bases of an EEG-oscillation-driven BCI combined with a neuroprosthetic device to define the specific oscillatory signature of the BCI task. Controlling movements of a hand robotic orthosis with motor imagery of the same movement generates sensorimotor rhythm oscillation changes and involves three elements of tasks also used in stroke motor rehabilitation: passive and active movement, motor imagery, and motor intention. We recorded EEG while nine healthy participants performed five different motor tasks consisting of closing and opening of the hand as follows: 1) motor imagery without any external feedback and without overt hand movement, 2) motor imagery that moves the orthosis proportional to the produced brain oscillation change with online proprioceptive and visual feedback of the hand moving through a neuroprosthetic device (BCI condition), 3) passive and 4) active movement of the hand with feedback (seeing and feeling the hand moving), and 5) rest. During the BCI condition, participants received contingent online feedback of the decrease of power of the sensorimotor rhythm, which induced orthosis movement and therefore proprioceptive and visual information from the moving hand. We analyzed brain activity during the five conditions using time-frequency domain bootstrap-based statistical comparisons and Morlet transforms. Activity during rest was used as a reference. Significant contralateral and ipsilateral event-related desynchronization of sensorimotor rhythm was present during all motor tasks, largest in contralateral-postcentral, medio-central, and ipsilateral-precentral areas identifying the ipsilateral precentral cortex as an integral part of motor regulation. Changes in task-specific frequency power compared with rest were similar between motor tasks, and only significant differences in the time course and some narrow specific frequency bands were observed between motor tasks. We identified EEG features representing active and passive proprioception (with and without muscle contraction) and active intention and passive involvement (with and without voluntary effort) differentiating brain oscillations during motor tasks that could substantially support the design of novel motor BCI-based rehabilitation therapies. The BCI task induced significantly different brain activity compared with the other motor tasks, indicating neural processes unique to the use of body actuators control in a BCI context. PMID:25810484
Carriero, Giovanni; Uva, Laura; Gnatkovsky, Vadym; Avoli, Massimo; de Curtis, Marco
2016-01-01
In vitro studies performed on brain slices demonstrate that the potassium channel blocker 4-aminopyridine (4AP, 50 μM) discloses electrographic seizure activity and interictal discharges. These epileptiform patterns have been further analyzed here in a isolated whole guinea pig brain in vitro by using field potential recordings in olfactory and limbic structures. In 8 of 13 experiments runs of fast oscillatory activity (fast runs, FRs) in the piriform cortex (PC) propagated to the lateral entorhinal cortex (EC), hippocampus and occasionally to the medial EC. Early and late FRs were asynchronous in the hemispheres showed different duration [1.78 ± 0.51 and 27.95 ± 4.55 (SD) s, respectively], frequency of occurrence (1.82 ± 0.49 and 34.16 ± 6.03 s) and frequency content (20–40 vs. 40–60 Hz). Preictal spikes independent from the FRs appeared in the hippocampus/EC and developed into ictal-like discharges that did not propagate to the PC. Ictal-like activity consisted of fast activity with onset either in the hippocampus (n = 6) or in the mEC (n = 2), followed by irregular spiking and sequences of diffusely synchronous bursts. Perfusion of the N-methyl-D-aspartate receptor antagonist 2-amino-5-phosphonopentanoic acid (100 μM) did not prevent FRs, increased the duration of limbic ictal-like discharges and favored their propagation to olfactory structures. The AMPA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (50 μM) blocked ictal-like events and reduced FRs. In conclusion, 4AP-induced epileptiform activities are asynchronous and independent in olfactory and hippocampal-entorhinal regions. Epileptiform discharges in the isolated guinea pig brain show different pharmacological properties compared with rodent in vitro slices. PMID:20220076
Role of cocaine- and amphetamine-regulated transcript in estradiol-mediated neuroprotection
NASA Astrophysics Data System (ADS)
Xu, Yun; Zhang, Wenri; Klaus, Judith; Young, Jennifer; Koerner, Ines; Sheldahl, Laird C.; Hurn, Patricia D.; Martínez-Murillo, Francisco; Alkayed, Nabil J.
2006-09-01
Estrogen reduces brain injury after experimental cerebral ischemia in part through a genomic mechanism of action. Using DNA microarrays, we analyzed the genomic response of the brain to estradiol, and we identified a transcript, cocaine- and amphetamine-regulated transcript (CART), that is highly induced in the cerebral cortex by estradiol under ischemic conditions. Using in vitro and in vivo models of neural injury, we confirmed and characterized CART mRNA and protein up-regulation by estradiol in surviving neurons, and we demonstrated that i.v. administration of a rat CART peptide is protective against ischemic brain injury in vivo. We further demonstrated binding of cAMP response element (CRE)-binding protein to a CART promoter CRE site in ischemic brain and rapid activation by CART of ERK in primary cultured cortical neurons. The findings suggest that CART is an important player in estrogen-mediated neuroprotection and a potential therapeutic agent for stroke and other neurodegenerative diseases. ischemia | stroke | estrogen
Godino, A; Abate, P; Amigone, J L; Vivas, L; Molina, J C
2015-12-17
The aim of the present work is to analyze how prenatal binge-like ethanol exposure to a moderate dose (2.0 g/kg; group Pre-EtOH) during gestational days (GD) 17-20 affects hydroelectrolyte regulatory responses. This type of exposure has been observed to increase ethanol consumption during adolescence (postnatal day 30-32). In this study we analyzed basal brain neural activity and basal-induced sodium appetite (SA) and renal response stimulated by sodium depletion (SD) as well as voluntary ethanol consumption as a function of vehicle or ethanol during late pregnancy. In adolescent offspring, SD was induced by furosemide and a low-sodium diet treatment (FURO+LSD). Other animals were analyzed in terms of immunohistochemical detection of Fra-like (Fra-LI-ir) protein and serotonin (5HT) and/or vasopressin (AVP). The Pre-EtOH group exhibited heightened voluntary ethanol intake and a reduction in sodium and water intake induced by SD relative to controls. Basal Na and K concentrations in urine were also reduced in Pre-EtOH animals while the induced renal response after FURO treatment was similar across prenatal treatments. However, the correlation between urine volume and water intake induced by FURO significantly varied across these treatments. At the brain level of analysis, the number of basal Fra-LI-ir was significantly increased in AVP magnocellular neurons of the paraventricular nucleus (PVN) and in 5HT neurons in the dorsal raphe nucleus (DRN) in Pre-EtOH pups. In the experimental group, we also observed a significant increase in Fra-LI along the nucleus of the solitary tract (NTS) and in the central extended amygdala nuclei. In summary, moderate Pre-EtOH exposure produces long-lasting changes in brain organization, affecting basal activity of central extended amygdala nuclei, AVP neurons and the inhibitory areas of SA such as the NTS and the 5HT-DRN. These changes possibly modulate the above described variations in basal-induced drinking behaviors and renal regulatory responses. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
van der Meer, Dennis; Hartman, Catharina A; van Rooij, Daan; Franke, Barbara; Heslenfeld, Dirk J; Oosterlaan, Jaap; Faraone, Stephen V; Buitelaar, Jan K; Hoekstra, Pieter J
2017-03-01
Attention-deficit/hyperactivity disorder (ADHD) is often accompanied by impaired response inhibition; both have been associated with aberrant dopamine signalling. Given that prenatal exposure to alcohol or smoking is known to affect dopamine-rich brain regions, we hypothesized that individuals carrying the ADHD risk alleles of the dopamine receptor D4 ( DRD4 ) and dopamine transporter ( DAT1 ) genes may be especially sensitive to their effects. Functional MRI data, information on prenatal adversities and genetic data were available for 239 adolescents and young adults participating in the multicentre ADHD cohort study NeuroIMAGE (average age 17.3 yr). We analyzed the effects of DRD4 and DAT1 , prenatal exposure to alcohol and smoking and their interactions on ADHD severity, response inhibition and neural activity. We found no significant gene × environment interaction effects. We did find that the DRD4 7-repeat allele was associated with less superior frontal and parietal brain activity and with greater activity in the frontal pole and occipital cortex. Prenatal exposure to smoking was also associated with lower superior frontal activity, but with greater activity in the parietal lobe. Further, those exposed to alcohol had more activity in the lateral orbitofrontal cortex, and the DAT1 risk variant was associated with lower cerebellar activity. Retrospective reports of maternal substance use and the cross-sectional study design restrict causal inference. While we found no evidence of gene × environment interactions, the risk factors under investigation influenced activity of brain regions associated with response inhibition, suggesting they may add to problems with inhibiting behaviour.
Age-related functional brain changes in young children.
Long, Xiangyu; Benischek, Alina; Dewey, Deborah; Lebel, Catherine
2017-07-15
Brain function and structure change significantly during the toddler and preschool years. However, most studies focus on older or younger children, so the specific nature of these changes is unclear. In the present study, we analyzed 77 functional magnetic resonance imaging datasets from 44 children aged 2-6 years. We extracted measures of both local (amplitude of low frequency fluctuation and regional homogeneity) and global (eigenvector centrality mapping) activity and connectivity, and examined their relationships with age using robust linear correlation analysis and strict control for head motion. Brain areas within the default mode network and the frontoparietal network, such as the middle frontal gyrus, the inferior parietal lobule and the posterior cingulate cortex, showed increases in local and global functional features with age. Several brain areas such as the superior parietal lobule and superior temporal gyrus presented opposite development trajectories of local and global functional features, suggesting a shifting connectivity framework in early childhood. This development of functional connectivity in early childhood likely underlies major advances in cognitive abilities, including language and development of theory of mind. These findings provide important insight into the development patterns of brain function during the preschool years, and lay the foundation for future studies of altered brain development in young children with brain disorders or injury. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Córdova-Palomera, Aldo; Kaufmann, Tobias; Persson, Karin; Alnæs, Dag; Doan, Nhat Trung; Moberget, Torgeir; Lund, Martina Jonette; Barca, Maria Lage; Engvig, Andreas; Brækhus, Anne; Engedal, Knut; Andreassen, Ole A.; Selbæk, Geir; Westlye, Lars T.
2017-01-01
As findings on the neuropathological and behavioral components of Alzheimer’s disease (AD) continue to accrue, converging evidence suggests that macroscale brain functional disruptions may mediate their association. Recent developments on theoretical neuroscience indicate that instantaneous patterns of brain connectivity and metastability may be a key mechanism in neural communication underlying cognitive performance. However, the potential significance of these patterns across the AD spectrum remains virtually unexplored. We assessed the clinical sensitivity of static and dynamic functional brain disruptions across the AD spectrum using resting-state fMRI in a sample consisting of AD patients (n = 80) and subjects with either mild (n = 44) or subjective (n = 26) cognitive impairment (MCI, SCI). Spatial maps constituting the nodes in the functional brain network and their associated time-series were estimated using spatial group independent component analysis and dual regression, and whole-brain oscillatory activity was analyzed both globally (metastability) and locally (static and dynamic connectivity). Instantaneous phase metrics showed functional coupling alterations in AD compared to MCI and SCI, both static (putamen, dorsal and default-mode) and dynamic (temporal, frontal-superior and default-mode), along with decreased global metastability. The results suggest that brains of AD patients display altered oscillatory patterns, in agreement with theoretical premises on cognitive dynamics.
Li, Lin; Cazzell, Mary; Babawale, Olajide; Liu, Hanli
2016-10-01
Atlas-guided diffuse optical tomography (atlas-DOT) is a computational means to image changes in cortical hemodynamic signals during human brain activities. Graph theory analysis (GTA) is a network analysis tool commonly used in functional neuroimaging to study brain networks. Atlas-DOT has not been analyzed with GTA to derive large-scale brain connectivity/networks based on near-infrared spectroscopy (NIRS) measurements. We introduced an automated voxel classification (AVC) method that facilitated the use of GTA with atlas-DOT images by grouping unequal-sized finite element voxels into anatomically meaningful regions of interest within the human brain. The overall approach included volume segmentation, AVC, and cross-correlation. To demonstrate the usefulness of AVC, we applied reproducibility analysis to resting-state functional connectivity measurements conducted from 15 young adults in a two-week period. We also quantified and compared changes in several brain network metrics between young and older adults, which were in agreement with those reported by a previous positron emission tomography study. Overall, this study demonstrated that AVC is a useful means for facilitating integration or combination of atlas-DOT with GTA and thus for quantifying NIRS-based, voxel-wise resting-state functional brain networks.
Magnetoencephalographic responses in relation to temporal and spatial factors of sound fields
NASA Astrophysics Data System (ADS)
Soeta, Yoshiharu; Nakagawa, Seiji; Tonoike, Mitsuo; Hotehama, Takuya; Ando, Yoichi
2004-05-01
To establish the guidelines based on brain functions for designing sound fields such as a concert hall and an opera house, the activities of the human brain to the temporal and spatial factors of the sound field have been investigated using magnetoencephalography (MEG). MEG is a noninvasive technique for investigating neuronal activity in human brain. First of all, the auditory evoked responses in change of the magnitude of the interaural cross-correlation (IACC) were analyzed. IACC is one of the spatial factors, which has great influence on the degree of subjective preference and diffuseness for sound fields. The results indicated that the peak amplitude of N1m, which was found over the left and right temporal lobes around 100 ms after the stimulus onset, decreased with increasing the IACC. Second, the responses corresponding to subjective preference for one of the typical temporal factors, i.e., the initial delay gap between a direct sound and the first reflection, were investigated. The results showed that the effective duration of the autocorrelation function of MEG between 8 and 13 Hz became longer during presentations of a preferred stimulus. These results indicate that the brain may be relaxed, and repeat a similar temporal rhythm under preferred sound fields.
A designed recombinant fusion protein for targeted delivery of siRNA to the mouse brain.
Haroon, Mohamed Mohamed; Dar, Ghulam Hassan; Jeyalakshmi, Durga; Venkatraman, Uthra; Saba, Kamal; Rangaraj, Nandini; Patel, Anant Bahadur; Gopal, Vijaya
2016-04-28
RNA interference represents a novel therapeutic approach to modulate several neurodegenerative disease-related genes. However, exogenous delivery of siRNA restricts their transport into different tissues and specifically into the brain mainly due to its large size and the presence of the blood-brain barrier (BBB). To overcome these challenges, we developed here a strategy wherein a peptide known to target specific gangliosides was fused to a double-stranded RNA binding protein to deliver siRNA to the brain parenchyma. The designed fusion protein designated as TARBP-BTP consists of a double-stranded RNA-binding domain (dsRBD) of human Trans Activation response element (TAR) RNA Binding Protein (TARBP2) fused to a brain targeting peptide that binds to monosialoganglioside GM1. Conformation-specific binding of TARBP2 domain to siRNA led to the formation of homogenous serum-stable complex with targeting potential. Further, uptake of the complex in Neuro-2a, IMR32 and HepG2 cells analyzed by confocal microscopy and fluorescence activated cell sorting, revealed selective requirement of GM1 for entry. Remarkably, systemic delivery of the fluorescently labeled complex (TARBP-BTP:siRNA) in ΑβPP-PS1 mouse model of Alzheimer's disease (AD) led to distinctive localization in the cerebral hemisphere. Further, the delivery of siRNA mediated by TARBP-BTP led to significant knockdown of BACE1 in the brain, in both ΑβPP-PS1 mice and wild type C57BL/6. The study establishes the growing importance of fusion proteins in delivering therapeutic siRNA to brain tissues. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabral, Joana; Department of Psychiatry, University of Oxford, Oxford OX3 7JX; Fernandes, Henrique M.
The neuropathology of schizophrenia remains unclear. Some insight has come from modern neuroimaging techniques, which offer an unparalleled opportunity to explore in vivo the structure and function of the brain. Using functional magnetic resonance imaging, it has been found that the large-scale resting-state functional connectivity (rsFC) in schizophrenia — measured as the temporal correlations of the blood-oxygen-level-dependent (BOLD) signal — exhibit altered network topology, with lower small-world index. The origin of these rsFC alterations and link with the underlying structural connectivity remain unclear. In this work, we used a computational model of spontaneous large-scale brain activity to explore the rolemore » of the structural connectivity in the large-scale dynamics of the brain in health and schizophrenia. The structural connectomes from 15 adolescent patients with early-onset schizophrenia and 15 age- and gender-matched controls were built from diffusion tensor imaging data to detect the white matter tracts between 90 brain areas. Brain areas, simulated using a reduced dynamic mean-field model, receive excitatory input from other areas in proportion to the number of fibre tracts between them. The simulated mean field activity was transformed into BOLD signal, and the properties of the simulated functional networks were analyzed. Our results suggest that the functional alterations observed in schizophrenia are not directly linked to alterations in the structural topology. Instead, subtly randomized and less small-world functional networks appear when the brain operates with lower global coupling, which shifts the dynamics from the optimal healthy regime.« less
NASA Astrophysics Data System (ADS)
Cabral, Joana; Fernandes, Henrique M.; Van Hartevelt, Tim J.; James, Anthony C.; Kringelbach, Morten L.; Deco, Gustavo
2013-12-01
The neuropathology of schizophrenia remains unclear. Some insight has come from modern neuroimaging techniques, which offer an unparalleled opportunity to explore in vivo the structure and function of the brain. Using functional magnetic resonance imaging, it has been found that the large-scale resting-state functional connectivity (rsFC) in schizophrenia — measured as the temporal correlations of the blood-oxygen-level-dependent (BOLD) signal — exhibit altered network topology, with lower small-world index. The origin of these rsFC alterations and link with the underlying structural connectivity remain unclear. In this work, we used a computational model of spontaneous large-scale brain activity to explore the role of the structural connectivity in the large-scale dynamics of the brain in health and schizophrenia. The structural connectomes from 15 adolescent patients with early-onset schizophrenia and 15 age- and gender-matched controls were built from diffusion tensor imaging data to detect the white matter tracts between 90 brain areas. Brain areas, simulated using a reduced dynamic mean-field model, receive excitatory input from other areas in proportion to the number of fibre tracts between them. The simulated mean field activity was transformed into BOLD signal, and the properties of the simulated functional networks were analyzed. Our results suggest that the functional alterations observed in schizophrenia are not directly linked to alterations in the structural topology. Instead, subtly randomized and less small-world functional networks appear when the brain operates with lower global coupling, which shifts the dynamics from the optimal healthy regime.
Receptor-mediated transcytosis of cyclophilin B through the blood-brain barrier.
Carpentier, M; Descamps, L; Allain, F; Denys, A; Durieux, S; Fenart, L; Kieda, C; Cecchelli, R; Spik, G
1999-07-01
Cyclophilin B (CyPB) is a cyclosporin A (CsA)-binding protein mainly located in intracellular vesicles and secreted in biological fluids. In previous works, we demonstrated that CyPB interacts with T lymphocytes and enhances in vitro cellular incorporation and activity of CsA. In addition to its immunosuppressive activity, CsA is able to promote regeneration of damaged peripheral nerves. However, the crossing of the drug from plasma to neural tissue is restricted by the relative impermeability of the blood-brain barrier. To know whether CyPB might also participate in the delivery of CsA into the brain, we have analyzed the interactions of CyPB with brain capillary endothelial cells. First, we demonstrated that CyPB binds to two types of binding sites present at the surface of capillary endothelial cells from various species of tissues. The first type of binding sites (K(D) = 300 nM; number of sites = 3 x 10(6)) is related to interactions with negatively charged compounds such as proteoglycans. The second type of binding sites, approximately 50,000 per cell, exhibits a higher affinity for CyPB (K(D) = 15 nM) and is involved in an endocytosis process, indicating it might correspond to a functional receptor. Finally, the use of an in vitro model of blood-brain barrier allowed us to demonstrate that CyPB is transcytosed by a receptor-mediated pathway (flux = 16.5 fmol/cm2/h). In these conditions, CyPB did not significantly modify the passage of CsA, indicating that it is unlikely to provide a pathway for CsA brain delivery.
Dai, Xi-Jian; Nie, Xiao; Liu, Xuming; Pei, Li; Jiang, Jian; Peng, De-chang; Gong, Hong-Han; Zeng, Xian-Jun; Wáng, Yì-Xiáng J; Zhan, Yang
2016-03-01
To explore the regional brain activities in patients with chronic primary insomnia (PCPIs) and their sex differences. Forty-two PCPIs (27 females, 15 males) and 42 good sleepers (GSs; 24 females, 18 males) were recruited. Six PCPIs (3 males, 3 females) were scanned twice by MRI to examine the test-retest reliability. Amplitude of low frequency fluctuation (ALFF) method was used to assess the local brain features. The mean signal values of the different ALFF areas were analyzed with a receiver operating characteristic (ROC) curve. Simple linear regression analysis was performed to investigate the relationships between clinical features and different brain areas. Both female and male PCPIs showed higher ALFF in the temporal lobe and occipital lobe, especially in female PCPIs. Female PCPIs had lower ALFF in the bilateral cerebellum posterior lobe, left dorsolateral prefrontal cortex, and bilateral limbic lobe; however, male PCPIs showed lower ALFF in the left occipital gyrus. The mean signal value of the cerebellum in female PCPIs showed negative correlations with negative emotions. Compared with male PCPIs, female PCPIs showed higher ALFF in the bilateral middle temporal gyrus and lower ALFF in the left limbic lobe. The different areas showed high test-retest stability (Clusters of contiguous volumes ≥ 1080 mm(3) with an intraclass correlation coefficient ≥ 0.80) and high degree of sensitivity and specificity. Female PCPIs showed more regional brain differences with higher and lower ALFF responses than male PCPIs. However, they shared analogous excessive hyperarousal mechanism and wide variations in aberrant brain areas. © 2016 American Academy of Sleep Medicine.
Hirai, Yasuharu; Nishino, Eri
2015-01-01
Despite its widespread use, high-resolution imaging with multiphoton microscopy to record neuronal signals in vivo is limited to the surface of brain tissue because of limited light penetration. Moreover, most imaging studies do not simultaneously record electrical neural activity, which is, however, crucial to understanding brain function. Accordingly, we developed a photometric patch electrode (PME) to overcome the depth limitation of optical measurements and also enable the simultaneous recording of neural electrical responses in deep brain regions. The PME recoding system uses a patch electrode to excite a fluorescent dye and to measure the fluorescence signal as a light guide, to record electrical signal, and to apply chemicals to the recorded cells locally. The optical signal was analyzed by either a spectrometer of high light sensitivity or a photomultiplier tube depending on the kinetics of the responses. We used the PME in Oregon Green BAPTA-1 AM-loaded avian auditory nuclei in vivo to monitor calcium signals and electrical responses. We demonstrated distinct response patterns in three different nuclei of the ascending auditory pathway. On acoustic stimulation, a robust calcium fluorescence response occurred in auditory cortex (field L) neurons that outlasted the electrical response. In the auditory midbrain (inferior colliculus), both responses were transient. In the brain-stem cochlear nucleus magnocellularis, calcium response seemed to be effectively suppressed by the activity of metabotropic glutamate receptors. In conclusion, the PME provides a powerful tool to study brain function in vivo at a tissue depth inaccessible to conventional imaging devices. PMID:25761950
Hirai, Yasuharu; Nishino, Eri; Ohmori, Harunori
2015-06-01
Despite its widespread use, high-resolution imaging with multiphoton microscopy to record neuronal signals in vivo is limited to the surface of brain tissue because of limited light penetration. Moreover, most imaging studies do not simultaneously record electrical neural activity, which is, however, crucial to understanding brain function. Accordingly, we developed a photometric patch electrode (PME) to overcome the depth limitation of optical measurements and also enable the simultaneous recording of neural electrical responses in deep brain regions. The PME recoding system uses a patch electrode to excite a fluorescent dye and to measure the fluorescence signal as a light guide, to record electrical signal, and to apply chemicals to the recorded cells locally. The optical signal was analyzed by either a spectrometer of high light sensitivity or a photomultiplier tube depending on the kinetics of the responses. We used the PME in Oregon Green BAPTA-1 AM-loaded avian auditory nuclei in vivo to monitor calcium signals and electrical responses. We demonstrated distinct response patterns in three different nuclei of the ascending auditory pathway. On acoustic stimulation, a robust calcium fluorescence response occurred in auditory cortex (field L) neurons that outlasted the electrical response. In the auditory midbrain (inferior colliculus), both responses were transient. In the brain-stem cochlear nucleus magnocellularis, calcium response seemed to be effectively suppressed by the activity of metabotropic glutamate receptors. In conclusion, the PME provides a powerful tool to study brain function in vivo at a tissue depth inaccessible to conventional imaging devices. Copyright © 2015 the American Physiological Society.
Gender differences in human single neuron responses to male emotional faces.
Newhoff, Morgan; Treiman, David M; Smith, Kris A; Steinmetz, Peter N
2015-01-01
Well-documented differences in the psychology and behavior of men and women have spurred extensive exploration of gender's role within the brain, particularly regarding emotional processing. While neuroanatomical studies clearly show differences between the sexes, the functional effects of these differences are less understood. Neuroimaging studies have shown inconsistent locations and magnitudes of gender differences in brain hemodynamic responses to emotion. To better understand the neurophysiology of these gender differences, we analyzed recordings of single neuron activity in the human brain as subjects of both genders viewed emotional expressions. This study included recordings of single-neuron activity of 14 (6 male) epileptic patients in four brain areas: amygdala (236 neurons), hippocampus (n = 270), anterior cingulate cortex (n = 256), and ventromedial prefrontal cortex (n = 174). Neural activity was recorded while participants viewed a series of avatar male faces portraying positive, negative or neutral expressions. Significant gender differences were found in the left amygdala, where 23% (n = 15∕66) of neurons in men were significantly affected by facial emotion, vs. 8% (n = 6∕76) of neurons in women. A Fisher's exact test comparing the two ratios found a highly significant difference between the two (p < 0.01). These results show specific differences between genders at the single-neuron level in the human amygdala. These differences may reflect gender-based distinctions in evolved capacities for emotional processing and also demonstrate the importance of including subject gender as an independent factor in future studies of emotional processing by single neurons in the human amygdala.
Aguiar, L A A; Silva, I M S; Fernandes, T S; Nogueira, R A
2015-10-01
Understanding the effects of radiation and its possible influence on the nervous system are of great clinical interest. However, there have been few electrophysiological studies on brain activity after exposure to ionizing radiation (IR). A new methodological approach regarding the assessment of the possible effects of IR on brain activity is the use of linear and nonlinear mathematical methods in the analysis of complex time series, such as brain oscillations measured using the electrocorticogram (ECoG). The objective of this study was to use linear and nonlinear mathematical methods as biomarkers of gamma radiation regarding cortical electrical activity. Adult Wistar rats were divided into 3 groups: 1 control and 2 irradiated groups, evaluated at 24 h (IR24) and 90 days (IR90) after exposure to 18 Gy of gamma radiation from a cobalt-60 radiotherapy source. The ECoG was analyzed using power spectrum methods for the calculation of the power of delta, theta, alpha and beta rhythms and by means of the α-exponent of the detrended fluctuation analysis (DFA). Using both mathematical methods it was possible to identify changes in the ECoG, and to identify significant changes in the pattern of the recording at 24 h after irradiation. Some of these changes were persistent at 90 days after exposure to IR. In particular, the theta wave using the two methods showed higher sensitivity than other waves, suggesting that it is a possible biomarker of exposure to IR.
Aguiar, L.A.A.; Silva, I.M.S.; Fernandes, T.S.; Nogueira, R.A.
2015-01-01
Understanding the effects of radiation and its possible influence on the nervous system are of great clinical interest. However, there have been few electrophysiological studies on brain activity after exposure to ionizing radiation (IR). A new methodological approach regarding the assessment of the possible effects of IR on brain activity is the use of linear and nonlinear mathematical methods in the analysis of complex time series, such as brain oscillations measured using the electrocorticogram (ECoG). The objective of this study was to use linear and nonlinear mathematical methods as biomarkers of gamma radiation regarding cortical electrical activity. Adult Wistar rats were divided into 3 groups: 1 control and 2 irradiated groups, evaluated at 24 h (IR24) and 90 days (IR90) after exposure to 18 Gy of gamma radiation from a cobalt-60 radiotherapy source. The ECoG was analyzed using power spectrum methods for the calculation of the power of delta, theta, alpha and beta rhythms and by means of the α-exponent of the detrended fluctuation analysis (DFA). Using both mathematical methods it was possible to identify changes in the ECoG, and to identify significant changes in the pattern of the recording at 24 h after irradiation. Some of these changes were persistent at 90 days after exposure to IR. In particular, the theta wave using the two methods showed higher sensitivity than other waves, suggesting that it is a possible biomarker of exposure to IR. PMID:26445335
Within-Subject Correlation Analysis to Detect Functional Areas Associated With Response Inhibition.
Yamasaki, Tomoko; Ogawa, Akitoshi; Osada, Takahiro; Jimura, Koji; Konishi, Seiki
2018-01-01
Functional areas in fMRI studies are often detected by brain-behavior correlation, calculating across-subject correlation between the behavioral index and the brain activity related to a function of interest. Within-subject correlation analysis is also employed in a single subject level, which utilizes cognitive fluctuations in a shorter time period by correlating the behavioral index with the brain activity across trials. In the present study, the within-subject analysis was applied to the stop-signal task, a standard task to probe response inhibition, where efficiency of response inhibition can be evaluated by the stop-signal reaction time (SSRT). Since the SSRT is estimated, by definition, not in a trial basis but from pooled trials, the correlation across runs was calculated between the SSRT and the brain activity related to response inhibition. The within-subject correlation revealed negative correlations in the anterior cingulate cortex and the cerebellum. Moreover, the dissociation pattern was observed in the within-subject analysis when earlier vs. later parts of the runs were analyzed: negative correlation was dominant in earlier runs, whereas positive correlation was dominant in later runs. Regions of interest analyses revealed that the negative correlation in the anterior cingulate cortex, but not in the cerebellum, was dominant in earlier runs, suggesting multiple mechanisms associated with inhibitory processes that fluctuate on a run-by-run basis. These results indicate that the within-subject analysis compliments the across-subject analysis by highlighting different aspects of cognitive/affective processes related to response inhibition.
Tracking brain states under general anesthesia by using global coherence analysis.
Cimenser, Aylin; Purdon, Patrick L; Pierce, Eric T; Walsh, John L; Salazar-Gomez, Andres F; Harrell, Priscilla G; Tavares-Stoeckel, Casie; Habeeb, Kathleen; Brown, Emery N
2011-05-24
Time and frequency domain analyses of scalp EEG recordings are widely used to track changes in brain states under general anesthesia. Although these analyses have suggested that different spatial patterns are associated with changes in the state of general anesthesia, the extent to which these patterns are spatially coordinated has not been systematically characterized. Global coherence, the ratio of the largest eigenvalue to the sum of the eigenvalues of the cross-spectral matrix at a given frequency and time, has been used to analyze the spatiotemporal dynamics of multivariate time-series. Using 64-lead EEG recorded from human subjects receiving computer-controlled infusions of the anesthetic propofol, we used surface Laplacian referencing combined with spectral and global coherence analyses to track the spatiotemporal dynamics of the brain's anesthetic state. During unconsciousness the spectrograms in the frontal leads showed increasing α (8-12 Hz) and δ power (0-4 Hz) and in the occipital leads δ power greater than α power. The global coherence detected strong coordinated α activity in the occipital leads in the awake state that shifted to the frontal leads during unconsciousness. It revealed a lack of coordinated δ activity during both the awake and unconscious states. Although strong frontal power during general anesthesia-induced unconsciousness--termed anteriorization--is well known, its possible association with strong α range global coherence suggests highly coordinated spatial activity. Our findings suggest that combined spectral and global coherence analyses may offer a new approach to tracking brain states under general anesthesia.
Improved signal processing approaches in an offline simulation of a hybrid brain–computer interface
Brunner, Clemens; Allison, Brendan Z.; Krusienski, Dean J.; Kaiser, Vera; Müller-Putz, Gernot R.; Pfurtscheller, Gert; Neuper, Christa
2012-01-01
In a conventional brain–computer interface (BCI) system, users perform mental tasks that yield specific patterns of brain activity. A pattern recognition system determines which brain activity pattern a user is producing and thereby infers the user’s mental task, allowing users to send messages or commands through brain activity alone. Unfortunately, despite extensive research to improve classification accuracy, BCIs almost always exhibit errors, which are sometimes so severe that effective communication is impossible. We recently introduced a new idea to improve accuracy, especially for users with poor performance. In an offline simulation of a “hybrid” BCI, subjects performed two mental tasks independently and then simultaneously. This hybrid BCI could use two different types of brain signals common in BCIs – event-related desynchronization (ERD) and steady-state evoked potentials (SSEPs). This study suggested that such a hybrid BCI is feasible. Here, we re-analyzed the data from our initial study. We explored eight different signal processing methods that aimed to improve classification and further assess both the causes and the extent of the benefits of the hybrid condition. Most analyses showed that the improved methods described here yielded a statistically significant improvement over our initial study. Some of these improvements could be relevant to conventional BCIs as well. Moreover, the number of illiterates could be reduced with the hybrid condition. Results are also discussed in terms of dual task interference and relevance to protocol design in hybrid BCIs. PMID:20153371
Neural organization and visual processing in the anterior optic tubercle of the honeybee brain.
Mota, Theo; Yamagata, Nobuhiro; Giurfa, Martin; Gronenberg, Wulfila; Sandoz, Jean-Christophe
2011-08-10
The honeybee Apis mellifera represents a valuable model for studying the neural segregation and integration of visual information. Vision in honeybees has been extensively studied at the behavioral level and, to a lesser degree, at the physiological level using intracellular electrophysiological recordings of single neurons. However, our knowledge of visual processing in honeybees is still limited by the lack of functional studies of visual processing at the circuit level. Here we contribute to filling this gap by providing a neuroanatomical and neurophysiological characterization at the circuit level of a practically unstudied visual area of the bee brain, the anterior optic tubercle (AOTu). First, we analyzed the internal organization and neuronal connections of the AOTu. Second, we established a novel protocol for performing optophysiological recordings of visual circuit activity in the honeybee brain and studied the responses of AOTu interneurons during stimulation of distinct eye regions. Our neuroanatomical data show an intricate compartmentalization and connectivity of the AOTu, revealing a dorsoventral segregation of the visual input to the AOTu. Light stimuli presented in different parts of the visual field (dorsal, lateral, or ventral) induce distinct patterns of activation in AOTu output interneurons, retaining to some extent the dorsoventral input segregation revealed by our neuroanatomical data. In particular, activity patterns evoked by dorsal and ventral eye stimulation are clearly segregated into distinct AOTu subunits. Our results therefore suggest an involvement of the AOTu in the processing of dorsoventrally segregated visual information in the honeybee brain.
On analysis of electroencephalogram by multiresolution-based energetic approach
NASA Astrophysics Data System (ADS)
Sevindir, Hulya Kodal; Yazici, Cuneyt; Siddiqi, A. H.; Aslan, Zafer
2013-10-01
Epilepsy is a common brain disorder where the normal neuronal activity gets affected. Electroencephalography (EEG) is the recording of electrical activity along the scalp produced by the firing of neurons within the brain. The main application of EEG is in the case of epilepsy. On a standard EEG some abnormalities indicate epileptic activity. EEG signals like many biomedical signals are highly non-stationary by their nature. For the investigation of biomedical signals, in particular EEG signals, wavelet analysis have found prominent position in the study for their ability to analyze such signals. Wavelet transform is capable of separating the signal energy among different frequency scales and a good compromise between temporal and frequency resolution is obtained. The present study is an attempt for better understanding of the mechanism causing the epileptic disorder and accurate prediction of occurrence of seizures. In the present paper following Magosso's work [12], we identify typical patterns of energy redistribution before and during the seizure using multiresolution wavelet analysis on Kocaeli University's Medical School's data.
Frazer, Ashlyn; Williams, Jacqueline; Spittles, Michael; Rantalainen, Timo; Kidgell, Dawson
2016-11-01
We examined the cumulative effect of 4 consecutive bouts of noninvasive brain stimulation on corticospinal plasticity and motor performance, and whether these responses were influenced by the brain-derived neurotrophic factor (BDNF) polymorphism. In a randomized double-blinded cross-over design, changes in strength and indices of corticospinal plasticity were analyzed in 14 adults who were exposed to 4 consecutive sessions of anodal and sham transcranial direct current stimulation (tDCS). Participants also undertook a blood sample for BDNF genotyping (N = 13). We observed a significant increase in isometric wrist flexor strength with transcranial magnetic stimulation revealing increased corticospinal excitability, decreased silent period duration, and increased cortical voluntary activation compared with sham tDCS. The results show that 4 consecutive sessions of anodal tDCS increased cortical voluntary activation manifested as an improvement in strength. Induction of corticospinal plasticity appears to be influenced by the BDNF polymorphism. Muscle Nerve 54: 903-913, 2016. © 2016 Wiley Periodicals, Inc.
Reategui, Camille; Costa, Bruna Karen de Sousa; da Fonseca, Caio Queiroz; da Silva, Luana; Morya, Edgard
2017-01-01
Autism spectrum disorder (ASD) is a neuropsychiatric disorder characterized by the impairment in the social reciprocity, interaction/language, and behavior, with stereotypes and signs of sensory function deficits. Electroencephalography (EEG) is a well-established and noninvasive tool for neurophysiological characterization and monitoring of the brain electrical activity, able to identify abnormalities related to frequency range, connectivity, and lateralization of brain functions. This research aims to evidence quantitative differences in the frequency spectrum pattern between EEG signals of children with and without ASD during visualization of human faces in three different expressions: neutral, happy, and angry. Quantitative clinical evaluations, neuropsychological evaluation, and EEG of children with and without ASD were analyzed paired by age and gender. The results showed stronger activation in higher frequencies (above 30 Hz) in frontal, central, parietal, and occipital regions in the ASD group. This pattern of activation may correlate with developmental characteristics in the children with ASD. PMID:29018811
Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma
Jones, David T.W.; Hutter, Barbara; Jäger, Natalie; Korshunov, Andrey; Kool, Marcel; Warnatz, Hans-Jörg; Zichner, Thomas; Lambert, Sally R.; Ryzhova, Marina; Quang, Dong Anh Khuong; Fontebasso, Adam M.; Stütz, Adrian M.; Hutter, Sonja; Zuckermann, Marc; Sturm, Dominik; Gronych, Jan; Lasitschka, Bärbel; Schmidt, Sabine; Şeker-Cin, Huriye; Witt, Hendrik; Sultan, Marc; Ralser, Meryem; Northcott, Paul A.; Hovestadt, Volker; Bender, Sebastian; Pfaff, Elke; Stark, Sebastian; Faury, Damien; Schwartzentruber, Jeremy; Majewski, Jacek; Weber, Ursula D.; Zapatka, Marc; Raeder, Benjamin; Schlesner, Matthias; Worth, Catherine L.; Bartholomae, Cynthia C.; von Kalle, Christof; Imbusch, Charles D.; Radomski, Sylwester; Lawerenz, Chris; van Sluis, Peter; Koster, Jan; Volckmann, Richard; Versteeg, Rogier; Lehrach, Hans; Monoranu, Camelia; Winkler, Beate; Unterberg, Andreas; Herold-Mende, Christel; Milde, Till; Kulozik, Andreas E.; Ebinger, Martin; Schuhmann, Martin U.; Cho, Yoon-Jae; Pomeroy, Scott L.; von Deimling, Andreas; Witt, Olaf; Taylor, Michael D.; Wolf, Stephan; Karajannis, Matthias A.; Eberhart, Charles G.; Scheurlen, Wolfram; Hasselblatt, Martin; Ligon, Keith L.; Kieran, Mark W.; Korbel, Jan O.; Yaspo, Marie-Laure; Brors, Benedikt; Felsberg, Jörg; Reifenberger, Guido; Collins, V. Peter; Jabado, Nada; Eils, Roland; Lichter, Peter; Pfister, Stefan M.
2014-01-01
Pilocytic astrocytoma, the most common childhood brain tumor1, is typically associated with mitogen-activated protein kinase (MAPK) pathway alterations2. Surgically inaccessible midline tumors are therapeutically challenging, showing sustained tendency for progression3 and often becoming a chronic disease with substantial morbidities4. Here we describe whole-genome sequencing of 96 pilocytic astrocytomas, with matched RNA sequencing (n=73), conducted by the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. We identified recurrent activating mutations in FGFR1 and PTPN11 and novel NTRK2 fusion genes in non-cerebellar tumors. New BRAF activating changes were also observed. MAPK pathway alterations affected 100% of tumors analyzed, with no other significant mutations, indicating pilocytic astrocytoma as predominantly a single-pathway disease. Notably, we identified the same FGFR1 mutations in a subset of H3F3A-mutated pediatric glioblastoma with additional alterations in NF15. Our findings thus identify new potential therapeutic targets in distinct subsets of pilocytic astrocytoma and childhood glioblastoma. PMID:23817572
Garduño-Gutiérrez, René; León-Olea, Martha; Rodríguez-Manzo, Gabriela
2013-12-06
Opioid receptors internalize upon specific agonist stimulation. The in vivo significance of receptor internalization is not well established, partly due to the limited in vivo models used to study this phenomenon. Ejaculation promotes endogenous opioid release which activates opioid receptors at the brain, including the mesolimbic system and medial preoptic area. The objective of the present work was to analyze if there was a correlation between the degree of in vivo mu (MOR) and delta opioid receptor (DOR) internalization in the ventral tegmental area and the execution of different amounts of ejaculatory behavior of male rats. To this aim, we analyzed the brains of rats that ejaculated once or six successive times and of sexually exhausted rats with an established sexual inhibition, using immunofluorescence and confocal microscopy. Results showed that MOR and DOR internalization increased as a consequence of ejaculation. There was a relationship between the amount of sexual activity executed and the degree of internalization for MOR, but not for DOR. MOR internalization was larger in rats that ejaculated repeatedly than in animals ejaculating only once. Significant DOR internalization was found only in animals ejaculating once. Changes in MOR, DOR and beta arrestin2 detection, associated to sexual activity, were also found. It is suggested that copulation to satiety might be useful as a model system to study the biological significance of receptor internalization. © 2013 Published by Elsevier B.V.
Sadowska-Krępa, Ewa; Kłapcińska, Barbara; Pokora, Ilona; Domaszewski, Przemysław; Kempa, Katarzyna; Podgórski, Tomasz
2017-07-26
Extracts of Ginkgo biloba leaves, a natural source of flavonoids and polyphenolic compounds, are commonly used as therapeutic agents for the improvement of both cognitive and physiological performance. The present study was aimed to test the effects of a six-week supplementation with 160 mg/day of a standardized extract of Ginkgo biloba or a matching placebo on aerobic performance, blood antioxidant capacity, and brain-derived neurotrophic factor (BDNF) level in healthy, physically active young men, randomly allocated to two groups ( n = 9 each). At baseline, as well as on the day following the treatment, the participants performed an incremental cycling test for the assessment of maximal oxygen uptake. Venous blood samples taken at rest, then immediately post-test and following 1 h of recovery, were analyzed for activities of antioxidant enzymes and plasma concentrations of non-enzymatic antioxidants, total phenolics, uric acid, lipid peroxidation products, ferric reducing ability of plasma (FRAP), and serum brain-derived neurotrophic factor (BDNF). Our results show that six weeks' supplementation with Ginkgo biloba extract in physically active young men may provide some marginal improvements in their endurance performance expressed as VO₂max and blood antioxidant capacity, as evidenced by specific biomarkers, and elicit somewhat better neuroprotection through increased exercise-induced production of BDNF.
Portfolio Decisions and Brain Reactions via the CEAD method.
Majer, Piotr; Mohr, Peter N C; Heekeren, Hauke R; Härdle, Wolfgang K
2016-09-01
Decision making can be a complex process requiring the integration of several attributes of choice options. Understanding the neural processes underlying (uncertain) investment decisions is an important topic in neuroeconomics. We analyzed functional magnetic resonance imaging (fMRI) data from an investment decision study for stimulus-related effects. We propose a new technique for identifying activated brain regions: cluster, estimation, activation, and decision method. Our analysis is focused on clusters of voxels rather than voxel units. Thus, we achieve a higher signal-to-noise ratio within the unit tested and a smaller number of hypothesis tests compared with the often used General Linear Model (GLM). We propose to first conduct the brain parcellation by applying spatially constrained spectral clustering. The information within each cluster can then be extracted by the flexible dynamic semiparametric factor model (DSFM) dimension reduction technique and finally be tested for differences in activation between conditions. This sequence of Cluster, Estimation, Activation, and Decision admits a model-free analysis of the local fMRI signal. Applying a GLM on the DSFM-based time series resulted in a significant correlation between the risk of choice options and changes in fMRI signal in the anterior insula and dorsomedial prefrontal cortex. Additionally, individual differences in decision-related reactions within the DSFM time series predicted individual differences in risk attitudes as modeled with the framework of the mean-variance model.
Enhanced brain motor activity in patients with MS after a single dose of 3,4-diaminopyridine.
Mainero, C; Inghilleri, M; Pantano, P; Conte, A; Lenzi, D; Frasca, V; Bozzao, L; Pozzilli, C
2004-06-08
3,4-diaminopyridine (3,4-DAP), a potassium (K+) channel blocker, improves fatigue and motor function in multiple sclerosis (MS). Although it was thought to do so by restoring conduction to demyelinated axons, recent experimental data show that aminopyridines administered at clinical doses potentiate synaptic transmission. To investigate motor cerebral activity with fMRI and transcranial magnetic stimulation (TMS) after a single oral dose of 3,4-DAP in patients with MS. Twelve right-handed women (mean +/- SD age 40.9 +/- 9.3 years) underwent fMRI on two separate occasions (under 3,4-DAP and under placebo) during a simple motor task with the right hand. FMRI data were analyzed with SPM99. After fMRI, patients underwent single-pulse TMS to test motor threshold, amplitude, and latency of motor evoked potentials, central conduction time, and the cortical silent period; paired-pulse TMS to investigate intracortical inhibition (ICI) and intracortical facilitation (ICF); and quantitative electromyography during maximal voluntary contraction. FMRI motor-evoked brain activation was greater under 3,4-DAP than under placebo in the ipsilateral sensorimotor cortex and supplementary motor area (p < 0.05). 3,4-DAP decreased ICI and increased ICF; central motor conduction time and muscular fatigability did not change. 3,4-DAP may modulate brain motor activity in patients with MS, probably by enhancing excitatory synaptic transmission.
Anderer, P; Saletu, B; Pascual-Marqui, R D
2000-12-04
In a double-blind, placebo-controlled study, the effects of 20 mg buspirone - a 5-HT(1A) partial agonist - on regional electrical generators within the human brain were investigated utilizing three-dimensional EEG tomography. Nineteen-channel vigilance-controlled EEG recordings were carried out in 20 healthy subjects before and 1, 2, 4, 6 and 8 h after drug intake. Low-resolution electromagnetic tomography (LORETA; Key Institute for Brain-Mind Research, software: http://www.keyinst.unizh.ch) was computed from spectrally analyzed EEG data, and differences between drug- and placebo-induced changes were displayed as statistical parametric maps. Data were registered to the Talairach-Tournoux human brain atlas available as a digitized MRI (McConnell Brain Imaging Centre: http://www.bic.mni.mcgill.ca). At the pharmacodynamic peak (1st hour), buspirone increased theta and decreased fast alpha and beta sources. Areas of theta increase were mainly the left temporo-occipito-parietal and left prefrontal cortices, which is consistent with PET studies on buspirone-induced decreases in regional cerebral blood flow and fenfluramine-induced serotonin activation demonstrated by changes in regional cerebral glucose metabolism. In later hours (8th hour) with lower buspirone plasma levels, delta, theta, slow alpha and fast beta decreased, predominantly in the prefrontal and anterior limbic lobe. Whereas the results of the 1st hour speak for a slight CNS sedation (more in the sense of relaxation), those obtained in the 8th hour indicate activation. Thus, LORETA may provide useful and direct information on drug-induced changes in central nervous system function in man.
Pickersgill, Martyn; Broer, Tineke; Cunningham-Burley, Sarah; Deary, Ian
2017-08-01
The use of 'brain training' games is often regarded as relating to wider ideals of self-improvement and youthfulness. Hence, use is intertwined with discourses of 'active' ageing. This paper analyzes how the use and users of brain training games were configured in the UK media, from 2005 to 2015, and examines how notions of active ageing relate to these representations. Game users were rarely constructed solely as gamers, and were more often presented as prudent individuals focused on a serious goal. This configuration related to assumed and enjoined motivations for brain training; specifically, users were commonly framed as seeking to enhance cognition and limit/delay cognitive decline. Scientific evidence about brain training was often deployed to explain how games might work; sometimes, however, it was used to undermine the utility of games and assert the significance and cognitive health-benefits of other activities. A minority of texts explicitly critiqued ideals of self-improvement, arguing that game playing was important for its own sake. Yet, even the pleasure associated with gaming was occasionally instrumentalized as a mechanism for ensuring prudent life choices. The analysis casts fresh light on how debates around health, ageing, and science correspond to configurations of technology uses and users. It presents evidence of the widespread cultural circulation of enjoiners regarding self-care and healthy ageing within British society. However, the paper also provides indications of the limits to such imperatives: discourses of pleasure co-exist with and perhaps supplant logics of prudence in (accounts of) practices ostensibly aimed at ageing 'well'. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Bremner, J D; Horti, A; Staib, L H; Zea-Ponce, Y; Soufer, R; Charney, D S; Baldwin, R
2000-01-01
Quantitation of the PET benzodiazepine receptor antagonist, [(11)C]Iomazenil, using low specific activity radioligand was recently described. The purpose of this study was to quantitate benzodiazepine receptor binding in human subjects using PET and high specific activity [(11)C]Iomazenil. Six healthy human subjects underwent PET imaging following a bolus injection of high specific activity (>100 Ci/mmol) [(11)C]iomazenil. Arterial samples were collected at multiple time points after injection for measurement of unmetabolized total and nonprotein-bound parent compound in plasma. Time activity curves of radioligand concentration in brain and plasma were analyzed using two and three compartment model. Kinetic rate constants of transfer of radioligand between plasma, nonspecifically bound brain tissue, and specifically bound brain tissue compartments were fitted to the model. Values for fitted kinetic rate constants were used in the calculation of measures of benzodiazepine receptor binding, including binding potential (the ratio of receptor density to affinity), and product of BP and the fraction of free nonprotein-bound parent compound (V(3)'). Use of the three compartment model improved the goodness of fit in comparison to the two compartment model. Values for kinetic rate constants and measures of benzodiazepine receptor binding, including BP and V(3)', were similar to results obtained with the SPECT radioligand [(123)I]iomazenil, and a prior report with low specific activity [(11)C]Iomazenil. Kinetic modeling using the three compartment model with PET and high specific activity [(11)C]Iomazenil provides a reliable measure of benzodiazepine receptor binding. Synapse 35:68-77, 2000. Published 2000 Wiley-Liss, Inc.
Engineered LINE-1 retrotransposition in nondividing human neurons
Macia, Angela; Widmann, Thomas J.; Heras, Sara R.; Ayllon, Veronica; Sanchez, Laura; Benkaddour-Boumzaouad, Meriem; Muñoz-Lopez, Martin; Rubio, Alejandro; Amador-Cubero, Suyapa; Blanco-Jimenez, Eva; Garcia-Castro, Javier; Menendez, Pablo; Ng, Philip; Muotri, Alysson R.; Goodier, John L.; Garcia-Perez, Jose L.
2017-01-01
Half the human genome is made of transposable elements (TEs), whose ongoing activity continues to impact our genome. LINE-1 (or L1) is an autonomous non-LTR retrotransposon in the human genome, comprising 17% of its genomic mass and containing an average of 80–100 active L1s per average genome that provide a source of inter-individual variation. New LINE-1 insertions are thought to accumulate mostly during human embryogenesis. Surprisingly, the activity of L1s can further impact the somatic human brain genome. However, it is currently unknown whether L1 can retrotranspose in other somatic healthy tissues or if L1 mobilization is restricted to neuronal precursor cells (NPCs) in the human brain. Here, we took advantage of an engineered L1 retrotransposition assay to analyze L1 mobilization rates in human mesenchymal (MSCs) and hematopoietic (HSCs) somatic stem cells. Notably, we have observed that L1 expression and engineered retrotransposition is much lower in both MSCs and HSCs when compared to NPCs. Remarkably, we have further demonstrated for the first time that engineered L1s can retrotranspose efficiently in mature nondividing neuronal cells. Thus, these findings suggest that the degree of somatic mosaicism and the impact of L1 retrotransposition in the human brain is likely much higher than previously thought. PMID:27965292
van Bömmel, Alena; Song, Song; Majer, Piotr; Mohr, Peter N C; Heekeren, Hauke R; Härdle, Wolfgang K
2014-07-01
Decision making usually involves uncertainty and risk. Understanding which parts of the human brain are activated during decisions under risk and which neural processes underly (risky) investment decisions are important goals in neuroeconomics. Here, we analyze functional magnetic resonance imaging (fMRI) data on 17 subjects who were exposed to an investment decision task from Mohr, Biele, Krugel, Li, and Heekeren (in NeuroImage 49, 2556-2563, 2010b). We obtain a time series of three-dimensional images of the blood-oxygen-level dependent (BOLD) fMRI signals. We apply a panel version of the dynamic semiparametric factor model (DSFM) presented in Park, Mammen, Wolfgang, and Borak (in Journal of the American Statistical Association 104(485), 284-298, 2009) and identify task-related activations in space and dynamics in time. With the panel DSFM (PDSFM) we can capture the dynamic behavior of the specific brain regions common for all subjects and represent the high-dimensional time-series data in easily interpretable low-dimensional dynamic factors without large loss of variability. Further, we classify the risk attitudes of all subjects based on the estimated low-dimensional time series. Our classification analysis successfully confirms the estimated risk attitudes derived directly from subjects' decision behavior.
Permutation auto-mutual information of electroencephalogram in anesthesia
NASA Astrophysics Data System (ADS)
Liang, Zhenhu; Wang, Yinghua; Ouyang, Gaoxiang; Voss, Logan J.; Sleigh, Jamie W.; Li, Xiaoli
2013-04-01
Objective. The dynamic change of brain activity in anesthesia is an interesting topic for clinical doctors and drug designers. To explore the dynamical features of brain activity in anesthesia, a permutation auto-mutual information (PAMI) method is proposed to measure the information coupling of electroencephalogram (EEG) time series obtained in anesthesia. Approach. The PAMI is developed and applied on EEG data collected from 19 patients under sevoflurane anesthesia. The results are compared with the traditional auto-mutual information (AMI), SynchFastSlow (SFS, derived from the BIS index), permutation entropy (PE), composite PE (CPE), response entropy (RE) and state entropy (SE). Performance of all indices is assessed by pharmacokinetic/pharmacodynamic (PK/PD) modeling and prediction probability. Main results. The PK/PD modeling and prediction probability analysis show that the PAMI index correlates closely with the anesthetic effect. The coefficient of determination R2 between PAMI values and the sevoflurane effect site concentrations, and the prediction probability Pk are higher in comparison with other indices. The information coupling in EEG series can be applied to indicate the effect of the anesthetic drug sevoflurane on the brain activity as well as other indices. The PAMI of the EEG signals is suggested as a new index to track drug concentration change. Significance. The PAMI is a useful index for analyzing the EEG dynamics during general anesthesia.
Stubbe, Tobias; Ebner, Friederike; Richter, Daniel; Randolf Engel, Odilo; Klehmet, Juliane; Royl, Georg; Meisel, Andreas; Nitsch, Robert; Meisel, Christian; Brandt, Christine
2013-01-01
Local and peripheral immune responses are activated after ischemic stroke. In our present study, we investigated the temporal distribution, location, induction, and function of regulatory T cells (Tregs) and the possible involvement of microglia, macrophages, and dendritic cells after middle cerebral artery occlusion (MCAO). C57BL/6J and Foxp3EGFP transgenic mice were subjected to 30 minutes MCAO. On days 7, 14, and 30 after MCAO, Tregs and antigen presenting cells were analyzed using fluorescence activated cell sorting multicolor staining and immunohistochemistry. A strong accumulation of Tregs was observed on days 14 and 30 in the ischemic hemisphere accompanied by the elevated presence and activation of microglia. Dendritic cells and macrophages were found on each analyzed day. About 60% of Foxp3+ Tregs in ischemic hemispheres were positive for the proliferation marker Ki-67 on days 7 and 14 after MCAO. The transfer of naive CD4+ cells depleted of Foxp3+ Tregs into RAG1−/− mice 1 day before MCAO did not lead to a de novo generation of Tregs 14 days after surgery. After depletion of CD25+ Tregs, no changes regarding neurologic outcome were detected. The sustained presence of Tregs in the brain after MCAO indicates a long-lasting immunological alteration and involvement of brain cells in immunoregulatory mechanisms. PMID:22968321
Stubbe, Tobias; Ebner, Friederike; Richter, Daniel; Engel, Odilo; Randolf Engel, Odilo; Klehmet, Juliane; Royl, Georg; Meisel, Andreas; Nitsch, Robert; Meisel, Christian; Brandt, Christine
2013-01-01
Local and peripheral immune responses are activated after ischemic stroke. In our present study, we investigated the temporal distribution, location, induction, and function of regulatory T cells (Tregs) and the possible involvement of microglia, macrophages, and dendritic cells after middle cerebral artery occlusion (MCAO). C57BL/6J and Foxp3(EGFP) transgenic mice were subjected to 30 minutes MCAO. On days 7, 14, and 30 after MCAO, Tregs and antigen presenting cells were analyzed using fluorescence activated cell sorting multicolor staining and immunohistochemistry. A strong accumulation of Tregs was observed on days 14 and 30 in the ischemic hemisphere accompanied by the elevated presence and activation of microglia. Dendritic cells and macrophages were found on each analyzed day. About 60% of Foxp3(+) Tregs in ischemic hemispheres were positive for the proliferation marker Ki-67 on days 7 and 14 after MCAO. The transfer of naive CD4(+) cells depleted of Foxp3(+) Tregs into RAG1(-/-) mice 1 day before MCAO did not lead to a de novo generation of Tregs 14 days after surgery. After depletion of CD25(+) Tregs, no changes regarding neurologic outcome were detected. The sustained presence of Tregs in the brain after MCAO indicates a long-lasting immunological alteration and involvement of brain cells in immunoregulatory mechanisms.
Assessing dynamics, spatial scale, and uncertainty in task-related brain network analyses
Stephen, Emily P.; Lepage, Kyle Q.; Eden, Uri T.; Brunner, Peter; Schalk, Gerwin; Brumberg, Jonathan S.; Guenther, Frank H.; Kramer, Mark A.
2014-01-01
The brain is a complex network of interconnected elements, whose interactions evolve dynamically in time to cooperatively perform specific functions. A common technique to probe these interactions involves multi-sensor recordings of brain activity during a repeated task. Many techniques exist to characterize the resulting task-related activity, including establishing functional networks, which represent the statistical associations between brain areas. Although functional network inference is commonly employed to analyze neural time series data, techniques to assess the uncertainty—both in the functional network edges and the corresponding aggregate measures of network topology—are lacking. To address this, we describe a statistically principled approach for computing uncertainty in functional networks and aggregate network measures in task-related data. The approach is based on a resampling procedure that utilizes the trial structure common in experimental recordings. We show in simulations that this approach successfully identifies functional networks and associated measures of confidence emergent during a task in a variety of scenarios, including dynamically evolving networks. In addition, we describe a principled technique for establishing functional networks based on predetermined regions of interest using canonical correlation. Doing so provides additional robustness to the functional network inference. Finally, we illustrate the use of these methods on example invasive brain voltage recordings collected during an overt speech task. The general strategy described here—appropriate for static and dynamic network inference and different statistical measures of coupling—permits the evaluation of confidence in network measures in a variety of settings common to neuroscience. PMID:24678295
Assessing dynamics, spatial scale, and uncertainty in task-related brain network analyses.
Stephen, Emily P; Lepage, Kyle Q; Eden, Uri T; Brunner, Peter; Schalk, Gerwin; Brumberg, Jonathan S; Guenther, Frank H; Kramer, Mark A
2014-01-01
The brain is a complex network of interconnected elements, whose interactions evolve dynamically in time to cooperatively perform specific functions. A common technique to probe these interactions involves multi-sensor recordings of brain activity during a repeated task. Many techniques exist to characterize the resulting task-related activity, including establishing functional networks, which represent the statistical associations between brain areas. Although functional network inference is commonly employed to analyze neural time series data, techniques to assess the uncertainty-both in the functional network edges and the corresponding aggregate measures of network topology-are lacking. To address this, we describe a statistically principled approach for computing uncertainty in functional networks and aggregate network measures in task-related data. The approach is based on a resampling procedure that utilizes the trial structure common in experimental recordings. We show in simulations that this approach successfully identifies functional networks and associated measures of confidence emergent during a task in a variety of scenarios, including dynamically evolving networks. In addition, we describe a principled technique for establishing functional networks based on predetermined regions of interest using canonical correlation. Doing so provides additional robustness to the functional network inference. Finally, we illustrate the use of these methods on example invasive brain voltage recordings collected during an overt speech task. The general strategy described here-appropriate for static and dynamic network inference and different statistical measures of coupling-permits the evaluation of confidence in network measures in a variety of settings common to neuroscience.
Consciousness as a global property of brain dynamic activity
NASA Astrophysics Data System (ADS)
Mateos, D. M.; Wennberg, R.; Guevara, R.; Perez Velazquez, J. L.
2017-12-01
We seek general principles of the structure of the cellular collective activity associated with conscious awareness. Can we obtain evidence for features of the optimal brain organization that allows for adequate processing of stimuli and that may guide the emergence of cognition and consciousness? Analyzing brain recordings in conscious and unconscious states, we followed initially the classic approach in physics when it comes to understanding collective behaviours of systems composed of a myriad of units: the assessment of the number of possible configurations (microstates) that the system can adopt, for which we use a global entropic measure associated with the number of connected brain regions. Having found maximal entropy in conscious states, we then inspected the microscopic nature of the configurations of connections using an adequate complexity measure and found higher complexity in states characterized not only by conscious awareness but also by subconscious cognitive processing, such as sleep stages. Our observations indicate that conscious awareness is associated with maximal global (macroscopic) entropy and with the short time scale (microscopic) complexity of the configurations of connected brain networks in pathological unconscious states (seizures and coma), but the microscopic view captures the high complexity in physiological unconscious states (sleep) where there is information processing. As such, our results support the global nature of conscious awareness, as advocated by several theories of cognition. We thus hope that our studies represent preliminary steps to reveal aspects of the structure of cognition that leads to conscious awareness.
Redox Control of Microglial Function: Molecular Mechanisms and Functional Significance
McBean, Gethin; Cindric, Marina; Egea, Javier; López, Manuela G.; Rada, Patricia; Zarkovic, Neven
2014-01-01
Abstract Neurodegenerative diseases are characterized by chronic microglial over-activation and oxidative stress. It is now beginning to be recognized that reactive oxygen species (ROS) produced by either microglia or the surrounding environment not only impact neurons but also modulate microglial activity. In this review, we first analyze the hallmarks of pro-inflammatory and anti-inflammatory phenotypes of microglia and their regulation by ROS. Then, we consider the production of reactive oxygen and nitrogen species by NADPH oxidases and nitric oxide synthases and the new findings that also indicate an essential role of glutathione (γ-glutamyl-l-cysteinylglycine) in redox homeostasis of microglia. The effect of oxidant modification of macromolecules on signaling is analyzed at the level of oxidized lipid by-products and sulfhydryl modification of microglial proteins. Redox signaling has a profound impact on two transcription factors that modulate microglial fate, nuclear factor kappa-light-chain-enhancer of activated B cells, and nuclear factor (erythroid-derived 2)-like 2, master regulators of the pro-inflammatory and antioxidant responses of microglia, respectively. The relevance of these proteins in the modulation of microglial activity and the interplay between them will be evaluated. Finally, the relevance of ROS in altering blood brain barrier permeability is discussed. Recent examples of the importance of these findings in the onset or progression of neurodegenerative diseases are also discussed. This review should provide a profound insight into the role of redox homeostasis in microglial activity and help in the identification of new promising targets to control neuroinflammation through redox control of the brain. Antioxid. Redox Signal. 21, 1766–1801. PMID:24597893
The devil is in the detail: brain dynamics in preparation for a global-local task.
Leaver, Echo E; Low, Kathy A; DiVacri, Assunta; Merla, Arcangelo; Fabiani, Monica; Gratton, Gabriele
2015-08-01
When analyzing visual scenes, it is sometimes important to determine the relevant "grain" size. Attention control mechanisms may help direct our processing to the intended grain size. Here we used the event-related optical signal, a method possessing high temporal and spatial resolution, to examine the involvement of brain structures within the dorsal attention network (DAN) and the visual processing network (VPN) in preparation for the appropriate level of analysis. Behavioral data indicate that the small features of a hierarchical stimulus (local condition) are more difficult to process than the large features (global condition). Consistent with this finding, cues predicting a local trial were associated with greater DAN activation. This activity was bilateral but more pronounced in the left hemisphere, where it showed a frontal-to-parietal progression over time. Furthermore, the amount of DAN activation, especially in the left hemisphere and in parietal regions, was predictive of subsequent performance. Although local cues elicited left-lateralized DAN activity, no preponderantly right activity was observed for global cues; however, the data indicated an interaction between level of analysis (local vs. global) and hemisphere in VPN. They further showed that local processing involves structures in the ventral VPN, whereas global processing involves structures in the dorsal VPN. These results indicate that in our study preparation for analyzing different size features is an asymmetric process, in which greater preparation is required to focus on small rather than large features, perhaps because of their lesser salience. This preparation involves the same DAN used for other attention control operations.
Sokolova, L V; Cherkasova, A S
2015-01-01
Texts or words/pseudowords are often used as stimuli for human verbal activity research. Our study pays attention to decoding processes of grammatical constructions consisted of two-three words--collocations. Russian and English collocation sets without any narrative were presented to Russian-speaking students with different English language skill. Stimulus material had two types of collocations: paradigmatic and syntagmatic. 30 students (average age--20.4 ± 0.22) took part in the study, they were divided into two equal groups depending on their English language skill (linguists/nonlinguists). During reading brain bioelectrical activity of cortex has been registered from 12 electrodes in alfa-, beta-, theta-bands. Coherent function reflecting cooperation of different cortical areas during reading collocations has been analyzed. Increase of interhemispheric and diagonal connections while reading collocations in different languages in the group of students with low knowledge of foreign language testifies of importance of functional cooperation between the hemispheres. It has been found out that brain bioelectrical activity of students with good foreign language knowledge during reading of all collocation types in Russian and English is characterized by economization of nervous substrate resources compared to nonlinguists. Selective activation of certain cortical areas has also been observed (depending on the grammatical construction type) in nonlinguists group that is probably related to special decoding system which processes presented stimuli. Reading Russian paradigmatic constructions by nonlinguists entailed increase between left cortical areas, reading of English syntagmatic collocations--between right ones.
Dou, Shewei; Wang, Enfeng; Zhang, Hongju; Tong, Li; Zhang, Xiaoqi; Shi, Dapeng; Cheng, Jingliang; Li, Yongli
2015-06-02
To explore abnormal brain activation of spatial working memory in primary insomnia and its potential neuromechanism. we recruited 30 cases primary insomnia (PI) patients and 30 cases age, gender matched healthy control (HC) subjects from July 2013 to December 2013, the diagnosis of primary insomnia matched the diagnosis criterion of DSM-IV and Classification and diagnostic criteria of mental disorders in China third edition (CCMD-3). All the subjects attended the tests of PSQI, HAMA, HAMD and index of spatial working memory. And then, we collected the data of routine MRI and spatial working memory task fMRI on 3.0 T MRI scanner. After that, we used SPM8 and REST1.8 to analyze the fMRI data, compared difference of PSQI, HAMA, HAMD, index of spatial working memory and brain activation of spatial working memory between PI group and HC group. There were significant difference between PI group and HC group in PSQI, HAMA, HAMD and index of spatial working memory (P < 0.05). In the spatial working memory related activate brain region, compared with HC group, left temporal lobe, occipital lobe and right frontal lobe activation increased and bilateral parahippocampalis, temporal cortex, frontal cortex and superior parietal lobule activation reduced in PI group. Spatial working memory task fMRI revealed the pathological mechanisms of cognitive dysfunction of clinical spatial working memory and emotional disorder in primary insomnia patients.
Brain activity patterns induced by interrupting the cognitive processes with online advertising.
Rejer, Izabela; Jankowski, Jarosław
2017-11-01
As a result of the increasing role of online advertising and strong competition among advertisers, intrusive techniques are commonly used to attract web users' attention. Moreover, since marketing content is usually delivered to the target audience when they are performing typical online tasks, like searching for information or reading online content, its delivery interrupts the web user's current cognitive process. The question posed by many researchers in the field of online advertising is: how should we measure the influence of interruption of cognitive processes on human behavior and emotional state? Much research has been conducted in this field; however, most of this research has focused on monitoring activity in the simulated environment, or processing declarative responses given by users in prepared questionnaires. In this paper, a more direct real-time approach is taken, and the effect of the interruption on a web user is analyzed directly by studying the activity of his brain. This paper presents the results of an experiment that was conducted to find the brain activity patterns associated with interruptions of the cognitive process by showing internet advertisements during a text-reading task. Three specific aspects were addressed in the experiment: individual patterns, the consistency of these patterns across trials, and the intra-subject correlation of the individual patterns. Two main effects were observed for most subjects: a drop in activity in the frontal and prefrontal cortical areas across all frequency bands, and significant changes in the frontal/prefrontal asymmetry index.
Nounou, Mohamed Ismail; Adkins, Chris E; Rubinchik, Evelina; Terrell-Hall, Tori B; Afroz, Mohamed; Vitalis, Tim; Gabathuler, Reinhard; Tian, Mei Mei; Lockman, Paul R
2016-12-01
The ability of human melanotransferrin (hMTf) to carry a therapeutic concentration of trastuzumab (BTA) in the brain after conjugation (in the form of trastuzumab-melanotransferrin conjugate, BT2111 conjugate) was investigated by measuring the reduction of the number and size of metastatic human HER 2+ breast cancer tumors in a preclinical model of brain metastases of breast cancer. Human metastatic brain seeking breast cancer cells were injected in NuNu mice (n = 6-12 per group) which then developed experimental brain metastases. Drug uptake was analyzed in relation to metastasis size and blood-tumor barrier permeability. To investigate in-vivo activity against brain metastases, equimolar doses of the conjugate, and relevant controls (hMTf and BTA) in separate groups were administered biweekly after intracardiac injection of the metastatic cancer cells. The trastuzumab-melanotransferrin conjugate (BT2111) reduced the number of preclinical human HER 2+ breast cancer metastases in the brain by 68% compared to control groups. Tumors which remained after treatment were 46% smaller than the control groups. In contrast, BTA alone had no effect on reducing number of metastases, and was associated with only a minimal reduction in metastasis size. The results suggest the novel trastuzumab-melanotransferrin conjugate (BT2111) may have utility in treating brain metastasis and validate hMTf as a potential vector for antibody transport across the Blood Brain Barrier (BBB).
Gamma Oscillations and Visual Binding
NASA Astrophysics Data System (ADS)
Robinson, Peter A.; Kim, Jong Won
2006-03-01
At the root of visual perception is the mechanism the brain uses to analyze features in a scene and bind related ones together. Experiments show this process is linked to oscillations of brain activity in the 30-100 Hz gamma band. Oscillations at different sites have correlation functions (CFs) that often peak at zero lag, implying simultaneous firing, even when conduction delays are large. CFs are strongest between cells stimulated by related features. Gamma oscillations are studied here by modeling mm-scale patchy interconnections in the visual cortex. Resulting predictions for gamma responses to stimuli account for numerous experimental findings, including why oscillations and zero-lag synchrony are associated, observed connections with feature preferences, the shape of the zero-lag peak, and variations of CFs with attention. Gamma waves are found to obey the Schroedinger equation, opening the possibility of cortical analogs of quantum phenomena. Gamma instabilities are tied to observations of gamma activity linked to seizures and hallucinations.
Cliques of Neurons Bound into Cavities Provide a Missing Link between Structure and Function.
Reimann, Michael W; Nolte, Max; Scolamiero, Martina; Turner, Katharine; Perin, Rodrigo; Chindemi, Giuseppe; Dłotko, Paweł; Levi, Ran; Hess, Kathryn; Markram, Henry
2017-01-01
The lack of a formal link between neural network structure and its emergent function has hampered our understanding of how the brain processes information. We have now come closer to describing such a link by taking the direction of synaptic transmission into account, constructing graphs of a network that reflect the direction of information flow, and analyzing these directed graphs using algebraic topology. Applying this approach to a local network of neurons in the neocortex revealed a remarkably intricate and previously unseen topology of synaptic connectivity. The synaptic network contains an abundance of cliques of neurons bound into cavities that guide the emergence of correlated activity. In response to stimuli, correlated activity binds synaptically connected neurons into functional cliques and cavities that evolve in a stereotypical sequence toward peak complexity. We propose that the brain processes stimuli by forming increasingly complex functional cliques and cavities.
Real-Time Position Reconstruction with Hippocampal Place Cells
Guger, Christoph; Gener, Thomas; Pennartz, Cyriel M. A.; Brotons-Mas, Jorge R.; Edlinger, Günter; Bermúdez i Badia, S.; Verschure, Paul; Schaffelhofer, Stefan; Sanchez-Vives, Maria V.
2011-01-01
Brain–computer interfaces (BCI) are using the electroencephalogram, the electrocorticogram and trains of action potentials as inputs to analyze brain activity for communication purposes and/or the control of external devices. Thus far it is not known whether a BCI system can be developed that utilizes the states of brain structures that are situated well below the cortical surface, such as the hippocampus. In order to address this question we used the activity of hippocampal place cells (PCs) to predict the position of an rodent in real-time. First, spike activity was recorded from the hippocampus during foraging and analyzed off-line to optimize the spike sorting and position reconstruction algorithm of rats. Then the spike activity was recorded and analyzed in real-time. The rat was running in a box of 80 cm × 80 cm and its locomotor movement was captured with a video tracking system. Data were acquired to calculate the rat's trajectories and to identify place fields. Then a Bayesian classifier was trained to predict the position of the rat given its neural activity. This information was used in subsequent trials to predict the rat's position in real-time. The real-time experiments were successfully performed and yielded an error between 12.2 and 17.4% using 5–6 neurons. It must be noted here that the encoding step was done with data recorded before the real-time experiment and comparable accuracies between off-line (mean error of 15.9% for three rats) and real-time experiments (mean error of 14.7%) were achieved. The experiment shows proof of principle that position reconstruction can be done in real-time, that PCs were stable and spike sorting was robust enough to generalize from the training run to the real-time reconstruction phase of the experiment. Real-time reconstruction may be used for a variety of purposes, including creating behavioral–neuronal feedback loops or for implementing neuroprosthetic control. PMID:21808603
Brain Responses to Dynamic Facial Expressions: A Normative Meta-Analysis.
Zinchenko, Oksana; Yaple, Zachary A; Arsalidou, Marie
2018-01-01
Identifying facial expressions is crucial for social interactions. Functional neuroimaging studies show that a set of brain areas, such as the fusiform gyrus and amygdala, become active when viewing emotional facial expressions. The majority of functional magnetic resonance imaging (fMRI) studies investigating face perception typically employ static images of faces. However, studies that use dynamic facial expressions (e.g., videos) are accumulating and suggest that a dynamic presentation may be more sensitive and ecologically valid for investigating faces. By using quantitative fMRI meta-analysis the present study examined concordance of brain regions associated with viewing dynamic facial expressions. We analyzed data from 216 participants that participated in 14 studies, which reported coordinates for 28 experiments. Our analysis revealed bilateral fusiform and middle temporal gyri, left amygdala, left declive of the cerebellum and the right inferior frontal gyrus. These regions are discussed in terms of their relation to models of face processing.
Unique inflammatory RNA profiles of microglia in Creutzfeldt-Jakob disease
NASA Astrophysics Data System (ADS)
Baker, Christopher A.; Manuelidis, Laura
2003-01-01
Previous studies in Creutzfeldt-Jakob disease (CJD) have shown that myeloid cells in the periphery as well as derivative microglial cells in the brain are infectious. Microglia can show an activated phenotype before prion protein (PrP) pathology is detectable in brain, and isolated infectious microglia contain very little PrP. To find whether a set of inflammatory genes are significantly induced or suppressed with infection, we analyzed RNA from isolated microglia with relevant cDNA arrays, and identified 30 transcripts not previously examined in any transmissible spongiform encephalopathy. This CJD expression profile contrasted with that of uninfected microglia exposed to prototypic inflammatory stimuli such as lipopolysaccharide and IFN-, as well as PrP amyloid. These findings underscore inflammatory pathways evoked by the infectious agent in brain. Transcript profiles unique for CJD microglia and other myeloid cells provide opportunities for more sensitive preclinical diagnoses of infectious and noninfectious neurodegenerative diseases.
Tibetan medicine "RNSP" in treatment of Alzheimer disease.
Shi, Jing-Ming; He, Xue; Lian, Hui-Juan; Yuan, Dong-Ya; Hu, Qun-Ying; Sun, Zheng-Qi; Li, Yan-Song; Zeng, Yu-Wen
2015-01-01
Alzheimer disease (Alzheimer Disease, AD) is one of the most common type in senile dementia. Its main pathological features were that a large number of senile plaques gathered in brain extracellular and tangles fibrosis appeared in nerve cells. Currently, the pathogenesis of AD is still uncertain, and scale investigation and combined brain CT, MRI data were analyzed mainly for clinical diagnosis. Mitigation and improvement of the nervous system activity to interfere with the subsequent behavior of the patients are the main methods for treatment. In clinical no drug can really prevent and cure AD. From the view point of Tibetan medicine studies, Tibetan medicine RNSP has effect on improving memory and repairing the neurons in the brain. In this study, we combined the characteristics of AD pathology, pathogenesis, diagnosis and treatment methods to explore the feasibility of Tibetan medicine RNSP for the treatment of AD to provide new ideas for the diagnosis and treatment of AD.
The fate of medications evaluated for ischemic stroke pharmacotherapy over the period 1995-2015.
Chen, Xiaoling; Wang, Kewei
2016-11-01
Stroke is a brain damage caused by a loss of blood supply to a portion of the brain, which requires prompt and effective treatment. The current pharmacotherapy for ischemic stroke primarily relies on thrombolysis using recombinant tissue plasminogen activators (rt-PAs) to breakdown blood clots. Neuroprotective agents that inhibit excitatory neurotransmitters are also used to treat ischemic stroke but have failed to translate into clinical benefits. This poses a major challenge in biomedical research to understand what causes the progressive brain cell death after stroke and how to develop an effective pharmacotherapy for stroke. This brief review analyzes the fate of about 430 potentially useful stroke medications over the period 1995-2015 and describes in detail those that successfully reached the market. Hopefully, the information from this analysis will shed light on how future stroke research can improve stroke drug discovery.
McClain, Kenneth L; Picarsic, Jennifer; Chakraborty, Rikhia; Zinn, Daniel; Lin, Howard; Abhyankar, Harshal; Scull, Brooks; Shih, Albert; Lim, Karen Phaik Har; Eckstein, Olive; Lubega, Joseph; Peters, Tricia L; Olea, Walter; Burke, Thomas; Ahmed, Nabil; Hicks, M John; Tran, Brandon; Jones, Jeremy; Dauser, Robert; Jeng, Michael; Baiocchi, Robert; Schiff, Deborah; Goldman, Stanton; Heym, Kenneth M; Wilson, Harry; Carcamo, Benjamin; Kumar, Ashish; Rodriguez-Galindo, Carlos; Whipple, Nicholas S; Campbell, Patrick; Murdoch, Geoffrey; Kofler, Julia; Heales, Simon; Malone, Marian; Woltjer, Randy; Quinn, Joseph F; Orchard, Paul; Kruer, Michael C; Jaffe, Ronald; Manz, Markus G; Lira, Sergio A; Parsons, D Williams; Merad, Miriam; Man, Tsz-Kwong; Allen, Carl E
2018-06-15
Central nervous system Langerhans cell histiocytosis (CNS-LCH) brain involvement may include mass lesions and/or a neurodegenerative disease (LCH-ND) of unknown etiology. The goal of this study was to define the mechanisms of pathogenesis that drive CNS-LCH. Cerebrospinal fluid (CSF) biomarkers including CSF proteins and extracellular BRAFV600E DNA were analyzed in CSF from patients with CNS-LCH lesions compared with patients with brain tumors and other neurodegenerative conditions. Additionally, the presence of BRAFV600E was tested in peripheral mononuclear blood cells (PBMCs) as well as brain biopsies from LCH-ND patients, and the response to BRAF-V600E inhibitor was evaluated in 4 patients with progressive disease. Osteopontin was the only consistently elevated CSF protein in patients with CNS-LCH compared with patients with other brain pathologies. BRAFV600E DNA was detected in CSF of only 2/20 (10%) cases, both with LCH-ND and active lesions outside the CNS. However, BRAFV600E + PBMCs were detected with significantly higher frequency at all stages of therapy in LCH patients who developed LCH-ND. Brain biopsies of patients with LCH-ND demonstrated diffuse perivascular infiltration by BRAFV600E + cells with monocyte phenotype (CD14 + CD33 + CD163 + P2RY12 - ) and associated osteopontin expression. Three of 4 patients with LCH-ND treated with BRAF-V600E inhibitor experienced significant clinical and radiologic improvement. In LCH-ND patients, BRAFV600E + cells in PBMCs and infiltrating myeloid/monocytic cells in the brain is consistent with LCH-ND as an active demyelinating process arising from a mutated hematopoietic precursor from which LCH lesion CD207 + cells are also derived. Therapy directed against myeloid precursors with activated MAPK signaling may be effective for LCH-ND. Cancer 2018;124:2607-20. © 2018 American Cancer Society. © 2018 American Cancer Society.
The protective effect of 2-mercaptoethane sulfonate (MESNA) against traumatic brain injury in rats.
Yilmaz, Erdal Resit; Kertmen, Hayri; Gürer, Bora; Kanat, Mehmet Ali; Arikok, Ata Türker; Ergüder, Berrin Imge; Hasturk, Askin Esen; Ergil, Julide; Sekerci, Zeki
2013-01-01
The agent, 2-mercaptoethane sulfonate (MESNA), is a synthetic small molecule, widely used as a systemic protective agent against chemotherapy toxicity, but is primarily used to reduce hemorrhagic cystitis induced by cyclophosphamide. Because MESNA has potential antioxidant and cytoprotective effects, so we hypothesized that MESNA may protect the brain against traumatic injury. Thirty-two rats were randomized into four groups of eight animals each; Group 1 (sham), Group 2 (trauma), Group 3 (150 mg/kg MESNA), Group 4 (30 mg/kg methylprednisolone). Only skin incision was performed in the sham group. In all the other groups, the traumatic brain injury model was created by an object weighing 450 g falling freely from a height of 70 cm through a copper tube on to the metal disc over the skull. The drugs were administered immediately after the injury. The animals were killed 24 h later. Brain tissues were extracted for analysis, where levels of tissue malondialdehyde, caspase-3, glutathione peroxidase, superoxide dismutase, nitric oxide, nitric oxide synthetase and xanthine oxidase were analyzed. Also, histopathological evaluation of the tissues was performed. After head trauma, tissue malondialdehyde levels increased; these levels were significantly decreased by MESNA administration. Caspase-3 levels were increased after trauma, but no effect of MESNA was determined in caspase-3 activity. Following trauma, both glutathione peroxidase and superoxide dismutase levels were decreased; MESNA increased the activity of both these antioxidant enzymes. Also, after trauma, nitric oxide, nitric oxide synthetase and xanthine oxidase levels were increased; administration of MESNA significantly decreased the levels of nitric oxide, nitric oxide synthetase and xanthine oxidase, promising an antioxidant activity. Histopathological analysis showed that MESNA protected the brain tissues well from injury. Although further studies considering different dose regimens and time intervals are required, MESNA was shown to be at least as effective as methylprednisolone in the traumatic brain injury model.
NASA Astrophysics Data System (ADS)
Berndt, Bianca; Landry, Guillaume; Schwarz, Florian; Tessonnier, Thomas; Kamp, Florian; Dedes, George; Thieke, Christian; Würl, Matthias; Kurz, Christopher; Ganswindt, Ute; Verhaegen, Frank; Debus, Jürgen; Belka, Claus; Sommer, Wieland; Reiser, Maximilian; Bauer, Julia; Parodi, Katia
2017-03-01
The purpose of this work was to evaluate the ability of single and dual energy computed tomography (SECT, DECT) to estimate tissue composition and density for usage in Monte Carlo (MC) simulations of irradiation induced β + activity distributions. This was done to assess the impact on positron emission tomography (PET) range verification in proton therapy. A DECT-based brain tissue segmentation method was developed for white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF). The elemental composition of reference tissues was assigned to closest CT numbers in DECT space (DECTdist). The method was also applied to SECT data (SECTdist). In a validation experiment, the proton irradiation induced PET activity of three brain equivalent solutions (BES) was compared to simulations based on different tissue segmentations. Five patients scanned with a dual source DECT scanner were analyzed to compare the different segmentation methods. A single magnetic resonance (MR) scan was used for comparison with an established segmentation toolkit. Additionally, one patient with SECT and post-treatment PET scans was investigated. For BES, DECTdist and SECTdist reduced differences to the reference simulation by up to 62% when compared to the conventional stoichiometric segmentation (SECTSchneider). In comparison to MR brain segmentation, Dice similarity coefficients for WM, GM and CSF were 0.61, 0.67 and 0.66 for DECTdist and 0.54, 0.41 and 0.66 for SECTdist. MC simulations of PET treatment verification in patients showed important differences between DECTdist/SECTdist and SECTSchneider for patients with large CSF areas within the treatment field but not in WM and GM. Differences could be misinterpreted as PET derived range shifts of up to 4 mm. DECTdist and SECTdist yielded comparable activity distributions, and comparison of SECTdist to a measured patient PET scan showed improved agreement when compared to SECTSchneider. The agreement between predicted and measured PET activity distributions was improved by employing a brain specific segmentation applicable to both DECT and SECT data.
Avalos, Claudia R; Abreu, Celina M; Queen, Suzanne E; Li, Ming; Price, Sarah; Shirk, Erin N; Engle, Elizabeth L; Forsyth, Ellen; Bullock, Brandon T; Mac Gabhann, Feilim; Wietgrefe, Stephen W; Haase, Ashley T; Zink, M Christine; Mankowski, Joseph L; Clements, Janice E; Gama, Lucio
2017-08-15
A human immunodeficiency virus (HIV) infection cure requires an understanding of the cellular and anatomical sites harboring virus that contribute to viral rebound upon treatment interruption. Despite antiretroviral therapy (ART), HIV-associated neurocognitive disorders (HAND) are reported in HIV-infected individuals on ART. Biomarkers for macrophage activation and neuronal damage in cerebrospinal fluid (CSF) of HIV-infected individuals demonstrate continued effects of HIV in brain and suggest that the central nervous system (CNS) may serve as a viral reservoir. Using a simian immunodeficiency virus (SIV)/macaque model for HIV encephalitis and AIDS, we evaluated whether infected cells persist in brain despite ART. Eight SIV-infected pig-tailed macaques were virally suppressed with ART, and plasma and CSF viremia levels were analyzed longitudinally. To assess whether virus persisted in brain macrophages (BrMΦ) in these macaques, we used a macrophage quantitative viral outgrowth assay (MΦ-QVOA), PCR, and in situ hybridization (ISH) to measure the frequency of infected cells and the levels of viral RNA and DNA in brain. Viral RNA in brain tissue of suppressed macaques was undetectable, although viral DNA was detected in all animals. The MΦ-QVOA demonstrated that the majority of suppressed animals contained latently infected BrMΦ. We also showed that virus produced in the MΦ-QVOAs was replication competent, suggesting that latently infected BrMΦ are capable of reestablishing productive infection upon treatment interruption. This report provides the first confirmation of the presence of replication-competent SIV in BrMΦ of ART-suppressed macaques and suggests that the highly debated issue of viral latency in macrophages, at least in brain, has been addressed in SIV-infected macaques treated with ART. IMPORTANCE Resting CD4 + T cells are currently the only cells that fit the definition of a latent reservoir. However, recent evidence suggests that HIV/SIV-infected macrophages persist despite ART. Markers of macrophage activation and neuronal damage are observed in the CSF of HIV-infected individuals and of SIV-infected macaques on suppressive ART regimens, suggesting that the CNS has continued virus infection and latent infection. A controversy exists as to whether brain macrophages represent a latent source of replication-competent virus capable of reestablishing infection upon treatment interruption. In this study, we demonstrated the presence of the latent macrophage reservoir in brains of SIV-infected ART-treated macaques and analyzed the reservoir using our established outgrowth assay to quantitate macrophages harboring replication-competent SIV genomes. Our results support the idea of the existence of other latent reservoirs in addition to resting CD4 + T cells and underscore the importance of macrophages in developing strategies to eradicate HIV. Copyright © 2017 Avalos et al.
Graph Frequency Analysis of Brain Signals
Huang, Weiyu; Goldsberry, Leah; Wymbs, Nicholas F.; Grafton, Scott T.; Bassett, Danielle S.; Ribeiro, Alejandro
2016-01-01
This paper presents methods to analyze functional brain networks and signals from graph spectral perspectives. The notion of frequency and filters traditionally defined for signals supported on regular domains such as discrete time and image grids has been recently generalized to irregular graph domains, and defines brain graph frequencies associated with different levels of spatial smoothness across the brain regions. Brain network frequency also enables the decomposition of brain signals into pieces corresponding to smooth or rapid variations. We relate graph frequency with principal component analysis when the networks of interest denote functional connectivity. The methods are utilized to analyze brain networks and signals as subjects master a simple motor skill. We observe that brain signals corresponding to different graph frequencies exhibit different levels of adaptability throughout learning. Further, we notice a strong association between graph spectral properties of brain networks and the level of exposure to tasks performed, and recognize the most contributing and important frequency signatures at different levels of task familiarity. PMID:28439325
Li, Yuanqing; Wang, Guangyi; Long, Jinyi; Yu, Zhuliang; Huang, Biao; Li, Xiaojian; Yu, Tianyou; Liang, Changhong; Li, Zheng; Sun, Pei
2011-01-01
One of the central questions in cognitive neuroscience is the precise neural representation, or brain pattern, associated with a semantic category. In this study, we explored the influence of audiovisual stimuli on the brain patterns of concepts or semantic categories through a functional magnetic resonance imaging (fMRI) experiment. We used a pattern search method to extract brain patterns corresponding to two semantic categories: "old people" and "young people." These brain patterns were elicited by semantically congruent audiovisual, semantically incongruent audiovisual, unimodal visual, and unimodal auditory stimuli belonging to the two semantic categories. We calculated the reproducibility index, which measures the similarity of the patterns within the same category. We also decoded the semantic categories from these brain patterns. The decoding accuracy reflects the discriminability of the brain patterns between two categories. The results showed that both the reproducibility index of brain patterns and the decoding accuracy were significantly higher for semantically congruent audiovisual stimuli than for unimodal visual and unimodal auditory stimuli, while the semantically incongruent stimuli did not elicit brain patterns with significantly higher reproducibility index or decoding accuracy. Thus, the semantically congruent audiovisual stimuli enhanced the within-class reproducibility of brain patterns and the between-class discriminability of brain patterns, and facilitate neural representations of semantic categories or concepts. Furthermore, we analyzed the brain activity in superior temporal sulcus and middle temporal gyrus (STS/MTG). The strength of the fMRI signal and the reproducibility index were enhanced by the semantically congruent audiovisual stimuli. Our results support the use of the reproducibility index as a potential tool to supplement the fMRI signal amplitude for evaluating multimodal integration.
Vosoughi, Elham; Lee, Jee Min; Miller, James R; Nosrati, Mehdi; Minor, David R; Abendroth, Roy; Lee, John W; Andrews, Brian T; Leng, Lewis Z; Wu, Max; Leong, Stanley P; Kashani-Sabet, Mohammed; Kim, Kevin B
2018-04-27
Melanoma brain metastasis is associated with an extremely poor prognosis, with a median overall survival of 4-5 months. Since 2011, the overall survival of patients with stage IV melanoma has been significantly improved with the advent of new targeted therapies and checkpoint inhibitors. We analyze the survival outcomes of patients diagnosed with brain metastasis after the introduction of these novel drugs. We performed a retrospective analysis of our melanoma center database and identified 79 patients with brain metastasis between 2011 and 2015. The median time from primary melanoma diagnosis to brain metastasis was 3.2 years. The median overall survival duration from the time of initial brain metastasis was 12.8 months. Following a diagnosis of brain metastasis, 39 (49.4%), 28 (35.4%), and 24 (30.4%) patients were treated with anti-CTLA-4 antibody, anti-PD-1 antibody, or BRAF inhibitors (with or without a MEK inhibitor), with a median overall survival of 19.2 months, 37.9 months and 12.7 months, respectively. Factors associated with significantly reduced overall survival included male sex, cerebellar metastasis, higher number of brain lesions, and treatment with whole-brain radiation therapy. Factors associated with significantly longer overall survival included treatment with craniotomy, stereotactic radiosurgery, or with anti-PD-1 antibody after initial diagnosis of brain metastasis. These results show a significant improvement in the overall survival of patients with melanoma brain metastasis in the era of novel therapies. In addition, they suggest the activity of anti-PD-1 therapy specifically in the setting of brain metastasis.
Long, Jinyi; Yu, Zhuliang; Huang, Biao; Li, Xiaojian; Yu, Tianyou; Liang, Changhong; Li, Zheng; Sun, Pei
2011-01-01
One of the central questions in cognitive neuroscience is the precise neural representation, or brain pattern, associated with a semantic category. In this study, we explored the influence of audiovisual stimuli on the brain patterns of concepts or semantic categories through a functional magnetic resonance imaging (fMRI) experiment. We used a pattern search method to extract brain patterns corresponding to two semantic categories: “old people” and “young people.” These brain patterns were elicited by semantically congruent audiovisual, semantically incongruent audiovisual, unimodal visual, and unimodal auditory stimuli belonging to the two semantic categories. We calculated the reproducibility index, which measures the similarity of the patterns within the same category. We also decoded the semantic categories from these brain patterns. The decoding accuracy reflects the discriminability of the brain patterns between two categories. The results showed that both the reproducibility index of brain patterns and the decoding accuracy were significantly higher for semantically congruent audiovisual stimuli than for unimodal visual and unimodal auditory stimuli, while the semantically incongruent stimuli did not elicit brain patterns with significantly higher reproducibility index or decoding accuracy. Thus, the semantically congruent audiovisual stimuli enhanced the within-class reproducibility of brain patterns and the between-class discriminability of brain patterns, and facilitate neural representations of semantic categories or concepts. Furthermore, we analyzed the brain activity in superior temporal sulcus and middle temporal gyrus (STS/MTG). The strength of the fMRI signal and the reproducibility index were enhanced by the semantically congruent audiovisual stimuli. Our results support the use of the reproducibility index as a potential tool to supplement the fMRI signal amplitude for evaluating multimodal integration. PMID:21750692
Behavioral and brain pattern differences between acting and observing in an auditory task
Karanasiou, Irene S; Papageorgiou, Charalabos; Tsianaka, Eleni I; Matsopoulos, George K; Ventouras, Errikos M; Uzunoglu, Nikolaos K
2009-01-01
Background Recent research has shown that errors seem to influence the patterns of brain activity. Additionally current notions support the idea that similar brain mechanisms are activated during acting and observing. The aim of the present study was to examine the patterns of brain activity of actors and observers elicited upon receiving feedback information of the actor's response. Methods The task used in the present research was an auditory identification task that included both acting and observing settings, ensuring concurrent ERP measurements of both participants. The performance of the participants was investigated in conditions of varying complexity. ERP data were analyzed with regards to the conditions of acting and observing in conjunction to correct and erroneous responses. Results The obtained results showed that the complexity induced by cue dissimilarity between trials was a demodulating factor leading to poorer performance. The electrophysiological results suggest that feedback information results in different intensities of the ERP patterns of observers and actors depending on whether the actor had made an error or not. The LORETA source localization method yielded significantly larger electrical activity in the supplementary motor area (Brodmann area 6), the posterior cingulate gyrus (Brodmann area 31/23) and the parietal lobe (Precuneus/Brodmann area 7/5). Conclusion These findings suggest that feedback information has a different effect on the intensities of the ERP patterns of actors and observers depending on whether the actor committed an error. Certain neural systems, including medial frontal area, posterior cingulate gyrus and precuneus may mediate these modulating effects. Further research is needed to elucidate in more detail the neuroanatomical and neuropsychological substrates of these systems. PMID:19154586
de Greck, Moritz; Bölter, Annette F.; Lehmann, Lisa; Ulrich, Cornelia; Stockum, Eva; Enzi, Björn; Hoffmann, Thilo; Tempelmann, Claus; Beutel, Manfred; Frommer, Jörg; Northoff, Georg
2013-01-01
Somatoform disorder patients show a variety of emotional disturbances including impaired emotion recognition and increased empathic distress. In a previous paper, our group showed that several brain regions involved in emotional processing, such as the parahippocampal gyrus and other regions, were less activated in pre-treatment somatoform disorder patients (compared to healthy controls) during an empathy task. Since the parahippocampal gyrus is involved in emotional memory, its decreased activation might reflect the repression of emotional memories (which—according to psychoanalytical concepts—plays an important role in somatoform disorder). Psychodynamic psychotherapy aims at increasing the understanding of emotional conflicts as well as uncovering repressed emotions. We were interested, whether brain activity in the parahippocampal gyrus normalized after (inpatient) multimodal psychodynamic psychotherapy. Using fMRI, subjects were scanned while they shared the emotional states of presented facial stimuli expressing anger, disgust, joy, and a neutral expression; distorted stimuli with unrecognizable content served as control condition. 15 somatoform disorder patients were scanned twice, pre and post multimodal psychodynamic psychotherapy; in addition, 15 age-matched healthy control subjects were investigated. Effects of psychotherapy on hemodynamic responses were analyzed implementing two approaches: (1) an a priori region of interest approach and (2) a voxelwise whole brain analysis. Both analyses revealed increased hemodynamic responses in the left and right parahippocampal gyrus (and other regions) after multimodal psychotherapy in the contrast “empathy with anger”—“control.” Our results are in line with psychoanalytical concepts about somatoform disorder. They suggest the parahippocampal gyrus is crucially involved in the neurobiological mechanisms which underly the emotional deficits of somatoform disorder patients. PMID:23966922
Martín-Aragón, Sagrario; Villar, Ángel; Benedí, Juana
2016-02-04
Dietary antioxidants might exert an important role in the aging process by relieving oxidative damage, a likely cause of age-associated brain dysfunctions. This study aims to investigate the influence of esculetin (6,7-dihydroxycoumarin), a naturally occurring antioxidant in the diet, on mood-related behaviors and cognitive function and its relation with age and brain oxidative damage. Behavioral tests were employed in 11-, 17- and 22-month-old male C57BL/6J mice upon an oral 35day-esculetin treatment (25mg/kg). Activity of antioxidant enzymes, GSH and GSSG levels, GSH/GSSG ratio, and mitochondrial function were analyzed in brain cortex at the end of treatment in order to assess the oxidative status related to mouse behavior. Esculetin treatment attenuated the increased immobility time and enhanced the diminished climbing time in the forced swim task elicited by acute restraint stress (ARS) in the 11- and 17-month-old mice versus their counterpart controls. Furthermore, ARS caused an impairment of contextual memory in the step-through passive avoidance both in mature adult and aged mice which was partially reversed by esculetin only in the 11-month-old mice. Esculetin was effective to prevent the ARS-induced oxidative stress mostly in mature adult mice by restoring antioxidant enzyme activities, augmenting the GSH/GSSG ratio and increasing cytochrome c oxidase (COX) activity in cortex. Modulation of the mood-related behavior and cognitive function upon esculetin treatment in a mouse model of ARS depends on age and is partly due to the enhancement of redox status and levels of COX activity in cortex. Copyright © 2015. Published by Elsevier Inc.
Wang, Lihan; Gan, John Q; Zhang, Li; Wang, Haixian
2018-06-01
Previous neuroimaging research investigating dissociation between single-digit addition and multiplication has suggested that the former placed more reliance on the visuo-spatial processing whereas the latter on the verbal processing. However, there has been little exploration into the disassociation in spatio-temporal dynamics of the oscillatory brain activity in specific frequency bands during the two arithmetic operations. To address this issue, the electroencephalogram (EEG) data were recorded from 19 participants engaged in a delayed verification arithmetic task. By analyzing oscillatory EEG activity in theta (5-7 Hz) and lower alpha frequency (9-10 Hz) bands, we found different patterns of oscillatory brain activity between single-digit addition and multiplication during the early processing stage (0-400 ms post-operand onset). Experiment results in this study showed a larger phasic increase of theta-band power for addition than for multiplication in the midline and the right frontal and central regions during the operator and operands presentation intervals, which was extended to the right parietal and the right occipito-temporal regions during the interval immediately after the operands presentation. In contrast, during multiplication higher phase-locking in lower alpha band was evident in the centro-parietal regions during the operator presentation, which was extended to the left fronto-central and anterior regions during the operands presentation. Besides, we found stronger theta phase synchrony between the parietal areas and the right occipital areas for single-digit addition than for multiplication during operands encoding. These findings of oscillatory brain activity extend the previous observations on functional dissociation between the two arithmetic operations. Copyright © 2018 Elsevier B.V. All rights reserved.
Hauswald, Anne; Übelacker, Teresa; Leske, Sabine; Weisz, Nathan
2015-01-01
Experienced meditators are able to voluntarily modulate their state of consciousness and attention. In the present study, we took advantage of this ability and studied brain activity related to the shift of mental state. Electrophysiological activity, i.e. EEG, was recorded from 11 subjects with varying degrees of meditation experience during Zen meditation (a form of open monitoring meditation) and during non-meditation rest. On a behavioral level, mindfulness scores were assessed using the Mindfulness Attention and Awareness Scale (MAAS). Analysis of EEG source power revealed the so far unreported finding that MAAS scores significantly correlated with gamma power (30–250 Hz), particularly high-frequency gamma (100–245 Hz), during meditation. High levels of mindfulness were related to increased high-frequency gamma, for example, in the cingulate cortex and somatosensory cortices. Further, we analyzed the relationship between connectivity during meditation and self-reported mindfulness (MAAS). We found a correlation between graph measures in the 160–170 Hz range and MAAS scores. Higher levels of mindfulness were related to lower small worldedness as well as global and local clustering in paracentral, insular, and thalamic regions during meditation. In sum, the present study shows significant relationships of mindfulness and brain activity during meditation indicated by measures of oscillatory power and graph theoretical measures. The most prominent effects occur in brain structures crucially involved in processes of awareness and attention, which also show structural changes in short- and long-term meditators, suggesting continuative alterations in the meditating brain. Overall, our study reveals strong changes in ongoing oscillatory activity as well as connectivity patterns that appear to be sensitive to the psychological state changes induced by Zen meditation. PMID:25562827
Hauswald, Anne; Übelacker, Teresa; Leske, Sabine; Weisz, Nathan
2015-03-01
Experienced meditators are able to voluntarily modulate their state of consciousness and attention. In the present study, we took advantage of this ability and studied brain activity related to the shift of mental state. Electrophysiological activity, i.e. EEG, was recorded from 11 subjects with varying degrees of meditation experience during Zen meditation (a form of open monitoring meditation) and during non-meditation rest. On a behavioral level, mindfulness scores were assessed using the Mindfulness Attention and Awareness Scale (MAAS). Analysis of EEG source power revealed the so far unreported finding that MAAS scores significantly correlated with gamma power (30-250Hz), particularly high-frequency gamma (100-245Hz), during meditation. High levels of mindfulness were related to increased high-frequency gamma, for example, in the cingulate cortex and somatosensory cortices. Further, we analyzed the relationship between connectivity during meditation and self-reported mindfulness (MAAS). We found a correlation between graph measures in the 160-170Hz range and MAAS scores. Higher levels of mindfulness were related to lower small worldedness as well as global and local clustering in paracentral, insular, and thalamic regions during meditation. In sum, the present study shows significant relationships of mindfulness and brain activity during meditation indicated by measures of oscillatory power and graph theoretical measures. The most prominent effects occur in brain structures crucially involved in processes of awareness and attention, which also show structural changes in short- and long-term meditators, suggesting continuative alterations in the meditating brain. Overall, our study reveals strong changes in ongoing oscillatory activity as well as connectivity patterns that appear to be sensitive to the psychological state changes induced by Zen meditation. Copyright © 2015. Published by Elsevier Inc.
Plessen, Kerstin J.; Allen, Elena A.; Eichele, Heike; van Wageningen, Heidi; Høvik, Marie Farstad; Sørensen, Lin; Worren, Marius Kalsås; Hugdahl, Kenneth; Eichele, Tom
2016-01-01
Background We examined the blood-oxygen level–dependent (BOLD) activation in brain regions that signal errors and their association with intraindividual behavioural variability and adaptation to errors in children with attention-deficit/hyperactivity disorder (ADHD). Methods We acquired functional MRI data during a Flanker task in medication-naive children with ADHD and healthy controls aged 8–12 years and analyzed the data using independent component analysis. For components corresponding to performance monitoring networks, we compared activations across groups and conditions and correlated them with reaction times (RT). Additionally, we analyzed post-error adaptations in behaviour and motor component activations. Results We included 25 children with ADHD and 29 controls in our analysis. Children with ADHD displayed reduced activation to errors in cingulo-opercular regions and higher RT variability, but no differences of interference control. Larger BOLD amplitude to error trials significantly predicted reduced RT variability across all participants. Neither group showed evidence of post-error response slowing; however, post-error adaptation in motor networks was significantly reduced in children with ADHD. This adaptation was inversely related to activation of the right-lateralized ventral attention network (VAN) on error trials and to task-driven connectivity between the cingulo-opercular system and the VAN. Limitations Our study was limited by the modest sample size and imperfect matching across groups. Conclusion Our findings show a deficit in cingulo-opercular activation in children with ADHD that could relate to reduced signalling for errors. Moreover, the reduced orienting of the VAN signal may mediate deficient post-error motor adaptions. Pinpointing general performance monitoring problems to specific brain regions and operations in error processing may help to guide the targets of future treatments for ADHD. PMID:26441332
Shulman, Abraham; Goldstein, Barbara
2014-01-01
The clinical significance of QEEG LORETA data analysis performed sequentially within 6 months is presented in a case report of a predominantly central type severe disabling subjective idiopathic tinnitus (SIT) before and following treatment. The QEEG LORETA data is reported as Z-scores of z = ± 2.54, p < 0.013. The focus is on demonstration of patterns of brain wave oscillations reflecting multiple brain functions in multiple ROIs in the presence of the tinnitus signal (SIT). The patterns of brain activity both high, middle and low frequencies are hypothesized to reflect connectivities within and between multiple neuronal networks in brain. The Loreta source localization non auditory ROI Images at the maximal abnormality in the very narrow band frequency spectra (24.21 Hz), showed the mathematically most probable underlying sources of the scalp recorded data to be greatest in the mid-cingulate, bilateral precuneus, cingulate and the bilateral caudate nucleus. Clinical correlation of the data with the history and course of the SIT is considered an objective demonstration of the affect, behavioral, and emotional component of the SIT. The correlation of the caudate activity, SIT as the traumatic event with the clinical course of PTSD, and the clinical diagnosis of PTSD is discussed. The clinical translation for patient care is highlighted in a SIT patient with multiple comorbidities by translation of QEEG/LORETA electrophysiologic data, as an adjunct to: provide an objectivity of patterns of brain wave activity in multiple regions of interest (ROIs) reflecting multiple brain functions, in response to and in the presence of the tinnitus signal, recorded from the scalp and analyzed with the metrics of absolute power, relative power, asymmetry, and coherence, for the subjective tinnitus complaint (SIT); 2) provide an increase in the accuracy of the tinnitus diagnosis; 3) assess/monitor treatment efficacy; 4) provide a rationale for selection of a combined tinnitus targeted therapy of behavioral, pharmacologic, sound therapy modalities of treatment attempting tinnitus relief; 5) provide insight into the medical significance of the SIT; 6) attempt discriminant function analysis for identification of a particular diagnostic clinical category of CNS neuropsychiatric disease; and 7) attempt to translate what is known of the neuroscience of sensation, brain function, QEEG/LORETA source localization, for the etiology and prognosis of the individual SIT patient.
Lovick, Jennifer K.; Hartenstein, Volker
2015-01-01
The Drosophila brain is comprised of neurons formed by approximately 100 lineages, each of which is derived from a stereotyped, asymmetrically dividing neuroblast. Lineages serve as structural and developmental units of Drosophila brain anatomy and reconstruction of lineage projection patterns represents a suitable map of Drosophila brain circuitry at the level of neuron populations (“macro-circuitry”). Two phases of neuroblast proliferation, the first in the embryo and the second during the larval phase (following a period of mitotic quiescence), produce primary and secondary lineages, respectively. Using temporally controlled pulses of hydroxyurea (HU) to ablate neuroblasts and their corresponding secondary lineages during the larval phase, we analyzed the effect on development of primary and secondary lineages in the late larval and adult brain. Our findings indicate that timing of neuroblast re-activation is highly stereotyped, allowing us to establish “birth dates” for all secondary lineages. Furthermore, our results demonstrate that, whereas the trajectory and projection pattern of primary and secondary lineages is established in a largely independent manner, the final branching pattern of secondary neurons is dependent upon the presence of appropriate neuronal targets. Taken together, our data provide new insights into the degree of neuronal plasticity during Drosophila brain development. PMID:25773365
van der Meer, Dennis; Hartman, Catharina A.; van Rooij, Daan; Franke, Barbara; Heslenfeld, Dirk J.; Oosterlaan, Jaap; Faraone, Stephen V.; Buitelaar, Jan K.; Hoekstra, Pieter J.
2017-01-01
Background Attention-deficit/hyperactivity disorder (ADHD) is often accompanied by impaired response inhibition; both have been associated with aberrant dopamine signalling. Given that prenatal exposure to alcohol or smoking is known to affect dopamine-rich brain regions, we hypothesized that individuals carrying the ADHD risk alleles of the dopamine receptor D4 (DRD4) and dopamine transporter (DAT1) genes may be especially sensitive to their effects. Methods Functional MRI data, information on prenatal adversities and genetic data were available for 239 adolescents and young adults participating in the multicentre ADHD cohort study NeuroIMAGE (average age 17.3 yr). We analyzed the effects of DRD4 and DAT1, prenatal exposure to alcohol and smoking and their interactions on ADHD severity, response inhibition and neural activity. Results We found no significant gene × environment interaction effects. We did find that the DRD4 7-repeat allele was associated with less superior frontal and parietal brain activity and with greater activity in the frontal pole and occipital cortex. Prenatal exposure to smoking was also associated with lower superior frontal activity, but with greater activity in the parietal lobe. Further, those exposed to alcohol had more activity in the lateral orbitofrontal cortex, and the DAT1 risk variant was associated with lower cerebellar activity. Limitations Retrospective reports of maternal substance use and the cross-sectional study design restrict causal inference. Conclusion While we found no evidence of gene × environment interactions, the risk factors under investigation influenced activity of brain regions associated with response inhibition, suggesting they may add to problems with inhibiting behaviour. PMID:28234207
Brain Gym. Simple Activities for Whole Brain Learning.
ERIC Educational Resources Information Center
Dennison, Paul E.; Dennison, Gail E.
This booklet contains simple movements and activities that are used with students in Educational Kinesiology to enhance their experience of whole brain learning. Whole brain learning through movement repatterning and Brain Gym activities enable students to access those parts of the brain previously unavailable to them. These movements of body and…
Fleming, W.J.
1981-01-01
Brain and plasma cholinesterase (ChE) activities were determined for mallard ducklings (Anas platyrhynchos) exposed to dicrotophos and fenthion. Recovery rates of brain ChE did not differ between ducklings administered a single oral dose vs. a 2-week dietary dose of these organophosphates. Exposure to the organophosphates, followed by recovery of brain ChE, did not significantly affect the degree of brain ChE inhibition or the recovery of ChE activity at a subsequent exposure. Recovery of brain ChE activity followed the general model Y = a + b(logX) with rapid recovery to about 50% of normal, followed by a slower rate of recovery until normal ChE activity levels were attained. Fenthion and dicrotophos-inhibited brain ChE were only slightly reactivated in vitro by pyridine-2-aldoxime methiodide, which suggested that spontaneous reactivation was not a primary method of recovery of ChE activity. Recovery of brain ChE activity can be modeled for interpretation of sublethal inhibition of brain ChE activities in wild birds following environmental applications of organophosphates. Plasma ChE activity is inferior to brain ChE activity for environmental monitoring, because of its rapid recovery and large degree of variation among individuals.
Bäuml, Josef G; Daamen, Marcel; Meng, Chun; Neitzel, Julia; Scheef, Lukas; Jaekel, Julia; Busch, Barbara; Baumann, Nicole; Bartmann, Peter; Wolke, Dieter; Boecker, Henning; Wohlschläger, Afra M; Sorg, Christian
2015-11-01
Widespread brain changes are present in preterm born infants, adolescents, and even adults. While neurobiological models of prematurity facilitate powerful explanations for the adverse effects of preterm birth on the developing brain at microscale, convincing linking principles at large-scale level to explain the widespread nature of brain changes are still missing. We investigated effects of preterm birth on the brain's large-scale intrinsic networks and their relation to brain structure in preterm born adults. In 95 preterm and 83 full-term born adults, structural and functional magnetic resonance imaging at-rest was used to analyze both voxel-based morphometry and spatial patterns of functional connectivity in ongoing blood oxygenation level-dependent activity. Differences in intrinsic functional connectivity (iFC) were found in cortical and subcortical networks. Structural differences were located in subcortical, temporal, and cingulate areas. Critically, for preterm born adults, iFC-network differences were overlapping and correlating with aberrant regional gray-matter (GM) volume specifically in subcortical and temporal areas. Overlapping changes were predicted by prematurity and in particular by neonatal medical complications. These results provide evidence that preterm birth has long-lasting effects on functional connectivity of intrinsic networks, and these changes are specifically related to structural alterations in ventral brain GM. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Levasseur, Mélanie; Pigot, Hélène; Couture, Mélanie; Bier, Nathalie; Swaine, Bonnie; Therriault, Pierre-Yves; Giroux, Sylvain
2016-11-01
This study explored the personalized and collective participation needs of people with acquired brain injury (ABI) living in a future shared community smart home. An action research study was conducted with 16 persons, seven with ABI, four caregivers and five rehabilitation or smart home healthcare providers. Twelve interviews and two focus groups were conducted, audiotaped, transcribed and analyzed for content. Seventy personalized and 18 collective participation needs were reported related to daily and social activities. Personalized needs concerned interpersonal relationships, general organization of activities, leisure, housing, fitness and nutrition. Collective needs related mainly to housing, general organization of activities and nutrition. Personalized and collective participation needs of people with ABI planning to live in a community smart home are diverse and concern daily as well as social activities. Implications for Rehabilitation To meet participation needs of people with ABI, the design of smart homes must consider all categories of daily and social activities. Considering personalized and collective needs allowed identifying exclusive examples of each. As some persons with ABI had difficulty identifying their needs as well as accepting their limitations and the assistance required, rehabilitation professionals must be involved in needs identification.
Cordyceps militaris extract attenuates D-galactose-induced memory impairment in mice.
Li, Zaixin; Zhang, Zhi; Zhang, Jinshan; Jia, Jing; Ding, Jie; Luo, Rongzhen; Liu, Zhangqin
2012-12-01
Memory impairment is one of main clinical symptoms of brain senescence. To address the effects of Cordyceps militaris Link extract (CE) on memory impairment, a D-galactose (D-Gal)-induced aging mouse model was employed. Mice injected with D-Gal showed a significant learning and memory impairment that was rescued by CE treatment. The mechanism was further investigated by analyzing the protein level and activity of oxidant and antioxidant molecules, including malondialdehyde (MDA), monoamine oxidase (MAO), total super-oxide dismutase (T-SOD), total antioxidant capacity (T-AOC), glutathione (GSH), and glutathione peroxidase (GSH-px), which played critical roles in the development of brain senescence. The results showed that CE treatment resulted in a significant decrease in the oxidative activity of MAO and the level of MDA, and significantly increased the antioxidant activities of T-SOD and T-AOC in the cerebral cortices. Moreover, the level of GSH and the activity of antioxidant enzymes GSH-px in serum were significantly upregulated after CE treatment. Taken together, our results suggest that Cordyceps militaris extract could ameliorate experimental memory impairment in mice with D-Gal-induced aging through its potent antioxidant activities.
Arizono, Naoki; Ohmura, Yuji; Yano, Shiro; Kondo, Toshiyuki
2016-01-01
The self-identification, which is called sense of ownership, has been researched through methodology of rubber hand illusion (RHI) because of its simple setup. Although studies with neuroimaging technique, such as fMRI, revealed that several brain areas are associated with the sense of ownership, near-infrared spectroscopy (NIRS) has not yet been utilized. Here we introduced an automated setup to induce RHI, measured the brain activity during the RHI with NIRS, and analyzed the functional connectivity so as to understand dynamical brain relationship regarding the sense of ownership. The connectivity was evaluated by multivariate Granger causality. In this experiment, the peaks of oxy-Hb on right frontal and right motor related areas during the illusion were significantly higher compared with those during the nonillusion. Furthermore, by analyzing the NIRS recordings, we found a reliable connectivity from the frontal to the motor related areas during the illusion. This finding suggests that frontal cortex and motor related areas communicate with each other when the sense of ownership is induced. The result suggests that the sense of ownership is related to neural mechanism underlying human motor control, and it would be determining whether motor learning (i.e., neural plasticity) will occur. Thus RHI with the functional connectivity analysis will become an appropriate biomarker for neurorehabilitation.
van der Vos, Kristan E.; Abels, Erik R.; Zhang, Xuan; Lai, Charles; Carrizosa, Esteban; Oakley, Derek; Prabhakar, Shilpa; Mardini, Osama; Crommentuijn, Matheus H. W.; Skog, Johan; Krichevsky, Anna M.; Stemmer-Rachamimov, Anat; Mempel, Thorsten R.; El Khoury, Joseph; Hickman, Suzanne E.; Breakefield, Xandra O.
2016-01-01
Background To understand the ability of gliomas to manipulate their microenvironment, we visualized the transfer of vesicles and the effects of tumor-released extracellular RNA on the phenotype of microglia in culture and in vivo. Methods Extracellular vesicles (EVs) released from primary human glioblastoma (GBM) cells were isolated and microRNAs (miRNAs) were analyzed. Primary mouse microglia were exposed to GBM-EVs, and their uptake and effect on proliferation and levels of specific miRNAs, mRNAs, and proteins were analyzed. For in vivo analysis, mouse glioma cells were implanted in the brains of mice, and EV release and uptake by microglia and monocytes/macrophages were monitored by intravital 2-photon microscopy, immunohistochemistry, and fluorescence activated cell sorting analysis, as well as RNA and protein levels. Results Microglia avidly took up GBM-EVs, leading to increased proliferation and shifting of their cytokine profile toward immune suppression. High levels of miR-451/miR-21 in GBM-EVs were transferred to microglia with a decrease in the miR-451/miR-21 target c-Myc mRNA. In in vivo analysis, we directly visualized release of EVs from glioma cells and their uptake by microglia and monocytes/macrophages in brain. Dissociated microglia and monocytes/macrophages from tumor-bearing brains revealed increased levels of miR-21 and reduced levels of c-Myc mRNA. Conclusions Intravital microscopy confirms the release of EVs from gliomas and their uptake into microglia and monocytes/macrophages within the brain. Our studies also support functional effects of GBM-released EVs following uptake into microglia, associated in part with increased miRNA levels, decreased target mRNAs, and encoded proteins, presumably as a means for the tumor to manipulate its environs. PMID:26433199
Eggers Pedersen, Kathrine; Basu, Niladri; Letcher, Robert; Greaves, Alana K; Sonne, Christian; Dietz, Rune; Styrishave, Bjarne
2015-04-01
Perfluoroalkyl substances (PFASs) is a growing class of contaminants in the Arctic environment, and include the established perfluorinated sulfonates (PFSAs; especially perfluorooctane sulfonate (PFOS)) and carboxylic acids (PFCAs). PFSAs and PFCAs of varying chain length have been reported to bioaccumulate in lipid rich tissues of the brain among other tissues such as liver, and can reach high concentrations in top predators including the polar bear. PFCA and PFSA bioaccummulation in the brain has the potential to pose neurotoxic effects and therefore we conducted a study to investigate if variations in neurochemical transmitter systems i.e. the cholinergic, glutaminergic, dopaminergic and GABAergic, could be related to brain-specific bioaccumulation of PFASs in East Greenland polar bears. Nine brain regions from nine polar bears were analyzed for enzyme activity (monoamine oxidase (MAO), acetylcholinesterase (AChE) and glutamine synthetase (GS)) and receptor density (dopamine-2 (D2), muscarinic cholinergic (mAChR) and gamma-butyric acid type A (GABA-A)) along with PFSA and PFCA concentrations. Average brain ∑PFSA concentration was 25ng/g ww where PFOS accounted for 91%. Average ∑PFCA concentration was 88ng/g ww where PFUnDA, PFDoDA and PFTrDA combined accounted for 79%. The highest concentrations of PFASs were measured in brain stem, cerebellum and hippocampus. Correlative analyses were performed both across and within brain regions. Significant positive correlations were found between PFASs and MAO activity in occipital lobe (e.g. ∑PFCA; rp=0.83, p=0.041, n=6) and across brain regions (e.g. ∑PFCA; rp=0.47, p=0.001, ∑PFSA; rp=0.44, p>0.001; n=50). GABA-A receptor density was positively correlated with two PFASs across brain regions (PFOS; rp=0.33, p=0.02 and PFDoDA; rp=0.34, p=0.014; n=52). Significant negative correlations were found between mAChR density and PFASs in cerebellum (e.g. ∑PFCA; rp=-0.95, p=0.013, n=5) and across brain regions (e.g. ∑PFCA; rp=-0.40, p=0.003, ∑PFSA; rp=-0.37, p=0.007; n=52). AChE activity and D2 density were negatively correlated with single PFCAs in several brain regions, whereas GS activity was positively correlated with PFASs primarily in occipital lobe. Results from the present study support the hypothesis that PFAS concentrations in polar bears from East Greenland have exceeded the threshold limits for neurochemical alterations. It is not known whether the observed alterations in neurochemical signaling are currently having negative effects on neurochemistry in East Greenland polar bears. However given the importance of these systems in cognitive processes and motor function, the present results indicate an urgent need for a better understanding of neurochemical effects of PFAS exposure to wildlife. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chella, Federico; Pizzella, Vittorio; Zappasodi, Filippo; Nolte, Guido; Marzetti, Laura
2016-05-01
Brain cognitive functions arise through the coordinated activity of several brain regions, which actually form complex dynamical systems operating at multiple frequencies. These systems often consist of interacting subsystems, whose characterization is of importance for a complete understanding of the brain interaction processes. To address this issue, we present a technique, namely the bispectral pairwise interacting source analysis (biPISA), for analyzing systems of cross-frequency interacting brain sources when multichannel electroencephalographic (EEG) or magnetoencephalographic (MEG) data are available. Specifically, the biPISA makes it possible to identify one or many subsystems of cross-frequency interacting sources by decomposing the antisymmetric components of the cross-bispectra between EEG or MEG signals, based on the assumption that interactions are pairwise. Thanks to the properties of the antisymmetric components of the cross-bispectra, biPISA is also robust to spurious interactions arising from mixing artifacts, i.e., volume conduction or field spread, which always affect EEG or MEG functional connectivity estimates. This method is an extension of the pairwise interacting source analysis (PISA), which was originally introduced for investigating interactions at the same frequency, to the study of cross-frequency interactions. The effectiveness of this approach is demonstrated in simulations for up to three interacting source pairs and for real MEG recordings of spontaneous brain activity. Simulations show that the performances of biPISA in estimating the phase difference between the interacting sources are affected by the increasing level of noise rather than by the number of the interacting subsystems. The analysis of real MEG data reveals an interaction between two pairs of sources of central mu and beta rhythms, localizing in the proximity of the left and right central sulci.
Tada, Tatsuya; Suzuki, Koutaro; Sakurai, Yu; Kubo, Masanori; Okada, Hironao; Itoh, Toshihiro; Tsukamoto, Kenji
2011-01-01
To explore the genetic basis of the pathogenesis and adaptation of avian influenza viruses (AIVs) to chickens, the A/duck/Yokohama/aq10/2003 (H5N1) (DkYK10) virus was passaged five times in the brains of chickens. The brain-passaged DkYK10-B5 caused quick death of chickens through rapid and efficient replication in tissues, accompanied by severe apoptosis. Genome sequence comparison of two viruses identified a single amino acid substitution at position 109 in NP from isoleucine to threonine (NP I109T). By analyzing viruses constructed by the reverse-genetic method, we established that the NP I109T substitution also contributed to increased viral replication and polymerase activity in chicken embryo fibroblasts, but not in duck embryo fibroblasts. Real-time RT-PCR analysis demonstrated that the NP I109T substitution enhances mRNA synthesis quickly and then cRNA and viral RNA (vRNA) synthesis slowly. Next, to determine the mechanism underlying the appearance of the NP I109T substitution during passages, four H5N1 highly pathogenic AIVs (HPAIVs) were passaged in the lungs and brains of chicken embryos. Single-nucleotide polymorphism analysis, together with a database search, suggests that the NP I109T mutation would be induced frequently during replication of HPAIVs in brains, but not in lungs. These results demonstrate that the amino acid at position 109 in NP enhances viral RNA synthesis and the pathogenicity of highly pathogenic avian influenza viruses in chickens and that the NP mutation emerges quickly during replication of the viruses in chicken brains. PMID:21795332
Brain activation to facial expressions in youth with PTSD symptoms.
Garrett, Amy S; Carrion, Victor; Kletter, Hilit; Karchemskiy, Asya; Weems, Carl F; Reiss, Allan
2012-05-01
This study examined activation to facial expressions in youth with a history of interpersonal trauma and current posttraumatic stress symptoms (PTSS) compared to healthy controls (HC). Twenty-three medication-naive youth with PTSS and 23 age- and gender-matched HC underwent functional magnetic resonance imaging (fMRI) while viewing fearful, angry, sad, happy, and neutral faces. Data were analyzed for group differences in location of activation, as well as timing of activation during the early versus late phase of the block. Using SPM5, significant activation (P < .05 FWE [Family-Wise Error] corrected, extent = 10 voxels) associated with the main effect of group was identified. Activation from selected clusters was extracted to SPSS software for further analysis of specific facial expressions and temporal patterns of activation. The PTSS group showed significantly greater activation than controls in several regions, including the amygdala/hippocampus, medial prefrontal cortex, insula, and ventrolateral prefrontal cortex, and less activation than controls in the dorsolateral prefrontal cortex (DLPFC). These group differences in activation were greatest during angry, happy, and neutral faces, and predominantly during the early phase of the block. Post hoc analyses showed significant Group × Phase interactions in the right amygdala and left hippocampus. Traumatic stress may impact development of brain regions important for emotion processing. Timing of activation may be altered in youth with PTSS. © 2012 Wiley Periodicals, Inc.
Piersson, A D; Nunoo, G; Gorleku, P N
2018-05-01
The aim of this study was to investigate current brain MRI practice, pattern of brain MRI requests, and their appropriateness using the American College of Radiology (ACR) Appropriateness Criteria. We used direct observation and questionnaires to obtain data concerning routine brain MRI practice. We then retrospectively analyzed (i) demographic characteristics, (ii) clinical history, and (iii) appropriateness of brain MRI requests against published criteria. All patients were administered the screening questionnaire; however, no reviews were undertaken directly with patients, and no signature of the radiographer was recorded. Apart from routine brain protocol, there were dedicated protocols for epilepsy and stroke. Brain MRI images from 161 patients (85 Males; 76 Females) were analyzed. The age group with most brain MRI requests were from 26 to 45 year olds. The commonest four clinical indications for imaging were brain tumour, headache, seizure, and stroke. Using the ACR Appropriateness Criteria, almost 43% of the brain MRI scans analyzed were found to be "usually appropriate", 38% were "maybe appropriate" and 19% were categorized as "usually not appropriate". There was knowledge gap with regards to MRI safety in local practice, thus there is the utmost need for MRI safety training. Data on the commonest indications for performing brain MRI in this study should be used to inform local neuroradiological practice. Dedicated stroke and epilepsy MRI protocols require additional sequences i.e. MRA and 3D T1 volume acquisition, respectively. The ACR Appropriateness Criteria is recommended for use by the referring practitioners to improve appropriateness of brain MRI requests. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.
Caspase-3 inhibitor prevents the apoptosis of brain tissue in rats with acute cerebral infarction.
Sun, Yuhua; Xu, Yuming; Geng, Lijiao
2015-07-01
The aim of the present study was to investigate the effect of the caspase-3 inhibitor z-DEVD-fmk on the apoptosis of the brain tissues of rats with acute cerebral infarction. Middle cerebral artery occlusion was used to establish a rat model of infarction, and the rats were randomly divided into a sham group (n=15), model group (n=15) and treatment group (n=15). z-DEVD-fmk (2.5 µg/kg) was injected into the intracranial artery of rats in the treatment group, while the same volume of phosphate-buffered saline solution was administered to the rats of the sham and model groups. After 48 h, all rats were sacrificed and their brain tissues were removed. The caspase-3 mRNA level, protein level and activity, brain cell apoptosis index and infarction scope of the three groups were analyzed. Neurological impairment was also assessed. At 48 h after model establishment, the caspase-3 mRNA and protein levels in the brain tissues of the model group were significantly higher than those of the sham group, and those in the treatment group were significantly lower than those in the model group (P<0.05); however, they remained significantly higher than those in the sham group. Caspase-3 activity in the model group was significantly higher than that in the sham group, and treatment with the caspase-3 inhibitor significantly reduced caspase-3 activity compared with that in the model group (P<0.05). The apoptosis index and infarction scope in the model and treatment groups were significantly increased compared with those in the sham group, and were significantly lower in the treatment group than in the model group (P<0.05). The neurological impairment of rats in the model and treatment groups was increased significantly compared with that in the sham group, and the treatment group exhibited a significantly lower level of neurological impairment than the model group (P<0.05). In conclusion, the caspase-3 inhibitor z-DEVD-fmk effectively inhibited apoptosis and delayed the necrosis of brain tissue cells in rats with acute cerebral infarction, and had certain protective effects on brain tissue.
Lereim, Ragnhild Reehorst; Oveland, Eystein; Xiao, Yichuan; Torkildsen, Øivind; Wergeland, Stig; Myhr, Kjell-Morten; Sun, Shao-Cong; Berven, Frode S
2016-09-01
The ubiquitin ligase Peli1 has previously been suggested as a potential treatment target in multiple sclerosis. In the multiple sclerosis disease model, experimental autoimmune encephalomyelitis, Peli1 knock-out led to less activated microglia and less inflammation in the central nervous system. Despite being important in microglia, Peli1 expression has also been detected in glial and neuronal cells. In the present study the overall brain proteomes of Peli1 knock-out mice and wild-type mice were compared prior to experimental autoimmune encephalomyelitis induction, at onset of the disease and at disease peak. Brain samples from the frontal hemisphere, peripheral from the extensive inflammatory foci, were analyzed using TMT-labeling of sample pools, and the discovered proteins were verified in individual mice using label-free proteomics. The greatest proteomic differences between Peli1 knock-out and wild-type mice were observed at the disease peak. In Peli1 knock-out a higher degree of antigen presentation, increased activity of adaptive and innate immune cells and alterations to proteins involved in iron metabolism were observed during experimental autoimmune encephalomyelitis. These results unravel global effects to the brain proteome when abrogating Peli1 expression, underlining the importance of Peli1 as a regulator of the immune response also peripheral to inflammatory foci during experimental autoimmune encephalomyelitis. The proteomics data is available in PRIDE with accession PXD003710.
Neural Plasticity and Neurorehabilitation Following Traumatic Brain Injury
2009-10-01
Nissl . Using the Nissl stained sections, Dorothy Kozlowski’s lab has analyzed the size of the contusions. Previous studies have shown that if...brains, staining one set with Nissl , saving the remaining sets for Immunohistochemical staining . • Dr. Kozlowski’s lab is analyzing contusion size...serially and coronaly into sets and immunohistochemically analyzed for the following: contusion size estimated as volume of remaining tissue in Nissl
Emotion introspection and regulation in depression.
Herwig, Uwe; Opialla, Sarah; Cattapan, Katja; Wetter, Thomas C; Jäncke, Lutz; Brühl, Annette B
2018-07-30
Depressed patients suffer from an impairment to voluntarily influence and regulate their unpleasant emotional state. Strengthening the mental ability to interfere with dysfunctional emotion processing may be beneficial in treating depression. According to models of emotion processing this may be done by successful down-regulation of enhanced amygdala activity. We investigated short periods of intentional emotion-introspection compared with cognitive self-reflection as two domains of self-awareness in terms of effects on emotion regulation. Thirty depressed patients performed twelve second periods of emotion-introspection, self-reflection and a neutral condition during functional magnetic resonance imaging. We analyzed brain activation in the patients with depression by means of whole brain, region of interest and connectivity analyses. Amygdala activity decreased during emotion-introspection relative to self-reflection and to the neutral condition, whereby left amygdala was inversely activated relative to the left insula. Insula activity itself was correlated with medial and dorsolateral prefrontal cortex (PFC) activation. In conclusion, depressed patients are able to down-regulate amygdala activity by emotion-introspection. This may be interpreted as well-working emotion regulation supposedly induced by PFC connections mediated via insula. The finding supports the application of emotion-introspection, a mindfulness-related process, in a clinical setting as an element of psychotherapy to train and improve emotion regulation. Copyright © 2018 Elsevier B.V. All rights reserved.
Evidence of Tau Hyperphosphorylation and Dystrophic Microglia in the Common Marmoset.
Rodriguez-Callejas, Juan D; Fuchs, Eberhard; Perez-Cruz, Claudia
2016-01-01
Common marmosets ( Callithrix jacchus ) have recently gained popularity in biomedical research as models of aging research. Basically, they confer advantages from other non-human primates due to their shorter lifespan with onset of appearance of aging at 8 years. Old marmosets present some markers linked to neurodegeneration in the brain such as amyloid beta (Aβ) 1-42 and Aβ 1-40 . However, there are no studies exploring other cellular markers associated with neurodegenerative diseases in this non-human primate. Using immunohistochemistry, we analyzed brains of male adolescent, adult, old, and aged marmosets. We observed accumulation of Aβ 1-40 and Aβ 1-42 in the cortex of aged subjects. Tau hyperphosphorylation was already detected in the brain of adolescent animals and increased with aging in a more fibrillary form. Microglia activation was also observed in the aging process, while a dystrophic phenotype accumulates in aged subjects. Interestingly, dystrophic microglia contained hyperphosphorylated tau, but active microglia did not. These results support previous findings regarding microglia dysfunctionality in aging and neurodegenerative diseases as Alzheimer's disease. Further studies should explore the functional consequences of these findings to position this non-human primate as animal model of aging and neurodegeneration.
Evidence of Tau Hyperphosphorylation and Dystrophic Microglia in the Common Marmoset
Rodriguez-Callejas, Juan D.; Fuchs, Eberhard; Perez-Cruz, Claudia
2016-01-01
Common marmosets (Callithrix jacchus) have recently gained popularity in biomedical research as models of aging research. Basically, they confer advantages from other non-human primates due to their shorter lifespan with onset of appearance of aging at 8 years. Old marmosets present some markers linked to neurodegeneration in the brain such as amyloid beta (Aβ)1-42 and Aβ1-40. However, there are no studies exploring other cellular markers associated with neurodegenerative diseases in this non-human primate. Using immunohistochemistry, we analyzed brains of male adolescent, adult, old, and aged marmosets. We observed accumulation of Aβ1-40 and Aβ1-42 in the cortex of aged subjects. Tau hyperphosphorylation was already detected in the brain of adolescent animals and increased with aging in a more fibrillary form. Microglia activation was also observed in the aging process, while a dystrophic phenotype accumulates in aged subjects. Interestingly, dystrophic microglia contained hyperphosphorylated tau, but active microglia did not. These results support previous findings regarding microglia dysfunctionality in aging and neurodegenerative diseases as Alzheimer’s disease. Further studies should explore the functional consequences of these findings to position this non-human primate as animal model of aging and neurodegeneration. PMID:28066237
Dynamics of large-scale brain activity in normal arousal states and epileptic seizures
NASA Astrophysics Data System (ADS)
Robinson, P. A.; Rennie, C. J.; Rowe, D. L.
2002-04-01
Links between electroencephalograms (EEGs) and underlying aspects of neurophysiology and anatomy are poorly understood. Here a nonlinear continuum model of large-scale brain electrical activity is used to analyze arousal states and their stability and nonlinear dynamics for physiologically realistic parameters. A simple ordered arousal sequence in a reduced parameter space is inferred and found to be consistent with experimentally determined parameters of waking states. Instabilities arise at spectral peaks of the major clinically observed EEG rhythms-mainly slow wave, delta, theta, alpha, and sleep spindle-with each instability zone lying near its most common experimental precursor arousal states in the reduced space. Theta, alpha, and spindle instabilities evolve toward low-dimensional nonlinear limit cycles that correspond closely to EEGs of petit mal seizures for theta instability, and grand mal seizures for the other types. Nonlinear stimulus-induced entrainment and seizures are also seen, EEG spectra and potentials evoked by stimuli are reproduced, and numerous other points of experimental agreement are found. Inverse modeling enables physiological parameters underlying observed EEGs to be determined by a new, noninvasive route. This model thus provides a single, powerful framework for quantitative understanding of a wide variety of brain phenomena.
Tracking brain states under general anesthesia by using global coherence analysis
Cimenser, Aylin; Purdon, Patrick L.; Pierce, Eric T.; Walsh, John L.; Salazar-Gomez, Andres F.; Harrell, Priscilla G.; Tavares-Stoeckel, Casie; Habeeb, Kathleen; Brown, Emery N.
2011-01-01
Time and frequency domain analyses of scalp EEG recordings are widely used to track changes in brain states under general anesthesia. Although these analyses have suggested that different spatial patterns are associated with changes in the state of general anesthesia, the extent to which these patterns are spatially coordinated has not been systematically characterized. Global coherence, the ratio of the largest eigenvalue to the sum of the eigenvalues of the cross-spectral matrix at a given frequency and time, has been used to analyze the spatiotemporal dynamics of multivariate time-series. Using 64-lead EEG recorded from human subjects receiving computer-controlled infusions of the anesthetic propofol, we used surface Laplacian referencing combined with spectral and global coherence analyses to track the spatiotemporal dynamics of the brain's anesthetic state. During unconsciousness the spectrograms in the frontal leads showed increasing α (8–12 Hz) and δ power (0–4 Hz) and in the occipital leads δ power greater than α power. The global coherence detected strong coordinated α activity in the occipital leads in the awake state that shifted to the frontal leads during unconsciousness. It revealed a lack of coordinated δ activity during both the awake and unconscious states. Although strong frontal power during general anesthesia-induced unconsciousness—termed anteriorization—is well known, its possible association with strong α range global coherence suggests highly coordinated spatial activity. Our findings suggest that combined spectral and global coherence analyses may offer a new approach to tracking brain states under general anesthesia. PMID:21555565
Gender differences in human single neuron responses to male emotional faces
Newhoff, Morgan; Treiman, David M.; Smith, Kris A.; Steinmetz, Peter N.
2015-01-01
Well-documented differences in the psychology and behavior of men and women have spurred extensive exploration of gender's role within the brain, particularly regarding emotional processing. While neuroanatomical studies clearly show differences between the sexes, the functional effects of these differences are less understood. Neuroimaging studies have shown inconsistent locations and magnitudes of gender differences in brain hemodynamic responses to emotion. To better understand the neurophysiology of these gender differences, we analyzed recordings of single neuron activity in the human brain as subjects of both genders viewed emotional expressions. This study included recordings of single-neuron activity of 14 (6 male) epileptic patients in four brain areas: amygdala (236 neurons), hippocampus (n = 270), anterior cingulate cortex (n = 256), and ventromedial prefrontal cortex (n = 174). Neural activity was recorded while participants viewed a series of avatar male faces portraying positive, negative or neutral expressions. Significant gender differences were found in the left amygdala, where 23% (n = 15∕66) of neurons in men were significantly affected by facial emotion, vs. 8% (n = 6∕76) of neurons in women. A Fisher's exact test comparing the two ratios found a highly significant difference between the two (p < 0.01). These results show specific differences between genders at the single-neuron level in the human amygdala. These differences may reflect gender-based distinctions in evolved capacities for emotional processing and also demonstrate the importance of including subject gender as an independent factor in future studies of emotional processing by single neurons in the human amygdala. PMID:26441597
Becerra, Lino; Aasted, Christopher M; Boas, David A; George, Edward; Yücel, Meryem A; Kussman, Barry D; Kelsey, Peter; Borsook, David
2016-04-01
Colonoscopy is an invaluable tool for the screening and diagnosis of many colonic diseases. For most colonoscopies, moderate sedation is used during the procedure. However, insufflation of the colon produces a nociceptive stimulus that is usually accompanied by facial grimacing/groaning while under sedation. The objective of this study was to evaluate whether a nociceptive signal elicited by colonic insufflation could be measured from the brain. Seventeen otherwise healthy patients (age 54.8 ± 9.1; 6 female) undergoing routine colonoscopy (ie, no history of significant medical conditions) were monitored using near-infrared spectroscopy (NIRS). Moderate sedation was produced using standard clinical protocols for midazolam and meperidine, titrated to effect. Near-infrared spectroscopy data captured during the procedure was analyzed offline to evaluate the brains' responses to nociceptive stimuli evoked by the insufflation events (defined by physician or observing patients' facial responses). Analysis of NIRS data revealed a specific, reproducible prefrontal cortex activity corresponding to times when patients grimaced. The pattern of the activation is similar to that previously observed during nociceptive stimuli in awake healthy individuals, suggesting that this approach may be used to evaluate brain activity evoked by nociceptive stimuli under sedation, when there is incomplete analgesia. Although some patients report recollection of procedural pain after the procedure, the effects of repeated nociceptive stimuli in surgical patients may contribute to postoperative changes including chronic pain. The results from this study indicate that NIRS may be a suitable technology for continuous nociceptive afferent monitoring in patients undergoing sedation and could have applications under sedation or anesthesia.
Goenaga, Julianna; Hatch, Kayla N.; Henricks, Angela; Scott, Samantha; Hood, Lauren E.; Neisewander, Janet L.
2016-01-01
Smoking initiation predominantly occurs during adolescence, often in the presence of peers. Therefore, understanding the neural mechanisms underlying the rewarding effects of nicotine and social stimuli is vital. Using the conditioned place preference (CPP) procedure, we measured immediate early gene (IEG) expression in animals following exposure either to a reward-conditioned environment or to the unconditioned stimuli (US). Adolescent, male rats were assigned to the following CPP US conditions: (1) Saline + Isolated, (2) Nicotine + Isolated, (3) Saline + Social, or (4) Nicotine + Social. For Experiment 1, brain tissue was collected 90 min following the CPP expression test and processed for Fos immunohistochemistry. We found that rats conditioned with nicotine with or without a social partner exhibited CPP; however, we found no group differences in Fos expression in any brain region analyzed, with the exception of the nucleus accumbens core that exhibited a social-induced attenuation in Fos expression. For Experiment 2, brain tissue was collected 90 min following US exposure during the last conditioning session. We found social reward-induced increases in IEG expression in striatal and amydalar subregions. In contrast, nicotine reduced IEG expression in prefrontal and striatal subregions. Reward interactions were also found in the dorsolateral striatum, basolateral amygdala, and ventral tegmental area where nicotine alone attenuated IEG expression and social reward reversed this effect. These results suggest that in general social rewards enhance, whereas nicotine attenuates, activation of mesocorticolimbic regions; however, the rewards given together interact to enhance activation in some regions. The findings contribute to knowledge of how a social environment influences nicotine effects. PMID:27435419
ERIC Educational Resources Information Center
What Works Clearinghouse, 2012
2012-01-01
The study examined whether exercise offered to sedentary, overweight children ages 7 to 11 improved executive function--defined as strategy execution when presented with a novel task--and academic performance in reading and math. The study authors analyzed data on about 170 students from Georgia who were recruited in five cohorts from 2003 to…
Changes in absolute theta power in bipolar patients during a saccadic attention task.
Cartier, Consuelo; Diniz, Claudia; Di Girogio, Luiza; Bittencourt, Juliana; Gongora, Mariana; Ken Tanaka, Guaraci; Teixeira, Silmar; Basile, Luis F; Novis, Fernanda; Angélica Silveira, Luciana; da Silva, Rafael de Assis; Cagy, Mauricio; Cheniaux, Elie; Ribeiro, Pedro; Velasques, Bruna
2015-08-30
The present study analyzed absolute theta power (ATP) in brain areas involved with attention in the three phase of BD while the patients performing a saccadic attention task. We hypothesized that patients in depression and mania states show a higher ATP compared to euthymic patients, since a higher ATP is indicative of attention deficit. We analyzed the frontal (F7, F3, Fz, F4 and F8) and central (C3, Cz and C4) areas. Thirty bipolar patients were enrolled in this study. The subjects performed a saccadic attention task while their brain activity pattern was recorded using quantitative electroencephalography (20 channels). Our results showed a main effect for group over C3, C4, Cz, F7, F4, F8 electrodes, and a main effect for moment over Cz, F7, F8 electrodes. These results indicate that both task and groups produce changes in theta activity in distinct cortical areas that participate in the organization of attention. Our results therefore demonstrate that, although it is well established in the literature that theta has a relevant role in the attention process, it is necessary to deepen the investigations to better understand the specifics of theta during visual processing tasks that have a demand for attention. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Neural networks involved in artistic creativity.
Kowatari, Yasuyuki; Lee, Seung Hee; Yamamura, Hiromi; Nagamori, Yusuke; Levy, Pierre; Yamane, Shigeru; Yamamoto, Miyuki
2009-05-01
Creativity has been proposed to be either the result of solely right hemisphere processes or of interhemispheric interactions. Little information is available, however, concerning the neuronal foundations of creativity. In this study, we introduced a new artistic task, designing a new tool (a pen), which let us quantitatively evaluate creativity by three indices of originality. These scores were analyzed in combination with brain activities measured by functional magnetic resonance imaging (fMRI). The results were compared between subjects who had been formally trained in design (experts) and novice subjects. In the experts, creativity was quantitatively correlated with the degree of dominance of the right prefrontal cortex over that of the left, but not with that of the right or left prefrontal cortex alone. In contrast, in novice subjects, only a negative correlation with creativity was observed in the bilateral inferior parietal cortex. We introduced structure equation modeling to analyze the interactions among these four brain areas and originality indices. The results predicted that training exerts a direct effect on the left parietal cortex. Additionally, as a result of the indirect effects, the activity of the right prefrontal cortex was facilitated, and the left prefrontal and right parietal cortices were suppressed. Our results supported the hypothesis that training increases creativity via reorganized intercortical interactions. (c) 2008 Wiley-Liss, Inc.
Neuroimaging explanations of age-related differences in task performance.
Steffener, Jason; Barulli, Daniel; Habeck, Christian; Stern, Yaakov
2014-01-01
Advancing age affects both cognitive performance and functional brain activity and interpretation of these effects has led to a variety of conceptual research models without always explicitly linking the two effects. However, to best understand the multifaceted effects of advancing age, age differences in functional brain activity need to be explicitly tied to the cognitive task performance. This work hypothesized that age-related differences in task performance are partially explained by age-related differences in functional brain activity and formally tested these causal relationships. Functional MRI data was from groups of young and old adults engaged in an executive task-switching experiment. Analyses were voxel-wise testing of moderated-mediation and simple mediation statistical path models to determine whether age group, brain activity and their interaction explained task performance in regions demonstrating an effect of age group. Results identified brain regions whose age-related differences in functional brain activity significantly explained age-related differences in task performance. In all identified locations, significant moderated-mediation relationships resulted from increasing brain activity predicting worse (slower) task performance in older but not younger adults. Findings suggest that advancing age links task performance to the level of brain activity. The overall message of this work is that in order to understand the role of functional brain activity on cognitive performance, analysis methods should respect theoretical relationships. Namely, that age affects brain activity and brain activity is related to task performance.
Semyachkina-Glushkovskaya, Oxana; Borisova, Ekaterina; Abakumov, Maxim; Gorin, Dmitry; Avramov, Latchezar; Fedosov, Ivan; Namykin, Anton; Abdurashitov, Arkady; Serov, Alexander; Pavlov, Alexey; Zinchenko, Ekaterina; Lychagov, Vlad; Navolokin, Nikita; Shirokov, Alexander; Maslyakova, Galina; Zhu, Dan; Luo, Qingming; Chekhonin, Vladimir; Tuchin, Valery; Kurths, Jürgen
2016-01-01
In this study, we analyzed the time-depended scenario of stress response cascade preceding and accompanying brain hemorrhages in newborn rats using an interdisciplinary approach based on: a morphological analysis of brain tissues, coherent-domain optical technologies for visualization of the cerebral blood flow, monitoring of the cerebral oxygenation and the deformability of red blood cells (RBCs). Using a model of stress-induced brain hemorrhages (sound stress, 120 dB, 370 Hz), we studied changes in neonatal brain 2, 4, 6, 8 h after stress (the pre-hemorrhage, latent period) and 24 h after stress (the post-hemorrhage period). We found that latent period of brain hemorrhages is accompanied by gradual pathological changes in systemic, metabolic, and cellular levels of stress. The incidence of brain hemorrhages is characterized by a progression of these changes and the irreversible cell death in the brain areas involved in higher mental functions. These processes are realized via a time-depended reduction of cerebral venous blood flow and oxygenation that was accompanied by an increase in RBCs deformability. The significant depletion of the molecular layer of the prefrontal cortex and the pyramidal neurons, which are crucial for associative learning and attention, is developed as a consequence of homeostasis imbalance. Thus, stress-induced processes preceding and accompanying brain hemorrhages in neonatal period contribute to serious injuries of the brain blood circulation, cerebral metabolic activity and structural elements of cognitive function. These results are an informative platform for further studies of mechanisms underlying stress-induced brain hemorrhages during the first days of life that will improve the future generation's health. PMID:27378933
Matsushita, Kojiro; Hirata, Masayuki; Suzuki, Takafumi; Ando, Hiroshi; Ota, Yuki; Sato, Fumihiro; Morris, Shyne; Yoshida, Takeshi; Matsuki, Hidetoshi; Yoshimine, Toshiki
2013-01-01
Brain Machine Interface (BMI) is a system that assumes user's intention by analyzing user's brain activities and control devices with the assumed intention. It is considered as one of prospective tools to enhance paralyzed patients' quality of life. In our group, we especially focus on ECoG (electro-corti-gram)-BMI, which requires surgery to place electrodes on the cortex. We try to implant all the devices within the patient's head and abdomen and to transmit the data and power wirelessly. Our device consists of 5 parts: (1) High-density multi-electrodes with a 3D shaped sheet fitting to the individual brain surface to effectively record the ECoG signals; (2) A small circuit board with two integrated circuit chips functioning 128 [ch] analogue amplifiers and A/D converters for ECoG signals; (3) A Wifi data communication & control circuit with the target PC; (4) A non-contact power supply transmitting electrical power minimum 400[mW] to the device 20[mm] away. We developed those devices, integrated them, and, investigated the performance.
On one approach to health protection: Music of the brain.
Fedotchev, Alexander; Radchenko, Grigoriy; Zemlianaia, Anna
2017-10-18
This review presents the current status of a method for prevention and timely correction of human functional disturbances that was first proposed by Russian neurologist Ya.I. Levin in 1998 and further developed by the authors. The approach is named "Music of the Brain" and is based on musical or music-like stimulation organized in strict accordance with the biopotentials of a patient's brain. Initial studies on the music of the brain approach were analyzed, and its limitations were noted. To enhance the efficiency and usability of the approach, several combinations of music therapy with neurofeedback technique - musical neurofeedback - were developed. Enhanced efficiency of the approach has been shown for correction of functional disturbances during pregnancy and for elimination of stress-induced states in high technology specialists. The use and advantages of musical neurofeedback technology for increasing human cognitive activity, correcting sleep disturbances and treatment of disorders of attention were verified. After further development and testing the approach may be suited for a wide range of therapeutic and rehabilitation procedures in the protection of public health.
TauG-guidance of transients in expressive musical performance.
Schogler, Benjaman; Pepping, Gert-Jan; Lee, David N
2008-08-01
The sounds in expressive musical performance, and the movements that produce them, offer insight into temporal patterns in the brain that generate expression. To gain understanding of these brain patterns, we analyzed two types of transient sounds, and the movements that produced them, during a vocal duet and a bass solo. The transient sounds studied were inter-tone f (0)(t)-glides (the continuous change in fundamental frequency, f (0)(t), when gliding from one tone to the next), and attack intensity-glides (the continuous rise in sound intensity when attacking, or initiating, a tone). The temporal patterns of the inter-tone f (0)(t)-glides and attack intensity-glides, and of the movements producing them, all conformed to the mathematical function, tau (G)(t) (called tauG), predicted by General Tau Theory, and assumed to be generated in the brain. The values of the parameters of the tau (G)(t) function were modulated by the performers when they modulated musical expression. Thus the tau (G)(t) function appears to be a fundamental of brain activity entailed in the generation of expressive temporal patterns of movement and sound.
Balietti, Marta; Giannubilo, Stefano R; Giorgetti, Belinda; Solazzi, Moreno; Turi, Angelo; Casoli, Tiziana; Ciavattini, Andrea; Fattorettia, Patrizia
2016-01-30
Astaxanthin (Ax) is a ketocarotenoid of the xanthophyll family with activities such as antioxidation, preservation of the integrity of cell membranes and protection of the redox state and functional integrity of mitochondria. The aim of this study was to investigate potential gender-related differences in the effect of Ax on the aging rat brain. In females, interleukin 1 beta (IL1β) was significantly lower in treated rats in both cerebral areas, and in the cerebellum, treated animals also had significantly higher IL10. In males, no differences were found in the cerebellum, but in the hippocampus, IL1β and IL10 were significantly higher in treated rats. These are the first results to show gender-related differences in the effect of Ax on the aging brain, emphasizing the necessity to carefully analyze female and male peculiarities when the anti-aging potentialities of this ketocarotenoid are evaluated. The observations lead to the hypothesis that Ax exerts different anti-inflammatory effects in female and male brains. © 2015 Society of Chemical Industry.
The opportunities and challenges of large-scale molecular approaches to songbird neurobiology
Mello, C.V.; Clayton, D.F.
2014-01-01
High-through put methods for analyzing genome structure and function are having a large impact in song-bird neurobiology. Methods include genome sequencing and annotation, comparative genomics, DNA microarrays and transcriptomics, and the development of a brain atlas of gene expression. Key emerging findings include the identification of complex transcriptional programs active during singing, the robust brain expression of non-coding RNAs, evidence of profound variations in gene expression across brain regions, and the identification of molecular specializations within song production and learning circuits. Current challenges include the statistical analysis of large datasets, effective genome curations, the efficient localization of gene expression changes to specific neuronal circuits and cells, and the dissection of behavioral and environmental factors that influence brain gene expression. The field requires efficient methods for comparisons with organisms like chicken, which offer important anatomical, functional and behavioral contrasts. As sequencing costs plummet, opportunities emerge for comparative approaches that may help reveal evolutionary transitions contributing to vocal learning, social behavior and other properties that make songbirds such compelling research subjects. PMID:25280907
Cuéllar, R; Montero, S; Luquín, S; García-Estrada, J; Dobrovinskaya, O; Melnikov, V; Lemus, M; de Álvarez-Buylla, E Roces
2015-01-01
Glutamate, released from central terminals of glossopharyngeal nerve, is a major excitatory neurotransmitter of commissural nucleus tractus solitarii (cNTS) afferent terminals, and brain derived neurotrophic factor (BDNF) has been shown to attenuate glutamatergic AMPA currents in NTS neurons. To test the hypothesis that AMPA contributes to glucose regulation in vivo modulating the hyperglycemic reflex with brain glucose retention (BGR), we microinjected AMPA and NBQX (AMPA antagonist) into the cNTS before carotid chemoreceptor stimulation in anesthetized normal Wistar rats, while hyperglycemic reflex an brain glucose retention (BGR) were analyzed. To investigate the underlying mechanisms, GluR2/3 receptor and c-Fos protein expressions in cNTS neurons were determined. We showed that AMPA in the cNTS before CChr stimulation inhibited BGR observed in aCSF group. In contrast, NBQX in similar conditions, did not modify the effects on glucose variables observed in aCSF control group. These experiments suggest that glutamatergic pathways, via AMPA receptors, in the cNTS may play a role in glucose homeostasis.
Hramov, Alexander E.; Maksimenko, Vladimir A.; Pchelintseva, Svetlana V.; Runnova, Anastasiya E.; Grubov, Vadim V.; Musatov, Vyacheslav Yu.; Zhuravlev, Maksim O.; Koronovskii, Alexey A.; Pisarchik, Alexander N.
2017-01-01
In order to classify different human brain states related to visual perception of ambiguous images, we use an artificial neural network (ANN) to analyze multichannel EEG. The classifier built on the basis of a multilayer perceptron achieves up to 95% accuracy in classifying EEG patterns corresponding to two different interpretations of the Necker cube. The important feature of our classifier is that trained on one subject it can be used for the classification of EEG traces of other subjects. This result suggests the existence of common features in the EEG structure associated with distinct interpretations of bistable objects. We firmly believe that the significance of our results is not limited to visual perception of the Necker cube images; the proposed experimental approach and developed computational technique based on ANN can also be applied to study and classify different brain states using neurophysiological data recordings. This may give new directions for future research in the field of cognitive and pathological brain activity, and for the development of brain-computer interfaces. PMID:29255403
Trace elements during primordial plexiform network formation in human cerebral organoids
Sartore, Rafaela C.; Cardoso, Simone C.; Lages, Yury V.M.; Paraguassu, Julia M.; Stelling, Mariana P.; Madeiro da Costa, Rodrigo F.; Guimaraes, Marilia Z.; Pérez, Carlos A.
2017-01-01
Systematic studies of micronutrients during brain formation are hindered by restrictions to animal models and adult post-mortem tissues. Recently, advances in stem cell biology have enabled recapitulation of the early stages of human telencephalon development in vitro. In the present work, we analyzed cerebral organoids derived from human pluripotent stem cells by synchrotron radiation X-ray fluorescence in order to measure biologically valuable micronutrients incorporated and distributed into the exogenously developing brain. Our findings indicate that elemental inclusion in organoids is consistent with human brain tissue and involves P, S, K, Ca, Fe and Zn. Occurrence of different concentration gradients also suggests active regulation of elemental transmembrane transport. Finally, the analysis of pairs of elements shows interesting elemental interaction patterns that change from 30 to 45 days of development, suggesting short- or long-term associations, such as storage in similar compartments or relevance for time-dependent biological processes. These findings shed light on which trace elements are important during human brain development and will support studies aimed to unravel the consequences of disrupted metal homeostasis for neurodevelopmental diseases, including those manifested in adulthood. PMID:28194309
Vorobyev, Victor; Kwon, Myoung Soo; Moe, Dagfinn; Parkkola, Riitta; Hämäläinen, Heikki
2015-01-01
Increased propensity for risky behavior in adolescents, particularly in peer groups, is thought to reflect maturational imbalance between reward processing and cognitive control systems that affect decision-making. We used functional magnetic resonance imaging (fMRI) to investigate brain functional correlates of risk-taking behavior and effects of peer influence in 18-19-year-old male adolescents. The subjects were divided into low and high risk-taking groups using either personality tests or risk-taking rates in a simulated driving task. The fMRI data were analyzed for decision-making (whether to take a risk at intersections) and outcome (pass or crash) phases, and for the influence of peer competition. Personality test-based groups showed no difference in the amount of risk-taking (similarly increased during peer competition) and brain activation. When groups were defined by actual task performance, risk-taking activated two areas in the left medial prefrontal cortex (PFC) significantly more in low than in high risk-takers. In the entire sample, risky decision-specific activation was found in the anterior and dorsal cingulate, superior parietal cortex, basal ganglia (including the nucleus accumbens), midbrain, thalamus, and hypothalamus. Peer competition increased outcome-related activation in the right caudate head and cerebellar vermis in the entire sample. Our results suggest that the activation of the medial (rather than lateral) PFC and striatum is most specific to risk-taking behavior of male adolescents in a simulated driving situation, and reflect a stronger conflict and thus increased cognitive effort to take risks in low risk-takers, and reward anticipation for risky decisions, respectively. The activation of the caudate nucleus, particularly for the positive outcome (pass) during peer competition, further suggests enhanced reward processing of risk-taking under peer influence.
Correspondence of the brain's functional architecture during activation and rest.
Smith, Stephen M; Fox, Peter T; Miller, Karla L; Glahn, David C; Fox, P Mickle; Mackay, Clare E; Filippini, Nicola; Watkins, Kate E; Toro, Roberto; Laird, Angela R; Beckmann, Christian F
2009-08-04
Neural connections, providing the substrate for functional networks, exist whether or not they are functionally active at any given moment. However, it is not known to what extent brain regions are continuously interacting when the brain is "at rest." In this work, we identify the major explicit activation networks by carrying out an image-based activation network analysis of thousands of separate activation maps derived from the BrainMap database of functional imaging studies, involving nearly 30,000 human subjects. Independently, we extract the major covarying networks in the resting brain, as imaged with functional magnetic resonance imaging in 36 subjects at rest. The sets of major brain networks, and their decompositions into subnetworks, show close correspondence between the independent analyses of resting and activation brain dynamics. We conclude that the full repertoire of functional networks utilized by the brain in action is continuously and dynamically "active" even when at "rest."
Enhanced oxidative capacity of ground squirrel brain mitochondria during hibernation
Ballinger, Mallory A.; Schwartz, Christine
2017-01-01
During hibernation, thirteen-lined ground squirrels (Ictidomys tridecemlineatus) regularly cycle between bouts of torpor and interbout arousal (IBA). Most of the brain is electrically quiescent during torpor but regains activity quickly upon arousal to IBA, resulting in extreme oscillations in energy demand during hibernation. We predicted increased functional capacity of brain mitochondria during hibernation compared with spring to accommodate the variable energy demands of hibernation. To address this hypothesis, we examined mitochondrial bioenergetics in the ground squirrel brain across three time points: spring (SP), torpor (TOR), and IBA. Respiration rates of isolated brain mitochondria through complex I of the electron transport chain were more than twofold higher in TOR and IBA than in SP (P < 0.05). We also found a 10% increase in membrane potential between hibernation and spring (P < 0.05), and that proton leak was lower in TOR and IBA than in SP. Finally, there was a 30% increase in calcium loading in SP brain mitochondria compared with TOR and IBA (P < 0.01). To analyze brain mitochondrial abundance between spring and hibernation, we measured the ratio of copy number in a mitochondrial gene (ND1) vs. a nuclear gene (B2M) in frozen cerebral cortex samples. No significant differences were observed in DNA copies between SP and IBA. These data show that brain mitochondrial bioenergetics are not static across the year and suggest that brain mitochondria function more effectively during the hibernation season, allowing for rapid production of energy to meet demand when extreme physiological changes are occurring. PMID:28077389
Nomura, Emi M.; Reber, Paul J.
2012-01-01
Considerable evidence has argued in favor of multiple neural systems supporting human category learning, one based on conscious rule inference and one based on implicit information integration. However, there have been few attempts to study potential system interactions during category learning. The PINNACLE (Parallel Interactive Neural Networks Active in Category Learning) model incorporates multiple categorization systems that compete to provide categorization judgments about visual stimuli. Incorporating competing systems requires inclusion of cognitive mechanisms associated with resolving this competition and creates a potential credit assignment problem in handling feedback. The hypothesized mechanisms make predictions about internal mental states that are not always reflected in choice behavior, but may be reflected in neural activity. Two prior functional magnetic resonance imaging (fMRI) studies of category learning were re-analyzed using PINNACLE to identify neural correlates of internal cognitive states on each trial. These analyses identified additional brain regions supporting the two types of category learning, regions particularly active when the systems are hypothesized to be in maximal competition, and found evidence of covert learning activity in the “off system” (the category learning system not currently driving behavior). These results suggest that PINNACLE provides a plausible framework for how competing multiple category learning systems are organized in the brain and shows how computational modeling approaches and fMRI can be used synergistically to gain access to cognitive processes that support complex decision-making machinery. PMID:24962771
Kadowaki, Masaru; Tadenuma, Taku; Kumahashi, Nobuyuki; Uchio, Yuji
2017-11-01
Patellar instability with medial patellofemoral ligament (MPFL) deficiency is a common sports injury among young people. Although nonoperative and surgical treatment can provide stability of the patella, patients often have anxiety related to the knee. We speculate that neural dysfunction may be related to anxiety in these patients; however, the mechanism in the brain that generates this anxiety remains unknown. (1) How does brain activity in patients with MPFL deficiency change in the areas related to somatic sensation against lateral shift of the patella? (2) How does patella instability, which can lead to continuous fear or apprehension for dislocation, influence brain activity in the areas related to emotion? Nineteen patients with MPFL deficiency underwent surgical reconstruction in our hospital from April 2012 to March 2014. Excluding seven patients with osteochondral lesions, 12 patients (five males and seven females; mean age, 20 years) with MPFL deficiency were sequentially included in this study. Eleven control subjects (four males and seven females; mean age, 23 years) were recruited from medical students who had no history of knee injury. Diagnosis of the MPFL deficiency was made with MR images, which confirmed the rupture, and by proving the instability with a custom-made biomechanical device. Brain activity during passive lateral stress to the patella was assessed by functional MRI. Functional and anatomic images were analyzed using statistical parametric mapping. Differences in functional MRI outcome measures from the detected activated brain regions between the patients with MPFL deficiency and controls were assessed using t tests. Intergroup analysis showed less activity in several sensorimotor cortical areas, including the contralateral primary somatosensory areas (% signal change for MPFL group 0.49% versus 1.1% for the control group; p < 0.001), thalamus (0.2% versus 0.41% for the MPFL versus control, respectively; p < 0.001), ipsilateral thalamus (0.02% versus 0.27% for the MPFL versus control, respectively; p < 0.001), and ipsilateral cerebellum (0.82% versus 1.25% for the MPFL versus control, respectively; p < 0.001) in the MPFL deficiency group than in the control group. In contrast, the MPFL deficiency group showed more activity in several areas, including the contralateral primary motor area (1.06% versus 0.6% for the MPFL versus control, respectively; p < 0.001), supplementary motor area (0.89% versus 0.52% for the MPFL versus control, respectively; p < 0.001), prefrontal cortex (1.09% versus 1.09% for the MPFL versus control, respectively; p < 0.001), inferior parietal lobule (0.89% versus 0.62% for the MPFL versus control, respectively; p < 0.001), anterior cingulate cortex (0.84% versus 0.08% for the MPFL versus control, respectively; p < 0.001), visual cortex (0.86% versus 0.14% for the MPFL versus control, respectively; p < 0.001), vermis (1.18% versus 0.37% for the MPFL versus control, respectively; p < 0.001), and ipsilateral prefrontal cortex (1.1% versus 0.75% for the MPFL versus control, respectively; p < 0.001) than did the control group. Less activity in the contralateral somatosensory cortical areas suggested that MPFL deficiency may lead to diminished somatic sensation against lateral shift of the patella. In contrast, increased activity in the anterior cingulate cortex, prefrontal cortex, and inferior parietal lobule may indicate anxiety or fear resulting from patellar instability, which is recognized as an aversion similar to that toward chronic pain. This study suggests that specific brain-area activity is increased in patients with MPFL deficiency relative to that in controls. Further longitudinal research to assess brain activity and proprioception between patients pre- and postreconstructive knee surgery may reveal more regarding how patella instability is related to brain function. We hope that based on such research, a neural approach to improve patella-instability-related brain function can be developed.
Visual Laterality of Calf–Mother Interactions in Wild Whales
Baranov, Vladimir; Osipova, Ludmila; Krasnova, Vera; Malashichev, Yegor
2010-01-01
Background Behavioral laterality is known for a variety of vertebrate and invertebrate animals. Laterality in social interactions has been described for a wide range of species including humans. Although evidence and theoretical predictions indicate that in social species the degree of population level laterality is greater than in solitary ones, the origin of these unilateral biases is not fully understood. It is especially poorly studied in the wild animals. Little is known about the role, which laterality in social interactions plays in natural populations. A number of brain characteristics make cetaceans most suitable for investigation of lateralization in social contacts. Methodology/Principal Findings Observations were made on wild beluga whales (Delphinapterus leucas) in the greatest breeding aggregation in the White Sea. Here we show that young calves (in 29 individually identified and in over a hundred of individually not recognized mother-calf pairs) swim and rest significantly longer on a mother's right side. Further observations along with the data from other cetaceans indicate that found laterality is a result of the calves' preference to observe their mothers with the left eye, i.e., to analyze the information on a socially significant object in the right brain hemisphere. Conclusions/Significance Data from our and previous work on cetacean laterality suggest that basic brain lateralizations are expressed in the same way in cetaceans and other vertebrates. While the information on social partners and novel objects is analyzed in the right brain hemisphere, the control of feeding behavior is performed by the left brain hemisphere. Continuous unilateral visual contacts of calves to mothers with the left eye may influence social development of the young by activation of the contralateral (right) brain hemisphere, indicating a possible mechanism on how behavioral lateralization may influence species life and welfare. This hypothesis is supported by evidence from other vertebrates. PMID:21072179
Gerlofs-Nijland, Miriam E; van Berlo, Damien; Cassee, Flemming R; Schins, Roel P F; Wang, Kate; Campbell, Arezoo
2010-05-17
The etiology and progression of neurodegenerative disorders depends on the interactions between a variety of factors including: aging, environmental exposures, and genetic susceptibility factors. Enhancement of proinflammatory events appears to be a common link in different neurological impairments, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. Studies have shown a link between exposure to particulate matter (PM), present in air pollution, and enhancement of central nervous system proinflammatory markers. In the present study, the association between exposure to air pollution (AP), derived from a specific source (diesel engine), and neuroinflammation was investigated. To elucidate whether specific regions of the brain are more susceptible to exposure to diesel-derived AP, various loci of the brain were separately analyzed. Rats were exposed for 6 hrs a day, 5 days a week, for 4 weeks to diesel engine exhaust (DEE) using a nose-only exposure chamber. The day after the final exposure, the brain was dissected into the following regions: cerebellum, frontal cortex, hippocampus, olfactory bulb and tubercles, and the striatum. Baseline levels of the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-alpha) and interleukin-1 alpha (IL-1alpha) were dependent on the region analyzed and increased in the striatum after exposure to DEE. In addition, baseline level of activation of the transcription factors (NF-kappaB) and (AP-1) was also region dependent but the levels were not significantly altered after exposure to DEE. A similar, though not significant, trend was seen with the mRNA expression levels of TNF-alpha and TNF Receptor-subtype I (TNF-RI). Our results indicate that different brain regions may be uniquely responsive to changes induced by exposure to DEE. This study once more underscores the role of neuroinflammation in response to ambient air pollution, however, it is valuable to assess if and to what extent the observed changes may impact the normal function and cellular integrity of unique brain regions.
Collombet, Jean-Marc; Four, Elise; Bernabé, Denis; Masqueliez, Catherine; Burckhart, Marie-France; Baille, Valérie; Baubichon, Dominique; Lallement, Guy
2005-03-30
To date, only short-term glial reaction has been extensively studied following soman or other warfare neurotoxicant poisoning. In a context of cell therapy by neural progenitor engraftment to repair brain damage, the long-term effect of soman on glial reaction and neural progenitor division was analyzed in the present study. The effect of soman poisoning was estimated in mouse brains at various times ranging from 1 to 90 days post-poisoning. Using immunochemistry and dye staining techniques (hemalun-eosin staining), the number of degenerating neurons, the number of dividing neural progenitors, and microglial, astroglial or oligodendroglial cell activation were studied. Soman poisoning led to rapid and massive (post-soman day 1) death of mature neurons as assessed by hemalun-eosin staining. Following this acute poisoning phase, a weak toxicity effect on mature neurons was still observed for a period of 1 month after poisoning. A massive short-termed microgliosis peaked on day 3 post-poisoning. Delayed astrogliosis was observed from 3 to 90 days after soman poisoning, contributing to glial scar formation. On the other hand, oligodendroglial cells or their precursors were practically unaffected by soman poisoning. Interestingly, neural progenitors located in the subgranular zone of the dentate gyrus (SGZ) or in the subventricular zone (SVZ) of the brain survived soman poisoning. Furthermore, soman poisoning significantly increased neural progenitor proliferation in both SGZ and SVZ brain areas on post-soman day 3 or day 8, respectively. This increased proliferation rate was detected up to 1 month after poisoning.
Thomzig, Achim; Laube, Gregor; Prüss, Harald; Veh, Rüdiger W
2005-04-11
K-ATP channels consist of two structurally different subunits: a pore-forming subunit of the Kir6.0-family (Kir6.1 or Kir6.2) and a sulfonylurea receptor (SUR1, SUR2, SUR2A, SUR2B) with regulatory activity. The functional diversity of K-ATP channels in brain is broad and of fundamental importance for neuronal activity. Here, using immunocytochemistry with monospecific antibodies against the Kir6.1 and Kir6.2 subunits, we analyze the regional and cellular distribution of both proteins in the adult rat brain. We find Kir6.2 to be widely expressed in all brain regions, suggesting that the Kir6.2 subunit forms the pore of the K-ATP channels in most neurons, presumably protecting the cells during cellular stress conditions such as hypoglycemia or ischemia. Especially in hypothalamic nuclei, in particular the ventromedial and arcuate nucleus, neurons display Kir6.2 immunoreactivity only, suggesting that Kir6.2 is the pore-forming subunit of the K-ATP channels in the glucose-responsive neurons of the hypothalamus. In contrast, Kir6.1-like immunolabeling is restricted to astrocytes (Thomzig et al. [2001] Mol Cell Neurosci 18:671-690) in most areas of the rat brain and very weak or absent in neurons. Only in distinct nuclei or neuronal subpopulations is a moderate or even strong Kir6.1 staining detected. The biological functions of these K-ATP channels still need to be elucidated. Copyright 2005 Wiley-Liss, Inc.
Parker, Jason G; Zalusky, Eric J; Kirbas, Cemil
2014-03-01
Accurate mapping of visual function and selective attention using fMRI is important in the study of human performance as well as in presurgical treatment planning of lesions in or near visual centers of the brain. Conjunctive visual search (CVS) is a useful tool for mapping visual function during fMRI because of its greater activation extent compared with high-capacity parallel search processes. The purpose of this work was to develop and evaluate a CVS that was capable of generating consistent activation in the basic and higher level visual areas of the brain by using a high number of distractors as well as an optimized contrast condition. Images from 10 healthy volunteers were analyzed and brain regions of greatest activation and deactivation were determined using a nonbiased decomposition of the results at the hemisphere, lobe, and gyrus levels. The results were quantified in terms of activation and deactivation extent and mean z-statistic. The proposed CVS was found to generate robust activation of the occipital lobe, as well as regions in the middle frontal gyrus associated with coordinating eye movements and in regions of the insula associated with task-level control and focal attention. As expected, the task demonstrated deactivation patterns commonly implicated in the default-mode network. Further deactivation was noted in the posterior region of the cerebellum, most likely associated with the formation of optimal search strategy. We believe the task will be useful in studies of visual and selective attention in the neuroscience community as well as in mapping visual function in clinical fMRI.
Longitudinal Growth Curves of Brain Function Underlying Inhibitory Control through Adolescence
Foran, William; Velanova, Katerina; Luna, Beatriz
2013-01-01
Neuroimaging studies suggest that developmental improvements in inhibitory control are primarily supported by changes in prefrontal executive function. However, studies are contradictory with respect to how activation in prefrontal regions changes with age, and they have yet to analyze longitudinal data using growth curve modeling, which allows characterization of dynamic processes of developmental change, individual differences in growth trajectories, and variables that predict any interindividual variability in trajectories. In this study, we present growth curves modeled from longitudinal fMRI data collected over 302 visits (across ages 9 to 26 years) from 123 human participants. Brain regions within circuits known to support motor response control, executive control, and error processing (i.e., aspects of inhibitory control) were investigated. Findings revealed distinct developmental trajectories for regions within each circuit and indicated that a hierarchical pattern of maturation of brain activation supports the gradual emergence of adult-like inhibitory control. Mean growth curves of activation in motor response control regions revealed no changes with age, although interindividual variability decreased with development, indicating equifinality with maturity. Activation in certain executive control regions decreased with age until adolescence, and variability was stable across development. Error-processing activation in the dorsal anterior cingulate cortex showed continued increases into adulthood and no significant interindividual variability across development, and was uniquely associated with task performance. These findings provide evidence that continued maturation of error-processing abilities supports the protracted development of inhibitory control over adolescence, while motor response control regions provide early-maturing foundational capacities and suggest that some executive control regions may buttress immature networks as error processing continues to mature. PMID:24227721
Labriffe, Matthieu; Annweiler, Cédric; Amirova, Liubov E; Gauquelin-Koch, Guillemette; Ter Minassian, Aram; Leiber, Louis-Marie; Beauchet, Olivier; Custaud, Marc-Antoine; Dinomais, Mickaël
2017-01-01
Human locomotion is a complex sensorimotor behavior whose central control remains difficult to explore using neuroimaging method due to technical constraints, notably the impossibility to walk with a scanner on the head and/or to walk for real inside current scanners. The aim of this functional Magnetic Resonance Imaging (fMRI) study was to analyze interactions between two paradigms to investigate the brain gait control network: (1) mental imagery of gait, and (2) passive mechanical stimulation of the plantar surface of the foot with the Korvit boots. The Korvit stimulator was used through two different modes, namely an organized ("gait like") sequence and a destructured (chaotic) pattern. Eighteen right-handed young healthy volunteers were recruited (mean age, 27 ± 4.7 years). Mental imagery activated a broad neuronal network including the supplementary motor area-proper (SMA-proper), pre-SMA, the dorsal premotor cortex, ventrolateral prefrontal cortex, anterior insula, and precuneus/superior parietal areas. The mechanical plantar stimulation activated the primary sensorimotor cortex and secondary somatosensory cortex bilaterally. The paradigms generated statistically common areas of activity, notably bilateral SMA-proper and right pre-SMA, highlighting the potential key role of SMA in gait control. There was no difference between the organized and chaotic Korvit sequences, highlighting the difficulty of developing a walking-specific plantar stimulation paradigm. In conclusion, this combined-fMRI paradigm combining mental imagery and gait-like plantar stimulation provides complementary information regarding gait-related brain activity and appears useful for the assessment of high-level gait control.
Nonstationary signal analysis in episodic memory retrieval
NASA Astrophysics Data System (ADS)
Ku, Y. G.; Kawasumi, Masashi; Saito, Masao
2004-04-01
The problem of blind source separation from a mixture that has nonstationarity can be seen in signal processing, speech processing, spectral analysis and so on. This study analyzed EEG signal during episodic memory retrieval using ICA and TVAR. This paper proposes a method which combines ICA and TVAR. The signal from the brain not only exhibits the nonstationary behavior, but also contain artifacts. EEG data at the frontal lobe (F3) from the scalp is collected during the episodic memory retrieval task. The method is applied to EEG data for analysis. The artifact (eye movement) is removed by ICA, and a single burst (around 6Hz) is obtained by TVAR, suggesting that the single burst is related to the brain activity during the episodic memory retrieval.
Entropy changes in brain function.
Rosso, Osvaldo A
2007-04-01
The traditional way of analyzing brain electrical activity, on the basis of electroencephalography (EEG) records, relies mainly on visual inspection and years of training. Although it is quite useful, of course, one has to acknowledge its subjective nature that hardly allows for a systematic protocol. In the present work quantifiers based on information theory and wavelet transform are reviewed. The "relative wavelet energy" provides information about the relative energy associated with different frequency bands present in the EEG and their corresponding degree of importance. The "normalized total wavelet entropy" carries information about the degree of order-disorder associated with a multi-frequency signal response. Their application in the analysis and quantification of short duration EEG signals (event-related potentials) and epileptic EEG records are summarized.
Neural dynamics during repetitive visual stimulation
NASA Astrophysics Data System (ADS)
Tsoneva, Tsvetomira; Garcia-Molina, Gary; Desain, Peter
2015-12-01
Objective. Steady-state visual evoked potentials (SSVEPs), the brain responses to repetitive visual stimulation (RVS), are widely utilized in neuroscience. Their high signal-to-noise ratio and ability to entrain oscillatory brain activity are beneficial for their applications in brain-computer interfaces, investigation of neural processes underlying brain rhythmic activity (steady-state topography) and probing the causal role of brain rhythms in cognition and emotion. This paper aims at analyzing the space and time EEG dynamics in response to RVS at the frequency of stimulation and ongoing rhythms in the delta, theta, alpha, beta, and gamma bands. Approach.We used electroencephalography (EEG) to study the oscillatory brain dynamics during RVS at 10 frequencies in the gamma band (40-60 Hz). We collected an extensive EEG data set from 32 participants and analyzed the RVS evoked and induced responses in the time-frequency domain. Main results. Stable SSVEP over parieto-occipital sites was observed at each of the fundamental frequencies and their harmonics and sub-harmonics. Both the strength and the spatial propagation of the SSVEP response seem sensitive to stimulus frequency. The SSVEP was more localized around the parieto-occipital sites for higher frequencies (>54 Hz) and spread to fronto-central locations for lower frequencies. We observed a strong negative correlation between stimulation frequency and relative power change at that frequency, the first harmonic and the sub-harmonic components over occipital sites. Interestingly, over parietal sites for sub-harmonics a positive correlation of relative power change and stimulation frequency was found. A number of distinct patterns in delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz) and beta (15-30 Hz) bands were also observed. The transient response, from 0 to about 300 ms after stimulation onset, was accompanied by increase in delta and theta power over fronto-central and occipital sites, which returned to baseline after approx. 500 ms. During the steady-state response, we observed alpha band desynchronization over occipital sites and after 500 ms also over frontal sites, while neighboring areas synchronized. The power in beta band over occipital sites increased during the stimulation period, possibly caused by increase in power at sub-harmonic frequencies of stimulation. Gamma power was also enhanced by the stimulation. Significance. These findings have direct implications on the use of RVS and SSVEPs for neural process investigation through steady-state topography, controlled entrainment of brain oscillations and BCIs. A deep understanding of SSVEP propagation in time and space and the link with ongoing brain rhythms is crucial for optimizing the typical SSVEP applications for studying, assisting, or augmenting human cognitive and sensorimotor function.
Gabriel, Abigail; Batey, Jason; Capogreco, Joseph; Kimball, David; Walters, Andy; Tubbs, R Shane; Loukas, Marios
2014-08-25
Despite much epidemiological research on brain cancer in the United States, the etiology for the various subtypes remains elusive. The black population in the United States currently experiences lower incidence but higher survival rates when compared to other races. Thus, the aim of this study is to analyze the trends in incidence and survival for the 6 most common primary brain tumors in the black population of the United States. The Surveillance, Epidemiology, and End Results (SEER) database was utilized in this study to analyze the incidence and survival rates for the 6 most common brain tumor subtypes. Joinpoint 3.5.2 software was used to analyze trends in the incidence of diagnosis from 1973 to 2008. A Kaplan-Meier curve was generated to analyze mean time to death and survival at 60 months. Joinpoint analysis revealed that per year the incidence of brain cancer in the U.S. black population increased by 0.11 between 1973 and 1989. After this period, a moderate decrease by 0.06 per annum was observed from 1989 to 2008. Lymphoma was the most common primary tumor subtype for black individuals ages 20-34, and glioblastoma was identified as the most common tumor subtype for black individuals in the age groups of 35-49, 50-64, 65-79, and 80+. This population-based retrospective study of brain cancer in black adults in the United States revealed significant sex and age differences in the incidence of the 6 most common brain tumor subtypes from 1973 to 2008.
Engineered LINE-1 retrotransposition in nondividing human neurons.
Macia, Angela; Widmann, Thomas J; Heras, Sara R; Ayllon, Veronica; Sanchez, Laura; Benkaddour-Boumzaouad, Meriem; Muñoz-Lopez, Martin; Rubio, Alejandro; Amador-Cubero, Suyapa; Blanco-Jimenez, Eva; Garcia-Castro, Javier; Menendez, Pablo; Ng, Philip; Muotri, Alysson R; Goodier, John L; Garcia-Perez, Jose L
2017-03-01
Half the human genome is made of transposable elements (TEs), whose ongoing activity continues to impact our genome. LINE-1 (or L1) is an autonomous non-LTR retrotransposon in the human genome, comprising 17% of its genomic mass and containing an average of 80-100 active L1s per average genome that provide a source of inter-individual variation. New LINE-1 insertions are thought to accumulate mostly during human embryogenesis. Surprisingly, the activity of L1s can further impact the somatic human brain genome. However, it is currently unknown whether L1 can retrotranspose in other somatic healthy tissues or if L1 mobilization is restricted to neuronal precursor cells (NPCs) in the human brain. Here, we took advantage of an engineered L1 retrotransposition assay to analyze L1 mobilization rates in human mesenchymal (MSCs) and hematopoietic (HSCs) somatic stem cells. Notably, we have observed that L1 expression and engineered retrotransposition is much lower in both MSCs and HSCs when compared to NPCs. Remarkably, we have further demonstrated for the first time that engineered L1s can retrotranspose efficiently in mature nondividing neuronal cells. Thus, these findings suggest that the degree of somatic mosaicism and the impact of L1 retrotransposition in the human brain is likely much higher than previously thought. © 2017 Macia et al.; Published by Cold Spring Harbor Laboratory Press.
Microglia recapitulate a hematopoietic master regulator network in the aging human frontal cortex
Wehrspaun, Claudia C.; Haerty, Wilfried; Ponting, Chris P.
2015-01-01
Microglia form the immune system of the brain. Previous studies in cell cultures and animal models suggest altered activation states and cellular senescence in the aged brain. Instead, we analyzed 3 transcriptome data sets from the postmortem frontal cortex of 381 control individuals to show that microglia gene markers assemble into a transcriptional module in a gene coexpression network. These markers predominantly represented M1 and M1/M2b activation phenotypes. Expression of genes in this module generally declines over the adult life span. This decrease was more pronounced in microglia surface receptors for microglia and/or neuron crosstalk than in markers for activation state phenotypes. In addition to these receptors for exogenous signals, microglia are controlled by brain-expressed regulatory factors. We identified a subnetwork of transcription factors, including RUNX1, IRF8, PU.1, and TAL1, which are master regulators (MRs) for the age-dependent microglia module. The causal contributions of these MRs on the microglia module were verified using publicly available ChIP-Seq data. Interactions of these key MRs were preserved in a protein-protein interaction network. Importantly, these MRs appear to be essential for regulating microglia homeostasis in the adult human frontal cortex in addition to their crucial roles in hematopoiesis and myeloid cell-fate decisions during embryogenesis. PMID:26002684
Frontal Lobe Hemodynamic Responses to Painful Stimulation: A Potential Brain Marker of Nociception
Steele, Sarah C.; Peng, Ke; Boas, David A.; Becerra, Lino; Borsook, David
2016-01-01
The purpose of this study was to use functional near-infrared spectroscopy (fNIRS) to examine patterns of both activation and deactivation that occur in the frontal lobe in response to noxious stimuli. The frontal lobe was selected because it has been shown to be activated by noxious stimuli in functional magnetic resonance imaging studies. The brain region is located behind the forehead which is devoid of hair, providing a relative ease of placement for fNIRS probes on this area of the head. Based on functional magnetic resonance imaging studies showing blood-oxygenation-level dependent changes in the frontal lobes, we evaluated functional near-infrared spectroscopy measures in response to two levels of electrical pain in awake, healthy human subjects (n = 10; male = 10). Each subject underwent two recording sessions separated by a 30-minute resting period. Data collected from 7 subjects were analyzed, containing a total of 38/36 low/high intensity pain stimuli for the first recording session and 27/31 pain stimuli for the second session. Our results show that there is a robust and significant deactivation in sections of the frontal cortices. Further development and definition of the specificity and sensitivity of the approach may provide an objective measure of nociceptive activity in the brain that can be easily applied in the surgical setting. PMID:27806119
Frontal Lobe Hemodynamic Responses to Painful Stimulation: A Potential Brain Marker of Nociception.
Aasted, Christopher M; Yücel, Meryem A; Steele, Sarah C; Peng, Ke; Boas, David A; Becerra, Lino; Borsook, David
2016-01-01
The purpose of this study was to use functional near-infrared spectroscopy (fNIRS) to examine patterns of both activation and deactivation that occur in the frontal lobe in response to noxious stimuli. The frontal lobe was selected because it has been shown to be activated by noxious stimuli in functional magnetic resonance imaging studies. The brain region is located behind the forehead which is devoid of hair, providing a relative ease of placement for fNIRS probes on this area of the head. Based on functional magnetic resonance imaging studies showing blood-oxygenation-level dependent changes in the frontal lobes, we evaluated functional near-infrared spectroscopy measures in response to two levels of electrical pain in awake, healthy human subjects (n = 10; male = 10). Each subject underwent two recording sessions separated by a 30-minute resting period. Data collected from 7 subjects were analyzed, containing a total of 38/36 low/high intensity pain stimuli for the first recording session and 27/31 pain stimuli for the second session. Our results show that there is a robust and significant deactivation in sections of the frontal cortices. Further development and definition of the specificity and sensitivity of the approach may provide an objective measure of nociceptive activity in the brain that can be easily applied in the surgical setting.
Robust Long-Range Coordination of Spontaneous Neural Activity in Waking, Sleep and Anesthesia.
Liu, Xiao; Yanagawa, Toru; Leopold, David A; Fujii, Naotaka; Duyn, Jeff H
2015-09-01
Although the emerging field of functional connectomics relies increasingly on the analysis of spontaneous fMRI signal covariation to infer the spatial fingerprint of the brain's large-scale functional networks, the nature of the underlying neuro-electrical activity remains incompletely understood. In part, this lack in understanding owes to the invasiveness of electrophysiological acquisition, the difficulty in their simultaneous recording over large cortical areas, and the absence of fully established methods for unbiased extraction of network information from these data. Here, we demonstrate a novel, data-driven approach to analyze spontaneous signal variations in electrocorticographic (ECoG) recordings from nearly entire hemispheres of macaque monkeys. Based on both broadband analysis and analysis of specific frequency bands, the ECoG signals were found to co-vary in patterns that resembled the fMRI networks reported in previous studies. The extracted patterns were robust against changes in consciousness associated with sleep and anesthesia, despite profound changes in intrinsic characteristics of the raw signals, including their spectral signatures. These results suggest that the spatial organization of large-scale brain networks results from neural activity with a broadband spectral feature and is a core aspect of the brain's physiology that does not depend on the state of consciousness. Published by Oxford University Press 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Chung, W S; Lim, S M; Yoo, J H; Yoon, H
2013-01-01
Factors related to sexual arousal are different in men and women. The conditions for women to become aroused are more complex. However, the conventional audio-visual stimulation (AVS) materials used to evaluate sexual arousal are universal. In the present study, we investigated sexual differences in the response to different types of AVS by studying activated areas of the brain using functional magnetic resonance imaging (fMRI). fMRI was performed during two types of AVS in 20 healthy heterosexual volunteers (aged 20-28 years, 10 men and 10 women). The two AVS types were: (1) mood type, erotic video clips with a concrete story and (2) physical type, directly exposing sexual intercourse and genitalia. fMRI images were analyzed and compared for each stimulation with a Mann-Whitney U test, with statistical significance set at P<0.05. Men preferred the physical type of AVS to the mood type (mean arousal score 2.14 vs 1.86 in females) and women preferred the mood type (mean arousal score 2.14 vs 1.86 in males) (P<0.05). Degrees of activation in brain areas differed between genders and types of AVS for each gender. This should be considered when applying the AVS method to evaluate and diagnose female sexual dysfunction.
Epigenetic regulation of NOTCH1 and NOTCH3 by KMT2A inhibits glioma proliferation.
Huang, Yin-Cheng; Lin, Sheng-Jia; Shih, Hung-Yu; Chou, Chung-Han; Chu, Hsiao-Han; Chiu, Ching-Chi; Yuh, Chiou-Hwa; Yeh, Tu-Hsueh; Cheng, Yi-Chuan
2017-09-08
Glioblastomas are among the most fatal brain tumors; however, the molecular determinants of their tumorigenic behavior are not adequately defined. In this study, we analyzed the role of KMT2A in the glioblastoma cell line U-87 MG. KMT2A knockdown promoted cell proliferation. Moreover, it increased the DNA methylation of NOTCH1 and NOTCH3 and reduced the expression of NOTCH1 and NOTCH3 . NOTCH1 or NOTCH3 activation inhibited U-87 MG cell proliferation, whereas NOTCH1 and NOTCH3 inhibition by shRNAs induced cell proliferation, thus demonstrating the tumor-suppressive ability of NOTCH1 and NOTCH3 in U-87 MG cells. The induced cell proliferation caused by KMT2A knockdown could be nullified by using either constitutively active NOTCH1 or constitutively active NOTCH3. This result demonstrates that KMT2A positively regulates NOTCH1 and NOTCH3 and that this mechanism is essential for inhibiting the U-87 MG cell proliferation. The role of KMT2A knockdown in promoting tumor growth was further confirmed in vivo by transplanting U-87 MG cells into the brains of zebrafish larvae. In conclusion, we identified KMT2A-NOTCH as a negative regulatory cascade for glioblastoma cell proliferation, and this result provides important information for KMT2A- or NOTCH-targeted therapeutic strategies for brain tumors.
Brain Hemisphere Dominance: Building the Whole-Brain Singer
ERIC Educational Resources Information Center
Boyd, Amanda R.
2012-01-01
The concept of brain hemisphere dominance serves as the basis for many educational learning theories. The dominant brain hemisphere guides the learning process, but both hemispheres are necessary for true learning to take place. This treatise outlines and analyzes the dominance factor, a learning theory developed by Dr. Carla Hannaford, which…
The Myth of Pink and Blue Brains
ERIC Educational Resources Information Center
Eliot, Lise
2010-01-01
Eliot, a neuroscientist who has analyzed gender differences in children's brains, asserts that--contrary to the widely held idea that boys' and girls' brains are hardwired differently--few differences exist in the neural structures and neurochemistry of boys' and girls' brains. Actual ability differences between the genders are quite small as…
Does placental inflammation relate to brain lesions and volume in preterm infants?
Reiman, Milla; Kujari, Harry; Maunu, Jonna; Parkkola, Riitta; Rikalainen, Hellevi; Lapinleimu, Helena; Lehtonen, Liisa; Haataja, Leena
2008-05-01
To evaluate the association between histologic inflammation of placenta and brain findings in ultrasound examinations and regional brain volumes in magnetic resonance imaging in very-low-birth-weight (VLBW) or in very preterm infants. VLBW or very preterm infants (n = 121) were categorized into 3 groups according to the most pathologic brain finding on ultrasound examinations until term. The brain magnetic resonance imaging performed at term was analyzed for regional brain volumes. The placentas were analyzed for histologic inflammatory findings. Histologic chorioamnionitis on the fetal side correlated to brain lesions in univariate but not in multivariate analyses. Low gestational age was the only significant risk factor for brain lesions in multivariate analysis (P < .0001). Histologic chorioamnionitis was not associated with brain volumes in multivariate analyses. Female sex, low gestational age, and low birth weight z score correlated to smaller volumes in total brain tissue (P = .001, P = .0002, P < .0001, respectively) and cerebellum (P = .047, P = .003, P = .001, respectively). In addition, low gestational age and low-birth-weight z score correlated to a smaller combined volume of basal ganglia and thalami (P = .0002). Placental inflammation does not appear to correlate to brain lesions or smaller regional brain volumes in VLBW or in very preterm infants at term age.
Using Brain Electrical Activity Mapping to Diagnose Learning Disabilities.
ERIC Educational Resources Information Center
Torello, Michael, W.; Duffy, Frank H.
1985-01-01
Cognitive neuroscience assumes that measurement of brain electrical activity should relate to cognition. Brain Electrical Activity Mapping (BEAM), a non-invasive technique, is used to record changes in activity from one brain area to another and is 80 to 90 percent successful in classifying subjects as dyslexic or normal. (MT)
Brain regulation of food craving: relationships with weight status and eating behavior.
Dietrich, A; Hollmann, M; Mathar, D; Villringer, A; Horstmann, A
2016-06-01
Food craving is a driving force for overeating and obesity. However, the relationship between brain mechanisms involved in its regulation and weight status is still an open issue. Gaps in the studied body mass index (BMI) distributions and focusing on linear analyses might have contributed to this lack of knowledge. Here, we investigated brain mechanisms of craving regulation using functional magnetic resonance imaging in a balanced sample including normal-weight, overweight and obese participants. We investigated associations between characteristics of obesity, eating behavior and regulatory brain function focusing on nonlinear relationships. Forty-three hungry female volunteers (BMI: 19.4-38.8 kg m(-2), mean: 27.5±5.3 s.d.) were presented with visual food stimuli individually pre-rated according to tastiness and healthiness. The participants were instructed to either admit to the upcoming craving or regulate it. We analyzed the relationships between regulatory brain activity as well as functional connectivity and BMI or eating behavior (Three-Factor Eating Questionnaire, scales: Cognitive Restraint, Disinhibition). During regulation, BMI correlated with brain activity in the left putamen, amygdala and insula in an inverted U-shaped manner. Functional connectivity between the putamen and the dorsolateral prefrontal cortex (dlPFC) correlated positively with BMI, whereas that of amygdala with pallidum and lingual gyrus was nonlinearly (U-shaped) associated with BMI. Disinhibition correlated negatively with the strength of functional connectivity between amygdala and dorsomedial prefrontal (dmPFC) cortex as well as caudate. This study is the first to reveal quadratic relationships of food-related brain processes and BMI. Reported nonlinear associations indicate inverse relationships between regulation-related motivational processing in the range of normal weight/overweight compared with the obese range. Connectivity analyses suggest that the need for top-down (dlPFC) adjustment of striatal value representations increases with BMI, whereas the interplay of self-monitoring (dmPFC) or eating-related strategic action planning (caudate) and salience processing (amygdala) might be hampered with high Disinhibition.
Santangelo, Valerio
2018-01-01
Higher-order cognitive processes were shown to rely on the interplay between large-scale neural networks. However, brain networks involved with the capability to split attentional resource over multiple spatial locations and multiple stimuli or sensory modalities have been largely unexplored to date. Here I re-analyzed data from Santangelo et al. (2010) to explore the causal interactions between large-scale brain networks during divided attention. During fMRI scanning, participants monitored streams of visual and/or auditory stimuli in one or two spatial locations for detection of occasional targets. This design allowed comparing a condition in which participants monitored one stimulus/modality (either visual or auditory) in two spatial locations vs. a condition in which participants monitored two stimuli/modalities (both visual and auditory) in one spatial location. The analysis of the independent components (ICs) revealed that dividing attentional resources across two spatial locations necessitated a brain network involving the left ventro- and dorso-lateral prefrontal cortex plus the posterior parietal cortex, including the intraparietal sulcus (IPS) and the angular gyrus, bilaterally. The analysis of Granger causality highlighted that the activity of lateral prefrontal regions were predictive of the activity of all of the posteriors parietal nodes. By contrast, dividing attention across two sensory modalities necessitated a brain network including nodes belonging to the dorsal frontoparietal network, i.e., the bilateral frontal eye-fields (FEF) and IPS, plus nodes belonging to the salience network, i.e., the anterior cingulated cortex and the left and right anterior insular cortex (aIC). The analysis of Granger causality highlights a tight interdependence between the dorsal frontoparietal and salience nodes in trials requiring divided attention between different sensory modalities. The current findings therefore highlighted a dissociation among brain networks implicated during divided attention across spatial locations and sensory modalities, pointing out the importance of investigating effective connectivity of large-scale brain networks supporting complex behavior. PMID:29535614
Santangelo, Valerio
2018-01-01
Higher-order cognitive processes were shown to rely on the interplay between large-scale neural networks. However, brain networks involved with the capability to split attentional resource over multiple spatial locations and multiple stimuli or sensory modalities have been largely unexplored to date. Here I re-analyzed data from Santangelo et al. (2010) to explore the causal interactions between large-scale brain networks during divided attention. During fMRI scanning, participants monitored streams of visual and/or auditory stimuli in one or two spatial locations for detection of occasional targets. This design allowed comparing a condition in which participants monitored one stimulus/modality (either visual or auditory) in two spatial locations vs. a condition in which participants monitored two stimuli/modalities (both visual and auditory) in one spatial location. The analysis of the independent components (ICs) revealed that dividing attentional resources across two spatial locations necessitated a brain network involving the left ventro- and dorso-lateral prefrontal cortex plus the posterior parietal cortex, including the intraparietal sulcus (IPS) and the angular gyrus, bilaterally. The analysis of Granger causality highlighted that the activity of lateral prefrontal regions were predictive of the activity of all of the posteriors parietal nodes. By contrast, dividing attention across two sensory modalities necessitated a brain network including nodes belonging to the dorsal frontoparietal network, i.e., the bilateral frontal eye-fields (FEF) and IPS, plus nodes belonging to the salience network, i.e., the anterior cingulated cortex and the left and right anterior insular cortex (aIC). The analysis of Granger causality highlights a tight interdependence between the dorsal frontoparietal and salience nodes in trials requiring divided attention between different sensory modalities. The current findings therefore highlighted a dissociation among brain networks implicated during divided attention across spatial locations and sensory modalities, pointing out the importance of investigating effective connectivity of large-scale brain networks supporting complex behavior.
Monitoring alert and drowsy states by modeling EEG source nonstationarity
NASA Astrophysics Data System (ADS)
Hsu, Sheng-Hsiou; Jung, Tzyy-Ping
2017-10-01
Objective. As a human brain performs various cognitive functions within ever-changing environments, states of the brain characterized by recorded brain activities such as electroencephalogram (EEG) are inevitably nonstationary. The challenges of analyzing the nonstationary EEG signals include finding neurocognitive sources that underlie different brain states and using EEG data to quantitatively assess the state changes. Approach. This study hypothesizes that brain activities under different states, e.g. levels of alertness, can be modeled as distinct compositions of statistically independent sources using independent component analysis (ICA). This study presents a framework to quantitatively assess the EEG source nonstationarity and estimate levels of alertness. The framework was tested against EEG data collected from 10 subjects performing a sustained-attention task in a driving simulator. Main results. Empirical results illustrate that EEG signals under alert versus drowsy states, indexed by reaction speeds to driving challenges, can be characterized by distinct ICA models. By quantifying the goodness-of-fit of each ICA model to the EEG data using the model deviation index (MDI), we found that MDIs were significantly correlated with the reaction speeds (r = -0.390 with alertness models and r = 0.449 with drowsiness models) and the opposite correlations indicated that the two models accounted for sources in the alert and drowsy states, respectively. Based on the observed source nonstationarity, this study also proposes an online framework using a subject-specific ICA model trained with an initial (alert) state to track the level of alertness. For classification of alert against drowsy states, the proposed online framework achieved an averaged area-under-curve of 0.745 and compared favorably with a classic power-based approach. Significance. This ICA-based framework provides a new way to study changes of brain states and can be applied to monitoring cognitive or mental states of human operators in attention-critical settings or in passive brain-computer interfaces.
Cabral, Agustina; Valdivia, Spring; Fernandez, Gimena; Reynaldo, Mirta; Perello, Mario
2014-01-01
Ghrelin is an octanoylated peptide hormone that potently and rapidly increases food intake. The orexigenic action of ghrelin involves the hypothalamic arcuate nucleus (ARC), which is accessible to plasma ghrelin and expresses high levels of the ghrelin receptor. Local administration of ghrelin in a variety of other brain nuclei also increases food intake. It is currently unclear, however, if these non-ARC ghrelin brain targets are impacted by physiological increases of plasma ghrelin. Thus, the current study was designed to clarify which ghrelin brain targets participate in the short-term orexigenic actions of ghrelin. First, c-Fos induction into mouse brains centrally or peripherally treated with ghrelin was analyzed. It was confirmed that peripherally administered ghrelin dose dependently increases food intake and mainly activates c-Fos in ARC neurons. In contrast, centrally administered ghrelin activates c-Fos in a larger number of brain nuclei. To determine which nuclei are directly accessible to ghrelin, mice were centrally or peripherally injected with a fluorescent ghrelin tracer. It was found that peripherally injected tracer mainly accesses the ARC while centrally injected tracer reaches most brain areas known to express ghrelin receptors. Following that, ghrelin effects in ARC-ablated mice were tested and it was found that these mice failed to increase food intake in response to peripherally administered ghrelin but fully responded to centrally administered ghrelin. ARC-ablated mice showed similar patterns of ghrelin-induced c-Fos expression as seen in control mice with the exception of the ARC, where no c-Fos was found. Thus, peripheral ghrelin mainly accesses the ARC, which is required for the orexigenic effects of the hormone. Central ghrelin accesses a variety of nuclei, which can mediate the orexigenic effects of the hormone even in the absence of an intact ARC. PMID:24888783
Recognition of neural brain activity patterns correlated with complex motor activity
NASA Astrophysics Data System (ADS)
Kurkin, Semen; Musatov, Vyacheslav Yu.; Runnova, Anastasia E.; Grubov, Vadim V.; Efremova, Tatyana Yu.; Zhuravlev, Maxim O.
2018-04-01
In this paper, based on the apparatus of artificial neural networks, a technique for recognizing and classifying patterns corresponding to imaginary movements on electroencephalograms (EEGs) obtained from a group of untrained subjects was developed. The works on the selection of the optimal type, topology, training algorithms and neural network parameters were carried out from the point of view of the most accurate and fast recognition and classification of patterns on multi-channel EEGs associated with the imagination of movements. The influence of the number and choice of the analyzed channels of a multichannel EEG on the quality of recognition of imaginary movements was also studied, and optimal configurations of electrode arrangements were obtained. The effect of pre-processing of EEG signals is analyzed from the point of view of improving the accuracy of recognition of imaginary movements.
Paulk, Angelique C.; Zhou, Yanqiong; Stratton, Peter; Liu, Li
2013-01-01
Neural networks in vertebrates exhibit endogenous oscillations that have been associated with functions ranging from sensory processing to locomotion. It remains unclear whether oscillations may play a similar role in the insect brain. We describe a novel “whole brain” readout for Drosophila melanogaster using a simple multichannel recording preparation to study electrical activity across the brain of flies exposed to different sensory stimuli. We recorded local field potential (LFP) activity from >2,000 registered recording sites across the fly brain in >200 wild-type and transgenic animals to uncover specific LFP frequency bands that correlate with: 1) brain region; 2) sensory modality (olfactory, visual, or mechanosensory); and 3) activity in specific neural circuits. We found endogenous and stimulus-specific oscillations throughout the fly brain. Central (higher-order) brain regions exhibited sensory modality-specific increases in power within narrow frequency bands. Conversely, in sensory brain regions such as the optic or antennal lobes, LFP coherence, rather than power, best defined sensory responses across modalities. By transiently activating specific circuits via expression of TrpA1, we found that several circuits in the fly brain modulate LFP power and coherence across brain regions and frequency domains. However, activation of a neuromodulatory octopaminergic circuit specifically increased neuronal coherence in the optic lobes during visual stimulation while decreasing coherence in central brain regions. Our multichannel recording and brain registration approach provides an effective way to track activity simultaneously across the fly brain in vivo, allowing investigation of functional roles for oscillations in processing sensory stimuli and modulating behavior. PMID:23864378
Haley, Nicholas J.; Mathiason, Candace K.; Carver, Scott; Zabel, Mark; Telling, Glenn C.; Hoover, Edward A.
2011-01-01
Efficient horizontal transmission is a signature trait of chronic wasting disease (CWD) in cervids. Infectious prions shed into excreta appear to play a key role in this facile transmission, as has been demonstrated by bioassays of cervid and transgenic species and serial protein misfolding cyclic amplification (sPMCA). However, the source(s) of infectious prions in these body fluids has yet to be identified. In the present study, we analyzed tissues proximate to saliva, urine, and fecal production by sPMCA in an attempt to elucidate this unique aspect of CWD pathogenesis. Oropharyngeal, urogenital, and gastrointestinal tissues along with blood and obex from CWD-exposed cervids (comprising 27 animals and >350 individual samples) were analyzed and scored based on the apparent relative CWD burden. PrPCWD-generating activity was detected in a range of tissues and was highest in the salivary gland, urinary bladder, and distal intestinal tract. In the same assays, blood from the same animals and unseeded normal brain homogenate controls (n = 116 of 117) remained negative. The PrP-converting activity in peripheral tissues varied from 10−11- to 100-fold of that found in brain of the same animal. Deer with highest levels of PrPCWD amplification in the brain had higher and more widely disseminated prion amplification in excretory tissues. Interestingly, PrPCWD was not demonstrable in these excretory tissues by conventional Western blotting, suggesting a low prion burden or the presence of protease-sensitive infectious prions destroyed by harsh proteolytic treatments. These findings offer unique insights into the transmission of CWD in particular and prion infection and trafficking overall. PMID:21525361
Pérez-Mato, M; Ramos-Cabrer, P; Sobrino, T; Blanco, M; Ruban, A; Mirelman, D; Menendez, P; Castillo, J; Campos, F
2014-01-09
Blood glutamate scavenging is a novel and attractive protecting strategy to reduce the excitotoxic effect of extracellular glutamate released during ischemic brain injury. Glutamate oxaloacetate transaminase 1 (GOT1) activation by means of oxaloacetate administration has been used to reduce the glutamate concentration in the blood. However, the protective effect of the administration of the recombinant GOT1 (rGOT1) enzyme has not been yet addressed in cerebral ischemia. The aim of this study was to analyze the protective effect of an effective dose of oxaloacetate and the human rGOT1 alone and in combination with a non-effective dose of oxaloacetate in an animal model of ischemic stroke. Sixty rats were subjected to a transient middle cerebral artery occlusion (MCAO). Infarct volumes were assessed by magnetic resonance imaging (MRI) before treatment administration, and 24 h and 7 days after MCAO. Brain glutamate levels were determined by in vivo MR spectroscopy (MRS) during artery occlusion (80 min) and reperfusion (180 min). GOT activity and serum glutamate concentration were analyzed during the occlusion and reperfusion period. Somatosensory test was performed at baseline and 7 days after MCAO. The three treatments tested induced a reduction in serum and brain glutamate levels, resulting in a reduction in infarct volume and sensorimotor deficit. Protective effect of rGOT1 supplemented with oxaloacetate at 7 days persists even when treatment was delayed until at least 2 h after onset of ischemia. In conclusion, our findings indicate that the combination of human rGOT1 with low doses of oxaloacetate seems to be a successful approach for stroke treatment.
Pérez-Mato, M; Ramos-Cabrer, P; Sobrino, T; Blanco, M; Ruban, A; Mirelman, D; Menendez, P; Castillo, J; Campos, F
2014-01-01
Blood glutamate scavenging is a novel and attractive protecting strategy to reduce the excitotoxic effect of extracellular glutamate released during ischemic brain injury. Glutamate oxaloacetate transaminase 1 (GOT1) activation by means of oxaloacetate administration has been used to reduce the glutamate concentration in the blood. However, the protective effect of the administration of the recombinant GOT1 (rGOT1) enzyme has not been yet addressed in cerebral ischemia. The aim of this study was to analyze the protective effect of an effective dose of oxaloacetate and the human rGOT1 alone and in combination with a non-effective dose of oxaloacetate in an animal model of ischemic stroke. Sixty rats were subjected to a transient middle cerebral artery occlusion (MCAO). Infarct volumes were assessed by magnetic resonance imaging (MRI) before treatment administration, and 24 h and 7 days after MCAO. Brain glutamate levels were determined by in vivo MR spectroscopy (MRS) during artery occlusion (80 min) and reperfusion (180 min). GOT activity and serum glutamate concentration were analyzed during the occlusion and reperfusion period. Somatosensory test was performed at baseline and 7 days after MCAO. The three treatments tested induced a reduction in serum and brain glutamate levels, resulting in a reduction in infarct volume and sensorimotor deficit. Protective effect of rGOT1 supplemented with oxaloacetate at 7 days persists even when treatment was delayed until at least 2 h after onset of ischemia. In conclusion, our findings indicate that the combination of human rGOT1 with low doses of oxaloacetate seems to be a successful approach for stroke treatment PMID:24407245
TheHiveDB image data management and analysis framework.
Muehlboeck, J-Sebastian; Westman, Eric; Simmons, Andrew
2014-01-06
The hive database system (theHiveDB) is a web-based brain imaging database, collaboration, and activity system which has been designed as an imaging workflow management system capable of handling cross-sectional and longitudinal multi-center studies. It can be used to organize and integrate existing data from heterogeneous projects as well as data from ongoing studies. It has been conceived to guide and assist the researcher throughout the entire research process, integrating all relevant types of data across modalities (e.g., brain imaging, clinical, and genetic data). TheHiveDB is a modern activity and resource management system capable of scheduling image processing on both private compute resources and the cloud. The activity component supports common image archival and management tasks as well as established pipeline processing (e.g., Freesurfer for extraction of scalar measures from magnetic resonance images). Furthermore, via theHiveDB activity system algorithm developers may grant access to virtual machines hosting versioned releases of their tools to collaborators and the imaging community. The application of theHiveDB is illustrated with a brief use case based on organizing, processing, and analyzing data from the publically available Alzheimer Disease Neuroimaging Initiative.
Piner, Petek; Üner, Nevin
2014-11-01
The objective of this research was to investigate the neurotoxic effects of pyrethroid pesticide lambda-cyhalothrin by the modulation of cytochrome P450 with piperonyl butoxide in the brain of juvenile Oreochromis niloticus. The fish were exposed to 0.48 μg L(-1) (1/6 of the 96-h LC50 ) lambda-cyhalothrin and 10 μg L(-1) piperonyl butoxide for 96 h and 15 days. tGSH, GSSG, TBARS contents, GPx, GR, GST, and AChE enzymes activities were determined by spectrophotometrical methods and Hsp70 content was analyzed by ELISA technique. Lambda-cyhalothrin had no significant effect on the components of GSH redox system, lipid peroxidation and Hsp70 levels but inhibited AChE activity. In the presence of piperonyl butoxide, lambda-cyhalothrin caused increases in tGSH, GSSG, TBARS and Hsp70 contents, GST activity, and decrease in AChE activity. Present results showed that in the presence of piperonyl butoxide, lambda-cyhalothrin caused neurotoxic effects by increasing oxidative stress. Adaptation to its oxidative stress effects may be supplied by GSH-related antioxidant system. Piperonyl butoxide revealed neurotoxic effect of lambda-cyhalothrin. Copyright © 2013 Wiley Periodicals, Inc., a Wiley company.
Fox, Kieran C R; Dixon, Matthew L; Nijeboer, Savannah; Girn, Manesh; Floman, James L; Lifshitz, Michael; Ellamil, Melissa; Sedlmeier, Peter; Christoff, Kalina
2016-06-01
Meditation is a family of mental practices that encompasses a wide array of techniques employing distinctive mental strategies. We systematically reviewed 78 functional neuroimaging (fMRI and PET) studies of meditation, and used activation likelihood estimation to meta-analyze 257 peak foci from 31 experiments involving 527 participants. We found reliably dissociable patterns of brain activation and deactivation for four common styles of meditation (focused attention, mantra recitation, open monitoring, and compassion/loving-kindness), and suggestive differences for three others (visualization, sense-withdrawal, and non-dual awareness practices). Overall, dissociable activation patterns are congruent with the psychological and behavioral aims of each practice. Some brain areas are recruited consistently across multiple techniques-including insula, pre/supplementary motor cortices, dorsal anterior cingulate cortex, and frontopolar cortex-but convergence is the exception rather than the rule. A preliminary effect-size meta-analysis found medium effects for both activations (d=0.59) and deactivations (d=-0.74), suggesting potential practical significance. Our meta-analysis supports the neurophysiological dissociability of meditation practices, but also raises many methodological concerns and suggests avenues for future research. Copyright © 2016 Elsevier Ltd. All rights reserved.