Sample records for analyze cellular localization

  1. Determining the sub-cellular localization of proteins within Caenorhabditis elegans body wall muscle.

    PubMed

    Meissner, Barbara; Rogalski, Teresa; Viveiros, Ryan; Warner, Adam; Plastino, Lorena; Lorch, Adam; Granger, Laure; Segalat, Laurent; Moerman, Donald G

    2011-01-01

    Determining the sub-cellular localization of a protein within a cell is often an essential step towards understanding its function. In Caenorhabditis elegans, the relatively large size of the body wall muscle cells and the exquisite organization of their sarcomeres offer an opportunity to identify the precise position of proteins within cell substructures. Our goal in this study is to generate a comprehensive "localizome" for C. elegans body wall muscle by GFP-tagging proteins expressed in muscle and determining their location within the cell. For this project, we focused on proteins that we know are expressed in muscle and are orthologs or at least homologs of human proteins. To date we have analyzed the expression of about 227 GFP-tagged proteins that show localized expression in the body wall muscle of this nematode (e.g. dense bodies, M-lines, myofilaments, mitochondria, cell membrane, nucleus or nucleolus). For most proteins analyzed in this study no prior data on sub-cellular localization was available. In addition to discrete sub-cellular localization we observe overlapping patterns of localization including the presence of a protein in the dense body and the nucleus, or the dense body and the M-lines. In total we discern more than 14 sub-cellular localization patterns within nematode body wall muscle. The localization of this large set of proteins within a muscle cell will serve as an invaluable resource in our investigation of muscle sarcomere assembly and function.

  2. Matrix remodeling between cells and cellular interactions with collagen bundle

    NASA Astrophysics Data System (ADS)

    Kim, Jihan; Sun, Bo

    When cells are surrounded by complex environment, they continuously probe and interact with it by applying cellular traction forces. As cells apply traction forces, they can sense rigidity of their local environment and remodel the matrix microstructure simultaneously. Previous study shows that single human carcinoma cell (MDA-MB-231) remodeled its surrounding extracellular matrix (ECM) and the matrix remodeling was reversible. In this study we examined the matrix microstructure between cells and cellular interaction between them using quantitative confocal microscopy. The result shows that the matrix microstructure is the most significantly remodeled between cells consisting of aligned, and densified collagen fibers (collagen bundle)., the result shows that collagen bundle is irreversible and significantly change micromechanics of ECM around the bundle. We further examined cellular interaction with collagen bundle by analyzing dynamics of actin and talin formation along with the direction of bundle. Lastly, we analyzed dynamics of cellular protrusion and migrating direction of cells along the bundle.

  3. The Colossus of ubiquitylation –decrypting a cellular code

    PubMed Central

    Williamson, Adam; Werner, Achim; Rape, Michael

    2013-01-01

    Ubiquitylation is an essential posttranslational modification that can regulate the stability, activity, or localization of thousands of proteins. The reversible attachment of ubiquitin as well as interpretation of the ubiquitin signal depend on dynamic protein networks that are challenging to analyze. In this perspective, we discuss tools of the trade that have recently been developed to dissect mechanisms of ubiquitin-dependent signaling, thereby revealing the critical features of an important cellular code. PMID:23438855

  4. Dissecting DNA damage response pathways by analyzing protein localization and abundance changes during DNA replication stress

    PubMed Central

    Tkach, Johnny M.; Yimit, Askar; Lee, Anna Y.; Riffle, Michael; Costanzo, Michael; Jaschob, Daniel; Hendry, Jason A.; Ou, Jiongwen; Moffat, Jason; Boone, Charles; Davis, Trisha N.; Nislow, Corey; Brown, Grant W.

    2012-01-01

    Re-localization of proteins is a hallmark of the DNA damage response. We use high-throughput microscopic screening of the yeast GFP fusion collection to develop a systems-level view of protein re-organization following drug-induced DNA replication stress. Changes in protein localization and abundance reveal drug-specific patterns of functional enrichments. Classification of proteins by sub-cellular destination allows the identification of pathways that respond to replication stress. We analyzed pairwise combinations of GFP fusions and gene deletion mutants to define and order two novel DNA damage responses. In the first, Cmr1 forms subnuclear foci that are regulated by the histone deacetylase Hos2 and are distinct from the typical Rad52 repair foci. In a second example, we find that the checkpoint kinases Mec1/Tel1 and the translation regulator Asc1 regulate P-body formation. This method identifies response pathways that were not detected in genetic and protein interaction screens, and can be readily applied to any form of chemical or genetic stress to reveal cellular response pathways. PMID:22842922

  5. Prognostic value of loss of heterozygosity and sub-cellular localization of SMAD4 varies with tumor stage in colorectal cancer.

    PubMed

    Jia, Xu; Shanmugam, Chandrakumar; Paluri, Ravi K; Jhala, Nirag C; Behring, Michael P; Katkoori, Venkat R; Sugandha, Shajan P; Bae, Sejong; Samuel, Temesgen; Manne, Upender

    2017-03-21

    Although loss of heterozygosity (LOH) at chromosome location 18q21 and decreased expression of SMAD4 in invasive colorectal cancers (CRCs) correlate with poor patient survival, the prognostic value of LOH at 18q21 and sub-cellular localization of SMAD4 have not been evaluated in relation to tumor stage. Genomic DNA samples from 209 formalin-fixed, paraffin-embedded sporadic CRC tissues and their matching controls were analyzed for 18q21 LOH, and corresponding tissue sections were evaluated by immunohistochemistry for expression of SMAD4 and assessed for its sub-cellular localization (nuclear vs. cytoplasmic). In addition, 53 frozen CRCs and their matching control tissues were analyzed for their mutational status and mRNA expression of SMAD4. The phenotypic expression pattern and LOH status were evaluated for correlation with patient survival by the use of Kaplan-Meier and Cox regression models. LOH of 18q21 was detected in 61% of the informative cases. In 8% of the cases, missense point mutations were detected in Smad4. In CRCs, relative to controls, there was increased SMAD4 staining in the cytoplasm (74%) and decreased staining in the nuclei (37%). LOH of 18q21 and high cytoplasmic localization of SMAD4 were associated with shortened overall survival of Stage II patients, whereas low nuclear expression of SMAD4 was associated with worse survival, but only for patients with Stage III CRCs. LOH of 18q21 and high cytoplasmic localization of SMAD4 in Stage II CRCs and low nuclear SMAD4 in Stage III CRCs are predictors of shortened patient survival.

  6. Prognostic value of loss of heterozygosity and sub-cellular localization of SMAD4 varies with tumor stage in colorectal cancer

    PubMed Central

    Jia, Xu; Shanmugam, Chandrakumar; Paluri, Ravi K.; Jhala, Nirag C.; Behring, Michael P.; Katkoori, Venkat R.; Sugandha, Shajan P.; Bae, Sejong; Samuel, Temesgen; Manne, Upender

    2017-01-01

    Background Although loss of heterozygosity (LOH) at chromosome location 18q21 and decreased expression of SMAD4 in invasive colorectal cancers (CRCs) correlate with poor patient survival, the prognostic value of LOH at 18q21 and sub-cellular localization of SMAD4 have not been evaluated in relation to tumor stage. Methods Genomic DNA samples from 209 formalin-fixed, paraffin-embedded sporadic CRC tissues and their matching controls were analyzed for 18q21 LOH, and corresponding tissue sections were evaluated by immunohistochemistry for expression of SMAD4 and assessed for its sub-cellular localization (nuclear vs. cytoplasmic). In addition, 53 frozen CRCs and their matching control tissues were analyzed for their mutational status and mRNA expression of SMAD4. The phenotypic expression pattern and LOH status were evaluated for correlation with patient survival by the use of Kaplan-Meier and Cox regression models. Results LOH of 18q21 was detected in 61% of the informative cases. In 8% of the cases, missense point mutations were detected in Smad4. In CRCs, relative to controls, there was increased SMAD4 staining in the cytoplasm (74%) and decreased staining in the nuclei (37%). LOH of 18q21 and high cytoplasmic localization of SMAD4 were associated with shortened overall survival of Stage II patients, whereas low nuclear expression of SMAD4 was associated with worse survival, but only for patients with Stage III CRCs. Conclusions LOH of 18q21 and high cytoplasmic localization of SMAD4 in Stage II CRCs and low nuclear SMAD4 in Stage III CRCs are predictors of shortened patient survival. PMID:28423626

  7. Analyses of pea necrotic yellow dwarf virus-encoded proteins.

    PubMed

    Krenz, Björn; Schießl, Ingrid; Greiner, Eva; Krapp, Susanna

    2017-06-01

    Pea necrotic yellow dwarf virus (PNYDV) is a multipartite, circular, single-stranded DNA plant virus. PNYDV encodes eight proteins and the function of three of which remains unknown-U1, U2, and U4. PNYDV proteins cellular localization was analyzed by GFP tagging and bimolecular fluorescence complementation (BiFC) studies. The interactions of all eight PNYDV proteins were tested pairwise in planta (36 combinations in total). Seven interactions were identified and two (M-Rep with CP and MP with U4) were characterized further. MP and U4 complexes appeared as vesicle-like spots and were localized at the nuclear envelope and cell periphery. These vesicle-like spots were associated with the endoplasmatic reticulum. In addition, a nuclear localization signal (NLS) was mapped for U1, and a mutated U1 with NLS disrupted localized at plasmodesmata and therefore might also have a role in movement. Taken together, this study provides evidence for previously undescribed nanovirus protein-protein interactions and their cellular localization with novel findings not only for those proteins with unknown function, but also for characterized proteins such as the CP.

  8. Depth-varying density and organization of chondrocytes in immature and mature bovine articular cartilage assessed by 3d imaging and analysis.

    PubMed

    Jadin, Kyle D; Wong, Benjamin L; Bae, Won C; Li, Kelvin W; Williamson, Amanda K; Schumacher, Barbara L; Price, Jeffrey H; Sah, Robert L

    2005-09-01

    Articular cartilage is a heterogeneous tissue, with cell density and organization varying with depth from the surface. The objectives of the present study were to establish a method for localizing individual cells in three-dimensional (3D) images of cartilage and quantifying depth-associated variation in cellularity and cell organization at different stages of growth. Accuracy of nucleus localization was high, with 99% sensitivity relative to manual localization. Cellularity (million cells per cm3) decreased from 290, 310, and 150 near the articular surface in fetal, calf, and adult samples, respectively, to 120, 110, and 50 at a depth of 1.0 mm. The distance/angle to the nearest neighboring cell was 7.9 microm/31 degrees , 7.1 microm/31 degrees , and 9.1 microm/31 degrees for cells at the articular surface of fetal, calf, and adult samples, respectively, and increased/decreased to 11.6 microm/31 degrees , 12.0 microm/30 degrees , and 19.2 microm/25 degrees at a depth of 0.7 mm. The methodologies described here may be useful for analyzing the 3D cellular organization of cartilage during growth, maturation, aging, degeneration, and regeneration.

  9. Depth-varying density and organization of chondrocytes in immature and mature bovine articular cartilage assessed by 3d imaging and analysis

    NASA Technical Reports Server (NTRS)

    Jadin, Kyle D.; Wong, Benjamin L.; Bae, Won C.; Li, Kelvin W.; Williamson, Amanda K.; Schumacher, Barbara L.; Price, Jeffrey H.; Sah, Robert L.

    2005-01-01

    Articular cartilage is a heterogeneous tissue, with cell density and organization varying with depth from the surface. The objectives of the present study were to establish a method for localizing individual cells in three-dimensional (3D) images of cartilage and quantifying depth-associated variation in cellularity and cell organization at different stages of growth. Accuracy of nucleus localization was high, with 99% sensitivity relative to manual localization. Cellularity (million cells per cm3) decreased from 290, 310, and 150 near the articular surface in fetal, calf, and adult samples, respectively, to 120, 110, and 50 at a depth of 1.0 mm. The distance/angle to the nearest neighboring cell was 7.9 microm/31 degrees , 7.1 microm/31 degrees , and 9.1 microm/31 degrees for cells at the articular surface of fetal, calf, and adult samples, respectively, and increased/decreased to 11.6 microm/31 degrees , 12.0 microm/30 degrees , and 19.2 microm/25 degrees at a depth of 0.7 mm. The methodologies described here may be useful for analyzing the 3D cellular organization of cartilage during growth, maturation, aging, degeneration, and regeneration.

  10. Stiffness and strength of fiber reinforced polymer composite bridge deck systems

    NASA Astrophysics Data System (ADS)

    Zhou, Aixi

    This research investigates two principal characteristics that are of primary importance in Fiber Reinforced Polymer (FRP) bridge deck applications: STIFFNESS and STRENGTH. The research was undertaken by investigating the stiffness and strength characteristics of the multi-cellular FRP bridge deck systems consisting of pultruded FRP shapes. A systematic analysis procedure was developed for the stiffness analysis of multi-cellular FRP deck systems. This procedure uses the Method of Elastic Equivalence to model the cellular deck as an equivalent orthotropic plate. The procedure provides a practical method to predict the equivalent orthotropic plate properties of cellular FRP decks. Analytical solutions for the bending analysis of single span decks were developed using classical laminated plate theory. The analysis procedures can be extended to analyze continuous FRP decks. It can also be further developed using higher order plate theories. Several failure modes of the cellular FRP deck systems were recorded and analyzed through laboratory and field tests and Finite Element Analysis (FEA). Two schemes of loading patches were used in the laboratory test: a steel patch made according to the ASSHTO's bridge testing specifications; and a tire patch made from a real truck tire reinforced with silicon rubber. The tire patch was specially designed to simulate service loading conditions by modifying real contact loading from a tire. Our research shows that the effects of the stiffness and contact conditions of loading patches are significant in the stiffness and strength testing of FRP decks. Due to the localization of load, a simulated tire patch yields larger deflection than the steel patch under the same loading level. The tire patch produces significantly different failure compared to the steel patch: a local bending mode with less damage for the tire patch; and a local punching-shear mode for the steel patch. A deck failure function method is proposed for predicting the failure of FRP decks. Using developed laminated composite theories and FEA techniques, a strength analysis procedure containing ply-level information was proposed and detailed for FRP deck systems. The behavior of the deck's unsupported (free) edges was also investigated using ply-level FEA.

  11. Advances in molecular labeling, high throughput imaging and machine intelligence portend powerful functional cellular biochemistry tools.

    PubMed

    Price, Jeffrey H; Goodacre, Angela; Hahn, Klaus; Hodgson, Louis; Hunter, Edward A; Krajewski, Stanislaw; Murphy, Robert F; Rabinovich, Andrew; Reed, John C; Heynen, Susanne

    2002-01-01

    Cellular behavior is complex. Successfully understanding systems at ever-increasing complexity is fundamental to advances in modern science and unraveling the functional details of cellular behavior is no exception. We present a collection of prospectives to provide a glimpse of the techniques that will aid in collecting, managing and utilizing information on complex cellular processes via molecular imaging tools. These include: 1) visualizing intracellular protein activity with fluorescent markers, 2) high throughput (and automated) imaging of multilabeled cells in statistically significant numbers, and 3) machine intelligence to analyze subcellular image localization and pattern. Although not addressed here, the importance of combining cell-image-based information with detailed molecular structure and ligand-receptor binding models cannot be overlooked. Advanced molecular imaging techniques have the potential to impact cellular diagnostics for cancer screening, clinical correlations of tissue molecular patterns for cancer biology, and cellular molecular interactions for accelerating drug discovery. The goal of finally understanding all cellular components and behaviors will be achieved by advances in both instrumentation engineering (software and hardware) and molecular biochemistry. Copyright 2002 Wiley-Liss, Inc.

  12. Nitroxide amide-BODIPY probe behavior in fibroblasts analyzed by advanced fluorescence microscopy.

    PubMed

    Liras, M; Simoncelli, S; Rivas-Aravena, A; García, O; Scaiano, J C; Alarcon, E I; Aspée, A

    2016-04-26

    A novel synthesized nitroxide amide-BODIPY prefluorescent probe was used to study cellular redox balance that modulates nitroxide/hydroxylamine ratio in cultured human fibroblasts. FLIM quantitatively differentiated between nitroxide states of the cytoplasm-localized probe imaged by TIRF, monitoring nitroxide depletion by hydrogen peroxide; eluding incorrect interpretation if only fluorescence intensity is considered.

  13. Accurate Construction of Photoactivated Localization Microscopy (PALM) Images for Quantitative Measurements

    PubMed Central

    Coltharp, Carla; Kessler, Rene P.; Xiao, Jie

    2012-01-01

    Localization-based superresolution microscopy techniques such as Photoactivated Localization Microscopy (PALM) and Stochastic Optical Reconstruction Microscopy (STORM) have allowed investigations of cellular structures with unprecedented optical resolutions. One major obstacle to interpreting superresolution images, however, is the overcounting of molecule numbers caused by fluorophore photoblinking. Using both experimental and simulated images, we determined the effects of photoblinking on the accurate reconstruction of superresolution images and on quantitative measurements of structural dimension and molecule density made from those images. We found that structural dimension and relative density measurements can be made reliably from images that contain photoblinking-related overcounting, but accurate absolute density measurements, and consequently faithful representations of molecule counts and positions in cellular structures, require the application of a clustering algorithm to group localizations that originate from the same molecule. We analyzed how applying a simple algorithm with different clustering thresholds (tThresh and dThresh) affects the accuracy of reconstructed images, and developed an easy method to select optimal thresholds. We also identified an empirical criterion to evaluate whether an imaging condition is appropriate for accurate superresolution image reconstruction with the clustering algorithm. Both the threshold selection method and imaging condition criterion are easy to implement within existing PALM clustering algorithms and experimental conditions. The main advantage of our method is that it generates a superresolution image and molecule position list that faithfully represents molecule counts and positions within a cellular structure, rather than only summarizing structural properties into ensemble parameters. This feature makes it particularly useful for cellular structures of heterogeneous densities and irregular geometries, and allows a variety of quantitative measurements tailored to specific needs of different biological systems. PMID:23251611

  14. Understanding the cancer cell phenotype beyond the limitations of current omics analyses.

    PubMed

    Moreno-Sánchez, Rafael; Saavedra, Emma; Gallardo-Pérez, Juan Carlos; Rumjanek, Franklin D; Rodríguez-Enríquez, Sara

    2016-01-01

    Efforts to understand the mechanistic principles driving cancer metabolism and proliferation have been lately governed by genomic, transcriptomic and proteomic studies. This paper analyzes the caveats of these approaches. As molecular biology's central dogma proposes a unidirectional flux of information from genes to mRNA to proteins, it has frequently been assumed that monitoring the changes in the gene sequences and in mRNA and protein contents is sufficient to explain complex cellular processes. Such a stance commonly disregards that post-translational modifications can alter the protein function/activity and also that regulatory mechanisms enter into action, to coordinate the protein activities of pathways/cellular processes, in order to keep the cellular homeostasis. Hence, the actual protein activities (as enzymes/transporters/receptors) and their regulatory mechanisms ultimately dictate the final outcomes of a pathway/cellular process. In this regard, it is here documented that the mRNA levels of many metabolic enzymes and transcriptional factors have no correlation with the respective protein contents and activities. The validity of current clinical mRNA-based tests and proposed metabolite biomarkers for cancer detection/prognosis is also discussed. Therefore, it is proposed that, to achieve a thorough understanding of the modifications undergone by proliferating cancer cells, it is mandatory to experimentally analyze the cellular processes at the functional level. This could be achieved (a) locally, by examining the actual protein activities in the cell and their kinetic properties (or at least kinetically characterize the most controlling steps of the pathway/cellular process); (b) systemically, by analyzing the main fluxes of the pathway/cellular process, and how they are modulated by metabolites, all which should contribute to comprehending the regulatory mechanisms that have been altered in cancer cells. By adopting a more holistic approach it may become possible to improve the design of therapeutic strategies that would target cancer cells more specifically. © 2015 FEBS.

  15. Patchwork structure-function analysis of the Sendai virus matrix protein.

    PubMed

    Mottet-Osman, Geneviève; Miazza, Vincent; Vidalain, Pierre-Olivier; Roux, Laurent

    2014-09-01

    Paramyxoviruses contain a bi-lipidic envelope decorated by two transmembrane glycoproteins and carpeted on the inner surface with a layer of matrix proteins (M), thought to bridge the glycoproteins with the viral nucleocapsids. To characterize M structure-function features, a set of M domains were mutated or deleted. The genes encoding these modified M were incorporated into recombinant Sendai viruses and expressed as supplemental proteins. Using a method of integrated suppression complementation system (ISCS), the functions of these M mutants were analyzed in the context of the infection. Cellular membrane association, localization at the cell periphery, nucleocapsid binding, cellular protein interactions and promotion of viral particle formation were characterized in relation with the mutations. At the end, lack of nucleocapsid binding go together with lack of cell surface localization and both features definitely correlate with loss of M global function estimated by viral particle production. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Alterative Expression and Localization of Profilin 1/VASPpS157 and Cofilin 1/VASPpS239 Regulates Metastatic Growth and Is Modified by DHA Supplementation.

    PubMed

    Ali, Mehboob; Heyob, Kathryn; Jacob, Naduparambil K; Rogers, Lynette K

    2016-09-01

    Profilin 1, cofilin 1, and vasodialator-stimulated phosphoprotein (VASP) are actin-binding proteins (ABP) that regulate actin remodeling and facilitate cancer cell metastases. miR-17-92 is highly expressed in metastatic tumors and profilin1 and cofilin1 are predicted targets. Docosahexaenoic acid (DHA) inhibits cancer cell proliferation and adhesion. These studies tested the hypothesis that the metastatic phenotype is driven by changes in ABPs including alternative phosphorylation and/or changes in subcellular localization. In addition, we tested the efficacy of DHA supplementation to attenuate or inhibit these changes. Human lung cancer tissue sections were analyzed for F-actin content and expression and cellular localization of profilin1, cofilin1, and VASP (S157 or S239 phosphorylation). The metastatic phenotype was investigated in A549 and MLE12 cells lines using 8 Br-cAMP as a metastasis inducer and DHA as a therapeutic agent. Migration was assessed by wound assay and expression measured by Western blot and confocal analysis. miR-17-92 expression was measured by qRT-PCR. Results indicated increased expression and altered cellular distribution of profilin1/VASP(pS157), but no changes in cofilin1/VASP(pS239) in the human malignant tissues compared with normal tissues. In A549 and MLE12 cells, the expression patterns of profilin1/VASP(pS157) or cofilin1/VASP(pS239) suggested an interaction in regulation of actin dynamics. Furthermore, DHA inhibited cancer cell migration and viability, ABP expression and cellular localization, and modulated expression of miR-17-92 in A549 cells with minimal effects in MLE12 cells. Further investigations are warranted to understand ABP interactions, changes in cellular localization, regulation by miR-17-92, and DHA as a novel therapeutic. Mol Cancer Ther; 15(9); 2220-31. ©2016 AACR. ©2016 American Association for Cancer Research.

  17. Alterative Expression and Localization of Profilin 1/VASPpS157 and Cofilin 1/VASPpS239 Regulates Metastatic Growth and is Modified by DHA Supplementation

    PubMed Central

    Ali, Mehboob; Heyob, Kathryn; Jacob, Naduparambil K.; Rogers, Lynette K.

    2016-01-01

    Profilin 1, cofilin 1, and vasodialator stimulated phosphoprotein (VASP) are actin binding proteins (ABP) which regulate actin remodelling and facilitate cancer cell metastases. MiR~17–92 is highly expressed in metastatic tumors and profilin1 and cofilin1 are predicted targets. Docosahexaenoic acid (DHA) inhibits cancer cell proliferation and adhesion. These studies tested the hypothesis that the metastatic phenotype is driven by changes in ABPs including alternative phosphorylation and/or changes in subcellular localization. Additionally, we tested the efficacy of DHA supplementation to attenuate or inhibit these changes. Human lung cancer tissue sections were analyzed for F-actin content and expression and cellular localization of profilin1, cofilin1 and VASP (S157 or S239 phosphorylation). The metastatic phenotype was investigated in A549 and MLE12 cells lines using 8 Br-cAMP as a metastasis inducer and DHA as a therapeutic agent. Migration was assessed by wound assay and expression measured by western blot and confocal analysis. MiR~17–92 expression was measured by qRT-PCR. Results indicated increased expression and altered cellular distribution of profilin1/VASPpS157 but no changes in cofilin1/VASPpS239 in the human malignant tissues compared to normal tissues. In A549 and MLE12 cells, the expression patterns of profilin1/VASPpS157 or cofilin1/VASPpS239 suggested an interaction in regulation of actin dynamics. Furthermore, DHA inhibited cancer cell migration and viability, ABP expression and cellular localization, and modulated expression of miR~17–92 in A549 cells with minimal effects in MLE12 cells. Further investigations are warranted to understand ABP interactions, changes in cellular localization, regulation by miR~17–92, and DHA as a novel therapeutic. PMID:27496138

  18. Intracellular Localization Map of Human Herpesvirus 8 Proteins▿

    PubMed Central

    Sander, Gaby; Konrad, Andreas; Thurau, Mathias; Wies, Effi; Leubert, Rene; Kremmer, Elisabeth; Dinkel, Holger; Schulz, Thomas; Neipel, Frank; Stürzl, Michael

    2008-01-01

    Human herpesvirus 8 (HHV-8) is the etiological agent of Kaposi's sarcoma. We present a localization map of 85 HHV-8-encoded proteins in mammalian cells. Viral open reading frames were cloned with a Myc tag in expression plasmids, confirmed by full-length sequencing, and expressed in HeLa cells. Protein localizations were analyzed by immunofluorescence microscopy. Fifty-one percent of all proteins were localized in the cytoplasm, 22% were in the nucleus, and 27% were found in both compartments. Surprisingly, we detected viral FLIP (v-FLIP) in the nucleus and in the cytoplasm, whereas cellular FLIPs are generally localized exclusively in the cytoplasm. This suggested that v-FLIP may exert additional or alternative functions compared to cellular FLIPs. In addition, it has been shown recently that the K10 protein can bind to at least 15 different HHV-8 proteins. We noticed that K10 and only five of its 15 putative binding factors were localized in the nucleus when the proteins were expressed in HeLa cells individually. Interestingly, in coexpression experiments K10 colocalized with 87% (13 of 15) of its putative binding partners. Colocalization was induced by translocation of either K10 alone or both proteins. These results indicate active intracellular translocation processes in virus-infected cells. Specifically in this framework, the localization map may provide a useful reference to further elucidate the function of HHV-8-encoded genes in human diseases. PMID:18077714

  19. Cellular Contraction and Polarization Drive Collective Cellular Motion.

    PubMed

    Notbohm, Jacob; Banerjee, Shiladitya; Utuje, Kazage J C; Gweon, Bomi; Jang, Hwanseok; Park, Yongdoo; Shin, Jennifer; Butler, James P; Fredberg, Jeffrey J; Marchetti, M Cristina

    2016-06-21

    Coordinated motions of close-packed multicellular systems typically generate cooperative packs, swirls, and clusters. These cooperative motions are driven by active cellular forces, but the physical nature of these forces and how they generate collective cellular motion remain poorly understood. Here, we study forces and motions in a confined epithelial monolayer and make two experimental observations: 1) the direction of local cellular motion deviates systematically from the direction of the local traction exerted by each cell upon its substrate; and 2) oscillating waves of cellular motion arise spontaneously. Based on these observations, we propose a theory that connects forces and motions using two internal state variables, one of which generates an effective cellular polarization, and the other, through contractile forces, an effective cellular inertia. In agreement with theoretical predictions, drugs that inhibit contractility reduce both the cellular effective elastic modulus and the frequency of oscillations. Together, theory and experiment provide evidence suggesting that collective cellular motion is driven by at least two internal variables that serve to sustain waves and to polarize local cellular traction in a direction that deviates systematically from local cellular velocity. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Characterizing virus-induced gene silencing at the cellular level with in situ multimodal imaging

    DOE PAGES

    Burkhow, Sadie J.; Stephens, Nicole M.; Mei, Yu; ...

    2018-05-25

    Reverse genetic strategies, such as virus-induced gene silencing, are powerful techniques to study gene function. Currently, there are few tools to study the spatial dependence of the consequences of gene silencing at the cellular level. Here, we report the use of multimodal Raman and mass spectrometry imaging to study the cellular-level biochemical changes that occur from silencing the phytoene desaturase ( pds) gene using a Foxtail mosaic virus (FoMV) vector in maize leaves. The multimodal imaging method allows the localized carotenoid distribution to be measured and reveals differences lost in the spatial average when analyzing a carotenoid extraction of themore » whole leaf. The nature of the Raman and mass spectrometry signals are complementary: silencing pds reduces the downstream carotenoid Raman signal and increases the phytoene mass spectrometry signal.« less

  1. Characterizing virus-induced gene silencing at the cellular level with in situ multimodal imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkhow, Sadie J.; Stephens, Nicole M.; Mei, Yu

    Reverse genetic strategies, such as virus-induced gene silencing, are powerful techniques to study gene function. Currently, there are few tools to study the spatial dependence of the consequences of gene silencing at the cellular level. Here, we report the use of multimodal Raman and mass spectrometry imaging to study the cellular-level biochemical changes that occur from silencing the phytoene desaturase ( pds) gene using a Foxtail mosaic virus (FoMV) vector in maize leaves. The multimodal imaging method allows the localized carotenoid distribution to be measured and reveals differences lost in the spatial average when analyzing a carotenoid extraction of themore » whole leaf. The nature of the Raman and mass spectrometry signals are complementary: silencing pds reduces the downstream carotenoid Raman signal and increases the phytoene mass spectrometry signal.« less

  2. Expression of SET Protein in the Ovaries of Patients with Polycystic Ovary Syndrome

    PubMed Central

    Boqun, Xu; Xiaonan, Dai; YuGui, Cui; Lingling, Gao; Xue, Dai; Gao, Chao; Feiyang, Diao; Jiayin, Liu; Gao, Li; Li, Mei; Zhang, Yuan; Ma, Xiang

    2013-01-01

    Background. We previously found that expression of SET gene was up-regulated in polycystic ovaries by using microarray. It suggested that SET may be an attractive candidate regulator involved in the pathophysiology of polycystic ovary syndrome (PCOS). In this study, expression and cellular localization of SET protein were investigated in human polycystic and normal ovaries. Method. Ovarian tissues, six normal ovaries and six polycystic ovaries, were collected during transsexual operation and surgical treatment with the signed consent form. The cellular localization of SET protein was observed by immunohistochemistry. The expression levels of SET protein were analyzed by Western Blot. Result. SET protein was expressed predominantly in the theca cells and oocytes of human ovarian follicles in both PCOS ovarian tissues and normal ovarian tissues. The level of SET protein expression in polycystic ovaries was triple higher than that in normal ovaries (P < 0.05). Conclusion. SET was overexpressed in polycystic ovaries more than that in normal ovaries. Combined with its localization in theca cells, SET may participate in regulating ovarian androgen biosynthesis and the pathophysiology of hyperandrogenism in PCOS. PMID:23861679

  3. Expression of SET Protein in the Ovaries of Patients with Polycystic Ovary Syndrome.

    PubMed

    Boqun, Xu; Xiaonan, Dai; Yugui, Cui; Lingling, Gao; Xue, Dai; Gao, Chao; Feiyang, Diao; Jiayin, Liu; Gao, Li; Li, Mei; Zhang, Yuan; Ma, Xiang

    2013-01-01

    Background. We previously found that expression of SET gene was up-regulated in polycystic ovaries by using microarray. It suggested that SET may be an attractive candidate regulator involved in the pathophysiology of polycystic ovary syndrome (PCOS). In this study, expression and cellular localization of SET protein were investigated in human polycystic and normal ovaries. Method. Ovarian tissues, six normal ovaries and six polycystic ovaries, were collected during transsexual operation and surgical treatment with the signed consent form. The cellular localization of SET protein was observed by immunohistochemistry. The expression levels of SET protein were analyzed by Western Blot. Result. SET protein was expressed predominantly in the theca cells and oocytes of human ovarian follicles in both PCOS ovarian tissues and normal ovarian tissues. The level of SET protein expression in polycystic ovaries was triple higher than that in normal ovaries (P < 0.05). Conclusion. SET was overexpressed in polycystic ovaries more than that in normal ovaries. Combined with its localization in theca cells, SET may participate in regulating ovarian androgen biosynthesis and the pathophysiology of hyperandrogenism in PCOS.

  4. Properties of a non-bioactive fluorescent derivative of differentiation-inducing factor-3, an anti-tumor agent found in Dictyostelium discoideum

    PubMed Central

    Kubohara, Yuzuru; Kikuchi, Haruhisa; Matsuo, Yusuke; Oshima, Yoshiteru; Homma, Yoshimi

    2014-01-01

    ABSTRACT Differentiation-inducing factor-3 (DIF-3), found in the cellular slime mold Dictyostelium discoideum, and its derivatives, such as butoxy-DIF-3 (Bu-DIF-3), are potent anti-tumor agents. To investigate the activity of DIF-like molecules in tumor cells, we recently synthesized a green fluorescent DIF-3 derivative, BODIPY-DIF-3G, and analyzed its bioactivity and cellular localization. In this study, we synthesized a red (orange) fluorescent DIF-3 derivative, BODIPY-DIF-3R, and compared the cellular localization and bioactivities of the two BODIPY-DIF-3s in HeLa human cervical cancer cells. Both fluorescent compounds penetrated the extracellular membrane within 0.5 h and localized mainly to the mitochondria. In formalin-fixed cells, the two BODIPY-DIF-3s also localized to the mitochondria, indicating that the BODIPY-DIF-3s were incorporated into mitochondria independently of the mitochondrial membrane potential. After treatment for 3 days, BODIPY-DIF-3G, but not BODIPY-DIF-3R, induced mitochondrial swelling and suppressed cell proliferation. Interestingly, the swollen mitochondria were stainable with BODIPY-DIF-3G but not with BODIPY-DIF-3R. When added to isolated mitochondria in vitro, BODIPY-DIF-3G increased dose-dependently the rate of O2 consumption, but BODIPY-DIF-3R did not. These results suggest that the bioactive BODIPY-DIF-3G suppresses cell proliferation, at least in part, by altering mitochondrial activity, whereas the non-bioactive BODIPY-DIF-3R localizes to the mitochondria but does not affect mitochondrial activity or cell proliferation. PMID:24682009

  5. Role of host protein Ebp1 in influenza virus growth: intracellular localization of Ebp1 in virus-infected and uninfected cells.

    PubMed

    Honda, Ayae

    2008-01-20

    The cellular protein Ebp1 was identified to interact with PB1 protein of influenza virus RNA polymerase, and inhibit both RNA synthesis in vitro and influenza virus replication in vivo [Honda, A., Okamoto, T., Ishihama, A., 2007. Host factor Ebp1: selective inhibitor of influenza virus transcriptase. Genes Cells 12, 133-142]. The intracellular localization of Ebp1 that is involved in cell proliferation control was analyzed by direct immunostaining of cells before and after influenza virus infection. Ebp1 was found to localize in the nuclear membrane of uninfected cells, and to form nuclear aggregates with viral P proteins in virus-infected cells.

  6. Inferring the Limit Behavior of Some Elementary Cellular Automata

    NASA Astrophysics Data System (ADS)

    Ruivo, Eurico L. P.; de Oliveira, Pedro P. B.

    Cellular automata locally define dynamical systems, discrete in space, time and in the state variables, capable of displaying arbitrarily complex global emergent behavior. One core question in the study of cellular automata refers to their limit behavior, that is, to the global dynamical features in an infinite time evolution. Previous works have shown that for finite time evolutions, the dynamics of one-dimensional cellular automata can be described by regular languages and, therefore, by finite automata. Such studies have shown the existence of growth patterns in the evolution of such finite automata for some elementary cellular automata rules and also inferred the limit behavior of such rules based upon the growth patterns; however, the results on the limit behavior were obtained manually, by direct inspection of the structures that arise during the time evolution. Here we present the formalization of an automatic method to compute such structures. Based on this, the rules of the elementary cellular automata space were classified according to the existence of a growth pattern in their finite automata. Also, we present a method to infer the limit graph of some elementary cellular automata rules, derived from the analysis of the regular expressions that describe their behavior in finite time. Finally, we analyze some attractors of two rules for which we could not compute the whole limit set.

  7. High content image analysis for human H4 neuroglioma cells exposed to CuO nanoparticles.

    PubMed

    Li, Fuhai; Zhou, Xiaobo; Zhu, Jinmin; Ma, Jinwen; Huang, Xudong; Wong, Stephen T C

    2007-10-09

    High content screening (HCS)-based image analysis is becoming an important and widely used research tool. Capitalizing this technology, ample cellular information can be extracted from the high content cellular images. In this study, an automated, reliable and quantitative cellular image analysis system developed in house has been employed to quantify the toxic responses of human H4 neuroglioma cells exposed to metal oxide nanoparticles. This system has been proved to be an essential tool in our study. The cellular images of H4 neuroglioma cells exposed to different concentrations of CuO nanoparticles were sampled using IN Cell Analyzer 1000. A fully automated cellular image analysis system has been developed to perform the image analysis for cell viability. A multiple adaptive thresholding method was used to classify the pixels of the nuclei image into three classes: bright nuclei, dark nuclei, and background. During the development of our image analysis methodology, we have achieved the followings: (1) The Gaussian filtering with proper scale has been applied to the cellular images for generation of a local intensity maximum inside each nucleus; (2) a novel local intensity maxima detection method based on the gradient vector field has been established; and (3) a statistical model based splitting method was proposed to overcome the under segmentation problem. Computational results indicate that 95.9% nuclei can be detected and segmented correctly by the proposed image analysis system. The proposed automated image analysis system can effectively segment the images of human H4 neuroglioma cells exposed to CuO nanoparticles. The computational results confirmed our biological finding that human H4 neuroglioma cells had a dose-dependent toxic response to the insult of CuO nanoparticles.

  8. Expression and sub-cellular localization of an epigenetic regulator, co-activator arginine methyltransferase 1 (CARM1), is associated with specific breast cancer subtypes and ethnicity

    PubMed Central

    2013-01-01

    Background Co-Activator Arginine Methyltransferase 1(CARM1) is an Estrogen Receptor (ER) cofactor that remodels chromatin for gene regulation via methylation of Histone3. We investigated CARM1 levels and localization across breast cancer tumors in a cohort of patients of either European or African ancestry. Methods We analyzed CARM1 levels using tissue microarrays with over 800 histological samples from 549 female cancer patients from the US and Nigeria, Africa. We assessed associations between CARM1 expression localized to the nucleus and cytoplasm for 11 distinct variables, including; ER status, Progesterone Receptor status, molecular subtypes, ethnicity, HER2+ status, other clinical variables and survival. Results We found that levels of cytoplasmic CARM1 are distinct among tumor sub-types and increased levels are associated with ER-negative (ER-) status. Higher nuclear CARM1 levels are associated with HER2 receptor status. EGFR expression also correlates with localization of CARM1 into the cytoplasm. This suggests there are distinct functions of CARM1 among molecular tumor types. Our data reveals a basal-like subtype association with CARM1, possibly due to expression of Epidermal Growth Factor Receptor (EGFR). Lastly, increased cytoplasmic CARM1, relative to nuclear levels, appear to be associated with self-identified African ethnicity and this result is being further investigated using quantified genetic ancestry measures. Conclusions Although it is known to be an ER cofactor in breast cancer, CARM1 expression levels are independent of ER. CARM1 has distinct functions among molecular subtypes, as is indicative of its sub-cellular localization and it may function in subtype etiology. These sub-cellular localization patterns, indicate a novel role beyond its ER cofactor function in breast cancer. Differential localization among ethnic groups may be due to ancestry-specific polymorphisms which alter the gene product. PMID:23663560

  9. Intracellular Protein Delivery for Treating Breast Cancer

    DTIC Science & Technology

    2012-06-01

    are efficiently internalized by mammalian cells lines as characterized by confocal microscopy, and rhodamine-labeled apoptin can be observed in the...To determine the cellular localization of delivered proteins, confocal images were taken with HeLa, MCF-7, or HEF cells incubated with 20 nM of S-S...and analyzed by Nikon NIS Element software. Fluorescence images were acquired on a Yokogawa spinning-disk confocal scanner system using a Nikon

  10. Cell- and virus-mediated regulation of the barrier-to-autointegration factor's phosphorylation state controls its DNA binding, dimerization, subcellular localization, and antipoxviral activity.

    PubMed

    Jamin, Augusta; Wicklund, April; Wiebe, Matthew S

    2014-05-01

    Barrier-to-autointegration factor (BAF) is a DNA binding protein with multiple cellular functions, including the ability to act as a potent defense against vaccinia virus infection. This antiviral function involves BAF's ability to condense double-stranded DNA and subsequently prevent viral DNA replication. In recent years, it has become increasingly evident that dynamic phosphorylation involving the vaccinia virus B1 kinase and cellular enzymes is likely a key regulator of multiple BAF functions; however, the precise mechanisms are poorly understood. Here we analyzed how phosphorylation impacts BAF's DNA binding, subcellular localization, dimerization, and antipoxviral activity through the characterization of BAF phosphomimetic and unphosphorylatable mutants. Our studies demonstrate that increased phosphorylation enhances BAF's mobilization from the nucleus to the cytosol, while dephosphorylation restricts BAF to the nucleus. Phosphorylation also impairs both BAF's dimerization and its DNA binding activity. Furthermore, our studies of BAF's antiviral activity revealed that hyperphosphorylated BAF is unable to suppress viral DNA replication or virus production. Interestingly, the unphosphorylatable BAF mutant, which is capable of binding DNA but localizes predominantly to the nucleus, was also incapable of suppressing viral replication. Thus, both DNA binding and localization are important determinants of BAF's antiviral function. Finally, our examination of how phosphatases are involved in regulating BAF revealed that PP2A dephosphorylates BAF during vaccinia infection, thus counterbalancing the activity of the B1 kinase. Altogether, these data demonstrate that phosphoregulation of BAF by viral and cellular enzymes modulates this protein at multiple molecular levels, thus determining its effectiveness as an antiviral factor and likely other functions as well. The barrier-to-autointegration factor (BAF) contributes to cellular genomic integrity in multiple ways, the best characterized of which are as a host defense against cytoplasmic DNA and as a regulator of mitotic nuclear reassembly. Although dynamic phosphorylation involving both viral and cellular enzymes is likely a key regulator of multiple BAF functions, the precise mechanisms involved are poorly understood. Here we demonstrate that phosphorylation coordinately regulates BAF's DNA binding, subcellular localization, dimerization, and antipoxviral activity. Overall, our findings provide new insights into how phosphoregulation of BAF modulates this protein at multiple levels and governs its effectiveness as an antiviral factor against foreign DNA.

  11. Theorems and application of local activity of CNN with five state variables and one port.

    PubMed

    Xiong, Gang; Dong, Xisong; Xie, Li; Yang, Thomas

    2012-01-01

    Coupled nonlinear dynamical systems have been widely studied recently. However, the dynamical properties of these systems are difficult to deal with. The local activity of cellular neural network (CNN) has provided a powerful tool for studying the emergence of complex patterns in a homogeneous lattice, which is composed of coupled cells. In this paper, the analytical criteria for the local activity in reaction-diffusion CNN with five state variables and one port are presented, which consists of four theorems, including a serial of inequalities involving CNN parameters. These theorems can be used for calculating the bifurcation diagram to determine or analyze the emergence of complex dynamic patterns, such as chaos. As a case study, a reaction-diffusion CNN of hepatitis B Virus (HBV) mutation-selection model is analyzed and simulated, the bifurcation diagram is calculated. Using the diagram, numerical simulations of this CNN model provide reasonable explanations of complex mutant phenomena during therapy. Therefore, it is demonstrated that the local activity of CNN provides a practical tool for the complex dynamics study of some coupled nonlinear systems.

  12. Cellular localization and export of the soluble haemolysin of Vibrio cholerae El Tor.

    PubMed

    Mercurio, A; Manning, P A

    1985-01-01

    The cellular location of the haemolysin of Vibrio cholerae El Tor strain 017 has been analyzed. This protein is found both in the periplasmic space and the extracellular medium in Vibrio cholerae. However, when the cloned gene, present on plasmid pPM431, is introduced into E. coli K-12 this protein remains localized predominantly in the periplasmic space with no activity detected in the extracellular medium. Mutants of E. coli K-12 (tolA and tolB) which leak periplasmic proteins mimic excretion and release the haemolysin into the growth medium. Secretion of haemolysin into the periplasm is independent of perA (envZ) and in fact, mutants in perA (envZ) harbouring pPM431 show hyperproduction of periplasmic haemolysin. These results in conjunction with those for other V. cholerae extracellular proteins suggest that although E. coli K-12 can secrete these proteins into the periplasm, it lacks a specific excretion mechanism, present in V. cholerae, for the release of soluble proteins into the growth medium.

  13. SBML-SAT: a systems biology markup language (SBML) based sensitivity analysis tool

    PubMed Central

    Zi, Zhike; Zheng, Yanan; Rundell, Ann E; Klipp, Edda

    2008-01-01

    Background It has long been recognized that sensitivity analysis plays a key role in modeling and analyzing cellular and biochemical processes. Systems biology markup language (SBML) has become a well-known platform for coding and sharing mathematical models of such processes. However, current SBML compatible software tools are limited in their ability to perform global sensitivity analyses of these models. Results This work introduces a freely downloadable, software package, SBML-SAT, which implements algorithms for simulation, steady state analysis, robustness analysis and local and global sensitivity analysis for SBML models. This software tool extends current capabilities through its execution of global sensitivity analyses using multi-parametric sensitivity analysis, partial rank correlation coefficient, SOBOL's method, and weighted average of local sensitivity analyses in addition to its ability to handle systems with discontinuous events and intuitive graphical user interface. Conclusion SBML-SAT provides the community of systems biologists a new tool for the analysis of their SBML models of biochemical and cellular processes. PMID:18706080

  14. SBML-SAT: a systems biology markup language (SBML) based sensitivity analysis tool.

    PubMed

    Zi, Zhike; Zheng, Yanan; Rundell, Ann E; Klipp, Edda

    2008-08-15

    It has long been recognized that sensitivity analysis plays a key role in modeling and analyzing cellular and biochemical processes. Systems biology markup language (SBML) has become a well-known platform for coding and sharing mathematical models of such processes. However, current SBML compatible software tools are limited in their ability to perform global sensitivity analyses of these models. This work introduces a freely downloadable, software package, SBML-SAT, which implements algorithms for simulation, steady state analysis, robustness analysis and local and global sensitivity analysis for SBML models. This software tool extends current capabilities through its execution of global sensitivity analyses using multi-parametric sensitivity analysis, partial rank correlation coefficient, SOBOL's method, and weighted average of local sensitivity analyses in addition to its ability to handle systems with discontinuous events and intuitive graphical user interface. SBML-SAT provides the community of systems biologists a new tool for the analysis of their SBML models of biochemical and cellular processes.

  15. Mono- and Dinuclear Phosphorescent Rhenium(I) Complexes: Impact of Subcellular Localization on Anticancer Mechanisms.

    PubMed

    Ye, Rui-Rong; Tan, Cai-Ping; Chen, Mu-He; Hao, Liang; Ji, Liang-Nian; Mao, Zong-Wan

    2016-06-01

    Elucidation of relationship among chemical structure, cellular uptake, localization, and biological activity of anticancer metal complexes is important for the understanding of their mechanisms of action. Organometallic rhenium(I) tricarbonyl compounds have emerged as potential multifunctional anticancer drug candidates that can integrate therapeutic and imaging capabilities in a single molecule. Herein, two mononuclear phosphorescent rhenium(I) complexes (Re1 and Re2), along with their corresponding dinuclear complexes (Re3 and Re4), were designed and synthesized as potent anticancer agents. The subcellular accumulation of Re1-Re4 was conveniently analyzed by confocal microscopy in situ in live cells by utilizing their intrinsic phosphorescence. We found that increased lipophilicity of the bidentate ligands could enhance their cellular uptake, leading to improved anticancer efficacy. The dinuclear complexes were more potent than the mononuclear counterparts. The molecular anticancer mechanisms of action evoked by Re3 and Re4 were explored in detail. Re3 with a lower lipophilicity localizes to lysosomes and induces caspase-independent apoptosis, whereas Re4 with higher lipophilicity specially accumulates in mitochondria and induces caspase-independent paraptosis in cancer cells. Our study demonstrates that subcellular localization is crucial for the anticancer mechanisms of these phosphorescent rhenium(I) complexes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Role of local sequence in the folding of cellular retinoic abinding protein I: structural propensities of reverse turns.

    PubMed

    Rotondi, Kenneth S; Gierasch, Lila M

    2003-07-08

    The experiments described here explore the role of local sequence in the folding of cellular retinoic acid binding protein I (CRABP I). This is a 136-residue, 10-stranded, antiparallel beta-barrel protein with seven beta-hairpins and is a member of the intracellular lipid binding protein (iLBP) family. The relative roles of local and global sequence information in governing the folding of this class of proteins are not well-understood. In question is whether the beta-turns are locally defined by short-range interactions within their sequences, and are thus able to play an active role in reducing the conformational space available to the folding chain, or whether the turns are passive, relying upon global forces to form. Short (six- and seven-residue) peptides corresponding to the seven CRABP I turns were analyzed by circular dichroism and NMR for their tendencies to take up the conformations they adopt in the context of the native protein. The results indicate that two of the peptides, encompassing turns III and IV in CRABP I, have a strong intrinsic bias to form native turns. Intriguingly, these turns are on linked hairpins in CRABP I and represent the best-conserved turns in the iLBP family. These results suggest that local sequence may play an important role in narrowing the conformational ensemble of CRABP I during folding.

  17. Accounting for Protein Subcellular Localization: A Compartmental Map of the Rat Liver Proteome*

    PubMed Central

    Jadot, Michel; Boonen, Marielle; Thirion, Jaqueline; Wang, Nan; Xing, Jinchuan; Zhao, Caifeng; Tannous, Abla; Qian, Meiqian; Zheng, Haiyan; Everett, John K.; Moore, Dirk F.; Sleat, David E.; Lobel, Peter

    2017-01-01

    Accurate knowledge of the intracellular location of proteins is important for numerous areas of biomedical research including assessing fidelity of putative protein-protein interactions, modeling cellular processes at a system-wide level and investigating metabolic and disease pathways. Many proteins have not been localized, or have been incompletely localized, partly because most studies do not account for entire subcellular distribution. Thus, proteins are frequently assigned to one organelle whereas a significant fraction may reside elsewhere. As a step toward a comprehensive cellular map, we used subcellular fractionation with classic balance sheet analysis and isobaric labeling/quantitative mass spectrometry to assign locations to >6000 rat liver proteins. We provide quantitative data and error estimates describing the distribution of each protein among the eight major cellular compartments: nucleus, mitochondria, lysosomes, peroxisomes, endoplasmic reticulum, Golgi, plasma membrane and cytosol. Accounting for total intracellular distribution improves quality of organelle assignments and assigns proteins with multiple locations. Protein assignments and supporting data are available online through the Prolocate website (http://prolocate.cabm.rutgers.edu). As an example of the utility of this data set, we have used organelle assignments to help analyze whole exome sequencing data from an infant dying at 6 months of age from a suspected neurodegenerative lysosomal storage disorder of unknown etiology. Sequencing data was prioritized using lists of lysosomal proteins comprising well-established residents of this organelle as well as novel candidates identified in this study. The latter included copper transporter 1, encoded by SLC31A1, which we localized to both the plasma membrane and lysosome. The patient harbors two predicted loss of function mutations in SLC31A1, suggesting that this may represent a heretofore undescribed recessive lysosomal storage disease gene. PMID:27923875

  18. Accounting for Protein Subcellular Localization: A Compartmental Map of the Rat Liver Proteome.

    PubMed

    Jadot, Michel; Boonen, Marielle; Thirion, Jaqueline; Wang, Nan; Xing, Jinchuan; Zhao, Caifeng; Tannous, Abla; Qian, Meiqian; Zheng, Haiyan; Everett, John K; Moore, Dirk F; Sleat, David E; Lobel, Peter

    2017-02-01

    Accurate knowledge of the intracellular location of proteins is important for numerous areas of biomedical research including assessing fidelity of putative protein-protein interactions, modeling cellular processes at a system-wide level and investigating metabolic and disease pathways. Many proteins have not been localized, or have been incompletely localized, partly because most studies do not account for entire subcellular distribution. Thus, proteins are frequently assigned to one organelle whereas a significant fraction may reside elsewhere. As a step toward a comprehensive cellular map, we used subcellular fractionation with classic balance sheet analysis and isobaric labeling/quantitative mass spectrometry to assign locations to >6000 rat liver proteins. We provide quantitative data and error estimates describing the distribution of each protein among the eight major cellular compartments: nucleus, mitochondria, lysosomes, peroxisomes, endoplasmic reticulum, Golgi, plasma membrane and cytosol. Accounting for total intracellular distribution improves quality of organelle assignments and assigns proteins with multiple locations. Protein assignments and supporting data are available online through the Prolocate website (http://prolocate.cabm.rutgers.edu). As an example of the utility of this data set, we have used organelle assignments to help analyze whole exome sequencing data from an infant dying at 6 months of age from a suspected neurodegenerative lysosomal storage disorder of unknown etiology. Sequencing data was prioritized using lists of lysosomal proteins comprising well-established residents of this organelle as well as novel candidates identified in this study. The latter included copper transporter 1, encoded by SLC31A1, which we localized to both the plasma membrane and lysosome. The patient harbors two predicted loss of function mutations in SLC31A1, suggesting that this may represent a heretofore undescribed recessive lysosomal storage disease gene. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. A meta-analysis to evaluate the cellular processes regulated by the interactome of endogenous and over-expressed estrogen receptor alpha.

    PubMed

    Simões, Joana; Amado, Francisco M; Vitorino, Rui; Helguero, Luisa A

    2015-01-01

    The nature of the proteins complexes that regulate ERα subcellular localization and activity is still an open question in breast cancer biology. Identification of such complexes will help understand development of endocrine resistance in ER+ breast cancer. Mass spectrometry (MS) has allowed comprehensive analysis of the ERα interactome. We have compared six published works analyzing the ERα interactome of MCF-7 and HeLa cells in order to identify a shared or different pathway-related fingerprint. Overall, 806 ERα interacting proteins were identified. The cellular processes were differentially represented according to the ERα purification methodology, indicating that the methodologies used are complementary. While in MCF-7 cells, the interactome of endogenous and over-expressed ERα essentially represents the same biological processes and cellular components, the proteins identified were not over-lapping; thus, suggesting that the biological response may differ as the regulatory/participating proteins in these complexes are different. Interestingly, biological processes uniquely associated to ERα over-expressed in HeLa cell line included L-serine biosynthetic process, cellular amino acid biosynthetic process and cell redox homeostasis. In summary, all the approaches analyzed in this meta-analysis are valid and complementary; in particular, for those cases where the processes occur at low frequency with normal ERα levels, and can be identified when the receptor is over-expressed. However special effort should be put into validating these findings in cells expressing physiological ERα levels.

  20. Towards the prediction of essential genes by integration of network topology, cellular localization and biological process information

    PubMed Central

    2009-01-01

    Background The identification of essential genes is important for the understanding of the minimal requirements for cellular life and for practical purposes, such as drug design. However, the experimental techniques for essential genes discovery are labor-intensive and time-consuming. Considering these experimental constraints, a computational approach capable of accurately predicting essential genes would be of great value. We therefore present here a machine learning-based computational approach relying on network topological features, cellular localization and biological process information for prediction of essential genes. Results We constructed a decision tree-based meta-classifier and trained it on datasets with individual and grouped attributes-network topological features, cellular compartments and biological processes-to generate various predictors of essential genes. We showed that the predictors with better performances are those generated by datasets with integrated attributes. Using the predictor with all attributes, i.e., network topological features, cellular compartments and biological processes, we obtained the best predictor of essential genes that was then used to classify yeast genes with unknown essentiality status. Finally, we generated decision trees by training the J48 algorithm on datasets with all network topological features, cellular localization and biological process information to discover cellular rules for essentiality. We found that the number of protein physical interactions, the nuclear localization of proteins and the number of regulating transcription factors are the most important factors determining gene essentiality. Conclusion We were able to demonstrate that network topological features, cellular localization and biological process information are reliable predictors of essential genes. Moreover, by constructing decision trees based on these data, we could discover cellular rules governing essentiality. PMID:19758426

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emin, David, E-mail: emin@unm.edu; Akhtari, Massoud; Ellingson, B. M.

    We analyze the transient-dc and frequency-dependent electrical conductivities between blocking electrodes. We extend this analysis to measurements of ions’ transport in freshly excised bulk samples of human brain tissue whose complex cellular structure produces blockages. The associated ionic charge-carrier density and diffusivity are consistent with local values for sodium cations determined non-invasively in brain tissue by MRI (NMR) and diffusion-MRI (spin-echo NMR). The characteristic separation between blockages, about 450 microns, is very much shorter than that found for sodium-doped gel proxies for brain tissue, >1 cm.

  2. Methods for Detection of Mitochondrial and Cellular Reactive Oxygen Species

    PubMed Central

    Harrison, David G.

    2014-01-01

    Abstract Significance: Mitochondrial and cellular reactive oxygen species (ROS) play important roles in both physiological and pathological processes. Different ROS, such as superoxide (O2•−), hydrogen peroxide, and peroxynitrite (ONOO•−), stimulate distinct cell-signaling pathways and lead to diverse outcomes depending on their amount and subcellular localization. A variety of methods have been developed for ROS detection; however, many of these methods are not specific, do not allow subcellular localization, and can produce artifacts. In this review, we will critically analyze ROS detection and present advantages and the shortcomings of several available methods. Recent Advances: In the past decade, a number of new fluorescent probes, electron-spin resonance approaches, and immunoassays have been developed. These new state-of-the-art methods provide improved selectivity and subcellular resolution for ROS detection. Critical Issues: Although new methods for HPLC superoxide detection, application of fluorescent boronate-containing probes, use of cell-targeted hydroxylamine spin probes, and immunospin trapping have been available for several years, there has been lack of translation of these into biomedical research, limiting their widespread use. Future Directions: Additional studies to translate these new technologies from the test tube to physiological applications are needed and could lead to a wider application of these approaches to study mitochondrial and cellular ROS. Antioxid. Redox Signal. 20, 372–382. PMID:22978713

  3. Spatial reconstruction of single-cell gene expression

    PubMed Central

    Satija, Rahul; Farrell, Jeffrey A.; Gennert, David; Schier, Alexander F.; Regev, Aviv

    2015-01-01

    Spatial localization is a key determinant of cellular fate and behavior, but spatial RNA assays traditionally rely on staining for a limited number of RNA species. In contrast, single-cell RNA-seq allows for deep profiling of cellular gene expression, but established methods separate cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos, inferring a transcriptome-wide map of spatial patterning. We confirmed Seurat’s accuracy using several experimental approaches, and used it to identify a set of archetypal expression patterns and spatial markers. Additionally, Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems. PMID:25867923

  4. Expression and distribution of transient receptor potential (TRP) channels in bladder epithelium.

    PubMed

    Yu, Weiqun; Hill, Warren G; Apodaca, Gerard; Zeidel, Mark L

    2011-01-01

    The urothelium is proposed to be a sensory tissue that responds to mechanical stress by undergoing dynamic membrane trafficking and neurotransmitter release; however, the molecular basis of this function is poorly understood. Transient receptor potential (TRP) channels are ideal candidates to fulfill such a role as they can sense changes in temperature, osmolarity, and mechanical stimuli, and several are reported to be expressed in the bladder epithelium. However, their complete expression profile is unknown and their cellular localization is largely undefined. We analyzed expression of all 33 TRP family members in mouse bladder and urothelium by RT-PCR and found 22 specifically expressed in the urothelium. Of the latter, 10 were chosen for closer investigation based on their known mechanosensory or membrane trafficking functions in other cell types. Western blots confirmed urothelial expression of TRPC1, TRPC4, TRPV1, TRPV2, TRPV4, TRPM4, TRPM7, TRPML1, and polycystins 1 and 2 (PKD1 and PKD2) proteins. We further defined the cellular and subcellular localization of all 10 TRP channels. TRPV2 and TRPM4 were prominently localized to the umbrella cell apical membrane, while TRPC4 and TRPV4 were identified on their abluminal surfaces. TRPC1, TRPM7, and TRPML1 were localized to the cytoplasm, while PKD1 and PKD2 were expressed on the apical and basolateral membranes of umbrella cells as well as in the cytoplasm. The cellular location of TRPV1 in the bladder has been debated, but colocalization with neuronal marker calcitonin gene-related peptide indicated clearly that it is present on afferent neurons that extend into the urothelium, but may not be expressed by the urothelium itself. These findings are consistent with the hypothesis that the urothelium acts as a sentinel and by expressing multiple TRP channels it is likely it can detect and presumably respond to a diversity of external stimuli and suggest that it plays an important role in urothelial signal transduction.

  5. Intracellular Localization and Cellular Factors Interaction of HTLV-1 and HTLV-2 Tax Proteins: Similarities and Functional Differences

    PubMed Central

    Bertazzoni, Umberto; Turci, Marco; Avesani, Francesca; Di Gennaro, Gianfranco; Bidoia, Carlo; Romanelli, Maria Grazia

    2011-01-01

    Human T-lymphotropic viruses type 1 (HTLV-1) and type 2 (HTLV-2) present very similar genomic structures but HTLV-1 is more pathogenic than HTLV-2. Is this difference due to their transactivating Tax proteins, Tax-1 and Tax-2, which are responsible for viral and cellular gene activation? Do Tax-1 and Tax-2 differ in their cellular localization and in their interaction pattern with cellular factors? In this review, we summarize Tax-1 and Tax-2 structural and phenotypic properties, their interaction with factors involved in signal transduction and their localization-related behavior within the cell. Special attention will be given to the distinctions between Tax-1 and Tax-2 that likely play an important role in their transactivation activity. PMID:21994745

  6. Transient expression and cellular localization of recombinant proteins in cultured insect cells

    USDA-ARS?s Scientific Manuscript database

    Heterologous protein expression systems are used for production of recombinant proteins, interpretation of cellular trafficking/localization, and for the determination of biochemical function of proteins at the sub-organismal level. Although baculovirus expression systems are increasingly used for ...

  7. Benznidazole, the trypanocidal drug used for Chagas disease, induces hepatic NRF2 activation and attenuates the inflammatory response in a murine model of sepsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambertucci, Flavia

    Molecular mechanisms on sepsis progression are linked to the imbalance between reactive oxygen species (ROS) production and cellular antioxidant capacity. Previous studies demonstrated that benznidazole (BZL), known for its antiparasitic action on Trypanosoma cruzi, has immunomodulatory effects, increasing survival in C57BL/6 mice in a model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). The mechanism by which BZL inhibits inflammatory response in sepsis is poorly understood. Also, our group recently reported that BZL is able to activate the nuclear factor erytroide-derived 2-Like 2 (NRF2) in vitro. The aim of the present work was to delineate the beneficial rolemore » of BZL during sepsis, analyzing its effects on the cellular redox status and the possible link to the innate immunity receptor TLR4. Specifically, we analyzed the effect of BZL on Nrf2 regulation and TLR4 expression in liver of mice 24 hours post-CLP. BZL was able to induce NRF2 nuclear protein localization in CLP mice. Also, we found that protein kinase C (PKC) is involved in the NRF2 nuclear accumulation and induction of its target genes. In addition, BZL prompted a reduction in hepatic CLP-induced TLR4 protein membrane localization, evidencing its immunomodulatory effects. Together, our results demonstrate that BZL induces hepatic NRF2 activation with the concomitant increase in the antioxidant defenses, and the attenuation of inflammatory response, in part, by inhibiting TLR4 expression in a murine model of sepsis. - Highlights: • BZL improves survival rate after polymicrobial sepsis • BZL enhances hepatic NRF2 nuclear accumulation in a model of sepsis, in part, by a mechanism dependent on PKC activation • BZL-enhanced NRF2 induction regulates antioxidant enzymes and increases antioxidant cellular defenses in sepsis • BZL blocks liver ROS production and ROS-induced TLR4 plasma membrane expression in septic mice.« less

  8. Localization-delocalization transition in a system of quantum kicked rotors.

    PubMed

    Creffield, C E; Hur, G; Monteiro, T S

    2006-01-20

    The quantum dynamics of atoms subjected to pairs of closely spaced delta kicks from optical potentials are shown to be quite different from the well-known paradigm of quantum chaos, the single delta-kick system. We find the unitary matrix has a new oscillating band structure corresponding to a cellular structure of phase space and observe a spectral signature of a localization-delocalization transition from one cell to several. We find that the eigenstates have localization lengths which scale with a fractional power L approximately h(-0.75) and obtain a regime of near-linear spectral variances which approximate the "critical statistics" relation summation2(L) approximately or equal to chi(L) approximately 1/2 (1-nu)L, where nu approximately 0.75 is related to the fractal classical phase-space structure. The origin of the nu approximately 0.75 exponent is analyzed.

  9. Aberrant localization of lamin B receptor (LBR) in cellular senescence in human cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, Rumi; En, Atsuki; Ukekawa, Ryo

    2016-05-13

    5-Bromodeoxyuridine (BrdU), a thymidine analogue, induces cellular senescence in mammalian cells. BrdU induces cellular senescence probably through the regulation of chromatin because BrdU destabilizes or disrupts nucleosome positioning and decondenses heterochromatin. Since heterochromatin is tethered to the nuclear periphery through the interaction with the nuclear envelope proteins, we examined the localization of the several nuclear envelope proteins such as lamins, lamin-interacting proteins, nuclear pore complex proteins, and nuclear transport proteins in senescent cells. We have shown here that lamin B receptor (LBR) showed a change in localization in both BrdU-induced and replicative senescent cells.

  10. Cellular phosphoinositides and the maturation of bluetongue virus, a non-enveloped capsid virus

    PubMed Central

    2013-01-01

    Background Bluetongue virus (BTV), a member of Orbivirus genus in the Reoviridae family is a double capsid virus enclosing a genome of 10 double-stranded RNA segments. A non-structural protein of BTV, NS3, which is associated with cellular membranes and interacts with outer capsid proteins, has been shown to be involved in virus morphogenesis in infected cells. In addition, studies have also shown that during the later stages of virus infection NS3 behaves similarly to HIV protein Gag, an enveloped viral protein. Since Gag protein is known to interact with membrane lipid phosphatidylinositol (4,5) bisphosphate [PI(4,5)P2] and one of the known binding partners of NS3, cellular protein p11 also interacts with annexin a PI(4,5)P2 interacting protein, this study was designed to understand the role of this negatively charged membrane lipid in BTV assembly and maturation. Methods Over expression of cellular enzymes that either depleted cells of PI(4,5)P2 or altered the distribution of PI(4,5)P2, were used to analyze the effect of the lipid on BTV maturation at different times post-infection. The production of mature virus particles was monitored by plaque assay. Microscopic techniques such as confocal microscopy and electron microscopy (EM) were also undertaken to study localization of virus proteins and virus particles in cells, respectively. Results Initially, confocal microscopic analysis demonstrated that PI(4,5)P2 not only co-localized with NS3, but it also co-localized with VP5, one of the outer capsid proteins of BTV. Subsequently, experiments involving depletion of cellular PI(4,5)P2 or its relocation demonstrated an inhibitory effect on normal BTV maturation and it also led to a redistribution of BTV proteins within the cell. The data was supported further by EM visualization showing that modulation of PI(4,5)P2 in cells indeed resulted in less particle production. Conclusion This study to our knowledge, is the first report demonstrating involvement of PI(4,5)P2 in a non-enveloped virus assembly and release. As BTV does not have lipid envelope, this finding is unique for this group of viruses and it suggests that the maturation of capsid and enveloped viruses may be more closely related than previously thought. PMID:23497128

  11. Simulation of glioblastoma multiforme (GBM) tumor cells using ising model on the Creutz Cellular Automaton

    NASA Astrophysics Data System (ADS)

    Züleyha, Artuç; Ziya, Merdan; Selçuk, Yeşiltaş; Kemal, Öztürk M.; Mesut, Tez

    2017-11-01

    Computational models for tumors have difficulties due to complexity of tumor nature and capacities of computational tools, however, these models provide visions to understand interactions between tumor and its micro environment. Moreover computational models have potential to develop strategies for individualized treatments for cancer. To observe a solid brain tumor, glioblastoma multiforme (GBM), we present a two dimensional Ising Model applied on Creutz cellular automaton (CCA). The aim of this study is to analyze avascular spherical solid tumor growth, considering transitions between non tumor cells and cancer cells are like phase transitions in physical system. Ising model on CCA algorithm provides a deterministic approach with discrete time steps and local interactions in position space to view tumor growth as a function of time. Our simulation results are given for fixed tumor radius and they are compatible with theoretical and clinic data.

  12. GEITLERINEMA SPECIES (OSCILLATORIALES, CYANOBACTERIA) REVEALED BY CELLULAR MORPHOLOGY, ULTRASTRUCTURE, AND DNA SEQUENCING(1).

    PubMed

    Do Carmo Bittencourt-Oliveira, Maria; Do Nascimento Moura, Ariadne; De Oliveira, Mariana Cabral; Sidnei Massola, Nelson

    2009-06-01

    Geitlerinema amphibium (C. Agardh ex Gomont) Anagn. and G. unigranulatum (Rama N. Singh) Komárek et M. T. P. Azevedo are morphologically close species with characteristics frequently overlapping. Ten strains of Geitlerinema (six of G. amphibium and four of G. unigranulatum) were analyzed by DNA sequencing and transmission electronic and optical microscopy. Among the investigated strains, the two species were not separated with respect to cellular dimensions, and cellular width was the most varying characteristic. The number and localization of granules, as well as other ultrastructural characteristics, did not provide a means to discriminate between the two species. The two species were not separated either by geography or environment. These results were further corroborated by the analysis of the cpcB-cpcA intergenic spacer (PC-IGS) sequences. Given the fact that morphology is very uniform, plus the coexistence of these populations in the same habitat, it would be nearly impossible to distinguish between them in nature. On the other hand, two of the analyzed strains were distinct from all others based on the PC-IGS sequences, in spite of their morphological similarity. PC-IGS sequences indicate that these two strains could be a different species of Geitlerinema. Using morphology, cell ultrastructure, and PC-IGS sequences, it is not possible to distinguish G. amphibium and G. unigranulatum. Therefore, they should be treated as one species, G. unigranulatum as a synonym of G. amphibium. © 2009 Phycological Society of America.

  13. A novel mutation in DDR2 causing spondylo-meta-epiphyseal dysplasia with short limbs and abnormal calcifications (SMED-SL) results in defective intra-cellular trafficking.

    PubMed

    Al-Kindi, Adila; Kizhakkedath, Praseetha; Xu, Huifang; John, Anne; Sayegh, Abeer Al; Ganesh, Anuradha; Al-Awadi, Maha; Al-Anbouri, Lamya; Al-Gazali, Lihadh; Leitinger, Birgit; Ali, Bassam R

    2014-04-11

    The rare autosomal genetic disorder, Spondylo-meta-epiphyseal dysplasia with short limbs and abnormal calcifications (SMED-SL), is reported to be caused by missense or splice site mutations in the human discoidin domain receptor 2 (DDR2) gene. Previously our group has established that trafficking defects and loss of ligand binding are the underlying cellular mechanisms of several SMED-SL causing mutations. Here we report the clinical characteristics of two siblings of consanguineous marriage with suspected SMED-SL and identification of a novel disease-causing mutation in the DDR2 gene. Clinical evaluation and radiography were performed to evaluate the patients. All the coding exons and splice sites of the DDR2 gene were sequenced by Sanger sequencing. Subcellular localization of the mutated DDR2 protein was determined by confocal microscopy, deglycosylation assay and Western blotting. DDR2 activity was measured by collagen activation and Western analysis. In addition to the typical features of SMED-SL, one of the patients has an eye phenotype including visual impairment due to optic atrophy. DNA sequencing revealed a novel homozygous dinucleotide deletion mutation (c.2468_2469delCT) on exon 18 of the DDR2 gene in both patients. The mutation resulted in a frameshift leading to an amino acid change at position S823 and a predicted premature termination of translation (p.S823Cfs*2). Subcellular localization of the mutant protein was analyzed in mammalian cell lines, and it was found to be largely retained in the endoplasmic reticulum (ER), which was further supported by its N-glycosylation profile. In keeping with its cellular mis-localization, the mutant protein was found to be deficient in collagen-induced receptor activation, suggesting protein trafficking defects as the major cellular mechanism underlying the loss of DDR2 function in our patients. Our results indicate that the novel mutation results in defective trafficking of the DDR2 protein leading to loss of function and disease. This confirms our previous findings that DDR2 missense mutations occurring at the kinase domain result in retention of the mutant protein in the ER.

  14. Mechanical behavior of deformed intravascular NiTi stents differing in design. Numerical simulation

    NASA Astrophysics Data System (ADS)

    Eremina, Galina M.; Smolin, Alexey Yu.; Krukovskii, Konstantin V.; Lotkov, Aleksandr I.; Kashin, Oleg A.; Kudryashov, Andrey N.

    2017-12-01

    Self-expanding intravascular NiTi stents serve to recover the lumen of vessels suffered from atherosclerotic stenosis. During their manufacturing or functioning in blood vessels, the stents experience different strains and local stresses that may result in dangerous defects or fracture. Here, using the method of movable cellular automata, we analyze how the design of a stent influences its stress state during shaping to a desired diameter on a mandrel. We consider repeated segments of different stents under two loads: uniform diametric expansion of their crown and expansion with relative displacements. The simulation data agree well with experiments, revealing critical strain, stress, and their localization sites at the shaping stage, and provide the way toward optimum stent designs to minimize the critical stress during shaping.

  15. Shock enhancement of cellular materials subjected to intensive pulse loading

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Fan, J.; Wang, Z.; Zhao, L.; Li, Z.

    2018-03-01

    Cellular materials can dissipate a large amount of energy due to their considerable stress plateau, which contributes to their extensive applications in structural design for crashworthiness. However, in some experiments with specimens subjected to intense impact loads, transmitted stress enhancement has been observed, leading to severe damage to the objects protected. Transmitted stress through two-dimensional Voronoi cellular materials as a protective device is qualitatively studied in this paper. Dimensionless parameters of material properties and loading parameters are defined to give critical conditions for shock enhancement and clarify the correlation between the deformations and stress enhancement. The effect of relative density on this amplifying phenomenon is investigated as well. In addition, local strain fields are calculated by using the optimal local deformation gradient, which gives a clear presentation of deformations and possible local non-uniformity in the crushing process. This research provides valuable insight into the reliability of cellular materials as protective structures.

  16. Point process models for localization and interdependence of punctate cellular structures.

    PubMed

    Li, Ying; Majarian, Timothy D; Naik, Armaghan W; Johnson, Gregory R; Murphy, Robert F

    2016-07-01

    Accurate representations of cellular organization for multiple eukaryotic cell types are required for creating predictive models of dynamic cellular function. To this end, we have previously developed the CellOrganizer platform, an open source system for generative modeling of cellular components from microscopy images. CellOrganizer models capture the inherent heterogeneity in the spatial distribution, size, and quantity of different components among a cell population. Furthermore, CellOrganizer can generate quantitatively realistic synthetic images that reflect the underlying cell population. A current focus of the project is to model the complex, interdependent nature of organelle localization. We built upon previous work on developing multiple non-parametric models of organelles or structures that show punctate patterns. The previous models described the relationships between the subcellular localization of puncta and the positions of cell and nuclear membranes and microtubules. We extend these models to consider the relationship to the endoplasmic reticulum (ER), and to consider the relationship between the positions of different puncta of the same type. Our results do not suggest that the punctate patterns we examined are dependent on ER position or inter- and intra-class proximity. With these results, we built classifiers to update previous assignments of proteins to one of 11 patterns in three distinct cell lines. Our generative models demonstrate the ability to construct statistically accurate representations of puncta localization from simple cellular markers in distinct cell types, capturing the complex phenomena of cellular structure interaction with little human input. This protocol represents a novel approach to vesicular protein annotation, a field that is often neglected in high-throughput microscopy. These results suggest that spatial point process models provide useful insight with respect to the spatial dependence between cellular structures. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  17. Genome-Wide Identification and Expression Profiling Analysis of the Xyloglucan Endotransglucosylase/Hydrolase Gene Family in Tobacco (Nicotiana tabacum L.).

    PubMed

    Wang, Meng; Xu, Zongchang; Ding, Anming; Kong, Yingzhen

    2018-05-24

    Xyloglucan endotransglucosylase/hydrolase genes ( XTHs ) encode enzymes required for the reconstruction and modification of xyloglucan backbones, which will result in changes of cell wall extensibility during growth. A total of 56 NtXTH genes were identified from common tobacco, and 50 cDNA fragments were verified by PCR amplification. The 56 NtXTH genes could be classified into two subfamilies: Group I/II and Group III according to their phylogenetic relationships. The gene structure, chromosomal localization, conserved protein domains prediction, sub-cellular localization of NtXTH proteins and evolutionary relationships among Nicotiana tabacum , Nicotiana sylvestrisis , Nicotiana tomentosiformis , Arabidopsis , and rice were also analyzed. The NtXTHs expression profiles analyzed by the TobEA database and qRT-PCR revealed that NtXTHs display different expression patterns in different tissues. Notably, the expression patterns of 12 NtXTHs responding to environment stresses, including salinity, alkali, heat, chilling, and plant hormones, including IAA and brassinolide, were characterized. All the results would be useful for the function study of NtXTHs during different growth cycles and stresses.

  18. A Three-Dimensional Multiscale Model for Gas Exchange in Fruit1[C][W][OA

    PubMed Central

    Ho, Quang Tri; Verboven, Pieter; Verlinden, Bert E.; Herremans, Els; Wevers, Martine; Carmeliet, Jan; Nicolaï, Bart M.

    2011-01-01

    Respiration of bulky plant organs such as roots, tubers, stems, seeds, and fruit depends very much on oxygen (O2) availability and often follows a Michaelis-Menten-like response. A multiscale model is presented to calculate gas exchange in plants using the microscale geometry of the tissue, or vice versa, local concentrations in the cells from macroscopic gas concentration profiles. This approach provides a computationally feasible and accurate analysis of cell metabolism in any plant organ during hypoxia and anoxia. The predicted O2 and carbon dioxide (CO2) partial pressure profiles compared very well with experimental data, thereby validating the multiscale model. The important microscale geometrical features are the shape, size, and three-dimensional connectivity of cells and air spaces. It was demonstrated that the gas-exchange properties of the cell wall and cell membrane have little effect on the cellular gas exchange of apple (Malus × domestica) parenchyma tissue. The analysis clearly confirmed that cells are an additional route for CO2 transport, while for O2 the intercellular spaces are the main diffusion route. The simulation results also showed that the local gas concentration gradients were steeper in the cells than in the surrounding air spaces. Therefore, to analyze the cellular metabolism under hypoxic and anoxic conditions, the microscale model is required to calculate the correct intracellular concentrations. Understanding the O2 response of plants and plant organs thus not only requires knowledge of external conditions, dimensions, gas-exchange properties of the tissues, and cellular respiration kinetics but also of microstructure. PMID:21224337

  19. Minimal entropy approximation for cellular automata

    NASA Astrophysics Data System (ADS)

    Fukś, Henryk

    2014-02-01

    We present a method for the construction of approximate orbits of measures under the action of cellular automata which is complementary to the local structure theory. The local structure theory is based on the idea of Bayesian extension, that is, construction of a probability measure consistent with given block probabilities and maximizing entropy. If instead of maximizing entropy one minimizes it, one can develop another method for the construction of approximate orbits, at the heart of which is the iteration of finite-dimensional maps, called minimal entropy maps. We present numerical evidence that the minimal entropy approximation sometimes outperforms the local structure theory in characterizing the properties of cellular automata. The density response curve for elementary CA rule 26 is used to illustrate this claim.

  20. BAG3 is involved in neuronal differentiation and migration.

    PubMed

    Santoro, Antonietta; Nicolin, Vanessa; Florenzano, Fulvio; Rosati, Alessandra; Capunzo, Mario; Nori, Stefania L

    2017-05-01

    Bcl2-associated athanogene 3 (BAG3) protein belongs to the family of co-chaperones interacting with several heat shock proteins. It plays a key role in protein quality control and mediates the clearance of misfolded proteins. Little is known about the expression and cellular localization of BAG3 during nervous system development and differentiation. Therefore, we analyze the subcellular distribution and expression of BAG3 in nerve-growth-factor-induced neurite outgrowth in PC12 cells and in developing and adult cortex of mouse brain. In differentiated PC12 cells, BAG3 was localized mainly in the neuritic domain rather than the cell body, whereas in control cells, it appeared to be confined to the cytoplasm near the nuclear membrane. Interestingly, the change of BAG3 localization during neuronal differentiation was associated only with a slight increase in total BAG3 expression. These data were coroborated by transmission electron microscopy showing that BAG3 was confined mainly within large dense-core vesicles of the axon in differentiated PC12 cells. In mouse developing cortex, BAG3 appeared to be intensely expressed in cellular processes of migrating cells, whereas in adult brain, a diffuse expression of low to medium intensity was detected in neuronal cell bodies. These findings suggest that BAG3 expression is required for neuronal differentiation and migration and that its role is linked to a change in its distribution pattern rather than to an increase in its protein expression levels.

  1. Flow cytometric characterization of cerebrospinal fluid cells.

    PubMed

    de Graaf, Marieke T; de Jongste, Arjen H C; Kraan, Jaco; Boonstra, Joke G; Sillevis Smitt, Peter A E; Gratama, Jan W

    2011-09-01

    Flow cytometry facilitates the detection of a large spectrum of cellular characteristics on a per cell basis, determination of absolute cell numbers and detection of rare events with high sensitivity and specificity. White blood cell (WBC) counts in cerebrospinal fluid (CSF) are important for the diagnosis of many neurological disorders. WBC counting and differential can be performed by microscopy, hematology analyzers, or flow cytometry. Flow cytometry of CSF is increasingly being considered as the method of choice in patients suspected of leptomeningeal localization of hematological malignancies. Additionally, in several neuroinflammatory diseases such as multiple sclerosis and paraneoplastic neurological syndromes, flow cytometry is commonly performed to obtain insight into the immunopathogenesis of these diseases. Technically, the low cellularity of CSF samples, combined with the rapidly declining WBC viability, makes CSF flow cytometry challenging. Comparison of flow cytometry with microscopic and molecular techniques shows that each technique has its own advantages and is ideally combined. We expect that increasing the number of flow cytometric parameters that can be simultaneously studied within one sample, will further refine the information on CSF cell subsets in low-cellular CSF samples and enable to define cell populations more accurately. Copyright © 2011 International Clinical Cytometry Society.

  2. Spatial reconstruction of single-cell gene expression data.

    PubMed

    Satija, Rahul; Farrell, Jeffrey A; Gennert, David; Schier, Alexander F; Regev, Aviv

    2015-05-01

    Spatial localization is a key determinant of cellular fate and behavior, but methods for spatially resolved, transcriptome-wide gene expression profiling across complex tissues are lacking. RNA staining methods assay only a small number of transcripts, whereas single-cell RNA-seq, which measures global gene expression, separates cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos and generated a transcriptome-wide map of spatial patterning. We confirmed Seurat's accuracy using several experimental approaches, then used the strategy to identify a set of archetypal expression patterns and spatial markers. Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems.

  3. Thioredoxin 1 and glutaredoxin 2 contribute to maintain the phenotype and integrity of neurons following perinatal asphyxia.

    PubMed

    Romero, Juan Ignacio; Hanschmann, Eva-Maria; Gellert, Manuela; Eitner, Susanne; Holubiec, Mariana Inés; Blanco-Calvo, Eduardo; Lillig, Christopher Horst; Capani, Francisco

    2015-06-01

    Thioredoxin (Trx) family proteins are crucial mediators of cell functions via regulation of the thiol redox state of various key proteins and the levels of the intracellular second messenger hydrogen peroxide. Their expression, localization and functions are altered in various pathologies. Here, we have analyzed the impact of Trx family proteins in neuronal development and recovery, following hypoxia/ischemia and reperfusion. We have analyzed the regulation and potential functions of Trx family proteins during hypoxia/ischemia and reoxygenation of the developing brain in both an animal and a cellular model of perinatal asphyxia. We have analyzed the distribution of 14 Trx family and related proteins in the cerebellum, striatum, and hippocampus, three areas of the rat brain that are especially susceptible to hypoxia. Using SH-SY5Y cells subjected to hypoxia and reoxygenation, we have analyzed the functions of some redoxins suggested by the animal experiment. We have described/discovered a complex, cell-type and tissue-specific expression pattern following the hypoxia/ischemia and reoxygenation. Particularly, Grx2 and Trx1 showed distinct changes during tissue recovery following hypoxia/ischemia and reoxygenation. Silencing of these proteins in SH-SY5Y cells subjected to hypoxia-reoxygenation confirmed that these proteins are required to maintain the normal neuronal phenotype. These findings demonstrate the significance of redox signaling in cellular pathways. Grx2 and Trx1 contribute significantly to neuronal integrity and could be clinically relevant in neuronal damage following perinatal asphyxia and other neuronal disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Astrocytes express specific variants of CaM KII delta and gamma, but not alpha and beta, that determine their cellular localizations.

    PubMed

    Vallano, M L; Beaman-Hall, C M; Mathur, A; Chen, Q

    2000-04-01

    Multiple isoforms of type II Ca(2+)-calmodulin-dependent kinase (CaM KII) are composed of two major neuron-specific subunits, designated alpha and beta, and two less well-characterized subunits that are also expressed in non-neuronal tissues, designated delta and gamma. Regulated expression of these 4 gene products, and several variants produced by alternative splicing, shows temporal and regional specificity and influences intracellular targeting. We used immunoblotting and RT-PCR to analyze subunit and variant expression and distribution in cultured cerebellar astrocytes and neurons, and whole cerebellar cortex from rodent brain. The data indicate that: (i) astrocytes express a single splice variant of delta, namely delta(2); (ii) like neurons, astrocytes express two forms of CaM KII gamma; gamma(B) and gamma(A); (iii) these CaM KII variants are enriched in the supernate fraction in astrocytes, and the particulate fraction in neurons; (iv) unlike neurons, astrocytes do not express detectable levels of alpha or beta subunits or their respective splice variants. The results indicate that neurons and astrocytes express distinct CaM KII subunits and variants that localize to distinct subcellular compartments and, by inference, exert distinct cellular functions. Copyright 2000 Wiley-Liss, Inc.

  5. ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation.

    PubMed

    Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-07-20

    Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue in the field of surgical simulation. In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue deformation by combining neural dynamics of cellular neural network with ChainMail mechanism. The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into the neural dynamics of cellular neural network. Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues' nonlinear deformation and typical mechanical behaviors. The proposed method not only improves ChainMail's linear deformation with the nonlinear characteristics of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft tissue deformation.

  6. AHNAK1 and AHNAK2 are costameric proteins: AHNAK1 affects transverse skeletal muscle fiber stiffness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marg, Andreas, E-mail: andreas.marg@mdc-berlin.de; Haase, Hannelore; Neumann, Tanja

    2010-10-08

    Research highlights: {yields} AHNAK1 and AHNAK2 are costameric proteins. {yields} Intact membrane repair in AHNAK1-deficient mice. {yields} AHNAK1{sup -/-} single fibers have a higher transverse stiffness. -- Abstract: The AHNAK scaffold PDZ-protein family is implicated in various cellular processes including membrane repair; however, AHNAK function and subcellular localization in skeletal muscle are unclear. We used specific AHNAK1 and AHNAK2 antibodies to analyzed the detailed localization of both proteins in mouse skeletal muscle. Co-localization of AHNAK1 and AHNAK2 with vinculin clearly demonstrates that both proteins are components of the costameric network. In contrast, no AHNAK expression was detected in the T-tubulemore » system. A laser wounding assay with AHNAK1-deficient fibers suggests that AHNAK1 is not involved in membrane repair. Using atomic force microscopy (AFM), we observed a significantly higher transverse stiffness of AHNAK1{sup -/-} fibers. These findings suggest novel functions of AHNAK proteins in skeletal muscle.« less

  7. Transient Expression and Cellular Localization of Recombinant Proteins in Cultured Insect Cells.

    PubMed

    Fabrick, Jeffrey A; Hull, J Joe

    2017-04-20

    Heterologous protein expression systems are used for the production of recombinant proteins, the interpretation of cellular trafficking/localization, and the determination of the biochemical function of proteins at the sub-organismal level. Although baculovirus expression systems are increasingly used for protein production in numerous biotechnological, pharmaceutical, and industrial applications, nonlytic systems that do not involve viral infection have clear benefits but are often overlooked and underutilized. Here, we describe a method for generating nonlytic expression vectors and transient recombinant protein expression. This protocol allows for the efficient cellular localization of recombinant proteins and can be used to rapidly discern protein trafficking within the cell. We show the expression of four recombinant proteins in a commercially available insect cell line, including two aquaporin proteins from the insect Bemisia tabaci, as well as subcellular marker proteins specific for the cell plasma membrane and for intracellular lysosomes. All recombinant proteins were produced as chimeras with fluorescent protein markers at their carboxyl termini, which allows for the direct detection of the recombinant proteins. The double transfection of cells with plasmids harboring constructs for the genes of interest and a known subcellular marker allows for live cell imaging and improved validation of cellular protein localization.

  8. Spatial localization of the first and last enzymes effectively connects active metabolic pathways in bacteria.

    PubMed

    Meyer, Pablo; Cecchi, Guillermo; Stolovitzky, Gustavo

    2014-12-14

    Although much is understood about the enzymatic cascades that underlie cellular biosynthesis, comparatively little is known about the rules that determine their cellular organization. We performed a detailed analysis of the localization of E.coli GFP-tagged enzymes for cells growing exponentially. We found that out of 857 globular enzymes, at least 219 have a discrete punctuate localization in the cytoplasm and catalyze the first or the last reaction in 60% of biosynthetic pathways. A graph-theoretic analysis of E.coli's metabolic network shows that localized enzymes, in contrast to non-localized ones, form a tree-like hierarchical structure, have a higher within-group connectivity, and are traversed by a higher number of feed-forward and feedback loops than their non-localized counterparts. A Gene Ontology analysis of these enzymes reveals an enrichment of terms related to essential metabolic functions in growing cells. Given that these findings suggest a distinct metabolic role for localization, we studied the dynamics of cellular localization of the cell wall synthesizing enzymes in B. subtilis and found that enzymes localize during exponential growth but not during stationary growth. We conclude that active biochemical pathways inside the cytoplasm are organized spatially following a rule where their first or their last enzymes localize to effectively connect the different active pathways and thus could reflect the activity state of the cell's metabolic network.

  9. A Giant Vulvar Mass: A Case Study of Cellular Angiofibroma

    PubMed Central

    Aydın, Ümit; Terzi, Hasan; Turkay, Ünal; Eruyar, Ahmet Tuğrul; Kale, Ahmet

    2016-01-01

    Cellular angiofibroma is a mesenchymal tumor that affects both genders. Nucci et al. first described it in 1997. Cellular angiofibroma is generally a small and asymptomatic mass that primarily arises in the vulvar-vaginal region, although rare cases have been reported in the pelvic and extrapelvic regions. It affects women most often during the fifth decade of life. The treatment requires simple local excision due to low local recurrence and no chance of metastasization. The current study presents a case of angiofibroma in the vulvar region that measured approximately 20 cm. PMID:27293929

  10. Using Cell-ID 1.4 with R for Microscope-Based Cytometry

    PubMed Central

    Bush, Alan; Chernomoretz, Ariel; Yu, Richard; Gordon, Andrew

    2012-01-01

    This unit describes a method for quantifying various cellular features (e.g., volume, total and subcellular fluorescence localization) from sets of microscope images of individual cells. It includes procedures for tracking cells over time. One purposefully defocused transmission image (sometimes referred to as bright-field or BF) is acquired to segment the image and locate each cell. Fluorescent images (one for each of the color channels to be analyzed) are then acquired by conventional wide-field epifluorescence or confocal microscopy. This method uses the image processing capabilities of Cell-ID (Gordon et al., 2007, as updated here) and data analysis by the statistical programming framework R (R-Development-Team, 2008), which we have supplemented with a package of routines for analyzing Cell-ID output. Both Cell-ID and the analysis package are open-source. PMID:23026908

  11. Dynamics of Cancer Cell near Collagen Fiber Chain

    NASA Astrophysics Data System (ADS)

    Kim, Jihan; Sun, Bo

    Cell migration is an integrated process that is important in life. Migration is essential for embryonic development as well as homeostatic processes such as wound healing and immune responses. When cell migrates through connective extracellular matrix (ECM), it applies cellular traction force to ECM and senses the rigidity of their local environment. We used human breast cancer cell (MDA-MB-231) which is highly invasive and applies strong traction force to ECM. As cancer cell applies traction force to type I collage-based ECM, it deforms collagen fibers near the surface. Patterns of deforming collagen fibers are significantly different with pairs of cancer cells compared to a single cancer cell. While a pair of cancer cells within 60 um creates aligned collagen fiber chains between them permanently, a single cancer cell does not form any fiber chains. In this experiment we measured a cellular response and an interaction between a pair of cells through the chain. Finally, we analyzed correlation of directions between cancer cell migration and the collagen chain alignment.

  12. Internalization and localization of basal insulin peglispro in cells.

    PubMed

    Moyers, Julie S; Volk, Catherine B; Cao, Julia X C; Zhang, Chen; Ding, Liyun; Kiselyov, Vladislav V; Michael, M Dodson

    2017-10-15

    Basal insulin peglispro (BIL) is a novel, PEGylated insulin lispro that has a large hydrodynamic size compared with insulin lispro. It has a prolonged duration of action, which is related to a delay in insulin absorption and a reduction in clearance. Given the different physical properties of BIL compared with native insulin and insulin lispro, it is important to assess the cellular internalization characteristics of the molecule. Using immunofluorescent confocal imaging, we compared the cellular internalization and localization patterns of BIL, biosynthetic human insulin, and insulin lispro. We assessed the effects of BIL on internalization of the insulin receptor (IR) and studied cellular clearance of BIL. Co-localization studies using antibodies to either insulin or PEG, and the early endosomal marker EEA1 showed that the overall internalization and subcellular localization pattern of BIL was similar to that of human insulin and insulin lispro; all were rapidly internalized and co-localized with EEA1. During ligand washout for 4 h, concomitant loss of insulin, PEG methoxy group, and PEG backbone immunostaining was observed for BIL, similar to the loss of insulin immunostaining observed for insulin lispro and human insulin. Co-localization studies using an antibody to the lysosomal marker LAMP1 did not reveal evidence of lysosomal localization for insulin lispro, human insulin, BIL, or PEG using either insulin or PEG immunostaining reagents. BIL and human insulin both induced rapid phosphorylation and internalization of human IR. Our findings show that treatment of cells with BIL stimulates internalization and localization of IR to early endosomes. Both the insulin and PEG moieties of BIL undergo a dynamic cellular process of rapid internalization and transport to early endosomes followed by loss of cellular immunostaining in a manner similar to that of insulin lispro and human insulin. The rate of clearance for the insulin lispro portion of BIL was slower than the rate of clearance for human insulin. In contrast, the PEG moiety of BIL can recycle out of cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A density distribution algorithm for bone incorporating local orthotropy, modal analysis and theories of cellular solids.

    PubMed

    Impelluso, Thomas J

    2003-06-01

    An algorithm for bone remodeling is presented which allows for both a redistribution of density and a continuous change of principal material directions for the orthotropic material properties of bone. It employs a modal analysis to add density for growth and a local effective strain based analysis to redistribute density. General re-distribution functions are presented. The model utilizes theories of cellular solids to relate density and strength. The code predicts the same general density distributions and local orthotropy as observed in reality.

  14. Nipah virus matrix protein: expert hacker of cellular machines.

    PubMed

    Watkinson, Ruth E; Lee, Benhur

    2016-08-01

    Nipah virus (NiV, Henipavirus) is a highly lethal emergent zoonotic paramyxovirus responsible for repeated human outbreaks of encephalitis in South East Asia. There are no approved vaccines or treatments, thus improved understanding of NiV biology is imperative. NiV matrix protein recruits a plethora of cellular machinery to scaffold and coordinate virion budding. Intriguingly, matrix also hijacks cellular trafficking and ubiquitination pathways to facilitate transient nuclear localization. While the biological significance of matrix nuclear localization for an otherwise cytoplasmic virus remains enigmatic, the molecular details have begun to be characterized, and are conserved among matrix proteins from divergent paramyxoviruses. Matrix protein appropriation of cellular machinery will be discussed in terms of its early nuclear targeting and later role in virion assembly. © 2016 Federation of European Biochemical Societies.

  15. PhosphoregDB: The tissue and sub-cellular distribution of mammalian protein kinases and phosphatases

    PubMed Central

    Forrest, Alistair RR; Taylor, Darrin F; Fink, J Lynn; Gongora, M Milena; Flegg, Cameron; Teasdale, Rohan D; Suzuki, Harukazu; Kanamori, Mutsumi; Kai, Chikatoshi; Hayashizaki, Yoshihide; Grimmond, Sean M

    2006-01-01

    Background Protein kinases and protein phosphatases are the fundamental components of phosphorylation dependent protein regulatory systems. We have created a database for the protein kinase-like and phosphatase-like loci of mouse that integrates protein sequence, interaction, classification and pathway information with the results of a systematic screen of their sub-cellular localization and tissue specific expression data mined from the GNF tissue atlas of mouse. Results The database lets users query where a specific kinase or phosphatase is expressed at both the tissue and sub-cellular levels. Similarly the interface allows the user to query by tissue, pathway or sub-cellular localization, to reveal which components are co-expressed or co-localized. A review of their expression reveals 30% of these components are detected in all tissues tested while 70% show some level of tissue restriction. Hierarchical clustering of the expression data reveals that expression of these genes can be used to separate the samples into tissues of related lineage, including 3 larger clusters of nervous tissue, developing embryo and cells of the immune system. By overlaying the expression, sub-cellular localization and classification data we examine correlations between class, specificity and tissue restriction and show that tyrosine kinases are more generally expressed in fewer tissues than serine/threonine kinases. Conclusion Together these data demonstrate that cell type specific systems exist to regulate protein phosphorylation and that for accurate modelling and for determination of enzyme substrate relationships the co-location of components needs to be considered. PMID:16504016

  16. Common and distinctive localization patterns of Crumbs polarity complex proteins in the mammalian eye.

    PubMed

    Kim, Jin Young; Song, Ji Yun; Karnam, Santi; Park, Jun Young; Lee, Jamie J H; Kim, Seonhee; Cho, Seo-Hee

    2015-01-01

    Crumbs polarity complex proteins are essential for cellular and tissue polarity, and for adhesion of epithelial cells. In epithelial tissues deletion of any of three core proteins disrupts localization of the other proteins, indicating structural and functional interdependence among core components. Despite previous studies of function and co-localization that illustrated the properties that these proteins share, it is not known whether an individual component of the complex plays a distinct role in a unique cellular and developmental context. In order to investigate this question, we primarily used confocal imaging to determine the expression and subcellular localization of the core Crumbs polarity complex proteins during ocular development. Here we show that in developing ocular tissues core Crumbs polarity complex proteins, Crb, Pals1 and Patj, generally appear in an overlapping pattern with some exceptions. All three core complex proteins localize to the apical junction of the retinal and lens epithelia. Pals1 is also localized in the Golgi of the retinal cells and Patj localizes to the nuclei of the apically located subset of progenitor cells. These findings suggest that core Crumbs polarity complex proteins exert common and independent functions depending on cellular context. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Condition monitoring of 3G cellular networks through competitive neural models.

    PubMed

    Barreto, Guilherme A; Mota, João C M; Souza, Luis G M; Frota, Rewbenio A; Aguayo, Leonardo

    2005-09-01

    We develop an unsupervised approach to condition monitoring of cellular networks using competitive neural algorithms. Training is carried out with state vectors representing the normal functioning of a simulated CDMA2000 network. Once training is completed, global and local normality profiles (NPs) are built from the distribution of quantization errors of the training state vectors and their components, respectively. The global NP is used to evaluate the overall condition of the cellular system. If abnormal behavior is detected, local NPs are used in a component-wise fashion to find abnormal state variables. Anomaly detection tests are performed via percentile-based confidence intervals computed over the global and local NPs. We compared the performance of four competitive algorithms [winner-take-all (WTA), frequency-sensitive competitive learning (FSCL), self-organizing map (SOM), and neural-gas algorithm (NGA)] and the results suggest that the joint use of global and local NPs is more efficient and more robust than current single-threshold methods.

  18. AMPK activity regulates trafficking of mitochondria to the leading edge during cell migration and matrix invasion

    PubMed Central

    Cunniff, Brian; McKenzie, Andrew J.; Heintz, Nicholas H.; Howe, Alan K.

    2016-01-01

    Cell migration is a complex behavior involving many energy-expensive biochemical events that iteratively alter cell shape and location. Mitochondria, the principal producers of cellular ATP, are dynamic organelles that fuse, divide, and relocate to respond to cellular metabolic demands. Using ovarian cancer cells as a model, we show that mitochondria actively infiltrate leading edge lamellipodia, thereby increasing local mitochondrial mass and relative ATP concentration and supporting a localized reversal of the Warburg shift toward aerobic glycolysis. This correlates with increased pseudopodial activity of the AMP-activated protein kinase (AMPK), a critically important cellular energy sensor and metabolic regulator. Furthermore, localized pharmacological activation of AMPK increases leading edge mitochondrial flux, ATP content, and cytoskeletal dynamics, whereas optogenetic inhibition of AMPK halts mitochondrial trafficking during both migration and the invasion of three-dimensional extracellular matrix. These observations indicate that AMPK couples local energy demands to subcellular targeting of mitochondria during cell migration and invasion. PMID:27385336

  19. A novel mutation in DDR2 causing spondylo-meta-epiphyseal dysplasia with short limbs and abnormal calcifications (SMED-SL) results in defective intra-cellular trafficking

    PubMed Central

    2014-01-01

    Background The rare autosomal genetic disorder, Spondylo-meta-epiphyseal dysplasia with short limbs and abnormal calcifications (SMED-SL), is reported to be caused by missense or splice site mutations in the human discoidin domain receptor 2 (DDR2) gene. Previously our group has established that trafficking defects and loss of ligand binding are the underlying cellular mechanisms of several SMED-SL causing mutations. Here we report the clinical characteristics of two siblings of consanguineous marriage with suspected SMED-SL and identification of a novel disease-causing mutation in the DDR2 gene. Methods Clinical evaluation and radiography were performed to evaluate the patients. All the coding exons and splice sites of the DDR2 gene were sequenced by Sanger sequencing. Subcellular localization of the mutated DDR2 protein was determined by confocal microscopy, deglycosylation assay and Western blotting. DDR2 activity was measured by collagen activation and Western analysis. Results In addition to the typical features of SMED-SL, one of the patients has an eye phenotype including visual impairment due to optic atrophy. DNA sequencing revealed a novel homozygous dinucleotide deletion mutation (c.2468_2469delCT) on exon 18 of the DDR2 gene in both patients. The mutation resulted in a frameshift leading to an amino acid change at position S823 and a predicted premature termination of translation (p.S823Cfs*2). Subcellular localization of the mutant protein was analyzed in mammalian cell lines, and it was found to be largely retained in the endoplasmic reticulum (ER), which was further supported by its N-glycosylation profile. In keeping with its cellular mis-localization, the mutant protein was found to be deficient in collagen-induced receptor activation, suggesting protein trafficking defects as the major cellular mechanism underlying the loss of DDR2 function in our patients. Conclusions Our results indicate that the novel mutation results in defective trafficking of the DDR2 protein leading to loss of function and disease. This confirms our previous findings that DDR2 missense mutations occurring at the kinase domain result in retention of the mutant protein in the ER. PMID:24725993

  20. The laforin-malin complex negatively regulates glycogen synthesis by modulating cellular glucose uptake via glucose transporters.

    PubMed

    Singh, Pankaj Kumar; Singh, Sweta; Ganesh, Subramaniam

    2012-02-01

    Lafora disease (LD), an inherited and fatal neurodegenerative disorder, is characterized by increased cellular glycogen content and the formation of abnormally branched glycogen inclusions, called Lafora bodies, in the affected tissues, including neurons. Therefore, laforin phosphatase and malin ubiquitin E3 ligase, the two proteins that are defective in LD, are thought to regulate glycogen synthesis through an unknown mechanism, the defects in which are likely to underlie some of the symptoms of LD. We show here that laforin's subcellular localization is dependent on the cellular glycogen content and that the stability of laforin is determined by the cellular ATP level, the activity of 5'-AMP-activated protein kinase, and the affinity of malin toward laforin. By using cell and animal models, we further show that the laforin-malin complex regulates cellular glucose uptake by modulating the subcellular localization of glucose transporters; loss of malin or laforin resulted in an increased abundance of glucose transporters in the plasma membrane and therefore excessive glucose uptake. Loss of laforin or malin, however, did not affect glycogen catabolism. Thus, the excessive cellular glucose level appears to be the primary trigger for the abnormally higher levels of cellular glycogen seen in LD.

  1. Immunohistochemistry Analysis of CD44, EGFR, and p16 in Oral Cavity and Oropharyngeal Squamous Cell Carcinoma.

    PubMed

    Cohen, Erin R; Reis, Isildinha M; Gomez, Carmen; Pereira, Lutecia; Freiser, Monika E; Hoosien, Gia; Franzmann, Elizabeth J

    2017-08-01

    Objectives We analyze the relationship between CD44, epidermal growth factor receptor (EGFR), and p16 expression in oral cavity and oropharyngeal cancers in a diverse population. We also describe whether particular patterns of staining are associated with progression-free survival and overall survival. Study Design Prospective study, single-blind to pathologist and laboratory technologist. Setting Hospital based. Subjects and Methods Immunohistochemistry, comprising gross staining and cellular expression, was performed and interpreted in a blinded fashion on 24 lip/oral cavity and 40 oropharyngeal cancer specimens collected between 2007 and 2012 from participants of a larger study. Information on overall survival and progression-free survival was obtained from medical records. Results Nineteen cases were clinically p16 positive, 16 of which were oropharyngeal. Oral cavity lesions were more likely to exhibit strong CD44 membrane staining ( P = .0002). Strong CD44 membrane and strong EGFR membrane and/or cytoplasmic staining were more common in p16-negative cancers ( P = .006). Peripheral/mixed gross p16 staining pattern was associated with worse survival than the universal staining on univariate and multivariate analyses ( P = .006, P = .030). This held true when combining gross and cellular localization for p16. For CD44, universal gross staining demonstrated poorer overall survival compared with the peripheral/mixed group ( P = .039). CD44 peripheral/mixed group alone and when combined with universal p16 demonstrated the best survival on multivariate analysis ( P = .010). Conclusion In a diverse population, systematic analysis applying p16, CD44, and EGFR gross staining and cellular localization on immunohistochemistry demonstrates distinct patterns that may have prognostic potential exceeding current methods. Larger studies are warranted to investigate these findings further.

  2. Dynein-Dependent Transport of nanos RNA in Drosophila Sensory Neurons Requires Rumpelstiltskin and the Germ Plasm Organizer Oskar

    PubMed Central

    Xu, Xin; Brechbiel, Jillian L.

    2013-01-01

    Intracellular mRNA localization is a conserved mechanism for spatially regulating protein production in polarized cells, such as neurons. The mRNA encoding the translational repressor Nanos (Nos) forms ribonucleoprotein (RNP) particles that are dendritically localized in Drosophila larval class IV dendritic arborization (da) neurons. In nos mutants, class IV da neurons exhibit reduced dendritic branching complexity, which is rescued by transgenic expression of wild-type nos mRNA but not by a localization-compromised nos derivative. While localization is essential for nos function in dendrite morphogenesis, the mechanism underlying the transport of nos RNP particles was unknown. We investigated the mechanism of dendritic nos mRNA localization by analyzing requirements for nos RNP particle motility in class IV da neuron dendrites through live imaging of fluorescently labeled nos mRNA. We show that dynein motor machinery components mediate transport of nos mRNA in proximal dendrites. Two factors, the RNA-binding protein Rumpelstiltskin and the germ plasm protein Oskar, which are required for diffusion/entrapment-mediated localization of nos during oogenesis, also function in da neurons for formation and transport of nos RNP particles. Additionally, we show that nos regulates neuronal function, most likely independent of its dendritic localization and function in morphogenesis. Our results reveal adaptability of localization factors for regulation of a target transcript in different cellular contexts. PMID:24027279

  3. Dynein-dependent transport of nanos RNA in Drosophila sensory neurons requires Rumpelstiltskin and the germ plasm organizer Oskar.

    PubMed

    Xu, Xin; Brechbiel, Jillian L; Gavis, Elizabeth R

    2013-09-11

    Intracellular mRNA localization is a conserved mechanism for spatially regulating protein production in polarized cells, such as neurons. The mRNA encoding the translational repressor Nanos (Nos) forms ribonucleoprotein (RNP) particles that are dendritically localized in Drosophila larval class IV dendritic arborization (da) neurons. In nos mutants, class IV da neurons exhibit reduced dendritic branching complexity, which is rescued by transgenic expression of wild-type nos mRNA but not by a localization-compromised nos derivative. While localization is essential for nos function in dendrite morphogenesis, the mechanism underlying the transport of nos RNP particles was unknown. We investigated the mechanism of dendritic nos mRNA localization by analyzing requirements for nos RNP particle motility in class IV da neuron dendrites through live imaging of fluorescently labeled nos mRNA. We show that dynein motor machinery components mediate transport of nos mRNA in proximal dendrites. Two factors, the RNA-binding protein Rumpelstiltskin and the germ plasm protein Oskar, which are required for diffusion/entrapment-mediated localization of nos during oogenesis, also function in da neurons for formation and transport of nos RNP particles. Additionally, we show that nos regulates neuronal function, most likely independent of its dendritic localization and function in morphogenesis. Our results reveal adaptability of localization factors for regulation of a target transcript in different cellular contexts.

  4. Measurement of Oxidative Stress: Mitochondrial Function Using the Seahorse System.

    PubMed

    Leung, Dilys T H; Chu, Simon

    2018-01-01

    The Seahorse XFp Analyzer is a powerful tool for the assessment of various parameters of cellular respiration. Here we describe the process of the Seahorse Cell Phenotype Test using the Seahorse XFp Analyzer to characterize the metabolic phenotype of live cells. The Seahorse XFp Analyzer can also be coupled with other assays to measure cellular energetics. Given that mitochondrial dysfunction is implicated in preeclampsia, the Seahorse XFp Analyzer will serve as a useful tool for the understanding of pathological metabolism in this disorder.

  5. Living-Cell Microarrays

    PubMed Central

    Yarmush, Martin L.; King, Kevin R.

    2011-01-01

    Living cells are remarkably complex. To unravel this complexity, living-cell assays have been developed that allow delivery of experimental stimuli and measurement of the resulting cellular responses. High-throughput adaptations of these assays, known as living-cell microarrays, which are based on microtiter plates, high-density spotting, microfabrication, and microfluidics technologies, are being developed for two general applications: (a) to screen large-scale chemical and genomic libraries and (b) to systematically investigate the local cellular microenvironment. These emerging experimental platforms offer exciting opportunities to rapidly identify genetic determinants of disease, to discover modulators of cellular function, and to probe the complex and dynamic relationships between cells and their local environment. PMID:19413510

  6. Cellular automata and integrodifferential equation models for cell renewal in mosaic tissues

    PubMed Central

    Bloomfield, J. M.; Sherratt, J. A.; Painter, K. J.; Landini, G.

    2010-01-01

    Mosaic tissues are composed of two or more genetically distinct cell types. They occur naturally, and are also a useful experimental method for exploring tissue growth and maintenance. By marking the different cell types, one can study the patterns formed by proliferation, renewal and migration. Here, we present mathematical modelling suggesting that small changes in the type of interaction that cells have with their local cellular environment can lead to very different outcomes for the composition of mosaics. In cell renewal, proliferation of each cell type may depend linearly or nonlinearly on the local proportion of cells of that type, and these two possibilities produce very different patterns. We study two variations of a cellular automaton model based on simple rules for renewal. We then propose an integrodifferential equation model, and again consider two different forms of cellular interaction. The results of the continuous and cellular automata models are qualitatively the same, and we observe that changes in local environment interaction affect the dynamics for both. Furthermore, we demonstrate that the models reproduce some of the patterns seen in actual mosaic tissues. In particular, our results suggest that the differing patterns seen in organ parenchymas may be driven purely by the process of cell replacement under different interaction scenarios. PMID:20375040

  7. Distribution of Single-Wall Carbon Nanotubes in the Xenopus laevis Embryo after Microinjection

    PubMed Central

    Holt, Brian D.; Shawky, Joseph H.; Dahl, Kris Noel; Davidson, Lance A.; Islam, Mohammad F.

    2016-01-01

    Single-wall carbon nanotubes (SWCNTs) are advanced materials with the potential for a myriad of diverse applications, including biological technologies and largescale usage with the potential for environmental impacts. SWCNTs have been exposed to developing organisms to determine their effects on embryogenesis, and results have been inconsistent arising, in part, from differing material quality, dispersion status, material size, impurity from catalysts, and stability. For this study, we utilized highly purified SWCNT samples with short, uniform lengths (145 ± 17 nm) well dispersed in solution. To test high exposure doses, we microinjected > 500 μg mL-1 SWCNT concentrations into the well-established embryogenesis model, Xenopus laevis, and determined embryo compatibility and sub-cellular localization during development. SWCNTs localized within cellular progeny of the microinjected cells, but heterogeneously distributed throughout the target-injected tissue. Co-registering unique Raman spectral intensity of SWCNTs with images of fluorescently labelled sub-cellular compartments demonstrated that even at the regions of highest SWCNT concentration, there were no gross alterations to sub-cellular microstructures, including filamentous actin, endoplasmic reticulum and vesicles. Furthermore, SWCNTs did not aggregate or localize to the perinuclear sub-cellular region. Combined, these results suggest that purified and dispersed SWCNTs are not toxic to X. laevis animal cap ectoderm and may be suitable candidate materials for biological applications. PMID:26510384

  8. Laser optical method of visualizing cutaneous blood vessels and its applications in biometry and photomedicine

    NASA Astrophysics Data System (ADS)

    Asimov, M. M.; Asimov, R. M.; Rubinov, A. N.

    2011-05-01

    We propose and examine a new approach to visualizing a local network of cutaneous blood vessels using laser optical methods for applications in biometry and photomedicine. Various optical schemes of the formation of biometrical information on the architecture of blood vessels of skin tissue are analyzed. We developed an optical model of the interaction of the laser radiation with the biological tissue and a mathematical algorithm of processing of measurement results. We show that, in medicine, the visualization of blood vessels makes it possible to calculate and determine regions of disturbance of blood microcirculation and to control tissue hypoxia, as well as to maintain the local concentration of oxygen at a level necessary for the normal cellular metabolism. We propose noninvasive optical methods for modern photomedicine and biometry for diagnostics and elimination of tissue hypoxia and for personality identification and verification via the pattern of cutaneous blood vessels.

  9. Quantitative Microscopic Analysis of Plasma Membrane Receptor Dynamics in Living Plant Cells.

    PubMed

    Luo, Yu; Russinova, Eugenia

    2017-01-01

    Plasma membrane-localized receptors are essential for cellular communication and signal transduction. In Arabidopsis thaliana, BRASSINOSTEROID INSENSITIVE1 (BRI1) is one of the receptors that is activated by binding to its ligand, the brassinosteroid (BR) hormone, at the cell surface to regulate diverse plant developmental processes. The availability of BRI1 in the plasma membrane is related to its signaling output and is known to be controlled by the dynamic endomembrane trafficking. Advances in fluorescence labeling and confocal microscopy techniques enabled us to gain a better understanding of plasma membrane receptor dynamics in living cells. Here we describe different quantitative microscopy methods to monitor the relative steady-state levels of the BRI1 protein in the plasma membrane of root epidermal cells and its relative exocytosis and recycling rates. The methods can be applied also to analyze similar dynamics of other plasma membrane-localized receptors.

  10. The correlation of local deformation and stress-assisted local phase transformations in MMC foams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berek, H., E-mail: harry.berek@ikgb.tu-freiberg.de; Ballaschk, U.; Aneziris, C.G.

    2015-09-15

    Cellular structures are of growing interest for industry, and are of particular importance for lightweight applications. In this paper, a special case of metal matrix composite foams (MMCs) is investigated. The investigated foams are composed of austenitic steel exhibiting transformation induced plasticity (TRIP) and magnesia partially stabilized zirconia (Mg-PSZ). Both components exhibit martensitic phase transformation during deformation, thus generating the potential for improved mechanical properties such as strength, ductility, and energy absorption capability. The aim of these investigations was to show that stress-assisted phase transformations within the ceramic reinforcement correspond to strong local deformation, and to determine whether they canmore » trigger martensitic phase transformations in the steel matrix. To this end, in situ interrupted compression experiments were performed in an X-ray computed tomography device (XCT). By using a recently developed registration algorithm, local deformation could be calculated and regions of interest could be defined. Corresponding cross sections were prepared and used to analyze the local phase composition by electron backscatter diffraction (EBSD). The results show a strong correlation between local deformation and phase transformation. - Graphical abstract: Display Omitted - Highlights: • In situ compressive deformation on MMC foams was performed in an XCT. • Local deformation fields and their gradient amplitudes were estimated. • Cross sections were manufactured containing defined regions of interest. • Local EBSD phase analysis was performed. • Local deformation and local phase transformation are correlated.« less

  11. Comparative Proteomic Analysis of Differentially Expressed Proteins Induced by Hydrogen Sulfide in Spinacia oleracea Leaves

    PubMed Central

    Chen, Juan; Liu, Ting-Wu; Hu, Wen-Jun; Simon, Martin; Wang, Wen-Hua; Chen, Juan; Liu, Xiang; Zheng, Hai-Lei

    2014-01-01

    Hydrogen sulfide (H2S), as a potential gaseous messenger molecule, has been suggested to play important roles in a wide range of physiological processes in plants. The aim of present study was to investigate which set of proteins is involved in H2S-regulated metabolism or signaling pathways. Spinacia oleracea seedlings were treated with 100 µM NaHS, a donor of H2S. Changes in protein expression profiles were analyzed by 2-D gel electrophoresis coupled with MALDI-TOF MS. Over 1000 protein spots were reproducibly resolved, of which the abundance of 92 spots was changed by at least 2-fold (sixty-five were up-regulated, whereas 27 were down-regulated). These proteins were functionally divided into 9 groups, including energy production and photosynthesis, cell rescue, development and cell defense, substance metabolism, protein synthesis and folding, cellular signal transduction. Further, we found that these proteins were mainly localized in cell wall, plasma membrane, chloroplast, mitochondria, nucleus, peroxisome and cytosol. Our results demonstrate that H2S is involved in various cellular and physiological activities and has a distinct influence on photosynthesis, cell defense and cellular signal transduction in S. oleracea leaves. These findings provide new insights into proteomic responses in plants under physiological levels of H2S. PMID:25181351

  12. Dielectric screening of early differentiation patterns in mesenchymal stem cells induced by steroid hormones.

    PubMed

    Ron, Amit; Shur, Irena; Daniel, Ramiz; Singh, Ragini Raj; Fishelson, Nick; Croitoru, Nathan; Benayahu, Dafna; Shacham-Diamand, Yosi

    2010-06-01

    In the framework of this study, target identification and localization of differentiation patterns by means of dielectric spectroscopy is presented. Here, a primary pre-osteoblastic bone marrow-derived MBA-15 cellular system was used to study the variations in the dielectric properties of mesenchymal stem cells while exposed to differentiation regulators. Using the fundamentals of mixed dielectric theories combined with finite numerical tools, the permittivity spectra of MBA-15 cell suspensions have been uniquely analyzed after being activated by steroid hormones to express osteogenic phenotypes. Following the spectral analysis, significant variations were revealed in the dielectric properties of the activated cells in comparison to the untreated populations. Based on the differentiation patterns of MBA-15, the electrical modifications were found to be highly correlated with the activation of specific cellular mechanisms which directly react to the hormonal inductions. In addition, by describing the dielectric dispersion in terms of transfer functions, it is shown that the spectral perturbations are well adapted to variations in the electrical characteristics of the cells. The reported findings vastly emphasize the tight correlation between the cellular and electrical state of the differentiated cells. It therefore emphasizes the vast abilities of impedance-based techniques as potential screening tools for stem cell analysis. Copyright 2009 Elsevier B.V. All rights reserved.

  13. Quantitative proteomic analysis of milk fat globule membrane (MFGM) proteins in human and bovine colostrum and mature milk samples through iTRAQ labeling.

    PubMed

    Yang, Mei; Cong, Min; Peng, Xiuming; Wu, Junrui; Wu, Rina; Liu, Biao; Ye, Wenhui; Yue, Xiqing

    2016-05-18

    Milk fat globule membrane (MFGM) proteins have many functions. To explore the different proteomics of human and bovine MFGM, MFGM proteins were separated from human and bovine colostrum and mature milk, and analyzed by the iTRAQ proteomic approach. A total of 411 proteins were recognized and quantified. Among these, 232 kinds of differentially expressed proteins were identified. These differentially expressed proteins were analyzed based on multivariate analysis, gene ontology (GO) annotation and KEGG pathway. Biological processes involved were response to stimulus, localization, establishment of localization, and the immune system process. Cellular components engaged were the extracellular space, extracellular region parts, cell fractions, and vesicles. Molecular functions touched upon were protein binding, nucleotide binding, and enzyme inhibitor activity. The KEGG pathway analysis showed several pathways, including regulation of the actin cytoskeleton, focal adhesion, neurotrophin signaling pathway, leukocyte transendothelial migration, tight junction, complement and coagulation cascades, vascular endothelial growth factor signaling pathway, and adherens junction. These results enhance our understanding of different proteomes of human and bovine MFGM across different lactation phases, which could provide important information and potential directions for the infant milk powder and functional food industries.

  14. AJAP1 is Dysregulated at an Early Stage of Gliomagenesis and Suppresses Invasion Through Cytoskeleton Reorganization

    PubMed Central

    Han, Lei; Zhang, Kai-Liang; Zhang, Jun-Xia; Zeng, Liang; Di, Chun-Hui; Fee, Brian E.; Rivas, Miriam; Bao, Zhao-Shi; Jiang, Tao; Bigner, Darrell; Kang, Chun-Sheng; Adamson, David Cory

    2015-01-01

    SUMMARY Aims Down-regulation of AJAP1 in glioblastoma multiforme (GBM) has been reported. However, the expression profiles of AJAP1 in gliomas and the underlying mechanisms of AJAP1 function on invasion are still poorly understood. Methods The gene profiles of AJAP1 in glioma patients were studied among four independent cohorts. Confocal imaging was used to analyze the AJAP1 localization. After AJAP1 overexpression in GBM cell lines, cellular polarity, cytoskeleton distribution, and antitumor effect were investigated in vitro and in vivo. Results AJAP1 expression was significantly decreased in gliomas compared with normal brain in REMBRANDT and CGCA cohorts. Additionally, low AJAP1 expression was associated with worse survival in GBMs in REMBRANDT and TCGA U133A cohorts and was significantly associated with classical and mesenchymal subtypes of GBMs among four cohorts. Confocal imaging indicated AJAP1 localized in cell membranes in low-grade gliomas and AJAP1-overexpressing GBM cells, but difficult to assess in high-grade gliomas due to its absence. AJAP1 overexpression altered the cytoskeleton and cellular polarity in vitro and inhibited the tumor growth in vivo. Conclusions AJAP1 is dysregulated at an early stage of gliomagenesis and may suppress glioma cell invasion and proliferation, which suggests that AJAP1 may be a potential diagnostic and prognostic marker for gliomas. PMID:24483339

  15. C-Terminal Fluorescent Labeling Impairs Functionality of DNA Mismatch Repair Proteins

    PubMed Central

    Brieger, Angela; Plotz, Guido; Hinrichsen, Inga; Passmann, Sandra; Adam, Ronja; Zeuzem, Stefan

    2012-01-01

    The human DNA mismatch repair (MMR) process is crucial to maintain the integrity of the genome and requires many different proteins which interact perfectly and coordinated. Germline mutations in MMR genes are responsible for the development of the hereditary form of colorectal cancer called Lynch syndrome. Various mutations mainly in two MMR proteins, MLH1 and MSH2, have been identified so far, whereas 55% are detected within MLH1, the essential component of the heterodimer MutLα (MLH1 and PMS2). Most of those MLH1 variants are pathogenic but the relevance of missense mutations often remains unclear. Many different recombinant systems are applied to filter out disease-associated proteins whereby fluorescent tagged proteins are frequently used. However, dye labeling might have deleterious effects on MutLα's functionality. Therefore, we analyzed the consequences of N- and C-terminal fluorescent labeling on expression level, cellular localization and MMR activity of MutLα. Besides significant influence of GFP- or Red-fusion on protein expression we detected incorrect shuttling of single expressed C-terminal GFP-tagged PMS2 into the nucleus and found that C-terminal dye labeling impaired MMR function of MutLα. In contrast, N-terminal tagged MutLαs retained correct functionality and can be recommended both for the analysis of cellular localization and MMR efficiency. PMID:22348133

  16. Boron nitride nanotubes as vehicles for intracellular delivery of fluorescent drugs and probes.

    PubMed

    Niskanen, Jukka; Zhang, Issan; Xue, Yanming; Golberg, Dmitri; Maysinger, Dusica; Winnik, Françoise M

    2016-01-01

    To evaluate the response of cells to boron nitride nanotubes (BNNTs) carrying fluorescent probes or drugs in their inner channel by assessment of the cellular localization of the fluorescent cargo, evaluation of the in vitro release and biological activity of a drug (curcumin) loaded in BNNTs. Cells treated with curcumin-loaded BNNTs and stimulated with lipopolysaccharide were assessed for nitric oxide release and stimulation of IL-6 and TNF-α. The cellular trafficking of two cell-permeant dyes and a non-cell-permeant dye loaded within BNNTs was imaged. BNNTs loaded with up to 13 wt% fluorophores were internalized by cells and controlled release of curcumin triggered cellular pathways associated with the known anti-inflammatory effects of the drug. The overall findings indicate that BNNTs can function as nanocarriers of biologically relevant probes/drugs allowing one to examine/control their local intracellular localization and biochemical effects, leading the way to applications as intracellular nanosensors.

  17. Case Study: The Mystery of the Seven Deaths--A Case Study in Cellular Respiration

    ERIC Educational Resources Information Center

    Gazdik, Michaela

    2014-01-01

    Cellular respiration, the central component of cellular metabolism, can be a difficult concept for many students to fully understand. In this interrupted, problem-based case study, students explore the purpose of cellular respiration as they play the role of medical examiner, analyzing autopsy evidence to determine the mysterious cause of death…

  18. Impact of protein domains on PE_PGRS30 polar localization in Mycobacteria.

    PubMed

    De Maio, Flavio; Maulucci, Giuseppe; Minerva, Mariachiara; Anoosheh, Saber; Palucci, Ivana; Iantomasi, Raffaella; Palmieri, Valentina; Camassa, Serena; Sali, Michela; Sanguinetti, Maurizio; Bitter, Wilbert; Manganelli, Riccardo; De Spirito, Marco; Delogu, Giovanni

    2014-01-01

    PE_PGRS proteins are unique to the Mycobacterium tuberculosis complex and a number of other pathogenic mycobacteria. PE_PGRS30, which is required for the full virulence of M. tuberculosis (Mtb), has three main domains, i.e. an N-terminal PE domain, repetitive PGRS domain and the unique C-terminal domain. To investigate the role of these domains, we expressed a GFP-tagged PE_PGRS30 protein and a series of its functional deletion mutants in different mycobacterial species (Mtb, Mycobacterium bovis BCG and Mycobacterium smegmatis) and analysed protein localization by confocal microscopy. We show that PE_PGRS30 localizes at the mycobacterial cell poles in Mtb and M. bovis BCG but not in M. smegmatis and that the PGRS domain of the protein strongly contributes to protein cellular localization in Mtb. Immunofluorescence studies further showed that the unique C-terminal domain of PE_PGRS30 is not available on the surface, except when the PGRS domain is missing. Immunoblot demonstrated that the PGRS domain is required to maintain the protein strongly associated with the non-soluble cellular fraction. These results suggest that the repetitive GGA-GGN repeats of the PGRS domain contain specific sequences that contribute to protein cellular localization and that polar localization might be a key step in the PE_PGRS30-dependent virulence mechanism.

  19. Confocal Microscopy and Molecular-Specific Optical Contrast Agents for the Detection of Oral Neoplasia

    PubMed Central

    Carlson, Alicia L.; Gillenwater, Ann M.; Williams, Michelle D.; El-Naggar, Adel K.; Richards-Kortum, R. R.

    2009-01-01

    Using current clinical diagnostic techniques, it is difficult to visualize tumor morphology and architecture at the cellular level, which is necessary for diagnostic localization of pathologic lesions. Optical imaging techniques have the potential to address this clinical need by providing real-time, sub-cellular resolution images. This paper describes the use of dual mode confocal microscopy and optical molecular-specific contrast agents to image tissue architecture, cellular morphology, and sub-cellular molecular features of normal and neoplastic oral tissues. Fresh tissue slices were prepared from 33 biopsies of clinically normal and abnormal oral mucosa obtained from 14 patients. Reflectance confocal images were acquired after the application of 6% acetic acid, and fluorescence confocal images were acquired after the application of a fluorescence contrast agent targeting the epidermal growth factor receptor (EGFR). The dual imaging modes provided images similar to light microscopy of hematoxylin and eosin and immunohistochemistry staining, but from thick fresh tissue slices. Reflectance images provided information on the architecture of the tissue and the cellular morphology. The nuclear-to-cytoplasmic (N/C) ratio from the reflectance images was at least 7.5 times greater for the carcinoma than the corresponding normal samples, except for one case of highly keratinized carcinoma. Separation of carcinoma from normal and mild dysplasia was achieved using this ratio (p<0.01). Fluorescence images of EGFR expression yielded a mean fluorescence labeling intensity (FLI) that was at least 2.7 times higher for severe dysplasia and carcinoma samples than for the corresponding normal sample, and could be used to distinguish carcinoma from normal and mild dysplasia (p<0.01). Analyzed together, the N/C ratio and the mean FLI may improve the ability to distinguish carcinoma from normal squamous epithelium. PMID:17877424

  20. Demonstration of subcellular migration of CK2α localization from nucleus to sarco(endo)plasmic reticulum in mammalian cardiomyocytes under hyperglycemia.

    PubMed

    Bitirim, Ceylan Verda; Tuncay, Erkan; Turan, Belma

    2018-06-01

    The cellular control of glucose uptake and glycogen metabolism in mammalian tissues is in part mediated through the regulation of protein-serine/threonine kinases including CK2. Although it participates to several cellular signaling processes, however, its subcellular localization is not well-defined while some documents mentioned its localization change under pathological conditions. The activation/phosphorylation of some proteins including Zn 2+ -transporter ZIP7 in cardiomyocytes is controlled with CK2α, thereby, inducing changes in the level of intracellular free Zn 2+ ([Zn 2+ ] i ). In this regard, we aimed to examine cellular localization of CK2α in cardiomyocytes and its possible subcellular migration under hyperglycemia. Our confocal imaging together with biochemical analysis in isolated sarco(endo)plasmic reticulum [S(E)R] and nuclear fractions from hearts have shown that CK2α localized highly to S(E)R and Golgi and weakly to nuclear fractions in physiological condition. However, it can migrate from nuclear fractions to S(E)R under hyperglycemia. This migration can further underlie phosphorylation of a target protein ZIP7 as well as some endogenous kinases and phosphatases including PKA, CaMKII, and PP2A. We also have shown that CK2α activation is responsible for hyperglycemia-associated [Zn 2+ ] i increase in diabetic heart. Therefore, our present data demonstrated, for the first time, the physiological relevance of CK2α in cellular control of Zn 2+ -distribution via inducing ZIP7 phosphorylation and activation of these above endogenous actors in hyperglycemia/diabetes-associated cardiac dysfunction. Moreover, our present data also emphasized the multi-subcellular compartmental localizations of CK2α and a tightly regulation of these localizations in cardiomyocytes. Therefore, taken into consideration of all data, one can emphasize the important role of the subcellular localization of CK2α as a novel target-pathway for understanding of diabetic cardiomyopathy.

  1. Wavelet-based multiscale analysis of bioimpedance data measured by electric cell-substrate impedance sensing for classification of cancerous and normal cells.

    PubMed

    Das, Debanjan; Shiladitya, Kumar; Biswas, Karabi; Dutta, Pranab Kumar; Parekh, Aditya; Mandal, Mahitosh; Das, Soumen

    2015-12-01

    The paper presents a study to differentiate normal and cancerous cells using label-free bioimpedance signal measured by electric cell-substrate impedance sensing. The real-time-measured bioimpedance data of human breast cancer cells and human epithelial normal cells employs fluctuations of impedance value due to cellular micromotions resulting from dynamic structural rearrangement of membrane protrusions under nonagitated condition. Here, a wavelet-based multiscale quantitative analysis technique has been applied to analyze the fluctuations in bioimpedance. The study demonstrates a method to classify cancerous and normal cells from the signature of their impedance fluctuations. The fluctuations associated with cellular micromotion are quantified in terms of cellular energy, cellular power dissipation, and cellular moments. The cellular energy and power dissipation are found higher for cancerous cells associated with higher micromotions in cancer cells. The initial study suggests that proposed wavelet-based quantitative technique promises to be an effective method to analyze real-time bioimpedance signal for distinguishing cancer and normal cells.

  2. Population dynamics in non-homogeneous environments

    NASA Astrophysics Data System (ADS)

    Alards, Kim M. J.; Tesser, Francesca; Toschi, Federico

    2014-11-01

    For organisms living in aquatic ecosystems the presence of fluid transport can have a strong influence on the dynamics of populations and on evolution of species. In particular, displacements due to self-propulsion, summed up with turbulent dispersion at larger scales, strongly influence the local densities and thus population and genetic dynamics. Real marine environments are furthermore characterized by a high degree of non-homogeneities. In the case of population fronts propagating in ``fast'' turbulence, with respect to the population duplication time, the flow effect can be studied by replacing the microscopic diffusivity with an effective turbulent diffusivity. In the opposite case of ``slow'' turbulence the advection by the flow has to be considered locally. Here we employ numerical simulations to study the influence of non-homogeneities in the diffusion coefficient of reacting individuals of different species expanding in a 2 dimensional space. Moreover, to explore the influence of advection, we consider a population expanding in the presence of simple velocity fields like cellular flows. The output is analyzed in terms of front roughness, front shape, propagation speed and, concerning the genetics, by means of heterozygosity and local and global extinction probabilities.

  3. The Novel Fission Yeast Protein Pal1p Interacts with Hip1-related Sla2p/End4p and Is Involved in Cellular Morphogenesis

    PubMed Central

    Ge, Wanzhong; Chew, Ting Gang; Wachtler, Volker; Naqvi, Suniti N.; Balasubramanian, Mohan K.

    2005-01-01

    The establishment and maintenance of characteristic cellular morphologies is a fundamental property of all cells. Here we describe Schizosaccharomyces pombe Pal1p, a protein important for maintenance of cylindrical cellular morphology. Pal1p is a novel membrane-associated protein that localizes to the growing tips of interphase cells and to the division site in cells undergoing cytokinesis in an F-actin- and microtubule-independent manner. Cells deleted for pal1 display morphological defects, characterized by the occurrence of spherical and pear-shaped cells with an abnormal cell wall. Pal1p physically interacts and displays overlapping localization with the Huntingtin-interacting-protein (Hip1)-related protein Sla2p/End4p, which is also required for establishment of cylindrical cellular morphology. Sla2p is important for efficient localization of Pal1p to the sites of polarized growth and appears to function upstream of Pal1p. Interestingly, spherical pal1Δ mutants polarize to establish a pearlike morphology before mitosis in a manner dependent on the kelch-repeat protein Tea1p and the cell cycle inhibitory kinase Wee1p. Thus, overlapping mechanisms involving Pal1p, Tea1p, and Sla2p contribute to the establishment of cylindrical cellular morphology, which is important for proper spatial regulation of cytokinesis. PMID:15975911

  4. The novel fission yeast protein Pal1p interacts with Hip1-related Sla2p/End4p and is involved in cellular morphogenesis.

    PubMed

    Ge, Wanzhong; Chew, Ting Gang; Wachtler, Volker; Naqvi, Suniti N; Balasubramanian, Mohan K

    2005-09-01

    The establishment and maintenance of characteristic cellular morphologies is a fundamental property of all cells. Here we describe Schizosaccharomyces pombe Pal1p, a protein important for maintenance of cylindrical cellular morphology. Pal1p is a novel membrane-associated protein that localizes to the growing tips of interphase cells and to the division site in cells undergoing cytokinesis in an F-actin- and microtubule-independent manner. Cells deleted for pal1 display morphological defects, characterized by the occurrence of spherical and pear-shaped cells with an abnormal cell wall. Pal1p physically interacts and displays overlapping localization with the Huntingtin-interacting-protein (Hip1)-related protein Sla2p/End4p, which is also required for establishment of cylindrical cellular morphology. Sla2p is important for efficient localization of Pal1p to the sites of polarized growth and appears to function upstream of Pal1p. Interestingly, spherical pal1Delta mutants polarize to establish a pearlike morphology before mitosis in a manner dependent on the kelch-repeat protein Tea1p and the cell cycle inhibitory kinase Wee1p. Thus, overlapping mechanisms involving Pal1p, Tea1p, and Sla2p contribute to the establishment of cylindrical cellular morphology, which is important for proper spatial regulation of cytokinesis.

  5. Cellular redistribution of Rad51 in response to DNA damage: novel role for Rad51C.

    PubMed

    Gildemeister, Otto S; Sage, Jay M; Knight, Kendall L

    2009-11-13

    Exposure of cells to DNA-damaging agents results in a rapid increase in the formation of subnuclear complexes containing Rad51. To date, it has not been determined to what extent DNA damage-induced cytoplasmic to nuclear transport of Rad51 may contribute to this process. We have analyzed subcellular fractions of HeLa and HCT116 cells and found a significant increase in nuclear Rad51 levels following exposure to a modest dose of ionizing radiation (2 grays). We also observed a DNA damage-induced increase in nuclear Rad51 in the Brca2-defective cell line Capan-1. To address a possible Brca2-independent mechanism for Rad51 nuclear transport, we analyzed subcellular fractions for two other Rad51-interacting proteins, Rad51C and Xrcc3. Rad51C has a functional nuclear localization signal, and although we found that the subcellular distribution of Xrcc3 was not significantly affected by DNA damage, there was a damage-induced increase in nuclear Rad51C. Furthermore, RNA interference-mediated depletion of Rad51C in HeLa and Capan-1 cells resulted in lower steady-state levels of nuclear Rad51 as well as a diminished DNA damage-induced increase. Our results provide important insight into the cellular regulation of Rad51 nuclear entry and a role for Rad51C in this process.

  6. Insights on Localized and Systemic Delivery of Redox-Based Therapeutics

    PubMed Central

    Batrakova, Elena V.; Mota, Roberto

    2018-01-01

    Reactive oxygen and nitrogen species are indispensable in cellular physiology and signaling. Overproduction of these reactive species or failure to maintain their levels within the physiological range results in cellular redox dysfunction, often termed cellular oxidative stress. Redox dysfunction in turn is at the molecular basis of disease etiology and progression. Accordingly, antioxidant intervention to restore redox homeostasis has been pursued as a therapeutic strategy for cardiovascular disease, cancer, and neurodegenerative disorders among many others. Despite preliminary success in cellular and animal models, redox-based interventions have virtually been ineffective in clinical trials. We propose the fundamental reason for their failure is a flawed delivery approach. Namely, systemic delivery for a geographically local disease limits the effectiveness of the antioxidant. We take a critical look at the literature and evaluate successful and unsuccessful approaches to translation of redox intervention to the clinical arena, including dose, patient selection, and delivery approach. We argue that when interpreting a failed antioxidant-based clinical trial, it is crucial to take into account these variables and importantly, whether the drug had an effect on the redox status. Finally, we propose that local and targeted delivery hold promise to translate redox-based therapies from the bench to the bedside. PMID:29636836

  7. Engineering the Intracellular Micro- and Nano-environment via Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Tseng, Peter

    Single cells, despite being the base unit of living organisms, possess a high degree of hierarchical structure and functional compartmentalization. This complexity exists for good reason: cells must respond efficiently and effectively to its surrounding environment by differentiating, moving, interacting, and more in order to survive or inhabit its role in the larger biological system. At the core of these responses is cellular decision-making. Cells process cues internally and externally from the environment and effect intracellular asymmetry in biochemistry and structure in order to carry out the proper biological responses. Functionalized magnetic particles have shown to be a powerful tool in interacting with biological matter, through either cell or biomolecule sorting, and the activation of biological processes. This dissertation reports on techniques utilizing manipulated magnetic nanoparticles (internalized by cells) to spatially and temporally localize intracellular cues, and examines the resulting asymmetry in biological processes generated by our methods. We first examine patterned micromagnetic elements as a simple strategy of rapidly manipulating magnetic nanoparticles throughout the intracellular space. Silicon or silicon dioxide substrates form the base for electroplated NiFe rods, which are repeated at varying size and pitch. A planarizing resin, initially SU-8, is used as the substrate layer for cellular adhesion. We demonstrate that through the manipulations of a simple external magnet, these micro-fabricated substrates can mediate rapid (under 2 s) and precise (submicron), reversible translation of magnetic nanoparticles through cellular space. Seeding cells on substrates composed of these elements allows simultaneous control of ensembles of nanoparticles over thousands of cells at a time. We believe such substrates could form the basis of magnetically based tools for the activation of biological matter. We further utilize these strategies to generate user-controllable (time-varying and localizable), massively parallel forces on arrays of cells mediated by coalesced ensembles of magnetic nanoparticles. The above process is simplified and adapted for single cell analysis by precisely aligning fibronectin patterned cells to a single flanking micromagnet. The cells are loaded with magnetic-fluorescent nanoparticles, which are then localized to uniform positions at the internal edge of the cell membrane over huge arrays of cells using large external fields, allowing us to conduct composed studies on cellular response to force. By applying forces approaching the yield tension (5 nN / mum) of single cells, we are able to generate highly coordinated responses in cellular behavior. We discover that increasing tension generates highly directed, PAK-dependent leading-edge type filopodia that increase in intensity with rising tension. In addition, we find that our generated forces can simulate cues created during cellular mitosis, as we are consistently able to generate significant (45 to 90 degree) biasing of the metaphase plate during cell division. Large sample size and rapid sample generation also allow us to analyze cells at an unprecedented rate---a single sample can simultaneously stimulate thousands of cells for high statistical accuracy in measurements. We believe these approaches have potential not just as a tool to study single-cell response, but as a means of cell control, potentially through modifying cell movement, division, or differentiation. More generally, once approaches to release nanoparticles from endosomes are implemented, the technique provides a platform to dynamically apply a range of localized stimuli arbitrarily within cells. Through the bioconjugation of proteins, nucleic acids, small molecules, or whole organelles a broad range of questions should be accessible concerning molecular localization and its importance in cell function.

  8. Discoidin domain receptor 2 (DDR2) regulates proliferation of endochondral cells in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawai, Ikuma; Hisaki, Tomoka; Sugiura, Koji

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Discoidin domain receptor 2 (DDR2) is a receptor tyrosine kinase. Black-Right-Pointing-Pointer DDR2 regulates cell proliferation, cell adhesion, migration, and extracellular matrix remodeling. Black-Right-Pointing-Pointer We produced in vitro and in vivo model to better understand the role of DDR2. Black-Right-Pointing-Pointer DDR2 might play an inhibitory role in the proliferation of chondrocyte. -- Abstract: Discoidin domain receptor 2 (DDR2) is a receptor tyrosine kinase that is activated by fibrillar collagens. DDR2 regulates cell proliferation, cell adhesion, migration, and extracellular matrix remodeling. The decrement of endogenous DDR2 represses osteoblastic marker gene expression and osteogenic differentiation in murine preosteoblastic cells, but themore » functions of DDR2 in chondrogenic cellular proliferation remain unclear. To better understand the role of DDR2 signaling in cellular proliferation in endochondral ossification, we inhibited Ddr2 expression via the inhibitory effect of miRNA on Ddr2 mRNA (miDdr2) and analyzed the cellular proliferation and differentiation in the prechondrocyte ATDC5 cell lines. To investigate DDR2's molecular role in endochondral cellular proliferation in vivo, we also produced transgenic mice in which the expression of truncated, kinase dead (KD) DDR2 protein is induced, and evaluated the DDR2 function in cellular proliferation in chondrocytes. Although the miDdr2-transfected ATDC5 cell lines retained normal differentiation ability, DDR2 reduction finally promoted cellular proliferation in proportion to the decreasing ratio of Ddr2 expression, and it also promoted earlier differentiation to cartilage cells by insulin induction. The layer of hypertrophic chondrocytes in KD Ddr2 transgenic mice was not significantly thicker than that of normal littermates, but the layer of proliferative chondrocytes in KD-Ddr2 transgenic mice was significantly thicker than that of normal littermates. Taken together, our data demonstrated that DDR2 might play a local and essential role in the proliferation of chondrocytes.« less

  9. Cellular Automata Ideas in Digital Circuits and Switching Theory.

    ERIC Educational Resources Information Center

    Siwak, Pawel P.

    1985-01-01

    Presents two examples which illustrate the usefulness of ideas from cellular automata. First, Lee's algorithm is recalled and its cellular nature shown. Then a problem from digraphs, which has arisen from analyzing predecessing configurations in the famous Conway's "game of life," is considered. (Author/JN)

  10. Profiling protein function with small molecule microarrays

    PubMed Central

    Winssinger, Nicolas; Ficarro, Scott; Schultz, Peter G.; Harris, Jennifer L.

    2002-01-01

    The regulation of protein function through posttranslational modification, local environment, and protein–protein interaction is critical to cellular function. The ability to analyze on a genome-wide scale protein functional activity rather than changes in protein abundance or structure would provide important new insights into complex biological processes. Herein, we report the application of a spatially addressable small molecule microarray to an activity-based profile of proteases in crude cell lysates. The potential of this small molecule-based profiling technology is demonstrated by the detection of caspase activation upon induction of apoptosis, characterization of the activated caspase, and inhibition of the caspase-executed apoptotic phenotype using the small molecule inhibitor identified in the microarray-based profile. PMID:12167675

  11. Molecular counting of membrane receptor subunits with single-molecule localization microscopy

    NASA Astrophysics Data System (ADS)

    Krüger, Carmen; Fricke, Franziska; Karathanasis, Christos; Dietz, Marina S.; Malkusch, Sebastian; Hummer, Gerhard; Heilemann, Mike

    2017-02-01

    We report on quantitative single-molecule localization microscopy, a method that next to super-resolved images of cellular structures provides information on protein copy numbers in protein clusters. This approach is based on the analysis of blinking cycles of single fluorophores, and on a model-free description of the distribution of the number of blinking events. We describe the experimental and analytical procedures, present cellular data of plasma membrane proteins and discuss the applicability of this method.

  12. Safety profile and long-term engraftment of human CD31+ blood progenitors in bone tissue engineering.

    PubMed

    Zigdon-Giladi, Hadar; Elimelech, Rina; Michaeli-Geller, Gal; Rudich, Utai; Machtei, Eli E

    2017-07-01

    Endothelial progenitor cells (EPCs) participate in angiogenesis and induce favorable micro-environments for tissue regeneration. The efficacy of EPCs in regenerative medicine is extensively studied; however, their safety profile remains unknown. Therefore, our aims were to evaluate the safety profile of human peripheral blood-derived EPCs (hEPCs) and to assess the long-term efficacy of hEPCs in bone tissue engineering. hEPCs were isolated from peripheral blood, cultured and characterized. β tricalcium phosphate scaffold (βTCP, control) or 10 6 hEPCs loaded onto βTCP were transplanted in a nude rat calvaria model. New bone formation and blood vessel density were analyzed using histomorphometry and micro-computed tomography (CT). Safety of hEPCs using karyotype analysis, tumorigenecity and biodistribution to target organs was evaluated. On the cellular level, hEPCs retained their karyotype during cell expansion (seven passages). Five months following local hEPC transplantation, on the tissue and organ level, no inflammatory reaction or dysplastic change was evident at the transplanted site or in distant organs. Direct engraftment was evident as CD31 human antigens were detected lining vessel walls in the transplanted site. In distant organs human antigens were absent, negating biodistribution. Bone area fraction and bone height were doubled by hEPC transplantation without affecting mineral density and bone architecture. Additionally, local transplantation of hEPCs increased blood vessel density by nine-fold. Local transplantation of hEPCs showed a positive safety profile. Furthermore, enhanced angiogenesis and osteogenesis without mineral density change was found. These results bring us one step closer to first-in-human trials using hEPCs for bone regeneration. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  13. Antioxidant enzymes as redox-based biomarkers: a brief review.

    PubMed

    Yang, Hee-Young; Lee, Tae-Hoon

    2015-04-01

    The field of redox proteomics focuses to a large extent on analyzing cysteine oxidation in proteins under different experimental conditions and states of diseases. The identification and localization of oxidized cysteines within the cellular milieu is critical for understanding the redox regulation of proteins under physiological and pathophysiological conditions, and it will in turn provide important information that are potentially useful for the development of novel strategies in the treatment and prevention of diseases associated with oxidative stress. Antioxidant enzymes that catalyze oxidation/reduction processes are able to serve as redox biomarkers in various human diseases, and they are key regulators controlling the redox state of functional proteins. Redox regulators with antioxidant properties related to active mediators, cellular organelles, and the surrounding environments are all connected within a network and are involved in diseases related to redox imbalance including cancer, ischemia/reperfusion injury, neurodegenerative diseases, as well as normal aging. In this review, we will briefly look at the selected aspects of oxidative thiol modification in antioxidant enzymes and thiol oxidation in proteins affected by redox control of antioxidant enzymes and their relation to disease.

  14. The photoreceptive cells of the pineal gland in adult zebrafish (Danio rerio).

    PubMed

    Laurà, Rosaria; Magnoli, Domenico; Zichichi, Rosalia; Guerrera, Maria Cristina; De Carlos, Felix; Suárez, Alberto Álvarez; Abbate, Francesco; Ciriaco, Emilia; Vega, Jose Antonio; Germanà, Antonino

    2012-03-01

    The zebrafish pineal gland plays a fundamental role in the regulation of the circadian rhythm through the melatonin secretion. The pinealocytes, also called photoreceptive cells, are considered the morphofunctional unit of pineal gland. In literature, the anatomical features, the cellular characteristics, and the pinealocytes morphology of zebrafish pineal gland have not been previously described in detail. Therefore, this study was undertaken to analyze the structure and ultrastructure, as well as the immunohistochemical profile of the zebrafish pineal gland with particular reference to the pinealocytes. Here, we demonstrated, using RT-PCR, immunohistochemistry and transmission electron microscopy, the expression of the mRNA for rhodopsin in the pineal gland of zebrafish, as well as its cellular localization exclusively in the pinealocytes of adult zebrafish. Moreover, the ultrastructural observations demonstrated that the pinealocytes were constituted by an outer segment with numerous lamellar membranes, an inner segment with many mitochondria, and a basal pole with the synapses. Our results taken together demonstrated a central role of zebrafish pinealocytes in the control of pineal gland functions. Copyright © 2011 Wiley Periodicals, Inc.

  15. Two-Photon Fluorescence Spectroscopy and Imaging of 4-Dimethylaminonaphthalimide-Peptide and Protein Conjugates

    PubMed Central

    McLean, Alan M.; Socher, Elke; Varnavski, Oleg; Clark, Travis B.

    2014-01-01

    We report detailed photophysical studies on the two-photon fluorescence processes of the solvatochromic fluorophore 4-DMN as a conjugate of the important calmodulin (CaM) and the associated CaM-binding peptide M13. Strong two-photon fluorescence enhancement has been observed which is associated with calcium binding. It is found that the two-photon absorption cross-section is strongly dependent on the local environment surrounding the 4-DMN fluorophore in the CaM conjugates, providing sensitivity between sites of fluorophore attachment. Utilizing time-resolved measurements, the emission dynamics of 4-DMN under various environmental (solvent) conditions are analyzed. In addition, anisotropy measurements reveal that the 4-DMN-S38C-CaM system has restricted rotation in the calcium-bound calmodulin. To establish the utility for cellular imaging, two-photon fluorescence microscopy studies were also carried out with the 4-DMN-modified M13 peptide in cells. Together, these studies provide strong evidence that 4-DMN is a useful probe in two-photon imaging, with advantageous properties for cellular experiments. PMID:24245815

  16. Impact of time delay on the dynamics of SEIR epidemic model using cellular automata

    NASA Astrophysics Data System (ADS)

    Sharma, Natasha; Gupta, Arvind Kumar

    2017-04-01

    The delay of an infectious disease is significant when aiming to predict its strength and spreading patterns. In this paper the SEIR ​(susceptible-exposed-infected-recovered) epidemic spread with time delay is analyzed through a two-dimensional cellular automata model. The time delay corresponding to the infectious span, predominantly, includes death during the latency period in due course of infection. The advancement of whole system is described by SEIR transition function complemented with crucial factors like inhomogeneous population distribution, birth and disease independent mortality. Moreover, to reflect more realistic population dynamics some stochastic parameters like population movement and connections at local level are also considered. The existence and stability of disease free equilibrium is investigated. Two prime behavioral patterns of disease dynamics is found depending on delay. The critical value of delay, beyond which there are notable variations in spread patterns, is computed. The influence of important parameters affecting the disease dynamics on basic reproduction number is also examined. The results obtained show that delay plays an affirmative role to control disease progression in an infected host.

  17. Interaction of cellular proteins with BCL-xL targeted to cytoplasmic inclusion bodies in adenovirus infected cells.

    PubMed

    Subramanian, T; Vijayalingam, S; Kuppuswamy, M; Chinnadurai, G

    2015-09-01

    Adenovirus-mediated apoptosis was suppressed when cellular anti-apoptosis proteins (BCL-2 and BCL-xL) were substituted for the viral E1B-19K. For unbiased proteomic analysis of proteins targeted by BCL-xL in adenovirus-infected cells and to visualize the interactions with target proteins, BCL-xL was targeted to cytosolic inclusion bodies utilizing the orthoreovirus µNS protein sequences. The chimeric protein was localized in non-canonical cytosolic factory-like sites and promoted survival of virus-infected cells. The BCL-xL-associated proteins were isolated from the cytosolic inclusion bodies in adenovirus-infected cells and analyzed by LC-MS. These proteins included BAX, BAK, BID, BIK and BIM as well as mitochondrial proteins such as prohibitin 2, ATP synthase and DNA-PKcs. Our studies suggested that in addition to the interaction with various pro-apoptotic proteins, the association with certain mitochondrial proteins such as DNA-PKcs and prohibitins might augment the survival function of BCL-xL in virus infected cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Monitoring developmental force distributions in reconstituted embryonic epithelia.

    PubMed

    Przybyla, L; Lakins, J N; Sunyer, R; Trepat, X; Weaver, V M

    2016-02-01

    The way cells are organized within a tissue dictates how they sense and respond to extracellular signals, as cues are received and interpreted based on expression and organization of receptors, downstream signaling proteins, and transcription factors. Part of this microenvironmental context is the result of forces acting on the cell, including forces from other cells or from the cellular substrate or basement membrane. However, measuring forces exerted on and by cells is difficult, particularly in an in vivo context, and interpreting how forces affect downstream cellular processes poses an even greater challenge. Here, we present a simple method for monitoring and analyzing forces generated from cell collectives. We demonstrate the ability to generate traction force data from human embryonic stem cells grown in large organized epithelial sheets to determine the magnitude and organization of cell-ECM and cell-cell forces within a self-renewing colony. We show that this method can be used to measure forces in a dynamic hESC system and demonstrate the ability to map intracolony protein localization to force organization. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Defective cellular trafficking of the bone morphogenetic protein receptor type II by mutations underlying familial pulmonary arterial hypertension.

    PubMed

    John, Anne; Kizhakkedath, Praseetha; Al-Gazali, Lihadh; Ali, Bassam R

    2015-04-25

    Familial pulmonary arterial hypertension (FPAH) is a relatively rare but fatal disorder characterized by elevated arterial pressure caused by abnormal proliferation of endothelial cells of the arteries, which eventually leads to heart failure and death. FPAH is inherited as an autosomal dominant trait and is caused by heterozygous mutations in the BMPR2 gene encoding the bone morphogenetic protein type II receptor (BMPR2). BMPR2 belongs to the TGF β/BMP super-family of receptors involved in a signal transduction cascade via the SMAD signaling pathway. The BMPR2 polypeptide is composed of 1038 amino acids and consists of a ligand binding domain, a kinase domain and a cytoplasmic tail. To investigate the cellular and functional consequence of BMPR2 mutations, C-terminally FLAG-tagged constructs of eighteen pathogenic BMPR2 missense mutants were generated by site directed mutagenesis and expressed in HeLa and HEK-293T cell lines. The subcellular localizations of the mutant proteins were investigated using immunostaining and confocal microscopy. Post-translational modifications of the proteins were analyzed by Endoglycosidase H deglycosylation assay. Our results indicated that mutations in the ligand binding domain affecting highly conserved cysteine residues resulted in retention of the mutant proteins in the endoplasmic reticulum (ER), as evident from their co-localization with the ER resident protein calnexin. The kinase domain mutants showed both ER and plasma membrane (PM) distributions, while the cytoplasmic tail domain variants were localized exclusively to the PM. The subcellular localizations of the mutants were further confirmed by their characteristic glycosylation profiles. In conclusion, our results indicate that ER quality control (ERQC) is involved in the pathological mechanism of several BMPR2 receptor missense mutations causing FPAH, which can be explored as a potential therapeutic target in the future. Copyright © 2015. Published by Elsevier B.V.

  20. Phosphatidic acid interacts with a MYB transcription factor and regulates its nuclear localization and function in Arabidopsis.

    PubMed

    Yao, Hongyan; Wang, Geliang; Guo, Liang; Wang, Xuemin

    2013-12-01

    Phosphatidic acid (PA) has emerged as a class of cellular mediators involved in various cellular and physiological processes, but little is known about its mechanism of action. Here we show that PA interacts with werewolf (WER), a R2R3 MYB transcription factor involved in root hair formation. The PA-interacting region is confined to the end of the R2 subdomain. The ablation of the PA binding motif has no effect on WER binding to DNA, but abolishes its nuclear localization and its function in regulating epidermal cell fate. Inhibition of PA production by phospholipase Dζ also suppresses WER's nuclear localization, root hair formation, and elongation. These results suggest a role for PA in promoting protein nuclear localization.

  1. Phosphatidic Acid Interacts with a MYB Transcription Factor and Regulates Its Nuclear Localization and Function in Arabidopsis[C][W

    PubMed Central

    Yao, Hongyan; Wang, Geliang; Guo, Liang; Wang, Xuemin

    2013-01-01

    Phosphatidic acid (PA) has emerged as a class of cellular mediators involved in various cellular and physiological processes, but little is known about its mechanism of action. Here we show that PA interacts with WEREWOLF (WER), a R2R3 MYB transcription factor involved in root hair formation. The PA-interacting region is confined to the end of the R2 subdomain. The ablation of the PA binding motif has no effect on WER binding to DNA, but abolishes its nuclear localization and its function in regulating epidermal cell fate. Inhibition of PA production by phospholipase Dζ also suppresses WER’s nuclear localization, root hair formation, and elongation. These results suggest a role for PA in promoting protein nuclear localization. PMID:24368785

  2. [Identification and analysis of the proteins interacted with Prestin in cochlear outer hair cells of guinea pig].

    PubMed

    Luo, X; Wang, J Y; Zhang, F L; Xia, Y

    2018-01-07

    Objective: To explore the regulation and mechanism of Prestin protein by identifying the proteins interacted with Prestin in cochlear outer hair cell(OHC) and analyzing their biological function. Methods: Co-immunoprecipitation combined mass spectrometry technology was used to isolate and identify the proteins interacted with Prestin protein of OHC, bioinformatics was used to construct Prestin protein interaction network. The proteins interacted with Prestin in OHC of guinea pig were determined by matching primary interaction mass spectrometry with protein interaction network, and annotated their functions. Results: The results of co-immunoprecipitation combined with mass spectrometry showed that 116 kinds of credible proteins could interact with Prestin. By constructing Prestin protein interaction network, matching the results of mass spectrometry and analyzing of sub-cellular localization, eight kinds of proteins were confirmed that they interacted with Prestin directly, namely EEF2, HSP90AB1, FN1, FLNA, EEF1A1, HSP90B1, ATP5A1, and ERH, respectively, which were mainly involved in the synthesis and transportation, transmembrane folding and localization, structural stability and signal transduction of Prestin protein. Conclusion: EEF2, HSP90AB1, FN1, FLNA, EEF1A1, HSP90B1, ATP5A1 and ERH provide molecular basis for sensory amplification function of OHCs by participating in biotransformation, transmembrane folding and localization, signal transduction and other biological processes of Prestin protein.

  3. The status of intercellular junctions in established lens epithelial cell lines

    PubMed Central

    Dave, Alpana; Craig, Jamie E.

    2012-01-01

    Purpose Cataract is the major cause of vision-related disability worldwide. Mutations in the crystallin genes are the most common known cause of inherited congenital cataract. Mutations in the genes associated with intercellular contacts, such as Nance-Horan Syndrome (NHS) and Ephrin type A receptor-2 (EPHA2), are other recognized causes of congenital cataract. The EPHA2 gene has been also associated with age-related cataract, suggesting that intercellular junctions are important in not only lens development, but also in maintaining lens transparency. The purpose of this study was to analyze the expression and localization of the key cell junction and cytoskeletal proteins, and of NHS and EPHA2, in established lens epithelial cell lines to determine their suitability as model epithelial systems for the functional investigation of genes involved in intercellular contacts and implicated in cataract. Methods The expression and subcellular localization of occludin and zona occludens protein-1 (ZO-1), which are associated with tight junctions; E-cadherin, which is associated with adherence junctions; and the cytoskeletal actin were analyzed in monolayers of a human lens epithelial cell line (SRA 01/04) and a mouse lens epithelial cell line (αTN4). In addition, the expression and subcellular localization of the NHS and EPHA2 proteins were analyzed in these cell lines. Protein or mRNA expression was respectively determined by western blotting or reverse transcription-polymerase chain reaction (RT–PCR), and localization was determined by immunofluorescence labeling. Results Human SRA 01/04 and mouse αTN4 lens epithelial cells expressed either the proteins of interest or their encoding mRNA. Occludin, ZO-1, and NHS proteins localized to the cellular periphery, whereas E-cadherin, actin, and EPHA2 localized in the cytoplasm in these cell lines. Conclusions The human SRA 01/04 and mouse αTN4 lens epithelial cells express the key junctional proteins. The localization patterns of these proteins suggest that these cell lines form tight junctions but do not form E-cadherin-based adherence junctions. These data further indicate that the regulatory role of NHS in actin remodeling, suggested in another study, is cell type dependent. In conclusion, the SRA 01/04 and αTN4 lens epithelial cell lines model some characteristics of an epithelium. PMID:23288986

  4. The status of intercellular junctions in established lens epithelial cell lines.

    PubMed

    Dave, Alpana; Craig, Jamie E; Sharma, Shiwani

    2012-01-01

    Cataract is the major cause of vision-related disability worldwide. Mutations in the crystallin genes are the most common known cause of inherited congenital cataract. Mutations in the genes associated with intercellular contacts, such as Nance-Horan Syndrome (NHS) and Ephrin type A receptor-2 (EPHA2), are other recognized causes of congenital cataract. The EPHA2 gene has been also associated with age-related cataract, suggesting that intercellular junctions are important in not only lens development, but also in maintaining lens transparency. The purpose of this study was to analyze the expression and localization of the key cell junction and cytoskeletal proteins, and of NHS and EPHA2, in established lens epithelial cell lines to determine their suitability as model epithelial systems for the functional investigation of genes involved in intercellular contacts and implicated in cataract. The expression and subcellular localization of occludin and zona occludens protein-1 (ZO-1), which are associated with tight junctions; E-cadherin, which is associated with adherence junctions; and the cytoskeletal actin were analyzed in monolayers of a human lens epithelial cell line (SRA 01/04) and a mouse lens epithelial cell line (αTN4). In addition, the expression and subcellular localization of the NHS and EPHA2 proteins were analyzed in these cell lines. Protein or mRNA expression was respectively determined by western blotting or reverse transcription-polymerase chain reaction (RT-PCR), and localization was determined by immunofluorescence labeling. Human SRA 01/04 and mouse αTN4 lens epithelial cells expressed either the proteins of interest or their encoding mRNA. Occludin, ZO-1, and NHS proteins localized to the cellular periphery, whereas E-cadherin, actin, and EPHA2 localized in the cytoplasm in these cell lines. The human SRA 01/04 and mouse αTN4 lens epithelial cells express the key junctional proteins. The localization patterns of these proteins suggest that these cell lines form tight junctions but do not form E-cadherin-based adherence junctions. These data further indicate that the regulatory role of NHS in actin remodeling, suggested in another study, is cell type dependent. In conclusion, the SRA 01/04 and αTN4 lens epithelial cell lines model some characteristics of an epithelium.

  5. REJUVENATION OF PERIOSTEAL CHONDROGENESIS USING LOCAL GROWTH FACTOR INJECTION

    PubMed Central

    Reinholz, G.G.; Fitzsimmons, J.S.; Casper, M.; Ruesink, T.J.; Chung, H.W.; Schagemann, J.C.; O’Driscoll, S.W.

    2015-01-01

    Objective To examine the potential for rejuvenation of aged periosteum by local injection of transforming growth factor-beta1 (TGF-β1) and insulin-like growth factor-1 (IGF-1) alone or in combination to induce cambium cell proliferation and enhance in vitro periosteal cartilage formation. Methods A total of 367 New Zealand white rabbits (6, 12, and 24+ month-old) received subperiosteal injections of TGF-β1 and/or IGF-1 percutaneously. After 1, 3, 5, or 7 days, the rabbits were sacrificed and cambium cellularity or in vitro cartilage forming capacity was determined. Results A significant increase in cambium cellularity and thickness, and in vitro cartilage formation was observed after injection of TGF-β1 alone or in combination with IGF-1. In 12 month-old rabbits, mean cambium cellularity increased 5-fold from 49 to 237 cells/mm and in vitro cartilage production increased 12-fold from 0.8 to 9.7 mg seven days after TGF-β1 (200 ng) injection compared to vehicle controls (p<0.0001). A correlation was observed between cambium cellularity and in vitro cartilage production (R2=0.98). An added benefit of IGF-1 plus TGF-β1 on in vitro cartilage production compared to TGF-β1 alone was observed in the 2 year old rabbits. IGF-1 alone generally had no effect on either cambium cellularity or in vitro cartilage production in any of the age groups. Conclusions These results clearly demonstrate that it is possible to increase cambium cellularity and in vitro cartilage production in aged rabbit periosteum, to levels comparable to younger rabbits, using local injection of TGF-β1 alone or in combination with IGF-1, thereby rejuvenating aged periosteum. PMID:19064326

  6. Revealing the cellular localization of STAT1 during the cell cycle by super-resolution imaging

    PubMed Central

    Gao, Jing; Wang, Feng; Liu, Yanhou; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Wang, Hongda

    2015-01-01

    Signal transducers and activators of transcription (STATs) can transduce cytokine signals and regulate gene expression. The cellular localization and nuclear trafficking of STAT1, a representative of the STAT family with multiple transcriptional functions, is tightly related with transcription process, which usually happens in the interphase of the cell cycle. However, these priority questions regarding STAT1 distribution and localization at the different cell-cycle stages remain unclear. By using direct stochastic optical reconstruction microscopy (dSTORM), we found that the nuclear expression level of STAT1 increased gradually as the cell cycle carried out, especially after EGF stimulation. Furthermore, STAT1 formed clusters in the whole cell during the cell cycle, with the size and the number of clusters also increasing significantly from G1 to G2 phase, suggesting that transcription and other cell-cycle related activities can promote STAT1 to form more and larger clusters for fast response to signals. Our work reveals that the cellular localization and clustering distribution of STAT1 are associated with the cell cycle, and further provides an insight into the mechanism of cell-cycle regulated STAT1 signal transduction. PMID:25762114

  7. Cellular profile of the peritumoral inflammatory infiltrate in squamous cells carcinoma of oral mucosa: Correlation with the expression of Ki67 and histologic grading

    PubMed Central

    Vieira, Fabricio LD; Vieira, Beatriz J; Guimaraes, Marco AM; Aarestrup, Fernando M

    2008-01-01

    Background Squamous cells carcinoma is the most important malignant tumor with primary site in the oral cavity and, given the great exposure of mucosa and lips to the etiologic factors of this neoplasm, its incidence is high. Investigation of the prognostic determinants is significant for the expectations of treatment proposal and cure of the patient. The local immune response represented by peritumoral inflammatory infiltrate is a possible prognostic factor. Methods In this study, oral mucosa samples of squamous cells carcinoma were analyzed, separated according to their histological classification as well as the phenotypical profile of the cells comprising the peritumoral inflammatory infiltrate was investigated by immunohistochemical method, in addiction, the cell proliferation index via protein Ki67 expression was determinated. Results The T lymphocytes made up most of this inflammatory infiltrate, and among these cells, there was a predominance of T CD8 lymphocytes relative to the T CD4 lymphocytes. The B lymhocytes were the second most visualized leucocyte cell type followed by macrophages and neutrophils. The immunohistochemical assessment of Ki-67 positive cells revealed a greater expression of this protein in samples of undifferentiated squamous cells carcinoma. Conclusion The results suggest that the cellular immune response is the main defense mechanism in squamous cells carcinoma of oral mucosa, expressed by the large number of T lymphocytes and macrophages, and that the greatest intensity of local response may be associated with the best prognosis. PMID:18764952

  8. Modeling of time dependent localized flow shear stress and its impact on cellular growth within additive manufactured titanium implants

    PubMed Central

    Zhang, Ziyu; Yuan, Lang; Lee, Peter D; Jones, Eric; Jones, Julian R

    2014-01-01

    Bone augmentation implants are porous to allow cellular growth, bone formation and fixation. However, the design of the pores is currently based on simple empirical rules, such as minimum pore and interconnects sizes. We present a three-dimensional (3D) transient model of cellular growth based on the Navier–Stokes equations that simulates the body fluid flow and stimulation of bone precursor cellular growth, attachment, and proliferation as a function of local flow shear stress. The model's effectiveness is demonstrated for two additive manufactured (AM) titanium scaffold architectures. The results demonstrate that there is a complex interaction of flow rate and strut architecture, resulting in partially randomized structures having a preferential impact on stimulating cell migration in 3D porous structures for higher flow rates. This novel result demonstrates the potential new insights that can be gained via the modeling tool developed, and how the model can be used to perform what-if simulations to design AM structures to specific functional requirements. PMID:24664988

  9. Comprehensive morphometric analysis of mononuclear cell infiltration during experimental renal allograft rejection.

    PubMed

    Hoffmann, Ute; Bergler, Tobias; Jung, Bettina; Steege, Andreas; Pace, Claudia; Rümmele, Petra; Reinhold, Stephan; Krüger, Bernd; Krämer, Bernhard K; Banas, Bernhard

    2013-01-01

    The role of specific subtypes of infiltrating cells in acute kidney allograft rejection is still not clear and was so far not examined by different analyzing methods under standardized conditions of an experimental kidney transplantation model. Immunohistochemical staining of CD3, CD20 and CD68 was performed in rat allografts, in syngeneically transplanted rats and in control rats with a test duration of 6 and 28 days. The detailed expression and localization of infiltrating cells were analyzed manually in different kidney compartments under light microscope and by the two different morphometric software programs. Data were correlated with the corresponding kidney function as well as with histopathological classification. The information provided by the morphometric software programs on the infiltration of the specific cell types after renal transplantation was in accordance with the manual analysis. Morphometric methods were solid to analyze reliably the induction of cellular infiltrates after renal transplantation. By manual analysis we could clearly demonstrate the detailed localization of the specific cell infiltrates in the different kidney compartments. Besides infiltration of CD3 and CD68 infiltrating cells, a robust infiltration of CD20 B-cells in allogeneically transplanted rats, even at early time points after transplantation was detected. Additionally an MHC class I expression could reliable be seen in allogeneically transplanted rats. The infiltration of B-cells and the reliable antigen presentation might act as a silent subclinical trigger for subsequent chronic rejection and premature graft loss. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Expression patterns of genes encoding plasma membrane aquaporins during fruit development in cucumber (Cucumis sativus L.).

    PubMed

    Shi, Jin; Wang, Jinfang; Li, Ren; Li, Dianbo; Xu, Fengfeng; Sun, Qianqian; Zhao, Bin; Mao, Ai-Jun; Guo, Yang-Dong

    2015-11-01

    Aquaporins are membrane channels precisely regulating water movement through cell membranes in most living organisms. Despite the advances in the physiology of fruit development, their participation during fruit development in cucumber still barely understood. In this paper, the expressions of 12 genes encoding plasma membrane intrinsic proteins (PIPs) were analyzed during cucumber fruit development in our work. Based on the homology search with known PIPs from rice, Arabidopsis and strawberry, 12 cucumber PIP genes subfamily members were identified. Cellular localization assays indicated that CsPIPs were localized in the plasma membrane. The qRT-PCR analysis of CsPIPs showed that 12 CsPIPs were differentially expressed during fruit development. These results suggest that 12 genes encoding plasma membrane intrinsic proteins (CsPIPs) play very important roles in cucumber life cycle and the data generated will be helpful in understanding their precise roles during fruit development in cucumber. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. IFN-gamma Impairs Release of IL-8 by IL-1beta-stimulated A549 Lung Carcinoma Cells

    PubMed Central

    Boost, Kim A; Sadik, Christian D; Bachmann, Malte; Zwissler, Bernhard; Pfeilschifter, Josef; Mühl, Heiko

    2008-01-01

    Background Production of interferon (IFN)-γ is key to efficient anti-tumor immunity. The present study was set out to investigate effects of IFNγ on the release of the potent pro-angiogenic mediator IL-8 by human A549 lung carcinoma cells. Methods A549 cells were cultured and stimulated with interleukin (IL)-1β alone or in combination with IFNγ. IL-8 production by these cells was analyzed with enzyme linked immuno sorbent assay (ELISA). mRNA-expression was analyzed by real-time PCR and RNase protection assay (RPA), respectively. Expression of inhibitor-κ Bα, cellular IL-8, and cyclooxygenase-2 was analyzed by Western blot analysis. Results Here we demonstrate that IFNγ efficiently reduced IL-8 secretion under the influence of IL-1β. Surprisingly, real-time PCR analysis and RPA revealed that the inhibitory effect of IFNγ on IL-8 was not associated with significant changes in mRNA levels. These observations concurred with lack of a modulatory activity of IFNγ on IL-1β-induced NF-κB activation as assessed by cellular IκB levels. Moreover, analysis of intracellular IL-8 suggests that IFNγ modulated IL-8 secretion by action on the posttranslational level. In contrast to IL-8, IL-1β-induced cyclooxygenase-2 expression and release of IL-6 were not affected by IFNγ indicating that modulation of IL-1β action by this cytokine displays specificity. Conclusion Data presented herein agree with an angiostatic role of IFNγ as seen in rodent models of solid tumors and suggest that increasing T helper type 1 (Th1)-like functions in lung cancer patients e.g. by local delivery of IFNγ may mediate therapeutic benefit via mechanisms that potentially include modulation of pro-angiogenic IL-8. PMID:18801189

  12. Comparison of cellular toxicity between multi-walled carbon nanotubes and onion-like shell-shaped carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Kang, Seunghyon; Kim, Ji-Eun; Kim, Daegyu; Woo, Chang Gyu; Pikhitsa, Peter V.; Cho, Myung-Haing; Choi, Mansoo

    2015-09-01

    The cellular toxicity of multi-walled carbon nanotubes (MWCNTs) and onion-like shell-shaped carbon nanoparticles (SCNPs) was investigated by analyzing the comparative cell viability. For the reasonable comparison, physicochemical characteristics were controlled thoroughly such as crystallinity, carbon bonding characteristic, hydrodynamic diameter, and metal contents of the particles. To understand relation between cellular toxicity of the particles and generation of reactive oxygen species (ROS), we measured unpaired singlet electrons of the particles and intracellular ROS, and analyzed cellular toxicity with/without the antioxidant N-acetylcysteine (NAC). Regardless of the presence of NAC, the cellular toxicity of SCNPs was found to be lower than that of MWCNTs. Since both particles show similar crystallinity, hydrodynamic size, and Raman signal with negligible contribution of remnant metal particles, the difference in cell viability would be ascribed to the difference in morphology, i.e., spherical shape (aspect ratio of one) for SCNP and elongated shape (high aspect ratio) for MWCNT.

  13. Yor022c protein is a phospholipase A{sub 1} that localizes to the mitochondrial matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urafuji, Kyosei; Arioka, Manabu

    In mammals, three types of intracellular phospholipase A{sub 1} (iPLA{sub 1}) enzymes have been characterized and are thought to be involved in various cellular processes such as phospholipid metabolism, organelle biogenesis, and membrane trafficking. In this study we analyzed the unique iPLA{sub 1}-like protein, Yor022c, in the budding yeast Saccharomyces cerevisiae. By the mass spectrometry analysis, we demonstrate that Yor022c is actually a phospholipase displaying sn-1-specific activity toward phosphatidylcholine, phosphatidylethanolamine, and phosphatidic acid, generating 2-acyl lysophospholipids. GFP-fused Yor022c co-stained with the mitochondrial dye MitoTracker, indicating that, unlike its mammalian counterparts, it is a mitochondrial protein. Further biochemical fractionation experiment combinedmore » with protease sensitivity assay showed that Yor022c localizes to the mitochondrial matrix. Thus Yor022c is the first PLA{sub 1} putatively involved in the maintenance of sn-1 acyl chains of phospholipids in the mitochondrial inner membrane. - Highlights: • Yeast Yor022c protein displays phospholipase A{sub 1} activity to various phospholipids. • Yor022c-GFP fusion protein localizes to mitochondria. • Biochemical fractionation showed that Yor022c localizes to the mitochondrial matrix.« less

  14. TRPM4 Is a Novel Component of the Adhesome Required for Focal Adhesion Disassembly, Migration and Contractility

    PubMed Central

    Cáceres, Mónica; Ortiz, Liliana; Recabarren, Tatiana; Romero, Anibal; Colombo, Alicia; Leiva-Salcedo, Elías; Varela, Diego; Rivas, José; Silva, Ian; Morales, Diego; Campusano, Camilo; Almarza, Oscar; Simon, Felipe; Toledo, Hector; Park, Kang-Sik; Trimmer, James S.; Cerda, Oscar

    2015-01-01

    Cellular migration and contractility are fundamental processes that are regulated by a variety of concerted mechanisms such as cytoskeleton rearrangements, focal adhesion turnover, and Ca2+ oscillations. TRPM4 is a Ca2+-activated non-selective cationic channel (Ca2+-NSCC) that conducts monovalent but not divalent cations. Here, we used a mass spectrometry-based proteomics approach to identify putative TRPM4-associated proteins. Interestingly, the largest group of these proteins has actin cytoskeleton-related functions, and among these nine are specifically annotated as focal adhesion-related proteins. Consistent with these results, we found that TRPM4 localizes to focal adhesions in cells from different cellular lineages. We show that suppression of TRPM4 in MEFs impacts turnover of focal adhesions, serum-induced Ca2+ influx, focal adhesion kinase (FAK) and Rac activities, and results in reduced cellular spreading, migration and contractile behavior. Finally, we demonstrate that the inhibition of TRPM4 activity alters cellular contractility in vivo, affecting cutaneous wound healing. Together, these findings provide the first evidence, to our knowledge, for a TRP channel specifically localized to focal adhesions, where it performs a central role in modulating cellular migration and contractility. PMID:26110647

  15. Functional Activity of the Fanconi Anemia Protein FAA Requires FAC Binding and Nuclear Localization

    PubMed Central

    Näf, Dieter; Kupfer, Gary M.; Suliman, Ahmed; Lambert, Kathleen; D’Andrea, Alan D.

    1998-01-01

    Fanconi anemia (FA) is an autosomal recessive disease characterized by genomic instability, cancer susceptibility, and cellular hypersensitivity to DNA-cross-linking agents. Eight complementation groups of FA (FA-A through FA-H) have been identified. Two FA genes, corresponding to complementation groups FA-A and FA-C, have been cloned, but the functions of the encoded FAA and FAC proteins remain unknown. We have recently demonstrated that FAA and FAC interact to form a nuclear complex. In this study, we have analyzed a series of mutant forms of the FAA protein with respect to functional activity, FAC binding, and nuclear localization. Mutation or deletion of the amino-terminal nuclear localization signal (NLS) of FAA results in loss of functional activity, loss of FAC binding, and cytoplasmic retention of FAA. Replacement of the NLS sequence with a heterologous NLS sequence, derived from the simian virus 40 T antigen, results in nuclear localization but does not rescue functional activity or FAC binding. Nuclear localization of the FAA protein is therefore necessary but not sufficient for FAA function. Mutant forms of FAA which fail to bind to FAC also fail to promote the nuclear accumulation of FAC. In addition, wild-type FAC promotes the accumulation of wild-type FAA in the nucleus. Our results suggest that FAA and FAC perform a concerted function in the cell nucleus, required for the maintenance of chromosomal stability. PMID:9742112

  16. A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation.

    PubMed

    Arjunan, Satya Nanda Vel; Tomita, Masaru

    2010-03-01

    Many important cellular processes are regulated by reaction-diffusion (RD) of molecules that takes place both in the cytoplasm and on the membrane. To model and analyze such multicompartmental processes, we developed a lattice-based Monte Carlo method, Spatiocyte that supports RD in volume and surface compartments at single molecule resolution. Stochasticity in RD and the excluded volume effect brought by intracellular molecular crowding, both of which can significantly affect RD and thus, cellular processes, are also supported. We verified the method by comparing simulation results of diffusion, irreversible and reversible reactions with the predicted analytical and best available numerical solutions. Moreover, to directly compare the localization patterns of molecules in fluorescence microscopy images with simulation, we devised a visualization method that mimics the microphotography process by showing the trajectory of simulated molecules averaged according to the camera exposure time. In the rod-shaped bacterium Escherichia coli, the division site is suppressed at the cell poles by periodic pole-to-pole oscillations of the Min proteins (MinC, MinD and MinE) arising from carefully orchestrated RD in both cytoplasm and membrane compartments. Using Spatiocyte we could model and reproduce the in vivo MinDE localization dynamics by accounting for the previously reported properties of MinE. Our results suggest that the MinE ring, which is essential in preventing polar septation, is largely composed of MinE that is transiently attached to the membrane independently after recruited by MinD. Overall, Spatiocyte allows simulation and visualization of complex spatial and reaction-diffusion mediated cellular processes in volumes and surfaces. As we showed, it can potentially provide mechanistic insights otherwise difficult to obtain experimentally. The online version of this article (doi:10.1007/s11693-009-9047-2) contains supplementary material, which is available to authorized users.

  17. Controlling Androgen receptor nuclear localization by dendrimer conjugates

    NASA Astrophysics Data System (ADS)

    Wang, Haoyu

    Androgen Receptor (AR) antagonists, such as bicalutamide and flutamide have been used widely in the treatment of prostate cancer. Although initial treatment is effective, prostate cancer cells often acquire antiandrogen resistance with prolonged treatment. AR over-expression and AR mutations contribute to the development of antiandrogen resistant cancer. Second generation antiandrogens such as enzalutamide are more effective and show reduced AR nuclear localization. In this study, derivatives of PAN52, a small molecule antiandrogen previously developed in our lab, were conjugated to the surface of generation 4 and generation 6 PAMAM dendrimers to obtain antiandrogen PAMAM dendrimer conjugates (APDC). APDCs readily enter cells and associate with AR in the cytoplasm. Due to their large size and positive charge, they can not enter the nucleus, thus retaining AR in the cytoplasm. In addition, APDCs are effective in decreasing AR mediated transcription and cell proliferation. APDC is the first AR antagonists that inhibit DHT-induced nuclear localization of AR. By inhibiting AR nuclear localization, APDC represents a new class of antiandrogens that offer an alternative approach to addressing antiandrogen-resistant prostate cancer. Lysine post-translational modification of AR Nuclear Localization Sequence (NLS) has great impact on AR cellular localization. It is of interest to understand which modifications modulate AR translocation into the nucleus. In this study, we prepared dendrimer-based acetyltransferase mimetic (DATM), DATM is able to catalytically acetylate AR in CWR22Rv1 cells, which will be a useful tool for studying AR modification effect on AR cellular localization. Derivatives of DATM, which transfer other chemical groups to AR, can be prepared similarly, and with more dendrimer based AR modification tools prepared in future, we will be able to understand and control AR cellular localization through AR modification.

  18. Comparing the effects of mitochondrial targeted and localized antioxidants with cellular antioxidants in human skin cells exposed to UVA and hydrogen peroxide.

    PubMed

    Oyewole, Anne O; Wilmot, Marie-Claire; Fowler, Mark; Birch-Machin, Mark A

    2014-01-01

    Skin cancer and aging are linked to increased cellular reactive oxygen species (ROS), particularly following exposure to ultraviolet A (UVA) in sunlight. As mitochondria are the main source of cellular ROS, this study compared the protective effects of mitochondria-targeted and -localized antioxidants (MitoQ and tiron, respectively) with cellular antioxidants against oxidative stress-induced [UVA and hydrogen peroxide (H2O2)] mitochondrial DNA (mtDNA) damage in human dermal fibroblasts. With the use of a long quantitative PCR assay, tiron (EC50 10 mM) was found to confer complete (100%) protection (P<0.001) against both UVA- and H2O2-induced mtDNA damage, whereas MitoQ (EC50 750 nM) provided less protection (17 and 32%, respectively; P<0.05). This particular protective effect of tiron was greater than a range of cellular antioxidants investigated. The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway provides cellular protection against oxidative stress. An ELISA assay for the Nrf2 target gene heme oxygenase-1 (HO-1) and studies using Nrf2 small interfering RNA both indicated that tiron's mode of action was Nrf2 independent. The comet assay showed that tiron's protective effect against H2O2-induced nuclear DNA damage was greater than the cellular antioxidants and MitoQ (P<0.001). This study provides a platform to investigate molecules with similar structure to tiron as potent and clinically relevant antioxidants.

  19. The in vitro sub-cellular localization and in vivo efficacy of novel chitosan/GMO nanostructures containing paclitaxel.

    PubMed

    Trickler, W J; Nagvekar, A A; Dash, A K

    2009-08-01

    To determine the in vitro sub-cellular localization and in vivo efficacy of chitosan/GMO nanostructures containing paclitaxel (PTX) compared to a conventional PTX treatment (Taxol). The sub-cellular localization of coumarin-6 labeled chitosan/GMO nanostructures was determined by confocal microscopy in MDA-MB-231 cells. The antitumor efficacy was evaluated in two separate studies using FOX-Chase (CB17) SCID Female-Mice MDA-MB-231 xenograph model. Treatments consisted of intravenous Taxol or chitosan/GMO nanostructures with or without PTX, local intra-tumor bolus of Taxol or chitosan/GMO nanostructures with or without PTX. The tumor diameter and animal weight was monitored at various intervals. Histopathological changes were evaluated in end-point tumors. The tumor diameter increased at a constant rate for all the groups between days 7-14. After a single intratumoral bolus dose of chitosan/GMO containing PTX showed significant reduction in tumor diameter on day 15 when compared to control, placebo and intravenous PTX administration. The tumor diameter reached a maximal decrease (4-fold) by day 18, and the difference was reduced to approximately 2-fold by day 21. Qualitatively similar results were observed in a separate study containing PTX when administered intravenously. Chitosan/GMO nanostructures containing PTX are safe and effective administered locally or intravenously. Partially supported by DOD Award BC045664.

  20. Measuring calcium dynamics in living cells with Genetically Encodable Calcium Indicators

    PubMed Central

    McCombs, Janet E.

    2008-01-01

    Genetically encoded calcium indicators (GECIs) allow researchers to measure calcium dynamics in specific targeted locations within living cells. Such indicators enable dissection of the spatial and temporal control of calcium signaling processes. Here we review recent progress in the development of GECIs, highlighting which indicators are most appropriate for measuring calcium in specific organelles and localized domains in mammalian tissue culture cells. An overview of recent approaches that have been undertaken to ensure that the GECIs are minimally perturbed by the cellular environment is provided. Additionally, the procedures for introducing GECIs into mammalian cells, conducting calcium imaging experiments, and analyzing data are discussed. Because organelle-targeted indicators often pose an additional challenge, we underscore strategies for calibrating GECIs in these locations. PMID:18848629

  1. Novel guanidine-containing molecular transporters based on lactose scaffolds: lipophilicity effect on the intracellular organellar selectivity.

    PubMed

    Biswas, Goutam; Jeon, Ock-Youm; Lee, Woo Sirl; Kim, Dong-Chan; Kim, Kyong-Tai; Lee, Suho; Chang, Sunghoe; Chung, Sung-Kee

    2008-01-01

    We have synthesized two lactose-based molecular transporters, each containing seven guanidine residues attached to the lactose scaffold through omega-aminocarboxylate linker chains of two different lengths, and have examined their cellular uptakes and intracellular and organellar localizations in HeLa cells, as well as their tissue distributions in mice. Both molecular transporters showed higher cellular uptake efficiencies than Arg8, and wide tissue distributions including the brain. Mitochondrial localization is of special interest because of its potential relevance to "mitochondrial diseases". Interestingly, it has been found that the intracellular localization sites of the G7 molecular transporters-namely either mitochondria or lysosomes and endocytic vesicles-are largely determined by the linker chain lengths, or their associated lipophilicities.

  2. Poliovirus infection induces the co-localization of cellular protein SRp20 with TIA-1, a cytoplasmic stress granule protein

    PubMed Central

    Fitzgerald, Kerry D.; Semler, Bert L.

    2013-01-01

    Different types of environmental stress cause mammalian cells to form cytoplasmic foci, termed stress granules, which contain mRNPs that are translationally silenced. These foci are transient and dynamic, and contain components of the cellular translation machinery as well as certain mRNAs and RNA binding proteins. Stress granules are known to be induced by conditions such as hypoxia, nutrient deprivation, and oxidative stress, and a number of cellular factors have been identified that are commonly associated with these foci. More recently it was discovered that poliovirus infection also induces the formation of stress granules, although these cytoplasmic foci appear to be somewhat compositionally unique. Work described here examined the punctate pattern of SRp20 (a host cell mRNA splicing protein) localization in the cytoplasm of poliovirus-infected cells, demonstrating the partial co-localization of SRp20 with the stress granule marker protein TIA-1. We determined that SRp20 does not co-localize with TIA-1, however, under conditions of oxidative stress, indicating that the close association of these two proteins during poliovirus infection is not representative of a general response to cellular stress. We confirmed that the expression of a dominant negative version of TIA-1 (TIA-1-PRD) results in the dissociation of stress granules. Finally, we demonstrated that expression of wild type TIA-1 or dominant negative TIA-1-PRD in cells during poliovirus infection does not dramatically affect viral translation. Taken together, these studies provide a new example of the unique cytoplasmic foci that form during poliovirus infection. PMID:23830997

  3. In vivo subcellular localization of Mal de Rio Cuarto virus (MRCV) non-structural proteins in insect cells reveals their putative functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maroniche, Guillermo A.; Mongelli, Vanesa C.; Llauger, Gabriela

    2012-09-01

    The in vivo subcellular localization of Mal de Rio Cuarto virus (MRCV, Fijivirus, Reoviridae) non-structural proteins fused to GFP was analyzed by confocal microscopy. P5-1 showed a cytoplasmic vesicular-like distribution that was lost upon deleting its PDZ binding TKF motif, suggesting that P5-1 interacts with cellular PDZ proteins. P5-2 located at the nucleus and its nuclear import was affected by the deletion of its basic C-termini. P7-1 and P7-2 also entered the nucleus and therefore, along with P5-2, could function as regulators of host gene expression. P6 located in the cytoplasm and in perinuclear cloud-like inclusions, was driven to P9-1more » viroplasm-like structures and co-localized with P7-2, P10 and {alpha}-tubulin, suggesting its involvement in viroplasm formation and viral intracellular movement. Finally, P9-2 was N-glycosylated and located at the plasma membrane in association with filopodia-like protrusions containing actin, suggesting a possible role in virus cell-to-cell movement and spread.« less

  4. Localizing the Subunit Pool for the Temporally Regulated Polar Pili of Caulobacter crescentus.

    DTIC Science & Technology

    1987-01-01

    was determined that the cellular location for un- assembled was the cell cytoplasm. All cell membranes and regions of muclear material were poorly...to colloidal gold. It was determined that the cellular location for unassembled pilin was the cell cytoplasm. All cell membranes and regions of nuclear...to determine the cellular location of the pilin pool. Because pilin is a small (8000 m.w. ) and hydrophobic molecule (3), problems with 3 non-specific

  5. Applications of microscopy in Salmonella research.

    PubMed

    Malt, Layla M; Perrett, Charlotte A; Humphrey, Suzanne; Jepson, Mark A

    2015-01-01

    Salmonella enterica is a Gram-negative enteropathogen that can cause localized infections, typically resulting in gastroenteritis, or systemic infection, e.g., typhoid fever, in humans and many other animals. Understanding the mechanisms by which Salmonella induces disease has been the focus of intensive research. This has revealed that Salmonella invasion requires dynamic cross-talk between the microbe and host cells, in which bacterial adherence rapidly leads to a complex sequence of cellular responses initiated by proteins translocated into the host cell by a type 3 secretion system. Once these Salmonella-induced responses have resulted in bacterial invasion, proteins translocated by a second type 3 secretion system initiate further modulation of cellular activities to enable survival and replication of the invading pathogen. Elucidation of the complex and highly dynamic pathogen-host interactions ultimately requires analysis at the level of single cells and single infection events. To achieve this goal, researchers have applied a diverse range of microscopy techniques to analyze Salmonella infection in models ranging from whole animal to isolated cells and simple eukaryotic organisms. For example, electron microscopy and high-resolution light microscopy techniques such as confocal microscopy can reveal the precise location of Salmonella and its relationship to cellular components. Widefield light microscopy is a simpler approach with which to study the interaction of bacteria with host cells and often has advantages for live cell imaging, enabling detailed analysis of the dynamics of infection and cellular responses. Here we review the use of imaging techniques in Salmonella research and compare the capabilities of different classes of microscope to address specific types of research question. We also provide protocols and notes on some microscopy techniques used routinely in our own research.

  6. Cellular-dendritic transition in directionally solidified binary alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Laxmanan, V.

    1987-01-01

    The microstructural development of binary alloys during directional solidification is studied. Cellular growth data for the Al-Cu and Pb-Sn binary alloy systems are analyzed in order evaluate the criteria of Kurz and Fisher (1981) and Trivedi (1984) for cellular-dendritic transition. It is observed that the experimental growth values do not correlate with the Kurz and Fisher or Trivedi data.

  7. Texturing Silicon Nanowires for Highly Localized Optical Modulation of Cellular Dynamics.

    PubMed

    Fang, Yin; Jiang, Yuanwen; Acaron Ledesma, Hector; Yi, Jaeseok; Gao, Xiang; Weiss, Dara E; Shi, Fengyuan; Tian, Bozhi

    2018-06-18

    Engineered silicon-based materials can display photoelectric and photothermal responses under light illumination, which may lead to further innovations at the silicon-biology interfaces. Silicon nanowires have small radial dimensions, promising as highly localized cellular modulators, however the single crystalline form typically has limited photothermal efficacy due to the poor light absorption and fast heat dissipation. In this work, we report strategies to improve the photothermal response from silicon nanowires by introducing nanoscale textures on the surface and in the bulk. We next demonstrate high-resolution extracellular modulation of calcium dynamics in a number of mammalian cells including glial cells, neurons, and cancer cells. The new materials may be broadly used in probing and modulating electrical and chemical signals at the subcellular length scale, which is currently a challenge in the field of electrophysiology or cellular engineering.

  8. Simulation of elastic wave propagation using cellular automata and peridynamics, and comparison with experiments

    DOE PAGES

    Nishawala, Vinesh V.; Ostoja-Starzewski, Martin; Leamy, Michael J.; ...

    2015-09-10

    Peridynamics is a non-local continuum mechanics formulation that can handle spatial discontinuities as the governing equations are integro-differential equations which do not involve gradients such as strains and deformation rates. This paper employs bond-based peridynamics. Cellular Automata is a local computational method which, in its rectangular variant on interior domains, is mathematically equivalent to the central difference finite difference method. However, cellular automata does not require the derivation of the governing partial differential equations and provides for common boundary conditions based on physical reasoning. Both methodologies are used to solve a half-space subjected to a normal load, known as Lamb’smore » Problem. The results are compared with theoretical solution from classical elasticity and experimental results. Furthermore, this paper is used to validate our implementation of these methods.« less

  9. Direct measurement of local material properties within living embryonic tissues

    NASA Astrophysics Data System (ADS)

    Serwane, Friedhelm; Mongera, Alessandro; Rowghanian, Payam; Kealhofer, David; Lucio, Adam; Hockenbery, Zachary; Campàs, Otger

    The shaping of biological matter requires the control of its mechanical properties across multiple scales, ranging from single molecules to cells and tissues. Despite their relevance, measurements of the mechanical properties of sub-cellular, cellular and supra-cellular structures within living embryos pose severe challenges to existing techniques. We have developed a technique that uses magnetic droplets to measure the mechanical properties of complex fluids, including in situ and in vivo measurements within living embryos ,across multiple length and time scales. By actuating the droplets with magnetic fields and recording their deformation we probe the local mechanical properties, at any length scale we choose by varying the droplets' diameter. We use the technique to determine the subcellular mechanics of individual blastomeres of zebrafish embryos, and bridge the gap to the tissue scale by measuring the local viscosity and elasticity of zebrafish embryonic tissues. Using this technique, we show that embryonic zebrafish tissues are viscoelastic with a fluid-like behavior at long time scales. This technique will enable mechanobiology and mechano-transduction studies in vivo, including the study of diseases correlated with tissue stiffness, such as cancer.

  10. Rat Humanin is encoded and translated in mitochondria and is localized to the mitochondrial compartment where it regulates ROS production.

    PubMed

    Paharkova, Vladislava; Alvarez, Griselda; Nakamura, Hiromi; Cohen, Pinchas; Lee, Kuk-Wha

    2015-09-15

    Evidence for the putative mitochondrial origin of the Humanin (HN) peptide has been lacking, although its cytoprotective activity has been demonstrated in a variety of organismal and cellular systems. We sought to establish proof-of-principle for a mitochondria-derived peptide (MDP) in a rat-derived cellular system as the rat HN sequence is predicted to lack nuclear insertions of mitochondrial origin (NUMT). We found that the rat HN (Rattin; rHN) homologue is derived from the mitochondrial genome as evidenced by decreased production in Rho-0 cells, and that peptide translation occurs in the mitochondria as it is unaffected by cycloheximide. Rat HN localizes to the mitochondria in cellular subfractionation and immunohistochemical studies. Addition of a HN analogue to isolated mitochondria from rat INS-1 beta cells reduced hydrogen peroxide production by 55%. In summary, a locally bioactive peptide is derived and translated from an open reading frame (ORF) within rat mitochondrial DNA encoding 16S rRNA. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Poly(A)-binding proteins and mRNA localization: who rules the roost?

    PubMed

    Gray, Nicola K; Hrabálková, Lenka; Scanlon, Jessica P; Smith, Richard W P

    2015-12-01

    RNA-binding proteins are often multifunctional, interact with a variety of protein partners and display complex localizations within cells. Mammalian cytoplasmic poly(A)-binding proteins (PABPs) are multifunctional RNA-binding proteins that regulate multiple aspects of mRNA translation and stability. Although predominantly diffusely cytoplasmic at steady state, they shuttle through the nucleus and can be localized to a variety of cytoplasmic foci, including those associated with mRNA storage and localized translation. Intriguingly, PABP sub-cellular distribution can alter dramatically in response to cellular stress or viral infection, becoming predominantly nuclear and/or being enriched in induced cytoplasmic foci. However, relatively little is known about the mechanisms that govern this distribution/relocalization and in many cases PABP functions within specific sites remain unclear. Here we discuss the emerging evidence with respect to these questions in mammals. © 2015 Authors; published by Portland Press Limited.

  12. Microfabricated Nanotopological Surfaces for Study of Adhesion-dependent Cell mechanosensitivity**

    PubMed Central

    Chen, Weiqiang; Sun, Yubing

    2014-01-01

    Cells display high sensitivity and exhibit diverse responses to the intrinsic nanotopography of the extracellular matrix through their nanoscale cellular sensing machinery. Here, we reported a simple microfabrication method for precise control and spatial patterning of the local nanoroughness on glass surfaces using photolithography and reactive ion etching (RIE). Using RIE-generated nanorough glass surfaces, we demonstrated that local nanoroughness could provide a potent biophysical signal to regulate a diverse array of NIH/3T3 fibroblast behaviors, including cell morphology, adhesion, proliferation and migration. We further showed that cellular responses to nanotopography might be regulated by cell adhesion signaling and actin cytoskeleton remodeling. To further investigate the role of cytoskeleton contractility in nanoroughness sensing, we applied the RIE method to generate nanoroughness on the tops of an array of elastomeric poly-dimethylsiloxane (PDMS) microposts. We utilized the PDMS microposts as force sensors and demonstrated that nanoroughness could indeed regulate the cytoskeleton contractility of NIH/3T3 fibroblasts. Our results suggested that a feedback regulation and mechano-chemical integration mechanism involving adhesion signaling, actin cytoskeleton, and intracellular mechanosensory components might play an important role in regulating mechanosensitive behaviors of NIH/3T3 fibroblasts. The capability to control and further predict cellular responses to nanoroughness might suggest novel methods for developing biomaterials mimicking nanotopographic structures in vivo and suitable local cellular microenvironments for functional tissue engineering. PMID:22887768

  13. The Synaptic Function of α-Synuclein

    PubMed Central

    Burré, Jacqueline

    2015-01-01

    α-Synuclein is an abundant neuronal protein which localizes predominantly to presynaptic terminals, and is strongly linked genetically and pathologically to Parkinson’s disease and other neurodegenerative diseases. While the accumulation of α-synuclein in the form of misfolded oligomers and large aggregates defines multiple neurodegenerative diseases called “synucleinopathies”, its cellular function has remained largely unclear, and is the subject of intense investigation. In this review, I focus on the structural characteristics of α-synuclein, its cellular and subcellular localization, and discuss how this relates to its function in neurons, in particular at the neuronal synapse. PMID:26407041

  14. Quantifying time-varying cellular secretions with local linear models.

    PubMed

    Byers, Jeff M; Christodoulides, Joseph A; Delehanty, James B; Raghu, Deepa; Raphael, Marc P

    2017-07-01

    Extracellular protein concentrations and gradients initiate a wide range of cellular responses, such as cell motility, growth, proliferation and death. Understanding inter-cellular communication requires spatio-temporal knowledge of these secreted factors and their causal relationship with cell phenotype. Techniques which can detect cellular secretions in real time are becoming more common but generalizable data analysis methodologies which can quantify concentration from these measurements are still lacking. Here we introduce a probabilistic approach in which local-linear models and the law of mass action are applied to obtain time-varying secreted concentrations from affinity-based biosensor data. We first highlight the general features of this approach using simulated data which contains both static and time-varying concentration profiles. Next we apply the technique to determine concentration of secreted antibodies from 9E10 hybridoma cells as detected using nanoplasmonic biosensors. A broad range of time-dependent concentrations was observed: from steady-state secretions of 230 pM near the cell surface to large transients which reached as high as 56 nM over several minutes and then dissipated.

  15. Receptor Tyrosine Kinase ErbB2 Translocates into Mitochondria and Regulates Cellular Metabolism

    PubMed Central

    Ding, Yan; Liu, Zixing; Desai, Shruti; Zhao, Yuhua; Liu, Hao; Pannell, Lewis K; Yi, Hong; Wright, Elizabeth R; Owen, Laurie B; Dean-Colomb, Windy; Fodstad, Oystein; Lu, Jianrong; LeDoux, Susan P; Wilson, Glenn L; Tan, Ming

    2012-01-01

    It is well known that ErbB2, a receptor tyrosine kinase, localizes on the plasma membrane. Here we describe a novel observation that ErbB2 also localizes in mitochondria of cancer cells and patient samples. We found that ErbB2 translocates into mitochondria through the association with mtHSP70. Additionally, mitochondrial ErbB2 (mtErbB2) negatively regulates mitochondrial respiratory functions. Oxygen consumption and activities of complexes of the mitochondrial electron transport chain were decreased in mtErbB2-overexpressing cells. Mitochondrial membrane potential and the cellular ATP level also were decreased. In contrast, mtErbB2 enhanced cellular glycolysis. The translocation of ErbB2 and its impact on mitochondrial function are kinase dependent. Interestingly, cancer cells with higher levels of mtErbB2 were more resistant to ErbB2 targeting antibody trastuzumab. Our study provides a novel perspective on the metabolic regulatory function of ErbB2 and reveals that mtErbB2 plays an important role in the regulation of cellular metabolism and cancer cell resistance to therapeutics. PMID:23232401

  16. Modeling of time dependent localized flow shear stress and its impact on cellular growth within additive manufactured titanium implants.

    PubMed

    Zhang, Ziyu; Yuan, Lang; Lee, Peter D; Jones, Eric; Jones, Julian R

    2014-11-01

    Bone augmentation implants are porous to allow cellular growth, bone formation and fixation. However, the design of the pores is currently based on simple empirical rules, such as minimum pore and interconnects sizes. We present a three-dimensional (3D) transient model of cellular growth based on the Navier-Stokes equations that simulates the body fluid flow and stimulation of bone precursor cellular growth, attachment, and proliferation as a function of local flow shear stress. The model's effectiveness is demonstrated for two additive manufactured (AM) titanium scaffold architectures. The results demonstrate that there is a complex interaction of flow rate and strut architecture, resulting in partially randomized structures having a preferential impact on stimulating cell migration in 3D porous structures for higher flow rates. This novel result demonstrates the potential new insights that can be gained via the modeling tool developed, and how the model can be used to perform what-if simulations to design AM structures to specific functional requirements. © 2014 Wiley Periodicals, Inc.

  17. Sonochemically synthesized biocompatible zirconium phosphate nanoparticles for pH sensitive drug delivery application.

    PubMed

    Kalita, Himani; Prashanth Kumar, B N; Konar, Suraj; Tantubay, Sangeeta; Kr Mahto, Madhusudan; Mandal, Mahitosh; Pathak, Amita

    2016-03-01

    The present work reports the synthesis of biocompatible zirconium phosphate (ZP) nanoparticles as nanocarrier for drug delivery application. The ZP nanoparticles were synthesized via a simple sonochemical method in the presence of cetyltrimethylammonium bromide and their efficacy for the delivery of drugs has been tested through various in-vitro experiments. The particle size and BET surface area of the nanoparticles were found to be ~48 nm and 206.51 m(2)/g respectively. The conventional MTT assay and cellular localization studies of the particles, performed on MDA-MB-231 cell lines, demonstrate their excellent biocompatibility and cellular internalization behavior. The loading of curcumin, an antitumor drug, onto the ZP nanoparticles shows the rapid drug uptake ability of the particles, while the drug release study, performed at two different pH values (at 7.4 and 5) depicts pH sensitive release-profile. The MTT assay and cellular localization studies revealed higher cellular inhibition and better bioavailability of the nanoformulated curcumin compared to free curcumin. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Coiled-Coil Proteins Facilitated the Functional Expansion of the Centrosome

    PubMed Central

    Kuhn, Michael; Hyman, Anthony A.; Beyer, Andreas

    2014-01-01

    Repurposing existing proteins for new cellular functions is recognized as a main mechanism of evolutionary innovation, but its role in organelle evolution is unclear. Here, we explore the mechanisms that led to the evolution of the centrosome, an ancestral eukaryotic organelle that expanded its functional repertoire through the course of evolution. We developed a refined sequence alignment technique that is more sensitive to coiled coil proteins, which are abundant in the centrosome. For proteins with high coiled-coil content, our algorithm identified 17% more reciprocal best hits than BLAST. Analyzing 108 eukaryotic genomes, we traced the evolutionary history of centrosome proteins. In order to assess how these proteins formed the centrosome and adopted new functions, we computationally emulated evolution by iteratively removing the most recently evolved proteins from the centrosomal protein interaction network. Coiled-coil proteins that first appeared in the animal–fungi ancestor act as scaffolds and recruit ancestral eukaryotic proteins such as kinases and phosphatases to the centrosome. This process created a signaling hub that is crucial for multicellular development. Our results demonstrate how ancient proteins can be co-opted to different cellular localizations, thereby becoming involved in novel functions. PMID:24901223

  19. Biology of the cell cycle inhibitor p21(CDKN1A): molecular mechanisms and relevance in chemical toxicology.

    PubMed

    Dutto, Ilaria; Tillhon, Micol; Cazzalini, Ornella; Stivala, Lucia A; Prosperi, Ennio

    2015-02-01

    The cell cycle inhibitor p21(CDKN1A) is a protein playing multiple roles not only in the DNA damage response, but also in many cellular processes during unperturbed cell growth. The main, well-known function of p21 is to arrest cell cycle progression by inhibiting the activity of cyclin-dependent kinases. In addition, p21 is involved in the regulation of transcription, apoptosis, DNA repair, as well as cell motility. However, p21 appears to a have a dual-face behavior because, in addition to its tumor suppressor functions, it may act as an oncogene, depending on the cell type and on the cellular localization. As a biomarker of the cell response to different toxic stimuli, p21 expression and functions have been analyzed in an impressive number of studies investigating the activity of several types of chemicals, in order to determine their possible harmful effects on human cells. Here, we review these studies in order to highlight the different roles p21 may play in the cell response to chemical exposure and to better evaluate the information provided by this biomarker.

  20. Methods to Monitor and Manipulate TFEB Activity During Autophagy.

    PubMed

    Medina, D L; Settembre, C; Ballabio, A

    2017-01-01

    Macroautophagy is a catabolic process deputed to the turnover of intracellular components. Recent studies have revealed that transcriptional regulation is a major mechanism controlling autophagy. Currently, more than 20 transcription factors have been shown to modulate cellular autophagy levels. Among them, the transcription factor EB (TFEB) appears to have the broadest proautophagy role, given its capacity to control the biogenesis of lysosomes and autophagosomes, the two main organelles required for the autophagy pathway. TFEB has attracted major attention owing to its ability to enhance cellular clearance of pathogenic substrates in a variety of animal models of disease, such as lysosomal storage disorders, Parkinson's, Alzheimer's, α1-antitrypsin, obesity as well as others, suggesting that the TFEB pathway represents an extraordinary possibility for future development of innovative therapies. Importantly, the subcellular localization and activity of TFEB are regulated by its phosphorylation status, suggesting that TFEB activity can be pharmacologically targeted. Given the growing list of common and rare diseases in which manipulation of autophagy may be beneficial, in this chapter we describe a set of validated protocols developed to modulate and analyze TFEB-mediated enhancement of autophagy both in vitro and in vivo conditions. © 2017 Elsevier Inc. All rights reserved.

  1. Antioxidant enzymes as redox-based biomarkers: a brief review

    PubMed Central

    Yang, Hee-Young; Lee, Tae-Hoon

    2015-01-01

    The field of redox proteomics focuses to a large extent on analyzing cysteine oxidation in proteins under different experimental conditions and states of diseases. The identification and localization of oxidized cysteines within the cellular milieu is critical for understanding the redox regulation of proteins under physiological and pathophysiological conditions, and it will in turn provide important information that are potentially useful for the development of novel strategies in the treatment and prevention of diseases associated with oxidative stress. Antioxidant enzymes that catalyze oxidation/reduction processes are able to serve as redox biomarkers in various human diseases, and they are key regulators controlling the redox state of functional proteins. Redox regulators with antioxidant properties related to active mediators, cellular organelles, and the surrounding environments are all connected within a network and are involved in diseases related to redox imbalance including cancer, ischemia/reperfusion injury, neurodegenerative diseases, as well as normal aging. In this review, we will briefly look at the selected aspects of oxidative thiol modification in antioxidant enzymes and thiol oxidation in proteins affected by redox control of antioxidant enzymes and their relation to disease. [BMB Reports 2015; 48(4): 200-208] PMID:25560698

  2. Expression and in vitro functional analyses of recombinant Gam1 protein

    PubMed Central

    Avila, Gustavo A.; Ramirez, Daniel H.; Hildenbrand, Zacariah L.; Jacquez, Pedro; Chiocca, Susanna; Sun, Jianjun; Rosas-Acosta, German; Xiao, Chuan

    2014-01-01

    Gam1, an early gene product of an avian adenovirus, is essential for viral replication. Gam1 is the first viral protein found to globally inhibit cellular SUMOylation, a critical posttranslational modification that alters the function and cellular localization of proteins. The interaction details at the interface between Gam1 and its cellular targets remain unclear due to the lack of structural information. Although Gam1 has been previously characterized, the purity of the protein was not suitable for structural investigations. In the present study, the gene of Gam1 was cloned and expressed in various bacterial expression systems to obtain pure and soluble recombinant Gam1 protein for in vitro functional and structural studies. While Gam1 was insoluble in most expression systems tested, it became soluble when it was expressed as a fusion protein with trigger factor (TF), a ribosome associated bacterial chaperone, under the control of a cold shock promoter. Careful optimization indicates that both low temperature induction and the chaperone function of TF play critical roles in increasing Gam1 solubility. Soluble Gam1 was purified to homogeneity through sequential chromatography techniques. Monomeric Gam1 was obtained via size exclusion chromatography and analyzed by dynamic light scattering. The SUMOylation inhibitory function of the purified Gam1 was confirmed in an in vitro assay. These results have built the foundation for further structural investigations that will broaden our understanding of Gam1’s roles in viral replication. PMID:25450237

  3. Expression and in vitro functional analyses of recombinant Gam1 protein.

    PubMed

    Avila, Gustavo A; Ramirez, Daniel H; Hildenbrand, Zacariah L; Jacquez, Pedro; Chiocca, Susanna; Sun, Jianjun; Rosas-Acosta, German; Xiao, Chuan

    2015-01-01

    Gam1, an early gene product of an avian adenovirus, is essential for viral replication. Gam1 is the first viral protein found to globally inhibit cellular SUMOylation, a critical posttranslational modification that alters the function and cellular localization of proteins. The interaction details at the interface between Gam1 and its cellular targets remain unclear due to the lack of structural information. Although Gam1 has been previously characterized, the purity of the protein was not suitable for structural investigations. In the present study, the gene of Gam1 was cloned and expressed in various bacterial expression systems to obtain pure and soluble recombinant Gam1 protein for in vitro functional and structural studies. While Gam1 was insoluble in most expression systems tested, it became soluble when it was expressed as a fusion protein with trigger factor (TF), a ribosome associated bacterial chaperone, under the control of a cold shock promoter. Careful optimization indicates that both low temperature induction and the chaperone function of TF play critical roles in increasing Gam1 solubility. Soluble Gam1 was purified to homogeneity through sequential chromatography techniques. Monomeric Gam1 was obtained via size exclusion chromatography and analyzed by dynamic light scattering. The SUMOylation inhibitory function of the purified Gam1 was confirmed in an in vitro assay. These results have built the foundation for further structural investigations that will broaden our understanding of Gam1's roles in viral replication. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Characterization of Aquaporin 4 Protein Expression and Localization in Tissues of the Dogfish (Squalus acanthias)

    PubMed Central

    Cutler, Christopher P.; Harmon, Sheena; Walsh, Jonathon; Burch, Kia

    2012-01-01

    The role of aquaporin water channels such as aquaporin 4 (Aqp4) in elasmobranchs such as the dogfish Squalus acanthias is completely unknown. This investigation set out to determine the expression and cellular and sub-cellular localization of Aqp4 protein in dogfish tissues. Two polyclonal antibodies were generated (AQP4/1 and AQP4/2) and these showed somewhat different characteristics in Western blotting and immunohistochemistry. Western blots using the AQP4/1 antibody showed two bands (35.5 and 49.5 kDa) in most tissues in a similar fashion to mammals. Liver had an additional band of 57 kDa and rectal gland two further faint bands of 37.5 and 38.5 kDa. However, unlike in mammals, Aqp4 protein was ubiquitously expressed in all tissues including gill and liver. The AQP4/2 antibody appeared much less specific in Western blots. Both antibodies were used in immunohistochemistry and showed similar cellular localizations, although the AQP4/2 antibody had a more restricted sub-cellular distribution compared to AQP4/1 and therefore appeared to be more specific for Aqp4. In kidney a sub-set of tubules were stained which may represent intermediate tubule segments (In-III–In-VI). AQP4/1 and AQP4/2 antibodies localized to the same tubules segments in serial sections although the intensity and sub-cellular distribution were different. AQP4/2 showed a basal or basolateral membrane distribution whereas AQP4/1 was often distributed throughout the whole cell including the nuclear region. In rectal gland and cardiac stomach Aqp4 was localized to secretory tubules but again AQP/1 and AQP/2 exhibited different sub-cellular distributions. In gill, both antibodies stained large cells in the primary filament and secondary lamellae. Again AQP4/1 antibody stained most or all the cell including the nucleus, whereas AQP4/2 had a plasma membrane or plasma membrane and cytoplasmic distribution. Two types of large mitochondrial rich transport cells are known to exist in elasmobranchs, that express either Na, K-ATPase, or V-type ATPase ion transporters. Using Na, K-ATPase, and V-type ATPase antibodies, Aqp4 was colocalized with these proteins using the AQP4/1 antibody. Results show Aqp4 is expressed in both (and all) branchial Na, K-ATPase, and V-type ATPase expressing cells. PMID:22363294

  5. Characterization of Aquaporin 4 Protein Expression and Localization in Tissues of the Dogfish (Squalus acanthias).

    PubMed

    Cutler, Christopher P; Harmon, Sheena; Walsh, Jonathon; Burch, Kia

    2012-01-01

    The role of aquaporin water channels such as aquaporin 4 (Aqp4) in elasmobranchs such as the dogfish Squalus acanthias is completely unknown. This investigation set out to determine the expression and cellular and sub-cellular localization of Aqp4 protein in dogfish tissues. Two polyclonal antibodies were generated (AQP4/1 and AQP4/2) and these showed somewhat different characteristics in Western blotting and immunohistochemistry. Western blots using the AQP4/1 antibody showed two bands (35.5 and 49.5 kDa) in most tissues in a similar fashion to mammals. Liver had an additional band of 57 kDa and rectal gland two further faint bands of 37.5 and 38.5 kDa. However, unlike in mammals, Aqp4 protein was ubiquitously expressed in all tissues including gill and liver. The AQP4/2 antibody appeared much less specific in Western blots. Both antibodies were used in immunohistochemistry and showed similar cellular localizations, although the AQP4/2 antibody had a more restricted sub-cellular distribution compared to AQP4/1 and therefore appeared to be more specific for Aqp4. In kidney a sub-set of tubules were stained which may represent intermediate tubule segments (In-III-In-VI). AQP4/1 and AQP4/2 antibodies localized to the same tubules segments in serial sections although the intensity and sub-cellular distribution were different. AQP4/2 showed a basal or basolateral membrane distribution whereas AQP4/1 was often distributed throughout the whole cell including the nuclear region. In rectal gland and cardiac stomach Aqp4 was localized to secretory tubules but again AQP/1 and AQP/2 exhibited different sub-cellular distributions. In gill, both antibodies stained large cells in the primary filament and secondary lamellae. Again AQP4/1 antibody stained most or all the cell including the nucleus, whereas AQP4/2 had a plasma membrane or plasma membrane and cytoplasmic distribution. Two types of large mitochondrial rich transport cells are known to exist in elasmobranchs, that express either Na, K-ATPase, or V-type ATPase ion transporters. Using Na, K-ATPase, and V-type ATPase antibodies, Aqp4 was colocalized with these proteins using the AQP4/1 antibody. Results show Aqp4 is expressed in both (and all) branchial Na, K-ATPase, and V-type ATPase expressing cells.

  6. A comparative study on fluorescent cholesterol analogs as versatile cellular reporters[S

    PubMed Central

    Sezgin, Erdinc; Can, Fatma Betul; Schneider, Falk; Clausen, Mathias P.; Galiani, Silvia; Stanly, Tess A.; Waithe, Dominic; Colaco, Alexandria; Honigmann, Alf; Wüstner, Daniel; Platt, Frances; Eggeling, Christian

    2016-01-01

    Cholesterol (Chol) is a crucial component of cellular membranes, but knowledge of its intracellular dynamics is scarce. Thus, it is of utmost interest to develop tools for visualization of Chol organization and dynamics in cells and tissues. For this purpose, many studies make use of fluorescently labeled Chol analogs. Unfortunately, the introduction of the label may influence the characteristics of the analog, such as its localization, interaction, and trafficking in cells; hence, it is important to get knowledge of such bias. In this report, we compared different fluorescent lipid analogs for their performance in cellular assays: 1) plasma membrane incorporation, specifically the preference for more ordered membrane environments in phase-separated giant unilamellar vesicles and giant plasma membrane vesicles; 2) cellular trafficking, specifically subcellular localization in Niemann-Pick type C disease cells; and 3) applicability in fluorescence correlation spectroscopy (FCS)-based and super-resolution stimulated emission depletion-FCS-based measurements of membrane diffusion dynamics. The analogs exhibited strong differences, with some indicating positive performance in the membrane-based experiments and others in the intracellular trafficking assay. However, none showed positive performance in all assays. Our results constitute a concise guide for the careful use of fluorescent Chol analogs in visualizing cellular Chol dynamics. PMID:26701325

  7. Local accumulation times for spatial difference in morphogen concentration

    NASA Astrophysics Data System (ADS)

    Wen, Xiaoqing; Yin, Hongwei

    During development of multicellular organisms, spatial patterns of cells and tissue organizations rely on the action of morphogens, which are signaling molecules and act as dose-dependent regulators of gene expression and cellular differentiation. Since some experimental evidences have indicated that the spatial difference in morphogen concentration regulates cellular proliferation rather than this concentration profile in developing tissues, we propose spatially discrete models to describe this difference for a synthesis-diffusion-degradation process of morphogen in infinite and finite development fields, respectively. For both of models, we respectively derive analytical expressions of local accumulation times, which are required to form the steady state of the spatial difference in morphogen concentration. Our results show that the local accumulation times for the spatial difference in morphogen concentrations are different from the ones for morphogen concentration profiles.

  8. Registering Ground and Satellite Imagery for Visual Localization

    DTIC Science & Technology

    2012-08-01

    reckoning, inertial, stereo, light detection and ranging ( LIDAR ), cellular radio, and visual. As no sensor or algorithm provides perfect localization in...by metric localization approaches to confine the region of a map that needs to be searched. Simultaneous Localization and Mapping ( SLAM ) (5, 6), using...estimate the metric location of the camera. Se et al. (7) use SIFT features for both appearance-based global localization and incremental 3D SLAM . Johns and

  9. There is more than one way to turn a spherical cellular monolayer inside out: type B embryo inversion in Volvox globator

    PubMed Central

    2011-01-01

    Background Epithelial folding is a common morphogenetic process during the development of multicellular organisms. In metazoans, the biological and biomechanical processes that underlie such three-dimensional (3D) developmental events are usually complex and difficult to investigate. Spheroidal green algae of the genus Volvox are uniquely suited as model systems for studying the basic principles of epithelial folding. Volvox embryos begin life inside out and then must turn their spherical cell monolayer outside in to achieve their adult configuration; this process is called 'inversion.' There are two fundamentally different sequences of inversion processes in Volvocaceae: type A and type B. Type A inversion is well studied, but not much is known about type B inversion. How does the embryo of a typical type B inverter, V. globator, turn itself inside out? Results In this study, we investigated the type B inversion of V. globator embryos and focused on the major movement patterns of the cellular monolayer, cell shape changes and changes in the localization of cytoplasmic bridges (CBs) connecting the cells. Isolated intact, sectioned and fragmented embryos were analyzed throughout the inversion process using light microscopy, confocal laser scanning microscopy, scanning electron microscopy and transmission electron microscopy techniques. We generated 3D models of the identified cell shapes, including the localizations of CBs. We show how concerted cell-shape changes and concerted changes in the position of cells relative to the CB system cause cell layer movements and turn the spherical cell monolayer inside out. The type B inversion of V. globator is compared to the type A inversion in V. carteri. Conclusions Concerted, spatially and temporally coordinated changes in cellular shapes in conjunction with concerted migration of cells relative to the CB system are the causes of type B inversion in V. globator. Despite significant similarities between type A and type B inverters, differences exist in almost all details of the inversion process, suggesting analogous inversion processes that arose through parallel evolution. Based on our results and due to the cellular biomechanical implications of the involved tensile and compressive forces, we developed a global mechanistic scenario that predicts epithelial folding during embryonic inversion in V. globator. PMID:22206406

  10. Cellular Precipitates Of Iron Oxide in Olivine in a Stratospheric Interplanetary Dust Particle

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1996-01-01

    The petrology of a massive olivine-sulphide interplanetary dust particle shows melting of Fe,Ni-sulphide plus complete loss of sulphur and subsequent quenching to a mixture of iron-oxides and Fe,Ni-metal. Oxidation of the fayalite component in olivine produced maghemite discs and cellular intergrowths with olivine and rare andradite-rich garnet. Cellular reactions require no long-range solid-state diffusion and are kinetically favourable during pyrometamorphic oxidation. Local melting of the cellular intergrowths resulted in three dimensional symplectic textures. Dynamic pyrometamorphism of this asteroidal particle occurred at approx. 1100 C during atmospheric entry flash (5-15 s) heating.

  11. Loss of the Mechanotransducer Zyxin Promotes a Synthetic Phenotype of Vascular Smooth Muscle Cells

    PubMed Central

    Ghosh, Subhajit; Kollar, Branislav; Nahar, Taslima; Suresh Babu, Sahana; Wojtowicz, Agnieszka; Sticht, Carsten; Gretz, Norbert; Wagner, Andreas H; Korff, Thomas; Hecker, Markus

    2015-01-01

    Background Exposure of vascular smooth muscle cells (VSMCs) to excessive cyclic stretch such as in hypertension causes a shift in their phenotype. The focal adhesion protein zyxin can transduce such biomechanical stimuli to the nucleus of both endothelial cells and VSMCs, albeit with different thresholds and kinetics. However, there is no distinct vascular phenotype in young zyxin-deficient mice, possibly due to functional redundancy among other gene products belonging to the zyxin family. Analyzing zyxin function in VSMCs at the cellular level might thus offer a better mechanistic insight. We aimed to characterize zyxin-dependent changes in gene expression in VSMCs exposed to biomechanical stretch and define the functional role of zyxin in controlling the resultant VSMC phenotype. Methods and Results DNA microarray analysis was used to identify genes and pathways that were zyxin regulated in static and stretched human umbilical artery–derived and mouse aortic VSMCs. Zyxin-null VSMCs showed a remarkable shift to a growth-promoting, less apoptotic, promigratory and poorly contractile phenotype with ≈90% of the stretch-responsive genes being zyxin dependent. Interestingly, zyxin-null cells already seemed primed for such a synthetic phenotype, with mechanical stretch further accentuating it. This could be accounted for by higher RhoA activity and myocardin-related transcription factor-A mainly localized to the nucleus of zyxin-null VSMCs, and a condensed and localized accumulation of F-actin upon stretch. Conclusions At the cellular level, zyxin is a key regulator of stretch-induced gene expression. Loss of zyxin drives VSMCs toward a synthetic phenotype, a process further consolidated by exaggerated stretch. PMID:26071033

  12. The protein expression landscape of the Arabidopsis root

    PubMed Central

    Petricka, Jalean J.; Schauer, Monica A.; Megraw, Molly; Breakfield, Natalie W.; Thompson, J. Will; Georgiev, Stoyan; Soderblom, Erik J.; Ohler, Uwe; Moseley, Martin Arthur; Grossniklaus, Ueli; Benfey, Philip N.

    2012-01-01

    Because proteins are the major functional components of cells, knowledge of their cellular localization is crucial to gaining an understanding of the biology of multicellular organisms. We have generated a protein expression map of the Arabidopsis root providing the identity and cell type-specific localization of nearly 2,000 proteins. Grouping proteins into functional categories revealed unique cellular functions and identified cell type-specific biomarkers. Cellular colocalization provided support for numerous protein–protein interactions. With a binary comparison, we found that RNA and protein expression profiles are weakly correlated. We then performed peak integration at cell type-specific resolution and found an improved correlation with transcriptome data using continuous values. We performed GeLC-MS/MS (in-gel tryptic digestion followed by liquid chromatography-tandem mass spectrometry) proteomic experiments on mutants with ectopic and no root hairs, providing complementary proteomic data. Finally, among our root hair-specific proteins we identified two unique regulators of root hair development. PMID:22447775

  13. Polycaprolactone/maltodextrin nanocarrier for intracellular drug delivery: formulation, uptake mechanism, internalization kinetics, and subcellular localization.

    PubMed

    Korang-Yeboah, Maxwell; Gorantla, Yamini; Paulos, Simon A; Sharma, Pankaj; Chaudhary, Jaideep; Palaniappan, Ravi

    2015-01-01

    Prostate cancer (PCa) disease progression is associated with significant changes in intracellular and extracellular proteins, intracellular signaling mechanism, and cancer cell phenotype. These changes may have direct impact on the cellular interactions with nanocarriers; hence, there is the need for a much-detailed understanding, as nanocarrier cellular internalization and intracellular sorting mechanism correlate directly with bioavailability and clinical efficacy. In this study, we report the differences in the rate and mechanism of cellular internalization of a biocompatible polycaprolactone (PCL)/maltodextrin (MD) nanocarrier system for intracellular drug delivery in LNCaP, PC3, and DU145 PCa cell lines. PCL/MD nanocarriers were designed and characterized. PCL/MD nanocarriers significantly increased the intracellular concentration of coumarin-6 and fluorescein isothiocyanate-labeled bovine serum albumin, a model hydrophobic and large molecule, respectively. Fluorescence microscopy and flow cytometry analysis revealed rapid internalization of the nanocarrier. The extent of nanocarrier cellular internalization correlated directly with cell line aggressiveness. PCL/MD internalization was highest in PC3 followed by DU145 and LNCaP, respectively. Uptake in all PCa cell lines was metabolically dependent. Extraction of endogenous cholesterol by methyl-β-cyclodextrin reduced uptake by 75%±4.53% in PC3, 64%±6.01% in LNCaP, and 50%±4.50% in DU145, indicating the involvement of endogenous cholesterol in cellular internalization. Internalization of the nanocarrier in LNCaP was mediated mainly by macropinocytosis and clathrin-independent pathways, while internalization in PC3 and DU145 involved clathrin-mediated endocytosis, clathrin-independent pathways, and macropinocytosis. Fluorescence microscopy showed a very diffused and non-compartmentalized subcellular localization of the PCL/MD nanocarriers with possible intranuclear localization and minor colocalization in the lysosomes with time.

  14. Exploring viral infection using single-cell sequencing.

    PubMed

    Rato, Sylvie; Golumbeanu, Monica; Telenti, Amalio; Ciuffi, Angela

    2017-07-15

    Single-cell sequencing (SCS) has emerged as a valuable tool to study cellular heterogeneity in diverse fields, including virology. By studying the viral and cellular genome and/or transcriptome, the dynamics of viral infection can be investigated at single cell level. Most studies have explored the impact of cell-to-cell variation on the viral life cycle from the point of view of the virus, by analyzing viral sequences, and from the point of view of the cell, mainly by analyzing the cellular host transcriptome. In this review, we will focus on recent studies that use single-cell sequencing to explore viral diversity and cell variability in response to viral replication. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Poliovirus infection induces the co-localization of cellular protein SRp20 with TIA-1, a cytoplasmic stress granule protein.

    PubMed

    Fitzgerald, Kerry D; Semler, Bert L

    2013-09-01

    Different types of environmental stress cause mammalian cells to form cytoplasmic foci, termed stress granules, which contain mRNPs that are translationally silenced. These foci are transient and dynamic, and contain components of the cellular translation machinery as well as certain mRNAs and RNA binding proteins. Stress granules are known to be induced by conditions such as hypoxia, nutrient deprivation, and oxidative stress, and a number of cellular factors have been identified that are commonly associated with these foci. More recently it was discovered that poliovirus infection also induces the formation of stress granules, although these cytoplasmic foci appear to be somewhat compositionally unique. Work described here examined the punctate pattern of SRp20 (a host cell mRNA splicing protein) localization in the cytoplasm of poliovirus-infected cells, demonstrating the partial co-localization of SRp20 with the stress granule marker protein TIA-1. We determined that SRp20 does not co-localize with TIA-1, however, under conditions of oxidative stress, indicating that the close association of these two proteins during poliovirus infection is not representative of a general response to cellular stress. We confirmed that the expression of a dominant negative version of TIA-1 (TIA-1-PRD) results in the dissociation of stress granules. Finally, we demonstrated that expression of wild type TIA-1 or dominant negative TIA-1-PRD in cells during poliovirus infection does not dramatically affect viral translation. Taken together, these studies provide a new example of the unique cytoplasmic foci that form during poliovirus infection. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Adenovirus Core Protein VII Downregulates the DNA Damage Response on the Host Genome

    PubMed Central

    Avgousti, Daphne C.; Della Fera, Ashley N.; Otter, Clayton J.; Herrmann, Christin; Pancholi, Neha J.

    2017-01-01

    ABSTRACT Viral manipulation of cellular proteins allows viruses to suppress host defenses and generate infectious progeny. Due to the linear double-stranded DNA nature of the adenovirus genome, the cellular DNA damage response (DDR) is considered a barrier to successful infection. The adenovirus genome is packaged with protein VII, a virally encoded histone-like core protein that is suggested to protect incoming viral genomes from detection by the cellular DNA damage machinery. We showed that protein VII localizes to host chromatin during infection, leading us to hypothesize that protein VII may affect DNA damage responses on the cellular genome. Here we show that protein VII at cellular chromatin results in a significant decrease in accumulation of phosphorylated H2AX (γH2AX) following irradiation, indicating that protein VII inhibits DDR signaling. The oncoprotein SET was recently suggested to modulate the DDR by affecting access of repair proteins to chromatin. Since protein VII binds SET, we investigated a role for SET in DDR inhibition by protein VII. We show that knockdown of SET partially rescues the protein VII-induced decrease in γH2AX accumulation on the host genome, suggesting that SET is required for inhibition. Finally, we show that knockdown of SET also allows ATM to localize to incoming viral genomes bound by protein VII during infection with a mutant lacking early region E4. Together, our data suggest that the protein VII-SET interaction contributes to DDR evasion by adenovirus. Our results provide an additional example of a strategy used by adenovirus to abrogate the host DDR and show how viruses can modify cellular processes through manipulation of host chromatin. IMPORTANCE The DNA damage response (DDR) is a cellular network that is crucial for maintaining genome integrity. DNA viruses replicating in the nucleus challenge the resident genome and must overcome cellular responses, including the DDR. Adenoviruses are prevalent human pathogens that can cause a multitude of diseases, such as respiratory infections and conjunctivitis. Here we describe how a small adenovirus core protein that localizes to host chromatin during infection can globally downregulate the DDR. Our study focuses on key players in the damage signaling pathway and highlights how viral manipulation of chromatin may influence access of DDR proteins to the host genome. PMID:28794020

  17. High-accuracy biodistribution analysis of adeno-associated virus variants by double barcode sequencing.

    PubMed

    Marsic, Damien; Méndez-Gómez, Héctor R; Zolotukhin, Sergei

    2015-01-01

    Biodistribution analysis is a key step in the evaluation of adeno-associated virus (AAV) capsid variants, whether natural isolates or produced by rational design or directed evolution. Indeed, when screening candidate vectors, accurate knowledge about which tissues are infected and how efficiently is essential. We describe the design, validation, and application of a new vector, pTR-UF50-BC, encoding a bioluminescent protein, a fluorescent protein and a DNA barcode, which can be used to visualize localization of transduction at the organism, organ, tissue, or cellular levels. In addition, by linking capsid variants to different barcoded versions of the vector and amplifying the barcode region from various tissue samples using barcoded primers, biodistribution of viral genomes can be analyzed with high accuracy and efficiency.

  18. A quantum Samaritan’s dilemma cellular automaton

    PubMed Central

    Situ, Haozhen

    2017-01-01

    The dynamics of a spatial quantum formulation of the iterated Samaritan’s dilemma game with variable entangling is studied in this work. The game is played in the cellular automata manner, i.e. with local and synchronous interaction. The game is assessed in fair and unfair contests, in noiseless scenarios and with disrupting quantum noise. PMID:28680654

  19. Landscape of Conditional eQTL in Dorsolateral Prefrontal Cortex and Co-localization with Schizophrenia GWAS.

    PubMed

    Dobbyn, Amanda; Huckins, Laura M; Boocock, James; Sloofman, Laura G; Glicksberg, Benjamin S; Giambartolomei, Claudia; Hoffman, Gabriel E; Perumal, Thanneer M; Girdhar, Kiran; Jiang, Yan; Raj, Towfique; Ruderfer, Douglas M; Kramer, Robin S; Pinto, Dalila; Akbarian, Schahram; Roussos, Panos; Domenici, Enrico; Devlin, Bernie; Sklar, Pamela; Stahl, Eli A; Sieberts, Solveig K

    2018-06-07

    Causal genes and variants within genome-wide association study (GWAS) loci can be identified by integrating GWAS statistics with expression quantitative trait loci (eQTL) and determining which variants underlie both GWAS and eQTL signals. Most analyses, however, consider only the marginal eQTL signal, rather than dissect this signal into multiple conditionally independent signals for each gene. Here we show that analyzing conditional eQTL signatures, which could be important under specific cellular or temporal contexts, leads to improved fine mapping of GWAS associations. Using genotypes and gene expression levels from post-mortem human brain samples (n = 467) reported by the CommonMind Consortium (CMC), we find that conditional eQTL are widespread; 63% of genes with primary eQTL also have conditional eQTL. In addition, genomic features associated with conditional eQTL are consistent with context-specific (e.g., tissue-, cell type-, or developmental time point-specific) regulation of gene expression. Integrating the 2014 Psychiatric Genomics Consortium schizophrenia (SCZ) GWAS and CMC primary and conditional eQTL data reveals 40 loci with strong evidence for co-localization (posterior probability > 0.8), including six loci with co-localization of conditional eQTL. Our co-localization analyses support previously reported genes, identify novel genes associated with schizophrenia risk, and provide specific hypotheses for their functional follow-up. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Local bone marrow renin-angiotensin system in primitive, definitive and neoplastic haematopoiesis.

    PubMed

    Haznedaroglu, Ibrahim C; Beyazit, Yavuz

    2013-03-01

    The locally active ligand peptides, mediators, receptors and signalling pathways of the haematopoietic BM (bone marrow) autocrine/paracrine RAS (renin-angiotensin system) affect the essential steps of definitive blood cell production. Haematopoiesis, erythropoiesis, myelopoiesis, formation of monocytic and lymphocytic lineages, thrombopoiesis and other stromal cellular elements are regulated by the local BM RAS. The local BM RAS is present and active even in primitive embryonic haematopoiesis. ACE (angiotensin-converting enzyme) is expressed on the surface of the first endothelial and haematopoietic cells, forming the marrow cavity in the embryo. ACE marks early haematopoietic precursor cells and long-term blood-forming CD34(+) BM cells. The local autocrine tissue BM RAS may also be active in neoplastic haematopoiesis. Critical RAS mediators such as renin, ACE, AngII (angiotensin II) and angiotensinogen have been identified in leukaemic blast cells. The local tissue RAS influences tumour growth and metastases in an autocrine and paracrine fashion via the modulation of numerous carcinogenic events, such as angiogenesis, apoptosis, cellular proliferation, immune responses, cell signalling and extracellular matrix formation. The aim of the present review is to outline the known functions of the local BM RAS within the context of primitive, definitive and neoplastic haematopoiesis. Targeting the actions of local RAS molecules could represent a valuable therapeutic option for the management of neoplastic disorders.

  1. Cellular computational platform and neurally inspired elements thereof

    DOEpatents

    Okandan, Murat

    2016-11-22

    A cellular computational platform is disclosed that includes a multiplicity of functionally identical, repeating computational hardware units that are interconnected electrically and optically. Each computational hardware unit includes a reprogrammable local memory and has interconnections to other such units that have reconfigurable weights. Each computational hardware unit is configured to transmit signals into the network for broadcast in a protocol-less manner to other such units in the network, and to respond to protocol-less broadcast messages that it receives from the network. Each computational hardware unit is further configured to reprogram the local memory in response to incoming electrical and/or optical signals.

  2. Universal Features of Metastable State Energies in Cellular Matter

    NASA Astrophysics Data System (ADS)

    Kim, Sangwoo; Wang, Yiliang; Hilgenfeldt, Sascha

    2018-06-01

    Mechanical equilibrium states of cellular matter are overwhelmingly metastable and separated from each other by topology changes. Using theory and simulations, it is shown that for a wide class of energy functionals in 2D, including those describing tissue cell layers, local energy differences between neighboring metastable states as well as global energy differences between initial states and ground states are governed by simple, universal relations. Knowledge of instantaneous length of an edge undergoing a T 1 transition is sufficient to predict local energy changes, while the initial edge length distribution yields a successful prediction for the global energy difference. An analytical understanding of the model parameters is provided.

  3. A local autocrine axis in the testes that regulates spermatogenesis

    PubMed Central

    Cheng, C. Yan; Mruk, Dolores D.

    2014-01-01

    Spermiation—the release of mature spermatozoa from Sertoli cells into the seminiferous tubule lumen—occurs by the disruption of an anchoring device known as the apical ectoplasmic specialization (apical ES). At the same time, the blood–testis barrier (BTB) undergoes extensive restructuring to facilitate the transit of preleptotene spermatocytes. While these two cellular events take place at opposite ends of the Sertoli cell epithelium, the events are in fact tightly coordinated, as any disruption in either process will lead to infertility. A local regulatory axis exists between the apical ES and the BTB in which biologically active laminin fragments produced at the apical ES by the action of matrix metalloproteinase 2 can regulate BTB restructuring directly or indirectly via the hemidesmosome. Equally important, polarity proteins play a crucial part in coordinating cellular events within this apical ES–BTB–hemidesmosome axis. Additionally, testosterone and cytokines work in concert to facilitate BTB restructuring, which enables the transit of spermatocytes while maintaining immunological barrier function. Herein, we will discuss this important autocrine-based cellular axis that parallels the hormonal-based hypothalamic–pituitary–testicular axis that regulates spermatogenesis. This local regulatory axis is the emerging target for male contraception. PMID:20571538

  4. Lymphocytic infiltration of bladder after local cellular immunotherapy.

    PubMed

    Ingram, M; Bishai, M B; Techy, G B; Narayan, K S; Saroufeem, R; Yazan, O; Marshall, C E

    2000-01-01

    This is a case report of a patient who received cellular immunotherapy, in the form of local injections of autologous stimulated lymphocytes (ASL) into individual tumors in the urinary bladder. A major consideration in cellular immunotherapy being the ability of immune cells to reach all target areas, we hypothesized that direct delivery of effector cells into individual bladder tumors might assure such access. ASL were generated by exposing the patient's PBL to phytohemagglutinin and culturing them in the presence of IL-2 to expand the population. ASL were injected into the base of individual bladder tumors three times at intervals of 3 weeks. The patient died of a myocardial infarct, unrelated to cell therapy, 20 days after the third injection. An autopsy was performed. Histological sections of the bladder showed extensive lymphocytic infiltration of virtually the entire organ. No conclusions about the therapeutic efficacy of local immunotherapy using ASL are possible. Nevertheless, the observations reported, taken together with reports of therapeutic efficacy of other immunotherapy regimens in the management of bladder cancer, suggest that ready access of stimulated lymphocytes to all regions of the organ may account, in part, for the relatively high rate of therapeutic success reported for various immunotherapy regimens for this malignancy.

  5. Role of environmental and antibiotic stress on Staphylococcus epidermidis biofilm microstructure.

    PubMed

    Stewart, Elizabeth J; Satorius, Ashley E; Younger, John G; Solomon, Michael J

    2013-06-11

    Cellular clustering and separation of Staphylococcus epidermidis surface adherent biofilms were found to depend significantly on both antibiotic and environmental stress present during growth under steady flow. Image analysis techniques common to colloidal science were applied to image volumes acquired with high-resolution confocal laser scanning microscopy to extract spatial positions of individual bacteria in volumes of size ~30 × 30 × 15 μm(3). The local number density, cluster distribution, and radial distribution function were determined at each condition by analyzing the statistics of the bacterial spatial positions. Environmental stressors of high osmotic pressure (776 mM NaCl) and sublethal antibiotic dose (1.9 μg/mL vancomycin) decreased the average bacterial local number density 10-fold. Device-associated bacterial biofilms are frequently exposed to these environmental and antibiotic stressors while undergoing flow in the bloodstream. Characteristic density phenotypes associated with low, medium, and high local number densities were identified in unstressed S. epidermidis biofilms, while stressed biofilms contained medium- and low-density phenotypes. All biofilms exhibited clustering at length scales commensurate with cell division (~1.0 μm). However, density phenotypes differed in cellular connectivity at the scale of ~6 μm. On this scale, nearly all cells in the high- and medium-density phenotypes were connected into a single cluster with a structure characteristic of a densely packed disordered fluid. However, in the low-density phenotype, the number of clusters was greater, equal to 4% of the total number of cells, and structures were fractal in nature with d(f) =1.7 ± 0.1. The work advances the understanding of biofilm growth, informs the development of predictive models of transport and mechanical properties of biofilms, and provides a method for quantifying the kinetics of bacterial surface colonization as well as biofilm fracture and fragmentation.

  6. Effect of intermittent shear stress on corneal epithelial cells using an in vitro flow culture model.

    PubMed

    Hampel, Ulrike; Garreis, Fabian; Burgemeister, Fabian; Eßel, Nicole; Paulsen, Friedrich

    2018-04-27

    The aim of this study was to establish and to evaluate an in vitro model for culturing human telomerase-immortalized corneal epithelial (hTCEpi) cells under adjustable medium flow mimicking the movements of the tear film on the ocular surface. Using an IBIDI pump system, cells were cultured under unidirectional, continuous or oscillating, discontinuous medium flow. Cell surface and cytoskeletal architecture were investigated by scanning electron microscopy and immunofluorescence. Gene expression of e-cadherin, occludin, tight junction protein (TJP), desmoplakin, desmocollin and mucins was investigated by real-time PCR. Protein expression of desmoplakin, TJP, occludin and e-cadherin was analyzed by western blot and localization was detected by immunofluorescence. Rose bengal staining was used to assess mucin (MUC) barrier integrity. MUC1, -4 and -16 proteins were localized by immunofluorescence. Medium flow-induced shear stress dramatically changed cellular morphology of hTCEpi. Cells subjected to discontinuous shear stress displayed the typical flattened, polygonal cell shape of the superficial layer of stratified squamous epithelia. Cell surfaces showed less bulging under shear stress and less extracellular gaps. The mRNA expression of E-cadherin, occludin and TJP were increased under oscillatory medium flow. Desmoplakin and occludin protein were upregulated under oscillatory shear stress. Stress fiber formation was not aligned to flow direction. MUC1, -4, and -16 protein were localized under all culture conditions, a regulation on mRNA expression was not detectable. Rose Bengal uptake was diminished under unidirectional conditions. Our findings suggest that shear stress as it occurs at the ocular surface during blinking exerts marked effects on corneal epithelial cells, such as changes in cellular morphology and expression of cell junctions. The described model may be useful for in vitro investigations of ocular surface epithelia as it represents a much more physiologic reproduction of the in vivo situation than the commonly applied static culture conditions. Copyright © 2018. Published by Elsevier Inc.

  7. Induction of CD4 T cell memory by local cellular collectivity.

    PubMed

    Polonsky, Michal; Rimer, Jacob; Kern-Perets, Amos; Zaretsky, Irina; Miller, Stav; Bornstein, Chamutal; David, Eyal; Kopelman, Naama Meira; Stelzer, Gil; Porat, Ziv; Chain, Benjamin; Friedman, Nir

    2018-06-15

    Cell differentiation is directed by signals driving progenitors into specialized cell types. This process can involve collective decision-making, when differentiating cells determine their lineage choice by interacting with each other. We used live-cell imaging in microwell arrays to study collective processes affecting differentiation of naïve CD4 + T cells into memory precursors. We found that differentiation of precursor memory T cells sharply increases above a threshold number of locally interacting cells. These homotypic interactions involve the cytokines interleukin-2 (IL-2) and IL-6, which affect memory differentiation orthogonal to their effect on proliferation and survival. Mathematical modeling suggests that the differentiation rate is continuously modulated by the instantaneous number of locally interacting cells. This cellular collectivity can prioritize allocation of immune memory to stronger responses. Copyright © 2018, American Association for the Advancement of Science.

  8. Cellular Automata with Anticipation: Examples and Presumable Applications

    NASA Astrophysics Data System (ADS)

    Krushinsky, Dmitry; Makarenko, Alexander

    2010-11-01

    One of the most prospective new methodologies for modelling is the so-called cellular automata (CA) approach. According to this paradigm, the models are built from simple elements connected into regular structures with local interaction between neighbours. The patterns of connections usually have a simple geometry (lattices). As one of the classical examples of CA we mention the game `Life' by J. Conway. This paper presents two examples of CA with anticipation property. These examples include a modification of the game `Life' and a cellular model of crowd movement.

  9. Analysis of IAV Replication and Co-infection Dynamics by a Versatile RNA Viral Genome Labeling Method.

    PubMed

    Dou, Dan; Hernández-Neuta, Iván; Wang, Hao; Östbye, Henrik; Qian, Xiaoyan; Thiele, Swantje; Resa-Infante, Patricia; Kouassi, Nancy Mounogou; Sender, Vicky; Hentrich, Karina; Mellroth, Peter; Henriques-Normark, Birgitta; Gabriel, Gülsah; Nilsson, Mats; Daniels, Robert

    2017-07-05

    Genome delivery to the proper cellular compartment for transcription and replication is a primary goal of viruses. However, methods for analyzing viral genome localization and differentiating genomes with high identity are lacking, making it difficult to investigate entry-related processes and co-examine heterogeneous RNA viral populations. Here, we present an RNA labeling approach for single-cell analysis of RNA viral replication and co-infection dynamics in situ, which uses the versatility of padlock probes. We applied this method to identify influenza A virus (IAV) infections in cells and lung tissue with single-nucleotide specificity and to classify entry and replication stages by gene segment localization. Extending the classification strategy to co-infections of IAVs with single-nucleotide variations, we found that the dependence on intracellular trafficking places a time restriction on secondary co-infections necessary for genome reassortment. Altogether, these data demonstrate how RNA viral genome labeling can help dissect entry and co-infections. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Nuclear organization of nucleotide excision repair is mediated by RING1B dependent H2A-ubiquitylation

    PubMed Central

    Chitale, Shalaka; Richly, Holger

    2017-01-01

    One of the major cellular DNA repair pathways is nucleotide excision repair (NER). It is the primary pathway for repair of various DNA lesions caused by exposure to ultraviolet (UV) light, such as cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts. Although lesion-containing DNA associates with the nuclear matrix after UV irradiation it is still not understood how nuclear organization affects NER. Analyzing unscheduled DNA synthesis (UDS) indicates that NER preferentially occurs in specific nuclear areas, viz the nucleolus. Upon inducing localized damage, we observe migration of damaged DNA towards the nucleolus. Employing a LacR-based tethering system we demonstrate that H2A-ubiquitylation via the UV-RING1B complex localizes chromatin close to the nucleolus. We further show that the H2A-ubiquitin binding protein ZRF1 resides in the nucleolus, and that it anchors ubiquitylated chromatin along with XPC. Our data thus provide insight into the sub-nuclear organization of NER and reveal a novel role for histone H2A-ubiquitylation. PMID:28416769

  11. Chitosan based hydrogels: characteristics and pharmaceutical applications

    PubMed Central

    Ahmadi, F.; Oveisi, Z.; Samani, S. Mohammadi; Amoozgar, Z.

    2015-01-01

    Hydrogel scaffolds serve as semi synthetic or synthetic extra cellular matrix to provide an amenable environment for cellular adherence and cellular remodeling in three dimensional structures mimicking that of natural cellular environment. Additionally, hydrogels have the capacity to carry small molecule drugs and/or proteins, growth factors and other necessary components for cell growth and differentiation. In the context of drug delivery, hydrogels can be utilized to localize drugs, increase drugs concentration at the site of action and consequently reduce off-targeted side effects. The current review aims to describe and classify hydrogels and their methods of production. The main highlight is chitosan-based hydrogels as biocompatible and medically relevant hydrogels for drug delivery. PMID:26430453

  12. From hatching to dispatching: the multiple cellular roles of the Hsp70 molecular chaperone machinery.

    PubMed

    Meimaridou, Eirini; Gooljar, Sakina B; Chapple, J Paul

    2009-01-01

    Molecular chaperones are best recognized for their roles in de novo protein folding and the cellular response to stress. However, many molecular chaperones, and in particular the Hsp70 chaperone machinery, have multiple diverse cellular functions. At the molecular level, chaperones are mediators of protein conformational change. To facilitate conformational change of client/substrate proteins, in manifold contexts, chaperone power must be closely regulated and harnessed to specific cellular locales--this is controlled by cochaperones. This review considers specialized functions of the Hsp70 chaperone machinery mediated by its cochaperones. We focus on vesicular trafficking, protein degradation and a potential role in G protein-coupled receptor processing.

  13. On the cellular autoimmune mechanism for eliminating erythrocytes normally and under extreme influences

    NASA Technical Reports Server (NTRS)

    Pukhova, Y. I.; Terskov, I. A.; Anikina, A. Y.; Shashkin, A. V.

    1980-01-01

    The presence of an autoimmune cellular mechanism for destroying erythrocytes on the basis of results of experiments in vivo is demonstrated in the blood and the organs. This mechanism is made up of a population of immunocompetent killer-lymphocytes which originates in the bone marrow and the thymus, and which is manifested in the local hemolysis effect.

  14. A cellular automaton implementation of a quantum battle of the sexes game with imperfect information

    NASA Astrophysics Data System (ADS)

    Alonso-Sanz, Ramón

    2015-10-01

    The dynamics of a spatial quantum formulation of the iterated battle of the sexes game with imperfect information is studied in this work. The game is played with variable entangling in a cellular automata manner, i.e. with local and synchronous interaction. The effect of spatial structure is assessed in fair and unfair scenarios.

  15. Cellular Automata and the Humanities.

    ERIC Educational Resources Information Center

    Gallo, Ernest

    1994-01-01

    The use of cellular automata to analyze several pre-Socratic hypotheses about the evolution of the physical world is discussed. These hypotheses combine characteristics of both rigorous and metaphoric language. Since the computer demands explicit instructions for each step in the evolution of the automaton, such models can reveal conceptual…

  16. Cytomechanical properties of papaver pollen tubes are altered after self-incompatibility challenge.

    PubMed

    Geitmann, Anja; McConnaughey, William; Lang-Pauluzzi, Ingeborg; Franklin-Tong, Vernonica E; Emons, Anne Mie C

    2004-05-01

    Self-incompatibility (SI) in Papaver rhoeas triggers a ligand-mediated signal transduction cascade, resulting in the inhibition of incompatible pollen tube growth. Using a cytomechanical approach we have demonstrated that dramatic changes to the mechanical properties of incompatible pollen tubes are stimulated by SI induction. Microindentation revealed that SI resulted in a reduction of cellular stiffness and an increase in cytoplasmic viscosity. Whereas the former cellular response is likely to be the result of a drop in cellular turgor, we hypothesize that the latter is caused by as yet unidentified cross-linking events. F-actin rearrangements, a characteristic phenomenon for SI challenge in Papaver, displayed a spatiotemporal gradient along the pollen tube; this suggests that signal propagation occurs in a basipetal direction. However, unexpectedly, local application of SI inducing S-protein did not reveal any evidence for localized signal perception in the apical or subapical regions of the pollen tube. To our knowledge this represents the first mechanospatial approach to study signal propagation and cellular responses in a well-characterized plant cell system. Our data provide the first evidence for mechanical changes induced in the cytoplasm of a plant cell stimulated by a defined ligand.

  17. Large scale superres 3D imaging: light-sheet single-molecule localization microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lu, Chieh Han; Chen, Peilin; Chen, Bi-Chang

    2017-02-01

    Optical imaging techniques provide much important information in understanding life science especially cellular structure and morphology because "seeing is believing". However, the resolution of optical imaging is limited by the diffraction limit, which is discovered by Ernst Abbe, i.e. λ/2(NA) (NA is the numerical aperture of the objective lens). Fluorescence super-resolution microscopic techniques such as Stimulated emission depletion microscopy (STED), Photoactivated localization microscopy (PALM), and Stochastic optical reconstruction microscopy (STORM) are invented to have the capability of seeing biological entities down to molecular level that are smaller than the diffraction limit (around 200-nm in lateral resolution). These techniques do not physically violate the Abbe limit of resolution but exploit the photoluminescence properties and labelling specificity of fluorescence molecules to achieve super-resolution imaging. However, these super-resolution techniques limit most of their applications to the 2D imaging of fixed or dead samples due to the high laser power needed or slow speed for the localization process. Extended from 2D imaging, light sheet microscopy has been proven to have a lot of applications on 3D imaging at much better spatiotemporal resolutions due to its intrinsic optical sectioning and high imaging speed. Herein, we combine the advantage of localization microscopy and light-sheet microscopy to have super-resolved cellular imaging in 3D across large field of view. With high-density labeled spontaneous blinking fluorophore and wide-field detection of light-sheet microscopy, these allow us to construct 3D super-resolution multi-cellular imaging at high speed ( minutes) by light-sheet single-molecule localization microscopy.

  18. Simulations of Forest Fires by the Cellular Automata Model "ABBAMPAU"

    NASA Astrophysics Data System (ADS)

    di Gregorio, S.; Bendicenti, E.

    2003-04-01

    Forest fires represent a serious environmental problem, whose negative impact is becoming day by day more worrisome. Forest fires are very complex phenomena; that need an interdisciplinary approach. The adopted method to modelling involves the definition of local rules, from which the global behaviour of the system can emerge. The paradigm of Cellular Automata was applied and the model ABBAMPAU was projected to simulate the evolution of forest fires. Cellular Automata features (parallelism and a-centrism) seem to match the system "forest fire"; the parameters, describing globally a forest fire, i.e. propagation rate, flame length and direction, fireline intensity, fire duration time et c. are mainly depending on some local characteristics i.e. vegetation type (live and dead fuel), relative humidity, fuel moisture, heat, territory morphology (altitude, slope), et c.. The only global characteristic is given by wind velocity and direction, but wind velocity and direction is locally altered according to the morphology; therefore wind has also to be considered at local level. ABBAMPAU accounts for the following aspects of the phenomenon: effects of combustion in surface and crown fire inside the cell, crown fire triggering off; surface and crown fire spread, determination of the local wind rate and direction. A validation of ABBAMPAU was tested on a real case of forest fire, in the territory of Villaputzu, Sardinia island, August 22nd, 1998. First simulations account for the main characteristics of the phenomenon and agree with the observations. The results show that the model could be applied for the forest fire preventions, the productions of risk scenarios and the evaluation of the forest fire environmental impact.

  19. Automated Quantification of Hematopoietic Cell – Stromal Cell Interactions in Histological Images of Undecalcified Bone

    PubMed Central

    Zehentmeier, Sandra; Cseresnyes, Zoltan; Escribano Navarro, Juan; Niesner, Raluca A.; Hauser, Anja E.

    2015-01-01

    Confocal microscopy is the method of choice for the analysis of localization of multiple cell types within complex tissues such as the bone marrow. However, the analysis and quantification of cellular localization is difficult, as in many cases it relies on manual counting, thus bearing the risk of introducing a rater-dependent bias and reducing interrater reliability. Moreover, it is often difficult to judge whether the co-localization between two cells results from random positioning, especially when cell types differ strongly in the frequency of their occurrence. Here, a method for unbiased quantification of cellular co-localization in the bone marrow is introduced. The protocol describes the sample preparation used to obtain histological sections of whole murine long bones including the bone marrow, as well as the staining protocol and the acquisition of high-resolution images. An analysis workflow spanning from the recognition of hematopoietic and non-hematopoietic cell types in 2-dimensional (2D) bone marrow images to the quantification of the direct contacts between those cells is presented. This also includes a neighborhood analysis, to obtain information about the cellular microenvironment surrounding a certain cell type. In order to evaluate whether co-localization of two cell types is the mere result of random cell positioning or reflects preferential associations between the cells, a simulation tool which is suitable for testing this hypothesis in the case of hematopoietic as well as stromal cells, is used. This approach is not limited to the bone marrow, and can be extended to other tissues to permit reproducible, quantitative analysis of histological data. PMID:25938636

  20. Plasmodium knowlesi Skeleton-Binding Protein 1 Localizes to the 'Sinton and Mulligan' Stipplings in the Cytoplasm of Monkey and Human Erythrocytes.

    PubMed

    Lucky, Amuza Byaruhanga; Sakaguchi, Miako; Katakai, Yuko; Kawai, Satoru; Yahata, Kazuhide; Templeton, Thomas J; Kaneko, Osamu

    2016-01-01

    The malaria parasite, Plasmodium, exports protein products to the infected erythrocyte to introduce modifications necessary for the establishment of nutrient acquisition and surface display of host interaction ligands. Erythrocyte remodeling impacts parasite virulence and disease pathology and is well documented for the human malaria parasite Plasmodium falciparum, but has been less described for other Plasmodium species. For P. falciparum, the exported protein skeleton-binding protein 1 (PfSBP1) is involved in the trafficking of erythrocyte surface ligands and localized to membranous structures within the infected erythrocyte, termed Maurer's clefts. In this study, we analyzed SBP1 orthologs across the Plasmodium genus by BLAST analysis and conserved gene synteny, which were also recently described by de Niz et al. (2016). To evaluate the localization of an SBP1 ortholog, we utilized the zoonotic malaria parasite, Plasmodium knowlesi. Immunofluorescence assay of transgenic P. knowlesi parasites expressing epitope-tagged recombinant PkSBP1 revealed a punctate staining pattern reminiscent of Maurer's clefts, following infection of either monkey or human erythrocytes. The recombinant PkSBP1-positive puncta co-localized with Giemsa-stained structures, known as 'Sinton and Mulligan' stipplings. Immunoelectron microscopy also showed that recombinant PkSBP1 localizes within or on the membranous structures akin to the Maurer's clefts. The recombinant PkSBP1 expressed in P. falciparum-infected erythrocytes co-localized with PfSBP1 at the Maurer's clefts, indicating an analogous trafficking pattern. A member of the P. knowlesi 2TM protein family was also expressed and localized to membranous structures in infected monkey erythrocytes. These results suggest that the trafficking machinery and induced erythrocyte cellular structures of P. knowlesi are similar following infection of both monkey and human erythrocytes, and are conserved with P. falciparum.

  1. Bacillus anthracis secretome time course under host-simulated conditions and identification of immunogenic proteins.

    PubMed

    Walz, Alexander; Mujer, Cesar V; Connolly, Joseph P; Alefantis, Tim; Chafin, Ryan; Dake, Clarissa; Whittington, Jessica; Kumar, Srikanta P; Khan, Akbar S; DelVecchio, Vito G

    2007-07-27

    The secretion time course of Bacillus anthracis strain RA3R (pXO1+/pXO2-) during early, mid, and late log phase were investigated under conditions that simulate those encountered in the host. All of the identified proteins were analyzed by different software algorithms to characterize their predicted mode of secretion and cellular localization. In addition, immunogenic proteins were identified using sera from humans with cutaneous anthrax. A total of 275 extracellular proteins were identified by a combination of LC MS/MS and MALDI-TOF MS. All of the identified proteins were analyzed by SignalP, SecretomeP, PSORT, LipoP, TMHMM, and PROSITE to characterize their predicted mode of secretion, cellular localization, and protein domains. Fifty-three proteins were predicted by SignalP to harbor the cleavable N-terminal signal peptides and were therefore secreted via the classical Sec pathway. Twenty-three proteins were predicted by SecretomeP for secretion by the alternative Sec pathway characterized by the lack of typical export signal. In contrast to SignalP and SecretomeP predictions, PSORT predicted 171 extracellular proteins, 7 cell wall-associated proteins, and 6 cytoplasmic proteins. Moreover, 51 proteins were predicted by LipoP to contain putative Sec signal peptides (38 have SpI sites), lipoprotein signal peptides (13 have SpII sites), and N-terminal membrane helices (9 have transmembrane helices). The TMHMM algorithm predicted 25 membrane-associated proteins with one to ten transmembrane helices. Immunogenic proteins were also identified using sera from patients who have recovered from anthrax. The charge variants (83 and 63 kDa) of protective antigen (PA) were the most immunodominant secreted antigens, followed by charge variants of enolase and transketolase. This is the first description of the time course of protein secretion for the pathogen Bacillus anthracis. Time course studies of protein secretion and accumulation may be relevant in elucidation of the progression of pathogenicity, identification of therapeutics and diagnostic markers, and vaccine development. This study also adds to the continuously growing list of identified Bacillus anthracis secretome proteins.

  2. Bacillus anthracis secretome time course under host-simulated conditions and identification of immunogenic proteins

    PubMed Central

    Walz, Alexander; Mujer, Cesar V; Connolly, Joseph P; Alefantis, Tim; Chafin, Ryan; Dake, Clarissa; Whittington, Jessica; Kumar, Srikanta P; Khan, Akbar S; DelVecchio, Vito G

    2007-01-01

    Background The secretion time course of Bacillus anthracis strain RA3R (pXO1+/pXO2-) during early, mid, and late log phase were investigated under conditions that simulate those encountered in the host. All of the identified proteins were analyzed by different software algorithms to characterize their predicted mode of secretion and cellular localization. In addition, immunogenic proteins were identified using sera from humans with cutaneous anthrax. Results A total of 275 extracellular proteins were identified by a combination of LC MS/MS and MALDI-TOF MS. All of the identified proteins were analyzed by SignalP, SecretomeP, PSORT, LipoP, TMHMM, and PROSITE to characterize their predicted mode of secretion, cellular localization, and protein domains. Fifty-three proteins were predicted by SignalP to harbor the cleavable N-terminal signal peptides and were therefore secreted via the classical Sec pathway. Twenty-three proteins were predicted by SecretomeP for secretion by the alternative Sec pathway characterized by the lack of typical export signal. In contrast to SignalP and SecretomeP predictions, PSORT predicted 171 extracellular proteins, 7 cell wall-associated proteins, and 6 cytoplasmic proteins. Moreover, 51 proteins were predicted by LipoP to contain putative Sec signal peptides (38 have SpI sites), lipoprotein signal peptides (13 have SpII sites), and N-terminal membrane helices (9 have transmembrane helices). The TMHMM algorithm predicted 25 membrane-associated proteins with one to ten transmembrane helices. Immunogenic proteins were also identified using sera from patients who have recovered from anthrax. The charge variants (83 and 63 kDa) of protective antigen (PA) were the most immunodominant secreted antigens, followed by charge variants of enolase and transketolase. Conclusion This is the first description of the time course of protein secretion for the pathogen Bacillus anthracis. Time course studies of protein secretion and accumulation may be relevant in elucidation of the progression of pathogenicity, identification of therapeutics and diagnostic markers, and vaccine development. This study also adds to the continuously growing list of identified Bacillus anthracis secretome proteins. PMID:17662140

  3. The heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a host factor required for dengue virus and Junín virus multiplication.

    PubMed

    Brunetti, Jesús E; Scolaro, Luis A; Castilla, Viviana

    2015-05-04

    Heterogeneous nuclear ribonucleoproteins (hnRNPs) are cellular factors involved in the replication of several viruses. In this study we analyzed the expression and intracellular localization of hnRNP A2 and hnRNP K in cell cultures infected with two viruses that cause human hemorrhagic fevers: dengue virus type 2 (DENV-2) and Junín virus (JUNV). We determined that DENV-2 promoted the cytoplasmic translocation of hnRNP K and to a lesser extent of hnRNP A2, meanwhile, JUNV infection induced an increase in hnRNP K cytoplasmic localization whereas hnRNP A2 remained mainly in the nucleus of infected cells. Both hnRNP K and hnRNP A2 were localized predominantly in the nucleus of JUNV persistently-infected cells even after superinfection with JUNV indicating that persistent infection does not alter nucleo-cytoplasmic transport of these hnRNPs. Total levels of hnRNP K expression were unaffected by DENV-2 or JUNV infection. In addition we determined, using small interfering RNAs, that hnRNP K knockout inhibits DENV-2 and JUNV multiplication. Our results indicate that DENV-2 and JUNV induce hnRNP K cytoplasmic translocation to favor viral multiplication. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Heterodimerization controls localization of Duox-DuoxA NADPH oxidases in airway cells.

    PubMed

    Luxen, Sylvia; Noack, Deborah; Frausto, Monika; Davanture, Suzel; Torbett, Bruce E; Knaus, Ulla G

    2009-04-15

    Duox NADPH oxidases generate hydrogen peroxide at the air-liquid interface of the respiratory tract and at apical membranes of thyroid follicular cells. Inactivating mutations of Duox2 have been linked to congenital hypothyroidism, and epigenetic silencing of Duox is frequently observed in lung cancer. To study Duox regulation by maturation factors in detail, its association with these factors, differential use of subunits and localization was analyzed in a lung cancer cell line and undifferentiated or polarized lung epithelial cells. We show here that Duox proteins form functional heterodimers with their respective DuoxA subunits, in close analogy to the phagocyte NADPH oxidase. Characterization of novel DuoxA1 isoforms and mispaired Duox-DuoxA complexes revealed that heterodimerization is a prerequisite for reactive oxygen species production. Functional Duox1 and Duox2 localize to the leading edge of migrating cells, augmenting motility and wound healing. DuoxA subunits are responsible for targeting functional oxidases to distinct cellular compartments in lung epithelial cells, including Duox2 expression in ciliated cells in an ex vivo differentiated lung epithelium. As these locations probably define signaling specificity of Duox1 versus Duox2, these findings will facilitate monitoring Duox isoform expression in lung disease, a first step for early screening procedures and rational drug development.

  5. An improved cellular automata model for train operation simulation with dynamic acceleration

    NASA Astrophysics Data System (ADS)

    Li, Wen-Jun; Nie, Lei

    2018-03-01

    Urban rail transit plays an important role in the urban public traffic because of its advantages of fast speed, large transport capacity, high safety, reliability and low pollution. This study proposes an improved cellular automaton (CA) model by considering the dynamic characteristic of the train acceleration to analyze the energy consumption and train running time. Constructing an effective model for calculating energy consumption to aid train operation improvement is the basis for studying and analyzing energy-saving measures for urban rail transit system operation.

  6. Using Magnets and Magnetic Beads to Dissect Signaling Pathways Activated by Mechanical Tension Applied to Cells

    PubMed Central

    Marjoram, R.J.; Guilluy, C; Burridge, K.

    2015-01-01

    Cellular tension has implications in normal biology and pathology. Membrane adhesion receptors serve as conduits for mechanotransduction that lead to cellular responses. Ligand-conjugated magnetic beads are a useful tool in the study of how cells sense and respond to tension. Here we detail methods for their use in applying tension to cells and strategies for analyzing the results. We demonstrate the methods by analyzing mechanotransduction through VE-cadherin on endothelial cells using both permanent magnets and magnetic tweezers. PMID:26427549

  7. Modems for emerging digital cellular-mobile radio system

    NASA Technical Reports Server (NTRS)

    Feher, Kamilo

    1991-01-01

    Digital modem techniques for emerging digital cellular telecommunications-mobile radio system applications are described and analyzed. In particular, theoretical performance, experimental results, principles of operation, and various architectures of pi/4-QPSK (pi/4-shifted coherent or differential QPSK) modems for second-generation US digital cellular radio system applications are presented. The spectral/power efficiency and performance of the pi/4-QPSK modems (American and Japanese digital cellular emerging standards) are studied and briefly compared to GMSK (Gaussian minimum-shift keying) modems (proposed for European DECT and GSM cellular standards). Improved filtering strategies and digital pilot-aided (digital channel sounding) techniques are also considered for pi/4-QPSK and other digital modems. These techniques could significantly improve the performance of digital cellular and other digital land mobile and satellite mobile radio systems. More spectrally efficient modem trends for future cellular/mobile (land mobile) and satellite communication systems applications are also highlighted.

  8. Mechanisms of information decoding in a cascade system of gene expression

    NASA Astrophysics Data System (ADS)

    Wang, Haohua; Yuan, Zhanjiang; Liu, Peijiang; Zhou, Tianshou

    2016-05-01

    Biotechnology advances have allowed investigation of heterogeneity of cellular responses to stimuli on the single-cell level. Functionally, this heterogeneity can compromise cellular responses to environmental signals, and it can also enlarge the repertoire of possible cellular responses and hence increase the adaptive nature of cellular behaviors. However, the mechanism of how this response heterogeneity is generated remains elusive. Here, by systematically analyzing a representative cellular signaling system, we show that (1) the upstream activator always amplifies the downstream burst frequency (BF) but the noiseless activator performs better than the noisy one, remarkably for small or moderate input signal strengths, and the repressor always reduces the downstream BF but the difference in the reducing effect between noiseless and noise repressors is very small; (2) both the downstream burst size and mRNA mean are a monotonically increasing function of the activator strength but a monotonically decreasing function of the repressor strength; (3) for repressor-type input, there is a noisy signal strength such that the downstream mRNA noise arrives at an optimal level, but for activator-type input, the output noise intensity is fundamentally a monotonically decreasing function of the input strength. Our results reveal the essential mechanisms of both signal information decoding and cellular response heterogeneity, whereas our analysis provides a paradigm for analyzing dynamics of noisy biochemical signaling systems.

  9. Measuring sickle cell morphology in flow using spectrally encoded flow cytometry (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kviatkovsky, Inna; Zeidan, Adel; Yeheskely-Hayon, Daniella; Dann, Eldad J.; Yelin, Dvir

    2017-02-01

    During a sickle cell crisis in sickle cell anemia patients, deoxygenated red blood cells may change their mechanical properties and block small blood vessels, causing pain, local tissue damage and even organ failure. Measuring these cellular structural and morphological changes is important for understanding the factors contributing to vessel blockage and developing an effective treatment. In this work, we use spectrally encoded flow cytometry for confocal, high-resolution imaging of flowing blood cells from sickle cell anemia patients. A wide variety of cell morphologies were observed by analyzing the interference patterns resulting from reflections from the front and back faces of the cells' membrane. Using numerical simulation for calculating the two-dimensional reflection pattern from the cells, we propose an analytical expression for the three-dimensional shape of a characteristic sickle cell and compare it to a previous from the literature. In vitro spectrally encoded flow cytometry offers new means for analyzing the morphology of sickle cells in stress-free environment, and could provide an effective tool for studying the unique physiological properties of these cells.

  10. Multimodal Light Microscopy Approaches to Reveal Structural and Functional Properties of Promyelocytic Leukemia Nuclear Bodies.

    PubMed

    Hoischen, Christian; Monajembashi, Shamci; Weisshart, Klaus; Hemmerich, Peter

    2018-01-01

    The promyelocytic leukemia ( pml ) gene product PML is a tumor suppressor localized mainly in the nucleus of mammalian cells. In the cell nucleus, PML seeds the formation of macromolecular multiprotein complexes, known as PML nuclear bodies (PML NBs). While PML NBs have been implicated in many cellular functions including cell cycle regulation, survival and apoptosis their role as signaling hubs along major genome maintenance pathways emerged more clearly. However, despite extensive research over the past decades, the precise biochemical function of PML in these pathways is still elusive. It remains a big challenge to unify all the different previously suggested cellular functions of PML NBs into one mechanistic model. With the advent of genetically encoded fluorescent proteins it became possible to trace protein function in living specimens. In parallel, a variety of fluorescence fluctuation microscopy (FFM) approaches have been developed which allow precise determination of the biophysical and interaction properties of cellular factors at the single molecule level in living cells. In this report, we summarize the current knowledge on PML nuclear bodies and describe several fluorescence imaging, manipulation, FFM, and super-resolution techniques suitable to analyze PML body assembly and function. These include fluorescence redistribution after photobleaching, fluorescence resonance energy transfer, fluorescence correlation spectroscopy, raster image correlation spectroscopy, ultraviolet laser microbeam-induced DNA damage, erythrocyte-mediated force application, and super-resolution microscopy approaches. Since most if not all of the microscopic equipment to perform these techniques may be available in an institutional or nearby facility, we hope to encourage more researches to exploit sophisticated imaging tools for their research in cancer biology.

  11. Expression of human telomerase reverse transcriptase protein in oral epithelial dysplasia and oral squamous cell carcinoma: An immunohistochemical study

    PubMed Central

    Raghunandan, Bangalore Nagarajachar; Sanjai, Karpagaselvi; Kumaraswamy, Jayalakshmi; Papaiah, Lokesh; Pandey, Bhavna; Jyothi, Bellur MadhavaRao

    2016-01-01

    Background: Telomerase is an RNA-dependent DNA polymerase that synthesizes TTAGGG telomeric DNA sequences and almost universally provides the molecular basis for unlimited proliferative potential. The telomeres become shorter with each cycle of replication and reach a critical limit; most cells die or enter stage of replicative senescence. Telomere length maintenance by telomerase is required for all the cells that exhibit limitless replicative potential. It has been postulated that reactivation of telomerase expression is necessary for the continuous proliferation of neoplastic cells to attain immortality. Use of immunohistochemistry (IHC) is a useful, reliable method of localizing the human telomerase reverse transcriptase (hTERT) protein in tissue sections which permits cellular localization. Although there exists a lot of information on telomerase in oral cancer, little is known about their expression in oral epithelial dysplasia and their progression to oral squamous cell carcinoma (OSCC) compared to normal oral mucosa. This study addresses this lacuna. Aims: To compare the expression of hTERT protein in oral epithelial dysplasia and OSCC with normal oral mucosa by Immunohistochemical method. Subjects and Methods: In this preliminary study, IHC was used to detect the expression of hTERT protein in OSCC (n = 20), oral epithelial dysplasia (n = 21) and normal oral mucosa (n = 10). The tissue localization of immunostain, cellular localization of immunostain, nature of stain, intensity of stain, percentage of cells stained with hTERT protein were studied. A total number of 100 cells were counted in each slide. Statistical Analysis: All the data were analyzed using SPSS software version 16.0. The tissue localization, cellular localization of cytoplasmic/nuclear/both of hTERT stain, staining intensity was compared across the groups using Pearson's Chi-square test. The mean percentage of cells stained for oral epithelial dysplasia, OSCC and normal oral mucosa were compared using analysis of variance (ANOVA). A P < 0.05 was considered to be statistically significant. Results: The mean hTERT positive cells in the study groups were as follows, 62.91% in normal oral mucosa samples, 77.06% in oral epithelial dysplasia cases, and 81.48% in OSCC. In 61.9% of oral epithelial dysplasia and 65% of OSCC in our study, staining was visualized within the nucleus predominantly in the dot like pattern. There was a statistically significant difference in the nature of nuclear stain between oral epithelial dysplasia and OSCC (P = 0.023). Conclusions: Our results suggests that the mean percentage of cells showing hTERT expression steadily increased from normal oral mucosa to oral epithelial dysplasia to OSCC. The steady trend of increase in the percentage of cells was evident in different grades of oral epithelial dysplasia group and OSCC. The nature of hTERT staining did show variations among the three groups and promise to be a potential surrogate marker for malignant transformation. Further studies using IHC on larger sample size and clinical follow-up of these patients will be ascertaining the full potential of hTERT as a surrogate marker of epithelial transformation. PMID:27194869

  12. Localizing Protein in 3D Neural Stem Cell Culture: a Hybrid Visualization Methodology

    PubMed Central

    Fai, Stephen; Bennett, Steffany A.L.

    2010-01-01

    The importance of 3-dimensional (3D) topography in influencing neural stem and progenitor cell (NPC) phenotype is widely acknowledged yet challenging to study. When dissociated from embryonic or post-natal brain, single NPCs will proliferate in suspension to form neurospheres. Daughter cells within these cultures spontaneously adopt distinct developmental lineages (neurons, oligodendrocytes, and astrocytes) over the course of expansion despite being exposed to the same extracellular milieu. This progression recapitulates many of the stages observed over the course of neurogenesis and gliogenesis in post-natal brain and is often used to study basic NPC biology within a controlled environment. Assessing the full impact of 3D topography and cellular positioning within these cultures on NPC fate is, however, difficult. To localize target proteins and identify NPC lineages by immunocytochemistry, free-floating neurospheres must be plated on a substrate or serially sectioned. This processing is required to ensure equivalent cell permeabilization and antibody access throughout the sphere. As a result, 2D epifluorescent images of cryosections or confocal reconstructions of 3D Z-stacks can only provide spatial information about cell position within discrete physical or digital 3D slices and do not visualize cellular position in the intact sphere. Here, to reiterate the topography of the neurosphere culture and permit spatial analysis of protein expression throughout the entire culture, we present a protocol for isolation, expansion, and serial sectioning of post-natal hippocampal neurospheres suitable for epifluorescent or confocal immunodetection of target proteins. Connexin29 (Cx29) is analyzed as an example. Next, using a hybrid of graphic editing and 3D modelling softwares rigorously applied to maintain biological detail, we describe how to re-assemble the 3D structural positioning of these images and digitally map labelled cells within the complete neurosphere. This methodology enables visualization and analysis of the cellular position of target proteins and cells throughout the entire 3D culture topography and will facilitate a more detailed analysis of the spatial relationships between cells over the course of neurogenesis and gliogenesis in vitro. Both Imbeault and Valenzuela contributed equally and should be considered joint first authors. PMID:21258319

  13. Hydrodynamic Instability in an Extended Landau/Levich Model of Liquid-Propellant Combustion

    NASA Technical Reports Server (NTRS)

    Margolis, Stephen B.; Sackesteder, Kurt (Technical Monitor)

    1998-01-01

    The classical Landau/Levich models of liquid propellant combustion, which serve as seminal examples of hydrodynamic instability in reactive systems, have been combined and extended to account for a dynamic dependence, absent in the original formulations, of the local burning rate on the local pressure and/or temperature fields. The resulting model admits an extremely rich variety of both hydrodynamic and reactive/diffusive instabilities that can be analyzed in various limiting parameter regimes. In the present work, a formal asymptotic analysis, based on the realistic smallness of the gas-to-liquid density ratio, is developed to investigate the combined effects of gravity, surface tension and viscosity on the hydrodynamic instability of the propagating liquid/gas interface. In particular, a composite asymptotic expression, spanning three distinguished wavenumber regimes, is derived for both cellular and pulsating hydrodynamic neutral stability boundaries A(sub p)(k), where A(sub p) is the pressure sensitivity of the burning rate and k is the disturbance wavenumber. For the case of cellular (Landau) instability, the results demonstrate explicitly the stabilizing effect of gravity on long-wave disturbances, the stabilizing effect of viscosity and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for critical negative values of A(sub p). In the limiting case of weak gravity, it is shown that cellular hydrodynamic instability in this context is a long-wave instability phenomenon, whereas at normal gravity, this instability is first manifested through O(l) wavenumber disturbances. It is also demonstrated that, in the large wavenumber regime, surface tension and both liquid and gas viscosity all produce comparable stabilizing effects in the large-wavenumber regime, thereby providing significant modifications to previous analyses of Landau instability in which one or more of these effects were neglected. In contrast, the pulsating hydrodynamic stability boundary is found to be insensitive to gravitational and surface-tension effects, but is more sensitive to the effects of liquid viscosity, which is a significant stabilizing effect for O(l) and higher wavenumbers. Liquid-propellant combustion is predicted to be stable (i.e., steady and planar) only for a range of negative pressure sensitivities that lie between the two types of hydrodynamic stability boundaries.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zalewski, Jenna K.; Mo, Joshua H.; Heber, Simone

    Shroom-mediated remodeling of the actomyosin cytoskeleton is a critical driver of cellular shape and tissue morphology that underlies the development of many tissues including the neural tube, eye, intestines, and vasculature. Shroom uses a conserved SD2 domain to direct the subcellular localization of Rho-associated kinase (Rock), which in turn drives changes in the cytoskeleton and cellular morphology through its ability to phosphorylate and activate non-muscle myosin II. Here in this paper, we present the structure of the human Shroom-Rock binding module, revealing an unexpected stoichiometry for Shroom in which two Shroom SD2 domains bind independent surfaces on Rock. Mutation ofmore » interfacial residues impaired Shroom-Rock binding in vitro and resulted in altered remodeling of the cytoskeleton and loss of Shroom-mediated changes in cellular morphology. In addition, we provide the first direct evidence that Shroom can function as a Rock activator. These data provide molecular insight into the Shroom-Rock interface and demonstrate that Shroom directly participates in regulating cytoskeletal dynamics, adding to its known role in Rock localization.« less

  15. Sub-cellular mRNA localization modulates the regulation of gene expression by small RNAs in bacteria

    NASA Astrophysics Data System (ADS)

    Teimouri, Hamid; Korkmazhan, Elgin; Stavans, Joel; Levine, Erel

    2017-10-01

    Small non-coding RNAs can exert significant regulatory activity on gene expression in bacteria. In recent years, substantial progress has been made in understanding bacterial gene expression by sRNAs. However, recent findings that demonstrate that families of mRNAs show non-trivial sub-cellular distributions raise the question of how localization may affect the regulatory activity of sRNAs. Here we address this question within a simple mathematical model. We show that the non-uniform spatial distributions of mRNA can alter the threshold-linear response that characterizes sRNAs that act stoichiometrically, and modulate the hierarchy among targets co-regulated by the same sRNA. We also identify conditions where the sub-cellular organization of cofactors in the sRNA pathway can induce spatial heterogeneity on sRNA targets. Our results suggest that under certain conditions, interpretation and modeling of natural and synthetic gene regulatory circuits need to take into account the spatial organization of the transcripts of participating genes.

  16. Visualization of astaxanthin localization in HT29 human colon adenocarcinoma cells by combined confocal resonance Raman and fluorescence microspectroscopy.

    PubMed

    Briviba, Karlis; Bornemann, Rainer; Lemmer, Ulrich

    2006-11-01

    Astaxanthin, a carotenoid found in plants and seafood, exhibits antiproliferative, antioxidant and anticarcinogenic properties. We show that astaxanthin delivered with tetrahydrofuran is effectively taken up by cultured colon adenocarcinoma cells and is localized mostly in the cytoplasm as detected by confocal resonance Raman and broad-band fluorescence microspectroscopy image analysis. Cells incubated with beta-carotene at the same concentration as astaxanthin (10 microM) showed about a 50-fold lower cellular amount of beta-carotene, as detected by HPLC. No detectable Raman signal of beta-carotene was found in cells, but a weak broad-band fluorescence signal of beta-carotene was observed. beta-Carotene, like astaxanthin, was localized mostly in the cytoplasm. The heterogeneity of astaxanthin and beta-carotene cellular distribution in cells of intestinal origin suggests that the possible defense against reactive molecules by carotenoids in these cells may also be heterogeneous.

  17. The telomeric protein AKTIP interacts with A- and B-type lamins and is involved in regulation of cellular senescence

    PubMed Central

    Burla, Romina; Carcuro, Mariateresa; Torre, Mattia La; Fratini, Federica; Crescenzi, Marco; D'Apice, Maria Rosaria; Spitalieri, Paola; Raffa, Grazia Daniela; Astrologo, Letizia; Lattanzi, Giovanna; Cundari, Enrico; Raimondo, Domenico; Biroccio, Annamaria; Gatti, Maurizio

    2016-01-01

    AKTIP is a shelterin-interacting protein required for replication of telomeric DNA. Here, we show that AKTIP biochemically interacts with A- and B-type lamins and affects lamin A, but not lamin C or B, expression. In interphase cells, AKTIP localizes at the nuclear rim and in discrete regions of the nucleoplasm just like lamins. Double immunostaining revealed that AKTIP partially co-localizes with lamin B1 and lamin A/C in interphase cells, and that proper AKTIP localization requires functional lamin A. In mitotic cells, AKTIP is enriched at the spindle poles and at the midbody of late telophase cells similar to lamin B1. AKTIP-depleted cells show senescence-associated markers and recapitulate several aspects of the progeroid phenotype. Collectively, our results indicate that AKTIP is a new player in lamin-related processes, including those that govern nuclear architecture, telomere homeostasis and cellular senescence. PMID:27512140

  18. Transmembrane protein sorting driven by membrane curvature

    NASA Astrophysics Data System (ADS)

    Strahl, H.; Ronneau, S.; González, B. Solana; Klutsch, D.; Schaffner-Barbero, C.; Hamoen, L. W.

    2015-11-01

    The intricate structure of prokaryotic and eukaryotic cells depends on the ability to target proteins to specific cellular locations. In most cases, we have a poor understanding of the underlying mechanisms. A typical example is the assembly of bacterial chemoreceptors at cell poles. Here we show that the classical chemoreceptor TlpA of Bacillus subtilis does not localize according to the consensus stochastic nucleation mechanism but accumulates at strongly curved membrane areas generated during cell division. This preference was confirmed by accumulation at non-septal curved membranes. Localization appears to be an intrinsic property of the protein complex and does not rely on chemoreceptor clustering, as was previously shown for Escherichia coli. By constructing specific amino-acid substitutions, we demonstrate that the preference for strongly curved membranes arises from the curved shape of chemoreceptor trimer of dimers. These findings demonstrate that the intrinsic shape of transmembrane proteins can determine their cellular localization.

  19. Self-interference 3D super-resolution microscopy for deep tissue investigations.

    PubMed

    Bon, Pierre; Linarès-Loyez, Jeanne; Feyeux, Maxime; Alessandri, Kevin; Lounis, Brahim; Nassoy, Pierre; Cognet, Laurent

    2018-06-01

    Fluorescence localization microscopy has achieved near-molecular resolution capable of revealing ultra-structures, with a broad range of applications, especially in cellular biology. However, it remains challenging to attain such resolution in three dimensions and inside biological tissues beyond the first cell layer. Here we introduce SELFI, a framework for 3D single-molecule localization within multicellular specimens and tissues. The approach relies on self-interference generated within the microscope's point spread function (PSF) to simultaneously encode equiphase and intensity fluorescence signals, which together provide the 3D position of an emitter. We combined SELFI with conventional localization microscopy to visualize F-actin 3D filament networks and reveal the spatial distribution of the transcription factor OCT4 in human induced pluripotent stem cells at depths up to 50 µm inside uncleared tissue spheroids. SELFI paves the way to nanoscale investigations of native cellular processes in intact tissues.

  20. Thiol oxidation by nitrosative stress: Cellular localization in human spermatozoa.

    PubMed

    Cabrillana, María E; Uribe, Pamela; Villegas, Juana V; Álvarez, Juan; Sánchez, Raúl; Fornés, Miguel W

    2016-10-01

    Peroxynitrite is a highly reactive nitrogen species and when it is generated at high levels it causes nitrosative stress, an important cause of impaired sperm function. High levels of peroxynitrite have been shown to correlate with decreased semen quality in infertile men. Thiol groups in sperm are mainly found in enzymes, antioxidant molecules, and structural proteins in the axoneme. Peroxynitrite primarily reacts with thiol groups of cysteine-containing proteins. Although it is well known that peroxynitrite oxidizes sulfhydryl groups in sperm, the subcellular localization of this oxidation remains unknown. The main objective of this study was to establish the subcellular localization of peroxynitrite-induced nitrosative stress in thiol groups and its relation to sperm motility in human spermatozoa. For this purpose, spermatozoa from healthy donors were exposed in vitro to 3-morpholinosydnonimine (SIN-1), a compound which generates peroxynitrite. In order to detect peroxynitrite and reduced thiol groups, the fluorescent probes, dihydrorhodamine 123 and monobromobimane (mBBr), were used respectively. Sperm viability was analyzed by propidium iodide staining. Peroxynitrite generation and thiol redox state were monitored by confocal microscopy whereas sperm viability was evaluated by flow cytometry. Sperm motility was analyzed by CASA using the ISAS(®) system. The results showed that exposure of human spermatozoa to peroxynitrite results in increased thiol oxidation which is mainly localized in the sperm head and principal piece regions. Thiol oxidation was associated with motility loss. The high susceptibility of thiol groups to peroxynitrite-induced oxidation could explain, at least in part, the negative effect of reactive nitrogen species on sperm motility. DHR: dihydrorhodamine 123; mBBr: monobromobimane ONOO(-): peroxynitrite RNS: reactive nitrogen species RFI: relative fluorescence intensity SIN-1: 3-morpholinosydnonimine CASA: Computer-Aided Sperm Analysis PARP: poli ADP ribose polimerasa VCL: curvilinear velocity VSL: straight-line velocity VAP: average path velocity PRDXs: peroxiredoxins ODF: outer dense fiber ODF1: outer dense fiber 1 PI: propidium iodide DMSO: dimethyl sulfoxide SD: standard deviation analysis of variance.

  1. On the effect of memory in a quantum prisoner's dilemma cellular automaton

    NASA Astrophysics Data System (ADS)

    Alonso-Sanz, Ramón; Revuelta, Fabio

    2018-03-01

    The disrupting effect of quantum memory on the dynamics of a spatial quantum formulation of the iterated prisoner's dilemma game with variable entangling is studied. The game is played within a cellular automata framework, i.e., with local and synchronous interactions. The main findings of this work refer to the shrinking effect of memory on the disruption induced by noise.

  2. Mitochondria-localized caveolin in adaptation to cellular stress and injury

    PubMed Central

    Fridolfsson, Heidi N.; Kawaraguchi, Yoshitaka; Ali, Sameh S.; Panneerselvam, Mathivadhani; Niesman, Ingrid R.; Finley, J. Cameron; Kellerhals, Sarah E.; Migita, Michael Y.; Okada, Hideshi; Moreno, Ana L.; Jennings, Michelle; Kidd, Michael W.; Bonds, Jacqueline A.; Balijepalli, Ravi C.; Ross, Robert S.; Patel, Piyush M.; Miyanohara, Atsushi; Chen, Qun; Lesnefsky, Edward J.; Head, Brian P.; Roth, David M.; Insel, Paul A.; Patel, Hemal H.

    2012-01-01

    We show here that the apposition of plasma membrane caveolae and mitochondria (first noted in electron micrographs >50 yr ago) and caveolae-mitochondria interaction regulates adaptation to cellular stress by modulating the structure and function of mitochondria. In C57Bl/6 mice engineered to overexpress caveolin specifically in cardiac myocytes (Cav-3 OE), localization of caveolin to mitochondria increases membrane rigidity (4.2%; P<0.05), tolerance to calcium, and respiratory function (72% increase in state 3 and 23% increase in complex IV activity; P<0.05), while reducing stress-induced generation of reactive oxygen species (by 20% in cellular superoxide and 41 and 28% in mitochondrial superoxide under states 4 and 3, respectively; P<0.05) in Cav-3 OE vs. TGneg. By contrast, mitochondrial function is abnormal in caveolin-knockout mice and Caenorhabditis elegans with null mutations in caveolin (60% increase free radical in Cav-2 C. elegans mutants; P<0.05). In human colon cancer cells, mitochondria with increased caveolin have a 30% decrease in apoptotic stress (P<0.05), but cells with disrupted mitochondria-caveolin interaction have a 30% increase in stress response (P<0.05). Targeted gene transfer of caveolin to mitochondria in C57Bl/6 mice increases cardiac mitochondria tolerance to calcium, enhances respiratory function (increases of 90% state 4, 220% state 3, 88% complex IV activity; P<0.05), and decreases (by 33%) cardiac damage (P<0.05). Physical association and apparently the transfer of caveolin between caveolae and mitochondria is thus a conserved cellular response that confers protection from cellular damage in a variety of tissues and settings.—Fridolfsson, H. N., Kawaraguchi, Y., Ali, S. S., Panneerselvam, M., Niesman, I. R., Finley, J. C., Kellerhals, S. E., Migita, M. Y., Okada, H., Moreno, A. L., Jennings, M., Kidd, M. W., Bonds, J. A., Balijepalli, R. C., Ross, R. S., Patel, P. M., Miyanohara, A., Chen, Q., Lesnefsky, E. J., Head, B. P., Roth, D. M., Insel, P. A., Patel, H. H. Mitochondria-localized caveolin in adaptation to cellular stress and injury. PMID:22859372

  3. Structure and function of yeast glutaredoxin 2 depend on postranslational processing and are related to subcellular distribution.

    PubMed

    Porras, Pablo; McDonagh, Brian; Pedrajas, Jose Rafael; Bárcena, J Antonio; Padilla, C Alicia

    2010-04-01

    We have previously shown that glutaredoxin 2 (Grx2) from Saccharomyces cerevisiae localizes at 3 different subcellular compartments, cytosol, mitochondrial matrix and outer membrane, as the result of different postranslational processing of one single gene. Having set the mechanism responsible for this remarkable phenomenon, we have now aimed at defining whether this diversity of subcellular localizations correlates with differences in structure and function of the Grx2 isoforms. We have determined the N-terminal sequence of the soluble mitochondrial matrix Grx2 by mass spectrometry and have determined the exact cleavage site by Mitochondrial Processing Peptidase (MPP). As a consequence of this cleavage, the mitochondrial matrix Grx2 isoform possesses a basic tetrapeptide extension at the N-terminus compared to the cytosolic form. A functional relationship to this structural difference is that mitochondrial Grx2 displays a markedly higher activity in the catalysis of GSSG reduction by the mitochondrial dithiol dihydrolipoamide. We have prepared Grx2 mutants affected on key residues inside the presequence to direct the protein to one single cellular compartment; either the cytosol, the mitochondrial membrane or the matrix and have analyzed their functional phenotypes. Strains expressing Grx2 only in the cytosol are equally sensitive to H(2)O(2) as strains lacking the gene, whereas those expressing Grx2 exclusively in the mitochondrial matrix are more resistant. Mutations on key basic residues drastically affect the cellular fate of the protein, showing that evolutionary diversification of Grx2 structural and functional properties are strictly dependent on the sequence of the targeting signal peptide. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Immunolocalization and distribution of functional temperature-sensitive TRP channels in salivary glands.

    PubMed

    Sobhan, Ubaidus; Sato, Masaki; Shinomiya, Takashi; Okubo, Migiwa; Tsumura, Maki; Muramatsu, Takashi; Kawaguchi, Mitsuru; Tazaki, Masakazu; Shibukawa, Yoshiyuki

    2013-11-01

    Transient receptor potential (TRP) cation channels are unique cellular sensors involved in multiple cellular functions. Their role in salivary secretion remains to be elucidated. The expression and localization of temperature-sensitive TRP channels in salivary (submandibular, sublingual and parotid) glands were analyzed by immunohistochemistry and quantitative real-time reverse transcription plus the polymerase chain reaction (RT-PCR). The effects of various TRP channel agonists on carbachol (CCh)-induced salivary secretion in the submandibular gland and on the intracellular Ca(2+) concentration ([Ca(2+)]i) in a submandibular epithelial cell line were also investigated. Immunohistochemistry revealed the expression of TRP-melastatin subfamily member 8 (TRPM8) and TRP-ankyrin subfamily member 1 (TRPA1) in myoepithelial, acinar and ductal cells in the sublingual, submandibular and parotid glands. In addition, TRP-vanilloid subfamily member 1 (TRPV1), TRPV3 and TRPV4 were also expressed in myoepithelial, acinar and ductal cells in all three types of gland. Quantitative real-time RT-PCR results demonstrated the mRNA expression of TRPV1, TRPV3, TRPV4, TRPM8 and TRPA1 in acinar and ductal cells in these salivary glands. Perfusion of the entire submandibular gland with the TRPV1 agonist capsaicin (1 μM) via the submandibular artery significantly increased CCh-induced salivation, whereas perfusion with TRPM8 and TRPA1 agonists (0.5 μM WS12 and 100 μM allyl isothiocyanate) decreased it. Application of agonists for each of the thermosensitive TRP channels increased [Ca(2+)]i in a submandibular epithelial cell line. These results indicate that temperature-sensitive TRP channels are localized and distributed in acinar, ductal and myoepithelial cells in salivary glands and that they play a functional role in the regulation and/or modulation of salivary secretion.

  5. Imaging Flow Cytometry Analysis to Identify Differences of Survival Motor Neuron Protein Expression in Patients With Spinal Muscular Atrophy.

    PubMed

    Arakawa, Reiko; Arakawa, Masayuki; Kaneko, Kaori; Otsuki, Noriko; Aoki, Ryoko; Saito, Kayoko

    2016-08-01

    Spinal muscular atrophy is a neurodegenerative disorder caused by the deficient expression of survival motor neuron protein in motor neurons. A major goal of disease-modifying therapy is to increase survival motor neuron expression. Changes in survival motor neuron protein expression can be monitored via peripheral blood cells in patients; therefore we tested the sensitivity and utility of imaging flow cytometry for this purpose. After the immortalization of peripheral blood lymphocytes from a human healthy control subject and two patients with spinal muscular atrophy type 1 with two and three copies of SMN2 gene, respectively, we used imaging flow cytometry analysis to identify significant differences in survival motor neuron expression. A bright detail intensity analysis was used to investigate differences in the cellular localization of survival motor neuron protein. Survival motor neuron expression was significantly decreased in cells derived from patients with spinal muscular atrophy relative to those derived from a healthy control subject. Moreover, survival motor neuron expression correlated with the clinical severity of spinal muscular atrophy according to SMN2 copy number. The cellular accumulation of survival motor neuron protein was also significantly decreased in cells derived from patients with spinal muscular atrophy relative to those derived from a healthy control subject. The benefits of imaging flow cytometry for peripheral blood analysis include its capacities for analyzing heterogeneous cell populations; visualizing cell morphology; and evaluating the accumulation, localization, and expression of a target protein. Imaging flow cytometry analysis should be implemented in future studies to optimize its application as a tool for spinal muscular atrophy clinical trials. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. [E75, R78 and D82 of Escherichia coli FtsZ are key residues for FtsZ cellular self-assembly and FtsZ-MreB interaction].

    PubMed

    Huo, Yujia; Lu, Qiaonan; Zheng, Xiaowei; Ma, Yuanfang; Lu, Feng

    2016-02-04

    To explore effects of FtsZ mutants FtsZ(E75A), FtsZ(R78G) and FtsZ(D82A) on FtsZ self-assembly and interaction of FtsZ with MreB in Escherichia coli strains. METHODS) We constructed FtsZ and its mutant's plasmids by molecular clone and site-directed mutagenesis methods, and purified targeted proteins by affinity chromatography. QN6(ftsZ::yfp-cat), QN7(tsZ::yfp-cat), QN8(ftsZ(R78G)::yfp-cat) and QN9 (ftsZ(D82A):.:yfp-cat) strains were constructed by linear DNA homologous recombination. We observed cellular localization pattern of FtsZ and its mutants in E. coli by living cell imaging experiments, examined interaction of FtsZ/FtsZ*-FtsZ* and FtsZ/FtsZ*-MreB by Coimmunoprecipitation and bacteria two hybrid, and analyzed assembly characteristics of FtsZ mutants by Light scattering. RESULTS) The Yfp-labeled FtsZ(E75A), FtsZ(R78G) and FtsZ(D82A) mutant proteins failed to assemble into functional Z-ring structure and localize correctly in E. coli strains. Interaction of FtsZ with its mutants, or FtsZ*-FtsZ* and FtsZ*-MreB interaction were weakened or completely disappeared. In addition, in vitro experiments show that E75A, R78G and D82A mutations decreased the polymerization efficiency of FtsZ monomer. FtsZ E75, R78 and D82 are critical amino acids in the assembly, function of FtsZ protein and FtsZ-MreB interaction in E. coli strains.

  7. Light-up and FRET aptamer reporters; evaluating their applications for imaging transcription in eukaryotic cells

    DOE PAGES

    Ilgu, Muslum; Ray, Judhajeet; Bendickson, Lee; ...

    2015-12-17

    The regulation of RNA transcription is central to cellular function. Changes in gene expression drive differentiation and cellular responses to events such as injury. RNA trafficking can also have a large impact on protein expression and its localization. Thus, the ability to image RNA transcription and trafficking in real time and in living cells is a worthwhile goal that has been difficult to achieve. The availability of “light-up” aptamers that cause an increase in fluorescence of their ligands when bound by the aptamer have shown promise for reporting on RNA production and localization in vivo. Here we have investigated twomore » light-up aptamers (the malachite green aptamer and the Spinach aptamers) for their suitabilities as reporters of RNA expression in vivo using two eukaryotic cell types, yeast and mammalian. Our analysis focused on the aptamer ligands, their contributions to background noise, and the impact of tandem aptamer strings on signal strength and ligand affinity. Whereas the background fluorescence is very low in vitro, this is not always true for cell imaging. Our results suggest the need for caution in using light-up aptamers as reporters for imaging RNA. In particular, images should be collected and analyzed by operators blinded to the sample identities. The appropriate control condition of ligand with the cells in the absence of aptamer expression must be included in each experiment. This control condition establishes that the specific interaction of ligand with aptamer, rather than nonspecific interactions with unknown cell elements, is responsible for the observed fluorescent signals. As a result, high background signals due to nonspecific interactions of aptamer ligands with cell components can be minimized by using IMAGEtags (Intracellular Multiaptamer GEnetic tags), which signal by FRET and are promising RNA reporters for imaging transcription.« less

  8. Effects of Noncovalent Platinum Drug–Protein Interactions on Drug Efficacy: Use of Fluorescent Conjugates as Probes for Drug Metabolism

    PubMed Central

    Benedetti, Brad T.; Peterson, Erica J.; Kabolizadeh, Peyman; Martínez, Alberto; Kipping, Ralph; Farrell, Nicholas P.

    2012-01-01

    The overall efficacy of platinum based drugs is limited by metabolic deactivation through covalent drug–protein binding. In this study the factors affecting cytotoxicity in the presence of glutathione, human serum albumin (HSA) and whole serum binding with cisplatin, BBR3464, and TriplatinNC, a “noncovalent” derivative of BBR3464, were investigated. Upon treatment with buthionine sulfoximine (BSO), to reduce cellular glutathione levels, cisplatin and BBR3464-induced apoptosis was augmented whereas TriplatinNC-induced cytotoxicity was unaltered. Treatment of A2780 ovarian carcinoma cells with HSA-bound cisplatin (cisplatin/HSA) and cisplatin preincubated with whole serum showed dramatic decreases in cytotoxicity, cellular accumulation, and DNA adduct formation compared to treatment with cisplatin alone. Similar effects are seen with BBR3464. In contrast, TriplatinNC, the HSAbound derivative (TriplatinNC/HSA), and TriplatinNC pretreated with whole serum retained identical cytotoxic profiles and equal levels of cellular accumulation at all time points. Confocal microscopy of both TriplatinNC-NBD, a fluorescent derivative of TriplatinNC, and TriplatinNC-NBD/HSA showed nuclear/nucleolar localization patterns, distinctly different from the lysosomal localization pattern seen with HSA. Cisplatin-NBD, a fluorescent derivative of cisplatin, was shown to accumulate in the nucleus and throughout the cytoplasmwhile the localization of cisplatin-NBD/HSA was limited to lysosomal regions of the cytoplasm. The results suggest that TriplatinNCcan avoid high levels of metabolic deactivation currently seen with clinical platinum chemotherapeutics, and therefore retain a unique cytotoxic profile after cellular administration. PMID:21548575

  9. CORSEN, a new software dedicated to microscope-based 3D distance measurements: mRNA-mitochondria distance, from single-cell to population analyses.

    PubMed

    Jourdren, Laurent; Delaveau, Thierry; Marquenet, Emelie; Jacq, Claude; Garcia, Mathilde

    2010-07-01

    Recent improvements in microscopy technology allow detection of single molecules of RNA, but tools for large-scale automatic analyses of particle distributions are lacking. An increasing number of imaging studies emphasize the importance of mRNA localization in the definition of cell territory or the biogenesis of cell compartments. CORSEN is a new tool dedicated to three-dimensional (3D) distance measurements from imaging experiments especially developed to access the minimal distance between RNA molecules and cellular compartment markers. CORSEN includes a 3D segmentation algorithm allowing the extraction and the characterization of the cellular objects to be processed--surface determination, aggregate decomposition--for minimal distance calculations. CORSEN's main contribution lies in exploratory statistical analysis, cell population characterization, and high-throughput assays that are made possible by the implementation of a batch process analysis. We highlighted CORSEN's utility for the study of relative positions of mRNA molecules and mitochondria: CORSEN clearly discriminates mRNA localized to the vicinity of mitochondria from those that are translated on free cytoplasmic polysomes. Moreover, it quantifies the cell-to-cell variations of mRNA localization and emphasizes the necessity for statistical approaches. This method can be extended to assess the evolution of the distance between specific mRNAs and other cellular structures in different cellular contexts. CORSEN was designed for the biologist community with the concern to provide an easy-to-use and highly flexible tool that can be applied for diverse distance quantification issues.

  10. The basic biology of redoxosomes in cytokine-mediated signal transduction and implications for disease-specific therapies.

    PubMed

    Spencer, Netanya Y; Engelhardt, John F

    2014-03-18

    Redox reactions have been established as major biological players in many cellular signaling pathways. Here we review mechanisms of redox signaling with an emphasis on redox-active signaling endosomes. Signals are transduced by relatively few reactive oxygen species (ROS), through very specific redox modifications of numerous proteins and enzymes. Although ROS signals are typically associated with cellular injury, these signaling pathways are also critical for maintaining cellular health at homeostasis. An important component of ROS signaling pertains to localization and tightly regulated signal transduction events within discrete microenvironments of the cell. One major aspect of this specificity is ROS compartmentalization within membrane-enclosed organelles such as redoxosomes (redox-active endosomes) and the nuclear envelope. Among the cellular proteins that produce superoxide are the NADPH oxidases (NOXes), transmembrane proteins that are implicated in many types of redox signaling. NOXes produce superoxide on only one side of a lipid bilayer; as such, their orientation dictates the compartmentalization of ROS and the local control of signaling events limited by ROS diffusion and/or movement through channels associated with the signaling membrane. NOX-dependent ROS signaling pathways can also be self-regulating, with molecular redox sensors that limit the local production of ROS required for effective signaling. ROS regulation of the Rac-GTPase, a required co-activator of many NOXes, is an example of this type of sensor. A deeper understanding of redox signaling pathways and the mechanisms that control their specificity will provide unique therapeutic opportunities for aging, cancer, ischemia-reperfusion injury, and neurodegenerative diseases.

  11. The Basic Biology of Redoxosomes in Cytokine-Mediated Signal Transduction and Implications for Disease-Specific Therapies

    PubMed Central

    2015-01-01

    Redox reactions have been established as major biological players in many cellular signaling pathways. Here we review mechanisms of redox signaling with an emphasis on redox-active signaling endosomes. Signals are transduced by relatively few reactive oxygen species (ROS), through very specific redox modifications of numerous proteins and enzymes. Although ROS signals are typically associated with cellular injury, these signaling pathways are also critical for maintaining cellular health at homeostasis. An important component of ROS signaling pertains to localization and tightly regulated signal transduction events within discrete microenvironments of the cell. One major aspect of this specificity is ROS compartmentalization within membrane-enclosed organelles such as redoxosomes (redox-active endosomes) and the nuclear envelope. Among the cellular proteins that produce superoxide are the NADPH oxidases (NOXes), transmembrane proteins that are implicated in many types of redox signaling. NOXes produce superoxide on only one side of a lipid bilayer; as such, their orientation dictates the compartmentalization of ROS and the local control of signaling events limited by ROS diffusion and/or movement through channels associated with the signaling membrane. NOX-dependent ROS signaling pathways can also be self-regulating, with molecular redox sensors that limit the local production of ROS required for effective signaling. ROS regulation of the Rac-GTPase, a required co-activator of many NOXes, is an example of this type of sensor. A deeper understanding of redox signaling pathways and the mechanisms that control their specificity will provide unique therapeutic opportunities for aging, cancer, ischemia-reperfusion injury, and neurodegenerative diseases. PMID:24555469

  12. Localization and phosphorylation of Plasmodium falciparum nicotinamide/nicotinate mononucleotide adenylyltransferase (PfNMNAT) in intraerythrocytic stages.

    PubMed

    Nieto, Carlos A; Sánchez, Lina M; Sánchez, Diana M; Díaz, Gonzalo J; Ramírez, María H

    2018-04-11

    Nicotinamide adenine dinucleotide (NAD+) is an essential molecule in the energy metabolism of living beings, and it has various cellular functions. The main enzyme in the biosynthesis of this nucleotide is nicotinamide/nicotinate mononucleotide adenylyltransferase (NMNAT, EC 2.7.7.1/18) because it is the convergence point for all known biosynthetic pathways. NMNATs have divergences in both the number of isoforms detected and their distribution, depending on the organism. In the laboratory of basic research in biochemistry (LIBBIQ: acronym in Spanish) the NMNATs of protozoan parasites (Leishmania braziliensis, Plasmodium falciparum, Trypanosoma cruzi, and Giardia duodenalis) have been studied, analysing their catalytic properties through the use of proteins. Recombinants and their cellular distribution essentially. In 2014, O'Hara et al. determined the cytoplasmic localization of NMNAT of P. falciparum, using a transgene coupled to GFP, however, the addition of labels to the study protein can modify several of its characteristics, including its sub-cellular localization. This study confirms the cytoplasmic localization of this protein in the parasite through recognition of the endogenous protein in the different stages of the asexual life cycle. Additionally, the study found that PfNMNAT could be a phosphorylation target at serine, tyrosine and threonine residues, and it shows variations during the asexual life cycle. These experiments confirmed that the parasite is situated in the cytoplasm, fulfilling the required functions of NAD+ in this compartment, the PfNMNAT is regulated in post-transcription processes, and can be regulated by phosphorylation in its residues.

  13. Cellular Development Associated with Induced Mycotoxin Synthesis in the Filamentous Fungus Fusarium graminearum

    PubMed Central

    Menke, Jon; Weber, Jakob; Broz, Karen; Kistler, H. Corby

    2013-01-01

    Several species of the filamentous fungus Fusarium colonize plants and produce toxic small molecules that contaminate agricultural products, rendering them unsuitable for consumption. Among the most destructive of these species is F. graminearum, which causes disease in wheat and barley and often infests the grain with harmful trichothecene mycotoxins. Synthesis of these secondary metabolites is induced during plant infection or in culture in response to chemical signals. Our results show that trichothecene biosynthesis involves a complex developmental process that includes dynamic changes in cell morphology and the biogenesis of novel subcellular structures. Two cytochrome P-450 oxygenases (Tri4p and Tri1p) involved in early and late steps in trichothecene biosynthesis were tagged with fluorescent proteins and shown to co-localize to vesicles we provisionally call “toxisomes.” Toxisomes, the inferred site of trichothecene biosynthesis, dynamically interact with motile vesicles containing a predicted major facilitator superfamily protein (Tri12p) previously implicated in trichothecene export and tolerance. The immediate isoprenoid precursor of trichothecenes is the primary metabolite farnesyl pyrophosphate. Changes occur in the cellular localization of the isoprenoid biosynthetic enzyme HMG CoA reductase when cultures non-induced for trichothecene biosynthesis are transferred to trichothecene biosynthesis inducing medium. Initially localized in the cellular endomembrane system, HMG CoA reductase, upon induction of trichothecene biosynthesis, increasingly is targeted to toxisomes. Metabolic pathways of primary and secondary metabolism thus may be coordinated and co-localized under conditions when trichothecene biosynthesis occurs. PMID:23667578

  14. Nicotinic Acid Receptor Abnormalities in Human Skin Cancer: Implications for a Role in Epidermal Differentiation

    PubMed Central

    Bermudez, Yira; Benavente, Claudia A.; Meyer, Ralph G.; Coyle, W. Russell; Jacobson, Myron K.; Jacobson, Elaine L.

    2011-01-01

    Background Chronic UV skin exposure leads to epidermal differentiation defects in humans that can be largely restored by pharmacological doses of nicotinic acid. Nicotinic acid has been identified as a ligand for the human G-protein-coupled receptors GPR109A and GPR109B that signal through Gi-mediated inhibition of adenylyl cyclase. We have examined the expression, cellular distribution, and functionality of GPR109A/B in human skin and skin derived epidermal cells. Results Nicotinic acid increases epidermal differentiation in photodamaged human skin as judged by the terminal differentiation markers caspase 14 and filaggrin. Both GPR109A and GPR109B genes are transcribed in human skin and in epidermal keratinocytes, but expression in dermal fibroblasts is below limits of detection. Receptor transcripts are greatly over-expressed in squamous cell cancers. Receptor protein in normal skin is prominent from the basal through granular layers of the epidermis, with cellular localization more dispersive in the basal layer but predominantly localized at the plasma membrane in more differentiated epidermal layers. In normal human primary and immortalized keratinocytes, nicotinic acid receptors show plasma membrane localization and functional Gi-mediated signaling. In contrast, in a squamous cell carcinoma derived cell line, receptor protein shows a more diffuse cellular localization and the receptors are nearly non-functional. Conclusions The results of these studies justify future genetic and pharmacological intervention studies to define possible specific role(s) of nicotinic acid receptors in human skin homeostasis. PMID:21655214

  15. An unsupervised MVA method to compare specific regions in human breast tumor tissue samples using ToF-SIMS.

    PubMed

    Bluestein, Blake M; Morrish, Fionnuala; Graham, Daniel J; Guenthoer, Jamie; Hockenbery, David; Porter, Peggy L; Gamble, Lara J

    2016-03-21

    Imaging time-of-flight secondary ion mass spectrometry (ToF-SIMS) and principal component analysis (PCA) were used to investigate two sets of pre- and post-chemotherapy human breast tumor tissue sections to characterize lipids associated with tumor metabolic flexibility and response to treatment. The micron spatial resolution imaging capability of ToF-SIMS provides a powerful approach to attain spatially-resolved molecular and cellular data from cancerous tissues not available with conventional imaging techniques. Three ca. 1 mm(2) areas per tissue section were analyzed by stitching together 200 μm × 200 μm raster area scans. A method to isolate and analyze specific tissue regions of interest by utilizing PCA of ToF-SIMS images is presented, which allowed separation of cellularized areas from stromal areas. These PCA-generated regions of interest were then used as masks to reconstruct representative spectra from specifically stromal or cellular regions. The advantage of this unsupervised selection method is a reduction in scatter in the spectral PCA results when compared to analyzing all tissue areas or analyzing areas highlighted by a pathologist. Utilizing this method, stromal and cellular regions of breast tissue biopsies taken pre- versus post-chemotherapy demonstrate chemical separation using negatively-charged ion species. In this sample set, the cellular regions were predominantly all cancer cells. Fatty acids (i.e. palmitic, oleic, and stearic), monoacylglycerols, diacylglycerols and vitamin E profiles were distinctively different between the pre- and post-therapy tissues. These results validate a new unsupervised method to isolate and interpret biochemically distinct regions in cancer tissues using imaging ToF-SIMS data. In addition, the method developed here can provide a framework to compare a variety of tissue samples using imaging ToF-SIMS, especially where there is section-to-section variability that makes it difficult to use a serial hematoxylin and eosin (H&E) stained section to direct the SIMS analysis.

  16. Modeling for (physical) biologists: an introduction to the rule-based approach

    PubMed Central

    Chylek, Lily A; Harris, Leonard A; Faeder, James R; Hlavacek, William S

    2015-01-01

    Models that capture the chemical kinetics of cellular regulatory networks can be specified in terms of rules for biomolecular interactions. A rule defines a generalized reaction, meaning a reaction that permits multiple reactants, each capable of participating in a characteristic transformation and each possessing certain, specified properties, which may be local, such as the state of a particular site or domain of a protein. In other words, a rule defines a transformation and the properties that reactants must possess to participate in the transformation. A rule also provides a rate law. A rule-based approach to modeling enables consideration of mechanistic details at the level of functional sites of biomolecules and provides a facile and visual means for constructing computational models, which can be analyzed to study how system-level behaviors emerge from component interactions. PMID:26178138

  17. Complex Ordered Patterns in Mechanical Instability Induced Geometrically Frustrated Triangular Cellular Structures

    NASA Astrophysics Data System (ADS)

    Kang, Sung Hoon; Shan, Sicong; Košmrlj, Andrej; Noorduin, Wim L.; Shian, Samuel; Weaver, James C.; Clarke, David R.; Bertoldi, Katia

    2014-03-01

    Geometrical frustration arises when a local order cannot propagate throughout the space because of geometrical constraints. This phenomenon plays a major role in many systems leading to disordered ground-state configurations. Here, we report a theoretical and experimental study on the behavior of buckling-induced geometrically frustrated triangular cellular structures. To our surprise, we find that buckling induces complex ordered patterns which can be tuned by controlling the porosity of the structures. Our analysis reveals that the connected geometry of the cellular structure plays a crucial role in the generation of ordered states in this frustrated system.

  18. Glutathione depletion triggers actin cytoskeleton changes via actin-binding proteins.

    PubMed

    Zepeta-Flores, Nahum; Valverde, Mahara; Lopez-Saavedra, Alejandro; Rojas, Emilio

    2018-06-04

    The importance of glutathione (GSH) in alternative cellular roles to the canonically proposed, were analyzed in a model unable to synthesize GSH. Gene expression analysis shows that the regulation of the actin cytoskeleton pathway is strongly impacted by the absence of GSH. To test this hypothesis, we evaluate the effect of GSH depletion via buthionine sulfoximine (5 and 12.5 mM) in human neuroblastoma MSN cells. In the present study, 70% of GSH reduction did not induce reactive oxygen species, lipoperoxidation, or cytotoxicity, which enabled us to evaluate the effect of glutathione in the absence of oxidative stress. The cells with decreasing GSH levels acquired morphology changes that depended on the actin cytoskeleton and not on tubulin. We evaluated the expression of three actin-binding proteins: thymosin β4, profilin and gelsolin, showing a reduced expression, both at gene and protein levels at 24 hours of treatment; however, this suppression disappears after 48 hours of treatment. These changes were sufficient to trigger the co-localization of the three proteins towards cytoplasmic projections. Our data confirm that a decrease in GSH in the absence of oxidative stress can transiently inhibit the actin binding proteins and that this stimulus is sufficient to induce changes in cellular morphology via the actin cytoskeleton.

  19. Cell segmentation in histopathological images with deep learning algorithms by utilizing spatial relationships.

    PubMed

    Hatipoglu, Nuh; Bilgin, Gokhan

    2017-10-01

    In many computerized methods for cell detection, segmentation, and classification in digital histopathology that have recently emerged, the task of cell segmentation remains a chief problem for image processing in designing computer-aided diagnosis (CAD) systems. In research and diagnostic studies on cancer, pathologists can use CAD systems as second readers to analyze high-resolution histopathological images. Since cell detection and segmentation are critical for cancer grade assessments, cellular and extracellular structures should primarily be extracted from histopathological images. In response, we sought to identify a useful cell segmentation approach with histopathological images that uses not only prominent deep learning algorithms (i.e., convolutional neural networks, stacked autoencoders, and deep belief networks), but also spatial relationships, information of which is critical for achieving better cell segmentation results. To that end, we collected cellular and extracellular samples from histopathological images by windowing in small patches with various sizes. In experiments, the segmentation accuracies of the methods used improved as the window sizes increased due to the addition of local spatial and contextual information. Once we compared the effects of training sample size and influence of window size, results revealed that the deep learning algorithms, especially convolutional neural networks and partly stacked autoencoders, performed better than conventional methods in cell segmentation.

  20. Characterization of the Lassa virus matrix protein Z: electron microscopic study of virus-like particles and interaction with the nucleoprotein (NP).

    PubMed

    Eichler, Robert; Strecker, Thomas; Kolesnikova, Larissa; ter Meulen, Jan; Weissenhorn, Winfried; Becker, Stephan; Klenk, Hans Dieter; Garten, Wolfgang; Lenz, Oliver

    2004-03-15

    Lassa virus is the causative agent of a hemorrhagic fever endemic in west Africa. The RNA genome of Lassa virus encodes the glycoprotein precursor GP-C, a nucleoprotein (NP), the viral polymerase L and a small protein Z (11 kDa). Here, we analyze the role of Z protein for virus maturation. We have recently shown that expression of Z protein in the absence of other viral proteins is sufficient for the release of enveloped Z-containing particles. In this study, we examined particles secreted into the supernatant of a stably Z protein-expressing CHO cell line by electron microscopy. The observed Z-induced virus-like particles did not significantly differ in their morphology and size from Lassa virus particles. Mutation of two proline-rich domains within Z which are known to drastically reduce the release of virus-like particles, had no effect on the cellular localization of the protein nor on its membrane-association. Furthermore, we present evidence that Z interacts with the NP. We assume that Z recruits NP to cellular membranes where virus assembly takes place. We conclude from our data that Lassa virus Z protein plays an essential role in Lassa virus maturation.

  1. Course of c-myc mRNA expression in the regenerating mouse testis determined by competitive reverse transcriptase polymerase chain reaction.

    PubMed

    Amendola, R

    1994-11-01

    The c-myc proto-oncogene is a reliable marker of the "G0-early G1" transition, and its down-regulation is believed to be necessary to obtain cellular differentiation. In murine spermatogenesis, the level of c-myc transcripts does not correlate with the rate of cellular division. Proliferation of supposed staminal spermatogonia to reproduce themselves is induced with a local 5 Gy X-ray dose in 90-day-old C57Bl/6 mice. c-myc quantification by a newly developed competitive reverse transcriptase polymerase chain reaction (RT-PCR) was carried out to follow the expression course of this proto-oncogene. Damage and restoration of spermatogenesis were analyzed at days 3, 6, 9, 10, 13, 30, and 60 after injury by relative testes/body weight determination and histological examination. Proliferative status was determined by histone H3 Northern blot analysis. c-myc mRNA level was 10 times higher after 3 days in the irradiated animals compared to the controls. An increasing number of copies were noted up to 10 days, but promptly decreased to the base level found for irradiated mice from 13 to 60 days. Interestingly, the expression of histone H3 detected S phase only in testes at 60 days from damage.

  2. Nitric Oxide-Mediated Maintenance of Redox Homeostasis Contributes to NPR1-Dependent Plant Innate Immunity Triggered by Lipopolysaccharides1[C][W

    PubMed Central

    Sun, Aizhen; Nie, Shengjun; Xing, Da

    2012-01-01

    The perception of lipopolysaccharides (LPS) by plant cells can lead to nitric oxide (NO) production and defense gene induction. However, the signaling cascades underlying these cellular responses have not yet been resolved. This work investigated the biosynthetic origin of NO and the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) to gain insight into the mechanism involved in LPS-induced resistance of Arabidopsis (Arabidopsis thaliana). Analysis of inhibitors and mutants showed that LPS-induced NO synthesis was mainly mediated by an arginine-utilizing source of NO generation. Furthermore, LPS-induced NO caused transcript accumulation of alternative oxidase genes and increased antioxidant enzyme activity, which enhanced antioxidant capacity and modulated redox state. We also analyzed the subcellular localization of NPR1 to identify the mechanism for protein-modulated plant innate immunity triggered by LPS. LPS-activated defense responses, including callose deposition and defense-related gene expression, were found to be regulated through an NPR1-dependent pathway. In summary, a significant NO synthesis induced by LPS contributes to the LPS-induced defense responses by up-regulation of defense genes and modulation of cellular redox state. Moreover, NPR1 plays an important role in LPS-triggered plant innate immunity. PMID:22926319

  3. Divergent lactate dehydrogenase isoenzyme profile in cellular compartments of primate forebrain structures.

    PubMed

    Duka, Tetyana; Collins, Zachary; Anderson, Sarah M; Raghanti, Mary Ann; Ely, John J; Hof, Patrick R; Wildman, Derek E; Goodman, Morris; Grossman, Lawrence I; Sherwood, Chet C

    2017-07-01

    The compartmentalization and association of lactate dehydrogenase (LDH) with specific cellular structures (e.g., synaptosomal, sarcoplasmic or mitochondrial) may play an important role in brain energy metabolism. Our previous research revealed that LDH in the synaptosomal fraction shifts toward the aerobic isoforms (LDH-B) among the large-brained haplorhine primates compared to strepsirrhines. Here, we further analyzed the subcellular localization of LDH in primate forebrain structures using quantitative Western blotting and ELISA. We show that, in cytosolic and mitochondrial subfractions, LDH-B expression level was relatively elevated and LDH-A declined in haplorhines compared to strepsirrhines. LDH-B expression in mitochondrial fractions of the neocortex was preferentially increased, showing a particularly significant rise in the ratio of LDH-B to LDH-A in chimpanzees and humans. We also found a significant correlation between the protein levels of LDH-B in mitochondrial fractions from haplorhine neocortex and the synaptosomal LDH-B that suggests LDH isoforms shift from a predominance of A-subunits toward B-subunits as part of a system that spatially buffers dynamic energy requirements of brain cells. Our results indicate that there is differential subcellular compartmentalization of LDH isoenzymes that evolved among different primate lineages to meet the energy requirements in neocortical and striatal cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Iron repletion relocalizes hephaestin to a proximal basolateral compartment in polarized MDCK and Caco2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seung-Min; Department of Nutritional Science and Toxicology, University of California, Berkeley, CA; Attieh, Zouhair K.

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Hephaestin localizes in the perinuclear space in non-polarized cells. Black-Right-Pointing-Pointer Hephaestin localizes in the perinuclear space in iron deficient and polarized cells. Black-Right-Pointing-Pointer Hephaestin with apical iron moves near to basolateral membrane of polarized cells. Black-Right-Pointing-Pointer Peri-basolateral location of hephaestin is accessible to the extracellular space. Black-Right-Pointing-Pointer Hephaestin is involved in iron mobilization from the intestine to circulation. -- Abstract: While intestinal cellular iron entry in vertebrates employs multiple routes including heme and non-heme routes, iron egress from these cells is exclusively channeled through the only known transporter, ferroportin. Reduced intestinal iron export in sex-linked anemia mice implicatesmore » hephaestin, a ferroxidase, in this process. Polarized cells are exposed to two distinct environments. Enterocytes contact the gut lumen via the apical surface of the cell, and through the basolateral surface, to the body. Previous studies indicate both local and systemic control of iron uptake. We hypothesized that differences in iron availability at the apical and/or basolateral surface may modulate iron uptake via cellular localization of hephaestin. We therefore characterized the localization of hephaestin in two models of polarized epithelial cell lines, MDCK and Caco2, with varying iron availability at the apical and basolateral surfaces. Our results indicate that hephaestin is expressed in a supra-nuclear compartment in non-polarized cells regardless of the iron status of the cells and in iron deficient and polarized cells. In polarized cells, we found that both apical (as FeSO{sub 4}) and basolateral iron (as the ratio of apo-transferrin to holo-transferrin) affect mobilization of hephaestin from the supra-nuclear compartment. We find that the presence of apical iron is essential for relocalization of hephaestin to a cellular compartment in close proximity but not overlapping with the basolateral surface. Surface biotinylation studies indicate that hephaestin in the peri-basolateral location is accessible to the extra-cellular environment. These results support the hypothesis that hephaestin is involved in iron mobilization of iron from the intestine to circulation.« less

  5. Local fibroblast proliferation but not influx is responsible for synovial hyperplasia in a murine model of rheumatoid arthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuo, Yusuke; Mizoguchi, Fumitaka; Saito, Tetsuya

    Synovial fibroblasts play crucial roles in inflammation and joint destruction in rheumatoid arthritis (RA). How they accumulate in the RA joints remains unclear. This study was conducted to discern whether cellular influx from the outside of the joints and local proliferation are responsible for synovial fibroblast accumulation in an animal model of RA. We found that synovial fibroblasts were identified as GFP+ cells using collagen type I alpha 2 (Col1a2)-GFP transgenic reporter mice. Then, bone marrow transplantation and parabiosis techniques were utilized to study the cellular influx. Irradiated wild-type mice were transplanted with bone marrow from Col1a2-GFP mice. Col1a2-GFP andmore » wild-type mice were conjoined for parabiosis. The transplanted mice and the parabionts were subjected to collagen antibody-induced arthritis (CAIA). We found no GFP+ cells in the hyperplastic synovial tissues from the transplanted mice with CAIA and from the wild-type parabionts with CAIA. Furthermore, normal and CAIA synovial tissues from Col1a2-GFP mice and from fluorescent ubiquitination-based cell cycle indicator (Fucci) transgenic mice, in which cells in S/G{sub 2}/M phases of the cell cycle express Azami-Green, were studied for Ki67, a cellular proliferation marker, and vimentin, a fibroblast marker, expression. The percentages of Ki67+/GFP+ and Azami-Green+/vimentin+ cells in the CAIA synovial tissues were higher than those in the untreated synovial tissues (34% vs. 0.40% and 19% vs. 0.26%, respectively). These findings indicate that local fibroblast proliferation but not cellular influx is responsible for the synovial hyperplasia in CAIA. Suppression of proliferation of the local synovial fibroblasts should be a promising treatment for RA. - Highlights: • We studied how synovial fibroblasts accumulate in joints in a murine model of RA. • Bone marrow-derived cells did not accumulate in arthritic joints. • Synovial fibroblasts did not accumulate in arthritic joints via circulation. • Local proliferation was responsible for the synovial fibroblast accumulation.« less

  6. LIM domain protein TES changes its conformational states in different cellular compartments.

    PubMed

    Zhong, Yingli; Zhu, Jiaolian; Wang, Yan; Zhou, Jianlin; Ren, Kaiqun; Ding, Xiaofeng; Zhang, Jian

    2009-01-01

    The human TESTIN (TES) is a putative tumor suppressor and localizes to the cytoplasm as a component of focal adhesions and cell contacts. TES contains a PET domain in the NH(2)-terminus and three tandem LIM domains in the COOH-terminus. It has been hypothesized that interactions between two termini of TES might lead to a "closed" conformational state of the protein. Here, we provide evidence for different conformational states of TES. We confirmed that the NH(2)-terminus of TES can interact with its third LIM domain in the COOH-terminus by GST pull-down assays. In addition, antisera against the full-length or two truncations of TES were prepared to examine the relationship between the conformation and cellular distribution of the protein. We found that these antisera recognize different regions of TES and showed that TES is co-localised with the marker protein B23 in nucleolus, in addition to its localization in endoplasmic reticulum (ER). Furthermore, our co-immunoprecipitation (co-IP) analysis of TES and B23 demonstrated their co-existence in the same complex. Taken together, our results suggest that TES has different conformational states in different cellular compartments, and a "closed" conformational state of TES may be involved in nucleolar localization.

  7. An intrinsic poperty of memory of the Cellular automaton infrastructure of Nature leading to the organization of the physical world as an Internet o things; TOE = IOT

    NASA Astrophysics Data System (ADS)

    Berkovich, Simon

    2015-04-01

    The undamental advantage of a Cellular automaton construction foris that it can be viewed as an undetectable absolute frame o reference, in accordance with Lorentz-Poincare's interpretation.. The cellular automaton model for physical poblems comes upon two basic hurdles: (1) How to find the Elemental Rule that, and how to get non-locality from local transformations. Both problems are resolved considering the transfomation rule of mutual distributed synchronization Actually any information proessing device starts with a clocking system. and it turns out that ``All physical phenomena are different aspects of the high-level description of distributed mutual synchronization in a network of digital clocks''. Non-locality comes from two hugely different time-scales of signaling.. The universe is acombinines information and matter processes, These fast spreading diffusion wave solutions create the mechanism of the Holographic Universe. And thirdly Disengaged from synchronization, circular counters can perform memory functions by retaining phases of their oscillations, an idea of Von Neumann'. Thus, the suggested model generates the necessary constructs for the physical world as an Internet of Things. Life emerges due to the specifics of macromolecules that serve as communication means, with the holographic memory...

  8. Three-dimensional morphogenesis of MDCK cells induced by cellular contractile forces on a viscous substrate

    PubMed Central

    Imai, Misako; Furusawa, Kazuya; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi

    2015-01-01

    Substrate physical properties are essential for many physiological events such as embryonic development and 3D tissue formation. Physical properties of the extracellular matrix such as viscoelasticity and geometrical constraints are understood as factors that affect cell behaviour. In this study, we focused on the relationship between epithelial cell 3D morphogenesis and the substrate viscosity. We observed that Madin-Darby Canine Kidney (MDCK) cells formed 3D structures on a viscous substrate (Matrigel). The structures appear as a tulip hat. We then changed the substrate viscosity by genipin (GP) treatment. GP is a cross-linker of amino groups. Cells cultured on GP-treated-matrigel changed their 3D morphology in a substrate viscosity-dependent manner. Furthermore, to elucidate the spatial distribution of the cellular contractile force, localization of mono-phosphorylated and di-phosphorylated myosin regulatory light chain (P-MRLCs) was visualized by immunofluorescence. P-MRLCs localized along the periphery of epithelial sheets. Treatment with Y-27632, a Rho-kinase inhibitor, blocked the P-MRLCs localization at the edge of epithelial sheets and halted 3D morphogenesis. Our results indicate that the substrate viscosity, the substrate deformation, and the cellular contractile forces induced by P-MRLCs play crucial roles in 3D morphogenesis. PMID:26374384

  9. Tap and Dbp5, but not Gag, are involved in DR-mediated nuclear export of unspliced Rous sarcoma virus RNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeBlanc, Jason J.; Uddowla, Sabena; Abraham, Benjamin

    2007-07-05

    All retroviruses must circumvent cellular restrictions on the export of unspliced RNAs from the nucleus. While the unspliced RNA export pathways for HIV and Mason-Pfizer monkey virus are well characterized, that of Rous sarcoma virus (RSV) is not. We have previously reported that the RSV direct repeat (DR) elements are involved in the cytoplasmic accumulation of unspliced viral RNA. Here, using fluorescent in situ hybridization (FISH), we demonstrate that unspliced viral RNAs bearing a single point mutation (G8863C) in the DR exhibit a restricted cellular localization in and around the nucleus. In contrast, wild type unspliced viral RNA had amore » diffuse localization throughout the nucleus and cytoplasm. Since the RSV Gag protein has a transient localization in the nucleus, we examined the effect of Gag over-expression on a DR-mediated reporter construct. While Gag did not enhance DR-mediated nuclear export, the dominant-negative expression of two cellular export factors, Tap and Dbp5, inhibited expression of the same reporter construct. Furthermore, FISH studies using the dominant-negative Dbp5 demonstrated that unspliced wild type RSV RNA was retained within the nucleus. Taken together, these results further implicate the DR in nuclear RNA export through interactions with Tap and Dbp5.« less

  10. Three-dimensional morphogenesis of MDCK cells induced by cellular contractile forces on a viscous substrate.

    PubMed

    Imai, Misako; Furusawa, Kazuya; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi

    2015-09-16

    Substrate physical properties are essential for many physiological events such as embryonic development and 3D tissue formation. Physical properties of the extracellular matrix such as viscoelasticity and geometrical constraints are understood as factors that affect cell behaviour. In this study, we focused on the relationship between epithelial cell 3D morphogenesis and the substrate viscosity. We observed that Madin-Darby Canine Kidney (MDCK) cells formed 3D structures on a viscous substrate (Matrigel). The structures appear as a tulip hat. We then changed the substrate viscosity by genipin (GP) treatment. GP is a cross-linker of amino groups. Cells cultured on GP-treated-matrigel changed their 3D morphology in a substrate viscosity-dependent manner. Furthermore, to elucidate the spatial distribution of the cellular contractile force, localization of mono-phosphorylated and di-phosphorylated myosin regulatory light chain (P-MRLCs) was visualized by immunofluorescence. P-MRLCs localized along the periphery of epithelial sheets. Treatment with Y-27632, a Rho-kinase inhibitor, blocked the P-MRLCs localization at the edge of epithelial sheets and halted 3D morphogenesis. Our results indicate that the substrate viscosity, the substrate deformation, and the cellular contractile forces induced by P-MRLCs play crucial roles in 3D morphogenesis.

  11. Regulation of cellular senescence by the essential caveolar component PTRF/Cavin-1

    PubMed Central

    Bai, Lin; Deng, Xiaoli; Li, Juanjuan; Wang, Miao; Li, Qian; An, Wei; A, Deli; Cong, Yu-Sheng

    2011-01-01

    Polymerase I and transcript release factor (PTRF, also known as Cavin-1) is an essential component in the biogenesis and function of caveolae. Here, we show that PTRF expression is increased in senescent human fibroblasts. Importantly, overexpression of PTRF induced features characteristic of cellular senescence, whereas reduced PTRF expression extended the cellular replicative lifespan. Interestingly, we found that PTRF localized primarily to the nuclei of young and quiescent WI-38 human fibroblasts, but translocated to the cytosol and plasma membrane during cellular senescence. Furthermore, electron microscopic analysis demonstrated an increased number of caveolar structures in senescent and PTRF-transfected WI-38 cells. Our data suggest that the role of PTRF in cellular senescence is dependent on its targeting to caveolae and its interaction with caveolin-1, which appeared to be regulated by the phosphorylation of PTRF. Taken together, our findings identify PTRF as a novel regulator of cellular senescence that acts through the p53/p21 and caveolar pathways. PMID:21445100

  12. Cellular Trafficking of Phospholamban and Formation of Functional Sarcoplasmic Reticulum During Myocyte DIfferentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenoien, David L.; Knyushko, Tatyana V.; Londono, Monica P.

    2007-06-01

    The sarco/endoplasmic reticulum Ca-ATPase (SERCA) family members are transmembrane proteins that play an essential role in regulating intracellular calcium levels. Phospholamban (PLB), a 52 amino acid phosphoprotein, regulates SERCA activity in adult heart and skeletal muscle. Using the C2C12 myocyte cell line, we find endogenous PLB constitutively expressed in both myoblasts and myotubes, whereas SERCA expression coincides with activation of the differentiation program. PLB has a punctuate distribution in myoblasts changing to a reticular distribution in myotubes where it colocalizes with SERCAs. To examine the distribution and dynamics of PLB and SERCA, we expressed fluorescent fusion proteins (GFP, CFP, andmore » YFP) of PLB and SERCA in myoblasts. Coexpressed PLB and SERCA localize to distinct cellular compartments in myoblasts but begin to colocalize as cells differentiate. Fluorescence Recovery After Photobleaching (FRAP) studies show different recovery patterns for each protein in myoblasts confirming their localization to distinct compartments. To extend these studies, we created stable cell lines expressing O6-alkylguanine-DNA alkyltransferase (AGT) fusions with PLB or SERCA to track their localization as myocytes differentiate. These experiments demonstrate that PLB localizes to punctate vesicles in myoblasts and adopts a reticular distribution that coincides with SERCA distribution after differentiation. Colocalization experiments indicate that a subset of PLB in myoblasts colocalizes with endosomes, Golgi, and the plasma membrane however PLB also localizes to other, as yet unidentified vesicles. Our results indicate that differentiation plays a critical role in regulating PLB distribution to ensure its colocalization within the same cellular compartment as SERCA in differentiated cells. The presence and altered distribution of PLB in undifferentiated myoblasts raises the possibility that this protein has additional functions distinct from SERCA regulation.« less

  13. Cognitive Cellular Systems: A New Challenge on the RF Analog Frontend

    NASA Astrophysics Data System (ADS)

    Varga, Gabor; Schrey, Moritz; Subbiah, Iyappan; Ashok, Arun; Heinen, Stefan

    2016-07-01

    Cognitive Cellular Systems are seen today as one of the most promising ways of moving forward solving or at least easing the still worsening situation of congested spectrum caused by the growing number of users and the expectation of higher data transfer rates. As the intelligence of a Cognitive Radio system is located in the digital domain - the Cognitive Engine and associated layers - extensive research has been ongoing in that domain since Mitola published his idea in 1999. Since, a big progress has been made in the domain of architectures and algorithms making systems more efficient and highly flexible. The pace of this progress, however, is going to be impeded by hard requirements on the received and transmitted signal quality, introducing ultimate challenges on the performance of the RF analog frontend, such as in-band local oscillator harmonics, ultra low sensitivity and ultra high linearity. The RF frontend is thus likely to become the limiting technical factor in the true realization of a Cognitive Cellular System. Based on short recapitulations of the most crucial issues in RF analog design for Cognitive Systems, this article will point out why those mechanisms become responsible for the limitation of the overall performance particularly in a broadband Cognitive Cellular System. Furthermore, as part of a possible solution to ease the situation, system design of a high intermediate frequency (IF) to UHF frequency converter for cognitive radios is discussed and the performance of such a converter analyzed as a proof of concept. In addition to successfully tackling some of the challenges, such a high-IF converter enables white space operation for existing commercial devices by acting as frequency converter. From detailed measurements, the capabilities in both physical layer and application layer performance of a high-IF frontend developed out of off-the-shelf components is explained and is shown to provide negligible degradation to the commercial device being connected to.

  14. Porcine bladder acellular matrix (ACM): protein expression, mechanical properties.

    PubMed

    Farhat, Walid A; Chen, Jun; Haig, Jennifer; Antoon, Roula; Litman, Jessica; Sherman, Christopher; Derwin, Kathleen; Yeger, Herman

    2008-06-01

    Experimentally, porcine bladder acellular matrix (ACM) that mimics extracellular matrix has excellent potential as a bladder substitute. Herein we investigated the spatial localization and expression of different key cellular and extracellular proteins in the ACM; furthermore, we evaluated the inherent mechanical properties of the resultant ACM prior to implantation. Using a proprietary decellularization method, the DNA contents in both ACM and normal bladder were measured; in addition we used immunohistochemistry and western blots to quantify and localize the different cellular and extracellular components, and finally the mechanical testing was performed using a uniaxial mechanical testing machine. The mean DNA content in the ACM was significantly lower in the ACM compared to the bladder. Furthermore, the immunohistochemical and western blot analyses showed that collagen I and IV were preserved in the ACM, but possibly denatured collagen III in the ACM. Furthermore, elastin, laminin and fibronectin were mildly reduced in the ACM. Although the ACM did not exhibit nucleated cells, residual cellular components (actin, myosin, vimentin and others) were still present. There was, on the other hand, no significant difference in the mean stiffness between the ACM and the bladder. Although our decellularization method is effective in removing nuclear material from the bladder while maintaining its inherent mechanical properties, further work is mandatory to determine whether these residual DNA and cellular remnants would lead to any immune reaction, or if the mechanical properties of the ACM are preserved upon implantation and cellularization.

  15. HMPAS: Human Membrane Protein Analysis System

    PubMed Central

    2013-01-01

    Background Membrane proteins perform essential roles in diverse cellular functions and are regarded as major pharmaceutical targets. The significance of membrane proteins has led to the developing dozens of resources related with membrane proteins. However, most of these resources are built for specific well-known membrane protein groups, making it difficult to find common and specific features of various membrane protein groups. Methods We collected human membrane proteins from the dispersed resources and predicted novel membrane protein candidates by using ortholog information and our membrane protein classifiers. The membrane proteins were classified according to the type of interaction with the membrane, subcellular localization, and molecular function. We also made new feature dataset to characterize the membrane proteins in various aspects including membrane protein topology, domain, biological process, disease, and drug. Moreover, protein structure and ICD-10-CM based integrated disease and drug information was newly included. To analyze the comprehensive information of membrane proteins, we implemented analysis tools to identify novel sequence and functional features of the classified membrane protein groups and to extract features from protein sequences. Results We constructed HMPAS with 28,509 collected known membrane proteins and 8,076 newly predicted candidates. This system provides integrated information of human membrane proteins individually and in groups organized by 45 subcellular locations and 1,401 molecular functions. As a case study, we identified associations between the membrane proteins and diseases and present that membrane proteins are promising targets for diseases related with nervous system and circulatory system. A web-based interface of this system was constructed to facilitate researchers not only to retrieve organized information of individual proteins but also to use the tools to analyze the membrane proteins. Conclusions HMPAS provides comprehensive information about human membrane proteins including specific features of certain membrane protein groups. In this system, user can acquire the information of individual proteins and specified groups focused on their conserved sequence features, involved cellular processes, and diseases. HMPAS may contribute as a valuable resource for the inference of novel cellular mechanisms and pharmaceutical targets associated with the human membrane proteins. HMPAS is freely available at http://fcode.kaist.ac.kr/hmpas. PMID:24564858

  16. The Influence of Acetyl Salicylic Acid (Aspirin) and Acetaminophen on Clinical and Histologic Aspects of Orthodontic Tooth Movement

    DTIC Science & Technology

    1988-05-01

    in the rate of tooth movement associated with orthodontic mechanics. Locally high concentrations of prostaglandins appear to accelerate orthodontic...highly localized . One of the many roles that prostaglandins are believed to perform in cellular metabolism is that of inflammatory response mediator...histologic effects of locally injected prostaglandins, Yamasaki found that rat molars receiving no orthodontic force, displayed an increase in bone

  17. Herpes simplex virus 2 VP22 phosphorylation induced by cellular and viral kinases does not influence intracellular localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geiss, Brian J.; Cano, Gina L.; Tavis, John E.

    2004-12-05

    Phosphorylation of the herpes simplex virus (HSV) VP22 protein is regulated by cellular kinases and the UL13 viral kinase, but the sites at which these enzymes induce phosphorylation of HSV-2 VP22 are not known. Using serine-to-alanine mutants to map phosphorylation sites on HSV-2 VP22 in cells, we made three major observations. First, phosphorylation by a cellular kinase mapped to serines 70, 71, and/or 72 within CKII consensus sites analogous to previously identified phosphorylation sites in HSV-1 VP22. Second, we mapped UL13-mediated phosphorylation of HSV-2 VP22 to serines 28 and 34, describing for the first time UL13-dependent phosphorylation sites on VP22.more » Third, previously identified VP22-associated cellular kinase sites in HSV-1 VP22 (serines 292 and 294) were not phosphorylated in HSV-2 VP22 (serines 291 and 293). VP22 expressed alone accumulated in the cytoplasm and to a lesser extent in the nucleus. Phosphorylation by endogenous cellular kinase(s) did not alter the localization of VP22. Co-expression of HSV-2 VP22 with active UL13, but not with enzymatically inactive UL13, resulted in nuclear accumulation of VP22 and altered nuclear morphology. Surprisingly, redistribution of VP22 to the nucleus occurred independently of UL13-induced phosphorylation of VP22. The altered nuclear morphology of UL13-expressing cells was not due to apoptosis. These results demonstrate that phosphorylation of HSV-2 VP22 at multiple serine residues is induced by UL13 and cellular kinase(s), and that the nuclear/cytoplasmic distribution of VP22 is independent of its phosphorylation status but is controlled indirectly by UL13 kinase activity.« less

  18. Cellular automata in photonic cavity arrays.

    PubMed

    Li, Jing; Liew, T C H

    2016-10-31

    We propose theoretically a photonic Turing machine based on cellular automata in arrays of nonlinear cavities coupled with artificial gauge fields. The state of the system is recorded making use of the bistability of driven cavities, in which losses are fully compensated by an external continuous drive. The sequential update of the automaton layers is achieved automatically, by the local switching of bistable states, without requiring any additional synchronization or temporal control.

  19. Cellular repressor of E1A-stimulated genes is a bona fide lysosomal protein which undergoes proteolytic maturation during its biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaehs, Philipp; Weidinger, Petra; Probst, Olivia C.

    2008-10-01

    Cellular repressor of E1A-stimulated genes (CREG) has been reported to be a secretory glycoprotein implicated in cellular growth and differentiation. We now show that CREG is predominantly localized within intracellular compartments. Intracellular CREG was found to lack an N-terminal peptide present in the secreted form of the protein. In contrast to normal cells, CREG is largely secreted by fibroblasts missing both mannose 6-phosphate receptors. This is not observed in cells lacking only one of them. Mass spectrometric analysis of recombinant CREG revealed that the protein contains phosphorylated oligosaccharides at either of its two N-glycosylation sites. Cellular CREG was found tomore » cosediment with lysosomal markers upon subcellular fractionation by density-gradient centrifugation. In fibroblasts expressing a CREG-GFP fusion construct, the heterologous protein was detected in compartments containing lysosomal proteins. Immunolocalization of endogenous CREG confirmed that intracellular CREG is localized in lysosomes. Proteolytic processing of intracellular CREG involves the action of lysosomal cysteine proteinases. These results establish that CREG is a lysosomal protein that undergoes proteolytic maturation in the course of its biosynthesis, carries the mannose 6-phosphate recognition marker and depends on the interaction with mannose 6-phosphate receptors for efficient delivery to lysosomes.« less

  20. Mitogenic Effects of Phosphatidylcholine Nanoparticles on MCF-7 Breast Cancer Cells

    PubMed Central

    Gándola, Yamila B.; Pérez, Sebastián E.; Irene, Pablo E.; Sotelo, Ana I.; Miquet, Johanna G.; Corradi, Gerardo R.; Carlucci, Adriana M.; Gonzalez, Lorena

    2014-01-01

    Lecithins, mainly composed of the phospholipids phosphatidylcholines (PC), have many different uses in the pharmaceutical and clinical field. PC are involved in structural and biological functions as membrane trafficking processes and cellular signaling. Considering the increasing applications of lecithin-based nanosystems for the delivery of therapeutic agents, the aim of the present work was to determine the effects of phosphatidylcholine nanoparticles over breast cancer cellular proliferation and signaling. PC dispersions at 0.01 and 0.1% (w/v) prepared in buffer pH 7.0 and 5.0 were studied in the MCF-7 breast cancer cell line. Neutral 0.1% PC-derived nanoparticles induced the activation of the MEK-ERK1/2 pathway, increased cell viability and induced a 1.2 fold raise in proliferation. These biological effects correlated with the increase of epidermal growth factor receptor (EGFR) content and its altered cellular localization. Results suggest that nanoparticles derived from PC dispersion prepared in buffer pH 7.0 may induce physicochemical changes in the plasma membrane of cancer cells which may affect EGFR cellular localization and/or activity, increasing activation of the MEK-ERK1/2 pathway and inducing proliferation. Results from the present study suggest that possible biological effects of delivery systems based on lecithin nanoparticles should be taken into account in pharmaceutical formulation design. PMID:24772432

  1. ToF-SIMS imaging of capsaicinoids in Scotch Bonnet peppers (Capsicum chinense).

    PubMed

    Tyler, Bonnie J; Peterson, Richard E; Lee, Therese G; Draude, Felix; Pelster, Andreas; Arlinghaus, Heinrich F

    2016-06-13

    Peppers (Capsicum spp.) are well known for their ability to cause an intense burning sensation when eaten. This organoleptic response is triggered by capsaicin and its analogs, collectively called capsaicinoids. In addition to the global popularity of peppers as a spice, there is a growing interest in the use of capsaicinoids to treat a variety of human ailments, including arthritis, chronic pain, digestive problems, and cancer. The cellular localization of capsaicinoid biosynthesis and accumulation has previously been studied by fluorescence microscopy and electron microscopy, both of which require immunostaining. In this work, ToF-SIMS has been used to image the distribution of capsaicinoids in the interlocular septum and placenta of Capsicum chinense (Scotch Bonnet peppers). A unique cryo-ToF-SIMS instrument has been used to prepare and analyze the samples with minimal sample preparation. Samples were frozen in liquid propane, cryosectioned in vacuum, and analyzed without exposure to ambient pressure. ToF-SIMS imaging was performed at -110 °C using a Bi3 (+) primary ion beam. Molecular ions for capsaicin and four other capsaicinoids were identified in both the positive and negative ToF-SIMS spectra. The capsaicinoids were observed concentrated in pockets between the outer walls of the palisade cells and the cuticle of the septum, as well as in the intercellular spaces in both the placenta and interlocular septum. This is the first report of label-free direct imaging of capsaicinoids at the cellular level in Capsicum spp. These images were obtained without the need for labeling or elaborate sample preparation. The study demonstrates the usefulness of ToF-SIMS imaging for studying the distribution of important metabolites in plant tissues.

  2. Expression of pericardial fluid T-cells and related inflammatory cytokines in patients with chronic heart failure.

    PubMed

    Iskandar, Reinard; Liu, Shengchen; Xiang, Fei; Chen, Wen; Li, Liangpeng; Qin, Wei; Huang, Fuhua; Chen, Xin

    2017-05-01

    Pericardial fluid, as a biochemical indicator of heart status, directly indicates pathological alteration to the heart. The accumulation of pericardial fluid can be attributed to an underlying systemic or local inflammatory process. However, the pericardial fluid expression of cellular surface markers, as well as several cytokines in chronic heart failure (CHF), remain unclear. In order to evaluate these issues further the pericardial fluid expression of several cytokines and the surface expression of activity markers between CHF patients and non-heart failure (NHF) patients were analyzed. The pericardial fluid expression of cytokines was measured by immunofluorescence and biomarker of plasma N-terminal propeptide of B-type natriuretic peptide (NT-proBNP), while pericardial fluid levels of soluble glycoprotein 130 (sgp130) were analyzed by ELISA in 50 CHF and 24 NHF patients. In addition, the surface expression of activation markers for T-cells was measured by immunohistochemistry. Patients with CHF demonstrated increased levels of plasma NT-proBNP and pericardial fluid sgp130. Surface expression of cellular activation markers CD25 and Foxp3 in the pericardial fluid was increased in patients with CHF. Moreover, the pro- and anti-inflammatory cytokines interferon (IFN)-γ, interleukin (IL)-6 and IL-10 in patients with CHF also demonstrated an increased expression within its pericardial fluid. In addition, there was infiltration of inflammatory cells and enhanced expression of inflammatory cytokines in the pericardial fluid of patients with CHF, which may reflect T cell activation, suggesting that systemic inflammation is important in the progression of CHF. This evidence could indicate a possible novel target for future therapeutics and prevention of CHF.

  3. A New Low Cost Wide-Field Illumination Method for Photooxidation of Intracellular Fluorescent Markers

    PubMed Central

    da Silva Filho, Manoel; Santos, Daniel Valle Vasconcelos; Costa, Kauê Machado

    2013-01-01

    Analyzing cell morphology is crucial in the fields of cell biology and neuroscience. One of the main methods for evaluating cell morphology is by using intracellular fluorescent markers, including various commercially available dyes and genetically encoded fluorescent proteins. These markers can be used as free radical sources in photooxidation reactions, which in the presence of diaminobenzidine (DAB) forms an opaque and electron-dense precipitate that remains localized within the cellular and organelle membranes. This method confers many methodological advantages for the investigator, including absence of photo-bleaching, high visual contrast and the possibility of correlating optical imaging with electron microscopy. However, current photooxidation techniques require the continuous use of fluorescent or confocal microscopes, which wastes valuable mercury lamp lifetime and limits the conversion process to a few cells at a time. We developed a low cost optical apparatus for performing photooxidation reactions and propose a new procedure that solves these methodological restrictions. Our “photooxidizer” consists of a high power light emitting diode (LED) associated with a custom aluminum and acrylic case and a microchip-controlled current source. We demonstrate the efficacy of our method by converting intracellular DiI in samples of developing rat neocortex and post-mortem human retina. DiI crystals were inserted in the tissue and allowed to diffuse for 20 days. The samples were then processed with the new photooxidation technique and analyzed under optical microscopy. The results show that our protocols can unveil the fine morphology of neurons in detail. Cellular structures such as axons, dendrites and spine-like appendages were well defined. In addition to its low cost, simplicity and reliability, our method precludes the use of microscope lamps for photooxidation and allows the processing of many labeled cells simultaneously in relatively large tissue samples with high efficacy. PMID:23441199

  4. Collective Cellular Decision-Making Gives Developmental Plasticity: A Model of Signaling in Branching Roots

    NASA Astrophysics Data System (ADS)

    McCleery, W. Tyler; Mohd-Radzman, Nadiatul A.; Grieneisen, Veronica A.

    Cells within tissues can be regarded as autonomous entities that respond to their local environment and signaling from neighbors. Cell coordination is particularly important in plants, where root architecture must strategically invest resources for growth to optimize nutrient acquisition. Thus, root cells are constantly adapting to environmental cues and neighbor communication in a non-linear manner. To explain such plasticity, we view the root as a swarm of coupled multi-cellular structures, ''metamers'', rather than as a continuum of identical cells. These metamers are individually programmed to achieve a local objective - developing a lateral root primordia, which aids in local foraging of nutrients. Collectively, such individual attempts may be halted, structuring root architecture as an emergent behavior. Each metamer's decision to branch is coordinated locally and globally through hormone signaling, including processes of controlled diffusion, active polar transport, and dynamic feedback. We present a physical model of the signaling mechanism that coordinates branching decisions in response to the environment. This work was funded by the European Commission 7th Framework Program, Project No. 601062, SWARM-ORGAN.

  5. Localization of palmitoylated and activated G protein α-subunit in Dictyostelium discoideum.

    PubMed

    Alamer, Sarah; Kageyama, Yusuke; Gundersen, Robert E

    2018-06-01

    Guanine nucleotide-binding proteins (G proteins) act as molecular switches to regulate many fundamental cellular processes. The lipid modification, palmitoylation, can be considered as a key factor for proper G protein function and plasma membrane localization. In Dictyostelium discoidum, Gα2 is essential for the chemotactic response to cAMP in their developmental life cycle. However, the regulation of Gα2 with respect to palmitoylation, activation and Gβγ association is less clear. In this study, Gα2 is shown to be palmitoylated on Cys-4 by [ 3 H]palmitate labeling. Loss of this palmitoylation site results in redistribution of Gα2 within the cell and poor D. discoideum development. Cellular re-localization is also observed for activated Gα2. In the membrane fraction, Gα2-wt (YFP) is highly enriched in a low-density membrane fraction, which is palmitoylation-dependent. Activated Gα2 monomer and heterotrimer are shifted to two different higher-density fractions. These results broaden our understanding of how G protein localization and function are regulated inside the cells. © 2018 Wiley Periodicals, Inc.

  6. An Essential Role for COPI in mRNA Localization to Mitochondria and Mitochondrial Function.

    PubMed

    Zabezhinsky, Dmitry; Slobodin, Boris; Rapaport, Doron; Gerst, Jeffrey E

    2016-04-19

    Nuclear-encoded mRNAs encoding mitochondrial proteins (mMPs) can localize directly to the mitochondrial surface, yet how mMPs target mitochondria and whether RNA targeting contributes to protein import into mitochondria and cellular metabolism are unknown. Here, we show that the COPI vesicle coat complex is necessary for mMP localization to mitochondria and mitochondrial function. COPI inactivation leads to reduced mMP binding to COPI itself, resulting in the dissociation of mMPs from mitochondria, a reduction in mitochondrial membrane potential, a decrease in protein import in vivo and in vitro, and severe deficiencies in mitochondrial respiration. Using a model mMP (OXA1), we observed that COPI inactivation (or mutation of the potential COPI-interaction site) led to altered mRNA localization and impaired cellular respiration. Overall, COPI-mediated mMP targeting is critical for mitochondrial protein import and function, and transcript delivery to the mitochondria or endoplasmic reticulum is regulated by cis-acting RNA sequences and trans-acting proteins. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Calcium movements and the cellular basis of gravitropism

    NASA Astrophysics Data System (ADS)

    Roux, S. J.; Biro, R. L.; Hale, C. C.

    An early gravity-transduction event in oat coleoptiles which precedes any noticeable bending is the accumulation of calcium on their prospective slower-growing side. Sub-cellular calcium localization studies indicate that the gravity-stimulated redistribution of calcium results in an increased concentration of calcium in the walls of responding cells. Since calcium can inhibit the extension growth of plant cell walls, this selective accumulation of calcium in walls may play a role in inducing the asymmetry of growth which characterizes gravitropism. The active transport of calcium from cells into walls is performed by a calcium-dependent ATPase localized in the plasma membrane. Evidence is presented in support of the hypothesis that this calcium pump is regulated by a feed-back mechanism which includes the participation of calmodulin.

  8. Integrated microelectrode array and microfluidics for temperature clamp of sensory neurons in culture.

    PubMed

    Pearce, Thomas M; Wilson, J Adam; Oakes, S George; Chiu, Shing-Yan; Williams, Justin C

    2005-01-01

    A device for cell culture is presented that combines MEMS technology and liquid-phase photolithography to create a microfluidic chip that influences and records electrical cellular activity. A photopolymer channel network is formed on top of a multichannel microelectrode array. Preliminary results indicated successful local thermal control within microfluidic channels and control of lamina position over the electrode array. To demonstrate the biological application of such a device, adult dissociated dorsal root ganglion neurons with a subpopulation of thermally-sensitive cells are attached onto the electrode array. Using laminar flow, dynamic control of local temperature of the neural cells was achieved while maintaining a constant chemical culture medium. Recording the expected altered cellular activity confirms the success of the integrated device.

  9. Origins of cellular geometry

    PubMed Central

    2011-01-01

    Cells are highly complex and orderly machines, with defined shapes and a startling variety of internal organizations. Complex geometry is a feature of both free-living unicellular organisms and cells inside multicellular animals. Where does the geometry of a cell come from? Many of the same questions that arise in developmental biology can also be asked of cells, but in most cases we do not know the answers. How much of cellular organization is dictated by global cell polarity cues as opposed to local interactions between cellular components? Does cellular structure persist across cell generations? What is the relationship between cell geometry and tissue organization? What ensures that intracellular structures are scaled to the overall size of the cell? Cell biology is only now beginning to come to grips with these questions. PMID:21880160

  10. Towards self-correcting quantum memories

    NASA Astrophysics Data System (ADS)

    Michnicki, Kamil

    This thesis presents a model of self-correcting quantum memories where quantum states are encoded using topological stabilizer codes and error correction is done using local measurements and local dynamics. Quantum noise poses a practical barrier to developing quantum memories. This thesis explores two types of models for suppressing noise. One model suppresses thermalizing noise energetically by engineering a Hamiltonian with a high energy barrier between code states. Thermalizing dynamics are modeled phenomenologically as a Markovian quantum master equation with only local generators. The second model suppresses stochastic noise with a cellular automaton that performs error correction using syndrome measurements and a local update rule. Several ways of visualizing and thinking about stabilizer codes are presented in order to design ones that have a high energy barrier: the non-local Ising model, the quasi-particle graph and the theory of welded stabilizer codes. I develop the theory of welded stabilizer codes and use it to construct a code with the highest known energy barrier in 3-d for spin Hamiltonians: the welded solid code. Although the welded solid code is not fully self correcting, it has some self correcting properties. It has an increased memory lifetime for an increased system size up to a temperature dependent maximum. One strategy for increasing the energy barrier is by mediating an interaction with an external system. I prove a no-go theorem for a class of Hamiltonians where the interaction terms are local, of bounded strength and commute with the stabilizer group. Under these conditions the energy barrier can only be increased by a multiplicative constant. I develop cellular automaton to do error correction on a state encoded using the toric code. The numerical evidence indicates that while there is no threshold, the model can extend the memory lifetime significantly. While of less theoretical importance, this could be practical for real implementations of quantum memories. Numerical evidence also suggests that the cellular automaton could function as a decoder with a soft threshold.

  11. Network models provide insights into how oriens–lacunosum-moleculare and bistratified cell interactions influence the power of local hippocampal CA1 theta oscillations

    PubMed Central

    Ferguson, Katie A.; Huh, Carey Y. L.; Amilhon, Bénédicte; Manseau, Frédéric; Williams, Sylvain; Skinner, Frances K.

    2015-01-01

    Hippocampal theta is a 4–12 Hz rhythm associated with episodic memory, and although it has been studied extensively, the cellular mechanisms underlying its generation are unclear. The complex interactions between different interneuron types, such as those between oriens–lacunosum-moleculare (OLM) interneurons and bistratified cells (BiCs), make their contribution to network rhythms difficult to determine experimentally. We created network models that are tied to experimental work at both cellular and network levels to explore how these interneuron interactions affect the power of local oscillations. Our cellular models were constrained with properties from patch clamp recordings in the CA1 region of an intact hippocampus preparation in vitro. Our network models are composed of three different types of interneurons: parvalbumin-positive (PV+) basket and axo-axonic cells (BC/AACs), PV+ BiCs, and somatostatin-positive OLM cells. Also included is a spatially extended pyramidal cell model to allow for a simplified local field potential representation, as well as experimentally-constrained, theta frequency synaptic inputs to the interneurons. The network size, connectivity, and synaptic properties were constrained with experimental data. To determine how the interactions between OLM cells and BiCs could affect local theta power, we explored how the number of OLM-BiC connections and connection strength affected local theta power. We found that our models operate in regimes that could be distinguished by whether OLM cells minimally or strongly affected the power of network theta oscillations due to balances that, respectively, allow compensatory effects or not. Inactivation of OLM cells could result in no change or even an increase in theta power. We predict that the dis-inhibitory effect of OLM cells to BiCs to pyramidal cell interactions plays a critical role in the resulting power of network theta oscillations. Overall, our network models reveal a dynamic interplay between different classes of interneurons in influencing local theta power. PMID:26300744

  12. Label-Free Analysis of Cellular Lipid Droplet Formation by Non-Linear Microscopy

    NASA Astrophysics Data System (ADS)

    Schie, Iwan W.

    Cellular lipid droplets (LD) are cellular organelles that can be found in every cell type. Recent research indicates that cellular LD are involved in a large number of cellular metabolic functions, such as lipid metabolism, protection from lipotoxicity, protein storage and degradation, and many more. LD formation is frequently associated with adverse health effects, i.e. alcoholic and non-alcoholic fatty liver disease, diabetes type-2, as well as many cardiovascular disorders. Despite their wide presence, LDs are the least studied and most poorly understood cellular organelles. Typically, LDs are investigated using fluorescence-based techniques that require staining with exogenous fluorophores. Other techniques, e.g. biochemical assays, require the destruction of cells that prohibit the analysis of living cells. Therefore, in my thesis research I developed a novel compound fast-scanning nonlinear optical microscope equipped with the ability to also acquire Raman spectra at specific image locations. This system allows us to image label-free cellular LD formation in living cells and analyze the composition of single cellular LDs. Images can be acquired at near video-rate (˜16 frames/s). Furthermore, the system has the ability to acquire very large images of tissue of up to 7.5x15 cm2 total area by stitching together scans with dimensions of 1x1 mm2 in less than 1 minute. The system also enables the user to acquire Raman spectra from points of interest in the multiphoton images and provides chemically-specific data from sample volumes as small as 1 femtoliter. In my thesis I used this setup to determine the effects of VLDL lipolysis products on primary rat hepatocytes. By analyzing the Raman spectra and comparing the peak ratios for saturated and unsaturated fatty acid it was determined that the small cellular LD are highly saturated, while large cellular LDs contain mostly unsaturated lipids. Furthermore, I established a method to determine the specific contribution of each individual fatty acids to a single cellular LD based on non-negative least squares analysis. The calculated quantities for oleic and palmitic acid from 10 individual cellular LDs were compared to results of a gas chromatography (GC) analysis of 2x10 6 cells. The analysis found that the data obtained by Raman spectroscopy of individual LDs closely resemble GC data of a significantly larger number of LDs.

  13. Neoplasia Driven by Mutant c-KIT Is Mediated by Intracellular, Not Plasma Membrane, Receptor Signaling▿

    PubMed Central

    Xiang, Zhifu; Kreisel, Frederike; Cain, Jennifer; Colson, AnnaLynn; Tomasson, Michael H.

    2007-01-01

    Activating mutations in c-KIT are associated with gastrointestinal stromal tumors, mastocytosis, and acute myeloid leukemia. In attempting to establish a murine model of human KITD816V (hKITD816V)-mediated leukemia, we uncovered an unexpected relationship between cellular transformation and intracellular trafficking. We found that transport of hKITD816V protein was blocked at the endoplasmic reticulum in a species-specific fashion. We exploited these species-specific trafficking differences and a set of localization domain-tagged KIT mutants to explore the relationship between subcellular localization of mutant KIT and cellular transformation. The protein products of fully transforming KIT mutants localized to the Golgi apparatus and to a lesser extent the plasma membrane. Domain-tagged KITD816V targeted to the Golgi apparatus remained constitutively active and transforming. Chemical inhibition of intracellular transport demonstrated that Golgi localization is sufficient, but plasma membrane localization is dispensable, for downstream signaling mediated by KIT mutation. When expressed in murine bone marrow, endoplasmic reticulum-localized hKITD816V failed to induce disease in mice, while expression of either Golgi-localized HyKITD816V or cytosol-localized, ectodomain-deleted KITD816V uniformly caused fatal myeloproliferative diseases. Taken together, these data demonstrate that intracellular, non-plasma membrane receptor signaling is sufficient to drive neoplasia caused by mutant c-KIT and provide the first animal model of myelomonocytic neoplasia initiated by human KITD816V. PMID:17060458

  14. Linking actin networks and cell membrane via a reaction-diffusion-elastic description of nonlinear filopodia initiation.

    PubMed

    Ben Isaac, Eyal; Manor, Uri; Kachar, Bechara; Yochelis, Arik; Gov, Nir S

    2013-08-01

    Reaction-diffusion models have been used to describe pattern formation on the cellular scale, and traditionally do not include feedback between cellular shape changes and biochemical reactions. We introduce here a distinct reaction-diffusion-elasticity approach: The reaction-diffusion part describes bistability between two actin orientations, coupled to the elastic energy of the cell membrane deformations. This coupling supports spatially localized patterns, even when such solutions do not exist in the uncoupled self-inhibited reaction-diffusion system. We apply this concept to describe the nonlinear (threshold driven) initiation mechanism of actin-based cellular protrusions and provide support by several experimental observations.

  15. Cervical cancer cells (HeLa) response to photodynamic therapy using a zinc phthalocyanine photosensitizer.

    PubMed

    Hodgkinson, Natasha; Kruger, Cherie Ann; Mokwena, Mpho; Abrahamse, Heidi

    2017-12-01

    Cervical cancer is the most common gynecological malignancy worldwide, and the leading cause of cancer related deaths among females. Conventional treatment for early cervical cancer is radical hysterectomy. In locally advanced cancer the treatment of choice is concurrent chemo radiation. Although such treatment methods show promise, they do have adverse side effects. To minimize these effects, as well as prevent cancer re-occurrence, new treatment methods are being investigated. Photodynamic therapy (PDT) involves the selective uptake of a photosensitizer (PS) by cancer cells, illumination with light of an appropriate wavelength that triggers a photochemical reaction leading to the generation of reactive oxygen and subsequent tumor regression. The effect of PDT on a cervical cancer cell line (HeLa) was assessed by exposing cultured cells to a sulphonated zinc phthalocyanine PS (ZnPcS mix ) and irradiating the cells using a 673nm diode laser. The effects were measured using the Trypan blue viability assay, adenosine triphosphate assay (ATP) luminescence assay for proliferation, Lactate Dehydrogenase (LDH) membrane integrity cytotoxicity assay, and fluorescent microscopy to assess PS cellular localization and nuclear damage. Fluorescent microscopy revealed localization of the PS in the cytoplasm and perinuclear region of HeLa cells. PDT treated cellular responses showed dose dependent structural changes, with decreased cell viability and proliferation, as well as considerable membrane damage. Hoechst stained cells also revealed DNA damage in PDT treated cells. The final findings from this study suggest that ZnPcS mix is a promising PS for the PDT treatment of cervical cancer in vitro, where a significant 85% cellular cytotoxicity with only 25% cellular viability was noted in cells which received 1μM ZnPcS mix when an 8J/cm 2 fluence was applied. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. System and method for monitoring cellular activity

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Fraser, Scott E. (Inventor); Lansford, Russell D. (Inventor)

    2002-01-01

    A system and method for monitoring cellular activity in a cellular specimen. According to one embodiment, a plurality of excitable markers are applied to the specimen. A multi-photon laser microscope is provided to excite a region of the specimen and cause fluorescence to be radiated from the region. The radiating fluorescence is processed by a spectral analyzer to separate the fluorescence into respective wavelength bands. The respective bands of fluorescence are then collected by an array of detectors, with each detector receiving a corresponding one of the wavelength bands.

  17. System and method for monitoring cellular activity

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Fraser, Scott E. (Inventor); Lansford, Russell D. (Inventor)

    2004-01-01

    A system and method for monitoring cellular activity in a cellular specimen. According to one embodiment, a plurality of excitable markers are applied to the specimen. A multi-photon laser microscope is provided to excite a region of the specimen and cause fluorescence to be radiated from the region. The radiating fluorescence is processed by a spectral analyzer to separate the fluorescence into respective wavelength bands. The respective bands of fluorescence are then collected by an array of detectors, with each detector receiving a corresponding one of the wavelength bands.

  18. New cellular automaton model for magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Chen, Hudong; Matthaeus, William H.

    1987-01-01

    A new type of two-dimensional cellular automation method is introduced for computation of magnetohydrodynamic fluid systems. Particle population is described by a 36-component tensor referred to a hexagonal lattice. By appropriate choice of the coefficients that control the modified streaming algorithm and the definition of the macroscopic fields, it is possible to compute both Lorentz-force and magnetic-induction effects. The method is local in the microscopic space and therefore suited to massively parallel computations.

  19. On the spatial dynamics and oscillatory behavior of a predator-prey model based on cellular automata and local particle swarm optimization.

    PubMed

    Molina, Mario Martínez; Moreno-Armendáriz, Marco A; Carlos Seck Tuoh Mora, Juan

    2013-11-07

    A two-dimensional lattice model based on Cellular Automata theory and swarm intelligence is used to study the spatial and population dynamics of a theoretical ecosystem. It is found that the social interactions among predators provoke the formation of clusters, and that by increasing the mobility of predators the model enters into an oscillatory behavior. © 2013 Elsevier Ltd. All rights reserved.

  20. Machine-learning algorithms define pathogen-specific local immune fingerprints in peritoneal dialysis patients with bacterial infections.

    PubMed

    Zhang, Jingjing; Friberg, Ida M; Kift-Morgan, Ann; Parekh, Gita; Morgan, Matt P; Liuzzi, Anna Rita; Lin, Chan-Yu; Donovan, Kieron L; Colmont, Chantal S; Morgan, Peter H; Davis, Paul; Weeks, Ian; Fraser, Donald J; Topley, Nicholas; Eberl, Matthias

    2017-07-01

    The immune system has evolved to sense invading pathogens, control infection, and restore tissue integrity. Despite symptomatic variability in patients, unequivocal evidence that an individual's immune system distinguishes between different organisms and mounts an appropriate response is lacking. We here used a systematic approach to characterize responses to microbiologically well-defined infection in a total of 83 peritoneal dialysis patients on the day of presentation with acute peritonitis. A broad range of cellular and soluble parameters was determined in peritoneal effluents, covering the majority of local immune cells, inflammatory and regulatory cytokines and chemokines as well as tissue damage-related factors. Our analyses, utilizing machine-learning algorithms, demonstrate that different groups of bacteria induce qualitatively distinct local immune fingerprints, with specific biomarker signatures associated with Gram-negative and Gram-positive organisms, and with culture-negative episodes of unclear etiology. Even more, within the Gram-positive group, unique immune biomarker combinations identified streptococcal and non-streptococcal species including coagulase-negative Staphylococcus spp. These findings have diagnostic and prognostic implications by informing patient management and treatment choice at the point of care. Thus, our data establish the power of non-linear mathematical models to analyze complex biomedical datasets and highlight key pathways involved in pathogen-specific immune responses. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  1. Imaging and reconstruction of cell cortex structures near the cell surface

    NASA Astrophysics Data System (ADS)

    Jin, Luhong; Zhou, Xiaoxu; Xiu, Peng; Luo, Wei; Huang, Yujia; Yu, Feng; Kuang, Cuifang; Sun, Yonghong; Liu, Xu; Xu, Yingke

    2017-11-01

    Total internal reflection fluorescence microscopy (TIRFM) provides high optical sectioning capability and superb signal-to-noise ratio for imaging of cell cortex structures. The development of multi-angle (MA)-TIRFM permits high axial resolution imaging and reconstruction of cellular structures near the cell surface. Cytoskeleton is composed of a network of filaments, which are important for maintenance of cell function. The high-resolution imaging and quantitative analysis of filament organization would contribute to our understanding of cytoskeleton regulation in cell. Here, we used a custom-developed MA-TIRFM setup, together with stochastic photobleaching and single molecule localization method, to enhance the lateral resolution of TIRFM imaging to about 100 nm. In addition, we proposed novel methods to perform filament segmentation and 3D reconstruction from MA-TIRFM images. Furthermore, we applied these methods to study the 3D localization of cortical actin and microtubule structures in U373 cancer cells. Our results showed that cortical actins localize ∼ 27 nm closer to the plasma membrane when compared with microtubules. We found that treatment of cells with chemotherapy drugs nocodazole and cytochalasin B disassembles cytoskeletal network and induces the reorganization of filaments towards the cell periphery. In summary, this study provides feasible approaches for 3D imaging and analyzing cell surface distribution of cytoskeletal network. Our established microscopy platform and image analysis toolkits would facilitate the study of cytoskeletal network in cells.

  2. The Biological Fate of Silver Nanoparticles from a Methodological Perspective.

    PubMed

    Drobne, Damjana; Novak, Sara; Talaber, Iva; Lynch, Iseult; Kokalj, Anita Jemec

    2018-06-05

    We analyzed the performance and throughput of currently available analytical techniques for quantifying body burden and cell internalization/distribution of silver nanoparticles (Ag NPs). Our review of Ag NP biological fate data shows that most of the evidence gathered for Ag NPs body burden actually points to total Ag and not only Ag NPs. On the other hand, Ag NPs were found inside the cells and tissues of some organisms, but comprehensive explanation of the mechanism(s) of NP entry and/or in situ formation is usually lacking. In many cases, the methods used to detect NPs inside the cells could not discriminate between ions and particles. There is currently no single technique that would discriminate between the metals species, and at the same time enable localization and quantification of NPs down to the cellular level. This paper serves as an orientation towards selection of the appropriate method for studying the fate of Ag NPs in line with their properties and the specific question to be addressed in the study. Guidance is given for method selection for quantification of NP uptake, biodistribution, precise tissue and cell localization, bioaccumulation, food chain transfer and modeling studies regarding the optimum combination of methods and key factors to consider.

  3. Self-assembled nanoformulation of methylprednisolone succinate with carboxylated block copolymer for local glucocorticoid therapy.

    PubMed

    Kamalov, Marat I; Đặng, Trinh; Petrova, Natalia V; Laikov, Alexander V; Luong, Duong; Akhmadishina, Rezeda A; Lukashkin, Andrei N; Abdullin, Timur I

    2018-04-01

    A new self-assembled formulation of methylprednisolone succinate (MPS) based on a carboxylated trifunctional block copolymer of ethylene oxide and propylene oxide (TBC-COOH) was developed. TBC-COOH and MPS associated spontaneously at increased concentrations in aqueous solutions to form almost monodisperse mixed micelles (TBC-COOH/MPS) with a hydrodynamic diameter of 19.6 nm, zeta potential of -27.8 mV and optimal weight ratio ∼1:6.3. Conditions for the effective formation of TBC-COOH/MPS were elucidated by comparing copolymers and glucocorticoids with different structure. The micellar structure of TBC-COOH/MPS persisted upon dilution, temperature fluctuations and interaction with blood serum components. TBC-COOH increased antiradical activity of MPS and promoted its intrinsic cytotoxicity in vitro attributed to enhanced cellular availability of the mixed micelles. Intracellular transportation and hydrolysis of MPS were analyzed using optimized liquid chromatography tandem mass spectrometry with multiple reaction monitoring which showed increased level of both MPS and methylprednisolone in neuronal cells treated with the formulated glucocorticoid. Our results identify TBC-COOH/MPS as an advanced in situ prepared nanoformulation and encourage its further investigation for a potential local glucocorticoid therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Frequency-dependent micromechanics of cellularized biopolymer networks

    NASA Astrophysics Data System (ADS)

    Jones, Chris; Kim, Jihan; McIntyre, David; Sun, Bo

    Mechanical interactions between cells and the extracellular matrix (ECM) influence many cellular behaviors such as growth, differentiation, and migration. These are dynamic processes in which the cells actively remodel the ECM. Reconstituted collagen gel is a common model ECM for studying cell-ECM interactions in vitro because collagen is the most abundant component of mammalian ECM and gives the ECM its material stiffness. We embed micron-sized particles in collagen and use holographic optical tweezers to apply forces to the particles in multiple directions and over a range of frequencies up to 10 Hz. We calculate the local compliance and show that it is dependent on both the direction and frequency of the applied force. Performing the same measurement on many particles allows us to characterize the spatial inhomogeneity of the mechanical properties and shows that the compliance decreases at higher frequencies. Performing these measurements on cell-populated collagen gels shows that cellular remodeling of the ECM changes the mechanical properties of the collagen and we investigate whether this change is dependent on the local strain and distance from nearby cells.

  5. Interaction of HSP20 with a viral RdRp changes its sub-cellular localization and distribution pattern in plants.

    PubMed

    Li, Jing; Xiang, Cong-Ying; Yang, Jian; Chen, Jian-Ping; Zhang, Heng-Mu

    2015-09-11

    Small heat shock proteins (sHSPs) perform a fundamental role in protecting cells against a wide array of stresses but their biological function during viral infection remains unknown. Rice stripe virus (RSV) causes a severe disease of rice in Eastern Asia. OsHSP20 and its homologue (NbHSP20) were used as baits in yeast two-hybrid (YTH) assays to screen an RSV cDNA library and were found to interact with the viral RNA-dependent RNA polymerase (RdRp) of RSV. Interactions were confirmed by pull-down and BiFC assays. Further analysis showed that the N-terminus (residues 1-296) of the RdRp was crucial for the interaction between the HSP20s and viral RdRp and responsible for the alteration of the sub-cellular localization and distribution pattern of HSP20s in protoplasts of rice and epidermal cells of Nicotiana benthamiana. This is the first report that a plant virus or a viral protein alters the expression pattern or sub-cellular distribution of sHSPs.

  6. Substance P accelerates wound healing in type 2 diabetic mice through endothelial progenitor cell mobilization and Yes-associated protein activation

    PubMed Central

    Um, Jihyun; Yu, Jinyeong; Park, Ki-Sook

    2017-01-01

    Wound healing is delayed in diabetes due to a number of factors, including impaired angiogenesis and poor dermal healing. The present study demonstrated that subcutaneous administration of substance P (SP) accelerates wound healing in db/db type 2 diabetic mice (db/db mice). SP injection (10 nM/kg, subcutaneously) enhanced angiogenesis, induced the mobilization of endothelial progenitor cells (EPCs) and increased the number of EPC-colony forming units (EPC-CFUs) in the bone marrow of db/db mice. Immunohistochemistry was performed to check the effects of SP on the cellular proliferation and the subcellular localization of Yes-associated protein (YAP) in the wound dermis. SP also upregulated cellular proliferation in the injured dermis of db/db mice. Compared with the control group, an increased number of cells in the wound dermis of SP-treated mice exhibited nuclear localization of YAP, which induces cellular proliferation. The results of the current study indicate that subcutaneous administration of SP may be a promising therapeutic strategy to treat diabetic wounds exhibiting impaired angiogenesis and dysfunctional dermal wound healing. PMID:28339006

  7. Epstein-Barr virus/complement fragment C3d receptor (CR2) reacts with p53, a cellular antioncogene-encoded membrane phosphoprotein: detection by polyclonal anti-idiotypic anti-CR2 antibodies.

    PubMed Central

    Barel, M; Fiandino, A; Lyamani, F; Frade, R

    1989-01-01

    Epstein-Barr virus and the C3d fragment of the third component of complement are specific extracellular ligands for complement receptor type 2 (CR2). However, intracellular proteins that react specifically with CR2 and are involved in post-membrane signals remain unknown. We recently prepared polyclonal anti-idiotypic anti-CR2 antibodies (Ab2) by using the highly purified CR2 molecule as original immunogen. We showed that Ab2 contained anti-idiotypic specificities that mimicked extracellular domains of CR2 and detected two distinct binding sites on CR2 for its specific extracellular ligands, Epstein-Barr virus and C3d. We postulated that Ab2 might also contain specificities that could mimic intracellular domains of CR2. Here we report that Ab2, which did not react with Raji B-lymphoma cell surface components, detected specifically, among all components solubilized from Raji cell membranes, a single intracellular membrane protein of apparent molecular mass of 53 kDa. This protein was identified as the p53 cellular antioncogene-encoded membrane phosphoprotein by analyzing its antigenic properties with Pab1801, a monoclonal anti-p53 antibody, and by comparing its biochemical properties with those of p53. Additionally, solubilized and purified CR2 bound to solubilized p53 immobilized on Pab1801-Sepharose. p53, like CR2, was localized only in purified plasma membranes and nuclei of Raji cells. These data suggest strongly that p53, a cellular antioncogene-encoded phosphoprotein, reacted specifically with CR2 in Raji membranes. This interaction may represent one of the important steps through which CR2 could be involved in human B-lymphocyte proliferation and transformation. Images PMID:2557614

  8. Heat shock-initiated apoptosis is accelerated and removal of damaged cells is delayed in the testis of clusterin/ApoJ knock-out mice.

    PubMed

    Bailey, Robert W; Aronow, Bruce; Harmony, Judith A K; Griswold, Michael D

    2002-04-01

    The secretion and localization of clusterin in the testis has led to the hypothesis that clusterin plays a role in spermatogenesis. Furthermore, the association of clusterin with apoptosis, cellular injury, disease, and regression of nongonadal tissues has led to the hypothesis that clusterin acts to protect cells from apoptosis or may be involved in tissue remodeling. To investigate the role of clusterin in the testis, we analyzed clusterin knock-out (cluKO) mice to determine the impact of the absence of clusterin on spermatogenesis. Furthermore, we investigated the cellular response to injury caused by methoxyacetic acid (MAA) toxicity and mild heat exposure in the cluKO mice to determine the extent to which clusterin protects against apoptosis or participates in tissue remodeling. We found that cluKO mice were fertile and had essentially normal spermatogenesis with the exception of some incomplete spermiation after stage VIII. No differences in testicular morphology or the incidence of apoptosis in the testis were seen between the cluKO and clusterin wild-type (cluWT) mice after MAA treatment. In contrast, apoptosis was delayed in the cluWT mice compared with the cluKO mice after heat exposure, suggesting that clusterin does have a slight protective effect against apoptosis under some conditions. Also, a dramatic loss of germ cells after heat stress occurred earlier in the cluWT testes than in the cluKO testes. Clusterin is clearly acting in a dual role in that cells can be protected from damage and dead cells can be more easily removed after some types of cellular damage but not after others.

  9. Multimodal Light Microscopy Approaches to Reveal Structural and Functional Properties of Promyelocytic Leukemia Nuclear Bodies

    PubMed Central

    Hoischen, Christian; Monajembashi, Shamci; Weisshart, Klaus; Hemmerich, Peter

    2018-01-01

    The promyelocytic leukemia (pml) gene product PML is a tumor suppressor localized mainly in the nucleus of mammalian cells. In the cell nucleus, PML seeds the formation of macromolecular multiprotein complexes, known as PML nuclear bodies (PML NBs). While PML NBs have been implicated in many cellular functions including cell cycle regulation, survival and apoptosis their role as signaling hubs along major genome maintenance pathways emerged more clearly. However, despite extensive research over the past decades, the precise biochemical function of PML in these pathways is still elusive. It remains a big challenge to unify all the different previously suggested cellular functions of PML NBs into one mechanistic model. With the advent of genetically encoded fluorescent proteins it became possible to trace protein function in living specimens. In parallel, a variety of fluorescence fluctuation microscopy (FFM) approaches have been developed which allow precise determination of the biophysical and interaction properties of cellular factors at the single molecule level in living cells. In this report, we summarize the current knowledge on PML nuclear bodies and describe several fluorescence imaging, manipulation, FFM, and super-resolution techniques suitable to analyze PML body assembly and function. These include fluorescence redistribution after photobleaching, fluorescence resonance energy transfer, fluorescence correlation spectroscopy, raster image correlation spectroscopy, ultraviolet laser microbeam-induced DNA damage, erythrocyte-mediated force application, and super-resolution microscopy approaches. Since most if not all of the microscopic equipment to perform these techniques may be available in an institutional or nearby facility, we hope to encourage more researches to exploit sophisticated imaging tools for their research in cancer biology. PMID:29888200

  10. An analytical tool that quantifies cellular morphology changes from three-dimensional fluorescence images.

    PubMed

    Haass-Koffler, Carolina L; Naeemuddin, Mohammad; Bartlett, Selena E

    2012-08-31

    The most common software analysis tools available for measuring fluorescence images are for two-dimensional (2D) data that rely on manual settings for inclusion and exclusion of data points, and computer-aided pattern recognition to support the interpretation and findings of the analysis. It has become increasingly important to be able to measure fluorescence images constructed from three-dimensional (3D) datasets in order to be able to capture the complexity of cellular dynamics and understand the basis of cellular plasticity within biological systems. Sophisticated microscopy instruments have permitted the visualization of 3D fluorescence images through the acquisition of multispectral fluorescence images and powerful analytical software that reconstructs the images from confocal stacks that then provide a 3D representation of the collected 2D images. Advanced design-based stereology methods have progressed from the approximation and assumptions of the original model-based stereology even in complex tissue sections. Despite these scientific advances in microscopy, a need remains for an automated analytic method that fully exploits the intrinsic 3D data to allow for the analysis and quantification of the complex changes in cell morphology, protein localization and receptor trafficking. Current techniques available to quantify fluorescence images include Meta-Morph (Molecular Devices, Sunnyvale, CA) and Image J (NIH) which provide manual analysis. Imaris (Andor Technology, Belfast, Northern Ireland) software provides the feature MeasurementPro, which allows the manual creation of measurement points that can be placed in a volume image or drawn on a series of 2D slices to create a 3D object. This method is useful for single-click point measurements to measure a line distance between two objects or to create a polygon that encloses a region of interest, but it is difficult to apply to complex cellular network structures. Filament Tracer (Andor) allows automatic detection of the 3D neuronal filament-like however, this module has been developed to measure defined structures such as neurons, which are comprised of dendrites, axons and spines (tree-like structure). This module has been ingeniously utilized to make morphological measurements to non-neuronal cells, however, the output data provide information of an extended cellular network by using a software that depends on a defined cell shape rather than being an amorphous-shaped cellular model. To overcome the issue of analyzing amorphous-shaped cells and making the software more suitable to a biological application, Imaris developed Imaris Cell. This was a scientific project with the Eidgenössische Technische Hochschule, which has been developed to calculate the relationship between cells and organelles. While the software enables the detection of biological constraints, by forcing one nucleus per cell and using cell membranes to segment cells, it cannot be utilized to analyze fluorescence data that are not continuous because ideally it builds cell surface without void spaces. To our knowledge, at present no user-modifiable automated approach that provides morphometric information from 3D fluorescence images has been developed that achieves cellular spatial information of an undefined shape (Figure 1). We have developed an analytical platform using the Imaris core software module and Imaris XT interfaced to MATLAB (Mat Works, Inc.). These tools allow the 3D measurement of cells without a pre-defined shape and with inconsistent fluorescence network components. Furthermore, this method will allow researchers who have extended expertise in biological systems, but not familiarity to computer applications, to perform quantification of morphological changes in cell dynamics.

  11. Correlative cellular ptychography with functionalized nanoparticles at the Fe L-edge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher-Jones, Marcus; Dias, Carlos Sato Baraldi; Pryor, Alan

    Precise localization of nanoparticles within a cell is crucial to the understanding of cell-particle interactions and has broad applications in nanomedicine. Here in this paper, we report a proof-of-principle experiment for imaging individual functionalized nanoparticles within a mammalian cell by correlative microscopy. Using a chemically-fixed HeLa cell labeled with fluorescent core-shell nanoparticles as a model system, we implemented a graphene-oxide layer as a substrate to significantly reduce background scattering. We identified cellular features of interest by fluorescence microscopy, followed by scanning transmission X-ray tomography to localize the particles in 3D, and ptychographic coherent diffractive imaging of the fine features inmore » the region at high resolution. By tuning the X-ray energy to the Fe L-edge, we demonstrated sensitive detection of nanoparticles composed of a 22 nm magnetic Fe 3O 4 core encased by a 25-nm-thick fluorescent silica (SiO 2) shell. These fluorescent core-shell nanoparticles act as landmarks and offer clarity in a cellular context. Our correlative microscopy results confirmed a subset of particles to be fully internalized, and high-contrast ptychographic images showed two oxidation states of individual nanoparticles with a resolution of ~16.5 nm. The ability to precisely localize individual fluorescent nanoparticles within mammalian cells will expand our understanding of the structure/function relationships for functionalized nanoparticles.« less

  12. Effects of Liposomes Charge on Extending Sciatic Nerve Blockade of N-ethyl Bromide of Lidocaine in Rats

    NASA Astrophysics Data System (ADS)

    Yin, Qinqin; Ke, Bowen; Chen, Xiaobing; Guan, Yikai; Feng, Ping; Chen, Guo; Kang, Yi; Zhang, Wensheng; Nie, Yu

    2016-12-01

    N-methyl bromide of lidocaine (QX-314) is a potential local anaesthetic with compromised penetration through cell membranes due to its obligated positive charge. Liposomes have been widely used for drug delivery with promising efficacy and safety. Therefore we investigated the local anaesthetic effects and tissue reactions of QX-314 in combination with anionic, cationic or neutral liposomes in rat sciatic nerve block model, and explored the effects of these liposomes on cellular entry of QX-314 in human embryonic kidney 293 cells. The results demonstrated that anionic liposomes substantially prolonged the duration of sensory (25.7 ± 8.3 h) and motor (41.4 ± 6.1 h) blocks of QX-314, while cationic and neutral ones had little effects. Tissue reactions from QX-314 with anionic liposomes were similar to those with commonly used local anaesthetic bupivacaine. Consistent with in vivo results, the anionic liposomes produced the greatest promotion of cellular entry of QX-314 in a time-dependent manner. In conclusion, ultra-long lasting nerve blocks were achieved by a mixture of QX-314 and anionic liposomes with a satisfactory safety profile, indicating a potential approach to improve postoperative pain management. The liposome-induced enhancement in cellular uptake of QX-314 may underlie the in vivo effects.

  13. The effect of oil-water partition coefficient on the distribution and cellular uptake of liposome-encapsulated gold nanoparticles.

    PubMed

    Bao, Quan-Ying; Liu, Ai-Yun; Ma, Yu; Chen, Huan; Hong, Jin; Shen, Wen-Bin; Zhang, Can; Ding, Ya

    2016-10-01

    The shape, size, and surface features of nanoparticles greatly influence the structure and properties of resulting hybrid nanosystems. In this work, gold nanoparticles (GNPs) were modified via S-Au covalent bonding by glycol monomethyl ether thioctate with poly(ethylene glycol) methyl ether of different molecular weights (i.e., 350, 550, and 750Da). These modified GNPs (i.e., GNP350, GNP550, and GNP750) showed different oil-water partition coefficients (Kp), as detected using inductively coupled plasma-atomic emission spectroscopy. The different Kp values of the gold conjugates (i.e., 13.98, 2.11, and 0.036 for GNP350, GNP550, and GNP750, respectively) resulted in different conjugate localization within liposomes, as observed by transmission electron microscopy. In addition, the cellular uptake of hybrid liposomes co-encapsulating gold conjugates and Nile red was evaluated using intracellular fluorescence intensity. The results indicated that precise GNP localization in the hydrophilic or hydrophobic liposome cavity could be achieved by regulating the GNP oil-water partition coefficient via surface modification; such localization could further affect the properties and functions of hybrid liposomes, including their cellular uptake profiles. This study furthers the understanding not only of the interaction between liposomes and inorganic nanoparticles but also of adjusting liposome-gold hybrid nanostructure properties via the surface chemistry of gold materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. A toolset of aequorin expression vectors for in planta studies of subcellular calcium concentrations in Arabidopsis thaliana

    PubMed Central

    Mehlmer, Norbert; Parvin, Nargis; Hurst, Charlotte H.; Knight, Marc R.; Teige, Markus; Vothknecht, Ute C.

    2014-01-01

    Calcium has long been acknowledged as one of the most important signalling components in plants. Many abiotic and biotic stimuli are transduced into a cellular response by temporal and spatial changes in cellular calcium concentration and the calcium-sensitive protein aequorin has been exploited as a genetically encoded calcium indicator for the measurement of calcium in planta. The objective of this work was to generate a compatible set of aequorin expression plasmids for the generation of transgenic plant lines to measure changes in calcium levels in different cellular subcompartments. Aequorin was fused to different targeting peptides or organellar proteins as a means to localize it to the cytosol, the nucleus, the plasma membrane, and the mitochondria. Furthermore, constructs were designed to localize aequorin in the stroma as well as the inner and outer surface of the chloroplast envelope membranes. The modular set-up of the plasmids also allows the easy replacement of targeting sequences to include other compartments. An additional YFP-fusion was included to verify the correct subcellular localization of all constructs by laser scanning confocal microscopy. For each construct, pBin19-based binary expression vectors driven by the 35S or UBI10 promoter were made for Agrobacterium-mediated transformation. Stable Arabidopsis lines were generated and initial tests of several lines confirmed their feasibility to measure calcium signals in vivo. PMID:22213817

  15. Effects of Liposomes Charge on Extending Sciatic Nerve Blockade of N-ethyl Bromide of Lidocaine in Rats

    PubMed Central

    Yin, Qinqin; Ke, Bowen; Chen, Xiaobing; Guan, Yikai; Feng, Ping; Chen, Guo; Kang, Yi; Zhang, Wensheng; Nie, Yu

    2016-01-01

    N-methyl bromide of lidocaine (QX-314) is a potential local anaesthetic with compromised penetration through cell membranes due to its obligated positive charge. Liposomes have been widely used for drug delivery with promising efficacy and safety. Therefore we investigated the local anaesthetic effects and tissue reactions of QX-314 in combination with anionic, cationic or neutral liposomes in rat sciatic nerve block model, and explored the effects of these liposomes on cellular entry of QX-314 in human embryonic kidney 293 cells. The results demonstrated that anionic liposomes substantially prolonged the duration of sensory (25.7 ± 8.3 h) and motor (41.4 ± 6.1 h) blocks of QX-314, while cationic and neutral ones had little effects. Tissue reactions from QX-314 with anionic liposomes were similar to those with commonly used local anaesthetic bupivacaine. Consistent with in vivo results, the anionic liposomes produced the greatest promotion of cellular entry of QX-314 in a time-dependent manner. In conclusion, ultra-long lasting nerve blocks were achieved by a mixture of QX-314 and anionic liposomes with a satisfactory safety profile, indicating a potential approach to improve postoperative pain management. The liposome-induced enhancement in cellular uptake of QX-314 may underlie the in vivo effects. PMID:27924842

  16. Correlative cellular ptychography with functionalized nanoparticles at the Fe L-edge

    DOE PAGES

    Gallagher-Jones, Marcus; Dias, Carlos Sato Baraldi; Pryor, Alan; ...

    2017-07-06

    Precise localization of nanoparticles within a cell is crucial to the understanding of cell-particle interactions and has broad applications in nanomedicine. Here in this paper, we report a proof-of-principle experiment for imaging individual functionalized nanoparticles within a mammalian cell by correlative microscopy. Using a chemically-fixed HeLa cell labeled with fluorescent core-shell nanoparticles as a model system, we implemented a graphene-oxide layer as a substrate to significantly reduce background scattering. We identified cellular features of interest by fluorescence microscopy, followed by scanning transmission X-ray tomography to localize the particles in 3D, and ptychographic coherent diffractive imaging of the fine features inmore » the region at high resolution. By tuning the X-ray energy to the Fe L-edge, we demonstrated sensitive detection of nanoparticles composed of a 22 nm magnetic Fe 3O 4 core encased by a 25-nm-thick fluorescent silica (SiO 2) shell. These fluorescent core-shell nanoparticles act as landmarks and offer clarity in a cellular context. Our correlative microscopy results confirmed a subset of particles to be fully internalized, and high-contrast ptychographic images showed two oxidation states of individual nanoparticles with a resolution of ~16.5 nm. The ability to precisely localize individual fluorescent nanoparticles within mammalian cells will expand our understanding of the structure/function relationships for functionalized nanoparticles.« less

  17. Analysis of Stem Cell Motility In Vivo Based on Immunodetection of Planarian Neoblasts and Tracing of BrdU-Labeled Cells After Partial Irradiation.

    PubMed

    Tasaki, Junichi; Uchiyama-Tasaki, Chihiro; Rouhana, Labib

    2016-01-01

    Planarian flatworms have become an important system for the study of stem cell behavior and regulation in vivo. These organisms are able to regenerate any part of their body upon damage or amputation. A crucial cellular event in the process of planarian regeneration is the migration of pluripotent stem cells (known as neoblasts) to the site of injury. Here we describe two approaches for analyzing migration of planarian stem cells to an area where these have been ablated by localized X-ray irradiation. The first approach involves immunolabeling of mitotic neoblasts, while the second is based on tracing stem cells and their progeny after BrdU incorporation. The use of planarians in studies of cell motility is suitable for the identification of factors that influence stem cell migration in vivo and is amenable to RNA interference or pharmacological screening.

  18. Calcium imaging of neuronal activity in the most rostral parafacial respiratory group of the newborn rat.

    PubMed

    Onimaru, Hiroshi; Dutschmann, Mathias

    2012-01-01

    The parafacial respiratory group (pFRG) is thought to be involved in respiratory rhythm generation in neonates. This subgroup expresses the transcription factor, Phox2b, and contains intrinsically CO(2) sensitive neurons. Calcium imaging has been widely used for analysis of neuronal activity at the cellular and network level. In the present study, we applied calcium imaging to analyze neuronal activity of the most-rostral pFRG in an in vitro brainstem-spinal cord preparation from neonatal rats. We detected strong pre-inspiratory neuron activity in the most rostral pFRG, suggesting that significant numbers of pre-inspiratory neurons are localized in the ventrolateral medulla near the rostral end of the medulla. We show that usage of calcium imaging would be very useful for analysis of neuronal activity over different time scales, and discuss the advantages and disadvantages of this method.

  19. Principles of Unconventional Myosin Function and Targeting

    PubMed Central

    Hartman, M. Amanda; Finan, Dina; Sivaramakrishnan, Sivaraj; Spudich, James A.

    2016-01-01

    Unconventional myosins are a superfamily of actin-based motors implicated in diverse cellular processes. In recent years, much progress has been made in describing their biophysical properties, and headway has been made into analyzing their cellular functions. Here, we focus on the principles that guide in vivo motor function and targeting to specific cellular locations. Rather than describe each motor comprehensively, we outline the major themes that emerge from research across the superfamily and use specific examples to illustrate each. In presenting the data in this format, we seek to identify open questions in each field as well as to point out commonalities between them. To advance our understanding of myosins’ roles in vivo, clearly we must identify their cellular cargoes and the protein complexes that regulate motor attachment to fully appreciate their functions on the cellular and developmental levels. PMID:21639800

  20. Forces Generated by Cell Intercalation Tow Epidermal Sheets in Mammalian Tissue Morphogenesis

    PubMed Central

    Heller, Evan; Kumar, K. Vijay; Grill, Stephan W.; Fuchs, Elaine

    2014-01-01

    Summary While gastrulation movements offer mechanistic paradigms for how collective cellular movements shape developing embryos, far less is known about coordinated cellular movements that occur later in development. Studying eyelid closure, we explore a case where an epithelium locally reshapes, expands, and moves over another epithelium. Live imaging, gene targeting and cell cycle inhibitors reveal that closure does not require overlying periderm, proliferation or supracellular actin cable assembly. Laser ablation and quantitative analyses of tissue deformations further distinguish the mechanism from wound-repair and dorsal closure. Rather, cell intercalations parallel to the tissue front locally compress it perpendicularly, pulling the surrounding epidermis along the closure axis. Functional analyses in vivo show that the mechanism requires localized myosin-IIA and α5β1-fibronectin-mediated migration, and E-cadherin downregulation likely stimulated by Wnt signaling. These studies uncover a mode of epithelial closure in which forces generated by cell intercalation are leveraged to tow the surrounding tissue. PMID:24697897

  1. The telomeric protein AKTIP interacts with A- and B-type lamins and is involved in regulation of cellular senescence.

    PubMed

    Burla, Romina; Carcuro, Mariateresa; Torre, Mattia La; Fratini, Federica; Crescenzi, Marco; D'Apice, Maria Rosaria; Spitalieri, Paola; Raffa, Grazia Daniela; Astrologo, Letizia; Lattanzi, Giovanna; Cundari, Enrico; Raimondo, Domenico; Biroccio, Annamaria; Gatti, Maurizio; Saggio, Isabella

    2016-08-01

    AKTIP is a shelterin-interacting protein required for replication of telomeric DNA. Here, we show that AKTIP biochemically interacts with A- and B-type lamins and affects lamin A, but not lamin C or B, expression. In interphase cells, AKTIP localizes at the nuclear rim and in discrete regions of the nucleoplasm just like lamins. Double immunostaining revealed that AKTIP partially co-localizes with lamin B1 and lamin A/C in interphase cells, and that proper AKTIP localization requires functional lamin A. In mitotic cells, AKTIP is enriched at the spindle poles and at the midbody of late telophase cells similar to lamin B1. AKTIP-depleted cells show senescence-associated markers and recapitulate several aspects of the progeroid phenotype. Collectively, our results indicate that AKTIP is a new player in lamin-related processes, including those that govern nuclear architecture, telomere homeostasis and cellular senescence. © 2016 The Authors.

  2. STED Imaging of Golgi Dynamics with Cer-SiR: A Two-Component, Photostable, High-Density Lipid Probe for Live Cells.

    PubMed

    Erdmann, Roman S; Toomre, Derek; Schepartz, Alanna

    2017-01-01

    Long time-lapse super-resolution imaging in live cells requires a labeling strategy that combines a bright, photostable fluorophore with a high-density localization probe. Lipids are ideal high-density localization probes, as they are >100 times more abundant than most membrane-bound proteins and simultaneously demark the boundaries of cellular organelles. Here, we describe Cer-SiR, a two-component, high-density lipid probe that is exceptionally photostable. Cer-SiR is generated in cells via a bioorthogonal reaction of two components: a ceramide lipid tagged with trans-cyclooctene (Cer-TCO) and a reactive, photostable Si-rhodamine dye (SiR-Tz). These components assemble within the Golgi apparatus of live cells to form Cer-SiR. Cer-SiR is benign to cellular function, localizes within the Golgi at a high density, and is sufficiently photostable to enable visualization of Golgi structure and dynamics by 3D confocal or long time-lapse STED microscopy.

  3. Elution of Labile Fluorescent Dye from Nanoparticles during Biological Use

    PubMed Central

    Tenuta, Tiziana; Monopoli, Marco P.; Kim, JongAh; Salvati, Anna; Dawson, Kenneth A.; Sandin, Peter; Lynch, Iseult

    2011-01-01

    Cells act as extremely efficient filters for elution of unbound fluorescent tags or impurities associated with nanoparticles, including those that cannot be removed by extensive cleaning. This has consequences for quantification of nanoparticle uptake and sub-cellular localization in vitro and in vivo as a result of the presence of significant amount of labile dye even following extensive cleaning by dialysis. Polyacrylamide gel electrophoresis (PAGE) can be used to monitor the elution of unbound fluorescent probes from nanoparticles, either commercially available or synthesized in-house, and to ensure their complete purification for biological studies, including cellular uptake and sub-cellular localisation. Very different fluorescence distribution within cells is observed after short dialysis times versus following extensive dialysis against a solvent in which the free dye is more soluble, due to the contribution from free dye. In the absence of an understanding of the presence of residual free dye in (most) labeled nanoparticle solutions, the total fluorescence intensity in cells following exposure to nanoparticle solutions could be mis-ascribed to the presence of nanoparticles through the cell, rather than correctly assigned to either a combination of free-dye and nanoparticle-bound dye, or even entirely to free dye depending on the exposure conditions (i.e. aggregation of the particles etc). Where all of the dye is nanoparticle-bound, the particles are highly localized in sub-cellular organelles, likely lysosomes, whereas in a system containing significant amounts of free dye, the fluorescence is distributed through the cell due to the free diffusion of the molecule dye across all cellular barriers and into the cytoplasm. PMID:21998668

  4. Synthesis and characterization of Her2-NLP peptide conjugates targeting circulating breast cancer cells: cellular uptake and localization by fluorescent microscopic imaging.

    PubMed

    Cai, Huawei; Singh, Ajay N; Sun, Xiankai; Peng, Fangyu

    2015-01-01

    To synthesize a fluorescent Her2-NLP peptide conjugate consisting of Her2/neu targeting peptide and nuclear localization sequence peptide (NLP) and assess its cellular uptake and intracellular localization for radionuclide cancer therapy targeting Her2/neu-positive circulating breast cancer cells (CBCC). Fluorescent Cy5.5 Her2-NLP peptide conjugate was synthesized by coupling a bivalent peptide sequence, which consisted of a Her2-binding peptide (NH2-GSGKCCYSL) and an NLP peptide (CGYGPKKKRKVGG) linked by a polyethylene glycol (PEG) chain with 6 repeating units, with an activated Cy5.5 ester. The conjugate was separated and purified by HPLC and then characterized by Maldi-MS. The intracellular localization of fluorescent Cy5.5 Her2-NLP peptide conjugate was assessed by fluorescent microscopic imaging using a confocal microscope after incubation of Cy5.5-Her2-NLP with Her2/neu positive breast cancer cells and Her2/neu negative control breast cancer cells, respectively. Fluorescent signals were detected in cytoplasm of Her2/neu positive breast cancer cells (SKBR-3 and BT474 cell lines), but not or little in cytoplasm of Her2/neu negative breast cancer cells (MDA-MB-231), after incubation of the breast cancer cells with Cy5.5-Her2-NLP conjugates in vitro. No fluorescent signals were detected within the nuclei of Her2/neu positive SKBR-3 and BT474 breast cancer cells, neither Her2/neu negative MDA-MB-231 cells, incubated with the Cy5.5-Her2-NLP peptide conjugates, suggesting poor nuclear localization of the Cy5.5-Her2-NLP conjugates localized within the cytoplasm after their cellular uptake and internalization by the Her2/neu positive breast cancer cells. Her2-binding peptide (KCCYSL) is a promising agent for radionuclide therapy of Her2/neu positive breast cancer using a β(-) or α emitting radionuclide, but poor nuclear localization of the Her2-NLP peptide conjugates may limit its use for eradication of Her2/neu-positive CBCC using I-125 or other Auger electron emitting radionuclide.

  5. [Advances in microbial genome reduction and modification].

    PubMed

    Wang, Jianli; Wang, Xiaoyuan

    2013-08-01

    Microbial genome reduction and modification are important strategies for constructing cellular chassis used for synthetic biology. This article summarized the essential genes and the methods to identify them in microorganisms, compared various strategies for microbial genome reduction, and analyzed the characteristics of some microorganisms with the minimized genome. This review shows the important role of genome reduction in constructing cellular chassis.

  6. Characterization of the cellular response triggered by gold nanoparticle-mediated laser manipulation

    NASA Astrophysics Data System (ADS)

    Kalies, Stefan; Keil, Sebastian; Sender, Sina; Hammer, Susanne C.; Antonopoulos, Georgios C.; Schomaker, Markus; Ripken, Tammo; Escobar, Hugo Murua; Meyer, Heiko; Heinemann, Dag

    2015-11-01

    Laser-based transfection techniques have proven high applicability in several cell biologic applications. The delivery of different molecules using these techniques has been extensively investigated. In particular, new high-throughput approaches such as gold nanoparticle-mediated laser transfection allow efficient delivery of antisense molecules or proteins into cells preserving high cell viabilities. However, the cellular response to the perforation procedure is not well understood. We herein analyzed the perforation kinetics of single cells during resonant gold nanoparticle-mediated laser manipulation with an 850-ps laser system at a wavelength of 532 nm. Inflow velocity of propidium iodide into manipulated cells reached a maximum within a few seconds. Experiments based on the inflow of FM4-64 indicated that the membrane remains permeable for a few minutes for small molecules. To further characterize the cellular response postmanipulation, we analyzed levels of oxidative heat or general stress. Although we observed an increased formation of reactive oxygen species by an increase of dichlorofluorescein fluorescence, heat shock protein 70 was not upregulated in laser-treated cells. Additionally, no evidence of stress granule formation was visible by immunofluorescence staining. The data provided in this study help to identify the cellular reactions to gold nanoparticle-mediated laser manipulation.

  7. Reciprocal Regulation of Endocytosis and Metabolism

    PubMed Central

    Antonescu, Costin N.; McGraw, Timothy E.; Klip, Amira

    2014-01-01

    The cellular uptake of many nutrients and micronutrients governs both their cellular availability and their systemic homeostasis. The cellular rate of nutrient or ion uptake (e.g., glucose, Fe3+, K+) or efflux (e.g., Na+) is governed by a complement of membrane transporters and receptors that show dynamic localization at both the plasma membrane and defined intracellular membrane compartments. Regulation of the rate and mechanism of endocytosis controls the amounts of these proteins on the cell surface, which in many cases determines nutrient uptake or secretion. Moreover, the metabolic action of diverse hormones is initiated upon binding to surface receptors that then undergo regulated endocytosis and show distinct signaling patterns once internalized. Here, we examine how the endocytosis of nutrient transporters and carriers as well as signaling receptors governs cellular metabolism and thereby systemic (whole-body) metabolite homeostasis. PMID:24984778

  8. Immunolocalization of dually phosphorylated MAPKs in dividing root meristem cells of Vicia faba, Pisum sativum, Lupinus luteus and Lycopersicon esculentum.

    PubMed

    Winnicki, Konrad; Żabka, Aneta; Bernasińska, Joanna; Matczak, Karolina; Maszewski, Janusz

    2015-06-01

    In plants, phosphorylated MAPKs display constitutive nuclear localization; however, not all studied plant species show co-localization of activated MAPKs to mitotic microtubules. The mitogen-activated protein kinase (MAPK) signaling pathway is involved not only in the cellular response to biotic and abiotic stress but also in the regulation of cell cycle and plant development. The role of MAPKs in the formation of a mitotic spindle has been widely studied and the MAPK signaling pathway was found to be indispensable for the unperturbed course of cell division. Here we show cellular localization of activated MAPKs (dually phosphorylated at their TXY motifs) in both interphase and mitotic root meristem cells of Lupinus luteus, Pisum sativum, Vicia faba (Fabaceae) and Lycopersicon esculentum (Solanaceae). Nuclear localization of activated MAPKs has been found in all species. Co-localization of these kinases to mitotic microtubules was most evident in L. esculentum, while only about 50% of mitotic cells in the root meristems of P. sativum and V. faba displayed activated MAPKs localized to microtubules during mitosis. Unexpectedly, no evident immunofluorescence signals at spindle microtubules and phragmoplast were noted in L. luteus. Considering immunocytochemical analyses and studies on the impact of FR180204 (an inhibitor of animal ERK1/2) on mitotic cells, we hypothesize that MAPKs may not play prominent role in the regulation of microtubule dynamics in all plant species.

  9. Internalization of titanium dioxide nanoparticles by glial cells is given at short times and is mainly mediated by actin reorganization-dependent endocytosis.

    PubMed

    Huerta-García, Elizabeth; Márquez-Ramírez, Sandra Gissela; Ramos-Godinez, María Del Pilar; López-Saavedra, Alejandro; Herrera, Luis Alonso; Parra, Alberto; Alfaro-Moreno, Ernesto; Gómez, Erika Olivia; López-Marure, Rebeca

    2015-12-01

    Many nanoparticles (NPs) have toxic effects on multiple cell lines. This toxicity is assumed to be related to their accumulation within cells. However, the process of internalization of NPs has not yet been fully characterized. In this study, the cellular uptake, accumulation, and localization of titanium dioxide nanoparticles (TiO2 NPs) in rat (C6) and human (U373) glial cells were analyzed using time-lapse microscopy (TLM) and transmission electron microscopy (TEM). Cytochalasin D (Cyt-D) was used to evaluate whether the internalization process depends of actin reorganization. To determine whether the NP uptake is mediated by phagocytosis or macropinocytosis, nitroblue tetrazolium (NBT) reduction was measured and the 5-(N-ethyl-N-isopropyl)-amiloride was used. Expression of proteins involved with endocytosis and exocytosis such as caveolin-1 (Cav-1) and cysteine string proteins (CSPs) was also determined using flow cytometry. TiO2 NPs were taken up by both cell types, were bound to cellular membranes and were internalized at very short times after exposure (C6, 30 min; U373, 2h). During the uptake process, the formation of pseudopodia and intracellular vesicles was observed, indicating that this process was mediated by endocytosis. No specific localization of TiO2 NPs into particular organelles was found: in contrast, they were primarily localized into large vesicles in the cytoplasm. Internalization of TiO2 NPs was strongly inhibited by Cyt-D in both cells and by amiloride in U373 cells; besides, the observed endocytosis was not associated with NBT reduction in either cell type, indicating that macropinocytosis is the main process of internalization in U373 cells. In addition, increases in the expression of Cav-1 protein and CSPs were observed. In conclusion, glial cells are able to internalize TiO2 NPs by a constitutive endocytic mechanism which may be associated with their strong cytotoxic effect in these cells; therefore, TiO2 NPs internalization and their accumulation in brain cells could be dangerous to human health. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Prediction of intracellular exposure bridges the gap between target- and cell-based drug discovery

    PubMed Central

    Gordon, Laurie J.; Wayne, Gareth J.; Almqvist, Helena; Axelsson, Hanna; Seashore-Ludlow, Brinton; Treyer, Andrea; Lundbäck, Thomas; West, Andy; Hann, Michael M.; Artursson, Per

    2017-01-01

    Inadequate target exposure is a major cause of high attrition in drug discovery. Here, we show that a label-free method for quantifying the intracellular bioavailability (Fic) of drug molecules predicts drug access to intracellular targets and hence, pharmacological effect. We determined Fic in multiple cellular assays and cell types representing different targets from a number of therapeutic areas, including cancer, inflammation, and dementia. Both cytosolic targets and targets localized in subcellular compartments were investigated. Fic gives insights on membrane-permeable compounds in terms of cellular potency and intracellular target engagement, compared with biochemical potency measurements alone. Knowledge of the amount of drug that is locally available to bind intracellular targets provides a powerful tool for compound selection in early drug discovery. PMID:28701380

  11. Generic Transport Mechanisms for Molecular Traffic in Cellular Protrusions

    NASA Astrophysics Data System (ADS)

    Graf, Isabella R.; Frey, Erwin

    2017-03-01

    Transport of molecular motors along protein filaments in a half-closed geometry is a common feature of biologically relevant processes in cellular protrusions. Using a lattice-gas model we study how the interplay between active and diffusive transport and mass conservation leads to localized domain walls and tip localization of the motors. We identify a mechanism for task sharing between the active motors (maintaining a gradient) and the diffusive motion (transport to the tip), which ensures that energy consumption is low and motor exchange mostly happens at the tip. These features are attributed to strong nearest-neighbor correlations that lead to a strong reduction of active currents, which we calculate analytically using an exact moment identity, and might prove useful for the understanding of correlations and active transport also in more elaborate systems.

  12. Super-Resolution Microscopy: Shedding Light on the Cellular Plasma Membrane.

    PubMed

    Stone, Matthew B; Shelby, Sarah A; Veatch, Sarah L

    2017-06-14

    Lipids and the membranes they form are fundamental building blocks of cellular life, and their geometry and chemical properties distinguish membranes from other cellular environments. Collective processes occurring within membranes strongly impact cellular behavior and biochemistry, and understanding these processes presents unique challenges due to the often complex and myriad interactions between membrane components. Super-resolution microscopy offers a significant gain in resolution over traditional optical microscopy, enabling the localization of individual molecules even in densely labeled samples and in cellular and tissue environments. These microscopy techniques have been used to examine the organization and dynamics of plasma membrane components, providing insight into the fundamental interactions that determine membrane functions. Here, we broadly introduce the structure and organization of the mammalian plasma membrane and review recent applications of super-resolution microscopy to the study of membranes. We then highlight some inherent challenges faced when using super-resolution microscopy to study membranes, and we discuss recent technical advancements that promise further improvements to super-resolution microscopy and its application to the plasma membrane.

  13. Machine learning to design integral membrane channelrhodopsins for efficient eukaryotic expression and plasma membrane localization.

    PubMed

    Bedbrook, Claire N; Yang, Kevin K; Rice, Austin J; Gradinaru, Viviana; Arnold, Frances H

    2017-10-01

    There is growing interest in studying and engineering integral membrane proteins (MPs) that play key roles in sensing and regulating cellular response to diverse external signals. A MP must be expressed, correctly inserted and folded in a lipid bilayer, and trafficked to the proper cellular location in order to function. The sequence and structural determinants of these processes are complex and highly constrained. Here we describe a predictive, machine-learning approach that captures this complexity to facilitate successful MP engineering and design. Machine learning on carefully-chosen training sequences made by structure-guided SCHEMA recombination has enabled us to accurately predict the rare sequences in a diverse library of channelrhodopsins (ChRs) that express and localize to the plasma membrane of mammalian cells. These light-gated channel proteins of microbial origin are of interest for neuroscience applications, where expression and localization to the plasma membrane is a prerequisite for function. We trained Gaussian process (GP) classification and regression models with expression and localization data from 218 ChR chimeras chosen from a 118,098-variant library designed by SCHEMA recombination of three parent ChRs. We use these GP models to identify ChRs that express and localize well and show that our models can elucidate sequence and structure elements important for these processes. We also used the predictive models to convert a naturally occurring ChR incapable of mammalian localization into one that localizes well.

  14. Cell- and subunit-specific mechanisms of CNG channel ciliary trafficking and localization in C. elegans

    PubMed Central

    Wojtyniak, Martin; Brear, Andrea G.; O'Halloran, Damien M.; Sengupta, Piali

    2013-01-01

    Summary Primary cilia are ubiquitous sensory organelles that concentrate transmembrane signaling proteins essential for sensing environmental cues. Mislocalization of crucial ciliary signaling proteins, such as the tetrameric cyclic nucleotide-gated (CNG) channels, can lead to cellular dysfunction and disease. Although several cis- and trans-acting factors required for ciliary protein trafficking and localization have been identified, whether these mechanisms act in a protein- and cell-specific manner is largely unknown. Here, we show that CNG channel subunits can be localized to discrete ciliary compartments in individual sensory neurons in C. elegans, suggesting that channel composition is heterogeneous across the cilium. We demonstrate that ciliary localization of CNG channel subunits is interdependent on different channel subunits in specific cells, and identify sequences required for efficient ciliary targeting and localization of the TAX-2 CNGB and TAX-4 CNGA subunits. Using a candidate gene approach, we show that Inversin, transition zone proteins, intraflagellar transport motors and a MYND-domain protein are required to traffic and/or localize CNG channel subunits in both a cell- and channel subunit-specific manner. We further find that TAX-2 and TAX-4 are relatively immobile in specific sensory cilia subcompartments, suggesting that these proteins undergo minimal turnover in these domains in mature cilia. Our results uncover unexpected diversity in the mechanisms that traffic and localize CNG channel subunits to cilia both within and across cell types, highlighting the essential contribution of this process to cellular functions. PMID:23886944

  15. Cell- and subunit-specific mechanisms of CNG channel ciliary trafficking and localization in C. elegans.

    PubMed

    Wojtyniak, Martin; Brear, Andrea G; O'Halloran, Damien M; Sengupta, Piali

    2013-10-01

    Primary cilia are ubiquitous sensory organelles that concentrate transmembrane signaling proteins essential for sensing environmental cues. Mislocalization of crucial ciliary signaling proteins, such as the tetrameric cyclic nucleotide-gated (CNG) channels, can lead to cellular dysfunction and disease. Although several cis- and trans-acting factors required for ciliary protein trafficking and localization have been identified, whether these mechanisms act in a protein- and cell-specific manner is largely unknown. Here, we show that CNG channel subunits can be localized to discrete ciliary compartments in individual sensory neurons in C. elegans, suggesting that channel composition is heterogeneous across the cilium. We demonstrate that ciliary localization of CNG channel subunits is interdependent on different channel subunits in specific cells, and identify sequences required for efficient ciliary targeting and localization of the TAX-2 CNGB and TAX-4 CNGA subunits. Using a candidate gene approach, we show that Inversin, transition zone proteins, intraflagellar transport motors and a MYND-domain protein are required to traffic and/or localize CNG channel subunits in both a cell- and channel subunit-specific manner. We further find that TAX-2 and TAX-4 are relatively immobile in specific sensory cilia subcompartments, suggesting that these proteins undergo minimal turnover in these domains in mature cilia. Our results uncover unexpected diversity in the mechanisms that traffic and localize CNG channel subunits to cilia both within and across cell types, highlighting the essential contribution of this process to cellular functions.

  16. Machine learning to design integral membrane channelrhodopsins for efficient eukaryotic expression and plasma membrane localization

    PubMed Central

    Rice, Austin J.; Gradinaru, Viviana; Arnold, Frances H.

    2017-01-01

    There is growing interest in studying and engineering integral membrane proteins (MPs) that play key roles in sensing and regulating cellular response to diverse external signals. A MP must be expressed, correctly inserted and folded in a lipid bilayer, and trafficked to the proper cellular location in order to function. The sequence and structural determinants of these processes are complex and highly constrained. Here we describe a predictive, machine-learning approach that captures this complexity to facilitate successful MP engineering and design. Machine learning on carefully-chosen training sequences made by structure-guided SCHEMA recombination has enabled us to accurately predict the rare sequences in a diverse library of channelrhodopsins (ChRs) that express and localize to the plasma membrane of mammalian cells. These light-gated channel proteins of microbial origin are of interest for neuroscience applications, where expression and localization to the plasma membrane is a prerequisite for function. We trained Gaussian process (GP) classification and regression models with expression and localization data from 218 ChR chimeras chosen from a 118,098-variant library designed by SCHEMA recombination of three parent ChRs. We use these GP models to identify ChRs that express and localize well and show that our models can elucidate sequence and structure elements important for these processes. We also used the predictive models to convert a naturally occurring ChR incapable of mammalian localization into one that localizes well. PMID:29059183

  17. Cassette Series Designed for Live-Cell Imaging of Proteins and High Resolution Techniques in Yeast

    PubMed Central

    Young, Carissa L.; Raden, David L.; Caplan, Jeffrey; Czymmek, Kirk; Robinson, Anne S.

    2012-01-01

    During the past decade, it has become clear that protein function and regulation are highly dependent upon intracellular localization. Although fluorescent protein variants are ubiquitously used to monitor protein dynamics, localization, and abundance; fluorescent light microscopy techniques often lack the resolution to explore protein heterogeneity and cellular ultrastructure. Several approaches have been developed to identify, characterize, and monitor the spatial localization of proteins and complexes at the sub-organelle level; yet, many of these techniques have not been applied to yeast. Thus, we have constructed a series of cassettes containing codon-optimized epitope tags, fluorescent protein variants that cover the full spectrum of visible light, a TetCys motif used for FlAsH-based localization, and the first evaluation in yeast of a photoswitchable variant – mEos2 – to monitor discrete subpopulations of proteins via confocal microscopy. This series of modules, complete with six different selection markers, provides the optimal flexibility during live-cell imaging and multicolor labeling in vivo. Furthermore, high-resolution imaging techniques include the yeast-enhanced TetCys motif that is compatible with diaminobenzidine photooxidation used for protein localization by electron microscopy and mEos2 that is ideal for super-resolution microscopy. We have examined the utility of our cassettes by analyzing all probes fused to the C-terminus of Sec61, a polytopic membrane protein of the endoplasmic reticulum of moderate protein concentration, in order to directly compare fluorescent probes, their utility and technical applications. Our series of cassettes expand the repertoire of molecular tools available to advance targeted spatiotemporal investigations using multiple live-cell, super-resolution or electron microscopy imaging techniques. PMID:22473760

  18. Axonal and dendritic localization of mRNAs for glycogen-metabolizing enzymes in cultured rodent neurons

    PubMed Central

    2014-01-01

    Background Localization of mRNAs encoding cytoskeletal or signaling proteins to neuronal processes is known to contribute to axon growth, synaptic differentiation and plasticity. In addition, a still increasing spectrum of mRNAs has been demonstrated to be localized under different conditions and developing stages thus reflecting a highly regulated mechanism and a role of mRNA localization in a broad range of cellular processes. Results Applying fluorescence in-situ-hybridization with specific riboprobes on cultured neurons and nervous tissue sections, we investigated whether the mRNAs for two metabolic enzymes, namely glycogen synthase (GS) and glycogen phosphorylase (GP), the key enzymes of glycogen metabolism, may also be targeted to neuronal processes. If it were so, this might contribute to clarify the so far enigmatic role of neuronal glycogen. We found that the mRNAs for both enzymes are localized to axonal and dendritic processes in cultured lumbar spinal motoneurons, but not in cultured trigeminal neurons. In cultured cortical neurons which do not store glycogen but nevertheless express glycogen synthase, the GS mRNA is also subject to axonal and dendritic localization. In spinal motoneurons and trigeminal neurons in situ, however, the mRNAs could only be demonstrated in the neuronal somata but not in the nerves. Conclusions We could demonstrate that the mRNAs for major enzymes of neural energy metabolism can be localized to neuronal processes. The heterogeneous pattern of mRNA localization in different culture types and developmental stages stresses that mRNA localization is a versatile mechanism for the fine-tuning of cellular events. Our findings suggest that mRNA localization for enzymes of glycogen metabolism could allow adaptation to spatial and temporal energy demands in neuronal events like growth, repair and synaptic transmission. PMID:24898526

  19. Axonal and dendritic localization of mRNAs for glycogen-metabolizing enzymes in cultured rodent neurons.

    PubMed

    Pfeiffer-Guglielmi, Brigitte; Dombert, Benjamin; Jablonka, Sibylle; Hausherr, Vanessa; van Thriel, Christoph; Schöbel, Nicole; Jansen, Ralf-Peter

    2014-06-04

    Localization of mRNAs encoding cytoskeletal or signaling proteins to neuronal processes is known to contribute to axon growth, synaptic differentiation and plasticity. In addition, a still increasing spectrum of mRNAs has been demonstrated to be localized under different conditions and developing stages thus reflecting a highly regulated mechanism and a role of mRNA localization in a broad range of cellular processes. Applying fluorescence in-situ-hybridization with specific riboprobes on cultured neurons and nervous tissue sections, we investigated whether the mRNAs for two metabolic enzymes, namely glycogen synthase (GS) and glycogen phosphorylase (GP), the key enzymes of glycogen metabolism, may also be targeted to neuronal processes. If it were so, this might contribute to clarify the so far enigmatic role of neuronal glycogen. We found that the mRNAs for both enzymes are localized to axonal and dendritic processes in cultured lumbar spinal motoneurons, but not in cultured trigeminal neurons. In cultured cortical neurons which do not store glycogen but nevertheless express glycogen synthase, the GS mRNA is also subject to axonal and dendritic localization. In spinal motoneurons and trigeminal neurons in situ, however, the mRNAs could only be demonstrated in the neuronal somata but not in the nerves. We could demonstrate that the mRNAs for major enzymes of neural energy metabolism can be localized to neuronal processes. The heterogeneous pattern of mRNA localization in different culture types and developmental stages stresses that mRNA localization is a versatile mechanism for the fine-tuning of cellular events. Our findings suggest that mRNA localization for enzymes of glycogen metabolism could allow adaptation to spatial and temporal energy demands in neuronal events like growth, repair and synaptic transmission.

  20. Macro-architectured cellular materials: Properties, characteristic modes, and prediction methods

    NASA Astrophysics Data System (ADS)

    Ma, Zheng-Dong

    2017-12-01

    Macro-architectured cellular (MAC) material is defined as a class of engineered materials having configurable cells of relatively large (i.e., visible) size that can be architecturally designed to achieve various desired material properties. Two types of novel MAC materials, negative Poisson's ratio material and biomimetic tendon reinforced material, were introduced in this study. To estimate the effective material properties for structural analyses and to optimally design such materials, a set of suitable homogenization methods was developed that provided an effective means for the multiscale modeling of MAC materials. First, a strain-based homogenization method was developed using an approach that separated the strain field into a homogenized strain field and a strain variation field in the local cellular domain superposed on the homogenized strain field. The principle of virtual displacements for the relationship between the strain variation field and the homogenized strain field was then used to condense the strain variation field onto the homogenized strain field. The new method was then extended to a stress-based homogenization process based on the principle of virtual forces and further applied to address the discrete systems represented by the beam or frame structures of the aforementioned MAC materials. The characteristic modes and the stress recovery process used to predict the stress distribution inside the cellular domain and thus determine the material strengths and failures at the local level are also discussed.

  1. Temporal and mechanistic tracking of cellular uptake dynamics with novel surface fluorophore-bound nanodiamonds.

    PubMed

    Schrand, Amanda M; Lin, Jonathan B; Hens, Suzanne Ciftan; Hussain, Saber M

    2011-02-01

    Nanoparticles (NPs) offer promise for a multitude of biological applications including cellular probes at the bio-interface for targeted delivery of anticancer substances, Raman and fluorescent-based imaging and directed cell growth. Nanodiamonds (NDs), in particular, have several advantages compared to other carbon-based nanomaterials - including a rich surface chemistry useful for chemical conjugation, high biocompatibility with little reactive oxygen species (ROS) generation, physical and chemical stability that affords sterilization, high surface area to volume ratio, transparency and a high index of refraction. The visualization of ND internalization into cells is possible via photoluminescence, which is produced by direct dye conjugation or high energy irradiation that creates nitrogen vacancy centers. Here, we explore the kinetics and mechanisms involved in the intracellular uptake and localization of novel, highly-stable, fluorophore-conjugated NDs. Examination in a neuronal cell line (N2A) shows ND localization to early endosomes and lysosomes with eventual release into the cytoplasm. The addition of endocytosis and exocytosis inhibitors allows for diminished uptake and increased accumulation, respectively, which further corroborates cellular behavior in response to NDs. Ultimately, the ability of the NDs to travel throughout cellular compartments of varying pH without degradation of the surface-conjugated fluorophore or alteration of cell viability over extended periods of time is promising for their use in biomedical applications as stable, biocompatible, fluorescent probes.

  2. Multi-cellular natural killer (NK) cell clusters enhance NK cell activation through localizing IL-2 within the cluster

    NASA Astrophysics Data System (ADS)

    Kim, Miju; Kim, Tae-Jin; Kim, Hye Mi; Doh, Junsang; Lee, Kyung-Mi

    2017-01-01

    Multi-cellular cluster formation of natural killer (NK) cells occurs during in vivo priming and potentiates their activation to IL-2. However, the precise mechanism underlying this synergy within NK cell clusters remains unclear. We employed lymphocyte-laden microwell technologies to modulate contact-mediated multi-cellular interactions among activating NK cells and to quantitatively assess the molecular events occurring in multi-cellular clusters of NK cells. NK cells in social microwells, which allow cell-to-cell contact, exhibited significantly higher levels of IL-2 receptor (IL-2R) signaling compared with those in lonesome microwells, which prevent intercellular contact. Further, CD25, an IL-2R α chain, and lytic granules of NK cells in social microwells were polarized toward MTOC. Live cell imaging of lytic granules revealed their dynamic and prolonged polarization toward neighboring NK cells without degranulation. These results suggest that IL-2 bound on CD25 of one NK cells triggered IL-2 signaling of neighboring NK cells. These results were further corroborated by findings that CD25-KO NK cells exhibited lower proliferation than WT NK cells, and when mixed with WT NK cells, underwent significantly higher level of proliferation. These data highlights the existence of IL-2 trans-presentation between NK cells in the local microenvironment where the availability of IL-2 is limited.

  3. Kinetic theory approach to modeling of cellular repair mechanisms under genome stress.

    PubMed

    Qi, Jinpeng; Ding, Yongsheng; Zhu, Ying; Wu, Yizhi

    2011-01-01

    Under acute perturbations from outer environment, a normal cell can trigger cellular self-defense mechanism in response to genome stress. To investigate the kinetics of cellular self-repair process at single cell level further, a model of DNA damage generating and repair is proposed under acute Ion Radiation (IR) by using mathematical framework of kinetic theory of active particles (KTAP). Firstly, we focus on illustrating the profile of Cellular Repair System (CRS) instituted by two sub-populations, each of which is made up of the active particles with different discrete states. Then, we implement the mathematical framework of cellular self-repair mechanism, and illustrate the dynamic processes of Double Strand Breaks (DSBs) and Repair Protein (RP) generating, DSB-protein complexes (DSBCs) synthesizing, and toxins accumulating. Finally, we roughly analyze the capability of cellular self-repair mechanism, cellular activity of transferring DNA damage, and genome stability, especially the different fates of a certain cell before and after the time thresholds of IR perturbations that a cell can tolerate maximally under different IR perturbation circumstances.

  4. Neuropeptide Mapping of Dimmed Cells of Adult Drosophila Brain

    NASA Astrophysics Data System (ADS)

    Diesner, Max; Predel, Reinhard; Neupert, Susanne

    2018-05-01

    Neuropeptides are structurally highly diverse messenger molecules that act as regulators of many physiological processes such as development, metabolism, reproduction or behavior in general. Differentiation of neuropeptidergic cells often corresponds with the presence of the transcription factor DIMMED. In the central nervous system of the fruit fly Drosophila melanogaster, DIMMED commonly occurs in neuroendocrine neurons that release peptides as neurohormones but also in interneurons with complex branching patterns. Fly strains with green fluorescence protein (GFP)-expressing dimmed cells make it possible to systematically analyze the processed neuropeptides in these cells. In this study, we mapped individual GFP-expressing neurons of adult D. melanogaster from the dimmed ( c929)>GFP line. Using single cell mass spectrometry, we analyzed 10 types of dimmed neurons from the brain/gnathal ganglion. These cells included neuroendocrine cells with projection into the retrocerebral complex but also a number of large interneurons. Resulting mass spectra not only provided comprehensive data regarding mature products from 13 neuropeptide precursors but also evidence for the cellular co-localization of neuropeptides from different neuropeptide genes. The results can be implemented in a neuroanatomical map of the D. melanogaster brain. [Figure not available: see fulltext.

  5. Neuropeptide Mapping of Dimmed Cells of Adult Drosophila Brain

    NASA Astrophysics Data System (ADS)

    Diesner, Max; Predel, Reinhard; Neupert, Susanne

    2018-01-01

    Neuropeptides are structurally highly diverse messenger molecules that act as regulators of many physiological processes such as development, metabolism, reproduction or behavior in general. Differentiation of neuropeptidergic cells often corresponds with the presence of the transcription factor DIMMED. In the central nervous system of the fruit fly Drosophila melanogaster, DIMMED commonly occurs in neuroendocrine neurons that release peptides as neurohormones but also in interneurons with complex branching patterns. Fly strains with green fluorescence protein (GFP)-expressing dimmed cells make it possible to systematically analyze the processed neuropeptides in these cells. In this study, we mapped individual GFP-expressing neurons of adult D. melanogaster from the dimmed (c929)>GFP line. Using single cell mass spectrometry, we analyzed 10 types of dimmed neurons from the brain/gnathal ganglion. These cells included neuroendocrine cells with projection into the retrocerebral complex but also a number of large interneurons. Resulting mass spectra not only provided comprehensive data regarding mature products from 13 neuropeptide precursors but also evidence for the cellular co-localization of neuropeptides from different neuropeptide genes. The results can be implemented in a neuroanatomical map of the D. melanogaster brain. [Figure not available: see fulltext.

  6. Neuropeptide Mapping of Dimmed Cells of Adult Drosophila Brain.

    PubMed

    Diesner, Max; Predel, Reinhard; Neupert, Susanne

    2018-05-01

    Neuropeptides are structurally highly diverse messenger molecules that act as regulators of many physiological processes such as development, metabolism, reproduction or behavior in general. Differentiation of neuropeptidergic cells often corresponds with the presence of the transcription factor DIMMED. In the central nervous system of the fruit fly Drosophila melanogaster, DIMMED commonly occurs in neuroendocrine neurons that release peptides as neurohormones but also in interneurons with complex branching patterns. Fly strains with green fluorescence protein (GFP)-expressing dimmed cells make it possible to systematically analyze the processed neuropeptides in these cells. In this study, we mapped individual GFP-expressing neurons of adult D. melanogaster from the dimmed (c929)>GFP line. Using single cell mass spectrometry, we analyzed 10 types of dimmed neurons from the brain/gnathal ganglion. These cells included neuroendocrine cells with projection into the retrocerebral complex but also a number of large interneurons. Resulting mass spectra not only provided comprehensive data regarding mature products from 13 neuropeptide precursors but also evidence for the cellular co-localization of neuropeptides from different neuropeptide genes. The results can be implemented in a neuroanatomical map of the D. melanogaster brain. Graphical Abstract ᅟ.

  7. Asymmetric cellular memory in bacteria exposed to antibiotics.

    PubMed

    Mathis, Roland; Ackermann, Martin

    2017-03-09

    The ability to form a cellular memory and use it for cellular decision-making could help bacteria to cope with recurrent stress conditions. We analyzed whether bacteria would form a cellular memory specifically if past events are predictive of future conditions. We worked with the asymmetrically dividing bacterium Caulobacter crescentus where past events are expected to only be informative for one of the two cells emerging from division, the sessile cell that remains in the same microenvironment and does not migrate. Time-resolved analysis of individual cells revealed that past exposure to low levels of antibiotics increases tolerance to future exposure for the sessile but not for the motile cell. Using computer simulations, we found that such an asymmetry in cellular memory could be an evolutionary response to situations where the two cells emerging from division will experience different future conditions. Our results raise the question whether bacteria can evolve the ability to form and use cellular memory conditionally in situations where it is beneficial.

  8. Metabolism of dinosaurs as determined from their growth.

    PubMed

    Lee, Scott A

    2015-09-01

    A model based on cellular properties is used to analyze the mass growth curves of 20 dinosaurs. This analysis yields the first measurement of the average cellular metabolism of dinosaurs. The organismal metabolism is also determined. The cellular metabolism of dinosaurs is found to decrease with mass at a slower rate than is observed in extant animals. The organismal metabolism increases with the mass of the dinosaur. These results come from both the Saurischia and Ornithischia branches of Dinosauria, suggesting that the observed metabolic features were common to all dinosaurs. The results from dinosaurs are compared to data from extant placental and marsupial mammals, a monotreme, and altricial and precocial birds, reptiles, and fish. Dinosaurs had cellular and organismal metabolisms in the range observed in extant mesotherms.

  9. Metabolism of dinosaurs as determined from their growth

    NASA Astrophysics Data System (ADS)

    Lee, Scott A.

    2015-09-01

    A model based on cellular properties is used to analyze the mass growth curves of 20 dinosaurs. This analysis yields the first measurement of the average cellular metabolism of dinosaurs. The organismal metabolism is also determined. The cellular metabolism of dinosaurs is found to decrease with mass at a slower rate than is observed in extant animals. The organismal metabolism increases with the mass of the dinosaur. These results come from both the Saurischia and Ornithischia branches of Dinosauria, suggesting that the observed metabolic features were common to all dinosaurs. The results from dinosaurs are compared to data from extant placental and marsupial mammals, a monotreme, and altricial and precocial birds, reptiles, and fish. Dinosaurs had cellular and organismal metabolisms in the range observed in extant mesotherms.

  10. Fracture mechanics of cellular glass

    NASA Technical Reports Server (NTRS)

    Zwissler, J. G.; Adams, M. A.

    1981-01-01

    The fracture mechanics of cellular glasses (for the structural substrate of mirrored glass for solr concentrator reflecting panels) are discussed. Commercial and developmental cellular glasses were tested and analyzed using standard testing techniques and models developed from linear fracture mechanics. Two models describing the fracture behavior of these materials were developed. Slow crack growth behavior in cellular glass was found to be more complex than that encountered in dense glasses or ceramics. The crack velocity was found to be strongly dependent upon water vapor transport to the tip of the moving crack. The existence of a static fatigue limit was not conclusively established, however, it is speculated that slow crack growth behavior in Region 1 may be slower, by orders of magnitude, than that found in dense glasses.

  11. A Study on Cognitive Radio Coexisting with Cellular Systems

    NASA Astrophysics Data System (ADS)

    Tandai, Tomoya; Horiguchi, Tomoya; Deguchi, Noritaka; Tomizawa, Takeshi; Tomioka, Tazuko

    Cognitive Radios (CRs) are expected to perform more significant role in the view of efficient utilization of the spectrum resources in the future wireless communication networks. In this paper, a cognitive radio coexisting with cellular systems is proposed. In the case that a cellular system adopts Frequency Division Duplex (FDD) as a multiplexing scheme, the proposed CR terminals communicate in local area on uplink channels of the cellular system with transmission powers that don't interfere with base stations of the cellular system. Alternatively, in the case that a cellular system adopts Time Division Duplex (TDD), the CR terminals communicate on uplink slots of the cellular system. However if mobile terminals in the cellular system are near the CR network, uplink signals from the mobile terminals may interfere with the CR communications. In order to avoid interference from the mobile terminals, the CR terminal performs carrier sense during a beginning part of uplink slot, and only when the level of detected signal is below a threshold, then the CR terminal transmits a signal during the remained period of the uplink slot. In this paper, both the single carrier CR network that uses one frequency channel of the cellular system and the multicarrier CR network that uses multiple frequency channels of the cellular system are considered. The probabilities of successful CR communications, the average throughputs of the CR communications according to the positions of the CR network, and the interference levels from cognitive radio network to base stations of the cellular system are evaluated in the computer simulation then the effectiveness of the proposed network is clarified.

  12. N Termini of apPDE4 Isoforms Are Responsible for Targeting the Isoforms to Different Cellular Membranes

    ERIC Educational Resources Information Center

    Jang, Deok-Jin; Park, Soo-Won; Lee, Jin-A; Lee, Changhoon; Chae, Yeon-Su; Park, Hyungju; Kim, Min-Jeong; Choi, Sun-Lim; Lee, Nuribalhae; Kim, Hyoung; Kaang, Bong-Kiun

    2010-01-01

    Phosphodiesterases (PDEs) are known to play a key role in the compartmentalization of cAMP signaling; however, the molecular mechanisms underlying intracellular localization of different PDE isoforms are not understood. In this study, we have found that each of the supershort, short, and long forms of apPDE4 showed distinct localization in the…

  13. Engineering self-contained DNA circuit for proximity recognition and localized signal amplification of target biomolecules

    PubMed Central

    Ang, Yan Shan; Yung, Lin-Yue Lanry

    2014-01-01

    Biomolecular interactions have important cellular implications, however, a simple method for the sensing of such proximal events is lacking in the current molecular toolbox. We designed a dynamic DNA circuit capable of recognizing targets in close proximity to initiate a pre-programmed signal transduction process resulting in localized signal amplification. The entire circuit was engineered to be self-contained, i.e. it can self-assemble onto individual target molecules autonomously and form localized signal with minimal cross-talk. α-thrombin was used as a model protein to evaluate the performance of the individual modules and the overall circuit for proximity interaction under physiologically relevant buffer condition. The circuit achieved good selectivity in presence of non-specific protein and interfering serum matrix and successfully detected for physiologically relevant α-thrombin concentration (50 nM–5 μM) in a single mixing step without any further washing. The formation of localized signal at the interaction site can be enhanced kinetically through the control of temperature and probe concentration. This work provides a basic general framework from which other circuit modules can be adapted for the sensing of other biomolecular or cellular interaction of interest. PMID:25056307

  14. Dynamic Virus-Dependent Subnuclear Localization of the Capsid Protein from a Geminivirus

    PubMed Central

    Wang, Liping; Tan, Huang; Wu, Mengshi; Jimenez-Gongora, Tamara; Tan, Li; Lozano-Duran, Rosa

    2017-01-01

    Viruses are intracellular parasites with a nucleic acid genome and a proteinaceous capsid. Viral capsids are formed of at least one virus-encoded capsid protein (CP), which is often multifunctional, playing additional non-structural roles during the infection cycle. In animal viruses, there are examples of differential localization of CPs associated to the progression of the infection and/or enabled by other viral proteins; these changes in the distribution of CPs may ultimately regulate the involvement of these proteins in different viral functions. In this work, we analyze the subcellular localization of a GFP- or RFP-fused CP from the plant virus Tomato yellow leaf curl virus (TYLCV; Fam. Geminiviridae) in the presence or absence of the virus upon transient expression in the host plants Nicotiana benthamiana and tomato. Our findings show that, in agreement with previous reports, when the CP is expressed alone it localizes mainly in the nucleolus and weakly in the nucleoplasm. Interestingly, the presence of the virus causes the sequential re-localization of the CP outside of the nucleolus and into discrete nuclear foci and, eventually, into an uneven distribution in the nucleoplasm. Expression of the viral replication-associated protein, Rep, is sufficient to exclude the CP from the nucleolus, but the localization of the CP in the characteristic patterns induced by the virus cannot be recapitulated by co-expression with any individual viral protein. Our results demonstrate that the subcellular distribution of the CP is a dynamic process, temporally regulated throughout the progression of the infection. The regulation of the localization of the CP is determined by the presence of other viral components or changes in the cellular environment induced by the virus, and is likely to contribute to the multifunctionality of this protein. Bearing in mind these observations, we suggest that viral proteins should be studied in the context of the infection and considering the temporal dimension in order to comprehensively understand their roles and effects in the interaction between virus and host. PMID:29312406

  15. Plasmodium knowlesi Skeleton-Binding Protein 1 Localizes to the ‘Sinton and Mulligan’ Stipplings in the Cytoplasm of Monkey and Human Erythrocytes

    PubMed Central

    Lucky, Amuza Byaruhanga; Sakaguchi, Miako; Katakai, Yuko; Kawai, Satoru; Yahata, Kazuhide; Templeton, Thomas J.

    2016-01-01

    The malaria parasite, Plasmodium, exports protein products to the infected erythrocyte to introduce modifications necessary for the establishment of nutrient acquisition and surface display of host interaction ligands. Erythrocyte remodeling impacts parasite virulence and disease pathology and is well documented for the human malaria parasite Plasmodium falciparum, but has been less described for other Plasmodium species. For P. falciparum, the exported protein skeleton-binding protein 1 (PfSBP1) is involved in the trafficking of erythrocyte surface ligands and localized to membranous structures within the infected erythrocyte, termed Maurer's clefts. In this study, we analyzed SBP1 orthologs across the Plasmodium genus by BLAST analysis and conserved gene synteny, which were also recently described by de Niz et al. (2016). To evaluate the localization of an SBP1 ortholog, we utilized the zoonotic malaria parasite, Plasmodium knowlesi. Immunofluorescence assay of transgenic P. knowlesi parasites expressing epitope-tagged recombinant PkSBP1 revealed a punctate staining pattern reminiscent of Maurer's clefts, following infection of either monkey or human erythrocytes. The recombinant PkSBP1-positive puncta co-localized with Giemsa-stained structures, known as ‘Sinton and Mulligan’ stipplings. Immunoelectron microscopy also showed that recombinant PkSBP1 localizes within or on the membranous structures akin to the Maurer's clefts. The recombinant PkSBP1 expressed in P. falciparum-infected erythrocytes co-localized with PfSBP1 at the Maurer's clefts, indicating an analogous trafficking pattern. A member of the P. knowlesi 2TM protein family was also expressed and localized to membranous structures in infected monkey erythrocytes. These results suggest that the trafficking machinery and induced erythrocyte cellular structures of P. knowlesi are similar following infection of both monkey and human erythrocytes, and are conserved with P. falciparum. PMID:27732628

  16. Mobile Computing and Ubiquitous Networking: Concepts, Technologies and Challenges.

    ERIC Educational Resources Information Center

    Pierre, Samuel

    2001-01-01

    Analyzes concepts, technologies and challenges related to mobile computing and networking. Defines basic concepts of cellular systems. Describes the evolution of wireless technologies that constitute the foundations of mobile computing and ubiquitous networking. Presents characterization and issues of mobile computing. Analyzes economical and…

  17. A Disposable Microfluidic Device for Controlled Drug Release from Thermal-Sensitive Liposomes by High Intensity Focused Ultrasound.

    PubMed

    Meng, Long; Deng, Zhiting; Niu, Lili; Li, Fei; Yan, Fei; Wu, Junru; Cai, Feiyan; Zheng, Hairong

    2015-01-01

    The drug release triggered thermally by high intensity focused ultrasound (HIFU) has been considered a promising drug delivery strategy due to its localized energy and non-invasive characters. However, the mechanism underlying the HIFU-mediated drug delivery remains unclear due to its complexity at the cellular level. In this paper, micro-HIFU (MHIFU) generated by a microfluidic device is introduced which is able to control the drug release from temperature-sensitive liposomes (TSL) and evaluate the thermal and mechanical effects of ultrasound on the cellular drug uptake and apoptosis. By simply adjusting the input electrical signal to the device, the temperature of sample can be maintained at 37 °C, 42 °C and 50 °C with the deviation of ± 0.3 °C as desired. The flow cytometry results show that the drug delivery under MHIFU sonication leads to a significant increase in apoptosis compared to the drug release by incubation alone at elevated temperature of 42 °C. Furthermore, increased squamous and protruding structures on the surface membrane of cells were detected by atomic force microscopy (AFM) after MHIFU irradiation of TSL. We demonstrate that compared to the routine HIFU treatment, MHIFU enables monitoring of in situ interactions between the ultrasound and cell in real time. Furthermore, it can quantitatively analyze and characterize the alterations of the cell membrane as a function of the treatment time.

  18. Comprehensive structural and substrate specificity classification of the Saccharomyces cerevisiae methyltransferome.

    PubMed

    Wlodarski, Tomasz; Kutner, Jan; Towpik, Joanna; Knizewski, Lukasz; Rychlewski, Leszek; Kudlicki, Andrzej; Rowicka, Maga; Dziembowski, Andrzej; Ginalski, Krzysztof

    2011-01-01

    Methylation is one of the most common chemical modifications of biologically active molecules and it occurs in all life forms. Its functional role is very diverse and involves many essential cellular processes, such as signal transduction, transcriptional control, biosynthesis, and metabolism. Here, we provide further insight into the enzymatic methylation in S. cerevisiae by conducting a comprehensive structural and functional survey of all the methyltransferases encoded in its genome. Using distant homology detection and fold recognition, we found that the S. cerevisiae methyltransferome comprises 86 MTases (53 well-known and 33 putative with unknown substrate specificity). Structural classification of their catalytic domains shows that these enzymes may adopt nine different folds, the most common being the Rossmann-like. We also analyzed the domain architecture of these proteins and identified several new domain contexts. Interestingly, we found that the majority of MTase genes are periodically expressed during yeast metabolic cycle. This finding, together with calculated isoelectric point, fold assignment and cellular localization, was used to develop a novel approach for predicting substrate specificity. Using this approach, we predicted the general substrates for 24 of 33 putative MTases and confirmed these predictions experimentally in both cases tested. Finally, we show that, in S. cerevisiae, methylation is carried out by 34 RNA MTases, 32 protein MTases, eight small molecule MTases, three lipid MTases, and nine MTases with still unknown substrate specificity.

  19. Biocompatibility and osteoconduction of macroporous silk fibroin implants in cortical defects in sheep.

    PubMed

    Uebersax, Lorenz; Apfel, Tanja; Nuss, Katja M R; Vogt, Rainer; Kim, Hyoen Yoo; Meinel, Lorenz; Kaplan, David L; Auer, Joerg A; Merkle, Hans P; von Rechenberg, Brigitte

    2013-09-01

    The goal of the presented study was to compare the biocompatibility and cellular responses to porous silk fibroin (SF) scaffolds produced in a water-based (UPW) or a solvent based process (HFIP) using two different SF sources. For that reason, four different SF scaffolds were implanted (n=6) into drill hole defects in the cancellous bone of the sheep tibia and humerus. The scaffolds were evaluated histologically for biocompatibility, cell-material interaction, and cellular ingrowth. New bone formation was observed macroscopically and histologically at 8 weeks after implantation. For semiquantitative evaluation, the investigated parameters were scored and statistically analyzed (factorial ANOVA). All implants showed good biocompatibility as evident by low infiltration of inflammatory cells and the absent encapsulation of the scaffolds in connective tissue. Multinuclear foreign body giant cells (MFGCs) and macrophages were present in all parts of the scaffold at the material surface and actively degrading the SF material. Cell ingrowth and vascularization were uniform across the scaffold. However, in HFIP scaffolds, local regions of void pores were present throughout the scaffold, probably due to the low pore interconnectivity in this scaffold type in contrast to UPW scaffolds. The amount of newly formed bone was very low in both scaffold types but was more abundant in the periphery than in the center of the scaffolds and for HFIP scaffolds mainly restricted to single pores. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Ciliobrevins as tools for studying dynein motor function

    PubMed Central

    Roossien, Douglas H.; Miller, Kyle E.; Gallo, Gianluca

    2015-01-01

    Dyneins are a small class of molecular motors that bind to microtubules and walk toward their minus ends. They are essential for the transport and distribution of organelles, signaling complexes and cytoskeletal elements. In addition dyneins generate forces on microtubule arrays that power the beating of cilia and flagella, cell division, migration and growth cone motility. Classical approaches to the study of dynein function in axons involve the depletion of dynein, expression of mutant/truncated forms of the motor, or interference with accessory subunits. By necessity, these approaches require prolonged time periods for the expression or manipulation of cellular dynein levels. With the discovery of the ciliobrevins, a class of cell permeable small molecule inhibitors of dynein, it is now possible to acutely disrupt dynein both globally and locally. In this review, we briefly summarize recent work using ciliobrevins to inhibit dynein and discuss the insights ciliobrevins have provided about dynein function in various cell types with a focus on neurons. We temper this with a discussion of the need for studies that will elucidate the mechanism of action of ciliobrevin and as well as the need for experiments to further analyze the specificity of ciliobreviens for dynein. Although much remains to be learned about ciliobrevins, these small molecules are proving themselves to be valuable novel tools to assess the cellular functions of dynein. PMID:26217180

  1. Spatio-temporal analysis of brain electrical activity in epilepsy based on cellular nonlinear networks

    NASA Astrophysics Data System (ADS)

    Gollas, Frank; Tetzlaff, Ronald

    2009-05-01

    Epilepsy is the most common chronic disorder of the nervous system. Generally, epileptic seizures appear without foregoing sign or warning. The problem of detecting a possible pre-seizure state in epilepsy from EEG signals has been addressed by many authors over the past decades. Different approaches of time series analysis of brain electrical activity already are providing valuable insights into the underlying complex dynamics. But the main goal the identification of an impending epileptic seizure with a sufficient specificity and reliability, has not been achieved up to now. An algorithm for a reliable, automated prediction of epileptic seizures would enable the realization of implantable seizure warning devices, which could provide valuable information to the patient and time/event specific drug delivery or possibly a direct electrical nerve stimulation. Cellular Nonlinear Networks (CNN) are promising candidates for future seizure warning devices. CNN are characterized by local couplings of comparatively simple dynamical systems. With this property these networks are well suited to be realized as highly parallel, analog computer chips. Today available CNN hardware realizations exhibit a processing speed in the range of TeraOps combined with low power consumption. In this contribution new algorithms based on the spatio-temporal dynamics of CNN are considered in order to analyze intracranial EEG signals and thus taking into account mutual dependencies between neighboring regions of the brain. In an identification procedure Reaction-Diffusion CNN (RD-CNN) are determined for short segments of brain electrical activity, by means of a supervised parameter optimization. RD-CNN are deduced from Reaction-Diffusion Systems, which usually are applied to investigate complex phenomena like nonlinear wave propagation or pattern formation. The Local Activity Theory provides a necessary condition for emergent behavior in RD-CNN. In comparison linear spatio-temporal autoregressive filter models are considered, for a prediction of EEG signal values. Thus Signal features values for successive, short, quasi stationary segments of brain electrical activity can be obtained, with the objective of detecting distinct changes prior to impending epileptic seizures. Furthermore long term recordings gained during presurgical diagnostics in temporal lobe epilepsy are analyzed and the predictive performance of the extracted features is evaluated statistically. Therefore a Receiver Operating Characteristic analysis is considered, assessing the distinguishability between distributions of supposed preictal and interictal periods.

  2. Characterization of choline transporters in the human placenta over gestation.

    PubMed

    Baumgartner, Heidi K; Trinder, Kinsey M; Galimanis, Carly E; Post, Annalisa; Phang, Tzu; Ross, Randal G; Winn, Virginia D

    2015-12-01

    The developing fetus relies on the maternal blood supply to provide the choline it requires for making membrane lipids, synthesizing acetylcholine, and performing important methylation reactions. It is vital, therefore, that the placenta is efficient at transporting choline from the maternal to the fetal circulation. Although choline transporters have been found in term placenta samples, little is known about what cell types express specific choline transporters and how expression of the transporters may change over gestation. The objective of this study was to characterize choline transporter expression levels and localization in the human placenta throughout placental development. We analyzed CTL1 and -2 expression over gestation in human placental biopsies from 6 to 40 weeks gestation (n = 6-10 per gestational window) by immunoblot analysis. To determine the cellular expression pattern of the choline transporters throughout gestation, immunofluorescence analysis was then performed. Both CTL1 and CTL2 were expressed in the chorionic villi from 6 weeks gestation to term. Labor did not alter expression levels of either transporter. CTL1 localized to the syncytial trophoblasts and the endothelium of the fetal vasculature within the chorionic villous structure. CTL2 localized mainly to the stroma early in gestation and by the second trimester co-localized with CTL1 at the fetal vasculature. The differential expression pattern of CTL1 and CTL2 suggests that CTL1 is the key transporter involved in choline transport from maternal circulation and both transporters are likely involved in stromal and endothelial cell choline transport. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Characterization of Choline Transporters in the Human Placenta over Gestation

    PubMed Central

    Baumgartner, Heidi K.; Trinder, Kinsey M.; Galimanis, Carly E.; Post, Annalisa; Phang, Tzu; Ross, Randal G.; Winn, Virginia D.

    2015-01-01

    INTRODUCTION The developing fetus relies on the maternal blood supply to provide the choline it requires for making membrane lipids, synthesizing acetylcholine, and performing important methylation reactions. It is vital, therefore, that the placenta is efficient at transporting choline from maternal to fetal circulation. Although choline transporters have been found in term placenta samples, little is known about what cell types express specific choline transporters and how expression of the transporters may change over gestation. The objective of this study was to characterize choline transporter expression levels and localization in the human placenta throughout placental development. METHODS We analyzed CTL1 and −2 expression over gestation in human placental biopsies from 6 to 40 weeks gestation (n=6–10 per gestational window) by immunoblot analysis. To determine the cellular expression pattern of the choline transporters throughout gestation, immunofluorescence analysis was then performed. RESULTS Both CTL1 and CTL2 were expressed in the chorionic villi from 6 weeks gestation to term. Labor did not alter expression levels of either transporter. CTL1 localized to the syncytial trophoblasts and the endothelium of the fetal vasculature within the chorionic villous structure. CTL2 localized mainly to the stroma early in gestation and by the second trimester co-localized with CTL1 at the fetal vasculature. DISCUSSION The differential expression pattern of CTL1 and CTL2 suggests that CTL1 is the key transporter involved in choline transport from maternal circulation and both transporters are likely involved in stromal and endothelial cell choline transport. PMID:26601765

  4. UMA/GAN network architecture analysis

    NASA Astrophysics Data System (ADS)

    Yang, Liang; Li, Wensheng; Deng, Chunjian; Lv, Yi

    2009-07-01

    This paper is to critically analyze the architecture of UMA which is one of Fix Mobile Convergence (FMC) solutions, and also included by the third generation partnership project(3GPP). In UMA/GAN network architecture, UMA Network Controller (UNC) is the key equipment which connects with cellular core network and mobile station (MS). UMA network could be easily integrated into the existing cellular networks without influencing mobile core network, and could provides high-quality mobile services with preferentially priced indoor voice and data usage. This helps to improve subscriber's experience. On the other hand, UMA/GAN architecture helps to integrate other radio technique into cellular network which includes WiFi, Bluetooth, and WiMax and so on. This offers the traditional mobile operators an opportunity to integrate WiMax technique into cellular network. In the end of this article, we also give an analysis of potential influence on the cellular core networks ,which is pulled by UMA network.

  5. Derivation of large-scale cellular regulatory networks from biological time series data.

    PubMed

    de Bivort, Benjamin L

    2010-01-01

    Pharmacological agents and other perturbants of cellular homeostasis appear to nearly universally affect the activity of many genes, proteins, and signaling pathways. While this is due in part to nonspecificity of action of the drug or cellular stress, the large-scale self-regulatory behavior of the cell may also be responsible, as this typically means that when a cell switches states, dozens or hundreds of genes will respond in concert. If many genes act collectively in the cell during state transitions, rather than every gene acting independently, models of the cell can be created that are comprehensive of the action of all genes, using existing data, provided that the functional units in the model are collections of genes. Techniques to develop these large-scale cellular-level models are provided in detail, along with methods of analyzing them, and a brief summary of major conclusions about large-scale cellular networks to date.

  6. Nonstructural Protein NSs of Schmallenberg Virus Is Targeted to the Nucleolus and Induces Nucleolar Disorganization

    PubMed Central

    Gouzil, Julie; Fablet, Aurore; Lara, Estelle; Caignard, Grégory; Cochet, Marielle; Kundlacz, Cindy; Palmarini, Massimo; Varela, Mariana; Breard, Emmanuel; Sailleau, Corinne; Viarouge, Cyril; Coulpier, Muriel; Zientara, Stéphan

    2016-01-01

    ABSTRACT Schmallenberg virus (SBV) was discovered in Germany in late 2011 and then spread rapidly to many European countries. SBV is an orthobunyavirus that causes abortion and congenital abnormalities in ruminants. A virus-encoded nonstructural protein, termed NSs, is a major virulence factor of SBV, and it is known to promote the degradation of Rpb1, a subunit of the RNA polymerase II (Pol II) complex, and therefore hampers global cellular transcription. In this study, we found that NSs is mainly localized in the nucleus of infected cells and specifically appears to target the nucleolus through a nucleolar localization signal (NoLS) localized between residues 33 and 51 of the protein. NSs colocalizes with nucleolar markers such as B23 (nucleophosmin) and fibrillarin. We observed that in SBV-infected cells, B23 undergoes a nucleolus-to-nucleoplasm redistribution, evocative of virus-induced nucleolar disruption. In contrast, the nucleolar pattern of B23 was unchanged upon infection with an SBV recombinant mutant with NSs lacking the NoLS motif (SBVΔNoLS). Interestingly, unlike wild-type SBV, the inhibitory activity of SBVΔNoLS toward RNA Pol II transcription is impaired. Overall, our results suggest that a putative link exists between NSs-induced nucleolar disruption and its inhibitory function on cellular transcription, which consequently precludes the cellular antiviral response and/or induces cell death. IMPORTANCE Schmallenberg virus (SBV) is an emerging arbovirus of ruminants that spread in Europe between 2011 and 2013. SBV induces fetal abnormalities during gestation, with the central nervous system being one of the most affected organs. The virus-encoded NSs protein acts as a virulence factor by impairing host cell transcription. Here, we show that NSs contains a nucleolar localization signal (NoLS) and induces disorganization of the nucleolus. The NoLS motif in the SBV NSs is absolutely necessary for virus-induced inhibition of cellular transcription. To our knowledge, this is the first report of nucleolar functions for NSs within the Bunyaviridae family. PMID:27795408

  7. Nonstructural Protein NSs of Schmallenberg Virus Is Targeted to the Nucleolus and Induces Nucleolar Disorganization.

    PubMed

    Gouzil, Julie; Fablet, Aurore; Lara, Estelle; Caignard, Grégory; Cochet, Marielle; Kundlacz, Cindy; Palmarini, Massimo; Varela, Mariana; Breard, Emmanuel; Sailleau, Corinne; Viarouge, Cyril; Coulpier, Muriel; Zientara, Stéphan; Vitour, Damien

    2017-01-01

    Schmallenberg virus (SBV) was discovered in Germany in late 2011 and then spread rapidly to many European countries. SBV is an orthobunyavirus that causes abortion and congenital abnormalities in ruminants. A virus-encoded nonstructural protein, termed NSs, is a major virulence factor of SBV, and it is known to promote the degradation of Rpb1, a subunit of the RNA polymerase II (Pol II) complex, and therefore hampers global cellular transcription. In this study, we found that NSs is mainly localized in the nucleus of infected cells and specifically appears to target the nucleolus through a nucleolar localization signal (NoLS) localized between residues 33 and 51 of the protein. NSs colocalizes with nucleolar markers such as B23 (nucleophosmin) and fibrillarin. We observed that in SBV-infected cells, B23 undergoes a nucleolus-to-nucleoplasm redistribution, evocative of virus-induced nucleolar disruption. In contrast, the nucleolar pattern of B23 was unchanged upon infection with an SBV recombinant mutant with NSs lacking the NoLS motif (SBVΔNoLS). Interestingly, unlike wild-type SBV, the inhibitory activity of SBVΔNoLS toward RNA Pol II transcription is impaired. Overall, our results suggest that a putative link exists between NSs-induced nucleolar disruption and its inhibitory function on cellular transcription, which consequently precludes the cellular antiviral response and/or induces cell death. Schmallenberg virus (SBV) is an emerging arbovirus of ruminants that spread in Europe between 2011 and 2013. SBV induces fetal abnormalities during gestation, with the central nervous system being one of the most affected organs. The virus-encoded NSs protein acts as a virulence factor by impairing host cell transcription. Here, we show that NSs contains a nucleolar localization signal (NoLS) and induces disorganization of the nucleolus. The NoLS motif in the SBV NSs is absolutely necessary for virus-induced inhibition of cellular transcription. To our knowledge, this is the first report of nucleolar functions for NSs within the Bunyaviridae family. Copyright © 2016 Gouzil et al.

  8. Hereditary Spastic Paraplegia-Linked REEP1 Modulates ER-Mitochondria Contacts

    PubMed Central

    Lim, Youngshin; Cho, Il-Taeg; Schoel, Leah J.; Cho, Ginam; Golden, Jeffrey A.

    2015-01-01

    Objective Mutations in receptor expression enhancing protein 1 (REEP1) are associated with hereditary spastic paraplegias (HSPs). Although axonal degeneration is thought to be a predominant feature in HSP, the role of REEP1 mutations in degeneration is largely unknown. Previous studies have implicated a role for REEP1 in the ER, whereas others localized REEP1 with mitochondria. We sought to resolve the cellular localization of REEP1 and to further elucidate the pathobiology underlying REEP1 mutations in patients. Methods A combination of cellular imaging and biochemical approaches was used to refine the cellular localization of REEP1. Next, Reep1 mutations associated with HSP were functionally tested in neuritic growth and degeneration assays using mouse cortical culture. Finally, a novel assay was developed and used with wild type and mutant Reep1s to measure the interactions between the ER and mitochondria. Results We found that REEP1 is present at the ER-mitochondria interface, and it contains subdomains for mitochondrial as well as ER localization. Knockdown of Reep1 and the expression of pathological Reep1 mutations resulted in neuritic growth defects and degeneration. Finally, using our novel split-RLuc8 assay, we show REEP1 facilitates ER-mitochondria interactions, a function diminished by disease-associated mutations. Interpretation Our data potentially reconcile the current conflicting reports regarding REEP1 being either an ER or a mitochondrial protein. Furthermore, our results connect, for the first time, the disrupted ER-mitochondria interactions to a failure in maintaining health of long axons in HSPs. Finally, the split-RLuc8 assay offers a new tool to identify potential drugs for multiple neurodegenerative diseases with ER-mitochondria interaction defects. PMID:26201691

  9. Profiling and functional classification of esterases in olive (Olea europaea) pollen during germination.

    PubMed

    Rejón, Juan D; Zienkiewicz, Agnieszka; Rodríguez-García, María Isabel; Castro, Antonio J

    2012-10-01

    A pollen grain contains a number of esterases, many of which are released upon contact with the stigma surface. However, the identity and function of most of these esterases remain unknown. In this work, esterases from olive pollen during its germination were identifided and functionally characterized. The esterolytic capacity of olive (Olea europaea) pollen was examined using in vitro and in-gel enzymatic assays with different enzyme substrates. The functional analysis of pollen esterases was achieved by inhibition assays by using specific inhibitors. The cellular localization of esterase activities was performed using histochemical methods. Olive pollen showed high levels of non-specific esterase activity, which remained steady after hydration and germination. Up to 20 esterolytic bands were identified on polyacrylamide gels. All the inhibitors decreased pollen germinability, but only diisopropyl fluorophosphate (DIFP) hampered pollen tube growth. Non-specific esterase activity is localized on the surface of oil bodies (OBs) and small vesicles, in the pollen intine and in the callose layer of the pollen tube wall. Acetylcholinesterase (AChE) activity was mostly observed in the apertures, exine and pollen coat, and attached to the pollen tube wall surface and to small cytoplasmic vesicles. In this work, for the first time a systematic functional characterization of esterase enzymes in pollen from a plant species with wet stigma has been carried out. Olive pollen esterases belong to four different functional groups: carboxylesterases, acetylesterases, AChEs and lipases. The cellular localization of esterase activity indicates that the intine is a putative storage site for esterolytic enzymes in olive pollen. Based on inhibition assays and cellular localization of enzymatic activities, it can be concluded that these enzymes are likely to be involved in pollen germination, and pollen tube growth and penetration of the stigma.

  10. Re-localization of Cellular Protein SRp20 during Poliovirus Infection: Bridging a Viral IRES to the Host Cell Translation Apparatus

    PubMed Central

    Fitzgerald, Kerry D.; Semler, Bert L.

    2011-01-01

    Poliovirus IRES-mediated translation requires the functions of certain canonical as well as non-canonical factors for the recruitment of ribosomes to the viral RNA. The interaction of cellular proteins PCBP2 and SRp20 in extracts from poliovirus-infected cells has been previously described, and these two proteins were shown to function synergistically in viral translation. To further define the mechanism of ribosome recruitment for the initiation of poliovirus IRES-dependent translation, we focused on the role of the interaction between cellular proteins PCBP2 and SRp20. Work described here demonstrates that SRp20 dramatically re-localizes from the nucleus to the cytoplasm of poliovirus-infected neuroblastoma cells during the course of infection. Importantly, SRp20 partially co-localizes with PCBP2 in the cytoplasm of infected cells, corroborating our previous in vitro interaction data. In addition, the data presented implicate the presence of these two proteins in viral translation initiation complexes. We show that in extracts from poliovirus-infected cells, SRp20 is associated with PCBP2 bound to poliovirus RNA, indicating that this interaction occurs on the viral RNA. Finally, we generated a mutated version of SRp20 lacking the RNA recognition motif (SRp20ΔRRM) and found that this protein is localized similar to the full length SRp20, and also partially co-localizes with PCBP2 during poliovirus infection. Expression of this mutated version of SRp20 results in a ∼100 fold decrease in virus yield for poliovirus when compared to expression of wild type SRp20, possibly via a dominant negative effect. Taken together, these results are consistent with a model in which SRp20 interacts with PCBP2 bound to the viral RNA, and this interaction functions to recruit ribosomes to the viral RNA in a direct or indirect manner, with the participation of additional protein-protein or protein-RNA interactions. PMID:21779168

  11. Intracellular redox status controls membrane localization of pro- and anti-migratory signaling molecules.

    PubMed

    Hempel, Nadine; Melendez, J Andres

    2014-01-01

    Shifts in intracellular Reactive Oxygen Species (ROS) have been shown to contribute to carcinogenesis and to tumor progression. In addition to DNA and cell damage by surges in ROS, sub-lethal increases in ROS are implicated in regulating cellular signaling that enhances pro-metastatic behavior. We previously showed that subtle increases in endogenous H2O2 regulate migratory and invasive behavior of metastatic bladder cancer cells through phosphatase inhibition and consequential phosphorylation of p130cas, an adapter of the FAK signaling pathway. We further showed that enhanced redox status contributed to enhanced localization of p130cas to the membrane of metastatic cells. Here we show that this signaling complex can similarly be induced in a redox-engineered cell culture model that enables regulation of intracellular steady state H2O2 level by enforced expression of superoxide dismutase 2 (Sod2) and catalase. Expression of Sod2 leads to enhanced p130cas phosphorylation in HT-1080 fibrosarcoma and UM-UC-6 bladder cancer cells. These changes are mediated by H2O2, as co-expression of Catalase abrogates p130cas phosphorylation and its interaction with the adapter protein Crk. Importantly, we establish that the redox environment influence the localization of the tumor suppressor and phosphatase PTEN, in both redox-engineered and metastatic bladder cancer cells that display endogenous increases in H2O2. Importantly, PTEN oxidation leads to its dissociation from the plasma membrane. This indicates that oxidation of PTEN not only influences its activity, but also regulates its cellular localization, effectively removing it from its primary site of lipid phosphatase activity. These data introduce hitherto unappreciated paradigms whereby ROS can reciprocally regulate the cellular localization of pro- and anti-migratory signaling molecules, p130cas and PTEN, respectively. These data further confirm that altering antioxidant status and the intracellular ROS environment can have profound effects on pro-metastatic signaling pathways.

  12. Microcanonical model for interface formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rucklidge, A.; Zaleski, S.

    1988-04-01

    We describe a new cellular automaton model which allows us to simulate separation of phases. The model is an extension of existing cellular automata for the Ising model, such as Q2R. It conserves particle number and presents the qualitative features of spinodal decomposition. The dynamics is deterministic and does not require random number generators. The spins exchange energy with small local reservoirs or demons. The rate of relaxation to equilibrium is investigated, and the results are compared to the Lifshitz-Slyozov theory.

  13. Move or Die: the Fate of the Tax Oncoprotein of HTLV-1

    PubMed Central

    Lodewick, Julie; Lamsoul, Isabelle; Bex, Françoise

    2011-01-01

    The HTLV-1 Tax protein both activates viral replication and is involved in HTLV-1-mediated transformation of T lymphocytes. The transforming properties of Tax include altering the expression of select cellular genes via activation of cellular pathways and perturbation of both cell cycle control mechanisms and apoptotic signals. The recent discovery that Tax undergoes a hierarchical sequence of posttranslational modifications that control its intracellular localization provides provocative insights into the mechanisms regulating Tax transcriptional and transforming activities. PMID:21994756

  14. On Guanidinium and Cellular Uptake

    PubMed Central

    2015-01-01

    Guanidinium-rich scaffolds facilitate cellular translocation and delivery of bioactive cargos through biological barriers. Although impressive uptake has been demonstrated for nonoligomeric and nonpept(o)idic guanidinylated scaffolds in cell cultures and animal models, the fundamental understanding of these processes is lacking. Charge pairing and hydrogen bonding with cell surface counterparts have been proposed, but their exact role remains putative. The impact of the number and spatial relationships of the guanidinium groups on delivery and organelle/organ localization is yet to be established. PMID:25019333

  15. A quantum relativistic battle of the sexes cellular automaton

    NASA Astrophysics Data System (ADS)

    Alonso-Sanz, Ramón; Situ, Haozhen

    2017-02-01

    The effect of variable entangling on the dynamics of a spatial quantum relativistic formulation of the iterated battle of the sexes game is studied in this work. The game is played in the cellular automata manner, i.e., with local and synchronous interaction. The game is assessed in fair and unfair contests. Despite the full range of quantum parameters initially accessible, they promptly converge into fairly stable configurations, that often show rich spatial structures in simulations with no negligible entanglement.

  16. Wise retained in the endoplasmic reticulum inhibits Wnt signaling by reducing cell surface LRP6.

    PubMed

    Guidato, Sonia; Itasaki, Nobue

    2007-10-15

    The Wnt signaling pathway is tightly regulated by extracellular and intracellular modulators. Wise was isolated as a secreted protein capable of interacting with the Wnt co-receptor LRP6. Studies in Xenopus embryos revealed that Wise either enhances or inhibits the Wnt pathway depending on the cellular context. Here we show that the cellular localization of Wise has distinct effects on the Wnt pathway readout. While secreted Wise either synergizes or inhibits the Wnt signals depending on the partner ligand, ER-retained Wise consistently blocks the Wnt pathway. ER-retained Wise reduces LRP6 on the cell surface, making cells less susceptible to the Wnt signal. This study provides a cellular mechanism for the action of Wise and introduces the modulation of cellular susceptibility to Wnt signals as a novel mechanism of the regulation of the Wnt pathway.

  17. Mushroom extract inhibits ultraviolet B-induced cellular senescence in human keratinocytes.

    PubMed

    Chong, Zhao; Matsuo, Haruka; Kuroda, Mai; Yamashita, Shuntaro; Parajuli, Gopal Prasad; Manandhar, Hira Kaji; Shimizu, Kuniyoshi; Katakura, Yoshinori

    2018-06-02

    Mushrooms possess various bioactivities and are used as nutritional supplements and medicinal products. Twenty-nine bioactive components have been extracted recently from mushrooms grown in Nepal. In this study, we evaluated the ability of these mushroom extracts to augment SIRT1, a mammalian SIR2 homologue localized in cytosol and nuclei. We established a system for screening food ingredients that augment the SIRT1 promoter in HaCaT cells, and identified a SIRT1-augmenting mushroom extract (number 28, Trametes versicolor). UVB irradiation induced cellular senescence in HaCaT cells, as evidenced by increased activity and expression of cellular senescence markers including senescence-associated β-galactosidase, p21, p16, phosphorylated p38, and γH2AX. Results clearly showed that the mushroom extract (No. 28) suppressed the ultraviolet B irradiation-induced cellular senescence in HaCaT cells possibly through augmenting SIRT1 expression.

  18. Predictability in cellular automata.

    PubMed

    Agapie, Alexandru; Andreica, Anca; Chira, Camelia; Giuclea, Marius

    2014-01-01

    Modelled as finite homogeneous Markov chains, probabilistic cellular automata with local transition probabilities in (0, 1) always posses a stationary distribution. This result alone is not very helpful when it comes to predicting the final configuration; one needs also a formula connecting the probabilities in the stationary distribution to some intrinsic feature of the lattice configuration. Previous results on the asynchronous cellular automata have showed that such feature really exists. It is the number of zero-one borders within the automaton's binary configuration. An exponential formula in the number of zero-one borders has been proved for the 1-D, 2-D and 3-D asynchronous automata with neighborhood three, five and seven, respectively. We perform computer experiments on a synchronous cellular automaton to check whether the empirical distribution obeys also that theoretical formula. The numerical results indicate a perfect fit for neighbourhood three and five, which opens the way for a rigorous proof of the formula in this new, synchronous case.

  19. The Changes of Energy Interactions between Nucleus Function and Mitochondria Functions Causing Transmutation of Chronic Inflammation into Cancer Metabolism.

    PubMed

    Ponizovskiy, Michail R

    2016-01-01

    Interactions between nucleus and mitochondria functions induce the mechanism of maintenance stability of cellular internal energy according to the first law of thermodynamics in able-bodied cells and changes the mechanisms of maintenance stability of cellular internal energy creating a transition stationary state of ablebodied cells into quasi-stationary pathologic states of acute inflammation transiting then into chronic inflammation and then transmuting into cancer metabolism. The mechanisms' influences of intruding etiologic pathologic agents (microbe, virus, etc.) lead to these changes of energy interactions between nucleus and mitochondria functions causing general acute inflammation, then passing into local chronic inflammation, and reversing into cancer metabolism transmutation. Interactions between biochemical processes and biophysical processes of cellular capacitors' operations create a supplementary mechanism of maintenance stability of cellular internal energy in the norm and in pathology. Discussion of some scientific works eliminates doubts of the authors of these works.

  20. SIRTUIN 1 AND SIRTUIN 3: PHYSIOLOGICAL MODULATORS OF METABOLISM

    PubMed Central

    Nogueiras, Ruben; Habegger, Kirk M.; Chaudhary, Nilika; Finan, Brian; Banks, Alexander S.; Dietrich, Marcelo O.; Horvath, Tamas L.; Sinclair, David A.; Pfluger, Paul T.; Tschöop, Matthias H.

    2013-01-01

    The sirtuins are a family of highly conserved NAD+-dependent deacetylases that act as cellular sensors to detect energy availability and modulate metabolic processes. Two sirtuins that are central to the control of metabolic processes are mammalian sirtuin 1 (SIRT1) and sirtuin 3 (SIRT3), which are localized to the nucleus and mitochondria, respectively. Both are activated by high NAD+ levels, a condition caused by low cellular energy status. By deacetylating a variety of proteins that induce catabolic processes while inhibiting anabolic processes, SIRT1 and SIRT3 coordinately increase cellular energy stores and ultimately maintain cellular energy homeostasis. Defects in the pathways controlled by SIRT1 and SIRT3 are known to result in various metabolic disorders. Consequently, activation of sirtuins by genetic or pharmacological means can elicit multiple metabolic benefits that protect mice from diet-induced obesity, type 2 diabetes, and nonalcoholic fatty liver disease. PMID:22811431

  1. Automated and Adaptable Quantification of Cellular Alignment from Microscopic Images for Tissue Engineering Applications

    PubMed Central

    Xu, Feng; Beyazoglu, Turker; Hefner, Evan; Gurkan, Umut Atakan

    2011-01-01

    Cellular alignment plays a critical role in functional, physical, and biological characteristics of many tissue types, such as muscle, tendon, nerve, and cornea. Current efforts toward regeneration of these tissues include replicating the cellular microenvironment by developing biomaterials that facilitate cellular alignment. To assess the functional effectiveness of the engineered microenvironments, one essential criterion is quantification of cellular alignment. Therefore, there is a need for rapid, accurate, and adaptable methodologies to quantify cellular alignment for tissue engineering applications. To address this need, we developed an automated method, binarization-based extraction of alignment score (BEAS), to determine cell orientation distribution in a wide variety of microscopic images. This method combines a sequenced application of median and band-pass filters, locally adaptive thresholding approaches and image processing techniques. Cellular alignment score is obtained by applying a robust scoring algorithm to the orientation distribution. We validated the BEAS method by comparing the results with the existing approaches reported in literature (i.e., manual, radial fast Fourier transform-radial sum, and gradient based approaches). Validation results indicated that the BEAS method resulted in statistically comparable alignment scores with the manual method (coefficient of determination R2=0.92). Therefore, the BEAS method introduced in this study could enable accurate, convenient, and adaptable evaluation of engineered tissue constructs and biomaterials in terms of cellular alignment and organization. PMID:21370940

  2. Topometry optimization of sheet metal structures for crashworthiness design using hybrid cellular automata

    NASA Astrophysics Data System (ADS)

    Mozumder, Chandan K.

    The objective in crashworthiness design is to generate plastically deformable energy absorbing structures which can satisfy the prescribed force-displacement (FD) response. The FD behavior determines the reaction force, displacement and the internal energy that the structure should withstand. However, attempts to include this requirement in structural optimization problems remain scarce. The existing commercial optimization tools utilize models under static loading conditions because of the complexities associated with dynamic/impact loading. Due to the complexity of a crash event and the consequent time required to numerically analyze the dynamic response of the structure, classical methods (i.e., gradient-based and direct) are not well developed to solve this undertaking. This work presents an approach under the framework of the hybrid cellular automaton (HCA) method to solve the above challenge. The HCA method has been successfully applied to nonlinear transient topology optimization for crashworthiness design. In this work, the HCA algorithm has been utilized to develop an efficient methodology for synthesizing shell-based sheet metal structures with optimal material thickness distribution under a dynamic loading event using topometry optimization. This method utilizes the cellular automata (CA) computing paradigm and nonlinear transient finite element analysis (FEA) via ls-dyna. In this method, a set field variables is driven to their target states by changing a convenient set of design variables (e.g., thickness). These rules operate locally in cells within a lattice that only know local conditions. The field variables associated with the cells are driven to a setpoint to obtain the desired structure. This methodology is used to design for structures with controlled energy absorption with specified buckling zones. The peak reaction force and the maximum displacement are also constrained to meet the desired safety level according to passenger safety regulations. Design for prescribed FD response by minimizing the error between the actual response and desired FD curve is implemented. With the use of HCA rules, manufacturability constraints (e.g., rolling) and structures which can be manufactured by special techniques, such as, tailor-welded blanks (TWB), have also been implemented. This methodology is applied to shock-absorbing structural components for passengers in a crashing vehicle. These results are compared to previous designs showing the benefits of the method introduced in this work.

  3. The Role of Cell Compartmentalization and Cell Differentiation in Cyanobacterial Excavation of Miineral Carbonates

    NASA Astrophysics Data System (ADS)

    Garcia-Pichel, F.; Guida, B. S.; Couradeau, E.

    2015-12-01

    The bioerosion of coastal limestones and biogenic carbonates by boring filamentous or pseudo-filamentous cyanobacteria is not only a geomicrobial phenomenon of global proportions, but also plays an important role in the demise of coral reefs, and affects significantly human enterprises like bivalve fisheries. In spite of its importance, the mechanism by which cyanobacteria excavate carbonates constitutes an apparent paradox, in that their metabolism will tend to precipitate carbonates, not dissolved them. We have previously advanced, and obtained evidence for, a mechanism of excavation that relies on the uptake of Ca2+ by cells at the boring front, its trans-cellular transport along the filaments, and its eventual active excretion at the solid/liquid interface. It was postulated that the mechanism involved the strategically organized deployment of Ca2+ transport enzymes like P-type Ca2+ ATPases and Ca2+ channels. Here we present evidence that confirms this basic mechanism, but also reveals that it is based on an unexpected level of cellular complexity. The model organism Mastigocoleus testarum BC008, transports Ca2+ from the mineral to the external medium using a repetitive, polar arrangement of Ca2+ ATPases, localized preferentially on one cellular pole, in a ring conformation on the cell membrane adjacent to the trans-cellular septum, pumping Ca2+ locally towards the periplasmic space, from which it passively enters the next cell. This strain also develops specialized groups of cells, which we named calcicytes, often but not exclusively located at the ends of filaments, that accumulate large concentrations of Ca2+, some 40-fold higher than typical in microbes, and seem to act as sinks or capacitors in the trans-cellular Ca2+ transport. Calcicytes are also characterized by a lack of photosynthetic pigments, and a very high intracellular pH. These cellular adaptations can also be found in evolutionary distant euendoliths such as the pseudofilamentous Hyella sp.

  4. Localization of cholesterol in sphingomyelinase-treated fibroblasts.

    PubMed Central

    Pörn, M I; Slotte, J P

    1995-01-01

    The distribution of cellular unesterified cholesterol was studied in fibroblasts, which had been depleted of plasma membrane sphingomyelin by exposure to exogenous sphingomyelinase. This treatment has previously been shown to induce an increase in cholesterol esterification, a decrease in the biosynthesis of cholesterol, and a decreased susceptibility of cell cholesterol to oxidation with cholesterol oxidase. When the cellular localization of cholesterol was studied with fluorescent filipin staining, sphingomyelin depletion did not cause any visible changes in the filipin-cholesterol staining pattern, suggesting that the major part of cellular cholesterol was retained in the plasma membrane after sphingomyelinase treatment. After the oxidation of cell-surface cholesterol with cholesterol oxidase, the plasma membrane was no longer stained by filipin, but the plasma membrane cholesterol of sphingomyelin-depleted cells appeared to be resistant to oxidation with cholesterol oxidase when sphingomyelinase was used as an oxidation-promoting agent. However, the use of hypotonic buffer or phosphatidylcholine-specific phospholipase C together with cholesterol oxidase resulted in a complete oxidation of the cell-surface cholesterol in sphingomyelin-depleted cells, as evidenced by the filipin-cholesterol staining pattern. Similar results were obtained when [3H]cholesterol-labelled fibroblasts were used for determination of the susceptibility to cholesterol oxidation. The kinetics of [3H]cholesterol oxidation in sphingomyelin-depleted cells with cholesterol oxidase in hypotonic buffer indicated that approximately 85% of the cellular cholesterol still resided in the plasma membrane after sphingomyelin depletion. These results are contradictory to earlier reports on sphingomyelinase-induced changes in cellular cholesterol distribution and suggest that minor changes in the kinetics of cholesterol transport from the plasma membrane to the endoplasmic reticulum may be responsible for the sphingomyelinase-induced changes in the rates of cholesterol metabolism. Whereas the use of phospholipases to promote the oxidation of cholesterol in some instances might lead to misinterpretations, the use of hypotonic buffer together with cholesterol oxidase proved to be a more reliable method for the determination of cellular cholesterol distribution. Images Figure 1 Figure 2 PMID:7755574

  5. Thickness sensing of hMSCs on collagen gel directs stem cell fate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leong, Wen Shing; Tay, Chor Yong; Yu, Haiyang

    Research highlights: {yields} hMSCs appeared to sense thin collagen gel (130 {mu}m) with higher effective modulus as compared to thick gel (1440 {mu}m). {yields} Control of collagen gel thickness can modulate cellular behavior, even stem cell fate (neuronal vs. Quiescent). {yields} Distinct cellular behavior of hMSCs on thin and thick collagen gel suggests long range interaction of hMSCs with collagen gel. -- Abstract: Mechanically compliant substrate provides crucial biomechanical cues for multipotent stem cells to regulate cellular fates such as differentiation, proliferation and maintenance of their phenotype. Effective modulus of which cells sense is not only determined by intrinsic mechanicalmore » properties of the substrate, but also the thickness of substrate. From our study, it was found that interference from underlying rigid support at hundreds of microns away could induce significant cellular response. Human mesenchymal stem cells (hMSCs) were cultured on compliant biological gel, collagen type I, of different thickness but identical ECM composition and local stiffness. The cells sensed the thin gel (130 {mu}m) as having a higher effective modulus than the thick gel (1440 {mu}m) and this was reflected in their changes in morphology, actin fibers structure, proliferation and tissue specific gene expression. Commitment into neuronal lineage was observed on the thin gel only. Conversely, the thick gel (1440 {mu}m) was found to act like a substrate with lower effective modulus that inhibited actin fiber polymerization. Stem cells on the thick substrate did not express tissue specific genes and remained at their quiescent state. This study highlighted the need to consider not only the local modulus but also the thickness of biopolymer gel coating during modulation of cellular responses.« less

  6. Risk perception and public concerns of electromagnetic waves from cellular phones in Korea.

    PubMed

    Kim, Kyunghee; Kim, Hae-Joon; Song, Dae Jong; Cho, Yong Min; Choi, Jae Wook

    2014-05-01

    In this study, the difference between the risk perception of electromagnetic waves from cellular phones and the risk perception of other factors such as environment and food was analyzed. The cause of the difference in the psychological and social factors that affect the group with high risk perception of electromagnetic waves was also analyzed. A questionnaire survey on the risk perception of electromagnetic waves from cellular phones was carried out on 1001 subjects (men and women) over the age of 20. In the group with high risk perception of electromagnetic waves from cellular phones, women had higher risk perception than men. Logistic regression analysis, where the group with high risk perception of electromagnetic waves and the group with low risk perception were used as dependent variables, indicated that the risk perception of electromagnetic waves in women was 1.815 times statistically significantly higher than the risk perception of men (95% CI: 1.340-2.457). Also, high risk perception of electromagnetic waves from cellular phones was observed when the subjects considered that they had more personal knowledge (OR: 1.416, 95% CI: 1.216-1.648), that the seriousness of the risk to future generations was high (OR: 1.410, 95% CI: 1.234-1.611), and their outrage for the occurrence of accidents related to electromagnetic waves was high (OR: 1.460, 95% CI: 1.264-1.686). The results of this study need to be sufficiently considered and reflected in designing the risk communication strategies and communication methods for the preventive measures and advice on electromagnetic waves from cellular phones. © 2014 Wiley Periodicals, Inc.

  7. Biomedical sensing analyzer (BSA) for mobile-health (mHealth)-LTE.

    PubMed

    Adibi, Sasan

    2014-01-01

    The rapid expansion of mobile-based systems, the capabilities of smartphone devices, as well as the radio access and cellular network technologies are the wind beneath the wing of mobile health (mHealth). In this paper, the concept of biomedical sensing analyzer (BSA) is presented, which is a novel framework, devised for sensor-based mHealth applications. The BSA is capable of formulating the Quality of Service (QoS) measurements in an end-to-end sense, covering the entire communication path (wearable sensors, link-technology, smartphone, cell-towers, mobile-cloud, and the end-users). The characterization and formulation of BSA depend on a number of factors, including the deployment of application-specific biomedical sensors, generic link-technologies, collection, aggregation, and prioritization of mHealth data, cellular network based on the Long-Term Evolution (LTE) access technology, and extensive multidimensional delay analyses. The results are studied and analyzed in a LabView 8.5 programming environment.

  8. Differential network entropy reveals cancer system hallmarks

    PubMed Central

    West, James; Bianconi, Ginestra; Severini, Simone; Teschendorff, Andrew E.

    2012-01-01

    The cellular phenotype is described by a complex network of molecular interactions. Elucidating network properties that distinguish disease from the healthy cellular state is therefore of critical importance for gaining systems-level insights into disease mechanisms and ultimately for developing improved therapies. By integrating gene expression data with a protein interaction network we here demonstrate that cancer cells are characterised by an increase in network entropy. In addition, we formally demonstrate that gene expression differences between normal and cancer tissue are anticorrelated with local network entropy changes, thus providing a systemic link between gene expression changes at the nodes and their local correlation patterns. In particular, we find that genes which drive cell-proliferation in cancer cells and which often encode oncogenes are associated with reductions in network entropy. These findings may have potential implications for identifying novel drug targets. PMID:23150773

  9. Cellular localization of Na(+), K(+)-ATPase in the mammalian vestibular system

    NASA Technical Reports Server (NTRS)

    Kerr, T. P.

    1984-01-01

    Two different, but complementary, procedures for cellular localization of Na+, K+-ATPase in the guinea pig vestibular system were employed. One of these techniques, devised by Stirling, depends upon the well documented ability of the specific inhibitor ouabain to bind selectively to Na+,K+-ATPase, blocking catalytic activity. Microdisected vestibular tissues are incubated with tritium-labelled (3H-) ouabain, and regions with a high concentration of Na+,K+-ATPase are subsequently identified by light microscope autoradiography. A second method, originated by Ernst, detects inorganic phosphate released from an artificial substrate (nitrophenyl phosphate) by catalytic activity of the enzyme. In the presence of strontium ion, phosphate is precipitated near regions of high activity, then converted to a product which may finally be visualized in the electron microscope. This cytochemical enzymatic reaction is inhibited by ouabain.

  10. Grow-ING, Age-ING and Die-ING: ING proteins link cancer, senescence and apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Michael; Berardi, Philip; Gong Wei

    The INhibitor of Growth (ING) family of plant homeodomain (PHD) proteins induce apoptosis and regulate gene expression through stress-inducible binding of phospholipids with subsequent nuclear and nucleolar localization. Relocalization occurs concomitantly with interaction with a subset of nuclear proteins, including PCNA, p53 and several regulators of acetylation such as the p300/CBP and PCAF histone acetyltransferases (HATs), as well as the histone deacetylases HDAC1 and hSir2. These interactions alter the localized state of chromatin compaction, subsequently affecting the expression of subsets of genes, including those associated with the stress response (Hsp70), apoptosis (Bax, MDM2) and cell cycle regulation (p21{sup WAF1}, cyclinmore » B) in a cell- and tissue-specific manner. The expression levels and subcellular localization of ING proteins are altered in a significant number of human cancer types, while the expression of ING isoforms changes during cellular aging, suggesting that ING proteins may play a role in linking cellular transformation and replicative senescence. The variety of functions attributed to ING proteins suggest that this tumor suppressor serves to link the disparate processes of cell cycle regulation, cell suicide and cellular aging through epigenetic regulation of gene expression. This review examines recent findings in the ING field with a focus on the functions of protein-protein interactions involving ING family members and the mechanisms by which these interactions facilitate the various roles that ING proteins play in tumorigenesis, apoptosis and senescence.« less

  11. Preparation of BFV Gag antiserum and preliminary study on cellular distribution of BFV.

    PubMed

    Wang, Jian; Guo, Hong-yan; Jia, Rui; Xu, Xuan; Tan, Juan; Geng, Yun-qi; Qiao, Wen-tao

    2010-04-01

    Viruses (e.g. Human immunodeficiency virus, Human simplex virus and Prototype foamy virus) are obligate intracellular parasites and therefore depend on the cellular machinery for cellular trafficking. Bovine foamy virus (BFV) is a member of the Spumaretrovirinae subfamily of Retroviruses, however, details of its cellular trafficking remain unknown. In this study, we cloned the BFV gag gene into prokaryotic expression vector pET28a and purified the denaturalized Gag protein. The protein was used to immunize BALB/c mouse to produce antiserum, which could specifically recognize the BFV Gag protein in BFV-infected cells through western blot assay. Additionally, these results demonstrated that both the optimal and suboptimal cleavage of Gag protein occur in BFV-infected cells. Subsequently, the Gag antiserum was used to investigate subcellular localization of BFV. In immunofluorescence microscopy assays, colocalization microtubules (MTs) and assembling viral particles were clearly observed, which implied that BFV may transport along cellular MTs in host cells. Furthermore, MTs-depolymerizing assay indicated MTs were required for the efficient replication of BFV. In conclusion, our study suggests that BFV has evolved the mechanism to hijack the cellular cytoskeleton for its replication.

  12. Endoplasmic reticulum mediated signaling in cellular microdomains

    PubMed Central

    Biwer, Lauren; Isakson, Brant E

    2016-01-01

    The endoplasmic reticulum (ER) is a prime mediator of cellular signaling due to its functions as an internal cellular store for calcium, as well as a site for synthesis of proteins and lipids. Its peripheral network of sheets and tubules facilitate calcium and lipid signaling, especially in areas of the cell that are more distant to the main cytoplasmic network. Specific membrane proteins shape the peripheral ER architecture and influence the network stability in order to project into restricted spaces. The signaling microdomains are anatomically separate from the cytoplasm as a whole and exhibit localized protein, ion channel and cytoskeletal element expression. Signaling can also occur between the ER and other organelles, such as the Golgi or mitochondria. Lipids made in the ER membrane can be sent to the Golgi via specialized transfer proteins and specific phospholipid synthases are enriched at ER-mitochondria junctions to more efficiently expedite phospholipid transfer. As a hub for protein and lipid synthesis, a store for intracellular calcium [Ca2+]i, and a mediator of cellular stress, the ER is an important cellular organelle. Its ability to organize into tubules and project into restricted spaces allows for discrete and temporal signaling, which is important for cellular physiology and organism homeostasis. PMID:26973141

  13. The loss of luteal progesterone production in women is associated with a galectin switch via α2,6-sialylation of glycoconjugates.

    PubMed

    Nio-Kobayashi, Junko; Boswell, Lyndsey; Amano, Maho; Iwanaga, Toshihiko; Duncan, W Colin

    2014-12-01

    Luteal progesterone is fundamental for reproduction, but the molecular regulation of the corpus luteum (CL) in women remains unclear. Galectin-1 and galectin-3 bind to the sugar chains on cells to control key biological processes including cell function and fate. The expression and localization of LGALS1 and LGALS3 were analyzed by quantitative PCR and histochemical analysis, with special reference to α2,6-sialylation of glycoconjugates in carefully dated human CL collected across the menstrual cycle and after exposure to human chorionic gonadotrophin (hCG) in vivo. The effects of hCG and prostaglandin E2 on the expression of galectins and an α2,6-sialyltransferase 1 (ST6GAL1) in granulosa lutein cells were analyzed in vitro. Galectin-1 was predominantly localized to healthy granulosa lutein cells and galectin-3 was localized to macrophages and regressing granulosa lutein cells. Acute exposure to luteotrophic hormones (hCG and prostaglandin E2) up-regulated LGALS1 expression (P < .001). ST6GAL1, which catalyzes α2,6-sialylation to block galectin-1 binding, increased during luteolysis (P < .05) as did LGALS3 (P < .05). Luteotrophic hormones reduced ST6GAL1 and LGALS3 in vivo (P < .05) and in vitro (P < .001). There was an inverse correlation between the expression of ST6GAL1 and HSD3B1 (P < .01) and a distinct cellular relationship among α2,6-sialylation, 3β-hydroxysteroid dehydrogenase, and galectin expression. Galectin-1 is a luteotrophic factor whose binding is inhibited by α2,6-sialylation in the human CL during luteolysis. ST6GAL1 and galectin-3 expression is increased during luteolysis and associated with a loss of progesterone synthesis. Luteotrophic hormones differentially regulate galectin-1 and galectin-3/α2,6-sialylation in granulosa lutein cells, suggesting a novel galectin switch regulated by luteotrophic stimuli during luteolysis and luteal rescue.

  14. Searching for cellular partners of hantaviral nonstructural protein NSs: Y2H screening of mouse cDNA library and analysis of cellular interactome.

    PubMed

    Rönnberg, Tuomas; Jääskeläinen, Kirsi; Blot, Guillaume; Parviainen, Ville; Vaheri, Antti; Renkonen, Risto; Bouloy, Michele; Plyusnin, Alexander

    2012-01-01

    Hantaviruses (Bunyaviridae) are negative-strand RNA viruses with a tripartite genome. The small (S) segment encodes the nucleocapsid protein and, in some hantaviruses, also the nonstructural protein (NSs). The aim of this study was to find potential cellular partners for the hantaviral NSs protein. Toward this aim, yeast two-hybrid (Y2H) screening of mouse cDNA library was performed followed by a search for potential NSs protein counterparts via analyzing a cellular interactome. The resulting interaction network was shown to form logical, clustered structures. Furthermore, several potential binding partners for the NSs protein, for instance ACBD3, were identified and, to prove the principle, interaction between NSs and ACBD3 proteins was demonstrated biochemically.

  15. Learning cellular sorting pathways using protein interactions and sequence motifs.

    PubMed

    Lin, Tien-Ho; Bar-Joseph, Ziv; Murphy, Robert F

    2011-11-01

    Proper subcellular localization is critical for proteins to perform their roles in cellular functions. Proteins are transported by different cellular sorting pathways, some of which take a protein through several intermediate locations until reaching its final destination. The pathway a protein is transported through is determined by carrier proteins that bind to specific sequence motifs. In this article, we present a new method that integrates protein interaction and sequence motif data to model how proteins are sorted through these sorting pathways. We use a hidden Markov model (HMM) to represent protein sorting pathways. The model is able to determine intermediate sorting states and to assign carrier proteins and motifs to the sorting pathways. In simulation studies, we show that the method can accurately recover an underlying sorting model. Using data for yeast, we show that our model leads to accurate prediction of subcellular localization. We also show that the pathways learned by our model recover many known sorting pathways and correctly assign proteins to the path they utilize. The learned model identified new pathways and their putative carriers and motifs and these may represent novel protein sorting mechanisms. Supplementary results and software implementation are available from http://murphylab.web.cmu.edu/software/2010_RECOMB_pathways/.

  16. Hindered cytoplasmic diffusion of inositol trisphosphate restricts its cellular range of action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickinson, G. D.; Ellefsen, K. L.; Dawson, S. P.

    The range of action of intracellular messengers is determined by their rates of diffusion and degradation. Previous measurements in oocyte cytoplasmic extracts indicated that the Ca 2+-liberating second messenger inositol trisphosphate (IP 3) diffuses with a coefficient (~280 μm 2 s -1) similar to that in water, corresponding to a range of action of ~25 μm. Consequently, IP 3 is generally considered a “global” cellular messenger. We also reexamined this issue by measuring local IP 3-evoked Ca 2+ puffs to monitor IP 3 diffusing from spot photorelease in neuroblastoma cells. Fitting these data by numerical simulations yielded a diffusion coefficientmore » (≤10 μm 2 s -1) about 30-fold slower than that previously reported. Here, we propose that diffusion of IP 3 in mammalian cells is hindered by binding to immobile, functionally inactive receptors that were diluted in oocyte extracts. The predicted range of action of IP 3 (<5 μm) is thus smaller than the size of typical mammalian cells, indicating that IP 3 should better be considered as a local rather than a global cellular messenger.« less

  17. Hindered cytoplasmic diffusion of inositol trisphosphate restricts its cellular range of action

    DOE PAGES

    Dickinson, G. D.; Ellefsen, K. L.; Dawson, S. P.; ...

    2016-11-08

    The range of action of intracellular messengers is determined by their rates of diffusion and degradation. Previous measurements in oocyte cytoplasmic extracts indicated that the Ca 2+-liberating second messenger inositol trisphosphate (IP 3) diffuses with a coefficient (~280 μm 2 s -1) similar to that in water, corresponding to a range of action of ~25 μm. Consequently, IP 3 is generally considered a “global” cellular messenger. We also reexamined this issue by measuring local IP 3-evoked Ca 2+ puffs to monitor IP 3 diffusing from spot photorelease in neuroblastoma cells. Fitting these data by numerical simulations yielded a diffusion coefficientmore » (≤10 μm 2 s -1) about 30-fold slower than that previously reported. Here, we propose that diffusion of IP 3 in mammalian cells is hindered by binding to immobile, functionally inactive receptors that were diluted in oocyte extracts. The predicted range of action of IP 3 (<5 μm) is thus smaller than the size of typical mammalian cells, indicating that IP 3 should better be considered as a local rather than a global cellular messenger.« less

  18. Microscale frictional strains determine chondrocyte fate in loaded cartilage.

    PubMed

    Bonnevie, Edward D; Delco, Michelle L; Bartell, Lena R; Jasty, Naveen; Cohen, Itai; Fortier, Lisa A; Bonassar, Lawrence J

    2018-06-06

    Mounting evidence suggests that altered lubricant levels within synovial fluid have acute biological consequences on chondrocyte homeostasis. While these responses have been connected to increased friction, the mechanisms behind this response remain unknown. Here, we combine a frictional bioreactor with confocal elastography and image-based cellular assays to establish the link between cartilage friction, microscale shear strain, and acute, adverse cellular responses. Our incorporation of cell-scale strain measurements reveals that elevated friction generates high shear strains localized near the tissue surface, and that these elevated strains are closely associated with mitochondrial dysfunction, apoptosis, and cell death. Collectively, our data establish two pathways by which chondrocytes negatively respond to friction: an immediate necrotic response and a longer term pathway involving mitochondrial dysfunction and apoptosis. Specifically, in the surface region, where shear strains can exceed 0.07, cells are predisposed to acute death; however, below this surface region, cells exhibit a pathway consistent with apoptosis in a manner predicted by local shear strains. These data reveal a mechanism through which cellular damage in cartilage arises from compromised lubrication and show that in addition to boundary lubricants, there are opportunities upstream of apoptosis to preserve chondrocyte health in arthritis therapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Mitochondrial poly(ADP-ribose) polymerase: The Wizard of Oz at work.

    PubMed

    Brunyanszki, Attila; Szczesny, Bartosz; Virág, László; Szabo, Csaba

    2016-11-01

    Among multiple members of the poly(ADP-ribose) polymerase (PARP) family, PARP1 accounts for the majority of PARP activity in mammalian cells. Although PARP1 is predominantly localized to the nucleus, and its nuclear regulatory roles are most commonly studied and are the best characterized, several lines of data demonstrate that PARP1 is also present in the mitochondria, and suggest that mitochondrial PARP (mtPARP) plays an important role in the regulation of various cellular functions in health and disease. The goal of the current article is to review the experimental evidence for the mitochondrial localization of PARP1 and its intra-mitochondrial functions, with focus on cellular bioenergetics, mitochondrial DNA repair and mitochondrial dysfunction. In addition, we also propose a working model for the interaction of mitochondrial and nuclear PARP during oxidant-induced cell death. MtPARP is similar to the Wizard of Oz in the sense that it is enigmatic, it has been elusive for a long time and it remains difficult to be interrogated. mtPARP - at least in some cell types - works incessantly "behind the curtains" as an orchestrator of many important cellular functions. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Magnetic domain wall tweezers: a new tool for mechanobiology studies on individual target cells.

    PubMed

    Monticelli, M; Conca, D V; Albisetti, E; Torti, A; Sharma, P P; Kidiyoor, G; Barozzi, S; Parazzoli, D; Ciarletta, P; Lupi, M; Petti, D; Bertacco, R

    2016-08-07

    In vitro tests are of fundamental importance for investigating cell mechanisms in response to mechanical stimuli or the impact of the genotype on cell mechanical properties. In particular, the application of controlled forces to activate specific bio-pathways and investigate their effects, mimicking the role of the cellular environment, is becoming a prominent approach in the emerging field of mechanobiology. Here, we present an on-chip device based on magnetic domain wall manipulators, which allows the application of finely controlled and localized forces on target living cells. In particular, we demonstrate the application of a magnetic force in the order of hundreds of pN on the membrane of HeLa cells cultured on-chip, via manipulation of 1 μm superparamagnetic beads. Such a mechanical stimulus produces a sizable local indentation of the cellular membrane of about 2 μm. Upon evaluation of the beads' position within the magnetic field originated by the domain wall, the force applied during the experiments is accurately quantified via micromagnetic simulations. The obtained value is in good agreement with that calculated by the application of an elastic model to the cellular membrane.

  1. Structure of the Shroom-Rho Kinase Complex Reveals a Binding Interface with Monomeric Shroom That Regulates Cell Morphology and Stimulates Kinase Activity

    DOE PAGES

    Zalewski, Jenna K.; Mo, Joshua H.; Heber, Simone; ...

    2016-10-10

    Shroom-mediated remodeling of the actomyosin cytoskeleton is a critical driver of cellular shape and tissue morphology that underlies the development of many tissues including the neural tube, eye, intestines, and vasculature. Shroom uses a conserved SD2 domain to direct the subcellular localization of Rho-associated kinase (Rock), which in turn drives changes in the cytoskeleton and cellular morphology through its ability to phosphorylate and activate non-muscle myosin II. Here in this paper, we present the structure of the human Shroom-Rock binding module, revealing an unexpected stoichiometry for Shroom in which two Shroom SD2 domains bind independent surfaces on Rock. Mutation ofmore » interfacial residues impaired Shroom-Rock binding in vitro and resulted in altered remodeling of the cytoskeleton and loss of Shroom-mediated changes in cellular morphology. In addition, we provide the first direct evidence that Shroom can function as a Rock activator. These data provide molecular insight into the Shroom-Rock interface and demonstrate that Shroom directly participates in regulating cytoskeletal dynamics, adding to its known role in Rock localization.« less

  2. Stochastic Nature in Cellular Processes

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Liu, Sheng-Jun; Wang, Qi; Yan, Shi-Wei; Geng, Yi-Zhao; Sakata, Fumihiko; Gao, Xing-Fa

    2011-11-01

    The importance of stochasticity in cellular processes is increasingly recognized in both theoretical and experimental studies. General features of stochasticity in gene regulation and expression are briefly reviewed in this article, which include the main experimental phenomena, classification, quantization and regulation of noises. The correlation and transmission of noise in cascade networks are analyzed further and the stochastic simulation methods that can capture effects of intrinsic and extrinsic noise are described.

  3. Analysis of the Cellular Stress Response During Ebola Virus Infection by Immunofluorescence.

    PubMed

    Nelson, Emily V; Schmidt, Kristina M

    2017-01-01

    In this chapter, the use of immunofluorescence analysis as a tool to examine stress granule (SG) formation in Ebola virus (EBOV)-infected cells is described. The following protocol focuses on the process of inducing and analyzing the cellular stress response, including treatment of cells with inducers and inhibitors of the SG formation, and also describes EBOV infection, DNA transfection, and the usage of different cell lines.

  4. Histogram analysis parameters of apparent diffusion coefficient reflect tumor cellularity and proliferation activity in head and neck squamous cell carcinoma

    PubMed Central

    Winter, Karsten; Richter, Cindy; Hoehn, Anna-Kathrin

    2018-01-01

    Our purpose was to analyze associations between apparent diffusion coefficient (ADC) histogram analysis parameters and histopathologicalfeatures in head and neck squamous cell carcinoma (HNSCC). The study involved 32 patients with primary HNSCC. For every tumor, the following histogram analysis parameters were calculated: ADCmean, ADCmax, ADCmin, ADCmedian, ADCmode, P10, P25, P75, P90, kurtosis, skewness, and entropy. Furthermore, proliferation index KI 67, cell count, total and average nucleic areas were estimated. Spearman's correlation coefficient (p) was used to analyze associations between investigated parameters. In overall sample, all ADC values showed moderate inverse correlations with KI 67. All ADC values except ADCmax correlated inversely with tumor cellularity. Slightly correlations were identified between total/average nucleic area and ADCmean, ADCmin, ADCmedian, and P25. In G1/2 tumors, only ADCmode correlated well with Ki67. No statistically significant correlations between ADC parameters and cellularity were found. In G3 tumors, Ki 67 correlated with all ADC parameters except ADCmode. Cell count correlated well with all ADC parameters except ADCmax. Total nucleic area correlated inversely with ADCmean, ADCmin, ADCmedian, P25, and P90. ADC histogram parameters reflect proliferation potential and cellularity in HNSCC. The associations between histopathology and imaging depend on tumor grading. PMID:29805759

  5. The snoRNA domain of vertebrate telomerase RNA functions to localize the RNA within the nucleus.

    PubMed Central

    Lukowiak, A A; Narayanan, A; Li, Z H; Terns, R M; Terns, M P

    2001-01-01

    Telomerase RNA is an essential component of the ribonucleoprotein enzyme involved in telomere length maintenance, a process implicated in cellular senescence and cancer. Vertebrate telomerase RNAs contain a box H/ACA snoRNA motif that is not required for telomerase activity in vitro but is essential in vivo. Using the Xenopus oocyte system, we have found that the box H/ACA motif functions in the subcellular localization of telomerase RNA. We have characterized the transport and biogenesis of telomerase RNA by injecting labeled wild-type and variant RNAs into Xenopus oocytes and assaying nucleocytoplasmic distribution, intranuclear localization, modification, and protein binding. Although yeast telomerase RNA shares characteristics of spliceosomal snRNAs, we show that human telomerase RNA is not associated with Sm proteins or efficiently imported into the nucleus. In contrast, the transport properties of vertebrate telomerase RNA resemble those of snoRNAs; telomerase RNA is retained in the nucleus and targeted to nucleoli. Furthermore, both nuclear retention and nucleolar localization depend on the box H/ACA motif. Our findings suggest that the H/ACA motif confers functional localization of vertebrate telomerase RNAs to the nucleus, the compartment where telomeres are synthesized. We have also found that telomerase RNA localizes to Cajal bodies, intranuclear structures where it is thought that assembly of various cellular RNPs takes place. Our results identify the Cajal body as a potential site of telomerase RNP biogenesis. PMID:11780638

  6. Dynamic and nucleolin-dependent localization of human cytomegalovirus UL84 to the periphery of viral replication compartments and nucleoli.

    PubMed

    Bender, Brian J; Coen, Donald M; Strang, Blair L

    2014-10-01

    Protein-protein and protein-nucleic acid interactions within subcellular compartments are required for viral genome replication. To understand the localization of the human cytomegalovirus viral replication factor UL84 relative to other proteins involved in viral DNA synthesis and to replicating viral DNA in infected cells, we created a recombinant virus expressing a FLAG-tagged version of UL84 (UL84FLAG) and used this virus in immunofluorescence assays. UL84FLAG localization differed at early and late times of infection, transitioning from diffuse distribution throughout the nucleus to exclusion from the interior of replication compartments, with some concentration at the periphery of replication compartments with newly labeled DNA and the viral DNA polymerase subunit UL44. Early in infection, UL84FLAG colocalized with the viral single-stranded DNA binding protein UL57, but colocalization became less prominent as infection progressed. A portion of UL84FLAG also colocalized with the host nucleolar protein nucleolin at the peripheries of both replication compartments and nucleoli. Small interfering RNA (siRNA)-mediated knockdown of nucleolin resulted in a dramatic elimination of UL84FLAG from replication compartments and other parts of the nucleus and its accumulation in the cytoplasm. Reciprocal coimmunoprecipitation of viral proteins from infected cell lysates revealed association of UL84, UL44, and nucleolin. These results indicate that UL84 localization during infection is dynamic, which is likely relevant to its functions, and suggest that its nuclear and subnuclear localization is highly dependent on direct or indirect interactions with nucleolin. Importance: The protein-protein interactions among viral and cellular proteins required for replication of the human cytomegalovirus (HCMV) DNA genome are poorly understood. We sought to understand how an enigmatic HCMV protein critical for virus replication, UL84, localizes relative to other viral and cellular proteins required for HCMV genome replication and replicating viral DNA. We found that UL84 localizes with viral proteins, viral DNA, and the cellular nucleolar protein nucleolin in the subnuclear replication compartments in which viral DNA replication occurs. Unexpectedly, we also found localization of UL84 with nucleolin in nucleoli and showed that the presence of nucleolin is involved in localization of UL84 to the nucleus. These results add to previous work showing the importance of nucleolin in replication compartment architecture and viral DNA synthesis and are relevant to understanding UL84 function. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Understanding the tissue effects of tribo-corrosion: uptake, distribution, and speciation of cobalt and chromium in human bone cells.

    PubMed

    Shah, Karan M; Quinn, Paul D; Gartland, Alison; Wilkinson, J Mark

    2015-01-01

    Cobalt and chromium species are released in the local tissues as a result of tribo-corrosion, and affect bone cell survival and function. However we have little understanding of the mechanisms of cellular entry, intracellular distribution, and speciation of the metals that result in impaired bone health. Here we used synchrotron based X-ray fluorescence (XRF), X-ray absorption spectroscopy (XAS), and fluorescent-probing approaches of candidate receptors P2X7R and divalent metal transporter-1 (DMT-1), to better understand the entry, intra-cellular distribution and speciation of cobalt (Co) and chromium (Cr) in human osteoblasts and primary human osteoclasts. We found that both Co and Cr were most highly localized at nuclear and perinuclear sites in osteoblasts, suggesting uptake through cell membrane transporters, and supported by a finding that P2X7 receptor blockade reduced cellular entry of Co. In contrast, metal species were present at discrete sites corresponding to the basolateral membrane in osteoclasts, suggesting cell entry by endocytosis and trafficking through a functional secretory domain. An intracellular reduction of Cr6+ to Cr3+ was the only redox change observed in cells treated with Co2+, Cr3+, and Cr6+. Our data suggest that the cellular uptake and processing of Co and Cr differs between osteoblasts and osteoclasts. © 2014 The Authors. Journal of Orthopaedic Research published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society.

  8. Vascularization and Cellular Isolation Potential of a Novel Electrospun Cell Delivery Vehicle

    PubMed Central

    Krishnan, Laxminarayanan; Touroo, Jeremy; Reed, Robert; Boland, Eugene; Hoying, James B.; Williams, Stuart K.

    2014-01-01

    A clinical need exists for a cell delivery device that supports long term cell viability, cell retention within the device and retrieval of delivered cells if necessary. Previously, cell isolation devices have been based on hollow fiber membranes, porous polymer scaffolds, alginate systems, or micro-machined membranes. We present the development and characterization of a novel dual porosity electrospun membrane based device, which supports cellular infiltration and vascularization of its outer porous layer and maintains cellular isolation within a lumen bounded by an inner low porosity layer. Electrospinning conditions were initially established to support electrospun fiber deposition onto nonconductive silicone surfaces. With these parameters established, devices for in vivo evaluations were produced using nylon as a nonconductive scaffold for deposition of dual porosity electrospun fibers. The outer porous layer supported the development of a penetrating microcirculation and the membrane supported the transfer of insulin from encapsulated sustained release pellets for four weeks. Viable cells implanted within the device could be identified after two weeks of implantation. Through the successful demonstration of survival and cellular isolation of human epithelial cells within the implanted devices and the ability to use the device to deliver insulin, we have established the utility of this device toward localized cell transplantation. The Cell Delivery Device establishes a platform to test the feasibility of approaches to cell dose control and cell localization at the site of implantation in the clinical use of modified autologous or allogeneic cells. PMID:23913805

  9. Studying of cellular interaction of hairpin-like peptide EcAMP1 from barnyard grass (Echinochloa crusgalli L.) seeds with plant pathogenic fungus Fusarium solani using microscopy techniques.

    PubMed

    Vasilchenko, Alexey S; Yuryev, Mikhail; Ryazantsev, Dmitry Yu; Zavriev, Sergey K; Feofanov, Alexey V; Grishin, Eugene V; Rogozhin, Eugene A

    2016-11-01

    An interaction of recombinant hairpin-like cationic peptide EcAMP1 with conidia of plant pathogenic fungus Fusarium solani at the cellular level was studied by a combination of microscopic methods. EcAMP1 is from barnyard grass (Echinochloa crusgalli L.), and obtained by heterologous expression in Escherichia coli system. As a result, a direct relationship between hyphal growth inhibition and increasing active peptide concentration, time of incubation and fungal physiological condition has been determined. Dynamics of accumulation and redistribution of the peptide studied on fungal cellular cover and inside the conidia cells has been shown. The dynamics are dependent on time of coupling, as well as, a dissimilarity of EcAMP1 binding with cover of fungal conidia and its stepwise accumulation and diffuse localization in the cytoplasm. Correlation between structural disruption of fungal conidia and the presence of morphological changes has also been found. The correlation was found under the influence of peptide high concentrations at concentrations above 32 μM. The results indicate the presence of a binding of EcAMP1 with the surface of fungal conidia, thus, demonstrating a main specificity for its antifungal action at the cellular level. These results, however, cannot exclude the existence of attendant EcAMP1 action based on its intracellular localization on some specific targets. SCANNING 38:591-598, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  10. Postischemic revascularization: from cellular and molecular mechanisms to clinical applications.

    PubMed

    Silvestre, Jean-Sébastien; Smadja, David M; Lévy, Bernard I

    2013-10-01

    After the onset of ischemia, cardiac or skeletal muscle undergoes a continuum of molecular, cellular, and extracellular responses that determine the function and the remodeling of the ischemic tissue. Hypoxia-related pathways, immunoinflammatory balance, circulating or local vascular progenitor cells, as well as changes in hemodynamical forces within vascular wall trigger all the processes regulating vascular homeostasis, including vasculogenesis, angiogenesis, arteriogenesis, and collateral growth, which act in concert to establish a functional vascular network in ischemic zones. In patients with ischemic diseases, most of the cellular (mainly those involving bone marrow-derived cells and local stem/progenitor cells) and molecular mechanisms involved in the activation of vessel growth and vascular remodeling are markedly impaired by the deleterious microenvironment characterized by fibrosis, inflammation, hypoperfusion, and inhibition of endogenous angiogenic and regenerative programs. Furthermore, cardiovascular risk factors, including diabetes, hypercholesterolemia, hypertension, diabetes, and aging, constitute a deleterious macroenvironment that participates to the abrogation of postischemic revascularization and tissue regeneration observed in these patient populations. Thus stimulation of vessel growth and/or remodeling has emerged as a new therapeutic option in patients with ischemic diseases. Many strategies of therapeutic revascularization, based on the administration of growth factors or stem/progenitor cells from diverse sources, have been proposed and are currently tested in patients with peripheral arterial disease or cardiac diseases. This review provides an overview from our current knowledge regarding molecular and cellular mechanisms involved in postischemic revascularization, as well as advances in the clinical application of such strategies of therapeutic revascularization.

  11. Degradable gene delivery systems based on Pluronics-modified low-molecular-weight polyethylenimine: preparation, characterization, intracellular trafficking, and cellular distribution

    PubMed Central

    Fan, Wei; Wu, Xin; Ding, Baoyue; Gao, Jing; Cai, Zhen; Zhang, Wei; Yin, Dongfeng; Wang, Xiang; Zhu, Quangang; Liu, Jiyong; Ding, Xueying; Gao, Shen

    2012-01-01

    Background Cationic copolymers consisting of polycations linked to nonionic amphiphilic block polymers have been evaluated as nonviral gene delivery systems, and a large number of different polymers and copolymers of linear, branched, and dendrimeric architectures have been tested in terms of their suitability and efficacy for in vitro and in vivo transfection. However, the discovery of new potent materials still largely relies on empiric approaches rather than a rational design. The authors investigated the relationship between the polymers’ structures and their biological performance, including DNA compaction, toxicity, transfection efficiency, and the effect of cellular uptake. Methods This article reports the synthesis and characterization of a series of cationic copolymers obtained by grafting polyethyleneimine with nonionic amphiphilic surfactant polyether-Pluronic® consisting of hydrophilic ethylene oxide and hydrophobic propylene oxide blocks. Transgene expression, cytotoxicity, localization of plasmids, and cellular uptake of these copolymers were evaluated following in vitro transfection of HeLa cell lines with various individual components of the copolymers. Results Pluronics can exhibit biological activity including effects on enhancing DNA cellular uptake, nuclear translocation, and gene expression. The Pluronics with a higher hydrophilic-lipophilic balance value lead to homogeneous distribution in the cytoplasm; those with a lower hydrophilic-lipophilic balance value prefer to localize in the nucleus. Conclusion This Pluronic-polyethyleneimine system may be worth exploring as components in the cationic copolymers as the DNA or small interfering RNA/microRNA delivery system in the near future. PMID:22403492

  12. Nucleophosmin/B23 regulates ubiquitin dynamics in nucleoli by recruiting deubiquitylating enzyme USP36.

    PubMed

    Endo, Akinori; Kitamura, Naomi; Komada, Masayuki

    2009-10-09

    The nucleolus is a subnuclear compartment with multiple cellular functions, including ribosome biogenesis. USP36 is a deubiquitylating enzyme that localizes to nucleoli and plays an essential role in regulating the structure and function of the organelle. However, how the localization of USP36 is regulated remains unknown. Here, we identified a short stretch of basic amino acids (RGKEKKIKKFKREKRR) that resides in the C-terminal region of USP36 and serves as a nucleolar localization signal for the protein. We found that this motif interacts with a central acidic region of nucleophosmin/B23, a major nucleolar protein involved in various nucleolar functions. Knockdown of nucleophosmin/B23 resulted in a significant reduction in the amount of USP36 in nucleoli, without affecting the cellular USP36 level. This was associated with elevated ubiquitylation levels of fibrillarin, a USP36 substrate protein in nucleoli. We conclude that nucleophosmin/B23 recruits USP36 to nucleoli, thereby serving as a platform for the regulation of nucleolar protein functions through ubiquitylation/deubiquitylation.

  13. Ectromelia Virus BTB/kelch Proteins, EVM150 and EVM167, Interact with Cullin-3 Based Ubiquitin Ligases

    PubMed Central

    Wilton, Brianne A.; Campbell, Stephanie; Van Buuren, Nicholas; Garneau, Robyn; Furukawa, Manabu; Xiong, Yue; Barry., Michele

    2008-01-01

    Cellular proteins containing BTB and kelch domains have been shown to function as adapters for the recruitment of substrates to cullin-3-based ubiquitin ligases. Poxviruses are the only family of viruses known to encode multiple BTB/kelch proteins, suggesting that poxviruses may modulate the ubiquitin pathway through interaction with cullin-3. Ectromelia virus encodes four BTB/kelch proteins and one BTB-only protein. Here we demonstrate that two of the ectromelia virus encoded BTB/kelch proteins, EVM150 and EVM167, interacted with cullin-3. Similar to cellular BTB proteins, the BTB domain of EVM150 and EVM167 was necessary and sufficient for cullin-3 interaction. During infection, EVM150 and EVM167 localized to discrete cytoplasmic regions, which co-localized with cullin-3. Furthermore, EVM150 and EVM167 co-localized and interacted with conjugated ubiquitin, as demonstrated by confocal microscopy and co-immunoprecipitation. Our findings suggest that the ectromelia virus encoded BTB/kelch proteins, EVM150 and EVM167, interact with cullin-3 potentially functioning to recruit unidentified substrates for ubiquitination. PMID:18221766

  14. Characterization of a novel chicken muscle disorder through differential gene expression and pathway analysis using RNA-sequencing.

    PubMed

    Mutryn, Marie F; Brannick, Erin M; Fu, Weixuan; Lee, William R; Abasht, Behnam

    2015-05-21

    Improvements in poultry production within the past 50 years have led to increased muscle yield and growth rate, which may be contributing to an increased rate and development of new muscle disorders in chickens. Previously reported muscle disorders and conditions are generally associated with poor meat quality traits and have a significant negative economic impact on the poultry industry. Recently, a novel myopathy phenotype has emerged which is characterized by palpably "hard" or tough breast muscle. The objective of this study is to identify the underlying biological mechanisms that contribute to this emerging muscle disorder colloquially referred to as "Wooden Breast", through the use of RNA-sequencing technology. We constructed cDNA libraries from five affected and six unaffected breast muscle samples from a line of commercial broiler chickens. After paired-end sequencing of samples using the Illumina Hiseq platform, we used Tophat to align the resulting sequence reads to the chicken reference genome and then used Cufflinks to find significant changes in gene transcript expression between each group. By comparing our gene list to previously published histology findings on this disorder and using Ingenuity Pathways Analysis (IPA®), we aim to develop a characteristic gene expression profile for this novel disorder through analyzing genes, gene families, and predicted biological pathways. Over 1500 genes were differentially expressed between affected and unaffected birds. There was an average of approximately 98 million reads per sample, across all samples. Results from the IPA analysis suggested "Diseases and Disorders" such as connective tissue disorders, "Molecular and Cellular Functions" such as cellular assembly and organization, cellular function and maintenance, and cellular movement, "Physiological System Development and Function" such as tissue development, and embryonic development, and "Top Canonical Pathways" such as, coagulation system, axonal guidance signaling, and acute phase response signaling, are associated with the Wooden Breast disease. There is convincing evidence by RNA-seq analysis to support localized hypoxia, oxidative stress, increased intracellular calcium, as well as the possible presence of muscle fiber-type switching, as key features of Wooden Breast Disease, which are supported by reported microscopic lesions of the disease.

  15. Live-Cell Imaging of Mitochondria and the Actin Cytoskeleton in Budding Yeast.

    PubMed

    Higuchi-Sanabria, Ryo; Swayne, Theresa C; Boldogh, Istvan R; Pon, Liza A

    2016-01-01

    Maintenance and regulation of proper mitochondrial dynamics and functions are necessary for cellular homeostasis. Numerous diseases, including neurodegeneration and muscle myopathies, and overall cellular aging are marked by declining mitochondrial function and subsequent loss of multiple other cellular functions. For these reasons, optimized protocols are needed for visualization and quantification of mitochondria and their function and fitness. In budding yeast, mitochondria are intimately associated with the actin cytoskeleton and utilize actin for their movement and inheritance. This chapter describes optimal approaches for labeling mitochondria and the actin cytoskeleton in living budding yeast cells, for imaging the labeled cells, and for analyzing the resulting images.

  16. Cellular instability in rapid directional solidification - Bifurcation theory

    NASA Technical Reports Server (NTRS)

    Braun, R. J.; Davis, S. H.

    1992-01-01

    Merchant and Davis performed a linear stability analysis on a model for the directional solidification of a dilute binary alloy valid for all speeds. The analysis revealed that nonequilibrium segregation effects modify the Mullins and Sekerka cellular mode, whereas attachment kinetics has no effect on these cells. In this paper, the nonlinear stability of the steady cellular mode is analyzed. A Landau equation is obtained that determines the amplitude of the cells. The Landau coefficient here depends on both nonequilibrium segregation effects and attachment kinetics. This equation gives the ranges of parameters for subcritical bifurcation (jump transition) or supercritical bifurcation (smooth transition) to cells.

  17. Cyclin-dependent Kinases Phosphorylate the Cytomegalovirus RNA Export Protein pUL69 and Modulate Its Nuclear Localization and Activity*S⃞

    PubMed Central

    Rechter, Sabine; Scott, Gillian M.; Eickhoff, Jan; Zielke, Katrin; Auerochs, Sabrina; Müller, Regina; Stamminger, Thomas; Rawlinson, William D.; Marschall, Manfred

    2009-01-01

    Replication of human cytomegalovirus (HCMV) is subject to regulation by cellular protein kinases. Recently, we and others reported that inhibition of cyclin-dependent protein kinases (CDKs) or the viral CDK ortholog pUL97 can induce intranuclear speckled aggregation of the viral mRNA export factor, pUL69. Here we provide the first evidence for a direct regulatory role of CDKs on pUL69 functionality. Although replication of all HCMV strains was dependent on CDK activity, we found strain-specific differences in the amount of CDK inhibitor-induced pUL69 aggregate formation. In all cases analyzed, the inhibitor-induced pUL69 aggregates were clearly localized within viral replication centers but not subnuclear splicing, pore complex, or aggresome structures. The CDK9 and cyclin T1 proteins colocalized with these pUL69 aggregates, whereas other CDKs behaved differently. Phosphorylation analyses in vivo and in vitro demonstrated pUL69 was strongly phosphorylated in HCMV-infected fibroblasts and that CDKs represent a novel class of pUL69-phosphorylating kinases. Moreover, the analysis of CDK inhibitors in a pUL69-dependent nuclear mRNA export assay provided evidence for functional impairment of pUL69 under suppression of CDK activity. Thus, our data underline the crucial importance of CDKs for HCMV replication, and indicate a direct impact of CDK9-cyclin T1 on the nuclear localization and activity of the viral regulator pUL69. PMID:19179338

  18. Forearm ischemia decreases endothelial colony-forming cell angiogenic potential.

    PubMed

    Mauge, Laetitia; Sabatier, Florence; Boutouyrie, Pierre; D'Audigier, Clément; Peyrard, Séverine; Bozec, Erwan; Blanchard, Anne; Azizi, Michel; Dizier, Blandine; Dignat-George, Françoise; Gaussem, Pascale; Smadja, David M

    2014-02-01

    Circulating endothelial progenitor cells and especially endothelial colony-forming cells (ECFCs) are promising candidate cells for endothelial regenerative medicine of ischemic diseases, but the conditions for an optimal collection from adult blood must be improved. On the basis of a recently reported vascular niche of ECFCs, we hypothesized that a local ischemia could trigger ECFC mobilization from the vascular wall into peripheral blood to optimize their collection for autologous implantation in critical leg ischemia. Because the target population with critical leg ischemia is composed of elderly patients in whom a vascular impairment has been documented, we also analyzed the impact of aging on ECFC mobilization and vascular integrity. After having defined optimized ECFC culture conditions, we studied the effect of forearm ischemia on ECFC numbers and functions in 26 healthy volunteers (13 volunteers ages 20-30-years old versus 13 volunteers ages 60-70 years old). The results show that forearm ischemia induced an efficient local ischemia and a normal endothelial response but did not mobilize ECFCs regardless of the age group. Moreover, we report an alteration of angiogenic properties of ECFCs obtained after forearm ischemia, in vitro as well as in vivo in a hindlimb ischemia murine model. This impaired ECFC angiogenic potential was not associated with a quantitative modification of the circulating endothelial compartment. The procedure of local ischemia, although reulting in a preserved endothelial reactivity, did not mobilize ECFCs but altered their angiogenic potential. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  19. A new level of regulation in gluconeogenesis: metabolic state modulates the intracellular localization of aldolase B and its interaction with liver fructose-1,6-bisphosphatase.

    PubMed

    Droppelmann, Cristian A; Sáez, Doris E; Asenjo, Joel L; Yáñez, Alejandro J; García-Rocha, Mar; Concha, Ilona I; Grez, Manuel; Guinovart, Joan J; Slebe, Juan C

    2015-12-01

    Understanding how glucose metabolism is finely regulated at molecular and cellular levels in the liver is critical for knowing its relationship to related pathologies, such as diabetes. In order to gain insight into the regulation of glucose metabolism, we studied the liver-expressed isoforms aldolase B and fructose-1,6-bisphosphatase-1 (FBPase-1), key enzymes in gluconeogenesis, analysing their cellular localization in hepatocytes under different metabolic conditions and their protein-protein interaction in vitro and in vivo. We observed that glucose, insulin, glucagon and adrenaline differentially modulate the intracellular distribution of aldolase B and FBPase-1. Interestingly, the in vitro protein-protein interaction analysis between aldolase B and FBPase-1 showed a specific and regulable interaction between them, whereas aldolase A (muscle isozyme) and FBPase-1 showed no interaction. The affinity of the aldolase B and FBPase-1 complex was modulated by intermediate metabolites, but only in the presence of K(+). We observed a decreased association constant in the presence of adenosine monophosphate, fructose-2,6-bisphosphate, fructose-6-phosphate and inhibitory concentrations of fructose-1,6-bisphosphate. Conversely, the association constant of the complex increased in the presence of dihydroxyacetone phosphate (DHAP) and non-inhibitory concentrations of fructose-1,6-bisphosphate. Notably, in vivo FRET studies confirmed the interaction between aldolase B and FBPase-1. Also, the co-expression of aldolase B and FBPase-1 in cultured cells suggested that FBPase-1 guides the cellular localization of aldolase B. Our results provide further evidence that metabolic conditions modulate aldolase B and FBPase-1 activity at the cellular level through the regulation of their interaction, suggesting that their association confers a catalytic advantage for both enzymes. © 2015 Authors; published by Portland Press Limited.

  20. The Malnutrition-Related Increase in Early Visceralization of Leishmania donovani Is Associated with a Reduced Number of Lymph Node Phagocytes and Altered Conduit System Flow

    PubMed Central

    Ibrahim, Marwa K.; Barnes, Jeffrey L.; Anstead, Gregory M.; Jimenez, Fabio; Travi, Bruno L.; Peniche, Alex G.; Osorio, E. Yaneth; Ahuja, Seema S.; Melby, Peter C.

    2013-01-01

    In a murine model of moderate childhood malnutrition we found that polynutrient deficiency led to a 4–5-fold increase in early visceralization of L. donovani (3 days post-infection) following cutaneous infection and a 16-fold decrease in lymph node barrier function (p<0.04 for all). To begin to understand the mechanistic basis for this malnutrition-related parasite dissemination we analyzed the cellularity, architecture, and function of the skin-draining lymph node. There was no difference in the localization of multiple cell populations in the lymph node of polynutrient deficient (PND) mice, but there was reduced cellularity with fewer CD11c+dendritic cells (DCs), fibroblastic reticular cells (FRCs), MOMA-2+ macrophages, and CD169+ subcapsular sinus macrophage (p<0.05 for all) compared to the well-nourished (WN) mice. The parasites were equally co-localized with DCs associated with the lymph node conduit network in the WN and PND mice, and were found in the high endothelial venule into which the conduits drain. When a fluorescent low molecular weight (10 kD) dextran was delivered in the skin, there was greater efflux of the marker from the lymph node conduit system to the spleens of PND mice (p<0.04), indicating that flow through the conduit system was altered. There was no evidence of disruption of the conduit or subcapsular sinus architecture, indicating that the movement of parasites into the subcortical conduit region was due to an active process and not from passive movement through a leaking barrier. These results indicate that the impaired capacity of the lymph node to act as a barrier to dissemination of L. donovani infection is associated with a reduced number of lymph node phagocytes, which most likely leads to reduced capture of parasites as they transit through the sinuses and conduit system. PMID:23967356

  1. The Akt signaling pathway is required for tissue maintenance and regeneration in planarians.

    PubMed

    Peiris, T Harshani; Ramirez, Daniel; Barghouth, Paul G; Oviedo, Néstor J

    2016-04-11

    Akt (PKB) is a serine threonine protein kinase downstream of the phosphoinositide 3-kinase (PI3K) pathway. In mammals, Akt is ubiquitously expressed and is associated with regulation of cellular proliferation, metabolism, cell growth and cell death. Akt has been widely studied for its central role in physiology and disease, in particular cancer where it has become an attractive pharmacological target. However, the mechanisms by which Akt signaling regulates stem cell behavior in the complexity of the whole body are poorly understood. Planarians are flatworms with large populations of stem cells capable of dividing to support adult tissue renewal and regeneration. The planarian ortholog Smed-Akt is molecularly conserved providing unique opportunities to analyze the function of Akt during cellular turnover and repair of adult tissues. Our findings abrogating Smed-Akt with RNA-interference in the planarian Schmidtea mediterranea led to a gradual decrease in stem cell (neoblasts) numbers. The reduced neoblast numbers largely affected the maintenance of adult tissues including the nervous and excretory systems and ciliated structures in the ventral epithelia, which impaired planarian locomotion. Downregulation of Smed-Akt function also resulted in an increase of cell death throughout the animal. However, in response to amputation, levels of cell death were decreased and failed to localize near the injury site. Interestingly, the neoblast mitotic response was increased around the amputation area but the regenerative blastema failed to form. We demonstrate Akt signaling is essential for organismal physiology and in late stages of the Akt phenotype the reduction in neoblast numbers may impair regeneration in planarians. Functional disruption of Smed-Akt alters the balance between cell proliferation and cell death leading to systemic impairment of adult tissue renewal. Our results also reveal novel roles for Akt signaling during regeneration, specifically for the timely localization of cell death near the injury site. Thus, Akt signaling regulates neoblast biology and mediates in the distribution of injury-mediated cell death during tissue repair in planarians.

  2. Correlating two-photon excited fluorescence imaging of breast cancer cellular redox state with seahorse flux analysis of normalized cellular oxygen consumption

    NASA Astrophysics Data System (ADS)

    Hou, Jue; Wright, Heather J.; Chan, Nicole; Tran, Richard; Razorenova, Olga V.; Potma, Eric O.; Tromberg, Bruce J.

    2016-06-01

    Two-photon excited fluorescence (TPEF) imaging of the cellular cofactors nicotinamide adenine dinucleotide and oxidized flavin adenine dinucleotide is widely used to measure cellular metabolism, both in normal and pathological cells and tissues. When dual-wavelength excitation is used, ratiometric TPEF imaging of the intrinsic cofactor fluorescence provides a metabolic index of cells-the "optical redox ratio" (ORR). With increased interest in understanding and controlling cellular metabolism in cancer, there is a need to evaluate the performance of ORR in malignant cells. We compare TPEF metabolic imaging with seahorse flux analysis of cellular oxygen consumption in two different breast cancer cell lines (MCF-7 and MDA-MB-231). We monitor metabolic index in living cells under both normal culture conditions and, for MCF-7, in response to cell respiration inhibitors and uncouplers. We observe a significant correlation between the TPEF-derived ORR and the flux analyzer measurements (R=0.7901, p<0.001). Our results confirm that the ORR is a valid dynamic index of cell metabolism under a range of oxygen consumption conditions relevant for cancer imaging.

  3. The effects of perception of risk and importance of answering and initiating a cellular phone call while driving.

    PubMed

    Nelson, Erik; Atchley, Paul; Little, Todd D

    2009-05-01

    Recent data suggest that laws banning cellular phone use while driving may not change use patterns, especially among young drivers with high rates of mobile phone adoption. We examined reasons younger drivers choose or do not choose to talk on a phone while driving among a sample of young drivers (n=276) with very high ownership of cellular phones (over 99%) and a very high use of cellular phones while driving (100% for those that were primary operators of an automobile). Respondents were surveyed for patterns of use, types of call, perceived risk, and motivations for use. The data were analyzed using structural equation modeling (SEM) to explore the relationships between perceived risk of the behavior, emotionality of the call, perceived importance of the call, and how often calls were initiated versus answered. The model suggests that even though people believe that talking on a cellular phone while driving is dangerous, they will tend to initiate a cellular conversation if they believe that the call is important.

  4. Aberrant Expression of the Cell Polarity Regulator aPKCλ/ι is Associated With Disease Progression in Cervical Intraepithelial Neoplasia (CIN): A Possible Marker for Predicting CIN Prognosis.

    PubMed

    Mizushima, Taichi; Asai-Sato, Mikiko; Akimoto, Kazunori; Nagashima, Yoji; Taguri, Masataka; Sasaki, Kazunori; Nakaya, Masa-aki; Asano, Ryoko; Tokinaga, Aya; Kiyono, Tohru; Hirahara, Fumiki; Ohno, Shigeo; Miyagi, Etsuko

    2016-03-01

    Atypical protein kinase C λ/ι (aPKCλ/ι) is a regulator of epithelial cellular polarity. It is also overexpressed in several cancers and functions in cell proliferation and invasion. Therefore, we hypothesized that aPKCλ/ι may be involved in development and progression of cervical intraepithelial neoplasia (CIN), the precancerous disease of cervical cancer induced by human papillomavirus. To do this, we investigated the relationship between aPKCλ/ι expression and CIN. aPKCλ/ι expression level and subcellular localization were assessed in 192 CIN biopsy samples and 13 normal epithelial samples using immunohistochemistry. aPKCλ/ι overexpression (normal epithelium, 7.7%; CIN1, 41.7%; CIN2/3, 76.4%) and aPKCλ/ι nuclear localization (normal epithelium, 0.0%; CIN1, 36.9%; CIN2/3, 78.7%) were higher in CIN samples than normal samples (P<0.05), suggesting that CIN grade is related to aPKCλ/ι overexpression and nuclear localization. Then, 140 CIN cases were retrospectively analyzed for 4-yr cumulative disease progression and regression rates using the Cox proportional hazards model. CIN1 cases with aPKCλ/ι overexpression or aPKCλ/ι nuclear localization had a higher progression rate than CIN1 cases with normal aPKCλ/ι expression levels or cytoplasmic localization (62.5% vs. 9.7% and 63.1% vs. 9.4%, respectively; P<0.001). Multivariate analysis indicated that human papillomavirus types 16 and 18, aPKCλ/ι overexpression (hazard ratio=4.26; 95% confidence interval, 1.50-12.1; P=0.007), and aPKCλ/ι nuclear localization (hazard ratio=3.59; 95% confidence interval, 1.24-10.4; P=0.019) were independent risk factors for CIN1 progression. In conclusion, aPKCλ/ι could be useful for the therapeutic management of patients with CIN, particularly those with non-human papillomavirus 16/18 types.

  5. Evidence for a Role of FEN1 in Maintaining Mitochondrial DNA Integrity

    PubMed Central

    Kalifa, Lidza; Beutner, Gisela; Phadnis, Naina; Sheu, Shey-Shing; Sia, Elaine A.

    2009-01-01

    Although the nuclear processes responsible for genomic DNA replication and repair are well characterized, the pathways involved in mitochondrial DNA (mtDNA) replication and repair remain unclear. DNA repair has been identified as being particularly important within the mitochondrial compartment due to the organelle’s high propensity to accumulate oxidative DNA damage. It has been postulated that continual accumulation of mtDNA damage and subsequent mutagenesis may function in cellular aging. Mitochondrial base excision repair (mtBER) plays a major role in combating mtDNA oxidative damage; however, the proteins involved in mtBER have yet to be fully characterized. It has been established that during nuclear long-patch (LP) BER, FEN1 is responsible for cleavage of 5′ flap structures generated during DNA synthesis. Furthermore, removal of 5′ flaps has been observed in mitochondrial extracts of mammalian cell lines; yet, the mitochondrial localization of FEN1 has not been clearly demonstrated. In this study, we analyzed the effects of deleting the yeast FEN1 homolog, RAD27, on mtDNA stability in Saccharomyces cerevisiae. Our findings demonstrate that Rad27p/FEN1 is localized in the mitochondrial compartment of both yeast and mice and that Rad27p has a significant role in maintaining mtDNA integrity. PMID:19699691

  6. Rhodopsin expression in the zebrafish pineal gland from larval to adult stage.

    PubMed

    Magnoli, Domenico; Zichichi, Rosalia; Laurà, Rosaria; Guerrera, Maria Cristina; Campo, Salvatore; de Carlos, Felix; Suárez, Alberto Álvarez; Abbate, Francesco; Ciriaco, Emilia; Vega, Jose Antonio; Germanà, Antonino

    2012-03-09

    The zebrafish pineal gland plays an important role in different physiological functions including the regulation of the circadian clock. In the fish pineal gland the pinealocytes are made up of different segments: outer segment, inner segment and basal pole. Particularly, in the outer segment the rhodopsin participates in the external environment light reception that represents the first biochemical step in the melatonin production. It is well known that the rhodopsin in the adult zebrafish is well expressed in the pineal gland but both the expression and the cellular localization of this protein during development remain still unclear. In this study using qRT-PCR, sequencing and immunohistochemistry the expression as well as the protein localization of the rhodopsin in the zebrafish from larval (10 dpf) to adult stage (90 dpf) were demonstrated. The rhodopsin mRNA expression presents a peak of expression at 10 dpf, a further reduction to 50 dpf before increasing again in the adult stage. Moreover, the cellular localization of the rhodopsin-like protein was always localized in the pinealocyte at all ages examined. Our results demonstrated the involvement of the rhodopsin in the zebrafish pineal gland physiology particularly in the light capture during the zebrafish lifespan. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. How do bacteria localize proteins to the cell pole?

    PubMed Central

    Laloux, Géraldine; Jacobs-Wagner, Christine

    2014-01-01

    ABSTRACT It is now well appreciated that bacterial cells are highly organized, which is far from the initial concept that they are merely bags of randomly distributed macromolecules and chemicals. Central to their spatial organization is the precise positioning of certain proteins in subcellular domains of the cell. In particular, the cell poles – the ends of rod-shaped cells – constitute important platforms for cellular regulation that underlie processes as essential as cell cycle progression, cellular differentiation, virulence, chemotaxis and growth of appendages. Thus, understanding how the polar localization of specific proteins is achieved and regulated is a crucial question in bacterial cell biology. Often, polarly localized proteins are recruited to the poles through their interaction with other proteins or protein complexes that were already located there, in a so-called diffusion-and-capture mechanism. Bacteria are also starting to reveal their secrets on how the initial pole ‘recognition’ can occur and how this event can be regulated to generate dynamic, reproducible patterns in time (for example, during the cell cycle) and space (for example, at a specific cell pole). Here, we review the major mechanisms that have been described in the literature, with an emphasis on the self-organizing principles. We also present regulation strategies adopted by bacterial cells to obtain complex spatiotemporal patterns of protein localization. PMID:24345373

  8. Cellular Localization of Aquaporin-1 in the Human and Mouse Trigeminal Systems

    PubMed Central

    Gu, Minxia; Marshall, Charles; Ding, Jiong; Hu, Gang; Xiao, Ming

    2012-01-01

    Previous studies reported that a subpopulation of mouse and rat trigeminal neurons express water channel aquaporin-1 (AQP1). In this study we make a comparative investigation of AQP1 localization in the human and mouse trigeminal systems. Immunohistochemistry and immunofluorescence results showed that AQP1 was localized to the cytoplasm and cell membrane of some medium and small-sized trigeminal neurons. Additionally, AQP1 was found in numerous peripheral trigeminal axons of humans and mice. In the central trigeminal root and brain stem, AQP1 was specifically expressed in astrocytes of humans, but was restricted to nerve fibers within the central trigeminal root and spinal trigeminal tract and nucleus in mice. Furthermore, AQP1 positive nerve fibers were present in the mucosal and submucosal layers of human and mouse oral tissues, but not in the muscular and subcutaneous layers. Fluorogold retrograde tracing demonstrated that AQP1 positive trigeminal neurons innervate the mucosa but not skin of cheek. These results reveal there are similarities and differences in the cellular localization of AQP1 between the human and mouse trigeminal systems. Selective expression of AQP1 in the trigeminal neurons innervating the oral mucosa indicates an involvement of AQP1 in oral sensory transduction. PMID:23029502

  9. Heterogeneity of Metazoan Cells and Beyond: To Integrative Analysis of Cellular Populations at Single-Cell Level.

    PubMed

    Barteneva, Natasha S; Vorobjev, Ivan A

    2018-01-01

    In this paper, we review some of the recent advances in cellular heterogeneity and single-cell analysis methods. In modern research of cellular heterogeneity, there are four major approaches: analysis of pooled samples, single-cell analysis, high-throughput single-cell analysis, and lately integrated analysis of cellular population at a single-cell level. Recently developed high-throughput single-cell genetic analysis methods such as RNA-Seq require purification step and destruction of an analyzed cell often are providing a snapshot of the investigated cell without spatiotemporal context. Correlative analysis of multiparameter morphological, functional, and molecular information is important for differentiation of more uniform groups in the spectrum of different cell types. Simplified distributions (histograms and 2D plots) can underrepresent biologically significant subpopulations. Future directions may include the development of nondestructive methods for dissecting molecular events in intact cells, simultaneous correlative cellular analysis of phenotypic and molecular features by hybrid technologies such as imaging flow cytometry, and further progress in supervised and non-supervised statistical analysis algorithms.

  10. Interaction of Human Cytomegalovirus Tegument Proteins ppUL35 and ppUL35A with Sorting Nexin 5 Regulates Glycoprotein B (gpUL55) Localization.

    PubMed

    Maschkowitz, Gregor; Gärtner, Sabine; Hofmann-Winkler, Heike; Fickenscher, Helmut; Winkler, Michael

    2018-05-01

    Human cytomegalovirus (HCMV) is a widespread human pathogen that causes asymptomatic infection in healthy individuals but poses a serious threat to immunocompromised patients. During the late phase of HCMV infection, the viral capsid is transported to the cytoplasmic viral assembly center (cVAC), where it is enclosed by the tegument protein layer and the viral envelope. The cVAC consists of circularly arranged vesicles from the trans -Golgi and endosomal networks. The HCMV gene UL35 encodes ppUL35 and its shorter form, ppUL35A. We have previously shown that the UL35 gene is involved in HCMV assembly, but it is unknown how UL35 proteins regulate viral assembly. Here we show that sorting nexin 5 (SNX5), a component of the retromer and part of the retrograde transport pathway, interacts with UL35 proteins. Expression of wild-type proteins but not mutants defective in SNX5 binding resulted in the cellular redistribution of the cation-independent mannose-6-phosphate receptor (CI-M6PR), indicating that UL35 proteins bind and negatively regulate SNX5 to modulate cellular transport pathways. Furthermore, binding of UL35 proteins to SNX5 was required for efficient viral replication and for transport of the most abundant HCMV glycoprotein B (gB; gpUL55) to the cVAC. These results indicate that ppUL35 and ppUL35A control the localization of the essential gB through the regulation of a retrograde transport pathway. Thus, this work is the first to define a molecular interaction between a tegument protein and a vesicular transport factor to regulate glycoprotein localization. IMPORTANCE Human cytomegalovirus is ubiquitously present in the healthy population, but reactivation or reinfection can cause serious, life-threatening infections in immunocompromised patients. For completion of its lytic cycle, human cytomegalovirus induces formation of an assembly center where mature virus particles are formed from multiple viral proteins. Viral glycoproteins use separate vesicular pathways for transport to the assembly center, which are incompletely understood. Our research identified a viral structural protein which affects the localization of one of the major glycoproteins. We could link this change in glycoprotein localization to an interaction of the structural protein with a cellular protein involved in regulation of vesicle transport. This increases our understanding of how the virus intersects into cellular regulatory pathways to enhance its own replication. Copyright © 2018 American Society for Microbiology.

  11. Optofluidic cellular immunofunctional analysis by localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Kurabayashi, Katsuo; Oh, Bo-Ram

    2014-08-01

    Cytokine secretion assays provide the means to quantify intercellular-signaling proteins secreted by blood immune cells. These assays allow researchers and clinicians to obtain valuable information on the immune status of the donor. Previous studies have demonstrated that localized surface plasmon resonance (LSPR) effects enable label-free, real-time biosensing on a nanostructured metallic surface with simple optics and sensing tunability. However, limited sensitivity coupled with a lack of sample handling capability makes it challenging to implement LSPR biosensing in cellular functional immunoanalysis based on cytokine secretion assay. This paper describes our recent progress towards full development of a label-free LSPR biosensing technique to detect cell-secreted tumor necrosis factor (TNF)-α cytokines in clinical blood samples. We integrate LSPR bionanosensors in an optofluidic platform capable of handling target immune cells in a microfluidic chamber while readily permitting optical access for cytokine detection.

  12. Development of redox-sensitive red fluorescent proteins for imaging redox dynamics in cellular compartments.

    PubMed

    Fan, Yichong; Ai, Hui-wang

    2016-04-01

    We recently reported a redox-sensitive red fluorescent protein, rxRFP1, which is one of the first genetically encoded red-fluorescent probes for general redox states in living cells. As individual cellular compartments have different basal redox potentials, we hereby describe a group of rxRFP1 mutants, showing different midpoint redox potentials for detection of redox dynamics in various subcellular domains, such as mitochondria, the cell nucleus, and endoplasmic reticulum (ER). When these redox probes were expressed and subcellularly localized in human embryonic kidney (HEK) 293 T cells, they responded to membrane-permeable oxidants and reductants. In addition, a mitochondrially localized rxRFP1 mutant, Mito-rxRFP1.1, was used to detect mitochondrial oxidative stress induced by doxorubicin-a widely used cancer chemotherapy drug. Our work has expanded the fluorescent protein toolkit with new research tools for studying compartmentalized redox dynamics and oxidative stress under various pathophysiological conditions.

  13. Mitochondria-targeted cationic porphyrin-triphenylamine hybrids for enhanced two-photon photodynamic therapy.

    PubMed

    Hammerer, Fabien; Poyer, Florent; Fourmois, Laura; Chen, Su; Garcia, Guillaume; Teulade-Fichou, Marie-Paule; Maillard, Philippe; Mahuteau-Betzer, Florence

    2018-01-01

    The proof of concept for two-photon activated photodynamic therapy has already been achieved for cancer treatment but the efficiency of this approach still heavily relies on the availability of photosensitizers combining high two-photon absorption and biocompatibility. In this line we recently reported on a series of porphyrin-triphenylamine hybrids which exhibit high singlet oxygen production quantum yield as well as high two-photon absorption cross-sections but with a very poor cellular internalization. We present herein new photosensitizers of the same porphyrin-triphenylamine hybrid series but bearing cationic charges which led to strongly enhanced water solubility and thus cellular penetration. In addition the new compounds have been found localized in mitochondria that are preferential target organelles for photodynamic therapy. Altogether the strongly improved properties of the new series combined with their specific mitochondrial localization lead to a significantly enhanced two-photon activated photodynamic therapy efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Super-resolution imaging and tracking of protein-protein interactions in sub-diffraction cellular space

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Xing, Dong; Su, Qian Peter; Zhu, Yun; Zhang, Jiamei; Kong, Xinyu; Xue, Boxin; Wang, Sheng; Sun, Hao; Tao, Yile; Sun, Yujie

    2014-07-01

    Imaging the location and dynamics of individual interacting protein pairs is essential but often difficult because of the fluorescent background from other paired and non-paired molecules, particularly in the sub-diffraction cellular space. Here we develop a new method combining bimolecular fluorescence complementation and photoactivated localization microscopy for super-resolution imaging and single-molecule tracking of specific protein-protein interactions. The method is used to study the interaction of two abundant proteins, MreB and EF-Tu, in Escherichia coli cells. The super-resolution imaging shows interesting distribution and domain sizes of interacting MreB-EF-Tu pairs as a subpopulation of total EF-Tu. The single-molecule tracking of MreB, EF-Tu and MreB-EF-Tu pairs reveals intriguing localization-dependent heterogonous dynamics and provides valuable insights to understanding the roles of MreB-EF-Tu interactions.

  15. Super-resolution imaging and tracking of protein–protein interactions in sub-diffraction cellular space

    PubMed Central

    Liu, Zhen; Xing, Dong; Su, Qian Peter; Zhu, Yun; Zhang, Jiamei; Kong, Xinyu; Xue, Boxin; Wang, Sheng; Sun, Hao; Tao, Yile; Sun, Yujie

    2014-01-01

    Imaging the location and dynamics of individual interacting protein pairs is essential but often difficult because of the fluorescent background from other paired and non-paired molecules, particularly in the sub-diffraction cellular space. Here we develop a new method combining bimolecular fluorescence complementation and photoactivated localization microscopy for super-resolution imaging and single-molecule tracking of specific protein–protein interactions. The method is used to study the interaction of two abundant proteins, MreB and EF-Tu, in Escherichia coli cells. The super-resolution imaging shows interesting distribution and domain sizes of interacting MreB–EF-Tu pairs as a subpopulation of total EF-Tu. The single-molecule tracking of MreB, EF-Tu and MreB–EF-Tu pairs reveals intriguing localization-dependent heterogonous dynamics and provides valuable insights to understanding the roles of MreB–EF-Tu interactions. PMID:25030837

  16. Smart-Pixel Array Processors Based on Optimal Cellular Neural Networks for Space Sensor Applications

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi; Sheu, Bing J.; Venus, Holger; Sandau, Rainer

    1997-01-01

    A smart-pixel cellular neural network (CNN) with hardware annealing capability, digitally programmable synaptic weights, and multisensor parallel interface has been under development for advanced space sensor applications. The smart-pixel CNN architecture is a programmable multi-dimensional array of optoelectronic neurons which are locally connected with their local neurons and associated active-pixel sensors. Integration of the neuroprocessor in each processor node of a scalable multiprocessor system offers orders-of-magnitude computing performance enhancements for on-board real-time intelligent multisensor processing and control tasks of advanced small satellites. The smart-pixel CNN operation theory, architecture, design and implementation, and system applications are investigated in detail. The VLSI (Very Large Scale Integration) implementation feasibility was illustrated by a prototype smart-pixel 5x5 neuroprocessor array chip of active dimensions 1380 micron x 746 micron in a 2-micron CMOS technology.

  17. Nanodiamond Landmarks for Subcellular Multimodal Optical and Electron Imaging

    PubMed Central

    Zurbuchen, Mark A.; Lake, Michael P.; Kohan, Sirus A.; Leung, Belinda; Bouchard, Louis-S.

    2013-01-01

    There is a growing need for biolabels that can be used in both optical and electron microscopies, are non-cytotoxic, and do not photobleach. Such biolabels could enable targeted nanoscale imaging of sub-cellular structures, and help to establish correlations between conjugation-delivered biomolecules and function. Here we demonstrate a sub-cellular multi-modal imaging methodology that enables localization of inert particulate probes, consisting of nanodiamonds having fluorescent nitrogen-vacancy centers. These are functionalized to target specific structures, and are observable by both optical and electron microscopies. Nanodiamonds targeted to the nuclear pore complex are rapidly localized in electron-microscopy diffraction mode to enable “zooming-in” to regions of interest for detailed structural investigations. Optical microscopies reveal nanodiamonds for in-vitro tracking or uptake-confirmation. The approach is general, works down to the single nanodiamond level, and can leverage the unique capabilities of nanodiamonds, such as biocompatibility, sensitive magnetometry, and gene and drug delivery. PMID:24036840

  18. Optogenetic Tools for Subcellular Applications in Neuroscience.

    PubMed

    Rost, Benjamin R; Schneider-Warme, Franziska; Schmitz, Dietmar; Hegemann, Peter

    2017-11-01

    The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic toolbox includes fluorescent sensors to visualize signaling events in living cells and optogenetic actuators enabling manipulation of numerous cellular activities. Most optogenetic tools are not targeted to specific subcellular compartments but are localized with limited discrimination throughout the cell. Therefore, optogenetic activation often does not reflect context-dependent effects of highly localized intracellular signaling events. Subcellular targeting is required to achieve more specific optogenetic readouts and photomanipulation. Here we first provide a detailed overview of the available optogenetic tools with a focus on optogenetic actuators. Second, we review established strategies for targeting these tools to specific subcellular compartments. Finally, we discuss useful tools and targeting strategies that are currently missing from the optogenetics repertoire and provide suggestions for novel subcellular optogenetic applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. First step in developing SWNT nano-sensor for C17.2 neural stem cells

    NASA Astrophysics Data System (ADS)

    Ignatova, Tetyana; Pirbhai, Massooma; Chandrasekar, Swetha; Rotkin, Slava V.; Jedlicka, Sabrina

    Nanomaterials are widely used for biomedical applications and diagnostics, including as drug and gene delivery agents, imaging objects, and biosensors. As single-wall carbon nanotubes (SWNTs) possess a size similar to intracellular components, including fibrillar proteins and some organelles, the potential for use in a wide variety of intracellular applications is significant. However, implementation of an SWNT based nano-sensor is difficult due to lack of understanding of SWNT-cell interaction on both the cellular and molecular level. In this study, C17.2 neural stem cells have been tested after uptake of SWNTs wrapped with ssDNA over a wide variety of time periods, allowing for broad localization of SWNTs inside of the cells over long time periods. The localization data is being used to develop a predictive model of how, upon uptake of SWNT, the cytoskeleton and other cellular structures of the adherent cells is perturbed.

  20. Time, space, and disorder in the expanding proteome universe.

    PubMed

    Minde, David-Paul; Dunker, A Keith; Lilley, Kathryn S

    2017-04-01

    Proteins are highly dynamic entities. Their myriad functions require specific structures, but proteins' dynamic nature ranges all the way from the local mobility of their amino acid constituents to mobility within and well beyond single cells. A truly comprehensive view of the dynamic structural proteome includes: (i) alternative sequences, (ii) alternative conformations, (iii) alternative interactions with a range of biomolecules, (iv) cellular localizations, (v) alternative behaviors in different cell types. While these aspects have traditionally been explored one protein at a time, we highlight recently emerging global approaches that accelerate comprehensive insights into these facets of the dynamic nature of protein structure. Computational tools that integrate and expand on multiple orthogonal data types promise to enable the transition from a disjointed list of static snapshots to a structurally explicit understanding of the dynamics of cellular mechanisms. © 2017 The Authors. Proteomics Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Human embryonic stem cell phosphoproteome revealed by electron transfer dissociation tandem mass spectrometry.

    PubMed

    Swaney, Danielle L; Wenger, Craig D; Thomson, James A; Coon, Joshua J

    2009-01-27

    Protein phosphorylation is central to the understanding of cellular signaling, and cellular signaling is suggested to play a major role in the regulation of human embryonic stem (ES) cell pluripotency. Here, we describe the use of conventional tandem mass spectrometry-based sequencing technology--collision-activated dissociation (CAD)--and the more recently developed method electron transfer dissociation (ETD) to characterize the human ES cell phosphoproteome. In total, these experiments resulted in the identification of 11,995 unique phosphopeptides, corresponding to 10,844 nonredundant phosphorylation sites, at a 1% false discovery rate (FDR). Among these phosphorylation sites are 5 localized to 2 pluripotency critical transcription factors--OCT4 and SOX2. From these experiments, we conclude that ETD identifies a larger number of unique phosphopeptides than CAD (8,087 to 3,868), more frequently localizes the phosphorylation site to a specific residue (49.8% compared with 29.6%), and sequences whole classes of phosphopeptides previously unobserved.

  2. Fluorescent Labeling and Biodistribution of Latex Nanoparticles Formed by Surfactant-Free RAFT Emulsion Polymerization.

    PubMed

    Poon, Cheuk Ka; Tang, Owen; Chen, Xin-Ming; Kim, Byung; Hartlieb, Matthias; Pollock, Carol A; Hawkett, Brian S; Perrier, Sébastien

    2017-10-01

    The authors report the preparation of a novel range of functional polyacrylamide stabilized polystyrene nanoparticles, obtained by surfactant-free reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization, their fluorescent tagging, cellular uptake, and biodistribution. The authors show the versatility of the RAFT emulsion process for the design of functional nanoparticles of well-defined size that can be used as drug delivery vectors. Functionalization with a fluorescent tag offers a useful visualization tool for tracing, localization, and clearance studies of these carriers in biological models. The studies are carried out by labeling the sterically stabilized latex particles chemically with rhodamine B. The fluorescent particles are incubated in a healthy human renal proximal tubular cell line model, and intravenously injected into a mouse model. Cellular localization and biodistribution of these particles on the biological models are explored. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis

    PubMed Central

    Phuc, Le Thi Minh; Taniguchi, Akiyoshi

    2017-01-01

    The interaction between nanoparticles and cells has been studied extensively, but most research has focused on the effect of various nanoparticle characteristics, such as size, morphology, and surface charge, on the cellular uptake of nanoparticles. In contrast, there have been very few studies to assess the influence of cellular factors, such as growth factor responses, on the cellular uptake efficiency of nanoparticles. The aim of this study was to clarify the effects of epidermal growth factor (EGF) on the uptake efficiency of polystyrene nanoparticles (PS NPs) by A431 cells, a human carcinoma epithelial cell line. The results showed that EGF enhanced the uptake efficiency of A431 cells for PS NPs. In addition, inhibition and localization studies of PS NPs and EGF receptors (EGFRs) indicated that cellular uptake of PS NPs is related to the binding of EGF–EGFR complex and PS NPs. Different pathways are used to enter the cells depending on the presence or absence of EGF. In the presence of EGF, cellular uptake of PS NPs is via clathrin-mediated endocytosis, whereas, in the absence of EGF, uptake of PS NPs does not involve clathrin-mediated endocytosis. Our findings indicate that EGF enhances cellular uptake of PS NPs by clathrin-mediated endocytosis. This result could be important for developing safe nanoparticles and their safe use in medical applications. PMID:28629179

  4. Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis.

    PubMed

    Phuc, Le Thi Minh; Taniguchi, Akiyoshi

    2017-06-19

    The interaction between nanoparticles and cells has been studied extensively, but most research has focused on the effect of various nanoparticle characteristics, such as size, morphology, and surface charge, on the cellular uptake of nanoparticles. In contrast, there have been very few studies to assess the influence of cellular factors, such as growth factor responses, on the cellular uptake efficiency of nanoparticles. The aim of this study was to clarify the effects of epidermal growth factor (EGF) on the uptake efficiency of polystyrene nanoparticles (PS NPs) by A431 cells, a human carcinoma epithelial cell line. The results showed that EGF enhanced the uptake efficiency of A431 cells for PS NPs. In addition, inhibition and localization studies of PS NPs and EGF receptors (EGFRs) indicated that cellular uptake of PS NPs is related to the binding of EGF-EGFR complex and PS NPs. Different pathways are used to enter the cells depending on the presence or absence of EGF. In the presence of EGF, cellular uptake of PS NPs is via clathrin-mediated endocytosis, whereas, in the absence of EGF, uptake of PS NPs does not involve clathrin-mediated endocytosis. Our findings indicate that EGF enhances cellular uptake of PS NPs by clathrin-mediated endocytosis. This result could be important for developing safe nanoparticles and their safe use in medical applications.

  5. Balancing Uplink and Downlink under Asymmetric Traffic Environments Using Distributed Receive Antennas

    NASA Astrophysics Data System (ADS)

    Sohn, Illsoo; Lee, Byong Ok; Lee, Kwang Bok

    Recently, multimedia services are increasing with the widespread use of various wireless applications such as web browsers, real-time video, and interactive games, which results in traffic asymmetry between the uplink and downlink. Hence, time division duplex (TDD) systems which provide advantages in efficient bandwidth utilization under asymmetric traffic environments have become one of the most important issues in future mobile cellular systems. It is known that two types of intercell interference, referred to as crossed-slot interference, additionally arise in TDD systems; the performances of the uplink and downlink transmissions are degraded by BS-to-BS crossed-slot interference and MS-to-MS crossed-slot interference, respectively. The resulting performance unbalance between the uplink and downlink makes network deployment severely inefficient. Previous works have proposed intelligent time slot allocation algorithms to mitigate the crossed-slot interference problem. However, they require centralized control, which causes large signaling overhead in the network. In this paper, we propose to change the shape of the cellular structure itself. The conventional cellular structure is easily transformed into the proposed cellular structure with distributed receive antennas (DRAs). We set up statistical Markov chain traffic model and analyze the bit error performances of the conventional cellular structure and proposed cellular structure under asymmetric traffic environments. Numerical results show that the uplink and downlink performances of the proposed cellular structure become balanced with the proper number of DRAs and thus the proposed cellular structure is notably cost-effective in network deployment compared to the conventional cellular structure. As a result, extending the conventional cellular structure into the proposed cellular structure with DRAs is a remarkably cost-effective solution to support asymmetric traffic environments in future mobile cellular systems.

  6. Non-coding functions of alternative pre-mRNA splicing in development

    PubMed Central

    Mockenhaupt, Stefan; Makeyev, Eugene V.

    2015-01-01

    A majority of messenger RNA precursors (pre-mRNAs) in the higher eukaryotes undergo alternative splicing to generate more than one mature product. By targeting the open reading frame region this process increases diversity of protein isoforms beyond the nominal coding capacity of the genome. However, alternative splicing also frequently controls output levels and spatiotemporal features of cellular and organismal gene expression programs. Here we discuss how these non-coding functions of alternative splicing contribute to development through regulation of mRNA stability, translational efficiency and cellular localization. PMID:26493705

  7. Localization of the Placental BCRP/ABCG2 Transporter to Lipid Rafts: Role for Cholesterol in Mediating Efflux Activity

    PubMed Central

    Szilagyi, John T.; Vetrano, Anna M.; Laskin, Jeffrey D.; Aleksunes, Lauren M.

    2017-01-01

    Introduction The breast cancer resistance protein (BCRP/ABCG2) is an efflux transporter in the placental barrier. By transporting chemicals from the fetal to the maternal circulation, BCRP limits fetal exposure to a range of drugs, toxicants, and endobiotics such as bile acids and hormones. The purpose of the present studies was to 1) determine whether BCRP localizes to highly-ordered, cholesterol-rich lipid raft microdomains in placenta microvillous membranes, and 2) determine the impact of cholesterol on BCRP-mediated placental transport in vitro. Methods BCRP expression was analyzed in lipid rafts isolated from placentas from healthy, term pregnancies and BeWo trophoblasts by density gradient ultracentrifugation. BeWo cells were also tested for their ability to efflux BCRP substrates after treatment with the cholesterol sequestrant methyl-β-cyclodextrin (MβCD, 5mM, 1 h) or the cholesterol synthesis inhibitor pravastatin (200μM, 48 h). Results and Discussion BCRP was found to co-localize with lipid raft proteins in detergent-resistant, lipid raft-containing fractions from placental microvillous membranes and BeWo cells. Treatment of BeWo cells with MβCD redistributed BCRP protein into higher density non-lipid raft fractions. Repletion of the cells with cholesterol restored BCRP localization to lipid raft-containing fractions. Treatment of BeWo cells with MβCD or pravastatin increased cellular retention of two BCRP substrates, the fluorescent dye Hoechst 33342 and the mycotoxin zearalenone. Repletion with cholesterol restored BCRP transporter activity. Taken together, these data demonstrate that cholesterol may play a critical role in the post-translational regulation of BCRP in placental lipid rafts. PMID:28623970

  8. Localization of human T-cell lymphotropic virus type II Tax protein is dependent upon a nuclear localization determinant in the N-terminal region.

    PubMed

    Turci, Marco; Romanelli, Maria Grazia; Lorenzi, Pamela; Righi, Paola; Bertazzoni, Umberto

    2006-01-03

    Human T-cell lymphotropic viruses (HTLV) types I and II are closely related oncogenic retroviruses that have been associated with lymphoproliferative and neurological disorders. The proviral genome encodes a trans-regulatory Tax protein that activates viral genes and upregulates various cellular genes involved in both cell growth and transformation. Tax proteins of HTLV-I (Tax-I) and HTLV-II (Tax-II) exhibit more than 77% aa homology and expression of either Tax-I or Tax-II is sufficient for immortalization of cultured T lymphocytes. Tax-I shuttles from the nucleus to the cytoplasm and accumulates within the nucleus, whereas Tax-II is found mainly in the cytoplasm. In the present study we have used recombinant vectors to analyze the size and structure of the nuclear localization domain within the Tax-II protein sequence. The Tax-II protein was expressed in HeLa cells either as the complete protein, or regions thereof, that were individually fused to the green fluorescent protein (GFP). Immunoblot analysis of the fused Tax-II products confirmed their expression and size. Fluorescence microscopy studies indicated that the complete Tax-II as well as N-truncated forms presented a punctuate cytoplasmic distribution and that a nuclear localization determinant is confined to within the first 60 aa of Tax-II. Accordingly, site directed mutagenesis and deletion of specific sequences within the first 60 aa showed that the nuclear determinant lies within the first 41 residues of Tax-II. These results point to a direct involvement of the amino-terminal residues of Tax-II protein in determining its nuclear functionality.

  9. Nucleocytoplasmic shuttling of the rabies virus P protein requires a nuclear localization signal and a CRM1-dependent nuclear export signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasdeloup, David; Poisson, Nicolas; Raux, Helene

    2005-04-10

    Rabies virus P protein is a co-factor of the viral RNA polymerase. It has been shown previously that P mRNA directs the synthesis of four N-terminally truncated P products P2, P3, P4, and P5 due to translational initiation by a leaky scanning mechanism at internal Met codons. Whereas P and P2 are located in the cytoplasm, P3, P4, and P5 are found in the nucleus. Here, we have analyzed the molecular basis of the subcellular localization of these proteins. Using deletion mutants fused to GFP protein, we show the presence of a nuclear localization signal (NLS) in the C-terminal partmore » of P (172-297). This domain contains a short lysine-rich stretch ({sup 211}KKYK{sup 214}) located in close proximity with arginine 260 as revealed by the crystal structure of P. We demonstrate the critical role of lysine 214 and arginine 260 in NLS activity. In the presence of Leptomycin B, P is retained in the nucleus indicating that it contains a CRM1-dependent nuclear export signal (NES). The subcellular distribution of P deletion mutants indicates that the domain responsible for export is the amino-terminal part of the protein. The use of fusion proteins that have amino terminal fragments of P fused to {beta}-galactosidase containing the NLS of SV40 T antigen allows us to identify a NES between residues 49 and 58. The localization of NLS and NES determines the cellular distribution of the P gene products.« less

  10. Localization of the placental BCRP/ABCG2 transporter to lipid rafts: Role for cholesterol in mediating efflux activity.

    PubMed

    Szilagyi, John T; Vetrano, Anna M; Laskin, Jeffrey D; Aleksunes, Lauren M

    2017-07-01

    The breast cancer resistance protein (BCRP/ABCG2) is an efflux transporter in the placental barrier. By transporting chemicals from the fetal to the maternal circulation, BCRP limits fetal exposure to a range of drugs, toxicants, and endobiotics such as bile acids and hormones. The purpose of the present studies was to 1) determine whether BCRP localizes to highly-ordered, cholesterol-rich lipid raft microdomains in placenta microvillous membranes, and 2) determine the impact of cholesterol on BCRP-mediated placental transport in vitro. BCRP expression was analyzed in lipid rafts isolated from placentas from healthy, term pregnancies and BeWo trophoblasts by density gradient ultracentrifugation. BeWo cells were also tested for their ability to efflux BCRP substrates after treatment with the cholesterol sequestrant methyl-β-cyclodextrin (MβCD, 5 mM, 1 h) or the cholesterol synthesis inhibitor pravastatin (200 μM, 48 h). BCRP was found to co-localize with lipid raft proteins in detergent-resistant, lipid raft-containing fractions from placental microvillous membranes and BeWo cells. Treatment of BeWo cells with MβCD redistributed BCRP protein into higher density non-lipid raft fractions. Repletion of the cells with cholesterol restored BCRP localization to lipid raft-containing fractions. Treatment of BeWo cells with MβCD or pravastatin increased cellular retention of two BCRP substrates, the fluorescent dye Hoechst 33342 and the mycotoxin zearalenone. Repletion with cholesterol restored BCRP transporter activity. Taken together, these data demonstrate that cholesterol may play a critical role in the post-translational regulation of BCRP in placental lipid rafts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Nuclear-specific AR-V7 Protein Localization is Necessary to Guide Treatment Selection in Metastatic Castration-resistant Prostate Cancer.

    PubMed

    Scher, Howard I; Graf, Ryon P; Schreiber, Nicole A; McLaughlin, Brigit; Lu, David; Louw, Jessica; Danila, Daniel C; Dugan, Lyndsey; Johnson, Ann; Heller, Glenn; Fleisher, Martin; Dittamore, Ryan

    2017-06-01

    Circulating tumor cells (CTCs) expressing AR-V7 protein localized to the nucleus (nuclear-specific) identify metastatic castration-resistant prostate cancer (mCRPC) patients with improved overall survival (OS) on taxane therapy relative to the androgen receptor signaling inhibitors (ARSi) abiraterone acetate, enzalutamide, and apalutamide. To evaluate if expanding the positivity criteria to include both nuclear and cytoplasmic AR-V7 localization ("nuclear-agnostic") identifies more patients who would benefit from a taxane over an ARSi. The study used a cross-sectional cohort. Between December 2012 and March 2015, 193 pretherapy blood samples, 191 of which were evaluable, were collected and processed from 161 unique mCRPC patients before starting a new line of systemic therapy for disease progression at the Memorial Sloan Kettering Cancer Center. The association between two AR-V7 scoring criteria, post-therapy prostate-specific antigen (PSA) change (PTPC) and OS following ARSi or taxane treatment, was explored. One criterion required nuclear-specific AR-V7 localization, and the other required an AR-V7 signal but was agnostic to protein localization in CTCs. Correlation of AR-V7 status to PTPC and OS was investigated. Relationships with survival were analyzed using multivariable Cox regression and log-rank analyses. A total of 34 (18%) samples were AR-V7-positive using nuclear-specific criteria, and 56 (29%) were AR-V7-positive using nuclear-agnostic criteria. Following ARSi treatment, none of the 16 nuclear-specific AR-V7-positive samples and six of the 32 (19%) nuclear-agnostic AR-V7-positive samples had ≥50% PTPC at 12 weeks. The strongest baseline factor influencing OS was the interaction between the presence of nuclear-specific AR-V7-positive CTCs and treatment with a taxane (hazard ratio 0.24, 95% confidence interval 0.078-0.79; p=0.019). This interaction was not significant when nuclear-agnostic criteria were used. To reliably inform treatment selection using an AR-V7 protein biomarker in CTCs, nuclear-specific localization is required. We analyzed outcomes for patients with metastatic castration-resistant prostate cancer on androgen receptor signaling inhibitors and standard chemotherapy. Patients with circulating tumor cells that had AR-V7 protein in the cellular nuclei were very likely to survive longer on taxane-based chemotherapy, and tests unable to distinguish where the protein is located in the cell are not as predictive of benefit. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  12. Digital PCR Improves Mutation Analysis in Pancreas Fine Needle Aspiration Biopsy Specimens.

    PubMed

    Sho, Shonan; Court, Colin M; Kim, Stephen; Braxton, David R; Hou, Shuang; Muthusamy, V Raman; Watson, Rabindra R; Sedarat, Alireza; Tseng, Hsian-Rong; Tomlinson, James S

    2017-01-01

    Applications of precision oncology strategies rely on accurate tumor genotyping from clinically available specimens. Fine needle aspirations (FNA) are frequently obtained in cancer management and often represent the only source of tumor tissues for patients with metastatic or locally advanced diseases. However, FNAs obtained from pancreas ductal adenocarcinoma (PDAC) are often limited in cellularity and/or tumor cell purity, precluding accurate tumor genotyping in many cases. Digital PCR (dPCR) is a technology with exceptional sensitivity and low DNA template requirement, characteristics that are necessary for analyzing PDAC FNA samples. In the current study, we sought to evaluate dPCR as a mutation analysis tool for pancreas FNA specimens. To this end, we analyzed alterations in the KRAS gene in pancreas FNAs using dPCR. The sensitivity of dPCR mutation analysis was first determined using serial dilution cell spiking studies. Single-cell laser-microdissection (LMD) was then utilized to identify the minimal number of tumor cells needed for mutation detection. Lastly, dPCR mutation analysis was performed on 44 pancreas FNAs (34 formalin-fixed paraffin-embedded (FFPE) and 10 fresh (non-fixed)), including samples highly limited in cellularity (100 cells) and tumor cell purity (1%). We found dPCR to detect mutations with allele frequencies as low as 0.17%. Additionally, a single tumor cell could be detected within an abundance of normal cells. Using clinical FNA samples, dPCR mutation analysis was successful in all preoperative FNA biopsies tested, and its accuracy was confirmed via comparison with resected tumor specimens. Moreover, dPCR revealed additional KRAS mutations representing minor subclones within a tumor that were not detected by the current clinical gold standard method of Sanger sequencing. In conclusion, dPCR performs sensitive and accurate mutation analysis in pancreas FNAs, detecting not only the dominant mutation subtype, but also the additional rare mutation subtypes representing tumor heterogeneity.

  13. Digital PCR Improves Mutation Analysis in Pancreas Fine Needle Aspiration Biopsy Specimens

    PubMed Central

    Court, Colin M.; Kim, Stephen; Braxton, David R.; Hou, Shuang; Muthusamy, V. Raman; Watson, Rabindra R.; Sedarat, Alireza; Tseng, Hsian-Rong; Tomlinson, James S.

    2017-01-01

    Applications of precision oncology strategies rely on accurate tumor genotyping from clinically available specimens. Fine needle aspirations (FNA) are frequently obtained in cancer management and often represent the only source of tumor tissues for patients with metastatic or locally advanced diseases. However, FNAs obtained from pancreas ductal adenocarcinoma (PDAC) are often limited in cellularity and/or tumor cell purity, precluding accurate tumor genotyping in many cases. Digital PCR (dPCR) is a technology with exceptional sensitivity and low DNA template requirement, characteristics that are necessary for analyzing PDAC FNA samples. In the current study, we sought to evaluate dPCR as a mutation analysis tool for pancreas FNA specimens. To this end, we analyzed alterations in the KRAS gene in pancreas FNAs using dPCR. The sensitivity of dPCR mutation analysis was first determined using serial dilution cell spiking studies. Single-cell laser-microdissection (LMD) was then utilized to identify the minimal number of tumor cells needed for mutation detection. Lastly, dPCR mutation analysis was performed on 44 pancreas FNAs (34 formalin-fixed paraffin-embedded (FFPE) and 10 fresh (non-fixed)), including samples highly limited in cellularity (100 cells) and tumor cell purity (1%). We found dPCR to detect mutations with allele frequencies as low as 0.17%. Additionally, a single tumor cell could be detected within an abundance of normal cells. Using clinical FNA samples, dPCR mutation analysis was successful in all preoperative FNA biopsies tested, and its accuracy was confirmed via comparison with resected tumor specimens. Moreover, dPCR revealed additional KRAS mutations representing minor subclones within a tumor that were not detected by the current clinical gold standard method of Sanger sequencing. In conclusion, dPCR performs sensitive and accurate mutation analysis in pancreas FNAs, detecting not only the dominant mutation subtype, but also the additional rare mutation subtypes representing tumor heterogeneity. PMID:28125707

  14. Resistance to mitomycin C requires direct interaction between the Fanconi anemia proteins FANCA and FANCG in the nucleus through an arginine-rich domain.

    PubMed

    Kruyt, F A; Abou-Zahr, F; Mok, H; Youssoufian, H

    1999-11-26

    Fanconi anemia (FA) is a genetically heterogeneous disorder characterized by bone marrow failure, birth defects, and chromosomal instability. Because FA cells are sensitive to mitomycin C (MMC), FA gene products could be involved in cellular defense mechanisms. The FANCA and FANCG proteins deficient in FA groups A and G interact directly with each other. We have localized the mutual interaction domains of these proteins to amino acids 18-29 of FANCA and to two noncontiguous carboxyl-terminal domains of FANCG encompassing amino acids 400-475 and 585-622. Site-directed mutagenesis of FANCA residues 18-29 revealed a novel arginine-rich interaction domain (RRRAWAELLAG). By alanine mutagenesis, Arg(1), Arg(2), and Leu(8) but not Arg(3), Trp(5), and Glu(7) appeared to be critical for binding to FANCG. Similar immunolocalization for FANCA and FANCG suggested that these proteins interact in vivo. Moreover, targeting of FANCA to the nucleus or the cytoplasm with nuclear localization and nuclear export signals, respectively, showed concordance between the localization patterns of FANCA and FANCG. The complementation function of FANCA was abolished by mutations in its FANCG-binding domain. Conversely, stable expression of FANCA mutants encoding intact FANCG interaction domains induced hypersensitivity to MMC in HeLa cells. These results demonstrate that FANCA-FANCG complexes are required for cellular resistance to MMC. Because the FANCC protein deficient in FA group C works within the cytoplasm, we suggest that FANCC and the FANCA-FANCG complexes suppress MMC cytotoxicity within distinct cellular compartments.

  15. Distinct Cellular Locations of Carbonic Anhydrases Mediate Carbon Dioxide Control of Stomatal Movements1[OPEN

    PubMed Central

    Hu, Honghong; Rappel, Wouter-Jan; Occhipinti, Rossana; Ries, Amber; Böhmer, Maik; You, Lei; Xiao, Chuanlei; Engineer, Cawas B.; Boron, Walter F.; Schroeder, Julian I.

    2015-01-01

    Elevated carbon dioxide (CO2) in leaves closes stomatal apertures. Research has shown key functions of the β-carbonic anhydrases (βCA1 and βCA4) in rapid CO2-induced stomatal movements by catalytic transmission of the CO2 signal in guard cells. However, the underlying mechanisms remain unclear, because initial studies indicate that these Arabidopsis (Arabidopsis thaliana) βCAs are targeted to distinct intracellular compartments upon expression in tobacco (Nicotiana benthamiana) cells. Which cellular location of these enzymes plays a key role in native guard cells in CO2-regulated stomatal movements remains unknown. Here, we express fluorescently tagged CAs in guard cells of ca1ca4 double-mutant plants and show that the specific locations of βCA4 at the plasma membrane and βCA1 in native guard cell chloroplasts each can mediate rapid CO2 control of stomatal movements. Localization and complementation analyses using a mammalian αCAII-yellow fluorescent protein in guard cells further show that cytoplasmic localization is also sufficient to restore CO2 regulation of stomatal conductance. Mathematical modeling of cellular CO2 catalysis suggests that the dynamics of the intracellular HCO3− concentration change in guard cells can be driven by plasma membrane and cytoplasmic localizations of CAs but not as clearly by chloroplast targeting. Moreover, modeling supports the notion that the intracellular HCO3− concentration dynamics in guard cells are a key mechanism in mediating CO2-regulated stomatal movements but that an additional chloroplast role of CAs exists that has yet to be identified. PMID:26243620

  16. Distinct Cellular Locations of Carbonic Anhydrases Mediate Carbon Dioxide Control of Stomatal Movements

    DOE PAGES

    Hu, Honghong; Rappel, Wouter-Jan; Occhipinti, Rossana; ...

    2015-09-28

    Elevated carbon dioxide (CO 2) in leaves closes stomatal apertures. Research has shown key functions of the β-carbonic anhydrases (βCA1 and βCA4) in rapid CO 2-induced stomatal movements by catalytic transmission of the CO 2 signal in guard cells. But, the underlying mechanisms remain unclear, because initial studies indicate that these Arabidopsis (Arabidopsis thaliana) βCAs are targeted to distinct intracellular compartments upon expression in tobacco (Nicotiana benthamiana) cells. Which cellular location of these enzymes plays a key role in native guard cells in CO 2-regulated stomatal movements remains unknown. We express fluorescently tagged CAs in guard cells of ca1ca4 double-mutantmore » plants and show that the specific locations of βCA4 at the plasma membrane and βCA1 in native guard cell chloroplasts each can mediate rapid CO 2 control of stomatal movements. Localization and complementation analyses using a mammalian αCAII-yellow fluorescent protein in guard cells further show that cytoplasmic localization is also sufficient to restore CO 2 regulation of stomatal conductance. Mathematical modeling of cellular CO 2 catalysis suggests that the dynamics of the intracellular HCO 3 - concentration change in guard cells can be driven by plasma membrane and cytoplasmic localizations of CAs but not as clearly by chloroplast targeting. Therefore, modeling supports the notion that the intracellular HCO 3 - concentration dynamics in guard cells are a key mechanism in mediating CO 2 -regulated stomatal movements but that an additional chloroplast role of CAs exists that has yet to be identified.« less

  17. Multiple Functional Domains and Complexes of the Two Nonstructural Proteins of Human Respiratory Syncytial Virus Contribute to Interferon Suppression and Cellular Location▿

    PubMed Central

    Swedan, Samer; Andrews, Joel; Majumdar, Tanmay; Musiyenko, Alla; Barik, Sailen

    2011-01-01

    Human respiratory syncytial virus (RSV), a major cause of severe respiratory diseases, efficiently suppresses cellular innate immunity, represented by type I interferon (IFN), using its two unique nonstructural proteins, NS1 and NS2. In a search for their mechanism, NS1 was previously shown to decrease levels of TRAF3 and IKKε, whereas NS2 interacted with RIG-I and decreased TRAF3 and STAT2. Here, we report on the interaction, cellular localization, and functional domains of these two proteins. We show that recombinant NS1 and NS2, expressed in lung epithelial A549 cells, can form homo- as well as heteromers. Interestingly, when expressed alone, substantial amounts of NS1 and NS2 localized to the nuclei and to the mitochondria, respectively. However, when coexpressed with NS2, as in RSV infection, NS1 could be detected in the mitochondria as well, suggesting that the NS1-NS2 heteromer localizes to the mitochondria. The C-terminal tetrapeptide sequence, DLNP, common to both NS1 and NS2, was required for some functions, but not all, whereas only the NS1 N-terminal region was important for IKKε reduction. Finally, NS1 and NS2 both interacted specifically with host microtubule-associated protein 1B (MAP1B). The contribution of MAP1B in NS1 function was not tested, but in NS2 it was essential for STAT2 destruction, suggesting a role of the novel DLNP motif in protein-protein interaction and IFN suppression. PMID:21795342

  18. Multiple functional domains and complexes of the two nonstructural proteins of human respiratory syncytial virus contribute to interferon suppression and cellular location.

    PubMed

    Swedan, Samer; Andrews, Joel; Majumdar, Tanmay; Musiyenko, Alla; Barik, Sailen

    2011-10-01

    Human respiratory syncytial virus (RSV), a major cause of severe respiratory diseases, efficiently suppresses cellular innate immunity, represented by type I interferon (IFN), using its two unique nonstructural proteins, NS1 and NS2. In a search for their mechanism, NS1 was previously shown to decrease levels of TRAF3 and IKKε, whereas NS2 interacted with RIG-I and decreased TRAF3 and STAT2. Here, we report on the interaction, cellular localization, and functional domains of these two proteins. We show that recombinant NS1 and NS2, expressed in lung epithelial A549 cells, can form homo- as well as heteromers. Interestingly, when expressed alone, substantial amounts of NS1 and NS2 localized to the nuclei and to the mitochondria, respectively. However, when coexpressed with NS2, as in RSV infection, NS1 could be detected in the mitochondria as well, suggesting that the NS1-NS2 heteromer localizes to the mitochondria. The C-terminal tetrapeptide sequence, DLNP, common to both NS1 and NS2, was required for some functions, but not all, whereas only the NS1 N-terminal region was important for IKKε reduction. Finally, NS1 and NS2 both interacted specifically with host microtubule-associated protein 1B (MAP1B). The contribution of MAP1B in NS1 function was not tested, but in NS2 it was essential for STAT2 destruction, suggesting a role of the novel DLNP motif in protein-protein interaction and IFN suppression.

  19. Cellular phone collateral damage: A review of burns associated with lithium battery powered mobile devices.

    PubMed

    Mankowski, Peter J; Kanevsky, Jonathan; Bakirtzian, Parseh; Cugno, Sabrina

    2016-06-01

    The spontaneous destruction of lithium battery powered cellphones has raised concern about the safety of these devices. We present a case report and review of the literature of burn injuries sustained in association with cellular phone usage. A Medline search was performed to identify articles describing cellular phone associated thermal injuries using key search words including "burn," "burn injury," "cellular phone," "cellphone," "thermal injury," and "telephone." Articles were reviewed for etiology, location, severity and treatment. We also present a case of a burn to the upper thigh resulting from cellular phone battery malfunction. Six case reports were identified detailing burn injuries obtained from cellphone use. Half of these cases occurred from battery malfunction with second degree being the most common severity. All cases were managed conservatively except one case, which required excision and primary closure. Lithium powered cellular phones are susceptible to overheating and destruction from inadequate heat dissipation during thermal runaway. This process can be initiated by local short-circuiting from direct contact with a low resistance conductor such as keys or coins. We reinforce the importance of safe cell phone battery practices including avoiding overcharging and direct skin exposure to minimize thermal injury risk. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  20. Cellular proteostasis: degradation of misfolded proteins by lysosomes

    PubMed Central

    Jackson, Matthew P.

    2016-01-01

    Proteostasis refers to the regulation of the cellular concentration, folding, interactions and localization of each of the proteins that comprise the proteome. One essential element of proteostasis is the disposal of misfolded proteins by the cellular pathways of protein degradation. Lysosomes are an important site for the degradation of misfolded proteins, which are trafficked to this organelle by the pathways of macroautophagy, chaperone-mediated autophagy and endocytosis. Conversely, amyloid diseases represent a failure in proteostasis, in which proteins misfold, forming amyloid deposits that are not degraded effectively by cells. Amyloid may then exacerbate this failure by disrupting autophagy and lysosomal proteolysis. However, targeting the pathways that regulate autophagy and the biogenesis of lysosomes may present approaches that can rescue cells from the deleterious effects of amyloidogenic proteins. PMID:27744333

  1. Cellular dynamics in the muscle satellite cell niche

    PubMed Central

    Bentzinger, C Florian; Wang, Yu Xin; Dumont, Nicolas A; Rudnicki, Michael A

    2013-01-01

    Satellite cells, the quintessential skeletal muscle stem cells, reside in a specialized local environment whose anatomy changes dynamically during tissue regeneration. The plasticity of this niche is attributable to regulation by the stem cells themselves and to a multitude of functionally diverse cell types. In particular, immune cells, fibrogenic cells, vessel-associated cells and committed and differentiated cells of the myogenic lineage have emerged as important constituents of the satellite cell niche. Here, we discuss the cellular dynamics during muscle regeneration and how disease can lead to perturbation of these mechanisms. To define the role of cellular components in the muscle stem cell niche is imperative for the development of cell-based therapies, as well as to better understand the pathobiology of degenerative conditions of the skeletal musculature. PMID:24232182

  2. Stress-induced O-GlcNAcylation: an adaptive process of injured cells.

    PubMed

    Martinez, Marissa R; Dias, Thiago Braido; Natov, Peter S; Zachara, Natasha E

    2017-02-08

    In the 30 years, since the discovery of nucleocytoplasmic glycosylation, O -GlcNAc has been implicated in regulating cellular processes as diverse as protein folding, localization, degradation, activity, post-translational modifications, and interactions. The cell co-ordinates these molecular events, on thousands of cellular proteins, in concert with environmental and physiological cues to fine-tune epigenetics, transcription, translation, signal transduction, cell cycle, and metabolism. The cellular stress response is no exception: diverse forms of injury result in dynamic changes to the O -GlcNAc subproteome that promote survival. In this review, we discuss the biosynthesis of O -GlcNAc, the mechanisms by which O -GlcNAc promotes cytoprotection, and the clinical significance of these data. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  3. Classic Nuclear Localization Signals and a Novel Nuclear Localization Motif Are Required for Nuclear Transport of Porcine Parvovirus Capsid Proteins

    PubMed Central

    Boisvert, Maude; Bouchard-Lévesque, Véronique; Fernandes, Sandra

    2014-01-01

    ABSTRACT Nuclear targeting of capsid proteins (VPs) is important for genome delivery and precedes assembly in the replication cycle of porcine parvovirus (PPV). Clusters of basic amino acids, corresponding to potential nuclear localization signals (NLS), were found only in the unique region of VP1 (VP1up, for VP1 unique part). Of the five identified basic regions (BR), three were important for nuclear localization of VP1up: BR1 was a classic Pat7 NLS, and the combination of BR4 and BR5 was a classic bipartite NLS. These NLS were essential for viral replication. VP2, the major capsid protein, lacked these NLS and contained no region with more than two basic amino acids in proximity. However, three regions of basic clusters were identified in the folded protein, assembled into a trimeric structure. Mutagenesis experiments showed that only one of these three regions was involved in VP2 transport to the nucleus. This structural NLS, termed the nuclear localization motif (NLM), is located inside the assembled capsid and thus can be used to transport trimers to the nucleus in late steps of infection but not for virions in initial infection steps. The two NLS of VP1up are located in the N-terminal part of the protein, externalized from the capsid during endosomal transit, exposing them for nuclear targeting during early steps of infection. Globally, the determinants of nuclear transport of structural proteins of PPV were different from those of closely related parvoviruses. IMPORTANCE Most DNA viruses use the nucleus for their replication cycle. Thus, structural proteins need to be targeted to this cellular compartment at two distinct steps of the infection: in early steps to deliver viral genomes to the nucleus and in late steps to assemble new viruses. Nuclear targeting of proteins depends on the recognition of a stretch of basic amino acids by cellular transport proteins. This study reports the identification of two classic nuclear localization signals in the minor capsid protein (VP1) of porcine parvovirus. The major protein (VP2) nuclear localization was shown to depend on a complex structural motif. This motif can be used as a strategy by the virus to avoid transport of incorrectly folded proteins and to selectively import assembled trimers into the nucleus. Structural nuclear localization motifs can also be important for nuclear proteins without a classic basic amino acid stretch, including multimeric cellular proteins. PMID:25078698

  4. Zn2+-transporters ZIP7 and ZnT7 play important role in progression of cardiac dysfunction via affecting sarco(endo)plasmic reticulum-mitochondria coupling in hyperglycemic cardiomyocytes.

    PubMed

    Tuncay, Erkan; Bitirim, C Verda; Olgar, Yusuf; Durak, Aysegul; Rutter, Guy A; Turan, Belma

    2018-01-04

    Functional contribution of S(E)R-mitochondria coupling to normal cellular processes is crucial and any alteration in S(E)R-mitochondria axis may be responsible for the onset of diseases. Mitochondrial free Zn 2+ level in cardiomyocytes ([Zn 2+ ] Mit ) is lower comparison to either its cytosolic or S(E)R level under physiological condition. However, there is little information about distribution of Zn 2+ -transporters on mitochondria and role of Zn 2+ -dependent mitochondrial-function associated with [Zn 2+ ] Mit . Since we recently have shown how hyperglycemia (HG)-induced changes in ZIP7 and ZnT7 contribute to Zn 2+ -transport across S(E)R and contribute to S(E)R-stress in the heart, herein, we hypothesized that these transporters can also be localized to mitochondria and affect the S(E)R-mitochondria coupling, and thereby contribute to cellular Zn 2+ -muffling between S(E)R-mitochondria in HG-cells. Mitochondrial localizations of ZIP7 and ZnT7 were demonstrated using fluorescence technique while they were confirmed in isolated mitochondrial fractions using biochemical analysis. Markedly decreased ZIP7 and increased ZnT7 levels were measured in isolated mitochondrial fractions from either HG- or doxorubicin, DOX (as positive control)-treated cardiomyocytes. Significantly increases in [Zn 2+ ] Mit and ROS production levels and depolarized mitochondrial membrane potential were also measured in HG cells. The expression levels of some key proteins, responsible for proper S(E)R-mitochondria coupling such as Mfn-1, Fis-1, OPA1, BAP31, STIM1 and PML in either HG- or DOX-cells were supported our above hypothesis, strongly. Overall, this study provides an important description about the role of ZIP7 and ZnT7, localized to both mitochondria and S(E)R and contribute to cellular Zn 2+ -muffling between cellular-compartments in HG or hypertrophic cardiomyocytes via affecting S(E)R-mitochondria coupling. Any alteration in this axis and/or cellular [Zn 2+ ] may provide new insight for prevention/therapy of HF in diabetes and/or hypertrophy. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  5. Localized surface plasmon enhanced cellular imaging using random metallic structures

    NASA Astrophysics Data System (ADS)

    Son, Taehwang; Lee, Wonju; Kim, Donghyun

    2017-02-01

    We have studied fluorescence cellular imaging with randomly distributed localized near-field induced by silver nano-islands. For the fabrication of nano-islands, a 10-nm silver thin film evaporated on a BK7 glass substrate with an adhesion layer of 2-nm thick chromium. Micrometer sized silver square pattern was defined using e-beam lithography and then the film was annealed at 200°C. Raw images were restored using electric field distribution produced on the surface of random nano-islands. Nano-islands were modeled from SEM images. 488-nm p-polarized light source was set to be incident at 60°. Simulation results show that localized electric fields were created among nano-islands and that their average size was found to be 135 nm. The feasibility was tested using conventional total internal reflection fluorescence microscopy while the angle of incidence was adjusted to maximize field enhancement. Mouse microphage cells were cultured on nano-islands, and actin filaments were selectively stained with FITC-conjugated phalloidin. Acquired images were deconvolved based on linear imaging theory, in which molecular distribution was sampled by randomly distributed localized near-field and blurred by point spread function of far-field optics. The optimum fluorophore distribution was probabilistically estimated by repetitively matching a raw image. The deconvolved images are estimated to have a resolution in the range of 100-150 nm largely determined by the size of localized near-fields. We also discuss and compare the results with images acquired with periodic nano-aperture arrays in various optical configurations to excite localized plasmonic fields and to produce super-resolved molecular images.

  6. Microfluidic Sample Preparation for Diagnostic Cytopathology

    PubMed Central

    Mach, Albert J.; Adeyiga, Oladunni B.; Di Carlo, Dino

    2014-01-01

    The cellular components of body fluids are routinely analyzed to identify disease and treatment approaches. While significant focus has been placed on developing cell analysis technologies, tools to automate the preparation of cellular specimens have been more limited, especially for body fluids beyond blood. Preparation steps include separating, concentrating, and exposing cells to reagents. Sample preparation continues to be routinely performed off-chip by technicians, preventing cell-based point-of-care diagnostics, increasing the cost of tests, and reducing the consistency of the final analysis following multiple manually-performed steps. Here, we review the assortment of biofluids for which suspended cells are analyzed, along with their characteristics and diagnostic value. We present an overview of the conventional sample preparation processes for cytological diagnosis. We finally discuss the challenges and opportunities in developing microfluidic devices for the purpose of automating or miniaturizing these processes, with particular emphases on preparing large or small volume samples, working with samples of high cellularity, automating multi-step processes, and obtaining high purity subpopulations of cells. We hope to convey the importance of and help identify new research directions addressing the vast biological and clinical applications in preparing and analyzing the array of available biological fluids. Successfully addressing the challenges described in this review can lead to inexpensive systems to improve diagnostic accuracy while simultaneously reducing overall systemic healthcare costs. PMID:23380972

  7. Abiotic Stress Tolerance in Plants: Myriad Roles of Ascorbate Peroxidase

    PubMed Central

    Pandey, Saurabh; Fartyal, Dhirendra; Agarwal, Aakrati; Shukla, Tushita; James, Donald; Kaul, Tanushri; Negi, Yogesh K.; Arora, Sandeep; Reddy, Malireddy K.

    2017-01-01

    One of the most significant manifestations of environmental stress in plants is the increased production of Reactive Oxygen Species (ROS). These ROS, if allowed to accumulate unchecked, can lead to cellular toxicity. A battery of antioxidant molecules is present in plants for keeping ROS levels under check and to maintain the cellular homeostasis under stress. Ascorbate peroxidase (APX) is a key antioxidant enzyme of such scavenging systems. It catalyses the conversion of H2O2 into H2O, employing ascorbate as an electron donor. The expression of APX is differentially regulated in response to environmental stresses and during normal plant growth and development as well. Different isoforms of APX show differential response to environmental stresses, depending upon their sub-cellular localization, and the presence of specific regulatory elements in the upstream regions of the respective genes. The present review delineates role of APX isoforms with respect to different types of abiotic stresses and its importance as a key antioxidant enzyme in maintaining cellular homeostasis. PMID:28473838

  8. The elasticity and failure of fluid-filled cellular solids: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Warner, M.; Thiel, B. L.; Donald, A. M.

    2000-02-01

    We extend and apply theories of filled foam elasticity and failure to recently available data on foods. The predictions of elastic modulus and failure mode dependence on internal pressure and on wall integrity are borne out by photographic evidence of distortion and failure under compressive loading and under the localized stress applied by a knife blade, and by mechanical data on vegetables differing only in their turgor pressure. We calculate the dry modulus of plate-like cellular solids and the cross over between dry-like and fully fluid-filled elastic response. The bulk elastic properties of limp and aging cellular solids are calculated for model systems and compared with our mechanical data, which also show two regimes of response. The mechanics of an aged, limp beam is calculated, thus offering a practical procedure for comparing experiment and theory. This investigation also thereby offers explanations of the connection between turgor pressure and crispness and limpness of cellular materials.

  9. Modeling and Analysis of Hybrid Cellular/WLAN Systems with Integrated Service-Based Vertical Handoff Schemes

    NASA Astrophysics Data System (ADS)

    Xia, Weiwei; Shen, Lianfeng

    We propose two vertical handoff schemes for cellular network and wireless local area network (WLAN) integration: integrated service-based handoff (ISH) and integrated service-based handoff with queue capabilities (ISHQ). Compared with existing handoff schemes in integrated cellular/WLAN networks, the proposed schemes consider a more comprehensive set of system characteristics such as different features of voice and data services, dynamic information about the admitted calls, user mobility and vertical handoffs in two directions. The code division multiple access (CDMA) cellular network and IEEE 802.11e WLAN are taken into account in the proposed schemes. We model the integrated networks by using multi-dimensional Markov chains and the major performance measures are derived for voice and data services. The important system parameters such as thresholds to prioritize handoff voice calls and queue sizes are optimized. Numerical results demonstrate that the proposed ISHQ scheme can maximize the utilization of overall bandwidth resources with the best quality of service (QoS) provisioning for voice and data services.

  10. The elasticity and failure of fluid-filled cellular solids: theory and experiment.

    PubMed

    Warner, M; Thiel, B L; Donald, A M

    2000-02-15

    We extend and apply theories of filled foam elasticity and failure to recently available data on foods. The predictions of elastic modulus and failure mode dependence on internal pressure and on wall integrity are borne out by photographic evidence of distortion and failure under compressive loading and under the localized stress applied by a knife blade, and by mechanical data on vegetables differing only in their turgor pressure. We calculate the dry modulus of plate-like cellular solids and the cross over between dry-like and fully fluid-filled elastic response. The bulk elastic properties of limp and aging cellular solids are calculated for model systems and compared with our mechanical data, which also show two regimes of response. The mechanics of an aged, limp beam is calculated, thus offering a practical procedure for comparing experiment and theory. This investigation also thereby offers explanations of the connection between turgor pressure and crispness and limpness of cellular materials.

  11. The elasticity and failure of fluid-filled cellular solids: Theory and experiment

    PubMed Central

    Warner, M.; Thiel, B. L.; Donald, A. M.

    2000-01-01

    We extend and apply theories of filled foam elasticity and failure to recently available data on foods. The predictions of elastic modulus and failure mode dependence on internal pressure and on wall integrity are borne out by photographic evidence of distortion and failure under compressive loading and under the localized stress applied by a knife blade, and by mechanical data on vegetables differing only in their turgor pressure. We calculate the dry modulus of plate-like cellular solids and the cross over between dry-like and fully fluid-filled elastic response. The bulk elastic properties of limp and aging cellular solids are calculated for model systems and compared with our mechanical data, which also show two regimes of response. The mechanics of an aged, limp beam is calculated, thus offering a practical procedure for comparing experiment and theory. This investigation also thereby offers explanations of the connection between turgor pressure and crispness and limpness of cellular materials. PMID:10660680

  12. Predictability in Cellular Automata

    PubMed Central

    Agapie, Alexandru; Andreica, Anca; Chira, Camelia; Giuclea, Marius

    2014-01-01

    Modelled as finite homogeneous Markov chains, probabilistic cellular automata with local transition probabilities in (0, 1) always posses a stationary distribution. This result alone is not very helpful when it comes to predicting the final configuration; one needs also a formula connecting the probabilities in the stationary distribution to some intrinsic feature of the lattice configuration. Previous results on the asynchronous cellular automata have showed that such feature really exists. It is the number of zero-one borders within the automaton's binary configuration. An exponential formula in the number of zero-one borders has been proved for the 1-D, 2-D and 3-D asynchronous automata with neighborhood three, five and seven, respectively. We perform computer experiments on a synchronous cellular automaton to check whether the empirical distribution obeys also that theoretical formula. The numerical results indicate a perfect fit for neighbourhood three and five, which opens the way for a rigorous proof of the formula in this new, synchronous case. PMID:25271778

  13. T2 vertebral bone marrow changes after space flight

    NASA Technical Reports Server (NTRS)

    LeBlanc, A.; Lin, C.; Evans, H.; Shackelford, L.; Martin, C.; Hedrick, T.

    1999-01-01

    Bone biopsies indicate that during immobilization bone marrow adipose tissue increases while the functional cellular fraction decreases. One objective of our Spacelab flight experiment was to determine, using in vivo volume-localized magnetic resonance spectroscopy (VLMRS), whether bone marrow composition was altered by space flight. Four crew members of a 17 day Spacelab mission participated in the experiment. The apparent cellular fraction and transverse relaxation time (T2) were determined twice before launch and at several times after flight. Immediately after flight, no significant change in the cellular fraction was found. However, the T2 of the cellular, but not the fat component increased following flight, although to a variable extent, in all crew members with a time course for return to baseline lasting several months. The T2 of seven control subjects showed no significant change. Although these observations may have several explanations, it is speculated that the observed T2 changes might reflect increased marrow osteoblastic activity during recovery from space flight.

  14. Physically-Induced Cytoskeleton Remodeling of Cells in Three-Dimensional Culture

    PubMed Central

    Lee, Sheng-Lin; Nekouzadeh, Ali; Butler, Boyd; Pryse, Kenneth M.; McConnaughey, William B.; Nathan, Adam C.; Legant, Wesley R.; Schaefer, Pascal M.; Pless, Robert B.

    2012-01-01

    Characterizing how cells in three-dimensional (3D) environments or natural tissues respond to biophysical stimuli is a longstanding challenge in biology and tissue engineering. We demonstrate a strategy to monitor morphological and mechanical responses of contractile fibroblasts in a 3D environment. Cells responded to stretch through specific, cell-wide mechanisms involving staged retraction and reinforcement. Retraction responses occurred for all orientations of stress fibers and cellular protrusions relative to the stretch direction, while reinforcement responses, including extension of cellular processes and stress fiber formation, occurred predominantly in the stretch direction. A previously unreported role of F-actin clumps was observed, with clumps possibly acting as F-actin reservoirs for retraction and reinforcement responses during stretch. Responses were consistent with a model of cellular sensitivity to local physical cues. These findings suggest mechanisms for global actin cytoskeleton remodeling in non-muscle cells and provide insight into cellular responses important in pathologies such as fibrosis and hypertension. PMID:23300512

  15. Under the Microscope: Single-Domain Antibodies for Live-Cell Imaging and Super-Resolution Microscopy.

    PubMed

    Traenkle, Bjoern; Rothbauer, Ulrich

    2017-01-01

    Single-domain antibodies (sdAbs) have substantially expanded the possibilities of advanced cellular imaging such as live-cell or super-resolution microscopy to visualize cellular antigens and their dynamics. In addition to their unique properties including small size, high stability, and solubility in many environments, sdAbs can be efficiently functionalized according to the needs of the respective imaging approach. Genetically encoded intrabodies fused to fluorescent proteins (chromobodies) have become versatile tools to study dynamics of endogenous proteins in living cells. Additionally, sdAbs conjugated to organic dyes were shown to label cellular structures with high density and minimal fluorophore displacement making them highly attractive probes for super-resolution microscopy. Here, we review recent advances of the chromobody technology to visualize localization and dynamics of cellular targets and the application of chromobody-based cell models for compound screening. Acknowledging the emerging importance of super-resolution microscopy in cell biology, we further discuss advantages and challenges of sdAbs for this technology.

  16. Designer amphiphilic proteins as building blocks for the intracellular formation of organelle-like compartments

    NASA Astrophysics Data System (ADS)

    Huber, Matthias C.; Schreiber, Andreas; von Olshausen, Philipp; Varga, Balázs R.; Kretz, Oliver; Joch, Barbara; Barnert, Sabine; Schubert, Rolf; Eimer, Stefan; Kele, Péter; Schiller, Stefan M.

    2015-01-01

    Nanoscale biological materials formed by the assembly of defined block-domain proteins control the formation of cellular compartments such as organelles. Here, we introduce an approach to intentionally ‘program’ the de novo synthesis and self-assembly of genetically encoded amphiphilic proteins to form cellular compartments, or organelles, in Escherichia coli. These proteins serve as building blocks for the formation of artificial compartments in vivo in a similar way to lipid-based organelles. We investigated the formation of these organelles using epifluorescence microscopy, total internal reflection fluorescence microscopy and transmission electron microscopy. The in vivo modification of these protein-based de novo organelles, by means of site-specific incorporation of unnatural amino acids, allows the introduction of artificial chemical functionalities. Co-localization of membrane proteins results in the formation of functionalized artificial organelles combining artificial and natural cellular function. Adding these protein structures to the cellular machinery may have consequences in nanobiotechnology, synthetic biology and materials science, including the constitution of artificial cells and bio-based metamaterials.

  17. Human papillomavirus infects placental trophoblast and Hofbauer cells, but appears not to play a causal role in miscarriage and preterm labor.

    PubMed

    Ambühl, Lea M M; Leonhard, Anne K; Widen Zakhary, Carina; Jørgensen, Annemette; Blaakaer, Jan; Dybkaer, Karen; Baandrup, Ulrik; Uldbjerg, Niels; Sørensen, Suzette

    2017-10-01

    Recently, an association between human papillomavirus infection and both spontaneous abortion and spontaneous preterm delivery was suggested. However, the reported human papillomavirus prevalence in pregnant women varies considerably and reliable conclusions are difficult. We aimed to investigate human papillomavirus infection in placental tissue of a Danish study cohort. Furthermore, we studied the cellular localization of human papillomavirus. In this prospective case-control study, placental tissue was analyzed for human papillomavirus infection by nested PCR in the following four study groups: full-term delivery (n = 103), spontaneous preterm delivery (n = 69), elective abortion (n = 54), and spontaneous abortion (n = 44). Moreover, human papillomavirus cellular target was identified using in situ hybridization. Human papillomavirus prevalence in placental tissue was 8.7% in full-term deliveries, 8.8% in spontaneous preterm deliveries, 10.9% in spontaneous abortions, and 20.4% in elective abortions. Twelve different human papillomavirus types were detected, and placental human papillomavirus infection was associated to a disease history of cervical cancer. Human papillomavirus DNA was identified in trophoblast cells, cells of the placental villi mesenchyme including Hofbauer cells, and in parts of the encasing endometrium. Placental human papillomavirus infections are not likely to constitute a risk factor for spontaneous preterm labor or spontaneous abortions in the Danish population, although an effect of human papillomavirus DNA in placental cells cannot be excluded. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.

  18. Proteome-scale human interactomics

    PubMed Central

    Luck, Katja; Sheynkman, Gloria M.; Zhang, Ivy; Vidal, Marc

    2017-01-01

    Cellular functions are mediated by complex interactome networks of physical, biochemical, and functional interactions between DNA sequences, RNA molecules, proteins, lipids, and small metabolites. A thorough understanding of cellular organization requires accurate and relatively complete models of interactome networks at proteome-scale. The recent publication of four human protein-protein interaction (PPI) maps represents a technological breakthrough and an unprecedented resource for the scientific community, heralding a new era of proteome-scale human interactomics. Our knowledge gained from these and complementary studies provides fresh insights into the opportunities and challenges when analyzing systematically generated interactome data, defines a clear roadmap towards the generation of a first reference interactome, and reveals new perspectives on the organization of cellular life. PMID:28284537

  19. Analysis of cellular signal transduction from an information theoretic approach.

    PubMed

    Uda, Shinsuke; Kuroda, Shinya

    2016-03-01

    Signal transduction processes the information of various cellular functions, including cell proliferation, differentiation, and death. The information for controlling cell fate is transmitted by concentrations of cellular signaling molecules. However, how much information is transmitted in signaling pathways has thus far not been investigated. Shannon's information theory paves the way to quantitatively analyze information transmission in signaling pathways. The theory has recently been applied to signal transduction, and mutual information of signal transduction has been determined to be a measure of information transmission. We review this work and provide an overview of how signal transduction transmits informational input and exerts biological output. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Measurement of the traction force of biological cells by digital holography

    PubMed Central

    Yu, Xiao; Cross, Michael; Liu, Changgeng; Clark, David C.; Haynie, Donald T.; Kim, Myung K.

    2011-01-01

    The traction force produced by biological cells has been visualized as distortions in flexible substrata. We have utilized quantitative phase microscopy by digital holography (DH-QPM) to study the wrinkling of a silicone rubber film by motile fibroblasts. Surface deformation and the cellular traction force have been measured from phase profiles in a direct and straightforward manner. DH-QPM is shown to provide highly efficient and versatile means for quantitatively analyzing cellular motility. PMID:22254175

  1. Histogram analysis parameters of apparent diffusion coefficient reflect tumor cellularity and proliferation activity in head and neck squamous cell carcinoma.

    PubMed

    Surov, Alexey; Meyer, Hans Jonas; Winter, Karsten; Richter, Cindy; Hoehn, Anna-Kathrin

    2018-05-04

    Our purpose was to analyze associations between apparent diffusion coefficient (ADC) histogram analysis parameters and histopathologicalfeatures in head and neck squamous cell carcinoma (HNSCC). The study involved 32 patients with primary HNSCC. For every tumor, the following histogram analysis parameters were calculated: ADCmean, ADCmax, ADC min , ADC median , ADC mode , P10, P25, P75, P90, kurtosis, skewness, and entropy. Furthermore, proliferation index KI 67, cell count, total and average nucleic areas were estimated. Spearman's correlation coefficient (p) was used to analyze associations between investigated parameters. In overall sample, all ADC values showed moderate inverse correlations with KI 67. All ADC values except ADCmax correlated inversely with tumor cellularity. Slightly correlations were identified between total/average nucleic area and ADC mean , ADC min , ADC median , and P25. In G1/2 tumors, only ADCmode correlated well with Ki67. No statistically significant correlations between ADC parameters and cellularity were found. In G3 tumors, Ki 67 correlated with all ADC parameters except ADCmode. Cell count correlated well with all ADC parameters except ADCmax. Total nucleic area correlated inversely with ADC mean , ADC min , ADC median , P25, and P90. ADC histogram parameters reflect proliferation potential and cellularity in HNSCC. The associations between histopathology and imaging depend on tumor grading.

  2. Tracking Image Correlation: Combining Single-Particle Tracking and Image Correlation

    PubMed Central

    Dupont, A.; Stirnnagel, K.; Lindemann, D.; Lamb, D.C.

    2013-01-01

    The interactions and coordination of biomolecules are crucial for most cellular functions. The observation of protein interactions in live cells may provide a better understanding of the underlying mechanisms. After fluorescent labeling of the interacting partners and live-cell microscopy, the colocalization is generally analyzed by quantitative global methods. Recent studies have addressed questions regarding the individual colocalization of moving biomolecules, usually by using single-particle tracking (SPT) and comparing the fluorescent intensities in both color channels. Here, we introduce a new method that combines SPT and correlation methods to obtain a dynamical 3D colocalization analysis along single trajectories of dual-colored particles. After 3D tracking, the colocalization is computed at each particle’s position via the local 3D image cross correlation of the two detection channels. For every particle analyzed, the output consists of the 3D trajectory, the time-resolved 3D colocalization information, and the fluorescence intensity in both channels. In addition, the cross-correlation analysis shows the 3D relative movement of the two fluorescent labels with an accuracy of 30 nm. We apply this method to the tracking of viral fusion events in live cells and demonstrate its capacity to obtain the time-resolved colocalization status of single particles in dense and noisy environments. PMID:23746509

  3. Human, vector and parasite Hsp90 proteins: A comparative bioinformatics analysis.

    PubMed

    Faya, Ngonidzashe; Penkler, David L; Tastan Bishop, Özlem

    2015-01-01

    The treatment of protozoan parasitic diseases is challenging, and thus identification and analysis of new drug targets is important. Parasites survive within host organisms, and some need intermediate hosts to complete their life cycle. Changing host environment puts stress on parasites, and often adaptation is accompanied by the expression of large amounts of heat shock proteins (Hsps). Among Hsps, Hsp90 proteins play an important role in stress environments. Yet, there has been little computational research on Hsp90 proteins to analyze them comparatively as potential parasitic drug targets. Here, an attempt was made to gain detailed insights into the differences between host, vector and parasitic Hsp90 proteins by large-scale bioinformatics analysis. A total of 104 Hsp90 sequences were divided into three groups based on their cellular localizations; namely cytosolic, mitochondrial and endoplasmic reticulum (ER). Further, the parasitic proteins were divided according to the type of parasite (protozoa, helminth and ectoparasite). Primary sequence analysis, phylogenetic tree calculations, motif analysis and physicochemical properties of Hsp90 proteins suggested that despite the overall structural conservation of these proteins, parasitic Hsp90 proteins have unique features which differentiate them from human ones, thus encouraging the idea that protozoan Hsp90 proteins should be further analyzed as potential drug targets.

  4. Proteome Profiles of Outer Membrane Vesicles and Extracellular Matrix of Pseudomonas aeruginosa Biofilms.

    PubMed

    Couto, Narciso; Schooling, Sarah R; Dutcher, John R; Barber, Jill

    2015-10-02

    In the present work, two different proteomic platforms, gel-based and gel-free, were used to map the matrix and outer membrane vesicle exoproteomes of Pseudomonas aeruginosa PAO1 biofilms. These two proteomic strategies allowed us a confident identification of 207 and 327 proteins from enriched outer membrane vesicles and whole matrix isolated from biofilms. Because of the physicochemical characteristics of these subproteomes, the two strategies showed complementarity, and thus, the most comprehensive analysis of P. aeruginosa exoproteome to date was achieved. Under our conditions, outer membrane vesicles contribute approximately 20% of the whole matrix proteome, demonstrating that membrane vesicles are an important component of the matrix. The proteomic profiles were analyzed in terms of their biological context, namely, a biofilm. Accordingly relevant metabolic processes involved in cellular adaptation to the biofilm lifestyle as well as those related to P. aeruginosa virulence capabilities were a key feature of the analyses. The diversity of the matrix proteome corroborates the idea of high heterogeneity within the biofilm; cells can display different levels of metabolism and can adapt to local microenvironments making this proteomic analysis challenging. In addition to analyzing our own primary data, we extend the analysis to published data by other groups in order to deepen our understanding of the complexity inherent within biofilm populations.

  5. Automated analysis of high-content microscopy data with deep learning.

    PubMed

    Kraus, Oren Z; Grys, Ben T; Ba, Jimmy; Chong, Yolanda; Frey, Brendan J; Boone, Charles; Andrews, Brenda J

    2017-04-18

    Existing computational pipelines for quantitative analysis of high-content microscopy data rely on traditional machine learning approaches that fail to accurately classify more than a single dataset without substantial tuning and training, requiring extensive analysis. Here, we demonstrate that the application of deep learning to biological image data can overcome the pitfalls associated with conventional machine learning classifiers. Using a deep convolutional neural network (DeepLoc) to analyze yeast cell images, we show improved performance over traditional approaches in the automated classification of protein subcellular localization. We also demonstrate the ability of DeepLoc to classify highly divergent image sets, including images of pheromone-arrested cells with abnormal cellular morphology, as well as images generated in different genetic backgrounds and in different laboratories. We offer an open-source implementation that enables updating DeepLoc on new microscopy datasets. This study highlights deep learning as an important tool for the expedited analysis of high-content microscopy data. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  6. Defects and Disorder in the Drosophila Eye

    NASA Astrophysics Data System (ADS)

    Kim, Sangwoo; Carthew, Richard; Hilgenfeldt, Sascha

    Cell division and differentiation tightly control the regular pattern in the normal eye of the Drosophila fruit fly while certain genetic mutations introduce disorder in the form of topological defects. Analyzing data from pupal retinas, we develop a model based on Voronoi construction that explains the defect statistics as a consequence of area variation of individual facets (ommatidia). The analysis reveals a previously unknown systematic long-range area variation that spans the entire eye, with distinct effects on topological disorder compared to local fluctuations. The internal structure of the ommatidia and the stiffness of their interior cells also plays a crucial role in the defect generation. Accurate predictions of the correlation between the area variation and the defect density in both normal and mutant animals are obtained without free parameters. This approach can potentially be applied to cellular systems in many other contexts to identify size-topology correlations near the onset of symmetry breaking. This work has been supported by the NIH (GM098077) and the NSF (Grant No. 1504301).

  7. Cache-enabled small cell networks: modeling and tradeoffs.

    PubMed

    Baştuǧ, Ejder; Bennis, Mehdi; Kountouris, Marios; Debbah, Mérouane

    We consider a network model where small base stations (SBSs) have caching capabilities as a means to alleviate the backhaul load and satisfy users' demand. The SBSs are stochastically distributed over the plane according to a Poisson point process (PPP) and serve their users either (i) by bringing the content from the Internet through a finite rate backhaul or (ii) by serving them from the local caches. We derive closed-form expressions for the outage probability and the average delivery rate as a function of the signal-to-interference-plus-noise ratio (SINR), SBS density, target file bitrate, storage size, file length, and file popularity. We then analyze the impact of key operating parameters on the system performance. It is shown that a certain outage probability can be achieved either by increasing the number of base stations or the total storage size. Our results and analysis provide key insights into the deployment of cache-enabled small cell networks (SCNs), which are seen as a promising solution for future heterogeneous cellular networks.

  8. Characterization of the Expression of Basigin Gene Products Within the Pineal Gland of Mice.

    PubMed

    Tokar, Derek; van Ekeris, Leslie; Linser, Paul J; Ochrietor, Judith D

    2017-08-01

    The expression of Basigin gene products and monocarboxylate transporter-1 (MCT1) has been investigated within the mammalian neural retina and suggests a role for these proteins in cellular metabolism within that tissue. The purpose of the present study was to investigate the expression of these same proteins in the pineal gland of the mouse brain. Mouse pineal gland and neural retina RNA and protein were subjected to quantitative reverse transcription-polymerase chain reaction and immunoblotting analyses. In addition, paraffin-embedded sections of each tissue were analyzed for expression of Basigin gene products and MCT1 via immunohistochemistry. The results indicate that MCT1 and Basigin variant-2, but not Basigin variant-1, are expressed within the mouse pineal gland. The expression of Basigin variant-2 and MCT1 was localized to the capsule surrounding the gland. The position and relative amounts of the gene products suggest that they play a much less prominent role within the pineal gland than in the neural retina.

  9. The hypothalamic neuropeptide oxytocin is required for formation of the neurovascular interface of the pituitary.

    PubMed

    Gutnick, Amos; Blechman, Janna; Kaslin, Jan; Herwig, Lukas; Belting, Heinz-Georg; Affolter, Markus; Bonkowsky, Joshua L; Levkowitz, Gil

    2011-10-18

    The hypothalamo-neurohypophyseal system (HNS) is the neurovascular structure through which the hypothalamic neuropeptides oxytocin and arginine-vasopressin exit the brain into the bloodstream, where they go on to affect peripheral physiology. Here, we investigate the molecular cues that regulate the neurovascular contact between hypothalamic axons and neurohypophyseal capillaries of the zebrafish. We developed a transgenic system in which both hypothalamic axons and neurohypophyseal vasculature can be analyzed in vivo. We identified the cellular organization of the zebrafish HNS as well as the dynamic processes that contribute to formation of the HNS neurovascular interface. We show that formation of this interface is regulated during development by local release of oxytocin, which affects endothelial morphogenesis. This cell communication process is essential for the establishment of a tight axovasal interface between the neurons and blood vessels of the HNS. We present a unique example of axons affecting endothelial morphogenesis through secretion of a neuropeptide. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Structure-based design, synthesis and crystallization of 2-arylquinazolines as lipid pocket ligands of p38α MAPK

    PubMed Central

    Bührmann, Mike; Wiedemann, Bianca M.; Müller, Matthias P.; Hardick, Julia; Ecke, Maria

    2017-01-01

    In protein kinase research, identifying and addressing small molecule binding sites other than the highly conserved ATP-pocket are of intense interest because this line of investigation extends our understanding of kinase function beyond the catalytic phosphotransfer. Such alternative binding sites may be involved in altering the activation state through subtle conformational changes, control cellular enzyme localization, or in mediating and disrupting protein-protein interactions. Small organic molecules that target these less conserved regions might serve as tools for chemical biology research and to probe alternative strategies in targeting protein kinases in disease settings. Here, we present the structure-based design and synthesis of a focused library of 2-arylquinazoline derivatives to target the lipophilic C-terminal binding pocket in p38α MAPK, for which a clear biological function has yet to be identified. The interactions of the ligands with p38α MAPK was analyzed by SPR measurements and validated by protein X-ray crystallography. PMID:28892510

  11. Distribution of Potato virus Y in potato plant organs, tissues, and cells.

    PubMed

    Kogovšek, P; Kladnik, A; Mlakar, J; Znidarič, M Tušek; Dermastia, M; Ravnikar, M; Pompe-Novak, M

    2011-11-01

    The distribution of Potato virus Y (PVY) in the systemically infected potato (Solanum tuberosum) plants of the highly susceptible cultivar Igor was investigated. Virus presence and accumulation was analyzed in different plant organs and tissues using real-time polymerase chain reaction and transmission electron microscopy (TEM) negative staining methods. To get a complete insight into the location of viral RNA within the tissue, in situ hybridization was developed and optimized for the detection of PVY RNA at the cellular level. PVY was shown to accumulate in all studied leaf and stem tissues, in shoot tips, roots, and tubers; however, the level of virus accumulation was specific for each organ or tissue. The highest amounts of viral RNA and viral particles were found in symptomatic leaves and stem. By observing cell ultrastructure with TEM, viral cytoplasmic inclusion bodies were localized in close vicinity to the epidermis and in trichomes. Our results show that viral RNA, viral particles, and cytoplasmic inclusion bodies colocalize within the same type of cells or in close vicinity.

  12. An improved broadband E patch microstrip antenna for wireless communications

    NASA Astrophysics Data System (ADS)

    Bzeih, Amer; Chahine, Soubhi Abou; Kabalan, Karim Y.; El-Hajj, Ali; Chehab, Ali

    2007-12-01

    A broadband probe-fed microstrip antenna with E-shaped patch on a single-layer air substrate is investigated. Bandwidth enhancement of the antenna is achieved by inserting two parallel slots into its radiating patch. The effects of the antenna parameters are analyzed, and their optimal values for broadband operation are obtained. The design parameters are formulated as a function of the center frequency, and the empirical equations are validated by simulation. A 51.5% enhanced E patch antenna for modern wireless communications (Personal Communications Service, Digital Cellular System, Universal Mobile Telecommunications System, Wireless Local Area Network 802.11 b/g, and Bluetooth) is designed, simulated, fabricated, and measured. A comparison between simulated and measured results is presented, and it showed satisfactory agreement. Moreover, the effect of incorporating more parallel slots into the radiating patch is investigated. The antenna is designed and simulated for different scenarios (four slots, six slots, and eight slots), where a bandwidth of 57% is achieved in the eight-slot design.

  13. (Machine-)Learning to analyze in vivo microscopy: Support vector machines.

    PubMed

    Wang, Michael F Z; Fernandez-Gonzalez, Rodrigo

    2017-11-01

    The development of new microscopy techniques for super-resolved, long-term monitoring of cellular and subcellular dynamics in living organisms is revealing new fundamental aspects of tissue development and repair. However, new microscopy approaches present several challenges. In addition to unprecedented requirements for data storage, the analysis of high resolution, time-lapse images is too complex to be done manually. Machine learning techniques are ideally suited for the (semi-)automated analysis of multidimensional image data. In particular, support vector machines (SVMs), have emerged as an efficient method to analyze microscopy images obtained from animals. Here, we discuss the use of SVMs to analyze in vivo microscopy data. We introduce the mathematical framework behind SVMs, and we describe the metrics used by SVMs and other machine learning approaches to classify image data. We discuss the influence of different SVM parameters in the context of an algorithm for cell segmentation and tracking. Finally, we describe how the application of SVMs has been critical to study protein localization in yeast screens, for lineage tracing in C. elegans, or to determine the developmental stage of Drosophila embryos to investigate gene expression dynamics. We propose that SVMs will become central tools in the analysis of the complex image data that novel microscopy modalities have made possible. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Digital image analysis agrees with visual estimates of adult bone marrow trephine biopsy cellularity.

    PubMed

    Hagiya, A S; Etman, A; Siddiqi, I N; Cen, S; Matcuk, G R; Brynes, R K; Salama, M E

    2018-04-01

    Evaluation of cellularity is an essential component of bone marrow trephine biopsy examination. The standard practice is to report the results as visual estimates (VE). Digital image analysis (DIA) offers the promise of more objective measurements of cellularity. Adult bone marrow trephine biopsy sections were assessed for cellularity by VE. Sections were scanned using an Aperio AT2 Scanscope and analyzed using a Cytonuclear (version 1.4) algorithm on halo software. Intraclass correlation (ICC) was used to assess relatedness between VE and DIA, and between MRI and DIA for a separate subset of patients. Trephine biopsy sections from a subset of patients with bone marrow biopsies uninvolved by malignancy were assessed for age-related changes. Interobserver VE agreement was good to excellent. The ICC value was 0.81 for VE and DIA, and 0.50 for MRI and DIA. Linearity studies showed no statistically significant trend for age-related changes in cellularity in our cohort (r = -.29, P = .06). Agreement was good between VE and DIA. It may be possible to use DIA or VE to measure cellularity in the appropriate clinical scenario. The limited sample size precludes similar determinations for MRI calculations. Further studies examining healthy donors are necessary before making definitive conclusions regarding age and cellularity. © 2017 John Wiley & Sons Ltd.

  15. Design and implementation of a novel mechanical testing system for cellular solids.

    PubMed

    Nazarian, Ara; Stauber, Martin; Müller, Ralph

    2005-05-01

    Cellular solids constitute an important class of engineering materials encompassing both man-made and natural constructs. Materials such as wood, cork, coral, and cancellous bone are examples of cellular solids. The structural analysis of cellular solid failure has been limited to 2D sections to illustrate global fracture patterns. Due to the inherent destructiveness of 2D methods, dynamic assessment of fracture progression has not been possible. Image-guided failure assessment (IGFA), a noninvasive technique to analyze 3D progressive bone failure, has been developed utilizing stepwise microcompression in combination with time-lapsed microcomputed tomographic imaging (microCT). This method allows for the assessment of fracture progression in the plastic region, where much of the structural deformation/energy absorption is encountered in a cellular solid. Therefore, the goal of this project was to design and fabricate a novel micromechanical testing system to validate the effectiveness of the stepwise IGFA technique compared to classical continuous mechanical testing, using a variety of engineered and natural cellular solids. In our analysis, we found stepwise compression to be a valid approach for IGFA with high precision and accuracy comparable to classical continuous testing. Therefore, this approach complements the conventional mechanical testing methods by providing visual insight into the failure propagation mechanisms of cellular solids. (c) 2005 Wiley Periodicals, Inc.

  16. Cellular Viscosity in Prokaryotes and Thermal Stability of Low Molecular Weight Biomolecules.

    PubMed

    Cuecas, Alba; Cruces, Jorge; Galisteo-López, Juan F; Peng, Xiaojun; Gonzalez, Juan M

    2016-08-23

    Some low molecular weight biomolecules, i.e., NAD(P)H, are unstable at high temperatures. The use of these biomolecules by thermophilic microorganisms has been scarcely analyzed. Herein, NADH stability has been studied at different temperatures and viscosities. NADH decay increased at increasing temperatures. At increasing viscosities, NADH decay rates decreased. Thus, maintaining relatively high cellular viscosity in cells could result in increased stability of low molecular weight biomolecules (i.e., NADH) at high temperatures, unlike what was previously deduced from studies in diluted water solutions. Cellular viscosity was determined using a fluorescent molecular rotor in various prokaryotes covering the range from 10 to 100°C. Some mesophiles showed the capability of changing cellular viscosity depending on growth temperature. Thermophiles and extreme thermophiles presented a relatively high cellular viscosity, suggesting this strategy as a reasonable mechanism to thrive under these high temperatures. Results substantiate the capability of thermophiles and extreme thermophiles (growth range 50-80°C) to stabilize and use generally considered unstable, universal low molecular weight biomolecules. In addition, this study represents a first report, to our knowledge, on cellular viscosity measurements in prokaryotes and it shows the dependency of prokaryotic cellular viscosity on species and growth temperature. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Chlamydia trachomatis protein CT009 is a structural and functional homolog to the key morphogenesis component RodZ and interacts with division septal plane localized MreB

    DOE PAGES

    Kemege, Kyle E.; Hickey, John M.; Barta, Michael L.; ...

    2014-11-10

    Cell division in Chlamydiae is poorly understood as apparent homologs to most conserved bacterial cell division proteins are lacking and presence of elongation (rod shape) associated proteins indicate non-canonical mechanisms may be employed. The rod-shape determining protein MreB has been proposed as playing a unique role in chlamydial cell division. In other organisms, MreB is part of an elongation complex that requires RodZ for proper function. A recent study reported that the protein encoded by ORF CT009 interacts with MreB despite low sequence similarity to RodZ. The studies in this paper expand on those observations through protein structure, mutagenesis andmore » cellular localization analyses. Structural analysis indicated that CT009 shares high level of structural similarity to RodZ, revealing the conserved orientation of two residues critical for MreB interaction. Substitutions eliminated MreB protein interaction and partial complementation provided by CT009 in RodZ deficient Escherichia coli. Cellular localization analysis of CT009 showed uniform membrane staining in Chlamydia. This was in contrast to the localization of MreB, which was restricted to predicted septal planes. Finally, MreB localization to septal planes provides direct experimental observation for the role of MreB in cell division and supports the hypothesis that it serves as a functional replacement for FtsZ in Chlamydia.« less

  18. Chlamydia trachomatis protein CT009 is a structural and functional homolog to the key morphogenesis component RodZ and interacts with division septal plane localized MreB

    PubMed Central

    Kemege, Kyle E.; Hickey, John M.; Barta, Michael L.; Wickstrum, Jason; Balwalli, Namita; Lovell, Scott; Battaile, Kevin P.; Hefty, P. Scott

    2015-01-01

    Summary Cell division in Chlamydiae is poorly understood as apparent homologs to most conserved bacterial cell division proteins are lacking and presence of elongation (rod shape) associated proteins indicate non-canonical mechanisms may be employed. The rod-shape determining protein MreB has been proposed as playing a unique role in chlamydial cell division. In other organisms, MreB is part of an elongation complex that requires RodZ for proper function. A recent study reported that the protein encoded by ORF CT009 interacts with MreB despite low sequence similarity to RodZ. The studies herein expand on those observations through protein structure, mutagenesis, and cellular localization analyses. Structural analysis indicated that CT009 shares high level of structural similarity to RodZ, revealing the conserved orientation of two residues critical for MreB interaction. Substitutions eliminated MreB protein interaction and partial complementation provided by CT009 in RodZ deficient E. coli. Cellular localization analysis of CT009 showed uniform membrane staining in Chlamydia. This was in contrast to the localization of MreB, which was restricted to predicted septal planes. MreB localization to septal planes provides direct experimental observation for the role of MreB in cell division and supports the hypothesis that it serves as a functional replacement for FtsZ in Chlamydia. PMID:25382739

  19. Chlamydia trachomatis protein CT009 is a structural and functional homolog to the key morphogenesis component RodZ and interacts with division septal plane localized MreB.

    PubMed

    Kemege, Kyle E; Hickey, John M; Barta, Michael L; Wickstrum, Jason; Balwalli, Namita; Lovell, Scott; Battaile, Kevin P; Hefty, P Scott

    2015-02-01

    Cell division in Chlamydiae is poorly understood as apparent homologs to most conserved bacterial cell division proteins are lacking and presence of elongation (rod shape) associated proteins indicate non-canonical mechanisms may be employed. The rod-shape determining protein MreB has been proposed as playing a unique role in chlamydial cell division. In other organisms, MreB is part of an elongation complex that requires RodZ for proper function. A recent study reported that the protein encoded by ORF CT009 interacts with MreB despite low sequence similarity to RodZ. The studies herein expand on those observations through protein structure, mutagenesis and cellular localization analyses. Structural analysis indicated that CT009 shares high level of structural similarity to RodZ, revealing the conserved orientation of two residues critical for MreB interaction. Substitutions eliminated MreB protein interaction and partial complementation provided by CT009 in RodZ deficient Escherichia coli. Cellular localization analysis of CT009 showed uniform membrane staining in Chlamydia. This was in contrast to the localization of MreB, which was restricted to predicted septal planes. MreB localization to septal planes provides direct experimental observation for the role of MreB in cell division and supports the hypothesis that it serves as a functional replacement for FtsZ in Chlamydia. © 2014 John Wiley & Sons Ltd.

  20. Regulating Set-β's Subcellular Localization Toggles Its Function between Inhibiting and Promoting Axon Growth and Regeneration

    PubMed Central

    Wang, Yan; Morkin, Melina I.; Fernandez, Stephanie G.; Mlacker, Gregory M.; Shechter, Jesse M.; Liu, Xiongfei; Patel, Karan H.; Lapins, Allison; Yang, Steven; Dombrowski, Susan M.

    2014-01-01

    The failure of the CNS neurons to regenerate axons after injury or stroke is a major clinical problem. Transcriptional regulators like Set-β are well positioned to regulate intrinsic axon regeneration capacity, which declines developmentally in maturing CNS neurons. Set-β also functions at cellular membranes and its subcellular localization is disrupted in Alzheimer's disease, but many of its biological mechanisms have not been explored in neurons. We found that Set-β was upregulated postnatally in CNS neurons, and was primarily localized to the nucleus but was also detected in the cytoplasm and adjacent to the plasma membrane. Remarkably, nuclear Set-β suppressed, whereas Set-β localized to cytoplasmic membranes promoted neurite growth in rodent retinal ganglion cells and hippocampal neurons. Mimicking serine 9 phosphorylation, as found in Alzheimer's disease brains, delayed nuclear import and furthermore blocked the ability of nuclear Set-β to suppress neurite growth. We also present data on gene regulation and protein binding partner recruitment by Set-β in primary neurons, raising the hypothesis that nuclear Set-β may preferentially regulate gene expression whereas Set-β at cytoplasmic membranes may regulate unique cofactors, including PP2A, which we show also regulates axon growth in vitro. Finally, increasing recruitment of Set-β to cellular membranes promoted adult rat optic nerve axon regeneration after injury in vivo. Thus, Set-β differentially regulates axon growth and regeneration depending on subcellular localization and phosphorylation. PMID:24849368

  1. Recent advances in intracellular and in vivo ROS sensing: focus on nanoparticle and nanotube applications.

    PubMed

    Uusitalo, Larissa M; Hempel, Nadine

    2012-01-01

    Reactive oxygen species (ROS) are increasingly being implicated in the regulation of cellular signaling cascades. Intracellular ROS fluxes are associated with cellular function ranging from proliferation to cell death. Moreover, the importance of subtle, spatio-temporal shifts in ROS during localized cellular signaling events is being realized. Understanding the biochemical nature of the ROS involved will enhance our knowledge of redox-signaling. An ideal intracellular sensor should therefore resolve real-time, localized ROS changes, be highly sensitive to physiologically relevant shifts in ROS and provide specificity towards a particular molecule. For in vivo applications issues such as bioavailability of the probe, tissue penetrance of the signal and signal-to-noise ratio also need to be considered. In the past researchers have heavily relied on the use of ROS-sensitive fluorescent probes and, more recently, genetically engineered ROS sensors. However, there is a great need to improve on current methods to address the above issues. Recently, the field of molecular sensing and imaging has begun to take advantage of the unique physico-chemical properties of nanoparticles and nanotubes. Here we discuss the recent advances in the use of these nanostructures as alternative platforms for ROS sensing, with particular emphasis on intracellular and in vivo ROS detection and quantification.

  2. Learning Cellular Sorting Pathways Using Protein Interactions and Sequence Motifs

    PubMed Central

    Lin, Tien-Ho; Bar-Joseph, Ziv

    2011-01-01

    Abstract Proper subcellular localization is critical for proteins to perform their roles in cellular functions. Proteins are transported by different cellular sorting pathways, some of which take a protein through several intermediate locations until reaching its final destination. The pathway a protein is transported through is determined by carrier proteins that bind to specific sequence motifs. In this article, we present a new method that integrates protein interaction and sequence motif data to model how proteins are sorted through these sorting pathways. We use a hidden Markov model (HMM) to represent protein sorting pathways. The model is able to determine intermediate sorting states and to assign carrier proteins and motifs to the sorting pathways. In simulation studies, we show that the method can accurately recover an underlying sorting model. Using data for yeast, we show that our model leads to accurate prediction of subcellular localization. We also show that the pathways learned by our model recover many known sorting pathways and correctly assign proteins to the path they utilize. The learned model identified new pathways and their putative carriers and motifs and these may represent novel protein sorting mechanisms. Supplementary results and software implementation are available from http://murphylab.web.cmu.edu/software/2010_RECOMB_pathways/. PMID:21999284

  3. Cellular structure of the healthy and keratoconic human cornea imaged in-vivo with sub-micrometer axial resolution OCT(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bizheva, Kostadinka; Tan, Bingyao; Mason, Erik; Carter, Kirsten; Haines, Lacey; Sorbara, Luigina

    2017-02-01

    Keratoconus causes progressive morphological changes in the corneal epithelium (EPI), Bowman's membrane (BM) and anterior stroma. However, it is still not well understood if KC originates in the corneal epithelium and propagates to the anterior stroma through disruptions of the BM, or vice versa. In this study we used a sub-micrometer axial resolution OCT system to image in-vivo the cellular structure of the EPI layer and the fibrous structure of the BM and the anterior stroma in mild to advanced keratoconics, as well as healthy subjects. The imaging study was approved by the University of Waterloo Human Research Ethics Committee. The OCT system operates in the 800 nm spectral region at 34 kHz image acquisition rate and provides 0.95 um axial and < 2 um lateral resolution in corneal tissue, which is sufficient to visualize the cellular structure of the corneal epithelium and the fibrous structure of the BM. In some subjects, localized thinning and thickening of the EPI layer was observed, while there was no visible damage to the BM or anterior stroma. In other subjects, localized breakage of the stromal collagen fibrils was observed with no significant morphological changes of the corneal EPI.

  4. Studying the relationship between redox and cell growth using quantitative phase imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sridharan, Shamira; Leslie, Matthew T.; Bapst, Natalya; Smith, John; Gaskins, H. Rex; Popescu, Gabriel

    2016-03-01

    Quantitative phase imaging has been used in the past to study the dry mass of cells and study cell growth under various treatment conditions. However, the relationship between cellular redox and growth rates has not yet been studied in this context. This study employed the recombinant Glrx-roGFP2 redox biosensor targeted to the mitochondrial matrix or cytosolic compartments of A549 lung epithelial carcinoma cells. The Glrx-roGFP2s biosensor consists of a modified GFP protein containing internal cysteine residues sensitive to the local redox environment. The formation/dissolution of sulfide bridges contorts the internal chromophore, dictating corresponding changes in florescence emission that provide direct measures of the local redox potential. Combining 2-channel florescent imaging of the redox sensor with quantitative phase imaging allowed observation of redox homeostasis alongside measurements of cellular mass during full cycles of cellular division. The results indicate that mitochondrial redox showed a stronger inverse correlation with cell growth than cytoplasmic redox states; although redox changes are restricted to a 5% range. We are now studying the relationship between mitochondrial redox and cell growth in an isogenic series of breast cell lines built upon the MCF-10A genetic background that vary both in malignancy and metastatic potential.

  5. Molecular imaging and sensing using plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Crow, Matthew James

    Noble metal nanoparticles exhibit unique optical properties that are beneficial to a variety of applications, including molecular imaging. The large scattering cross sections of nanoparticles provide high contrast necessary for biomarkers. Unlike alternative contrast agents, nanoparticles provide refractive index sensitivity revealing information regarding the local cellular environment. Altering the shape and composition of the nanoparticle shifts the peak resonant wavelength of scattered light, allowing for implementation of multiple spectrally distinct tags. In this project, nanoparticles that scatter in different spectral windows are functionalized with various antibodies recognizing extra-cellular receptors integral to cancer progression. A hyperspectral imaging system is developed, allowing for visualization and spectral characterization of cells labeled with these conjugates. Various molecular imaging and microspectroscopy applications of plasmonic nanoparticles are then investigated. First, anti-EGFR gold nanospheres are shown to quantitatively measure receptor expression with similar performance to fluorescence assays. Second, anti-EGFR gold nanorods and novel anti-IGF-1R silver nanospheres are implemented to indicate local cellular refractive indices. Third, because biosensing capabilities of nanoparticle tags may be limited by plasmonic coupling, polarization mapping is investigated as a method to discern these effects. Fourth, plasmonic coupling is tested to monitor HER-2 dimerization. Experiments reveal the interparticle conformation of proximal HER-2 bound labels, required for plasmonic coupling-enhanced dielectric sensing. Fifth, all three functionalized plasmonic tags are implemented simultaneously to indicate clinically relevant cell immunophenotype information and changes in the cellular dielectric environment. Finally, flow cytometry experiments are conducted utilizing the anti-EGFR nanorod tag to demonstrate profiling of receptor expression distribution and potential increased multiplexing capability.

  6. Visualization of self-delivering hydrophobically modified siRNA cellular internalization

    PubMed Central

    Ly, Socheata; Navaroli, Deanna M.; Didiot, Marie-Cécile; Cardia, James; Pandarinathan, Lakshmipathi; Alterman, Julia F.; Fogarty, Kevin; Standley, Clive; Lifshitz, Lawrence M.; Bellve, Karl D.; Prot, Matthieu; Echeverria, Dimas; Corvera, Silvia; Khvorova, Anastasia

    2017-01-01

    siRNAs are a new class of therapeutic modalities with promising clinical efficacy that requires modification or formulation for delivery to the tissue and cell of interest. Conjugation of siRNAs to lipophilic groups supports efficient cellular uptake by a mechanism that is not well characterized. Here we study the mechanism of internalization of asymmetric, chemically stabilized, cholesterol-modified siRNAs (sd-rxRNAs®) that efficiently enter cells and tissues without the need for formulation. We demonstrate that uptake is rapid with significant membrane association within minutes of exposure followed by the formation of vesicular structures and internalization. Furthermore, sd-rxRNAs are internalized by a specific class of early endosomes and show preferential association with epidermal growth factor (EGF) but not transferrin (Tf) trafficking pathways as shown by live cell TIRF and structured illumination microscopy (SIM). In fixed cells, we observe ∼25% of sd-rxRNA co-localizing with EGF and <5% with Tf, which is indicative of selective endosomal sorting. Likewise, preferential sd-rxRNA co-localization was demonstrated with EEA1 but not RBSN-containing endosomes, consistent with preferential EGF-like trafficking through EEA1-containing endosomes. sd-rxRNA cellular uptake is a two-step process, with rapid membrane association followed by internalization through a selective, saturable subset of the endocytic process. However, the mechanistic role of EEA1 is not yet known. This method of visualization can be used to better understand the kinetics and mechanisms of hydrophobic siRNA cellular uptake and will assist in further optimization of these types of compounds for therapeutic intervention. PMID:27899655

  7. Functions of IQD proteins as hubs in cellular calcium and auxin signaling: A toolbox for shape formation and tissue-specification in plants?

    PubMed

    Bürstenbinder, Katharina; Mitra, Dipannita; Quegwer, Jakob

    2017-06-03

    Calcium (Ca 2+ ) ions play pivotal roles as second messengers in intracellular signal transduction, and coordinate many biological processes. Changes in intracellular Ca 2+ levels are perceived by Ca 2+ sensors such as calmodulin (CaM) and CaM-like (CML) proteins, which transduce Ca 2+ signals into cellular responses by regulation of diverse target proteins. Insights into molecular functions of CaM targets are thus essential to understand the molecular and cellular basis of Ca 2+ signaling. During the last decade, IQ67-domain (IQD) proteins emerged as the largest class of CaM targets in plants with mostly unknown functions. In the March issue of Plant Physiology, we presented the first comprehensive characterization of the 33-membered IQD family in Arabidopsis thaliana. We showed, by analysis of the subcellular localization of translational green fluorescent protein (GFP) fusion proteins, that most IQD members label microtubules (MTs), and additionally often localize to the cell nucleus or to membranes, where they recruit CaM Ca 2+ sensors. Important functions at MTs are supported by altered MT organization and plant growth in IQD gain-of-function lines. Because IQD proteins share structural hallmarks of scaffold proteins, we propose roles of IQDs in the assembly of macromolecular complexes to orchestrate Ca 2+ CaM signaling from membranes to the nucleus. Interestingly, expression of several IQDs is regulated by auxin, which suggests functions of IQDs as hubs in cellular auxin and calcium signaling to regulate plant growth and development.

  8. Microneedle-based analysis of the micromechanics of the metaphase spindle assembled in Xenopus laevis egg extracts

    PubMed Central

    Shimamoto, Yuta; Kapoor, Tarun M.

    2014-01-01

    SUMMARY To explain how micron-sized cellular structures generate and respond to forces we need to characterize their micromechanical properties. Here we provide a protocol to build and use a dual force-calibrated microneedle-based set-up to quantitatively analyze the micromechanics of a metaphase spindle assembled in Xenopus laevis egg extracts. This cell-free extract system allows for controlled biochemical perturbations of spindle components. We describe how the microneedles are prepared and how they can be used to apply and measure forces. A multi-mode imaging system allows tracking of microtubules, chromosomes and needle tips. This set-up can be used to analyze the viscoelastic properties of the spindle on time-scales ranging from minutes to sub-seconds. A typical experiment, along with data analysis, is also detailed. We anticipate that our protocol can be readily extended to analyze the micromechanics of other cellular structures assembled in cell-free extracts. The entire procedure can take 3-4 days. PMID:22538847

  9. Decoupling global biases and local interactions between cell biological variables

    PubMed Central

    Zaritsky, Assaf; Obolski, Uri; Gan, Zhuo; Reis, Carlos R; Kadlecova, Zuzana; Du, Yi; Schmid, Sandra L; Danuser, Gaudenz

    2017-01-01

    Analysis of coupled variables is a core concept of cell biological inference, with co-localization of two molecules as a proxy for protein interaction being a ubiquitous example. However, external effectors may influence the observed co-localization independently from the local interaction of two proteins. Such global bias, although biologically meaningful, is often neglected when interpreting co-localization. Here, we describe DeBias, a computational method to quantify and decouple global bias from local interactions between variables by modeling the observed co-localization as the cumulative contribution of a global and a local component. We showcase four applications of DeBias in different areas of cell biology, and demonstrate that the global bias encapsulates fundamental mechanistic insight into cellular behavior. The DeBias software package is freely accessible online via a web-server at https://debias.biohpc.swmed.edu. DOI: http://dx.doi.org/10.7554/eLife.22323.001 PMID:28287393

  10. Laboratory testing of a building envelope segment based on cellular concrete

    NASA Astrophysics Data System (ADS)

    Fořt, Jan; Pavlík, Zbyšek; Černý, Robert

    2016-07-01

    Hygrothermal performance of a building envelope based on cellular concrete blocks is studied in the paper. Simultaneously, the strain fields induced by the heat and moisture changes are monitored. The studied wall is exposed to the climatic load corresponding to the winter climatic conditions of the moderate year for Prague. The winter climatic exposure is chosen in order to simulate the critical conditions of the building structure from the point of view of material performance and temperature and humidity loading. The evaluation of hygrothermal performance of a researched wall is done on the basis of relative humidity and temperature profiles measured along the cross section of the cellular concrete blocks. Strain gauges are fixed on the wall surface in expected orientation of the blocks expansion. The obtained results show a good hygrothermal function of the analyzed cellular concrete wall and its insignificant strain.

  11. Transition from a planar interface to cellular and dendritic structures during rapid solidification processing

    NASA Technical Reports Server (NTRS)

    Laxmanan, V.

    1986-01-01

    The development of theoretical models which characterize the planar-cellular and cell-dendrite transitions is described. The transitions are analyzed in terms of the Chalmers number, the solute Peclet number, and the tip stability parameter, which correlate microstructural features and processing conditions. The planar-cellular transition is examined using the constitutional supercooling theory of Chalmers et al., (1953) and it is observed that the Chalmers number is between 0 and 1 during dendritic and cellular growth. Analysis of cell-dendrite transition data reveal that the transition occurs when the solute Peclet number goes through a minimum, the primary arm spacings go through a maximum, and the Chalmers number is equal to 1/2. The relation between the tip stability parameter and the solute Peclet number is investigated and it is noted that the tip stability parameter is useful for studying dendritic growth in alloys.

  12. Insulin stimulates movement of sorting nexin 9 between cellular compartments: a putative role mediating cell surface receptor expression and insulin action.

    PubMed Central

    MaCaulay, S Lance; Stoichevska, Violet; Grusovin, Julian; Gough, Keith H; Castelli, Laura A; Ward, Colin W

    2003-01-01

    SNX9 (sorting nexin 9) is one member of a family of proteins implicated in protein trafficking. This family is characterized by a unique PX (Phox homology) domain that includes a proline-rich sequence and an upstream phospholipid binding domain. Many sorting nexins, including SNX9, also have a C-terminal coiled region. SNX9 additionally has an N-terminal SH3 (Src homology 3) domain. Here we have investigated the cellular localization of SNX9 and the potential role it plays in insulin action. SNX9 had a cytosolic and punctate distribution, consistent with endosomal and cytosolic localization, in 3T3L1 adipocytes. It was excluded from the nucleus. The SH3 domain was responsible, at least in part, for the membrane localization of SNX9, since expression of an SH3-domain-deleted GFP (green fluorescent protein)-SNX9 fusion protein in HEK293T cells rendered the protein cytosolic. Membrane localization may also be attributed in part to the PX domain, since in vitro phospholipid binding studies demonstrated SNX9 binding to polyphosphoinositides. Insulin induced movement of SNX9 to membrane fractions from the cytosol. A GST (glutathione S-transferase)-SNX9 fusion protein was associated with IGF1 (insulin-like growth factor 1) and insulin receptors in vitro. A GFP-SNX9 fusion protein, overexpressed in 3T3L1 adipocytes, co-immunoprecipitated with insulin receptors. Furthermore, overexpression of this GFP-SNX9 fusion protein in CHOT cells decreased insulin binding, consistent with a role for SNX9 in the trafficking of insulin receptors. Microinjection of 3T3L1 cells with an antibody against SNX9 inhibited stimulation by insulin of GLUT4 translocation. These results support the involvement of SNX9 in insulin action, via an influence on the processing/trafficking of insulin receptors. A secondary role in regulation of the cellular processing, transport and/or subcellular localization of GLUT4 is also suggested. PMID:12917015

  13. Enhanced cellular uptake of maleimide-modified liposomes via thiol-mediated transport

    PubMed Central

    Li, Tianshu; Takeoka, Shinji

    2014-01-01

    With a small amount of maleimide modification on the liposome surface, enhanced cellular uptake of liposomes and drug-delivery efficiency can be obtained both in vitro and in vivo. Herein, we describe the mechanisms underlying this enhanced cellular uptake. Suppression of the cellular uptake of maleimide-modified liposomes (M-GGLG, composed of 1,5-dihexadecyl N,N-diglutamyl-lysyl-L-glutamate [GGLG]/cholesterol/poly(ethylene glycol) – 1,2-distearoyl-sn-glycero-3-phosphoethanolamine [PEG5000-DSPE]/maleimide [M]-PEG5000-Glu2C18 at a molar ratio of 5:5:0.03:0.03) caused by temperature block and addition of serum was alleviated compared with that of liposomes without maleimide modification (GGLG liposomes, composed of GGLG/cholesterol/PEG5000-DSPE/PEG5000-Glu2C18 at a molar ratio of 5:5:0.03:0.03). When 0.01 nM N-ethylmaleimide was used to pre-block cellular thiols, the cellular uptake of M-GGLG liposomes was decreased to approximately 70% in HeLa, HCC1954, MDA-MB-468, and COS-7 cell lines. Moreover, inhibition of a thiol-related reductase such as protein disulfide isomerase resulted in a 15%–45% inhibition of the cellular uptake of M-GGLG liposomes, whereas GGLG liposomes were not influenced. Further, single and mixed inhibitors of clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis did not efficiently inhibit the cellular uptake of M-GGLG liposomes. Using confocal microscopy, we verified that M-GGLG liposomes were localized partially in lysosomes after inhibition of the mentioned conventional endocytic pathways. Therefore, it was hypothesized that the mechanisms underlying the enhanced cellular uptake of liposomes by maleimide modification was thiol-mediated membrane trafficking, including endocytosis and energy-independent transport. PMID:24940060

  14. Enhanced cellular uptake of maleimide-modified liposomes via thiol-mediated transport.

    PubMed

    Li, Tianshu; Takeoka, Shinji

    2014-01-01

    With a small amount of maleimide modification on the liposome surface, enhanced cellular uptake of liposomes and drug-delivery efficiency can be obtained both in vitro and in vivo. Herein, we describe the mechanisms underlying this enhanced cellular uptake. Suppression of the cellular uptake of maleimide-modified liposomes (M-GGLG, composed of 1,5-dihexadecyl N,N-diglutamyl-lysyl-L-glutamate [GGLG]/cholesterol/poly(ethylene glycol) - 1,2-distearoyl-sn-glycero-3-phosphoethanolamine [PEG₅₀₀₀-DSPE]/maleimide [M]-PEG₅₀₀₀-Glu2C18 at a molar ratio of 5:5:0.03:0.03) caused by temperature block and addition of serum was alleviated compared with that of liposomes without maleimide modification (GGLG liposomes, composed of GGLG/cholesterol/PEG₅₀₀₀-DSPE/PEG₅₀₀₀-Glu2C₁₈ at a molar ratio of 5:5:0.03:0.03). When 0.01 nM N-ethylmaleimide was used to pre-block cellular thiols, the cellular uptake of M-GGLG liposomes was decreased to approximately 70% in HeLa, HCC1954, MDA-MB-468, and COS-7 cell lines. Moreover, inhibition of a thiol-related reductase such as protein disulfide isomerase resulted in a 15%-45% inhibition of the cellular uptake of M-GGLG liposomes, whereas GGLG liposomes were not influenced. Further, single and mixed inhibitors of clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis did not efficiently inhibit the cellular uptake of M-GGLG liposomes. Using confocal microscopy, we verified that M-GGLG liposomes were localized partially in lysosomes after inhibition of the mentioned conventional endocytic pathways. Therefore, it was hypothesized that the mechanisms underlying the enhanced cellular uptake of liposomes by maleimide modification was thiol-mediated membrane trafficking, including endocytosis and energy-independent transport.

  15. Profiling and functional classification of esterases in olive (Olea europaea) pollen during germination

    PubMed Central

    Rejón, Juan D.; Zienkiewicz, Agnieszka; Rodríguez-García, María Isabel; Castro, Antonio J.

    2012-01-01

    Background and Aims A pollen grain contains a number of esterases, many of which are released upon contact with the stigma surface. However, the identity and function of most of these esterases remain unknown. In this work, esterases from olive pollen during its germination were identifided and functionally characterized. Methods The esterolytic capacity of olive (Olea europaea) pollen was examined using in vitro and in-gel enzymatic assays with different enzyme substrates. The functional analysis of pollen esterases was achieved by inhibition assays by using specific inhibitors. The cellular localization of esterase activities was performed using histochemical methods. Key Results Olive pollen showed high levels of non-specific esterase activity, which remained steady after hydration and germination. Up to 20 esterolytic bands were identified on polyacrylamide gels. All the inhibitors decreased pollen germinability, but only diisopropyl fluorophosphate (DIFP) hampered pollen tube growth. Non-specific esterase activity is localized on the surface of oil bodies (OBs) and small vesicles, in the pollen intine and in the callose layer of the pollen tube wall. Acetylcholinesterase (AChE) activity was mostly observed in the apertures, exine and pollen coat, and attached to the pollen tube wall surface and to small cytoplasmic vesicles. Conclusions In this work, for the first time a systematic functional characterization of esterase enzymes in pollen from a plant species with wet stigma has been carried out. Olive pollen esterases belong to four different functional groups: carboxylesterases, acetylesterases, AChEs and lipases. The cellular localization of esterase activity indicates that the intine is a putative storage site for esterolytic enzymes in olive pollen. Based on inhibition assays and cellular localization of enzymatic activities, it can be concluded that these enzymes are likely to be involved in pollen germination, and pollen tube growth and penetration of the stigma. PMID:22922586

  16. Cellular localization and changes in expression of prolactin receptor isoforms in sheep ovary throughout the estrous cycle.

    PubMed

    Picazo, R A; García Ruiz, J P; Santiago Moreno, J; González de Bulnes, A; Muñoz, J; Silván, G; Lorenzo, P L; Illera, J C

    2004-11-01

    The actions of prolactin (PRL) on target cells depend on the type of prolactin receptor (PRLr) predominantly expressed, particularly whether the long PRLr isoform is expressed. The aims of this study were to determine the cellular localization and the changes in expression of long and short PRLr isoforms in sheep ovary throughout the estrous cycle. Long and short PRLrs were localized mostly in the same ovarian cells. Maximum signal intensity, particularly for long PRLrs, was found in stromal cells surrounding primordial and primary follicles, and, for both PRLrs, in granulosa cells of preantral follicles and in luteal cells. Moderate signal intensity for PRLrs was found in theca cells of preantral to ovulatory follicles, and in granulosa cells of antral follicles up to the gonadotropin-dependent stage. Decreasing immunoreactivity to PRLrs was found in granulosa cells of gonadotropin-dependent to ovulatory follicles. For long PRLrs in particular, no signal was found in mural granulosa cells of gonadotropin-dependent follicles; for both isoforms, no signal was found in most granulosa cells of ovulatory follicles. In primordial to gonadotropin-dependent follicles, cellular localization of PRLr was similar on days 0, 10 and 15 of the cycle. Oocytes consistently showed positive immunostaining for PRLrs. Comparative RT-PCR analysis of long and short PRLr expression showed that the short isoform is evenly expressed throughout the estrous cycle, whereas the expression of the long form increases at the time of estrus and decreases at mid-luteal phase and at the onset of the follicular phase. Expression of long PRLrs was greater than that of short PRLrs on day 0 of cycle; expression of both isoforms was similar on day 10 and on day 15, long PRLrs expression was lower than that of short PRLrs. Our results indicate that in sheep ovary, the maximum responsiveness to PRL might occur during the preovulatory phase of the estrous cycle.

  17. Patterning pallet arrays for cell selection based on high-resolution measurements of fluorescent biosensors

    PubMed Central

    Shadpour, Hamed; Zawistowski, Jon S.; Herman, Annadele; Hahn, Klaus; Allbritton, Nancy L.

    2011-01-01

    Pallet arrays enable cells to be separated while they remain adherent to a surface and provide a much greater range of cell selection criteria relative to that of current technologies. However there remains a need to further broaden cell selection criteria to include dynamic intracellular signaling events. To demonstrate the feasibility of measuring cellular protein behavior on the arrays using high resolution microscopy, the surfaces of individual pallets were modified to minimize the impact of scattered light at the pallet edges. The surfaces of the three-dimensional pallets on an array were patterned with a coating such as fibronectin using a customized stamping tool. Micropatterns of varying shape and size were printed in designated regions on the pallets in single or multiple steps to demonstrate the reliability and precision of patterning molecules on the pallet surface. Use of a fibronectin matrix stamped at the center of each pallet permitted the localization of H1299 and mouse embryonic fibroblast (MEF) cells to the pallet centers and away from the edges. Compared to pallet arrays with fibronection coating the entire top surface, arrays with a central fibronectin pattern increased the percentage of cells localized to the pallet center by 3-4 fold. Localization of cells to the pallet center also enabled the physical separation of cells from optical artifacts created by the rough pallet side walls. To demonstrate the measurement of dynamic intracellular signaling on the arrays, fluorescence measurements of high spatial resolution were performed using a RhoA GTPase biosensor. This biosensor utilized fluorescence resonance energy transfer (FRET) between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) to measure localized RhoA activity in cellular ruffles at the cell periphery. These results demonstrated the ability to perform spatially resolved measurements of fluorescence-based sensors on the pallet arrays. Thus, the patterned pallet arrays should enable novel cell separations in which cell selection is based on complex cellular signaling properties. PMID:21621038

  18. Cellular immunotherapy for malignant gliomas.

    PubMed

    Lin, Yi; Okada, Hideho

    2016-10-01

    Cancer immunotherapy has made much progress in recent years. Clinical trials evaluating a variety of immunotherapeutic approaches are underway in patients with malignant gliomas. Thanks to recent advancements in cell engineering technologies, infusion of ex vivo prepared immune cells have emerged as promising strategies of cancer immunotherapy. Herein, the authors review recent and current studies using cellular immunotherapies for malignant gliomas. Specifically, they cover the following areas: a) cellular vaccine approaches using tumor cell-based or dendritic cell (DC)-based vaccines, and b) adoptive cell transfer (ACT) approaches, including lymphokine-activated killer (LAK) cells, γδ T cells, tumor-infiltrating lymphocytes (TIL), chimeric antigen receptor (CAR)-T cells and T-cell receptor (TCR) transduced T cells. While some of the recent studies have shown promising results, the ultimate success of cellular immunotherapy in brain tumor patients would require improvements in the following areas: 1) feasibility in producing cellular therapeutics; 2) identification and characterization of targetable antigens given the paucity and heterogeneity of tumor specific antigens; 3) the development of strategies to promote effector T-cell trafficking; 4) overcoming local and systemic immune suppression, and 5) proper interpretation of imaging data for brain tumor patients receiving immunotherapy.

  19. Cellular immunotherapy for malignant gliomas

    PubMed Central

    Lin, Yi

    2016-01-01

    Introduction Cancer immunotherapy has made much progress in recent years. Clinical trials evaluating a variety of immunotherapeutic approaches are underway in patients with malignant gliomas. Thanks to recent advancements in cell engineering technologies, infusion of ex vivo prepared immune cells have emerged as promising strategies of cancer immunotherapy. Areas covered Herein, the authors review recent and current studies using cellular immunotherapies for malignant gliomas. Specifically, they cover the following areas: a) cellular vaccine approaches using tumor cell-based or dendritic cell (DC)-based vaccines, and b) adoptive cell transfer (ACT) approaches, including lymphokine-activated killer (LAK) cells, γδ T cells, tumor-infiltrating lymphocytes (TIL), chimeric antigen receptor (CAR)-T cells and T-cell receptor (TCR) transduced T cells. Expert opinion While some of the recent studies have shown promising results, the ultimate success of cellular immunotherapy in brain tumor patients would require improvements in the following areas: 1) feasibility in producing cellular therapeutics; 2) identification and characterization of targetable antigens given the paucity and heterogeneity of tumor specific antigens; 3) the development of strategies to promote effector T-cell trafficking; 4) overcoming local and systemic immune suppression, and 5) proper interpretation of imaging data for brain tumor patients receiving immunotherapy. PMID:27434205

  20. FIXATION OF FISH TISSUES. IN: THE LABORATORY FISH.

    EPA Science Inventory

    This chapter deals with the fixation of fish tissues and whole fish. Traditionally, fixation has been applied to animal tissues mainly for histological or pathological studies. Development of new molecular and immunologic tools now allows tissue and cellular localization of nucle...

Top