Sample records for analyzed mirna expression

  1. Identification and Expression Analysis of microRNAs at the Grain Filling Stage in Rice(Oryza sativa L.)via Deep Sequencing

    PubMed Central

    Yi, Rong; Zhu, Zhixuan; Hu, Jihong; Qian, Qian; Dai, Jincheng; Ding, Yi

    2013-01-01

    MicroRNAs (miRNAs) have been shown to play crucial roles in the regulation of plant development. In this study, high-throughput RNA-sequencing technology was used to identify novel miRNAs, and to reveal miRNAs expression patterns at different developmental stages during rice (Oryza sativa L.) grain filling. A total of 434 known miRNAs (380, 402, 390 and 392 at 5, 7, 12 and 17 days after fertilization, respectively.) were obtained from rice grain. The expression profiles of these identified miRNAs were analyzed and the results showed that 161 known miRNAs were differentially expressed during grain development, a high proportion of which were up-regulated from 5 to 7 days after fertilization. In addition, sixty novel miRNAs were identified, and five of these were further validated experimentally. Additional analysis showed that the predicted targets of the differentially expressed miRNAs may participate in signal transduction, carbohydrate and nitrogen metabolism, the response to stimuli and epigenetic regulation. In this study, differences were revealed in the composition and expression profiles of miRNAs among individual developmental stages during the rice grain filling process, and miRNA editing events were also observed, analyzed and validated during this process. The results provide novel insight into the dynamic profiles of miRNAs in developing rice grain and contribute to the understanding of the regulatory roles of miRNAs in grain filling. PMID:23469249

  2. Inflammation-related microRNA expression level in the bovine milk is affected by mastitis.

    PubMed

    Lai, Yu-Chang; Fujikawa, Takuro; Maemura, Tadashi; Ando, Takaaki; Kitahara, Go; Endo, Yasuyuki; Yamato, Osamu; Koiwa, Masateru; Kubota, Chikara; Miura, Naoki

    2017-01-01

    MicroRNA (miRNA) in tissue and liquid samples have been shown to be associated with many diseases including inflammation. We aimed to identify inflammation-related miRNA expression level in the bovine mastitis milk. Expression level of inflammation-related miRNA in milk from mastitis-affected and normal cows was analyzed using qPCR. We found that expression level of miR-21, miR-146a, miR-155, miR-222, and miR-383 was significantly upregulated in California mastitis test positive (CMT+) milk. We further analyzed these miRNA using a chip-based QuantStudio Digital PCR System. The digital PCR results correlated with those of qPCR, demonstrating upregulation of miR-21, miR-146a, miR-155, miR-222, and miR-383 in CMT+ milk. In conclusion, we identified miRNA that are upregulated in CMT+ milk. These miRNA exhibited sensitivity and specificity greater than 80% for differentiating between CMT+ milk and normal milk. Our findings suggest that inflammation-related miRNA expression level in the bovine milk was affected by mastitis, and miRNA in milk have potential for use as biomarkers of bovine mastitis.

  3. Identification of Mouse Serum miRNA Endogenous References by Global Gene Expression Profiles

    PubMed Central

    Mi, Qing-Sheng; Weiland, Matthew; Qi, Rui-Qun; Gao, Xing-Hua; Poisson, Laila M.; Zhou, Li

    2012-01-01

    MicroRNAs (miRNAs) are recently discovered small non-coding RNAs and can serve as serum biomarkers for disease diagnosis and prognoses. Lack of reliable serum miRNA endogenous references for normalization in miRNA gene expression makes single miRNA assays inaccurate. Using TaqMan® real-time PCR miRNA arrays with a global gene expression normalization strategy, we have analyzed serum miRNA expression profiles of 20 female mice of NOD/ShiLtJ (n = 8), NOR/LtJ (n = 6), and C57BL/6J (n = 6) at different ages and disease conditions. We identified five miRNAs, miR-146a, miR-16, miR-195, miR-30e and miR-744, to be stably expressed in all strains, which could serve as mouse serum miRNA endogenous references for single assay experiments. PMID:22348064

  4. Analysis of secondary structural elements in human microRNA hairpin precursors.

    PubMed

    Liu, Biao; Childs-Disney, Jessica L; Znosko, Brent M; Wang, Dan; Fallahi, Mohammad; Gallo, Steven M; Disney, Matthew D

    2016-03-01

    MicroRNAs (miRNAs) regulate gene expression by targeting complementary mRNAs for destruction or translational repression. Aberrant expression of miRNAs has been associated with various diseases including cancer, thus making them interesting therapeutic targets. The composite of secondary structural elements that comprise miRNAs could aid the design of small molecules that modulate their function. We analyzed the secondary structural elements, or motifs, present in all human miRNA hairpin precursors and compared them to highly expressed human RNAs with known structures and other RNAs from various organisms. Amongst human miRNAs, there are 3808 are unique motifs, many residing in processing sites. Further, we identified motifs in miRNAs that are not present in other highly expressed human RNAs, desirable targets for small molecules. MiRNA motifs were incorporated into a searchable database that is freely available. We also analyzed the most frequently occurring bulges and internal loops for each RNA class and found that the smallest loops possible prevail. However, the distribution of loops and the preferred closing base pairs were unique to each class. Collectively, we have completed a broad survey of motifs found in human miRNA precursors, highly expressed human RNAs, and RNAs from other organisms. Interestingly, unique motifs were identified in human miRNA processing sites, binding to which could inhibit miRNA maturation and hence function.

  5. The Silkworm (Bombyx mori) microRNAs and Their Expressions in Multiple Developmental Stages

    PubMed Central

    Luo, Qibin; Cai, Yimei; Lin, Wen-chang; Chen, Huan; Yang, Yue; Hu, Songnian; Yu, Jun

    2008-01-01

    Background MicroRNAs (miRNAs) play crucial roles in various physiological processes through post-transcriptional regulation of gene expressions and are involved in development, metabolism, and many other important molecular mechanisms and cellular processes. The Bombyx mori genome sequence provides opportunities for a thorough survey for miRNAs as well as comparative analyses with other sequenced insect species. Methodology/Principal Findings We identified 114 non-redundant conserved miRNAs and 148 novel putative miRNAs from the B. mori genome with an elaborate computational protocol. We also sequenced 6,720 clones from 14 developmental stage-specific small RNA libraries in which we identified 35 unique miRNAs containing 21 conserved miRNAs (including 17 predicted miRNAs) and 14 novel miRNAs (including 11 predicted novel miRNAs). Among the 114 conserved miRNAs, we found six pairs of clusters evolutionarily conserved cross insect lineages. Our observations on length heterogeneity at 5′ and/or 3′ ends of nine miRNAs between cloned and predicted sequences, and three mature forms deriving from the same arm of putative pre-miRNAs suggest a mechanism by which miRNAs gain new functions. Analyzing development-related miRNAs expression at 14 developmental stages based on clone-sampling and stem-loop RT PCR, we discovered an unusual abundance of 33 sequences representing 12 different miRNAs and sharply fluctuated expression of miRNAs at larva-molting stage. The potential functions of several stage-biased miRNAs were also analyzed in combination with predicted target genes and silkworm's phenotypic traits; our results indicated that miRNAs may play key regulatory roles in specific developmental stages in the silkworm, such as ecdysis. Conclusions/Significance Taking a combined approach, we identified 118 conserved miRNAs and 151 novel miRNA candidates from the B. mori genome sequence. Our expression analyses by sampling miRNAs and real-time PCR over multiple developmental stages allowed us to pinpoint molting stages as hotspots of miRNA expression both in sorts and quantities. Based on the analysis of target genes, we hypothesized that miRNAs regulate development through a particular emphasis on complex stages rather than general regulatory mechanisms. PMID:18714353

  6. miRNA regulation of cytotoxic effects in mouse Sertoli cells exposed to nonylphenol

    PubMed Central

    2011-01-01

    Background It is known that some environmental chemicals affect the human endocrine system. The harmful effects of endocrine disrupting chemical (EDC) nonylphenol (NP) have been studied since the 1980s. It is known that NP adversely affects physiological functions by mimicking the natural hormone 17 beta-estradiol. In the present study, we analyzed the expression of miRNAs and their target genes in mouse Sertoli TM4 cells to better understand the regulatory roles of miRNAs on Sertoli cells after NP exposure. Methods Mouse TM4 Sertoli cells were treated with NP for 3 or 24 h, and global gene and miRNA expression were analyzed using Agilent mouse whole genome and mouse miRNA v13 arrays. Results We identified genes that were > 2-fold differentially expressed in NP-treated cells and control cells (P < 0.05) and analyzed their functions through Gene Ontology analysis. We also identified miRNAs that were differentially expressed in NP-treated and control cells. Of the 186 miRNAs the expression of which differed between NP-treated and control cells, 59 and 147 miRNAs exhibited 1.3-fold increased or decreased expression at 3 and 24 h, respectively. Network analysis of deregulated miRNAs suggested that Ppara may regulate the expression of certain miRNAs, including miR-378, miR-125a-3p miR-20a, miR-203, and miR-101a, after exposure to NP. Additionally, comprehensive analysis of predicted target genes for miRNAs showed that the expression of genes with roles in cell proliferation, the cell cycle, and cell death were regulated by miRNA in NP-treated TM4 cells. Levels of expression of the miRNAs miR-135a* and miR-199a-5p were validated by qRT-PCR. Finally, miR-135a* target gene analysis suggests that the generation of reactive oxygen species (ROS) following exposure to NP exposure may be mediated by miR-135a* through regulation of the Wnt/beta-catenin signaling pathway. Conclusions Collectively, these data help to determine NP's actions on mouse TM4 Sertoli cells and increase our understanding of the molecular mechanisms underlying the adverse effects of xenoestrogens on the reproductive system. PMID:21914226

  7. Effect of miRNA-203 on cervical cancer cells and its underlying mechanism.

    PubMed

    Yin, X Z; Zhao, D M; Zhang, G X; Liu, L

    2016-09-23

    miRNA-203 is involved in the development and progression of various types of cancer. However, its role in cervical cancer remains unclear. The aim of this study was to investigate the effect of miRNA-203 on the proliferation and migration of HeLa cervical cancer cells, as well as survivin expression in these cells. A miRNA-203 primer probe was designed according to a sequence obtained from NCBI. The expression of miRNA-203 in cervical epithelial cells and cervical cancer cells was detected by quantitative reverse transcriptase-polymerase chain reaction. The miRNA-203 expression pattern was compared between these two cell lines. The cervical cancer cells were transfected with miRNA-203 mimic or inhibitor to determine their effects on proliferation and migration. The expression of the miRNA-203 target protein (survivin) was analyzed by western blot. Cervical cancer cells showed reduced miRNA-203 expression compared to cervical epithelial cells. Transfection of miRNA-203 mimic upregulated the expression of miRNA-203, suppressed cell proliferation and migration, and downregulated survivin expression (P < 0.05). However, downregulation of miRNA-203 expression did not affect proliferation, migration, and survivin expression in cervical cancer cells (P > 0.05). In conclusion, upregulation of miRNA-203 in cervical cancer cells inhibits the proliferative and migratory capacities of these cells by downregulating the expression of survivin.

  8. Skin tumor formation in human papillomavirus 8 transgenic mice is associated with a deregulation of oncogenic miRNAs and their tumor suppressive targets.

    PubMed

    Hufbauer, Martin; Lazić, Daliborka; Reinartz, Markus; Akgül, Baki; Pfister, Herbert; Weissenborn, Sönke Jan

    2011-10-01

    Dysregulation of microRNA (miRNA) expression is regularly found in various types of cancer and contributes to tumorigenic processes. However, little is known about miRNA expression in non-melanoma skin cancer in which a pathogenic role of beta human papillomaviruses (HPV) is discussed. A carcinogenic potential of beta HPV8 could be demonstrated in a transgenic mouse model, expressing all early genes of HPV8 (HPV8-CER). A single UVA/B-dose induced oncogene expression and led to papilloma growth within three weeks. Expression of miRNAs and their targets during HPV8-mediated tumor formation in mice. Skin of untreated or UV-irradiated wild-type and HPV8-CER mice was analyzed for miRNA expression and localization by qPCR and in situ hybridization. MiRNA target protein expression was analyzed by immunohistochemical staining. Early steps in skin tumor formation in HPV8-CER mice were associated with an upregulation of the oncogenic miRNA-17-5p, -21 and -106a and a downregulation of the tumor-suppressive miRNA-155 and -206, which could be demonstrated by qPCR and in situ hybridization. The respective targets of miRNA-21 and -106a, the tumor suppressors PTEN, PDCD4 and Rb with their pivotal role in cell cycle regulation, apoptosis and proliferation were found to be downregulated. This is the first report demonstrating that a cutaneous HPV type deregulates the expression of miRNAs. These deregulations are closely related to the UV-induced upregulation of HPV8 oncogene levels, which suggest a direct or indirect HPV8-specific effect on miRNA expression. These data presume that HPV8 interferes with the miRNA mediated gene regulation to induce tumorigenesis. Copyright © 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Expression profiling of microRNAs in human bone tissue from postmenopausal women.

    PubMed

    De-Ugarte, Laura; Serra-Vinardell, Jenny; Nonell, Lara; Balcells, Susana; Arnal, Magdalena; Nogues, Xavier; Mellibovsky, Leonardo; Grinberg, Daniel; Diez-Perez, Adolfo; Garcia-Giralt, Natalia

    2018-01-01

    Bone tissue is composed of several cell types, which express their own microRNAs (miRNAs) that will play a role in cell function. The set of total miRNAs expressed in all cell types configures the specific signature of the bone tissue in one physiological condition. The aim of this study was to explore the miRNA expression profile of bone tissue from postmenopausal women. Tissue was obtained from trabecular bone and was analyzed in fresh conditions (n = 6). Primary osteoblasts were also obtained from trabecular bone (n = 4) and human osteoclasts were obtained from monocyte precursors after in vitro differentiation (n = 5). MicroRNA expression profiling was obtained for each sample by microarray and a global miRNA analysis was performed combining the data acquired in all the microarray experiments. From the 641 miRNAs detected in bone tissue samples, 346 (54%) were present in osteoblasts and/or osteoclasts. The other 46% were not identified in any of the bone cells analyzed. Intersection of osteoblast and osteoclast arrays identified 101 miRNAs shared by both cell types, which accounts for 30-40% of miRNAs detected in these cells. In osteoblasts, 266 miRNAs were detected, of which 243 (91%) were also present in the total bone array, representing 38% of all bone miRNAs. In osteoclasts, 340 miRNAs were detected, of which 196 (58%) were also present in the bone tissue array, representing 31% of all miRNAs detected in total bone. These analyses provide an overview of miRNAs expressed in bone tissue, broadening our knowledge in the microRNA field.

  10. MicroRNA profiling of the murine hematopoietic system

    PubMed Central

    Monticelli, Silvia; Ansel, K Mark; Xiao, Changchun; Socci, Nicholas D; Krichevsky, Anna M; Thai, To-Ha; Rajewsky, Nikolaus; Marks, Debora S; Sander, Chris; Rajewsky, Klaus; Rao, Anjana; Kosik, Kenneth S

    2005-01-01

    Background MicroRNAs (miRNAs) are a class of recently discovered noncoding RNA genes that post-transcriptionally regulate gene expression. It is becoming clear that miRNAs play an important role in the regulation of gene expression during development. However, in mammals, expression data are principally based on whole tissue analysis and are still very incomplete. Results We used oligonucleotide arrays to analyze miRNA expression in the murine hematopoietic system. Complementary oligonucleotides capable of hybridizing to 181 miRNAs were immobilized on a membrane and probed with radiolabeled RNA derived from low molecular weight fractions of total RNA from several different hematopoietic and neuronal cells. This method allowed us to analyze cell type-specific patterns of miRNA expression and to identify miRNAs that might be important for cell lineage specification and/or cell effector functions. Conclusion This is the first report of systematic miRNA gene profiling in cells of the hematopoietic system. As expected, miRNA expression patterns were very different between hematopoietic and non-hematopoietic cells, with further subtle differences observed within the hematopoietic group. Interestingly, the most pronounced similarities were observed among fully differentiated effector cells (Th1 and Th2 lymphocytes and mast cells) and precursors at comparable stages of differentiation (double negative thymocytes and pro-B cells), suggesting that in addition to regulating the process of commitment to particular cellular lineages, miRNAs might have an important general role in the mechanism of cell differentiation and maintenance of cell identity. PMID:16086853

  11. miRNA Temporal Analyzer (mirnaTA): a bioinformatics tool for identifying differentially expressed microRNAs in temporal studies using normal quantile transformation.

    PubMed

    Cer, Regina Z; Herrera-Galeano, J Enrique; Anderson, Joseph J; Bishop-Lilly, Kimberly A; Mokashi, Vishwesh P

    2014-01-01

    Understanding the biological roles of microRNAs (miRNAs) is a an active area of research that has produced a surge of publications in PubMed, particularly in cancer research. Along with this increasing interest, many open-source bioinformatics tools to identify existing and/or discover novel miRNAs in next-generation sequencing (NGS) reads become available. While miRNA identification and discovery tools are significantly improved, the development of miRNA differential expression analysis tools, especially in temporal studies, remains substantially challenging. Further, the installation of currently available software is non-trivial and steps of testing with example datasets, trying with one's own dataset, and interpreting the results require notable expertise and time. Subsequently, there is a strong need for a tool that allows scientists to normalize raw data, perform statistical analyses, and provide intuitive results without having to invest significant efforts. We have developed miRNA Temporal Analyzer (mirnaTA), a bioinformatics package to identify differentially expressed miRNAs in temporal studies. mirnaTA is written in Perl and R (Version 2.13.0 or later) and can be run across multiple platforms, such as Linux, Mac and Windows. In the current version, mirnaTA requires users to provide a simple, tab-delimited, matrix file containing miRNA name and count data from a minimum of two to a maximum of 20 time points and three replicates. To recalibrate data and remove technical variability, raw data is normalized using Normal Quantile Transformation (NQT), and linear regression model is used to locate any miRNAs which are differentially expressed in a linear pattern. Subsequently, remaining miRNAs which do not fit a linear model are further analyzed in two different non-linear methods 1) cumulative distribution function (CDF) or 2) analysis of variances (ANOVA). After both linear and non-linear analyses are completed, statistically significant miRNAs (P < 0.05) are plotted as heat maps using hierarchical cluster analysis and Euclidean distance matrix computation methods. mirnaTA is an open-source, bioinformatics tool to aid scientists in identifying differentially expressed miRNAs which could be further mined for biological significance. It is expected to provide researchers with a means of interpreting raw data to statistical summaries in a fast and intuitive manner.

  12. Functional characterization of three MicroRNAs of the Asian Tiger Mosquito, Aedes albopictus

    PubMed Central

    2013-01-01

    Background Temporal and stage specific expression of microRNAs (miRNAs) in embryos, larvae, pupae and adults of Aedes albopictus showed differential expression levels across the four developmental stages, indicating their potential regulatory roles in mosquito development. The functional characterization of these miRNAs was not known. Accordingly our study evaluated the functional characterization of three miRNAs, which are temporally up-regulated in the various developmental stages of Ae. albopictus mosquitoes. Methods miRNA mimics, inhibitors and negative controls were designed and their knock-in and knock-down efficiency were analyzed by qRT-PCR after transfecting the mosquito cell lines C6/36, and also by injecting in their specific developmental stages. The functional role of each individual miRNA was analyzed with various parameters of development such as, hatching rate and hatching time in embryos, eclosion rate in larvae, longevity and fecundity in the adult mosquitoes. Results The knock-in with the specifically designed miRNA mimics showed increased levels of expression of miRNA compared with their normal controls. We confirmed these findings using qRT-PCR, both by in vitro expression in C6/36 mosquito cell lines after transfection as well as in in vivo expression in developmental stages of mosquitoes by microinjection. The knock-down of expression with the corresponding inhibitors showed a considerable decrease in the expression levels of these miRNAs and obvious functional effects in Ae. albopictus development, detected by a decrease in the hatching rate of embryos and eclosion rate in larvae and a marked reduction in longevity and fecundity in adults. Conclusion This study carried out by knock-in and knock-down of specifically and temporally expressed miRNAs in Ae. albopictus by microinjection is a novel study to delineate the importance of the miRNA expression in regulating mosquito development. The knock-down and loss of function of endogenously expressed miRNAs by the miRNA inhibitors in specific developmental stages had considerable effects on development, but enhancement of their gain of function was not observed on knock-in of these specific miRNAs. Hence, our study indicates that an optimal level of endogenous expression of miRNA is indispensable for the normal development and maintenance of the vectorial population density and pathogen transmissibility of this mosquito vector. PMID:23924583

  13. High-throughput deep screening and identification of four peripheral leucocyte microRNAs as novel potential combination biomarkers for preeclampsia

    PubMed Central

    Wang, Yonghong; Yang, Xukui; Yang, Yuanyuan; Wang, Wenjun; Zhao, Meiling; Liu, Huiqiang; Li, Dongyan; Hao, Min

    2016-01-01

    Objective: To identify the specific microRNA (miRNA) biomarkers of preeclampsia (PE), the miRNA profiles analysis were performed. Study Design: The blood samples were obtained from five PE patients and five normal healthy pregnant women. The small RNA profiles were analyzed to identify miRNA expression levels and find out miRNAs that may associate with PE. The quantitative reverse transcriptase–PCR (qRT-PCR) assay was used to validate differentially expressed peripheral leucocyte miRNAs in a new cohort. Result: The data analysis showed that 10 peripheral leucocyte miRNAs were significantly differently expressed in severe PE patients. Four differently expressed miRNAs were successfully validated using qRT-PCR method. Conclusion: We successfully constructed a model with high accuracy to predict PE. A combination of four peripheral leucocyte miRNAs has great potential to serve as diagnostic biomarkers of PE. PMID:26675000

  14. A potential microRNA signature for tumorigenic conazoles in mouse liver.

    PubMed

    Ross, Jeffrey A; Blackman, Carl F; Thai, Sheau-Fung; Li, Zhiguang; Kohan, Michael; Jones, Carlton P; Chen, Tao

    2010-04-01

    Triadimefon, propiconazole, and myclobutanil are conazoles, an important class of agricultural fungicides. Triadimefon and propiconazole are mouse liver tumorigens, while myclobutanil is not. As part of a coordinated study to understand the molecular determinants of conazole tumorigenicity, we analyzed the microRNA expression levels in control and conazole-treated mice after 90 d of administration in feed. MicroRNAs (miRNAs) are small noncoding RNAs composed of approximately 19-24 nucleotides in length, and have been shown to interact with mRNA (usually 3' UTR) to suppress its expression. MicroRNAs play a key role in diverse biological processes, including development, cell proliferation, differentiation, and apoptosis. Groups of mice were fed either control diet or diet containing 1800 ppm triadimefon, 2500 ppm propiconazole, or 2000 ppm myclobutanil. MicroRNA was isolated from livers and analyzed using Superarray whole mouse genome miRNA PCR arrays from SABioscience. Data were analyzed using the significance analysis of microarrays (SAM) procedure. We identified those miRNAs whose expression was either increased or decreased relative to untreated controls with q < or = 0.01. The tumorigenic conazoles induced many more changes in miRNA expression than the nontumorigenic conazole. A group of 19 miRNAs was identified whose expression was significantly altered in both triadimefon- and propiconazole-treated animals but not in myclobutanil-treated animals. All but one of the altered miRNAs were downregulated compared to controls. This pattern of altered miRNA expression may represent a signature for tumorigenic conazole exposure in mouse liver after 90 d of treatment.

  15. IIKmTA: Inter and Intra Kingdom miRNA-Target Analyzer.

    PubMed

    Mal, Chittabrata; Aftabuddin, Md; Kundu, Sudip

    2018-03-16

    Growing evidences suggest that microRNAs (miRNAs) can efficiently regulate gene expression at intracellular and extracellular levels. It has been previously reported that plant/food-derived miRNAs are highly enriched in human serum or serum from phytophagous animals, and they are responsible for regulating mammalian gene expression. Thus, miRNAs could function as active signaling molecules, which carry information across distinct species or even kingdoms. However, the mode of miRNA shuttling among various organisms is still a mystery to unravel. The intra and inter kingdom miRNA transfer has boosted up the hypothesis about the potential impact of plant or animal miRNAs on each other. To our knowledge, the software for analyzing cross-kingdom miRNA-targets is lacking. We have developed a web-tool "IIKmTA: Inter and Intra Kingdom miRNA-Target Analyzer" utilizing a database; the data of which have been collected from another web server. Here, user can analyze the targeting potential of (i) plant miRNAs on animal UTRs (Untranslated regions), and vice versa (i.e., inter kingdom), (ii) plant miRNAs on plant UTRs and animal miRNAs on animal UTRs (i.e., intra kingdom). Further, user can analyze (i) miRNAs to targets, (ii) targets to miRNAs, and (iii) miRNA sets targeting sets of targets. For a wide variety of animal and plant species, IIKmTA can identify the miRNA binding sites in the probable target UTRs. Moreover, GC% and AU% of miRNAs will be calculated. All the results can be saved as .csv file. Recent researches identified miRNAs in plants and human secretions and their role in regulating the human genes. Such findings indicate the therapeutic role of secretory miRNAs of such plants which exhibits medicinal value and in near future many diseases may be treated by consumption of these plant miRNAs through food. Using our newly developed database and analyzing tool, one can easily determine the different relationships between miRNAs and their targets across kingdoms. IIKmTA is freely available at http://www.bioinformatics.org/iikmta/ .

  16. Association of Cigarette Smoking and microRNA Expression in Rectal Cancer: Insight into Tumor Phenotype

    PubMed Central

    Mullany, Lila E.; Herrick, Jennifer S.; Wolff, Roger K.; Stevens, John R.; Slattery, Martha L.

    2016-01-01

    Smoking is known to influence messenger RNA (mRNA) expression in colorectal cancer (CRC) cases. As microRNAs (miRNAs) are known repressors of mRNAs, we hypothesize that smoking may influence miRNA expression, thus altering mRNA expression. Our sample consisted of 1447 CRC cases that had normal colorectal mucosa and carcinoma miRNA data and lifestyle data. We examined current smoking, current versus never and former versus never (C/F/N) smoking1, and pack-years smoked with miRNA expression in normal mucosa as well as differential miRNA expression between paired normal and carcinoma tissue for colon and rectal tissue to determine associations between smoking and miRNA expression. We adjusted for multiple comparisons using the Benjamini Hochberg false discovery rate (FDR). Significant associations were seen for rectal differential miRNA expression only. We analyzed miRNAs significantly associated with smoking with CIMP and MSI status, using a polytomous logistic regression. Two hundred and thirty-one miRNAs were differentially expressed with current smoking, 172 with C/F/N, and 206 with pack-years smoked; 111 were associated with all three. Forty-three miRNAs were unique to current smoking, 14 were unique to C/F/N and 57 were unique to pack years smoked. Of the 306 unique miRNAs associated with cigarette smoking, 41 were inversely associated and 200 were directly associated with CIMP high or MSI tumor molecular phenotype for either colon or rectal cancer. Our results suggest that cigarette smoking can alter miRNA expression and, given associations with CIMP high and MSI tumor molecular phenotype, it is possible that smoking influences tumor phenotype through altered miRNA expression. PMID:27780077

  17. MicroRNAs – Important Molecules in Lung Cancer Research

    PubMed Central

    Leidinger, Petra; Keller, Andreas; Meese, Eckart

    2011-01-01

    MicroRNAs (miRNA) are important regulators of gene expression. They are involved in many physiological processes ensuring the cellular homeostasis of human cells. Alterations of the miRNA expression have increasingly been associated with pathophysiologic changes of cancer cells making miRNAs currently to one of the most analyzed molecules in cancer research. Here, we provide an overview of miRNAs in lung cancer. Specifically, we address biological functions of miRNAs in lung cancer cells, miRNA signatures generated from tumor tissue and from patients’ body fluids, the potential of miRNAs as diagnostic and prognostic biomarker for lung cancer, and its role as therapeutic target. PMID:22303398

  18. Deep sequencing of small RNA repertoires in mice reveals metabolic disorders-associated hepatic miRNAs.

    PubMed

    Liang, Tingming; Liu, Chang; Ye, Zhenchao

    2013-01-01

    Obesity and associated metabolic disorders contribute importantly to the metabolic syndrome. On the other hand, microRNAs (miRNAs) are a class of small non-coding RNAs that repress target gene expression by inducing mRNA degradation and/or translation repression. Dysregulation of specific miRNAs in obesity may influence energy metabolism and cause insulin resistance, which leads to dyslipidemia, steatosis hepatis and type 2 diabetes. In the present study, we comprehensively analyzed and validated dysregulated miRNAs in ob/ob mouse liver, as well as miRNA groups based on miRNA gene cluster and gene family by using deep sequencing miRNA datasets. We found that over 13.8% of the total analyzed miRNAs were dysregulated, of which 37 miRNA species showed significantly differential expression. Further RT-qPCR analysis in some selected miRNAs validated the similar expression patterns observed in deep sequencing. Interestingly, we found that miRNA gene cluster and family always showed consistent dysregulation patterns in ob/ob mouse liver, although they had various enrichment levels. Functional enrichment analysis revealed the versatile physiological roles (over six signal pathways and five human diseases) of these miRNAs. Biological studies indicated that overexpression of miR-126 or inhibition of miR-24 in AML-12 cells attenuated free fatty acids-induced fat accumulation. Taken together, our data strongly suggest that obesity and metabolic disturbance are tightly associated with functional miRNAs. We also identified hepatic miRNA candidates serving as potential biomarkers for the diagnose of the metabolic syndrome.

  19. Preoperative chemoradiotherapy for rectal cancer: the sensitizer role of the association between miR-375 and c-Myc

    PubMed Central

    Conde-Muiño, Raquel; Cano, Carlos; Sánchez-Martín, Victoria; Herrera, Antonio; Comino, Ana; Medina, Pedro P.; Palma, Pablo; Cuadros, Marta

    2017-01-01

    Administration of chemoradiation before tumor resection has revolutionized the management of locally advanced rectal cancer, but many patients have proven resistant to this preoperative therapy. Our group recently reported a negative correlation between c-Myc gene expression and this resistance. In the present study, integrated analysis of miRNA and mRNA expression profiles was conducted in 45 pre-treatment rectal tumors in order to analyze the expressions of miRNAs and c-Myc and their relationship with clinicopathological factors and patient survival. Twelve miRNAs were found to be differentially expressed by responders and non-responders to the chemoradiation. Functional classification revealed an association between the differentially expressed miRNAs and c-Myc. Quantitative real-time PCR results showed that miRNA-148 and miRNA-375 levels were both significantly lower in responders than in non-responders. Notably, a significant negative correlation was found between miRNA-375 expression and c-Myc expression. According to these findings, miRNA-375 and its targeted c-Myc may be useful as a predictive biomarker of the response to neoadjuvant treatment in patients with locally advanced rectal cancer. PMID:29137264

  20. Hantaviruses induce cell type- and viral species-specific host microRNA expression signatures

    PubMed Central

    Shin, Ok Sarah; Kumar, Mukesh; Yanagihara, Richard; Song, Jin-Won

    2014-01-01

    The mechanisms of hantavirus-induced modulation of host cellular immunity remain poorly understood. Recently, microRNAs (miRNAs) have emerged as a class of essential regulators of host immune response genes. To ascertain if differential host miRNA expression toward representative hantavirus species correlated with immune response genes, miRNA expression profiles were analyzed in human endothelial cells, macrophages and epithelial cells infected with pathogenic and nonpathogenic rodent- and shrew-borne hantaviruses. Distinct miRNA expression profiles were observed in a cell type- and viral species-specific pattern. A subset of miRNAs, including miR-151-5p and miR-1973, were differentially expressed between Hantaan virus and Prospect Hill virus. Pathway analyses confirmed that the targets of selected miRNAs were associated with inflammatory responses and innate immune receptor-mediated signaling pathways. Our data suggest that differential immune responses following hantavirus infection may be regulated in part by cellular miRNA through dysregulation of genes critical to the inflammatory process. PMID:24074584

  1. Human miRNome profiling in colorectal cancer and liver metastasis development

    PubMed Central

    Perilli, Lisa; Pizzini, Silvia; Bisognin, Andrea; Mandruzzato, Susanna; Biasiolo, Marta; Facciolli, Arianna; Rossi, Elisabetta; Esposito, Giovanni; Rugge, Massimo; Pilati, Pierluigi; Mocellin, Simone; Nitti, Donato; Bortoluzzi, Stefania; Zanovello, Paola

    2014-01-01

    Qualitative alterations or abnormal expression of microRNAs (miRNAs) in colorectal cancer has mainly been demonstrated in primary tumors. The miRNA expression profiles in 78 samples from 46 patients were analyzed to identify changes in miRNA expression level among normal colon mucosa, primary tumor and liver metastasis samples. Using this dataset, we describe the interplay of miRNA groups in regulating pathways that are important for tumor development. Here we describe in details the contents and quality controls for the miRNA expression and clinical data associated with the study published by Pizzini and colleagues in the BMC Genomics in 2013 (Pizzini et al., 2013). Data are deposited in GEO database as GSE35834 series. PMID:26484092

  2. MicroRNA expression profiling in alveolar macrophages of indigenous Chinese Tongcheng pigs infected with PRRSV in vivo.

    PubMed

    Zhou, Xiang; Michal, Jennifer J; Jiang, Zhihua; Liu, Bang

    2017-11-01

    Porcine respiratory and reproductive syndrome (PRRS), caused by PRRS virus (PRRSV), is one of the most serious infectious diseases in the swine industry worldwide. Indigenous Chinese Tongcheng (TC) pigs reportedly show strong resistance to PRRSV infection. The miRNA expression profiles of porcine alveolar macrophages (PAMs) of control TC pigs and those infected with PRRSV in vivo were analyzed by high-throughput sequencing to explore changes induced by infection. A total of 182 known miRNAs including 101 miRNA-5p and 81 miRNA-3p were identified with 23 up-regulated differentially expressed miRNAs (DEmiRNAs) and 25 down-regulated DEmiRNAs. Gene Ontology analysis showed that predicted target genes for the DEmiRNAs were enriched in immune response, transcription regulation, and cell death. The integrative analysis of mRNA and miRNA expression revealed that down-regulated methylation-related genes (DNMT1 and DNMT3b) were targeted by five up-regulated DEmiRNAs. Furthermore, 35 pairs of miRNAs (70 miRNAs) were co-expressed after PRRSV infection and six pairs were co-expressed differently. Our results describe miRNA expression profiles of TC pigs in response to PRRSV infection and lay a strong foundation for developing novel therapies to control PRRS in pigs.

  3. RNA Deep Sequencing Reveals Differential MicroRNA Expression during Development of Sea Urchin and Sea Star

    PubMed Central

    Kadri, Sabah; Hinman, Veronica F.; Benos, Panayiotis V.

    2011-01-01

    microRNAs (miRNAs) are small (20–23 nt), non-coding single stranded RNA molecules that act as post-transcriptional regulators of mRNA gene expression. They have been implicated in regulation of developmental processes in diverse organisms. The echinoderms, Strongylocentrotus purpuratus (sea urchin) and Patiria miniata (sea star) are excellent model organisms for studying development with well-characterized transcriptional networks. However, to date, nothing is known about the role of miRNAs during development in these organisms, except that the genes that are involved in the miRNA biogenesis pathway are expressed during their developmental stages. In this paper, we used Illumina Genome Analyzer (Illumina, Inc.) to sequence small RNA libraries in mixed stage population of embryos from one to three days after fertilization of sea urchin and sea star (total of 22,670,000 reads). Analysis of these data revealed the miRNA populations in these two species. We found that 47 and 38 known miRNAs are expressed in sea urchin and sea star, respectively, during early development (32 in common). We also found 13 potentially novel miRNAs in the sea urchin embryonic library. miRNA expression is generally conserved between the two species during development, but 7 miRNAs are highly expressed in only one species. We expect that our two datasets will be a valuable resource for everyone working in the field of developmental biology and the regulatory networks that affect it. The computational pipeline to analyze Illumina reads is available at http://www.benoslab.pitt.edu/services.html. PMID:22216218

  4. Gene expression analyses determine two different subpopulations in KIT-negative GIST-like (KNGL) patients.

    PubMed

    Moura, David S; Ramos, Rafael; Fernandez-Serra, Antonio; Serrano, Teresa; Cruz, Julia; Alvarez-Alegret, Ramiro; Ortiz-Duran, Rosa; Vicioso, Luis; Gomez-Dorronsoro, Maria Luisa; Garcia Del Muro, Xavier; Martinez-Trufero, Javier; Rubio-Casadevall, Jordi; Sevilla, Isabel; Lainez, Nuria; Gutierrez, Antonio; Serrano, Cesar; Lopez-Alvarez, Maria; Hindi, Nadia; Taron, Miguel; López-Guerrero, José Antonio; Martin-Broto, Javier

    2018-04-03

    There are limited findings available on KIT-negative GIST-like (KNGL) population. Also, KIT expression may be post-transcriptionally regulated by miRNA221 and miRNA222. Hence, the aim of this study is to characterize KNGL population, by differential gene expression, and to analyze miRNA221/222 expression and their prognostic value in KNGL patients. KIT , PDGFRA , DOG1 , IGF1R , MIR221 and MIR222 expression levels were determined by qRT-PCR. We also analyzed KIT and PDGFRA mutations, DOG1 expression, by immunohistochemistry, along with clinical and pathological data. Disease-free survival (DFS) and overall survival (OS) differences were calculated using Log-rank test. Hierarchical cluster analyses from gene expression data identified two groups: group I had KIT , DOG1 and PDGFRA overexpression and IGF1R underexpression and group II had overexpression of IGF1R and low expression of KIT , DOG1 and PDGFRA . Group II had a significant worse OS ( p = 0.013) in all the series, and showed a tendency for worse OS ( p = 0.11), when analyzed only the localized cases. MiRNA222 expression was significantly lower in a control subset of KIT-positive GIST ( p < 0.001). OS was significantly worse in KNGL cases with higher expression of MIR221 ( p = 0.028) or MIR222 ( p = 0.014). We identified two distinct KNGL subsets, with a different prognostic value. Increased levels of miRNA221/222, which are associated with worse OS, could explain the absence of KIT protein expression of most KNGL tumors.

  5. MicroRNA Expression in Formalin-fixed Paraffin-embedded Cancer Tissue: Identifying Reference MicroRNAs and Variability.

    PubMed

    Boisen, Mogens Karsbøl; Dehlendorff, Christian; Linnemann, Dorte; Schultz, Nicolai Aagaard; Jensen, Benny Vittrup; Høgdall, Estrid Vilma Solyom; Johansen, Julia Sidenius

    2015-12-29

    Archival formalin-fixed paraffin-embedded (FFPE) cancer tissue samples are a readily available resource for microRNA (miRNA) biomarker identification. No established standard for reference miRNAs in FFPE tissue exists. We sought to identify stable reference miRNAs for normalization of miRNA expression in FFPE tissue samples from patients with colorectal (CRC) and pancreatic (PC) cancer and to quantify the variability associated with sample age and fixation. High-throughput miRNA profiling results from 203 CRC and 256 PC FFPE samples as well as from 37 paired frozen/FFPE samples from nine other CRC tumors (methodological samples) were used. Candidate reference miRNAs were identified by their correlation with global mean expression. The stability of reference genes was analyzed according to published methods. The association between sample age and global mean miRNA expression was tested using linear regression. Variability was described using correlation coefficients and linear mixed effects models. Normalization effects were determined by changes in standard deviation and by hierarchical clustering. We created lists of 20 miRNAs with the best correlation to global mean expression in each cancer type. Nine of these miRNAs were present in both lists, and miR-103a-3p was the most stable reference miRNA for both CRC and PC FFPE tissue. The optimal number of reference miRNAs was 4 in CRC and 10 in PC. Sample age had a significant effect on global miRNA expression in PC (50% reduction over 20 years) but not in CRC. Formalin fixation for 2-6 days decreased miRNA expression 30-65%. Normalization using global mean expression reduced variability for technical and biological replicates while normalization using the expression of the identified reference miRNAs reduced variability only for biological replicates. Normalization only had a minor impact on clustering results. We identified suitable reference miRNAs for future miRNA expression experiments using CRC- and PC FFPE tissue samples. Formalin fixation decreased miRNA expression considerably, while the effect of increasing sample age was estimated to be negligible in a clinical setting.

  6. High-Throughput Sequencing Identifies MicroRNAs from Posterior Intestine of Loach (Misgurnus anguillicaudatus) and Their Response to Intestinal Air-Breathing Inhibition.

    PubMed

    Huang, Songqian; Cao, Xiaojuan; Tian, Xianchang; Wang, Weimin

    2016-01-01

    MicroRNAs (miRNAs) exert important roles in animal growth, immunity, and development, and regulate gene expression at the post-transcriptional level. Knowledges about the diversities of miRNAs and their roles in accessory air-breathing organs (ABOs) of fish remain unknown. In this work, we used high-throughput sequencing to identify known and novel miRNAs from the posterior intestine, an important ABO, in loach (Misgurnus anguillicaudatus) under normal and intestinal air-breathing inhibited conditions. A total of 204 known and 84 novel miRNAs were identified, while 47 miRNAs were differentially expressed between the two small RNA libraries (i.e. between the normal and intestinal air-breathing inhibited group). Potential miRNA target genes were predicted by combining our transcriptome data of the posterior intestine of the loach under the same conditions, and then annotated using COG, GO, KEGG, Swissprot and Nr databases. The regulatory networks of miRNAs and their target genes were analyzed. The abundances of nine known miRNAs were validated by qRT-PCR. The relative expression profiles of six known miRNAs and their eight corresponding target genes, and two novel potential miRNAs were also detected. Histological characteristics of the posterior intestines in both normal and air-breathing inhibited group were further analyzed. This study contributes to our understanding on the functions and molecular regulatory mechanisms of miRNAs in accessory air-breathing organs of fish.

  7. Identification of Differentially Expressed miRNAs between White and Black Hair Follicles by RNA-Sequencing in the Goat (Capra hircus)

    PubMed Central

    Wu, Zhenyang; Fu, Yuhua; Cao, Jianhua; Yu, Mei; Tang, Xiaohui; Zhao, Shuhong

    2014-01-01

    MicroRNAs (miRNAs) play a key role in many biological processes by regulating gene expression at the post-transcriptional level. A number of miRNAs have been identified from livestock species. However, compared with other animals, such as pigs and cows, the number of miRNAs identified in goats is quite low, particularly in hair follicles. In this study, to investigate the functional roles of miRNAs in goat hair follicles of goats with different coat colors, we sequenced miRNAs from two hair follicles samples (white and black) using Solexa sequencing. A total of 35,604,016 reads were obtained, which included 30,878,637 clean reads (86.73%). MiRDeep2 software identified 214 miRNAs. Among them, 205 were conserved among species and nine were novel miRNAs. Furthermore, DESeq software identified six differentially expressed miRNAs. Quantitative PCR confirmed differential expression of two miRNAs, miR-10b and miR-211. KEGG pathways were analyzed using the DAVID website for the predicted target genes of the differentially expressed miRNAs. Several signaling pathways including Notch and MAPK pathways may affect the process of coat color formation. Our study showed that the identified miRNAs might play an essential role in black and white follicle formation in goats. PMID:24879525

  8. Analysis of TP53 gene expression and p53 level of human hypopharyngeal FaDu (HTB-43) head and neck cancer cell line after microRNA-181a inhibition.

    PubMed

    Cheah, Y K; Cheng, R W; Yeap, S K; Khoo, C H; See, H S

    2014-03-17

    The identification of new biomarkers for early detection of highly recurrent head and neck cancer is urgently needed. MicroRNAs (miRNAs) are small and non-coding RNAs that regulate cancer-related gene expression, such as tumor protein 53 (TP53) gene expression. This study was carried out to analyze TP53 gene expression using real-time PCR and to determine changes in intracellular p53 level by flow cytometry after downregulation of miRNA-181a miRNA inhibitor in the FaDu cell line. TP53 gene expression showed a 3-fold increment and the p53 protein level was also increased in the miRNA-181a-treated cells. In conclusion, miRNA-181a binds to the TP53 gene and inhibits its expression, decreasing the synthesis of p53.

  9. A Novel Persistence Associated EBV miRNA Expression Profile Is Disrupted in Neoplasia

    PubMed Central

    Qiu, Jin; Cosmopoulos, Katherine; Pegtel, Michiel; Hopmans, Erik; Murray, Paul; Middeldorp, Jaap; Shapiro, Michael; Thorley-Lawson, David A.

    2011-01-01

    We have performed the first extensive profiling of Epstein-Barr virus (EBV) miRNAs on in vivo derived normal and neoplastic infected tissues. We describe a unique pattern of viral miRNA expression by normal infected cells in vivo expressing restricted viral latency programs (germinal center: Latency II and memory B: Latency I/0). This includes the complete absence of 15 of the 34 miRNAs profiled. These consist of 12 BART miRNAs (including approximately half of Cluster 2) and 3 of the 4 BHRF1 miRNAs. All but 2 of these absent miRNAs become expressed during EBV driven growth (Latency III). Furthermore, EBV driven growth is accompanied by a 5–10 fold down regulation in the level of the BART miRNAs expressed in germinal center and memory B cells. Therefore, Latency III also expresses a unique pattern of viral miRNAs. We refer to the miRNAs that are specifically expressed in EBV driven growth as the Latency III associated miRNAs. In EBV associated tumors that employ Latency I or II (Burkitt's lymphoma, Hodgkin's disease, nasopharyngeal carcinoma and gastric carcinoma), the Latency III associated BART but not BHRF1 miRNAs are up regulated. Thus BART miRNA expression is deregulated in the EBV associated tumors. This is the first demonstration that Latency III specific genes (the Latency III associated BARTs) can be expressed in these tumors. The EBV associated tumors demonstrate very similar patterns of miRNA expression yet were readily distinguished when the expression data were analyzed either by heat-map/clustering or principal component analysis. Systematic analysis revealed that the information distinguishing the tumor types was redundant and distributed across all the miRNAs. This resembles “secret sharing” algorithms where information can be distributed among a large number of recipients in such a way that any combination of a small number of recipients is able to understand the message. Biologically, this may be a consequence of functional redundancy between the miRNAs. PMID:21901094

  10. MicroRNA Expression Analysis in Serum of Patients with Congenital Hemochromatosis and Age-Related Macular Degeneration (AMD)

    PubMed Central

    Szemraj, Maciej; Oszajca, Katarzyna; Szemraj, Janusz; Jurowski, Piotr

    2017-01-01

    Background Congenital hemochromatosis is a disorder caused by mutations of genes involved in iron metabolism, leading to increased levels of iron concentration in tissues and serum. High concentrations of iron can lead to the development of AMD. The aim of this study was to analyze circulating miRNAs in the serum of congenital hemochromatosis patients with AMD and their correlation with the expression of genes involved in iron metabolism. Material/Methods Peripheral blood monolayer cells and serum were obtained from patients with congenital hemochromatosis, congenital hemochromatosis and AMD, AMD patients without congenital hemochromatosis, and healthy controls. Serum miRNAs expressions were analyzed by RT-PCR (qRT-PCR) using TaqMan MicroRNA probes, and proteins levels were measured by ELSA kits. Gene polymorphisms in TF and TFRC genes were determined using the TaqMan discrimination assay. Results Statistical analysis of the miRNAs expressions selected for further study the miR-31, miR-133a, miR-141, miR-145, miR-149, and miR-182, which are involved in the posttranscriptional expression of iron-related genes: TF, TFRI, DMT1, FTL, and FPN1. It was discovered that the observed changes in the expressions of the miRNAs was correlated with the level of protein in the serum of the analyzed genes. There were no statistically significant differences in the distribution of genotype and allele frequencies in TF and TFRC genes between analyzed groups of patients. Conclusions The differences studied in the miRNA serum profile, in conjunction with the changes in the analyzed protein levels, may be useful in the early detection of congenital hemochromatosis in patients who may develop AMD disease. PMID:28827515

  11. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs.

    PubMed

    Khan, Aly A; Betel, Doron; Miller, Martin L; Sander, Chris; Leslie, Christina S; Marks, Debora S

    2009-06-01

    Transfection of small RNAs (such as small interfering RNAs (siRNAs) and microRNAs (miRNAs)) into cells typically lowers expression of many genes. Unexpectedly, increased expression of genes also occurs. We investigated whether this upregulation results from a saturation effect--that is, competition among the transfected small RNAs and the endogenous pool of miRNAs for the intracellular machinery that processes small RNAs. To test this hypothesis, we analyzed genome-wide transcript responses from 151 published transfection experiments in seven different human cell types. We show that targets of endogenous miRNAs are expressed at significantly higher levels after transfection, consistent with impaired effectiveness of endogenous miRNA repression. This effect exhibited concentration and temporal dependence. Notably, the profile of endogenous miRNAs can be largely inferred by correlating miRNA sites with gene expression changes after transfections. The competition and saturation effects have practical implications for miRNA target prediction, the design of siRNA and short hairpin RNA (shRNA) genomic screens and siRNA therapeutics.

  12. Arsenic exposure triggers a shift in microRNA expression.

    PubMed

    Sturchio, Elena; Colombo, Teresa; Boccia, Priscilla; Carucci, Nicoletta; Meconi, Claudia; Minoia, Claudio; Macino, Giuseppe

    2014-02-15

    Exposure to inorganic Arsenic (iAs) through drinking water is a major public health problem affecting most countries. iAs has been classified by the International Agency for Research on Cancer as Group 1: "Carcinogenic to humans". Although numerous studies have shown the related adverse effects of iAs, sensitive appropriate biomarkers for studies of environmental epidemiology are still required. The present work aims at investigate the role of microRNAs (miRNAs), powerful negative regulators of gene expression, playing a key role in many physiological and pathological cellular processes, in iAs exposure. To this end, we analyzed miRNA changes in expression profile triggered by iAs exposure in Jurkat cell line. We used microarray technology to profile the expression of miRNAs following 2 μmol/L sodium arsenite treatment at different time points. Moreover, we performed phenotypic analysis of iAs treated cells. Real Time Polymerase Chain Reaction (RT-PCR) was used to validate miRNA microarray data and to assay expression modulation of selected relevant mRNAs. Finally, bioinformatics techniques were applied to reconstruct iAs-relevant molecular pathways and miRNA regulatory networks from the expression data. We report miRNAs modulated after iAs treatment in Jurkat cells. In particular, we highlight 36 miRNAs exhibiting consistent dysregulation and particularly a panel of 8 miRNAs which we also validated by RT-PCR analysis. Computational analysis of lists of putative target genes for these 8 miRNAs points to an involvement in arsenic-response pathways, for a subset of them, that were analyzed by RT-PCR. Furthermore, iAs exposure reveals induction of cell cycle progression and the failure of apoptosis, supporting the idea of iAs carcinogenic activity. Our study provides a list of miRNAs whose expression levels are affected by iAs treatment, corroborating the importance of proceeding with the hunt for specific subset of miRNAs, which can serve as potential biomarkers of iAs effects with useful diagnostic value. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Regulatory network involving miRNAs and genes in serous ovarian carcinoma

    PubMed Central

    Zhao, Haiyan; Xu, Hao; Xue, Luchen

    2017-01-01

    Serous ovarian carcinoma (SOC) is one of the most life-threatening types of gynecological malignancy, but the pathogenesis of SOC remains unknown. Previous studies have indicated that differentially expressed genes and microRNAs (miRNAs) serve important functions in SOC. However, genes and miRNAs are identified in a disperse form, and limited information is known about the regulatory association between miRNAs and genes in SOC. In the present study, three regulatory networks were hierarchically constructed, including a differentially-expressed network, a related network and a global network to reveal associations between each factor. In each network, there were three types of factors, which were genes, miRNAs and transcription factors that interact with each other. Focus was placed on the differentially-expressed network, in which all genes and miRNAs were differentially expressed and therefore may have affected the development of SOC. Following the comparison and analysis between the three networks, a number of signaling pathways which demonstrated differentially expressed elements were highlighted. Subsequently, the upstream and downstream elements of differentially expressed miRNAs and genes were listed, and a number of key elements (differentially expressed miRNAs, genes and TFs predicted using the P-match method) were analyzed. The differentially expressed network partially illuminated the pathogenesis of SOC. It was hypothesized that if there was no differential expression of miRNAs and genes, SOC may be prevented and treatment may be identified. The present study provided a theoretical foundation for gene therapy for SOC. PMID:29113276

  14. Characterization and identification of differentially expressed microRNAs during the process of the peribiliary fibrosis induced by Clonorchis sinensis.

    PubMed

    Yan, Chao; Shen, Li-Ping; Ma, Rui; Li, Bo; Li, Xiang-Yang; Hua, Hui; Zhang, Bo; Yu, Qian; Wang, Yu-Gang; Tang, Ren-Xian; Zheng, Kui-Yang

    2016-09-01

    Clonorchis sinensis (C. sinensis) infection can lead to biliary fibrosis. MicroRNAs (miRNAs) play important roles in regulation of genes expression in the liver diseases. However, the differential expression of miRNAs that probably regulates the portal fibrogenesis caused by C. sinensis has not yet been investigated. Hepatic miRNAs expression profiles from C. sinensis-infected mice at different time-points were analyzed by miRNA microarray and validated by quantitative real-time PCR (qRT-PCR). 349 miRNAs were differentially expressed in the liver of the C. sinensis-infected mice at 2, 8 or 16weeks post infection (p.i.), compared with those at 0week p.i., and there were 143 down-regulated and 206 up-regulated miRNAs among them. These all dysregulated miRNAs were potentially involved in the pathological processes of clonorchiasis by regulation of cancer-related signaling pathway, TGF-β signaling pathway, MAPK signaling pathway, Toll-like receptor signaling pathway, PI3K /AKT signaling pathway, etc. 169 of these dysregulated miRNAs were predicted to be involved in the TGF/Smads signaling pathway which plays an important role in the biliary fibrosis caused by C. sinensis. Additionally, miRNA-32, miRNA-34a, miRNA-125b and miRNA-497 were negatively correlated with Smad7 expression, indicating these miRNAs may specifically down-regulate Smad7 expression and participate in regulation of biliary fibrosis caused by C. sinensis. The results of the present study for the first time demonstrated that miRNAs were differentially expressed in the liver of mice infected by C. sinensis, and these miRNAs may play important roles in regulation of peribiliary fibrosis caused by C. sinensis, which may provide possible therapeutic targets for clonorchiasis. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Sex specific expression and distribution of small RNAs in papaya.

    PubMed

    Aryal, Rishi; Jagadeeswaran, Guru; Zheng, Yun; Yu, Qingyi; Sunkar, Ramanjulu; Ming, Ray

    2014-01-13

    Regulatory function of small non-coding RNAs (sRNA) in response to environmental and developmental cues has been established. Additionally, sRNA, also plays an important role in maintaining the heterochromatin and centromere structures of the chromosome. Papaya, a trioecious species with recently evolved sex chromosomes, has emerged as an excellent model system to study sex determination and sex chromosome evolution in plants. However, role of small RNA in papaya sex determination is yet to be explored. We analyzed the high throughput sRNAs reads in the Illumina libraries prepared from male, female, and hermaphrodite flowers of papaya. Using the sRNA reads, we identified 29 miRNAs that were not previously reported from papaya. Including this and two previous studies, a total of 90 miRNAs has been identified in papaya. We analyzed the expression of these miRNAs in each sex types. A total of 65 miRNAs, including 31 conserved and 34 novel mirNA, were detected in at least one library. Fourteen of the 65 miRNAs were differentially expressed among different sex types. Most of the miRNA expressed higher in male flowers were related to the auxin signaling pathways, whereas the miRNAs expressed higher in female flowers were the potential regulators of the apical meristem identity genes. Aligning the sRNA reads identified the sRNA hotspots adjacent to the gaps of the X and Y chromosomes. The X and Y chromosomes sRNA hotspots has a 7.8 and 4.4 folds higher expression of sRNA, respectively, relative to the chromosome wide average. Approximately 75% of the reads aligned to the X chromosome hotspot was identical to that of the Y chromosome hotspot. By analyzing the large-scale sRNA sequences from three sex types, we identified the sRNA hotspots flanking the gaps of papaya X, Y, and Yh chromosome. The sRNAs expression patterns in these regions were reminiscent of the pericentromeric region indicating that the only remaining gap in each of these chromosomes is likely the centromere. We also identified 14 differentially expressed miRNAs in male, female and hermaphrodite flowers of papaya. Our results provide valuable information toward understanding the papaya sex determination.

  16. Identification and profiling of growth-related microRNAs of the swimming crab Portunus trituberculatus by using Solexa deep sequencing.

    PubMed

    Ren, Xianyun; Cui, Yanting; Gao, Baoquan; Liu, Ping; Li, Jian

    2016-08-01

    MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that regulate gene expression by post-transcriptional repression of mRNAs. The swimming crab Portunus trituberculatus is one of the most important crustacean species for aquaculture in China. However, to date no miRNAs have been reported to for modulating growth in P. trituberculatus. To investigate miRNAs involved in the growth of this species, we constructed six small RNA libraries for big individuals (BIs) and small individuals (SIs) from a highly inbred family. Six mixed RNA pools of five tissues (eyestalk, gill, heart, hepatopancreas, and muscle) were obtained. By aligning sequencing data with those for known miRNAs, a total of 404 miRNAs, including 339 known and 65 novel miRNAs, were identified from the six libraries. MiR-100 and miR-276a-3p were among the most prominent miRNA species. We identified seven differentially expressed miRNAs between the BIs and SIs, which were validated using real-time PCR. Preliminary analyzes of their putative target genes and GO and KEGG pathway analyzes showed that these differentially expressed miRNAs could play important roles in global transcriptional depression and cell differentiation of P. trituberculatus. This study reveals the first miRNA profile related to the body growth of P. trituberculatus, which would be particularly useful for crab breeding programs. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Investigation of relationship between precursor of miRNA-944 and its mature form in lung squamous-cell carcinoma - the diagnostic value.

    PubMed

    Powrózek, Tomasz; Mlak, Radosław; Dziedzic, Marcin; Małecka-Massalska, Teresa; Sagan, Dariusz

    2018-03-01

    MicroRNA (miRNA) are attractive markers of lung cancer, due to their regulatory role in cell cycle. However, we know more about function of miRNA in cancer development, there is still little known about role of their precursors (primary miRNA; pri-miRNA) in tumorgenesis. In present study we investigated potential role of miRNA-944 and its precursor pri-miRNA-944 in development of squamous-cell lung cancer (SCC) and explored interdependence between miRNA precursor and its mature form. This is a first available literature report analyzing pri-miRNA as a cancer diagnostic marker. Expression of miRNA-944 and its precursor was analyzed in 58 fresh-frozen tissues of non-small cell lung cancer and corresponding adjacent non-cancerous tissues using qRT-PCR. Expression of pri-miRNA-944 was correlated with TP63 and miRNA-944. Using ROC analysis diagnostic accuracy of studied markers was evaluated. miRNA-944 and its precursor were significantly overexspressed in SCC compared to adenocarcinoma (AC) and non-cancerous tissue. pri-miRNA-944 strongly and positively correlated with TP63 (r = 0.739, p < 0.001) and with mature miRNA-944 expression (r = 0.691, p < 0.001). Also, TP63 expression significantly correlated with mature miRNA (r = 0.785, p < 0.001). Combined analysis of pri-miRNA-944 and mature miRNA-944 allowed to distinguish SCC tissue form AC with sensitivity of 93.3% and specificity of 100% (AUC = 0.978), and SCC from non-cancerous tissue with 92.9% sensitivity and 100% specificity (AUC = 0.992). We assumed that pri-miRNA-944 and miRNA-944 may be involved in early squamous-type differentiation of lung tumors. Moreover, analysis of both markers provided high diagnostic accuracy for SCC detection. Copyright © 2018 Elsevier GmbH. All rights reserved.

  18. Ewing's Sarcoma: An Analysis of miRNA Expression Profiles and Target Genes in Paraffin-Embedded Primary Tumor Tissue.

    PubMed

    Parafioriti, Antonina; Bason, Caterina; Armiraglio, Elisabetta; Calciano, Lucia; Daolio, Primo Andrea; Berardocco, Martina; Di Bernardo, Andrea; Colosimo, Alessia; Luksch, Roberto; Berardi, Anna C

    2016-04-30

    The molecular mechanism responsible for Ewing's Sarcoma (ES) remains largely unknown. MicroRNAs (miRNAs), a class of small non-coding RNAs able to regulate gene expression, are deregulated in tumors and may serve as a tool for diagnosis and prediction. However, the status of miRNAs in ES has not yet been thoroughly investigated. This study compared global miRNAs expression in paraffin-embedded tumor tissue samples from 20 ES patients, affected by primary untreated tumors, with miRNAs expressed in normal human mesenchymal stromal cells (MSCs) by microarray analysis. A miRTarBase database was used to identify the predicted target genes for differentially expressed miRNAs. The miRNAs microarray analysis revealed distinct patterns of miRNAs expression between ES samples and normal MSCs. 58 of the 954 analyzed miRNAs were significantly differentially expressed in ES samples compared to MSCs. Moreover, the qRT-PCR analysis carried out on three selected miRNAs showed that miR-181b, miR-1915 and miR-1275 were significantly aberrantly regulated, confirming the microarray results. Bio-database analysis identified BCL-2 as a bona fide target gene of the miR-21, miR-181a, miR-181b, miR-29a, miR-29b, miR-497, miR-195, miR-let-7a, miR-34a and miR-1915. Using paraffin-embedded tissues from ES patients, this study has identified several potential target miRNAs and one gene that might be considered a novel critical biomarker for ES pathogenesis.

  19. Analysis of MicroRNA Expression in Newborns with Differential Birth Weight Using Newborn Screening Cards

    PubMed Central

    Rodil-Garcia, Patricia; Arellanes-Licea, Elvira del Carmen; Montoya-Contreras, Angélica; Salazar-Olivo, Luis A.

    2017-01-01

    Birth weight is an early predictor for metabolic diseases and microRNAs (miRNAs) are proposed as fetal programming participants. To evaluate the use of dried blood spots (DBS) on newborn screening cards (NSC) as a source of analyzable miRNAs, we optimized a commercial protocol to recover total miRNA from normal birth weight (NBW, n = 17–20), low birth weight (LBW, n = 17–20) and high birth weight (macrosomia, n = 17–20) newborns and analyzed the relative expression of selected miRNAs by stem-loop RT-qPCR. The possible role of miRNAs on the fetal programming of metabolic diseases was explored by bioinformatic tools. The optimized extraction of RNA resulted in a 1.2-fold enrichment of miRNAs respect to the commercial kit. miR-33b and miR-375 were overexpressed in macrosomia 9.8-fold (p < 0.001) and 1.7-fold, (p < 0.05), respectively and miR-454-3p was overexpressed in both LBW and macrosomia (19.7-fold, p < 0.001 and 10.8-fold, p < 0.001, respectively), as compared to NBW. Potential target genes for these miRNAs are associated to cyclic-guanosine monophosphate (cGMP)-dependent protein kinase (PKG), mitogen-activated protein kinase (MAPK), type 2 diabetes, transforming growth factor-β (TGF-β)and Forkhead box O protein (FoxO) pathways. In summary, we improved a protocol for analyzing miRNAs from NSC and provide the first evidence that birth weight modifies the expression of miRNAs associated to adult metabolic dysfunctions. Our work suggests archived NSC are an invaluable resource in the search for fetal programming biomarkers. PMID:29182561

  20. Characterization and differential expression of microRNAs elicited by sulfur deprivation in Chlamydomonas reinhardtii

    PubMed Central

    2012-01-01

    Background microRNAs (miRNAs) have been found to play an essential role in the modulation of numerous biological processes in eukaryotes. Chlamydomonas reinhardtii is an ideal model organism for the study of many metabolic processes including responses to sulfur-deprivation. We used a deep sequencing platform to extensively profile and identify changes in the miRNAs expression that occurred under sulfur-replete and sulfur-deprived conditions. The aim of our research was to characterize the differential expression of Chlamydomonas miRNAs under sulfur-deprived conditions, and subsequently, the target genes of miRNA involved in sulfur-deprivation were further predicted and analyzed. Results By using high-throughput sequencing, we characterized the microRNA transcriptomes under sulphur-replete and sulfur-deprived conditions in Chlamydomonas reinhardtii. We predicted a total of 310 miRNAs which included 85 known miRNAs and 225 novel miRNAs. 13 miRNAs were the specific to the sulfur-deprived conditions. 47 miRNAs showed significantly differential expressions responding to sulfur-deprivation, and most were up-regulated in the small RNA libraries with sulfur-deprivation. Using a web-based integrated system (Web MicroRNAs Designer 3) and combing the former information from a transcriptome of Chlamydomonas reinhardtii, 22 miRNAs and their targets involved in metabolism regulation with sulfur-deprivation were verified. Conclusions Our results indicate that sulfur-deprivation may have a significant influence on small RNA expression patterns, and the differential expressions of miRNAs and interactions between miRNA and its targets might further reveal the molecular mechanism responding to sulfur-deprivation in Chlamydomonas reinhardtii. PMID:22439676

  1. [Expression profiles of the exosomal miRNAs in the chronic hepatitis B patients with persistently normal ALT].

    PubMed

    Li, Ronghua; Fu, Xiaoyu; Tang, Yujing; Fu, Lei; Tan, Deming; Ouyang, Yi; Peng, Shifang

    2018-05-28

    To investigate expression profiles of the plasma exosomal miRNAs of the chronic hepatitis B (CHB) patients with persistently normal alamine aminotransferase (PNALT) for the first time and try to find exosomal miRNAs which could reflect liver inflammation better. 
 Methods: Five CHB patients with liver tissue inflammation grade ≥A2 of PNALT and 5 CHB patients with liver tissue inflammation grade

  2. [Detection and analysis of the characteristic expression of microRNAs of anal fistula patients].

    PubMed

    Qiu, Jianming; Yu, Jiping; Yang, Guangen; Xu, Kan; Tao, Yong; Lin, Ali; Wang, Dong

    2016-07-01

    To detect and analyze the characteristic miRNAs profile of anal fistula and explore their possible target genes and potential clinical significance. The anal mucosa close to the hemorrhoids were collected from three patients undergoing fistulectomy and hemorrhoidectomy (fistula group) as well as three patients receiving only hemorroidectomy(hemorrhoids group), matching with fistula group in age, gender and body weight. miRNA microarray was used to compare the expression of 1 285 human miRNAs of the anal mucosa between two groups. Cluster analysis was adopted to analyze the accumulation of the differentially expressed miRNAs(P<0.05, fold≥2.0 or ≤0.5) and their target genes were predicted with 10 softwares such as DIANAmT, miRanda, miRDB, miRWalk etc. Comprehensive scoring was performed to identify genes with highest predictive score. Gene ontology (GO) concentration technique was used to analyze the target gene-associated biological process. Immunohistochemistry was used to examine protein expression of genes with the highest score. Among 1285 miRNAs in fistula group, 13 miRNAs were differentially expressed with those in hemorrhoid group, including 2 of up-regulation and 11 of down-regulation. Paired t test showed that in fistula group, miRNA-3609 up-regulation was 5.98 folds(P=0.0231) and miR-181a-2-3p down-regulation was 0.13 folds(P=0.0067) compared to those in hemorrhoid group, which had the greatest differential expression. Cluster analysis suggested that up-regulated miR-3609 and miR-6086 had similar change trend in both groups. Among 11 down-regulated miRNAs, miR-125bp-1-3p and miR-548q had similar expression and other 9 miRNAs had similar expression as well, including miR-1185-1-3p, miR-532-3p, miR-1233-5p, miR-769-5p, miR-149-5p, miR-99b-3p, miR-141-3p, miR-138-5p, and miR-181a-2-3p. Target gene prediction analysis of above 13 genes showed that 7 miRNAs(53.8%) were eligible to predict their potential target genes, yielding totally 104 possible target genes. The rest of 6 miRNAs(46.2%) failed to predict any target gene. The highest score in prediction of target gene was chitinase 1(ChIT1) and its corresponding differential miRNA was miR-769-5p(r=-0.94286, P=0.0167). Gene ontology analysis showed that the most associated biological process related with these 104 target genes was keratinization, immune response and signal transduction. Immunohistochemistry revealed ChiT1 expression of anal mucosa in fistula group was significantly higher compared to hemorrhoid group(P<0.01). There is a characteristic miRNAs profile in anal fistula patients, which may play a role in the occurrence and development of anal fistula.

  3. Environmental contaminants and microRNA regulation: Transcription factors as regulators of toxicant-altered microRNA expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sollome, James; Martin, Elizabeth

    MicroRNAs (miRNAs) regulate gene expression by binding mRNA and inhibiting translation and/or inducing degradation of the associated transcripts. Expression levels of miRNAs have been shown to be altered in response to environmental toxicants, thus impacting cellular function and influencing disease risk. Transcription factors (TFs) are known to be altered in response to environmental toxicants and play a critical role in the regulation of miRNA expression. To date, environmentally-responsive TFs that are important for regulating miRNAs remain understudied. In a state-of-the-art analysis, we utilized an in silico bioinformatic approach to characterize potential transcriptional regulators of environmentally-responsive miRNAs. Using the miRStart database,more » genomic sequences of promoter regions for all available human miRNAs (n = 847) were identified and promoter regions were defined as − 1000/+500 base pairs from the transcription start site. Subsequently, the promoter region sequences of environmentally-responsive miRNAs (n = 128) were analyzed using enrichment analysis to determine overrepresented TF binding sites (TFBS). While most (56/73) TFs differed across environmental contaminants, a set of 17 TFs was enriched for promoter binding among miRNAs responsive to numerous environmental contaminants. Of these, one TF was common to miRNAs altered by the majority of environmental contaminants, namely SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 3 (SMARCA3). These identified TFs represent candidate common transcriptional regulators of miRNAs perturbed by environmental toxicants. - Highlights: • Transcription factors that regulate environmentally-modulated miRNA expression are understudied • Transcription factor binding sites (TFBS) located within DNA promoter regions of miRNAs were identified. • Specific transcription factors may serve as master regulators of environmentally-mediated microRNA expression.« less

  4. Psmir: a database of potential associations between small molecules and miRNAs

    PubMed Central

    Meng, Fanlin; Wang, Jing; Dai, Enyu; Yang, Feng; Chen, Xiaowen; Wang, Shuyuan; Yu, Xuexin; Liu, Dianming; Jiang, Wei

    2016-01-01

    miRNAs are key post-transcriptional regulators of many essential biological processes, and their dysregulation has been validated in almost all human cancers. Restoring aberrantly expressed miRNAs might be a novel therapeutics. Recently, many studies have demonstrated that small molecular compounds can affect miRNA expression. Thus, prediction of associations between small molecules and miRNAs is important for investigation of miRNA-targeted drugs. Here, we analyzed 39 miRNA-perturbed gene expression profiles, and then calculated the similarity of transcription responses between miRNA perturbation and drug treatment to predict drug-miRNA associations. At the significance level of 0.05, we obtained 6501 candidate associations between 1295 small molecules and 25 miRNAs, which included 624 FDA approved drugs. Finally, we constructed the Psmir database to store all potential associations and the related materials. In a word, Psmir served as a valuable resource for dissecting the biological significance in small molecules’ effects on miRNA expression, which will facilitate developing novel potential therapeutic targets or treatments for human cancers. Psmir is supported by all major browsers, and is freely available at http://www.bio-bigdata.com/Psmir/. PMID:26759061

  5. Psmir: a database of potential associations between small molecules and miRNAs.

    PubMed

    Meng, Fanlin; Wang, Jing; Dai, Enyu; Yang, Feng; Chen, Xiaowen; Wang, Shuyuan; Yu, Xuexin; Liu, Dianming; Jiang, Wei

    2016-01-13

    miRNAs are key post-transcriptional regulators of many essential biological processes, and their dysregulation has been validated in almost all human cancers. Restoring aberrantly expressed miRNAs might be a novel therapeutics. Recently, many studies have demonstrated that small molecular compounds can affect miRNA expression. Thus, prediction of associations between small molecules and miRNAs is important for investigation of miRNA-targeted drugs. Here, we analyzed 39 miRNA-perturbed gene expression profiles, and then calculated the similarity of transcription responses between miRNA perturbation and drug treatment to predict drug-miRNA associations. At the significance level of 0.05, we obtained 6501 candidate associations between 1295 small molecules and 25 miRNAs, which included 624 FDA approved drugs. Finally, we constructed the Psmir database to store all potential associations and the related materials. In a word, Psmir served as a valuable resource for dissecting the biological significance in small molecules' effects on miRNA expression, which will facilitate developing novel potential therapeutic targets or treatments for human cancers. Psmir is supported by all major browsers, and is freely available at http://www.bio-bigdata.com/Psmir/.

  6. MicroRNA networks in mouse lung organogenesis.

    PubMed

    Dong, Jie; Jiang, Guoqian; Asmann, Yan W; Tomaszek, Sandra; Jen, Jin; Kislinger, Thomas; Wigle, Dennis A

    2010-05-26

    MicroRNAs (miRNAs) are known to be important regulators of both organ development and tumorigenesis. MiRNA networks and their regulation of messenger RNA (mRNA) translation and protein expression in specific biological processes are poorly understood. We explored the dynamic regulation of miRNAs in mouse lung organogenesis. Comprehensive miRNA and mRNA profiling was performed encompassing all recognized stages of lung development beginning at embryonic day 12 and continuing to adulthood. We analyzed the expression patterns of dynamically regulated miRNAs and mRNAs using a number of statistical and computational approaches, and in an integrated manner with protein levels from an existing mass-spectrometry derived protein database for lung development. In total, 117 statistically significant miRNAs were dynamically regulated during mouse lung organogenesis and clustered into distinct temporal expression patterns. 11,220 mRNA probes were also shown to be dynamically regulated and clustered into distinct temporal expression patterns, with 3 major patterns accounting for 75% of all probes. 3,067 direct miRNA-mRNA correlation pairs were identified involving 37 miRNAs. Two defined correlation patterns were observed upon integration with protein data: 1) increased levels of specific miRNAs directly correlating with downregulation of predicted mRNA targets; and 2) increased levels of specific miRNAs directly correlating with downregulation of translated target proteins without detectable changes in mRNA levels. Of 1345 proteins analyzed, 55% appeared to be regulated in this manner with a direct correlation between miRNA and protein level, but without detectable change in mRNA levels. Systematic analysis of microRNA, mRNA, and protein levels over the time course of lung organogenesis demonstrates dynamic regulation and reveals 2 distinct patterns of miRNA-mRNA interaction. The translation of target proteins affected by miRNAs independent of changes in mRNA level appears to be a prominent mechanism of developmental regulation in lung organogenesis.

  7. Identification and Analysis of Expression of Novel MicroRNAs of Murine Gammaherpesvirus 68▿ †

    PubMed Central

    Zhu, Jia Yun; Strehle, Martin; Frohn, Anne; Kremmer, Elisabeth; Höfig, Kai P.; Meister, Gunter; Adler, Heiko

    2010-01-01

    Murine gammaherpesvirus 68 (MHV-68) is closely related to Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) and provides a small-animal model with which to study the pathogenesis of gammaherpesvirus (γHV) infections. To completely explore the potential of the MHV-68 system for the investigation of γHV microRNAs (miRNAs), it would be desirable to know the number and expression patterns of all miRNAs encoded by MHV-68. By deep sequencing of small RNAs, we systematically investigated the expression profiles of MHV-68 miRNAs in both lytically and persistently infected cells. In addition to the nine known MHV-68 miRNAs, we identified six novel MHV-68 miRNA genes and analyzed the expression levels of all MHV-68 miRNAs. Furthermore, we also characterized the cellular miRNA expression signatures in MHV-68-infected versus noninfected NIH 3T3 fibroblasts and in 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-treated versus nontreated S11 cells. We found that mmu-mir-15b and mmu-mir-16 are highly upregulated upon MHV-68 infection of NIH 3T3 cells, indicating a potential role for cellular miRNAs during MHV-68 infection. Our data will aid in the full exploration of the functions of γHV miRNAs. PMID:20668074

  8. Discovery of cashmere goat (Capra hircus) microRNAs in skin and hair follicles by Solexa sequencing.

    PubMed

    Yuan, Chao; Wang, Xiaolong; Geng, Rongqing; He, Xiaolin; Qu, Lei; Chen, Yulin

    2013-07-28

    MicroRNAs (miRNAs) are a large family of endogenous, non-coding RNAs, about 22 nucleotides long, which regulate gene expression through sequence-specific base pairing with target mRNAs. Extensive studies have shown that miRNA expression in the skin changes remarkably during distinct stages of the hair cycle in humans, mice, goats and sheep. In this study, the skin tissues were harvested from the three stages of hair follicle cycling (anagen, catagen and telogen) in a fibre-producing goat breed. In total, 63,109,004 raw reads were obtained by Solexa sequencing and 61,125,752 clean reads remained for the small RNA digitalisation analysis. This resulted in the identification of 399 conserved miRNAs; among these, 326 miRNAs were expressed in all three follicular cycling stages, whereas 3, 12 and 11 miRNAs were specifically expressed in anagen, catagen, and telogen, respectively. We also identified 172 potential novel miRNAs by Mireap, 36 miRNAs were expressed in all three cycling stages, whereas 23, 29 and 44 miRNAs were specifically expressed in anagen, catagen, and telogen, respectively. The expression level of five arbitrarily selected miRNAs was analyzed by quantitative PCR, and the results indicated that the expression patterns were consistent with the Solexa sequencing results. Gene Ontology and KEGG pathway analyses indicated that five major biological pathways (Metabolic pathways, Pathways in cancer, MAPK signalling pathway, Endocytosis and Focal adhesion) accounted for 23.08% of target genes among 278 biological functions, indicating that these pathways are likely to play significant roles during hair cycling. During all hair cycle stages of cashmere goats, a large number of conserved and novel miRNAs were identified through a high-throughput sequencing approach. This study enriches the Capra hircus miRNA databases and provides a comprehensive miRNA transcriptome profile in the skin of goats during the hair follicle cycle.

  9. Novel Cadmium Responsive MicroRNAs in Daphnia pulex.

    PubMed

    Chen, Shuai; McKinney, Garrett J; Nichols, Krista M; Colbourne, John K; Sepúlveda, Maria S

    2015-12-15

    Daphnia pulex is a widely used toxicological model and is known for its sensitivity to cadmium (Cd). Recent research suggests that microRNAs (miRNAs) play a critical role in animal responses to heavy metals. To investigate the functions of D. pulex miRNAs under Cd exposure, we analyzed the miRNA profiles of D. pulex after 48 h using miRNA microarrays and validated our findings by q-PCR. miRNA dpu-let-7 was identified as a stably expressed gene and used as a reference. We identified 22 and 21 differentially expressed miRNAs under low (20 μg/L CdCl2) and high-exposure (40 μg/L CdCl2) concentrations compared to controls, respectively. Cellular functions of predicted miRNA target Cd-responsive genes included oxidative stress, ion transport, mitochondrial damage, and DNA repair. An insulin-related network was also identified in relation to several Cd-responsive miRNAs. The expression of three predicted target genes for miR-71 and miR-210 were evaluated, and expression of two of them (SCN2A and SLC31A1) was negatively correlated with the expression of their regulator miRNAs. We show miR-210 is hypoxia-responsive in D. pulex and propose Cd and hypoxia induce miR-210 via a same HIF1α modulated pathway. Collectively, this research advances our understanding on the role of miRNAs in response to heavy-metal exposure.

  10. Large-scale identification and comparative analysis of miRNA expression profile in the respiratory tree of the sea cucumber Apostichopus japonicus during aestivation.

    PubMed

    Chen, Muyan; Storey, Kenneth B

    2014-02-01

    The sea cucumber Apostichopus japonicus withstands high water temperatures in the summer by suppressing its metabolic rate and entering a state of aestivation. We hypothesized that changes in the expression of miRNAs could provide important post-transcriptional regulation of gene expression during hypometabolism via control over mRNA translation. The present study analyzed profiles of miRNA expression in the sea cucumber respiratory tree using Solexa deep sequencing technology. We identified 279 sea cucumber miRNAs, including 15 novel miRNAs specific to sea cucumber. Animals sampled during deep aestivation (DA; after at least 15 days of continuous torpor) were compared with animals from a non-aestivation (NA) state (animals that had passed through aestivation and returned to an active state). We identified 30 differentially expressed miRNAs ([RPM (reads per million) >10, |FC| (|fold change|)≥1, FDR (false discovery rate)<0.01]) during aestivation, which were validated by two other miRNA profiling methods: miRNA microarray and real-time PCR. Among the most prominent miRNA species, miR-124, miR-124-3p, miR-79, miR-9 and miR-2010 were significantly over-expressed during deep aestivation compared with non-aestivation animals, suggesting that these miRNAs may play important roles in metabolic rate suppression during aestivation. High-throughput sequencing data and microarray data have been submitted to the GEO database with accession number: 16902695. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. MicroRNA Expression in Alpha and Beta Cells of Human Pancreatic Islets

    PubMed Central

    Vargas, Nancy; Rosero, Samuel; Piroso, Julieta; Ichii, Hirohito; Umland, Oliver; Zhijie, Jiang; Tsinoremas, Nicholas; Ricordi, Camillo; Inverardi, Luca; Domínguez-Bendala, Juan; Pastori, Ricardo L.

    2013-01-01

    microRNAs (miRNAs) play an important role in pancreatic development and adult β-cell physiology. Our hypothesis is based on the assumption that each islet cell type has a specific pattern of miRNA expression. We sought to determine the profile of miRNA expression in α-and β-cells, the main components of pancreatic islets, because this analysis may lead to a better understanding of islet gene regulatory pathways. Highly enriched (>98%) subsets of human α-and β-cells were obtained by flow cytometric sorting after intracellular staining with c-peptide and glucagon antibody. The method of sorting based on intracellular staining is possible because miRNAs are stable after fixation. MiRNA expression levels were determined by quantitative high throughput PCR-based miRNA array platform screening. Most of the miRNAs were preferentially expressed in β-cells. From the total of 667 miRNAs screened, the Significant Analysis of Microarray identified 141 miRNAs, of which only 7 were expressed more in α-cells (α-miRNAs) and 134 were expressed more in β-cells (β-miRNAs). Bioinformatic analysis identified potential targets of β-miRNAs analyzing the Beta Cell Gene Atlas, described in the T1Dbase, the web platform, supporting the type 1 diabetes (T1D) community. cMaf, a transcription factor regulating glucagon expression expressed selectively in α-cells (TFα) is targeted by β-miRNAs; miR-200c, miR-125b and miR-182. Min6 cells treated with inhibitors of these miRNAs show an increased expression of cMaf RNA. Conversely, over expression of miR-200c, miR-125b or miR-182 in the mouse alpha cell line αTC6 decreases the level of cMAF mRNA and protein. MiR-200c also inhibits the expression of Zfpm2, a TFα that inhibits the PI3K signaling pathway, at both RNA and protein levels. In conclusion, we identified miRNAs differentially expressed in pancreatic α- and β-cells and their potential transcription factor targets that could add new insights into different aspects of islet biology and pathophysiology. PMID:23383059

  12. MicroRNA expression in alpha and beta cells of human pancreatic islets.

    PubMed

    Klein, Dagmar; Misawa, Ryosuke; Bravo-Egana, Valia; Vargas, Nancy; Rosero, Samuel; Piroso, Julieta; Ichii, Hirohito; Umland, Oliver; Zhijie, Jiang; Tsinoremas, Nicholas; Ricordi, Camillo; Inverardi, Luca; Domínguez-Bendala, Juan; Pastori, Ricardo L

    2013-01-01

    microRNAs (miRNAs) play an important role in pancreatic development and adult β-cell physiology. Our hypothesis is based on the assumption that each islet cell type has a specific pattern of miRNA expression. We sought to determine the profile of miRNA expression in α-and β-cells, the main components of pancreatic islets, because this analysis may lead to a better understanding of islet gene regulatory pathways. Highly enriched (>98%) subsets of human α-and β-cells were obtained by flow cytometric sorting after intracellular staining with c-peptide and glucagon antibody. The method of sorting based on intracellular staining is possible because miRNAs are stable after fixation. MiRNA expression levels were determined by quantitative high throughput PCR-based miRNA array platform screening. Most of the miRNAs were preferentially expressed in β-cells. From the total of 667 miRNAs screened, the Significant Analysis of Microarray identified 141 miRNAs, of which only 7 were expressed more in α-cells (α-miRNAs) and 134 were expressed more in β-cells (β-miRNAs). Bioinformatic analysis identified potential targets of β-miRNAs analyzing the Beta Cell Gene Atlas, described in the T1Dbase, the web platform, supporting the type 1 diabetes (T1D) community. cMaf, a transcription factor regulating glucagon expression expressed selectively in α-cells (TFα) is targeted by β-miRNAs; miR-200c, miR-125b and miR-182. Min6 cells treated with inhibitors of these miRNAs show an increased expression of cMaf RNA. Conversely, over expression of miR-200c, miR-125b or miR-182 in the mouse alpha cell line αTC6 decreases the level of cMAF mRNA and protein. MiR-200c also inhibits the expression of Zfpm2, a TFα that inhibits the PI3K signaling pathway, at both RNA and protein levels.In conclusion, we identified miRNAs differentially expressed in pancreatic α- and β-cells and their potential transcription factor targets that could add new insights into different aspects of islet biology and pathophysiology.

  13. Effector and regulatory dendritic cells display distinct patterns of miRNA expression.

    PubMed

    Lombardi, Vincent; Luce, Sonia; Moussu, Hélène; Morizur, Lise; Gueguen, Claire; Neukirch, Catherine; Chollet-Martin, Sylvie; Mascarell, Laurent; Aubier, Michel; Baron-Bodo, Véronique; Moingeon, Philippe

    2017-09-01

    MicroRNAs (miRNAs) contribute to the regulation of dendritic cell (DC) polarization, thereby influencing the balance of adaptive immune responses. Herein, we studied the expression of miRNAs in polarized DCs and analyzed whether expression of these miRNAs could be associated with allergic rhinitis and allergen immunotherapy (AIT) outcome. Using specific culture conditions, we differentiated immature human monocyte-derived DCs into DC1, DC2, and DCreg subsets (supporting the differentiation of T H 1, T H 2 or regulatory T cells, respectively). Profiling of miRNA expression was performed in these DC subpopulations using microarrays. Levels of miRNAs specific for polarized DCs were then evaluated in a cohort of 58 patients with allergic rhinitis and 25 non-allergic controls, as well as in samples from 30 subjects treated with sublingual grass pollen tablets or placebo for four months. We successfully identified 16 miRNAs differentially regulated between immature DCs, DC1, DC2, and DCreg cells. In allergic rhinoconjunctivitis patients, the expression of two of those miRNAs (miR-132 and miR-155), was down-regulated compared to non-allergic individuals. However, the levels of these miRNAs were not significantly modified following four months of grass pollen immunotherapy. Studying polarized DCs and clinical samples from subjects with or without allergic rhinoconjunctivitis, we demonstrated that the expression of two miRNAs linked to effector DCs (i.e., DC1 and/or DC2 cells), was reduced in the blood of patients with allergic rhinoconjunctivitis. Nevertheless, these miRNAs did not represent relevant biomarkers to predict or follow-up AIT efficacy. © 2017 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.

  14. Effector and regulatory dendritic cells display distinct patterns of miRNA expression

    PubMed Central

    Luce, Sonia; Moussu, Hélène; Morizur, Lise; Gueguen, Claire; Neukirch, Catherine; Chollet‐Martin, Sylvie; Mascarell, Laurent; Aubier, Michel; Baron‐Bodo, Véronique; Moingeon, Philippe

    2017-01-01

    Abstract Introduction MicroRNAs (miRNAs) contribute to the regulation of dendritic cell (DC) polarization, thereby influencing the balance of adaptive immune responses. Herein, we studied the expression of miRNAs in polarized DCs and analyzed whether expression of these miRNAs could be associated with allergic rhinitis and allergen immunotherapy (AIT) outcome. Method Using specific culture conditions, we differentiated immature human monocyte‐derived DCs into DC1, DC2, and DCreg subsets (supporting the differentiation of TH1, TH2 or regulatory T cells, respectively). Profiling of miRNA expression was performed in these DC subpopulations using microarrays. Levels of miRNAs specific for polarized DCs were then evaluated in a cohort of 58 patients with allergic rhinitis and 25 non‐allergic controls, as well as in samples from 30 subjects treated with sublingual grass pollen tablets or placebo for four months. Results We successfully identified 16 miRNAs differentially regulated between immature DCs, DC1, DC2, and DCreg cells. In allergic rhinoconjunctivitis patients, the expression of two of those miRNAs (miR‐132 and miR‐155), was down‐regulated compared to non‐allergic individuals. However, the levels of these miRNAs were not significantly modified following four months of grass pollen immunotherapy. Conclusions Studying polarized DCs and clinical samples from subjects with or without allergic rhinoconjunctivitis, we demonstrated that the expression of two miRNAs linked to effector DCs (i.e., DC1 and/or DC2 cells), was reduced in the blood of patients with allergic rhinoconjunctivitis. Nevertheless, these miRNAs did not represent relevant biomarkers to predict or follow‐up AIT efficacy. PMID:28497578

  15. Microarray analysis of 6-mercaptopurine-induced-toxicity-related genes and microRNAs in the rat placenta.

    PubMed

    Taki, Kenji; Fukushima, Tamio; Ise, Ryota; Horii, Ikuo; Yoshida, Takemi

    2013-02-01

    MicroRNAs (miRNAs) are small single-stranded RNAs of 19-25 nucleotides and are important in posttranscriptional regulation of genes. Recently, the role of miRNAs in toxicity incidence is reported to be a regulator of key-stopper of gene expression, however the detailed mechanism of miRNAs is not well known yet. 6-Mercaptopurine (6-MP), the anti-leukemic and immunosuppressive drug, produced teratogenicity and pregnancy loss. We focused on the placenta to evaluate toxicity in embryo/fetal development produced by 6-MP treatment. MiRNA expression in the placenta was analyzed by miRNA microarray. Fifteen miRNAs were upregulated on GD13 and 5 miRNAs were downregulated on GD15 in 6-MP treatment rat placentas. Some miRNAs may have functions in apoptosis (miR-195, miR-21, miR-29c and miR-34a), inflammation (miR-146b), and ischemia (miR-144 and miR-451). In the maternal plasma, expression of miR-144 was significantly reduced by 6-MP treatment when examined by real-time RT-PCR. We determined toxicity-related gene expression in the rat placenta. Gene expression analysis was carried out by DNA oligo microarray using rat placenta total RNAs. Compared between predicted targets of miRNAs and microarray data in 6-MP-treated rat placenta, expressions of hormone receptor genes (estrogen receptor 1; Esr1, progesterone receptor; Pgr, and prolactin receptor; Prlr), xanthine oxidase (Xdh), Slc38a5 and Phlda2 genes were changed. The histopathologically found increase in trophoblastic giant cells and reduced placental growth by 6-MP treatment were well correlated to these gene expressions. These data suggest that some miRNAs may link to toxicological reactions in 6-MP-induced placental toxicity.

  16. A BAP1 Mutation-specific MicroRNA Signature Predicts Clinical Outcomes in Clear Cell Renal Cell Carcinoma Patients with Wild-type BAP1

    PubMed Central

    Ge, Yu-Zheng; Xu, Lu-Wei; Zhou, Chang-Cheng; Lu, Tian-Ze; Yao, Wen-Tao; Wu, Ran; Zhao, You-Cai; Xu, Xiao; Hu, Zhi-Kai; Wang, Min; Yang, Xiao-Bing; Zhou, Liu-Hua; Zhong, Bing; Xu, Zheng; Li, Wen-Cheng; Zhu, Jia-Geng; Jia, Rui-Peng

    2017-01-01

    Background: Clear cell renal cell carcinoma (ccRCC) is the most prevalent histologic subtype of kidney cancers in adults, which could be divided into two distinct subgroups according to the BRCA1 associated protein-1 (BAP1) mutation status. In the current study, we comprehensively analyzed the genome-wide microRNA (miRNA) expression profiles in ccRCC, with the aim to identify the differentially expressed miRNAs between BAP1 mutant and wild-type tumors, and generate a BAP1 mutation-specific miRNA signature for ccRCC patients with wild-type BAP1. Methods: The BAP1 mutation status and miRNA profiles in BAP1 mutant and wild-type tumors were analyzed. Subsequently, the association of the differentially expressed miRNAs with patient survival was examined, and a BAP1 mutation-specific miRNA signature was generated and examined with Kaplan-Meier survival, univariate and multivariate Cox regression analyses. Finally, the bioinformatics methods were adopted for the target prediction of selected miRNAs and functional annotation analyses. Results: A total of 350 treatment-naïve primary ccRCC patients were selected from The Cancer Genome Atlas project, among which 35 (10.0%) subjects carried mutant BAP1 and had a shorter overall survival (OS) time. Furthermore, 33 miRNAs were found to be differentially expressed between BAP1 mutant and wild-type tumors, among which 11 (miR-149, miR-29b-2, miR-182, miR-183, miR-21, miR-365-2, miR-671, miR-365-1, miR-10b, miR-139, and miR-181a-2) were significantly associated with OS in ccRCC patients with wild-type BAP1. Finally, a BAP1 mutation-specific miRNA signature consisting of 11 miRNAs was generated and validated as an independent prognostic parameter. Conclusions: In summary, our study identified a total of 33 miRNAs differentially expressed between BAP1 mutant and wild-type tumors, and generated a BAP1 mutation-specific miRNA signature including eleven miRNAs, which could serve as a novel prognostic biomarker for ccRCC patients with wild-type BAP1. PMID:28900502

  17. Curcumin inhibits the proliferation and invasion of human osteosarcoma cell line MG-63 by regulating miR-138.

    PubMed

    Yu, Dazhi; An, Fengmei; He, Xu; Cao, Xuecheng

    2015-01-01

    In this study, we screened the different human osteosarcoma cell line MG-63 miRNAs after the treatment of curcumin and explored the effects of curcumin on MG-63 cells and its mechanism. Affemitrix miRNA chip was used to detect the changes of miRNA expression profile in MG-63 cells before and after curcumin treatment, and screen different expression of miRNAs. The target gene of miRNA was analyzed by bioinformatics. The expression levels of miRNA-138 target genes Smad4, NFκB p65 and cyclin D3 were detected. MTT and Transwell Cell invasion assays were used to observe the effects of curcumin on MG-63 cells. Curcumin could significantly inhibit the proliferation of MG-63 cells and the expression levels of miRNA-138 target genes Smad4, NFκB p65 and cyclin D3 in MG-63 cells (P<0.05); overexpression of hsa-miR-138 down-regulated the expression levels of Smad4, NFκB p65 and cyclin D3 compared with the treatment of curcumin, while inhibition of hsa-miR-138 up-regulated the expression levels of Smad4, NFκB p65 and cyclin D3. Curcumin could increase the expression of hsa-miR-138, hsa-miR-138 inhibited cell proliferation and invasive ability by inhibition of its target genes.

  18. High-Throughput Sequencing Reveals Hypothalamic MicroRNAs as Novel Partners Involved in Timing the Rapid Development of Chicken (Gallus gallus) Gonads.

    PubMed

    Han, Wei; Zou, Jianmin; Wang, Kehua; Su, Yijun; Zhu, Yunfen; Song, Chi; Li, Guohui; Qu, Liang; Zhang, Huiyong; Liu, Honglin

    2015-01-01

    Onset of the rapid gonad growth is a milestone in sexual development that comprises many genes and regulatory factors. The observations in model organisms and mammals including humans have shown a potential link between miRNAs and development timing. To determine whether miRNAs play roles in this process in the chicken (Gallus gallus), the Solexa deep sequencing was performed to analyze the profiles of miRNA expression in the hypothalamus of hens from two different pubertal stages, before onset of the rapid gonad development (BO) and after onset of the rapid gonad development (AO). 374 conserved and 46 novel miRNAs were identified as hypothalamus-expressed miRNAs in the chicken. 144 conserved miRNAs were showed to be differentially expressed (reads > 10, P < 0.05) during the transition from BO to AO. Five differentially expressed miRNAs were validated by real-time quantitative RT-PCR (qRT-PCR) method. 2013 putative genes were predicted as the targets of the 15 most differentially expressed miRNAs (fold-change > 4.0, P < 0.01). Of these genes, 7 putative circadian clock genes, Per2, Bmal1/2, Clock, Cry1/2, and Star were found to be targeted multiple times by the miRNAs. qRT-PCR revealed the basic transcription levels of these clock genes were much higher (P < 0.01) in AO than in BO. Further functional analysis suggested that these 15 miRNAs play important roles in transcriptional regulation and signal transduction pathways. The results provide new insights into miRNAs functions in timing the rapid development of chicken gonads. Considering the characteristics of miRNA functional conservation, the results will contribute to the research on puberty onset in humans.

  19. Genome wide predictions of miRNA regulation by transcription factors.

    PubMed

    Ruffalo, Matthew; Bar-Joseph, Ziv

    2016-09-01

    Reconstructing regulatory networks from expression and interaction data is a major goal of systems biology. While much work has focused on trying to experimentally and computationally determine the set of transcription-factors (TFs) and microRNAs (miRNAs) that regulate genes in these networks, relatively little work has focused on inferring the regulation of miRNAs by TFs. Such regulation can play an important role in several biological processes including development and disease. The main challenge for predicting such interactions is the very small positive training set currently available. Another challenge is the fact that a large fraction of miRNAs are encoded within genes making it hard to determine the specific way in which they are regulated. To enable genome wide predictions of TF-miRNA interactions, we extended semi-supervised machine-learning approaches to integrate a large set of different types of data including sequence, expression, ChIP-seq and epigenetic data. As we show, the methods we develop achieve good performance on both a labeled test set, and when analyzing general co-expression networks. We next analyze mRNA and miRNA cancer expression data, demonstrating the advantage of using the predicted set of interactions for identifying more coherent and relevant modules, genes, and miRNAs. The complete set of predictions is available on the supporting website and can be used by any method that combines miRNAs, genes, and TFs. Code and full set of predictions are available from the supporting website: http://cs.cmu.edu/~mruffalo/tf-mirna/ zivbj@cs.cmu.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Characterization of microRNAs from goat (Capra hircus) by Solexa deep-sequencing technology.

    PubMed

    Ling, Y H; Ding, J P; Zhang, X D; Wang, L J; Zhang, Y H; Li, Y S; Zhang, Z J; Zhang, X R

    2013-06-13

    MicroRNAs (miRNAs) are an important class of small noncoding RNAs that are highly conserved in plants and animals. Many miRNAs are known to mediate a myriad of cell processes, including proliferation and differentiation, via the regulation of some transcription and signaling factors, which are closely related to muscle development and disease. In this study, small RNA cDNA libraries of Boer goats were constructed. In addition, we obtained the goat muscle miRNAs by using Solexa deep-sequencing technology and analyzed these miRNA characteristics by combining it with the bioinformatics technology. Based on Solexa sequencing and bioinformatics analysis, 562 species-conserved and 5 goat genome-specific miRNAs were identified, 322 of which exceeded 100 in the expression levels. The results of real-time quantitative polymerase chain reaction from 8 randomly selected miRNAs showed that the 8 miRNAs were expressed in goat muscle, and the expression patterns were consistent with the Solexa sequencing results. The identification and characterization of miRNAs in goat muscle provide important information on the role of miRNA regulation in muscle growth and development. These data will help to facilitate studies on the regulatory roles played by miRNAs during goat growth and development.

  1. Isolation and Identification of miRNAs in Jatropha curcas

    PubMed Central

    Wang, Chun Ming; Liu, Peng; Sun, Fei; Li, Lei; Liu, Peng; Ye, Jian; Yue, Gen Hua

    2012-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs that play crucial regulatory roles by targeting mRNAs for silencing. To identify miRNAs in Jatropha curcas L, a bioenergy crop, cDNA clones from two small RNA libraries of leaves and seeds were sequenced and analyzed using bioinformatic tools. Fifty-two putative miRNAs were found from the two libraries, among them six were identical to known miRNAs and 46 were novel. Differential expression patterns of 15 miRNAs in root, stem, leave, fruit and seed were detected using quantitative real-time PCR. Ten miRNAs were highly expressed in fruit or seed, implying that they may be involved in seed development or fatty acids synthesis in seed. Moreover, 28 targets of the isolated miRNAs were predicted from a jatropha cDNA library database. The miRNA target genes were predicted to encode a broad range of proteins. Sixteen targets had clear BLASTX hits to the Uniprot database and were associated with genes belonging to the three major gene ontology categories of biological process, cellular component, and molecular function. Four targets were identified for JcumiR004. By silencing JcumiR004 primary miRNA, expressions of the four target genes were up-regulated and oil composition were modulated significantly, indicating diverse functions of JcumiR004. PMID:22419887

  2. MicroRNA signatures in B-cell lymphomas

    PubMed Central

    Di Lisio, L; Sánchez-Beato, M; Gómez-López, G; Rodríguez, M E; Montes-Moreno, S; Mollejo, M; Menárguez, J; Martínez, M A; Alves, F J; Pisano, D G; Piris, M A; Martínez, N

    2012-01-01

    Accurate lymphoma diagnosis, prognosis and therapy still require additional markers. We explore the potential relevance of microRNA (miRNA) expression in a large series that included all major B-cell non-Hodgkin lymphoma (NHL) types. The data generated were also used to identify miRNAs differentially expressed in Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL) samples. A series of 147 NHL samples and 15 controls were hybridized on a human miRNA one-color platform containing probes for 470 human miRNAs. Each lymphoma type was compared against the entire set of NHLs. BL was also directly compared with DLBCL, and 43 preselected miRNAs were analyzed in a new series of routinely processed samples of 28 BLs and 43 DLBCLs using quantitative reverse transcription-polymerase chain reaction. A signature of 128 miRNAs enabled the characterization of lymphoma neoplasms, reflecting the lymphoma type, cell of origin and/or discrete oncogene alterations. Comparative analysis of BL and DLBCL yielded 19 differentially expressed miRNAs, which were confirmed in a second confirmation series of 71 paraffin-embedded samples. The set of differentially expressed miRNAs found here expands the range of potential diagnostic markers for lymphoma diagnosis, especially when differential diagnosis of BL and DLBCL is required. PMID:22829247

  3. Characterization and potential role of microRNA in the Chinese dominant malaria mosquito Anopheles sinensis (Diptera: Culicidae) throughout four different life stages.

    PubMed

    Feng, Xinyu; Wu, Jiatong; Zhou, Shuisen; Wang, Jingwen; Hu, Wei

    2018-01-01

    microRNAs (miRNAs) are one kind of small non-coding RNAs widely distributed in insects. Many studies have shown that miRNAs play critical roles in development, differentiation, apoptosis, and innate immunity. However, there are a few reports describing miRNAs in Anopheles sinensis , the most common, and one of the dominant malaria mosquito in China. Here, we investigated the global miRNA expression profile across four different developmental stages including embryo, larval, pupal, and adult stages using Illumina Hiseq 2500 sequencing. In total, 164 miRNAs were obtained out of 107.46 million raw sequencing reads. 99 of them identified as known miRNAs, and the remaining 65 miRNAs were considered as novel. By analyzing the read counts of miRNAs in all developmental stages, 95 miRNAs showed stage-specific expression (q < 0.01 and |log2 (fold change)| > 1) in consecutive stages, indicating that these miRNAs may be involved in critical physiological activity during development. Sixteen miRNAs were identified to be commonly dysregulated throughout four developmental stages. Many miRNAs showed stage-specific expression, such as asi-miR-2943 was exclusively expressed in the embryo stage, and asi-miR-1891 could not be detected in larval stage. The expression of six selected differentially expressed miRNAs identified by qRT-PCR were consistent with our sequencing results. Furthermore, 5296 and 1902 target genes were identified for the dysregulated 68 known and 27 novel miRNAs respectively by combining miRanda and RNAhybrid prediction. GO annotation and KEGG pathway analysis for the predicted genes of dysregulated miRNAs revealed that they might be involved in a broad range of biological processes related with the development, such as membrane, organic substance transport and several key pathways including protein processing in endoplasmic reticulum, propanoate metabolism and folate biosynthesis. Thirty-two key miRNAs were identified by microRNA-gene network analysis. The present study represents the first global characterization of An. sinensis miRNAs in its four developmental stages. The presence and differential expression of An. sinensis miRNAs imply that such miRNAs may play critical roles in An. sinensis life cycle. A better understanding of the functions of these miRNAs will have great implication for the effective control of vector population and therefore interrupting malaria transmission.

  4. Small RNA profiling in two Brassica napus cultivars identifies microRNAs with oil production- and development-correlated expression and new small RNA classes.

    PubMed

    Zhao, Ying-Tao; Wang, Meng; Fu, San-Xiong; Yang, Wei-Cai; Qi, Cun-Kou; Wang, Xiu-Jie

    2012-02-01

    MicroRNAs (miRNAs) and small interfering RNAs are important regulators of plant development and seed formation, yet their population and abundance in the oil crop Brassica napus are still not well understood, especially at different developmental stages and among cultivars with varied seed oil contents. Here, we systematically analyzed the small RNA expression profiles of Brassica napus seeds at early embryonic developmental stages in high-oil-content and low-oil-content B. napus cultivars, both cultured in two environments. A total of 50 conserved miRNAs and 9 new miRNAs were identified, together with some new miRNA targets. Expression analysis revealed some miRNAs with varied expression levels in different seed oil content cultivars or at different embryonic developmental stages. A large number of 23-nucleotide small RNAs with specific nucleotide composition preferences were also identified, which may present new classes of functional small RNAs.

  5. Relationship between microRNA-146a expression and plasma renalase levels in hemodialyzed patients

    PubMed Central

    Koch, Wojciech; Kukula-Koch, Wirginia; Gaweł, Kinga; Bednarek-Skublewska, Anna; Małecka-Massalska, Teresa; Milanowski, Janusz; Petkowicz, Beata; Solski, Janusz

    2017-01-01

    Background microRNA (miRNA) belongs to the non-coding RNAs family responsible for the regulation of gene expression. Renalase is a protein composed of 342 amino acids, secreted by the kidneys and possibly plays an important role in the regulation of sympathetic tone and blood pressure. The aim of the present study was to investigate plasma renalase concentration, and explore the relationship between miRNA-146a-5p expression and plasma renalase levels in hemodialyzed patients. Methods The study population comprised 55 subjects who succumbed to various cardiac events, 27 women and 28 men, aged 65–70 years. The total RNA including miRNA fraction was isolated using QiagenmiRNEasy Serum/Plasma kit according to the manufacturer’s protocol. The isolated miRNAs were analyzed using a quantitative polymerase chain reaction (qRT-PCR) technique. The plasma renalase levels were measured using a commercial ELISA kit. Results In the group of patients with high levels of renalase, higher miRNA-146a expression was found, compared with those with low concentration of renalase. Patients with simultaneous low miRNA-146a expression and high level of renalase were confirmed to deliver a significantly longer survival time compared with other patients. Conclusions miRNA-146a and plasma renalase levels were estimated as independent prognostic factors of hemodialyzed patients’ survival time. Patients with low miRNA-146a expression demonstrated a significantly longer survival time in contrast to the patients with a high expression level of miRNA-146a. Moreover, a significantly longer survival time was found in patients with high renalase activity compared with patients with low activity of the enzyme. PMID:28614373

  6. miRNA expression in control and FSHD fetal human muscle biopsies.

    PubMed

    Portilho, Débora Morueco; Alves, Marcelo Ribeiro; Kratassiouk, Gueorgui; Roche, Stéphane; Magdinier, Frédérique; de Santana, Eliane Corrêa; Polesskaya, Anna; Harel-Bellan, Annick; Mouly, Vincent; Savino, Wilson; Butler-Browne, Gillian; Dumonceaux, Julie

    2015-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disorder and is one of the most common forms of muscular dystrophy. We have recently shown that some hallmarks of FSHD are already expressed in fetal FSHD biopsies, thus opening a new field of investigation for mechanisms leading to FSHD. As microRNAs (miRNAs) play an important role in myogenesis and muscle disorders, in this study we compared miRNAs expression levels during normal and FSHD muscle development. Muscle biopsies were obtained from quadriceps of both healthy control and FSHD1 fetuses with ages ranging from 14 to 33 weeks of development. miRNA expression profiles were analyzed using TaqMan Human MicroRNA Arrays. During human skeletal muscle development, in control muscle biopsies we observed changes for 4 miRNAs potentially involved in secondary muscle fiber formation and 5 miRNAs potentially involved in fiber maturation. When we compared the miRNA profiles obtained from control and FSHD biopsies, we did not observe any differences in the muscle specific miRNAs. However, we identified 8 miRNAs exclusively expressed in FSHD1 samples (miR-330, miR-331-5p, miR-34a, miR-380-3p, miR-516b, miR-582-5p, miR-517* and miR-625) which could represent new biomarkers for this disease. Their putative targets are mainly involved in muscle development and morphogenesis. Interestingly, these FSHD1 specific miRNAs do not target the genes previously described to be involved in FSHD. This work provides new candidate mechanisms potentially involved in the onset of FSHD pathology. Whether these FSHD specific miRNAs cause deregulations during fetal development, or protect against the appearance of the FSHD phenotype until the second decade of life still needs to be investigated.

  7. High-Throughput Sequencing Reveals Differential Expression of miRNAs in Intestine from Sea Cucumber during Aestivation

    PubMed Central

    Chen, Muyan; Zhang, Xiumei; Liu, Jianning; Storey, Kenneth B.

    2013-01-01

    The regulatory role of miRNA in gene expression is an emerging hot new topic in the control of hypometabolism. Sea cucumber aestivation is a complicated physiological process that includes obvious hypometabolism as evidenced by a decrease in the rates of oxygen consumption and ammonia nitrogen excretion, as well as a serious degeneration of the intestine into a very tiny filament. To determine whether miRNAs play regulatory roles in this process, the present study analyzed profiles of miRNA expression in the intestine of the sea cucumber (Apostichopus japonicus), using Solexa deep sequencing technology. We identified 308 sea cucumber miRNAs, including 18 novel miRNAs specific to sea cucumber. Animals sampled during deep aestivation (DA) after at least 15 days of continuous torpor, were compared with animals from a non-aestivation (NA) state (animals that had passed through aestivation and returned to the active state). We identified 42 differentially expressed miRNAs [RPM (reads per million) >10, |FC| (|fold change|) ≥1, FDR (false discovery rate) <0.01] during aestivation, which were validated by two other miRNA profiling methods: miRNA microarray and real-time PCR. Among the most prominent miRNA species, miR-200-3p, miR-2004, miR-2010, miR-22, miR-252a, miR-252a-3p and miR-92 were significantly over-expressed during deep aestivation compared with non-aestivation animals. Preliminary analyses of their putative target genes and GO analysis suggest that these miRNAs could play important roles in global transcriptional depression and cell differentiation during aestivation. High-throughput sequencing data and microarray data have been submitted to GEO database. PMID:24143179

  8. Altered miRNA expression in aniline-mediated cell cycle progression in rat spleen.

    PubMed

    Wang, Gangduo; Wang, Jianling; Khan, M Firoze

    2017-09-01

    Aniline exposure is associated with toxicity to the spleen, however, early molecular events in aniline-induced cell cycle progression in the spleen remain unknown. MicroRNAs (miRNAs) have been implicated in tumor development by modulating key cell cycle regulators and controlling cell proliferation. This study was, therefore, undertaken on the expression of miRNAs, regulation of cyclins and cyclin-dependent kinases (CDKs) in an experimental condition that precedes a tumorigenic response. Male SD rats were treated with aniline (1 mmol/kg/day by gavage) for 7 days, and expression of miRNAs, cyclins and CDKs in rat spleens were analyzed. Microarray and/or qPCR analyses showed that aniline exposure led to significantly decreased miRNA expression of let-7a, miR-24, miR-34c, miR-100, miR-125b, and greatly increased miR-181a. The aberrant expression of miRNAs was associated with significantly increased protein expression of cyclins A, B1, D3 and E. Furthermore, remarkably enhanced expression of CDKs like CDK1, CDK2, CDK4, CDK6, especially p-CDK1 and p-CDK2 as well as alternations in the expression of pRB, p27, and CDC25A in the spleens of aniline-treated rats was also observed. The data suggest that aniline exposure leads to aberrant expression of miRNAs in the spleen which could be important in the regulation of cell cycle proteins. Our findings, thus, provide new insight into the role of miRNAs in cell cycle progression, which may contribute to aniline-induced tumorigenic response in the spleen.

  9. Splenic marginal zone lymphoma: comprehensive analysis of gene expression and miRNA profiling.

    PubMed

    Arribas, Alberto J; Gómez-Abad, Cristina; Sánchez-Beato, Margarita; Martinez, Nerea; Dilisio, Lorena; Casado, Felipe; Cruz, Miguel A; Algara, Patrocinio; Piris, Miguel A; Mollejo, Manuela

    2013-07-01

    Splenic marginal zone lymphoma is a small B-cell neoplasm whose molecular pathogenesis is still essentially unknown and whose differentiation from other small B-cell lymphomas is hampered by the lack of specific markers. We have analyzed the gene expression and miRNA profiles of 31 splenic marginal zone lymphoma cases. For comparison, 7 spleens with reactive lymphoid hyperplasia, 10 spleens infiltrated by chronic lymphocytic leukemia, 12 spleens with follicular lymphoma, 6 spleens infiltrated by mantle cell lymphoma and 15 lymph nodes infiltrated by nodal marginal zone lymphoma were included. The results were validated by qRT-PCR in an independent series including 77 paraffin-embedded splenic marginal zone lymphomas. The splenic marginal zone lymphoma miRNA signature had deregulated expression of 51 miRNAs. The most highly overexpressed miRNAs were miR-155, miR-21, miR-34a, miR-193b and miR-100, while the most repressed miRNAs were miR-377, miR-27b, miR-145, miR-376a and miR-424. MiRNAs located in 14q32-31 were underexpressed in splenic marginal zone lymphoma compared with reactive lymphoid tissues and other B-cell lymphomas. Finally, the gene expression data were integrated with the miRNA profile to identify functional relationships between genes and deregulated miRNAs. Our study reveals miRNAs that are deregulated in splenic marginal zone lymphoma and identifies new candidate diagnostic molecules for splenic marginal zone lymphoma.

  10. Identifying key radiogenomic associations between DCE-MRI and micro-RNA expressions for breast cancer

    NASA Astrophysics Data System (ADS)

    Samala, Ravi K.; Chan, Heang-Ping; Hadjiiski, Lubomir; Helvie, Mark A.; Kim, Renaid

    2017-03-01

    Understanding the key radiogenomic associations for breast cancer between DCE-MRI and micro-RNA expressions is the foundation for the discovery of radiomic features as biomarkers for assessing tumor progression and prognosis. We conducted a study to analyze the radiogenomic associations for breast cancer using the TCGA-TCIA data set. The core idea that tumor etiology is a function of the behavior of miRNAs is used to build the regression models. The associations based on regression are analyzed for three study outcomes: diagnosis, prognosis, and treatment. The diagnosis group consists of miRNAs associated with clinicopathologic features of breast cancer and significant aberration of expression in breast cancer patients. The prognosis group consists of miRNAs which are closely associated with tumor suppression and regulation of cell proliferation and differentiation. The treatment group consists of miRNAs that contribute significantly to the regulation of metastasis thereby having the potential to be part of therapeutic mechanisms. As a first step, important miRNA expressions were identified and their ability to classify the clinical phenotypes based on the study outcomes was evaluated using the area under the ROC curve (AUC) as a figure-of-merit. The key mapping between the selected miRNAs and radiomic features were determined using least absolute shrinkage and selection operator (LASSO) regression analysis within a two-loop leave-one-out cross-validation strategy. These key associations indicated a number of radiomic features from DCE-MRI to be potential biomarkers for the three study outcomes.

  11. Deep sequencing of small RNA libraries from human prostate epithelial and stromal cells reveal distinct pattern of microRNAs primarily predicted to target growth factors.

    PubMed

    Singh, Savita; Zheng, Yun; Jagadeeswaran, Guru; Ebron, Jey Sabith; Sikand, Kavleen; Gupta, Sanjay; Sunker, Ramanjulu; Shukla, Girish C

    2016-02-28

    Complex epithelial and stromal cell interactions are required during the development and progression of prostate cancer. Regulatory small non-coding microRNAs (miRNAs) participate in the spatiotemporal regulation of messenger RNA (mRNA) and regulation of translation affecting a large number of genes involved in prostate carcinogenesis. In this study, through deep-sequencing of size fractionated small RNA libraries we profiled the miRNAs of prostate epithelial (PrEC) and stromal (PrSC) cells. Over 50 million reads were obtained for PrEC in which 860,468 were unique sequences. Similarly, nearly 76 million reads for PrSC were obtained in which over 1 million were unique reads. Expression of many miRNAs of broadly conserved and poorly conserved miRNA families were identified. Sixteen highly expressed miRNAs with significant change in expression in PrSC than PrEC were further analyzed in silico. ConsensusPathDB showed the target genes of these miRNAs were significantly involved in adherence junction, cell adhesion, EGRF, TGF-β and androgen signaling. Let-7 family of tumor-suppressor miRNAs expression was highly pervasive in both, PrEC and PrSC cells. In addition, we have also identified several miRNAs that are unique to PrEC or PrSC cells and their predicted putative targets are a group of transcription factors. This study provides perspective on the miRNA expression in PrEC and PrSC, and reveals a global trend in miRNA interactome. We conclude that the most abundant miRNAs are potential regulators of development and differentiation of the prostate gland by targeting a set of growth factors. Additionally, high level expression of the most members of let-7 family miRNAs suggests their role in the fine tuning of the growth and proliferation of prostate epithelial and stromal cells. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Profile of differentially expressed miRNAs in high-grade serous carcinoma and clear cell ovarian carcinoma, and the expression of miR-510 in ovarian carcinoma

    PubMed Central

    ZHANG, XINCHEN; GUO, GORDON; WANG, GUANG; ZHAO, JINYAO; WANG, BO; YU, XIAOTANG; DING, YANFANG

    2015-01-01

    Improved insight into the molecular and genetic profile of different types of epithelial ovarian cancer (EOC) is required for understanding the carcinogenesis of EOC and may potentially be exploited by future targeted therapies. The aim of the present study was to identify a unique microRNA (miRNA) patterns and key miRNAs, which may assist in predicting progression and prognosis in high-grade serous carcinoma (HGSC) and clear cell carcinoma (CCC). To identify unique miRNA patterns associated with HGSC and CCC, a miRNA microarray was performed using Chinese tumor bank specimens of patients with HGSC or CCC in a retrospective analysis. The expression levels of four deregulated miRNAs were further validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in an external cohort of 42 cases of HGSC and 36 cases of CCC. Kaplan-Meier analysis was performed to analyze the correlation between the expression levels of the four miRNAs and patient prognosis. Among these validated miRNAs, miR-510 was further examined in another cohort of normal ovarian tissues, as well as the HGSC, low-grade serous carcinoma (LGSC) and CCC specimens using RT-qPCR and in situ hybridization. The results revealed that, of the 768 miRNAs analyzed in the microarray, 33 and 50 miRNAs were significantly upregulated and downregulated, respectively, with at least a 2-fold difference in HGSC, compared with CCC. The quantitative analysis demonstrated that miR-510 and miR-129-3p were significantly downregulated, and that miR-483-5p and miR-miR-449a were significantly upregulated in CCC, compared with HGSC (P<0.05), which was consistent with the microarray results. Kaplan-Meier analysis revealed low expression levels of miR-510 and low expression levels of miR-129-3p, advanced International Federation of Gynecology and Obstetrics (FIGO) stage, lymphatic metastasis and that HGSC was significantly associated with the poorer overall survival rates (P<0.05). The expression of miR-510 was significantly higher in the LGSC and CCC tissues, compared with the HGSC and normal ovarian tissues. The results of the present study suggested that different subtypes of EOC have specific miRNA signatures, and that miR-510 may be involved differently in HGSC and CCC. Thus, miR-510 and miR-129-3p may be considered as potential novel candidate clinical biomarkers for predicting the outcome of EOC. PMID:26497752

  13. Identification and functional analysis of flowering related microRNAs in common wild rice (Oryza rufipogon Griff.).

    PubMed

    Chen, Zongxiang; Li, Fuli; Yang, Songnan; Dong, Yibo; Yuan, Qianhua; Wang, Feng; Li, Weimin; Jiang, Ying; Jia, Shirong; Pei, Xinwu

    2013-01-01

    MicroRNAs (miRNAs) is a class of non-coding RNAs involved in post- transcriptional control of gene expression, via degradation and/or translational inhibition. Six-hundred sixty-one rice miRNAs are known that are important in plant development. However, flowering-related miRNAs have not been characterized in Oryza rufipogon Griff. It was approved by supervision department of Guangdong wild rice protection. We analyzed flowering-related miRNAs in O. rufipogon using high-throughput sequencing (deep sequencing) to understand the changes that occurred during rice domestication, and to elucidate their functions in flowering. Three O. rufipogon sRNA libraries, two vegetative stage (CWR-V1 and CWR-V2) and one flowering stage (CWR-F2) were sequenced using Illumina deep sequencing. A total of 20,156,098, 21,531,511 and 20,995,942 high quality sRNA reads were obtained from CWR-V1, CWR-V2 and CWR-F2, respectively, of which 3,448,185, 4,265,048 and 2,833,527 reads matched known miRNAs. We identified 512 known rice miRNAs in 214 miRNA families and predicted 290 new miRNAs. Targeted functional annotation, GO and KEGG pathway analyses predicted that 187 miRNAs regulate expression of flowering-related genes. Differential expression analysis of flowering-related miRNAs showed that: expression of 95 miRNAs varied significantly between the libraries, 66 are flowering-related miRNAs, such as oru-miR97, oru-miR117, oru-miR135, oru-miR137, et al. 17 are early-flowering -related miRNAs, including osa-miR160f, osa-miR164d, osa-miR167d, osa-miR169a, osa-miR172b, oru-miR4, et al., induced during the floral transition. Real-time PCR revealed the same expression patterns as deep sequencing. miRNAs targets were confirmed for cleavage by 5'-RACE in vivo, and were negatively regulated by miRNAs. This is the first investigation of flowering miRNAs in wild rice. The result indicates that variation in miRNAs occurred during rice domestication and lays a foundation for further study of phase change and flowering in O. rufipogon. Complicated regulatory networks mediated by multiple miRNAs regulate the expression of flowering genes that control the induction of flowering.

  14. Expression of microRNAs in bovine and human pre-implantation embryo culture media

    PubMed Central

    Kropp, Jenna; Salih, Sana M.; Khatib, Hasan

    2014-01-01

    MicroRNAs (miRNA) are short non-coding RNAs which act to regulate expression of genes driving numerous cellular processes. These RNAs are secreted within exosomes from cells into the extracellular environment where they may act as signaling molecules. In addition, they are relatively stable and are specifically expressed in association to certain cancers making them strong candidates as biological markers. Moreover, miRNAs have been detected in body fluids including urine, milk, saliva, semen, and blood plasma. However, it is unknown whether they are secreted by embryonic cells into the culture media. Given that miRNAs are expressed throughout embryonic cellular divisions and embryonic genome activation, we hypothesized that they are secreted from the embryo into the extracellular environment and may play a role in the developmental competence of bovine embryos. To test this hypothesis, bovine embryos were cultured individually from day 5 to day 8 of development in an in vitro fertilization system and gene expression of 5 miRNAs was analyzed in both embryos and culture media. Differential miRNA gene expression was observed between embryos that developed to the blastocyst stage and those that failed to develop from the morula to blastocyst stage, deemed degenerate embryos. MiR-25, miR-302c, miR-196a2, and miR-181a expression was found to be higher in degenerate embryos compared to blastocyst embryos. Interestingly, these miRNAs were also found to be expressed in the culture media of both bovine and human pre-implantation embryos. Overall, our results show for the first time that miRNAs are secreted from pre-implantation embryos into culture media and that miRNA expression may correlate with developmental competence of the embryo. Expression of miRNAs in in vitro culture media could allow for the development of biological markers for selection of better quality embryos and for subsequent successful pregnancy. PMID:24795753

  15. Curcumin inhibits the proliferation and invasion of human osteosarcoma cell line MG-63 by regulating miR-138

    PubMed Central

    Yu, Dazhi; An, Fengmei; He, Xu; Cao, Xuecheng

    2015-01-01

    Objective: In this study, we screened the different human osteosarcoma cell line MG-63 miRNAs after the treatment of curcumin and explored the effects of curcumin on MG-63 cells and its mechanism. Methods: Affemitrix miRNA chip was used to detect the changes of miRNA expression profile in MG-63 cells before and after curcumin treatment, and screen different expression of miRNAs. The target gene of miRNA was analyzed by bioinformatics. The expression levels of miRNA-138 target genes Smad4, NFκB p65 and cyclin D3 were detected. MTT and Transwell Cell invasion assays were used to observe the effects of curcumin on MG-63 cells. Results: Curcumin could significantly inhibit the proliferation of MG-63 cells and the expression levels of miRNA-138 target genes Smad4, NFκB p65 and cyclin D3 in MG-63 cells (P<0.05); overexpression of hsa-miR-138 down-regulated the expression levels of Smad4, NFκB p65 and cyclin D3 compared with the treatment of curcumin, while inhibition of hsa-miR-138 up-regulated the expression levels of Smad4, NFκB p65 and cyclin D3. Conclusions: Curcumin could increase the expression of hsa-miR-138, hsa-miR-138 inhibited cell proliferation and invasive ability by inhibition of its target genes. PMID:26823826

  16. miRNA expression and function in thyroid carcinomas: a comparative and critical analysis and a model for other cancers.

    PubMed

    Saiselet, Manuel; Pita, Jaime M; Augenlicht, Alice; Dom, Geneviève; Tarabichi, Maxime; Fimereli, Danai; Dumont, Jacques E; Detours, Vincent; Maenhaut, Carine

    2016-08-09

    As in many cancer types, miRNA expression profiles and functions have become an important field of research on non-medullary thyroid carcinomas, the most common endocrine cancers. This could lead to the establishment of new diagnostic tests and new cancer therapies. However, different studies showed important variations in their research strategies and results. In addition, the action of miRNAs is poorly considered as a whole because of the use of underlying dogmatic truncated concepts. These lead to discrepancies and limits rarely considered. Recently, this field has been enlarged by new miRNA functional and expression studies. Moreover, studies using next generation sequencing give a new view of general miRNA differential expression profiles of papillary thyroid carcinoma. We analyzed in detail this literature from both physiological and differential expression points of view. Based on explicit examples, we reviewed the progresses but also the discrepancies and limits trying to provide a critical approach of where this literature may lead. We also provide recommendations for future studies. The conclusions of this systematic analysis could be extended to other cancer types.

  17. MicroRNA analysis in mouse neuro-2a cells after pseudorabies virus infection.

    PubMed

    Li, Yongtao; Zheng, Guanmin; Zhang, Yujuan; Yang, Xia; Liu, Hongying; Chang, Hongtao; Wang, Xinwei; Zhao, Jun; Wang, Chuanqing; Chen, Lu

    2017-06-01

    Pseudorabies virus (PRV), an alpha herpesvirus can enter the mammalian nervous system, causing Aujezsky's disease. Previous studies have reported an alteration of microRNA (miRNA) expression levels during PRV infections. However, knowledge regarding miRNA response in nervous cells to PRV infection is still unknown. To address this issue, small RNA libraries from infected and uninfected mouse neuroblastoma cells were assessed after Illumina deep sequencing. A total of eight viral miRNA were identified, and ten host miRNAs showed significantly different expression upon PRV infection. Among these, five were analyzed by stem-loop RT-qPCR, which confirmed the above data. Interestingly, these viral miRNAs were mainly found in the large latency transcript region of PRV, and predicted to target a variety of genes, forming a complicated regulatory network. Moreover, ten cellular miRNAs were expressed differently upon PRV infection, including nine upregulated and one downregulated miRNAs. Host targets of these miRNAs obtained by bioinformatics analysis belonged to large signaling networks, mainly encompassing calcium signaling pathway, cAMP signaling pathway, MAPK signaling pathway, and other nervous-associated pathways. These findings further highlighted miRNA features in nervous cells after PRV infection and contributed to unveil the underlying mechanisms of neurotropism as well as the neuropathogenesis of PRV.

  18. A Pilot Study of Circulating MicroRNA-125b as a Diagnostic and Prognostic Biomarker for Epithelial Ovarian Cancer.

    PubMed

    Zhu, Tao; Gao, Wen; Chen, Xi; Zhang, Ying; Wu, Meijuan; Zhang, Ping; Wang, Shihua

    2017-01-01

    Early diagnosis of epithelial ovarian cancer is critical for patient survival. The objective of this pilot study is to identify a circulating micro (mi)RNA as a potential biomarker for epithelial ovarian cancer. A total of 135 epithelial ovarian cancer patients and 54 benign ovarian tumor patients were recruited for this study. Using customized TaqMan low density miRNA arrays, we first screened expression levels of 48 miRNAs in sera from 18 epithelial ovarian cancer patients and 16 benign ovarian tumor patients. The most significantly and differentially expressed miRNA was then further examined in all serum samples using real-time polymerase chain reaction. Its expression was further analyzed in relationship with clinicopathological factors and patient survival. Array screening data showed that expression levels of serum miRNA-20a, miRNA-125b, miRNA-126, miRNA-355, and let-7c were significantly different between malignant and benign ovarian tumor patients. Subsequent real-time polymerase chain reaction results showed that serum miRNA-125b levels were significantly higher in epithelial ovarian cancer patients compared to benign controls. Moreover, serum miRNA-125b levels were significantly higher in ovarian cancer patients in early stages I and II, and in patients having no residual tumor following surgery, but were not associated with differentiation and histological types of ovarian cancer. Notably, the higher level of miR-125b was significantly positively correlated with progression-free survival (P = 0.035) and marginally, with overall survival (P = 0.069). miRNA-125b plays an important role in the pathogenesis and progression of epithelial ovarian cancer. Circulating miRNA-125b has the potential to become a novel biomarker for early diagnosis and prognosis prediction of epithelial ovarian cancer.

  19. Identification of conserved microRNAs in peripheral blood from giant panda: expression of mammary gland-related microRNAs during late pregnancy and early lactation.

    PubMed

    Wang, C D; Long, K; Jin, L; Huang, S; Li, D H; Ma, X P; Wei, M; Gu, Y; Ma, J D; Zhang, H

    2015-11-13

    The giant panda (Ailuropoda melanoleuca) is one of the world's most endangered mammals, and it has evolved several unusual biological and behavioral traits. During puberty, pregnancy, lactation, and involution, the mammary gland undergoes profound morphological and functional changes. A large number of microRNAs (miRNAs) have been identified to be involved in mammary gland development and lactation. In this study, we identified 202 conserved mature miRNAs, corresponding to 147 pre-miRNAs, in giant panda peripheral blood using a small RNA-sequencing approach. In addition, 27 miRNA families and 29 miRNA clusters were identified. We analyzed the arm selection preference of pre-miRNAs and found that: 1) most giant panda pre-miRNAs generated one-strand miRNAs, and the 5p-arm only miRNAs have a higher expression level than 3p-arm only miRNAs; 2) there were more 5p-arm dominant miRNAs than 3p-arm dominant miRNAs; and 3) 5p-arm dominant miRNAs have a larger fold change within miRNA pairs than 3p-arm dominant miRNAs. Expression of 12 lactation-related miRNAs was detected across late pregnancy and early lactation stages by qPCR, and seven miRNAs were identified as clustered in one significant model. Most of these clustered miRNAs exhibited inhibitory roles in proliferation and differentiation of mammary epithelial cells. Functional analysis highlighted important roles of the seven as signed miRNAs in mammary development and metabolic changes, including blood vessel morphogenesis, macromolecule biosynthesis, cell cycle regulation, and protein transport.

  20. MicroRNAs and drinking: association between the pre-miR-27a rs895819 polymorphism and alcohol consumption in a Mediterranean population

    USDA-ARS?s Scientific Manuscript database

    Recently, microRNAs (miRNA) have been proposed as regulators in the different processes involved in alcohol intake, and differences have been found in the miRNA expression profile in alcoholics. However, no study has focused on analyzing polymorphisms in genes encoding miRNAs and daily alcohol consu...

  1. Expression Profiling Analysis Reveals Key MicroRNA-mRNA Interactions in Early Retinal Degeneration in Retinitis Pigmentosa.

    PubMed

    Anasagasti, Ander; Ezquerra-Inchausti, Maitane; Barandika, Olatz; Muñoz-Culla, Maider; Caffarel, María M; Otaegui, David; López de Munain, Adolfo; Ruiz-Ederra, Javier

    2018-05-01

    The aim of this study was to identify differentially expressed microRNAs (miRNAs) that might play an important role in the etiology of retinal degeneration in a genetic mouse model of retinitis pigmentosa (rd10 mice) at initial stages of the disease. miRNAs-mRNA interaction networks were generated for analysis of biological pathways involved in retinal degeneration. Of more than 1900 miRNAs analyzed, we selected 19 miRNAs on the basis of (1) a significant differential expression in rd10 retinas compared with control samples and (2) an inverse expression relationship with predicted mRNA targets involved in biological pathways relevant to retinal biology and/or degeneration. Seven of the selected miRNAs have been associated with retinal dystrophies, whereas, to our knowledge, nine have not been previously linked to any disease. This study contributes to our understanding of the etiology and progression of retinal degeneration.

  2. High-Throughput Sequencing Reveals Circulating miRNAs as Potential Biomarkers for Measuring Puberty Onset in Chicken (Gallus gallus).

    PubMed

    Han, Wei; Zhu, Yunfen; Su, Yijun; Li, Guohui; Qu, Liang; Zhang, Huiyong; Wang, Kehua; Zou, Jianmin; Liu, Honglin

    2016-01-01

    There are still no highly sensitive and unique biomarkers for measurement of puberty onset. Circulating miRNAs have been shown to be promising biomarkers for diagnosis of various diseases. To identify circulating miRNAs that could be served as biomarkers for measuring chicken (Gallus gallus) puberty onset, the Solexa deep sequencing was performed to analyze the miRNA expression profiles in serum and plasma of hens from two different pubertal stages, before puberty onset (BO) and after puberty onset (AO). 197 conserved and 19 novel miRNAs (reads > 10) were identified as serum/plasma-expressed miRNAs in the chicken. The common miRNA amounts and their expression changes from BO to AO between serum and plasma were very similar, indicating the different treatments to generate serum and plasma had quite small influence on the miRNAs. 130 conserved serum-miRNAs were showed to be differentially expressed (reads > 10, P < 0.05) from BO to AO, with 68 up-regulated and 62 down-regulated. 4829 putative genes were predicted as the targets of the 40 most differentially expressed miRNAs (|log2(fold-change)|>1.0, P < 0.01). Functional analysis revealed several pathways that were associated with puberty onset. Further quantitative real-time PCR (RT-qPCR) test found that a seven-miRNA panel, including miR-29c, miR-375, miR-215, miR-217, miR-19b, miR-133a and let-7a, had great potentials to serve as novel biomarkers for measuring puberty onset in chicken. Due to highly conserved nature of miRNAs, the findings could provide cues for measurement of puberty onset in other animals as well as humans.

  3. High-Throughput Sequencing Reveals Circulating miRNAs as Potential Biomarkers for Measuring Puberty Onset in Chicken (Gallus gallus)

    PubMed Central

    Su, Yijun; Li, Guohui; Qu, Liang; Zhang, Huiyong; Wang, Kehua; Zou, Jianmin; Liu, Honglin

    2016-01-01

    There are still no highly sensitive and unique biomarkers for measurement of puberty onset. Circulating miRNAs have been shown to be promising biomarkers for diagnosis of various diseases. To identify circulating miRNAs that could be served as biomarkers for measuring chicken (Gallus gallus) puberty onset, the Solexa deep sequencing was performed to analyze the miRNA expression profiles in serum and plasma of hens from two different pubertal stages, before puberty onset (BO) and after puberty onset (AO). 197 conserved and 19 novel miRNAs (reads > 10) were identified as serum/plasma-expressed miRNAs in the chicken. The common miRNA amounts and their expression changes from BO to AO between serum and plasma were very similar, indicating the different treatments to generate serum and plasma had quite small influence on the miRNAs. 130 conserved serum-miRNAs were showed to be differentially expressed (reads > 10, P < 0.05) from BO to AO, with 68 up-regulated and 62 down-regulated. 4829 putative genes were predicted as the targets of the 40 most differentially expressed miRNAs (|log2(fold-change)|>1.0, P < 0.01). Functional analysis revealed several pathways that were associated with puberty onset. Further quantitative real-time PCR (RT-qPCR) test found that a seven-miRNA panel, including miR-29c, miR-375, miR-215, miR-217, miR-19b, miR-133a and let-7a, had great potentials to serve as novel biomarkers for measuring puberty onset in chicken. Due to highly conserved nature of miRNAs, the findings could provide cues for measurement of puberty onset in other animals as well as humans. PMID:27149515

  4. MicroRNA signatures differentiate melanoma subtypes

    PubMed Central

    Chan, Elcie; Patel, Rajeshvari; Nallur, Sunitha; Ratner, Elena; Bacchiocchi, Antonella; Hoyt, Kathleen; Szpakowski, Sebastian; Godshalk, Sirie; Ariyan, Stephan; Sznol, Mario; Halaban, Ruth; Krauthammer, Michael; Tuck, David; Slack, Frank J

    2011-01-01

    Melanoma is an aggressive cancer that is highly resistance to therapies once metastasized. We studied microRNA (miRNA) expression in clinical melanoma subtypes and evaluated different miRNA signatures in the background of gain of function somatic and inherited mutations associated with melanoma. Total RNA from 42 patient derived primary melanoma cell lines and three independent normal primary melanocyte cell cultures was evaluated by miRNA array. MiRNA expression was then analyzed comparing subtypes and additional clinicopathologic criteria including somatic mutations. The prevalence and association of an inherited variant in a miRNA binding site in the 3′UTR of the KRAS oncogene, referred to as the KRAS-variant, was also evaluated. We show that seven miRNAs, miR-142-3p, miR-486, miR-214, miR-218, miR-362, miR-650 and miR-31, were significantly correlated with acral as compared to non-acral melanomas (p < 0.04). In addition, we discovered that the KRAS-variant was enriched in non-acral melanoma (25%), and that miR-137 under expression was significantly associated with melanomas with the KRAS-variant. Our findings indicate that miRNAs are differentially expressed in melanoma subtypes and that their misregulation can be impacted by inherited gene variants, supporting the hypothesis that miRNA misregulation reflects biological differences in melanoma. PMID:21543894

  5. Shrimp miRNAs regulate innate immune response against white spot syndrome virus infection.

    PubMed

    Kaewkascholkul, Napol; Somboonviwat, Kulwadee; Asakawa, Shuichi; Hirono, Ikuo; Tassanakajon, Anchalee; Somboonwiwat, Kunlaya

    2016-07-01

    MicroRNAs are short noncoding RNAs of RNA interference pathways that regulate gene expression through partial complementary base-pairing to target mRNAs. In this study, miRNAs that are expressed in white spot syndrome virus (WSSV)-infected Penaeus monodon, were identified using next generation sequencing. Forty-six miRNA homologs were identified from WSSV-infected shrimp hemocyte. Stem-loop real-time RT-PCR analysis showed that 11 out of 16 selected miRNAs were differentially expressed upon WSSV infection. Of those, pmo-miR-315 and pmo-miR-750 were highly responsive miRNAs. miRNA target prediction revealed that the miRNAs were targeted at 5'UTR, ORF, and 3'UTR of several immune-related genes such as genes encoding antimicrobial peptides, signaling transduction proteins, heat shock proteins, oxidative stress proteins, proteinases or proteinase inhibitors, proteins in blood clotting system, apoptosis-related proteins, proteins in prophenoloxidase system, pattern recognition proteins and other immune molecules. The highly conserved miRNA homolog, pmo-bantam, was characterized for its function in shrimp. The pmo-bantam was predicted to target the 3'UTR of Kunitz-type serine protease inhibitor (KuSPI). Binding of pmo-bantam to the target sequence of KuSPI gene was analyzed by luciferase reporter assay. Correlation of pmo-bantam and KuSPI expression was observed in lymphoid organ of WSSV-infected shrimp. These results implied that miRNAs might play roles as immune gene regulators in shrimp antiviral response. Copyright © 2016. Published by Elsevier Ltd.

  6. Identification of novel and conserved microRNAs related to drought stress in potato by deep sequencing.

    PubMed

    Zhang, Ning; Yang, Jiangwei; Wang, Zemin; Wen, Yikai; Wang, Jie; He, Wenhui; Liu, Bailin; Si, Huaijun; Wang, Di

    2014-01-01

    MicroRNAs (miRNAs) are a group of small, non-coding RNAs that play important roles in plant growth, development and stress response. There have been an increasing number of investigations aimed at discovering miRNAs and analyzing their functions in model plants (such as Arabidopsis thaliana and rice). In this research, we constructed small RNA libraries from both polyethylene glycol (PEG 6,000) treated and control potato samples, and a large number of known and novel miRNAs were identified. Differential expression analysis showed that 100 of the known miRNAs were down-regulated and 99 were up-regulated as a result of PEG stress, while 119 of the novel miRNAs were up-regulated and 151 were down-regulated. Based on target prediction, annotation and expression analysis of the miRNAs and their putative target genes, 4 miRNAs were identified as regulating drought-related genes (miR811, miR814, miR835, miR4398). Their target genes were MYB transcription factor (CV431094), hydroxyproline-rich glycoprotein (TC225721), quaporin (TC223412) and WRKY transcription factor (TC199112), respectively. Relative expression trends of those miRNAs were the same as that predicted by Solexa sequencing and they showed a negative correlation with the expression of the target genes. The results provide molecular evidence for the possible involvement of miRNAs in the process of drought response and/or tolerance in the potato plant.

  7. snoU6 and 5S RNAs are not reliable miRNA reference genes in neuronal differentiation.

    PubMed

    Lim, Q E; Zhou, L; Ho, Y K; Wan, G; Too, H P

    2011-12-29

    Accurate profiling of microRNAs (miRNAs) is an essential step for understanding the functional significance of these small RNAs in both physiological and pathological processes. Quantitative real-time PCR (qPCR) has gained acceptance as a robust and reliable transcriptomic method to profile subtle changes in miRNA levels and requires reference genes for accurate normalization of gene expression. 5S and snoU6 RNAs are commonly used as reference genes in microRNA quantification. It is currently unknown if these small RNAs are stably expressed during neuronal differentiation. Panels of miRNAs have been suggested as alternative reference genes to 5S and snoU6 in various physiological contexts. To test the hypothesis that miRNAs may serve as stable references during neuronal differentiation, the expressions of eight miRNAs, 5S and snoU6 RNAs in five differentiating neuronal cell types were analyzed using qPCR. The stabilities of the expressions were evaluated using two complementary statistical approaches (geNorm and Normfinder). Expressions of 5S and snoU6 RNAs were stable under some but not all conditions of neuronal differentiation and thus are not suitable reference genes. In contrast, a combination of three miRNAs (miR-103, miR-106b and miR-26b) allowed accurate expression normalization across different models of neuronal differentiation. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. [Dectection and analysis of miRNA expression in breast cancer-associated fibroblasts].

    PubMed

    Zeng, Zongyue; Hu, Ping; Tang, Xi; Zhang, Hailong; Du, Yane; Wen, Siyang; Liu, Manran

    2014-10-01

    To investigate the difference of miRNA expression levels of cancer-associated fibroblasts (CAFs) and normal fibroblasts (NFs) in human breast cancer microenvironment and its effect on the biological features of CAFs. Collagenase-1 was used to digest the cancer and adjacent tissues to isolate CAFs and NFs. The isolated cells were cultured and characterized in purity and biological features. The expression of fibroblast secretory protein (FSP) in CAFs and NFs was detected by immunofluorescence staining and Western blotting. Transwell(TM) assay was adopted to compare the invasion ability of CAFs and NFs. The different expressions of miRNAs in CAFs versus NFs were detected by miRNA microarray and analyzed by Significance Analysis of Microarrays (SAM). The differences in miR-205 and miR-221 expressions were verified by real-time quantitative PCR (qRT-PCR). The common target genes of the miRNAs were predicted using multi-bioinformatics tools. The pathway analysis was conducted through the Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.7. The secreting products of TGF-β or IL-6 signaling pathway, matrix metalloproteinase (MMP)-1, MMP-2 and MMP-9 were analyzed by ELISA. The primary CAFs and NFs were isolated from breast cancer patients with a purity of over 95%. Compared with NFs, the expression of FSP was obviously elevated in CAFs, and the invasion ability of CAFs was enhanced. The miRNA microarray results showed that there were 10 miRNA genes dysregulated in CAFs, including 3 up-regulated (miR-221-5p, miR-31-3p, miR-221-3p) and 7 down-regulated genes (miR-205, miR-200b , miR-200c, miR-141, miR-101, miR-342-3p, let-7g). The common targets genes of the dysregulated miRNAs were mainly focused on HGF, chemokine signaling, insulin signaling, MAPK signaling, tight junction signaling, adherence junction signaling, EGF1 signaling, androgen-receptor signaling, Wnt and IL-7 signaling. In addition, dysregulated miR-200b/c and miR-141 et al. affect TGF-β and IL-6 signaling through inhibiting their target genes in CAFs, thus promoting invasion and migration of CAFs. The miRNA expression profile was markedly dysregulated in CAFs. Those dysregulated miRNAs may take part in the transformation from NFs to CAFs, and also have a close relationship with adhesion, migration, proliferation, secretion and cell-cell interaction of CAFs.

  9. Salivary extracellular vesicle-associated miRNAs as potential biomarkers in oral squamous cell carcinoma.

    PubMed

    Gai, Chiara; Camussi, Francesco; Broccoletti, Roberto; Gambino, Alessio; Cabras, Marco; Molinaro, Luca; Carossa, Stefano; Camussi, Giovanni; Arduino, Paolo G

    2018-04-18

    Several studies in the past have investigated the expression of micro RNAs (miRNAs) in saliva as potential biomarkers. Since miRNAs associated with extracellular vesicles (EVs) are known to be protected from enzymatic degradation, we evaluated whether salivary EVs from patients with oral squamous cell carcinoma (OSCC) were enriched with specific subsets of miRNAs. OSCC patients and controls were matched with regards to age, gender and risk factors. Total RNA was extracted from salivary EVs and the differential expression of miRNAs was evaluated by qRT-PCR array and qRT-PCR. The discrimination power of up-regulated miRNAs as biomarkers in OSCC patients versus controls was evaluated by the Receiver Operating Characteristic (ROC) curves. A preliminary qRT-PCR array was performed on samples from 5 OSCC patients and 5 healthy controls whereby a subset of miRNAs were identified that were differentially expressed. On the basis of these results, a cohort of additional 16 patients and 6 controls were analyzed to further confirm the miRNAs that were up-regulated or selectively expressed in the previous pilot study. The following miRNAs: miR-302b-3p and miR-517b-3p were expressed only in EVs from OSCC patients and miR-512-3p and miR-412-3p were up-regulated in salivary EVs from OSCC patients compared to controls with the ROC curve showing a good discrimination power for OSCC diagnosis. The Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway analysis suggested the possible involvement of the miRNAs identified in pathways activated in OSCC. In this work, we suggest that salivary EVs isolated by a simple charge-based precipitation technique can be exploited as a non-invasive source of miRNAs for OSCC diagnosis. Moreover, we have identified a subset of miRNAs selectively enriched in EVs of OSCC patients that could be potential biomarkers.

  10. Asymmetric purine-pyrimidine distribution in cellular small RNA population of papaya

    PubMed Central

    2012-01-01

    Background The small RNAs (sRNA) are a regulatory class of RNA mainly represented by the 21 and 24-nucleotide size classes. The cellular sRNAs are processed by RNase III family enzyme dicer (Dicer like in plant) from a self-complementary hairpin loop or other type of RNA duplexes. The papaya genome has been sequenced, but its microRNAs and other regulatory RNAs are yet to be analyzed. Results We analyzed the genomic features of the papaya sRNA population from three sRNA deep sequencing libraries made from leaves, flowers, and leaves infected with Papaya Ringspot Virus (PRSV). We also used the deep sequencing data to annotate the micro RNA (miRNA) in papaya. We identified 60 miRNAs, 24 of which were conserved in other species, and 36 of which were novel miRNAs specific to papaya. In contrast to the Chargaff’s purine-pyrimidine equilibrium, cellular sRNA was significantly biased towards a purine rich population. Of the two purine bases, higher frequency of adenine was present in 23nt or longer sRNAs, while 22nt or shorter sRNAs were over represented by guanine bases. However, this bias was not observed in the annotated miRNAs in plants. The 21nt species were expressed from fewer loci but expressed at higher levels relative to the 24nt species. The highly expressed 21nt species were clustered in a few isolated locations of the genome. The PRSV infected leaves showed higher accumulation of 21 and 22nt sRNA compared to uninfected leaves. We observed higher accumulation of miRNA* of seven annotated miRNAs in virus-infected tissue, indicating the potential function of miRNA* under stressed conditions. Conclusions We have identified 60 miRNAs in papaya. Our study revealed the asymmetric purine-pyrimidine distribution in cellular sRNA population. The 21nt species of sRNAs have higher expression levels than 24nt sRNA. The miRNA* of some miRNAs shows higher accumulation in PRSV infected tissues, suggesting that these strands are not totally functionally redundant. The findings open a new avenue for further investigation of the sRNA silencing pathway in plants. PMID:23216749

  11. Asymmetric purine-pyrimidine distribution in cellular small RNA population of papaya.

    PubMed

    Aryal, Rishi; Yang, Xiaozeng; Yu, Qingyi; Sunkar, Ramanjulu; Li, Lei; Ming, Ray

    2012-12-05

    The small RNAs (sRNA) are a regulatory class of RNA mainly represented by the 21 and 24-nucleotide size classes. The cellular sRNAs are processed by RNase III family enzyme dicer (Dicer like in plant) from a self-complementary hairpin loop or other type of RNA duplexes. The papaya genome has been sequenced, but its microRNAs and other regulatory RNAs are yet to be analyzed. We analyzed the genomic features of the papaya sRNA population from three sRNA deep sequencing libraries made from leaves, flowers, and leaves infected with Papaya Ringspot Virus (PRSV). We also used the deep sequencing data to annotate the micro RNA (miRNA) in papaya. We identified 60 miRNAs, 24 of which were conserved in other species, and 36 of which were novel miRNAs specific to papaya. In contrast to the Chargaff's purine-pyrimidine equilibrium, cellular sRNA was significantly biased towards a purine rich population. Of the two purine bases, higher frequency of adenine was present in 23nt or longer sRNAs, while 22nt or shorter sRNAs were over represented by guanine bases. However, this bias was not observed in the annotated miRNAs in plants. The 21nt species were expressed from fewer loci but expressed at higher levels relative to the 24nt species. The highly expressed 21nt species were clustered in a few isolated locations of the genome. The PRSV infected leaves showed higher accumulation of 21 and 22nt sRNA compared to uninfected leaves. We observed higher accumulation of miRNA* of seven annotated miRNAs in virus-infected tissue, indicating the potential function of miRNA* under stressed conditions. We have identified 60 miRNAs in papaya. Our study revealed the asymmetric purine-pyrimidine distribution in cellular sRNA population. The 21nt species of sRNAs have higher expression levels than 24nt sRNA. The miRNA* of some miRNAs shows higher accumulation in PRSV infected tissues, suggesting that these strands are not totally functionally redundant. The findings open a new avenue for further investigation of the sRNA silencing pathway in plants.

  12. Plasma profile of microRNA after supplementation with high doses of vitamin D3 for 12 months

    PubMed Central

    2012-01-01

    Background Recently a large number of short non-coding-RNAs (microRNAs, (miRNA)) have been identified. These miRNAs act as post-transcriptional regulators where they generally have an inhibitory function. miRNAs are present in all human cells, and they are also detected in serum or plasma. The miRNAs have a broad range of actions, and their biogenesis must therefore be under tight control. One putative regulator of miRNA biogenesis or miRNA level could be vitamin D, an ancient hormone with effects on cell growth and differentiation, apoptosis and the immune system. In our study miRNA were reversed transcribed in total RNA isolated from plasma and analyzed by quantitative real-time PCR (qPCR) using the miRCURY LNA Universal RT microRNA PCR system (Exiqon). In 10 pilot subjects 136 miRNAs were detected in one or more plasma samples drawn at baseline and after 12 months of vitamin D supplementation. The twelve miRNAs that showed the greatest change in expression in these pilots were further analyzed by RT-qPCR of RNA from baseline and 12 months plasma samples in 40 subjects given high dose vitamin D3 (20.000 – 40.000 IU per week) and 37 subjects given placebo. Results At baseline there was a significant and positive correlation between serum 25-hydroxyvitamin D and miR-532-3p expression (r = 0.24, P = 0.04). The change in expression of miR-221 from baseline to 12 months (ddCp value) was also significantly different between the vitamin D and placebo group (P =0.04), mainly due to a change in the placebo group. Conclusions We have not been able to demonstrate a consistent effect of vitamin D supplementation on the expression profile of miRNA in plasma. However, further studies are needed as this approach might potentially throw light on unknown aspects of vitamin D physiology. PMID:22594500

  13. Insilico profiling of microRNAs in Korean ginseng (Panax ginseng Meyer)

    PubMed Central

    Mathiyalagan, Ramya; Subramaniyam, Sathiyamoorthy; Natarajan, Sathishkumar; Kim, Yeon Ju; Sun, Myung Suk; Kim, Se Young; Kim, Yu-Jin; Yang, Deok Chun

    2013-01-01

    MicroRNAs (miRNAs) are a class of recently discovered non-coding small RNA molecules, on average approximately 21 nucleotides in length, which underlie numerous important biological roles in gene regulation in various organisms. The miRNA database (release 18) has 18,226 miRNAs, which have been deposited from different species. Although miRNAs have been identified and validated in many plant species, no studies have been reported on discovering miRNAs in Panax ginseng Meyer, which is a traditionally known medicinal plant in oriental medicine, also known as Korean ginseng. It has triterpene ginseng saponins called ginsenosides, which are responsible for its various pharmacological activities. Predicting conserved miRNAs by homology-based analysis with available expressed sequence tag (EST) sequences can be powerful, if the species lacks whole genome sequence information. In this study by using the EST based computational approach, 69 conserved miRNAs belonging to 44 miRNA families were identified in Korean ginseng. The digital gene expression patterns of predicted conserved miRNAs were analyzed by deep sequencing using small RNA sequences of flower buds, leaves, and lateral roots. We have found that many of the identified miRNAs showed tissue specific expressions. Using the insilico method, 346 potential targets were identified for the predicted 69 conserved miRNAs by searching the ginseng EST database, and the predicted targets were mainly involved in secondary metabolic processes, responses to biotic and abiotic stress, and transcription regulator activities, as well as a variety of other metabolic processes. PMID:23717176

  14. Maternal chromium restriction modulates miRNA profiles related to lipid metabolism disorder in mice offspring

    PubMed Central

    Zhang, Qian; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing

    2017-01-01

    Increasing evidence shows that maternal nutrition status has a vital effect on offspring susceptibility to obesity. MicroRNAs are related to lipid metabolism processes. This study aimed to evaluate whether maternal chromium restriction could affect miRNA expression involved in lipid metabolism in offspring. Weaning C57BL/6J mice born from mothers fed with normal control diet or chromium-restricted diet were fed for 13 weeks. The adipose miRNA expression profile was analyzed by miRNA array analysis. At 16 weeks old, pups from dams fed with chromium-restricted diet exhibit higher body weight, fat weight, and serum TC, TG levels. Six miRNAs were identified as upregulated in the RC group compared with the CC group, whereas eight miRNAs were lower than the threshold level set in the RC group. In the validated target genes of these differentially expressed miRNA, the MAPK signaling pathway serves an important role in the influence of early life chromium-restricted diet on lipid metabolism through miRNA. Long-term programming on various specific miRNA and MAPK signaling pathway may be involved in maternal chromium restriction in the adipose of female offspring. Impact statement For the first time, our study demonstrates important miRNA differences in the effect of maternal chromium restriction in offspring. These miRNAs may serve as “bridges” between the mother and the offspring by affecting the MAPK pathway. PMID:28669221

  15. Maternal chromium restriction modulates miRNA profiles related to lipid metabolism disorder in mice offspring.

    PubMed

    Zhang, Qian; Xiao, Xinhua; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing

    2017-08-01

    Increasing evidence shows that maternal nutrition status has a vital effect on offspring susceptibility to obesity. MicroRNAs are related to lipid metabolism processes. This study aimed to evaluate whether maternal chromium restriction could affect miRNA expression involved in lipid metabolism in offspring. Weaning C57BL/6J mice born from mothers fed with normal control diet or chromium-restricted diet were fed for 13 weeks. The adipose miRNA expression profile was analyzed by miRNA array analysis. At 16 weeks old, pups from dams fed with chromium-restricted diet exhibit higher body weight, fat weight, and serum TC, TG levels. Six miRNAs were identified as upregulated in the RC group compared with the CC group, whereas eight miRNAs were lower than the threshold level set in the RC group. In the validated target genes of these differentially expressed miRNA, the MAPK signaling pathway serves an important role in the influence of early life chromium-restricted diet on lipid metabolism through miRNA. Long-term programming on various specific miRNA and MAPK signaling pathway may be involved in maternal chromium restriction in the adipose of female offspring. Impact statement For the first time, our study demonstrates important miRNA differences in the effect of maternal chromium restriction in offspring. These miRNAs may serve as "bridges" between the mother and the offspring by affecting the MAPK pathway.

  16. Expression level of miRNAs on chromosome 14q32.31 region correlates with tumor aggressiveness and survival of glioblastoma patients.

    PubMed

    Shahar, Tal; Granit, Avital; Zrihan, Daniel; Canello, Tamar; Charbit, Hanna; Einstein, Ofira; Rozovski, Uri; Elgavish, Sharona; Ram, Zvi; Siegal, Tali; Lavon, Iris

    2016-12-01

    The 54 microRNAs (miRNAs) within the DLK-DIO3 genomic region on chromosome 14q32.31 (cluster-14-miRNAs) are organized into sub-clusters 14A and 14B. These miRNAs are downregulated in glioblastomas and might have a tumor suppressive role. Any association between the expression levels of cluster-14-miRNAs with overall survival (OS) is undetermined. We randomly selected miR-433, belonging to sub-cluster 14A and miR-323a-3p and miR-369-3p, belonging to sub-cluster 14B, and assessed their role in glioblastomas in vitro and in vivo. We also determined the expression level of cluster-14-miRNAs in 27 patients with newly diagnosed glioblastoma, and analyzed the association between their level of expression and OS. Overexpression of miR-323a-3p and miR-369-3p, but not miR-433, in glioblastoma cells inhibited their proliferation and migration in vitro. Mice implanted with glioblastoma cells overexpressing miR323a-3p and miR369-3p, but not miR433, exhibited prolonged survival compared to controls (P = .003). Bioinformatics analysis identified 13 putative target genes of cluster-14-miRNAs, and real-time RT-PCR validated these findings. Pathway analysis of the putative target genes identified neuregulin as the most enriched pathway. The expression level of cluster-14-miRNAs correlated with patients' OS. The median OS was 8.5 months for patients with low expression levels and 52.7 months for patients with high expression levels (HR 0.34; 95 % CI 0.12-0.59, P = .003). The expression level of cluster-14-miRNAs correlates directly with OS, suggesting a role for this cluster in promoting aggressive behavior of glioblastoma, possibly through ErBb/neuregulin signaling.

  17. Identification of miRNAs Expression Profile in Gastric Cancer Using Self-Organizing Maps (SOM)

    PubMed Central

    Gomes, Larissa Luz; Moreira, Fabiano Cordeiro; Hamoy, Igor Guerreiro; Santos, Sidney; Assumpção, Paulo; Santana, Ádamo L.; Ribeiro-dos-Santos, Ândrea

    2014-01-01

    In this paper, an unsupervised artificial neural network was implemented to identify the patters of specific signatures. The network was based on the differential expression of miRNAs (under or over expression) found in healthy or cancerous gastric tissues. Among the tissues analyzes, the neural network evaluated 514 miRNAs of gastric tissue that exhibited significant differential expression. The result suggested a specific expression signature nine miRNAs (hsa-mir-21, hsa-mir-29a, hsa-mir-29c, hsa-mir-148a, hsa-mir-141, hsa-let-7b, hsa-mir-31, hsa-mir-451, and hsa-mir-192), all with significant values (p-value < 0.01 and fold change > 5) that clustered the samples into two groups: healthy tissue and gastric cancer tissue. The results obtained “in silico” must be validated in a molecular biology laboratory; if confirmed, this method may be used in the future as a risk marker for gastric cancer development. PMID:24966529

  18. MicroRNAs dysregulation in hepatocellular carcinoma: Insights in genomic medicine

    PubMed Central

    Lyra-González, Iván; Flores-Fong, Laura E; González-García, Ignacio; Medina-Preciado, David; Armendáriz-Borunda, Juan

    2015-01-01

    Hepatocellular carcinoma (HCC) is the leading primary liver cancer and its clinical outcome is still poor. MicroRNAs (miRNAs) have demonstrated an interesting potential to regulate gene expression at post-transcriptional level. Current findings suggest that miRNAs deregulation in cancer is caused by genetic and/or epigenetic, transcriptional and post-transcriptional modifications resulting in abnormal expression and hallmarks of malignant transformation: aberrant cell growth, cell death, differentiation, angiogenesis, invasion and metástasis. The important role of miRNAs in the development and progression of HCC has increased the efforts to understand and develop mechanisms of control overt this single-stranded RNAs. Several studies have analyzed tumoral response to the regulation and control of deregulated miRNAs with good results in vitro and in vivo, proving that targeting aberrant expression of miRNAs is a powerful anticancer therapeutic. Identification of up and/or down regulated miRNAs related to HCC has led to the discovery of new potential application for detection of their presence in the affected organism. MiRNAs represent a relevant new target for diagnosis, prognosis and treatment in a wide variety of pathologic entities, including HCC. This manuscript intends to summarize current knowledge regarding miRNAs and their role in HCC development. PMID:26085912

  19. MicroRNAs dysregulation in hepatocellular carcinoma: Insights in genomic medicine.

    PubMed

    Lyra-González, Iván; Flores-Fong, Laura E; González-García, Ignacio; Medina-Preciado, David; Armendáriz-Borunda, Juan

    2015-06-18

    Hepatocellular carcinoma (HCC) is the leading primary liver cancer and its clinical outcome is still poor. MicroRNAs (miRNAs) have demonstrated an interesting potential to regulate gene expression at post-transcriptional level. Current findings suggest that miRNAs deregulation in cancer is caused by genetic and/or epigenetic, transcriptional and post-transcriptional modifications resulting in abnormal expression and hallmarks of malignant transformation: aberrant cell growth, cell death, differentiation, angiogenesis, invasion and metástasis. The important role of miRNAs in the development and progression of HCC has increased the efforts to understand and develop mechanisms of control overt this single-stranded RNAs. Several studies have analyzed tumoral response to the regulation and control of deregulated miRNAs with good results in vitro and in vivo, proving that targeting aberrant expression of miRNAs is a powerful anticancer therapeutic. Identification of up and/or down regulated miRNAs related to HCC has led to the discovery of new potential application for detection of their presence in the affected organism. MiRNAs represent a relevant new target for diagnosis, prognosis and treatment in a wide variety of pathologic entities, including HCC. This manuscript intends to summarize current knowledge regarding miRNAs and their role in HCC development.

  20. Integrated analysis of miRNA and mRNA expression data identifies multiple miRNAs regulatory networks for the tumorigenesis of colorectal cancer.

    PubMed

    Xu, Peng; Wang, Junhua; Sun, Bo; Xiao, Zhongdang

    2018-06-15

    Investigating the potential biological function of differential changed genes through integrating multiple omics data including miRNA and mRNA expression profiles, is always hot topic. However, how to evaluate the repression effect on target genes integrating miRNA and mRNA expression profiles are not fully solved. In this study, we provide an analyzing method by integrating both miRNAs and mRNAs expression data simultaneously. Difference analysis was adopted based on the repression score, then significantly repressed mRNAs were screened out by DEGseq. Pathway analysis for the significantly repressed mRNAs shows that multiple pathways such as MAPK signaling pathway, TGF-beta signaling pathway and so on, may correlated to the colorectal cancer(CRC). Focusing on the MAPK signaling pathway, a miRNA-mRNA network that centering the cell fate genes was constructed. Finally, the miRNA-mRNAs that potentially important in the CRC carcinogenesis were screened out and scored by impact index. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Identification and Functional Analysis of Flowering Related microRNAs in Common Wild Rice (Oryza rufipogon Griff.)

    PubMed Central

    Dong, Yibo; Yuan, Qianhua; Wang, Feng; Li, Weimin; Jiang, Ying; Jia, Shirong; Pei, XinWu

    2013-01-01

    Background MicroRNAs (miRNAs) is a class of non-coding RNAs involved in post- transcriptional control of gene expression, via degradation and/or translational inhibition. Six-hundred sixty-one rice miRNAs are known that are important in plant development. However, flowering-related miRNAs have not been characterized in Oryza rufipogon Griff. It was approved by supervision department of Guangdong wild rice protection. We analyzed flowering-related miRNAs in O. rufipogon using high-throughput sequencing (deep sequencing) to understand the changes that occurred during rice domestication, and to elucidate their functions in flowering. Results Three O. rufipogon sRNA libraries, two vegetative stage (CWR-V1 and CWR-V2) and one flowering stage (CWR-F2) were sequenced using Illumina deep sequencing. A total of 20,156,098, 21,531,511 and 20,995,942 high quality sRNA reads were obtained from CWR-V1, CWR-V2 and CWR-F2, respectively, of which 3,448,185, 4,265,048 and 2,833,527 reads matched known miRNAs. We identified 512 known rice miRNAs in 214 miRNA families and predicted 290 new miRNAs. Targeted functional annotation, GO and KEGG pathway analyses predicted that 187 miRNAs regulate expression of flowering-related genes. Differential expression analysis of flowering-related miRNAs showed that: expression of 95 miRNAs varied significantly between the libraries, 66 are flowering-related miRNAs, such as oru-miR97, oru-miR117, oru-miR135, oru-miR137, et al. 17 are early-flowering -related miRNAs, including osa-miR160f, osa-miR164d, osa-miR167d, osa-miR169a, osa-miR172b, oru-miR4, et al., induced during the floral transition. Real-time PCR revealed the same expression patterns as deep sequencing. miRNAs targets were confirmed for cleavage by 5′-RACE in vivo, and were negatively regulated by miRNAs. Conclusions This is the first investigation of flowering miRNAs in wild rice. The result indicates that variation in miRNAs occurred during rice domestication and lays a foundation for further study of phase change and flowering in O. rufipogon. Complicated regulatory networks mediated by multiple miRNAs regulate the expression of flowering genes that control the induction of flowering. PMID:24386120

  2. Circular RNA and gene expression profiles in gastric cancer based on microarray chip technology.

    PubMed

    Sui, Weiguo; Shi, Zhoufang; Xue, Wen; Ou, Minglin; Zhu, Ying; Chen, Jiejing; Lin, Hua; Liu, Fuhua; Dai, Yong

    2017-03-01

    The aim of the present study was to screen gastric cancer (GC) tissue and adjacent tissue for differences in mRNA and circular (circRNA) expression, to analyze the differences in circRNA and mRNA expression, and to investigate the circRNA expression in gastric carcinoma and its mechanism. circRNA and mRNA differential expression profiles generated using Agilent microarray technology were analyzed in the GC tissues and adjacent tissues. qRT-PCR was used to verify the differential expression of circRNAs and mRNAs according to the interactions between circRNAs and miRNAs as well as the possible existence of miRNA and mRNA interactions. We found that: i) the circRNA expression profile revealed 1,285 significant differences in circRNA expression, with circRNA expression downregulated in 594 samples and upregulated in 691 samples via interactions with miRNAs. The qRT-PCR validation experiments showed that hsa_circRNA_400071, hsa_circRNA_000543 and hsa_circRNA_001959 expression was consistent with the microarray analysis results. ii) 29,112 genes were found in the GC tissues and adjacent tissues, including 5,460 differentially expressed genes. Among them, 2,390 differentially expressed genes were upregulated and 3,070 genes were downregulated. Gene Ontology (GO) analysis of the differentially expressed genes revealed these genes involved in biological process classification, cellular component classification and molecular function classification. Pathway analysis of the differentially expressed genes identified 83 significantly enriched genes, including 28 upregulated genes and 55 downregulated genes. iii) 69 differentially expressed circRNAs were found that might adsorb specific miRNAs to regulate the expression of their target gene mRNAs. The conclusions are: i) differentially expressed circRNAs had corresponding miRNA binding sites. These circRNAs regulated the expression of target genes through interactions with miRNAs and might become new molecular biomarkers for GC in the future. ii) Differentially expressed genes may be involved in the occurrence of GC via a variety of mechanisms. iii) CD44, CXXC5, MYH9, MALAT1 and other genes may have important implications for the occurrence and development of GC through the regulation, interaction, and mutual influence of circRNA-miRNA-mRNA via different mechanisms.

  3. A nutrigenomics approach for the study of anti-aging interventions: olive oil phenols and the modulation of gene and microRNA expression profiles in mouse brain.

    PubMed

    Luceri, Cristina; Bigagli, Elisabetta; Pitozzi, Vanessa; Giovannelli, Lisa

    2017-03-01

    Middle-aged C57Bl/6J mice fed for 6 months with extra-virgin olive oil rich in phenols (H-EVOO, phenol dose/day: 6 mg/kg) showed cognitive and motor improvement compared to controls fed the same olive oil deprived of phenolics (L-EVOO). The aim of the present study was to evaluate whether these behavioral modifications were associated with changes in gene and miRNA expression in the brain. Two brain areas involved in cognitive and motor processes were chosen: cortex and cerebellum. Gene and miRNA profiling were analyzed by microarray and correlated with performance in behavioral tests. After 6 months, most of the gene expression changes were restricted to the cerebral cortex. The genes modulated by aging were mainly down-regulated, and the treatment with H-EVOO was associated with a significant up-regulation of genes compared to L-EVOO. Among those, we found genes previously associated with synaptic plasticity and with motor and cognitive behavior, such as Notch1, BMPs, NGFR, GLP1R and CRTC3. The agrin pathway was also significantly modulated. miRNAs were mostly up-regulated in old L-EVOO animals compared to young. However, H-EVOO-fed mice cortex displayed miRNA expression profiles similar to those observed in young mice. Sixty-three miRNAs, out of 1203 analyzed, were significantly down-regulated compared to the L-EVOO group; among them, we found miRNAs whose predicted target genes were up-regulated by the treatment, such as mir-484, mir-27, mir-137, mir-30, mir-34 and mir-124. We are among the first to report that a dietary intervention starting from middle age with food rich in phenols can modulate at the central level the expression of genes and miRNAs involved in neuronal function and synaptic plasticity, along with cognitive, motor and emotional behavior.

  4. Effects of Modeled Microgravity on Expression Profiles of Micro RNA in Human Lymphoblastoid Cells

    NASA Technical Reports Server (NTRS)

    Mangala, Lingegowda S.; Emami, Kamal; Story, Michael; Ramesh, Govindarajan; Rohde, Larry; Wu, Honglu

    2010-01-01

    Among space radiation and other environmental factors, microgravity or an altered gravity is undoubtedly the most significant stress experienced by living organisms during flight. In comparison to the static 1g, microgravity has been shown to alter global gene expression patterns and protein levels in cultured cells or animals. Micro RNA (miRNA) has recently emerged as an important regulator of gene expression, possibly regulating as many as one-third of all human genes. miRNA represents a class of single-stranded noncoding regulatory RNA molecules ( 22 nt) that control gene expressions by inhibiting the translation of mRNA to proteins. However, very little is known on the effect of altered gravity on miRNA expression. We hypothesized that the miRNA expression profile will be altered in zero gravity resulting in regulation of the gene expression and functional changes of the cells. To test this hypothesis, we cultured TK6 human lymphoblastoid cells in Synthecon s Rotary cell culture system (bioreactors) for 72 h either in the rotating (10 rpm) to model the microgravity in space or in the static condition. The cell viability was determined before and after culturing the cells in the bioreactor using both trypan blue and guava via count. Expressions of a panel of 352 human miRNA were analyzed using the miRNA PCRarray. Out of 352 miRNAs, expressions of 75 were significantly altered by a change of greater than 1.5 folds and seven miRNAs were altered by a fold change greater than 2 under the rotating culture condition. Among these seven, miR-545 and miR-517a were down regulated by 2 folds, whereas miR-150, miR-302a, miR-139-3p, miR-515-3p and miR-564 were up regulated by 2 to 8 folds. To confirm whether this altered miRNA expression correlates with gene expression and functional changes of the cells, we performed DNA Illumina Microarray Analysis and validated the related genes using q-RT PCR.

  5. MicroRNA-21 promotes proliferation of rat hepatocyte BRL-3A by targeting FASLG.

    PubMed

    Li, J J; Chan, W H; Leung, W Y; Wang, Y; Xu, C S

    2015-04-27

    Rat liver regeneration (RLR) induced by partial hepatectomy involves cell proliferation regulated by numerous factors, including microRNAs (miRNAs). miRNA high-throughput sequencing has been established and used to analyze miRNA expression profiles. This study showed that 39 miRNAs were related to RLR through the analysis of miRNA high-throughput sequencing. Their role toward rat normal hepatocyte line BRL-3A was studied by gain- and loss-of-function analyses, and one of them, microRNA-21 (miR-21), obviously upregulated and promoted BRL-3A cell proliferation. Using bioinformatics to search for miR-21 targets revealed that Fas ligand (FASLG) is one of miR-21's target genes. A dual-luciferase report assay and Western blot assay showed that miR-21 directly targeted the 3'-untranslated region of FASLG and inhibited the expression of FASLG, which suggests that miR-21 promoted BRL-3A cell proliferation by reducing FASLG expression.

  6. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades.

    PubMed

    Friedländer, Marc R; Mackowiak, Sebastian D; Li, Na; Chen, Wei; Rajewsky, Nikolaus

    2012-01-01

    microRNAs (miRNAs) are a large class of small non-coding RNAs which post-transcriptionally regulate the expression of a large fraction of all animal genes and are important in a wide range of biological processes. Recent advances in high-throughput sequencing allow miRNA detection at unprecedented sensitivity, but the computational task of accurately identifying the miRNAs in the background of sequenced RNAs remains challenging. For this purpose, we have designed miRDeep2, a substantially improved algorithm which identifies canonical and non-canonical miRNAs such as those derived from transposable elements and informs on high-confidence candidates that are detected in multiple independent samples. Analyzing data from seven animal species representing the major animal clades, miRDeep2 identified miRNAs with an accuracy of 98.6-99.9% and reported hundreds of novel miRNAs. To test the accuracy of miRDeep2, we knocked down the miRNA biogenesis pathway in a human cell line and sequenced small RNAs before and after. The vast majority of the >100 novel miRNAs expressed in this cell line were indeed specifically downregulated, validating most miRDeep2 predictions. Last, a new miRNA expression profiling routine, low time and memory usage and user-friendly interactive graphic output can make miRDeep2 useful to a wide range of researchers.

  7. Identification and Characterization of Novel MicroRNAs from Schistosoma japonicum

    PubMed Central

    Xue, Xiangyang; Sun, Jun; Zhang, Qingfeng; Wang, Zhangxun; Huang, Yufu; Pan, Weiqing

    2008-01-01

    Background Schistosomiasis japonica remains a major public health problem in China. Its pathogen, Schistosoma japonicum has a complex life cycle and a unique repertoire of genes expressed at different life cycle stages. Exploring schistosome gene regulation will yield the best prospects for new drug targets and vaccine candidates. MicroRNAs (miRNAs) are a highly conserved class of noncoding RNA that control many biological processes by sequence-specific inhibition of gene expression. Although a large number of miRNAs have been identified from plants to mammals, it remains no experimental proof whether schistosome exist miRNAs. Methodology and Results We have identified novel miRNAs from Schistosoma japonicum by cloning and sequencing a small (18–26 nt) RNA cDNA library from the adult worms. Five novel miRNAs were identified from 227 cloned RNA sequences and verified by Northern blot. Alignments of the miRNAs with corresponding family members indicated that four of them belong to a metazoan miRNA family: let-7, miR-71, bantam and miR-125. The fifth potentially new (non conserved) miRNA appears to belong to a previously undescribed family in the genus Schistosome. The novel miRNAs were designated as sja-let-7, sja-miR-71, sja-bantam, sja-miR-125 and sja-miR-new1, respectively. Expression of sja-let-7, sja-miR-71 and sja-bantam were analyzed in six stages of the life cycle, i.e. egg, miracidium, sporocyst, cercaria, schistosomulum, and adult worm, by a modified stem-loop reverse transcribed polymerase chain reaction (RT-PCR) method developed in our laboratory. The expression patterns of these miRNAs were highly stage-specific. In particular, sja-miR-71 and sja-bantam expression reach their peaks in the cercaria stage and then drop quickly to the nadirs in the schistosomulum stage, following penetration of cercaria into a mammalian host. Conclusions Authentic miRNAs were identified for the first time in S. japonicum, including a new schistosome family member. The different expression patterns of the novel miRNAs over the life stages of S. japonicum suggest that they may mediate important roles in Schistosome growth and development. PMID:19107204

  8. High-Throughput Sequencing of microRNAs in Glucocorticoid Sensitive Paediatric Inflammatory Bowel Disease Patients.

    PubMed

    De Iudicibus, Sara; Lucafò, Marianna; Vitulo, Nicola; Martelossi, Stefano; Zimbello, Rosanna; De Pascale, Fabio; Forcato, Claudio; Naviglio, Samuele; Di Silvestre, Alessia; Gerdol, Marco; Stocco, Gabriele; Valle, Giorgio; Ventura, Alessandro; Bramuzzo, Matteo; Decorti, Giuliana

    2018-05-08

    The aim of this research was the identification of novel pharmacogenomic biomarkers for better understanding the complex gene regulation mechanisms underpinning glucocorticoid (GC) action in paediatric inflammatory bowel disease (IBD). This goal was achieved by evaluating high-throughput microRNA (miRNA) profiles during GC treatment, integrated with the assessment of expression changes in GC receptor (GR) heterocomplex genes. Furthermore, we tested the hypothesis that differentially expressed miRNAs could be directly regulated by GCs through investigating the presence of GC responsive elements (GREs) in their gene promoters. Ten IBD paediatric patients responding to GCs were enrolled. Peripheral blood was obtained at diagnosis (T0) and after four weeks of steroid treatment (T4). MicroRNA profiles were analyzed using next generation sequencing, and selected significantly differentially expressed miRNAs were validated by quantitative reverse transcription-polymerase chain reaction. In detail, 18 miRNAs were differentially expressed from T0 to T4, 16 of which were upregulated and 2 of which were downregulated. Out of these, three miRNAs (miR-144, miR-142, and miR-96) could putatively recognize the 3’UTR of the GR gene and three miRNAs (miR-363, miR-96, miR-142) contained GREs sequences, thereby potentially enabling direct regulation by the GR. In conclusion, we identified miRNAs differently expressed during GC treatment and miRNAs which could be directly regulated by GCs in blood cells of young IBD patients. These results could represent a first step towards their translation as pharmacogenomic biomarkers.

  9. Four-miRNA signature as a prognostic tool for lung adenocarcinoma.

    PubMed

    Lin, Yan; Lv, Yufeng; Liang, Rong; Yuan, Chunling; Zhang, Jinyan; He, Dan; Zheng, Xiaowen; Zhang, Jianfeng

    2018-01-01

    The aim of this study was to generate a novel miRNA expression signature to accurately predict prognosis for patients with lung adenocarcinoma (LUAD). Using expression profiles downloaded from The Cancer Genome Atlas database, we identified multiple miRNAs with differential expression between LUAD and paired healthy tissues. We then evaluated the prognostic values of the differentially expressed miRNAs using univariate/multivariate Cox regression analysis. This analysis was ultimately used to construct a four-miRNA signature that effectively predicted patient survival. Finally, we analyzed potential functional roles of the target genes for these four miRNAs using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Based on our cutoff criteria ( P <0.05 and |log2FC| >1.0), we identified a total of 187 differentially expressed miRNAs, including 148 that were upregulated in LUAD tissues and 39 that were downregulated. Four miRNAs (miR-148a-5p, miR-31-5p, miR-548v, and miR-550a-5p) were independently associated with survival based on Kaplan-Meier analysis. We generated a signature index based on the expression of these four miRNAs and stratified patients into low- and high-risk groups. Patients in the high-risk group had significantly shorter survival times than those in the low-risk group ( P =0.002). A functional enrichment analysis suggested that the target genes of these four miRNAs were involved in protein phosphorylation and the Hippo and sphingolipid signaling pathways. Taken together, our results suggest that our four-miRNA signature can be used as a prognostic tool for patients with LUAD.

  10. Expression profile of endothelin receptors (ETA and ETB) and microRNAs-155 and -199 in the corpus cavernosum of rats submitted to chronic alcoholism and diabetes mellitus.

    PubMed

    Gonçalves, F Z; Lizarte Neto, F S; Novais, P C; Gattas, D; Lourenço, L G; de Carvalho, C A M; Tirapelli, D P C; Molina, C A F; Tirapelli, L F; Tucci, S

    2018-03-01

    Recent evidence shows that chronic ethanol consumption increases endothelin (ET)-1 induced sustained contraction of trabecular smooth muscle cells of the corpora cavernosa in corpus cavernosum of rats by a mechanism that involves increased expression of ETA and ETB receptors. Our goal was to evaluate the effects of alcohol and diabetes and their relationship to miRNA-155, miRNA-199 and endothelin receptors in the corpus cavernosum and blood of rats submitted to the experimental model of diabetes mellitus and chronic alcoholism. Forty-eight male Wistar rats were divided into four groups: control (C), alcoholic (A), diabetic (D), and alcoholic-diabetic (AD). Samples of the corpus cavernosum were prepared to study the protein expression of endothelin receptors by immunohistochemistry and expression of miRNAs-155 and -199 in serum and the cavernous tissue. Immunostaining for endothelin receptors was markedly higher in the A, D, and AD groups than in the C group. Moreover, a significant hypoexpression of the miRNA-199 in the corpus cavernosum tissue from the AD group was observed, compared to the C group. When analyzing the microRNA profile in blood, a significant hypoexpression of miRNA-155 in the AD group was observed compared to the C group. The miRNA-199 analysis demonstrated significant hypoexpression in D and AD groups compared to the C group. Our findings in corpus cavernosum showed downregulated miRNA-155 and miRNA-199 levels associated with upregulated protein expression and unaltered mRNA expression of ET receptors suggesting decreased ET receptor turnover, which can contribute to erectile dysfunction in diabetic rats exposed to high alcohol levels.

  11. Characterization of miRNAs responsive to exogenous ethylene in grapevine berries at whole genome level.

    PubMed

    Zhao, Fanggui; Wang, Chen; Han, Jian; Zhu, Xudong; Li, Xiaopeng; Wang, Xicheng; Fang, Jinggui

    2017-05-01

    MicroRNAs (miRNAs) are critical regulators of various biological and metabolic processes of plants. Numerous miRNAs and their functions have been identified and analyzed in many plants. However, till now, the involvement of miRNAs in the response of grapevine berries to ethylene has not been reported yet. Here, Solexa technology was employed to deeply sequence small RNA libraries constructed from grapevine berries treated with and without ethylene. A total of 124 known and 78 novel miRNAs were identified. Among these miRNAs, 162 miRNAs were clearly responsive to ethylene, with 55 downregulated, 59 upregulated, and 14 unchanged miRNAs detected only in the control. The other 35 miRNAs responsive to ethylene were induced by ethylene and detected only in the ethylene-treated grapevine materials. Expression analysis of 27 conserved and 26 novel miRNAs revealed that 13 conserved and 18 novel ones were regulated by ethylene during the whole development of grapevine berries. High-throughput sequencing and qRT-PCR assays revealed consistent results on the expression results of ethylene-responsive miRNAs. Moreover, 90 target genes for 34 novel miRNAs were predicted, most of which were involved in responses to various stresses, especially like exogenous ethylene treatment. The identified miRNAs may be mainly involved in grapevine berry development and response to various environmental conditions.

  12. Genome-wide identification of translationally inhibited and degraded miR-155 targets using RNA-interacting protein-IP

    PubMed Central

    Meier, Jan; Hovestadt, Volker; Zapatka, Marc; Pscherer, Armin; Lichter, Peter; Seiffert, Martina

    2013-01-01

    MicroRNAs (miRNAs) are single-stranded, small, non-coding RNAs, which fine-tune protein expression by degrading and/or translationally inhibiting mRNAs. Manipulation of miRNA expression in animal models frequently results in severe phenotypes indicating their relevance in controlling cellular functions, most likely by interacting with multiple targets. To better understand the effect of miRNA activities, genome-wide analysis of their targets are required. MicroRNA profiling as well as transcriptome analysis upon enforced miRNA expression were frequently used to investigate their relevance. However, these approaches often fail to identify relevant miRNAs targets. Therefore, we tested the precision of RNA-interacting protein immunoprecipitation (RIP) using AGO2-specific antibodies, a core component of the “RNA-induced silencing complex” (RISC), followed by RNA sequencing (Seq) in a defined cellular system, the HEK293T cells with stable, ectopic expression of miR-155. Thereby, we identified 100 AGO2-associated mRNAs in miR-155-expressing cells, of which 67 were in silico predicted miR-155 target genes. An integrated analysis of the corresponding expression profiles indicated that these targets were either regulated by mRNA decay or by translational repression. Of the identified miR-155 targets, 17 were related to cell cycle control, suggesting their involvement in the observed increase in cell proliferation of HEK293T cells upon miR-155 expression. Additional, secondary changes within the gene expression profile were detected and might contribute to this phenotype as well. Interestingly, by analyzing RIP-Seq data of HEK-293T cells and two B-cell lines we identified a recurrent disproportional enrichment of several miRNAs, including miR-155 and miRNAs of the miR-17-92 cluster, in the AGO2-associated precipitates, suggesting discrepancies in miRNA expression and activity. PMID:23673373

  13. Identification and Characterization of MicroRNAs in Ovary and Testis of Nile Tilapia (Oreochromis niloticus) by Using Solexa Sequencing Technology

    PubMed Central

    Zhou, Yi; Yu, Fan; Gao, Yun; Luo, Yongju; Tang, Zhanyang; Guo, Zhongbao; Guo, Enyan; Gan, Xi; Zhang, Ming; Zhang, Yaping

    2014-01-01

    MicroRNAs (miRNAs) are endogenous non-coding small RNAs which play important roles in the regulation of gene expression by cleaving or inhibiting the translation of target gene transcripts. Thereinto, some specific miRNAs show regulatory activities in gonad development via translational control. In order to further understand the role of miRNA-mediated posttranscriptional regulation in Nile tilapia (Oreochromis niloticus) ovary and testis, two small RNA libraries of Nile tilapia were sequenced by Solexa small RNA deep sequencing methods. A total of 9,731,431 and 8,880,497 raw reads, representing 5,407,800 and 4,396,281 unique sequences were obtained from the sexually mature ovaries and testes, respectively. After comparing the small RNA sequences with the Rfam database, 1,432,210 reads in ovaries and 984,146 reads in testes were matched to the genome sequence of Nile tilapia. Bioinformatic analysis identified 764 mature miRNA, 209 miRNA-5p and 202 miRNA-3p were found in the two libraries, of which 525 known miRNAs are both expressed in the ovary and testis of Nile tilapia. Comparison of expression profiles of the testis, miR-727, miR-129 and miR-29 families were highly expressed in tilapia ovary. Additionally, miR-132, miR-212, miR-33a and miR-135b families, showed significant higher expression in testis compared with that in ovary. Furthermore, the expression patterns of the miRNAs were analyzed in different developmental stages of gonad. The result showed different expression patterns were observed during development of testis and ovary. In addition, the identification and characterization of differentially expressed miRNAs in the ovaries and testis of Nile tilapia provides important information on the role of miRNA in the regulation of the ovarian and testicular development and function. This data will be helpful to facilitate studies on the regulation of miRNAs during teleosts reproduction. PMID:24466258

  14. The hot pepper (Capsicum annuum) microRNA transcriptome reveals novel and conserved targets: a foundation for understanding MicroRNA functional roles in hot pepper.

    PubMed

    Hwang, Dong-Gyu; Park, June Hyun; Lim, Jae Yun; Kim, Donghyun; Choi, Yourim; Kim, Soyoung; Reeves, Gregory; Yeom, Seon-In; Lee, Jeong-Soo; Park, Minkyu; Kim, Seungill; Choi, Ik-Young; Choi, Doil; Shin, Chanseok

    2013-01-01

    MicroRNAs (miRNAs) are a class of non-coding RNAs approximately 21 nt in length which play important roles in regulating gene expression in plants. Although many miRNA studies have focused on a few model plants, miRNAs and their target genes remain largely unknown in hot pepper (Capsicum annuum), one of the most important crops cultivated worldwide. Here, we employed high-throughput sequencing technology to identify miRNAs in pepper extensively from 10 different libraries, including leaf, stem, root, flower, and six developmental stage fruits. Based on a bioinformatics pipeline, we successfully identified 29 and 35 families of conserved and novel miRNAs, respectively. Northern blot analysis was used to validate further the expression of representative miRNAs and to analyze their tissue-specific or developmental stage-specific expression patterns. Moreover, we computationally predicted miRNA targets, many of which were experimentally confirmed using 5' rapid amplification of cDNA ends analysis. One of the validated novel targets of miR-396 was a domain rearranged methyltransferase, the major de novo methylation enzyme, involved in RNA-directed DNA methylation in plants. This work provides the first reliable draft of the pepper miRNA transcriptome. It offers an expanded picture of pepper miRNAs in relation to other plants, providing a basis for understanding the functional roles of miRNAs in pepper.

  15. microRNA expression profiling in fetal single ventricle malformation identified by deep sequencing.

    PubMed

    Yu, Zhang-Bin; Han, Shu-Ping; Bai, Yun-Fei; Zhu, Chun; Pan, Ya; Guo, Xi-Rong

    2012-01-01

    microRNAs (miRNAs) have emerged as key regulators in many biological processes, particularly cardiac growth and development, although the specific miRNA expression profile associated with this process remains to be elucidated. This study aimed to characterize the cellular microRNA profile involved in the development of congenital heart malformation, through the investigation of single ventricle (SV) defects. Comprehensive miRNA profiling in human fetal SV cardiac tissue was performed by deep sequencing. Differential expression of 48 miRNAs was revealed by sequencing by oligonucleotide ligation and detection (SOLiD) analysis. Of these, 38 were down-regulated and 10 were up-regulated in differentiated SV cardiac tissue, compared to control cardiac tissue. This was confirmed by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. Predicted target genes of the 48 differentially expressed miRNAs were analyzed by gene ontology and categorized according to cellular process, regulation of biological process and metabolic process. Pathway-Express analysis identified the WNT and mTOR signaling pathways as the most significant processes putatively affected by the differential expression of these miRNAs. The candidate genes involved in cardiac development were identified as potential targets for these differentially expressed microRNAs and the collaborative network of microRNAs and cardiac development related-mRNAs was constructed. These data provide the basis for future investigation of the mechanism of the occurrence and development of fetal SV malformations.

  16. Low-dose irradiation promotes Rad51 expression by down-regulating miR-193b-3p in hepatocytes

    NASA Astrophysics Data System (ADS)

    Lee, Eon-Seok; Won, Yeo Jin; Kim, Byoung-Chul; Park, Daeui; Bae, Jin-Han; Park, Seong-Joon; Noh, Sung Jin; Kang, Yeong-Rok; Choi, Si Ho; Yoon, Je-Hyun; Heo, Kyu; Yang, Kwangmo; Son, Tae Gen

    2016-05-01

    Current evidence indicates that there is a relationship between microRNA (miRNA)-mediated gene silencing and low-dose irradiation (LDIR) responses. Here, alterations of miRNA expression in response to LDIR exposure in male BALB/c mice and three different types of hepatocytes were investigated. The miRNome of the LDIR-exposed mouse spleens (0.01 Gy, 6.5 mGy/h) was analyzed, and the expression of miRNA and mRNA was validated by qRT-PCR. Western blotting, chromatin immunoprecipitation (ChIP), and luciferase assays were also performed to evaluate the interaction between miRNAs and their target genes and to gain insight into the regulation of miRNA expression. The expression of miRNA-193b-3p was down-regulated in the mouse spleen and liver and in various hepatocytes (NCTC, Hepa, and HepG2 cell lines) in response to LDIR. The down-regulation of miR-193b-3p expression was caused by histone deacetylation on the miR-193b-3p promoter in the HepG2 cells irradiated with 0.01 Gy. However, the alteration of histone deacetylation and miR-193b-3p and Rad51 expression in response to LDIR was restored by pretreatment with N-acetyl-cyctein. In conclusion, we provide evidence that miRNA responses to LDIR include the modulation of cellular stress responses and repair mechanisms.

  17. Extension of microRNA expression pattern associated with high-risk neuroblastoma.

    PubMed

    Bienertova-Vasku, Julie; Mazanek, Pavel; Hezova, Renata; Curdova, Anna; Nekvindova, Jana; Kren, Leos; Sterba, Jaroslav; Slaby, Ondrej

    2013-08-01

    Clinical behavior of neuroblastoma (NBL) is remarkably heterogeneous, as it ranges from spontaneous regression to aggressive clinical phenotype and death. There is increasing body of evidence demonstrating that microRNAs could be considered the potential biomarkers for clinical applications in NBL. In this report, we focus on molecular characterization of high-risk as well as low-risk and intermediate-risk NBL cases in the context of the microRNA expression profile that is specific for the given risk category of the disease. We investigated a total of 30 NBL patients, out of whom there were 19 patients with low- to intermediate-risk and 11 with high-risk NBLs as defined by the Clinical Oncology Group. We determined the expression profiles of 754 microRNAs (miRNAs), whereas the miRNA expression levels were normalized to RNU44, mean expression levels were calculated, and data were analyzed by use of the microarray biostatistical approaches. We identified the signature of 38 miRNAs differentially expressed between these groups of NBL patients (P < 0.05): 17 miRNAs were upregulated and 21 miRNAs were downregulated in the tumors of high-risk NBL patients. We confirm some of the previous observations and we report several new microRNAs associated with aggressive NBL, both being relevant subjects for further translational validation and functional studies.

  18. MicroRNA Mediating Networks in Granulosa Cells Associated with Ovarian Follicular Development.

    PubMed

    Zhang, Baoyun; Chen, Long; Feng, Guangde; Xiang, Wei; Zhang, Ke; Chu, Mingxing; Wang, Pingqing

    2017-01-01

    Ovaries, which provide a place for follicular development and oocyte maturation, are important organs in female mammals. Follicular development is complicated physiological progress mediated by various regulatory factors including microRNAs (miRNAs). To demonstrate the role of miRNAs in follicular development, this study analyzed the expression patterns of miRNAs in granulosa cells through investigating three previous datasets generated by Illumina miRNA deep sequencing. Furthermore, via bioinformatic analyses, we dissected the associated functional networks of the observed significant miRNAs, in terms of interacting with signal pathways and transcription factors. During the growth and selection of dominant follicles, 15 dysregulated miRNAs and 139 associated pathways were screened out. In comparison of different styles of follicles, 7 commonly abundant miRNAs and 195 pathways, as well as 10 differentially expressed miRNAs and 117 pathways in dominant follicles in comparison with subordinate follicles, were collected. Furthermore, SMAD2 was identified as a hub factor in regulating follicular development. The regulation of miR-26a/b on smad2 messenger RNA has been further testified by real time PCR. In conclusion, we established functional networks which play critical roles in follicular development including pivotal miRNAs, pathways, and transcription factors, which contributed to the further investigation about miRNAs associated with mammalian follicular development.

  19. Micro RNA clusters in maternal plasma are associated with preterm birth and infant outcomes.

    PubMed

    Wommack, Joel C; Trzeciakowski, Jerome P; Miranda, Rajesh C; Stowe, Raymond P; Ruiz, R Jeanne

    2018-01-01

    The current study examined micro RNA (miRNAs) clusters from the maternal plasma to determine their association with preterm birth (PTB) and infant birth outcomes. A subsample of 42 participants who spontaneously delivered either preterm (≤37 weeks) or term was selected from a parent sample of 515 pregnant Mexican American women. Plasma samples and prenatal data were collected at a single mid-gestation time point (22-24 weeks' gestation) and birth outcomes were obtained from medical records after delivery. Circulating miRNAs were analyzed by qPCR. When miRNAs were grouped according to chromosomal cluster rather than expression level, individual miRNAs correlated strongly with other individual miRNAs within their respective genomic locus. miRNAs from the c19mc cluster negatively correlated with c14mc miRNAs, and this relationship was more pronounced in PTB. Clusters c14mc was negatively associated with length of gestation; while the c19mc was positively associated with length of gestation and infant head circumference. Together, these findings suggest that groups of miRNAs from common chromosomal clusters, rather than individual miRNAs, operate as co-regulated groups of signaling molecules to coordinate length of gestation and infant outcomes. From this evidence, differences in cluster-wide expression of miRNAs are involved in spontaneous PTB.

  20. Expression Profiling Analysis Reveals Key MicroRNA–mRNA Interactions in Early Retinal Degeneration in Retinitis Pigmentosa

    PubMed Central

    Anasagasti, Ander; Ezquerra-Inchausti, Maitane; Barandika, Olatz; Muñoz-Culla, Maider; Caffarel, María M.; Otaegui, David; López de Munain, Adolfo

    2018-01-01

    Purpose The aim of this study was to identify differentially expressed microRNAs (miRNAs) that might play an important role in the etiology of retinal degeneration in a genetic mouse model of retinitis pigmentosa (rd10 mice) at initial stages of the disease. Methods miRNAs–mRNA interaction networks were generated for analysis of biological pathways involved in retinal degeneration. Results Of more than 1900 miRNAs analyzed, we selected 19 miRNAs on the basis of (1) a significant differential expression in rd10 retinas compared with control samples and (2) an inverse expression relationship with predicted mRNA targets involved in biological pathways relevant to retinal biology and/or degeneration. Seven of the selected miRNAs have been associated with retinal dystrophies, whereas, to our knowledge, nine have not been previously linked to any disease. Conclusions This study contributes to our understanding of the etiology and progression of retinal degeneration. PMID:29847644

  1. Mutational Inactivation of Herpes Simplex Virus 1 MicroRNAs Identifies Viral mRNA Targets and Reveals Phenotypic Effects in Culture

    PubMed Central

    Flores, Omar; Nakayama, Sanae; Whisnant, Adam W.; Javanbakht, Hassan; Cullen, Bryan R.

    2013-01-01

    Herpes simplex virus 1 (HSV-1), a ubiquitous human pathogen, expresses several viral microRNAs (miRNAs). These, along with the latency-associated transcript, represent the only viral RNAs detectable in latently infected neuronal cells. Here, for the first time, we analyze which HSV-1 miRNAs are loaded into the RNA-induced silencing complex (RISC), the key effector of miRNA function. Only 9 of the 17 reported HSV-1 miRNAs, i.e., miR-H1 to miR-H8 plus miR-H11, were found to actually load into the RISC. Surprisingly, this analysis also revealed that HSV-1 miRNAs loaded into the RISC with efficiencies that differed widely; <1% of the miR-H1-3p miRNA detectable in HSV-1-infected cells was loaded into the RISC. Analysis of HSV-1 mutants individually lacking the viral miR-H2, miR-H3, or miR-H4 miRNA revealed that loss of these miRNAs affected the rate of replication of HSV-1 in neuronal cells but not in fibroblasts. Analysis of mRNA and protein expression, as well as assays mapping viral miRNA binding sites in infected cells, showed that endogenous HSV-1 miR-H2 binds to viral ICP0 mRNA and inhibits its expression, while endogenous miR-H4 inhibits the expression of the viral ICP34.5 gene. In contrast, no viral mRNA target for miR-H3 could be detected, even though miR-H3, like miR-H4, is perfectly complementary to ICP34.5 mRNA. Together, these data demonstrate that endogenous HSV-1 miRNA expression can significantly alter viral replication in culture, and they also identify two viral mRNA targets for miR-H2 and miR-H4 that can partially explain this phenotype. PMID:23536669

  2. Comparisons of serum miRNA expression profiles in patients with diabetic retinopathy and type 2 diabetes mellitus.

    PubMed

    Ma, Jianping; Wang, Jufang; Liu, Yanfen; Wang, Changyi; Duan, Donghui; Lu, Nanjia; Wang, Kaiyue; Zhang, Lu; Gu, Kaibo; Chen, Sihan; Zhang, Tao; You, Dingyun; Han, Liyuan

    2017-02-01

    The aim of this study was to compare the expression levels of serum miRNAs in diabetic retinopathy and type 2 diabetes mellitus. Serum miRNA expression profiles from diabetic retinopathy cases (type 2 diabetes mellitus patients with diabetic retinopathy) and type 2 diabetes mellitus controls (type 2 diabetes mellitus patients without diabetic retinopathy) were examined by miRNA-specific microarray analysis. Quantitative real-time polymerase chain reaction was used to validate the significantly differentially expressed serum miRNAs from the microarray analysis of 45 diabetic retinopathy cases and 45 age-, sex-, body mass index- and duration-of-diabetes-matched type 2 diabetes mellitus controls. The relative changes in serum miRNA expression levels were analyzed using the 2-ΔΔCt method. A total of 5 diabetic retinopathy cases and 5 type 2 diabetes mellitus controls were included in the miRNA-specific microarray analysis. The serum levels of miR-3939 and miR-1910-3p differed significantly between the two groups in the screening stage; however, quantitative real-time polymerase chain reaction did not reveal significant differences in miRNA expression for 45 diabetic retinopathy cases and their matched type 2 diabetes mellitus controls. Our findings indicate that miR-3939 and miR-1910-3p may not play important roles in the development of diabetic retinopathy; however, studies with a larger sample size are needed to confirm our findings.

  3. High-resolution identification and abundance profiling of cassava (Manihot esculenta Crantz) microRNAs.

    PubMed

    Khatabi, Behnam; Arikit, Siwaret; Xia, Rui; Winter, Stephan; Oumar, Doungous; Mongomake, Kone; Meyers, Blake C; Fondong, Vincent N

    2016-01-28

    Small RNAs (sRNAs) are endogenous sRNAs that play regulatory roles in plant growth, development, and biotic and abiotic stress responses. In plants, one subset of sRNAs, microRNAs (miRNAs) exhibit tissue-differential expression and regulate gene expression mainly through direct cleavage of mRNA or indirectly via production of secondary phased siRNAs (phasiRNAs) that silence cognate target transcripts in trans. Here, we have identified cassava (Manihot esculenta Crantz) miRNAs using high resolution sequencing of sRNA libraries from leaf, stem, callus, male and female flower tissues. To analyze the data, we built a cassava genome database and, via sequence analysis and secondary structure prediction, 38 miRNAs not previously reported in cassava were identified. These new cassava miRNAs included two miRNAs not previously been reported in any plant species. The miRNAs exhibited tissue-differential accumulation as confirmed by quantitative RT-PCR and Northern blot analysis, largely reflecting levels observed in sequencing data. Some of the miRNAs identified were predicted to trigger production of secondary phased siRNAs (phasiRNAs) from 80 PHAS loci. Cassava is a woody perennial shrub, grown principally for its starch-rich storage roots, which are rich in calories. In this study, new miRNAs were identified and their expression was validated using qRT-PCR of RNA from five different tissues. The data obtained expand the list of annotated miRNAs and provide additional new resources for cassava improvement research.

  4. Titanium and Zirconium Levels Are Associated with Changes in MicroRNAs Expression: Results from a Human Cross-Sectional Study on Obese Population

    PubMed Central

    Dioni, Laura; Angelici, Laura; Vigna, Luisella; Farronato, Giampietro; Pesatori, Angela Cecilia; Bollati, Valentina

    2016-01-01

    Objectives In this study on 90 individuals we aimed at evaluating the microRNAs (miRNAs) expression profile associated with personal levels of Titanium (Ti) and Zirconium (Zr) traced in hair samples. Ti and Zr materials are broadly used for dental implants but the biological reactions triggered by a long term presence of these materials in the oral cavity still need to be assessed. MiRNAs are mechanisms that need to be investigated as they play a fundamental role in the control of gene expression following external stimuli and contribute to a wide range of pathophysiological processes. Methods Using the TaqMan® Low-Density Array, we assessed the expression levels of 377 human miRNAs in peripheral blood of 90 subjects. Hair samples were analyzed for Ti and Zr content using Inductively Coupled Plasma-Mass Spectrometry. We performed multivariable regression analysis to investigate the effects of Ti and Zr exposure on miRNA expression levels. We used the Ingenuity Pathway Analysis (IPA) software to explore the functional role of the investigated miRNAs and the related target genes. Results Seven miRNAs (miR-99b, miR-142-5p, miR-152, miR-193a-5p, miR-323-3p, miR-335, miR-494) resulted specifically associated with Zr levels. The functional target analysis showed that miRNAs are involved in mechanisms such as inflammation, skeletal and connective tissue disorders. Conclusions Our data suggest that Zr is more bioactive than Ti and show that miRNAs are relevant molecular mechanisms sensitive to Zr exposure. PMID:27611787

  5. MicroRNA profiling in intraocular medulloepitheliomas.

    PubMed

    Edward, Deepak P; Alkatan, Hind; Rafiq, Qundeel; Eberhart, Charles; Al Mesfer, Saleh; Ghazi, Nicola; Al Safieh, Leen; Kondkar, Altaf A; Abu Amero, Khaled K

    2015-01-01

    To study the differential expression of microRNA (miRNA) profiles between intraocular medulloepithelioma (ME) and normal control tissue (CT). Total RNA was extracted from formalin fixed paraffin embedded (FFPE) intraocular ME (n=7) and from age matched ciliary body controls (n=8). The clinical history and phenotype was recorded. MiRNA profiles were determined using the Affymetrix GeneChip miRNA Arrays analyzed using expression console 1.3 software. Validation of significantly dysregulated miRNA was confirmed by quantitative real-time PCR. The web-based DNA Intelligent Analysis (DIANA)-miRPath v2.0 was used to perform enrichment analysis of differentially expressed (DE) miRNA gene targets in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. The pathologic evaluation revealed one benign (benign non-teratoid, n=1) and six malignant tumors (malignant teratoid, n=2; malignant non-teratoid, n = 4). A total of 88 miRNAs were upregulated and 43 miRNAs were downregulated significantly (P<0.05) in the tumor specimens. Many of these significantly dysregulated miRNAs were known to play various roles in carcinogenesis and tumor behavior. RT-PCR validated three significantly upregulated miRNAs and three significantly downregulated miRNAs namely miR-217, miR-216a, miR-216b, miR-146a, miR-509-3p and miR-211. Many DE miRNAs that were significant in ME tumors showed dysregulation in retinoblastoma, glioblastoma, and precursor, normal and reactive human cartilage. Enriched pathway analysis suggested a significant association of upregulated miRNAs with 15 pathways involved in prion disease and several types of cancer. The pathways involving significantly downregulated miRNAs included the toll-like receptor (TLR) (p<4.36E-16) and Nuclear Factor kappa B (NF-κB) signaling pathways (p<9.00E-06). We report significantly dysregulated miRNAs in intraocular ME tumors, which exhibited abnormal profiles in other cancers as well such as retinoblastoma and glioblastoma. Pathway analysis of all dysregulated miRNAs shared commonalities with other cancer pathways.

  6. An Exportin-1–dependent microRNA biogenesis pathway during human cell quiescence

    PubMed Central

    Martinez, Ivan; Hayes, Karen E.; Barr, Jamie A.; Harold, Abby D.; Xie, Mingyi; Bukhari, Syed I. A.; Vasudevan, Shobha; Steitz, Joan A.; DiMaio, Daniel

    2017-01-01

    The reversible state of proliferative arrest known as “cellular quiescence” plays an important role in tissue homeostasis and stem cell biology. By analyzing the expression of miRNAs and miRNA-processing factors during quiescence in primary human fibroblasts, we identified a group of miRNAs that are induced during quiescence despite markedly reduced expression of Exportin-5, a protein required for canonical miRNA biogenesis. The biogenesis of these quiescence-induced miRNAs is independent of Exportin-5 and depends instead on Exportin-1. Moreover, these quiescence-induced primary miRNAs (pri-miRNAs) are modified with a 2,2,7-trimethylguanosine (TMG)-cap, which is known to bind Exportin-1, and knockdown of Exportin-1 or trimethylguanosine synthase 1, responsible for (TMG)-capping, inhibits their biogenesis. Surprisingly, in quiescent cells Exportin-1–dependent pri-miR-34a is present in the cytoplasm together with a small isoform of Drosha, implying the existence of a different miRNA processing pathway in these cells. Our findings suggest that during quiescence the canonical miRNA biogenesis pathway is down-regulated and specific miRNAs are generated by an alternative pathway to regulate genes involved in cellular growth arrest. PMID:28584122

  7. Identification and profiling of novel microRNAs in the Brassica rapa genome based on small RNA deep sequencing

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) are one of the functional non-coding small RNAs involved in the epigenetic control of the plant genome. Although plants contain both evolutionary conserved miRNAs and species-specific miRNAs within their genomes, computational methods often only identify evolutionary conserved miRNAs. The recent sequencing of the Brassica rapa genome enables us to identify miRNAs and their putative target genes. In this study, we sought to provide a more comprehensive prediction of B. rapa miRNAs based on high throughput small RNA deep sequencing. Results We sequenced small RNAs from five types of tissue: seedlings, roots, petioles, leaves, and flowers. By analyzing 2.75 million unique reads that mapped to the B. rapa genome, we identified 216 novel and 196 conserved miRNAs that were predicted to target approximately 20% of the genome’s protein coding genes. Quantitative analysis of miRNAs from the five types of tissue revealed that novel miRNAs were expressed in diverse tissues but their expression levels were lower than those of the conserved miRNAs. Comparative analysis of the miRNAs between the B. rapa and Arabidopsis thaliana genomes demonstrated that redundant copies of conserved miRNAs in the B. rapa genome may have been deleted after whole genome triplication. Novel miRNA members seemed to have spontaneously arisen from the B. rapa and A. thaliana genomes, suggesting the species-specific expansion of miRNAs. We have made this data publicly available in a miRNA database of B. rapa called BraMRs. The database allows the user to retrieve miRNA sequences, their expression profiles, and a description of their target genes from the five tissue types investigated here. Conclusions This is the first report to identify novel miRNAs from Brassica crops using genome-wide high throughput techniques. The combination of computational methods and small RNA deep sequencing provides robust predictions of miRNAs in the genome. The finding of numerous novel miRNAs, many with few target genes and low expression levels, suggests the rapid evolution of miRNA genes. The development of a miRNA database, BraMRs, enables us to integrate miRNA identification, target prediction, and functional annotation of target genes. BraMRs will represent a valuable public resource with which to study the epigenetic control of B. rapa and other closely related Brassica species. The database is available at the following link: http://bramrs.rna.kr [1]. PMID:23163954

  8. Comparison of the Functional microRNA Expression in Immune Cell Subsets of Neonates and Adults

    PubMed Central

    Yu, Hong-Ren; Hsu, Te-Yao; Huang, Hsin-Chun; Kuo, Ho-Chang; Li, Sung-Chou; Yang, Kuender D.; Hsieh, Kai-Sheng

    2016-01-01

    Diversity of biological molecules in newborn and adult immune cells contributes to differences in cell function and atopic properties. Micro RNAs (miRNAs) are reported to involve in the regulation of immune system. Therefore, determining the miRNA expression profile of leukocyte subpopulations is important for understanding immune system regulation. In order to explore the unique miRNA profiling that contribute to altered immune in neonates, we comprehensively analyzed the functional miRNA signatures of eight leukocyte subsets (polymorphonuclear cells, monocytes, CD4+ T cells, CD8+ T cells, natural killer cells, B cells, plasmacytoid dendritic cells, and myeloid dendritic cells) from both neonatal and adult umbilical cord and peripheral blood samples, respectively. We observed distinct miRNA profiles between adult and neonatal blood leukocyte subsets, including unique miRNA signatures for each cell lineage. Leukocyte miRNA signatures were altered after stimulation. Adult peripheral leukocytes had higher let-7b-5p expression levels compared to neonatal cord leukocytes across multiple subsets, irrespective of stimulation. Transfecting neonatal monocytes with a let-7b-5p mimic resulted in a reduction of LPS-induced interleukin (IL)-6 and TNF-α production, while transfection of a let-7b-5p inhibitor into adult monocytes enhanced IL-6 and TNF-α production. With this functional approach, we provide intact differential miRNA expression profiling of specific immune cell subsets between neonates and adults. These studies serve as a basis to further understand the altered immune response observed in neonates and advance the development of therapeutic strategies. PMID:28066425

  9. IFN-β antiproliferative effect and miRNA regulation in Human Papilloma Virus E6- and E7-transformed keratinocytes.

    PubMed

    Chiantore, Maria Vincenza; Mangino, Giorgio; Iuliano, Marco; Zangrillo, Maria Simona; De Lillis, Ilaria; Vaccari, Gabriele; Accardi, Rosita; Tommasino, Massimo; Fiorucci, Gianna; Romeo, Giovanna

    2017-01-01

    Human Papilloma Viruses (HPVs) are the causative agents of cervical cancer although other types of cancers are associated with HPV infection. Type I Interferons can interfere with HPV E6- and/or E7-dependent transformation and can affect microRNA (miRNA) expression. Cancer cells show a specific pattern of miRNA expression and HPVs are able to modulate miRNAs expressed in infected cells. Keratinocytes transduced with E6 and E7 from mucosal HPV-16 or cutaneous HPV-38 (K16 and K38) were studied to analyze the involvement of HPV oncoproteins in the anti-proliferative activity of IFN-β. In view of our previous data showing senescence induction by the cytokine in K38 cells, we observe that IFN-β treatment leads to p53-indipendent apoptosis in K16 cells whereas induces senescence in K16 cells if E6 is silenced and p53 expression is restored. The levels of selected miRNAs, deregulated in K16 and K38 cells, can be modulated by IFN-β when E6 and E7 proteins of HPV-16, but not HPV-38, are expressed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Comparative Analyses between Skeletal Muscle miRNAomes from Large White and Min Pigs Revealed MicroRNAs Associated with Postnatal Muscle Hypertrophy.

    PubMed

    Sheng, Xihui; Wang, Ligang; Ni, Hemin; Wang, Lixian; Qi, Xiaolong; Xing, Shuhan; Guo, Yong

    2016-01-01

    The molecular mechanism regulated by microRNAs (miRNAs) that underlies postnatal hypertrophy of skeletal muscle is complex and remains unclear. Here, the miRNAomes of longissimus dorsi muscle collected at five postnatal stages (60, 120, 150, 180, and 210 days after birth) from Large White (commercial breed) and Min pigs (indigenous breed of China) were analyzed by Illumina sequencing. We identified 734 miRNAs comprising 308 annotated miRNAs and 426 novel miRNAs, of which 307 could be considered pig-specific. Comparative analysis between two breeds suggested that 60 and 120 days after birth were important stages for skeletal muscle hypertrophy and intramuscular fat accumulation. A total of 263 miRNAs were significantly differentially expressed between two breeds at one or more developmental stages. In addition, the differentially expressed miRNAs between every two adjacent developmental stages in each breed were determined. Notably, ssc-miR-204 was significantly more highly expressed in Min pig skeletal muscle at all postnatal stages compared with its expression in Large White pig skeletal muscle. Based on gene ontology and KEGG pathway analyses of its predicted target genes, we concluded that ssc-miR-204 may exert an impact on postnatal hypertrophy of skeletal muscle by regulating myoblast proliferation. The results of this study will help in elucidating the mechanism underlying postnatal hypertrophy of skeletal muscle modulated by miRNAs, which could provide valuable information for improvement of pork quality and human myopathy.

  11. Identification of miRNA-Mediated Core Gene Module for Glioma Patient Prediction by Integrating High-Throughput miRNA, mRNA Expression and Pathway Structure

    PubMed Central

    Han, Junwei; Shang, Desi; Zhang, Yunpeng; Zhang, Wei; Yao, Qianlan; Han, Lei; Xu, Yanjun; Yan, Wei; Bao, Zhaoshi; You, Gan; Jiang, Tao; Kang, Chunsheng; Li, Xia

    2014-01-01

    The prognosis of glioma patients is usually poor, especially in patients with glioblastoma (World Health Organization (WHO) grade IV). The regulatory functions of microRNA (miRNA) on genes have important implications in glioma cell survival. However, there are not many studies that have investigated glioma survival by integrating miRNAs and genes while also considering pathway structure. In this study, we performed sample-matched miRNA and mRNA expression profilings to systematically analyze glioma patient survival. During this analytical process, we developed pathway-based random walk to identify a glioma core miRNA-gene module, simultaneously considering pathway structure information and multi-level involvement of miRNAs and genes. The core miRNA-gene module we identified was comprised of four apparent sub-modules; all four sub-modules displayed a significant correlation with patient survival in the testing set (P-values≤0.001). Notably, one sub-module that consisted of 6 miRNAs and 26 genes also correlated with survival time in the high-grade subgroup (WHO grade III and IV), P-value = 0.0062. Furthermore, the 26-gene expression signature from this sub-module had robust predictive power in four independent, publicly available glioma datasets. Our findings suggested that the expression signatures, which were identified by integration of miRNA and gene level, were closely associated with overall survival among the glioma patients with various grades. PMID:24809850

  12. Regional and subtype-dependent miRNA signatures in sporadic Creutzfeldt-Jakob disease are accompanied by alterations in miRNA silencing machinery and biogenesis

    PubMed Central

    Kanata, Eirini; Dafou, Dimitra; Díaz-Lucena, Daniela; Vivancos, Ana; Shomroni, Orr; Zafar, Saima; Schmitz, Matthias; Fernández-Borges, Natalia; Andréoletti, Olivier; Díez, Juana; Fischer, Andre; Sklaviadis, Theodoros; Ferrer, Isidre; Zerr, Inga

    2018-01-01

    Increasing evidence indicates that microRNAs (miRNAs) are contributing factors to neurodegeneration. Alterations in miRNA signatures have been reported in several neurodegenerative dementias, but data in prion diseases are restricted to ex vivo and animal models. The present study identified significant miRNA expression pattern alterations in the frontal cortex and cerebellum of sporadic Creutzfeldt-Jakob disease (sCJD) patients. These changes display a highly regional and disease subtype-dependent regulation that correlates with brain pathology. We demonstrate that selected miRNAs are enriched in sCJD isolated Argonaute(Ago)-binding complexes in disease, indicating their incorporation into RNA-induced silencing complexes, and further suggesting their contribution to disease-associated gene expression changes. Alterations in the miRNA-mRNA regulatory machinery and perturbed levels of miRNA biogenesis key components in sCJD brain samples reported here further implicate miRNAs in sCJD gene expression (de)regulation. We also show that a subset of sCJD-altered miRNAs are commonly changed in Alzheimer’s disease, dementia with Lewy bodies and fatal familial insomnia, suggesting potential common mechanisms underlying these neurodegenerative processes. Additionally, we report no correlation between brain and cerebrospinal fluid (CSF) miRNA-profiles in sCJD, indicating that CSF-miRNA profiles do not faithfully mirror miRNA alterations detected in brain tissue of human prion diseases. Finally, utilizing a sCJD MM1 mouse model, we analyzed the miRNA deregulation patterns observed in sCJD in a temporal manner. While fourteen sCJD-related miRNAs were validated at clinical stages, only two of those were changed at early symptomatic phase, suggesting that the miRNAs altered in sCJD may contribute to later pathogenic processes. Altogether, the present work identifies alterations in the miRNA network, biogenesis and miRNA-mRNA silencing machinery in sCJD, whereby contributions to disease mechanisms deserve further investigation. PMID:29357384

  13. Regional and subtype-dependent miRNA signatures in sporadic Creutzfeldt-Jakob disease are accompanied by alterations in miRNA silencing machinery and biogenesis.

    PubMed

    Llorens, Franc; Thüne, Katrin; Martí, Eulàlia; Kanata, Eirini; Dafou, Dimitra; Díaz-Lucena, Daniela; Vivancos, Ana; Shomroni, Orr; Zafar, Saima; Schmitz, Matthias; Michel, Uwe; Fernández-Borges, Natalia; Andréoletti, Olivier; Del Río, José Antonio; Díez, Juana; Fischer, Andre; Bonn, Stefan; Sklaviadis, Theodoros; Torres, Juan Maria; Ferrer, Isidre; Zerr, Inga

    2018-01-01

    Increasing evidence indicates that microRNAs (miRNAs) are contributing factors to neurodegeneration. Alterations in miRNA signatures have been reported in several neurodegenerative dementias, but data in prion diseases are restricted to ex vivo and animal models. The present study identified significant miRNA expression pattern alterations in the frontal cortex and cerebellum of sporadic Creutzfeldt-Jakob disease (sCJD) patients. These changes display a highly regional and disease subtype-dependent regulation that correlates with brain pathology. We demonstrate that selected miRNAs are enriched in sCJD isolated Argonaute(Ago)-binding complexes in disease, indicating their incorporation into RNA-induced silencing complexes, and further suggesting their contribution to disease-associated gene expression changes. Alterations in the miRNA-mRNA regulatory machinery and perturbed levels of miRNA biogenesis key components in sCJD brain samples reported here further implicate miRNAs in sCJD gene expression (de)regulation. We also show that a subset of sCJD-altered miRNAs are commonly changed in Alzheimer's disease, dementia with Lewy bodies and fatal familial insomnia, suggesting potential common mechanisms underlying these neurodegenerative processes. Additionally, we report no correlation between brain and cerebrospinal fluid (CSF) miRNA-profiles in sCJD, indicating that CSF-miRNA profiles do not faithfully mirror miRNA alterations detected in brain tissue of human prion diseases. Finally, utilizing a sCJD MM1 mouse model, we analyzed the miRNA deregulation patterns observed in sCJD in a temporal manner. While fourteen sCJD-related miRNAs were validated at clinical stages, only two of those were changed at early symptomatic phase, suggesting that the miRNAs altered in sCJD may contribute to later pathogenic processes. Altogether, the present work identifies alterations in the miRNA network, biogenesis and miRNA-mRNA silencing machinery in sCJD, whereby contributions to disease mechanisms deserve further investigation.

  14. A computational biology approach of a genome-wide screen connected miRNAs to obesity and type 2 diabetes.

    PubMed

    Gottmann, Pascal; Ouni, Meriem; Saussenthaler, Sophie; Roos, Julian; Stirm, Laura; Jähnert, Markus; Kamitz, Anne; Hallahan, Nicole; Jonas, Wenke; Fritsche, Andreas; Häring, Hans-Ulrich; Staiger, Harald; Blüher, Matthias; Fischer-Posovszky, Pamela; Vogel, Heike; Schürmann, Annette

    2018-05-01

    Obesity and type 2 diabetes (T2D) arise from the interplay between genetic, epigenetic, and environmental factors. The aim of this study was to combine bioinformatics and functional studies to identify miRNAs that contribute to obesity and T2D. A computational framework (miR-QTL-Scan) was applied by combining QTL, miRNA prediction, and transcriptomics in order to enhance the power for the discovery of miRNAs as regulative elements. Expression of several miRNAs was analyzed in human adipose tissue and blood cells and miR-31 was manipulated in a human fat cell line. In 17 partially overlapping QTL for obesity and T2D 170 miRNAs were identified. Four miRNAs (miR-15b, miR-30b, miR-31, miR-744) were recognized in gWAT (gonadal white adipose tissue) and six (miR-491, miR-455, miR-423-5p, miR-132-3p, miR-365-3p, miR-30b) in BAT (brown adipose tissue). To provide direct functional evidence for the achievement of the miR-QTL-Scan, miR-31 located in the obesity QTL Nob6 was experimentally analyzed. Its expression was higher in gWAT of obese and diabetic mice and humans than of lean controls. Accordingly, 10 potential target genes involved in insulin signaling and adipogenesis were suppressed. Manipulation of miR-31 in human SGBS adipocytes affected the expression of GLUT4, PPARγ, IRS1, and ACACA. In human peripheral blood mononuclear cells (PBMC) miR-15b levels were correlated to baseline blood glucose concentrations and might be an indicator for diabetes. Thus, miR-QTL-Scan allowed the identification of novel miRNAs relevant for obesity and T2D. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  15. miRNA Signature and Dicer Requirement during Human Endometrial Stromal Decidualization In Vitro

    PubMed Central

    Estella, Carlos; Herrer, Isabel; Moreno-Moya, Juan Manuel; Quiñonero, Alicia; Martínez, Sebastián; Pellicer, Antonio; Simón, Carlos

    2012-01-01

    Decidualization is a morphological and biochemical transformation of endometrial stromal fibroblast into differentiated decidual cells, which is critical for embryo implantation and pregnancy establishment. The complex regulatory networks have been elucidated at both the transcriptome and the proteome levels, however very little is known about the post-transcriptional regulation of this process. miRNAs regulate multiple physiological pathways and their de-regulation is associated with human disorders including gynaecological conditions such as endometriosis and preeclampsia. In this study we profile the miRNAs expression throughout human endometrial stromal (hESCs) decidualization and analyze the requirement of the miRNA biogenesis enzyme Dicer during this process. A total of 26 miRNAs were upregulated and 17 miRNAs downregulated in decidualized hESCs compared to non-decidualized hESCs. Three miRNAs families, miR-181, miR-183 and miR-200, are down-regulated during the decidualization process. Using miRNAs target prediction algorithms we have identified the potential targets and pathways regulated by these miRNAs. The knockdown of Dicer has a minor effect on hESCs during in vitro decidualization. We have analyzed a battery of decidualization markers such as cell morphology, Prolactin, IGFBP-1, MPIF-1 and TIMP-3 secretion as well as HOXA10, COX2, SP1, C/EBPß and FOXO1 expression in decidualized hESCs with decreased Dicer function. We found decreased levels of HOXA10 and altered intracellular organization of actin filaments in Dicer knockdown decidualized hESCs compared to control. Our results provide the miRNA signature of hESC during the decidualization process in vitro. We also provide the first functional characterization of Dicer during human endometrial decidualization although surprisingly we found that Dicer plays a minor role regulating this process suggesting that alternative biogenesis miRNAs pathways must be involved in human endometrial decidualization. PMID:22911744

  16. Conservation and divergence of microRNAs in Populus

    PubMed Central

    Barakat, Abdelali; Wall, Phillip K; DiLoreto, Scott; dePamphilis, Claude W; Carlson, John E

    2007-01-01

    Background MicroRNAs (miRNAs) are small RNAs (sRNA) ~21 nucleotides in length that negatively control gene expression by cleaving or inhibiting the translation of target gene transcripts. miRNAs have been extensively analyzed in Arabidopsis and rice and partially investigated in other non-model plant species. To date, 109 and 62 miRNA families have been identified in Arabidopsis and rice respectively. However, only 33 miRNAs have been identified from the genome of the model tree species (Populus trichocarpa), of which 11 are Populus specific. The low number of miRNA families previously identified in Populus, compared with the number of families identified in Arabidopsis and rice, suggests that many miRNAs still remain to be discovered in Populus. In this study, we analyzed expressed small RNAs from leaves and vegetative buds of Populus using high throughput pyrosequencing. Results Analysis of almost eighty thousand small RNA reads allowed us to identify 123 new sequences belonging to previously identified miRNA families as well as 48 new miRNA families that could be Populus-specific. Comparison of the organization of miRNA families in Populus, Arabidopsis and rice showed that miRNA family sizes were generally expanded in Populus. The putative targets of non-conserved miRNA include both previously identified targets as well as several new putative target genes involved in development, resistance to stress, and other cellular processes. Moreover, almost half of the genes predicted to be targeted by non-conserved miRNAs appear to be Populus-specific. Comparative analyses showed that genes targeted by conserved and non-conserved miRNAs are biased mainly towards development, electron transport and signal transduction processes. Similar results were found for non-conserved miRNAs from Arabidopsis. Conclusion Our results suggest that while there is a conserved set of miRNAs among plant species, a large fraction of miRNAs vary among species. The non-conserved miRNAs may regulate cellular, physiological or developmental processes specific to the taxa that produce them, as appears likely to be the case for those miRNAs that have only been observed in Populus. Non-conserved and conserved miRNAs seem to target genes with similar biological functions indicating that similar selection pressures are acting on both types of miRNAs. The expansion in the number of most conserved miRNAs in Populus relative to Arabidopsis, may be linked to the recent genome duplication in Populus, the slow evolution of the Populus genome, or to differences in the selection pressure on duplicated miRNAs in these species. PMID:18166134

  17. Wnt antagonist, secreted frizzled-related protein 1, is involved in prenatal skeletal muscle development and is a target of miRNA-1/206 in pigs.

    PubMed

    Yang, Yalan; Sun, Wei; Wang, Ruiqi; Lei, Chuzhao; Zhou, Rong; Tang, Zhonglin; Li, Kui

    2015-03-08

    The Wnt signaling pathway is involved in the control of cell proliferation and differentiation during skeletal muscle development. Secreted frizzled-related proteins (SFRPs), such as SFRP1, function as inhibitors of Wnt signaling. MicroRNA-1/206(miRNA-1/206) is specifically expressed in skeletal muscle and play a critical role in myogenesis. The miRNA-mRNA profiles and bioinformatics study suggested that the SFRP1 gene was potentially regulated by miRNA-1/206 during porcine skeletal muscle development. To understand the function of SFRP1 and miRNA-1/206 in swine myogenesis, we first predicted the targets of miRNA-1/206 with the TargetScan and PicTar programs, and analyzed the molecular characterization of the porcine SFRP1 gene. We performed a temporal-spatial expression analysis of SFRP1 mRNA and miRNA-206 in Tongcheng pigs (a Chinese indigenous breed) by quantitative real-time polymerase chain reaction, and conducted the co-expression analyses of SFRP1 and miRNA-1/206. Subsequently, the interaction between SFRP1 and miRNA-1/206 was validated via dual luciferase and Western blot assays. The bioinformatics analysis predicted SFRP1 to be a target of miRNA-1/206. The expression level of the SFRP1 was highly varied across numerous pig tissues and it was down-regulated during porcine skeletal muscle development. The expression level of the SFRP1 was significantly higher in the embryonic skeletal compared with postnatal skeletal muscle, whereas miR-206 showed the inverse pattern of expression. A significant negative correlation was observed between the expression of miR-1/206 and SFRP1 during porcine skeletal muscle development (p <0.05). Dual luciferase assay and Western-blot results demonstrated that SFRP1 was a target of miR-1/206 in porcine iliac endothelial cells. Our results indicate that the SFRP1 gene is regulated by miR-1/206 and potentially affects skeletal muscle development. These findings increase understanding of the biological functions and the regulation of the SFRP1 gene in mammals.

  18. Altered microRNA expression patterns in irradiated hematopoietic tissues suggest a sex-specific protective mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilnytskyy, Yaroslav; Zemp, Franz J.; Koturbash, Igor

    To investigate involvement of miRNAs in radiation responses we used microRNAome profiling to analyze the sex-specific response of radiation sensitive hematopoietic lymphoid tissues. We show that radiation exposure resulted in a significant and sex-specific deregulation of microRNA expression in murine spleen and thymus tissues. Among the regulated miRNAs, we found that changes in expression of miR-34a and miR-7 may be involved in important protective mechanisms counteracting radiation cytotoxicity. We observed a significant increase in the expression of tumor-suppressor miR-34a, paralleled by a decrease in the expression of its target oncogenes NOTCH1, MYC, E2F3 and cyclin D1. Additionally, we show thatmore » miR-7 targets the lymphoid-specific helicase LSH, a pivotal regulator of DNA methylation and genome stability. While miR-7 was significantly down-regulated LSH was significantly up-regulated. These cellular changes may constitute an attempt to counteract radiation-induced hypomethylation. Tissue specificity of miRNA responses and possible regulation of miRNA expression upon irradiation are discussed.« less

  19. Postnatal choline supplementation selectively attenuates hippocampal microRNA alterations associated with developmental alcohol exposure

    PubMed Central

    Balaraman, Sridevi; Idrus, Nirelia M.; Miranda, Rajesh C.; Thomas, Jennifer D.

    2017-01-01

    Prenatal alcohol exposure can result in a range of physical, neuropathological, and behavioral alterations, collectively termed fetal alcohol spectrum disorders (FASD). We have shown that supplementation with the nutrient choline reduces the severity of developmental alcohol-associated deficits in hippocampal-dependent behaviors and normalizes some aspects of hippocampal cholinergic development and DNA methylation patterns. Alcohol’s developmental effects may also be mediated, in part, by altering microRNAs (miRNAs) that serve as negative regulators of gene translation. To determine whether choline supplementation alters ethanol’s long-lasting effects on miRNAs, Sprague-Dawley rats were exposed to 5.25 g/kg/day ethanol from postnatal days (PD) 4–9 via intubation; controls received sham intubations. Subjects were treated with choline chloride (100 mg/kg/day) or saline vehicle subcutaneously (s.c.) from PD 4–21. On PD 22, subjects were sacrificed, and RNA isolated from the hippocampus. MiRNA expression was assessed with TaqMan Human MicroRNA Panel Low-Density Arrays. Ethanol significantly increased miRNA expression variance, an effect that was normalized with choline supplementation. Cluster analysis of stably expressed miRNAs that exceeded an ANOVA p<0.05 criterion indicated that for both male and female offspring, control and ethanol-exposed groups were most dissimilar from each other, with choline-supplemented groups in between. MiRNAs that expressed an average 2-fold change due to ethanol exposure were further analyzed to identify which ethanol-sensitive miRNAs were protected by choline supplementation. We found that at a false discovery rate (FDR)-adjusted criterion of p<0.05, miR-200c was induced by ethanol exposure and that choline prevented this effect. Collectively, our data show that choline supplementation can normalize disturbances in miRNA expression following developmental alcohol exposure and can protect specific miRNAs from induction by ethanol. These findings have important implications for the mechanisms by which choline may serve as a potential treatment for FASD. PMID:28433422

  20. A Collection of Target Mimics for Comprehensive Analysis of MicroRNA Function in Arabidopsis thaliana

    PubMed Central

    Paz-Ares, Javier; Weigel, Detlef

    2010-01-01

    Many targets of plant microRNAs (miRNAs) are thought to play important roles in plant physiology and development. However, because plant miRNAs are typically encoded by medium-size gene families, it has often been difficult to assess their precise function. We report the generation of a large-scale collection of knockdowns for Arabidopsis thaliana miRNA families; this has been achieved using artificial miRNA target mimics, a recently developed technique fashioned on an endogenous mechanism of miRNA regulation. Morphological defects in the aerial part were observed for ∼20% of analyzed families, all of which are deeply conserved in land plants. In addition, we find that non-cleavable mimic sites can confer translational regulation in cis. Phenotypes of plants expressing target mimics directed against miRNAs involved in development were in several cases consistent with previous reports on plants expressing miRNA–resistant forms of individual target genes, indicating that a limited number of targets mediates most effects of these miRNAs. That less conserved miRNAs rarely had obvious effects on plant morphology suggests that most of them do not affect fundamental aspects of development. In addition to insight into modes of miRNA action, this study provides an important resource for the study of miRNA function in plants. PMID:20661442

  1. Profile of differentially expressed miRNAs in high-grade serous carcinoma and clear cell ovarian carcinoma, and the expression of miR-510 in ovarian carcinoma.

    PubMed

    Zhang, Xinchen; Guo, Gordon; Wang, Guang; Zhao, Jinyao; Wang, Bo; Yu, Xiaotang; Ding, Yanfang

    2015-12-01

    Improved insight into the molecular and genetic profile of different types of epithelial ovarian cancer (EOC) is required for understanding the carcinogenesis of EOC and may potentially be exploited by future targeted therapies. The aim of the present study was to identify a unique microRNA (miRNA) patterns and key miRNAs, which may assist in predicting progression and prognosis in high‑grade serous carcinoma (HGSC) and clear cell carcinoma (CCC). To identify unique miRNA patterns associated with HGSC and CCC, a miRNA microarray was performed using Chinese tumor bank specimens of patients with HGSC or CCC in a retrospective analysis. The expression levels of four deregulated miRNAs were further validated using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) in an external cohort of 42 cases of HGSC and 36 cases of CCC. Kaplan‑Meier analysis was performed to analyze the correlation between the expression levels of the four miRNAs and patient prognosis. Among these validated miRNAs, miR‑510 was further examined in another cohort of normal ovarian tissues, as well as the HGSC, low‑grade serous carcinoma (LGSC) and CCC specimens using RT‑qPCR and in situ hybridization. The results revealed that, of the 768 miRNAs analyzed in the microarray, 33 and 50 miRNAs were significantly upregulated and downregulated, respectively, with at least a 2‑fold difference in HGSC, compared with CCC. The quantitative analysis demonstrated that miR‑510 and miR‑129‑3p were significantly downregulated, and that miR‑483‑5p and miR‑miR‑449a were significantly upregulated in CCC, compared with HGSC (P<0.05), which was consistent with the microarray results. Kaplan‑Meier analysis revealed low expression levels of miR‑510 and low expression levels of miR‑129‑3p, advanced International Federation of Gynecology and Obstetrics (FIGO) stage, lymphatic metastasis and that HGSC was significantly associated with the poorer overall survival rates (P<0.05). The expression of miR‑510 was significantly higher in the LGSC and CCC tissues, compared with the HGSC and normal ovarian tissues. The results of the present study suggested that different subtypes of EOC have specific miRNA signatures, and that miR‑510 may be involved differently in HGSC and CCC. Thus, miR‑510 and miR‑129‑3p may be considered as potential novel candidate clinical biomarkers for predicting the outcome of EOC.

  2. Exosomal microRNA profiling to identify hypoxia-related biomarkers in prostate cancer

    PubMed Central

    Panigrahi, Gati K.; Ramteke, Anand; Birks, Diane; Abouzeid Ali, Hamdy E.; Venkataraman, Sujatha; Agarwal, Chapla; Vibhakar, Rajeev; Miller, Lance D.; Agarwal, Rajesh; Abd Elmageed, Zakaria Y.; Deep, Gagan

    2018-01-01

    Hypoxia and expression of hypoxia-related biomarkers are associated with disease progression and treatment failure in prostate cancer (PCa). We have reported that exosomes (nanovesicles of 30-150 nm in diameter) secreted by human PCa cells under hypoxia promote invasiveness and stemness in naïve PCa cells. Here, we identified the unique microRNAs (miRNAs) loaded in exosomes secreted by PCa cells under hypoxia. Using TaqMan® array microRNA cards, we analyzed the miRNA profile in exosomes secreted by human PCa LNCaP cells under hypoxic (ExoHypoxic) and normoxic (ExoNormoxic) conditions. We identified 292 miRNAs loaded in both ExoHypoxic and ExoNormoxic. The top 11 miRNAs with significantly higher level in ExoHypoxic compared to ExoNormoxic were miR-517a, miR-204, miR-885, miR-143, miR-335, miR-127, miR-542, miR-433, miR-451, miR-92a and miR-181a; and top nine miRNA with significantly lower expression level in ExoHypoxic compared to ExoNormoxic were miR-521, miR-27a, miR-324, miR-579, miR-502, miR-222, miR-135b, miR-146a and miR-491. Importantly, the two differentially expressed miRNAs miR-885 (increased expression) and miR-521 (decreased expression) showed similar expression pattern in exosomes isolated from the serum of PCa patients compared to healthy individuals. Additionally, miR-204 and miR-222 displayed correlated expression patterns in prostate tumors (Pearson R = 0.66, p < 0.0001) by The Cancer Genome Atlas (TCGA) prostate adenocarcinoma (PRAD) genomic dataset analysis. Overall, the present study identified unique miRNAs with differential expression in exosomes secreted from hypoxic PCa cells and suggests their potential usefulness as a biomarker of hypoxia in PCa patients. PMID:29568403

  3. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype.

    PubMed

    Blenkiron, Cherie; Goldstein, Leonard D; Thorne, Natalie P; Spiteri, Inmaculada; Chin, Suet-Feung; Dunning, Mark J; Barbosa-Morais, Nuno L; Teschendorff, Andrew E; Green, Andrew R; Ellis, Ian O; Tavaré, Simon; Caldas, Carlos; Miska, Eric A

    2007-01-01

    MicroRNAs (miRNAs), a class of short non-coding RNAs found in many plants and animals, often act post-transcriptionally to inhibit gene expression. Here we report the analysis of miRNA expression in 93 primary human breast tumors, using a bead-based flow cytometric miRNA expression profiling method. Of 309 human miRNAs assayed, we identify 133 miRNAs expressed in human breast and breast tumors. We used mRNA expression profiling to classify the breast tumors as luminal A, luminal B, basal-like, HER2+ and normal-like. A number of miRNAs are differentially expressed between these molecular tumor subtypes and individual miRNAs are associated with clinicopathological factors. Furthermore, we find that miRNAs could classify basal versus luminal tumor subtypes in an independent data set. In some cases, changes in miRNA expression correlate with genomic loss or gain; in others, changes in miRNA expression are likely due to changes in primary transcription and or miRNA biogenesis. Finally, the expression of DICER1 and AGO2 is correlated with tumor subtype and may explain some of the changes in miRNA expression observed. This study represents the first integrated analysis of miRNA expression, mRNA expression and genomic changes in human breast cancer and may serve as a basis for functional studies of the role of miRNAs in the etiology of breast cancer. Furthermore, we demonstrate that bead-based flow cytometric miRNA expression profiling might be a suitable platform to classify breast cancer into prognostic molecular subtypes.

  4. Colorectal tumor molecular phenotype and miRNA: expression profiles and prognosis.

    PubMed

    Slattery, Martha L; Herrick, Jennifer S; Mullany, Lila E; Wolff, Erica; Hoffman, Michael D; Pellatt, Daniel F; Stevens, John R; Wolff, Roger K

    2016-08-01

    MiRNAs regulate gene expression by post-transcriptionally suppressing mRNA translation or by causing mRNA degradation. It has been proposed that unique miRNAs influence specific tumor molecular phenotype. In this paper, we test the hypotheses that miRNA expression differs by tumor molecular phenotype and that those differences may influence prognosis. Data come from population-based studies of colorectal cancer conducted in Utah and the Northern California Kaiser Permanente Medical Care Program. A total of 1893 carcinoma samples were run on the Agilent Human miRNA Microarray V19.0 containing 2006 miRNAs. We assessed differences in miRNA expression between TP53-mutated and non-mutated, KRAS-mutated and non-mutated, BRAF-mutated and non-mutated, CpG island methylator phenotype (CIMP) high and CIMP low, and microsatellite instability (MSI) and microsatellite stable (MSS) colon and rectal tumors. Using a Cox proportional hazard model we evaluated if those miRNAs differentially expressed by tumor phenotype influenced survival after adjusting for age, sex, and AJCC stage. There were 22 differentially expressed miRNAs for TP53-mutated colon tumors and 5 for TP53-mutated rectal tumors with a fold change of >1.49 (or <0.67). Additionally, 13 miRNAS were differentially expressed for KRAS-mutated rectal tumors, 8 differentially expressed miRNAs for colon CIMP high tumors, and 2 differentially expressed miRNAs for BRAF-mutated colon tumors. The majority of differentially expressed miRNAS were observed between MSI and MSS tumors (94 differentially expressed miRNAs for colon; 41 differentially expressed miRNAs for rectal tumors). Of these miRNAs differentially expressed between MSI and MSS tumors, the majority were downregulated. Ten of the differentially expressed miRNAs were associated with survival; after adjustment for MSI status, five miRNAS, miR-196b-5p, miR-31-5p, miR-99b-5p, miR-636, and miR-192-3p, were significantly associated with survival. In summary, it appears that the majority of miRNAs that are differentially expressed by tumor molecular phenotype are MSI tumors. However, these miRNAs appear to have minimal effect on prognosis.

  5. Temporal Differences in MicroRNA Expression Patterns in Astrocytes and Neurons after Ischemic Injury

    PubMed Central

    Ziu, Mateo; Fletcher, Lauren; Rana, Shushan; Jimenez, David F.; Digicaylioglu, Murat

    2011-01-01

    MicroRNAs (miRNAs) are small, non-protein-coding RNA molecules that modulate gene translation. Their expression is altered in many central nervous system (CNS) injuries suggesting a role in the cellular response to stress. Current studies in brain tissue have not yet described the cell-specific temporal miRNA expression patterns following ischemic injury. In this study, we analyzed the expression alterations of a set of miRNAs in neurons and astrocytes subjected to 60 minutes of ischemia and collected at different time-points following this injury. To mimic ischemic conditions and reperfusion in vitro, cortical primary neuronal and astrocytic cultures prepared from fetal rats were first placed in oxygen and glucose deprived (OGD) medium for 60 minutes, followed by their transfer into normoxic pre-conditioned medium. Total RNA was extracted at different time-points after the termination of the ischemic insult and the expression levels of miRNAs were measured. In neurons exposed to OGD, expression of miR-29b was upregulated 2-fold within 6 h and up to 4-fold at 24 h post-OGD, whereas induction of miR-21 was upregulated 2-fold after 24 h when compared to expression in neurons under normoxic conditions. In contrast, in astrocytes, miR-29b and miR-21 were upregulated only after 12 h. MiR-30b, 107, and 137 showed expression alteration in astrocytes, but not in neurons. Furthermore, we show that expression of miR-29b was significantly decreased in neurons exposed to Insulin-Like Growth Factor I (IGF-I), a well documented neuroprotectant in ischemic models. Our study indicates that miRNAs expression is altered in neurons and astrocytes after ischemic injury. Furthermore, we found that following OGD, specific miRNAs have unique cell-specific temporal expression patterns in CNS. Therefore the specific role of each miRNA in different intracellular processes in ischemic brain and the relevance of their temporal and spatial expression patterns warrant further investigation that may lead to novel strategies for therapeutic interventions. PMID:21373187

  6. SpidermiR: An R/Bioconductor Package for Integrative Analysis with miRNA Data.

    PubMed

    Cava, Claudia; Colaprico, Antonio; Bertoli, Gloria; Graudenzi, Alex; Silva, Tiago C; Olsen, Catharina; Noushmehr, Houtan; Bontempi, Gianluca; Mauri, Giancarlo; Castiglioni, Isabella

    2017-01-27

    Gene Regulatory Networks (GRNs) control many biological systems, but how such network coordination is shaped is still unknown. GRNs can be subdivided into basic connections that describe how the network members interact e.g., co-expression, physical interaction, co-localization, genetic influence, pathways, and shared protein domains. The important regulatory mechanisms of these networks involve miRNAs. We developed an R/Bioconductor package, namely SpidermiR, which offers an easy access to both GRNs and miRNAs to the end user, and integrates this information with differentially expressed genes obtained from The Cancer Genome Atlas. Specifically, SpidermiR allows the users to: (i) query and download GRNs and miRNAs from validated and predicted repositories; (ii) integrate miRNAs with GRNs in order to obtain miRNA-gene-gene and miRNA-protein-protein interactions, and to analyze miRNA GRNs in order to identify miRNA-gene communities; and (iii) graphically visualize the results of the analyses. These analyses can be performed through a single interface and without the need for any downloads. The full data sets are then rapidly integrated and processed locally.

  7. microRNAs differentially modulated in response to heat and drought stress in durum wheat cultivars with contrasting water use efficiency.

    PubMed

    Giusti, Lorenzo; Mica, Erica; Bertolini, Edoardo; De Leonardis, Anna Maria; Faccioli, Primetta; Cattivelli, Luigi; Crosatti, Cristina

    2017-05-01

    Plant stress response is a complex molecular process based on transcriptional and posttranscriptional regulation of many stress-related genes. microRNAs are the best-studied class of small RNAs known to play key regulatory roles in plant response to stress, besides being involved in plant development and organogenesis. We analyzed the leaf miRNAome of two durum wheat cultivars (Cappelli and Ofanto) characterized by a contrasting water use efficiency, exposed to heat stress, and mild and severe drought stress. On the whole, we identified 98 miRNA highly similar to previously known miRNAs and grouped in 47 MIR families, as well as 85 novel candidate miRNA, putatively wheat specific. A total of 80 known and novel miRNA precursors were found differentially expressed between the two cultivars or modulated by stress and many of them showed a cultivar-specific expression profile. Interestingly, most in silico predicted targets of the miRNAs coming from the differentially expressed precursors have been experimentally linked in other species to mechanisms controlling stomatal movement, a finding in agreement with previous results showing that Cappelli has a lower stomatal conductance than Ofanto. Selected miRNAs were validated through a standardized and reliable stem-loop qRT-PCR procedure.

  8. A Specific miRNA Signature Correlates With Complete Pathological Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Della Vittoria Scarpati, Giuseppina; Falcetta, Francesca; Carlomagno, Chiara, E-mail: chiara.carlomagno@unina.it

    2012-07-15

    Purpose: MicroRNAs (miRNAs) are small, noncoding RNA molecules that can be down- or upregulated in colorectal cancer and have been associated to prognosis and response to treatment. We studied miRNA expression in tumor biopsies of patients with rectal cancer to identify a specific 'signature' correlating with pathological complete response (pCR) after neoadjuvant chemoradiotherapy. Methods and Materials: A total of 38 T3-4/N+ rectal cancer patients received capecitabine-oxaliplatin and radiotherapy followed by surgery. Pathologic response was scored according to the Mandard TRG scale. MiRNA expression was analyzed by microarray and confirmed by real-time Reverse Transcription Polymerase Chain Reaction (qRT-PCR) on frozen biopsiesmore » obtained before treatment. The correlation between miRNA expression and TRG, coded as TRG1 (pCR) vs. TRG >1 (no pCR), was assessed by methods specifically designed for this study. Results: Microarray analysis selected 14 miRNAs as being differentially expressed in TRG1 patients, and 13 were confirmed by qRT-PCR: 11 miRNAs (miR-1183, miR-483-5p, miR-622, miR-125a-3p, miR-1224-5p, miR-188-5p, miR-1471, miR-671-5p, miR-1909 Asterisk-Operator , miR-630, miR-765) were significantly upregulated in TRG1 patients, 2 (miR-1274b, miR-720) were downexpressed. MiR-622 and miR-630 had a 100% sensitivity and specificity in selecting TRG1 cases. Conclusions: A set of 13 miRNAs is strongly associated with pCR and may represent a specific predictor of response to chemoradiotherapy in rectal cancer patients.« less

  9. Identification of MicroRNA as Sepsis Biomarker Based on miRNAs Regulatory Network Analysis

    PubMed Central

    Huang, Jie; Sun, Zhandong; Yan, Wenying; Zhu, Yujie; Lin, Yuxin; Chen, Jiajai; Shen, Bairong

    2014-01-01

    Sepsis is regarded as arising from an unusual systemic response to infection but the physiopathology of sepsis remains elusive. At present, sepsis is still a fatal condition with delayed diagnosis and a poor outcome. Many biomarkers have been reported in clinical application for patients with sepsis, and claimed to improve the diagnosis and treatment. Because of the difficulty in the interpreting of clinical features of sepsis, some biomarkers do not show high sensitivity and specificity. MicroRNAs (miRNAs) are small noncoding RNAs which pair the sites in mRNAs to regulate gene expression in eukaryotes. They play a key role in inflammatory response, and have been validated to be potential sepsis biomarker recently. In the present work, we apply a miRNA regulatory network based method to identify novel microRNA biomarkers associated with the early diagnosis of sepsis. By analyzing the miRNA expression profiles and the miRNA regulatory network, we obtained novel miRNAs associated with sepsis. Pathways analysis, disease ontology analysis, and protein-protein interaction network (PIN) analysis, as well as ROC curve, were exploited to testify the reliability of the predicted miRNAs. We finally identified 8 novel miRNAs which have the potential to be sepsis biomarkers. PMID:24809055

  10. Identification of potential tumor-educated platelets RNA biomarkers in non-small-cell lung cancer by integrated bioinformatical analysis.

    PubMed

    Xue, Linlin; Xie, Li; Song, Xingguo; Song, Xianrang

    2018-04-17

    Platelets have emerged as key players in tumorigenesis and tumor progression. Tumor-educated platelet (TEP) RNA profile has the potential to diagnose non-small-cell lung cancer (NSCLC). The objective of this study was to identify potential TEP RNA biomarkers for the diagnosis of NSCLC and to explore the mechanisms in alternations of TEP RNA profile. The RNA-seq datasets GSE68086 and GSE89843 were downloaded from Gene Expression Omnibus DataSets (GEO DataSets). Then, the functional enrichment of the differentially expressed mRNAs was analyzed by the Database for Annotation Visualization and Integrated Discovery (DAVID). The miRNAs which regulated the differential mRNAs and the target mRNAs of miRNAs were identified by miRanda and miRDB. Then, the miRNA-mRNA regulatory network was visualized via Cytoscape software. Twenty consistently altered mRNAs (2 up-regulated and 18 down-regulated) were identified from the two GSE datasets, and they were significantly enriched in several biological processes, including transport and establishment of localization. Twenty identical miRNAs were found between exosomal miRNA-seq dataset and 229 miRNAs that regulated 20 consistently differential mRNAs in platelets. We also analyzed 13 spliceosomal mRNAs and their miRNA predictions; there were 27 common miRNAs between 206 differential exosomal miRNAs and 338 miRNAs that regulated 13 distinct spliceosomal mRNAs. This study identified 20 potential TEP RNA biomarkers in NSCLC for diagnosis by integrated bioinformatical analysis, and alternations in TEP RNA profile may be related to the post-transcriptional regulation and the splicing metabolisms of spliceosome. © 2018 Wiley Periodicals, Inc.

  11. MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system

    PubMed Central

    Kapsimali, Marika; Kloosterman, Wigard P; de Bruijn, Ewart; Rosa, Frederic; Plasterk, Ronald HA; Wilson, Stephen W

    2007-01-01

    Background MicroRNA (miRNA) encoding genes are abundant in vertebrate genomes but very few have been studied in any detail. Bioinformatic tools allow prediction of miRNA targets and this information coupled with knowledge of miRNA expression profiles facilitates formulation of hypotheses of miRNA function. Although the central nervous system (CNS) is a prominent site of miRNA expression, virtually nothing is known about the spatial and temporal expression profiles of miRNAs in the brain. To provide an overview of the breadth of miRNA expression in the CNS, we performed a comprehensive analysis of the neuroanatomical expression profiles of 38 abundant conserved miRNAs in developing and adult zebrafish brain. Results Our results show miRNAs have a wide variety of different expression profiles in neural cells, including: expression in neuronal precursors and stem cells (for example, miR-92b); expression associated with transition from proliferation to differentiation (for example, miR-124); constitutive expression in mature neurons (miR-124 again); expression in both proliferative cells and their differentiated progeny (for example, miR-9); regionally restricted expression (for example, miR-222 in telencephalon); and cell-type specific expression (for example, miR-218a in motor neurons). Conclusion The data we present facilitate prediction of likely modes of miRNA function in the CNS and many miRNA expression profiles are consistent with the mutual exclusion mode of function in which there is spatial or temporal exclusion of miRNAs and their targets. However, some miRNAs, such as those with cell-type specific expression, are more likely to be co-expressed with their targets. Our data provide an important resource for future functional studies of miRNAs in the CNS. PMID:17711588

  12. Let-7 miRNA Precursors Co-express with LIN28B in Cervical Cells.

    PubMed

    Zamora-Contreras, Aida Margarita; Alvarez-Salas, Luis Marat

    2018-01-01

    The let-7 microRNAs (miRNAs) are frequently dysregulated in carcinogenic processes, including cervical cancer. LIN28 proteins regulate let-7 biogenesis by binding to conserved sequences within the pre-miRNA structure. Nevertheless, recent research has shown that some let-7 miRNAs may escape LIN28 regulation. Correlate pre-let-7 miRNAs and LIN28B levels in cervical cell lines with different malignancy and HPV content. Pre-let-7 levels were determined by RTqPCR. LIN28B and other let-7 targets were analyzed by immunoblot. In silico tools were used to correlate let-7 and LIN28B expression and to analyze prelet- 7 sequences and structures. Lin28B protein was detected in all tested cell lines although it was more expressed in tumor cell lines. High levels of pre-let-7c/f-1 and pre-miR-98 were present in almost all cell lines regardless malignancy and LIN28B expression. Pre-let-7g/i were mainly expressed in tumor cell lines, pre-let-7e and pre-let-7-a3 were absent in all cell lines and pre-let-7a-2 showed indistinct expression. LIN28B showed positive correlation with pre-let-7i/g/f-1 and pre-miR-98 in tumor cell lines, suggesting escape from regulation. Sequence alignment and analysis of pre-let-7 miRNAs showed distinctive structural features within the preE region that may influence the ideal pre-let-7 structuring for LIN28B interaction. Short preE-stems were present in pre-let-7 that may escape LIN28B regulation, but long preEstems were mostly associated with high-level pre-let-7 miRNAs. The observed differences of pre-let-7 levels in cervical cell lines may be the result of alternative preE structuring affecting interaction with LIN28B thus resulting in differential let-7 regulation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Mechanism of gemcitabine-induced suppression of human cholangiocellular carcinoma cell growth.

    PubMed

    Toyota, Yuka; Iwama, Hisakazu; Kato, Kiyohito; Tani, Joji; Katsura, Akiko; Miyata, Miwa; Fujiwara, Shintaro; Fujita, Koji; Sakamoto, Teppei; Fujimori, Takayuki; Okura, Ryoichi; Kobayashi, Kiyoyuki; Tadokoro, Tomoko; Mimura, Shima; Nomura, Takako; Miyoshi, Hisaaki; Morishita, Asahiro; Kamada, Hideki; Yoneyama, Hirohito; Okano, Keiichi; Suzuki, Yasuyuki; Masaki, Tsutomu

    2015-10-01

    Although gemcitabine (2',2'-difluorocytidine monohydrochloride) is a common anticancer agent of cholangiocellular carcinoma (CCC), its growth inhibitory effects and gemcitabine resistance in CCC cells are poorly understood. Our aims were to uncover the mechanism underlying the antitumor effect of gemcitabine and to analyze the mechanism regulating in vitro CCC cell gemcitabine resistance. In addition, we sought to identify miRNAs associated with the antitumor effects of gemcitabine in CCCs. Using a cell proliferation assay and flow cytometry, we examined the ability of gemcitabine to inhibit cell proliferation in three types of human CCC cell lines (HuCCT-1, Huh28, TKKK). We also employed western blotting to investigate the effects of gemcitabine on cell cycle-related molecules in CCC cells. In addition, we used array chips to assess gemcitabine-mediated changes in angiogenic molecules and activated tyrosine kinase receptors in CCC cells. We used miRNA array chips to comprehensively analyze gemcitabine-induced miRNAs and examined clusters of differentially expressed miRNAs in cells with and without gemcitabine treatment. Gemcitabine inhibited cell proliferation in a dose- and time-dependent manner in HuCCT-1 cells, whereas cell proliferation was unchanged in Huh28 and TKKK cells. Gemcitabine inhibited cell cycle progression in HuCCT-1 cells from G0/G1 to S phase, resulting in G1 cell cycle arrest due to the reduction of cyclin D1 expression. In addition, gemcitabine upregulated the angiogenic molecules IL-6, IL-8, ENA-78 and MCP-1. In TKKK cells, by contrast, gemcitabine did not arrest the cell cycle or modify angiogenic molecules. Furthermore, in gemcitabine-sensitive HuCCT-1 cells, gemcitabine markedly altered miRNA expression. The miRNAs and angiogenic molecules altered by gemcitabine contribute to the inhibition of tumor growth in vitro.

  14. Modulation of Neuroblastoma Disease Pathogenesis By An Extensive Network of Epigenetically Regulated MicroRNAs

    PubMed Central

    Das, Sudipto; Bryan, Kenneth; Buckley, Patrick G; Piskareva, Olga; Bray, Isabella M; Foley, Niamh; Ryan, Jacqueline; Lynch, Jennifer; Creevey, Laura; Fay, Joanna; Prenter, Suzanne; Koster, Jan; van Sluis, Peter; Versteeg, Rogier; Eggert, Angelika; Schulte, Johannes H; Schramm, Alexander; Mesdagh, Pieter; Vandesompele, Jo; Speleman, Frank

    2012-01-01

    MicroRNAs contribute to the pathogenesis of many forms of cancer, including the pediatric cancer neuroblastoma, but the underlying mechanisms leading to altered miRNA expression are often unknown. Here, a novel integrated approach for analyzing DNA methylation coupled with miRNA and mRNA expression data sets identified 67 epigenetically regulated miRNA in neuroblastoma. A large proportion (42%) of these miRNAs were associated with poor patient survival when under-expressed in tumors. Moreover, we demonstrate that this panel of epigenetically silenced miRNAs targets a large set of genes that are over-expressed in tumors from patients with poor survival in a highly redundant manner. The genes targeted by the epigenetically regulated miRNAs are enriched for a number of biological processes, including regulation of cell differentiation. Functional studies involving ectopic over-expression of several of the epigenetically silenced miRNAs had a negative impact on neuroblastoma cell viability, providing further support to the concept that inactivation of these miRNAs is important for neuroblastoma disease pathogenesis. One locus, miR-340, induced either differentiation or apoptosis in a cell context dependent manner, indicating a tumor suppressive function for this miRNA. Intriguingly, it was determined that miR-340 is up-regulated by demethylation of an upstream genomic region that occurs during the process of neuroblastoma cell differentiation induced by all-trans retinoic acid (ATRA). Further biological studies of miR-340 revealed that it directly represses the SOX2 transcription factor by targeting of its 3’ UTR, explaining the mechanism by which SOX2 is down-regulated by ATRA. Although SOX2 contributes to the maintenance of stem cells in an undifferentiated state, we demonstrate that miR-340 mediated down-regulation of SOX2 is not required for ATRA induced differentiation to occur. In summary, our results exemplify the dynamic nature of the miRNA epigenome and identify a remarkable network of miRNA/mRNA interactions that significantly contribute to neuroblastoma disease pathogenesis. PMID:22797059

  15. Oxidative stress, microRNAs and cytosolic calcium homeostasis.

    PubMed

    Magenta, Alessandra; Dellambra, Elena; Ciarapica, Roberta; Capogrossi, Maurizio C

    2016-09-01

    Reactive oxygen species increase cytosolic [Ca(2+)], (Cai), and also modulate the expression of some microRNAs (miRNAs), however the link among oxidative stress, miRNAs and Cai is poorly characterized. In this review we have focused on three groups of miRNAs: (a) miRNAs that are modulated both by ROS and Cai: miR-181a and miR-205; (b) miRNAs that are modulated by ROS and have an effect on Cai: miR-1, miR-21, miR-24, miR-25, miR-185 and miR-214; (c) miRNAs that modulate both ROS and Cai: miR-133; miR-145, miR-495, and we have analyzed their effects on cell signaling and cell function. Finally, in the last section we have examined the role of these miRNAs in the skin, under conditions associated with enhanced oxidative stress, i.e. skin aging, the response to ultraviolet light and two important skin diseases, psoriasis and atopic dermatitis. It is apparent that although some experimental evidence is already available on (a) the role of Cai in miRNAs expression and (b) on the ability of some miRNAs to modulate Cai-dependent intracellular signaling, these research lines are still largely unexplored and represent important areas of future studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Novel blood-based microRNA biomarker panel for early diagnosis of chronic pancreatitis

    PubMed Central

    Xin, Lei; Gao, Jun; Wang, Dan; Lin, Jin-Huan; Liao, Zhuan; Ji, Jun-Tao; Du, Ting-Ting; Jiang, Fei; Hu, Liang-Hao; Li, Zhao-Shen

    2017-01-01

    Chronic pancreatitis (CP) is an inflammatory disease characterized by progressive fibrosis of pancreas. Early diagnosis will improve the prognosis of patients. This study aimed to obtain serum miRNA biomarkers for early diagnosis of CP. In the current study, we analyzed the differentially expressed miRNAs (DEmiRs) of CP patients from Gene Expression Omnibus (GEO), and the DEmiRs in plasma of early CP patients (n = 10) from clinic by miRNA microarrays. Expression levels of DEmiRs were further tested in clinical samples including early CP patients (n = 20), late CP patients (n = 20) and healthy controls (n = 18). The primary endpoints were area under curve (AUC) and expression levels of DEmiRs. Four DEmiRs (hsa-miR-320a-d) were obtained from GEO CP, meanwhile two (hsa-miR-221 and hsa-miR-130a) were identified as distinct biomarkers of early CP by miRNA microarrays. When applied on clinical serum samples, hsa-miR-320a-d were accurate in predicting late CP, while hsa-miR-221 and hsa-miR-130a were accurate in predicting early CP with AUC of 100.0% and 87.5%. Our study indicates that miRNA expression profile is different in early and late CP. Hsa-miR-221 and hsa-miR-130a are biomarkers of early CP, and the panel of the above 6 serum miRNAs has the potential to be applied clinically for early diagnosis of CP. PMID:28074846

  17. Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans.

    PubMed

    Yu, Dianke; Wu, Leihong; Gill, Pritmohinder; Tolleson, William H; Chen, Si; Sun, Jinchun; Knox, Bridgett; Jin, Yaqiong; Xiao, Wenming; Hong, Huixiao; Wang, Yong; Ren, Zhen; Guo, Lei; Mei, Nan; Guo, Yongli; Yang, Xi; Shi, Leming; Chen, Yinting; Zeng, Linjuan; Dreval, Kostiantyn; Tryndyak, Volodymyr; Pogribny, Igor; Fang, Hong; Shi, Tieliu; McCullough, Sandra; Bhattacharyya, Sudeepa; Schnackenberg, Laura; Mattes, William; Beger, Richard D; James, Laura; Tong, Weida; Ning, Baitang

    2018-02-01

    Acetaminophen (APAP) overdose is the leading cause of acute liver failure. Yet the mechanisms underlying adaptive tolerance toward APAP-induced liver injury are not fully understood. To better understand molecular mechanisms contributing to adaptive tolerance to APAP is an underpinning foundation for APAP-related precision medicine. In the current study, the mRNA and microRNA (miRNA) expression profiles derived from next generation sequencing data for APAP-treated (5 and 10 mM) HepaRG cells and controls were analyzed systematically. Putative miRNAs targeting key dysregulated genes involved in APAP hepatotoxicity were selected using in silico prediction algorithms, un-biased gene ontology, and network analyses. Luciferase reporter assays, RNA electrophoresis mobility shift assays, and miRNA pull-down assays were performed to investigate the role of miRNAs affecting the expression of dysregulated genes. Levels of selected miRNAs were measured in serum samples obtained from children with APAP overdose (58.6-559.4 mg/kg) and from healthy controls. As results, 2758 differentially expressed genes and 47 miRNAs were identified. Four of these miRNAs (hsa-miR-224-5p, hsa-miR-320a, hsa-miR-449a, and hsa-miR-877-5p) suppressed drug metabolizing enzyme (DME) levels involved in APAP-induced liver injury by downregulating HNF1A, HNF4A and NR1I2 expression. Exogenous transfection of these miRNAs into HepaRG cells effectively rescued them from APAP toxicity, as indicated by decreased alanine aminotransferase levels. Importantly, hsa-miR-320a and hsa-miR-877-5p levels were significantly elevated in serum samples obtained from children with APAP overdose compared to health controls. Collectively, these data indicate that hsa-miR-224-5p, hsa-miR-320a, hsa-miR-449a, and hsa-miR-877-5p suppress DME expression involved in APAP-induced hepatotoxicity and they contribute to an adaptive response in hepatocytes.

  18. Technical variables in high-throughput miRNA expression profiling: much work remains to be done.

    PubMed

    Nelson, Peter T; Wang, Wang-Xia; Wilfred, Bernard R; Tang, Guiliang

    2008-11-01

    MicroRNA (miRNA) gene expression profiling has provided important insights into plant and animal biology. However, there has not been ample published work about pitfalls associated with technical parameters in miRNA gene expression profiling. One source of pertinent information about technical variables in gene expression profiling is the separate and more well-established literature regarding mRNA expression profiling. However, many aspects of miRNA biochemistry are unique. For example, the cellular processing and compartmentation of miRNAs, the differential stability of specific miRNAs, and aspects of global miRNA expression regulation require specific consideration. Additional possible sources of systematic bias in miRNA expression studies include the differential impact of pre-analytical variables, substrate specificity of nucleic acid processing enzymes used in labeling and amplification, and issues regarding new miRNA discovery and annotation. We conclude that greater focus on technical parameters is required to bolster the validity, reliability, and cultural credibility of miRNA gene expression profiling studies.

  19. Identification of human microRNA targets from isolated argonaute protein complexes.

    PubMed

    Beitzinger, Michaela; Peters, Lasse; Zhu, Jia Yun; Kremmer, Elisabeth; Meister, Gunter

    2007-06-01

    MicroRNAs (miRNAs) constitute a class of small non-coding RNAs that regulate gene expression on the level of translation and/or mRNA stability. Mammalian miRNAs associate with members of the Argonaute (Ago) protein family and bind to partially complementary sequences in the 3' untranslated region (UTR) of specific target mRNAs. Computer algorithms based on factors such as free binding energy or sequence conservation have been used to predict miRNA target mRNAs. Based on such predictions, up to one third of all mammalian mRNAs seem to be under miRNA regulation. However, due to the low degree of complementarity between the miRNA and its target, such computer programs are often imprecise and therefore not very reliable. Here we report the first biochemical identification approach of miRNA targets from human cells. Using highly specific monoclonal antibodies against members of the Ago protein family, we co-immunoprecipitate Ago-bound mRNAs and identify them by cloning. Interestingly, most of the identified targets are also predicted by different computer programs. Moreover, we randomly analyzed six different target candidates and were able to experimentally validate five as miRNA targets. Our data clearly indicate that miRNA targets can be experimentally identified from Ago complexes and therefore provide a new tool to directly analyze miRNA function.

  20. MicroRNA Expression Profiling in CCl4-Induced Liver Fibrosis of Mus musculus

    PubMed Central

    Hyun, Jeongeun; Park, Jungwook; Wang, Sihyung; Kim, Jieun; Lee, Hyun-Hee; Seo, Young-Su; Jung, Youngmi

    2016-01-01

    Liver fibrosis is a major pathological feature of chronic liver diseases, including liver cancer. MicroRNAs (miRNAs), small noncoding RNAs, regulate gene expression posttranscriptionally and play important roles in various kinds of diseases; however, miRNA-associated hepatic fibrogenesis and its acting mechanisms are poorly investigated. Therefore, we performed an miRNA microarray in the fibrotic livers of Mus musculus treated with carbon-tetrachloride (CCl4) and analyzed the biological functions engaged by the target genes of differentially-expressed miRNAs through gene ontology (GO) and in-depth pathway enrichment analysis. Herein, we found that four miRNAs were upregulated and four miRNAs were downregulated more than two-fold in CCl4-treated livers compared to a control liver. Eight miRNAs were predicted to target a total of 4079 genes. GO analysis revealed that those target genes were located in various cellular compartments, including cytoplasm, nucleolus and cell surface, and they were involved in protein-protein or protein-DNA bindings, which influence the signal transductions and gene transcription. Furthermore, pathway enrichment analysis demonstrated that the 72 subspecialized signaling pathways were associated with CCl4-induced liver fibrosis and were mostly classified into metabolic function-related pathways. These results suggest that CCl4 induces liver fibrosis by disrupting the metabolic pathways. In conclusion, we presented several miRNAs and their biological processes that might be important in the progression of liver fibrosis; these findings help increase the understanding of liver fibrogenesis and provide novel ideas for further studies of the role of miRNAs in liver fibrosis. PMID:27322257

  1. First-Trimester Urine Concentrations of Phthalate Metabolites and Phenols and Placenta miRNA Expression in a Cohort of U.S. Women.

    PubMed

    LaRocca, Jessica; Binder, Alexandra M; McElrath, Thomas F; Michels, Karin B

    2016-03-01

    There is increasing concern that early-life exposure to endocrine-disrupting chemicals (EDCs) can influence the risk of disease development. Phthalates and phenols are two classes of suspected EDCs that are used in a variety of everyday consumer products, including plastics, epoxy resins, and cosmetics. In utero exposure to EDCs may affect disease propensity through epigenetic mechanisms. The objective of this study was to determine whether prenatal exposure to multiple EDCs is associated with changes in miRNA expression of human placenta, and whether miRNA alterations are associated with birth outcomes. Our study was restricted to a total of 179 women co-enrolled in the Harvard Epigenetic Birth Cohort and the Predictors of Preeclampsia Study. We analyzed associations between first-trimester urine concentrations of 8 phenols and 11 phthalate metabolites and expression of 29 candidate miRNAs in placenta by qRT-PCR. For three miRNAs--miR-142-3p, miR15a-5p, and miR-185--we detected associations between Σphthalates or Σphenols on expression levels (p < 0.05). By assessing gene ontology enrichment, we determined the potential mRNA targets of these microRNAs predicted in silico were associated with several biological pathways, including the regulation of protein serine/threonine kinase activity. Four gene ontology biological processes were enriched among genes significantly correlated with the expression of miRNAs associated with EDC burden. Overall, these results suggest that prenatal phenol and phthalate exposure is associated with altered miRNA expression in placenta, suggesting a potential mechanism of EDC toxicity in humans.

  2. miRDis: a Web tool for endogenous and exogenous microRNA discovery based on deep-sequencing data analysis.

    PubMed

    Zhang, Hanyuan; Vieira Resende E Silva, Bruno; Cui, Juan

    2018-05-01

    Small RNA sequencing is the most widely used tool for microRNA (miRNA) discovery, and shows great potential for the efficient study of miRNA cross-species transport, i.e., by detecting the presence of exogenous miRNA sequences in the host species. Because of the increased appreciation of dietary miRNAs and their far-reaching implication in human health, research interests are currently growing with regard to exogenous miRNAs bioavailability, mechanisms of cross-species transport and miRNA function in cellular biological processes. In this article, we present microRNA Discovery (miRDis), a new small RNA sequencing data analysis pipeline for both endogenous and exogenous miRNA detection. Specifically, we developed and deployed a Web service that supports the annotation and expression profiling data of known host miRNAs and the detection of novel miRNAs, other noncoding RNAs, and the exogenous miRNAs from dietary species. As a proof-of-concept, we analyzed a set of human plasma sequencing data from a milk-feeding study where 225 human miRNAs were detected in the plasma samples and 44 show elevated expression after milk intake. By examining the bovine-specific sequences, data indicate that three bovine miRNAs (bta-miR-378, -181* and -150) are present in human plasma possibly because of the dietary uptake. Further evaluation based on different sets of public data demonstrates that miRDis outperforms other state-of-the-art tools in both detection and quantification of miRNA from either animal or plant sources. The miRDis Web server is available at: http://sbbi.unl.edu/miRDis/index.php.

  3. Regulation of miRNA Processing and miRNA Mediated Gene Repression in Cancer

    PubMed Central

    Bajan, Sarah; Hutvagner, Gyorgy

    2014-01-01

    The majority of human protein-coding genes are predicted to be targets of miRNA-mediated post-transcriptional regulation. The widespread influence of miRNAs is illustrated by their essential roles in all biological processes. Regulated miRNA expression is essential for maintaining cellular differentiation; therefore alterations in miRNA expression patterns are associated with several diseases, including various cancers. High-throughput sequencing technologies revealed low level expressing miRNA isoforms, termed isomiRs. IsomiRs may differ in sequence, length, target preference and expression patterns from their parental miRNA and can arise from differences in miRNA biosynthesis, RNA editing, or SNPs inherent to the miRNA gene. The association between isomiR expression and disease progression is largely unknown. Misregulated miRNA expression is thought to contribute to the formation and/or progression of cancer. However, due to the diversity of targeted transcripts, miRNAs can function as both tumor-suppressor genes and oncogenes as defined by cellular context. Despite this, miRNA profiling studies concluded that the differential expression of particular miRNAs in diseased tissue could aid the diagnosis and treatment of some cancers. PMID:25069508

  4. Notch ligand Delta-like 1 as a novel molecular target in childhood neuroblastoma.

    PubMed

    Bettinsoli, P; Ferrari-Toninelli, G; Bonini, S A; Prandelli, C; Memo, M

    2017-05-19

    Neuroblastoma is the most common extracranial solid malignancy in childhood, responsible for 15% of all pediatric cancer deaths. It is an heterogeneous disease that does not always respond to classical therapy; so the identification of new and specific molecular targets to improve existing therapy is needed. We have previously demonstrated the involvement of the Notch pathway in the onset and progression of neuroblastoma. In this study we further investigated the role of Notch signaling and identified Delta-like 1 (DLL1) as a novel molecular target in neuroblastoma cells with a high degree of MYCN amplification, which is a major oncogenic driver in neuroblastoma. The possibility to act on DLL1 expression levels by using microRNAs (miRNAs) was assessed. DLL1 mRNA and protein expression levels were measured in three different neuroblastoma cell lines using quantitative real-time PCR and Western Blot analysis, respectively. Activation of the Notch pathway as a result of increased levels of DLL1 was analyzed by Immunofluorescence and Western Blot methods. In silico tools revealed the possibility to act on DLL1 expression levels with miRNAs, in particular with the miRNA-34 family. Neuroblastoma cells were transfected with miRNA-34 family members, and the effect of miRNAs transfection on DLL1 mRNA expression levels, on cell differentiation, proliferation and apoptosis was measured. In this study, the DLL1 ligand was identified as the Notch pathway component highly expressed in neuroblastoma cells with MYCN amplification. In silico analysis demonstrated that DLL1 is one of the targets of miRNA-34 family members that maps on chromosome regions that are frequently deregulated or deleted in neuroblastoma. We studied the possibility to use miRNAs to target DLL1. Among all miRNA-34 family members, miRNA-34b is able to significantly downregulate DLL1 mRNA expression levels, to arrest cell proliferation and to induce neuronal differentiation in malignant neuroblastoma cells. Targeted therapies have emerged as new strategies for cancer treatment. This study identified the Notch ligand DLL1 as a novel and attractive molecular target in childhood neuroblastoma and its results could help to devise a targeted therapy using miRNAs.

  5. Discovery of novel and differentially expressed microRNAs between fetal and adult backfat in cattle.

    PubMed

    Sun, Jiajie; Zhou, Yang; Cai, Hanfang; Lan, Xianyong; Lei, Chuzhao; Zhao, Xin; Zhang, Chunlei; Chen, Hong

    2014-01-01

    The posttranscriptional gene regulation mediated by microRNAs (miRNAs) plays an important role in various species. Recently, a large number of miRNAs and their expression patterns have been identified. However, to date, limited miRNAs have been reported to modulate adipogenesis and lipid deposition in beef cattle. Total RNAs from Chinese Qinchuan bovine backfat at fetal and adult stages were used to construct small RNA libraries for Illumina next-generation sequencing. A total of 13,915,411 clean reads were obtained from a fetal library and 14,244,946 clean reads from an adult library. In total, 475 known and 36 novel miRNA candidates from backfat were identified. The nucleotide bias, base editing, and family of the known miRNAs were also analyzed. Based on stem-loop qPCR, 15 specific miRNAs were detected, and the results showed that bta-miRNAn25 and miRNAn26 were highly expressed in backfat tissue, suggesting these small RNAs play a role in the development and maintenance of bovine subcutaneous fat tissue. Putative targets for miRNAn25 and miRNAn26 were predicted, and the 61 most significant target transcripts were related to lipid and fatty acid metabolism. Of interest, the canonical pathway and gene networks analyses revealed that PPARα/RXRα activation and LXR/RXR activation were important components of the gene interaction hierarchy results. In the present study, we explored the backfat miRNAome differences between cattle of different developmental stages, expanding the expression repertoire of bovine miRNAs that could contribute to further studies on the fat development of cattle. Predication of target genes analysis of miRNA25 and miRNA26 also showed potential gene networks that affect lipid and fatty acid metabolism. These results may help in the design of new intervention strategies to improve beef quality.

  6. Discovery of Novel and Differentially Expressed MicroRNAs between Fetal and Adult Backfat in Cattle

    PubMed Central

    Sun, Jiajie; Zhou, Yang; Cai, Hanfang; Lan, Xianyong; Lei, Chuzhao; Zhao, Xin; Zhang, Chunlei; Chen, Hong

    2014-01-01

    The posttranscriptional gene regulation mediated by microRNAs (miRNAs) plays an important role in various species. Recently, a large number of miRNAs and their expression patterns have been identified. However, to date, limited miRNAs have been reported to modulate adipogenesis and lipid deposition in beef cattle. Total RNAs from Chinese Qinchuan bovine backfat at fetal and adult stages were used to construct small RNA libraries for Illumina next-generation sequencing. A total of 13,915,411 clean reads were obtained from a fetal library and 14,244,946 clean reads from an adult library. In total, 475 known and 36 novel miRNA candidates from backfat were identified. The nucleotide bias, base editing, and family of the known miRNAs were also analyzed. Based on stem-loop qPCR, 15 specific miRNAs were detected, and the results showed that bta-miRNAn25 and miRNAn26 were highly expressed in backfat tissue, suggesting these small RNAs play a role in the development and maintenance of bovine subcutaneous fat tissue. Putative targets for miRNAn25 and miRNAn26 were predicted, and the 61 most significant target transcripts were related to lipid and fatty acid metabolism. Of interest, the canonical pathway and gene networks analyses revealed that PPARα/RXRα activation and LXR/RXR activation were important components of the gene interaction hierarchy results. In the present study, we explored the backfat miRNAome differences between cattle of different developmental stages, expanding the expression repertoire of bovine miRNAs that could contribute to further studies on the fat development of cattle. Predication of target genes analysis of miRNA25 and miRNA26 also showed potential gene networks that affect lipid and fatty acid metabolism. These results may help in the design of new intervention strategies to improve beef quality. PMID:24587298

  7. miR-370 mimic inhibits replication of Japanese encephalitis virus in glioblastoma cells.

    PubMed

    Li, Wenjuan; Cheng, Peng; Nie, Shangdan; Cui, Wen

    2016-01-01

    Japanese encephalitis (JE) is one of the most severe viral infections of the central nervous system. No effective treatment for JE currently exists, because its pathogenesis remains largely unknown. The present study was designed to screen the potential microRNAs (miRNAs) involved in JE. Glioblastoma cells were collected, after being infected with the Japanese encephalitis virus (JEV). Total miRNAs were extracted and analyzed using an miRNA chip. One of the most severely affected miRNAs was selected, and the role of miR-370 in JEV infection was investigated. Cell viability and apoptosis of the host cells were evaluated. JEV replication was detected via analysis of gene E expression. Real-time polymerase chain reaction was used to determine the levels of endogenous miR-370 and expression of innate immunity-related genes. Following JEV infection, 114 miRNAs were affected, as evidenced by the miRNA chip. Among them, 30 miRNAs were upregulated and 84 were downregulated. The changes observed in five miRNAs were confirmed by real-time polymerase chain reaction. One of the significantly downregulated miRNAs was miR-370. Therefore, miR-370 mimic was transfected into the cells, following which the levels of endogenous miR-370 were significantly elevated. Concurrently, JEV replication was significantly reduced 24 hours after transfection of miR-370 mimic. Functionally, miR-370 mimic mitigated both JEV-induced apoptosis and the inhibition of host cell proliferation. Following JEV infection, interferon-β and nuclear factor-kappa B were upregulated, whereas miR-370 mimic prevented the upregulation of the genes induced by JEV infection. The present study demonstrated that miR-370 expression in host cells is downregulated following JEV infection, which further mediates innate immunity-related gene expression. Taken together, miR-370 mimic might be useful to prevent viral replication and infection-induced host cell injury.

  8. Deregulation of the miRNAs Expression in Cervical Cancer: Human Papillomavirus Implications

    PubMed Central

    Gómez-Gómez, Yazmín; Organista-Nava, Jorge; Gariglio, Patricio

    2013-01-01

    MicroRNAs (miRNAs) are a class of small non coding RNAs of 18–25 nucleotides in length. The temporal or short-lived expression of the miRNAs modulates gene expression post transcriptionally. Studies have revealed that miRNAs deregulation correlates and is involved with the initiation and progression of human tumors. Cervical cancer (CC) displays notably increased or decreased expression of a large number of cellular oncogenic or tumor suppressive miRNAs, respectively. However, understanding the potential role of miRNAs in CC is still limited. In CC, the high-risk human papillomaviruses (HR-HPVs) infection can affect the miRNAs expression through oncoprotein E6 and E7 that contribute to viral pathogenesis, although other viral proteins might also be involved. This deregulation in the miRNAs expression has an important role in the hallmarks of CC. Interestingly, the miRNA expression profile in CC can discriminate between normal and tumor tissue and the extraordinary stability of miRNAs makes it suitable to serve as diagnostic and prognostic biomarkers of cancer. In this review, we will summarize the role of the HR-HPVs in miRNA expression, the role of miRNAs in the hallmarks of CC, and the use of miRNAs as potential prognostic biomarkers in CC. PMID:24490161

  9. Microarray Analysis and Detection of MicroRNAs Associated with Chronic Thromboembolic Pulmonary Hypertension

    PubMed Central

    Miao, Ran; Wang, Ying; Wan, Jun; Leng, Dong; Gong, Juanni; Li, Jifeng; Zhang, Yunxia; Pang, Wenyi; Zhai, Zhenguo

    2017-01-01

    The aim of this study was to understand the importance of chronic thromboembolic pulmonary hypertension- (CTEPH-) associated microRNAs (miRNAs). miRNAs differentially expressed in CTEPH samples compared with control samples were identified, and the target genes were predicted. The target genes of the key differentially expressed miRNAs were analyzed, and functional enrichment analyses were carried out. Finally, the miRNAs were detected using RT-PCR. Among the downregulated miRNAs, MiR-3148 regulated the most target genes and was significantly enriched in pathways in cancer, glioma, and ErbB signaling pathway. Furthermore, the number of target genes coregulated by miR-3148 and other miRNAs was the most. AR (androgen receptor), a target gene of hsa-miR-3148, was enriched in pathways in cancer. PRKCA (Protein Kinase C Alpha), also a target gene of hsa-miR-3148, was enriched in 15 of 16 KEGG pathways, such as pathways in cancer, glioma, and ErbB signaling pathway. In addition, the RT-PCR results showed that the expression of hsa-miR-3148 in CTEPH samples was significantly lower than that in control samples (P < 0.01). MiR-3148 may play an important role in the development of CTEPH. The key mechanisms for this miRNA may be hsa-miR-3148-AR-pathways in cancer or hsa-miR-3148-PRKCA-pathways in cancer/glioma/ErbB signaling pathway. PMID:28904974

  10. MicroRNA profiling reveals unique miRNA signatures in IGF-1 treated embryonic striatal stem cell fate decisions in striatal neurogenesis in vitro.

    PubMed

    Pati, Soumya; Supeno, Nor Entan; Muthuraju, Sangu; Abdul Hadi, Raisah; Ghani, Abdul Rahman Izaini; Idris, Fauziah Mohamad; Maletic-Savatic, Mirjana; Abdullah, Jafri Malin; Jaafar, Hasnan

    2014-01-01

    The striatum is considered to be the central processing unit of the basal ganglia in locomotor activity and cognitive function of the brain. IGF-1 could act as a control switch for the long-term proliferation and survival of EGF+bFGF-responsive cultured embryonic striatal stem cell (ESSC), while LIF imposes a negative impact on cell proliferation. The IGF-1-treated ESSCs also showed elevated hTERT expression with demonstration of self-renewal and trilineage commitment (astrocytes, oligodendrocytes, and neurons). In order to decipher the underlying regulatory microRNA (miRNA)s in IGF-1/LIF-treated ESSC-derived neurogenesis, we performed in-depth miRNA profiling at 12 days in vitro and analyzed the candidates using the Partek Genome Suite software. The annotated miRNA fingerprints delineated the differential expressions of miR-143, miR-433, and miR-503 specific to IGF-1 treatment. Similarly, the LIF-treated ESSCs demonstrated specific expression of miR-326, miR-181, and miR-22, as they were nonsignificant in IGF-treated ESSCs. To elucidate the possible downstream pathways, we performed in silico mapping of the said miRNAs into ingenuity pathway analysis. Our findings revealed the important mRNA targets of the miRNAs and suggested specific interactomes. The above studies introduced a new genre of miRNAs for ESSC-based neuroregenerative therapeutic applications.

  11. Small RNA and transcriptome deep sequencing proffers insight into floral gene regulation in Rosa cultivars

    PubMed Central

    2012-01-01

    Background Roses (Rosa sp.), which belong to the family Rosaceae, are the most economically important ornamental plants—making up 30% of the floriculture market. However, given high demand for roses, rose breeding programs are limited in molecular resources which can greatly enhance and speed breeding efforts. A better understanding of important genes that contribute to important floral development and desired phenotypes will lead to improved rose cultivars. For this study, we analyzed rose miRNAs and the rose flower transcriptome in order to generate a database to expound upon current knowledge regarding regulation of important floral characteristics. A rose genetic database will enable comprehensive analysis of gene expression and regulation via miRNA among different Rosa cultivars. Results We produced more than 0.5 million reads from expressed sequences, totalling more than 110 million bp. From these, we generated 35,657, 31,434, 34,725, and 39,722 flower unigenes from Rosa hybrid: ‘Vital’, ‘Maroussia’, and ‘Sympathy’ and Rosa rugosa Thunb. , respectively. The unigenes were assigned functional annotations, domains, metabolic pathways, Gene Ontology (GO) terms, Plant Ontology (PO) terms, and MIPS Functional Catalogue (FunCat) terms. Rose flower transcripts were compared with genes from whole genome sequences of Rosaceae members (apple, strawberry, and peach) and grape. We also produced approximately 40 million small RNA reads from flower tissue for Rosa, representing 267 unique miRNA tags. Among identified miRNAs, 25 of them were novel and 242 of them were conserved miRNAs. Statistical analyses of miRNA profiles revealed both shared and species-specific miRNAs, which presumably effect flower development and phenotypes. Conclusions In this study, we constructed a Rose miRNA and transcriptome database, and we analyzed the miRNAs and transcriptome generated from the flower tissues of four Rosa cultivars. The database provides a comprehensive genetic resource which can be used to better understand rose flower development and to identify candidate genes for important phenotypes. PMID:23171001

  12. Small RNA and transcriptome deep sequencing proffers insight into floral gene regulation in Rosa cultivars.

    PubMed

    Kim, Jungeun; Park, June Hyun; Lim, Chan Ju; Lim, Jae Yun; Ryu, Jee-Youn; Lee, Bong-Woo; Choi, Jae-Pil; Kim, Woong Bom; Lee, Ha Yeon; Choi, Yourim; Kim, Donghyun; Hur, Cheol-Goo; Kim, Sukweon; Noh, Yoo-Sun; Shin, Chanseok; Kwon, Suk-Yoon

    2012-11-21

    Roses (Rosa sp.), which belong to the family Rosaceae, are the most economically important ornamental plants--making up 30% of the floriculture market. However, given high demand for roses, rose breeding programs are limited in molecular resources which can greatly enhance and speed breeding efforts. A better understanding of important genes that contribute to important floral development and desired phenotypes will lead to improved rose cultivars. For this study, we analyzed rose miRNAs and the rose flower transcriptome in order to generate a database to expound upon current knowledge regarding regulation of important floral characteristics. A rose genetic database will enable comprehensive analysis of gene expression and regulation via miRNA among different Rosa cultivars. We produced more than 0.5 million reads from expressed sequences, totalling more than 110 million bp. From these, we generated 35,657, 31,434, 34,725, and 39,722 flower unigenes from Rosa hybrid: 'Vital', 'Maroussia', and 'Sympathy' and Rosa rugosa Thunb., respectively. The unigenes were assigned functional annotations, domains, metabolic pathways, Gene Ontology (GO) terms, Plant Ontology (PO) terms, and MIPS Functional Catalogue (FunCat) terms. Rose flower transcripts were compared with genes from whole genome sequences of Rosaceae members (apple, strawberry, and peach) and grape. We also produced approximately 40 million small RNA reads from flower tissue for Rosa, representing 267 unique miRNA tags. Among identified miRNAs, 25 of them were novel and 242 of them were conserved miRNAs. Statistical analyses of miRNA profiles revealed both shared and species-specific miRNAs, which presumably effect flower development and phenotypes. In this study, we constructed a Rose miRNA and transcriptome database, and we analyzed the miRNAs and transcriptome generated from the flower tissues of four Rosa cultivars. The database provides a comprehensive genetic resource which can be used to better understand rose flower development and to identify candidate genes for important phenotypes.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syuhada, O. Nurfarahana; Kalaivani, N.

    Sheath blight disease, caused by Rhizoctonia solani 1802/KB was screened on two rice varieties, Oryza sativaindica cultivar MR219 and Oryza sativa indica cultivar UKMRC9. The disease symptom was severe in MR219 compared to UKMRC9. Total RNA from R. solani 1802/KB, infected rice leaves of MR219 and infected rice leaves of UKMRC9 were extracted using TRIzol reagent, purified and sent for small RNA sequencing. Three miRNA libraries were generated and analyzed. The libraries generated 65 805, 78 512 and 81 325 known miRNAs respectively. The structure of miRNA of these samples was predicted. The up-regulated and down-regulated of miRNAs target genemore » prediction and its target functions were discovered and were mainly related to the growth and development of metabolism, protein transport, transcriptional regulation, stress response, and hormone signaling and electron transfer. Sheath blight-induced differential expression of known miRNAs tends to targetMYB transcription factor, F-box proteins, NBS-LRR, leucine-rich repeat receptor protein kinases and zinc finger proteins. Detecting new miRNAs and measuring the expression profiles of known miRNAs is an important tasks required for a better understanding of various biological conditions. Therefore, further analysis using Gene Ontology Slim will be conducted to deduce some biological information from the datasets obtained.« less

  14. Improving power to detect changes in blood miRNA expression by accounting for sources of variability in experimental designs.

    PubMed

    Daniels, Sarah I; Sillé, Fenna C M; Goldbaum, Audrey; Yee, Brenda; Key, Ellen F; Zhang, Luoping; Smith, Martyn T; Thomas, Reuben

    2014-12-01

    Blood miRNAs are a new promising area of disease research, but variability in miRNA measurements may limit detection of true-positive findings. Here, we measured sources of miRNA variability and determine whether repeated measures can improve power to detect fold-change differences between comparison groups. Blood from healthy volunteers (N = 12) was collected at three time points. The miRNAs were extracted by a method predetermined to give the highest miRNA yield. Nine different miRNAs were quantified using different qPCR assays and analyzed using mixed models to identify sources of variability. A larger number of miRNAs from a publicly available blood miRNA microarray dataset with repeated measures were used for a bootstrapping procedure to investigate effects of repeated measures on power to detect fold changes in miRNA expression for a theoretical case-control study. Technical variability in qPCR replicates was identified as a significant source of variability (P < 0.05) for all nine miRNAs tested. Variability was larger in the TaqMan qPCR assays (SD = 0.15-0.61) versus the qScript qPCR assays (SD = 0.08-0.14). Inter- and intraindividual and extraction variability also contributed significantly for two miRNAs. The bootstrapping procedure demonstrated that repeated measures (20%-50% of N) increased detection of a 2-fold change for approximately 10% to 45% more miRNAs. Statistical power to detect small fold changes in blood miRNAs can be improved by accounting for sources of variability using repeated measures and choosing appropriate methods to minimize variability in miRNA quantification. This study demonstrates the importance of including repeated measures in experimental designs for blood miRNA research. See all the articles in this CEBP Focus section, "Biomarkers, Biospecimens, and New Technologies in Molecular Epidemiology." ©2014 American Association for Cancer Research.

  15. Deep sequencing and genome-wide analysis reveals the expansion of MicroRNA genes in the gall midge Mayetiola destructor

    PubMed Central

    2013-01-01

    Background MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in regulating post transcriptional gene expression. Gall midges encompass a large group of insects that are of economic importance and also possess fascinating biological traits. The gall midge Mayetiola destructor, commonly known as the Hessian fly, is a destructive pest of wheat and model organism for studying gall midge biology and insect – host plant interactions. Results In this study, we systematically analyzed miRNAs from the Hessian fly. Deep-sequencing a Hessian fly larval transcriptome led to the identification of 89 miRNA species that are either identical or very similar to known miRNAs from other insects, and 184 novel miRNAs that have not been reported from other species. A genome-wide search through a draft Hessian fly genome sequence identified a total of 611 putative miRNA-encoding genes based on sequence similarity and the existence of a stem-loop structure for miRNA precursors. Analysis of the 611 putative genes revealed a striking feature: the dramatic expansion of several miRNA gene families. The largest family contained 91 genes that encoded 20 different miRNAs. Microarray analyses revealed the expression of miRNA genes was strictly regulated during Hessian fly larval development and abundance of many miRNA genes were affected by host genotypes. Conclusion The identification of a large number of miRNAs for the first time from a gall midge provides a foundation for further studies of miRNA functions in gall midge biology and behavior. The dramatic expansion of identical or similar miRNAs provides a unique system to study functional relations among miRNA iso-genes as well as changes in sequence specificity due to small changes in miRNAs and in their mRNA targets. These results may also facilitate the identification of miRNA genes for potential pest control through transgenic approaches. PMID:23496979

  16. Serum microRNA expression profile as a diagnostic panel for gastric cancer.

    PubMed

    Huang, Shengkai; Wang, Jia; Li, Jia; Luo, Qing; Zhao, Mei; Zheng, Limin; Dong, Xianzhe; Chen, Chao; Che, Yiqun; Liu, Ping; Qi, Jun; Huang, Changzhi

    2016-09-01

    Previously, we identified six miRNAs that are differentially expressed in colorectal cancer compared with healthy controls. Here, we tested them in gastric cancer GC. We performed quantitative RT-PCR on serum samples from 92 patients with gastric cancer and 89 controls for the six miRNAs, and analyzed their risk scores to evaluate the diagnostic value of the serum miRNA profiling system. After a two-phase selection and validation process, five miRNAs were found to significantly differ in expression between gastric cancer samples and control samples, including miR-21, miR-31, miR-92a, miR-181b, and miR-203. Risk score analysis showed that this miRNA panel could distinguish gastric cancer cases from controls with high sensitivity and specificity. Under receiver operating characteristic curves, areas under the curve for tumor identification were 0.933 (95% confidence interval [CI]: 0.86-1.007) for the training set and 0.919 (95% CI: 0.863-0.975) for the validation set-markedly higher than those of carcinoembryonic antigen (0.624) and carbohydrate antigen 19-9 (0.603). The signature of these five miRNAs is a novel and noninvasive biomarker for gastric cancer, and could facilitate and simplify its diagnosis. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Postnatal choline supplementation selectively attenuates hippocampal microRNA alterations associated with developmental alcohol exposure.

    PubMed

    Balaraman, Sridevi; Idrus, Nirelia M; Miranda, Rajesh C; Thomas, Jennifer D

    2017-05-01

    Prenatal alcohol exposure can result in a range of physical, neuropathological, and behavioral alterations, collectively termed fetal alcohol spectrum disorders (FASD). We have shown that supplementation with the nutrient choline reduces the severity of developmental alcohol-associated deficits in hippocampal-dependent behaviors and normalizes some aspects of hippocampal cholinergic development and DNA methylation patterns. Alcohol's developmental effects may also be mediated, in part, by altering microRNAs (miRNAs) that serve as negative regulators of gene translation. To determine whether choline supplementation alters ethanol's long-lasting effects on miRNAs, Sprague-Dawley rats were exposed to 5.25 g/kg/day ethanol from postnatal days (PD) 4-9 via intubation; controls received sham intubations. Subjects were treated with choline chloride (100 mg/kg/day) or saline vehicle subcutaneously (s.c.) from PD 4-21. On PD 22, subjects were sacrificed, and RNA was isolated from the hippocampus. MiRNA expression was assessed with TaqMan Human MicroRNA Panel Low-Density Arrays. Ethanol significantly increased miRNA expression variance, an effect that was attenuated with choline supplementation. Cluster analysis of stably expressed miRNAs that exceeded an ANOVA p < 0.05 criterion indicated that for both male and female offspring, control and ethanol-exposed groups were most dissimilar from each other, with choline-supplemented groups in between. MiRNAs that expressed an average 2-fold change due to ethanol exposure were further analyzed to identify which ethanol-sensitive miRNAs were protected by choline supplementation. We found that at a false discovery rate (FDR)-adjusted criterion of p < 0.05, miR-200c was induced by ethanol exposure and that choline prevented this effect. Collectively, our data show that choline supplementation can normalize disturbances in miRNA expression following developmental alcohol exposure and can protect specific miRNAs from induction by ethanol. These findings have important implications for the mechanisms by which choline may serve as a potential treatment for FASD. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Olea europaea leaf extract improves the treatment response of GBM stem cells by modulating miRNA expression.

    PubMed

    Tezcan, Gulcin; Tunca, Berrin; Bekar, Ahmet; Budak, Ferah; Sahin, Saliha; Cecener, Gulsah; Egeli, Unal; Taskapılıoglu, Mevlut Ozgur; Kocaeli, Hasan; Tolunay, Sahsine; Malyer, Hulusi; Demir, Cevdet; Tumen, Gulendam

    2014-01-01

    The stem-like cells of Glioblastoma multiforme (GBM) tumors (GSCs) are one of the important determinants of recurrence and drug resistance. The aims of the current study were to evaluate the anticancer effect of Olea europaea leaf extract (OLE) on GBM cell lines, the association between OLE and TMZ responses, and the effect of OLE and the OLE-TMZ combination in GSCs and to clarify the molecular mechanism of this effect on the expression of miRNAs related to cell death. The anti-proliferative activity of OLE and the effect of the OLE-TMZ combination were tested in the T98G, U-138MG and U-87MG GBM cell lines using WST-1 assay. The mechanism of cell death was analyzed with Annexin V/FITC and TUNEL assays. The effects of OLE on the expression levels of miR-181b, miR-153, miR-145 and miR-137 and potential mRNA targets were analyzed in GSCs using RT-qPCR. OLE exhibited anti-proliferative effects via apoptosis and necrosis in the GBM cell lines. In addition, OLE significantly induced the expression of miR-153, miR-145, and miR-137 and decreased the expression of the target genes of these miRNAs in GSCs (p < 0.05). OLE causes cell death in GBM cells with different TMZ responses, and this effect is synergistically increased when the cells are treated with a combination of OLE and TMZ. This is the first study to indicate that OLE may interfere with the pluripotency of GSCs by modulating miRNA expression. Further studies are required, but we suggest that OLE may have a potential for advanced therapeutic cancer drug studies in GBM.

  19. Serum miRNAs Signature Plays an Important Role in Keloid Disease.

    PubMed

    Luan, Y; Liu, Y; Liu, C; Lin, Q; He, F; Dong, X; Xiao, Z

    2016-01-01

    The molecular mechanism underlying the pathogenesis of keloid is largely unknown. MicroRNA (miRNA) is a class of small regulatory RNA that has emerged as a group of posttranscriptional gene repressors, participating in diverse pathophysiological processes of skin diseases. We investigated the expression profiles of miRNAs in the sera of patients to decipher the complicated factors involved in the development of keloid disease. MiRNA expression profiling in the sera from 9 keloid patients and 7 normal controls were characterized using a miRNA microarray containing established human mature and precursor miRNA sequences. Quantitative real-time PCR was performed to confirm the expression of miRNAs. The putative targets of differentially expressed miRNAs were functionally annotated by bioinformatics. MiRNA microarray analysis identified 37 differentially expressed miRNAs (17 upregulated and 20 downregulated) in keloid patients, compared to the healthy controls. Functional annotations revealed that the targets of those differentially expressed miRNAs were enriched in signaling pathways essential for scar formation and wound healing. The expression profiling of miRNAs is altered in the keloid, providing a clue for the molecular mechanisms underlying its initiation and progression. MiRNAs may partly contribute to the etiology of keloids by affecting the critical signaling pathways relevant to keloid pathogenesis.

  20. Arctigenin Confers Neuroprotection Against Mechanical Trauma Injury in Human Neuroblastoma SH-SY5Y Cells by Regulating miRNA-16 and miRNA-199a Expression to Alleviate Inflammation.

    PubMed

    Song, Jie; Li, Na; Xia, Yang; Gao, Zhong; Zou, Sa-Feng; Yan, Yu-Hui; Li, Shao-Heng; Wang, Yue; Meng, Ya-Kun; Yang, Jing-Xian; Kang, Ting-Guo

    2016-09-01

    Mechanical trauma injury is a severe insult to neural cells. Subsequent secondary injury involves the release of inflammatory factors that have dramatic consequences for undamaged cells, leading to normal cell death after the initial injury. The present study investigated the capacity for arctigenin (ARC) to prevent secondary effects and evaluated the mechanism underlying the action of microRNA (miRNA)-199a and miRNA-16 in a mechanical trauma injury (MTI) model using SH-SY5Y cells in vitro. SH-SY5Y cells are often applied to in vitro models of neuronal function and differentiation. Recently, miRNAs have been demonstrated to play a crucial role in NF-κB and cholinergic signaling, which can regulate inflammation. The cell model was established by scratch-induced injury of human SH-SY5Y cells, which mimics the characteristics of MTI. A cell counting kit-8 (CCK-8), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and immunocytochemistry were used to measure cell viability. Enzyme-linked immunosorbent assay (ELISA) was used to evaluate the inflammatory cytokine and cholinesterase (CHE) content. The lactate dehydrogenase (LDH) content was measured to assess the degree of cell injury. The mRNA levels were measured by RT-PCR to analyze ARC's mechanism of action. miRNA inhibitors and mimics were used to inhibit and strengthen the expression of miRNAs. Protein expression was detected by western blotting analysis. ARC treatment reduced the TNF-α and IL-6 levels as well as the number of TUNEL+ apoptotic SH-SY5Y cells surrounding the scratch and increased the IL-10 level compared to the controls. ARC attenuated the increase of the cell damage degree and LDH content induced by scratching, indicating increased cell survival. Mechanistic studies showed that ARC upregulated the miRNA-16 and miRNA-199a levels to reduce upstream protein (IKKα and IKKβ) expression and inhibit NF-κB signaling pathway activity; moreover, the increased miRNA-199a suppresses cholinesterases to increase cholinergic signaling, resulting in decreased expression of proinflammatory cytokines. ARC treatment confers protection for SH-SY5Y cells through positive regulation of miRNA expression, thereby reducing the inflammatory response. In turn, these effects accelerate injury repair in the scratch-induced injury model. These results might provide insights into the pharmacological role of ARC in anti-inflammation and neuroprotection in neural cells.

  1. Dynamic miRNA-mRNA regulations are essential for maintaining Drosophila immune homeostasis during Micrococcus luteus infection.

    PubMed

    Wei, Guanyun; Sun, Lianjie; Li, Ruimin; Li, Lei; Xu, Jiao; Ma, Fei

    2018-04-01

    Pathogen bacteria infections can lead to dynamic changes of microRNA (miRNA) and mRNA expression profiles, which may control synergistically the outcome of immune responses. To reveal the role of dynamic miRNA-mRNA regulation in Drosophila innate immune responses, we have detailedly analyzed the paired miRNA and mRNA expression profiles at three time points during Drosophila adult males with Micrococcus luteus (M. luteus) infection using RNA- and small RNA-seq data. Our results demonstrate that differentially expressed miRNAs and mRNAs represent extensively dynamic changes over three time points during Drosophila with M. luteus infection. The pathway enrichment analysis indicates that differentially expressed genes are involved in diverse signaling pathways, including Toll and Imd as well as orther signaling pathways at three time points during Drosophila with M. luteus infection. Remarkably, the dynamic change of miRNA expression is delayed by compared to mRNA expression change over three time points, implying that the "time" parameter should be considered when the function of miRNA/mRNA is further studied. In particular, the dynamic miRNA-mRNA regulatory networks have shown that miRNAs may synergistically regulate gene expressions of different signaling pathways to promote or inhibit innate immune responses and maintain homeostasis in Drosophila, and some new regulators involved in Drosophila innate immune response have been identified. Our findings strongly suggest that miRNA regulation is a key mechanism involved in fine-tuning cooperatively gene expressions of diverse signaling pathways to maintain innate immune response and homeostasis in Drosophila. Taken together, the present study reveals a novel role of dynamic miRNA-mRNA regulation in immune response to bacteria infection, and provides a new insight into the underlying molecular regulatory mechanism of Drosophila innate immune responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Micro-ribonucleic acids and extracellular vesicles repertoire in the spent culture media is altered in women undergoing In Vitro Fertilization.

    PubMed

    Abu-Halima, Masood; Häusler, Sebastian; Backes, Christina; Fehlmann, Tobias; Staib, Claudia; Nestel, Sigrun; Nazarenko, Irina; Meese, Eckart; Keller, Andreas

    2017-10-19

    MicroRNAs (miRNAs) are class of small RNA molecules with major impact on gene regulation. We analyzed the potential of miRNAs secreted from pre-implantation embryos into the embryonic culture media as biomarkers to predict successful pregnancy. Using microarray analysis, we profiled the miRNome of the 56 spent culture media (SCM) after embryos transfer and found a total of 621 miRNAs in the SCM. On average, we detected 163 miRNAs in SCM of samples with failed pregnancies, but only 149 SCM miRNAs of embryos leading to pregnancies. MiR-634 predicted an embryo transfer leading to a positive pregnancy with an accuracy of 71% and a sensitivity of 85%. Among the 621 miRNAs, 102 (16.4%) showed a differential expression between positive and negative outcome of pregnancy with miR-29c-3p as the most significantly differentially expressed miRNA. The number of extracellular vehicles was lower in SCM with positive outcomes (3.8 × 10 9 /mL EVs), as compared to a negative outcome (7.35 × 10 9 /mL EVs) possibly explaining the reduced number of miRNAs in the SCM associated with failed pregnancies. The analysis of the miRNome in the SCM of couples undergoing fertility treatment lays the ground towards development of biomarkers to predict successful pregnancy and towards understanding the role of embryonic miRNAs found in the SCM.

  3. Positive radionuclide imaging of miRNA expression using RILES and the human sodium iodide symporter as reporter gene is feasible and supports a protective role of miRNA-23a in response to muscular atrophy

    PubMed Central

    Simion, Viorel; Sobilo, Julien; Clemoncon, Rudy; Natkunarajah, Sharuja; Ezzine, Safia; Abdallah, Florence; Lerondel, Stephanie; Pichon, Chantal

    2017-01-01

    MicroRNAs (miRNAs) are key players in many biological processes and are considered as an emerging class of pharmacology drugs for diagnosis and therapy. However to fully exploit the therapeutic potential of miRNAs, it is becoming crucial to monitor their expression pattern using medical imaging modalities. Recently, we developed a method called RILES, for RNAi-Inducible Luciferase Expression System that relies on an engineered regulatable expression system to switch-ON the expression of the luciferase gene when a miRNA of interest is expressed in cells. Here we investigated whether replacing the luciferase reporter gene with the human sodium iodide symporter (hNIS) reporter gene will be also suited to monitor the expression of miRNAs in a clinical setting context. We provide evidence that radionuclide imaging of miRNA expression using hNIS is feasible although it is not as robust as when the luciferase reporter gene is used. However, under appropriate conditions, we monitored the expression of several miRNAs in cells, in the liver and in the tibialis anterior muscle of mice undergoing muscular atrophy. We demonstrated that radiotracer accumulation in transfected cells correlated with the induction of hNIS and with the expression of miRNAs detected by real time PCR. We established the kinetic of miRNA-23a expression in mice and demonstrated that this miRNA follows a biphasic expression pattern characterized by a loss of expression at a late time point of muscular atrophy. At autopsy, we found an opposite expression pattern between miRNA-23a and one of the main transcriptional target of this miRNA, APAF-1, and as downstream target, Caspase 9. Our results report the first positive monitoring of endogenously expressed miRNAs in a nuclear medicine imaging context and support the development of additional work to establish the potential therapeutic value of miRNA-23 to prevent the damaging effects of muscular atrophy. PMID:28493972

  4. Positive radionuclide imaging of miRNA expression using RILES and the human sodium iodide symporter as reporter gene is feasible and supports a protective role of miRNA-23a in response to muscular atrophy.

    PubMed

    Simion, Viorel; Sobilo, Julien; Clemoncon, Rudy; Natkunarajah, Sharuja; Ezzine, Safia; Abdallah, Florence; Lerondel, Stephanie; Pichon, Chantal; Baril, Patrick

    2017-01-01

    MicroRNAs (miRNAs) are key players in many biological processes and are considered as an emerging class of pharmacology drugs for diagnosis and therapy. However to fully exploit the therapeutic potential of miRNAs, it is becoming crucial to monitor their expression pattern using medical imaging modalities. Recently, we developed a method called RILES, for RNAi-Inducible Luciferase Expression System that relies on an engineered regulatable expression system to switch-ON the expression of the luciferase gene when a miRNA of interest is expressed in cells. Here we investigated whether replacing the luciferase reporter gene with the human sodium iodide symporter (hNIS) reporter gene will be also suited to monitor the expression of miRNAs in a clinical setting context. We provide evidence that radionuclide imaging of miRNA expression using hNIS is feasible although it is not as robust as when the luciferase reporter gene is used. However, under appropriate conditions, we monitored the expression of several miRNAs in cells, in the liver and in the tibialis anterior muscle of mice undergoing muscular atrophy. We demonstrated that radiotracer accumulation in transfected cells correlated with the induction of hNIS and with the expression of miRNAs detected by real time PCR. We established the kinetic of miRNA-23a expression in mice and demonstrated that this miRNA follows a biphasic expression pattern characterized by a loss of expression at a late time point of muscular atrophy. At autopsy, we found an opposite expression pattern between miRNA-23a and one of the main transcriptional target of this miRNA, APAF-1, and as downstream target, Caspase 9. Our results report the first positive monitoring of endogenously expressed miRNAs in a nuclear medicine imaging context and support the development of additional work to establish the potential therapeutic value of miRNA-23 to prevent the damaging effects of muscular atrophy.

  5. Robust Selection Algorithm (RSA) for Multi-Omic Biomarker Discovery; Integration with Functional Network Analysis to Identify miRNA Regulated Pathways in Multiple Cancers.

    PubMed

    Sehgal, Vasudha; Seviour, Elena G; Moss, Tyler J; Mills, Gordon B; Azencott, Robert; Ram, Prahlad T

    2015-01-01

    MicroRNAs (miRNAs) play a crucial role in the maintenance of cellular homeostasis by regulating the expression of their target genes. As such, the dysregulation of miRNA expression has been frequently linked to cancer. With rapidly accumulating molecular data linked to patient outcome, the need for identification of robust multi-omic molecular markers is critical in order to provide clinical impact. While previous bioinformatic tools have been developed to identify potential biomarkers in cancer, these methods do not allow for rapid classification of oncogenes versus tumor suppressors taking into account robust differential expression, cutoffs, p-values and non-normality of the data. Here, we propose a methodology, Robust Selection Algorithm (RSA) that addresses these important problems in big data omics analysis. The robustness of the survival analysis is ensured by identification of optimal cutoff values of omics expression, strengthened by p-value computed through intensive random resampling taking into account any non-normality in the data and integration into multi-omic functional networks. Here we have analyzed pan-cancer miRNA patient data to identify functional pathways involved in cancer progression that are associated with selected miRNA identified by RSA. Our approach demonstrates the way in which existing survival analysis techniques can be integrated with a functional network analysis framework to efficiently identify promising biomarkers and novel therapeutic candidates across diseases.

  6. Small RNA Deep Sequencing and the Effects of microRNA408 on Root Gravitropic Bending in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Li, Huasheng; Lu, Jinying; Sun, Qiao; Chen, Yu; He, Dacheng; Liu, Min

    2015-11-01

    MicroRNA (miRNA) is a non-coding small RNA composed of 20 to 24 nucleotides that influences plant root development. This study analyzed the miRNA expression in Arabidopsis root tip cells using Illumina sequencing and real-time PCR before (sample 0) and 15 min after (sample 15) a 3-D clinostat rotational treatment was administered. After stimulation was performed, the expression levels of seven miRNA genes, including Arabidopsis miR160, miR161, miR394, miR402, miR403, miR408, and miR823, were significantly upregulated. Illumina sequencing results also revealed two novel miRNAsthat have not been previously reported, The target genes of these miRNAs included pentatricopeptide repeat-containing protein and diadenosine tetraphosphate hydrolase. An overexpression vector of Arabidopsis miR408 was constructed and transferred to Arabidopsis plant. The roots of plants over expressing miR408 exhibited a slower reorientation upon gravistimulation in comparison with those of wild-type. This result indicate that miR408 could play a role in root gravitropic response.

  7. Regulation of gene expression by the BLM helicase correlates with the presence of G-quadruplex DNA motifs

    PubMed Central

    Nguyen, Giang Huong; Tang, Weiliang; Robles, Ana I.; Beyer, Richard P.; Gray, Lucas T.; Welsh, Judith A.; Schetter, Aaron J.; Kumamoto, Kensuke; Wang, Xin Wei; Hickson, Ian D.; Maizels, Nancy; Monnat, Raymond J.; Harris, Curtis C.

    2014-01-01

    Bloom syndrome is a rare autosomal recessive disorder characterized by genetic instability and cancer predisposition, and caused by mutations in the gene encoding the Bloom syndrome, RecQ helicase-like (BLM) protein. To determine whether altered gene expression might be responsible for pathological features of Bloom syndrome, we analyzed mRNA and microRNA (miRNA) expression in fibroblasts from individuals with Bloom syndrome and in BLM-depleted control fibroblasts. We identified mRNA and miRNA expression differences in Bloom syndrome patient and BLM-depleted cells. Differentially expressed mRNAs are connected with cell proliferation, survival, and molecular mechanisms of cancer, and differentially expressed miRNAs target genes involved in cancer and in immune function. These and additional altered functions or pathways may contribute to the proportional dwarfism, elevated cancer risk, immune dysfunction, and other features observed in Bloom syndrome individuals. BLM binds to G-quadruplex (G4) DNA, and G4 motifs were enriched at transcription start sites (TSS) and especially within first introns (false discovery rate ≤ 0.001) of differentially expressed mRNAs in Bloom syndrome compared with normal cells, suggesting that G-quadruplex structures formed at these motifs are physiologic targets for BLM. These results identify a network of mRNAs and miRNAs that may drive the pathogenesis of Bloom syndrome. PMID:24958861

  8. Regulation of gene expression by the BLM helicase correlates with the presence of G-quadruplex DNA motifs.

    PubMed

    Nguyen, Giang Huong; Tang, Weiliang; Robles, Ana I; Beyer, Richard P; Gray, Lucas T; Welsh, Judith A; Schetter, Aaron J; Kumamoto, Kensuke; Wang, Xin Wei; Hickson, Ian D; Maizels, Nancy; Monnat, Raymond J; Harris, Curtis C

    2014-07-08

    Bloom syndrome is a rare autosomal recessive disorder characterized by genetic instability and cancer predisposition, and caused by mutations in the gene encoding the Bloom syndrome, RecQ helicase-like (BLM) protein. To determine whether altered gene expression might be responsible for pathological features of Bloom syndrome, we analyzed mRNA and microRNA (miRNA) expression in fibroblasts from individuals with Bloom syndrome and in BLM-depleted control fibroblasts. We identified mRNA and miRNA expression differences in Bloom syndrome patient and BLM-depleted cells. Differentially expressed mRNAs are connected with cell proliferation, survival, and molecular mechanisms of cancer, and differentially expressed miRNAs target genes involved in cancer and in immune function. These and additional altered functions or pathways may contribute to the proportional dwarfism, elevated cancer risk, immune dysfunction, and other features observed in Bloom syndrome individuals. BLM binds to G-quadruplex (G4) DNA, and G4 motifs were enriched at transcription start sites (TSS) and especially within first introns (false discovery rate ≤ 0.001) of differentially expressed mRNAs in Bloom syndrome compared with normal cells, suggesting that G-quadruplex structures formed at these motifs are physiologic targets for BLM. These results identify a network of mRNAs and miRNAs that may drive the pathogenesis of Bloom syndrome.

  9. The expression of Argonaute2 and related microRNA biogenesis proteins in normal and hypoxic trophoblasts.

    PubMed

    Donker, Rogier B; Mouillet, Jean-François; Nelson, D Michael; Sadovsky, Yoel

    2007-04-01

    Endogenous microRNAs (miRNAs) post-transcriptionally regulate mRNA and protein expression during tissue development and function. Whereas adaptation to environmental insults are tightly regulated in human tissues, the role of miRNAs and miRNA biogenesis proteins in this context is inadequately explored. We sought to analyse the expression of the key RNAi enzyme Argonaute2 (Ago2) and other miRNA biogenesis proteins in human trophoblasts during differentiation and in hypoxic environment. Using an in vitro analysis of primary term human trophoblasts, we identified the expression of the core miRNA biogenesis proteins in human villous trophoblasts, with expression levels unaffected by cellular differentiation. We found that the miRNA biosynthetic pathway was functional and produced miRNAs, with miR-93 up-regulated and miR-424 down-regulated in hypoxic environment. In contrast, hypoxia did not alter the expression of key miRNA machinery proteins. The pivotal miRNA processing enzyme Ago2, along with its interacting protein DP103, were expressed in normal placentas as well as in placentas from pregnancies complicated by placental hypoperfusion that resulted in fetal growth restriction. Ago2 and DP103 co-immunoprecipitated, and did not limit trophoblast response to hypoxic stress. We concluded that the core miRNA machinery proteins are expressed and functional in human trophoblasts. The influence of hypoxia on the expression of a subset of placental miRNA species is unlikely to reflect altered expression of key miRNA biogenesis proteins.

  10. PmiRExAt: plant miRNA expression atlas database and web applications

    PubMed Central

    Gurjar, Anoop Kishor Singh; Panwar, Abhijeet Singh; Gupta, Rajinder; Mantri, Shrikant S.

    2016-01-01

    High-throughput small RNA (sRNA) sequencing technology enables an entirely new perspective for plant microRNA (miRNA) research and has immense potential to unravel regulatory networks. Novel insights gained through data mining in publically available rich resource of sRNA data will help in designing biotechnology-based approaches for crop improvement to enhance plant yield and nutritional value. Bioinformatics resources enabling meta-analysis of miRNA expression across multiple plant species are still evolving. Here, we report PmiRExAt, a new online database resource that caters plant miRNA expression atlas. The web-based repository comprises of miRNA expression profile and query tool for 1859 wheat, 2330 rice and 283 maize miRNA. The database interface offers open and easy access to miRNA expression profile and helps in identifying tissue preferential, differential and constitutively expressing miRNAs. A feature enabling expression study of conserved miRNA across multiple species is also implemented. Custom expression analysis feature enables expression analysis of novel miRNA in total 117 datasets. New sRNA dataset can also be uploaded for analysing miRNA expression profiles for 73 plant species. PmiRExAt application program interface, a simple object access protocol web service allows other programmers to remotely invoke the methods written for doing programmatic search operations on PmiRExAt database. Database URL: http://pmirexat.nabi.res.in. PMID:27081157

  11. Dysregulation of miRNAs in bladder cancer: altered expression with aberrant biogenesis procedure

    PubMed Central

    Dong, Fan; Xu, Tianyuan; Shen, Yifan; Zhong, Shan; Chen, Shanwen; Ding, Qiang; Shen, Zhoujun

    2017-01-01

    Aberrant expression profiles of miRNAs are widely observed in the clinical tissue specimens and urine samples as well as the blood samples of bladder cancer patients. These profiles are closely related to the pathological features of bladder cancer, such as the tumour stage/grade, metastasis, recurrence and chemo-sensitivity. MiRNA biogenesis forms the basis of miRNA expression and function, and its dysregulation has been shown to be essential for variations in miRNA expression profiles as well as tumourigenesis and cancer progression. In this review, we summarize the up-to-date and widely reported miRNAs in bladder cancer that display significantly altered expression. We then compare the miRNA expression profiles among three different sample types (tissue, urine and blood) from patients with bladder cancer. Moreover, for the first time, we outline the dysregulated miRNA biogenesis network in bladder cancer from different levels and analyse its possible relationship with aberrant miRNA expression and the pathological characteristics of the disease. PMID:28187437

  12. Identification and profiling of Cyprinus carpio microRNAs during ovary differentiation by deep sequencing.

    PubMed

    Wang, Fang; Jia, Yongfang; Wang, Po; Yang, Qianwen; Du, QiYan; Chang, ZhongJie

    2017-04-28

    MicroRNAs (miRNAs) are endogenous small non-coding RNAs that regulate gene expression by targeting specific mRNAs. However, the possible role of miRNAs in the ovary differentiation and development of fish is not well understood. In this study, we examined the expression profiles and differential expression of miRNAs during three key stages of ovarian development and different developmental stages in common carp Cyprinus carpio. A total of 8765 miRNAs were identified, including 2155 conserved miRNAs highly conserved among various species, 145 miRNAs registered in miRBase for common carp, and 6505 novel miRNAs identified in common carp for the first time. Comparison of miRNA expression profiles among the five libraries identified 714 co-expressed and 2382 specific expressed miRNAs. Overall, 150, 628, and 431 specifically expressed miRNAs were identified in primordial gonad, juvenile ovary, and adult ovary, respectively. MiR-6758-3p, miR-3050-5p, and miR-2985-3p were highly expressed in primordial gonad, miR-3544-5p, miR-6877-3p, and miR-9086-5p were highly expressed in juvenile ovary, and miR-154-3p, miR-5307-5p, and miR-3958-3p were highly expressed in adult ovary. Predicted target genes of specific miRNAs in primordial gonad were involved in many reproductive biology signaling pathways, including transforming growth factor-β, Wnt, oocyte meiosis, mitogen-activated protein kinase, Notch, p53, and gonadotropin-releasing hormone pathways. Target-gene prediction revealed upward trends in miRNAs targeting male-bias genes, including dmrt1, atm, gsdf, and sox9, and downward trends in miRNAs targeting female-bias genes including foxl2, smad3, and smad4. Other sex-related genes such as sf1 were also predicted to be miRNA target genes. This comprehensive miRNA transcriptome analysis demonstrated differential expression profiles of miRNAs during ovary development in common carp. These results could facilitate future exploitation of the sex-regulatory roles and mechanisms of miRNAs, especially in primordial gonads, while the specifically expressed miRNAs represent candidates for studying the mechanisms of ovary determination in Yellow River carp.

  13. Identification of a Polyomavirus microRNA Highly Expressed in Tumors

    PubMed Central

    Chen, Chun Jung; Cox, Jennifer E.; Azarm, Kristopher; Wylie, Karen N.; Woolard, Kevin D.; Pesavento, Patricia A.; Sullivan, Christopher S.

    2014-01-01

    Polyomaviruses (PyVs) are associated with tumors including Merkel cell carcinoma (MCC). Several PyVs encode microRNAs (miRNAs) but to date no abundant PyV miRNAs have been reported in tumors. To better understand the function of the Merkel cell PyV (MCPyV) miRNA, we examined phylogenetically-related viruses for miRNA expression. We show that two primate PyVs and the more distantly-related raccoon PyV (RacPyV) encode miRNAs that share genomic position and partial sequence identity with MCPyV miRNAs. Unlike MCPyV miRNA in MCC, RacPyV miRNA is highly abundant in raccoon tumors. RacPyV miRNA negatively regulates reporters of early viral (T antigen) transcripts, yet robust viral miRNA expression is tolerated in tumors. We also identify raccoon miRNAs expressed in RacPyV-associated neuroglial brain tumors, including several likely oncogenic miRNAs (oncomiRs). This work describes the first PyV miRNA abundantly expressed in tumors and is consistent with a possible role for both host and viral miRNAs in RacPyV-associated tumors. PMID:25514573

  14. Determining miRNA Expression Levels in Degraded RNA Samples Using Real-Time RT-qPCR and Microarray Technologies

    PubMed Central

    Tighe, S.; Holbrook, J.; Nadella, V.; Carmical, R.; Sol-Church, K.; Yueng, A.T.; Chittur, S.

    2011-01-01

    The Nucleic Acid Research Group (NARG) has previously conducted studies evaluating the impact of RNA integrity and priming strategies on cDNA synthesis and real-time RT-qPCR. The results of last year's field study as it relates to degraded RNA will be presented. In continuation of the RNA integrity theme, this year's study was designed to evaluate the impact of RNA integrity on the analysis of miRNA expression using real-time RT-qPCR. Target section was based on data obtained by the Microarray Research Group (MARG) and other published data from next gen sequencing. These 9 miRNAs represent three groups of miRNA that are expressed at low, medium or high levels in the First Choice human brain reference RNA sample. Two popular RT priming strategies tested in this study include the Megaplex miRNA TaqMan assay (ABI) and the RT2 miRNA qPCR assay (Qiagen/SA Biosciences). The basis for the ABI assay design is a target-specific stem-loop structure and reverse-transcription primer, while the Qiagen design combines poly(A) tailing and a universal reverse transcription in one cDNA synthesis reaction. For this study, the human brain reference RNA was subject to controlled degradation using RNase A to RIN (RNA Integrity Number) values of 7 (good), 4 (moderately degraded), and 2 (severely degraded).These templates were then used to assess both RT methods. In addition to this real-time RT-qPCR data, the same RNA templates were further analyzed using universal poly(A) tailing and hybridization to Affymetrix miRNA GeneChips. This talk will provide insights into RT priming strategies for miRNA and contrast the qPCR results obtained using different technologies.

  15. A systems biology approach for miRNA-mRNA expression patterns analysis in non-small cell lung cancer.

    PubMed

    Najafi, Ali; Tavallaei, Mahmood; Hosseini, Sayed Mostafa

    2016-01-01

    Non-small cell lung cancers (NSCLCs) is a prevalent and heterogeneous subtype of lung cancer accounting for 85 percent of patients. MicroRNAs (miRNAs), a class of small endogenous non-coding RNAs, incorporate into regulation of gene expression post-transcriptionally. Therefore, deregulation of miRNAs' expression has provided further layers of complexity to the molecular etiology and pathogenesis of different diseases and malignancies. Although, until now considerable number of studies has been carried out to illuminate this complexity in NSCLC, they have remained less effective in their goal due to lack of a holistic and integrative systems biology approach which considers all natural elaborations of miRNAs' function. It is able to reliably nominate most affected signaling pathways and therapeutic target genes by deregulated miRNAs during a particular pathological condition. Herein, we utilized a holistic systems biology approach, based on appropriate re-analyses of microarray datasets followed by reliable data filtering, to analyze integrative and combinatorial deregulated miRNA-mRNA interaction network in NSCLC, aiming to ascertain miRNA-dysregulated signaling pathway and potential therapeutic miRNAs and mRNAs which represent a lion' share during various aspects of NSCLC's pathogenesis. Our systems biology approach introduced and nominated 1) important deregulated miRNAs in NSCLCs compared with normal tissue 2) significant and confident deregulated mRNAs which were anti-correlatively targeted by deregulated miRNA in NSCLCs and 3) dysregulated signaling pathways in association with deregulated miRNA-mRNAs interactions in NSCLCs. These results introduce possible mechanism of function of deregulated miRNAs and mRNAs in NSCLC that could be used as potential therapeutic targets.

  16. Identification of human skeletal muscle miRNA related to strength by high-throughput sequencing.

    PubMed

    Mitchell, Cameron J; D'Souza, Randall F; Schierding, William; Zeng, Nina; Ramzan, Farha; O'Sullivan, Justin M; Poppitt, Sally D; Cameron-Smith, David

    2018-06-01

    The loss of muscle size, strength, and quality with aging is a major determinant of morbidity and mortality in the elderly. The regulatory pathways that impact the muscle phenotype include the translational regulation maintained by microRNAs (miRNA). Yet the miRNAs that are expressed in human skeletal muscle and relationship to muscle size, strength, and quality are unknown. Using next-generation sequencing, we selected the 50 most abundantly expressed miRNAs and then analyzed them in vastus lateralis muscle, obtained by biopsy from middle-aged males ( n = 48; 50.0 ± 4.3 yr). Isokinetic strength testing and midthigh computed tomography was undertaken for muscle phenotype analysis. Muscle attenuation was measured by computerized tomography and is inversely proportional to myofiber lipid content. miR-486-5p accounted for 21% of total miR sequence reads, with miR-10b-5p, miR-133a-3p, and miR-22-3p accounting for a further 15, 12, and 10%, respectively. Isokinetic knee extension strength and muscle cross-sectional area were positively correlated with miR-100-5p, miR-99b-5p, and miR-191-5p expression. Muscle attenuation was negatively correlated to let-7f-5p, miR-30d-5p, and miR-125b-5p expression. In silico analysis implicates miRNAs related to strength and muscle size in the regulation of mammalian target of rapamycin, while miRNAs related to muscle attenuation may have potential roles regulating the transforming growth factor-β/SMAD3 pathway.

  17. Effects of duloxetine on microRNA expression profile in frontal lobe and hippocampus in a mouse model of depression.

    PubMed

    Pan, Bing; Liu, Yamei

    2015-01-01

    Depression is a major mood disorder affecting people worldwide. The posttranscriptional gene regulation mediated by microRNAs (miRNAs) which may have critical roles in the pathogenesis of depression. However, to date, little is known about the effects of the antidepressant drug duloxetine on miRNA expression profile in chronic unpredictable mild stress (CUMS)-induced depression model in mice. Healthy adult male Kunming mice were randomly divided into three groups: control group, model group and duloxetine group. Sucrose preference test and open field test were used to represent the behavioral change. MiRNAs levels in frontal lobe and hippocampus of mice were analyzed using miRNA microarrays assay. We observed that long-term treatment with duloxetine significantly ameliorated the CUMS procedure-induced sucrose preference decreases and mice treated with duloxetine demonstrated a reversal of the number of crossings, and rearings reduced by CUMS. A significant upregulation of miR-132 and miR-18a in hippocampus in the duloxetine treatment group compared with model group, whereas the levels of miR-134 and miR-124a were significantly downregulated. Furthermore, miR-18a showed significant upregulation in frontal lobe in the duloxetine treatment group relative to model group. Our data showed that miRNA expression profile in frontal lobe and hippocampus was affected by duloxetine in mice model of depression. The effect was especially pronounced in the hippocampus, suggesting that hippocampus might be the action site of duloxetine, which presumably worked by regulating the expression of miRNA levels.

  18. Whole blood miRNA expression analysis reveals miR-3613-3p as a potential biomarker for dedifferentiated liposarcoma.

    PubMed

    Fricke, A; Cimniak, A F V; Ullrich, P V; Becherer, C; Bickert, C; Pfeifer, D; Heinz, J; Stark, G B; Bannasch, H; Braig, D; Eisenhardt, S U

    2018-04-09

    Liposarcoma constitute about 13% of all soft tissue sarcoma and are associated with a high risk of metastases. As the preoperative differentiation between benign and malign lipomatous tumors is restricted to magnetic resonance imaging, computed tomography and biopsy, we performed a miRNA array to distinguish dedifferentiated liposarcoma patients from healthy controls and lipoma patients. Blood samples of patients with dedifferentiated liposarcoma, healthy controls and lipoma patients were collected. Whole blood RNA was extracted and samples of patients with dedifferentiated liposarcoma (n= 6) and of healthy donors (n= 4) were analyzed using an Affymetrix GeneChip miRNA Array v. 4.0. qRT-PCR was carried out to confirm the most differentially expressed miRNA; being further analyzed in an independent cohort of healthy controls as well as in lipoma patients. As shown by the microarray, two miRNAs (miR-3613-3p, miR-4668-5p) were shown to be significantly upregulated (fold change: > 2.5; p< 0.05) in patients with dedifferentiated liposarcoma (n= 6) as compared to healthy controls (n= 4). miR-3613-3p was further validated by qRT-PCR to be significantly upregulated in dedifferentiated liposarcoma patients compared to an independent cohort of healthy controls (n= 3) and lipoma patients (n= 5). We identified a specific whole blood miRNA (miR-3613-3p) that may serve to distinguish between dedifferentiated liposarcoma patients and healthy controls, thus potentially serving as a specific biomarker for dedifferentiated liposarcoma.

  19. Association of microRNA-200c expression levels with clinicopathological factors and prognosis in endometrioid endometrial cancer.

    PubMed

    Wilczynski, Milosz; Danielska, Justyna; Domanska-Senderowska, Daria; Dzieniecka, Monika; Szymanska, Bozena; Malinowski, Andrzej

    2018-05-01

    MicroRNAs (miRNAs) are regulators of gene expression, which play an important role in many critical cellular processes including apoptosis, proliferation and cell differentiation. Aberrant miRNA expression has been reported in a variety of human malignancies. Therefore, miRNAs may be potentially used as cancer biomarkers. miRNA-200c, which is a member of the miRNA-200 family, might play an essential role in tumor progression. The purpose of this study was to evaluate the prognostic and clinical significance of miRNA-200c in women with endometrioid endometrial cancer. Total RNA extraction from 90 archival formalin-fixed paraffin-embedded tissue samples of endometri-oid endometrial cancer and 10 normal endometrium samples was performed. After cDNA synthesis, real-time polymerase chain reaction was conducted and relative expression of miRNA-200c was assessed. Then, miRNA-200c expression levels were evaluated with regard to clinicopathological characteristics. The expression levels of miRNA-200c were significantly increased in endometrioid endometrial cancer samples. Expression of miRNA-200c maintained at significantly higher levels in the early stage endometrioid endometrial cancer compared with more advanced stages. In the Kaplan-Meier analysis, lower levels of miRNA-200c expression were associated with inferior survival. Expression levels of miRNA-200c might be associated with clinicopathological factors and survival in endometrioid endometrial cancer. © 2018 Nordic Federation of Societies of Obstetrics and Gynecology.

  20. The Accumulation of miRNAs Differentially Modulated by Drought Stress Is Affected by Grafting in Grapevine1[OPEN

    PubMed Central

    Vitali, Marco; Vitulo, Nicola; Incarbone, Marco

    2017-01-01

    Grapevine (Vitis vinifera) is routinely grafted, and rootstocks inducing drought tolerance represent a source for adapting vineyards to climate change in temperate areas. Our goal was to investigate drought stress effects on microRNA (miRNA) abundance in a drought-resistant grapevine rootstock, M4 (Vitis vinifera × Vitis berlandieri), compared with a commercial cultivar, Cabernet Sauvignon, using their autografts and reciprocal grafts. RNA extracted from roots and leaves of droughted and irrigated plants of different graft combinations was used to prepare cDNA libraries for small RNA sequencing and to analyze miRNAs by quantitative real-time polymerase chain reaction (RT-qPCR). Measurements of leaf water potential, leaf gas exchange, and root hydraulic conductance attested that, under irrigation, M4 reduced water loss in comparison with cultivar Cabernet Sauvignon mostly through nonhydraulic, root-specific mechanisms. Under drought, stomatal conductance decreased at similar levels in the two genotypes. Small RNA sequencing allowed the identification of 70 conserved miRNAs and the prediction of 28 novel miRNAs. Different accumulation trends of miRNAs, observed upon drought and in different genotypes and organs, were confirmed by RT-qPCR. Corresponding target transcripts, predicted in silico and validated by RT-qPCR, often showed opposite expression profiles than the related miRNAs. Drought effects on miRNA abundance differed between the two genotypes. Furthermore, the concentration of drought-responsive miRNAs in each genotype was affected by reciprocal grafting, suggesting either the movement of signals inducing miRNA expression in the graft partner or, possibly, miRNA transport between scion and rootstock. These results open new perspectives in the selection of rootstocks for improving grapevine adaptation to drought. PMID:28235889

  1. Mining NGS transcriptomes for miRNAs and dissecting their role in regulating growth, development, and secondary metabolites production in different organs of a medicinal herb, Picrorhiza kurroa.

    PubMed

    Vashisht, Ira; Mishra, Prashant; Pal, Tarun; Chanumolu, Sreekrishna; Singh, Tiratha Raj; Chauhan, Rajinder Singh

    2015-05-01

    This study is the first endeavor on mining of miRNAs and analyzing their involvement in development and secondary metabolism of an endangered medicinal herb Picrorhiza kurroa (P. kurroa ). miRNAs are ubiquitous non-coding RNA species that target complementary sequences of mRNA and result in either translational repression or target degradation in eukaryotes. The role of miRNAs has not been investigated in P. kurroa which is a medicinal herb of industrial value due to the presence of secondary metabolites, picroside-I and picroside-II. Computational identification of miRNAs was done in 6 transcriptomes of P. kurroa generated from root, shoot, and stolon organs varying for growth, development, and culture conditions. All available plant miRNA entries were retrieved from miRBase and used as backend datasets to computationally identify conserved miRNAs in transcriptome data sets. Total 18 conserved miRNAs were detected in P. kurroa followed by target prediction and functional annotation which suggested their possible role in controlling various biological processes. Validation of miRNA and expression analysis by qRT-PCR and 5' RACE revealed that miRNA-4995 has a regulatory role in terpenoid biosynthesis ultimately affecting the production of picroside-I. miR-5532 and miR-5368 had negligible expression in field-grown samples as compared to in vitro-cultured samples suggesting their role in regulating P. kurroa growth in culture conditions. The study has thus identified novel functions for existing miRNAs which can be further validated for their potential regulatory role.

  2. Differential expression of miRNAs in colon cancer between African and Caucasian Americans: implications for cancer racial health disparities.

    PubMed

    Li, Ellen; Ji, Ping; Ouyang, Nengtai; Zhang, Yuanhao; Wang, Xin Yu; Rubin, Deborah C; Davidson, Nicholas O; Bergamaschi, Roberto; Shroyer, Kenneth R; Burke, Stephanie; Zhu, Wei; Williams, Jennie L

    2014-08-01

    Colorectal cancer (CRC) incidence and mortality are higher in African Americans (AAs) than in Caucasian Americans (CAs) and microRNAs (miRNAs) have been found to be dysregulated in colonic and other neoplasias. The aim of this exploratory study was to identify candidate miRNAs that could contribute to potential biological differences between AA and CA colon cancers. Total RNA was isolated from tumor and paired adjacent normal colon tissue from 30 AA and 31 CA colon cancer patients archived at Stony Brook University (SBU) and Washington University (WU)‑St. Louis Medical Center. miRNA profiles were determined by probing human genome-wide miRNA arrays with RNA isolated from each sample. Using repeated measures analysis of variance (RANOVA), miRNAs were selected that exhibited significant (p<0.05) interactions between race and tumor or significant (fold change >1.5, p<0.05) main effects of race and/or tumor. Quantitative polymerase chain reaction (q-PCR) was used to confirm miRNAs identified by microarray analysis. Candidate miRNA targets were analyzed using immunohistochemistry. RANOVA results indicated that miR-182, miR152, miR-204, miR-222 and miR-202 exhibited significant race and tumor main effects. Of these miRNAs, q-PCR analysis confirmed that miR-182 was upregulated in AA vs. CA tumors and exhibited significant race:tumor interaction. Immunohistochemical analysis revealed that the levels of FOXO1 and FOXO3A, two potential miR-182 targets, are reduced in AA tumors. miRNAs may play a role in the differences between AA and CA colon cancer. Specifically, differences in miRNA expression levels of miR-182 may contribute to decreased survival in AA colon cancer patients.

  3. Genome-Wide miRNA Analysis Identifies miR-188-3p as a Novel Prognostic Marker and Molecular Factor Involved in Colorectal Carcinogenesis

    PubMed Central

    Pichler, Martin; Stiegelbauer, Verena; Vychytilova-Faltejskova, Petra; Ivan, Cristina; Ling, Hui; Winter, Elke; Zhang, Xinna; Goblirsch, Matthew; Wulf-Goldenberg, Annika; Ohtsuka, Masahisa; Haybaeck, Johannes; Svoboda, Marek; Okugawa, Yoshinaga; Gerger, Armin; Hoefler, Gerald; Goel, Ajay; Slaby, Ondrej; Calin, George Adrian

    2017-01-01

    Purpose Characterization of colorectal cancer transcriptome by high-throughput techniques has enabled the discovery of several differentially expressed genes involving previously unreported miRNA abnormalities. Here, we followed a systematic approach on a global scale to identify miRNAs as clinical outcome predictors and further validated them in the clinical and experimental setting. Experimental Design Genome-wide miRNA sequencing data of 228 colorectal cancer patients from The Cancer Genome Atlas dataset were analyzed as a screening cohort to identify miRNAs significantly associated with survival according to stringent prespecified criteria. A panel of six miRNAs was further validated for their prognostic utility in a large independent validation cohort (n = 332). In situ hybridization and functional experiments in a panel of colorectal cancer cell lines and xenografts further clarified the role of clinical relevant miRNAs. Results Six miRNAs (miR-92b-3p, miR-188-3p, miR-221-5p, miR-331-3p, miR-425-3p, and miR-497-5p) were identified as strong predictors of survival in the screening cohort. High miR-188-3p expression proves to be an independent prognostic factor [screening cohort: HR = 4.137; 95% confidence interval (CI), 1.568–10.917; P = 0.004; validation cohort: HR = 1.538; 95% CI, 1.107–2.137; P = 0.010, respectively]. Forced miR-188-3p expression increased migratory behavior of colorectal cancer cells in vitro and metastases formation in vivo (P < 0.05). The promigratory role of miR-188-3p is mediated by direct interaction with MLLT4, a novel identified player involved in colorectal cancer cell migration. Conclusions miR-188-3p is a novel independent prognostic factor in colorectal cancer patients, which can be partly explained by its effect on MLLT4 expression and migration of cancer cells. PMID:27601590

  4. microRNA-342, microRNA-191 and microRNA-510 are differentially expressed in T regulatory cells of type 1 diabetic patients.

    PubMed

    Hezova, Renata; Slaby, Ondrej; Faltejskova, Petra; Mikulkova, Zuzana; Buresova, Ivana; Raja, K R Muthu; Hodek, Jan; Ovesna, Jaroslava; Michalek, Jaroslav

    2010-01-01

    Regulatory T cells (Tregs) are critical regulators of autoimmune diseases, including type 1 diabetes mellitus. It is hypothesised that Tregs' function can be influenced by changes in the expression of specific microRNAs (miRNAs). Thus, we performed miRNAs profiling in a population of Tregs separated from peripheral blood of five type 1 diabetic patients and six healthy donors. For more detailed molecular characterisation of Tregs, we additionally compared miRNAs expression profiles of Tregs and conventional T cells. Tregs were isolated according to CD3+, CD4+, CD25(hi)+ and CD127- by flow cytometry, and miRNA expression profiling was performed using TaqMan Array Human MicroRNA Panel-1 (384-well low density array). In Tregs of diabetic patients we found significantly increased expression of miRNA-510 (p=0.05) and decreased expression of both miRNA-342 (p<0.0001) and miRNA-191 (p=0.0079). When comparing Tregs and T cells, we revealed that Tregs had significant higher expression of miRNA-146a and lower expression of eight specific miRNAs (20b, 31, 99a, 100, 125b, 151, 335, and 365). To our knowledge, this is the first study demonstrating changes in miRNA expression profiles occurring in Tregs of T1D patients and a miRNAs signature of adult Tregs.

  5. MicroRNAs and cardiac sarcoplasmic reticulum calcium ATPase-2 in human myocardial infarction: expression and bioinformatic analysis.

    PubMed

    Boštjančič, Emanuela; Zidar, Nina; Glavač, Damjan

    2012-10-15

    Cardiac sarco(endo)plasmic reticulum calcium ATPase-2 (SERCA2) plays one of the central roles in myocardial contractility. Both, SERCA2 mRNA and protein are reduced in myocardial infarction (MI), but the correlation has not been always observed. MicroRNAs (miRNAs) act by targeting 3'-UTR mRNA, causing translational repression in physiological and pathological conditions, including cardiovascular diseases. One of the aims of our study was to identify miRNAs that could influence SERCA2 expression in human MI. The protein SERCA2 was decreased and 43 miRNAs were deregulated in infarcted myocardium compared to corresponding remote myocardium, analyzed by western blot and microRNA microarrays, respectively. All the samples were stored as FFPE tissue and in RNAlater. miRNAs binding prediction to SERCA2 including four prediction algorithms (TargetScan, PicTar, miRanda and mirTarget2) identified 213 putative miRNAs. TAM and miRNApath annotation of deregulated miRNAs identified 18 functional and 21 diseased states related to heart diseases, and association of the half of the deregulated miRNAs to SERCA2. Free-energy of binding and flanking regions (RNA22, RNAfold) was calculated for 10 up-regulated miRNAs from microarray analysis (miR-122, miR-320a/b/c/d, miR-574-3p/-5p, miR-199a, miR-140, and miR-483), and nine miRNAs deregulated from microarray analysis were used for validation with qPCR (miR-21, miR-122, miR-126, miR-1, miR-133, miR-125a/b, and miR-98). Based on qPCR results, the comparison between FFPE and RNAlater stored tissue samples, between Sybr Green and TaqMan approaches, as well as between different reference genes were also performed. Combing all the results, we identified certain miRNAs as potential regulators of SERCA2; however, further functional studies are needed for verification. Using qPCR, we confirmed deregulation of nine miRNAs in human MI, and show that qPCR normalization strategy is important for the outcome of miRNA expression analysis in human MI.

  6. microRNA expression profile in human coronary smooth muscle cell-derived microparticles is a source of biomarkers.

    PubMed

    de Gonzalo-Calvo, David; Cenarro, Ana; Civeira, Fernando; Llorente-Cortes, Vicenta

    2016-01-01

    microRNA (miRNA) expression profile of extracellular vesicles is a potential tool for clinical practice. Despite the key role of vascular smooth muscle cells (VSMC) in cardiovascular pathology, there is limited information about the presence of miRNAs in microparticles secreted by this cell type, including human coronary artery smooth muscle cells (HCASMC). Here, we tested whether HCASMC-derived microparticles contain miRNAs and the value of these miRNAs as biomarkers. HCASMC and explants from atherosclerotic or non-atherosclerotic areas were obtained from coronary arteries of patients undergoing heart transplant. Plasma samples were collected from: normocholesterolemic controls (N=12) and familial hypercholesterolemia (FH) patients (N=12). Both groups were strictly matched for age, sex and cardiovascular risk factors. Microparticle (0.1-1μm) isolation and characterization was performed using standard techniques. VSMC-enriched miRNAs expression (miR-21-5p, -143-3p, -145-5p, -221-3p and -222-3p) was analyzed using RT-qPCR. Total RNA isolated from HCASMC-derived microparticles contained small RNAs, including VSMC-enriched miRNAs. Exposition of HCASMC to pathophysiological conditions, such as hypercholesterolemia, induced a decrease in the expression level of miR-143-3p and miR-222-3p in microparticles, not in cells. Expression levels of miR-222-3p were lower in circulating microparticles from FH patients compared to normocholesterolemic controls. Microparticles derived from atherosclerotic plaque areas showed a decreased level of miR-143-3p and miR-222-3p compared to non-atherosclerotic areas. We demonstrated for the first time that microparticles secreted by HCASMC contain microRNAs. Hypercholesterolemia alters the microRNA profile of HCASMC-derived microparticles. The miRNA signature of HCASMC-derived microparticles is a source of cardiovascular biomarkers. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. A tripartite clustering analysis on microRNA, gene and disease model.

    PubMed

    Shen, Chengcheng; Liu, Ying

    2012-02-01

    Alteration of gene expression in response to regulatory molecules or mutations could lead to different diseases. MicroRNAs (miRNAs) have been discovered to be involved in regulation of gene expression and a wide variety of diseases. In a tripartite biological network of human miRNAs, their predicted target genes and the diseases caused by altered expressions of these genes, valuable knowledge about the pathogenicity of miRNAs, involved genes and related disease classes can be revealed by co-clustering miRNAs, target genes and diseases simultaneously. Tripartite co-clustering can lead to more informative results than traditional co-clustering with only two kinds of members and pass the hidden relational information along the relation chain by considering multi-type members. Here we report a spectral co-clustering algorithm for k-partite graph to find clusters with heterogeneous members. We use the method to explore the potential relationships among miRNAs, genes and diseases. The clusters obtained from the algorithm have significantly higher density than randomly selected clusters, which means members in the same cluster are more likely to have common connections. Results also show that miRNAs in the same family based on the hairpin sequences tend to belong to the same cluster. We also validate the clustering results by checking the correlation of enriched gene functions and disease classes in the same cluster. Finally, widely studied miR-17-92 and its paralogs are analyzed as a case study to reveal that genes and diseases co-clustered with the miRNAs are in accordance with current research findings.

  8. miRNA-556-3p promotes human bladder cancer proliferation, migration and invasion by negatively regulating DAB2IP expression.

    PubMed

    Feng, Chen; Sun, Ping; Hu, Jing; Feng, Hua; Li, Mingqiu; Liu, Guibo; Pan, Yanming; Feng, Ying; Xu, Yongliang; Feng, Kejian; Feng, Yukuan

    2017-06-01

    MicroRNAs (miRNAs) play critical roles in tumorigenesis and metastasis by negatively regulating gene expression through complementary binding to the 3'-untranslated region of target mRNAs. The role of miRNAs in expression of the tumor suppressor DAB2IP in bladder cancer (BC) remains unknown. The aim of the present study was to identify miRNAs targeting DAB2IP and determine their expression and function in BC. We predicted candidate miRNAs targeting DAB2IP using TargetScan software. Dual-luciferase reporter assays confirmed that miRNA-556-3p directly regulated DAB2IP expression. Quantitative RT-PCR and RNase protection assays showed that endogenous miRNA-556-3p expression was significantly upregulated in clinical samples of BC patients and BC cell lines and western blot analysis indicated that DAB2IP expression in BC tissues and BC cell lines was concurrently downregulated. Gain or loss of function studies showed that upregulation of miRNA-556-3p promoted proliferation, invasion, migration and colony formation of BC cells, whereas downregulation resulted in opposite effects. Importantly, restoration of DAB2IP expression rescued the effects induced by miRNA-556-3p. Overexpression of miRNA-556-3p in BC cells not only decreased DAB2IP expression, but also markedly increased Ras GTPase activity and ERK1/2 phosphorylation level. These findings suggest that DAB2IP is a direct target of miRNA-556-3p, and endogenous miRNA-556-3p expression shows inverse correlation with simultaneous DAB2IP expression in BC tissues and cells. miRNA-556-3p functions as a tumor promoter in tumorigenesis and metastasis of BC by targeting DAB2IP. Moreover, miRNA-556-3p-mediated DAB2IP suppression plays an oncogenic role by partial activation of the Ras-ERK pathway.

  9. Time-Dependent Expression Profiles of microRNAs and mRNAs in Rat Milk Whey

    PubMed Central

    Izumi, Hirohisa; Kosaka, Nobuyoshi; Shimizu, Takashi; Sekine, Kazunori; Ochiya, Takahiro; Takase, Mitsunori

    2014-01-01

    Functional RNAs, such as microRNA (miRNA) and mRNA, are present in milk, but their roles are unknown. To clarify the roles of milk RNAs, further studies using experimental animals such as rats are needed. However, it is unclear whether rat milk also contains functional RNAs and what their time dependent expression profiles are. Thus, we prepared total RNA from whey isolated from rat milk collected on days 2, 9, and 16 postpartum and analyzed using microarrays and quantitative PCR. The concentration of RNA in colostrum whey (day 2) was markedly higher than that in mature milk whey (days 9 and 16). Microarray analysis detected 161 miRNAs and 10,948 mRNA transcripts. Most of the miRNAs and mRNA transcripts were common to all tested milks. Finally, we selected some immune- and development-related miRNAs and mRNAs, and analysed them by quantitative PCR (in equal sample volumes) to determine their time-dependent changes in expression in detail. Some were significantly more highly expressed in colostrum whey than in mature milk whey, but some were expressed equally. And mRNA expression levels of some cytokines and hormones did not reflect the protein levels. It is still unknown whether RNAs in milk play biological roles in neonates. However, our data will help guide future in vivo studies using experimental animals such as rats. PMID:24533154

  10. MicroRNA-188-5p suppresses tumor cell proliferation and metastasis by directly targeting FGF5 in hepatocellular carcinoma.

    PubMed

    Fang, Feng; Chang, Rui-min; Yu, Lei; Lei, Xiong; Xiao, Shuai; Yang, Hao; Yang, Lian-Yue

    2015-10-01

    Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. However, the detailed molecular mechanisms underlying HCC progression are still not completely clear. Given the crucial role of microRNAs (miRNAs) in cancer metastasis, we aimed to analyze the expression and function of a metastasis-associated miRNA named miR-188-5p in HCC. miRNA array analysis was performed to search for metastasis-associated miRNAs in HCC. miR-188-5p expressions in tumor tissues and adjacent non-tumorous liver tissues of HCC patients and cell lines were evaluated by real-time PCR. The protein expression levels were analyzed by Western blot and immunohistochemistry. Luciferase reporter assays was used to validate the target of miR-188-5p. The effect of miR-188-5p on HCC progression was studied in vitro and in vivo. miR-188-5p was significantly decreased in HCC and its expression levels were highly correlated with multiple nodules, microvascular invasion, overall and disease-free survival of HCC. Ectopic expression of miR-188-5p suppressed HCC cell proliferation and metastasis in vitro and in vivo. Fibroblast growth factor 5 (FGF5) was identified as a major target of miR-188-5p. Enforced expression of miR-188-5p inhibited the expression of FGF5 significantly and the restoration of FGF5 expression reversed the inhibitory effects of miR-188-5p on HCC cell proliferation and metastasis. These findings collectively demonstrate a tumor suppressor role of miR-188-5p in HCC progression via targeting FGF5, suggesting that miR-188-5p could serve as a potential prognostic biomarker and therapeutic target for HCC. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  11. Differentiation of Human Dental Stem Cells Reveal a Role for microRNA-218

    PubMed Central

    Gay, Isabel; Cavender, Adriana; Peto, David; Sun, Zhao; Speer, Aline; Cao, Huojun; Amendt, Brad A.

    2013-01-01

    Background Regeneration of the lost periodontium is the ultimate goal of periodontal therapy. Advances in tissue engineering have demonstrated the multilineage potential and plasticity of adult stem cells located in the periodontal apparatus. However, it remains unclear how epigenetic mechanisms controlling signals determine tissue specification and cell lineage decisions. To date, no data is available on micro-RNAs (miRNAs) activity behind human-derived dental stem cells. Methods In this study, we isolated periodontal ligament stem cells (PDLSCs), dental pulp stem cells (DPSCs), and gingival stem cells (GSCs) from extracted third molars; human bone marrow stem cells (BMSCs) were used as a positive control. The expression of OCT4A and NANOG was confirmed in these undifferentiated cells. All cells were cultured under osteogenic inductive conditions and RUNX2 expression was analyzed as a marker of mineralized tissue differentiation. A miRNA expression profile was obtained at baseline and after osteogenic induction in all cell types. Results RUNX2 expression demonstrated the successful osteogenic induction of all cell types, which was confirmed by alizarin red stain. The analysis of 765 miRNAs demonstrated a shift in miRNA expression occurred in all four stem cell types, including a decrease in hsa-mir-218 across all differentiated cell populations. Hsa-mir-218 targets RUNX2 and decreases RUNX2 expression in undifferentiated human dental stem cells (DSCs). DSC mineralized tissue type differentiation is associated with a decrease in hsa-mir-218 expression. Conclusions These data reveal a miRNA regulated pathway for the differentiation of human DSCs and a select network of human microRNAs that control DSC osteogenic differentiation. PMID:23662917

  12. Gene signatures and expression of miRNAs associated with efficacy of panitumumab in a head and neck cancer phase II trial.

    PubMed

    Siano, Marco; Espeli, Vittoria; Mach, Nicolas; Bossi, Paolo; Licitra, Lisa; Ghielmini, Michele; Frattini, Milo; Canevari, Silvana; De Cecco, Loris

    2018-07-01

    Platinum-based chemotherapy plus the anti-EGFR monoclonal antibody (mAb) cetuximab is used to treat recurrent/metastatic (RM) head-neck squamous cell carcinoma (HNSCC). Recently, we defined Cluster3 gene-expression signature as a potential predictor of favorable progression-free survival (PFS) in cetuximab-treated RM-HNSCC patients and predictor of partial metabolic FDG-PET response in an afatinib window-of-opportunity trial. Another anti-EGFR-mAb (panitumumab) was used as the treatment agent in RM-HNSCC patients in the phase II PANI01trial. PANI01 tumor samples were analyzed using functional genomics to explore response predictors to anti-EGFR therapy. Whole-gene expression and real-time PCR analyses were applied to pre-treatment samples from 25 PANI01 patients. Three gene signatures (Cluster3 score, RAS onco-signature, microenvironment score) and seven selected miRNAs were separately analyzed for association with panitumumab efficacy. Cluster3 expression levels had a profile with a significant bimodal separation of samples (P =  3.08 E-13). Higher RAS activation, microenvironment score, and miRNA expression were associated with low-Cluster3 patients. The same biomarkers were separately associated with PFS. Patients with high-Cluster3 had significantly longer PFS than patients with low-Cluster3 (median PFS: 174 versus 51 days; log-rank P = 0.0021). ROC analysis demonstrated accuracy in predicting PFS (AUC = 0.877). Despite differences in clinical settings and anti-EGFR inhibitors used for treatment, response prediction by the Cluster3 signature and selected miRNAs was essentially the same. Translation into a useful clinical assay requires validation in a broader setting. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. An integrated expression atlas of miRNAs and their promoters in human and mouse

    PubMed Central

    de Rie, Derek; Abugessaisa, Imad; Alam, Tanvir; Arner, Erik; Arner, Peter; Ashoor, Haitham; Åström, Gaby; Babina, Magda; Bertin, Nicolas; Burroughs, A. Maxwell; Carlisle, Ailsa J.; Daub, Carsten O.; Detmar, Michael; Deviatiiarov, Ruslan; Fort, Alexandre; Gebhard, Claudia; Goldowitz, Daniel; Guhl, Sven; Ha, Thomas J.; Harshbarger, Jayson; Hasegawa, Akira; Hashimoto, Kosuke; Herlyn, Meenhard; Heutink, Peter; Hitchens, Kelly J.; Hon, Chung Chau; Huang, Edward; Ishizu, Yuri; Kai, Chieko; Kasukawa, Takeya; Klinken, Peter; Lassmann, Timo; Lecellier, Charles-Henri; Lee, Weonju; Lizio, Marina; Makeev, Vsevolod; Mathelier, Anthony; Medvedeva, Yulia A.; Mejhert, Niklas; Mungall, Christopher J.; Noma, Shohei; Ohshima, Mitsuhiro; Okada-Hatakeyama, Mariko; Persson, Helena; Rizzu, Patrizia; Roudnicky, Filip; Sætrom, Pål; Sato, Hiroki; Severin, Jessica; Shin, Jay W.; Swoboda, Rolf K.; Tarui, Hiroshi; Toyoda, Hiroo; Vitting-Seerup, Kristoffer; Winteringham, Louise; Yamaguchi, Yoko; Yasuzawa, Kayoko; Yoneda, Misako; Yumoto, Noriko; Zabierowski, Susan; Zhang, Peter G.; Wells, Christine A.; Summers, Kim M.; Kawaji, Hideya; Sandelin, Albin; Rehli, Michael; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R. R.; de Hoon, Michiel J. L.

    2018-01-01

    MicroRNAs (miRNAs) are short non-coding RNAs with key roles in cellular regulation. As part of the fifth edition of the Functional Annotation of Mammalian Genome (FANTOM5) project, we created an integrated expression atlas of miRNAs and their promoters by deep-sequencing 492 short RNA (sRNA) libraries, with matching Cap Analysis Gene Expression (CAGE) data, from 396 human and 47 mouse RNA samples. Promoters were identified for 1,357 human and 804 mouse miRNAs and showed strong sequence conservation between species. We also found that primary and mature miRNA expression levels were correlated, allowing us to use the primary miRNA measurements as a proxy for mature miRNA levels in a total of 1,829 human and 1,029 mouse CAGE libraries. We thus provide a broad atlas of miRNA expression and promoters in primary mammalian cells, establishing a foundation for detailed analysis of miRNA expression patterns and transcriptional control regions. PMID:28829439

  14. Evaluation of the miRNA-146a and miRNA-155 Expression Levels in Patients with Oral Lichen Planus.

    PubMed

    Ahmadi-Motamayel, Fatemeh; Bayat, Zeynab; Hajilooi, Mehrdad; Shahryar-Hesami, Soroosh; Mahdavinezhad, Ali; Samie, Lida; Solgi, Ghasem

    2017-12-01

    Oral Lichen Planus (OLP) is a chronic autoimmune disease that could be considered as a potential premalignant status. To evaluate the miRNA-146a and miRNA-155 expression levels in patients with oral Lichen planus lesions compared to healthy subjects with normal oral mucosa. Forty patients with oral lichen planus and 18 healthy age and gender-matched controls were recruited in this case-control study. Oral lichen planus was diagnosed clinically and pathologically. The expression levels of two miRNAs in peripheral blood samples were determined using commercial TaqMan MicroRNA Assays. Relative quantification of gene expression was calculated by the 2-ΔΔct method. The expression levels of miRNA-146a and miRNA-155 in patients with oral Lichen planus were significantly higher than those of healthy controls. Also, a direct but insignificant correlation was found between miRNA-155 and miRNA-146a expression levels among the patient group. Our findings indicate that miRNA-146a and miRNA-155 could be potential biomarkers for the immunopathogenesis of oral lichen planus.

  15. microRNA Expression Profiling: Technologies, Insights, and Prospects.

    PubMed

    Roden, Christine; Mastriano, Stephen; Wang, Nayi; Lu, Jun

    2015-01-01

    Since the early days of microRNA (miRNA) research, miRNA expression profiling technologies have provided important tools toward both better understanding of the biological functions of miRNAs and using miRNA expression as potential diagnostics. Multiple technologies, such as microarrays, next-generation sequencing, bead-based detection system, single-molecule measurements, and quantitative RT-PCR, have enabled accurate quantification of miRNAs and the subsequent derivation of key insights into diverse biological processes. As a class of ~22 nt long small noncoding RNAs, miRNAs present unique challenges in expression profiling that require careful experimental design and data analyses. We will particularly discuss how normalization and the presence of miRNA isoforms can impact data interpretation. We will present one example in which the consideration in data normalization has provided insights that helped to establish the global miRNA expression as a tumor suppressor. Finally, we discuss two future prospects of using miRNA profiling technologies to understand single cell variability and derive new rules for the functions of miRNA isoforms.

  16. Xenopus microRNA genes are predominantly located within introns and are differentially expressed in adult frog tissues via post-transcriptional regulation

    PubMed Central

    Tang, Guo-Qing; Maxwell, E. Stuart

    2008-01-01

    The amphibian Xenopus provides a model organism for investigating microRNA expression during vertebrate embryogenesis and development. Searching available Xenopus genome databases using known human pre-miRNAs as query sequences, more than 300 genes encoding 142 Xenopus tropicalis miRNAs were identified. Analysis of Xenopus tropicalis miRNA genes revealed a predominate positioning within introns of protein-coding and nonprotein-coding RNA Pol II-transcribed genes. MiRNA genes were also located in pre-mRNA exons and positioned intergenically between known protein-coding genes. Many miRNA species were found in multiple locations and in more than one genomic context. MiRNA genes were also clustered throughout the genome, indicating the potential for the cotranscription and coordinate expression of miRNAs located in a given cluster. Northern blot analysis confirmed the expression of many identified miRNAs in both X. tropicalis and X. laevis. Comparison of X. tropicalis and X. laevis blots revealed comparable expression profiles, although several miRNAs exhibited species-specific expression in different tissues. More detailed analysis revealed that for some miRNAs, the tissue-specific expression profile of the pri-miRNA precursor was distinctly different from that of the mature miRNA profile. Differential miRNA precursor processing in both the nucleus and cytoplasm was implicated in the observed tissue-specific differences. These observations indicated that post-transcriptional processing plays an important role in regulating miRNA expression in the amphibian Xenopus. PMID:18032731

  17. Solexa Sequencing of Novel and Differentially Expressed MicroRNAs in Testicular and Ovarian Tissues in Holstein Cattle

    PubMed Central

    Huang, Jinming; Ju, Zhihua; Li, Qiuling; Hou, Qinlei; Wang, Changfa; Li, Jianbin; Li, Rongling; Wang, Lingling; Sun, Tao; Hang, Suqin; Gao, Yundong; Hou, Minghai; Zhong, Jifeng

    2011-01-01

    The posttranscriptional gene regulation mediated by microRNA plays an important role in the development and function of male and female reproductive organs and germ cells in mammals, including cattle. In the present study, we identified novel and differentially expressed miRNAs in the testis and ovary in Holstein cattle by combining the Solexa sequencing with bioinformatics. In total 100 and 104 novel pre-miRNAs were identified in testicular and ovarian tissues, encoding 122 and 136 mature miRNAs, respectively. Of these, 6 miRNAs appear to be bovine-specific. A total of 246 known miRNAs were co-expressed in the testicular and ovarian tissues. Of the known miRNAs, twenty-one testis-specific and nine ovary-specific (1-23 reads) were found. Approximately 30.5% of the known bovine miRNAs in this study were found to have >2-fold differential expression within the two respective reproductive organ systems. The putative miRNA target genes of miRNAs were involved in pathways associated with reproductive physiology. Both known and novel tissue-specific miRNAs are expressed by Real-time quantitative PCR analysis in dairy cattle. This study expands the number of miRNAs known to be expressed in cattle. The patterns of miRNAs expression differed significantly between the bovine testicular and ovarian tissues, which provide important information on sex differences in miRNA expression. Diverse miRNAs may play an important regulatory role in the development of the reproductive organs in Holstein cattle. PMID:21912509

  18. Big endothelin changes the cellular miRNA environment in TMOb osteoblasts and increases mineralization.

    PubMed

    Johnson, Michael G; Kristianto, Jasmin; Yuan, Baozhi; Konicke, Kathryn; Blank, Robert

    2014-08-01

    Endothelin (ET1) promotes the growth of osteoblastic breast and prostate cancer metastases. Conversion of big ET1 to mature ET1, catalyzed primarily by endothelin converting enzyme 1 (ECE1), is necessary for ET1's biological activity. We previously identified the Ece1, locus as a positional candidate gene for a pleiotropic quantitative trait locus affecting femoral size, shape, mineralization, and biomechanical performance. We exposed TMOb osteoblasts continuously to 25 ng/ml big ET1. Cells were grown for 6 days in growth medium and then switched to mineralization medium for an additional 15 days with or without big ET1, by which time the TMOb cells form mineralized nodules. We quantified mineralization by alizarin red staining and analyzed levels of miRNAs known to affect osteogenesis. Micro RNA 126-3p was identified by search as a potential regulator of sclerostin (SOST) translation. TMOb cells exposed to big ET1 showed greater mineralization than control cells. Big ET1 repressed miRNAs targeting transcripts of osteogenic proteins. Big ET1 increased expression of miRNAs that target transcripts of proteins that inhibit osteogenesis. Big ET1 increased expression of 126-3p 121-fold versus control. To begin to assess the effect of big ET1 on SOST production we analyzed both SOST transcription and protein production with and without the presence of big ET1 demonstrating that transcription and translation were uncoupled. Our data show that big ET1 signaling promotes mineralization. Moreover, the results suggest that big ET1's osteogenic effects are potentially mediated through changes in miRNA expression, a previously unrecognized big ET1 osteogenic mechanism.

  19. Global analysis of the ovarian microRNA transcriptome: implication for miR-2 and miR-133 regulation of oocyte meiosis in the Chinese mitten crab, Eriocheir sinensis (Crustacea:Decapoda).

    PubMed

    Song, Ya-Nan; Shi, Li-Li; Liu, Zhi-Qiang; Qiu, Gao-Feng

    2014-07-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules that downregulate gene expression by base pairing to the 3'-untranslated region (UTR) of target messenger RNAs (mRNAs). Up to now, rare information for the miRNAs is available in decapod crustaceans. Our previous studies showed that many miRNA-binding sites are present in the 3'-UTR of the cyclin B in the Chinese mitten crab Eriocheir sinensis, suggesting that the translation or post-transcription of the crab cyclin B might be regulated by miRNAs during meiosis of oocyte. To identify ovarian miRNAs in the mitten crab, ovarian small RNAs were subjected to high-throughput sequencing using an Illumina Genome Analyzer. Of 14,631,328 reads, 55 known miRNAs representing 44 miRNA families were identified and 136 novel miRNA candidates were predicted. The 5' seed sequences of four miRNAs, miR-2, miR-7, miR-79 and miR-133, were revealed to complementary to miRNA binding sites in 3'-UTR of the cyclin B. Quantitative real time PCR analysis showed that miR-2 and miR-133 are much more abundant in the first metaphase (MI) of meiosis than in germinal vesicle (GV) stage. But their increasing expressions are independent of induction of gonadotropin-releasing hormone (GnRH). Further expression analysis using double-luciferase reporter genes assay showed that miR-2 and miR-133 can downregulate the 3'-UTRs of the crab cyclin B gene, indicating that they could inhibit the translation of the cyclin B. Western blot analysis confirmed that cyclin B protein is completely disappeared in fertilized egg at the metaphase-anaphase transition of meiosis I, suggesting that miR-2 and miR-133 could function in destruction of cyclin B near the end of MI. A high number of miRNAs have been identified from the crab ovarian small RNA transcriptom for the first time. miR-2 and miR-133 exhibit differential expression during the meiotic maturation of the oocytes and have activity in regulating the 3'-UTR of the crab cyclin B gene. This result is inconsistent with recent finding that miRNA activity is globally suppressed in mouse oocytes.

  20. Identification of miRNAs Involved in Stolon Formation in Tulipa edulis by High-Throughput Sequencing

    PubMed Central

    Zhu, Zaibiao; Miao, Yuanyuan; Guo, Qiaosheng; Zhu, Yunhao; Yang, Xiaohua; Sun, Yuan

    2016-01-01

    MicroRNAs (miRNAs) are a class of endogenous, non-coding small RNAs that play an important role in transcriptional and post-transcriptional gene regulation. However, the sequence information and functions of miRNAs are still unexplored in Tulipa edulis. In this study, high-throughput sequencing was used to identify small RNAs in stolon formation stages (stage 1, 2, and 3) in T. edulis. A total of 12,890,912, 12,182,122, and 12,061,434 clean reads were obtained from stage 1, 2, and 3, respectively. Among the reads, 88 conserved miRNAs and 70 novel miRNAs were identified. Target prediction of 122 miRNAs resulted in 531 potential target genes. Nr, Swiss-Prot, GO, COG, and KEGG annotations revealed that these target genes participate in many biologic and metabolic processes. Moreover, qRT-PCR was performed to analyze the expression levels of the miRNAs and target genes in stolon formation. The results revealed that miRNAs play a key role in T. edulis stolon formation. PMID:27446103

  1. Identification of miRNAs Involved in Stolon Formation in Tulipa edulis by High-Throughput Sequencing.

    PubMed

    Zhu, Zaibiao; Miao, Yuanyuan; Guo, Qiaosheng; Zhu, Yunhao; Yang, Xiaohua; Sun, Yuan

    2016-01-01

    MicroRNAs (miRNAs) are a class of endogenous, non-coding small RNAs that play an important role in transcriptional and post-transcriptional gene regulation. However, the sequence information and functions of miRNAs are still unexplored in Tulipa edulis. In this study, high-throughput sequencing was used to identify small RNAs in stolon formation stages (stage 1, 2, and 3) in T. edulis. A total of 12,890,912, 12,182,122, and 12,061,434 clean reads were obtained from stage 1, 2, and 3, respectively. Among the reads, 88 conserved miRNAs and 70 novel miRNAs were identified. Target prediction of 122 miRNAs resulted in 531 potential target genes. Nr, Swiss-Prot, GO, COG, and KEGG annotations revealed that these target genes participate in many biologic and metabolic processes. Moreover, qRT-PCR was performed to analyze the expression levels of the miRNAs and target genes in stolon formation. The results revealed that miRNAs play a key role in T. edulis stolon formation.

  2. The Effect of microRNAs in the Regulation of Human CYP3A4: a Systematic Study using a Mathematical Model

    NASA Astrophysics Data System (ADS)

    Wei, Zhiyun; Jiang, Songshan; Zhang, Yiting; Wang, Xiaofei; Peng, Xueling; Meng, Chunjie; Liu, Yichen; Wang, Honglian; Guo, Luo; Qin, Shengying; He, Lin; Shao, Fengmin; Zhang, Lirong; Xing, Qinghe

    2014-03-01

    CYP3A4 metabolizes more than 50% of the drugs on the market. The large inter-individual differences of CYP3A4 expression may contribute to the variability of human drug responses. Post-transcriptional regulation of CYP3A4 is poorly understood, whereas transcriptional regulation has been studied much more thoroughly. In this study, we used multiple software programs to predict miRNAs that might bind to CYP3A4 and identified 112 potentially functional miRNAs. Then a luciferase reporter system was used to assess the effect of the overexpression of each potentially functional miRNA in HEK 293T cells. Fourteen miRNAs that significantly decreased reporter activity were measured in human liver samples (N = 27) as candidate miRNAs. To establish a more effective way to analyze in vivo data for miRNA candidates, the relationship between functional miRNA and target mRNA was modeled mathematically. Taking advantage of this model, we found that hsa-miR-577, hsa-miR-1, hsa-miR-532-3p and hsa-miR-627 could significantly downregulate the translation efficiency of CYP3A4 mRNA in liver. This study used in silico, in vitro and in vivo methods to progressively screen functional miRNAs for CYP3A4 and to enhance our understanding of molecular events underlying the large inter-individual differences of CYP3A4 expression in human populations.

  3. MicroRNA Expression-Based Model Indicates Event-Free Survival in Pediatric Acute Myeloid Leukemia

    PubMed Central

    Lim, Emilia L.; Trinh, Diane L.; Ries, Rhonda E.; Wang, Jim; Gerbing, Robert B.; Ma, Yussanne; Topham, James; Hughes, Maya; Pleasance, Erin; Mungall, Andrew J.; Moore, Richard; Zhao, Yongjun; Aplenc, Richard; Sung, Lillian; Kolb, E. Anders; Gamis, Alan; Smith, Malcolm; Gerhard, Daniela S.; Alonzo, Todd A.; Meshinchi, Soheil; Marra, Marco A.

    2017-01-01

    Purpose Children with acute myeloid leukemia (AML) whose disease is refractory to standard induction chemotherapy therapy or who experience relapse after initial response have dismal outcomes. We sought to comprehensively profile pediatric AML microRNA (miRNA) samples to identify dysregulated genes and assess the utility of miRNAs for improved outcome prediction. Patients and Methods To identify miRNA biomarkers that are associated with treatment failure, we performed a comprehensive sequence-based characterization of the pediatric AML miRNA landscape. miRNA sequencing was performed on 1,362 samples—1,303 primary, 22 refractory, and 37 relapse samples. One hundred sixty-four matched samples—127 primary and 37 relapse samples—were analyzed by using RNA sequencing. Results By using penalized lasso Cox proportional hazards regression, we identified 36 miRNAs the expression levels at diagnosis of which were highly associated with event-free survival. Combined expression of the 36 miRNAs was used to create a novel miRNA-based risk classification scheme (AMLmiR36). This new miRNA-based risk classifier identifies those patients who are at high risk (hazard ratio, 2.830; P ≤ .001) or low risk (hazard ratio, 0.323; P ≤ .001) of experiencing treatment failure, independent of conventional karyotype or mutation status. The performance of AMLmiR36 was independently assessed by using 878 patients from two different clinical trials (AAML0531 and AAML1031). Our analysis also revealed that miR-106a-363 was abundantly expressed in relapse and refractory samples, and several candidate targets of miR-106a-5p were involved in oxidative phosphorylation, a process that is suppressed in treatment-resistant leukemic cells. Conclusion To assess the utility of miRNAs for outcome prediction in patients with pediatric AML, we designed and validated a miRNA-based risk classification scheme. We also hypothesized that the abundant expression of miR-106a could increase treatment resistance via modulation of genes that are involved in oxidative phosphorylation. PMID:29068783

  4. Time-sequential changes of differentially expressed miRNAs during the process of anterior lumbar interbody fusion using equine bone protein extract, rhBMP-2 and autograft

    NASA Astrophysics Data System (ADS)

    Chen, Da-Fu; Zhou, Zhi-Yu; Dai, Xue-Jun; Gao, Man-Man; Huang, Bao-Ding; Liang, Tang-Zhao; Shi, Rui; Zou, Li-Jin; Li, Hai-Sheng; Bünger, Cody; Tian, Wei; Zou, Xue-Nong

    2014-03-01

    The precise mechanism of bone regeneration in different bone graft substitutes has been well studied in recent researches. However, miRNAs regulation of the bone formation has been always mysterious. We developed the anterior lumbar interbody fusion (ALIF) model in pigs using equine bone protein extract (BPE), recombinant human bone morphogenetic protein-2 (rhBMP-2) on an absorbable collagen sponge (ACS), and autograft as bone graft substitute, respectively. The miRNA and gene expression profiles of different bone graft materials were examined using microarray technology and data analysis, including self-organizing maps, KEGG pathway and Biological process GO analyses. We then jointly analyzed miRNA and mRNA profiles of the bone fusion tissue at different time points respectively. Results showed that miRNAs, including let-7, miR-129, miR-21, miR-133, miR-140, miR-146, miR-184, and miR-224, were involved in the regulation of the immune and inflammation response, which provided suitable inflammatory microenvironment for bone formation. At late stage, several miRNAs directly regulate SMAD4, Estrogen receptor 1 and 5-hydroxytryptamine (serotonin) receptor 2C for bone formation. It can be concluded that miRNAs play important roles in balancing the inflammation and bone formation.

  5. MicroRNA-guided prioritization of genome-wide association signals reveals the importance of microRNA-target gene networks for complex traits in cattle.

    PubMed

    Fang, Lingzhao; Sørensen, Peter; Sahana, Goutam; Panitz, Frank; Su, Guosheng; Zhang, Shengli; Yu, Ying; Li, Bingjie; Ma, Li; Liu, George; Lund, Mogens Sandø; Thomsen, Bo

    2018-06-19

    MicroRNAs (miRNA) are key modulators of gene expression and so act as putative fine-tuners of complex phenotypes. Here, we hypothesized that causal variants of complex traits are enriched in miRNAs and miRNA-target networks. First, we conducted a genome-wide association study (GWAS) for seven functional and milk production traits using imputed sequence variants (13~15 million) and >10,000 animals from three dairy cattle breeds, i.e., Holstein (HOL), Nordic red cattle (RDC) and Jersey (JER). Second, we analyzed for enrichments of association signals in miRNAs and their miRNA-target networks. Our results demonstrated that genomic regions harboring miRNA genes were significantly (P < 0.05) enriched with GWAS signals for milk production traits and mastitis, and that enrichments within miRNA-target gene networks were significantly higher than in random gene-sets for the majority of traits. Furthermore, most between-trait and across-breed correlations of enrichments with miRNA-target networks were significantly greater than with random gene-sets, suggesting pleiotropic effects of miRNAs. Intriguingly, genes that were differentially expressed in response to mammary gland infections were significantly enriched in the miRNA-target networks associated with mastitis. All these findings were consistent across three breeds. Collectively, our observations demonstrate the importance of miRNAs and their targets for the expression of complex traits.

  6. Overexpression of miR-142-5p and miR-155 in Gastric Mucosa-Associated Lymphoid Tissue (MALT) Lymphoma Resistant to Helicobacter pylori Eradication

    PubMed Central

    Saito, Yoshimasa; Suzuki, Hidekazu; Tsugawa, Hitoshi; Imaeda, Hiroyuki; Matsuzaki, Juntaro; Hirata, Kenro; Hosoe, Naoki; Nakamura, Masahiko; Mukai, Makio; Saito, Hidetsugu; Hibi, Toshifumi

    2012-01-01

    microRNAs (miRNAs) are small non-coding RNAs that can function as endogenous silencers of target genes and play critical roles in human malignancies. To investigate the molecular pathogenesis of gastric mucosa-associated lymphoid tissue (MALT) lymphoma, the miRNA expression profile was analyzed. miRNA microarray analysis with tissue specimens from gastric MALT lymphomas and surrounding non-tumor mucosae revealed that a hematopoietic-specific miRNA miR-142 and an oncogenic miRNA miR-155 were overexpressed in MALT lymphoma lesions. The expression levels of miR-142-5p and miR-155 were significantly increased in MALT lymphomas which do not respond to Helicobacter pylori (H. pylori) eradication. The expression levels of miR-142-5p and miR-155 were associated with the clinical courses of gastric MALT lymphoma cases. Overexpression of miR-142-5p and miR-155 was also observed in Helicobacter heilmannii-infected C57BL/6 mice, an animal model of gastric MALT lymphoma. In addition, miR-142-5p and miR-155 suppress the proapoptotic gene TP53INP1 as their target. The results of this study indicate that overexpression of miR-142-5p and miR-155 plays a critical role in the pathogenesis of gastric MALT lymphoma. These miRNAs might have potential application as therapeutic targets and novel biomarkers for gastric MALT lymphoma. PMID:23209550

  7. Characterization of MicroRNA Expression Profiles and Identification of Potential Biomarkers in Leprosy.

    PubMed

    Jorge, Karina T O S; Souza, Renan P; Assis, Marieta T A; Araújo, Marcelo G; Locati, Massimo; Jesus, Amélia M R; Dias Baptista, Ida M F; Lima, Cristiano X; Teixeira, Antônio L; Teixeira, Mauro M; Soriani, Frederico M

    2017-05-01

    Leprosy is an important cause of disability in the developing world. Early diagnosis is essential to allow for cure and to interrupt transmission of this infection. MicroRNAs (miRNAs) are important factors for host-pathogen interaction and they have been identified as biomarkers for various infectious diseases. The expression profile of 377 microRNAs were analyzed by TaqMan low-density array (TLDA) in skin lesions of tuberculoid and lepromatous leprosy patients as well as skin specimens from healthy controls. In a second step, 16 microRNAs were selected for validation experiments with reverse transcription-quantitative PCR (qRT-PCR) in skin samples from new individuals. Principal-component analysis followed by logistic regression model and receiver operating characteristic (ROC) curve analyses were performed to evaluate the diagnostic potential of selected miRNAs. Four patterns of differential expression were identified in the TLDA experiment, suggesting a diagnostic potential of miRNAs in leprosy. After validation experiments, a combination of four miRNAs (miR-101, miR-196b, miR-27b, and miR-29c) was revealed as able to discriminate between healthy control and leprosy patients with 80% sensitivity and 91% specificity. This set of miRNAs was also able to discriminate between lepromatous and tuberculoid patients with a sensitivity of 83% and 80% specificity. In this work, it was possible to identify a set of miRNAs with good diagnostic potential for leprosy. Copyright © 2017 American Society for Microbiology.

  8. Cloning and analysis of fetal ovary microRNAs in cattle.

    PubMed

    Tripurani, Swamy K; Xiao, Caide; Salem, Mohamed; Yao, Jianbo

    2010-07-01

    Ovarian folliculogenesis and early embryogenesis are complex processes, which require tightly regulated expression and interaction of a multitude of genes. Small endogenous RNA molecules, termed microRNAs (miRNAs), are involved in the regulation of gene expression during folliculogenesis and early embryonic development. To identify miRNAs in bovine oocytes/ovaries, a bovine fetal ovary miRNA library was constructed. Sequence analysis of random clones from the library identified 679 miRNA sequences, which represent 58 distinct bovine miRNAs. Of these distinct miRNAs, 42 are known bovine miRNAs present in the miRBase database and the remaining 16 miRNAs include 15 new bovine miRNAs that are homologous to miRNAs identified in other species, and one novel miRNA, which does not match any miRNAs in the database. The precursor sequences for 14 of the new 15 miRNAs as well as the novel miRNA were identified from the bovine genome database and their hairpin structures were predicted. Expression analysis of the 58 miRNAs in fetal ovaries in comparison to somatic tissue pools identified 8 miRNAs predominantly expressed in fetal ovaries. Further analysis of the eight miRNAs in germinal vesicle (GV) stage oocytes identified two miRNAs (bta-mir424 and bta-mir-10b), that are highly abundant in GV oocytes. Both miRNAs show similar expression patterns during oocyte maturation and preimplantation development of bovine embryos, being abundant in GV and MII stage oocytes, as well as in early stage embryos (until 16-cell stage). The amount of the novel miRNA is relatively small in oocytes and early cleavage embryos but greater in blastocysts, suggesting a role of this miRNA in blastocyst cell differentiation. Copyright 2010 Elsevier B.V. All rights reserved.

  9. miRNA profiling of high, low and non-producing CHO cells during biphasic fed-batch cultivation reveals process relevant targets for host cell engineering.

    PubMed

    Stiefel, Fabian; Fischer, Simon; Sczyrba, Alexander; Otte, Kerstin; Hesse, Friedemann

    2016-05-10

    Fed-batch cultivation of recombinant Chinese hamster ovary (CHO) cell lines is one of the most widely used production modes for commercial manufacturing of recombinant protein therapeutics. Furthermore, fed-batch cultivations are often conducted as biphasic processes where the culture temperature is decreased to maximize volumetric product yields. However, it remains to be elucidated which intracellular regulatory elements actually control the observed pro-productive phenotypes. Recently, several studies have revealed microRNAs (miRNAs) to be important molecular switches of cell phenotypes. In this study, we analyzed miRNA profiles of two different recombinant CHO cell lines (high and low producer), and compared them to a non-producing CHO DG44 host cell line during fed-batch cultivation at 37°C versus a temperature shift to 30°C. Taking advantage of next-generation sequencing combined with cluster, correlation and differential expression analyses, we could identify 89 different miRNAs, which were differentially expressed in the different cell lines and cultivation phases. Functional validation experiments using 19 validated target miRNAs confirmed that these miRNAs indeed induced changes in process relevant phenotypes. Furthermore, computational miRNA target prediction combined with functional clustering identified putative target genes and cellular pathways, which might be regulated by these miRNAs. This study systematically identified novel target miRNAs during different phases and conditions of a biphasic fed-batch production process and functionally evaluated their potential for host cell engineering. Copyright © 2016. Published by Elsevier B.V.

  10. miRNA-15a, miRNA-15b, and miRNA-499 are Reduced in Erythrocytes of Pre-Diabetic African-American Adults.

    PubMed

    Fluitt, Maurice B; Kumari, Namita; Nunlee-Bland, Gail; Nekhai, Sergei; Gambhir, Kanwal K

    2016-12-01

    The use of circulatory miRNAs as biomarkers and therapeutic targets for T2DM is an explosive area of study. However, no study has investigated circulatory miRNA expression exclusively in African-American adults. The aim of this study was to identify the expression of nine selected miRNAs in erythrocytes of pre-diabetic and type 2 diabetic African-American adults. Patients were recruited from the Howard University Hospital Diabetes Treatment Center following an 8 to 10 hour overnight fast. Expression of the nine selected miRNAs (miRNA-499, miRNA-146, miRNA-126, miRNA-223, miRNA-15a, miRNA-15b, miRNA-224, miRNA-326, and miRNA-375) was evaluated using quantitative real time PCR. miRNA-15a, miRNA-15b, and miRNA-499 were significantly reduced in erythrocytes of pre-diabetic African-American adults. In the T2DM group, we found significant correlations between miRNA-15a and BMI (r=0.59, p=0.04), miRNA-15a and weight (r=0.52, p=0.01), and miRNA-15b and diastolic blood pressure (r=-0.52, p=0.02). In the pre-diabetic group, we found significant correlations between miRNA-15b and weight (r=0.90, p=0.02) and miRNA-499 and HbA1c (r=-0.89, p=0.01). To our knowledge, this is the first study investigating miRNA expression in erythrocytes of non-diabetic high-risk obese--pre-diabetic and type 2 diabetic African-American adults. The findings of this study are consistent with previous reports of reduced expression of miRNA-15a, miRNA-15b, and miRNA-499 in human plasma or serum and in animal models. The current findings support the use of circulating miRNA-15a, miRNA-15b, and miRNA-499 as potential biomarkers for T2DM in African-American adults.

  11. miRNA-15a, miRNA-15b, and miRNA-499 are Reduced in Erythrocytes of Pre-Diabetic African-American Adults

    PubMed Central

    Fluitt, Maurice B.; Kumari, Namita; Nunlee-Bland, Gail; Nekhai, Sergei; Gambhir, Kanwal K.

    2017-01-01

    Aims The use of circulatory miRNAs as biomarkers and therapeutic targets for T2DM is an explosive area of study. However, no study has investigated circulatory miRNA expression exclusively in African-American adults. The aim of this study was to identify the expression of nine selected miRNAs in erythrocytes of pre-diabetic and type 2 diabetic African-American adults. Main Methods Patients were recruited from the Howard University Hospital Diabetes Treatment Center following an 8 to 10 hour overnight fast. Expression of the nine selected miRNAs (miRNA-499, miRNA-146, miRNA-126, miRNA-223, miRNA-15a, miRNA-15b, miRNA-224, miRNA-326, and miRNA-375) was evaluated using quantitative real time PCR. Key Findings miRNA-15a, miRNA-15b, and miRNA-499 were significantly reduced in erythrocytes of pre-diabetic African-American adults. In the T2DM group, we found significant correlations between miRNA-15a and BMI (r=0.59, p=0.04), miRNA-15a and weight (r=0.52, p=0.01), and miRNA-15b and diastolic blood pressure (r=−0.52, p=0.02). In the pre-diabetic group, we found significant correlations between miRNA-15b and weight (r=0.90, p=0.02) and miRNA-499 and HbA1c (r=−0.89, p=0.01). Significance To our knowledge, this is the first study investigating miRNA expression in erythrocytes of non-diabetic high-risk obese--pre-diabetic and type 2 diabetic African-American adults. The findings of this study are consistent with previous reports of reduced expression of miRNA-15a, miRNA-15b, and miRNA-499 in human plasma or serum and in animal models. The current findings support the use of circulating miRNA-15a, miRNA-15b, and miRNA-499 as potential biomarkers for T2DM in African-American adults. PMID:29399662

  12. Small RNA Profiling of Two Important Cultivars of Banana and Overexpression of miRNA156 in Transgenic Banana Plants

    PubMed Central

    Ganapathi, Thumballi R.

    2015-01-01

    Micro RNAs (miRNAs) are a class of non-coding, short RNAs having important roles in regulation of gene expression. Although plant miRNAs have been studied in detail in some model plants, less is known about these miRNAs in important fruit plants like banana. miRNAs have pivotal roles in plant growth and development, and in responses to diverse biotic and abiotic stress stimuli. Here, we have analyzed the small RNA expression profiles of two different economically significant banana cultivars by using high-throughput sequencing technology. We identified a total of 170 and 244 miRNAs in the two libraries respectively derived from cv. Grand Naine and cv. Rasthali leaves. In addition, several cultivar specific microRNAs along with their putative target transcripts were also detected in our studies. To validate our findings regarding the small RNA profiles, we also undertook overexpression of a common microRNA, MusamiRNA156 in transgenic banana plants. The transgenic plants overexpressing the stem-loop sequence derived from MusamiRNA156 gene were stunted in their growth together with peculiar changes in leaf anatomy. These results provide a foundation for further investigations into important physiological and metabolic pathways operational in banana in general and cultivar specific traits in particular. PMID:25962076

  13. MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics

    PubMed Central

    Deiuliis, J A

    2016-01-01

    The prevalence of overweight and obesity in developed and developing countries has greatly increased the risk of insulin resistance and type 2 diabetes mellitus. It is evident from human and animal studies that obesity alters microRNA (miRNA) expression in metabolically important organs, and that miRNAs are involved in changes to normal physiology, acting as mediators of disease. miRNAs regulate multiple pathways including insulin signaling, immune-mediated inflammation, adipokine expression, adipogenesis, lipid metabolism, and food intake regulation. Thus, miRNA-based therapeutics represent an innovative and attractive treatment modality, with non-human primate studies showing great promise. In addition, miRNA measures in plasma or bodily fluids may be used as disease biomarkers and predictors of metabolic disease in humans. This review analyzes the role of miRNAs in obesity and insulin resistance, focusing on the miR-17/92, miR-143-145, miR-130, let-7, miR-221/222, miR-200, miR-223, miR-29 and miR-375 families, as well as miRNA changes by relevant tissue (adipose, liver and skeletal muscle). Further, the current and future applications of miRNA-based therapeutics and diagnostics in metabolic disease are discussed. PMID:26311337

  14. Identification and consequences of miRNA-target interactions--beyond repression of gene expression.

    PubMed

    Hausser, Jean; Zavolan, Mihaela

    2014-09-01

    Comparative genomics analyses and high-throughput experimental studies indicate that a microRNA (miRNA) binds to hundreds of sites across the transcriptome. Although the knockout of components of the miRNA biogenesis pathway has profound phenotypic consequences, most predicted miRNA targets undergo small changes at the mRNA and protein levels when the expression of the miRNA is perturbed. Alternatively, miRNAs can establish thresholds in and increase the coherence of the expression of their target genes, as well as reduce the cell-to-cell variability in target gene expression. Here, we review the recent progress in identifying miRNA targets and the emerging paradigms of how miRNAs shape the dynamics of target gene expression.

  15. MicroRNA profiling in the dentate gyrus in epileptic rats: The role of miR-187-3p.

    PubMed

    Zhang, Suya; Kou, Yubin; Hu, Chunmei; Han, Yan

    2017-06-01

    This study aimed to explore the role of aberrant miRNA expression in epilepsy and to identify more potential genes associated with epileptogenesis.The miRNA expression profile of GSE49850, which included 20 samples from the rat epileptic dentate gyrus at 7, 14, 30, and 90 days after electrical stimulation and 20 additional samples from sham time-matched controls, was downloaded from the Gene Expression Omnibus database. The significantly differentially expressed miRNAs were identified in stimulated samples at each time point compared to time-matched controls, respectively. The target genes of consistently differentially expressed miRNAs were screened from miRDB and microRNA.org databases, followed by Gene Ontology (GO) and pathway enrichment analysis and regulatory network construction. The overlapping target genes for consistently differentially expressed miRNAs were also identified from these 2 databases. Furthermore, the potential binding sites of miRNAs and their target genes were analyzed.Rno-miR-187-3p was consistently downregulated in stimulated groups compared with time-matched controls. The predicted target genes of rno-miR-187-3p were enriched in different GO terms and pathways. In addition, 7 overlapping target genes of rno-miR-187-3p were identified, including NFS1, PAQR4, CAND1, DCLK1, PRKAR2A, AKAP3, and KCNK10. These 7 overlapping target genes were determined to have a different number of matched binding sites with rno-miR-187-3p.Our study suggests that miR-187-3p may play an important role in epilepsy development and progression via regulating numerous target genes, such as NFS1, CAND1, DCLK1, AKAP3, and KCNK10. Determining the underlying mechanism of the role of miR-187-3p in epilepsy may make it a potential therapeutic option.

  16. Evolutionary conserved microRNAs are ubiquitously expressed compared to tick-specific miRNAs in the cattle tick Rhipicephalus (Boophilus) microplus

    PubMed Central

    2011-01-01

    Background MicroRNAs (miRNAs) are small non-coding RNAs that act as regulators of gene expression in eukaryotes modulating a large diversity of biological processes. The discovery of miRNAs has provided new opportunities to understand the biology of a number of species. The cattle tick, Rhipicephalus (Boophilus) microplus, causes significant economic losses in cattle production worldwide and this drives us to further understand their biology so that effective control measures can be developed. To be able to provide new insights into the biology of cattle ticks and to expand the repertoire of tick miRNAs we utilized Illumina technology to sequence the small RNA transcriptomes derived from various life stages and selected organs of R. microplus. Results To discover and profile cattle tick miRNAs we employed two complementary approaches, one aiming to find evolutionary conserved miRNAs and another focused on the discovery of novel cattle-tick specific miRNAs. We found 51 evolutionary conserved R. microplus miRNA loci, with 36 of these previously found in the tick Ixodes scapularis. The majority of the R. microplus miRNAs are perfectly conserved throughout evolution with 11, 5 and 15 of these conserved since the Nephrozoan (640 MYA), Protostomian (620MYA) and Arthropoda (540 MYA) ancestor, respectively. We then employed a de novo computational screening for novel tick miRNAs using the draft genome of I. scapularis and genomic contigs of R. microplus as templates. This identified 36 novel R. microplus miRNA loci of which 12 were conserved in I. scapularis. Overall we found 87 R. microplus miRNA loci, of these 15 showed the expression of both miRNA and miRNA* sequences. R. microplus miRNAs showed a variety of expression profiles, with the evolutionary-conserved miRNAs mainly expressed in all life stages at various levels, while the expression of novel tick-specific miRNAs was mostly limited to particular life stages and/or tick organs. Conclusions Anciently acquired miRNAs in the R. microplus lineage not only tend to accumulate the least amount of nucleotide substitutions as compared to those recently acquired miRNAs, but also show ubiquitous expression profiles through out tick life stages and organs contrasting with the restricted expression profiles of novel tick-specific miRNAs. PMID:21699734

  17. MicroRNAs 142-3p, miR-155 and miR-203 Are Deregulated in Gastric MALT Lymphomas Compared to Chronic Gastritis.

    PubMed

    Fernández, Concepción; Bellosillo, Beatriz; Ferraro, Mariana; Seoane, Agustín; Sánchez-González, Blanca; Pairet, Silvia; Pons, Aina; Barranco, Luis; Vela, María Carmen; Gimeno, Eva; Colomo, Lluís; Besses, Carles; Navarro, Alfons; Salar, Antonio

    2017-01-02

    Over the last years, our knowledge on pathogenesis of gastric MALT lymphoma has greatly improved, but its morphological diagnosis is still hampered by overlapping histological features with advanced chronic gastritis. MicroRNAs are deregulated in lymphomas, but their role and usefulness in gastric MALT lymphoma has not been extensively investigated. We analyzed the expression of 384 miRNAs using TaqMan microRNA assay in a training series of 10 gastric MALT lymphomas, 3 chronic gastritis and 2 reactive lymph nodes. Then, significantly deregulated miRNAs were individually assessed by real-time PCR in a validation series of 16 gastric MALT lymphomas and 12 chronic gastritis. Gastric MALT lymphoma is characterized by a specific miRNA expression profile. Among the differentially expressed miRNAs, a significant overexpression of miR-142-3p and miR-155 and down-regulation of miR-203 was observed in gastric MALT lymphoma when compared to chronic gastritis. miR-142-3p, miR-155 and miR-203 expression levels might be helpful biomarkers for the differential diagnosis between gastric MALT lymphomas and chronic gastritis. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. MicroRNA221-3p modulates Ets-1 expression in synovial fibroblasts from patients with osteoarthritis of temporomandibular joint.

    PubMed

    Xu, J; Liu, Y; Deng, M; Li, J; Cai, H; Meng, Q; Fang, W; Long, X; Ke, J

    2016-11-01

    This study aimed to screen differential expression of microRNAs (miRNAs), and investigate function of the specifically selected miRNA in synovial fibroblasts from patients suffering osteoarthritis of temporomandibular joint (TMJOA). MiRNA microarray was used to select differentially expressed miRNAs between TMJOA and normal synovial fibroblasts. The expression of screened miRNA221-3p was quantified using real-time PCR, and its specific target gene was predicted by bioinformatics. After transfection of miRNA221-3p mimics or inhibitor into synovial fibroblasts, the expression of v-Ets avian erythroblastosis virus E26 oncogene homolog 1 (Ets-1) was detected by immunohistochemistry, real-time PCR and Western blot, respectively. Dual luciferase activity was performed to identify the direct regulation of miRNA221-3p on Ets-1. Interlukin-1β (IL-1β) mimics an inflammatory situation. In TMJOA synovial fibroblasts, eight miRNAs were up-regulated and six miRNAs were down-regulated. MiRNA221-3p was the most down-expressed. A sequence in the 3'-untranslated (3'-UTR) of Ets-1 complementary to the seed sequence of miRNA221-3p. Elevated expression of Ets-1 associated with attenuation of miRNA221-3p. Over-expression of miRNA221-3p suppressed the activity of a reporter construct containing the 3'-UTR of Ets-1 transcript and inhibited the expression of Ets-1 as well as its downstream molecules, matrix metalloproteinase 1 (MMP1) and MMP9 in TMJOA synovial fibroblasts. IL-1β suppressed the expression of miRNA221-3p in both a dose-dependent and time-dependent manner. The reduction of miRNA221-3p in synovial fibroblasts, attributed from abundance of IL-1β in inflamed circumstance, induces Ets-1 up-regulation and then, initiates MMP1 and MMP9 secretion, thereby leading to continuously pathological development in TMJOA. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  19. Identification of novel, highly expressed retroviral microRNAs in cells infected by bovine foamy virus.

    PubMed

    Whisnant, Adam W; Kehl, Timo; Bao, Qiuying; Materniak, Magdalena; Kuzmak, Jacek; Löchelt, Martin; Cullen, Bryan R

    2014-05-01

    While numerous viral microRNAs (miRNAs) expressed by DNA viruses, especially herpesvirus family members, have been reported, there have been very few reports of miRNAs derived from RNA viruses. Here we describe three miRNAs expressed by bovine foamy virus (BFV), a member of the spumavirus subfamily of retroviruses, in both BFV-infected cultured cells and BFV-infected cattle. All three viral miRNAs are initially expressed in the form of an ∼ 122-nucleotide (nt) pri-miRNA, encoded within the BFV long terminal repeat U3 region, that is subsequently cleaved to generate two pre-miRNAs that are then processed to yield three distinct, biologically active miRNAs. The BFV pri-miRNA is transcribed by RNA polymerase III, and the three resultant mature miRNAs were found to contribute a remarkable ∼ 70% of all miRNAs expressed in BFV-infected cells. These data document the second example of a retrovirus that is able to express viral miRNAs by using embedded proviral RNA polymerase III promoters. Foamy viruses are a ubiquitous family of nonpathogenic retroviruses that have potential as gene therapy vectors in humans. Here we demonstrate that bovine foamy virus (BFV) expresses high levels of three viral microRNAs (miRNAs) in BFV-infected cells in culture and also in infected cattle. The BFV miRNAs are unusual in that they are initially transcribed by RNA polymerase III as a single, ∼ 122-nt pri-miRNA that is subsequently processed to release three fully functional miRNAs. The observation that BFV, a foamy virus, is able to express viral miRNAs in infected cells adds to emerging evidence that miRNA expression is a common, albeit clearly not universal, property of retroviruses and suggests that these miRNAs may exert a significant effect on viral replication in vivo.

  20. Identification of Novel, Highly Expressed Retroviral MicroRNAs in Cells Infected by Bovine Foamy Virus

    PubMed Central

    Whisnant, Adam W.; Kehl, Timo; Bao, Qiuying; Materniak, Magdalena; Kuzmak, Jacek; Löchelt, Martin

    2014-01-01

    ABSTRACT While numerous viral microRNAs (miRNAs) expressed by DNA viruses, especially herpesvirus family members, have been reported, there have been very few reports of miRNAs derived from RNA viruses. Here we describe three miRNAs expressed by bovine foamy virus (BFV), a member of the spumavirus subfamily of retroviruses, in both BFV-infected cultured cells and BFV-infected cattle. All three viral miRNAs are initially expressed in the form of an ∼122-nucleotide (nt) pri-miRNA, encoded within the BFV long terminal repeat U3 region, that is subsequently cleaved to generate two pre-miRNAs that are then processed to yield three distinct, biologically active miRNAs. The BFV pri-miRNA is transcribed by RNA polymerase III, and the three resultant mature miRNAs were found to contribute a remarkable ∼70% of all miRNAs expressed in BFV-infected cells. These data document the second example of a retrovirus that is able to express viral miRNAs by using embedded proviral RNA polymerase III promoters. IMPORTANCE Foamy viruses are a ubiquitous family of nonpathogenic retroviruses that have potential as gene therapy vectors in humans. Here we demonstrate that bovine foamy virus (BFV) expresses high levels of three viral microRNAs (miRNAs) in BFV-infected cells in culture and also in infected cattle. The BFV miRNAs are unusual in that they are initially transcribed by RNA polymerase III as a single, ∼122-nt pri-miRNA that is subsequently processed to release three fully functional miRNAs. The observation that BFV, a foamy virus, is able to express viral miRNAs in infected cells adds to emerging evidence that miRNA expression is a common, albeit clearly not universal, property of retroviruses and suggests that these miRNAs may exert a significant effect on viral replication in vivo. PMID:24522910

  1. Analysis of miRNA and mRNA Expression Profiles Highlights Alterations in Ionizing Radiation Response of Human Lymphocytes under Modeled Microgravity

    PubMed Central

    Casara, Silvia; Sales, Gabriele; Lanfranchi, Gerolamo; Celotti, Lucia; Mognato, Maddalena

    2012-01-01

    Background Ionizing radiation (IR) can be extremely harmful for human cells since an improper DNA-damage response (DDR) to IR can contribute to carcinogenesis initiation. Perturbations in DDR pathway can originate from alteration in the functionality of the microRNA-mediated gene regulation, being microRNAs (miRNAs) small noncoding RNA that act as post-transcriptional regulators of gene expression. In this study we gained insight into the role of miRNAs in the regulation of DDR to IR under microgravity, a condition of weightlessness experienced by astronauts during space missions, which could have a synergistic action on cells, increasing the risk of radiation exposure. Methodology/Principal Findings We analyzed miRNA expression profile of human peripheral blood lymphocytes (PBL) incubated for 4 and 24 h in normal gravity (1 g) and in modeled microgravity (MMG) during the repair time after irradiation with 0.2 and 2Gy of γ-rays. Our results show that MMG alters miRNA expression signature of irradiated PBL by decreasing the number of radio-responsive miRNAs. Moreover, let-7i*, miR-7, miR-7-1*, miR-27a, miR-144, miR-200a, miR-598, miR-650 are deregulated by the combined action of radiation and MMG. Integrated analyses of miRNA and mRNA expression profiles, carried out on PBL of the same donors, identified significant miRNA-mRNA anti-correlations of DDR pathway. Gene Ontology analysis reports that the biological category of “Response to DNA damage” is enriched when PBL are incubated in 1 g but not in MMG. Moreover, some anti-correlated genes of p53-pathway show a different expression level between 1 g and MMG. Functional validation assays using luciferase reporter constructs confirmed miRNA-mRNA interactions derived from target prediction analyses. Conclusions/Significance On the whole, by integrating the transcriptome and microRNome, we provide evidence that modeled microgravity can affects the DNA-damage response to IR in human PBL. PMID:22347458

  2. Epigenetic regulation of the expression of WRKY75 transcription factor in response to biotic and abiotic stresses in Solanaceae plants.

    PubMed

    López-Galiano, María José; González-Hernández, Ana I; Crespo-Salvador, Oscar; Rausell, Carolina; Real, M Dolores; Escamilla, Mónica; Camañes, Gemma; García-Agustín, Pilar; González-Bosch, Carmen; García-Robles, Inmaculada

    2018-01-01

    SlyWRKY75: gene expression was induced in response to biotic stresses, especially in Botrytis cinerea-infected tomato plants, in which Sly-miR1127-3p is a putative SlyWRKY75 regulator and epigenetic marks were detected. WRKY75 transcription factor involved in Pi homeostasis was recently found also induced in defense against necrotrophic pathogens. In this study, we analyzed by RT-qPCR the expression of SlyWRKY75 gene in tomato plants in response to abiotic stresses (drought or heat) and biotic stresses (Colorado potato beetle larvae infestation, Pseudomonas syringae or Botrytis cinerea infection) being only differentially expressed following biotic stresses, especially upon B. cinerea infection (55-fold induction). JA and JA-Ile levels were significantly increased in tomato plants under biotic stresses compared with control plants, indicating that SlyWRKY75 might be a transcriptional regulator of the JA pathway. The contribution of miRNAs and epigenetic molecular mechanisms to the regulation of this gene in B. cinerea-infected tomato plants was explored. We identified a putative Sly-miR1127-3p miRNA predicted to bind the intronic region of the SlyWRKY75 genomic sequence. Sly-miR1127-3p miRNA was repressed in infected plants (0.4-fold) supporting that it might act as an epigenetic regulation factor of SlyWRKY75 gene expression rather than via the post-transcriptional mechanisms of canonical miRNAs. It has been proposed that certain miRNAs can mediate DNA methylation in the plant nucleus broadening miRNA functions with transcriptional gene silencing by targeting intron-containing pre-mRNAs. Histone modifications analysis by chromatin immunoprecipitation (ChIP) demonstrated the presence of the activator histone modification H3K4me3 on SlyWRKY75 transcription start site and gene body. The induction of this gene in response to B. cinerea correlates with the presence of an activator mark. Thus, miRNAs and chromatin modifications might cooperate as epigenetic factors to modulate SlyWRKY75 gene expression.

  3. Novel prediction of anticancer drug chemosensitivity in cancer cell lines: evidence of moderation by microRNA expressions.

    PubMed

    Yang, Daniel S

    2014-01-01

    The objectives of this study are (1) to develop a novel "moderation" model of drug chemosensitivity and (2) to investigate if miRNA expression moderates the relationship between gene expression and drug chemosensitivity, specifically for HSP90 inhibitors applied to human cancer cell lines. A moderation model integrating the interaction between miRNA and gene expressions was developed to examine if miRNA expression affects the strength of the relationship between gene expression and chemosensitivity. Comprehensive datasets on miRNA expressions, gene expressions, and drug chemosensitivities were obtained from National Cancer Institute's NCI-60 cell lines including nine different cancer types. A workflow including steps of selecting genes, miRNAs, and compounds, correlating gene expression with chemosensitivity, and performing multivariate analysis was utilized to test the proposed model. The proposed moderation model identified 12 significantly-moderating miRNAs: miR-15b*, miR-16-2*, miR-9, miR-126*, miR-129*, miR-138, miR-519e*, miR-624*, miR-26b, miR-30e*, miR-32, and miR-196a, as well as two genes ERCC2 and SF3B1 which affect chemosensitivities of Tanespimycin and Alvespimycin - both HSP90 inhibitors. A bootstrap resampling of 2,500 times validates the significance of all 12 identified miRNAs. The results confirm that certain miRNA and gene expressions interact to produce an effect on drug response. The lack of correlation between miRNA and gene expression themselves suggests that miRNA transmits its effect through translation inhibition/control rather than mRNA degradation. The results suggest that miRNAs could serve not only as prognostic biomarkers for cancer treatment outcome but also as interventional agents to modulate desired chemosensitivity.

  4. Diversity, expression and mRNA targeting abilities of Argonaute-targeting miRNAs among selected vascular plants.

    PubMed

    Jagtap, Soham; Shivaprasad, Padubidri V

    2014-12-02

    Micro (mi)RNAs are important regulators of plant development. Across plant lineages, Dicer-like 1 (DCL1) proteins process long ds-like structures to produce micro (mi) RNA duplexes in a stepwise manner. These miRNAs are incorporated into Argonaute (AGO) proteins and influence expression of RNAs that have sequence complementarity with miRNAs. Expression levels of AGOs are greatly regulated by plants in order to minimize unwarranted perturbations using miRNAs to target mRNAs coding for AGOs. AGOs may also have high promoter specificity-sometimes expression of AGO can be limited to just a few cells in a plant. Viral pathogens utilize various means to counter antiviral roles of AGOs including hijacking the host encoded miRNAs to target AGOs. Two host encoded miRNAs namely miR168 and miR403 that target AGOs have been described in the model plant Arabidopsis and such a mechanism is thought to be well conserved across plants because AGO sequences are well conserved. We show that the interaction between AGO mRNAs and miRNAs is species-specific due to the diversity in sequences of two miRNAs that target AGOs, sequence diversity among corresponding target regions in AGO mRNAs and variable expression levels of these miRNAs among vascular plants. We used miRNA sequences from 68 plant species representing 31 plant families for this analysis. Sequences of miR168 and miR403 are not conserved among plant lineages, but surprisingly they differ drastically in their sequence diversity and expression levels even among closely related plants. Variation in miR168 expression among plants correlates well with secondary structures/length of loop sequences of their precursors. Our data indicates a complex AGO targeting interaction among plant lineages due to miRNA sequence diversity and sequences of miRNA targeting regions among AGO mRNAs, thus leading to the assumption that the perturbations by viruses that use host miRNAs to target antiviral AGOs can only be species-specific. We also show that rapid evolution and likely loss of expression of miR168 isoforms in tobacco is related to the insertion of MITE-like transposons between miRNA and miRNA* sequences, a possible mechanism showing how miRNAs are lost in few plant lineages even though other close relatives have abundantly expressing miRNAs.

  5. Analysis of expression of microRNAs and genes involved in the control of key signaling mechanisms that support or inhibit development of brain tumors of different grades.

    PubMed

    Koshkin, Philip Alexandrovich; Chistiakov, Dimitry Alexandrovich; Nikitin, Alexey Georgievich; Konovalov, Alexander Nikolaevich; Potapov, Alexander Alexandrovich; Usachev, Dmitry Yrevich; Pitskhelauri, David Ilich; Kobyakov, Gregory Lvovich; Shishkina, Lyudmila Valentinovna; Chekhonin, Vladimir Pavlovich

    2014-03-20

    MicroRNAs (miRNAs) are a class of small non-coding RNA molecules involved in the regulation of key biological processes. Different miRNAs with pro-oncogenic and anti-oncogenic properties have been identified in glioblastomas. We decided to analyze expression profiles of 10 mature miRNAs (miR-7-1, miR-10а, miR-17, miR-20а, miR-21, miR-23а, miR-26а, miR-137, and miR-222) in post-surgery glioma specimens of different grades in order to find whether the expression level correlates with tumor grades. We also measured expression of six key genes such as PTEN, p21/CDKN1A, MDR1, ABCG2, BAX, and BCL-2 involved in the regulation of critical glioma signaling pathways to establish the effect of miRNAs on these signaling mechanisms. Using RT-PCR, we performed expression analysis of 25 tumor fresh samples (grades II-IV). We found gradual increase in miR-21 and miR-23a levels in all tumor grades whereas miR-7 and miR-137 were significantly down-regulated depending on the glioma grade. MDR, ABCG2, and p21/CDKN1A levels were significantly up-regulated while expression of PTEN was down-regulated in tumor samples compared to the normal brain tissue. These observations provide new insights into molecular pathogenic mechanisms of glioma progression and suggest about a potential value of miRNAs as a putative diagnostic marker of brain tumors. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Increased Expression of Herpes Virus-Encoded hsv1-miR-H18 and hsv2-miR-H9-5p in Cancer-Containing Prostate Tissue Compared to That in Benign Prostate Hyperplasia Tissue

    PubMed Central

    Shinn, Helen Ki; Yan, Chunri; Kim, Tae-Hwan; Kim, Sang Tae; Kim, Won Tae; Lee, Ok-Jun; Moon, Sung-Kwon; Kim, Nam-Hyung; Kim, Jayoung; Cha, Eun-Jong

    2016-01-01

    Purpose: Previously, we reported the presence of virus-encoded microRNAs (miRNAs) in the urine of prostate cancer (CaP) patients. In this study, we investigated the expression of two herpes virus-encoded miRNAs in prostate tissue. Methods: A total of 175 tissue samples from noncancerous benign prostatic hyperplasia (BPH), 248 tissue samples from patients with CaP and BPH, and 50 samples from noncancerous surrounding tissues from these same patients were analyzed for the expression of two herpes virus-encoded miRNAs by real-time polymerase chain reaction (PCR) and immunocytochemistry using nanoparticles as molecular beacons. Results: Real-time reverse transcription-PCR results revealed significantly higher expression of hsv1-miR-H18 and hsv2-miRH9- 5p in surrounding noncancerous and CaP tissues than that in BPH tissue (each comparison, P<0.001). Of note, these miRNA were expressed equivalently in the CaP tissues and surrounding noncancerous tissues. Moreover, immunocytochemistry clearly demonstrated a significant enrichment of both hsv1-miR-H18 and hsv2-miR-H9 beacon-labeled cells in CaP and surrounding noncancerous tissue compared to that in BPH tissue (each comparison, P<0.05 for hsv1-miR-H18 and hsv2- miR-H9). Conclusions: These results suggest that increased expression of hsv1-miR-H18 and hsv2-miR-H95p might be associated with tumorigenesis in the prostate. Further studies will be required to elucidate the role of these miRNAs with respect to CaP and herpes viral infections. PMID:27377944

  7. Increased Expression of Herpes Virus-Encoded hsv1-miR-H18 and hsv2-miR-H9-5p in Cancer-Containing Prostate Tissue Compared to That in Benign Prostate Hyperplasia Tissue.

    PubMed

    Yun, Seok Joong; Jeong, Pildu; Kang, Ho Won; Shinn, Helen Ki; Kim, Ye-Hwan; Yan, Chunri; Choi, Young-Ki; Kim, Dongho; Ryu, Dong Hee; Ha, Yun-Sok; Kim, Tae-Hwan; Kwon, Tae Gyun; Kim, Jung Min; Suh, Sang Heon; Kim, Seon-Kyu; Kim, Seon-Young; Kim, Sang Tae; Kim, Won Tae; Lee, Ok-Jun; Moon, Sung-Kwon; Kim, Nam-Hyung; Kim, Isaac Yi; Kim, Jayoung; Cha, Hee-Jae; Choi, Yung-Hyun; Cha, Eun-Jong; Kim, Wun-Jae

    2016-06-01

    Previously, we reported the presence of virus-encoded microRNAs (miRNAs) in the urine of prostate cancer (CaP) patients. In this study, we investigated the expression of two herpes virus-encoded miRNAs in prostate tissue. A total of 175 tissue samples from noncancerous benign prostatic hyperplasia (BPH), 248 tissue samples from patients with CaP and BPH, and 50 samples from noncancerous surrounding tissues from these same patients were analyzed for the expression of two herpes virus-encoded miRNAs by real-time polymerase chain reaction (PCR) and immunocytochemistry using nanoparticles as molecular beacons. Real-time reverse transcription-PCR results revealed significantly higher expression of hsv1-miR-H18 and hsv2-miRH9- 5p in surrounding noncancerous and CaP tissues than that in BPH tissue (each comparison, P<0.001). Of note, these miRNA were expressed equivalently in the CaP tissues and surrounding noncancerous tissues. Moreover, immunocytochemistry clearly demonstrated a significant enrichment of both hsv1-miR-H18 and hsv2-miR-H9 beacon-labeled cells in CaP and surrounding noncancerous tissue compared to that in BPH tissue (each comparison, P<0.05 for hsv1-miR-H18 and hsv2- miR-H9). These results suggest that increased expression of hsv1-miR-H18 and hsv2-miR-H95p might be associated with tumorigenesis in the prostate. Further studies will be required to elucidate the role of these miRNAs with respect to CaP and herpes viral infections.

  8. MicroRNA expression in melanocytic nevi: the usefulness of formalin-fixed, paraffin-embedded material for miRNA microarray profiling.

    PubMed

    Glud, Martin; Klausen, Mikkel; Gniadecki, Robert; Rossing, Maria; Hastrup, Nina; Nielsen, Finn C; Drzewiecki, Krzysztof T

    2009-05-01

    MicroRNAs (miRNAs) are small, noncoding RNA molecules that regulate cellular differentiation, proliferation, and apoptosis. MiRNAs are expressed in a developmentally regulated and tissue-specific manner. Aberrant expression may contribute to pathological processes such as cancer, and miRNA may therefore serve as biomarkers that may be useful in a clinical environment for diagnosis of various diseases. Most miRNA profiling studies have used fresh tissue samples. However, in some types of cancer, including malignant melanoma, fresh material is difficult to obtain from primary tumors, and most surgical specimens are formalin fixed and paraffin embedded (FFPE). To explore whether FFPE material would be suitable for miRNA profiling in melanocytic lesions, we compared miRNA expression patterns in FFPE versus fresh frozen samples, obtained from 15 human melanocytic nevi. Out of microarray data, we identified 84 miRNAs that were expressed in both types of samples and represented an miRNA profile of melanocytic nevi. Our results showed a high correlation in miRNA expression (Spearman r-value of 0.80) between paired FFPE and fresh frozen material. The data were further validated by quantitative RT-PCR. In conclusion, FFPE specimens of melanocytic lesions are suitable as a source for miRNA microarray profiling.

  9. MicroRNA profile of silk gland reveals different silk yields of three silkworm strains.

    PubMed

    Qin, Sheng; Danso, Blessing; Zhang, Jing; Li, Juan; Liu, Na; Sun, Xia; Hou, Chengxiang; Luo, Heng; Chen, Keping; Zhang, Guozheng; Li, Muwang

    2018-05-05

    Silk proteins are synthesized and secreted by the silk gland. The differential gene expression in it leads to different silk yield among various silkworm strains. As crucial factors, microRNAs (miRNAs) regulate protein synthesis at post-transcriptional level in silk gland. MiRNAs expression level in the silk gland of three silkworm strains (Jingsong, Lan10 and Dazao) was analyzed and 33 differentially expressed miRNAs (DEMs) were discovered between JingSong (JS) and Lan10 (L10), 60 DEMs between JS and Dazao, 54 DEMs between L10 and Dazao respectively. The DEMs target genes were predicted combing with two different methods and their functions were annotated according to gene ontology. Our previous studies showed that a batch of genes related to silk yield were identified in JS and L10 strains by comparative transcriptome and quantitative trait loci (QTL) method. Thirteen DEMs whose target genes are related to protein biosynthesis processes were screened by combining with these researches. Twelve DEMs potentially regulate nineteen genes which exist in our QTL results. Six common DEMs potentially regulate the genes in both of previous results. Finally, five DEMs were selected to verify their expression levels between JS and L10 by qRT-PCR, which showed similar difference as the results of small RNA-sequencing. MiRNAs in the silk gland may directly affect silk protein biosynthesis in different silkworm strains. In current work, we identified a batch of DEMs which potentially regulate the genes related to silk yield. Further functionally study of these miRNAs will contribute to improve varieties and boost the silk yield. Our research provides a basis for studying these miRNAs and their functions in silk production. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Identification of several circulating microRNAs from a genome-wide circulating microRNA expression profile as potential biomarkers for impaired glucose metabolism in polycystic ovarian syndrome.

    PubMed

    Jiang, Linlin; Huang, Jia; Chen, Yaxiao; Yang, Yabo; Li, Ruiqi; Li, Yu; Chen, Xiaoli; Yang, Dongzi

    2016-07-01

    This study aimed to detect serum microRNAs (miRNAs) differentially expressed between polycystic ovary syndrome (PCOS) patients with impaired glucose metabolism (IGM), PCOS patients with normal glucose tolerance (NGT), and healthy controls. A TaqMan miRNA array explored serum miRNA profiles as a pilot study, then selected miRNAs were analyzed in a validation cohort consisting of 65 PCOS women with IGM, 65 PCOS women with NGT, and 45 healthy women The relative expression of miR-122, miR-193b, and miR-194 was up-regulated in PCOS patients compared with controls, whereas that of miR-199b-5p was down-regulated. Furthermore, miR-122, miR-193b, and miR-194 were increased in the PCOS-IGM group compared with the PCOS-NGT group. Multiple linear regression analyses revealed that miR-193b and body mass index contributed independently to explain 43.7 % (P < 0.0001) of homeostasis model assessment-insulin resistance after adjustment for age. Investigation of diagnostic values confirmed the optimal combination of BMI and miR-193b to explore the possibility of IGM in PCOS women with area under the curve of 0.752 (95 % CI 0.667-0.837, P < 0.001). Bioinformatics analysis indicated that the predicted target functions of these miRNAs mainly involved glycometabolism and ovarian follicle development pathways, including the insulin signaling pathway, the neurotrophin signaling pathway, the PI3K-AKT signaling pathway, and regulation of actin cytoskeleton. This study expands our knowledge of the serum miRNA expression profiles of PCOS patients with IGM and the predicted target signal pathways involved in disease pathophysiology.

  11. Identifying optimal reference genes for the normalization of microRNA expression in cucumber under viral stress

    PubMed Central

    Liang, Chaoqiong; Hao, Jianjun; Meng, Yan; Luo, Laixin; Li, Jianqiang

    2018-01-01

    Cucumber green mottle mosaic virus (CGMMV) is an economically important pathogen and causes significant reduction of both yield and quality of cucumber (Cucumis sativus). Currently, there were no satisfied strategies for controlling the disease. A better understanding of microRNA (miRNA) expression related to the regulation of plant-virus interactions and virus resistance would be of great assistance when developing control strategies for CGMMV. However, accurate expression analysis is highly dependent on robust and reliable reference gene used as an internal control for normalization of miRNA expression. Most commonly used reference genes involved in CGMMV-infected cucumber are not universally expressed depending on tissue types and stages of plant development. It is therefore crucial to identify suitable reference genes in investigating the role of miRNA expression. In this study, seven reference genes, including Actin, Tubulin, EF-1α, 18S rRNA, Ubiquitin, GAPDH and Cyclophilin, were evaluated for the most accurate results in analyses using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Gene expression was assayed on cucumber leaves, stems and roots that were collected at different days post inoculation with CGMMV. The expression data were analyzed using algorithms including delta-Ct, geNorm, NormFinder, and BestKeeper as well as the comparative tool RefFinder. The reference genes were subsequently validated using miR159. The results showed that EF-1α and GAPDH were the most reliable reference genes for normalizing miRNA expression in leaf, root and stem samples, while Ubiquitin and EF-1α were the most suitable combination overall. PMID:29543906

  12. Induction of specific micro RNA (miRNA) species by ROS-generating metal sulfates in primary human brain cells

    PubMed Central

    Lukiw, Walter J.; Pogue, Aileen I.

    2007-01-01

    Iron- and aluminum-sulfate together, at nanomolar concentrations, trigger the production of reactive oxygen species (ROS) in cultures of human brain cells. Previous studies have shown that following ROS induction, a family of pathogenic brain genes that promote inflammatory signalling, cellular apoptosis and brain cell death is significantly over-expressed. Notably, iron- and aluminum-sulfate induce genes in cultured human brain cells that exhibit expression patterns similar to those observed to be up-regulated in moderate- to late-stage Alzheimer's disease (AD). In this study we have extended our investigations to analyze the expression of micro RNA (miRNA) populations in iron- and aluminum-sulfate treated human neural cells in primary culture. The main finding was that these ROS-generating neurotoxic metal sulfates also up-regulate a specific set of miRNAs that includes miR-9, miR-125b and miR-128. Notably, these same miRNAs are up-regulated in AD brain. These findings further support the idea that iron- and aluminum-sulfates induce genotoxicity via a ROS-mediated up-regulation of specific regulatory elements and pathogenic genes that redirect brain cell fate towards progressive dysfunction and apoptotic cell death. PMID:17629564

  13. Analysis of microRNA profile of Anopheles sinensis by deep sequencing and bioinformatic approaches.

    PubMed

    Feng, Xinyu; Zhou, Xiaojian; Zhou, Shuisen; Wang, Jingwen; Hu, Wei

    2018-03-12

    microRNAs (miRNAs) are small non-coding RNAs widely identified in many mosquitoes. They are reported to play important roles in development, differentiation and innate immunity. However, miRNAs in Anopheles sinensis, one of the Chinese malaria mosquitoes, remain largely unknown. We investigated the global miRNA expression profile of An. sinensis using Illumina Hiseq 2000 sequencing. Meanwhile, we applied a bioinformatic approach to identify potential miRNAs in An. sinensis. The identified miRNA profiles were compared and analyzed by two approaches. The selected miRNAs from the sequencing result and the bioinformatic approach were confirmed with qRT-PCR. Moreover, target prediction, GO annotation and pathway analysis were carried out to understand the role of miRNAs in An. sinensis. We identified 49 conserved miRNAs and 12 novel miRNAs by next-generation high-throughput sequencing technology. In contrast, 43 miRNAs were predicted by the bioinformatic approach, of which two were assigned as novel. Comparative analysis of miRNA profiles by two approaches showed that 21 miRNAs were shared between them. Twelve novel miRNAs did not match any known miRNAs of any organism, indicating that they are possibly species-specific. Forty miRNAs were found in many mosquito species, indicating that these miRNAs are evolutionally conserved and may have critical roles in the process of life. Both the selected known and novel miRNAs (asi-miR-281, asi-miR-184, asi-miR-14, asi-miR-nov5, asi-miR-nov4, asi-miR-9383, and asi-miR-2a) could be detected by quantitative real-time PCR (qRT-PCR) in the sequenced sample, and the expression patterns of these miRNAs measured by qRT-PCR were in concordance with the original miRNA sequencing data. The predicted targets for the known and the novel miRNAs covered many important biological roles and pathways indicating the diversity of miRNA functions. We also found 21 conserved miRNAs and eight counterparts of target immune pathway genes in An. sinensis based on the analysis of An. gambiae. Our results provide the first lead to the elucidation of the miRNA profile in An. sinensis. Unveiling the roles of mosquito miRNAs will undoubtedly lead to a better understanding of mosquito biology and mosquito-pathogen interactions. This work lays the foundation for the further functional study of An. sinensis miRNAs and will facilitate their application in vector control.

  14. miRNA and mRNA Expression Profiles Reveal Insight into Chitosan-Mediated Regulation of Plant Growth.

    PubMed

    Zhang, Xiaoqian; Li, Kecheng; Xing, Ronge; Liu, Song; Chen, Xiaolin; Yang, Haoyue; Li, Pengcheng

    2018-04-18

    Chitosan has been numerously studied as a plant growth regulator and stress tolerance inducer. To investigate the roles of chitosan as bioregulator on plant and unravel its possible metabolic responses mechanisms, we simultaneously investigated mRNAs and microRNAs (miRNAs) expression profiles of wheat seedlings in response to chitosan heptamer. We found 400 chitosan-responsive differentially expressed genes, including 268 up-regulated and 132 down-regulated mRNAs, many of which were related to photosynthesis, primary carbon and nitrogen metabolism, defense responses, and transcription factors. Moreover, miRNAs also participate in chitosan-mediated regulation on plant growth. We identified 87 known and 21 novel miRNAs, among which 56 miRNAs were induced or repressed by chitosan heptamer, such as miRNA156, miRNA159a, miRNA164, miRNA171a, miRNA319, and miRNA1127. The integrative analysis of miRNA and mRNA expression profiles in this case provides fundamental information for further investigation of regulation mechanisms of chitosan on plant growth and will facilitate its application in agriculture.

  15. miRNAs Expressions and Interaction with Biological Systems in Patients with Alzheimer`s Disease. Using miRNAs as a Diagnosis and Prognosis Biomarker.

    PubMed

    Negoita, Silvius I; Sandesc, Dorel; Rogobete, Alexandru F; Dutu, Madalina; Bedreag, Ovidiu H; Papurica, Marius; Ercisli, Muhammed F; Popovici, Sonia E; Dumache, Raluca; Sandesc, Mihai; Dinu, Anca; Sas, Adriana M; Serban, Denis; Corneci, Dan

    2017-09-01

    A high percentage of patients develop Alzheimer`s disease (AD). The main signs are loss of memory and cognitive functions which have a significant impact on lifestyle. Numerous studies have been conducted to identify new biomarkers for early diagnosis of patients with AD. An ideal biomarker is represented by the expression of miRNAs. In this paper, we want to summarize expressions miRNAs in AD. We also want to present the pathophysiological and genetic interactions of miRNAs with protein systems in these patients. For the study, we examined available studies in scientific databases, such as PubMed and Scopus. The studies were searched using the keywords "miRNAs expression", "Alzheimer`s disease", "genetic polymorphisms", and "genetic biomarkers". For the assessment and monitoring of patients with AD, the expression of miRNAs can be used successfully due to increased specificity and selectivity. Moreover, the expression of miRNAs can provide important answers regarding possible genetic interactions and genetic therapeutic regimens. For the evaluation and non-invasive monitoring of patients with Alzheimer`s disease the expression of miRNAs can be successfully used.

  16. Identification and characterization of novel and differentially expressed microRNAs in peripheral blood from healthy and mastitis Holstein cattle by deep sequencing.

    PubMed

    Li, Zhixiong; Wang, Hongliang; Chen, Ling; Wang, Lijun; Liu, Xiaolin; Ru, Caixia; Song, Ailong

    2014-02-01

    MicroRNA (miRNA) mediates post-transcriptional gene regulation and plays an important role in regulating the development of immune cells and in modulating innate and adaptive immune responses in mammals, including cattle. In the present study, we identified novel and differentially expressed miRNAs in peripheral blood from healthy and mastitis Holstein cattle by Solexa sequencing and bioinformatics. In total, 608 precursor hairpins (pre-miRNAs) encoding for 753 mature miRNAs were detected. Statistically, 173 unique miRNAs (of 753, 22.98%) were identified that had significant differential expression between healthy and mastitis Holstein cattle (P < 0.001). Most differentially expressed miRNAs (118 of 173, 68.21%) belonged to the chemokine signaling pathway involved in the immune responses. This study expands the number of miRNAs known to be expressed in cattle. The patterns of miRNAs expression differed significantly between the peripheral blood from healthy and mastitis Holstein cattle, which provide important information on mastitis in miRNAs expression. Diverse miRNAs may play an important role in the treatment of mastitis in Holstein cattle. © 2013 Stichting International Foundation for Animal Genetics.

  17. Narcolepsy patients' blood-based miRNA expression profiling: miRNA expression differences with Pandemrix vaccination.

    PubMed

    Mosakhani, N; Sarhadi, V; Panula, P; Partinen, M; Knuutila, S

    2017-11-01

    Narcolepsy is a neurological sleep disorder characterized by excessive daytime sleepiness and nighttime sleep disturbance. Among children and adolescents vaccinated with Pandemrix vaccine in Finland and Sweden, the number of narcolepsy cases increased. Our aim was to identify miRNAs involved in narcolepsy and their association with Pandemrix vaccination. We performed global miRNA proofing by miRNA microarrays followed by RT-PCR verification on 20 narcolepsy patients (Pandemrix-associated and Pandemrix-non-associated) and 17 controls (vaccinated and non-vaccinated). Between all narcolepsy patients and controls, 11 miRNAs were differentially expressed; 17 miRNAs showed significantly differential expression between Pandemrix-non-associated narcolepsy patients and non-vaccinated healthy controls. MiR-188-5p and miR-4499 were over-expressed in narcolepsy patients vs healthy controls. Two miRNAs, miR-1470 and miR-4455, were under-expressed in Pandemrix-associated narcolepsy patients vs Pandemrix-non-associated narcolepsy patients. We identified miRNA expression patterns in narcolepsy patients that linked them to mRNA targets known to be involved in brain-related pathways or brain disorders. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Global exosome transcriptome profiling reveals biomarkers for multiple sclerosis.

    PubMed

    Selmaj, Igor; Cichalewska, Maria; Namiecinska, Magdalena; Galazka, Grazyna; Horzelski, Wojciech; Selmaj, Krzysztof W; Mycko, Marcin P

    2017-05-01

    Accumulating evidence supports a role for exosomes in immune regulation. In this study, we investigated the total circulating exosome transcriptome in relapsing-remitting multiple sclerosis (RRMS) patients and healthy controls (HC). Next generation sequencing (NGS) was used to define the global RNA profile of serum exosomes in 19 RRMS patients (9 in relapse, 10 in remission) and 10 HC. We analyzed 5 million reads and >50,000 transcripts per sample, including a detailed analysis of microRNAs (miRNAs) differentially expressed in RRMS. The discovery set data were validated by quantification using digital quantitative polymerase chain reaction with an independent cohort of 63 RRMS patients (33 in relapse, 30 in remission) and 32 HC. Exosomal RNA NGS revealed that of 15 different classes of transcripts detected, 4 circulating exosomal sequences within the miRNA category were differentially expressed in RRMS patients versus HC: hsa-miR-122-5p, hsa-miR-196b-5p, hsa-miR-301a-3p, and hsa-miR-532-5p. Serum exosomal expression of these miRNAs was significantly decreased during relapse in RRMS. These miRNAs were also decreased in patients with a gadolinium enhancement on brain magnetic resonance imaging. In vitro secretion of these miRNAs by peripheral blood mononuclear cells was also significantly impaired in RRMS. These data show that circulating exosomes have a distinct RNA profile in RRMS. Because putative targets for these miRNAs include the signal transducer and activator of transcription 3 and the cell cycle regulator aryl hydrocarbon receptor, the data suggest a disturbed cell-to-cell communication in this disease. Thus, exosomal miRNAs might represent a useful biomarker to distinguish multiple sclerosis relapse. Ann Neurol 2017;81:703-717. © 2017 American Neurological Association.

  19. Transcriptome Profiling of Human FoxP3+ Regulatory T Cells

    PubMed Central

    Bhairavabhotla, Ravikiran; Kim, Yong C.; Glass, Deborah D.; Escobar, Thelma M.; Patel, Mira C.; Zahr, Rami; Nguyen, Cuong K.; Kilaru, Gokhul K.; Muljo, Stefan A.; Shevach, Ethan M.

    2015-01-01

    The major goal of this study was to perform an in depth characterization of the “gene signature” of human FoxP3+ T regulatory cells (Tregs). Highly purified Tregs and T conventional cells (Tconvs) from multiple healthy donors (HD), either freshly explanted or activated in vitro, were analyzed via RNA sequencing (RNA-seq) and gene expression changes validated using the nCounter system. Additionally, we analyzed microRNA (miRNA) expression using TaqMan low-density arrays. Our results confirm previous studies demonstrating selective gene expression of FoxP3, IKZF2, and CTLA4 in Tregs. Notably, a number of yet uncharacterized genes (RTKN2, LAYN, UTS2, CSF2RB, TRIB1, F5, CECAM4, CD70, ENC1 and NKG7) were identified and validated as being differentially expressed in human Tregs. We further characterize the functional roles of RTKN2 and LAYN by analyzing their roles in vitro human Treg suppression assays by knocking them down in Tregs and overexpressing them in Tconvs. In order to facilitate a better understanding of the human Treg gene expression signature, we have generated from our results a hypothetical interactome of genes and miRNAs in Tregs and Tconvs, PMID:26686412

  20. Abnormal levels of expression of plasma microRNA-33 in patients with psoriasis.

    PubMed

    García-Rodríguez, S; Arias-Santiago, S; Orgaz-Molina, J; Magro-Checa, C; Valenzuela, I; Navarro, P; Naranjo-Sintes, R; Sancho, J; Zubiaur, M

    2014-06-01

    Circulating microRNAs (miRNA) are involved in the posttranscriptional regulation of genes associated with lipid metabolism (miRNA-33) and vascular function and angiogenesis (miRNA-126). The objective of this exploratory study was to measure plasma levels of miRNA-33 and miRNA-126 in patients with plaque psoriasis and evaluate their association with clinical parameters. We studied 11 patients with plaque psoriasis. The median Psoriasis Area Severity Index (PASI) was 13 (interquartile range [IQR], 9-14) and body surface area involvement was 12 (IQR, 11-15). Eleven healthy controls matched for age and sex were also included. We analyzed cardiovascular risk factors and subclinical carotid atheromatosis. Plasma miRNAs were evaluated using quantitative real-time polymerase chain reaction. Carotid intima-media thickness was greater in patients (0.57mm; IQR, 0.54-0.61; n=11) than in controls (0.50mm; IQR, 0.48-0.54; data available for 9 controls) (P=.0055, Mann-Whitney). Expression of miRNA-33 in patients (5.34; IQR, 3.12-7.96; n=11) was significantly higher than in controls (2.33; IQR, 1.71-2.84; only detected in 7 of 11 controls) (P=.0049, Wilcoxon signed rank). No differences in miRNA-126 levels were observed between patients and controls. In patients (n=11), we observed a positive correlation between miRNA-33 and insulin levels (r=0.7289, P=.0109) and a negative correlation between miRNA-126 and carotid intima-media thickness (r=-0.6181, P=.0426). In psoriasis patients plasma levels of lipid and glucose metabolism-related miRNA-33 are increased and correlated with insulin. The study of circulating miRNA-33 in psoriasis may provide new insights about the associated systemic inflammatory abnormalities. Copyright © 2013 Elsevier España, S.L. and AEDV. All rights reserved.

  1. Altered retinal microRNA expression profiles in early diabetic retinopathy: an in silico analysis.

    PubMed

    Xiong, Fen; Du, Xinhua; Hu, Jianyan; Li, Tingting; Du, Shanshan; Wu, Qiang

    2014-07-01

    MicroRNAs (miRNAs) - as negative regulators of target genes - are associated with various human diseases, but their precise role(s) in diabetic retinopathy (DR) remains to be elucidated. The aim of this study was to elucidate the involvement of miRNAs in early DR using in silico analysis to explore their gene expression patterns. We used the streptozotocin (STZ)-induced diabetic rat to investigate the roles of miRNAs in early DR. Retinal miRNA expression profiles from diabetic versus healthy control rats were examined by miRNA array analysis. Based on several bioinformatic systems, specifically, gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, we identified signatures of the potential pathological processes, gene functions, and signaling pathways that are influenced by dysregulated miRNAs. We used quantitative real-time polymerase chain reaction (qRT-PCR) to validate six (i.e. those with significant changes in expression levels) of the 17 miRNAs that were detected in the miRNA array. We also describe the significant role of the miRNA-gene network, which is based on the interactions between miRNAs and target genes. GO analysis of the 17 miRNAs detected in the miRNA array analysis revealed the most prevalent miRNAs to be those related to biological processes, olfactory bulb development and axonogenesis. These miRNAs also exert significant influence on additional pathways, including the mitogen-activated protein and calcium signaling pathways. Six of the seventeen miRNAs were chosen for qRT-PCR validation. With the exception of a slight difference in miRNA-350, our results are in close agreement with the differential expressions detected by array analysis. This study, which describes miRNA expression during the early developmental phases of DR, revealed extensive miRNA interactions. Based on both their target genes and signaling pathways, we suggest that miRNAs perform critical regulatory functions during the early stages of DR evolution.

  2. DNA Nanostructure-based Interfacial engineering for PCR-free ultrasensitive electrochemical analysis of microRNA

    NASA Astrophysics Data System (ADS)

    Wen, Yanli; Pei, Hao; Shen, Ye; Xi, Junjie; Lin, Meihua; Lu, Na; Shen, Xizhong; Li, Jiong; Fan, Chunhai

    2012-11-01

    MicroRNAs (miRNAs) have been identified as promising cancer biomarkers due to their stable presence in serum. As an alternative to PCR-based homogenous assays, surface-based electrochemical biosensors offer great opportunities for low-cost, point-of-care tests (POCTs) of disease-associated miRNAs. Nevertheless, the sensitivity of miRNA sensors is often limited by mass transport and crowding effects at the water-electrode interface. To address such challenges, we herein report a DNA nanostructure-based interfacial engineering approach to enhance binding recognition at the gold electrode surface and drastically improve the detection sensitivity. By employing this novel strategy, we can directly detect as few as attomolar (<1, 000 copies) miRNAs with high single-base discrimination ability. Given that this ultrasensitive electrochemical miRNA sensor (EMRS) is highly reproducible and essentially free of prior target labeling and PCR amplification, we also demonstrate its application by analyzing miRNA expression levels in clinical samples from esophageal squamous cell carcinoma (ESCC) patients.

  3. Identification of microRNAs differentially expressed involved in male flower development.

    PubMed

    Wang, Zhengjia; Huang, Jianqin; Sun, Zhichao; Zheng, Bingsong

    2015-03-01

    Hickory (Carya cathayensis Sarg.) is one of the most economically important woody trees in eastern China, but its long flowering phase delays yield. Our understanding of the regulatory roles of microRNAs (miRNAs) in male flower development in hickory remains poor. Using high-throughput sequencing technology, we have pyrosequenced two small RNA libraries from two male flower differentiation stages in hickory. Analysis of the sequencing data identified 114 conserved miRNAs that belonged to 23 miRNA families, five novel miRNAs including their corresponding miRNA*s, and 22 plausible miRNA candidates. Differential expression analysis revealed 12 miRNA sequences that were upregulated in the later (reproductive) stage of male flower development. Quantitative real-time PCR showed similar expression trends as that of the deep sequencing. Novel miRNAs and plausible miRNA candidates were predicted using bioinformatic analysis methods. The miRNAs newly identified in this study have increased the number of known miRNAs in hickory, and the identification of differentially expressed miRNAs will provide new avenues for studies into miRNAs involved in the process of male flower development in hickory and other related trees.

  4. Optimal consistency in microRNA expression analysis using reference-gene-based normalization.

    PubMed

    Wang, Xi; Gardiner, Erin J; Cairns, Murray J

    2015-05-01

    Normalization of high-throughput molecular expression profiles secures differential expression analysis between samples of different phenotypes or biological conditions, and facilitates comparison between experimental batches. While the same general principles apply to microRNA (miRNA) normalization, there is mounting evidence that global shifts in their expression patterns occur in specific circumstances, which pose a challenge for normalizing miRNA expression data. As an alternative to global normalization, which has the propensity to flatten large trends, normalization against constitutively expressed reference genes presents an advantage through their relative independence. Here we investigated the performance of reference-gene-based (RGB) normalization for differential miRNA expression analysis of microarray expression data, and compared the results with other normalization methods, including: quantile, variance stabilization, robust spline, simple scaling, rank invariant, and Loess regression. The comparative analyses were executed using miRNA expression in tissue samples derived from subjects with schizophrenia and non-psychiatric controls. We proposed a consistency criterion for evaluating methods by examining the overlapping of differentially expressed miRNAs detected using different partitions of the whole data. Based on this criterion, we found that RGB normalization generally outperformed global normalization methods. Thus we recommend the application of RGB normalization for miRNA expression data sets, and believe that this will yield a more consistent and useful readout of differentially expressed miRNAs, particularly in biological conditions characterized by large shifts in miRNA expression.

  5. Using artificial microRNA sponges to achieve microRNA loss-of-function in cancer cells.

    PubMed

    Tay, Felix Chang; Lim, Jia Kai; Zhu, Haibao; Hin, Lau Cia; Wang, Shu

    2015-01-01

    Widely observed dysregulation of microRNAs (miRNAs) in human cancer has led to substantial speculation regarding possible functions of these short, non-coding RNAs in cancer development and manipulation of miRNA expression to treat cancer. To achieve miRNA loss-of-function, miRNA sponge technology has been developed to use plasmid or viral vectors for intracellular expression of tandemly arrayed, bulged miRNA binding sites complementary to a miRNA target to saturate its ability to regulate natural mRNAs. A strong viral promoter can be used in miRNA sponge vectors to generate high-level expression of the competitive inhibitor transcripts for either transient or long-term inhibition of miRNA function. Taking the advantage of sharing a common seed sequence by members of a miRNA family, this technology is especially useful in knocking down the expression of a family of miRNAs, providing a powerful means for simultaneous inhibition of multiple miRNAs of interest with a single inhibitor. Knockdown of overexpressed oncogenic miRNAs with the technology can be a rational therapeutic strategy for cancer, whereas inhibition of tumor-suppressive miRNAs by the sponges will be useful in deciphering functions of miRNAs in oncogenesis. Herein, we discuss the design of miRNA sponge expression vectors and the use of the vectors to gain better understanding of miRNA's roles in cancer biology and as an alternative tool for anticancer gene therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Strong conservation of inbred mouse strain microRNA loci but broad variation in brain microRNAs due to RNA editing and isomiR expression.

    PubMed

    Trontti, Kalevi; Väänänen, Juho; Sipilä, Tessa; Greco, Dario; Hovatta, Iiris

    2018-05-01

    Diversity in the structure and expression of microRNAs, important regulators of gene expression, arises from SNPs, duplications followed by divergence, production of isomiRs, and RNA editing. Inbred mouse strains and crosses using them are important reference populations for genetic mapping, and as models of human disease. We determined the nature and extent of interstrain miRNA variation by (i) identifying miRNA SNPs in whole-genome sequence data from 36 strains, and (ii) examining miRNA editing and expression in hippocampus (Hpc) and frontal cortex (FCx) of six strains, to facilitate the study of miRNAs in neurobehavioral phenotypes. miRNA loci were strongly conserved among the 36 strains, but even the highly conserved seed region contained 16 SNPs. In contrast, we identified RNA editing in 58.9% of miRNAs, including 11 consistent editing events in the seed region. We confirmed the functional significance of three conserved edits in the miR-379/410 cluster, demonstrating that edited miRNAs gained novel target mRNAs not recognized by the unedited miRNAs. We found significant interstrain differences in miRNA and isomiR expression: Of 779 miRNAs expressed in Hpc and 719 in FCx, 262 were differentially expressed (190 in Hpc, 126 in FCx, 54 in both). We also identified 32 novel miRNA candidates using miRNA prediction tools. Our studies provide the first comprehensive analysis of SNP, isomiR, and RNA editing variation in miRNA loci across inbred mouse strains, and a detailed catalog of expressed miRNAs in Hpc and FCx in six commonly used strains. These findings will facilitate the molecular analysis of neurological and behavioral phenotypes in this model organism. © 2018 Trontti et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  7. Effects of Acute Prenatal Exposure to Ethanol on microRNA Expression are Ameliorated by Social Enrichment

    PubMed Central

    Ignacio, Cherry; Mooney, Sandra M.; Middleton, Frank A.

    2014-01-01

    Fetal alcohol spectrum disorders (FASDs) are associated with abnormal social behavior. These behavioral changes may resemble those seen in autism. Rats acutely exposed to ethanol on gestational day 12 show decreased social motivation at postnatal day 42. We previously showed that housing these ethanol-exposed rats with non-exposed controls normalized this deficit. The amygdala is critical for social behavior and regulates it, in part, through connections with the basal ganglia, particularly the ventral striatum. MicroRNAs (miRNAs) are short, hairpin-derived RNAs that repress mRNA expression. Many brain disorders, including FASD, show dysregulation of miRNAs. In this study, we tested if miRNA and mRNA networks are altered in the amygdala and ventral striatum as a consequence of prenatal ethanol exposure and show any evidence of reversal as a result of social enrichment. RNA samples from two different brain regions in 72 male and female adolescent rats were analyzed by RNA-Seq and microarray analysis. Several miRNAs showed significant changes due to prenatal ethanol exposure and/or social enrichment in one or both brain regions. The top predicted gene targets of these miRNAs were mapped and subjected to pathway enrichment analysis. Several miRNA changes caused by ethanol were reversed by social enrichment, including mir-204, mir-299a, miR-384-5p, miR-222-3p, miR-301b-3p, and mir-6239. Moreover, enriched gene networks incorporating the targets of these miRNAs also showed reversal. We also extended our previously published mRNA expression analysis by directly examining all annotated brain-related canonical pathways. The additional pathways that were most strongly affected at the mRNA level included p53, CREB, glutamate, and GABA signaling. Together, our data suggest a number of novel epigenetic mechanisms for social enrichment to reverse the effects of ethanol exposure through widespread influences on gene expression. PMID:25309888

  8. Differential microRNA expression in the prefrontal cortex of mouse offspring induced by glyphosate exposure during pregnancy and lactation.

    PubMed

    Ji, Hua; Xu, Linhao; Wang, Zheng; Fan, Xinli; Wu, Lihui

    2018-03-01

    Glyphosate is the active ingredient in numerous herbicide formulations. The role of glyphosate in neurotoxicity has been reported in human and animal models. However, the detailed mechanism of the role of glyphosate in neuronal development remains unknown. Recently, several studies have reported evidence linking neurodevelopmental disorders (NDDs) with gestational glyphosate exposure. The current group previously identified microRNAs (miRNAs) that are associated with the etiology of NDDs, but their expression levels in the developing brain following glyphosate exposure have not been characterized. In the present study, miRNA expression patterns were evaluated in the prefrontal cortex (PFC) of 28 postnatal day mouse offspring following glyphosate exposure during pregnancy and lactation. An miRNA microarray detected 55 upregulated and 19 downregulated miRNAs in the PFC of mouse offspring, and 20 selected deregulated miRNAs were further evaluated by quantitative polymerase chain reaction (PCR). A total of 11 targets of these selected deregulated miRNAs were analyzed using bioinformatics. Gene Ontology (GO) terms associated with the relevant miRNAs included neurogenesis (GO:0050769), neuron differentiation (GO:0030182) and brain development (GO:0007420). The genes Cdkn1a, Numbl, Notch1, Fosl1 and Lef1 are involved in the Wnt and Notch signaling pathways, which are closely associated with neural development. PCR arrays for the mouse Wnt and Notch signaling pathways were used to validate the effects of glyphosate on the expression pattern of genes involved in the Wnt and Notch pathways. Nr4a2 and Wnt7b were downregulated, while Dkk1, Dixdc1, Runx1, Shh, Lef-1 and Axin2 were upregulated in the PFC of mice offspring following glyphosate exposure during pregnancy and lactation. These results indicated abnormalities of the Wnt/β-catenin and Notch pathways. These findings may be of particular interest for understanding the mechanism of glyphosate-induced neurotoxicity, as well as helping to clarify the association between glyphosate and NDDs.

  9. Differential microRNA expression in the prefrontal cortex of mouse offspring induced by glyphosate exposure during pregnancy and lactation

    PubMed Central

    Ji, Hua; Xu, Linhao; Wang, Zheng; Fan, Xinli; Wu, Lihui

    2018-01-01

    Glyphosate is the active ingredient in numerous herbicide formulations. The role of glyphosate in neurotoxicity has been reported in human and animal models. However, the detailed mechanism of the role of glyphosate in neuronal development remains unknown. Recently, several studies have reported evidence linking neurodevelopmental disorders (NDDs) with gestational glyphosate exposure. The current group previously identified microRNAs (miRNAs) that are associated with the etiology of NDDs, but their expression levels in the developing brain following glyphosate exposure have not been characterized. In the present study, miRNA expression patterns were evaluated in the prefrontal cortex (PFC) of 28 postnatal day mouse offspring following glyphosate exposure during pregnancy and lactation. An miRNA microarray detected 55 upregulated and 19 downregulated miRNAs in the PFC of mouse offspring, and 20 selected deregulated miRNAs were further evaluated by quantitative polymerase chain reaction (PCR). A total of 11 targets of these selected deregulated miRNAs were analyzed using bioinformatics. Gene Ontology (GO) terms associated with the relevant miRNAs included neurogenesis (GO:0050769), neuron differentiation (GO:0030182) and brain development (GO:0007420). The genes Cdkn1a, Numbl, Notch1, Fosl1 and Lef1 are involved in the Wnt and Notch signaling pathways, which are closely associated with neural development. PCR arrays for the mouse Wnt and Notch signaling pathways were used to validate the effects of glyphosate on the expression pattern of genes involved in the Wnt and Notch pathways. Nr4a2 and Wnt7b were downregulated, while Dkk1, Dixdc1, Runx1, Shh, Lef-1 and Axin2 were upregulated in the PFC of mice offspring following glyphosate exposure during pregnancy and lactation. These results indicated abnormalities of the Wnt/β-catenin and Notch pathways. These findings may be of particular interest for understanding the mechanism of glyphosate-induced neurotoxicity, as well as helping to clarify the association between glyphosate and NDDs. PMID:29467848

  10. Positive Bioluminescence Imaging of MicroRNA Expression in Small Animal Models Using an Engineered Genetic-Switch Expression System, RILES.

    PubMed

    Baril, Patrick; Pichon, Chantal

    2016-01-01

    MicroRNAs (miRNAs) are a class of small, noncoding RNAs which regulate gene expression by directing their target mRNA for degradation or translational repression. Since their discovery in the early 1990s, miRNAs have emerged as key components in the posttranscriptional regulation of gene networks, shaping many biological processes from development, morphogenesis, differentiation, proliferation and apoptosis. Although understanding of the molecular basis of miRNA biology is improving, methods to monitor the dynamic and the spatiotemporal aspects of miRNA expression under physiopathological conditions are required. However, monitoring of miRNAs is difficult due to their small size, low abundance, high degree of sequence similarity, and their dynamic expression pattern which is subjected to tight transcriptional and post-transcriptional controls. Recently, we developed a miRNA monitoring system called RILES, standing for RNAi-inducible expression system, which relies on an engineered regulatable expression system, to switch on the expression of the luciferase gene when the targeted miRNA is expressed in cells. We demonstrated that RILES is a specific, sensitive, and robust method to determine the fine-tuning of miRNA expression during the development of an experimental pathological process in mice. Because RILES offers the possibility for longitudinal studies on individual subjects, sharper insights into miRNA regulation can be generated, with applications in physiology, pathophysiology and development of RNAi-based therapies. This chapter describes methods and protocols to monitor the expression of myomiR-206, -1, and -133 in the tibialis anterior muscle of mice. These protocols can be used and adapted to monitor the expression of other miRNAs in other biological processes.

  11. Ancient human miRNAs are more likely to have broad functions and disease associations than young miRNAs.

    PubMed

    Patel, Vir D; Capra, John A

    2017-08-31

    microRNAs (miRNAs) are essential to the regulation of gene expression in eukaryotes, and improper expression of miRNAs contributes to hundreds of diseases. Despite the essential functions of miRNAs, the evolutionary dynamics of how they are integrated into existing gene regulatory and functional networks is not well understood. Knowledge of the origin and evolutionary history a gene has proven informative about its functions and disease associations; we hypothesize that incorporating the evolutionary origins of miRNAs into analyses will help resolve differences in their functional dynamics and how they influence disease. We computed the phylogenetic age of miRNAs across 146 species and quantified the relationship between human miRNA age and several functional attributes. Older miRNAs are significantly more likely to be associated with disease than younger miRNAs, and the number of associated diseases increases with age. As has been observed for genes, the miRNAs associated with different diseases have different age profiles. For example, human miRNAs implicated in cancer are enriched for origins near the dawn of animal multicellularity. Consistent with the increasing contribution of miRNAs to disease with age, older miRNAs target more genes than younger miRNAs, and older miRNAs are expressed in significantly more tissues. Furthermore, miRNAs of all ages exhibit a strong preference to target older genes; 93% of validated miRNA gene targets were in existence at the origin of the targeting miRNA. Finally, we find that human miRNAs in evolutionarily related families are more similar in their targets and expression profiles than unrelated miRNAs. Considering the evolutionary origin and history of a miRNA provides useful context for the analysis of its function. Consistent with recent work in Drosophila, our results support a model in which miRNAs increase their expression and functional regulatory interactions over evolutionary time, and thus older miRNAs have increased potential to cause disease. We anticipate that these patterns hold across mammalian species; however, comprehensively evaluating them will require refining miRNA annotations across species and collecting functional data in non-human systems.

  12. Identification and Expression Analyses of miRNAs from Two Contrasting Flower Color Cultivars of Canna by Deep Sequencing.

    PubMed

    Roy, Sribash; Tripathi, Abhinandan Mani; Yadav, Amrita; Mishra, Parneeta; Nautiyal, Chandra Shekhar

    2016-01-01

    miRNAs are endogenous small RNA (sRNA) that play critical roles in plant development processes. Canna is an ornamental plant belonging to family Cannaceae. Here, we report for the first time the identification and differential expression of miRNAs in two contrasting flower color cultivars of Canna, Tropical sunrise and Red president. A total of 313 known miRNAs belonging to 78 miRNA families were identified from both the cultivars. Thirty one miRNAs (17 miRNA families) were specific to Tropical sunrise and 43 miRNAs (10 miRNA families) were specific to Red president. Thirty two and 18 putative new miRNAs were identified from Tropical sunrise and Red president, respectively. One hundred and nine miRNAs were differentially expressed in the two cultivars targeting 1343 genes. Among these, 16 miRNAs families targeting 60 genes were involved in flower development related traits and five miRNA families targeting five genes were involved in phenyl propanoid and pigment metabolic processes. We further validated the expression analysis of a few miRNA and their target genes by qRT-PCR. Transcription factors were the major miRNA targets identified. Target validation of a few randomly selected miRNAs by RLM-RACE was performed but was successful with only miR162. These findings will help in understanding flower development processes, particularly the color development in Canna.

  13. miRNA-148a regulates the expression of the estrogen receptor through DNMT1-mediated DNA methylation in breast cancer cells

    PubMed Central

    Xu, Yurui; Chao, Lin; Wang, Jianyu; Sun, Yonghong

    2017-01-01

    Breast cancer remains the most prevalent cancer among women worldwide. The expression of estrogen receptor-α (ER-α) is an important marker for prognosis. ER-α status may be positive or negative in breast cancer cells, although the cause of negative or positive status is not yet fully characterized. In the present study, the expression of ER-α and miRNA-148a was assessed in two breast cancer cell lines, HCC1937 and MCF7. An association between ER-α and miRNA-148a expression was identified. It was then demonstrated that DNA methyltransferase 1 (DNMT1) is a target of miRNA-148a, which may suppress the expression of ER-α via DNA methylation. Finally, an miRNA-148a mimic or inhibitor was transfected into MCF7 cells; the miRNA-148a mimic increased ER-α expression whereas the miRNA-148a inhibitor decreased ER-α expression. In conclusion, it was identified that miRNA-148a regulates ER-α expression through DNMT1-mediated DNA methylation in breast cancer cells. This may represent a potential miRNA-based strategy to modulate the expression of ER-α and provide a novel perspective for investigating the role of miRNAs in treating breast cancer. PMID:29085474

  14. Impact of microRNAs on regulatory networks and pathways in human colorectal carcinogenesis and development of metastasis

    PubMed Central

    2013-01-01

    Background Qualitative alterations or abnormal expression of microRNAs (miRNAs) in colon cancer have mainly been demonstrated in primary tumors. Poorly overlapping sets of oncomiRs, tumor suppressor miRNAs and metastamiRs have been linked with distinct stages in the progression of colorectal cancer. To identify changes in both miRNA and gene expression levels among normal colon mucosa, primary tumor and liver metastasis samples, and to classify miRNAs into functional networks, in this work miRNA and gene expression profiles in 158 samples from 46 patients were analysed. Results Most changes in miRNA and gene expression levels had already manifested in the primary tumors while these levels were almost stably maintained in the subsequent primary tumor-to-metastasis transition. In addition, comparing normal tissue, tumor and metastasis, we did not observe general impairment or any rise in miRNA biogenesis. While only few mRNAs were found to be differentially expressed between primary colorectal carcinoma and liver metastases, miRNA expression profiles can classify primary tumors and metastases well, including differential expression of miR-10b, miR-210 and miR-708. Of 82 miRNAs that were modulated during tumor progression, 22 were involved in EMT. qRT-PCR confirmed the down-regulation of miR-150 and miR-10b in both primary tumor and metastasis compared to normal mucosa and of miR-146a in metastases compared to primary tumor. The upregulation of miR-201 in metastasis compared both with normal and primary tumour was also confirmed. A preliminary survival analysis considering differentially expressed miRNAs suggested a possible link between miR-10b expression in metastasis and patient survival. By integrating miRNA and target gene expression data, we identified a combination of interconnected miRNAs, which are organized into sub-networks, including several regulatory relationships with differentially expressed genes. Key regulatory interactions were validated experimentally. Specific mixed circuits involving miRNAs and transcription factors were identified and deserve further investigation. The suppressor activity of miR-182 on ENTPD5 gene was identified for the first time and confirmed in an independent set of samples. Conclusions Using a large dataset of CRC miRNA and gene expression profiles, we describe the interplay of miRNA groups in regulating gene expression, which in turn affects modulated pathways that are important for tumor development. PMID:23987127

  15. MicroRNA profiles following metformin treatment in a mouse model of non-alcoholic steatohepatitis

    PubMed Central

    KATSURA, AKIKO; MORISHITA, ASAHIRO; IWAMA, HISAKAZU; TANI, JOJI; SAKAMOTO, TEPPEI; TATSUTA, MIWA; TOYOTA, YUKA; FUJITA, KOJI; KATO, KIYOHITO; MAEDA, EMIKO; NOMURA, TAKAKO; MIYOSHI, HISAAKI; YONEYAMA, HIROHITO; HIMOTO, TAKASHI; FUJIWARA, SHINTARO; KOBARA, HIDEKI; MORI, HIROHITO; NIKI, TOSHIRO; ONO, MASAFUMI; HIRASHIMA, MITSUOMI; MASAKI, TSUTOMU

    2015-01-01

    Non-alcoholic steatohepatitis (NASH) is one of the most common causes of chronic liver disease and is considered to be a causative factor of cryptogenic cirrhosis and hepatocellular carcinoma. microRNAs (miRNAs) are small non-coding RNAs that negatively regulate messenger RNA (mRNA). Recently, it was demonstrated that the aberrant expression of certain miRNAs plays a pivotal role in liver disease. The aim of the present study was to evaluate changes in miRNA profiles associated with metformin treatment in a NASH model. Eight-week-old male mice were fed a methionine- and choline-deficient (MCD) diet alone or with 0.08% metformin for 15 weeks. Metformin significantly downregulated the level of plasma transaminases and attenuated hepatic steatosis and liver fibrosis. The expression of miRNA-376a, miRNA-127, miRNA-34a, miRNA-300 and miRNA-342-3p was enhanced among the 71 upregulated miRNAs, and the expression of miRNA-122, miRNA-194, miRNA-101b and miRNA-705 was decreased among 60 downregulated miRNAs in the liver of MCD-fed mice when compared with control mice. Of note, miRNA profiles were altered following treatment with metformin in MCD-fed mice. miRNA-376a, miRNA-127, miRNA-34a, miRNA-300 and miRNA-342-3p were down-regulated, but miRNA-122, miRNA-194, miRNA-101b and miRNA-705 were significantly upregulated in MCD-fed mice treated with metformin. miRNA profiles were altered in MCD-fed mice and metformin attenuated this effect on miRNA expression. Therefore, miRNA profiles are a potential tool that may be utilized to clarify the mechanism behind the metformin-induced improvement of hepatic steatosis and liver fibrosis. Furthermore, identification of targetable miRNAs may be used as a novel therapy in human NASH. PMID:25672270

  16. Analysis of the miRNA Profiles of Melanoma Exosomes Derived Under Normoxic and Hypoxic Culture Conditions.

    PubMed

    Wozniak, Michal; Peczek, Lukasz; Czernek, Liliana; Düchler, Markus

    2017-12-01

    MicroRNAs (miRNAs) transported in melanoma-derived exosomes function as intercellular messengers supporting tumor survival and progression. Hypoxia increases melanoma phenotypic plasticity, drug resistance, and metastasis. We determined the miRNA profiles in exosomes derived from melanoma cells grown under hypoxic and normoxic conditions by microarray analyses and reverse transcription-polymerase chain reaction (RT-PCR) in order to analyze the potential influence of vesicle-transported miRNAs on cancer-related pathways and transcriptional programs. Despite phenotypical differences of the four cell lines used, their exosomes shared the majority of miRNAs. The levels of three miRNAs were higher in normoxic exosomes, whereas 15 miRNAs were significantly more abundant under hypoxic conditions. Pathway analysis pointed at several cellular processes contributing to proliferation, drug resistance, and modification of the tumor microenvironment, including immunosuppression. The miRNA-expression profiles of exosomes from patient-derived melanoma cells are modified by oxygen concentration and reflect the phenotypic changes of melanoma cells under different growth conditions. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. TAM 2.0: tool for MicroRNA set analysis.

    PubMed

    Li, Jianwei; Han, Xiaofen; Wan, Yanping; Zhang, Shan; Zhao, Yingshu; Fan, Rui; Cui, Qinghua; Zhou, Yuan

    2018-06-06

    With the rapid accumulation of high-throughput microRNA (miRNA) expression profile, the up-to-date resource for analyzing the functional and disease associations of miRNAs is increasingly demanded. We here describe the updated server TAM 2.0 for miRNA set enrichment analysis. Through manual curation of over 9000 papers, a more than two-fold growth of reference miRNA sets has been achieved in comparison with previous TAM, which covers 9945 and 1584 newly collected miRNA-disease and miRNA-function associations, respectively. Moreover, TAM 2.0 allows users not only to test the functional and disease annotations of miRNAs by overrepresentation analysis, but also to compare the input de-regulated miRNAs with those de-regulated in other disease conditions via correlation analysis. Finally, the functions for miRNA set query and result visualization are also enabled in the TAM 2.0 server to facilitate the community. The TAM 2.0 web server is freely accessible at http://www.scse.hebut.edu.cn/tam/ or http://www.lirmed.com/tam2/.

  18. Visual Display of 5p-arm and 3p-arm miRNA Expression with a Mobile Application.

    PubMed

    Pan, Chao-Yu; Kuo, Wei-Ting; Chiu, Chien-Yuan; Lin, Wen-Chang

    2017-01-01

    MicroRNAs (miRNAs) play important roles in human cancers. In previous studies, we have demonstrated that both 5p-arm and 3p-arm of mature miRNAs could be expressed from the same precursor and we further interrogated the 5p-arm and 3p-arm miRNA expression with a comprehensive arm feature annotation list. To assist biologists to visualize the differential 5p-arm and 3p-arm miRNA expression patterns, we utilized a user-friendly mobile App to display. The Cancer Genome Atlas (TCGA) miRNA-Seq expression information. We have collected over 4,500 miRNA-Seq datasets from 15 TCGA cancer types and further processed them with the 5p-arm and 3p-arm annotation analysis pipeline. In order to be displayed with the RNA-Seq Viewer App, annotated 5p-arm and 3p-arm miRNA expression information and miRNA gene loci information were converted into SQLite tables. In this distinct application, for any given miRNA gene, 5p-arm miRNA is illustrated on the top of chromosome ideogram and 3p-arm miRNA is illustrated on the bottom of chromosome ideogram. Users can then easily interrogate the differentially 5p-arm/3p-arm expressed miRNAs with their mobile devices. This study demonstrates the feasibility and utility of RNA-Seq Viewer App in addition to mRNA-Seq data visualization.

  19. Differential expression analysis of Paralichthys olivaceus microRNAs in adult ovary and testis by deep sequencing.

    PubMed

    Gu, Yifeng; Zhang, Lei; Chen, Xiaowu

    2014-08-01

    MicroRNAs (miRNAs) play an important role in gonadal development and differentiation in fish. However, understanding of the mechanism of this process is hindered by our poor knowledge of miRNA expression patterns in fish gonads. In this study, miRNA libraries derived from adult gonads of Paralichthys olivaceus were generated by using next-generation sequencing (NGS) technology. Bioinformatics analysis was performed to distinguish mature miRNA sequences from two classes of small RNAs represented in the sequencing data. A total of 141 mature miRNAs were identified, in which 21 miRNAs were found in P. olivaceus for the first time. Variance and preference of miRNAs expression were concluded from the deep sequencing reads. Some miRNAs, such as pol-miR-143, pol-miR-26a and pol-let-7a were found with quite high expression levels in both gonads, while some exhibited a clear sex-biased expression in different gonad. Approximate 20.0% and 13.1% of the isolated miRNAs were preferentially expressed in the testis (FC<0.5) or ovary (FC>2), respectively. The identification and the preliminary analysis of the sex-biased expression of miRNAs in P. olivaceus gonads in our work by using NGS will provide us a basic catalog of miRNAs to facilitate future improvement and exploitation of sexual regulatory mechanisms in P. olivaceus. Copyright © 2014. Published by Elsevier Inc.

  20. Characterization of circulating microRNA expression in patients with a ventricular septal defect.

    PubMed

    Li, Dong; Ji, Long; Liu, Lianbo; Liu, Yizhi; Hou, Haifeng; Yu, Kunkun; Sun, Qiang; Zhao, Zhongtang

    2014-01-01

    Ventricular septal defect (VSD), one of the most common types of congenital heart disease (CHD), results from a combination of environmental and genetic factors. Recent studies demonstrated that microRNAs (miRNAs) are involved in development of CHD. This study was to characterize the expression of miRNAs that might be involved in the development or reflect the consequences of VSD. MiRNA microarray analysis and reverse transcription-polymerase chain reaction (RT-PCR) were employed to determine the miRNA expression profile from 3 patients with VSD and 3 VSD-free controls. 3 target gene databases were employed to predict the target genes of differentially expressed miRNAs. miRNAs that were generally consensus across the three databases were selected and then independently validated using real time PCR in plasma samples from 20 VSD patients and 15 VSD-free controls. Target genes of validated 8 miRNAs were predicted using bioinformatic methods. 36 differentially expressed miRNAs were found in the patients with VSD and the VSD-free controls. Compared with VSD-free controls, expression of 15 miRNAs were up-regulated and 21 miRNAs were downregulated in the VSD group. 15 miRNAs were selected based on database analysis results and expression levels of 8 miRNAs were validated. The results of the real time PCR were consistent with those of the microarray analysis. Gene ontology analysis indicated that the top target genes were mainly related to cardiac right ventricle morphogenesis. NOTCH1, HAND1, ZFPM2, and GATA3 were predicted as targets of hsa-let-7e-5p, hsa-miR-222-3p and hsa-miR-433. We report for the first time the circulating miRNA profile for patients with VSD and showed that 7 miRNAs were downregulated and 1 upregulated when matched to VSD-free controls. Analysis revealed target genes involved in cardiac development were probably regulated by these miRNAs.

  1. Detection and comparison of microRNA expression in the serum of Doberman Pinschers with dilated cardiomyopathy and healthy controls

    PubMed Central

    2013-01-01

    Background Dilated cardiomyopathy (DCM) is the most common heart disease in Doberman Pinschers. MicroRNAs (miRNAs) are short non-coding RNAs playing important roles in gene regulation. Different miRNA expression patterns have been described for DCM in humans and might represent potential diagnostic markers. There are no studies investigating miRNA expression profiles in canine DCM. The aims of this study were to screen the miRNA expression profile of canine serum using miRNA microarray and to compare expression patterns of a group of Doberman Pinschers with DCM and healthy controls. Results Eight Doberman Pinschers were examined by echocardiography and 24-hour-ECG and classified as healthy (n = 4) or suffering from DCM (n = 4). Total RNA was extracted from serum and hybridized on a custom-designed 8x60k miRNA microarray (Agilent) containing probes for 1368 individual miRNAs. Although total RNA concentrations were very low in serum samples, 404 different miRNAs were detectable with sufficient signal intensity on miRNA microarray. 22 miRNAs were differentially expressed in the two groups (p < 0.05 and fold change (FC) > 1.5), but did not reach statistical significance after multiple testing correction (false discovery rate adjusted p > 0.05). Five miRNAs were selected for further analysis using quantitative Real-Time RT-PCR (qPCR) assays. No significant differences were found using specific miRNA qPCR assays (p > 0.05). Conclusions Numerous miRNAs can be detected in canine serum. Between healthy and DCM dogs, miRNA expression changes could be detected, but the results did not reach statistical significance most probably due to the small group size. miRNAs are potential new circulating biomarkers in veterinary medicine and should be investigated in larger patient groups and additional canine diseases. PMID:23327631

  2. Detection and comparison of microRNA expression in the serum of Doberman Pinschers with dilated cardiomyopathy and healthy controls.

    PubMed

    Steudemann, Carola; Bauersachs, Stefan; Weber, Karin; Wess, Gerhard

    2013-01-17

    Dilated cardiomyopathy (DCM) is the most common heart disease in Doberman Pinschers. MicroRNAs (miRNAs) are short non-coding RNAs playing important roles in gene regulation. Different miRNA expression patterns have been described for DCM in humans and might represent potential diagnostic markers. There are no studies investigating miRNA expression profiles in canine DCM. The aims of this study were to screen the miRNA expression profile of canine serum using miRNA microarray and to compare expression patterns of a group of Doberman Pinschers with DCM and healthy controls. Eight Doberman Pinschers were examined by echocardiography and 24-hour-ECG and classified as healthy (n=4) or suffering from DCM (n=4). Total RNA was extracted from serum and hybridized on a custom-designed 8x60k miRNA microarray (Agilent) containing probes for 1368 individual miRNAs. Although total RNA concentrations were very low in serum samples, 404 different miRNAs were detectable with sufficient signal intensity on miRNA microarray. 22 miRNAs were differentially expressed in the two groups (p<0.05 and fold change (FC)>1.5), but did not reach statistical significance after multiple testing correction (false discovery rate adjusted p>0.05). Five miRNAs were selected for further analysis using quantitative Real-Time RT-PCR (qPCR) assays. No significant differences were found using specific miRNA qPCR assays (p>0.05). Numerous miRNAs can be detected in canine serum. Between healthy and DCM dogs, miRNA expression changes could be detected, but the results did not reach statistical significance most probably due to the small group size. miRNAs are potential new circulating biomarkers in veterinary medicine and should be investigated in larger patient groups and additional canine diseases.

  3. microRNAs related to angiogenesis are dysregulated in endometrioid endometrial cancer.

    PubMed

    Ramón, Luis A; Braza-Boïls, Aitana; Gilabert, Juan; Chirivella, Melitina; España, Francisco; Estellés, Amparo; Gilabert-Estellés, Juan

    2012-10-01

    Which is the role of microRNAs (miRNAs) related to several angiogenesis regulators such as VEGF-A (Vascular endothelial growth factor-A) and TSP-1 (Thrombospondin-1) in endometrial cancer? A dysregulated expression of miRNAs related to angiogenesis and an increase in the VEGF-A levels were observed in endometrial cancer in comparison with control. The different expression of miRNAs could modulate the expression of angiogenic and antiangiogenic factors, which may play an important role in the pathogenesis of endometrial cancer. Dysregulated miRNA expression has been previously evaluated in endometrial adenocarcinoma. To the best of our knowledge, there are no studies on the relationship between angiogenic factors and miRNAs in endometrial cancer. Case-control study: 41 patients with histologically proven endometrioid endometrial cancer and 56 women without endometrial cancer. RNAs isolated from tissue samples were analyzed using the GeneChip miRNA 2.0 Array platform (Affymetrix). TaqMan qRT-PCR was used to assess the expression of the selected miRNAs related to angiogenesis (miR-15b, -16, -17-5p, -20a, -21, -125a, -200b, -210, -214*, -221, -222 and -424), and VEGF-A and TSP-1 mRNAs were assessed by qRT-PCR using SYBR Green. Protein levels were quantified by ELISAs. Compared with the miRNAs in the control endometrium, eight miRNAs (miR-15b, -17-5p, -20a, -125a, -214*, -221, -222 and -424) were significantly down-regulated and two miRNAs (miR-200b and -210) were significantly up-regulated in the cancerous endometrium. A significant increase in VEGF-A mRNA and protein expression and in TSP-1 protein levels (P <0.01) was observed in endometrial cancer. Moreover, significant inverse correlations between VEGF-A protein levels and miR-20a, -125a, -214*, -221, -222 and -424 were detected. In contrast, a positive correlation was observed between VEGF-A and miR-200b and -210. Furthermore, stage IB endometrial cancer was associated with a higher VEGF-A protein/mRNA ratio and lower miR-214*, -221 and -222 expression in comparison with stage IA. Future functional studies (e.g. miRNA inhibition or ectopic overexpression) in cell culture models are needed to confirm the VEGF targeting by the miRNAs found in the present study. The findings of the present study have potential implications for diagnostics and therapeutics of endometrial carcinoma. This work was supported by research grants from the Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica (Instituto de Salud Carlos III, Fondo de Investigación Sanitaria, PI080185, PI0110091) and Red RECAVA (RD06/0014/0004), by Consellería de Sanidad (AP-141/11) and Consellería de Educación (PROMETEO/2011/027), Generalitat Valenciana, by Beca Fibrinolisis 2009 and Becario 2010, 2011 from Fundación Española de Trombosis y Hemostasia and by the Fundación Investigación Hospital La Fe, Spain. None of the authors have any conflicts of interest.

  4. Differential plasma microvesicle and brain profiles of microRNA in experimental cerebral malaria.

    PubMed

    Cohen, Amy; Zinger, Anna; Tiberti, Natalia; Grau, Georges E R; Combes, Valery

    2018-05-11

    Cerebral malaria (CM) is a fatal complication of Plasmodium infection, mostly affecting children under the age of five in the sub-Saharan African region. CM pathogenesis remains incompletely understood, although sequestered infected red blood cells, inflammatory cells aggregating in the cerebral blood vessels, and the microvesicles (MV) that they release in the circulation, have been implicated. Plasma MV numbers increase in CM patients and in the murine model, where blocking their release, genetically or pharmacologically, protects against brain pathology, suggesting a role of MV in CM neuropathogenesis. In this work, the microRNA (miRNA) cargo of MV is defined for the first time during experimental CM with the overarching hypothesis that this characterization could help understand CM pathogenesis. The change in abundance of miRNA was studied following infection of CBA mice with Plasmodium berghei ANKA strain (causing experimental CM), and Plasmodium yoelii, which causes severe malaria without cerebral complications, termed non-CM (NCM). miRNA expression was analyzed using microarrays to compare MV from healthy (NI) and CM mice, yielding several miRNA of interest. The differential expression profiles of these selected miRNA (miR-146a, miR-150, miR-193b, miR-205, miR-215, miR-467a, and miR-486) were analyzed in mouse MV, MV-free plasma, and brain tissue by quantitative reverse transcription PCR (RT-qPCR). Two miRNA-miR-146a and miR-193b-were confirmed as differentially abundant in MV from CM mice, compared with NCM and NI mice. These miRNA have been shown to play various roles in inflammation, and their dysregulation during CM may be critical for triggering the neurological syndrome via regulation of their potential downstream targets. These data suggest that, in the mouse model at least, miRNA may have a regulatory role in the pathogenesis of severe malaria.

  5. miRWalk--database: prediction of possible miRNA binding sites by "walking" the genes of three genomes.

    PubMed

    Dweep, Harsh; Sticht, Carsten; Pandey, Priyanka; Gretz, Norbert

    2011-10-01

    MicroRNAs are small, non-coding RNA molecules that can complementarily bind to the mRNA 3'-UTR region to regulate the gene expression by transcriptional repression or induction of mRNA degradation. Increasing evidence suggests a new mechanism by which miRNAs may regulate target gene expression by binding in promoter and amino acid coding regions. Most of the existing databases on miRNAs are restricted to mRNA 3'-UTR region. To address this issue, we present miRWalk, a comprehensive database on miRNAs, which hosts predicted as well as validated miRNA binding sites, information on all known genes of human, mouse and rat. All mRNAs, mitochondrial genes and 10 kb upstream flanking regions of all known genes of human, mouse and rat were analyzed by using a newly developed algorithm named 'miRWalk' as well as with eight already established programs for putative miRNA binding sites. An automated and extensive text-mining search was performed on PubMed database to extract validated information on miRNAs. Combined information was put into a MySQL database. miRWalk presents predicted and validated information on miRNA-target interaction. Such a resource enables researchers to validate new targets of miRNA not only on 3'-UTR, but also on the other regions of all known genes. The 'Validated Target module' is updated every month and the 'Predicted Target module' is updated every 6 months. miRWalk is freely available at http://mirwalk.uni-hd.de/. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. The Effect of microRNAs in the Regulation of Human CYP3A4: a Systematic Study using a Mathematical Model

    PubMed Central

    Wei, Zhiyun; Jiang, Songshan; Zhang, Yiting; Wang, Xiaofei; Peng, Xueling; Meng, Chunjie; Liu, Yichen; Wang, Honglian; Guo, Luo; Qin, Shengying; He, Lin; Shao, Fengmin; Zhang, Lirong; Xing, Qinghe

    2014-01-01

    CYP3A4 metabolizes more than 50% of the drugs on the market. The large inter-individual differences of CYP3A4 expression may contribute to the variability of human drug responses. Post-transcriptional regulation of CYP3A4 is poorly understood, whereas transcriptional regulation has been studied much more thoroughly. In this study, we used multiple software programs to predict miRNAs that might bind to CYP3A4 and identified 112 potentially functional miRNAs. Then a luciferase reporter system was used to assess the effect of the overexpression of each potentially functional miRNA in HEK 293T cells. Fourteen miRNAs that significantly decreased reporter activity were measured in human liver samples (N = 27) as candidate miRNAs. To establish a more effective way to analyze in vivo data for miRNA candidates, the relationship between functional miRNA and target mRNA was modeled mathematically. Taking advantage of this model, we found that hsa-miR-577, hsa-miR-1, hsa-miR-532-3p and hsa-miR-627 could significantly downregulate the translation efficiency of CYP3A4 mRNA in liver. This study used in silico, in vitro and in vivo methods to progressively screen functional miRNAs for CYP3A4 and to enhance our understanding of molecular events underlying the large inter-individual differences of CYP3A4 expression in human populations. PMID:24594634

  7. Identification and Characterization of the miRNA Transcriptome of Ovis aries

    PubMed Central

    Wei, Caihong; Sheng, Xihui; Ren, Hangxing; Xu, Lingyang; Lu, Jian; Liu, Jiasen; Zhang, Li; Du, Lixin

    2013-01-01

    The discovery and identification of Ovis aries (sheep) miRNAs will further promote the study of miRNA functions and gene regulatory mechanisms. To explore the microRNAome (miRNAome) of sheep in depth, samples were collected that included eight developmental stages: the longissimus dorsi muscles of Texel fetuses at 70, 85, 100, 120, and 135 days, and the longissimus dorsi muscles of Ujumqin fetuses at 70, 85, 100, 120, and 135 d, and lambs at 0 (birth), 35, and 70 d. These samples covered all of the representative periods of Ovis aries growth and development throughout gestation (about 150 d) and 70 d after birth. Texel and Ujumqin libraries were separately subjected to Solexa deep sequencing; 35,700,772 raw reads were obtained overall. We used ACGT101-miR v4.2 to analyze the sequence data. Following meticulous comparisons with mammalian mature miRNAs, precursor hairpins (pre-miRNAs), and the latest sheep genome, we substantially extended the Ovis aries miRNAome. The list of pre-miRNAs was extended to 2,319, expressing 2,914 mature miRNAs. Among those, 1,879 were genome mapped to unique miRNAs, representing 2,436 genome locations, and 1,754 pre-miRNAs were mapped to chromosomes. Furthermore, the Ovis aries miRNAome was processed using an elaborate bioinformatic analysis that examined multiple end sequence variation in miRNAs, precursors, chromosomal localizations, species-specific expressions, and conservative properties. Taken together, this study provides the most comprehensive and accurate exploration of the sheep miRNAome, and draws conclusions about numerous characteristics of Ovis aries miRNAs, including miRNAs and isomiRs. PMID:23516575

  8. [Expression profiles of miRNA-182 and Clock mRNA in the pineal gland of neonatal rats with hypoxic-ischemic brain damage].

    PubMed

    Han, Xing; Ding, Xin; Xu, Li-Xiao; Liu, Ming-Hua; Feng, Xing

    2016-03-01

    To study the changes of miRNA expression in the pineal gland of neonatal rats with hypoxic-ischemic brain damage (HIBD) and the possible roles of miRNA in the pathogenesis of circadian rhythm disturbance after HIBD. Seven-day-old Sprague-Dawley (SD) rats were randomly divided into 2 groups: HIBD and sham-operated. HIBD was induced according to the Rice-Vannucci method. The pineal glands were obtained 24 hours after the HIBD event. The expression profiles of miRNAs were determined using GeneChip technigue and quantitative real-time PCR (RT-PCR). Then the miRNA which was highly expressed was selected. The expression levels of the chosen miRNA were detected in different tissues (lungs, intestines, stomach, kidneys, cerebral cortex, pineal gland). RT-PCR analysis was performed to measure the expression profiles of the chosen miRNA and the targeted gene Clock mRNA in the pineal gland at 0, 24, 48 and 72 hours after HIBD. miRNA-182 that met the criteria was selected by GeneChip and RT-PCR. miRNA-182 was highly expressed in the pineal gland. Compared with the sham-operated group, the expression of miRNA-182 was significantly up-regulated in the pineal gland at 24 and 48 hours after HIBD (P<0.05). Compared with the sham-operated group, Clock mRNA expression in the HIBD group increased at 0 hour after HIBD, decreased at 48 hours after HIBD and increased at 72 hours after HIBD (P<0.05). miRNA-182 may be involved in the pathogenesis of circadian rhythm disturbance after HIBD.

  9. Aging and calorie restriction regulate the expression of miR-125a-5p and its target genes Stat3, Casp2 and Stard13.

    PubMed

    Makwana, Kuldeep; Patel, Sonal Arvind; Velingkaar, Nikkhil; Ebron, Jey Sabith; Shukla, Girish C; Kondratov, Roman V Kondratov V

    2017-07-31

    Calorie restriction (CR) is a dietary intervention known to delay aging. In order, to understand molecular mechanisms of CR, we analyzed the expression of 983 MicroRNAs (miRNAs) in the liver of female mice after 2 years of 30% CR using micro-array. 16 miRNAs demonstrated significant changes in their expression upon CR in comparison with age-matched control. mmu-miR-125a-5p (miR-125a-5p) was significantly upregulated upon CR, and in agreement with this, the expression of mRNAs for its three predicted target genes: Stat3, Casp2, and Stard13 was significantly downregulated in the liver of CR animals. The expression of precursor miRNA for miR-125a-5p was also upregulated upon CR, which suggests its regulation at the level of transcription. Upon aging miR-125a-5p expression was downregulated while the expression of its target genes was upregulated. Thus, CR prevented age-associated changes in the expression of miR-125a-5p and its targets. We propose that miR-125a-5p dependent downregulation of Stat3, Casp2, and Stard13 contributes to the calorie restriction-mediated delay of aging.

  10. Serum microRNA profiles in athyroid patients on and off levothyroxine therapy.

    PubMed

    Massolt, Elske T; Chaker, Layal; Visser, Theo J; Gillis, Ad J M; Dorssers, Lambert C J; Beukhof, Carolien M; Kam, Boen L R; Franssen, Gaston J; Brigante, Giulia; van Ginhoven, Tessa M; Visser, W Edward; Looijenga, Leendert H J; Peeters, Robin P

    2018-01-01

    Levothyroxine replacement treatment in hypothyroidism is unable to restore physiological thyroxine and triiodothyronine concentrations in serum and tissues completely. Normal serum thyroid stimulating hormone (TSH) concentrations reflect only pituitary euthyroidism and, therefore, novel biomarkers representing tissue-specific thyroid state are needed. MicroRNAs (miRNAs), small non-coding regulatory RNAs, exhibit tissue-specific expression patterns and can be detectable in serum. Previous studies have demonstrated differential expression of (precursors of) miRNAs in tissues under the influence of thyroid hormone. To study if serum miRNA profiles are changed in different thyroid states. We studied 13 athyroid patients (6 males) during TSH suppressive therapy and after 4 weeks of thyroid hormone withdrawal. A magnetic bead capture system was used to isolate 384 defined miRNAs from serum. Subsequently, the TaqMan Array Card 3.0 platform was used for profiling after individual target amplification. Mean age of the subjects was 44.0 years (range 20-61 years). Median TSH levels were 88.9 mU/l during levothyroxine withdrawal and 0.006 mU/l during LT4 treatment with a median dosage of 2.1 μg/kg. After normalization to allow inter-sample analysis, a paired analysis did not demonstrate a significant difference in expression of any of the 384 miRNAs analyzed on and off LT4 treatment. Although we previously showed an up-regulation of pri-miRNAs 133b and 206 in hypothyroid state in skeletal muscle, the present study does not supply evidence that thyroid state also affects serum miRNAs in humans.

  11. Cloning and expression of porcine Dicer and the impact of developmental stage and culture conditions on MicroRNA expression in porcine embryos.

    PubMed

    Stowe, Heather M; Curry, Erin; Calcatera, Samantha M; Krisher, Rebecca L; Paczkowski, Melissa; Pratt, Scott L

    2012-06-15

    MicroRNA (miRNA) is a class of small, single-stranded ribonucleic acids that regulate gene expression post-transcriptionally and are involved in somatic cell, germ cell, and embryonic development. As the enzyme responsible for producing mature miRNA, Dicer is crucial to miRNA production. Characterization of Dicer and its expression at the nucleotide level, as well as the identification of miRNA expression in reproductive tissues, have yet to be reported for the domestic pig (Sus scrofa), a species important for disease modeling, biomedical research, and food production. In this study we determined the primary cDNA sequence of porcine Dicer (pDicer), confirmed its expression in porcine oocytes and early stage embryos, and evaluated the expression of specific miRNA during early embryonic development and between in vivo (IVO) and in vitro (IVF) produced embryos. Total cellular RNA (tcRNA) was isolated and subjected to end point RT-PCR, subcloning, and sequencing. The pDicer coding sequence was found to be highly conserved, and phylogenetic analysis showed that pDicer is more highly conserved to human Dicer (hDicer) than the mouse homolog. Expression of pDicer mRNA was detected in oocytes and in IVO produced blastocyst embryos. Two RT-PCR procedures were conducted to identify and quantitate miRNA expressed in metaphase II oocytes (MII) and embryos. RT-PCR array was conducted using primers designed for human miRNA, and 86 putative porcine miRNA in MII and early embryos were detected. Fewer miRNAs were detected in 8-cell (8C) embryos compared to MII and blastocysts (B) (P=0.026 and P<0.0001, respectively). Twenty-one miRNA (of 88 examined) were differentially expressed between MII and 8C, 8C and B, or MII and B. Transcripts targeted by the differentially expressed miRNA were enriched in gene ontology (GO) categories associated with cellular development and differentiation. Further, we evaluated the effects of IVF culture on the expression of specific miRNA at the blastocyst stage. Quantitative RT-PCR was conducted on blastocyst tcRNA isolated from individual IVO and IVF produced embryos for miR-18a, -21, and -24. Only the expression level of miR-24 differed due to culture conditions, with lower levels detected in the IVO embryos. These data show that pDicer and miRNA are present in porcine oocytes and embryos. In addition, specific miRNA levels are altered due to stage of embryonic development and, in the case of miR-24, due to culture conditions, making this miRNA a candidate for screening of embryo quality. Additional studies characterizing Dicer and miRNA expression during early embryonic development from IVO and IVF sources are required to further examine and evaluate the use of miRNA as a marker for embryo quality. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Decreased expression of microRNA-29 family in leiomyoma contributes to increased major fibrillar collagen production.

    PubMed

    Marsh, Erica E; Steinberg, Marissa L; Parker, J Brandon; Wu, Ju; Chakravarti, Debabrata; Bulun, Serdar E

    2016-09-01

    To determine the expression and function of the microRNA-29 family (miRNA-29a, miRNA-29b, miRNA-29c) in human leiomyoma and myometrium. Basic science experimental design. Academic medical center. Women undergoing surgery for symptomatic uterine fibroids. Overexpression and knockdown of miRNA-29a, miRNA-29b, and miRNA-29c in primary leiomyoma and myometrial cells. [1] Expression of the miRNA-29 family members in vivo in leiomyoma versus myometrium; [2] Major fibrillar collagen (I, II, III) expression in leiomyoma and myometrial cells with manipulation of miRNA-29 species. Members of the miRNA-29 family (29a, 29b, 29c) are all down-regulated in leiomyoma versus myometrium in vivo. The expression of the miRNA-29 family can be successfully modulated in primary leiomyoma and myometrial cells. Overexpression of the miRNA-29 family in leiomyoma cells results in down-regulation of the major fibrillar collagens. Down-regulation of the miRNA-29 species in myometrium results in an increase in collagen type III deposition. The miRNA-29 family is consistently down-regulated in leiomyoma compared to matched myometrial tissue. This down-regulation contributes to the increased collagen seen in leiomyomas versus myometrium. When miRNA-29 members are overexpressed in leiomyoma cells, protein levels of all of the major fibrillar collagens decrease. The miRNA-29 members are potential therapeutic targets in this highly prevalent condition. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  13. Characterisation of microRNAs from apple (Malus domestica 'Royal Gala') vascular tissue and phloem sap.

    PubMed

    Varkonyi-Gasic, Erika; Gould, Nick; Sandanayaka, Manoharie; Sutherland, Paul; MacDiarmid, Robin M

    2010-08-04

    Plant microRNAs (miRNAs) are a class of small, non-coding RNAs that play an important role in development and environmental responses. Hundreds of plant miRNAs have been identified to date, mainly from the model species for which there are available genome sequences. The current challenge is to characterise miRNAs from plant species with agricultural and horticultural importance, to aid our understanding of important regulatory mechanisms in crop species and enable improvement of crops and rootstocks. Based on the knowledge that many miRNAs occur in large gene families and are highly conserved among distantly related species, we analysed expression of twenty-one miRNA sequences in different tissues of apple (Malus x domestica 'Royal Gala'). We identified eighteen sequences that are expressed in at least one of the tissues tested. Some, but not all, miRNAs expressed in apple tissues including the phloem tissue were also detected in the phloem sap sample derived from the stylets of woolly apple aphids. Most of the miRNAs detected in apple phloem sap were also abundant in the phloem sap of herbaceous species. Potential targets for apple miRNAs were identified that encode putative proteins shown to be targets of corresponding miRNAs in a number of plant species. Expression patterns of potential targets were analysed and correlated with expression of corresponding miRNAs. This study validated tissue-specific expression of apple miRNAs that target genes responsible for plant growth, development, and stress response. A subset of characterised miRNAs was also present in the apple phloem translocation stream. A comparative analysis of phloem miRNAs in herbaceous species and woody perennials will aid our understanding of non-cell autonomous roles of miRNAs in plants.

  14. Characterisation of microRNAs from apple (Malus domestica 'Royal Gala') vascular tissue and phloem sap

    PubMed Central

    2010-01-01

    Background Plant microRNAs (miRNAs) are a class of small, non-coding RNAs that play an important role in development and environmental responses. Hundreds of plant miRNAs have been identified to date, mainly from the model species for which there are available genome sequences. The current challenge is to characterise miRNAs from plant species with agricultural and horticultural importance, to aid our understanding of important regulatory mechanisms in crop species and enable improvement of crops and rootstocks. Results Based on the knowledge that many miRNAs occur in large gene families and are highly conserved among distantly related species, we analysed expression of twenty-one miRNA sequences in different tissues of apple (Malus x domestica 'Royal Gala'). We identified eighteen sequences that are expressed in at least one of the tissues tested. Some, but not all, miRNAs expressed in apple tissues including the phloem tissue were also detected in the phloem sap sample derived from the stylets of woolly apple aphids. Most of the miRNAs detected in apple phloem sap were also abundant in the phloem sap of herbaceous species. Potential targets for apple miRNAs were identified that encode putative proteins shown to be targets of corresponding miRNAs in a number of plant species. Expression patterns of potential targets were analysed and correlated with expression of corresponding miRNAs. Conclusions This study validated tissue-specific expression of apple miRNAs that target genes responsible for plant growth, development, and stress response. A subset of characterised miRNAs was also present in the apple phloem translocation stream. A comparative analysis of phloem miRNAs in herbaceous species and woody perennials will aid our understanding of non-cell autonomous roles of miRNAs in plants. PMID:20682080

  15. Dacarbazine inhibits proliferation of melanoma FEMX-1 cells by up-regulating expression of miRNA-200.

    PubMed

    Chen, Y-N

    2017-03-01

    Melanoma is a highly aggressive tumour, and treatment efficacy depends on the stage of the tumour. Early stage cutaneous melanoma is efficiently treated by surgical excision. In contrast, late-stage melanoma requires chemotherapy with dacarbazine (DTIC). Unfortunately, advanced melanoma can often be resistant to DTIC. The mechanisms of anti-melanoma effects of DTIC are still poorly understood, which hinders development of more potent therapies. In this study, we examined the effects of DTIC on growth inhibition of FEMX-1 melanoma cell line, expression of apoptosis-related proteins, and expression of micro (mi)RNA-200 (miRNA-200a, miRNA-200b, miRNA-200c, and miRNA-141). DTIC was used at 50 (low dose) or 100 (high dose) mg/ml. Cell growth inhibition was documented by MTT assay. Cell apoptosis was quantified by propidium iodide staining and caspase 3-8 activity assay. Expression of apoptosis-related proteins Bim, Bak, BAX, and Bad were documented by Western blot analysis, while expression of miRNA-200 by PCR. DTIC dose-dependently inhibited growth of FEMX-1 melanoma cell line, induced cell apoptosis, modulated the levels of apoptosis-related proteins, and up-regulated expression of miRNA-200 family members. DTIC inhibits the growth of melanoma cells by up-regulating expression of miRNA-200.

  16. Quantitative Differential Expression Analysis Reveals Mir-7 As Major Islet MicroRNA

    PubMed Central

    Bravo-Egana, Valia; Rosero, Samuel; Molano, R. Damaris; Pileggi, Antonello; Ricordi, Camillo; Domínguez-Bendala, Juan; Pastori, Ricardo L.

    2008-01-01

    MicroRNAs (miRNAs) are non-coding gene products that regulate gene expression through specific binding to target mRNAs. Cell-specific patterns of miRNAs are associated with the acquisition and maintenance of a given phenotype, such as endocrine pancreas (islets). We hypothesized that a subset of miRNAs could be differentially expressed in the islets. Using miRNA microarray technology and quantitative RT-PCR we identified a subset of miRNAs that are the most differentially expressed islet miRNAs (ratio islet/acinar >150-fold), mir-7 being the most abundant. A similarly high ratio for mir-7 was observed in human islets. The ratio islet/acinar for mir-375, a previously described islet miRNA, was <10, and is 2.5X more abundant in the islets than mir-7. Therefore, we conclude that mir-7 is the most abundant endocrine miRNA in islets while mir-375 is the most abundant intra-islet miRNA. Our results may offer new insights into regulatory pathways of islet gene expression. PMID:18086561

  17. Cooperative gene regulation by microRNA pairs and their identification using a computational workflow

    PubMed Central

    Schmitz, Ulf; Lai, Xin; Winter, Felix; Wolkenhauer, Olaf; Vera, Julio; Gupta, Shailendra K.

    2014-01-01

    MicroRNAs (miRNAs) are an integral part of gene regulation at the post-transcriptional level. Recently, it has been shown that pairs of miRNAs can repress the translation of a target mRNA in a cooperative manner, which leads to an enhanced effectiveness and specificity in target repression. However, it remains unclear which miRNA pairs can synergize and which genes are target of cooperative miRNA regulation. In this paper, we present a computational workflow for the prediction and analysis of cooperating miRNAs and their mutual target genes, which we refer to as RNA triplexes. The workflow integrates methods of miRNA target prediction; triplex structure analysis; molecular dynamics simulations and mathematical modeling for a reliable prediction of functional RNA triplexes and target repression efficiency. In a case study we analyzed the human genome and identified several thousand targets of cooperative gene regulation. Our results suggest that miRNA cooperativity is a frequent mechanism for an enhanced target repression by pairs of miRNAs facilitating distinctive and fine-tuned target gene expression patterns. Human RNA triplexes predicted and characterized in this study are organized in a web resource at www.sbi.uni-rostock.de/triplexrna/. PMID:24875477

  18. MEN1 mutations and potentially MEN1-targeting miRNAs are responsible for menin deficiency in sporadic and MEN1 syndrome-associated primary hyperparathyroidism.

    PubMed

    Grolmusz, Vince Kornél; Borka, Katalin; Kövesdi, Annamária; Németh, Kinga; Balogh, Katalin; Dékány, Csaba; Kiss, András; Szentpéteri, Anna; Sármán, Beatrix; Somogyi, Anikó; Csajbók, Éva; Valkusz, Zsuzsanna; Tóth, Miklós; Igaz, Péter; Rácz, Károly; Patócs, Attila

    2017-09-01

    Inherited, germline mutations of menin-coding MEN1 gene cause multiple endocrine neoplasia type 1 (MEN1), while somatic MEN1 mutations are the sole main driver mutations in sporadic primary hyperparathyroidism (PHPT), suggesting that menin deficiency has a central role in the pathogenesis of PHPT. MiRNAs are small, noncoding RNAs posttranscriptionally regulating gene expression. Our aim was to investigate both the role of MEN1 mutations and potentially MEN1-targeting miRNAs as the underlying cause of menin deficiency in MEN1-associated and sporadic PHPT tissues. Fifty six PHPT tissues, including 16 MEN1-associated tissues, were evaluated. Diagnosis of MEN1 syndrome was based on identification of germline MEN1 mutations. In silico target prediction was used to identify miRNAs potentially targeting MEN1. Menin expression was determined by immunohistochemistry while expression of miRNAs was analyzed by quantitative real-time PCR. Sporadic PHPT tissues were subjected to somatic MEN1 mutation analysis as well. Lack of nuclear menin was identified in all MEN1-associated and in 28% of sporadic PHPT tissues. Somatic MEN1 mutations were found in 25% of sporadic PHPTs. The sensitivity and specificity of menin immunohistochemistry to detect a MEN1 mutation were 86 and 87%, respectively. Expression levels of hsa-miR-24 and hsa-miR-28 were higher in sporadic compared to MEN1-associated PHPT tissues; however, no difference in miRNA levels occurred between menin-positive and menin-negative PHPT tissues. Menin deficiency is the consequence of a MEN1 mutation in most menin-negative PHPT tissues. Elevated expression of hsa-miR-24 and hsa-miR-28 mark the first epigenetic changes observed between sporadic and MEN1-associated PHPT.

  19. Genome organization and characteristics of soybean microRNAs

    PubMed Central

    2012-01-01

    Background microRNAs (miRNAs) are key regulators of gene expression and play important roles in many aspects of plant biology. The role(s) of miRNAs in nitrogen-fixing root nodules of leguminous plants such as soybean is not well understood. We examined a library of small RNAs from Bradyrhizobium japonicum-inoculated soybean roots and identified novel miRNAs. In order to enhance our understanding of miRNA evolution, diversification and function, we classified all known soybean miRNAs based on their phylogenetic conservation (conserved, legume- and soybean-specific miRNAs) and examined their genome organization, family characteristics and target diversity. We predicted targets of these miRNAs and experimentally validated several of them. We also examined organ-specific expression of selected miRNAs and their targets. Results We identified 120 previously unknown miRNA genes from soybean including 5 novel miRNA families. In the soybean genome, genes encoding miRNAs are primarily intergenic and a small percentage were intragenic or less than 1000 bp from a protein-coding gene, suggesting potential co-regulation between the miRNA and its parent gene. Difference in number and orientation of tandemly duplicated miRNA genes between orthologous genomic loci indicated continuous evolution and diversification. Conserved miRNA families are often larger in size and produce less diverse mature miRNAs than legume- and soybean-specific families. In addition, the majority of conserved and legume-specific miRNA families produce 21 nt long mature miRNAs with distinct nucleotide distribution and regulate a more conserved set of target mRNAs compared to soybean-specific families. A set of nodule-specific target mRNAs and their cognate regulatory miRNAs had inverse expression between root and nodule tissues suggesting that spatial restriction of target gene transcripts by miRNAs might govern nodule-specific gene expression in soybean. Conclusions Genome organization of soybean miRNAs suggests that they are actively evolving. Distinct family characteristics of soybean miRNAs suggest continuous diversification of function. Inverse organ-specific expression between selected miRNAs and their targets in the roots and nodules, suggested a potential role for these miRNAs in regulating nodule development. PMID:22559273

  20. MicroRNA Profiling as Tool for In Vitro Developmental Neurotoxicity Testing: The Case of Sodium Valproate

    PubMed Central

    Smirnova, Lena; Block, Katharina; Sittka, Alexandra; Oelgeschläger, Michael; Seiler, Andrea E. M.; Luch, Andreas

    2014-01-01

    Studying chemical disturbances during neural differentiation of murine embryonic stem cells (mESCs) has been established as an alternative in vitro testing approach for the identification of developmental neurotoxicants. miRNAs represent a class of small non-coding RNA molecules involved in the regulation of neural development and ESC differentiation and specification. Thus, neural differentiation of mESCs in vitro allows investigating the role of miRNAs in chemical-mediated developmental toxicity. We analyzed changes in miRNome and transcriptome during neural differentiation of mESCs exposed to the developmental neurotoxicant sodium valproate (VPA). A total of 110 miRNAs and 377 mRNAs were identified differently expressed in neurally differentiating mESCs upon VPA treatment. Based on miRNA profiling we observed that VPA shifts the lineage specification from neural to myogenic differentiation (upregulation of muscle-abundant miRNAs, mir-206, mir-133a and mir-10a, and downregulation of neural-specific mir-124a, mir-128 and mir-137). These findings were confirmed on the mRNA level and via immunochemistry. Particularly, the expression of myogenic regulatory factors (MRFs) as well as muscle-specific genes (Actc1, calponin, myosin light chain, asporin, decorin) were found elevated, while genes involved in neurogenesis (e.g. Otx1, 2, and Zic3, 4, 5) were repressed. These results were specific for valproate treatment and―based on the following two observations―most likely due to the inhibition of histone deacetylase (HDAC) activity: (i) we did not observe any induction of muscle-specific miRNAs in neurally differentiating mESCs exposed to the unrelated developmental neurotoxicant sodium arsenite; and (ii) the expression of muscle-abundant mir-206 and mir-10a was similarly increased in cells exposed to the structurally different HDAC inhibitor trichostatin A (TSA). Based on our results we conclude that miRNA expression profiling is a suitable molecular endpoint for developmental neurotoxicity. The observed lineage shift into myogenesis, where miRNAs may play an important role, could be one of the developmental neurotoxic mechanisms of VPA. PMID:24896083

  1. Genome-Wide miRNA Analysis Identifies miR-188-3p as a Novel Prognostic Marker and Molecular Factor Involved in Colorectal Carcinogenesis.

    PubMed

    Pichler, Martin; Stiegelbauer, Verena; Vychytilova-Faltejskova, Petra; Ivan, Cristina; Ling, Hui; Winter, Elke; Zhang, Xinna; Goblirsch, Matthew; Wulf-Goldenberg, Annika; Ohtsuka, Masahisa; Haybaeck, Johannes; Svoboda, Marek; Okugawa, Yoshinaga; Gerger, Armin; Hoefler, Gerald; Goel, Ajay; Slaby, Ondrej; Calin, George Adrian

    2017-03-01

    Purpose: Characterization of colorectal cancer transcriptome by high-throughput techniques has enabled the discovery of several differentially expressed genes involving previously unreported miRNA abnormalities. Here, we followed a systematic approach on a global scale to identify miRNAs as clinical outcome predictors and further validated them in the clinical and experimental setting. Experimental Design: Genome-wide miRNA sequencing data of 228 colorectal cancer patients from The Cancer Genome Atlas dataset were analyzed as a screening cohort to identify miRNAs significantly associated with survival according to stringent prespecified criteria. A panel of six miRNAs was further validated for their prognostic utility in a large independent validation cohort ( n = 332). In situ hybridization and functional experiments in a panel of colorectal cancer cell lines and xenografts further clarified the role of clinical relevant miRNAs. Results: Six miRNAs (miR-92b-3p, miR-188-3p, miR-221-5p, miR-331-3p, miR-425-3p, and miR-497-5p) were identified as strong predictors of survival in the screening cohort. High miR-188-3p expression proves to be an independent prognostic factor [screening cohort: HR = 4.137; 95% confidence interval (CI), 1.568-10.917; P = 0.004; validation cohort: HR = 1.538; 95% CI, 1.107-2.137; P = 0.010, respectively]. Forced miR-188-3p expression increased migratory behavior of colorectal cancer cells in vitro and metastases formation in vivo ( P < 0.05). The promigratory role of miR-188-3p is mediated by direct interaction with MLLT4, a novel identified player involved in colorectal cancer cell migration. Conclusions: miR-188-3p is a novel independent prognostic factor in colorectal cancer patients, which can be partly explained by its effect on MLLT4 expression and migration of cancer cells. Clin Cancer Res; 23(5); 1323-33. ©2016 AACR . ©2016 American Association for Cancer Research.

  2. Serum-based six-miRNA signature as a potential marker for EC diagnosis: Comparison with TCGA miRNAseq dataset and identification of miRNA-mRNA target pairs by integrated analysis of TCGA miRNAseq and RNAseq datasets.

    PubMed

    Sharma, Priyanka; Saraya, Anoop; Sharma, Rinu

    2018-01-30

    To evaluate the diagnostic potential of a six microRNAs (miRNAs) panel consisting of miR-21, miR-144, miR-107, miR-342, miR-93 and miR-152 for esophageal cancer (EC) detection. The expression of miRNAs was analyzed in EC sera samples using quantitative real-time PCR. Risk score analysis was performed and linear regression models were then fitted to generate the six-miRNA panel. In addition, we made an effort to identify significantly dysregulated miRNAs and mRNAs in EC using the Cancer Genome Atlas (TCGA) miRNAseq and RNAseq datasets, respectively. Further, we identified significantly correlated miRNA-mRNA target pairs by integrating TCGA EC miRNAseq dataset with RNAseq dataset. The panel of circulating miRNAs showed enhanced sensitivity (87.5%) and specificity (90.48%) in terms of discriminating EC patients from normal subjects (area under the curve [AUC] = 0.968). Pathway enrichment analysis for potential targets of six miRNAs revealed 48 significant (P < 0.05) pathways, viz. pathways in cancer, mRNA surveillance, MAPK, Wnt, mTOR signaling, and so on. The expression data for mRNAs and miRNAs, downloaded from TCGA database, lead to identification of 2309 differentially expressed genes and 189 miRNAs. Gene ontology and pathway enrichment analysis showed that cell-cycle processes were most significantly enriched for differentially expressed mRNA. Integrated analysis of TCGA miRNAseq and RNAseq datasets resulted in identification of 53 063 significantly and negatively correlated miRNA-mRNA pairs. In summary, a novel and highly sensitive signature of serum miRNAs was identified for EC detection. Moreover, this is the first report identifying miRNA-mRNA target pairs from EC TCGA dataset, thus providing a comprehensive resource for understanding the interactions existing between miRNA and their target mRNAs in EC. © 2018 John Wiley & Sons Australia, Ltd.

  3. Identification and characterization of microRNAs related to salt stress in broccoli, using high-throughput sequencing and bioinformatics analysis.

    PubMed

    Tian, Yunhong; Tian, Yunming; Luo, Xiaojun; Zhou, Tao; Huang, Zuoping; Liu, Ying; Qiu, Yihan; Hou, Bing; Sun, Dan; Deng, Hongyu; Qian, Shen; Yao, Kaitai

    2014-09-03

    MicroRNAs (miRNAs) are a new class of endogenous regulators of a broad range of physiological processes, which act by regulating gene expression post-transcriptionally. The brassica vegetable, broccoli (Brassica oleracea var. italica), is very popular with a wide range of consumers, but environmental stresses such as salinity are a problem worldwide in restricting its growth and yield. Little is known about the role of miRNAs in the response of broccoli to salt stress. In this study, broccoli subjected to salt stress and broccoli grown under control conditions were analyzed by high-throughput sequencing. Differential miRNA expression was confirmed by real-time reverse transcription polymerase chain reaction (RT-PCR). The prediction of miRNA targets was undertaken using the Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology (KO) database and Gene Ontology (GO)-enrichment analyses. Two libraries of small (or short) RNAs (sRNAs) were constructed and sequenced by high-throughput Solexa sequencing. A total of 24,511,963 and 21,034,728 clean reads, representing 9,861,236 (40.23%) and 8,574,665 (40.76%) unique reads, were obtained for control and salt-stressed broccoli, respectively. Furthermore, 42 putative known and 39 putative candidate miRNAs that were differentially expressed between control and salt-stressed broccoli were revealed by their read counts and confirmed by the use of stem-loop real-time RT-PCR. Amongst these, the putative conserved miRNAs, miR393 and miR855, and two putative candidate miRNAs, miR3 and miR34, were the most strongly down-regulated when broccoli was salt-stressed, whereas the putative conserved miRNA, miR396a, and the putative candidate miRNA, miR37, were the most up-regulated. Finally, analysis of the predicted gene targets of miRNAs using the GO and KO databases indicated that a range of metabolic and other cellular functions known to be associated with salt stress were up-regulated in broccoli treated with salt. A comprehensive study of broccoli miRNA in relation to salt stress has been performed. We report significant data on the miRNA profile of broccoli that will underpin further studies on stress responses in broccoli and related species. The differential regulation of miRNAs between control and salt-stressed broccoli indicates that miRNAs play an integral role in the regulation of responses to salt stress.

  4. Genome-wide identification of conserved and novel microRNAs in one bud and two tender leaves of tea plant (Camellia sinensis) by small RNA sequencing, microarray-based hybridization and genome survey scaffold sequences.

    PubMed

    Jeyaraj, Anburaj; Zhang, Xiao; Hou, Yan; Shangguan, Mingzhu; Gajjeraman, Prabu; Li, Yeyun; Wei, Chaoling

    2017-11-21

    MicroRNAs (miRNAs) are important for plant growth and responses to environmental stresses via post-transcriptional regulation of gene expression. Tea, which is primarily produced from one bud and two tender leaves of the tea plant (Camellia sinensis), is one of the most popular non-alcoholic beverages worldwide owing to its abundance of secondary metabolites. A large number of miRNAs have been identified in various plants, including non-model species. However, due to the lack of reference genome sequences and/or information of tea plant genome survey scaffold sequences, discovery of miRNAs has been limited in C. sinensis. Using small RNA sequencing, combined with our recently obtained genome survey data, we have identified and analyzed 175 conserved and 83 novel miRNAs mainly in one bud and two tender leaves of the tea plant. Among these, 93 conserved and 18 novel miRNAs were validated using miRNA microarray hybridization. In addition, the expression pattern of 11 conserved and 8 novel miRNAs were validated by stem-loop-qRT-PCR. A total of 716 potential target genes of identified miRNAs were predicted. Further, Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that most of the target genes were primarily involved in stress response and enzymes related to phenylpropanoid biosynthesis. The predicted targets of 4 conserved miRNAs were further validated by 5'RLM-RACE. A negative correlation between expression profiles of 3 out of 4 conserved miRNAs (csn-miR160a-5p, csn-miR164a, csn-miR828 and csn-miR858a) and their targets (ARF17, NAC100, WER and MYB12 transcription factor) were observed. In summary, the present study is one of few such studies on miRNA detection and identification in the tea plant. The predicted target genes of majority of miRNAs encoded enzymes, transcription factors, and functional proteins. The miRNA-target transcription factor gene interactions may provide important clues about the regulatory mechanism of these miRNAs in the tea plant. The data reported in this study will make a huge contribution to knowledge on the potential miRNA regulators of the secondary metabolism pathway and other important biological processes in C. sinensis.

  5. An Epstein-Barr Virus MicroRNA Blocks Interleukin-1 (IL-1) Signaling by Targeting IL-1 Receptor 1.

    PubMed

    Skinner, Camille M; Ivanov, Nikita S; Barr, Sarah A; Chen, Yan; Skalsky, Rebecca L

    2017-11-01

    Epstein-Barr virus (EBV) encodes >44 viral microRNAs (miRNAs) that are differentially expressed throughout infection, can be detected in Epstein-Barr virus (EBV)-positive tumors, and manipulate several biological processes, including cell proliferation, apoptosis, and immune responses. Here, we show that EBV BHRF1-2 miRNAs block NF-κB activation following treatment with proinflammatory cytokines, specifically interleukin-1β (IL-1β). Analysis of EBV PAR-CLIP miRNA targetome data sets combined with pathway analysis revealed multiple BHRF1-2 miRNA targets involved in interleukin signaling pathways. By further analyzing changes in cellular gene expression patterns, we identified the IL-1 receptor 1 (IL1R1) as a direct target of miR-BHRF1-2-5p. Targeting the IL1R1 3' untranslated region (UTR) by EBV miR-BHRF1-2-5p was confirmed using 3'-UTR luciferase reporter assays and Western blot assays. Manipulation of EBV BHRF1-2 miRNA activity in latently infected B cells altered steady-state cytokine levels and disrupted IL-1β responsiveness. These studies demonstrate functionally relevant BHRF1-2 miRNA interactions during EBV infection, which is an important step in understanding their roles in pathogenesis. IMPORTANCE IL-1 signaling plays an important role in inflammation and early activation of host innate immune responses following virus infection. Here, we demonstrate that a viral miRNA downregulates the IL-1 receptor 1 during EBV infection, which consequently alters the responsiveness of cells to IL-1 stimuli and changes the cytokine expression levels within infected cell populations. We postulate that this viral miRNA activity not only disrupts IL-1 autocrine and paracrine signaling loops that can alert effector cells to sites of infection but also provides a survival advantage by dampening excessive inflammation that may be detrimental to the infected cell. Copyright © 2017 American Society for Microbiology.

  6. Small RNA deep sequencing identifies novel and salt-stress-regulated microRNAs from roots of Medicago sativa and Medicago truncatula.

    PubMed

    Long, Rui-Cai; Li, Ming-Na; Kang, Jun-Mei; Zhang, Tie-Jun; Sun, Yan; Yang, Qing-Chuan

    2015-05-01

    Small 21- to 24-nucleotide (nt) ribonucleic acids (RNAs), notably the microRNA (miRNA), are emerging as a posttranscriptional regulation mechanism. Salt stress is one of the primary abiotic stresses that cause the crop losses worldwide. In saline lands, root growth and function of plant are determined by the action of environmental salt stress through specific genes that adapt root development to the restrictive condition. To elucidate the role of miRNAs in salt stress regulation in Medicago, we used a high-throughput sequencing approach to analyze four small RNA libraries from roots of Zhongmu-1 (Medicago sativa) and Jemalong A17 (Medicago truncatula), which were treated with 300 mM NaCl for 0 and 8 h. Each library generated about 20 million short sequences and contained predominantly small RNAs of 24-nt length, followed by 21-nt and 22-nt small RNAs. Using sequence analysis, we identified 385 conserved miRNAs from 96 families, along with 68 novel candidate miRNAs. Of all the 68 predicted novel miRNAs, 15 miRNAs were identified to have miRNA*. Statistical analysis on abundance of sequencing read revealed specific miRNA showing contrasting expression patterns between M. sativa and M. truncatula roots, as well as between roots treated for 0 and 8 h. The expression of 10 conserved and novel miRNAs was also quantified by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). The miRNA precursor and target genes were predicted by bioinformatics analysis. We concluded that the salt stress related conserved and novel miRNAs may have a large variety of target mRNAs, some of which might play key roles in salt stress regulation of Medicago. © 2014 Scandinavian Plant Physiology Society.

  7. Detection and quantification of extracellular microRNAs in murine biofluids

    PubMed Central

    2014-01-01

    Background MicroRNAs (miRNAs) are short RNA molecules which regulate gene expression in eukaryotic cells, and are abundant and stable in biofluids such as blood serum and plasma. As such, there has been heightened interest in the utility of extracellular miRNAs as minimally invasive biomarkers for diagnosis and monitoring of a wide range of human pathologies. However, quantification of extracellular miRNAs is subject to a number of specific challenges, including the relatively low RNA content of biofluids, the possibility of contamination with serum proteins (including RNases and PCR inhibitors), hemolysis, platelet contamination/activation, a lack of well-established reference miRNAs and the biochemical properties of miRNAs themselves. Protocols for the detection and quantification of miRNAs in biofluids are therefore of high interest. Results The following protocol was validated by quantifying miRNA abundance in C57 (wild-type) and dystrophin-deficient (mdx) mice. Important differences in miRNA abundance were observed depending on whether blood was taken from the jugular or tail vein. Furthermore, efficiency of miRNA recovery was reduced when sample volumes greater than 50 μl were used. Conclusions Here we describe robust and novel procedures to harvest murine serum/plasma, extract biofluid RNA, amplify specific miRNAs by RT-qPCR and analyze the resulting data, enabling the determination of relative and absolute miRNA abundance in extracellular biofluids with high accuracy, specificity and sensitivity. PMID:24629058

  8. Boron Stress Responsive MicroRNAs and Their Targets in Barley

    PubMed Central

    Ozhuner, Esma; Eldem, Vahap; Ipek, Arif; Okay, Sezer; Sakcali, Serdal; Zhang, Baohong; Boke, Hatice; Unver, Turgay

    2013-01-01

    Boron stress is an environmental factor affecting plant development and production. Recently, microRNAs (miRNAs) have been found to be involved in several plant processes such as growth regulation and stress responses. In this study, miRNAs associated with boron stress were identified and characterized in barley. miRNA profiles were also comparatively analyzed between root and leave samples. A total of 31 known and 3 new miRNAs were identified in barley; 25 of them were found to respond to boron treatment. Several miRNAs were expressed in a tissue specific manner; for example, miR156d, miR171a, miR397, and miR444a were only detected in leaves. Additionally, a total of 934 barley transcripts were found to be specifically targeted and degraded by miRNAs. In silico analysis of miRNA target genes demonstrated that many miRNA targets are conserved transcription factors such as Squamosa promoter-binding protein, Auxin response factor (ARF), and the MYB transcription factor family. A majority of these targets were responsible for plant growth and response to environmental changes. We also propose that some of the miRNAs in barley such as miRNA408 might play critical roles against boron exposure. In conclusion, barley may use several pathways and cellular processes targeted by miRNAs to cope with boron stress. PMID:23555702

  9. Circulating microRNAs Correlated with Bone Loss Induced by 45 Days of Bed Rest

    PubMed Central

    Ling, Shukuan; Zhong, Guohui; Sun, Weijia; Liang, Fengji; Wu, Feng; Li, Hongxing; Li, Yuheng; Zhao, Dingsheng; Song, Jinping; Jin, Xiaoyan; Wu, Xiaorui; Song, Hailin; Li, Qi; Li, Yinghui; Chen, Shanguang; Xiong, Jianghui; Li, Yingxian

    2017-01-01

    The purpose of this study was to find the circulating microRNAs (miRNAs) co-related with bone loss induced by bed rest, and testify whether the selected miRNAs could reflect the bone mineral status of human after bed-rest. We analyzed plasma miRNA levels of 16 subjects after 45 days of −6° head-down tilt bed rest, which is a reliable model for the simulation of microgravity. We characterize the circulating miRNA profile in individuals after bed rest and identify circulating miRNAs which can best reflect the level of bone loss induced by bed rest. Expression profiling of circulating miRNA revealed significant downregulation of 37 miRNAs and upregulation of 2 miRNAs, while only 11 of the downregulated miRNAs were further validated in a larger volunteer cohort using qPCR. We found that 10 of these 11 miRNAs (miR-103, 130a, 1234, 1290, 151-5p, 151-3p, 199a-3p, 20a, 363, and 451a) had ROC curve that distinguished the status after bed rest. Importantly, significant positive correlations were identified between bone loss parameters and several miRNAs, eventually miR-1234 showed clinical significance in detecting the bone loss of individuals after 45 days of bed rest. PMID:28261104

  10. Deregulation of cancer-related miRNAs is a common event in both benign and malignant human breast tumors.

    PubMed

    Tahiri, Andliena; Leivonen, Suvi-Katri; Lüders, Torben; Steinfeld, Israel; Ragle Aure, Miriam; Geisler, Jürgen; Mäkelä, Rami; Nord, Silje; Riis, Margit L H; Yakhini, Zohar; Kleivi Sahlberg, Kristine; Børresen-Dale, Anne-Lise; Perälä, Merja; Bukholm, Ida R K; Kristensen, Vessela N

    2014-01-01

    MicroRNAs (miRNAs) are endogenous non-coding RNAs, which play an essential role in the regulation of gene expression during carcinogenesis. The role of miRNAs in breast cancer has been thoroughly investigated, and although many miRNAs are identified as cancer related, little is known about their involvement in benign tumors. In this study, we investigated miRNA expression profiles in the two most common types of human benign tumors (fibroadenoma/fibroadenomatosis) and in malignant breast tumors and explored their role as oncomirs and tumor suppressor miRNAs. Here, we identified 33 miRNAs with similar deregulated expression in both benign and malignant tumors compared with the expression levels of those in normal tissue, including breast cancer-related miRNAs such as let-7, miR-21 and miR-155. Additionally, messenger RNA (mRNA) expression profiles were obtained for some of the same samples. Using integrated mRNA/miRNA expression analysis, we observed that overexpression of certain miRNAs co-occurred with a significant downregulation of their candidate target mRNAs in both benign and malignant tumors. In support of these findings, in vitro functional screening of the downregulated miRNAs in non-malignant and breast cancer cell lines identified several possible tumor suppressor miRNAs, including miR-193b, miR-193a-3p, miR-126, miR-134, miR-132, miR-486-5p, miR-886-3p, miR-195 and miR-497, showing reduced growth when re-expressed in cancer cells. The finding of deregulated expression of oncomirs and tumor suppressor miRNAs in benign breast tumors is intriguing, indicating that they may play a role in proliferation. A role of cancer-related miRNAs in the early phases of carcinogenesis and malignant transformation can, therefore, not be ruled out.

  11. MicroRNA and mesial temporal lobe epilepsy with hippocampal sclerosis: Whole miRNome profiling of human hippocampus.

    PubMed

    Bencurova, Petra; Baloun, Jiri; Musilova, Katerina; Radova, Lenka; Tichy, Boris; Pail, Martin; Zeman, Martin; Brichtova, Eva; Hermanova, Marketa; Pospisilova, Sarka; Mraz, Marek; Brazdil, Milan

    2017-10-01

    Mesial temporal lobe epilepsy (mTLE) is a severe neurological disorder characterized by recurrent seizures. mTLE is frequently accompanied by neurodegeneration in the hippocampus resulting in hippocampal sclerosis (HS), the most common morphological correlate of drug resistance in mTLE patients. Incomplete knowledge of pathological changes in mTLE+HS complicates its therapy. The pathological mechanism underlying mTLE+HS may involve abnormal gene expression regulation, including posttranscriptional networks involving microRNAs (miRNAs). miRNA expression deregulation has been reported in various disorders, including epilepsy. However, the miRNA profile of mTLE+HS is not completely known and needs to be addressed. Here, we have focused on hippocampal miRNA profiling in 33 mTLE+HS patients and nine postmortem controls to reveal abnormally expressed miRNAs. In this study, we significantly reduced technology-related bias (the most common source of false positivity in miRNA profiling data) by combining two different miRNA profiling methods, namely next generation sequencing and miRNA-specific quantitative real-time polymerase chain reaction. These methods combined have identified and validated 20 miRNAs with altered expression in the human epileptic hippocampus; 19 miRNAs were up-regulated and one down-regulated in mTLE+HS patients. Nine of these miRNAs have not been previously associated with epilepsy, and 19 aberrantly expressed miRNAs potentially regulate the targets and pathways linked with epilepsy (such as potassium channels, γ-aminobutyric acid, neurotrophin signaling, and axon guidance). This study extends current knowledge of miRNA-mediated gene expression regulation in mTLE+HS by identifying miRNAs with altered expression in mTLE+HS, including nine novel abnormally expressed miRNAs and their putative targets. These observations further encourage the potential of microRNA-based biomarkers or therapies. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  12. microRNA analysis of Taenia crassiceps cysticerci under praziquantel treatment and genome-wide identification of Taenia solium miRNAs.

    PubMed

    Pérez, Matías Gastón; Macchiaroli, Natalia; Lichtenstein, Gabriel; Conti, Gabriela; Asurmendi, Sebastián; Milone, Diego Humberto; Stegmayer, Georgina; Kamenetzky, Laura; Cucher, Marcela; Rosenzvit, Mara Cecilia

    2017-09-01

    MicroRNAs (miRNAs) are small non-coding RNAs that have emerged as important regulators of gene expression and perform critical functions in development and disease. In spite of the increased interest in miRNAs from helminth parasites, no information is available on miRNAs from Taenia solium, the causative agent of cysticercosis, a neglected disease affecting millions of people worldwide. Here we performed a comprehensive analysis of miRNAs from Taenia crassiceps, a laboratory model for T. solium studies, and identified miRNAs in the T. solium genome. Moreover, we analysed the effect of praziquantel, one of the two main drugs used for cysticercosis treatment, on the miRNA expression profile of T. crassiceps cysticerci. Using small RNA-seq and two independent algorithms for miRNA prediction, as well as northern blot validation, we found transcriptional evidence of 39 miRNA loci in T. crassiceps. Since miRNAs were mapped to the T. solium genome, these miRNAs are considered common to both parasites. The miRNA expression profile of T. crassiceps was biased to the same set of highly expressed miRNAs reported in other cestodes. We found a significant altered expression of miR-7b under praziquantel treatment. In addition, we searched for miRNAs predicted to target genes related to drug response. We performed a detailed target prediction for miR-7b and found genes related to drug action. We report an initial approach to study the effect of sub-lethal drug treatment on miRNA expression in a cestode parasite, which provides a platform for further studies of miRNA involvement in drug effects. The results of our work could be applied to drug development and provide basic knowledge of cysticercosis and other neglected helminth infections. Copyright © 2017 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  13. Ago2 and Dicer1 are involved in METH-induced locomotor sensitization in mice via biogenesis of miRNA.

    PubMed

    Liu, Dan; Zhu, Li; Ni, Tong; Guan, Fang-Lin; Chen, Yan-Jiong; Ma, Dong-Liang; Goh, Eyleen L K; Chen, Teng

    2018-03-08

    microRNA (miRNA) play important roles in drug addiction and act as a post-transcriptional regulator of gene expression. We previously reported extensive downregulation of miRNAs in the nucleus accumbens (NAc) of methamphetamine (METH)-sensitized mice. However, the regulatory mechanism of this METH-induced downregulation of miRNAs has yet to be elucidated. Thus, we examined METH-induced changes in the expression of miRNAs and their precursors, as well as the expression levels of mRNA and the proteins involved in miRNA biogenesis such as Dicer1 and Ago2, in the nucleus accumbens of METH-induced locomotor sensitized mice. miRNAs and Ago2 were significantly downregulated, while the expression of miRNA precursors remained unchanged or upregulated, which suggests that the downregulation of miRNAs was likely due to a reduction in Ago2-mediated splicing but unlikely to be regulated at the transcription level. Interestingly, the expression level of Dicer1, which is a potential target of METH-induced decreased miRNAs, such as miR-124, miR-212 and miR-29b, was significantly increased. In conclusion, this study indicates that miRNA biogenesis (such as Ago2 and Dicer1) and their miRNA products may have a role in the development of METH addiction. © 2018 Society for the Study of Addiction.

  14. Copper-induced deregulation of microRNA expression in the zebrafish olfactory system

    PubMed Central

    Wang, Lu; Bammler, Theo K.; Beyer, Richard P.; Gallagher, Evan P.

    2016-01-01

    Although environmental trace metals, such as copper (Cu), can disrupt normal olfactory function in fish, the underlying molecular mechanisms of metal-induced olfactory injury have not been elucidated. Current research has suggested the involvement of epigenetic modifications. To address this hypothesis, we analyzed microRNA (miRNA) profiles in the olfactory system of Cu-exposed zebrafish. Our data revealed 2, 10, and 28 differentially expressed miRNAs in a dose-response manner corresponding to three increasing Cu concentrations. Numerous deregulated miRNAs were involved in neurogenesis (e.g. let-7, miR-7a, miR-128 and miR-138), indicating a role for Cu-mediated toxicity via interference with neurogenesis processes. Putative gene targets of deregulated miRNAs were identified when interrogating our previously published microarray database, including those involved in cell growth and proliferation, cell death, and cell morphology. Moreover, several miRNAs (e.g. miR-203a, miR-199*, miR-16a, miR-16c, and miR-25) may contribute to decreased mRNA levels of their host genes involved in olfactory signal transduction pathways and other critical neurological processes via a post-transcriptional mechanism. Our findings provide novel insight into the epigenetic regulatory mechanisms of metal-induced neurotoxicity of the fish olfactory system, and identify novel miRNA biomarkers of metal exposures. PMID:23745839

  15. Identification and characterization of microRNAs in Phaseolus vulgaris by high-throughput sequencing

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) are endogenously encoded small RNAs that post-transcriptionally regulate gene expression. MiRNAs play essential roles in almost all plant biological processes. Currently, few miRNAs have been identified in the model food legume Phaseolus vulgaris (common bean). Recent advances in next generation sequencing technologies have allowed the identification of conserved and novel miRNAs in many plant species. Here, we used Illumina's sequencing by synthesis (SBS) technology to identify and characterize the miRNA population of Phaseolus vulgaris. Results Small RNA libraries were generated from roots, flowers, leaves, and seedlings of P. vulgaris. Based on similarity to previously reported plant miRNAs,114 miRNAs belonging to 33 conserved miRNA families were identified. Stem-loop precursors and target gene sequences for several conserved common bean miRNAs were determined from publicly available databases. Less conserved miRNA families and species-specific common bean miRNA isoforms were also characterized. Moreover, novel miRNAs based on the small RNAs were found and their potential precursors were predicted. In addition, new target candidates for novel and conserved miRNAs were proposed. Finally, we studied organ-specific miRNA family expression levels through miRNA read frequencies. Conclusions This work represents the first massive-scale RNA sequencing study performed in Phaseolus vulgaris to identify and characterize its miRNA population. It significantly increases the number of miRNAs, precursors, and targets identified in this agronomically important species. The miRNA expression analysis provides a foundation for understanding common bean miRNA organ-specific expression patterns. The present study offers an expanded picture of P. vulgaris miRNAs in relation to those of other legumes. PMID:22394504

  16. Identification and validation of Asteraceae miRNAs by the expressed sequence tag analysis.

    PubMed

    Monavar Feshani, Aboozar; Mohammadi, Saeed; Frazier, Taylor P; Abbasi, Abbas; Abedini, Raha; Karimi Farsad, Laleh; Ehya, Farveh; Salekdeh, Ghasem Hosseini; Mardi, Mohsen

    2012-02-10

    MicroRNAs (miRNAs) are small non-coding RNA molecules that play a vital role in the regulation of gene expression. Despite their identification in hundreds of plant species, few miRNAs have been identified in the Asteraceae, a large family that comprises approximately one tenth of all flowering plants. In this study, we used the expressed sequence tag (EST) analysis to identify potential conserved miRNAs and their putative target genes in the Asteraceae. We applied quantitative Real-Time PCR (qRT-PCR) to confirm the expression of eight potential miRNAs in Carthamus tinctorius and Helianthus annuus. We also performed qRT-PCR analysis to investigate the differential expression pattern of five newly identified miRNAs during five different cotyledon growth stages in safflower. Using these methods, we successfully identified and characterized 151 potentially conserved miRNAs, belonging to 26 miRNA families, in 11 genus of Asteraceae. EST analysis predicted that the newly identified conserved Asteraceae miRNAs target 130 total protein-coding ESTs in sunflower and safflower, as well as 433 additional target genes in other plant species. We experimentally confirmed the existence of seven predicted miRNAs, (miR156, miR159, miR160, miR162, miR166, miR396, and miR398) in safflower and sunflower seedlings. We also observed that five out of eight miRNAs are differentially expressed during cotyledon development. Our results indicate that miRNAs may be involved in the regulation of gene expression during seed germination and the formation of the cotyledons in the Asteraceae. The findings of this study might ultimately help in the understanding of miRNA-mediated gene regulation in important crop species. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Parallel analysis of RNA ends enhances global investigation of microRNAs and target RNAs of Brachypodium distachyon

    PubMed Central

    2013-01-01

    Background The wild grass Brachypodium distachyon has emerged as a model system for temperate grasses and biofuel plants. However, the global analysis of miRNAs, molecules known to be key for eukaryotic gene regulation, has been limited in B. distachyon to studies examining a few samples or that rely on computational predictions. Similarly an in-depth global analysis of miRNA-mediated target cleavage using parallel analysis of RNA ends (PARE) data is lacking in B. distachyon. Results B. distachyon small RNAs were cloned and deeply sequenced from 17 libraries that represent different tissues and stresses. Using a computational pipeline, we identified 116 miRNAs including not only conserved miRNAs that have not been reported in B. distachyon, but also non-conserved miRNAs that were not found in other plants. To investigate miRNA-mediated cleavage function, four PARE libraries were constructed from key tissues and sequenced to a total depth of approximately 70 million sequences. The roughly 5 million distinct genome-matched sequences that resulted represent an extensive dataset for analyzing small RNA-guided cleavage events. Analysis of the PARE and miRNA data provided experimental evidence for miRNA-mediated cleavage of 264 sites in predicted miRNA targets. In addition, PARE analysis revealed that differentially expressed miRNAs in the same family guide specific target RNA cleavage in a correspondingly tissue-preferential manner. Conclusions B. distachyon miRNAs and target RNAs were experimentally identified and analyzed. Knowledge gained from this study should provide insights into the roles of miRNAs and the regulation of their targets in B. distachyon and related plants. PMID:24367943

  18. Second generation sequencing of microRNA in Human Bone Cells treated with Parathyroid Hormone or Dexamethasone.

    PubMed

    Laxman, Navya; Rubin, Carl-Johan; Mallmin, Hans; Nilsson, Olle; Tellgren-Roth, Christian; Kindmark, Andreas

    2016-03-01

    We investigated the impact of treatment with parathyroid hormone (PTH) and dexamethasone (DEX) for 2 and 24h by RNA sequencing of miRNAs in primary human bone (HOB) cells. A total of 207 million reads were obtained, and normalized absolute expression retrieved for 373 most abundant miRNAs. In naïve control cells, 7 miRNAs were differentially expressed (FDR<0.05) between the two time points. Ten miRNAs exhibited differential expression (FDR <0.05) across two time points and treatments after adjusting for expression in controls and were selected for downstream analyses. Results show significant effects on miRNA expression when comparing PTH with DEX at 2h with even more pronounced effects at 24h. Interestingly, several miRNAs exhibiting differences in expression are predicted to target genes involved in bone metabolism e.g. miR-30c2, miR-203 and miR-205 targeting RUNX2, and miR-320 targeting β-catenin (CTNNB1) mRNA expression. CTNNB1and RUNX2 levels were decreased after DEX treatment and increased after PTH treatment. Our analysis also identified 2 putative novel miRNAs in PTH and DEX treated cells at 24h. RNA sequencing showed that PTH and DEX treatment affect miRNA expression in HOB cells and that regulated miRNAs in turn are correlated with expression levels of key genes involved in bone metabolism. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Differential Expression of miRNAs in the Respiratory Tree of the Sea Cucumber Apostichopus japonicus Under Hypoxia Stress.

    PubMed

    Huo, Da; Sun, Lina; Li, Xiaoni; Ru, Xiaoshang; Liu, Shilin; Zhang, Libin; Xing, Lili; Yang, Hongsheng

    2017-11-06

    The sea cucumber, an important economic species, has encountered high mortality since 2013 in northern China because of seasonal environmental stress such as hypoxia, high temperature, and low salinity. MicroRNAs (miRNAs) are important in regulating gene expression in marine organisms in response to environmental change. In this study, high-throughput sequencing was used to investigate alterations in miRNA expression in the sea cucumber under different levels of dissolved oxygen (DO). Nine small RNA libraries were constructed from the sea cucumber respiratory trees. A total of 26 differentially expressed miRNAs, including 12 upregulated and 14 downregulated miRNAs, were observed in severe hypoxia (DO 2 mg/L) compared with mild hypoxia (DO 4 mg/L) and normoxic conditions (DO 8 mg/L). Twelve differentially expressed miRNAs were clustered in severe hypoxia. In addition, real-time PCR revealed that 14 randomly selected differentially expressed miRNAs showed significantly increased expressions in severe hypoxia and the expressions of nine miRNAs, including key miRNAs such as Aja-miR-1, Aja-miR-2008, and Aja-miR-184, were consistent with the sequencing results. Moreover, gene ontology and pathway analyses of putative target genes suggest that these miRNAs are important in redox, transport, transcription, and hydrolysis under hypoxia stress. Notably, novel-miR-1, novel-miR-2, and novel-miR-3 were specifically clustered and upregulated in severe hypoxia, which may provide new insights into novel "hypoxamiR" identification. These results will provide a basis for future studies of miRNA regulation and molecular adaptive mechanisms in sea cucumbers under hypoxia stress. Copyright © 2017 Huo et al.

  20. Relative Expression of PBMC MicroRNA-133a Analysis in Patients Receiving Warfarin After Mechanical Heart Valve Replacement

    PubMed Central

    Kabiri Rad, Hamid; Mazaheri, Mahta; Dehghani Firozabadi, Ali

    Background: MicroRNAs (miRNAs) are implicated in various biological processes including anticoagulation. However, the modulation of miRNA by pharmacological intervention such as warfarin treatment in patients receiving warfarin has not been disclosed yet. The aim of this study work was to assess the effect of warfarin drug on expression level of mir-133a-3p in patients with mechanical heart valve replacement. Methods: In this research, the expression level of miRNA-133a-3p was analyzed in Peripheral Blood Mononuclear Cells (PBMCs) from mechanical valve replacement patients who had received warfarin for at least 3 months continuously. Quantitative RT-PCR method was used for this assay. Results: Our findings indicated a significant diffrence between the rate of miR-133a-3p expression in individuals receiving warfarin and the control group (p<0.01). There was also a statistically significant difference in miR-133a-3p expression in patients with different ages (p<0.05) suggesting that the rate of miR-133a-3p expression in persons receiving warfarin is related to age. However, other variables like warfarin dose, International Normalized Ratio (INR), gender, and Body Mass Index (BMI) were not significantly effective on the miR-133a-3p experssion rate in individuals receving warfarin. Conclusion: Based on our results, it can be concluded that miR-133a-3p is involved in the coagulation pathway. The recent result indicates that warfarin affects the expression of miR-133a. This expression may be potentially important for treatment by anticoagulants. Awareness of the time course of miRNA expression profile can improve efficiency of response to warfarin. PMID:29296264

  1. miRNA signature associated with outcome of gastric cancer patients following chemotherapy

    PubMed Central

    2011-01-01

    Background Identification of patients who likely will or will not benefit from cytotoxic chemotherapy through the use of biomarkers could greatly improve clinical management by better defining appropriate treatment options for patients. microRNAs may be potentially useful biomarkers that help guide individualized therapy for cancer because microRNA expression is dysregulated in cancer. In order to identify miRNA signatures for gastric cancer and for predicting clinical resistance to cisplatin/fluorouracil (CF) chemotherapy, a comprehensive miRNA microarray analysis was performed using endoscopic biopsy samples. Methods Biopsy samples were collected prior to chemotherapy from 90 gastric cancer patients treated with CF and from 34 healthy volunteers. At the time of disease progression, post-treatment samples were additionally collected from 8 clinical responders. miRNA expression was determined using a custom-designed Agilent microarray. In order to identify a miRNA signature for chemotherapy resistance, we correlated miRNA expression levels with the time to progression (TTP) of disease after CF therapy. Results A miRNA signature distinguishing gastric cancer from normal stomach epithelium was identified. 30 miRNAs were significantly inversely correlated with TTP whereas 28 miRNAs were significantly positively correlated with TTP of 82 cancer patients (P<0.05). Prominent among the upregulated miRNAs associated with chemosensitivity were miRNAs known to regulate apoptosis, including let-7g, miR-342, miR-16, miR-181, miR-1, and miR-34. When this 58-miRNA predictor was applied to a separate set of pre- and post-treatment tumor samples from the 8 clinical responders, all of the 8 pre-treatment samples were correctly predicted as low-risk, whereas samples from the post-treatment tumors that developed chemoresistance were predicted to be in the high-risk category by the 58 miRNA signature, suggesting that selection for the expression of these miRNAs occurred as chemoresistance arose. Conclusions We have identified 1) a miRNA expression signature that distinguishes gastric cancer from normal stomach epithelium from healthy volunteers, and 2) a chemoreresistance miRNA expression signature that is correlated with TTP after CF therapy. The chemoresistance miRNA expression signature includes several miRNAs previously shown to regulate apoptosis in vitro, and warrants further validation. PMID:22112324

  2. Monitoring the Spatiotemporal Activities of miRNAs in Small Animal Models Using Molecular Imaging Modalities

    PubMed Central

    Baril, Patrick; Ezzine, Safia; Pichon, Chantal

    2015-01-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression by binding mRNA targets via sequence complementary inducing translational repression and/or mRNA degradation. A current challenge in the field of miRNA biology is to understand the functionality of miRNAs under physiopathological conditions. Recent evidence indicates that miRNA expression is more complex than simple regulation at the transcriptional level. MiRNAs undergo complex post-transcriptional regulations such miRNA processing, editing, accumulation and re-cycling within P-bodies. They are dynamically regulated and have a well-orchestrated spatiotemporal localization pattern. Real-time and spatio-temporal analyses of miRNA expression are difficult to evaluate and often underestimated. Therefore, important information connecting miRNA expression and function can be lost. Conventional miRNA profiling methods such as Northern blot, real-time PCR, microarray, in situ hybridization and deep sequencing continue to contribute to our knowledge of miRNA biology. However, these methods can seldom shed light on the spatiotemporal organization and function of miRNAs in real-time. Non-invasive molecular imaging methods have the potential to address these issues and are thus attracting increasing attention. This paper reviews the state-of-the-art of methods used to detect miRNAs and discusses their contribution in the emerging field of miRNA biology and therapy. PMID:25749473

  3. Monitoring the spatiotemporal activities of miRNAs in small animal models using molecular imaging modalities.

    PubMed

    Baril, Patrick; Ezzine, Safia; Pichon, Chantal

    2015-03-04

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression by binding mRNA targets via sequence complementary inducing translational repression and/or mRNA degradation. A current challenge in the field of miRNA biology is to understand the functionality of miRNAs under physiopathological conditions. Recent evidence indicates that miRNA expression is more complex than simple regulation at the transcriptional level. MiRNAs undergo complex post-transcriptional regulations such miRNA processing, editing, accumulation and re-cycling within P-bodies. They are dynamically regulated and have a well-orchestrated spatiotemporal localization pattern. Real-time and spatio-temporal analyses of miRNA expression are difficult to evaluate and often underestimated. Therefore, important information connecting miRNA expression and function can be lost. Conventional miRNA profiling methods such as Northern blot, real-time PCR, microarray, in situ hybridization and deep sequencing continue to contribute to our knowledge of miRNA biology. However, these methods can seldom shed light on the spatiotemporal organization and function of miRNAs in real-time. Non-invasive molecular imaging methods have the potential to address these issues and are thus attracting increasing attention. This paper reviews the state-of-the-art of methods used to detect miRNAs and discusses their contribution in the emerging field of miRNA biology and therapy.

  4. Identification of differentially expressed microRNA in the stems and leaves during sugar accumulation in sweet sorghum.

    PubMed

    Yu, Huilin; Cong, Ling; Zhu, Zhenxing; Wang, Chunyu; Zou, Jianqiu; Tao, Chengguang; Shi, Zhensheng; Lu, Xiaochun

    2015-10-25

    MicroRNAs (miRNAs) have been shown to play important roles in plant development, growth and stress response. Sweet sorghum [Sorghum bicolor (L.) Moench] is an important source of bioenergy due to the high sugar content in its stems. However, it is not clear how the miRNA is involved in sugar accumulation in sorghum stems. In order to identify the miRNAs in the stems and the leaves of sweet sorghum, we extracted RNAs of the stems and leaves of sweet sorghum (Rio) and grain sorghum (BTx623) at the heading and dough stages for high-throughput sequencing. A total of 179279048 reads were obtained from Illumina-based sequencing. Further analysis identified nine known miRNAs and twelve novel miRNAs that showed significantly and specifically differentially expressed in the stems of sweet sorghum. The target genes of the differentially expressed novel miRNAs include the transcription factor, glucosyltransferase, protein kinase, cytochrome P450, transporters etc. GO enrichment analysis showed that the predicted targets of these differentially expressed miRNAs participated in diverse physiological and metabolic processes. We performed RT-qRCR analysis on these miRNAs across eight different libraries to validate the miRNAs. Finally, we screened stem-specifically expressed novel miRNA and a leaf-specifically expressed novel miRNA in sweet sorghum comparing with grain sorghum. Our results provide a basis for further investigation of the potential role of these individual miRNAs in sugar accumulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Genome-wide identification of heat stress-responsive small RNAs in tall fescue (Festuca arundinacea) by high-throughput sequencing.

    PubMed

    Li, Huiying; Hu, Tao; Amombo, Erick; Fu, Jinmin

    2017-06-01

    MicroRNAs (miRNAs) play vital roles in the adaptive response of plants to various abiotic and biotic stresses. Tall fescue (Festuca arundinacea Schreb.) is a major cool-season forage and turf grass species which is severely influenced by heat stress. To unravel possible heat stress-responsive miRNAs, high-throughput sequencing was employed for heat-tolerant PI578718 and heat-sensitive PI234881 genotypes growing in presence and absence of heat stress (40°C for 36h). By searching against the miRBase database, among 1421 reference monocotyledon miRNAs, more than 850 were identified in all samples. Among these miRNAs, 1.46% and 2.29% were differentially expressed in PI234881 and PI578718 under heat stress, respectively, and most of them were down-regulated. In addition, a total of 170 novel miRNAs belonging to 145 miRNA families were identified. Furthermore, putative targets of differentially expressed miRNAs were predicted. The regulation of selected miRNAs by heat stress was revalidated through quantitative reverse transcription PCR (qRT-PCR) analysis. Most of these miRNAs shared similar expression patterns; however, some showed distinct expression patterns under heat stress, with their putative targets displaying different transcription levels. This is the first genome-wide miRNA identification in tall fescue. miRNAs specific to PI578718, or those that exhibited differential expression profiles between the two genotypes under high temperature, were probably associated with the variation in thermotolerance of tall fescue. The differentially expressed miRNAs between these two tall fescue genotypes and their putative targeted genes will provide essential information for further study on miRNAs mediating heat response and facilitate to improve turf grass breeding. Copyright © 2017. Published by Elsevier GmbH.

  6. Changes in microRNA expression during differentiation of embryonic and induced pluripotent stem cells to definitive endoderm.

    PubMed

    Francis, Natalie; Moore, Melanie; Asan, Simona G; Rutter, Guy A; Burns, Chris

    2015-01-01

    Pluripotent stem cells, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have the potential to treat type 1 diabetes through cell replacement therapy. However, the protocols used to generate insulin-expressing cells in vitro frequently result in cells which have an immature phenotype and are functionally restricted. MicroRNAs (miRNAs) are now known to be important in cell fate specification, and a unique miRNA signature characterises pancreatic development at the definitive endoderm stage. Several studies have described differences in miRNA expression between ESCs and iPSCs. Here we have used microarray analysis both to identify miRNAs up- or down-regulated upon endoderm formation, and also miRNAs differentially expressed between ESCs and iPSCs. Several miRNAs fulfilling both these criteria were identified, suggesting that differences in the expression of these miRNAs may affect the ability of pluripotent stem cells to differentiate into definitive endoderm. The expression of these miRNAs was validated by qRT-PCR, and the relationship between one of these miRNAs, miR-151a-5p, and its predicted target gene, SOX17, was investigated by luciferase assay, and suggested an interaction between miR-151a-5p and this key transcription factor. In conclusion, these findings demonstrate a unique miRNA expression pattern for definitive endoderm derived from both embryonic and induced pluripotent stem cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Correlation analysis of the mRNA and miRNA expression profiles in the nascent synthetic allotetraploid Raphanobrassica

    PubMed Central

    Ye, Bingyuan; Wang, Ruihua; Wang, Jianbo

    2016-01-01

    Raphanobrassica is an allopolyploid species derived from inter-generic hybridization that combines the R genome from R. sativus and the C genome from B. oleracea var. alboglabra. In the present study, we used a high-throughput sequencing method to identify the mRNA and miRNA profiles in Raphanobrassica and its parents. A total of 33,561 mRNAs and 283 miRNAs were detected, 9,209 mRNAs and 134 miRNAs were differentially expressed respectively, 7,633 mRNAs and 39 miRNAs showed ELD expression, 5,219 mRNAs and 57 miRNAs were non-additively expressed in Raphanobrassica. Remarkably, differentially expressed genes (DEGs) were up-regulated and maternal bias was detected in Raphanobrassica. In addition, a miRNA-mRNA interaction network was constructed based on reverse regulated miRNA-mRNAs, which included 75 miRNAs and 178 mRNAs, 31 miRNAs were non-additively expressed target by 13 miRNAs. The related target genes were significantly enriched in the GO term ‘metabolic processes’. Non-additive related target genes regulation is involved in a range of biological pathways, like providing a driving force for variation and adaption in this allopolyploid. The integrative analysis of mRNA and miRNA profiling provides more information to elucidate gene expression mechanism and may supply a comprehensive and corresponding method to study genetic and transcription variation of allopolyploid. PMID:27874043

  8. Grazing-induced changes in muscle microRNA-206 and -208b expression in association with myogenic gene expression in cattle.

    PubMed

    Horikawa, Akihiko; Ogasawara, Hideki; Okada, Kaito; Kobayashi, Misato; Muroya, Susumu; Hojito, Masayuki

    2015-11-01

    To investigate the roles of microRNAs (miRNAs) in muscle type conversion, the effects of 4 months of grazing on the expression levels of miRNAs and mRNAs associated with skeletal muscle development were analyzed by quantitative RT-PCR using the Biceps femoris muscle of Japanese Shorthorn cattle. After 4 months of grazing, the expression of muscle fiber type-associated miR-208b was higher in the grazed cattle than in the housed. In concordance with the pattern in miR-208b expression, the expression of MyoD, a myogenic regulatory factor associated with the shifting of muscle property to the fast type, was lower in the grazed cattle after 4 months of grazing than in the housed cattle. In addition, the expression of MyHC-2x (a fast type) was higher in the housed cattle than in the grazed, after 4 months of grazing. During the grazing period, miR-206 expression decreased in the housed cattle, whereas expression in the grazed cattle did not change, but rather remained higher than that of the housed cattle even at 3 months after the grazing ended. These miRNAs including miR-206 persisting with muscles of grazed cattle may be associated with regulation of muscle gene expression during skeletal muscle adaptation to grazing. © 2015 Japanese Society of Animal Science.

  9. Characterization and Comparative Profiling of MiRNA Transcriptomes in Bighead Carp and Silver Carp

    PubMed Central

    Chi, Wei; Tong, Chaobo; Gan, Xiaoni; He, Shunping

    2011-01-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules that are processed from large ‘hairpin’ precursors and function as post-transcriptional regulators of target genes. Although many individual miRNAs have recently been extensively studied, there has been very little research on miRNA transcriptomes in teleost fishes. By using high throughput sequencing technology, we have identified 167 and 166 conserved miRNAs (belonging to 108 families) in bighead carp (Hypophthalmichthys nobilis) and silver carp (Hypophthalmichthys molitrix), respectively. We compared the expression patterns of conserved miRNAs by means of hierarchical clustering analysis and log2 ratio. Results indicated that there is not a strong correlation between sequence conservation and expression conservation, most of these miRNAs have similar expression patterns. However, high expression differences were also identified for several individual miRNAs. Several miRNA* sequences were also found in our dataset and some of them may have regulatory functions. Two computational strategies were used to identify novel miRNAs from un-annotated data in the two carps. A first strategy based on zebrafish genome, identified 8 and 22 novel miRNAs in bighead carp and silver carp, respectively. We postulate that these miRNAs should also exist in the zebrafish, but the methodologies used have not allowed for their detection. In the second strategy we obtained several carp-specific miRNAs, 31 in bighead carp and 32 in silver carp, which showed low expression. Gain and loss of family members were observed in several miRNA families, which suggests that duplication of animal miRNA genes may occur through evolutionary processes which are similar to the protein-coding genes. PMID:21858165

  10. Dysregulation of hepatic microRNA expression profiles with Clonorchis sinensis infection.

    PubMed

    Han, Su; Tang, Qiaoran; Lu, Xi; Chen, Rui; Li, Yihong; Shu, Jing; Zhang, Xiaoli; Cao, Jianping

    2016-11-30

    Clonorchiasis remains an important zoonotic parasitic disease worldwide. The molecular mechanisms of host-parasite interaction are not fully understood. Non-coding microRNAs (miRNAs) are considered to be key regulators in parasitic diseases. The regulation of miRNAs and host micro-environment may be involved in clonorchiasis, and require further investigation. MiRNA microarray technology and bioinformatic analysis were used to investigate the regulatory mechanisms of host miRNA and to compare miRNA expression profiles in the liver tissues of control and Clonorchis sinensis (C. sinensis)-infected rats. A total of eight miRNAs were downregulated and two were upregulated, which showed differentially altered expression profiles in the liver tissue of C. sinensis-infected rats. Further analysis of the differentially expressed miRNAs revealed that many important signal pathways were triggered after infection with C. sinensis, which were related to clonorchiasis pathogenesis, such as cell apoptosis and inflammation, as well as genes involved in signal transduction mechanisms, such as pathways in cancer and the Wnt and Mitogen-activated protein kinases (MAPK) signaling pathways. The present study revealed that the miRNA expression profiles of the host were changed by C. sinensis infection. This dysregulation in miRNA expression may contribute to the etiology and pathophysiology of clonorchiasis. These results also provide new insights into the regulatory mechanisms of miRNAs in clonorchiasis, which may present potential targets for future C. sinensis control strategies.

  11. Inflammation-Mediated Regulation of MicroRNA Expression in Transplanted Pancreatic Islets

    PubMed Central

    Bravo-Egana, Valia; Rosero, Samuel; Klein, Dagmar; Jiang, Zhijie; Vargas, Nancy; Tsinoremas, Nicholas; Doni, Marco; Podetta, Michele; Ricordi, Camillo; Molano, R. Damaris; Pileggi, Antonello; Pastori, Ricardo L.

    2012-01-01

    Nonspecific inflammation in the transplant microenvironment results in β-cell dysfunction and death influencing negatively graft outcome. MicroRNA (miRNA) expression and gene target regulation in transplanted islets are not yet well characterized. We evaluated the impact of inflammation on miRNA expression in transplanted rat islets. Islets exposed in vitro to proinflammatory cytokines and explanted syngeneic islet grafts were evaluated by miRNA arrays. A subset of 26 islet miRNAs was affected by inflammation both in vivo and in vitro. Induction of miRNAs was dependent on NF-κB, a pathway linked with cytokine-mediated islet cell death. RT-PCR confirmed expression of 8 miRNAs. The association between these miRNAs and mRNA target-predicting algorithms in genome-wide RNA studies of β-cell inflammation identified 238 potential miRNA gene targets. Several genes were ontologically associated with regulation of insulin signaling and secretion, diabetes, and islet physiology. One of the most activated miRNAs was miR-21. Overexpression of miR-21 in insulin-secreting MIN6 cells downregulated endogenous expression of the tumor suppressor Pdcd4 and of Pclo, a Ca2+ sensor protein involved in insulin secretion. Bioinformatics identified both as potential targets. The integrated analysis of miRNA and mRNA expression profiles revealed potential targets that may identify molecular targets for therapeutic interventions. PMID:22655170

  12. Prognostic and Clinical Significance of miRNA-205 in Endometrioid Endometrial Cancer.

    PubMed

    Wilczynski, Milosz; Danielska, Justyna; Dzieniecka, Monika; Szymanska, Bozena; Wojciechowski, Michal; Malinowski, Andrzej

    2016-01-01

    Endometrial cancer is one of the most common malignancies of the reproductive female tract, with endometrioid endometrial cancer being the most frequent type. Despite the relatively favourable prognosis in cases of endometrial cancer, there is a necessity to evaluate clinical and prognostic utility of new molecular markers. MiRNAs are small, non-coding RNA molecules that take part in RNA silencing and post-transcriptional regulation of gene expression. Altered expression of miRNAs may be associated with cancer initiation, progression and metastatic capabilities. MiRNA-205 seems to be one of the key regulators of gene expression in endometrial cancer. In this study, we investigated clinical and prognostic role of miRNA-205 in endometrioid endometrial cancer. After total RNA extraction from 100 archival formalin-fixed paraffin-embedded tissues, real-time quantitative RT-PCR was used to define miRNA-205 expression levels. The aim of the study was to evaluate miRNA-205 expression levels in regard to patients' clinical and histopathological features, such as: survival rate, recurrence rate, staging, myometrial invasion, grading and lymph nodes involvement. Higher levels of miRNA-205 expression were observed in tumours with less than half of myometrial invasion and non-advanced cancers. Kaplan-Maier analysis revealed that higher levels of miRNA-205 were associated with better overall survival (p = 0,034). These results indicate potential clinical utility of miRNA-205 as a prognostic marker.

  13. Characterization of microRNAs in Mud Crab Scylla paramamosain under Vibrio parahaemolyticus Infection

    PubMed Central

    Li, Chuanbiao; Zhang, Zhao; Zhou, Lizhen; Wang, Shijia; Wang, Shuqi; Zhang, Yueling; Wen, Xiaobo

    2013-01-01

    Background Infection of bacterial Vibrio parahaemolyticus is common in mud crab farms. However, the mechanisms of the crab’s response to pathogenic V. parahaemolyticus infection are not fully understood. MicroRNAs (miRNAs) are a class of small noncoding RNAs that function as regulators of gene expression and play essential roles in various biological processes. To understand the underlying mechanisms of the molecular immune response of the crab to the pathogens, high-throughput Illumina/Solexa deep sequencing technology was used to investigate the expression profiles of miRNAs in S . paramamosain under V. parahaemolyticus infection. Methodology/Principal Findings Two mixed RNA pools of 7 tissues (intestine, heart, liver, gill, brain, muscle and blood) were obtained from V. parahaemolyticus infected crabs and the control groups, respectively. By aligning the sequencing data with known miRNAs, we characterized 421 miRNA families, and 133 conserved miRNA families in mud crab S . paramamosain were either identical or very similar to existing miRNAs in miRBase. Stem-loop qRT-PCRs were used to scan the expression levels of four randomly chosen differentially expressed miRNAs and tissue distribution. Eight novel potential miRNAs were confirmed by qRT-PCR analysis and the precursors of these novel miRNAs were verified by PCR amplification, cloning and sequencing in S . paramamosain . 161 miRNAs (106 of which up-regulated and 55 down-regulated) were significantly differentially expressed during the challenge and the potential targets of these differentially expressed miRNAs were predicted. Furthermore, we demonstrated evolutionary conservation of mud crab miRNAs in the animal evolution process. Conclusions/Significance In this study, a large number of miRNAs were identified in S . paramamosain when challenged with V. parahaemolyticus, some of which were differentially expressed. The results show that miRNAs might play some important roles in regulating gene expression in mud crab under V. parahaemolyticus infection, providing a basis for further investigation of miRNA-modulating networks in innate immunity of mud crab. PMID:24023678

  14. Expression Variations of miRNAs and mRNAs in Rice (Oryza sativa)

    PubMed Central

    Wen, Ming; Xie, Munan; He, Lian; Wang, Yushuai; Shi, Suhua; Tang, Tian

    2016-01-01

    Differences in expression levels are an important source of phenotypic variation within and between populations. MicroRNAs (miRNAs) are key players in post-transcriptional gene regulation that are important for plant development and stress responses. We surveyed expression variation of miRNAs and mRNAs of six accessions from two rice subspecies Oryza sativa L. ssp. indica and Oryza sativa L. ssp. japonica using deep sequencing. While more than half (53.7%) of the mature miRNAs exhibit differential expression between grains and seedlings of rice, only 11.0% show expression differences between subspecies, with an additional 2.2% differentiated for the development-by-subspecies interaction. Expression variation is greater for lowly conserved miRNAs than highly conserved miRNAs, whereas the latter show stronger negative correlation with their targets in expression changes between subspecies. Using a permutation test, we identified 51 miRNA–mRNA pairs that correlate negatively or positively in expression level among cultivated rice. Genes involved in various metabolic processes and stress responses are enriched in the differentially expressed genes between rice indica and japonica subspecies. Our results indicate that stabilizing selection is the major force governing miRNA expression in cultivated rice, albeit positive selection may be responsible for much of the between-subspecies expression divergence. PMID:27797952

  15. Matrigel Basement Membrane Matrix influences expression of microRNAs in cancer cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Karina J.; School of Medicine and Pharmacology, University of Western Australia, Nedlands, WA 6008; Tsykin, Anna

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Matrigel alters cancer cell line miRNA expression relative to culture on plastic. Black-Right-Pointing-Pointer Many identified Matrigel-regulated miRNAs are implicated in cancer. Black-Right-Pointing-Pointer miR-1290, -210, -32 and -29b represent a Matrigel-induced miRNA signature. Black-Right-Pointing-Pointer miR-32 down-regulates Integrin alpha 5 (ITGA5) mRNA. -- Abstract: Matrigel is a medium rich in extracellular matrix (ECM) components used for three-dimensional cell culture and is known to alter cellular phenotypes and gene expression. microRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression and have roles in cancer. While miRNA profiles of numerous cell lines cultured on plastic have been reported, the influence ofmore » Matrigel-based culture on cancer cell miRNA expression is largely unknown. This study investigated the influence of Matrigel on the expression of miRNAs that might facilitate ECM-associated cancer cell growth. We performed miRNA profiling by microarray using two colon cancer cell lines (SW480 and SW620), identifying significant differential expression of miRNAs between cells cultured in Matrigel and on plastic. Many of these miRNAs have previously been implicated in cancer-related processes. A common Matrigel-induced miRNA signature comprised of up-regulated miR-1290 and miR-210 and down-regulated miR-29b and miR-32 was identified using RT-qPCR across five epithelial cancer cell lines (SW480, SW620, HT-29, A549 and MDA-MB-231). Experimental modulation of these miRNAs altered expression of their known target mRNAs involved in cell adhesion, proliferation and invasion, in colon cancer cell lines. Furthermore, ITGA5 was identified as a novel putative target of miR-32 that may facilitate cancer cell interactions with the ECM. We propose that culture of cancer cell lines in Matrigel more accurately recapitulates miRNA expression and function in cancer than culture on plastic and thus is a valuable approach to the in vitro study of miRNAs.« less

  16. Characterisation and expression of microRNAs in developing wings of the neotropical butterfly Heliconius melpomene

    PubMed Central

    2011-01-01

    Background Heliconius butterflies are an excellent system for studies of adaptive convergent and divergent phenotypic traits. Wing colour patterns are used as signals to both predators and potential mates and are inherited in a Mendelian manner. The underlying genetic mechanisms of pattern formation have been studied for many years and shed light on broad issues, such as the repeatability of evolution. In Heliconius melpomene, the yellow hindwing bar is controlled by the HmYb locus. MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that have key roles in many biological processes, including development. miRNAs could act as regulators of genes involved in wing development, patterning and pigmentation. For this reason we characterised miRNAs in developing butterfly wings and examined differences in their expression between colour pattern races. Results We sequenced small RNA libraries from two colour pattern races and detected 142 Heliconius miRNAs with homology to others found in miRBase. Several highly abundant miRNAs were differentially represented in the libraries between colour pattern races. These candidates were tested further using Northern blots, showing that differences in expression were primarily due to developmental stage rather than colour pattern. Assembly of sequenced reads to the HmYb region identified hme-miR-193 and hme-miR-2788; located 2380 bp apart in an intergenic region. These two miRNAs are expressed in wings and show an upregulation between 24 and 72 hours post-pupation, indicating a potential role in butterfly wing development. A search for miRNAs in all available H. melpomene BAC sequences (~ 2.5 Mb) did not reveal any other miRNAs and no novel miRNAs were predicted. Conclusions Here we describe the first butterfly miRNAs and characterise their expression in developing wings. Some show differences in expression across developing pupal stages and may have important functions in butterfly wing development. Two miRNAs were located in the HmYb region and were expressed in developing pupal wings. Future work will examine the expression of these miRNAs in different colour pattern races and identify miRNA targets among wing patterning genes. PMID:21266089

  17. Characterisation and expression of microRNAs in developing wings of the neotropical butterfly Heliconius melpomene.

    PubMed

    Surridge, Alison K; Lopez-Gomollon, Sara; Moxon, Simon; Maroja, Luana S; Rathjen, Tina; Nadeau, Nicola J; Dalmay, Tamas; Jiggins, Chris D

    2011-01-26

    Heliconius butterflies are an excellent system for studies of adaptive convergent and divergent phenotypic traits. Wing colour patterns are used as signals to both predators and potential mates and are inherited in a Mendelian manner. The underlying genetic mechanisms of pattern formation have been studied for many years and shed light on broad issues, such as the repeatability of evolution. In Heliconius melpomene, the yellow hindwing bar is controlled by the HmYb locus. MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that have key roles in many biological processes, including development. miRNAs could act as regulators of genes involved in wing development, patterning and pigmentation. For this reason we characterised miRNAs in developing butterfly wings and examined differences in their expression between colour pattern races. We sequenced small RNA libraries from two colour pattern races and detected 142 Heliconius miRNAs with homology to others found in miRBase. Several highly abundant miRNAs were differentially represented in the libraries between colour pattern races. These candidates were tested further using Northern blots, showing that differences in expression were primarily due to developmental stage rather than colour pattern. Assembly of sequenced reads to the HmYb region identified hme-miR-193 and hme-miR-2788; located 2380 bp apart in an intergenic region. These two miRNAs are expressed in wings and show an upregulation between 24 and 72 hours post-pupation, indicating a potential role in butterfly wing development. A search for miRNAs in all available H. melpomene BAC sequences (~2.5 Mb) did not reveal any other miRNAs and no novel miRNAs were predicted. Here we describe the first butterfly miRNAs and characterise their expression in developing wings. Some show differences in expression across developing pupal stages and may have important functions in butterfly wing development. Two miRNAs were located in the HmYb region and were expressed in developing pupal wings. Future work will examine the expression of these miRNAs in different colour pattern races and identify miRNA targets among wing patterning genes.

  18. Analyzing the interactions of mRNAs, miRNAs, lncRNAs and circRNAs to predict competing endogenous RNA networks in glioblastoma.

    PubMed

    Yuan, Yang; Jiaoming, Li; Xiang, Wang; Yanhui, Liu; Shu, Jiang; Maling, Gou; Qing, Mao

    2018-05-01

    Cross-talk between competitive endogenous RNAs (ceRNAs) may play a critical role in revealing potential mechanisms of tumor development and physiology. Glioblastoma is the most common type of malignant primary brain tumor, and the mechanisms of tumor genesis and development in glioblastoma are unclear. Here, to investigate the role of non-coding RNAs and the ceRNA network in glioblastoma, we performed paired-end RNA sequencing and microarray analyses to obtain the expression profiles of mRNAs, lncRNAs, circRNAs and miRNAs. We identified that the expression of 501 lncRNAs, 1999 mRNAs, 2038 circRNAs and 143 miRNAs were often altered between glioblastoma and matched normal brain tissue. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed on these differentially expressed mRNAs and miRNA-mediated target genes of lncRNAs and circRNAs. Furthermore, we used a multi-step computational framework and several bioinformatics methods to construct a ceRNA network combining mRNAs, miRNAs, lncRNAs and circRNA, based on co-expression analysis between the differentially expressed RNAs. We identified that plenty of lncRNAs, CircRNAs and their downstream target genes in the ceRNA network are related to glutamatergic synapse, suggesting that glutamate metabolism is involved in glioma biological functions. Our results will accelerate the understanding of tumorigenesis, cancer progression and even therapeutic targeting in glioblastoma.

  19. Human Milk and Matched Serum Demonstrate Concentration of Select miRNAs.

    PubMed

    Qin, Wenyi; Dasgupta, Santanu; Corradi, John; Sauter, Edward R

    Pregnancy-associated breast cancers (PABCs), especially those diagnosed after childbirth, are often aggressive, with a poor prognosis. Factors influencing PABC are largely unknown. Micro(mi)RNAs are present in many human body fluids and shown to influence cancer development and/or growth. In six nursing mothers, we determined if breast cancer-associated miRNAs were (1) detectable in human breast milk and (2) if detectable, their relative expression in milk fractions compared to matched serum. We evaluated by quantitative PCR the expression of 11 cancer-associated miRNAs (10a-5p, 16, 21, 100, 140, 145, 155, 181, 199, 205, 212) in breast milk cells, fat and supernatant (skim milk), and matched serum. miRNA expression was detectable in all samples. For 10/11 miRNAs, mean relative expression compared to control (ΔCt) values was lowest in milk cells, the exception being miR205. Relative concentration was highest in the skim fraction of milk for all miRNAs. Expression was higher in skim milk than matched serum for 7/11 miRNAs and in serum for 4/11 miRNAs. miR205 expression was higher in all milk fractions than in matched serum. In conclusion, the expression of breast cancer-associated miRNAs is detectable in human breast milk and serum samples. The concentration is highest in skim milk, but is also detectable in milk fat and milk cells.

  20. A signature of 12 microRNAs is robustly associated with growth rate in a variety of CHO cell lines.

    PubMed

    Klanert, Gerald; Jadhav, Vaibhav; Shanmukam, Vinoth; Diendorfer, Andreas; Karbiener, Michael; Scheideler, Marcel; Bort, Juan Hernández; Grillari, Johannes; Hackl, Matthias; Borth, Nicole

    2016-10-10

    As Chinese Hamster Ovary (CHO) cells are the cell line of choice for the production of human-like recombinant proteins, there is interest in genetic optimization of host cell lines to overcome certain limitations in their growth rate and protein secretion. At the same time, a detailed understanding of these processes could be used to advantage by identification of marker transcripts that characterize states of performance. In this context, microRNAs (miRNAs) that exhibit a robust correlation to the growth rate of CHO cells were determined by analyzing miRNA expression profiles in a comprehensive collection of 46 samples including CHO-K1, CHO-S and CHO-DUKXB11, which were adapted to various culture conditions, and analyzed in different growth stages using microarrays. By applying Spearman or Pearson correlation coefficient criteria of>|0.6|, miRNAs with high correlation to the overall growth, or growth rates observed in exponential, serum-free, and serum-free exponential phase were identified. An overlap of twelve miRNAs common for all sample sets was revealed, with nine positively and three negatively correlating miRNAs. The here identified panel of miRNAs can help to understand growth regulation in CHO cells and contains putative engineering targets as well as biomarkers for cell lines with advantageous growth characteristics. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. MicroRNA Expression Profiling to Identify and Validate Reference Genes for the Relative Quantification of microRNA in Rectal Cancer.

    PubMed

    Eriksen, Anne Haahr Mellergaard; Andersen, Rikke Fredslund; Pallisgaard, Niels; Sørensen, Flemming Brandt; Jakobsen, Anders; Hansen, Torben Frøstrup

    2016-01-01

    MicroRNAs (miRNAs) play important roles in regulating biological processes at the post-transcriptional level. Deregulation of miRNAs has been observed in cancer, and miRNAs are being investigated as potential biomarkers regarding diagnosis, prognosis and prediction in cancer management. Real-time quantitative polymerase chain reaction (RT-qPCR) is commonly used, when measuring miRNA expression. Appropriate normalisation of RT-qPCR data is important to ensure reliable results. The aim of the present study was to identify stably expressed miRNAs applicable as normaliser candidates in future studies of miRNA expression in rectal cancer. We performed high-throughput miRNA profiling (OpenArray®) on ten pairs of laser micro-dissected rectal cancer tissue and adjacent stroma. A global mean expression normalisation strategy was applied to identify the most stably expressed miRNAs for subsequent validation. In the first validation experiment, a panel of miRNAs were analysed on 25 pairs of micro dissected rectal cancer tissue and adjacent stroma. Subsequently, the same miRNAs were analysed in 28 pairs of rectal cancer tissue and normal rectal mucosa. From the miRNA profiling experiment, miR-645, miR-193a-5p, miR-27a and let-7g were identified as stably expressed, both in malignant and stromal tissue. In addition, NormFinder confirmed high expression stability for the four miRNAs. In the RT-qPCR based validation experiments, no significant difference between tumour and stroma/normal rectal mucosa was detected for the mean of the normaliser candidates miR-27a, miR-193a-5p and let-7g (first validation P = 0.801, second validation P = 0.321). MiR-645 was excluded from the data analysis, because it was undetected in 35 of 50 samples (first validation) and in 24 of 56 samples (second validation), respectively. Significant difference in expression level of RNU6B was observed between tumour and adjacent stromal (first validation), and between tumour and normal rectal mucosa (second validation). We recommend the mean expression of miR-27a, miR-193a-5p and let-7g as normalisation factor, when performing miRNA expression analyses by RT-qPCR on rectal cancer tissue.

  2. Transcriptome and Small RNA Deep Sequencing Reveals Deregulation of miRNA Biogenesis in Human Glioma

    PubMed Central

    Moore, Lynette M.; Kivinen, Virpi; Liu, Yuexin; Annala, Matti; Cogdell, David; Liu, Xiuping; Liu, Chang-Gong; Sawaya, Raymond; Yli-Harja, Olli; Shmulevich, Ilya; Fuller, Gregory N.; Zhang, Wei; Nykter, Matti

    2013-01-01

    Altered expression of oncogenic and tumor-suppressing microRNAs (miRNAs) is widely associated with tumorigenesis. However, the regulatory mechanisms underlying these alterations are poorly understood. We sought to shed light on the deregulation of miRNA biogenesis promoting the aberrant miRNA expression profiles identified in these tumors. Using sequencing technology to perform both whole-transcriptome and small RNA sequencing of glioma patient samples, we examined precursor and mature miRNAs to directly evaluate the miRNA maturation process, and interrogated expression profiles for genes involved in the major steps of miRNA biogenesis. We found that ratios of mature to precursor forms of a large number of miRNAs increased with the progression from normal brain to low-grade and then to high-grade gliomas. The expression levels of genes involved in each of the three major steps of miRNA biogenesis (nuclear processing, nucleo-cytoplasmic transport, and cytoplasmic processing) were systematically altered in glioma tissues. Survival analysis of an independent data set demonstrated that the alteration of genes involved in miRNA maturation correlates with survival in glioma patients. Direct quantification of miRNA maturation with deep sequencing demonstrated that deregulation of the miRNA biogenesis pathway is a hallmark for glioma genesis and progression. PMID:23007860

  3. Global miRNA expression profile reveals novel molecular players in aneurysmal subarachnoid haemorrhage.

    PubMed

    Lopes, Katia de Paiva; Vinasco-Sandoval, Tatiana; Vialle, Ricardo Assunção; Paschoal, Fernando Mendes; Bastos, Vanessa Albuquerque P Aviz; Bor-Seng-Shu, Edson; Teixeira, Manoel Jacobsen; Yamada, Elizabeth Sumi; Pinto, Pablo; Vidal, Amanda Ferreira; Ribeiro-Dos-Santos, Arthur; Moreira, Fabiano; Santos, Sidney; Paschoal, Eric Homero Albuquerque; Ribeiro-Dos-Santos, Ândrea

    2018-06-08

    The molecular mechanisms behind aneurysmal subarachnoid haemorrhage (aSAH) are still poorly understood. Expression patterns of miRNAs may help elucidate the post-transcriptional gene expression in aSAH. Here, we evaluate the global miRNAs expression profile (miRnome) of patients with aSAH to identify potential biomarkers. We collected 33 peripheral blood samples (27 patients with cerebral aneurysm, collected 7 to 10 days after the haemorrhage, when usually is the cerebral vasospasm risk peak, and six controls). Then, were performed small RNA sequencing using an Illumina Next Generation Sequencing (NGS) platform. Differential expression analysis identified eight differentially expressed miRNAs. Among them, three were identified being up-regulated, and five down-regulated. miR-486-5p was the most abundant expressed and is associated with poor neurological admission status. In silico miRNA gene target prediction showed 148 genes associated with at least two differentially expressed miRNAs. Among these, THBS1 and VEGFA, known to be related to thrombospondin and vascular endothelial growth factor. Moreover, MYC gene was found to be regulated by four miRNAs, suggesting an important role in aneurysmal subarachnoid haemorrhage. Additionally, 15 novel miRNAs were predicted being expressed only in aSAH, suggesting possible involvement in aneurysm pathogenesis. These findings may help the identification of novel biomarkers of clinical interest.

  4. RILES, a novel method for temporal analysis of the in vivo regulation of miRNA expression

    PubMed Central

    Ezzine, Safia; Vassaux, Georges; Pitard, Bruno; Barteau, Benoit; Malinge, Jean-Marc; Midoux, Patrick; Pichon, Chantal; Baril, Patrick

    2013-01-01

    Novel methods are required to investigate the complexity of microRNA (miRNA) biology and particularly their dynamic regulation under physiopathological conditions. Herein, a novel plasmid-based RNAi-Inducible Luciferase Expression System (RILES) was engineered to monitor the activity of endogenous RNAi machinery. When RILES is transfected in a target cell, the miRNA of interest suppresses the expression of a transcriptional repressor and consequently switch-ON the expression of the luciferase reporter gene. Hence, miRNA expression in cells is signed by the emission of bioluminescence signals that can be monitored using standard bioluminescence equipment. We validated this approach by monitoring in mice the expression of myomiRs-133, −206 and −1 in skeletal muscles and miRNA-122 in liver. Bioluminescence experiments demonstrated robust qualitative and quantitative data that correlate with the miRNA expression pattern detected by quantitative RT-PCR (qPCR). We further demonstrated that the regulation of miRNA-206 expression during the development of muscular atrophy is individual-dependent, time-regulated and more complex than the information generated by qPCR. As RILES is simple and versatile, we believe that this methodology will contribute to a better understanding of miRNA biology and could serve as a rationale for the development of a novel generation of regulatable gene expression systems with potential therapeutic applications. PMID:24013565

  5. RILES, a novel method for temporal analysis of the in vivo regulation of miRNA expression.

    PubMed

    Ezzine, Safia; Vassaux, Georges; Pitard, Bruno; Barteau, Benoit; Malinge, Jean-Marc; Midoux, Patrick; Pichon, Chantal; Baril, Patrick

    2013-11-01

    Novel methods are required to investigate the complexity of microRNA (miRNA) biology and particularly their dynamic regulation under physiopathological conditions. Herein, a novel plasmid-based RNAi-Inducible Luciferase Expression System (RILES) was engineered to monitor the activity of endogenous RNAi machinery. When RILES is transfected in a target cell, the miRNA of interest suppresses the expression of a transcriptional repressor and consequently switch-ON the expression of the luciferase reporter gene. Hence, miRNA expression in cells is signed by the emission of bioluminescence signals that can be monitored using standard bioluminescence equipment. We validated this approach by monitoring in mice the expression of myomiRs-133, -206 and -1 in skeletal muscles and miRNA-122 in liver. Bioluminescence experiments demonstrated robust qualitative and quantitative data that correlate with the miRNA expression pattern detected by quantitative RT-PCR (qPCR). We further demonstrated that the regulation of miRNA-206 expression during the development of muscular atrophy is individual-dependent, time-regulated and more complex than the information generated by qPCR. As RILES is simple and versatile, we believe that this methodology will contribute to a better understanding of miRNA biology and could serve as a rationale for the development of a novel generation of regulatable gene expression systems with potential therapeutic applications.

  6. Association between the miRNA signatures in plasma and bronchoalveolar fluid in respiratory pathologies.

    PubMed

    Molina-Pinelo, Sonia; Suárez, Rocío; Pastor, María Dolores; Nogal, Ana; Márquez-Martín, Eduardo; Martín-Juan, José; Carnero, Amancio; Paz-Ares, Luis

    2012-01-01

    The identification of new less invasive biomarkers is necessary to improve the detection and prognostic outcome of respiratory pathological processes. The measurement of miRNA expression through less invasive techniques such as plasma and serum have been suggested to analysis of several lung malignancies including lung cancer. These studies are assuming a common deregulated miRNA expression both in blood and lung tissue. The present study aimed to obtain miRNA representative signatures both in plasma and bronchoalveolar cell fraction that could serve as biomarker in respiratory diseases. Ten patients were evaluated to assess the expression levels of 381 miRNAs. We found that around 50% miRNAs were no detected in both plasma and bronchoalveolar cell fraction and only 20% of miRNAs showed similar expression in both samples. These results show a lack of association of miRNA signatures between plasma and bronchoalveolar cytology in the same patient. The profiles are not comparable; however, there is a similarity in the relative expression in a very small subset of miRNAs (miR-17, miR-19b, miR-195 and miR-20b) between both biological samples in all patients. This finding supports that the miRNAs profiles obtained from different biological samples have to be carefully validated to link with respiratory diseases.

  7. MicroRNA-15b deteriorates hypoxia/reoxygenation-induced cardiomyocyte apoptosis by downregulating Bcl-2 and MAPK3.

    PubMed

    Liu, Yaling; Yang, Liqun; Yin, Jiemin; Su, Diansan; Pan, Zhiying; Li, Peiying; Wang, Xiaodong

    2018-01-01

    To investigate the role of miRNA-15b in cardiomyocyte apoptosis after ischemia reperfusion injury in acute myocardial infarction (AMI), we conducted the AMI rat model by using left anterior descending ligation and performed hypoxia/reoxygenation experiments in H9c2 cells. MiRNA-15b was measured by quantitative reverse transcription PCR (qRT-PCR). Cardiomyocyte apoptosis was determined by terminal deoxynucleotide transferase dUTP nick end labeling staining. Synthesized miRNA-15b mimic and inhibitor were transfected into H9c2 cells by Lipofectamine regent. RNA expression of B cell lymphoma/leukemia-2 (Bcl-2) and mitogen-activated protein kinase 3 (MAPK3) was examined by qRT-PCR and their protein expression was determined by western blot. Ischemia reperfusion increased miRNA-15b expression in the ischemic rat heart and resulted more severe cardiomyocytes apoptosis. In H9c2 cells, hypoxia/reoxygenation induced increased miRNA-15b expression and augmented cardiomyocyte apoptosis observed at 24 hours after 24-hour hypoxia. Compared with the vehicle group, miRNA-15b mimic further raised miRNA-15b level and increased cardiomyocyte apoptosis, whereas miRNA-15b inhibitor suppressed miRNA-15b expression and protected cardiomyocytes from apoptosis. Although the mRNA expression of the target genes Bcl-2 and MAPK3 was not changed significantly, the protein expression of these two genes were markedly reduced after miRNA-15b mimic treatment and significantly increased after transfected with miRNA-15b inhibitors. In conclusion, miRNA-15b deteriorates cardiomyocyte apoptosis by post-transcriptionally downregulating the expression of Bcl-2 and MAPK3. © American Federation for Medical Research (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Expression profiles of miRNAs from bovine mammary glands in response to Streptococcus agalactiae-induced mastitis.

    PubMed

    Pu, Junhua; Li, Rui; Zhang, Chenglong; Chen, Dan; Liao, Xiangxiang; Zhu, Yihui; Geng, Xiaohan; Ji, Dejun; Mao, Yongjiang; Gong, Yunchen; Yang, Zhangping

    2017-08-01

    This study aimed to describe the expression profiles of microRNAs (miRNAs) from mammary gland tissues collected from dairy cows with Streptococcus agalactiae-induced mastitis and to identify differentially expressed miRNAs related to mastitis. The mammary glands of Chinese Holstein cows were challenged with Streptococcus agalactiae to induce mastitis. Small RNAs were isolated from the mammary tissues of the test and control groups and then sequenced using the Solexa sequencing technology to construct two small RNA libraries. Potential target genes of these differentially expressed miRNAs were predicted using the RNAhybrid software, and KEGG pathways associated with these genes were analysed. A total of 18 555 913 and 20 847 000 effective reads were obtained from the test and control groups, respectively. In total, 373 known and 399 novel miRNAs were detected in the test group, and 358 known and 232 novel miRNAs were uncovered in the control group. A total of 35 differentially expressed miRNAs were identified in the test group compared to the control group, including 10 up-regulated miRNAs and 25 down-regulated miRNAs. Of these miRNAs, miR-223 exhibited the highest degree of up-regulation with an approximately 3-fold increase in expression, whereas miR-26a exhibited the most decreased expression level (more than 2-fold). The RNAhybrid software predicted 18 801 genes as potential targets of these 35 miRNAs. Furthermore, several immune response and signal transduction pathways, including the RIG-I-like receptor signalling pathway, cytosolic DNA sensing pathway and Notch signal pathway, were enriched in these predicted targets. In summary, this study provided experimental evidence for the mechanism underlying the regulation of bovine mastitis by miRNAs and showed that miRNAs might be involved in signal pathways during S. agalactiae-induced mastitis.

  9. Analysis of plasma microRNA expression profiles revealed different cancer susceptibility in healthy young adult smokers and middle-aged smokers

    PubMed Central

    Shi, Bing; Gao, Hongmin; Zhang, Tianyang; Cui, Qinghua

    2016-01-01

    Cigarette smoking is a world-wide habit and an important risk factor for cancer. It was known that cigarette smoking can change the expression of circulating microRNAs (miRNAs) in healthy middle-aged adults. However, it remains unclear whether cigarette smoking can change the levels of circulating miRNAs in young healthy smokers and whether there are differences in cancer susceptibility for the two cases. In this study, the miRNA expression profiles of 28 smokers and 12 non-smokers were determined by Agilent human MicroRNA array. We further performed bioinformatics analysis for the differentially expressed miRNAs. The result showed that 35 miRNAs were differentially expressed. Among them, 24 miRNAs were up-regulated and 11 miRNAs were down-regulated in smokers. Functional enrichment analysis showed that the deregulated miRNAs are related to immune system and hormones regulation. Strikingly, the up-regulated miRNAs are mostly associated with hematologic cancers, such as lymphoma, leukemia. As a comparison, the up-regulated plasma miRNAs in middle-aged smokers are mostly associated with solid cancers, such as hepatocellular carcinoma and lung cancer, suggesting that smoking could have different influences on young adults and middle-aged adults. In a conclusion, we identified the circulating miRNAs deregulated by cigarette smoking and revealed that the age-dependent deregulated miRNAs tend to be mainly involved in different types of human cancers. PMID:26943588

  10. Analysis of plasma microRNA expression profiles revealed different cancer susceptibility in healthy young adult smokers and middle-aged smokers.

    PubMed

    Shi, Bing; Gao, Hongmin; Zhang, Tianyang; Cui, Qinghua

    2016-04-19

    Cigarette smoking is a world-wide habit and an important risk factor for cancer. It was known that cigarette smoking can change the expression of circulating microRNAs (miRNAs) in healthy middle-aged adults. However, it remains unclear whether cigarette smoking can change the levels of circulating miRNAs in young healthy smokers and whether there are differences in cancer susceptibility for the two cases. In this study, the miRNA expression profiles of 28 smokers and 12 non-smokers were determined by Agilent human MicroRNA array. We further performed bioinformatics analysis for the differentially expressed miRNAs. The result showed that 35 miRNAs were differentially expressed. Among them, 24 miRNAs were up-regulated and 11 miRNAs were down-regulated in smokers. Functional enrichment analysis showed that the deregulated miRNAs are related to immune system and hormones regulation. Strikingly, the up-regulated miRNAs are mostly associated with hematologic cancers, such as lymphoma, leukemia. As a comparison, the up-regulated plasma miRNAs in middle-aged smokers are mostly associated with solid cancers, such as hepatocellular carcinoma and lung cancer, suggesting that smoking could have different influences on young adults and middle-aged adults. In a conclusion, we identified the circulating miRNAs deregulated by cigarette smoking and revealed that the age-dependent deregulated miRNAs tend to be mainly involved in different types of human cancers.

  11. Global Analysis of miRNA-mRNA Interaction Network in Breast Cancer with Brain Metastasis.

    PubMed

    Li, Zhixin; Peng, Zhiqiang; Gu, Siyu; Zheng, Junfang; Feng, Duiping; Qin, Qiong; He, Junqi

    2017-08-01

    MicroRNAs (miRNAs) have been linked to a number of cancer types including breast cancer. The rate of brain metastases is 10-30% in patients with advanced breast cancer which is associated with poor prognosis. The potential application of miRNAs in the diagnostics and therapeutics of breast cancer with brain metastasis is an area of intense interest. In an initial effort to systematically address the differential expression of miRNAs and mRNAs in primary breast cancer which may provide clues for early detection of brain metastasis, we analyzed the consequent changes in global patterns of gene expression in Gene Expression Omnibus (GEO) data set obtained by microarray from patients with in situ carcinoma and patients with brain metastasis. The miRNA-pathway regulatory network and miRNA-mRNA regulatory network were investigated in breast cancer specimens from patients with brain metastasis to screen for significantly dysregulated miRNAs followed by prediction of their target genes and pathways by Gene Ontology (GO) analysis. Functional coordination of the changes of gene expression can be modulated by individual miRNAs. Two miRNAs, hsa-miR-17-5p and hsa-miR-16-5p, were identified as having the highest associations with targeted mRNAs [such as B-cell lymphoma 2 (BCL2), small body size/mothers against decapentaplegic 3 (SMAD3) and suppressor of cytokine signaling 1 (SOCS1)] and pathways associated with epithelial-mesenchymal transitions and other processes linked with cancer metastasis (including cell cycle, adherence junctions and extracellular matrix-receptor interaction). mRNAs for two genes [HECT, UBA and WWE domain containing 1 (HUWE1) and BCL2] were found to have the highest associations with miRNAs, which were down-regulated in brain metastasis specimens of breast cancer. The change of 11 selected miRNAs was verified in The Cancer Genome Atlas (TCGA) breast cancer dataset. Up-regulation of hsa-miR-17-5p was detected in triple-negative breast cancer tissues in TCGA. Furthermore, a negative correlation of hsa-miR-17-5p with overall survival and phosphatase and tensin homolog (PTEN) and BCL2 target genes was found in TCGA breast cancer specimens. Our findings provide a functionally coordinated expression pattern of different families of miRNAs that may have potential to provide clinicians with a strategy to treat breast cancer with brain metastasis from a systems-rather than a single-gene perspective. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. The role of microRNAs in myopia.

    PubMed

    Jiang, Bo; Huo, Yanan; Gu, Yangshun; Wang, Jianyong

    2017-01-01

    In recent years, research on microRNAs (miRNAs) has become popular because of the critical role these macromolecules play in post-transcriptional gene regulation. Recent efforts have been made to identify miRNAs and their possible roles in myopia. The aim of this review was to summarize the expression and function of miRNAs during the development of myopia. In this article, we reviewed the current research on the mechanisms that regulate miRNA expression, the potential for miRNAs as a diagnostic biomarker for myopia, and the mechanisms by which miRNAs promote the development of myopia. We also discussed the miRNA expression profiles in human fetal sclera. We summarized the miRNA expression profiles in myopia, including miR-328, miR-184, miR-29a, and miR-let-7i, and also the miRNA expression profiles in fetal sclera, including miR-214, miR-let-7, miR-103, miR-107, miR-29b, miR-328, and miR-98. Such knowledge could lead to more precise diagnosis, prognosis, and response predictions for future treatments for myopia, and the pace of discovery is expected to accelerate dramatically in the near future.

  13. Microarray analysis of miRNA expression profiles following whole body irradiation in a mouse model.

    PubMed

    Aryankalayil, Molykutty J; Chopra, Sunita; Makinde, Adeola; Eke, Iris; Levin, Joel; Shankavaram, Uma; MacMillan, Laurel; Vanpouille-Box, Claire; Demaria, Sandra; Coleman, C Norman

    2018-06-19

    Accidental exposure to life-threatening radiation in a nuclear event is a major concern; there is an enormous need for identifying biomarkers for radiation biodosimetry to triage populations and treat critically exposed individuals. To identify dose-differentiating miRNA signatures from whole blood samples of whole body irradiated mice. Mice were whole body irradiated with X-rays (2 Gy-15 Gy); blood was collected at various time-points post-exposure; total RNA was isolated; miRNA microarrays were performed; miRNAs differentially expressed in irradiated vs. unirradiated controls were identified; feature extraction and classification models were applied to predict dose-differentiating miRNA signature. We observed a time and dose responsive alteration in the expression levels of miRNAs. Maximum number of miRNAs were altered at 24-h and 48-h time-points post-irradiation. A 23-miRNA signature was identified using feature selection algorithms and classifier models. An inverse correlation in the expression level changes of miR-17 members, and their targets were observed in whole body irradiated mice and non-human primates. Whole blood-based miRNA expression signatures might be used for predicting radiation exposures in a mass casualty nuclear incident.

  14. Characterization and Expression Patterns of microRNAs Involved in Rice Grain Filling

    PubMed Central

    Du, Yanxiu; Zhang, Jing; Li, Junzhou; Liu, Yanxia; Zhao, Yafan; Zhao, Quanzhi

    2013-01-01

    MicroRNAs (miRNAs) are upstream gene regulators of plant development and hormone homeostasis through their directed cleavage or translational repression of the target mRNAs, which may play crucial roles in rice grain filling and determining the final grain weight and yield. In this study, high-throughput sequencing was performed to survey the dynamic expressions of miRNAs and their corresponding target genes at five distinct developmental stages of grain filling. In total, 445 known miRNAs and 45 novel miRNAs were detected with most of them expressed in a developmental stage dependent manner, and the majority of known miRNAs, which increased gradually with rice grain filling, showed negatively related to the grain filling rate. Detailed expressional comparisons revealed a clear negative correlation between most miRNAs and their target genes. It was found that specific miRNA cohorts are expressed in a developmental stage dependent manner during grain filling and the known functions of these miRNAs are involved in plant hormone homeostasis and starch accumulation, indicating that the expression dynamics of these miRNAs might play key roles in regulating rice grain filling. PMID:23365650

  15. miRNA Expression Change in Dorsal Root Ganglia After Peripheral Nerve Injury.

    PubMed

    Chang, Hsueh-Ling; Wang, Hung-Chen; Chunag, Yi-Ta; Chou, Chao-Wen; Lin, I-Ling; Lai, Chung-Sheng; Chang, Lin-Li; Cheng, Kuang-I

    2017-02-01

    The role of microRNAs (miRNAs) in the regulation of nerve injury-induced neuropathic pain is unclear. The aims of this study were to assess and compare miRNA expression profiles in dorsal root ganglia (DRG) following three different kinds of peripheral nerve injury, including spinal nerve ligation (SNL), dorsal root transection (DRT), and ventral root transection (VRT), in Sprague-Dawley rats. Responses to thermal and mechanical stimuli were measured preoperatively and on postoperative days (PODs) 1, 4, and 7. A miRNA microarray analysis was used to detect the miRNA expression profiles in injured L5 DRG from SNL, DRT, and VRT on POD 7. Validation of miRNA expression was performed by qPCR and in situ hybridization. Rats receiving SNL displayed significantly higher mechanical hypersensitivity, but those receiving DRT developed higher thermal hypersensitivity. The number of miRNAs that were significantly upregulated in L5 DRG was 49 (7.2%), 25 (3.7%), and 146 (21.5%) following SNL, DRT, and VRT, respectively. On the other hand, 35 (5.1%) miRNAs were significantly downregulated in the SNL group, 21 (3.1%) miRNAs in the DRT group, and 41 (6.0%) miRNAs in the VRT group. Of the four miRNAs that were mutually aberrant in all three models, two were significantly upregulated (twofold), miR-21 and miR-31, and two were significantly downregulated, miR-668 and miR-672. Using in situ hybridization, miRNA-21, miRNA-31, miRNA-668, and miRNA-672 were found to localize to neurons in the DRG. Collectively, the mutual abnormal miRNA expression of miR-21, miR-31, miR-668, and miR-677 implied that these miRNAs may be therapeutic targets for alleviating multiple forms of neuropathic pain.

  16. Liposomal curcumin alters chemosensitivity of breast cancer cells to Adriamycin via regulating microRNA expression.

    PubMed

    Zhou, Siying; Li, Jian; Xu, Hanzi; Zhang, Sijie; Chen, Xiu; Chen, Wei; Yang, Sujin; Zhong, Shanliang; Zhao, Jianhua; Tang, Jinhai

    2017-07-30

    Emerging evidence suggests that curcumin can overcome drug resistance to classical chemotherapies, but poor bioavailability and low absorption have limited its clinical use and the mechanisms remain unclear. Also, Adriamycin (Adr) is one of the most active cytotoxic agents in breast cancer; however, the high resistant rate of Adr leads to a poor prognosis. We utilized encapsulation in liposomes as a strategy to improve the bioavailability of curcumin and demonstrated that liposomal curcumin altered chemosensitivity of Adr-resistant MCF-7 human breast cancer (MCF-7/Adr) by MTT assay. The miRNA and mRNA expression profiles of MCF-7/S, MCF-7/Adr and curcumin-treated MCF-7/Adr cells were analyzed by microarray and further confirmed by real-time PCR. We focused on differentially expressed miR-29b-1-5p to explore the involvement of miR-29b-1-5p in the resistance of Adr. Candidate genes of dysregulated miRNAs were identified by prediction algorithms based on gene expression profiles. Networks of KEGG pathways were organized by the selected dysregulated miRNAs. Moreover, protein-protein interaction (PPI) was utilized to map protein interaction networks of curcumin regulated proteins. We first demonstrated liposomal curcumin could rescue part of Adriamycin resistance in breast cancer and further identified 67 differentially expressed microRNAs among MCF-7/S, MCF-7/Adr and curcumin-treated MCF-7/Adr. The results showed that lower expressed miR-29b-1-5p decreased the IC50 of MCF-7/Adr cells and higher expressed miR-29b-1-5p, weaken the effects of liposomal curcumin to Adr-resistance. Besides, we found that 20 target genes (mRNAs) of each dysregulated miRNA were not only predicted by prediction algorithms, but also differentially expressed in the microarray. The results showed that MAPK, mTOR, PI3K-Akt, AMPK, TNF, Ras signaling pathways and several target genes such as PPARG, RRM2, SRSF1and EPAS1, may associate with drug resistance of breast cancer cells to Adr. We determined that an altered miRNA expression pattern is involved in acquiring resistance to Adr, and that liposomal curcumin could change the resistance to Adr through miRNA signaling pathways in breast cancer MCF-7 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Human microRNA expression in sporadic and FAP-associated desmoid tumors and correlation with beta-catenin mutations.

    PubMed

    Cavallini, Aldo; Rotelli, Maria Teresa; Lippolis, Catia; Piscitelli, Domenico; Digennaro, Rosa; Covelli, Claudia; Carella, Nicola; Accetturo, Matteo; Altomare, Donato Francesco

    2017-06-27

    Desmoid tumors (DT) are rare, benign, fibroblastic neoplasm with challenging histological diagnosis. DTs can occur sporadically or associated with the familial adenomatous polyposis coli (FAP). Most sporadic DTs are associated with β-catenin gene (CTNNB1) mutations, while mutated APC gene causes FAP disease. microRNAs (miRNAs) are involved in many human carcinogenesis.The miRNA profile was analyzed by microarray in formalin-fixed, paraffin-embedded (FFPE) specimens of 12 patients (8 sporadic, 4 FAP-associated) and 4 healthy controls. One hundred and one mRNAs resulted dysregulated, of which 98 in sporadic DTs and 8 in FAP-associated DTs, 5 were shared by both tumors. Twenty-six miRNAs were then validated by RT-qPCR in 23 sporadic and 7 FAP-associated DT samples matched with healthy controls. The qPCR method was also used to evaluate the CTNNB1 mutational status in sporadic DTs. The correlation between sporadic DTs and miRNA expression showed that miR-21-3p increased in mutated versus wild-type DTs, while miR-197-3p was decreased. The mRNA expression of Tetraspanin3 and Serpin family A member 3, as miR-21-3p targets, and L1 Cell Adhesion Molecule, as miR-197-3p target, was also evaluate. CTNNB1 mutations associated to miRNA dysregulation could affect the genesis and the progression of this disease and help histological diagnosis of sporadic DTs.

  18. Identification and characterization of microRNAs in white and brown alpaca skin

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) are small, non-coding 21–25 nt RNA molecules that play an important role in regulating gene expression. Little is known about the expression profiles and functions of miRNAs in skin and their role in pigmentation. Alpacas have more than 22 natural coat colors, more than any other fiber producing species. To better understand the role of miRNAs in control of coat color we performed a comprehensive analysis of miRNA expression profiles in skin of white versus brown alpacas. Results Two small RNA libraries from white alpaca (WA) and brown alpaca (BA) skin were sequenced with the aid of Illumina sequencing technology. 272 and 267 conserved miRNAs were obtained from the WA and BA skin libraries, respectively. Of these conserved miRNAs, 35 and 13 were more abundant in WA and BA skin, respectively. The targets of these miRNAs were predicted and grouped based on Gene Ontology and KEGG pathway analysis. Many predicted target genes for these miRNAs are involved in the melanogenesis pathway controlling pigmentation. In addition to the conserved miRNAs, we also obtained 22 potentially novel miRNAs from the WA and BA skin libraries. Conclusion This study represents the first comprehensive survey of miRNAs expressed in skin of animals of different coat colors by deep sequencing analysis. We discovered a collection of miRNAs that are differentially expressed in WA and BA skin. The results suggest important potential functions of miRNAs in coat color regulation. PMID:23067000

  19. MicroRNA-mediated gene regulation: potential applications for plant genetic engineering.

    PubMed

    Zhou, Man; Luo, Hong

    2013-09-01

    Food security is one of the most important issues challenging the world today. Any strategies to solve this problem must include increasing crop yields and quality. MicroRNA-based genetic modification technology (miRNA-based GM tech) can be one of the most promising solutions that contribute to agricultural productivity directly by developing superior crop cultivars with enhanced biotic and abiotic stress tolerance and increased biomass yields. Indirectly, the technology may increase usage of marginal soils and decrease pesticide use, among other benefits. This review highlights the most recent progress of transgenic studies utilizing various miRNAs and their targets for plant trait modifications, and analyzes the potential of miRNA-mediated gene regulation for use in crop improvement. Strategies for manipulating miRNAs and their targets in transgenic plants including constitutive, stress-induced, or tissue-specific expression of miRNAs or their targets, RNA interference, expressing miRNA-resistant target genes, artificial target mimic and artificial miRNAs were discussed. We also discussed potential risks of utilizing miRNA-based GM tech. In general, miRNAs and their targets not only provide an invaluable source of novel transgenes, but also inspire the development of several new GM strategies, allowing advances in breeding novel crop cultivars with agronomically useful characteristics.

  20. DSAP: deep-sequencing small RNA analysis pipeline.

    PubMed

    Huang, Po-Jung; Liu, Yi-Chung; Lee, Chi-Ching; Lin, Wei-Chen; Gan, Richie Ruei-Chi; Lyu, Ping-Chiang; Tang, Petrus

    2010-07-01

    DSAP is an automated multiple-task web service designed to provide a total solution to analyzing deep-sequencing small RNA datasets generated by next-generation sequencing technology. DSAP uses a tab-delimited file as an input format, which holds the unique sequence reads (tags) and their corresponding number of copies generated by the Solexa sequencing platform. The input data will go through four analysis steps in DSAP: (i) cleanup: removal of adaptors and poly-A/T/C/G/N nucleotides; (ii) clustering: grouping of cleaned sequence tags into unique sequence clusters; (iii) non-coding RNA (ncRNA) matching: sequence homology mapping against a transcribed sequence library from the ncRNA database Rfam (http://rfam.sanger.ac.uk/); and (iv) known miRNA matching: detection of known miRNAs in miRBase (http://www.mirbase.org/) based on sequence homology. The expression levels corresponding to matched ncRNAs and miRNAs are summarized in multi-color clickable bar charts linked to external databases. DSAP is also capable of displaying miRNA expression levels from different jobs using a log(2)-scaled color matrix. Furthermore, a cross-species comparative function is also provided to show the distribution of identified miRNAs in different species as deposited in miRBase. DSAP is available at http://dsap.cgu.edu.tw.

  1. Identification and characterization of miRNAs and targets in flax (Linum usitatissimum) under saline, alkaline, and saline-alkaline stresses.

    PubMed

    Yu, Ying; Wu, Guangwen; Yuan, Hongmei; Cheng, Lili; Zhao, Dongsheng; Huang, Wengong; Zhang, Shuquan; Zhang, Liguo; Chen, Hongyu; Zhang, Jian; Guan, Fengzhi

    2016-05-27

    MicroRNAs (miRNAs) play a critical role in responses to biotic and abiotic stress and have been characterized in a large number of plant species. Although flax (Linum usitatissimum L.) is one of the most important fiber and oil crops worldwide, no reports have been published describing flax miRNAs (Lus-miRNAs) induced in response to saline, alkaline, and saline-alkaline stresses. In this work, combined small RNA and degradome deep sequencing was used to analyze flax libraries constructed after alkaline-salt stress (AS2), neutral salt stress (NSS), alkaline stress (AS), and the non-stressed control (CK). From the CK, AS, AS2, and NSS libraries, a total of 118, 119, 122, and 120 known Lus-miRNAs and 233, 213, 211, and 212 novel Lus-miRNAs were isolated, respectively. After assessment of differential expression profiles, 17 known Lus-miRNAs and 36 novel Lus-miRNAs were selected and used to predict putative target genes. Gene ontology term enrichment analysis revealed target genes that were involved in responses to stimuli, including signaling and catalytic activity. Eight Lus-miRNAs were selected for analysis using qRT-PCR to confirm the accuracy and reliability of the miRNA-seq results. The qRT-PCR results showed that changes in stress-induced expression profiles of these miRNAs mirrored expression trends observed using miRNA-seq. Degradome sequencing and transcriptome profiling showed that expression of 29 miRNA-target pairs displayed inverse expression patterns under saline, alkaline, and saline-alkaline stresses. From the target prediction analysis, the miR398a-targeted gene codes for a copper/zinc superoxide dismutase, and the miR530 has been shown to explicitly target WRKY family transcription factors, which suggesting that these two micRNAs and their targets may significant involve in the saline, alkaline, and saline-alkaline stress response in flax. Identification and characterization of flax miRNAs, their target genes, functional annotations, and gene expression patterns are reported in this work. These findings will enhance our understanding of flax miRNA regulatory mechanisms under saline, alkaline, and saline-alkaline stresses and provide a foundation for future elucidation of the specific functions of these miRNAs.

  2. Mirna biogenesis pathway is differentially regulated during adipose derived stromal/stem cell differentiation.

    PubMed

    Martin, E C; Qureshi, A T; Llamas, C B; Burow, M E; King, A G; Lee, O C; Dasa, V; Freitas, M A; Forsberg, J A; Elster, E A; Davis, T A; Gimble, J M

    2018-02-07

    Stromal/stem cell differentiation is controlled by a vast array of regulatory mechanisms. Included within these are methods of mRNA gene regulation that occur at the level of epigenetic, transcriptional, and/or posttranscriptional modifications. Current studies that evaluate the posttranscriptional regulation of mRNA demonstrate microRNAs (miRNAs) as key mediators of stem cell differentiation through the inhibition of mRNA translation. miRNA expression is enhanced during both adipogenic and osteogenic differentiation; however, the mechanism by which miRNA expression is altered during stem cell differentiation is less understood. Here we demonstrate for the first time that adipose-derived stromal/stem cells (ASCs) induced to an adipogenic or osteogenic lineage have differences in strand preference (-3p and -5p) for miRNAs originating from the same primary transcript. Furthermore, evaluation of miRNA expression in ASCs demonstrates alterations in both miRNA strand preference and 5'seed site heterogeneity. Additionally, we show that during stem cell differentiation there are alterations in expression of genes associated with the miRNA biogenesis pathway. Quantitative RT-PCR demonstrated changes in the Argonautes (AGO1-4), Drosha, and Dicer at intervals of ASC adipogenic and osteogenic differentiation compared to untreated ASCs. Specifically, we demonstrated altered expression of the AGOs occurring during both adipogenesis and osteogenesis, with osteogenesis increasing AGO1-4 expression and adipogenesis decreasing AGO1 gene and protein expression. These data demonstrate changes to components of the miRNA biogenesis pathway during stromal/stem cell differentiation. Identifying regulatory mechanisms for miRNA processing during ASC differentiation may lead to novel mechanisms for the manipulation of lineage differentiation of the ASC through the global regulation of miRNA as opposed to singular regulatory mechanisms.

  3. The Role of ADAR1 and ADAR2 in the Regulation of miRNA-21 in Idiopathic Pulmonary Fibrosis.

    PubMed

    Díaz-Piña, Gabriela; Ordoñez-Razo, Rosa Ma; Montes, Eduardo; Páramo, Ignacio; Becerril, Carina; Salgado, Alfonso; Santibañez-Salgado, J Alfredo; Maldonado, Mariel; Ruiz, Victor

    2018-04-10

    microRNAs (miRNAs) are small non-coding 1RNAs that post-transcriptionally regulate gene expression. Recent evidence shows that adenosine deaminases that act on RNA (ADAR) can edit miRNAs. miRNAs are involved in the development of different diseases, such as idiopathic pulmonary fibrosis (IPF). In IPF, about 40% of the miRNAs are differentially expressed with respect to controls. Among these miRNAs, miRNA-21 has been found over-expressed in IPF and its targets are anti-fibrosing molecules such as PELI1 and SPRY2. The objective of this study is to determine the role of ADAR1 and 2 on the expression of miRNA-21 in human lung fibroblasts trough quantification of gene expression, protein levels, and overexpression of ADAR1 and 2. Six control and six fibrotic primary fibroblast cell cultures were used for RNA extraction, ADAR1, ADAR2, PELI1, SPRY2, miRNA-21, and pri-miRNA-21 expression was measured. Subsequently, two fibrotic fibroblast cultures were used for overexpression of ADAR1 and ADAR2, and they were stimulated with TGFβ1. Real-time PCR and Western blot were performed. ADAR1 is significantly downregulated in IPF fibroblasts; the overexpression of ADAR1 and ADAR2 reestablishes the expression levels of miRNA-21, PELI1, and SPRY2 in fibroblasts of patients with IPF. These changes in the processing of miRNAs have great value in pathology diagnosis, including lung diseases, and play an important role in the understanding of molecular mechanisms involved in the development of different pathologies, as well as representing new therapeutic targets.

  4. Identification of novel drought-responsive microRNAs and trans-acting siRNAs from Sorghum bicolor (L.) Moench by high-throughput sequencing analysis

    PubMed Central

    Katiyar, Amit; Smita, Shuchi; Muthusamy, Senthilkumar K.; Chinnusamy, Viswanathan; Pandey, Dev M.; Bansal, Kailash C.

    2015-01-01

    Small non-coding RNAs (sRNAs) namely microRNAs (miRNAs) and trans-acting small interfering RNAs (tasi-RNAs) play a crucial role in post-transcriptional regulation of gene expression and thus the control plant development and stress responses. In order to identify drought-responsive miRNAs and tasi-RNAs in sorghum, we constructed small RNA libraries from a drought tolerant (M35-1) and susceptible (C43) sorghum genotypes grown under control and drought stress conditions, and sequenced by Illumina Genome Analyzer IIx. Ninety seven conserved and 526 novel miRNAs representing 472 unique miRNA families were identified from sorghum. Ninety-six unique miRNAs were found to be regulated by drought stress, of which 32 were up- and 49 were down-regulated (fold change ≥ 2 or ≤ −2) at least in one genotype, while the remaining 15 miRNAs showed contrasting drought-regulated expression pattern between genotypes. A maximum of 17 and 18 miRNAs was differentially regulated under drought stress condition in the sensitive and tolerant genotypes, respectively. These results suggest that genotype dependent stress responsive regulation of miRNAs may contribute, at least in part, to the differential drought tolerance of sorghum genotypes. We also identified two miR390-directed TAS3 gene homologs and the auxin response factors as tasi-RNA targets. We predicted more than 1300 unique target genes for the novel and conserved miRNAs. These target genes were predicted to be involved in different cellular, metabolic, response to stimulus, biological regulation, and developmental processes. Genome-wide identification of stress-responsive miRNAs, tasi-RNAs and their targets identified in this study will be useful in unraveling the molecular mechanisms underlying drought stress responses and genetic improvement of biomass production and stress tolerance in sorghum. PMID:26236318

  5. Modulation of microRNA expression in human lung cancer cells by the G9a histone methyltransferase inhibitor BIX01294

    PubMed Central

    PANG, ALAN LAP-YIN; TITLE, ALEXANDRA C.; RENNERT, OWEN M.

    2014-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate the expression of their target genes at the post-transcriptional level. In cancer cells, miRNAs, depending on the biological functions of their target genes, may have a tumor-promoting or -suppressing effect. Treatment of cancer cells with inhibitors of DNA methylation and/or histone deacetylation modulates the expression level of miRNAs, which provides evidence for epigenetic regulation of miRNA expression. The consequences of inhibition of histone methyltransferase on miRNA expression, however, have not been thoroughly investigated. The present study examined the expression pattern of miRNAs in the non-small cell lung cancer cell line, H1299 with or without treatment of BIX01294, a potent chemical inhibitor of G9a methyltransferase that catalyzes the mono-and di-methylation of the lysine 9 residue of histone H3. By coupling microarray analysis with quantitative real-time polymerase chain reaction analysis, two miRNAs were identified that showed consistent downregulation following BIX01294 treatment. The results indicate that histone H3 methylation regulates miRNA expression in lung cancer cells, which may provide additional insight for future chemical treatment of lung cancer. PMID:24932239

  6. miRNA-148a serves as a prognostic factor and suppresses migration and invasion through Wnt1 in non-small cell lung cancer.

    PubMed

    Chen, Yong; Min, Lingfeng; Ren, Chuanli; Xu, Xingxiang; Yang, Jianqi; Sun, Xinchen; Wang, Tao; Wang, Fang; Sun, Changjiang; Zhang, Xizhi

    2017-01-01

    Lung cancer is the leading cause of cancer death in the world, and aberrant expression of miRNA is a common feature during the cancer initiation and development. Our previous study showed that levels of miRNA-148a assessed by quantitative real-time polymerase chain reaction (qRT-PCR) were a good prognosis factor for non-small cell lung cancer (NSCLC) patients. In this study, we used high-throughput formalin-fixed and paraffin-embedded (FFPE) lung cancer tissue arrays and in situ hybridization (ISH) to determine the clinical significances of miRNA-148a and aimed to find novel target of miRNA-148a in lung cancer. Our results showed that there were 86 of 159 patients with low miRNA-148a expression and miRNA-148a was significantly down-regulated in primary cancer tissues when compared with their adjacent normal lung tissues. Low expression of miRNA-148a was strongly associated with high tumor grade, lymph node (LN) metastasis and a higher risk of tumor-related death in NSCLC. Lentivirus mediated overexpression of miRNA-148a inhibited migration and invasion of A549 and H1299 lung cancer cells. Furthermore, we validated Wnt1 as a direct target of miRNA-148a. Our data showed that the Wnt1 expression was negatively correlated with the expression of miRNA-148a in both primary cancer tissues and their corresponding adjacent normal lung tissues. In addition, overexpression of miRNA-148a inhibited Wnt1 protein expression in cancer cells. And knocking down of Wnt-1 by siRNA had the similar effect of miRNA-148a overexpression on cell migration and invasion in lung cancer cells. In conclusion, our results suggest that miRNA-148a inhibited cell migration and invasion through targeting Wnt1 and this might provide a new insight into the molecular mechanisms of lung cancer metastasis.

  7. MicroRNA-mediated Th2 bias in methimazole-induced acute liver injury in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uematsu, Yasuaki, E-mail: yasuaki-uematsu@ds-pharm

    MicroRNA (miRNA) is a class of small non-coding RNAs containing approximately 20 nucleotides that negatively regulate target gene expression. Little is known about the role of individual miRNAs and their targets in immune- and inflammation-related responses in drug-induced liver injury. In the present study, involvement of miRNAs in the T helper (Th) 2-type immune response was investigated using a methimazole (MTZ)-induced liver injury mouse model. Co-administration of L-buthionine-S,R-sulfoximine and MTZ induced acute hepatocellular necrosis and elevated plasma levels of alanine aminotransferase (ALT) from 4 h onward in female Balb/c mice. The hepatic mRNA expression of Th2 promotive factors was significantlymore » increased concomitantly with plasma ALT levels. In contrast, the hepatic mRNA expression of Th2 suppressive factors was significantly decreased during the early phase of liver injury. Comprehensive profiling of hepatic miRNA expression was analyzed before the onset of MTZ-induced liver injury. Using in silico prediction of miRNAs that possibly regulate Th2-related genes and subsequent quantification, we identified up-regulation of expression of miR-29b-1-5p and miR-449a-5p. Among targets of these miRNAs, down-regulation of Th2 suppressive transcription factors, such as SRY-related HMG-box 4 (SOX4) and lymphoid enhancer factor-1 (LEF1), were observed from the early phase of liver injury. In conclusion, negative regulation of the expression of SOX4 by miR-29b-1-5p and that of LEF1 by miR-449a-5p is suggested to play an important role in the development of Th2 bias in MTZ-induced liver injury. - Highlights: • Methimazole induced hepatic Th2 bias in the pathogenesis of liver injury in mice. • Rapid down-regulation of SOX4 and LEF1 may initiate and/or maintain hepatic Th2 bias. • Negative regulation of SOX4 by miR-29b-1-5p and LEF1 by miR-449a-5p was suggested.« less

  8. Temporal expression profiles indicate a primary function for microRNA during the peak of DNA replication after rat partial hepatectomy.

    PubMed

    Raschzok, Nathanael; Werner, Wiebke; Sallmon, Hannes; Billecke, Nils; Dame, Christof; Neuhaus, Peter; Sauer, Igor M

    2011-06-01

    The liver has the unique capacity to regenerate after surgical resection. However, the regulation of liver regeneration is not completely understood. Recent reports indicate an essential role for small noncoding microRNAs (miRNAs) in the regulation of hepatic development, carcinogenesis, and early regeneration. We hypothesized that miRNAs are critically involved in all phases of liver regeneration after partial hepatectomy. We performed miRNA microarray analyses after 70% partial hepatectomy in rats under isoflurane anesthesia at different time points (0 h to 5 days) and after sham laparotomy. Putative targets of differentially expressed miRNAs were determined using a bioinformatic approach. Two-dimensional (2D)-PAGE proteomic analyses and protein identification were performed on specimens at 0 and 24 h after resection. The temporal dynamics of liver regeneration were characterized by 5-bromo- 2-deoxyuridine, proliferating cell nuclear antigen, IL-6, and hepatocyte growth factor. We demonstrate that miRNA expression patterns changed during liver regeneration and that these changes were most evident during the peak of DNA replication at 24 h after resection. Expression of 13 miRNAs was significantly reduced 12-48 h after resection (>25% change), out of which downreguation was confirmed in isolated hepatocytes for 6 miRNAs at 24 h, whereas three miRNAs were significantly upregulated. Proteomic analysis revealed 65 upregulated proteins; among them, 23 represent putative targets of the differentially expressed miRNAs. We provide a temporal miRNA expression and proteomic dataset of the regenerating rat liver, which indicates a primary function for miRNA during the peak of DNA replication. These data will assist further functional studies on the role of miRNAs during liver regeneration.

  9. Embryonal carcinoma cell induction of miRNA and mRNA changes in co-cultured prostate stromal fibromuscular cells

    PubMed Central

    VÊNCIO, ENEIDA F.; PASCAL, LAURA E.; PAGE, LAURA S.; DENYER, GARETH; WANG, AMY J.; RUOHOLA-BAKER, HANNELE; ZHANG, SHILE; WANG, KAI; GALAS, DAVID J.; LIU, ALVIN Y.

    2014-01-01

    The prostate stromal mesenchyme controls organ-specific development. In cancer, the stromal compartment shows altered gene expression compared to non-cancer. The lineage relationship between cancer-associated stromal cells and normal tissue stromal cells is not known. Nor is the cause underlying the expression difference. Previously, the embryonal carcinoma (EC) cell line, NCCIT, was used by us to study the stromal induction property. In the current study, stromal cells from non-cancer (NP) and cancer (CP) were isolated from tissue specimens and co-cultured with NCCIT cells in a trans-well format to preclude heterotypic cell contact. After 3 days, the stromal cells were analyzed by gene arrays for microRNA (miRNA) and mRNA expression. In co-culture, NCCIT cells were found to alter the miRNA and mRNA expression of NP stromal cells to one like that of CP stromal cells. In contrast, NCCIT had no significant effect on the gene expression of CP stromal cells. We conclude that the gene expression changes in stromal cells can be induced by diffusible factors synthesized by EC cells, and suggest that cancer-associated stromal cells represent a more primitive or less differentiated stromal cell type. PMID:20945389

  10. Regulatory networks between neurotrophins and miRNAs in brain diseases and cancers

    PubMed Central

    Shi, Jian

    2015-01-01

    Neurotrophins are involved in many physiological and pathological processes in the nervous system. They regulate and modify signal transduction, transcription and translation in neurons. It is recently demonstrated that the neurotrophin expression is regulated by microRNAs (miRNAs), changing our views on neurotrophins and miRNAs. Generally, miRNAs regulate neurotrophins and their receptors in at least two ways: (1) miRNAs bind directly to the 3′ untranslated region (UTR) of isoform-specific mRNAs and post-transcriptionally regulate their expression; (2) miRNAs bind to the 3′ UTR of the regulatory factors of neurotrophins and regulate their expression. On the other hand, neurotrophins can regulate miRNAs. The results of BNDF research show that neurotrophins regulate miRNAs in at least three ways: (1) ERK stimulation enhances the activation of TRBP (HIV-1 TAR RNA-binding protein) and Dicer, leading to the upregulation of miRNA biogenesis; (2) ERK-dependent upregulation of Lin28a (RNA-binding proteins) blocks select miRNA biogenesis; (3) transcriptional regulation of miRNA expression through activation of transcription factors, including CREB and NF-κB. These regulatory processes integrate positive and negative regulatory loops in neurotrophin and miRNA signaling pathways, and also expand the function of neurotrophins and miRNAs. In this review, we summarize the current knowledge of the regulatory networks between neurotrophins and miRNAs in brain diseases and cancers, for which novel cutting edge therapeutic, delivery and diagnostic approaches are emerging. PMID:25544363

  11. Integrative Analysis of miRNA and mRNA Profiles in Response to Ethylene in Rose Petals during Flower Opening

    PubMed Central

    Pei, Haixia; Ma, Nan; Chen, Jiwei; Zheng, Yi; Tian, Ji; Li, Jing; Zhang, Shuai; Fei, Zhangjun; Gao, Junping

    2013-01-01

    MicroRNAs play an important role in plant development and plant responses to various biotic and abiotic stimuli. As one of the most important ornamental crops, rose (Rosa hybrida) possesses several specific morphological and physiological features, including recurrent flowering, highly divergent flower shapes, colors and volatiles. Ethylene plays an important role in regulating petal cell expansion during rose flower opening. Here, we report the population and expression profiles of miRNAs in rose petals during flower opening and in response to ethylene based on high throughput sequencing. We identified a total of 33 conserved miRNAs, as well as 47 putative novel miRNAs were identified from rose petals. The conserved and novel targets to those miRNAs were predicted using the rose floral transcriptome database. Expression profiling revealed that expression of 28 known (84.8% of known miRNAs) and 39 novel (83.0% of novel miRNAs) miRNAs was substantially changed in rose petals during the earlier opening period. We also found that 28 known and 22 novel miRNAs showed expression changes in response to ethylene treatment. Furthermore, we performed integrative analysis of expression profiles of miRNAs and their targets. We found that ethylene-caused expression changes of five miRNAs (miR156, miR164, miR166, miR5139 and rhy-miRC1) were inversely correlated to those of their seven target genes. These results indicate that these miRNA/target modules might be regulated by ethylene and were involved in ethylene-regulated petal growth. PMID:23696879

  12. The Expression Pattern of microRNAs in Granulosa Cells of Subordinate and Dominant Follicles during the Early Luteal Phase of the Bovine Estrous Cycle

    PubMed Central

    Gebremedhn, Samuel; Sahadevan, Sudeep; Hossain, MD Munir; Rings, Franca; Hoelker, Michael; Tholen, Ernst; Neuhoff, Christiane; Looft, Christian; Schellander, Karl; Tesfaye, Dawit

    2014-01-01

    This study aimed to investigate the miRNA expression patterns in granulosa cells of subordinate (SF) and dominant follicle (DF) during the early luteal phase of the bovine estrous cycle. For this, miRNA enriched total RNA isolated from granulosa cells of SF and DF obtained from heifers slaughtered at day 3 and day 7 of the estrous cycle was used for miRNAs deep sequencing. The results revealed that including 17 candidate novel miRNAs, several known miRNAs (n = 291–318) were detected in SF and DF at days 3 and 7 of the estrous cycle of which 244 miRNAs were common to all follicle groups. The let-7 families, bta-miR-10b, bta-miR-26a, bta-miR-99b and bta-miR-27b were among abundantly expressed miRNAs in both SF and DF at both days of the estrous cycle. Further analysis revealed that the expression patterns of 16 miRNAs including bta-miR-449a, bta-miR-449c and bta-miR-222 were differentially expressed between the granulosa cells of SF and DF at day 3 of the estrous cycle. However, at day 7 of the estrous cycle, 108 miRNAs including bta-miR-409a, bta-miR-383 and bta-miR-184 were differentially expressed between the two groups of granulosa cell revealing the presence of distinct miRNA expression profile changes between the two follicular stages at day 7 than day 3 of the estrous cycle. In addition, unlike the SF, marked temporal miRNA expression dynamics was observed in DF groups between day 3 and 7 of the estrous cycle. Target gene prediction and pathway analysis revealed that major signaling associated with follicular development including Wnt signaling, TGF-beta signaling, oocyte meiosis and GnRH signaling were affected by differentially expressed miRNAs. Thus, this study highlights the miRNA expression patterns of granulosa cells in subordinate and dominant follicles that could be associated with follicular recruitment, selection and dominance during the early luteal phase of the bovine estrous cycle. PMID:25192015

  13. Expression profiling and structural characterization of microRNAs in adipose tissues of hibernating ground squirrels.

    PubMed

    Wu, Cheng-Wei; Biggar, Kyle K; Storey, Kenneth B

    2014-12-01

    MicroRNAs (miRNAs) are small non-coding RNAs that are important in regulating metabolic stress. In this study, we determined the expression and structural characteristics of 20 miRNAs in brown (BAT) and white adipose tissue (WAT) during torpor in thirteen-lined ground squirrels. Using a modified stem-loop technique, we found that during torpor, expression of six miRNAs including let-7a, let-7b, miR-107, miR-150, miR-222 and miR-31 was significantly downregulated in WAT (P<0.05), which was 16%-54% of euthermic non-torpid control squirrels, whereas expression of three miRNAs including miR-143, miR-200a and miR-519d was found to be upregulated by 1.32-2.34-fold. Similarly, expression of more miRNAs was downregulated in BAT during torpor. We detected reduced expression of 6 miRNAs including miR-103a, miR-107, miR-125b, miR-21, miR-221 and miR-31 (48%-70% of control), while only expression of miR-138 was significantly upregulated (2.91±0.8-fold of the control, P<0.05). Interestingly, miRNAs found to be downregulated in WAT during torpor were similar to those dysregulated in obese humans for increased adipogenesis, whereas miRNAs with altered expression in BAT during torpor were linked to mitochondrial β-oxidation. miRPath target prediction analysis showed that miRNAs downregulated in both WAT and BAT were associated with the regulation of mitogen-activated protein kinase (MAPK) signaling, while the miRNAs upregulated in WAT were linked to transforming growth factor β (TGFβ) signaling. Compared to mouse sequences, no unique nucleotide substitutions within the stem-loop region were discovered for the associated pre-miRNAs for the miRNAs used in this study, suggesting no structure-influenced changes in pre-miRNA processing efficiency in the squirrel. As well, the expression of miRNA processing enzyme Dicer remained unchanged in both tissues during torpor. Overall, our findings suggest that changes of miRNA expression in adipose tissues may be linked to distinct biological roles in WAT and BAT during hibernation and may involve the regulation of signaling cascades. Copyright © 2014 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  14. Genome-wide identification and characterization of miRNAs in the hypocotyl and cotyledon of cauliflower (Brassica oleracea L. var. botrytis) seedlings.

    PubMed

    Geng, Meijuan; Li, Hui; Jin, Chuan; Liu, Qian; Chen, Chengbin; Song, Wenqin; Wang, Chunguo

    2014-02-01

    MicroRNAs (miRNAs) are a class of small endogenous, non-coding RNAs that have key regulatory functions in plant growth, development, and other biological processes. Hypocotyl and cotyledon are the two major tissues of cauliflower (Brassica oleracea L. var. botrytis) seedlings. Tissue culture experiments have indicated that the regenerative abilities of these two tissues are significantly different. However, the characterization of miRNAs and their roles in regulating organ development in cauliflower remain unexplored. In the present study, two small RNA libraries were sequenced by Solexa sequencing technology. 99 known miRNAs belonging to 28 miRNA families were identified, in which 6 miRNA families were detected only in Brassicaceae. A total of 162 new miRNA sequences with single nucleotide substitutions corresponding to the known miRNAs, and 32 potentially novel miRNAs were also first discovered. Comparative analysis indicated that 42 of 99 known miRNAs and 17 of 32 novel miRNAs exhibited significantly differential expression between hypocotyl and cotyledon, and the differential expression of several miRNAs was further validated by stem-loop RT-PCR. In addition, 235 targets for 89 known miRNAs and 198 targets for 24 novel miRNAs were predicted, and their functions were further discussed. The expression patterns of several representative targets were also confirmed by qRT-PCR analysis. The results identified that the transcriptional expression patterns of miRNAs were negatively correlated with their targets. These findings gave new insights into the characteristics of miRNAs in cauliflower, and provided important clues to elucidate the roles of miRNAs in the tissue differentiation and development of cauliflower.

  15. High-throughput sequencing of small RNAs from pollen and silk and characterization of miRNAs as candidate factors involved in pollen-silk interactions in maize.

    PubMed

    Li, Xiao Ming; Sang, Ya Lin; Zhao, Xiang Yu; Zhang, Xian Sheng

    2013-01-01

    In angiosperms, successful pollen-pistil interactions are the prerequisite and guarantee of subsequent fertilization and seed production. Recent profile analyses have helped elucidate molecular mechanisms underlying these processes at both transcriptomic and proteomic levels, but the involvement of miRNAs in pollen-pistil interactions is still speculative. In this study, we sequenced four small RNA libraries derived from mature pollen, in vitro germinated pollen, mature silks, and pollinated silks of maize (Zea mays L.). We identified 161 known miRNAs belonging to 27 families and 82 novel miRNAs. Of these, 40 conserved and 16 novel miRNAs showed different expression levels between mature and germinated pollen, and 30 conserved and eight novel miRNAs were differentially expressed between mature and pollinated silks. As candidates for factors associated with pollen-silk (pistil) interactions, expression patterns of the two sets of differentially expressed miRNAs were confirmed by stem-loop real-time RT-PCR. Transcript levels of 22 predicted target genes were also validated using real-time RT-PCR; most of these exhibited expression patterns contrasting with those of their corresponding miRNAs. In addition, GO analysis of target genes of differentially expressed miRNAs revealed that functional categories related to auxin signal transduction and gene expression regulation were overrepresented. These results suggest that miRNA-mediated auxin signal transduction and transcriptional regulation have roles in pollen-silk interactions. The results of our study provide novel information for understanding miRNA regulatory roles in pollen-pistil interactions.

  16. Identification of Potential Prostate Cancer-Related Pseudogenes Based on Competitive Endogenous RNA Network Hypothesis.

    PubMed

    Jiang, Tao; Guo, Junjie; Hu, Zhongchun; Zhao, Ming; Gu, Zhenggang; Miao, Shu

    2018-06-20

    BACKGROUND Long noncoding RNAs (lncRNAs) have been revealed to function as competing endogenous RNAs (ceRNAs), which can seclude the common microRNAs (miRNAs) and hence prevent the miRNAs from binding to their ancestral gene. Nonetheless, the role of lncRNA-mediated ceRNAs in prostate cancer has not yet been elucidated. MATERIAL AND METHODS Using The Cancer Genome Atlas (TCGA) database, lncRNA, miRNA, and mRNA profiles from 499 prostate cancer tissues and 52 normal prostate tissues were analyzed with the R package "DESeq" to identify the differentially expressed RNAs. GO and KEGG pathway analyses were performed using "DAVID6.8" and R packages "Clusterprofile." The ceRNA network in prostate cancer was constructed using miRDB, miRTarBase, and TargetScan databases. Survival analysis was performed with Kaplan-Meier analysis. RESULTS A total of 376 lncRNAs, 33 miRNAs, and 687 mRNAs were identified as significant factors in tumorigenesis. Based on the hypothesis that the ceRNA network (lncRNA-miRNA-mRNA regulatory axis) is involved in prostate cancer and forms competitive interrelations between miRNA and mRNA or lncRNA, we constructed a ceRNA network that included 23 lncRNAs, 6 miRNAs, and 2 mRNAs that were differentially expressed in prostate cancer. Only 3 lncRNAs (LINC00308, LINC00355, and OSTN-AS1) had a significant association with survival (P<0.05). The 3 prostate cancer-specific lncRNA were validated in prostate cancer cell lines PC3 and DU145 using qRT-PCR. CONCLUSIONS We demonstrated the differential lncRNA expression profiles in prostate cancer, which provides new insights for future studies of the ceRNA network and its regulatory mechanisms in prostate cancer.

  17. Effects of space radiation and microgravity on miRNA expression profile in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Xu, Dan; Sun, Yeqing; Lei, Huang; Gao, Ying

    2012-07-01

    Living organisms experience a shock and subsequent adaption when they are subjected to space radiation and microgravity during spaceflight. Such changes have been already documented for some biological consequences including skeletal muscle alterations, reduced immune function and bone loss. Recent advancement in the field of molecular biology has demonstrated that small non-coding microRNA (miRNA) can have a broad effect on gene expression networks, and play a key role in cellular response to environmental stresses. However, little is known about how radiation exposure and altered gravity affect miRNA expression. In the present study, we explored the changes in expression of miRNA and related genes from Caenorhabditis elegans (C.elegans) flown on spaceflight. We used wild-type (N2) and dys-1 mutant (deletion of dys-1) stains of C.elegans, which were cultured to Dauer stage and transferred to special SIMbox in the experiment container. These worms taken by Shenzhou VIII spacecraft experienced the 16.5-day shuttle spaceflight. During spaceflight, they suffered space radiation and underwent static zero gravity (microgravity) or imitated earth gravity (1g) in the rotating condition. In contrast, these worms live under static earth gravity (1g) in ground-based controls. To evaluate the effects of space radiation and microgravity on miRNA expression profile, we performed miRNA microarray expression analysis and found that a set of miRNAs in N2 groups were significantly upregulated or downregualted in radiation and microgravity conditions. Among these altered miRNAs, there are two up-regulated and four down-regulated miRNAs in space radiation conditions; one down-regulated miRNAs in microgravity condition. Expression of several miRNAs in N2 groups was only changed significantly in the imitated earth gravity (1g) conditions, presenting these altered miRNAs were affected by radiation exposure alone. Notably, dys-1 mutant is not sensitive to altered gravity due to muscle protein dystrophin deletion. Compared with those miRNAs in N2 groups, altered miRNAs in dys-1 mutant groups may play a role in the general class of myopathies. To confirm whether these altered miRNA expression correlates with gene expression and functional changes of C.elegans, we performed DNA microarray and found that expression of some muscle-related proteins and age-related factors were altered in radiation and microgravity conditions, accompanied with changes in biological processes such as oxidation, and signaling pathways. Our study suggested that molecular changes at the gene and miRNA levels might compromise the functional changes of C.elegans in response to radiation and microgravity.

  18. Deep Sequencing Analysis of miRNA Expression in Breast Muscle of Fast-Growing and Slow-Growing Broilers

    PubMed Central

    Ouyang, Hongjia; He, Xiaomei; Li, Guihuan; Xu, Haiping; Jia, Xinzheng; Nie, Qinghua; Zhang, Xiquan

    2015-01-01

    Growth performance is an important economic trait in chicken. MicroRNAs (miRNAs) have been shown to play important roles in various biological processes, but their functions in chicken growth are not yet clear. To investigate the function of miRNAs in chicken growth, breast muscle tissues of the two-tail samples (highest and lowest body weight) from Recessive White Rock (WRR) and Xinghua Chickens (XH) were performed on high throughput small RNA deep sequencing. In this study, a total of 921 miRNAs were identified, including 733 known mature miRNAs and 188 novel miRNAs. There were 200, 279, 257 and 297 differentially expressed miRNAs in the comparisons of WRRh vs. WRRl, WRRh vs. XHh, WRRl vs. XHl, and XHh vs. XHl group, respectively. A total of 22 highly differentially expressed miRNAs (fold change > 2 or < 0.5; p-value < 0.05; q-value < 0.01), which also have abundant expression (read counts > 1000) were found in our comparisons. As far as two analyses (WRRh vs. WRRl, and XHh vs. XHl) are concerned, we found 80 common differentially expressed miRNAs, while 110 miRNAs were found in WRRh vs. XHh and WRRl vs. XHl. Furthermore, 26 common miRNAs were identified among all four comparisons. Four differentially expressed miRNAs (miR-223, miR-16, miR-205a and miR-222b-5p) were validated by quantitative real-time RT-PCR (qRT-PCR). Regulatory networks of interactions among miRNAs and their targets were constructed using integrative miRNA target-prediction and network-analysis. Growth hormone receptor (GHR) was confirmed as a target of miR-146b-3p by dual-luciferase assay and qPCR, indicating that miR-34c, miR-223, miR-146b-3p, miR-21 and miR-205a are key growth-related target genes in the network. These miRNAs are proposed as candidate miRNAs for future studies concerning miRNA-target function on regulation of chicken growth. PMID:26193261

  19. Deep Sequencing Analysis of miRNA Expression in Breast Muscle of Fast-Growing and Slow-Growing Broilers.

    PubMed

    Ouyang, Hongjia; He, Xiaomei; Li, Guihuan; Xu, Haiping; Jia, Xinzheng; Nie, Qinghua; Zhang, Xiquan

    2015-07-17

    Growth performance is an important economic trait in chicken. MicroRNAs (miRNAs) have been shown to play important roles in various biological processes, but their functions in chicken growth are not yet clear. To investigate the function of miRNAs in chicken growth, breast muscle tissues of the two-tail samples (highest and lowest body weight) from Recessive White Rock (WRR) and Xinghua Chickens (XH) were performed on high throughput small RNA deep sequencing. In this study, a total of 921 miRNAs were identified, including 733 known mature miRNAs and 188 novel miRNAs. There were 200, 279, 257 and 297 differentially expressed miRNAs in the comparisons of WRRh vs. WRRl, WRRh vs. XHh, WRRl vs. XHl, and XHh vs. XHl group, respectively. A total of 22 highly differentially expressed miRNAs (fold change > 2 or < 0.5; p-value < 0.05; q-value < 0.01), which also have abundant expression (read counts > 1000) were found in our comparisons. As far as two analyses (WRRh vs. WRRl, and XHh vs. XHl) are concerned, we found 80 common differentially expressed miRNAs, while 110 miRNAs were found in WRRh vs. XHh and WRRl vs. XHl. Furthermore, 26 common miRNAs were identified among all four comparisons. Four differentially expressed miRNAs (miR-223, miR-16, miR-205a and miR-222b-5p) were validated by quantitative real-time RT-PCR (qRT-PCR). Regulatory networks of interactions among miRNAs and their targets were constructed using integrative miRNA target-prediction and network-analysis. Growth hormone receptor (GHR) was confirmed as a target of miR-146b-3p by dual-luciferase assay and qPCR, indicating that miR-34c, miR-223, miR-146b-3p, miR-21 and miR-205a are key growth-related target genes in the network. These miRNAs are proposed as candidate miRNAs for future studies concerning miRNA-target function on regulation of chicken growth.

  20. Expression profile analysis of circulating microRNAs and their effects on ion channels in Chinese atrial fibrillation patients.

    PubMed

    Lu, Yingmin; Hou, Shuxin; Huang, Damin; Luo, Xiaohan; Zhang, Jinchun; Chen, Jian; Xu, Weiping

    2015-01-01

    To investigate the changes in expression profile of circulating microRNAs (miRNAs) and the regulatory effect of atrial fibrilation (AF)-related miRNAs on ion channels. 112 patients with AF were assigned into observation group, and another 112 non-AF people were assigned into control group. Total plasma RNAs were extracted from patients' blood samples. Differentially expressed miRNA-1s were transfected into primary-cultured neonatal rat cardiac myocytes. Compared with control group, significant differences were observed in 15 kinds of miRNAs in observation group. Down-regulation of the expression of miRNAs included hsa-miR-328, hsa-miR-145, hsa-miR-222, hsa-miR-1, hsa-miR-162, hsa-miR-432, and hsa-miR-493b; Up-regulation of the expression included hsa-miR634, hsa-miR-664, hsa-miR-9, hsa-miR-152, hsa-miR-19, hsa-miR-454, hsa-miR-146, and hsa-miR-374a. The expression level of CACNB2 protein in miRNA-1 group was significantly lower than that in blank control group, negative control group, MTmiRNA-1 group, AMO-1 group and miRNA-1+AMO-1 cotransfection group (P < 0.05), while in AMO-1 group, the expression level of CACNB2 protein was significantly higher than that in other groups (P < 0.05). These results indicated that transfected miRNA-1 could significantly inhibit the expression of CACNB2 protein. Circulating miRNAs can be used in studies concerning on the regulation mechanism of the occurrence and development of AF. MiRNA-1 can decrease the intracellular Ca(2+) concentration and prevent the AF.

  1. Expression profile analysis of circulating microRNAs and their effects on ion channels in Chinese atrial fibrillation patients

    PubMed Central

    Lu, Yingmin; Hou, Shuxin; Huang, Damin; Luo, Xiaohan; Zhang, Jinchun; Chen, Jian; Xu, Weiping

    2015-01-01

    Objective: To investigate the changes in expression profile of circulating microRNAs (miRNAs) and the regulatory effect of atrial fibrilation (AF)-related miRNAs on ion channels. Methods: 112 patients with AF were assigned into observation group, and another 112 non-AF people were assigned into control group. Total plasma RNAs were extracted from patients’ blood samples. Differentially expressed miRNA-1s were transfected into primary-cultured neonatal rat cardiac myocytes. Results: Compared with control group, significant differences were observed in 15 kinds of miRNAs in observation group. Down-regulation of the expression of miRNAs included hsa-miR-328, hsa-miR-145, hsa-miR-222, hsa-miR-1, hsa-miR-162, hsa-miR-432, and hsa-miR-493b; Up-regulation of the expression included hsa-miR634, hsa-miR-664, hsa-miR-9, hsa-miR-152, hsa-miR-19, hsa-miR-454, hsa-miR-146, and hsa-miR-374a. The expression level of CACNB2 protein in miRNA-1 group was significantly lower than that in blank control group, negative control group, MTmiRNA-1 group, AMO-1 group and miRNA-1+AMO-1 cotransfection group (P < 0.05), while in AMO-1 group, the expression level of CACNB2 protein was significantly higher than that in other groups (P < 0.05). These results indicated that transfected miRNA-1 could significantly inhibit the expression of CACNB2 protein. Conclusions: Circulating miRNAs can be used in studies concerning on the regulation mechanism of the occurrence and development of AF. MiRNA-1 can decrease the intracellular Ca2+ concentration and prevent the AF. PMID:25785065

  2. MicroRNA expression profiles of drug-resistance breast cancer cells and their exosomes.

    PubMed

    Zhong, Shanliang; Chen, Xiu; Wang, Dandan; Zhang, Xiaohui; Shen, Hongyu; Yang, Sujin; Lv, Mengmeng; Tang, Jinhai; Zhao, Jianhua

    2016-04-12

    Exosomes have been shown to transmit drug resistance through delivering miRNAs. We aimed to explore their roles in breast cancer. Three resistant sublines were established by exposing parental MDA-MB-231 cell line to docetaxel, epirubicin and vinorelbine, respectively. Preneoadjuvant chemotherapy biopsies and paired surgically-resected specimens embedded in paraffin from 23 breast cancer patients were collected. MiRNA expression profiles of the cell lines and their exosomes were evaluated using microarray. The result showed that most miRNAs in exosomes had a lower expression level than that in cells, however, some miRNAs expressed higher in exosomes than in cells, suggesting a number of miRNAs is concentrated in exosomes. Among the dysregulated miRNAs, 22 miRNAs were consistently up-regulated in exosomes and their cells of origin. We further found that 12 of the 22 miRNAs were significantly up-regulated after preneoadjuvant chemotherapy. Further study of the role of these 12 miRNAs in acquisition of drug resistance is needed to clarify their contribution to chemoresistance.

  3. Integrated microRNA and mRNA signatures in peripheral blood lymphocytes of familial epithelial ovarian cancer.

    PubMed

    Dou, Yun-De; Huang, Tao; Wang, Qun; Shu, Xin; Zhao, Shi-Gang; Li, Lei; Liu, Tao; Lu, Gang; Chan, Wai-Yee; Liu, Hong-Bin

    2018-01-29

    Characterization of the genetic landscapes of familial ovarian cancer through integrated analysis of microRNA and mRNA by partial least squares (PLS) and Monte Carlo technique based on genome-wide association studies (GWAS). The miRNA and mRNA transcriptional data in familial ovarian cancer were characterized from the Gene Expression Omnibus (GEO) database. The miRNA and mRNA expression profiles in peripheral blood lymphocytes (PBLs) of 74 familial ovarian cancer patients and 47 control subjects were analyzed with the integration of partial least squares (PLS) and Monte Carlo techniques. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were also performed. Total of 16 miRNA-mRNA pairs were identified with the target gene prediction results of miRNAs and mRNAs. An innovated miRNA-mRNA integrated network was constructed in which 6 downregulated miRNAs and 1 upregulated miRNAs were included. KEGG and GO pathway enrichment analysis revealed over-representation of dysregulated miRNAs in various biological processes especially in cancer pathology. Hsa-miR-34b played a pivotal role in this network and interacted with other miRNAs. Hsa-miR-136 and hsa-miR-335 were associated with p53 and Erk1/2 pathways and tumor suppressors, such as PTEN. The results from this research provide insights on miRNA-mRNA networks and offer new tools for studying transcriptional variants in familial ovarian cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Serum microRNAs in clear cell carcinoma of the ovary.

    PubMed

    Chao, Angel; Lai, Chyong-Huey; Chen, Hua-Chien; Lin, Chiao-Yun; Tsai, Chia-Lung; Tang, Yun-Hsin; Huang, Huei-Jean; Lin, Chen-Tao; Chen, Min-Yu; Huang, Kuang-Gen; Chou, Hung-Hsueh; Chang, Ting-Chang; Chen, Shu-Jen; Wang, Tzu-Hao

    2014-12-01

    To identify candidate microRNAs (miRNAs) in the serum of patients with clear cell carcinomas in monitoring disease progression. The sera of patients with diagnosed ovarian clear cell carcinoma were collected from 2009 to 2012. Real-time quantitative polymerase chain reaction (PCR) analysis for 270 miRNAs was performed. To offset the potential extraction bias, an equal amount of Caenorhabditis elegans cel-miR-238 was added to each serum specimen before miRNA isolation. miRNA expression was analyzed using the ΔCt method, with cel-miR-238 as controls. Twenty-one patients with clear cell carcinoma were included. In the discovery phase on four pairs of pre- and postoperative sera, 18 differentially expressed miRNAs were selected from 270 miRNAs. In the validation phase on an independent set of 11 pairs of pre- and postoperative sera, 4 miRNAs (hsa-miR-130a, hsa-miR-138, hsa-miR-187, and hsa-miR-202) were confirmed to be higher in the preoperative sera. In the application phase, hsa-miR-130a remained consistent with the different time points in seven of the 10 patients during clinical follow-up periods. More importantly, in three patients, hsa-miR-130a levels were elevated in early disease recurrences before CA125 was found to be elevated. Hsa-miR-130a may be a useful serum biomarker for detecting recurrence of ovarian clear cell cancer, and warrants further studies. Copyright © 2014. Published by Elsevier B.V.

  5. In Silico Identification of OncomiRs in Different Cancer Types

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Malay; Bandyopadhyay, Sanghamitra

    2012-03-01

    The diagnosis, prognosis and therapeutics of various kinds of cancers are challenging domains of research. Current landmark of cancer research at the molecular level mainly focuses on the regulation of genes for studying cancer pathways. Recent investigations highlight that there is a significant association of a class of short RNAs in the progression of different types of cancer. In this paper, the involvement of microRNAs (miRNAs), a type of small endogenous RNAs, is explored in two categories of cancers in human, one tumor-based and another non-tumorous. A new approach of in silico identification of the miRNAs that might be associated with these cancer types is proposed. The oncomiRs, miRNAs associated with cancer, are identified by analyzing the differentially co-expressed miRNAs and further exploring how they cooperate with each other. Extensive computational analysis on miRNA expression profiles for the discovery of novel oncomiRs is pursued. The results are found to be promising by going deep into the regulatory information available on oncogenes from the up-to-date literature. Some of the miRNAs as oncogenic are identified by the approach like hsa-miR-186 and hsa-miR-154 for leukemia and prostate cancer, respectively, which are not included in standard databases. However, some of the emerging studies give evidences to these findings. Statistical and biological studies, on the other hand, strengthen the effectiveness of the proposed method in futuristic investigations for the exploration of undiscovered oncomiRs. On the whole, these analyses provide insight into the discovery of miRNA markers.

  6. Identification, characterization and expression analysis of pigeonpea miRNAs in response to Fusarium wilt.

    PubMed

    Hussain, Khalid; Mungikar, Kanak; Kulkarni, Abhijeet; Kamble, Avinash

    2018-05-05

    Upon confrontation with unfavourable conditions, plants invoke a very complex set of biochemical and physiological reactions and alter gene expression patterns to combat the situations. MicroRNAs (miRNAs), a class of small non-coding RNA, contribute extensively in regulation of gene expression through translation inhibition or degradation of their target mRNAs during such conditions. Therefore, identification of miRNAs and their targets holds importance in understanding the regulatory networks triggered during stress. Structure and sequence similarity based in silico prediction of miRNAs in Cajanus cajan L. (Pigeonpea) draft genome sequence has been carried out earlier. These annotations also appear in related GenBank genome sequence entries. However, there are no reports available on context dependent miRNA expression and their targets in pigeonpea. Therefore, in the present study we addressed these questions computationally, using pigeonpea EST sequence information. We identified five novel pigeonpea miRNA precursors, their mature forms and targets. Interestingly, only one of these miRNAs (miR169i-3p) was identified earlier in draft genome sequence. We then validated expression of these miRNAs, experimentally. It was also observed that these miRNAs show differential expression patterns in response to Fusarium inoculation indicating their biotic stress responsive nature. Overall these results will help towards better understanding the regulatory network of defense during pigeonpea -pathogen interactions and role of miRNAs in the process. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Analysis of microRNA expression and function.

    PubMed

    Van Wynsberghe, Priscilla M; Chan, Shih-Peng; Slack, Frank J; Pasquinelli, Amy E

    2011-01-01

    Originally discovered in C. elegans, microRNAs (miRNAs) are small RNAs that regulate fundamental cellular processes in diverse organisms. MiRNAs are encoded within the genome and are initially transcribed as primary transcripts that can be several kilobases in length. Primary transcripts are successively cleaved by two RNase III enzymes, Drosha in the nucleus and Dicer in the cytoplasm, to produce ∼70 nucleotide (nt) long precursor miRNAs and 22 nt long mature miRNAs, respectively. Mature miRNAs regulate gene expression post-transcriptionally by imperfectly binding target mRNAs in association with the multiprotein RNA induced silencing complex (RISC). The conserved sequence, expression pattern, and function of some miRNAs across distinct species as well as the importance of specific miRNAs in many biological pathways have led to an explosion in the study of miRNA biogenesis, miRNA target identification, and miRNA target regulation. Many advances in our understanding of miRNA biology have come from studies in the powerful model organism C. elegans. This chapter reviews the current methods used in C. elegans to study miRNA biogenesis, small RNA populations, miRNA-protein complexes, and miRNA target regulation. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Expression Variations of miRNAs and mRNAs in Rice (Oryza sativa).

    PubMed

    Wen, Ming; Xie, Munan; He, Lian; Wang, Yushuai; Shi, Suhua; Tang, Tian

    2016-12-31

    Differences in expression levels are an important source of phenotypic variation within and between populations. MicroRNAs (miRNAs) are key players in post-transcriptional gene regulation that are important for plant development and stress responses. We surveyed expression variation of miRNAs and mRNAs of six accessions from two rice subspecies Oryza sativa L. ssp. indica and Oryza sativa L. ssp. japonica using deep sequencing. While more than half (53.7%) of the mature miRNAs exhibit differential expression between grains and seedlings of rice, only 11.0% show expression differences between subspecies, with an additional 2.2% differentiated for the development-by-subspecies interaction. Expression variation is greater for lowly conserved miRNAs than highly conserved miRNAs, whereas the latter show stronger negative correlation with their targets in expression changes between subspecies. Using a permutation test, we identified 51 miRNA-mRNA pairs that correlate negatively or positively in expression level among cultivated rice. Genes involved in various metabolic processes and stress responses are enriched in the differentially expressed genes between rice indica and japonica subspecies. Our results indicate that stabilizing selection is the major force governing miRNA expression in cultivated rice, albeit positive selection may be responsible for much of the between-subspecies expression divergence. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Functions of MiRNA-128 on the regulation of head and neck squamous cell carcinoma growth and apoptosis.

    PubMed

    Hauser, Belinda; Zhao, Yuan; Pang, Xiaowu; Ling, Zhiqiang; Myers, Ernest; Wang, Paul; Califano, Joseph; Gu, Xinbin

    2015-01-01

    Incidence of head and neck squamous cell carcinoma (HNSCC) has continuously increased in past years while its survival rate has not been significantly improved. There is a critical need to better understand the genetic regulation of HNSCC tumorigenesis and progression. In this study, we comprehensively analyzed the function of miRNA-128 (miR-128) in the regulation of HNSCC growth and its putative targets in vitro and in vivo systems. The function and targets of miR-128 were investigated in human HNSCC cell lines (JHU-13 and JHU-22), which were stably transfected with the miR-128 gene using a lentiviral delivery system. The expression levels of miR-128 and its targeted proteins were analyzed with qRT-PCR, Western blotting and flow cytometry. The binding capacity of miRNA-128 to its putative targets was determined using a luciferase report assay. MTT, colony formation, and a tumor xenograft model further evaluated the effects of miR-128 on HNSCC growth. We generated two miR-128 stably transfected human HNSCC cell lines (JHU-13miR-128 and JHU-22miR-128). Enforced expression of miR-128 was detected in both cultured JHU-13miR-128 and JHU-22miR-128 cell lines, approximately seventeen to twenty folds higher than in vector control cell lines. miRNA-128 was able to bind with the 3'-untranslated regions of BMI-1, BAG-2, BAX, H3f3b, and Paip2 mRNAs, resulting in significant reduction of the targeted protein levels. We found that upregulated miR-128 expression significantly inhibited both JHU-13miR-128 and JHU-22miR-128 cell viability approximately 20 to 40%, and the JHU-22miR-128 tumor xenograft growth compared to the vector control groups. miR-128 acted as a tumor suppressor inhibiting the HNSCC growth by directly mediating the expression of putative targets. Our results provide a better understanding of miRNA-128 function and its potential targets, which may be valuable for developing novel diagnostic markers and targeted therapy.

  10. Contribution of bioinformatics prediction in microRNA-based cancer therapeutics.

    PubMed

    Banwait, Jasjit K; Bastola, Dhundy R

    2015-01-01

    Despite enormous efforts, cancer remains one of the most lethal diseases in the world. With the advancement of high throughput technologies massive amounts of cancer data can be accessed and analyzed. Bioinformatics provides a platform to assist biologists in developing minimally invasive biomarkers to detect cancer, and in designing effective personalized therapies to treat cancer patients. Still, the early diagnosis, prognosis, and treatment of cancer are an open challenge for the research community. MicroRNAs (miRNAs) are small non-coding RNAs that serve to regulate gene expression. The discovery of deregulated miRNAs in cancer cells and tissues has led many to investigate the use of miRNAs as potential biomarkers for early detection, and as a therapeutic agent to treat cancer. Here we describe advancements in computational approaches to predict miRNAs and their targets, and discuss the role of bioinformatics in studying miRNAs in the context of human cancer. Published by Elsevier B.V.

  11. DeepBase: annotation and discovery of microRNAs and other noncoding RNAs from deep-sequencing data.

    PubMed

    Yang, Jian-Hua; Qu, Liang-Hu

    2012-01-01

    Recent advances in high-throughput deep-sequencing technology have produced large numbers of short and long RNA sequences and enabled the detection and profiling of known and novel microRNAs (miRNAs) and other noncoding RNAs (ncRNAs) at unprecedented sensitivity and depth. In this chapter, we describe the use of deepBase, a database that we have developed to integrate all public deep-sequencing data and to facilitate the comprehensive annotation and discovery of miRNAs and other ncRNAs from these data. deepBase provides an integrative, interactive, and versatile web graphical interface to evaluate miRBase-annotated miRNA genes and other known ncRNAs, explores the expression patterns of miRNAs and other ncRNAs, and discovers novel miRNAs and other ncRNAs from deep-sequencing data. deepBase also provides a deepView genome browser to comparatively analyze these data at multiple levels. deepBase is available at http://deepbase.sysu.edu.cn/.

  12. Epigallocatechin-3-O-gallate modulates global microRNA expression in interleukin-1β-stimulated human osteoarthritis chondrocytes: potential role of EGCG on negative co-regulation of microRNA-140-3p and ADAMTS5.

    PubMed

    Rasheed, Zafar; Rasheed, Naila; Al-Shaya, Osama

    2018-04-01

    MicroRNAs (miRNAs) are short, non-coding RNAs involved in almost all cellular processes. Epigallocatechin-3-O-gallate (EGCG) is a green tea polyphenol and is known to exert anti-arthritic effects by inhibiting genes associated with osteoarthritis (OA). This study was undertaken to investigate the global effect of EGCG on interleukin-1β (IL-1β)-induced expression of miRNAs in human chondrocytes. Human chondrocytes were derived from OA cartilage and then treated with EGCG and IL-1β. Human miRNA microarray technology was used to determine the expression profile of 1347 miRNAs. Microarray results were verified by taqman assays and transfection of chondrocytes with miRNA inhibitors. Out of 1347 miRNAs, EGCG up-regulated expression of 19 miRNAs and down-regulated expression of 17 miRNAs, whereas expression of 1311 miRNAs remains unchanged in IL-1β-stimulated human OA chondrocytes. Bioinformatics approach showed that 3`UTR of ADAMTS5 mRNA contains the 'seed-matched-sequence' for hsa-miR-140-3p. IL-1β-induced expression of ADAMTS5 correlated with down-regulation of hsa-miR-140-3p. Importantly, EGCG inhibited IL-1β-induced ADAMTS5 expression and up-regulated the expression of hsa-miR-140-3p. This EGCG-induced co-regulation between ADAMTS5 and hsa-miR-140-3p becomes reversed in OA chondrocytes transfected with anti-miR-140-3p. This study provides an important insight into the molecular basis of the reported anti-arthritic effects of EGCG. Our data indicate that the potential of EGCG in OA chondrocytes may be related to its ability to globally inhibit inflammatory response via modulation of miRNAs expressions.

  13. miRNAome expression profiles in the gonads of adult Melopsittacus undulatus

    PubMed Central

    Jiang, Lan; Wang, Qingqing; Yu, Jue; Gowda, Vinita; Johnson, Gabriel; Yang, Jianke

    2018-01-01

    The budgerigar (Melopsittacus undulatus) is one of the most widely studied parrot species, serving as an excellent animal model for behavior and neuroscience research. Until recently, it was unknown how sexual differences in the behavior, physiology, and development of organisms are regulated by differential gene expression. MicroRNAs (miRNAs) are endogenous short non-coding RNA molecules that can post-transcriptionally regulate gene expression and play a critical role in gonadal differentiation as well as early development of animals. However, very little is known about the role gonadal miRNAs play in the early development of birds. Research on the sex-biased expression of miRNAs in avian gonads are limited, and little is known about M. undulatus. In the current study, we sequenced two small non-coding RNA libraries made from the gonads of adult male and female budgerigars using Illumina paired-end sequencing technology. We obtained 254 known and 141 novel miRNAs, and randomly validated five miRNAs. Of these, three miRNAs were differentially expressed miRNAs and 18 miRNAs involved in sexual differentiation as determined by functional analysis with GO annotation and KEGG pathway analysis. In conclusion, this work is the first report of sex-biased miRNAs expression in the budgerigar, and provides additional sequences to the avian miRNAome database which will foster further functional genomic research. PMID:29666766

  14. Differential Expression of microRNAs in the Ovaries from Letrozole-Induced Rat Model of Polycystic Ovary Syndrome.

    PubMed

    Li, Dandan; Li, Chunjin; Xu, Ying; Xu, Duo; Li, Hongjiao; Gao, Liwei; Chen, Shuxiong; Fu, Lulu; Xu, Xin; Liu, Yongzheng; Zhang, Xueying; Zhang, Jingshun; Ming, Hao; Zheng, Lianwen

    2016-04-01

    Polycystic ovary syndrome (PCOS) is a complex and heterogeneous endocrine disorder. To understand the pathogenesis of PCOS, we established rat models of PCOS induced by letrozole and employed deep sequencing to screen the differential expression of microRNAs (miRNAs) in PCOS rats and control rats. We observed vaginal smear and detected ovarian pathological alteration and hormone level changes in PCOS rats. Deep sequencing showed that a total of 129 miRNAs were differentially expressed in the ovaries from letrozole-induced rat model compared with the control, including 49 miRNAs upregulated and 80 miRNAs downregulated. Furthermore, the differential expression of miR-201-5p, miR-34b-5p, miR-141-3p, and miR-200a-3p were confirmed by real-time polymerase chain reaction. Bioinformatic analysis revealed that these four miRNAs were predicted to target a large set of genes with different functions. Pathway analysis supported that the miRNAs regulate oocyte meiosis, mitogen-activated protein kinase (MAPK) signaling, phosphoinositide 3-kinase/Akt (PI3K-Akt) signaling, Rap1 signaling, and Notch signaling. These data indicate that miRNAs are differentially expressed in rat PCOS model and the differentially expressed miRNA are involved in the etiology and pathophysiology of PCOS. Our findings will help identify miRNAs as novel diagnostic markers and therapeutic targets for PCOS.

  15. An Assessment of Database-Validated microRNA Target Genes in Normal Colonic Mucosa: Implications for Pathway Analysis.

    PubMed

    Slattery, Martha L; Herrick, Jennifer S; Stevens, John R; Wolff, Roger K; Mullany, Lila E

    2017-01-01

    Determination of functional pathways regulated by microRNAs (miRNAs), while an essential step in developing therapeutics, is challenging. Some miRNAs have been studied extensively; others have limited information. In this study, we focus on 254 miRNAs previously identified as being associated with colorectal cancer and their database-identified validated target genes. We use RNA-Seq data to evaluate messenger RNA (mRNA) expression for 157 subjects who also had miRNA expression data. In the replication phase of the study, we replicated associations between 254 miRNAs associated with colorectal cancer and mRNA expression of database-identified target genes in normal colonic mucosa. In the discovery phase of the study, we evaluated expression of 18 miR-NAs (those with 20 or fewer database-identified target genes along with miR-21-5p, miR-215-5p, and miR-124-3p which have more than 500 database-identified target genes) with expression of 17 434 mRNAs to identify new targets in colon tissue. Seed region matches between miRNA and newly identified targeted mRNA were used to help determine direct miRNA-mRNA associations. From the replication of the 121 miRNAs that had at least 1 database-identified target gene using mRNA expression methods, 97.9% were expressed in normal colonic mucosa. Of the 8622 target miRNA-mRNA associations identified in the database, 2658 (30.2%) were associated with gene expression in normal colonic mucosa after adjusting for multiple comparisons. Of the 133 miRNAs with database-identified target genes by non-mRNA expression methods, 97.2% were expressed in normal colonic mucosa. After adjustment for multiple comparisons, 2416 miRNA-mRNA associations remained significant (19.8%). Results from the discovery phase based on detailed examination of 18 miRNAs identified more than 80 000 miRNA-mRNA associations that had not previously linked to the miRNA. Of these miRNA-mRNA associations, 15.6% and 14.8% had seed matches for CRCh38 and CRCh37, respectively. Our data suggest that miRNA target gene databases are incomplete; pathways derived from these databases have similar deficiencies. Although we know a lot about several miRNAs, little is known about other miRNAs in terms of their targeted genes. We encourage others to use their data to continue to further identify and validate miRNA-targeted genes.

  16. Toll-Like Receptor-3 Is Dispensable for the Innate MicroRNA Response to West Nile Virus (WNV)

    PubMed Central

    Chugh, Pauline E.; Damania, Blossom A.; Dittmer, Dirk P.

    2014-01-01

    The innate immune response to West Nile virus (WNV) infection involves recognition through toll-like receptors (TLRs) and RIG-I-like receptors (RLRs), leading to establishment of an antiviral state. MiRNAs (miRNAs) have been shown to be reliable biomarkers of TLR activation. Here, we sought to evaluate the contribution of TLR3 and miRNAs to the host response to WNV infection. We first analyzed HEK293-NULL and HEK293-TLR3 cells for changes in the innate immune response to infection. The presence of TLR3 did not seem to affect WNV load, infectivity or phosphorylation of IRF3. Analysis of experimentally validated NFκB-responsive genes revealed a WNV-induced signature largely independent of TLR3. Since miRNAs are involved in viral pathogenesis and the innate response to infection, we sought to identify changes in miRNA expression upon infection in the presence or absence of TLR3. MiRNA profiling revealed 70 miRNAs induced following WNV infection in a TLR3-independent manner. Further analysis of predicted gene targets of WNV signature miRNAs revealed genes highly associated with pathways regulating cell death, viral pathogenesis and immune cell trafficking. PMID:25127040

  17. Human papilloma virus, DNA methylation and microRNA expression in cervical cancer (Review).

    PubMed

    Jiménez-Wences, Hilda; Peralta-Zaragoza, Oscar; Fernández-Tilapa, Gloria

    2014-06-01

    Cancer is a complex disease caused by genetic and epigenetic abnormalities that affect gene expression. The progression from precursor lesions to invasive cervical cancer is influenced by persistent human papilloma virus (HPV) infection, which induces changes in the host genome and epigenome. Epigenetic alterations, such as aberrant miRNA expression and changes in DNA methylation status, favor the expression of oncogenes and the silencing of tumor-suppressor genes. Given that some miRNA genes can be regulated through epigenetic mechanisms, it has been proposed that alterations in the methylation status of miRNA promoters could be the driving mechanism behind their aberrant expression in cervical cancer. For these reasons, we assessed the relationship among HPV infection, cellular DNA methylation and miRNA expression. We conclude that alterations in the methylation status of protein-coding genes and various miRNA genes are influenced by HPV infection, the viral genotype, the physical state of the viral DNA, and viral oncogenic risk. Furthermore, HPV induces deregulation of miRNA expression, particularly at loci near fragile sites. This deregulation occurs through the E6 and E7 proteins, which target miRNA transcription factors such as p53.

  18. Association between circulating microRNA-208a and severity of coronary heart disease.

    PubMed

    Zhang, Yao; Li, Hai-Hong; Yang, Rui; Yang, Bai-Jing; Gao, Zhao-Yu

    2017-09-01

    Circulating microRNA (miR)-208a is specifically expressed in the heart muscle, which is involved in the regulation of myosin during cardiac development. Previous studies reported that cardiac-specific miR-208a level is significantly higher in plasma of coronary heart disease (CHD) patients. However, whether it correlates with severity of CHD, has never been elucidated before. The aim of this study was to explore the association between miR-208a and the presence and severity of CHD. Samples were collected from 290 CHD patients and 110 subjects with angiographic exclusion of CHD. Circulating miRNA-208a expression was detected using quantitative real-time PCR. The Gensini score was used to evaluate the severity of coronary stenotic lesions. Expression of miRNA-208a was identified on the basis of the quartiles of the Gensini score, and association between the miRNA-208a levels and CHD was analyzed. Diagnostic potential of miR-208a of CHD was performed by ROC analysis. CHD patients had higher miRNA-208a expression (1.61, 0.45-3.86 vs. 0.66, 0.11-1.42, p < .001), and the biomarker level significantly increased following an increasing the Gensini score (p < .001). Gensini score was significantly associated with miRNA-208a expression (r = 0.8525, p < .001). The optimal cut-off value of the relative level of miR-208a was with a specificity of 93.6% and a sensitivity of 75.5%. The AUC of miR-208a was 0.919 (95% CI, 0.893-0.945; p < .001). These preliminary results suggest that the expression of miR-208a may be associated with atherogenesis. The level of circulating miR-208a in predicting the severity of coronary atherosclerosis may have a relatively certain value.

  19. Circulating miRNAs in acute new-onset atrial fibrillation and their target mRNA network.

    PubMed

    da Silva, Ananília Medeiros Gomes; de Araújo, Jéssica Nayara Góes; de Oliveira, Katiene Macêdo; Novaes, Ana Eloísa Melo; Lopes, Mariana Borges; de Sousa, Júlio César Vieira; Filho, Antônio Amorim de Araújo; Luchessi, André Ducati; de Rezende, Adriana Augusto; Hirata, Mário Hiroyuki; Silbiger, Vivian Nogueira

    2018-04-20

    MicroRNAs (miRNAs) are involved in the pathogenesis of atrial fibrillation (AF), acting on development and progression. Our pilot study investigated the expression of six miRNAs and their miRNA-mRNA interactions in patients with acute new-onset AF, well-controlled AF, and normal sinus rhythm (controls). Plasma of acute new-onset AF patients (n = 5) was collected in the emergency room when patients presented with irregular and fast-atrial fibrillation rhythm. Samples from well-controlled AF (n = 16) and control (n =  15) patients were collected during medical appointments following an ECG. Expression of miR-21, miR-133a, miR-133b, miR-150, miR-328, and miR-499 was analyzed by real-time PCR. Ingenuity Pathway Analysis and the TargetScan database identified the top 30 mRNA targets of these miRNA, seeking the miRNA-mRNA interactions in cardiovascular process. Increased expression of miR-133b (1.4-fold), miR-328 (2.0-fold), and miR-499 (2.3-fold) was observed in patients with acute new-onset AF, compared with well-controlled AF and control patients. Decreased expression of miR-21 was seen in patients with well-controlled AF compared to those with acute new-onset AF and controls (0.6-fold). The miRNA-mRNA interaction demonstrated that SMAD7 and FASLG genes were the targets of miR-21, miR-133b, and miR-499 and were directly related to AF, being involved in apoptosis and fibrosis. The miRNAs had different expression profiles dependent on the AF condition, with higher expression in the acute new-onset AF than well-controlled AF. Clinically, this may contribute to an effective assessment for patients, leading to early detection of AF and monitoring to reduce the risk of other serious cardiovascular events. © 2018 Wiley Periodicals, Inc.

  20. Identification of serum miRNAs differentially expressed in human epilepsy at seizure onset and post-seizure.

    PubMed

    Sun, Jijun; Cheng, Weidong; Liu, Lifeng; Tao, Shuxin; Xia, Zhangyong; Qi, Lifeng; Huang, Min

    2016-12-01

    MicroRNAs (miRNAs) function as potential novel biomarkers for disease detection due to their marked stability in the blood and the characteristics of their expression profile in several diseases. In the present study, microarray‑based serum miRNA profiling was performed on serum obtained from three patients with epilepsy at diagnosis and from three healthy individuals as controls. This was followed by reverse transcription‑quantitative polymerase chain reaction analysis in a separate cohort of 35 health volunteers and 90 patients with epilepsy. The correlations between miRNAs and clinical parameters were analyzed. The array results showed that 15 miRNAs were overexpressed and 10 miRNAs were underexpressed (>2‑fold) in the patients with epilepsy. In addition, four miRNAs, including miR‑30a, miR‑378, miR‑106b and miR‑15a were found to be overexpressed in the serum of patients at seizure onset, compared with post‑seizure. When the patients were at seizure onset, the expression of miR‑30a was positively associated with seizure frequency. No significant differences were found between miR‑30a and gender, age or number of years following diagnosis. The expression levels of miR‑378, miR‑106b and mir‑15a were not associated with the clinical parameters in the patients with seizures. Calcium/calmodulin‑dependent protein kinase type IV was a target of miR‑30a, and its expression was increased following seizure and was negatively correlated with miR‑30a in the patients with epilepsy. The present study provided the first evidence, to the best of our knowledge, that the expression levels of miR‑378, miR‑30a, miR‑106b and miR‑15a were enhanced in epileptic patients with seizures. miR-30a may be useful for prognostic prediction in epilepsy.

  1. Identification of highly expressed host microRNAs that respond to white spot syndrome virus infection in the Pacific white shrimp Litopenaeus vannamei (Penaeidae).

    PubMed

    Zeng, D G; Chen, X L; Xie, D X; Zhao, Y Z; Yang, Q; Wang, H; Li, Y M; Chen, X H

    2015-05-11

    MicroRNAs (miRNAs) are known to play an important role in regulating both adaptive and innate immunity. Pacific white shrimp (Litopenaeus vannamei) is the most widely farmed crustacean species in the world. However, little is known about the role miRNAs play in shrimp immunity. To understand the impact of viral infection on miRNA expression in shrimp, we used high-throughput sequencing technology to sequence two small RNA libraries prepared from L. vannamei under normal and white spot syndrome virus (WSSV) challenged conditions. Approximately 19,312,189 and 39,763,551 raw reads corresponding to 17,414,787 and 28,633,379 high-quality mappable reads were obtained from the two libraries, respectively. Twelve conserved miRNAs and one novel miRNA that were highly expressed (>100 RPM) in L. vannamei were identified. Of the identified miRNAs, 8 were differentially expressed in response to the virus infection, of which 1 was upregulated and 7 were downregulated. The prediction of miRNA targets showed that the target genes of the differentially expressed miRNAs were related to immunity, apoptosis, and development functions. Our study provides the first characterization of L. vannamei miRNAs in response to WSSV infection, which will help to reveal the roles of miRNAs in the antiviral mechanisms of shrimp.

  2. Association between the miRNA Signatures in Plasma and Bronchoalveolar Fluid in Respiratory Pathologies

    PubMed Central

    Molina-Pinelo, Sonia; Suárez, Rocío; Pastor, María Dolores; Nogal, Ana; Márquez-Martín, Eduardo; Martín-Juan, José; Carnero, Amancio; Paz-Ares, Luis

    2012-01-01

    The identification of new less invasive biomarkers is necessary to improve the detection and prognostic outcome of respiratory pathological processes. The measurement of miRNA expression through less invasive techniques such as plasma and serum have been suggested to analysis of several lung malignancies including lung cancer. These studies are assuming a common deregulated miRNA expression both in blood and lung tissue. The present study aimed to obtain miRNA representative signatures both in plasma and bronchoalveolar cell fraction that could serve as biomarker in respiratory diseases. Ten patients were evaluated to assess the expression levels of 381 miRNAs. We found that around 50% miRNAs were no detected in both plasma and bronchoalveolar cell fraction and only 20% of miRNAs showed similar expression in both samples. These results show a lack of association of miRNA signatures between plasma and bronchoalveolar cytology in the same patient. The profiles are not comparable; however, there is a similarity in the relative expression in a very small subset of miRNAs (miR-17, miR-19b, miR-195 and miR-20b) between both biological samples in all patients. This finding supports that the miRNAs profiles obtained from different biological samples have to be carefully validated to link with respiratory diseases. PMID:22430188

  3. Generation of a stable cell line for constitutive miRNA expression.

    PubMed

    Lieber, Diana

    2013-01-01

    miRNAs have in recent years emerged as novel players in virus-host interactions. While individual miRNAs are capable of regulating many targets simultaneously, not much is known about the role of distinct host or viral miRNAs in the context of infection. Analysis of the function of a miRNA is often hampered by the complexity of virus-host interactions and the enormous changes in the host cell during infection. Many viral miRNAs as for example from Kaposi sarcoma-associated Herpesvirus (KSHV) are probably exclusively expressed in latent infection. This might lead to a steady-state situation with offense and defense mechanisms counteracting each other. Cellular miRNAs involved in defense against pathogens on the other hand might be suppressed in infection. A cell culture system allowing for constitutive expression of individual miRNAs at high levels is a useful tool to enhance miRNA-specific functions and to uncouple viral miRNA function from other infection-related mechanisms. Here, a protocol is described to generate stable cell lines for constitutive expression of single cellular or viral miRNA precursors in absence of infection. The procedure comprises cloning of the precursor sequence, generation of the lentiviral expression vector, transduction of the cells of interest, selection for polyclonal cell lines, and isolation of monoclonal cell lines by limiting dilution.

  4. The miiuy croaker microRNA transcriptome and microRNA regulation of RIG-I like receptor signaling pathway after poly(I:C) stimulation.

    PubMed

    Han, Jingjing; Xu, Guoliang; Xu, Tianjun

    2016-07-01

    MicroRNAs (miRNAs) as endogenous small non-coding RNAs play key regulatory roles in diverse biological processes via degrading the target mRNAs or inhibiting protein translation. Previously many researchers have reported the identification, characteristic of miRNAs and the interaction with its target gene. But, the study on the regulation of miRNAs to biological processes via regulatory the key signaling pathway was still limited. In order to comprehend the regulatory mechanism of miRNAs, two small RNA libraries from the spleen of miiuy croaker individuals with or without poly(I:C) infection were constructed. The 197 conserved miRNAs and 75 novel miRNAs were identified, and 14 conserved and 8 novel miRNAs appeared significant variations. Those differently expressed miRNAs relate to immune regulation of miiuy croaker. Furthermore, expressions of four differently expressed miRNAs were validated by qRT-PCR, and the result was consistent with sequencing data. The target genes of the differently expressed miRNAs in the two libraries were predicted, and some candidate target genes were involved in the RIG-I-like receptor (RLR) signaling pathway. The negative regulation of miRNAs to target genes were confirmed by comparing the expression pattern of miRNAs and their target genes. The results of regulating target genes were that firstly directly or indirectly activating the downstream signaling cascades and subsequent inducting the type I interferon, inflammatory cytokines and apoptosis. These studies could help us to deeper understand the roles of miRNAs played in the fish immune system, and provide a new way to investigate the defense mechanism of fish. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Genome-wide discovery of novel and conserved microRNAs in white shrimp (Litopenaeus vannamei).

    PubMed

    Xi, Qian-Yun; Xiong, Yuan-Yan; Wang, Yuan-Mei; Cheng, Xiao; Qi, Qi-En; Shu, Gang; Wang, Song-Bo; Wang, Li-Na; Gao, Ping; Zhu, Xiao-Tong; Jiang, Qing-Yan; Zhang, Yong-Liang; Liu, Li

    2015-01-01

    Of late years, a large amount of conserved and species-specific microRNAs (miRNAs) have been performed on identification from species which are economically important but lack a full genome sequence. In this study, Solexa deep sequencing and cross-species miRNA microarray were used to detect miRNAs in white shrimp. We identified 239 conserved miRNAs, 14 miRNA* sequences and 20 novel miRNAs by bioinformatics analysis from 7,561,406 high-quality reads representing 325,370 distinct sequences. The all 20 novel miRNAs were species-specific in white shrimp and not homologous in other species. Using the conserved miRNAs from the miRBase database as a query set to search for homologs from shrimp expressed sequence tags (ESTs), 32 conserved computationally predicted miRNAs were discovered in shrimp. In addition, using microarray analysis in the shrimp fed with Panax ginseng polysaccharide complex, 151 conserved miRNAs were identified, 18 of which were significant up-expression, while 49 miRNAs were significant down-expression. In particular, qRT-PCR analysis was also performed for nine miRNAs in three shrimp tissues such as muscle, gill and hepatopancreas. Results showed that these miRNAs expression are tissue specific. Combining results of the three methods, we detected 20 novel and 394 conserved miRNAs. Verification with quantitative reverse transcription (qRT-PCR) and Northern blot showed a high confidentiality of data. The study provides the first comprehensive specific miRNA profile of white shrimp, which includes useful information for future investigations into the function of miRNAs in regulation of shrimp development and immunology.

  6. MicroRNA Expression Profile in Penile Cancer Revealed by Next-Generation Small RNA Sequencing

    PubMed Central

    Zhang, Yuanwei; Xu, Bo; Zhou, Jun; Fan, Song; Hao, Zongyao; Shi, Haoqiang; Zhang, Xiansheng; Kong, Rui; Xu, Lingfan; Gao, Jingjing; Zou, Duohong; Liang, Chaozhao

    2015-01-01

    Penile cancer (PeCa) is a relatively rare tumor entity but possesses higher morbidity and mortality rates especially in developing countries. To date, the concrete pathogenic signaling pathways and core machineries involved in tumorigenesis and progression of PeCa remain to be elucidated. Several studies suggested miRNAs, which modulate gene expression at posttranscriptional level, were frequently mis-regulated and aberrantly expressed in human cancers. However, the miRNA profile in human PeCa has not been reported before. In this present study, the miRNA profile was obtained from 10 fresh penile cancerous tissues and matched adjacent non-cancerous tissues via next-generation sequencing. As a result, a total of 751 and 806 annotated miRNAs were identified in normal and cancerous penile tissues, respectively. Among which, 56 miRNAs with significantly different expression levels between paired tissues were identified. Subsequently, several annotated miRNAs were selected randomly and validated using quantitative real-time PCR. Compared with the previous publications regarding to the altered miRNAs expression in various cancers and especially genitourinary (prostate, bladder, kidney, testis) cancers, the most majority of deregulated miRNAs showed the similar expression pattern in penile cancer. Moreover, the bioinformatics analyses suggested that the putative target genes of differentially expressed miRNAs between cancerous and matched normal penile tissues were tightly associated with cell junction, proliferation, growth as well as genomic instability and so on, by modulating Wnt, MAPK, p53, PI3K-Akt, Notch and TGF-β signaling pathways, which were all well-established to participate in cancer initiation and progression. Our work presents a global view of the differentially expressed miRNAs and potentially regulatory networks of their target genes for clarifying the pathogenic transformation of normal penis to PeCa, which research resource also provides new insights into future investigations aimed to explore the in-depth mechanisms of miRNAs and other small RNAs including piRNAs in penile carcinogenesis regulation and effective target-specific theragnosis. PMID:26158897

  7. Association of plasma MiR-17-92 with dyslipidemia in patients with coronary artery disease.

    PubMed

    Liu, Fengqiong; Li, Rui; Zhang, Yuan; Qiu, Jian; Ling, Wenhua

    2014-11-01

    Circulating microRNAs (miRNAs) have already been proposed as sensitive and informative biomarkers for the diagnosis of multiple diseases. We investigated the miRNA expression patterns in plasma samples of patients with coronary artery disease (CAD) and explored the potential functions of certain miRNAs.Deep sequencing analysis was performed to determine the miRNA expression profiles using RNA samples isolated from 20 healthy subjects and 20 patients with CAD. Quantitative reverse transcription polymerase chain reaction was applied to confirm the differential expression of the miR-17-92 cluster in 81 patients and 50 healthy volunteers. The association between the miR-17-92 cluster and clinical characteristics of patients with CAD were analyzed using SPSS16.0, SPSS Inc, Chicago, IL.Hundreds of miRNAs were detected and most members from the miR-17-92 cluster and its paralogs, including miR-18a, miR-92a, miR-106b, and miR-17, exhibited differential expression in the plasma of patients with CAD compared with controls. Moreover, these miRNAs were found widely related to the blood lipids in the patients with CAD, as miR-17 was positively correlated with total cholesterol, low-density lipoprotein cholesterol, and apolipoprotein B, while miR-92a was found positively related to high-density lipoprotein cholesterol (HDL-C) but negatively related to lipoprotein-a. Additionally, miR-106b was positively related to HDL-C and apolipoprotein A-I.Taken together with existing evidence from mechanistic studies, the current results of our study support a relationship between the miR-17-92 family and lipid metabolism, which merits further study.

  8. miRNA-135b Contributes to Triple Negative Breast Cancer Molecular Heterogeneity: Different Expression Profile in Basal-like Versus non-Basal-like Phenotypes.

    PubMed

    Uva, Paolo; Cossu-Rocca, Paolo; Loi, Federica; Pira, Giovanna; Murgia, Luciano; Orrù, Sandra; Floris, Matteo; Muroni, Maria Rosaria; Sanges, Francesca; Carru, Ciriaco; Angius, Andrea; De Miglio, Maria Rosaria

    2018-01-01

    The clinical and genetic heterogeneity of Triple Negative Breast Cancer (TNBC) and the lack of unambiguous molecular targets contribute to the inadequacy of current therapeutic options for these variants. MicroRNAs (miRNA) are a class of small highly conserved regulatory endogenous non-coding RNA, which can alter the expression of genes encoding proteins and may play a role in the dysregulation of cellular pathways. Our goal was to improve the knowledge of the molecular pathogenesis of TNBC subgroups analyzing the miRNA expression profile, and to identify new prognostic and predictive biomarkers. We conducted a human miRNome analysis by TaqMan Low Density Array comparing different TNBC subtypes, defined by immunohistochemical basal markers EGFR and CK5/6. RT-qPCR confirmed differential expression of microRNAs. To inspect the function of the selected targets we perform Gene Ontology and KEGG enrichment analysis. We identified a single miRNA signature given by miR-135b expression level, which was strictly related to TNBC with basal-like phenotype. miR-135b target analysis revealed a role in the TGF-beta, WNT and ERBB pathways. A significant positive correlation was identified between neoplastic proliferative index and miR-135b expression. These findings confirm the oncogenic roles of miR-135b in the pathogenesis of TNBC expressing basal markers. A potential negative prognostic role of miR-135b overexpression might be related to the positive correlation with high proliferative index. Our study implies potential clinical applications: miR-135b could be a potential therapeutic target in basal-like TNBCs.

  9. miRNA-135b Contributes to Triple Negative Breast Cancer Molecular Heterogeneity: Different Expression Profile in Basal-like Versus non-Basal-like Phenotypes

    PubMed Central

    Uva, Paolo; Cossu-Rocca, Paolo; Loi, Federica; Pira, Giovanna; Murgia, Luciano; Orrù, Sandra; Floris, Matteo; Muroni, Maria Rosaria; Sanges, Francesca; Carru, Ciriaco; Angius, Andrea; De Miglio, Maria Rosaria

    2018-01-01

    The clinical and genetic heterogeneity of Triple Negative Breast Cancer (TNBC) and the lack of unambiguous molecular targets contribute to the inadequacy of current therapeutic options for these variants. MicroRNAs (miRNA) are a class of small highly conserved regulatory endogenous non-coding RNA, which can alter the expression of genes encoding proteins and may play a role in the dysregulation of cellular pathways. Our goal was to improve the knowledge of the molecular pathogenesis of TNBC subgroups analyzing the miRNA expression profile, and to identify new prognostic and predictive biomarkers. We conducted a human miRNome analysis by TaqMan Low Density Array comparing different TNBC subtypes, defined by immunohistochemical basal markers EGFR and CK5/6. RT-qPCR confirmed differential expression of microRNAs. To inspect the function of the selected targets we perform Gene Ontology and KEGG enrichment analysis. We identified a single miRNA signature given by miR-135b expression level, which was strictly related to TNBC with basal-like phenotype. miR-135b target analysis revealed a role in the TGF-beta, WNT and ERBB pathways. A significant positive correlation was identified between neoplastic proliferative index and miR-135b expression. These findings confirm the oncogenic roles of miR-135b in the pathogenesis of TNBC expressing basal markers. A potential negative prognostic role of miR-135b overexpression might be related to the positive correlation with high proliferative index. Our study implies potential clinical applications: miR-135b could be a potential therapeutic target in basal-like TNBCs. PMID:29725243

  10. Combination of miRNA499 and miRNA133 Exerts a Synergic Effect on Cardiac Differentiation

    PubMed Central

    Pisano, Federica; Altomare, Claudia; Cervio, Elisabetta; Barile, Lucio; Rocchetti, Marcella; Ciuffreda, Maria Chiara; Malpasso, Giuseppe; Copes, Francesco; Mura, Manuela; Danieli, Patrizia; Viarengo, Gianluca; Zaza, Antonio; Gnecchi, Massimiliano

    2015-01-01

    Several studies have demonstrated that miRNA are involved in cardiac development, stem cell maintenance, and differentiation. In particular, it has been shown that miRNA133, miRNA1, and miRNA499 are involved in progenitor cell differentiation into cardiomyocytes. However, it is unknown whether different miRNA may act synergistically to improve cardiac differentiation. We used mouse P19 cells as a cardiogenic differentiation model. miRNA499, miRNA1, or miRNA133 were transiently over-expressed in P19 cells individually or in different combinations. The over-expression of miRNA499 alone increased the number of beating cells and the association of miRNA499 with miRNA133 exerted a synergistic effect, further increasing the number of beating cells. Real-time polymerase chain reaction showed that the combination of miRNA499 + 133 enhanced the expression of cardiac genes compared with controls. Western blot and immunocytochemistry for connexin43 and cardiac troponin T confirmed these findings. Importantly, caffeine responsiveness, a clear functional parameter of cardiac differentiation, was increased by miRNA499 in association with miRNA133 and was directly correlated with the activation of the cardiac troponin I isoform promoter. Cyclic contractions were reversibly abolished by extracellular calcium depletion, nifedipine, ryanodine, and IP3R blockade. Finally, we demonstrated that the use of miRNA499 + 133 induced cardiac differentiation even in the absence of dimethyl sulfoxide. Our results show that the areas spontaneously contracting possess electrophysiological and pharmacological characteristics compatible with true cardiac excitation-contraction coupling. The translational relevance of our findings was reinforced by the demonstration that the over-expression of miRNA499 and miRNA133 was also able to induce the differentiation of human mesenchymal stromal cells toward the cardiac lineage. Stem Cells 2015;33:1187–1199 PMID:25534971

  11. Altered serum microRNAs as biomarkers for the early diagnosis of pulmonary tuberculosis infection

    PubMed Central

    2012-01-01

    Background Pulmonary tuberculosis (TB) is a highly lethal infectious disease and early diagnosis of TB is critical for the control of disease progression. The objective of this study was to profile a panel of serum microRNAs (miRNAs) as potential biomarkers for the early diagnosis of pulmonary TB infection. Methods Using TaqMan Low-Density Array (TLDA) analysis followed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) validation, expression levels of miRNAs in serum samples from 30 patients with active tuberculosis and 60 patients with Bordetella pertussis (BP), varicella-zoster virus (VZV) and enterovirus (EV) were analyzed. Results The Low-Density Array data showed that 97 miRNAs were differentially expressed in pulmonary TB patient sera compared with healthy controls (90 up-regulated and 7 down-regulated). Following qRT-PCR confirmation and receiver operational curve (ROC) analysis, three miRNAs (miR-361-5p, miR-889 and miR-576-3p) were shown to distinguish TB infected patients from healthy controls and other microbial infections with moderate sensitivity and specificity (area under curve (AUC) value range, 0.711-0.848). Multiple logistic regression analysis of a combination of these three miRNAs showed an enhanced ability to discriminate between these two groups with an AUC value of 0.863. Conclusions Our study suggests that altered levels of serum miRNAs have great potential to serve as non-invasive biomarkers for early detection of pulmonary TB infection. PMID:23272999

  12. Large-scale bioinformatic analysis of the regulation of the disease resistance NBS gene family by microRNAs in Poaceae.

    PubMed

    Habachi-Houimli, Yosra; Khalfallah, Yosra; Makni, Hanem; Makni, Mohamed; Bouktila, Dhia

    2016-01-01

    In the present study, we have screened 71, 713, 525, 119 and 241 mature miRNA variants from Hordeum vulgare, Oryza sativa, Brachypodium distachyon, Triticum aestivum, and Sorghum bicolor, respectively, and classified them with respect to their conservation status and expression levels. These Poaceae non-redundant miRNA species (1,669) were distributed over a total of 625 MIR families, among which only 54 were conserved across two or more plant species, confirming the relatively recent evolutionary differentiation of miRNAs in grasses. On the other hand, we have used 257 H. vulgare, 286T. aestivum, 119 B. distachyon, 269 O. sativa, and 139 S. bicolor NBS domains, which were either mined directly from the annotated proteomes, or predicted from whole genome sequence assemblies. The hybridization potential between miRNAs and their putative NBS genes targets was analyzed, revealing that at least 454 NBS genes from all five Poaceae were potentially regulated by 265 distinct miRNA species, most of them expressed in leaves and predominantly co-expressed in additional tissues. Based on gene ontology, we could assign these probable miRNA target genes to 16 functional groups, among which three conferring resistance to bacteria (Rpm1, Xa1 and Rps2), and 13 groups of resistance to fungi (Rpp8,13, Rp3, Tsn1, Lr10, Rps1-k-1, Pm3, Rpg5, and MLA1,6,10,12,13). The results of the present analysis provide a large-scale platform for a better understanding of biological control strategies of disease resistance genes in Poaceae, and will serve as an important starting point for enhancing crop disease resistance improvement by means of transgenic lines with artificial miRNAs. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  13. Potential functions of microRNAs in starch metabolism and development revealed by miRNA transcriptome profiling of cassava cultivars and their wild progenitor.

    PubMed

    Chen, Xin; Xia, Jing; Xia, Zhiqiang; Zhang, Hefang; Zeng, Changying; Lu, Cheng; Zhang, Weixiong; Wang, Wenquan

    2015-02-04

    MicroRNAs (miRNAs) are small (approximately 21 nucleotide) non-coding RNAs that are key post-transcriptional gene regulators in eukaryotic organisms. More than 100 cassava miRNAs have been identified in a conservation analysis and a repertoire of cassava miRNAs have also been characterised by next-generation sequencing (NGS) in recent studies. Here, using NGS, we profiled small non-coding RNAs and mRNA genes in two cassava cultivars and their wild progenitor to identify and characterise miRNAs that are potentially involved in plant growth and starch biosynthesis. Six small RNA and six mRNA libraries from leaves and roots of the two cultivars, KU50 and Arg7, and their wild progenitor, W14, were subjected to NGS. Analysis of the sequencing data revealed 29 conserved miRNA families and 33 new miRNA families. Together, these miRNAs potentially targeted a total of 360 putative target genes. Whereas 16 miRNA families were highly expressed in cultivar leaves, another 13 miRNA families were highly expressed in storage roots of cultivars. Co-expression analysis revealed that the expression level of some targets had negative relationship with their corresponding miRNAs in storage roots and leaves; these targets included MYB33, ARF10, GRF1, RD19, APL2, NF-YA3 and SPL2, which are known to be involved in plant development, starch biosynthesis and response to environmental stimuli. The identified miRNAs, target mRNAs and target gene ontology annotation all shed light on the possible functions of miRNAs in Manihot species. The differential expression of miRNAs between cultivars and their wild progenitor, together with our analysis of GO annotation and confirmation of miRNA: target pairs, might provide insight into know the differences between wild progenitor and cultivated cassava.

  14. High-throughput sequencing of small RNAs and analysis of differentially expressed microRNAs associated with pistil development in Japanese apricot

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) are a class of endogenous, small, non-coding RNAs that regulate gene expression by mediating gene silencing at transcriptional and post-transcriptional levels in high plants. However, the diversity of miRNAs and their roles in floral development in Japanese apricot (Prunus mume Sieb. et Zucc) remains largely unexplored. Imperfect flowers with pistil abortion seriously decrease production yields. To understand the role of miRNAs in pistil development, pistil development-related miRNAs were identified by Solexa sequencing in Japanese apricot. Results Solexa sequencing was used to identify and quantitatively profile small RNAs from perfect and imperfect flower buds of Japanese apricot. A total of 22,561,972 and 24,952,690 reads were sequenced from two small RNA libraries constructed from perfect and imperfect flower buds, respectively. Sixty-one known miRNAs, belonging to 24 families, were identified. Comparative profiling revealed that seven known miRNAs exhibited significant differential expression between perfect and imperfect flower buds. A total of 61 potentially novel miRNAs/new members of known miRNA families were also identified by the presence of mature miRNAs and corresponding miRNA*s in the sRNA libraries. Comparative analysis showed that six potentially novel miRNAs were differentially expressed between perfect and imperfect flower buds. Target predictions of the 13 differentially expressed miRNAs resulted in 212 target genes. Gene ontology (GO) annotation revealed that high-ranking miRNA target genes are those implicated in the developmental process, the regulation of transcription and response to stress. Conclusions This study represents the first comparative identification of miRNAomes between perfect and imperfect Japanese apricot flowers. Seven known miRNAs and six potentially novel miRNAs associated with pistil development were identified, using high-throughput sequencing of small RNAs. The findings, both computationally and experimentally, provide valuable information for further functional characterisation of miRNAs associated with pistil development in plants. PMID:22863067

  15. Plant polycistronic precursors containing non-homologous microRNAs target transcripts encoding functionally related proteins

    PubMed Central

    2009-01-01

    Background MicroRNAs (miRNAs) are endogenous single-stranded small RNAs that regulate the expression of specific mRNAs involved in diverse biological processes. In plants, miRNAs are generally encoded as a single species in independent transcriptional units, referred to as MIRNA genes, in contrast to animal miRNAs, which are frequently clustered. Results We performed a comparative genomic analysis in three model plants (rice, poplar and Arabidopsis) and characterized miRNA clusters containing two to eight miRNA species. These clusters usually encode miRNAs of the same family and certain share a common evolutionary origin across monocot and dicot lineages. In addition, we identified miRNA clusters harboring miRNAs with unrelated sequences that are usually not evolutionarily conserved. Strikingly, non-homologous miRNAs from the same cluster were predicted to target transcripts encoding related proteins. At least four Arabidopsis non-homologous clusters were expressed as single transcriptional units. Overexpression of one of these polycistronic precursors, producing Ath-miR859 and Ath-miR774, led to the DCL1-dependent accumulation of both miRNAs and down-regulation of their different mRNA targets encoding F-box proteins. Conclusions In addition to polycistronic precursors carrying related miRNAs, plants also contain precursors allowing coordinated expression of non-homologous miRNAs to co-regulate functionally related target transcripts. This mechanism paves the way for using polycistronic MIRNA precursors as a new molecular tool for plant biologists to simultaneously control the expression of different genes. PMID:19951405

  16. Regulation of Isoflavone Biosynthesis by miRNAs in Two Contrasting Soybean Genotypes at Different Seed Developmental Stages.

    PubMed

    Gupta, Om P; Nigam, Deepti; Dahuja, Anil; Kumar, Sanjeev; Vinutha, T; Sachdev, Archana; Praveen, Shelly

    2017-01-01

    Owing to the presence of nutritionally important, health-promoting bioactive compounds, especially isoflavones, soybean has acquired the status of a functional food. miRNAs are tiny riboregulator of gene expression by either decreasing and/or increasing the expression of their corresponding target genes. Despite several works on identification and functional characterization of plant miRNAs, the role of miRNAs in the regulation of isoflavones metabolism is still a virgin field. In the present study, we identified a total of 31 new miRNAs along with their 245 putative target genes from soybean seed-specific ESTs using computational approach. The Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that miRNA putatively regulates metabolism and genetic information processing. Out of that, a total of 5 miRNAs ( Gma -miRNA12, Gma -miRNA24, Gma -miRNA26, Gma -miRNA28, and Gma -miRNA29) were predicted and validated for their probable role during isoflavone biosynthesis. We also validated their five target genes using RA-PCR, which is as good as 5'RLM-RACE. Temporal regulation [35 days after flowering, 45, 55, and 65 DAF] of miRNAs and their targets showed differential expression schema. Differential expression of Gma -miR26 and Gma -miRNA28 along with their corresponding target genes ( Glyma.10G197900 and Glyma.09G127200 ) showed a direct relationship with the total isoflavone content. Therefore, understanding the miRNA-based genetic regulation of isoflavone pathway would assist in selection and manipulation to get high-performing soybean genotypes with better isoflavone yield.

  17. Comparative analysis of miRNA expression during the development of insects of different metamorphosis modes and germ-band types.

    PubMed

    Ylla, Guillem; Piulachs, Maria-Dolors; Belles, Xavier

    2017-10-11

    Do miRNAs contribute to specify the germ-band type and the body structure in the insect embryo? Our goal was to address that issue by studying the changes in miRNA expression along the ontogeny of the German cockroach Blattella germanica, which is a short germ-band and hemimetabolan species. We sequenced small RNA libraries representing 11 developmental stages of B. germanica ontogeny (with especial emphasis on embryogenesis) and the changes in miRNA expression were examined. Data were compared with equivalent data for two long germ-band holometabolan species Drosophila melanogaster and Drosophila virilis, and the short germ-band holometabolan species Tribolium castaneum. The identification of B. germanica embryo small RNA sequences unveiled miRNAs not detected in previous studies, such as those of the MIR-309 family and 54 novel miRNAs. Four main waves of miRNA expression were recognized (with most miRNA changes occurring during the embryonic stages): the first from day 0 to day 1 of embryogenesis, the second during mid-embryogenesis (days 0-6), the third (with an acute expression peak) on day 2 of embryonic development, and the fourth during post-embryonic development. The second wave defined the boundaries of maternal-to-zygotic transition, with maternal mRNAs being cleared, presumably by Mir-309 and associated scavenger miRNAs. miRNAs follow well-defined patterns of expression over hemimetabolan ontogeny, patterns that are more diverse during embryonic development than during the nymphal stages. The results suggest that miRNAs play important roles in the developmental transitions between the embryonic stages of development (starting with maternal loading), during which they might influence the germ-band type and metamorphosis mode.

  18. Altered expression of four miRNA (miR-1238-3p, miR-202-3p, miR-630 and miR-766-3p) and their potential targets in peripheral blood from vitiligo patients.

    PubMed

    Shang, Zhiwei; Li, Hongwen

    2017-10-01

    Vitiligo is an acquired skin disease with pigmentary disorder. Autoimmune destruction of melanocytes is thought to be major factor in the etiology of vitiligo. miRNA-based regulators of gene expression have been reported to play crucial roles in autoimmune disease. Therefore, we attempt to profile the miRNA expressions and predict their potential targets, assessing the biological functions of differentially expressed miRNA. Total RNA was extracted from peripheral blood of vitiligo (experimental group, n = 5) and non-vitiligo (control group, n = 5) age-matched patients. Samples were hybridized to a miRNA array. Box, scatter and principal component analysis plots were performed, followed by unsupervised hierarchical clustering analysis to classify the samples. Quantitative reverse transcription polymerase chain reaction (RT-PCR) was conducted for validation of microarray data. Three different databases, TargetScan, PITA and microRNA.org, were used to predict the potential target genes. Gene ontology (GO) annotation and pathway analysis were performed to assess the potential functions of predicted genes of identified miRNA. A total of 100 (29 upregulated and 71 downregulated) miRNA were filtered by volcano plot analysis. Four miRNA were validated by quantitative RT-PCR as significantly downregulated in the vitiligo group. The functions of predicted target genes associated with differentially expressed miRNA were assessed by GO analysis, showing that the GO term with most significantly enriched target genes was axon guidance, and that the axon guidance pathway was most significantly correlated with these miRNA. In conclusion, we identified four downregulated miRNA in vitiligo and assessed the potential functions of target genes related to these differentially expressed miRNA. © 2017 Japanese Dermatological Association.

  19. Characterization and expression patterns of small RNAs in synthesized Brassica hexaploids.

    PubMed

    Shen, Yanyue; Zhao, Qin; Zou, Jun; Wang, Wenliang; Gao, Yi; Meng, Jinling; Wang, Jianbo

    2014-06-01

    Polyploidy has played an important role in promoting plant evolution through genomic merging and doubling. We used high-throughput sequencing to compare miRNA expression profiles between Brassica hexaploid and its parents. A total of 613, 784 and 742 known miRNAs were identified in Brassica rapa, Brassica carinata, and Brassica hexaploid, respectively. We detected 618 miRNAs were differentially expressed (log(2)Ratio ≥ 1, P ≤ 0.05) between Brassica hexaploid and its parents, and 425 miRNAs were non-additively expressed in Brassica hexaploid, which suggest a trend of non-additive miRNA regulation following hybridization and polyploidization. Remarkably, majority of the non-additively expressed miRNAs in the Brassica hexaploid are repressed, and there was a bias toward repression of B. rapa miRNAs, which is consistent with the progenitor-biased gene repression in the synthetic allopolyploids. In addition, we identified 653 novel mature miRNAs in Brassica hexaploid and its parents. Finally, we found that almost all the non-additive accumulation of siRNA clusters exhibited a low-parent pattern in Brassica hexaploid. Non-additive small RNA regulation is involved in a range of biological pathways, probably providing a driving force for variation and adaptation in allopolyploids.

  20. The Small-RNA Profiles of Almond (Prunus dulcis Mill.) Reproductive Tissues in Response to Cold Stress.

    PubMed

    Karimi, Marzieh; Ghazanfari, Farahnaz; Fadaei, Adeleh; Ahmadi, Laleh; Shiran, Behrouz; Rabei, Mohammad; Fallahi, Hossein

    2016-01-01

    Spring frost is an important environmental stress that threatens the production of Prunus trees. However, little information is available regarding molecular response of these plants to the frost stress. Using high throughput sequencing, this study was conducted to identify differentially expressed miRNAs, both the conserved and the non-conserved ones, in the reproductive tissues of almond tolerant H genotype under cold stress. Analysis of 50 to 58 million raw reads led to identification of 174 unique conserved and 59 novel microRNAs (miRNAs). Differential expression pattern analysis showed that 50 miRNA families were expressed differentially in one or both of almond reproductive tissues (anther and ovary). Out of these 50 miRNA families, 12 and 15 displayed up-regulation and down-regulation, respectively. The distribution of conserved miRNA families indicated that miR482f harbor the highest number of members. Confirmation of miRNAs expression patterns by quantitative real- time PCR (qPCR) was performed in cold tolerant (H genotype) alongside a sensitive variety (Sh12 genotype). Our analysis revealed differential expression for 9 miRNAs in anther and 3 miRNAs in ovary between these two varieties. Target prediction of miRNAs followed by differential expression analysis resulted in identification of 83 target genes, mostly transcription factors. This study comprehensively catalogued expressed miRNAs under different temperatures in two reproductive tissues (anther and ovary). Results of current study and the previous RNA-seq study, which was conducted in the same tissues by our group, provide a unique opportunity to understand the molecular basis of responses of almond to cold stress. The results can also enhance the possibility for gene manipulation to develop cold tolerant plants.

  1. The Small-RNA Profiles of Almond (Prunus dulcis Mill.) Reproductive Tissues in Response to Cold Stress

    PubMed Central

    Shiran, Behrouz; Rabei, Mohammad; Fallahi, Hossein

    2016-01-01

    Spring frost is an important environmental stress that threatens the production of Prunus trees. However, little information is available regarding molecular response of these plants to the frost stress. Using high throughput sequencing, this study was conducted to identify differentially expressed miRNAs, both the conserved and the non-conserved ones, in the reproductive tissues of almond tolerant H genotype under cold stress. Analysis of 50 to 58 million raw reads led to identification of 174 unique conserved and 59 novel microRNAs (miRNAs). Differential expression pattern analysis showed that 50 miRNA families were expressed differentially in one or both of almond reproductive tissues (anther and ovary). Out of these 50 miRNA families, 12 and 15 displayed up-regulation and down-regulation, respectively. The distribution of conserved miRNA families indicated that miR482f harbor the highest number of members. Confirmation of miRNAs expression patterns by quantitative real- time PCR (qPCR) was performed in cold tolerant (H genotype) alongside a sensitive variety (Sh12 genotype). Our analysis revealed differential expression for 9 miRNAs in anther and 3 miRNAs in ovary between these two varieties. Target prediction of miRNAs followed by differential expression analysis resulted in identification of 83 target genes, mostly transcription factors. This study comprehensively catalogued expressed miRNAs under different temperatures in two reproductive tissues (anther and ovary). Results of current study and the previous RNA-seq study, which was conducted in the same tissues by our group, provide a unique opportunity to understand the molecular basis of responses of almond to cold stress. The results can also enhance the possibility for gene manipulation to develop cold tolerant plants. PMID:27253370

  2. High-Throughput Sequencing of Small RNA Transcriptomes in Maize Kernel Identifies miRNAs Involved in Embryo and Endosperm Development.

    PubMed

    Xing, Lijuan; Zhu, Ming; Zhang, Min; Li, Wenzong; Jiang, Haiyang; Zou, Junjie; Wang, Lei; Xu, Miaoyun

    2017-12-14

    Maize kernel development is a complex biological process that involves the temporal and spatial expression of many genes and fine gene regulation at a transcriptional and post-transcriptional level, and microRNAs (miRNAs) play vital roles during this process. To gain insight into miRNA-mediated regulation of maize kernel development, a deep-sequencing technique was used to investigate the dynamic expression of miRNAs in the embryo and endosperm at three developmental stages in B73. By miRNA transcriptomic analysis, we characterized 132 known miRNAs and six novel miRNAs in developing maize kernel, among which, 15 and 14 miRNAs were commonly differentially expressed between the embryo and endosperm at 9 days after pollination (DAP), 15 DAP and 20 DAP respectively. Conserved miRNA families such as miR159, miR160, miR166, miR390, miR319, miR528 and miR529 were highly expressed in developing embryos; miR164, miR171, miR393 and miR2118 were highly expressed in developing endosperm. Genes targeted by those highly expressed miRNAs were found to be largely related to a regulation category, including the transcription, macromolecule biosynthetic and metabolic process in the embryo as well as the vitamin biosynthetic and metabolic process in the endosperm. Quantitative reverse transcription-PCR (qRT-PCR) analysis showed that these miRNAs displayed a negative correlation with the levels of their corresponding target genes. Importantly, our findings revealed that members of the miR169 family were highly and dynamically expressed in the developing kernel, which will help to exploit new players functioning in maize kernel development.

  3. A whole-mount in situ hybridization method for microRNA detection in Caenorhabditis elegans

    PubMed Central

    Andachi, Yoshiki; Kohara, Yuji

    2016-01-01

    Whole-mount in situ hybridization (WISH) is an outstanding method to decipher the spatiotemporal expression patterns of microRNAs (miRNAs) and provides important clues for elucidating their functions. The first WISH method for miRNA detection was developed in zebrafish. Although this method was quickly adapted for other vertebrates and fruit flies, WISH analysis has not been successfully used to detect miRNAs in Caenorhabditis elegans. Here, we show a novel WISH method for miRNA detection in C. elegans. Using this method, mir-1 miRNA was detected in the body-wall muscle where the expression and roles of mir-1 miRNA have been previously elucidated. Application of the method to let-7 family miRNAs, let-7, mir-48, mir-84, and mir-241, revealed their distinct but partially overlapping expression patterns, indicating that miRNAs sharing a short common sequence were distinguishably detected. In pash-1 mutants that were depleted of mature miRNAs, signals of mir-48 miRNA were greatly reduced, suggesting that mature miRNAs were detected by the method. These results demonstrate the validity of WISH to detect mature miRNAs in C. elegans. PMID:27154969

  4. Arsenic responsive microRNAs in vivo and their potential involvement in arsenic-induced oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Xuefeng, E-mail: xuefengr@buffalo.edu; Department of Pharmacology and Toxicology, School of Biomedical Sciences, The State University of New York, Buffalo, NY 14214; Gaile, Daniel P.

    Arsenic exposure is postulated to modify microRNA (miRNA) expression, leading to changes of gene expression and toxicities, but studies relating the responses of miRNAs to arsenic exposure are lacking, especially with respect to in vivo studies. We utilized high-throughput sequencing technology and generated miRNA expression profiles of liver tissues from Sprague Dawley (SD) rats exposed to various concentrations of sodium arsenite (0, 0.1, 1, 10 and 100 mg/L) for 60 days. Unsupervised hierarchical clustering analysis of the miRNA expression profiles clustered the SD rats into different groups based on the arsenic exposure status, indicating a highly significant association between arsenicmore » exposure and cluster membership (p-value of 0.0012). Multiple miRNA expressions were altered by arsenic in an exposure concentration-dependent manner. Among the identified arsenic-responsive miRNAs, several are predicted to target Nfe2l2-regulated antioxidant genes, including glutamate–cysteine ligase (GCL) catalytic subunit (GCLC) and modifier subunit (GCLM) which are involved in glutathione (GSH) synthesis. Exposure to low concentrations of arsenic increased mRNA expression for Gclc and Gclm, while high concentrations significantly reduced their expression, which were correlated to changes in hepatic GCL activity and GSH level. Moreover, our data suggested that other mechanisms, e.g., miRNAs, rather than Nfe2l2-signaling pathway, could be involved in the regulation of mRNA expression of Gclc and Gclm post-arsenic exposure in vivo. Together, our findings show that arsenic exposure disrupts the genome-wide expression of miRNAs in vivo, which could lead to the biological consequence, such as an altered balance of antioxidant defense and oxidative stress. - Highlights: • Chronic arsenic exposure induces changes of hepatic miRNA expression profiles. • Hepatic GCL activity and GSH level in rats are altered following arsenic exposure. • Arsenic induced GCL expression change is independent to Nfe2l2-signaling pathway. • Expression of several miRNAs predicted to target GCL changed after arsenic exposure.« less

  5. MicroRNA expression profiling in endometriosis-associated infertility and its relationship with endometrial receptivity evaluated by ultrasound.

    PubMed

    Xu, Xianfeng; Li, Zhenzhou; Liu, Jin; Yu, Sha; Wei, Zhaolian

    2017-01-01

    To investigate the microRNA expression profiling in endometriosis-associate infertility, and relationship between the microRNA expression and endometrial receptivity evaluated by ultrasound. First, miRNA expression profiling difference of ectopic endometrium between 8 endometriosis patients and 6 endometriosis-free patients were compared. Bioinformatics analyses detected 61 differentially expressed (DE) known miRNAs and 57 DE novel miRNAs. Next, other 24 patients were selected for checking the microRNAs in differential expression by RT-PCR. Among them, case and control groups include 14 endometriosis and 10 endometriosis-free infertility patients, respectively. Last, endometrial receptivity of other 20 endometriosis patients was evaluated by ultrasound. In this group of patients, 12 had high endometrial receptivity, in which infertility is caused by fallopian tube occlusion, and 8 had low endometrial receptivity. The study compared endometrial miRNAs expression between two groups, and also evaluated the relationship between the endometrial miRNAs expression and the endometrial receptivity. First, study indicated that "proteinaceous extracellular matrix," "laminin binding" and "extracellular matrix binding" were enriched in 6 up-regulated miRNA targets, while "cell proliferation" was enriched in the 4 down-regulated miRNA targets. Second, 10 miRNAs in different expression (miR-1304- 3p, miR-544b, miR-3684, miR-494-5p, miR-4683, miR-6747-3p; miR-3935, miR-4427, miR-652-5p, miR-205-5p) were detected by RT-PCR, and the results showed statistically significant differences between 2 groups in all 10 miRNAs. Third, the expression levels of miR-1304-3p, miR-494-5p, and miR-4427 were different between the two groups with different endometrial receptivity. But for the miR-544b, there was no statistically significant difference between two groups. The study provided a comprehensive understanding to the current knowledge in the field of miRNAs in endometriosis and the relationship between them and the endometrial receptivity. miRNAs could be used as diagnostic biomarkers and therapeutic agents for this disease. The combination of ultrasound and miRNAs detection could be a better choice for the diagnosis of infertility in the future.

  6. Identification of microRNAs in Caragana intermedia by high-throughput sequencing and expression analysis of 12 microRNAs and their targets under salt stress.

    PubMed

    Zhu, Jianfeng; Li, Wanfeng; Yang, Wenhua; Qi, Liwang; Han, Suying

    2013-09-01

    142 miRNAs were identified and 38 miRNA targets were predicted, 4 of which were validated, in C. intermedia . The expression of 12 miRNAs in salt-stressed leaves was assessed by qRT-PCR. MicroRNAs (miRNAs) are endogenous small RNAs that play important roles in various biological and metabolic processes in plants. Caragana intermedia is an important ecological and economic tree species prominent in the desert environment of west and northwest China. To date, no investigation into C. intermedia miRNAs has been reported. In this study, high-throughput sequencing of small RNAs and analysis of transcriptome data were performed to identify both conserved and novel miRNAs, and also their target mRNA genes in C. intermedia. Based on sequence similarity and hairpin structure prediction, 132 putative conserved miRNAs (12 of which were confirmed to form hairpin precursors) belonging to 31 known miRNA families were identified. Ten novel miRNAs (including the miRNA* sequences of three novel miRNAs) were also discovered. Furthermore, 36 potential target genes of 17 known miRNA families and 2 potential target genes of 1 novel miRNA were predicted; 4 of these were validated by 5' RACE. The expression of 12 miRNAs was validated in different tissues, and these and five target mRNAs were assessed by qRT-PCR after salt treatment. The expression levels of seven miRNAs (cin-miR157a, cin-miR159a, cin-miR165a, cin-miR167b, cin-miR172b, cin-miR390a and cin-miR396a) were upregulated, while cin-miR398a expression was downregulated after salt treatment. The targets of cin-miR157a, cin-miR165a, cin-miR172b and cin-miR396a were downregulated and showed an approximately negative correlation with their corresponding miRNAs under salt treatment. These results would help further understanding of miRNA regulation in response to abiotic stress in C. intermedia.

  7. Identification of microRNAs in the Toxigenic Dinoflagellate Alexandrium catenella by High-Throughput Illumina Sequencing and Bioinformatic Analysis

    PubMed Central

    Geng, Huili; Sui, Zhenghong; Zhang, Shu; Du, Qingwei; Ren, Yuanyuan; Liu, Yuan; Kong, Fanna; Zhong, Jie; Ma, Qingxia

    2015-01-01

    Micro-ribonucleic acids (miRNAs) are a large group of endogenous, tiny, non-coding RNAs consisting of 19–25 nucleotides that regulate gene expression at either the transcriptional or post-transcriptional level by mediating gene silencing in eukaryotes. They are considered to be important regulators that affect growth, development, and response to various stresses in plants. Alexandrium catenella is an important marine toxic phytoplankton species that can cause harmful algal blooms (HABs). To date, identification and function analysis of miRNAs in A. catenella remain largely unexamined. In this study, high-throughput sequencing was performed on A. catenella to identify and quantitatively profile the repertoire of small RNAs from two different growth phases. A total of 38,092,056 and 32,969,156 raw reads were obtained from the two small RNA libraries, respectively. In total, 88 mature miRNAs belonging to 32 miRNA families were identified. Significant differences were found in the member number, expression level of various families, and expression abundance of each member within a family. A total of 15 potentially novel miRNAs were identified. Comparative profiling showed that 12 known miRNAs exhibited differential expression between the lag phase and the logarithmic phase. Real-time quantitative RT-PCR (qPCR) was performed to confirm the expression of two differentially expressed miRNAs that were one up-regulated novel miRNA (aca-miR-3p-456915), and one down-regulated conserved miRNA (tae-miR159a). The expression trend of the qPCR assay was generally consistent with the deep sequencing result. Target predictions of the 12 differentially expressed miRNAs resulted in 1813target genes. Gene ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes pathway database (KEGG) annotations revealed that some miRNAs were associated with growth and developmental processes of the alga. These results provide insights into the roles that miRNAs play in the growth of A. catenella, and they provide the basis for further studies of the molecular mechanisms that underlie bloom growth in red tides species. PMID:26398216

  8. Evaluation of the capability of the PCV2 genome to encode miRNAs: lack of viral miRNA expression in an experimental infection.

    PubMed

    Núñez-Hernández, Fernando; Pérez, Lester J; Vera, Gonzalo; Córdoba, Sarai; Segalés, Joaquim; Sánchez, Armand; Núñez, José I

    2015-05-01

    Porcine circovirus type 2 (PCV2) is a ssDNA virus causing PCV2-systemic disease (PCV2-SD), one of the most important diseases in swine. MicroRNAs (miRNAs) are a new class of small non-coding RNAs that regulate gene expression post-transcriptionally. Viral miRNAs have recently been described and the number of viral miRNAs has been increasing in the past few years. In this study, small RNA libraries were constructed from two tissues of subclinically PCV2 infected pigs to explore if PCV2 can encode viral miRNAs. The deep sequencing data revealed that PCV2 does not express miRNAs in an in vivo subclinical infection.

  9. [The role of miRNA in endometrial cancer in the context of miRNA 205].

    PubMed

    Wilczyński, Miłosz; Danielska, Justyna; Dzieniecka, Monika; Malinowski, Andrzej

    2015-11-01

    MiRNAs are small, non-coding molecules of ribonucleic acids of approximately 22 bp length, which serve as regulators of gene expression and protein translation due to interference with messenger RNA (mRNA). MiRNAs, which take part in the regulation of cell cycle and apoptosis, may be associated with carcinogenesis. Aberrant expression of miRNAs in endometrial cancer might contribute to the endometrial cancer initiation or progression, as well as metastasis formation, and may influence cancer invasiveness. Specific-miRNAs expressed in endometrial cancer tissues may serve as diagnostic markers of the disease, prognostic biomarkers, or play an important part in oncological therapy We aimed to describe the role of miRNAs in endometrial cancer with special consideration of miRNA 205.

  10. Integrated analysis of miRNA and mRNA expression profiles in tilapia gonads at an early stage of sex differentiation.

    PubMed

    Tao, Wenjing; Sun, Lina; Shi, Hongjuan; Cheng, Yunying; Jiang, Dongneng; Fu, Beide; Conte, Matthew A; Gammerdinger, William J; Kocher, Thomas D; Wang, Deshou

    2016-05-04

    MicroRNAs (miRNAs) represent a second regulatory network that has important effects on gene expression and protein translation during biological process. However, the possible role of miRNAs in the early stages of fish sex differentiation is not well understood. In this study, we carried an integrated analysis of miRNA and mRNA expression profiles to explore their possibly regulatory patterns at the critical stage of sex differentiation in tilapia. We identified 279 pre-miRNA genes in tilapia genome, which were highly conserved in other fish species. Based on small RNA library sequencing, we identified 635 mature miRNAs in tilapia gonads, in which 62 and 49 miRNAs showed higher expression in XX and XY gonads, respectively. The predicted targets of these sex-biased miRNAs (e.g., miR-9, miR-21, miR-30a, miR-96, miR-200b, miR-212 and miR-7977) included genes encoding key enzymes in steroidogenic pathways (Cyp11a1, Hsd3b, Cyp19a1a, Hsd11b) and key molecules involved in vertebrate sex differentiation (Foxl2, Amh, Star1, Sf1, Dmrt1, and Gsdf). These genes also showed sex-biased expression in tilapia gonads at 5 dah. Some miRNAs (e.g., miR-96 and miR-737) targeted multiple genes involved in steroid synthesis, suggesting a complex miRNA regulatory network during early sex differentiation in this fish. The sequence and expression patterns of most miRNAs in tilapia are conserved in fishes, indicating the basic functions of vertebrate miRNAs might share a common evolutionary origin. This comprehensive analysis of miRNA and mRNA at the early stage of molecular sex differentiation in tilapia XX and XY gonads lead to the discovery of differentially expressed miRNAs and their putative targets, which will facilitate studies of the regulatory network of molecular sex determination and differentiation in fishes.

  11. Decreased miR-128 and increased miR-21 synergistically cause podocyte injury in sepsis.

    PubMed

    Wang, Shanshan; Wang, Jun; Zhang, Zengdi; Miao, Hongjun

    2017-08-01

    Glomerular podocytes are injured in sepsis. We studied, in a sepsis patient, whether microRNAs (miRNAs) play a role in the podocyte injury. Podocytes were cultured and treated with lipopolysaccharide (LPS). Filtration barrier function of podocyte was analyzed with albumin influx assay. Nephrin level was analyzed with reverse transcription polymerase chain reaction (RT-PCR) and western blot. MiRNAs were detected using miRNAs PCR Array and in situ hybridization. MiRNA target sites were evaluated with luciferase reporter assays. LPS impaired the filtration barrier function of podocytes. MiR-128 level was decreased and miR-21 level was increased in podocytes in vitro and in the sepsis patient. The decrease in miR-128 was sufficient to induce the loss of nephrin and the impairment of filtration barrier function, while the increase of miR-21 exacerbated the process. Snail and phosphatase and tensin homolog (PTEN) were identified as the targets of miR-128 and miR-21. Decreased miR-128 induced Snail expression, and the increased miR-21 stabilized Snail by regulating the PTEN/Akt/GSK3β pathway. Supplementation of miR-128 and inhibition of miR-21 suppressed Snail expression and prevented the podocyte injury induced by LPS. Our study suggests that decreased miR-128 and increased miR-21 synergistically cause podocyte injury and are the potential therapeutic targets in sepsis.

  12. A Customized Quantitative PCR MicroRNA Panel Provides a Technically Robust Context for Studying Neurodegenerative Disease Biomarkers and Indicates a High Correlation Between Cerebrospinal Fluid and Choroid Plexus MicroRNA Expression.

    PubMed

    Wang, Wang-Xia; Fardo, David W; Jicha, Gregory A; Nelson, Peter T

    2017-12-01

    MicroRNA (miRNA) expression varies in association with different tissue types and in diseases. Having been found in body fluids including blood and cerebrospinal fluid (CSF), miRNAs constitute potential biomarkers. CSF miRNAs have been proposed as biomarkers for neurodegenerative diseases; however, there is a lack of consensus about the best candidate miRNA biomarkers and there has been variability in results from different research centers, perhaps due to technical factors. Here, we sought to optimize technical parameters for CSF miRNA studies. We examined different RNA isolation methods and performed miRNA expression profiling with TaqMan® miRNA Arrays. More specifically, we developed a customized CSF-miRNA low-density array (TLDA) panel that contains 47 targets: miRNAs shown previously to be relevant to neurodegenerative disease, miRNAs that are abundant in CSF, data normalizers, and controls for potential blood and tissue contamination. The advantages of using this CSF-miRNA TLDA panel include specificity, sensitivity, fast processing and data analysis, and cost effectiveness. We optimized technical parameters for this assay. Further, the TLDA panel can be tailored to other specific purposes. We tested whether the profile of miRNAs in the CSF resembled miRNAs isolated from brain tissue (hippocampus or cerebellum), blood, or the choroid plexus. We found that the CSF miRNA expression profile most closely resembles that of choroid plexus tissue, underscoring the potential importance of choroid plexus-derived signaling through CSF miRNAs. In summary, the TLDA miRNA array panel will enable evaluation and discovery of CSF miRNA biomarkers and can potentially be utilized in clinical diagnosis and disease stage monitoring.

  13. Influence of simulated microgravity on clock genes expression rhythmicity and underlying blood circulating miRNAs-mRNA co-expression regulatory mechanism in C57BL/6J mice

    NASA Astrophysics Data System (ADS)

    Lv, Ke; Qu, Lina

    Purpose: It is vital for astronauts to maintain the optimal alertness and neurobehavioral function. Among various factors that exist in the space flight and long-duration mission environment, gravity changes may probably an essential environmental factor to interfere with internal circadian rhythms homeostasis and sleep quality, but the underlying mechanism is unclear. Mammals' biological clock is controlled by the suprachiasmatic nucleus (SCN), and peripheral organs adjust their own rhythmicity with the central signals. Nevertheless the mechanism underlying this synchronizition process is still unknown. microRNAs (miRNAs) are about 19˜22nt long regulatory RNAs that serve as critical modulators of post-transcriptional gene regulation. Recently, circulating miRNAs were found to have the regulatory role between cells and peripheral tissues, besides its function inside the cells. This study aims to investigate the regulatory signal transduction role of miRNAs between SCN and peripheral biological clock effecter tissues and to further decipher the mechanism of circadian disturbance under microgravity. Method: Firstly, based on the assumption that severe alterations in the expression of genes known to be involved in circadian rhythms may affect the expression of other genes, the labeled cDNA from liver and suprachiasmatic nucleus (SCN) of clock-knockout mice and control mice in different time points were cohybridized to microarrays. The fold change exceeding 2 (FC>2) was used to identify genes with altered expression levels in the knockout mice compared with control mice. Secondly, male C57BL/6J mice at 8 weeks of age were individually caged and acclimatized to the laboratory conditions (12h light/dark cycle) before being used for continuous core body temperature and activity monitoring. The mice were individually caged and tail suspended using a strip of adhesive surgical tape attached to a chain hanging from a pulley. Peripheral blood and liver tissues collection were consecutively performed. Blood samples and liver tissues were collected from tail-suspended and control mice under LD 12:12h and DD conditions during the 12th, 13th and 14th testing days at 4h intervals. Melatonin and corticosterone in mice plasma at different time points were assayed. NIH-3T3 cells were plated in culture dish for 22h before the experiment. For ground-based simulation of weightlessness, the medium was exchanged with DMEM containing 50% horse serum to synchronization, after 2 h, this medium was replaced with DMEM and 10% FBS. Then, at various time point (0, 6, 12, 18, 24, 30, 36, 42, 48h), cells were cultured on the roating clinostat at 30r/min. Total RNA was extracted from liver and NIH-3T3 cells and subsequently reverse-transcribed. The SYBR green I real-time quantitative PCR system was conducted to examine the mRNA expression level of clock, bmal1, per1, per2, cry1 and cry2 in mice and NIH-3T3 cells, respectively. Paired comparisons of the circadian genes expression between period, peak values, amplitude and mesor (midline estimating statistic of rhythm) were examined for evidence of circadian variation using Chronos-Fit software in mice and Cosine analyses in NIH-3T3 cells. Statistical analysis: All numerical data were expressed as the mean ± standard deviation (SD). Statistical differences among groups were analyzed by one-way analysis of variance (ANOVA) to determine time points differences in the study parameters. Statistical differences between two groups were determined by the Student's t test. Results: (1) Circadian rhythm of clock and bmal1 mRNA expression was found in each testing day with similar peak phase in both tail suspension group and control group. Compared with control group, tail suspension group showed that the peak phase of clock gene mRNA level advanced approximately 4 hours and the amplitude of bmal1 gene mRNA level significantly reduced at ZT2 and ZT6. (2) The expression of circadian genes in NIH-3T3 cells demonstrated that the maximum and minimum value of mRNA relative expression levels of clock and bmal1 during clinorotation were both found approximately at the time points 6h and 18h, respectively. The period length of experimental group was about 16h longer than control group. The peak phase and peak time of clock and bmal1 with simulated weightlessness group were ahead of control group. (3) At the Zeitgeber time 2 (ZT2), we found that 23 miRNAs in the SCN and 60 miRNAs in liver were significantly altered on the basis of an adjusted FC>2 among 611 miRNAs. At the ZT14, 23 miRNAs in the SCN and 57 miRNAs in liver were altered compared with the control group (FC>2). (a) Effects of clock knock out altered expression of miRNA. We analyzed the miRNA profile in SCN and liver of clock knonck out and WT mouse at two different time points using miRNA microarray. Of these, miR-122,miR-144, miR-210 and miR-669b at ZT2, miR-200a, miR-200b, miR-429, miR-455, miR-669d and miR-96 at ZT14 were both changed in SCN and liver, respectively. Interestingly, the miR-122, a tissue specific miRNA of liver was also changed in SCN at ZT2. (b) Effects of light altered expression of miRNA: Light is an important environmental factors to regulate circadian genes expression. In clock mutant mice, all altered miRNAs except miR-144 were down-regulated in SCN while up-regulated in liver at ZT14 compared to ZT2. Interestingly, the miRNAs expression profiling in SCN and liver were opposite of WT mice at ZT14 compared to ZT2. (c) Effects of clock mutant on mRNA expression: To test whether the alteration in expression of miRNAs correlates with the gene expression pattern, cDNA microarray of SCN were assayed. The results revealed that the expression of nearly 1285 genes was altered substantially with at least 1 fold change absolute in the absence of clock. Among these altered genes, we chose the mRNAs with at least 4 fold changes to further study. Only 23 genes were altered in clock knockout compared with WT at ZT2, but 67 genes at ZT14. (d) Effects of light on mRNA expression. To evaluate the light effecting on genes expression in SCN, the cDNA microarrays in SCN at ZT2 and ZT14 were tested. 21 genes were over expression and 12 genes were down regulation ZT14 compared with ZT2 in WT. The number of altered genes in clock-/- mice was 67. (e) Direct interaction between altered miRNAs and mRNAs. To identify the interaction between regulatory miRNAs and altered mRNAs in the absence of clock, we predicted the target genes of miRNAs by TargetScan. The genes both the target genes of miRNAs and altered in cDNA microarray were unravelled. The exploration of functional interaction between miRNAs and clock genes mRNA is ongoing. Conclusion: Taken together, these results indicate that ground-based simulated weightlessness could alter the molecular biological rhythm patterns, which may preliminarily present the biological regulatory mechanism of circadian rhythm systems under spaceflight-related gravity. The potential underlying functional miRNAs could serve as targets to interfere with for interaction between central and peripheral circadian organs under simulated microgravity. This preliminary study may facilitate the exploration of circadian rhythm characteristics in space and the detailed process of signal transduction and circadian gene regulation. Key words: circadian rhythms, tail-suspension, simulated microgravity, clock genes, miRNAs Acknowledgments: This study was supported by the National Basic Research Program of China (Grant NO. 2011CB707704) and the Foundation of State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center (Grant NO. SMFA13B02, SMFA09A06 and SMFA12B05).

  14. Regulatory role of miRNAs in polyamine gene expression in the prefrontal cortex of depressed suicide completers.

    PubMed

    Lopez, Juan Pablo; Fiori, Laura M; Gross, Jeffrey A; Labonte, Benoit; Yerko, Volodymyr; Mechawar, Naguib; Turecki, Gustavo

    2014-01-01

    MicroRNAs (miRNAs) are small, non-coding RNA molecules that play an important role in the post-transcriptional regulation of mRNA. These molecules have been the subject of growing interest as they are believed to control the regulation of a large number of genes, including those expressed in the brain. Evidence suggests that miRNAs could be involved in the pathogenesis of neuropsychiatric disorders. Alterations in metabolic enzymes of the polyamine system have been reported to play a role in predisposition to suicidal behaviour. We have previously shown the expression of the polyamine genes SAT1 and SMOX to be down-regulated in the brains of suicide completers. In this study, we hypothesized that the dysregulation of these genes in depressed suicide completers could be influenced by miRNA post-transcriptional regulation. Using a stringent target prediction analysis, we identified several miRNAs that target the 3'UTR of SAT1 and SMOX. We profiled the expression of 10 miRNAs in the prefrontal cortex (BA44) of suicide completers (N = 15) and controls (N = 16) using qRT-PCR. We found that several miRNAs showed significant up-regulation in the prefrontal cortex of suicide completers compared to psychiatric healthy controls. Furthermore, we demonstrated a significant correlation between these miRNAs and the expression levels of both SAT1 and SMOX. Our results suggest a relationship between miRNAs and polyamine gene expression in the suicide brain, and postulate a mechanism for SAT1 and SMOX down-regulation by post-transcriptional activity of miRNAs.

  15. mRNA changes in nucleus accumbens related to methamphetamine addiction in mice

    NASA Astrophysics Data System (ADS)

    Zhu, Li; Li, Jiaqi; Dong, Nan; Guan, Fanglin; Liu, Yufeng; Ma, Dongliang; Goh, Eyleen L. K.; Chen, Teng

    2016-11-01

    Methamphetamine (METH) is a highly addictive psychostimulant that elicits aberrant changes in the expression of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the nucleus accumbens of mice, indicating a potential role of METH in post-transcriptional regulations. To decipher the potential consequences of these post-transcriptional regulations in response to METH, we performed strand-specific RNA sequencing (ssRNA-Seq) to identify alterations in mRNA expression and their alternative splicing in the nucleus accumbens of mice following exposure to METH. METH-mediated changes in mRNAs were analyzed and correlated with previously reported changes in non-coding RNAs (miRNAs and lncRNAs) to determine the potential functions of these mRNA changes observed here and how non-coding RNAs are involved. A total of 2171 mRNAs were differentially expressed in response to METH with functions involved in synaptic plasticity, mitochondrial energy metabolism and immune response. 309 and 589 of these mRNAs are potential targets of miRNAs and lncRNAs respectively. In addition, METH treatment decreases mRNA alternative splicing, and there are 818 METH-specific events not observed in saline-treated mice. Our results suggest that METH-mediated addiction could be attributed by changes in miRNAs and lncRNAs and consequently, changes in mRNA alternative splicing and expression. In conclusion, our study reported a methamphetamine-modified nucleus accumbens transcriptome and provided non-coding RNA-mRNA interaction networks possibly involved in METH addiction.

  16. MiR-214 regulates the function of osteoblast under simulated microgravity by targeting ATF4

    NASA Astrophysics Data System (ADS)

    Li, Yingxian; Wang, Xiaogang; Li, Qi; Lv, Ke; Wan, Yumin; Li, Yinghui; Bai, Yanqiang

    Background: MicroRNAs (miRNAs) are small fragments of single-stranded RNA containing 18-24 nucleotides, and are generated from endogenous transcripts. MicroRNAs function in post-transcriptional gene silencing by targeting the 3'-untranslated region (UTR) of mRNAs, resulting in translational repression. Growing evidence shows that microRNAs (miRNAs) regu-late various developmental and homeostatic events in vertebrates and invertebrates. Osteoblast differentiation is a key step in proper skeletal development and acquisition of bone mass; How-ever, the physiological role of non-coding small RNAs, especially miRNAs, in osteoblast dif-ferentiation remains elusive. Methods: To study the potential involvement of miRNAs in osteoblast differentiation under stimulated microgravity, we analyzed the expression of 20 bone relative miRNAs using real time PCR platform to find particularly miRNAs whose expression is altered during osteoblast differentiation. TargetScan, miRBase and Miranda were used to predict the target gene of candidate miRNA. To investigate whether ATF4 can be directly targeted by miR-214, we engineered luciferase reporters that have either the wild-type 3'UTRs of these genes, or the mutant UTRs with a 6 base pair (bp) deletion in the target sites. Lastly, to address the in vivo role of miR-214 in bone formation, tail suspension mice model was used to simulate the change of osteoblast function and bone loss. Results: Recent studies have sug-gested that miRNAs might play a role in osteoblast differentiation and bone formation. Here, we identify miR-214 in MC3T3-E1 cells, which is a primary mouse osteoblasts cell line, to promote osteoblast differentiation by repressing Activating Transcription Factor4 (ATF4) ex-pression at the posttranscriptional level. What is more, miR-214 was found to be transcribed in C2C12 cells during bone morphogenetic protein 2-induced (BMP2-induced) osteogenesis, and overexpression of miR-214 attenuated BMP2-induced osteoblastogenesis, whereas inhibition of miR-214 expression enhanced this progress. The levels of miR-214 increased dramatically in tail suspension mice. Conclusions: Thus, our studies show that miR-214 plays an important role in osteoblast differentiation by targeting ATF4 under stimulated microgravity induced bone loss and contributes to osteoporosis via its effect on osteoblasts.

  17. Screening of miRNA profiles and construction of regulation networks in early and late lactation of dairy goat mammary glands.

    PubMed

    Ji, Zhibin; Liu, Zhaohua; Chao, Tianle; Hou, Lei; Fan, Rui; He, Rongyan; Wang, Guizhi; Wang, Jianmin

    2017-09-20

    In recent years, studies related to the expression profiles of miRNAs in the dairy goat mammary gland were performed, but regulatory mechanisms in the physiological environment and the dynamic homeostasis of mammary gland development and lactation are not clear. In the present study, sequencing data analysis of early and late lactation uncovered a total of 1,487 unique miRNAs, including 45 novel miRNA candidates and 1,442 known and conserved miRNAs, of which 758 miRNAs were co-expressed and 378 differentially expressed with P < 0.05. Moreover, 76 non-redundant target genes were annotated in 347 GO consortiums, with 3,143 candidate target genes grouped into 33 pathways. Additionally, 18 predicted target genes of 214 miRNAs were directly annotated in mammary gland development and used to construct regulatory networks based on GO annotation and the KEGG pathway. The expression levels of seven known miRNAs and three novel miRNAs were examined using quantitative real-time PCR. The results showed that miRNAs might play important roles in early and late lactation during dairy goat mammary gland development, which will be helpful to obtain a better understanding of the genetic control of mammary gland lactation and development.

  18. Elsevier Trophoblast Research Award Lecture: origin, evolution and future of placenta miRNAs.

    PubMed

    Morales-Prieto, D M; Ospina-Prieto, S; Schmidt, A; Chaiwangyen, W; Markert, U R

    2014-02-01

    MicroRNAs (miRNAs) regulate the expression of a large number of genes in plants and animals. Placental miRNAs appeared late in evolution and can be found only in mammals. Nevertheless, these miRNAs are constantly under evolutionary pressure. As a consequence, miRNA sequences and their mRNA targets may differ between species, and some miRNAs can only be found in humans. Their expression can be tissue- or cell-specific and can vary time-dependently. Human placenta tissue exhibits a specific miRNA expression pattern that dynamically changes during pregnancy and is reflected in the maternal plasma. Some placental miRNAs are involved in or associated with major pregnancy disorders, such as preeclampsia, intrauterine growth restriction or preterm delivery and, therefore, have a strong potential for usage as sensitive and specific biomarkers. In this review we summarize current knowledge on the origin of placental miRNAs, their expression in humans with special regard to trophoblast cells, interspecies differences, and their future as biomarkers. It can be concluded that animal models for human reproduction have a different panel of miRNAs and targets, and can only partly reflect or predict the situation in humans. Copyright © 2013. Published by Elsevier Ltd.

  19. A Diversity of Conserved and Novel Ovarian MicroRNAs in the Speckled Wood (Pararge aegeria)

    PubMed Central

    Quah, Shan; Breuker, Casper J.; Holland, Peter W. H.

    2015-01-01

    microRNAs (miRNAs) are important regulators of animal development and other processes, and impart robustness to living systems through post-transcriptional regulation of specific mRNA transcripts. It is postulated that newly emergent miRNAs are generally expressed at low levels and with spatiotemporally restricted expression domains, thus minimising effects of spurious targeting on animal transcriptomes. Here we present ovarian miRNA transcriptome data for two geographically distinct populations of the Speckled Wood butterfly (Pararge aegeria). A total of 74 miRNAs were identified, including 11 newly discovered and evolutionarily-young miRNAs, bringing the total of miRNA genes known from P. aegeria up to 150. We find a positive correlation between miRNA age and expression level. A common set of 55 miRNAs are expressed in both populations. From this set, we identify seven that are consistently either ovary-specific or highly upregulated in ovaries relative to other tissues. This ‘ovary set’ includes miRNAs with known contributions to ovarian function in other insect species with similar ovaries and mode of oogenesis, including miR-989 and miR-2763, plus new candidates for ovarian function. We also note that conserved miRNAs are overrepresented in the ovary relative to the whole body. PMID:26556800

  20. MicroRNAs: regulators of gene expression and cell differentiation

    PubMed Central

    Shivdasani, Ramesh A.

    2006-01-01

    The existence and roles of a class of abundant regulatory RNA molecules have recently come into sharp focus. Micro-RNAs (miRNAs) are small (approximately 22 bases), non–protein-coding RNAs that recognize target sequences of imperfect complementarity in cognate mRNAs and either destabilize them or inhibit protein translation. Although mechanisms of miRNA biogenesis have been elucidated in some detail, there is limited appreciation of their biological functions. Reported examples typically focus on miRNA regulation of a single tissue-restricted transcript, often one encoding a transcription factor, that controls a specific aspect of development, cell differentiation, or physiology. However, computational algorithms predict up to hundreds of putative targets for individual miRNAs, single transcripts may be regulated by multiple miRNAs, and miRNAs may either eliminate target gene expression or serve to finetune transcript and protein levels. Theoretical considerations and early experimental results hence suggest diverse roles for miRNAs as a class. One appealing possibility, that miRNAs eliminate low-level expression of unwanted genes and hence refine unilineage gene expression, may be especially amenable to evaluation in models of hematopoiesis. This review summarizes current understanding of miRNA mechanisms, outlines some of the important outstanding questions, and describes studies that attempt to define miRNA functions in hematopoiesis. PMID:16882713

  1. Viruses and miRNAs: More Friends than Foes.

    PubMed

    Bruscella, Patrice; Bottini, Silvia; Baudesson, Camille; Pawlotsky, Jean-Michel; Feray, Cyrille; Trabucchi, Michele

    2017-01-01

    There is evidence that eukaryotic miRNAs (hereafter called host miRNAs) play a role in the replication and propagation of viruses. Expression or targeting of host miRNAs can be involved in cellular antiviral responses. Most times host miRNAs play a role in viral life-cycles and promote infection through complex regulatory pathways. miRNAs can also be encoded by a viral genome and be expressed in the host cell. Viral miRNAs can share common sequences with host miRNAs or have totally different sequences. They can regulate a variety of biological processes involved in viral infection, including apoptosis, evasion of the immune response, or modulation of viral life-cycle phases. Overall, virus/miRNA pathway interaction is defined by a plethora of complex mechanisms, though not yet fully understood. This article review summarizes recent advances and novel biological concepts related to the understanding of miRNA expression, control and function during viral infections. The article also discusses potential therapeutic applications of this particular host-pathogen interaction.

  2. Viruses and miRNAs: More Friends than Foes

    PubMed Central

    Bruscella, Patrice; Bottini, Silvia; Baudesson, Camille; Pawlotsky, Jean-Michel; Feray, Cyrille; Trabucchi, Michele

    2017-01-01

    There is evidence that eukaryotic miRNAs (hereafter called host miRNAs) play a role in the replication and propagation of viruses. Expression or targeting of host miRNAs can be involved in cellular antiviral responses. Most times host miRNAs play a role in viral life-cycles and promote infection through complex regulatory pathways. miRNAs can also be encoded by a viral genome and be expressed in the host cell. Viral miRNAs can share common sequences with host miRNAs or have totally different sequences. They can regulate a variety of biological processes involved in viral infection, including apoptosis, evasion of the immune response, or modulation of viral life-cycle phases. Overall, virus/miRNA pathway interaction is defined by a plethora of complex mechanisms, though not yet fully understood. This article review summarizes recent advances and novel biological concepts related to the understanding of miRNA expression, control and function during viral infections. The article also discusses potential therapeutic applications of this particular host–pathogen interaction. PMID:28555130

  3. Characterization of microRNAs of Beta macrocarpa and their responses to Beet necrotic yellow vein virus infection.

    PubMed

    Liu, Jun-Ying; Fan, Hui-Yan; Wang, Ying; Zhang, Yong-Liang; Li, Da-Wei; Yu, Jia-Lin; Han, Cheng-Gui

    2017-01-01

    Plant microRNAs (miRNAs) are a class of non-coding RNAs that play important roles in plant development, defense, and symptom development. Here, 547 known miRNAs representing 129 miRNA families, and 282 potential novel miRNAs were identified in Beta macrocarpa using small RNA deep sequencing. A phylogenetic analysis was performed, and 8 Beta lineage-specific miRNAs were identified. Through a differential expression analysis, miRNAs associated with Beet necrotic yellow vein virus (BNYVV) infection were identified and confirmed using a microarray analysis and stem-loop RT-qPCR. In total, 103 known miRNAs representing 38 miRNA families, and 45 potential novel miRNAs were differentially regulated, with at least a two-fold change, in BNYVV-infected plants compared with that of the mock-inoculated control. Targets of these differentially expressed miRNAs were also predicted by degradome sequencing. These differentially expressed miRNAs were involved in hormone biosynthesis and signal transduction pathways, and enhanced axillary bud development and plant defenses. This work is the first to describe miRNAs of the plant genus Beta and may offer a reference for miRNA research in other species in the genus. It provides valuable information on the pathogenicity mechanisms of BNYVV.

  4. Uncovering microRNA-mediated response to SO2 stress in Arabidopsis thaliana by deep sequencing.

    PubMed

    Li, Lihong; Xue, Meizhao; Yi, Huilan

    2016-10-05

    Sulfur dioxide (SO2) is a major air pollutant and has significant impacts on plants. MicroRNAs (miRNAs) are a class of gene expression regulators that play important roles in response to environmental stresses. In this study, deep sequencing was used for genome-wide identification of miRNAs and their expression profiles in response to SO2 stress in Arabidopsis thaliana shoots. A total of 27 conserved miRNAs and 5 novel miRNAs were found to be differentially expressed under SO2 stress. qRT-PCR analysis showed mostly negative correlation between miRNA accumulation and target gene mRNA abundance, suggesting regulatory roles of these miRNAs during SO2 exposure. The target genes of SO2-responsive miRNAs encode transcription factors and proteins that regulate auxin signaling and stress response, and the miRNAs-mediated suppression of these genes could improve plant resistance to SO2 stress. Promoter sequence analysis of genes encoding SO2-responsive miRNAs showed that stress-responsive and phytohormone-related cis-regulatory elements occurred frequently, providing additional evidence of the involvement of miRNAs in adaption to SO2 stress. This study represents a comprehensive expression profiling of SO2-responsive miRNAs in Arabidopsis and broads our perspective on the ubiquitous regulatory roles of miRNAs under stress conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Bioinformatic identification and experimental validation of miRNAs from foxtail millet (Setaria italica).

    PubMed

    Han, Jun; Xie, Hao; Sun, Qingpeng; Wang, Jun; Lu, Min; Wang, Weixiang; Guo, Erhu; Pan, Jinbao

    2014-08-10

    MiRNAs are a novel group of non-coding small RNAs that negatively regulate gene expression. Many miRNAs have been identified and investigated extensively in plant species with sequenced genomes. However, few miRNAs have been identified in foxtail millet (Setaria italica), which is an ancient cereal crop of great importance for dry land agriculture. In this study, 271 foxtail millet miRNAs belonging to 44 families were identified using a bioinformatics approach. Twenty-three pairs of sense/antisense miRNAs belonging to 13 families, and 18 miRNA clusters containing members of 8 families were discovered in foxtail millet. We identified 432 potential targets for 38 miRNA families, most of which were predicted to be involved in plant development, signal transduction, metabolic pathways, disease resistance, and environmental stress responses. Gene ontology (GO) analysis revealed that 101, 56, and 23 target genes were involved in molecular functions, biological processes, and cellular components, respectively. We investigated the expression patterns of 43 selected miRNAs using qRT-PCR analysis. All of the miRNAs were expressed ubiquitously with many exhibiting different expression levels in different tissues. We validated five predicted targets of four miRNAs using the RNA ligase mediated rapid amplification of cDNA end (5'-RLM-RACE) method. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Genome-wide identification and characterization of microRNA genes and their targets in flax (Linum usitatissimum): Characterization of flax miRNA genes.

    PubMed

    Barvkar, Vitthal T; Pardeshi, Varsha C; Kale, Sandip M; Qiu, Shuqing; Rollins, Meaghen; Datla, Raju; Gupta, Vidya S; Kadoo, Narendra Y

    2013-04-01

    MicroRNAs (miRNAs) are small (20-24 nucleotide long) endogenous regulatory RNAs that play important roles in plant growth and development. They regulate gene expression at the post-transcriptional level by translational repression or target degradation and gene silencing. In this study, we identified 116 conserved miRNAs belonging to 23 families from the flax (Linum usitatissimum L.) genome using a computational approach. The precursor miRNAs varied in length; while most of the mature miRNAs were 21 nucleotide long, intergenic and showed conserved signatures of RNA polymerase II transcripts in their upstream regions. Promoter region analysis of the flax miRNA genes indicated prevalence of MYB transcription factor binding sites. Four miRNA gene clusters containing members of three phylogenetic groups were identified. Further, 142 target genes were predicted for these miRNAs and most of these represent transcriptional regulators. The miRNA encoding genes were expressed in diverse tissues as determined by digital expression analysis as well as real-time PCR. The expression of fourteen miRNAs and nine target genes was independently validated using the quantitative reverse transcription PCR (qRT-PCR). This study suggests that a large number of conserved plant miRNAs are also found in flax and these may play important roles in growth and development of flax.

  7. Bioinformatics and Microarray Analysis of miRNAs in Aged Female Mice Model Implied New Molecular Mechanisms for Impaired Fracture Healing

    PubMed Central

    He, Bing; Zhang, Zong-Kang; Liu, Jin; He, Yi-Xin; Tang, Tao; Li, Jie; Guo, Bao-Sheng; Lu, Ai-Ping; Zhang, Bao-Ting; Zhang, Ge

    2016-01-01

    Impaired fracture healing in aged females is still a challenge in clinics. MicroRNAs (miRNAs) play important roles in fracture healing. This study aims to identify the miRNAs that potentially contribute to the impaired fracture healing in aged females. Transverse femoral shaft fractures were created in adult and aged female mice. At post-fracture 0-, 2- and 4-week, the fracture sites were scanned by micro computed tomography to confirm that the fracture healing was impaired in aged female mice and the fracture calluses were collected for miRNA microarray analysis. A total of 53 significantly differentially expressed miRNAs and 5438 miRNA-target gene interactions involved in bone fracture healing were identified. A novel scoring system was designed to analyze the miRNA contribution to impaired fracture healing (RCIFH). Using this method, 11 novel miRNAs were identified to impair fracture healing at 2- or 4-week post-fracture. Thereafter, function analysis of target genes was performed for miRNAs with high RCIFH values. The results showed that high RCIFH miRNAs in aged female mice might impair fracture healing not only by down-regulating angiogenesis-, chondrogenesis-, and osteogenesis-related pathways, but also by up-regulating osteoclastogenesis-related pathway, which implied the essential roles of these high RCIFH miRNAs in impaired fracture healing in aged females, and might promote the discovery of novel therapeutic strategies. PMID:27527150

  8. MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale

    PubMed Central

    Du, Ngoc-Hien; Arpat, Alaaddin Bulak; De Matos, Mara; Gatfield, David

    2014-01-01

    A considerable proportion of mammalian gene expression undergoes circadian oscillations. Post-transcriptional mechanisms likely make important contributions to mRNA abundance rhythms. We have investigated how microRNAs (miRNAs) contribute to core clock and clock-controlled gene expression using mice in which miRNA biogenesis can be inactivated in the liver. While the hepatic core clock was surprisingly resilient to miRNA loss, whole transcriptome sequencing uncovered widespread effects on clock output gene expression. Cyclic transcription paired with miRNA-mediated regulation was thus identified as a frequent phenomenon that affected up to 30% of the rhythmic transcriptome and served to post-transcriptionally adjust the phases and amplitudes of rhythmic mRNA accumulation. However, only few mRNA rhythms were actually generated by miRNAs. Overall, our study suggests that miRNAs function to adapt clock-driven gene expression to tissue-specific requirements. Finally, we pinpoint several miRNAs predicted to act as modulators of rhythmic transcripts, and identify rhythmic pathways particularly prone to miRNA regulation. DOI: http://dx.doi.org/10.7554/eLife.02510.001 PMID:24867642

  9. MicroRNA expression profiling during the life cycle of the silkworm (Bombyx mori)

    PubMed Central

    Liu, Shiping; Zhang, Liang; Li, Qibin; Zhao, Ping; Duan, Jun; Cheng, Daojun; Xiang, Zhonghuai; Xia, Qingyou

    2009-01-01

    Background MicroRNAs (miRNAs) are expressed by a wide range of eukaryotic organisms, and function in diverse biological processes. Numerous miRNAs have been identified in Bombyx mori, but the temporal expression profiles of miRNAs corresponding to each stage transition over the entire life cycle of the silkworm remain to be established. To obtain a comprehensive overview of the correlation between miRNA expression and stage transitions, we performed a whole-life test and subsequent stage-by-stage examinations on nearly one hundred miRNAs in the silkworm. Results Our results show that miRNAs display a wide variety of expression profiles over the whole life of the silkworm, including continuous expression from embryo to adult (miR-184), up-regulation over the entire life cycle (let-7 and miR-100), down-regulation over the entire life cycle (miR-124), expression associated with embryogenesis (miR-29 and miR-92), up-regulation from early 3rd instar to pupa (miR-275), and complementary pulses in expression between miR-34b and miR-275. Stage-by-stage examinations revealed further expression patterns, such as emergence at specific time-points during embryogenesis and up-regulation of miRNA groups in late embryos (miR-1 and bantam), expression associated with stage transition between instar and molt larval stages (miR-34b), expression associated with silk gland growth and spinning activity (miR-274), continuous high expression from the spinning larval to pupal and adult stages (miR-252 and miR-31a), a coordinate expression trough in day 3 pupae of both sexes (miR-10b and miR-281), up-regulation in pupal metamorphosis of both sexes (miR-29b), and down-regulation in pupal metamorphosis of both sexes (miR-275). Conclusion We present the full-scale expression profiles of miRNAs throughout the life cycle of Bombyx mori. The whole-life expression profile was further investigated via stage-by-stage analysis. Our data provide an important resource for more detailed functional analysis of miRNAs in this animal. PMID:19785751

  10. MicroRNA expression profiling during the life cycle of the silkworm (Bombyx mori).

    PubMed

    Liu, Shiping; Zhang, Liang; Li, Qibin; Zhao, Ping; Duan, Jun; Cheng, Daojun; Xiang, Zhonghuai; Xia, Qingyou

    2009-09-28

    MicroRNAs (miRNAs) are expressed by a wide range of eukaryotic organisms, and function in diverse biological processes. Numerous miRNAs have been identified in Bombyx mori, but the temporal expression profiles of miRNAs corresponding to each stage transition over the entire life cycle of the silkworm remain to be established. To obtain a comprehensive overview of the correlation between miRNA expression and stage transitions, we performed a whole-life test and subsequent stage-by-stage examinations on nearly one hundred miRNAs in the silkworm. Our results show that miRNAs display a wide variety of expression profiles over the whole life of the silkworm, including continuous expression from embryo to adult (miR-184), up-regulation over the entire life cycle (let-7 and miR-100), down-regulation over the entire life cycle (miR-124), expression associated with embryogenesis (miR-29 and miR-92), up-regulation from early 3rd instar to pupa (miR-275), and complementary pulses in expression between miR-34b and miR-275. Stage-by-stage examinations revealed further expression patterns, such as emergence at specific time-points during embryogenesis and up-regulation of miRNA groups in late embryos (miR-1 and bantam), expression associated with stage transition between instar and molt larval stages (miR-34b), expression associated with silk gland growth and spinning activity (miR-274), continuous high expression from the spinning larval to pupal and adult stages (miR-252 and miR-31a), a coordinate expression trough in day 3 pupae of both sexes (miR-10b and miR-281), up-regulation in pupal metamorphosis of both sexes (miR-29b), and down-regulation in pupal metamorphosis of both sexes (miR-275). We present the full-scale expression profiles of miRNAs throughout the life cycle of Bombyx mori. The whole-life expression profile was further investigated via stage-by-stage analysis. Our data provide an important resource for more detailed functional analysis of miRNAs in this animal.

  11. Profiling microRNA expression during multi-staged date palm (Phoenix dactylifera L.) fruit development.

    PubMed

    Xin, Chengqi; Liu, Wanfei; Lin, Qiang; Zhang, Xiaowei; Cui, Peng; Li, Fusen; Zhang, Guangyu; Pan, Linlin; Al-Amer, Ali; Mei, Hailiang; Al-Mssallem, Ibrahim S; Hu, Songnian; Al-Johi, Hasan Awad; Yu, Jun

    2015-04-01

    MicroRNAs (miRNAs) play crucial roles in multiple stages of plant development and regulate gene expression at posttranscriptional and translational levels. In this study, we first identified 238 conserved miRNAs in date palm (Phoenix dactylifera) based on a high-quality genome assembly and defined 78 fruit-development-associated (FDA) miRNAs, whose expression profiles are variable at different fruit development stages. Using experimental data, we subsequently detected 276 novel P. dactylifera-specific FDA miRNAs and predicted their targets. We also revealed that FDA miRNAs function mainly in regulating genes involved in starch/sucrose metabolisms and other carbon metabolic pathways; among them, 221 FDA miRNAs exhibit negative correlation with their corresponding targets, which suggests their direct regulatory roles on mRNA targets. Our data define a comprehensive set of conserved and novel FDA miRNAs along with their expression profiles, which provide a basis for further experimentation in assigning discrete functions of these miRNAs in P. dactylifera fruit development. Copyright © 2015. Published by Elsevier Inc.

  12. Genome-wide analysis of miRNAs in the ovaries of Jining Grey and Laiwu Black goats to explore the regulation of fecundity.

    PubMed

    Miao, Xiangyang; Luo, Qingmiao; Zhao, Huijing; Qin, Xiaoyu

    2016-11-29

    Goat fecundity is important for agriculture and varies depending on the genetic background of the goat. Two excellent domestic breeds in China, the Jining Grey and Laiwu Black goats, have different fecundity and prolificacies. To explore the potential miRNAs that regulate the expression of the genes involved in these prolific differences and to potentially discover new miRNAs, we performed a genome-wide analysis of the miRNAs in the ovaries from these two goats using RNA-Seq technology. Thirty miRNAs were differentially expressed between the Jining Grey and Laiwu Black goats. Gene Ontology and KEGG pathway analyses revealed that the target genes of the differentially expressed miRNAs were significantly enriched in several biological processes and pathways. A protein-protein interaction analysis indicated that the miRNAs and their target genes were related to the reproduction complex regulation network. The differential miRNA expression profiles found in the ovaries between the two distinctive breeds of goats studied here provide a unique resource for addressing fecundity differences in goats.

  13. Identification and comparative analysis of the microRNA transcriptome in roots of two contrasting tobacco genotypes in response to cadmium stress

    NASA Astrophysics Data System (ADS)

    He, Xiaoyan; Zheng, Weite; Cao, Fangbin; Wu, Feibo

    2016-09-01

    Tobacco (Nicotiana tabacum L.) is more acclimated to cadmium (Cd) uptake and preferentially enriches Cd in leaves than other crops. MicroRNAs (miRNAs) play crucial roles in regulating expression of various stress response genes in plants. However, genome-wide expression of miRNAs and their target genes in response to Cd stress in tobacco are still unknown. Here, miRNA high-throughput sequencing technology was performed using two contrasting tobacco genotypes Guiyan 1 and Yunyan 2 of Cd-sensitive and tolerance. Comprehensive analysis of miRNA expression profiles in control and Cd treated plants identified 72 known (27 families) and 14 novel differentially expressed miRNAs in the two genotypes. Among them, 28 known (14 families) and 5 novel miRNAs were considered as Cd tolerance associated miRNAs, which mainly involved in cell growth, ion homeostasis, stress defense, antioxidant and hormone signaling. Finally, a hypothetical model of Cd tolerance mechanism in Yunyan 2 was presented. Our findings suggest that some miRNAs and their target genes and pathways may play critical roles in Cd tolerance.

  14. Differentiation-associated microRNAs antagonize the Rb–E2F pathway to restrict proliferation

    PubMed Central

    Marzi, Matteo J.; Puggioni, Eleonora M. R.; Dall'Olio, Valentina; Bucci, Gabriele; Bernard, Loris; Bianchi, Fabrizio; Crescenzi, Marco

    2012-01-01

    The cancer-associated loss of microRNA (miRNA) expression leads to a proliferative advantage and aggressive behavior through largely unknown mechanisms. Here, we exploit a model system that recapitulates physiological terminal differentiation and its reversal upon oncogene expression to analyze coordinated mRNA/miRNA responses. The cell cycle reentry of myotubes, forced by the E1A oncogene, was associated with a pattern of mRNA/miRNA modulation that was largely reciprocal to that induced during the differentiation of myoblasts into myotubes. The E1A-induced mRNA response was preponderantly Retinoblastoma protein (Rb)-dependent. Conversely, the miRNA response was mostly Rb-independent and exerted through tissue-specific factors and Myc. A subset of these miRNAs (miR-1, miR-34, miR-22, miR-365, miR-29, miR-145, and Let-7) was shown to coordinately target Rb-dependent cell cycle and DNA replication mRNAs. Thus, a dual level of regulation—transcriptional regulation via Rb–E2F and posttranscriptional regulation via miRNAs—confers robustness to cell cycle control and provides a molecular basis to understand the role of miRNA subversion in cancer. PMID:23027903

  15. [MicroRNAs in diagnosis and prognosis in lung cancer].

    PubMed

    Avila-Moreno, Federico; Urrea, Francisco; Ortiz-Quintero, Blanca

    2011-01-01

    MicroRNAs (miRNAs) are endogenous small non-coding RNA molecules that regulate gene expression at the posttranscriptional level by blocking translation or inducing degradation of messenger RNA targets. It has been shown that miRNAs participate in a wide spectrum of essential biologic processes including cell cycle, differentiation, development, apoptosis and hematopoiesis, revealing one of the major regulators of human gene expression. Recent studies have shown evidences of abnormal expression of miRNAs in solid and hematological tumors, as well as the association of altered miRNAs with oncogenic or tumor suppressor functions, suggesting a key role of miRNAs in carcinogenesis. Moreover, unique profiles of altered miRNAs expression seem to allow distinction from normal tissue, prediction of disease outcomes, and evaluation of tumor aggressiveness in several types of cancer, including lung cancer. These unique and highly stable miRNAs patterns seems not to depend of age and race, and these characteristics highlight their potential diagnostic and prognosis utility. These findings are particularly promising for lung cancer, a worldwide leading cause of cancer-related deaths with a poor survival rate, despite the discovery of novel therapies. This review describes the potential of miRNAs as biomarkers for diagnosis, cancer classification and estimation of prognosis in lung cancer; and the approaches used to detect and quantify these miRNAs; including the current information about circulating miRNAs as potential biomarkers in lung cancer. This review also provides a description of miRNAs biogenesis, nomenclature and available database for miRNA sequences.

  16. MicroRNAs and cancer.

    PubMed

    Cowland, Jack B; Hother, Christoffer; Grønbaek, Kirsten

    2007-10-01

    MicroRNAs (miRNAs) are a recently discovered group of small RNA molecules involved in the regulation of gene expression. Analogously to mRNAs, the non-protein-encoding pri-miRNAs are synthesized by RNA polymerase II and post-transcriptionally modified by addition of a 5'-cap and a 3'-poly (A) tail. Subsequently, the pri-miRNA undergoes a number of processing steps in the nucleus and cytoplasm, and ends up as a mature approximately 22 nt miRNA, which can exert its function by binding to the 3'-untranslated region of a subset of mRNAs. Binding of the miRNA to the mRNA results in a reduced translation rate and/or increased degradation of the mRNA. In this way a large number of cellular pathways, such as cellular proliferation, differentiation, and apoptosis, are regulated by mi-RNAs. As corruption of these pathways is the hallmark of many cancers, dysregulation of miRNA biogenesis or expression levels may lead to tumorigenesis. The mechanisms that alter the expression of miRNAs are similar to those that change the expression levels of mRNAs of tumor suppressor- and oncogenes, i.e. gross genomic aberrations, epigenetic changes, and minor mutations affecting the expression level, processing, or target-interaction potential of the miRNA. Furthermore, expression profiling of miRNAs has been found to be useful for classification of different tumor types. Taken together, miRNAs can be classified as onco-miRs or tumor suppressor-miRs, and may turn out to be potential targets for cancer therapy.

  17. Identification of candidate miRNAs and expression profile of yak oocytes before and after in vitro maturation by high-throughput sequencing.

    PubMed

    Xiong, X R; Lan, D L; Li, J; Zi, X D; Li, M Y

    2016-12-01

    Small RNA represents several unique non-coding RNA classes that have important function in a wide range of biological processes including development of germ cells and early embryonic, cell differentiation, cell proliferation and apoptosis in diverse organisms. However, little is known about their expression profiles and effects in yak oocytes maturation and early development. To investigate the function of small RNAs in the maturation process of yak oocyte and early development, two small RNA libraries of oocytes were constructed from germinal vesicle stage (GV) and maturation in vitro to metaphase II-arrested stage (M II) and then sequenced using small RNA high-throughput sequencing technology. A total of 9,742,592 and 12,168,523 clean reads were obtained from GV and M II oocytes, respectively. In total, 801 and 1,018 known miRNAs were acquired from GV and M II oocytes, and 75 miRNAs were found to be significantly differentially expressed: 47 miRNAs were upregulated and 28 miRNAs were downregulated in the M II oocytes compared to the GV stage. Among the upregulated miRNAs, miR-342 has the largest fold change (9.25-fold). Six highly expressed miRNAs (let-7i, miR-10b, miR-10c, miR-143, miR-146b and miR-148) were validated by real-time quantitative PCR (RT-qPCR) and consistent with the sequencing results. Furthermore, the expression patterns of two miRNAs and their potential targets were analysed in different developmental stages of oocytes and early embryos. This study provides the first miRNA profile in the mature process of yak oocyte. Seventy-five miRNAs are expressed differentially in GV and M II oocytes as well as among different development stages of early embryos, suggesting miRNAs involved in regulating oocyte maturation and early development of yak. These results showed specific miRNAs in yak oocytes had dynamic changes during meiosis. Further functional and mechanistic studies on the miRNAs during meiosis may beneficial to understanding the role of miRNAs on meiotic division. © 2016 Blackwell Verlag GmbH.

  18. Global population-specific variation in miRNA associated with cancer risk and clinical biomarkers.

    PubMed

    Rawlings-Goss, Renata A; Campbell, Michael C; Tishkoff, Sarah A

    2014-08-28

    MiRNA expression profiling is being actively investigated as a clinical biomarker and diagnostic tool to detect multiple cancer types and stages as well as other complex diseases. Initial investigations, however, have not comprehensively taken into account genetic variability affecting miRNA expression and/or function in populations of different ethnic backgrounds. Therefore, more complete surveys of miRNA genetic variability are needed to assess global patterns of miRNA variation within and between diverse human populations and their effect on clinically relevant miRNA genes. Genetic variation in 1524 miRNA genes was examined using whole genome sequencing (60x coverage) in a panel of 69 unrelated individuals from 14 global populations, including European, Asian and African populations. We identified 33 previously undescribed miRNA variants, and 31 miRNA containing variants that are globally population-differentiated in frequency between African and non-African populations (PD-miRNA). The top 1% of PD-miRNA were significantly enriched for regulation of genes involved in glucose/insulin metabolism and cell division (p < 10(-7)), most significantly the mitosis pathway, which is strongly linked to cancer onset. Overall, we identify 7 PD-miRNAs that are currently implicated as cancer biomarkers or diagnostics: hsa-mir-202, hsa-mir-423, hsa-mir-196a-2, hsa-mir-520h, hsa-mir-647, hsa-mir-943, and hsa-mir-1908. Notably, hsa-mir-202, a potential breast cancer biomarker, was found to show significantly high allele frequency differentiation at SNP rs12355840, which is known to affect miRNA expression levels in vivo and subsequently breast cancer mortality. MiRNA expression profiles represent a promising new category of disease biomarkers. However, population specific genetic variation can affect the prevalence and baseline expression of these miRNAs in diverse populations. Consequently, miRNA genetic and expression level variation among ethnic groups may be contributing in part to health disparities observed in multiple forms of cancer, specifically breast cancer, and will be an essential consideration when assessing the utility of miRNA biomarkers for the clinic.

  19. Interaction between Host MicroRNAs and the Gut Microbiota in Colorectal Cancer.

    PubMed

    Yuan, Ce; Burns, Michael B; Subramanian, Subbaya; Blekhman, Ran

    2018-01-01

    Although variation in gut microbiome composition has been linked with colorectal cancer (CRC), the factors that mediate the interactions between CRC tumors and the microbiome are poorly understood. MicroRNAs (miRNAs) are known to regulate CRC progression and are associated with patient survival outcomes. In addition, recent studies suggested that host miRNAs can also regulate bacterial growth and influence the composition of the gut microbiome. Here, we investigated the association between miRNA expression and microbiome composition in human CRC tumor and normal tissues. We identified 76 miRNAs as differentially expressed (DE) in tissue from CRC tumors and normal tissue, including the known oncogenic miRNAs miR-182, miR-503, and mir-17~92 cluster. These DE miRNAs were correlated with the relative abundances of several bacterial taxa, including Firmicutes , Bacteroidetes , and Proteobacteria . Bacteria correlated with DE miRNAs were enriched with distinct predicted metabolic categories. Additionally, we found that miRNAs that correlated with CRC-associated bacteria are predicted to regulate targets that are relevant for host-microbiome interactions and highlight a possible role for miRNA-driven glycan production in the recruitment of pathogenic microbial taxa. Our work characterized a global relationship between microbial community composition and miRNA expression in human CRC tissues. IMPORTANCE Recent studies have found an association between colorectal cancer (CRC) and the gut microbiota. One potential mechanism by which the microbiota can influence host physiology is through affecting gene expression in host cells. MicroRNAs (miRNAs) are small noncoding RNA molecules that can regulate gene expression and have important roles in cancer development. Here, we investigated the link between the gut microbiota and the expression of miRNA in CRC. We found that dozens of miRNAs are differentially regulated in CRC tumors and adjacent normal colon and that these miRNAs are correlated with the abundance of microbes in the tumor microenvironment. Moreover, we found that microbes that have been previously associated with CRC are correlated with miRNAs that regulate genes related to interactions with microbes. Notably, these miRNAs likely regulate glycan production, which is important for the recruitment of pathogenic microbial taxa to the tumor. This work provides a first systems-level map of the association between microbes and host miRNAs in the context of CRC and provides targets for further experimental validation and potential interventions.

  20. Identification of rat lung-specific microRNAs by micoRNA microarray: valuable discoveries for the facilitation of lung research.

    PubMed

    Wang, Yang; Weng, Tingting; Gou, Deming; Chen, Zhongming; Chintagari, Narendranath Reddy; Liu, Lin

    2007-01-24

    An important mechanism for gene regulation utilizes small non-coding RNAs called microRNAs (miRNAs). These small RNAs play important roles in tissue development, cell differentiation and proliferation, lipid and fat metabolism, stem cells, exocytosis, diseases and cancers. To date, relatively little is known about functions of miRNAs in the lung except lung cancer. In this study, we utilized a rat miRNA microarray containing 216 miRNA probes, printed in-house, to detect the expression of miRNAs in the rat lung compared to the rat heart, brain, liver, kidney and spleen. Statistical analysis using Significant Analysis of Microarray (SAM) and Tukey Honestly Significant Difference (HSD) revealed 2 miRNAs (miR-195 and miR-200c) expressed specifically in the lung and 9 miRNAs co-expressed in the lung and another organ. 12 selected miRNAs were verified by Northern blot analysis. The identified lung-specific miRNAs from this work will facilitate functional studies of miRNAs during normal physiological and pathophysiological processes of the lung.

  1. Safety and Feasibility of Lin- Cells Administration to ALS Patients: A Novel View on Humoral Factors and miRNA Profiles.

    PubMed

    Sobuś, Anna; Baumert, Bartłomiej; Litwińska, Zofia; Gołąb-Janowska, Monika; Stępniewski, Jacek; Kotowski, Maciej; Pius-Sadowska, Ewa; Kawa, Miłosz P; Gródecka-Szwajkiewicz, Dorota; Peregud-Pogorzelski, Jarosław; Dulak, Józef; Nowacki, Przemysław; Machaliński, Bogusław

    2018-04-27

    Therapeutic options for amyotrophic lateral sclerosis (ALS) are still limited. Great hopes, however, are placed in growth factors that show neuroprotective abilities (e.g., nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and vascular endothelial growth factor (VEGF)) and in the immune modulating features, in particular, the anti-inflammatory effects. In our study we aimed to investigate whether a bone marrow-derived lineage-negative (Lin-) cells population, after autologous application into cerebrospinal fluid (CSF), is able to produce noticeable concentrations of trophic factors and inflammatory-related proteins and thus influence the clinical course of ALS. To our knowledge, the evaluation of Lin- cells transplantation for ALS treatment has not been previously reported. Early hematopoietic Lin- cells were isolated from twelve ALS patients’ bone marrow, and later, the suspension of cells was administered into the subarachnoid space by lumbar puncture. Concentrations of selected proteins in the CSF and plasma were quantified by multiplex fluorescent bead-based immunoassays at different timepoints post-transplantation. We also chose microRNAs (miRNAs) related to muscle biology (miRNA-1, miRNA-133a, and miRNA-206) and angiogenesis and inflammation (miRNA-155 and miRNA-378) and tested, for the first time, their expression profiles in the CSF and plasma of ALS patients after Lin- cells transplantation. The injection of bone marrow cells resulted in decreased concentration of selected inflammatory proteins (C3) after Lin- cells injection, particularly in patients who had a better clinical outcome. Moreover, several analyzed miRNAs have changed expression levels in the CSF and plasma of ALS patients subsequent to Lin- cells administration. Interestingly, the expression of miR-206 increased in ALS patients, while miR-378 decreased both in the CSF and plasma one month after the cells’ injection. We propose that autologous lineage-negative early hematopoietic cells injected intrathecally may be a safe and feasible source of material for transplantations to the central nervous system (CNS) environment aimed at anti-inflammatory support provision for ALS adjuvant treatment strategies. Further research is needed to evaluate whether the observed effects could significantly influence the ALS progression.

  2. MicroRNA and protein profiles in invasive versus non-invasive oral tongue squamous cell carcinoma cells in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korvala, Johanna, E-mail: johanna.korvala@oulu.fi; Jee, Kowan; Department of Pathology, Haartman Institute, University of Helsinki, Helsinki

    Complex molecular pathways regulate cancer invasion. This study overviewed proteins and microRNAs (miRNAs) involved in oral tongue squamous cell carcinoma (OTSCC) invasion. The human highly aggressive OTSCC cell line HSC-3 was examined in a 3D organotypic human leiomyoma model. Non-invasive and invasive cells were laser-captured and protein expression was analyzed using mass spectrometry-based proteomics and miRNA expression by microarray. In functional studies the 3D invasion assay was replicated after silencing candidate miRNAs, miR-498 and miR-940, in invasive OTSCC cell lines (HSC-3 and SCC-15). Cell migration, proliferation and viability were also studied in the silenced cells. In HSC-3 cells, 67 proteinsmore » and 53 miRNAs showed significant fold-changes between non-invasive vs. invasive cells. Pathway enrichment analyses allocated “Focal adhesion” and “ECM-receptor interaction” as most important for invasion. Significantly, in HSC-3 cells, miR-498 silencing decreased the invasion area and miR-940 silencing reduced invasion area and depth. Viability, proliferation and migration weren’t significantly affected. In SCC-15 cells, down-regulation of miR-498 significantly reduced invasion and migration. This study shows HSC-3 specific miRNA and protein expression in invasion, and suggests that miR-498 and miR-940 affect invasion in vitro, the process being more influenced by mir-940 silencing in aggressive HSC-3 cells than in the less invasive SCC-15.« less

  3. Selective targeting of KRAS-Mutant cells by miR-126 through repression of multiple genes essential for the survival of KRAS-Mutant cells

    PubMed Central

    Hara, Toshifumi; Jones, Matthew F.; Subramanian, Murugan; Li, Xiao Ling; Ou, Oliver; Zhu, Yuelin; Yang, Yuan; Wakefield, Lalage M.; Hussain, S. Perwez; Gaedcke, Jochen; Ried, Thomas; Luo, Ji; Caplen, Natasha J.; Lal, Ashish

    2014-01-01

    MicroRNAs (miRNAs) regulate the expression of hundreds of genes. However, identifying the critical targets within a miRNA-regulated gene network is challenging. One approach is to identify miRNAs that exert a context-dependent effect, followed by expression profiling to determine how specific targets contribute to this selective effect. In this study, we performed miRNA mimic screens in isogenic KRAS-Wild-type (WT) and KRAS-Mutant colorectal cancer (CRC) cell lines to identify miRNAs selectively targeting KRAS-Mutant cells. One of the miRNAs we identified as a selective inhibitor of the survival of multiple KRAS-Mutant CRC lines was miR-126. In KRAS-Mutant cells, miR-126 over-expression increased the G1 compartment, inhibited clonogenicity and tumorigenicity, while exerting no effect on KRAS-WT cells. Unexpectedly, the miR-126-regulated transcriptome of KRAS-WT and KRAS-Mutant cells showed no significant differences. However, by analyzing the overlap between miR-126 targets with the synthetic lethal genes identified by RNAi in KRAS-Mutant cells, we identified and validated a subset of miR-126-regulated genes selectively required for the survival and clonogenicity of KRAS-Mutant cells. Our strategy therefore identified critical target genes within the miR-126-regulated gene network. We propose that the selective effect of miR-126 on KRAS-Mutant cells could be utilized for the development of targeted therapy for KRAS mutant tumors. PMID:25245095

  4. Mineral pitch induces apoptosis and inhibits proliferation via modulating reactive oxygen species in hepatic cancer cells.

    PubMed

    Pant, Kishor; Gupta, Parul; Damania, Preeti; Yadav, Ajay K; Gupta, Aanchal; Ashraf, Anam; Venugopal, Senthil K

    2016-05-27

    Mineral Pitch (MP) is a dark brown coloured humic matter originating from high altitude rocks. It is an Ayurvedic medicinal food, commonly used by the people of the Himalayan regions of Nepal and India for various body ailments. The Huh-7 cells were treated with different concentrations of MP for 24 h, and both apoptosis and proliferation was determined by the TUNEL and MTT assays respectively. The formation of ROS and nitric oxide was analysed by DCFH-DA and Griess reagent respectively. The expression of miRNA-21 and miRNA-22 were checked by the real time PCR. Effect of miRNA-22 on proliferation and c-myc was studied by over-expressing miRNA-22 premiRs in Huh-7 cells. We found that MP enhanced anti-cancer effects by inducing apoptosis and inhibiting proliferation. MP induced both ROS and NO, upon neutralizing them, there was a partial recovery of apoptosis and proliferation. MP also induced miRNA-22 expression, while miRNA-21 expression was inhibited. Over-expression of miRNA-22 resulted in a significant inhibition of proliferation. miRNA-22 directly targeted c-myc gene, thereby inhibited proliferation. These results clearly show that MP induces its anti-cancer activity by more than one pathway. The data clearly indicate that MP induced apoptosis via the production of ROS, and inhibited proliferation by inducing miRNA-22 and inhibiting miRNA-21 in Huh-7 cells.

  5. Oligodendrocyte precursor cell transplantation promotes functional recovery following contusive spinal cord injury in rats and is associated with altered microRNA expression

    PubMed Central

    Yang, Jin; Xiong, Liu-Lin; Wang, You-Cui; He, Xiang; Jiang, Ling; Fu, Song-Jun; Han, Xue-Fei; Liu, Jia; Wang, Ting-Hua

    2018-01-01

    It has been reported that oligodendrocyte precursor cells (OPCs) may be used to treat contusive spinal cord injury (SCC), and may alter microRNA (miRNA/miR) expression following SCC in rats. However, the association between miRNA expression and the treatment of rats with SCC with OPC transplantation remain unclear. The present study transplanted OPCs into the spinal cord of rats with SCC and subsequently used the Basso, Beattie and Bresnahan (BBB) score to assess the functional recovery and pain scores. An miRNA assay was performed to detect differentially expressed miRNAs in the spinal cord of SCC rats transplanted with OPCs, compared with SCC rats transplanted with medium. Quantitative polymerase chain reaction was used to verify significantly altered miRNA expression levels. The results demonstrated that OPC transplantation was able to improve motor recovery and relieve mechanical allodynia in rats with SCC. In addition, through a miRNA assay, 45 differentially expressed miRNAs (40 upregulated miRNAs and 5 downregulated miRNAs) were detected in the spinal cord of rats in the OPC group compared with in the Medium group. Differentially expressed miRNAs were identified according to the following criteria: Fold change >2 and P<0.05. Furthermore, quantitative polymerase chain reaction was used to verify the most highly upregulated (miR-375-3p and miR-1-3p) and downregulated (miR-363-3p, miR-449a-5p and miR-3074) spinal cord miRNAs that were identified in the miRNA assay. In addition, a bioinformatics analysis of these miRNAs indicated that miR-375 and miR-1 may act primarily to inhibit cell proliferation and apoptosis via transcriptional and translational regulation, whereas miR-363, miR-449a and miR-3074 may act primarily to inhibit cell proliferation and neuronal differentiation through transcriptional regulation. These results suggested that OPC transplantation may promote functional recovery of rats with SCC, which may be associated with the expression of various miRNAs in the spinal cord, including miR-375-3p, miR-1-3p, miR-363-3p, miR-449a-5p and miR-3074. PMID:29115639

  6. Characterization and Evolution of Conserved MicroRNA through Duplication Events in Date Palm (Phoenix dactylifera)

    PubMed Central

    Yang, Yaodong; Mason, Annaliese S.; Lei, Xintao; Ma, Zilong

    2013-01-01

    MicroRNAs (miRNAs) are important regulators of gene expression at the post-transcriptional level in a wide range of species. Highly conserved miRNAs regulate ancestral transcription factors common to all plants, and control important basic processes such as cell division and meristem function. We selected 21 conserved miRNA families to analyze the distribution and maintenance of miRNAs. Recently, the first genome sequence in Palmaceae was released: date palm (Phoenix dactylifera). We conducted a systematic miRNA analysis in date palm, computationally identifying and characterizing the distribution and duplication of conserved miRNAs in this species compared to other published plant genomes. A total of 81 miRNAs belonging to 18 miRNA families were identified in date palm. The majority of miRNAs in date palm and seven other well-studied plant species were located in intergenic regions and located 4 to 5 kb away from the nearest protein-coding genes. Sequence comparison showed that 67% of date palm miRNA members were present in duplicated segments, and that 135 pairs of miRNA-containing segments were duplicated in Arabidopsis, tomato, orange, rice, apple, poplar and soybean with a high similarity of non coding sequences between duplicated segments, indicating genomic duplication was a major force for expansion of conserved miRNAs. Duplicated miRNA pairs in date palm showed divergence in pre-miRNA sequence and in number of promoters, implying that these duplicated pairs may have undergone divergent evolution. Comparisons between date palm and the seven other plant species for the gain/loss of miR167 loci in an ancient segment shared between monocots and dicots suggested that these conserved miRNAs were highly influenced by and diverged as a result of genomic duplication events. PMID:23951162

  7. Characterization and evolution of conserved MicroRNA through duplication events in date palm (Phoenix dactylifera).

    PubMed

    Xiao, Yong; Xia, Wei; Yang, Yaodong; Mason, Annaliese S; Lei, Xintao; Ma, Zilong

    2013-01-01

    MicroRNAs (miRNAs) are important regulators of gene expression at the post-transcriptional level in a wide range of species. Highly conserved miRNAs regulate ancestral transcription factors common to all plants, and control important basic processes such as cell division and meristem function. We selected 21 conserved miRNA families to analyze the distribution and maintenance of miRNAs. Recently, the first genome sequence in Palmaceae was released: date palm (Phoenix dactylifera). We conducted a systematic miRNA analysis in date palm, computationally identifying and characterizing the distribution and duplication of conserved miRNAs in this species compared to other published plant genomes. A total of 81 miRNAs belonging to 18 miRNA families were identified in date palm. The majority of miRNAs in date palm and seven other well-studied plant species were located in intergenic regions and located 4 to 5 kb away from the nearest protein-coding genes. Sequence comparison showed that 67% of date palm miRNA members were present in duplicated segments, and that 135 pairs of miRNA-containing segments were duplicated in Arabidopsis, tomato, orange, rice, apple, poplar and soybean with a high similarity of non coding sequences between duplicated segments, indicating genomic duplication was a major force for expansion of conserved miRNAs. Duplicated miRNA pairs in date palm showed divergence in pre-miRNA sequence and in number of promoters, implying that these duplicated pairs may have undergone divergent evolution. Comparisons between date palm and the seven other plant species for the gain/loss of miR167 loci in an ancient segment shared between monocots and dicots suggested that these conserved miRNAs were highly influenced by and diverged as a result of genomic duplication events.

  8. Elucidation of miRNAs-Mediated Responses to Low Nitrogen Stress by Deep Sequencing of Two Soybean Genotypes

    PubMed Central

    Wang, Yejian; Zhang, Chanjuan; Hao, Qinnan; Sha, Aihua; Zhou, Rong; Zhou, Xinan; Yuan, Longping

    2013-01-01

    Nitrogen (N) is a major limiting factor in crop production, and plant adaptive responses to low N are involved in many post-transcriptional regulation. Recent studies indicate that miRNAs play important roles in adaptive responses. However, miRNAs in soybean adaptive responses to N limitation have been not reported. We constructed sixteen libraries to identify low N-responsive miRNAs on a genome-wide scale using samples from 2 different genotypes (low N sensitive and low N tolerant) subjected to various periods of low nitrogen stress. Using high-throughput sequencing technology (Illumina-Solexa), we identified 362 known miRNAs variants belonging to 158 families and 90 new miRNAs belonging to 55 families. Among these known miRNAs variants, almost 50% were not different from annotated miRNAs in miRBase. Analyses of their expression patterns showed 150 known miRNAs variants as well as 2 novel miRNAs with differential expressions. These differentially expressed miRNAs between the two soybean genotypes were compared and classified into three groups based on their expression patterns. Predicted targets of these miRNAs were involved in various metabolic and regulatory pathways such as protein degradation, carbohydrate metabolism, hormone signaling pathway, and cellular transport. These findings suggest that miRNAs play important roles in soybean response to low N and contribute to the understanding of the genetic basis of differences in adaptive responses to N limitation between the two soybean genotypes. Our study provides basis for expounding the complex gene regulatory network of these miRNAs. PMID:23861762

  9. Small RNA Sequencing Reveals Differential miRNA Expression in the Early Development of Broccoli (Brassica oleracea var. italica) Pollen

    PubMed Central

    Li, Hui; Wang, Yu; Wu, Mei; Li, Lihong; Jin, Chuan; Zhang, Qingli; Chen, Chengbin; Song, Wenqin; Wang, Chunguo

    2017-01-01

    Pollen development is an important and complex biological process in the sexual reproduction of flowering plants. Although the cytological characteristics of pollen development are well defined, the regulation of its early stages remains largely unknown. In the present study, miRNAs were explored in the early development of broccoli (Brassica oleracea var. italica) pollen. A total of 333 known miRNAs that originated from 235 miRNA families were detected. Fifty-five novel miRNA candidates were identified. Sixty of the 333 known miRNAs and 49 of the 55 predicted novel miRNAs exhibited significantly differential expression profiling in the three distinct developmental stages of broccoli pollen. Among these differentially expressed miRNAs, miRNAs that would be involved in the developmental phase transition from uninucleate microspores to binucleate pollen grains or from binucleate to trinucleate pollen grains were identified. miRNAs that showed significantly enriched expression in a specific early stage of broccoli pollen development were also observed. In addition, 552 targets for 127 known miRNAs and 69 targets for 40 predicted novel miRNAs were bioinformatically identified. Functional annotation and GO (Gene Ontology) analysis indicated that the putative miRNA targets showed significant enrichment in GO terms that were related to plant organ formation and morphogenesis. Some of enriched GO terms were detected for the targets directly involved in plant male reproduction development. These findings provided new insights into the functions of miRNA-mediated regulatory networks in broccoli pollen development. PMID:28392797

  10. Small RNA Sequencing Reveals Differential miRNA Expression in the Early Development of Broccoli (Brassica oleracea var. italica) Pollen.

    PubMed

    Li, Hui; Wang, Yu; Wu, Mei; Li, Lihong; Jin, Chuan; Zhang, Qingli; Chen, Chengbin; Song, Wenqin; Wang, Chunguo

    2017-01-01

    Pollen development is an important and complex biological process in the sexual reproduction of flowering plants. Although the cytological characteristics of pollen development are well defined, the regulation of its early stages remains largely unknown. In the present study, miRNAs were explored in the early development of broccoli ( Brassica oleracea var. italica ) pollen. A total of 333 known miRNAs that originated from 235 miRNA families were detected. Fifty-five novel miRNA candidates were identified. Sixty of the 333 known miRNAs and 49 of the 55 predicted novel miRNAs exhibited significantly differential expression profiling in the three distinct developmental stages of broccoli pollen. Among these differentially expressed miRNAs, miRNAs that would be involved in the developmental phase transition from uninucleate microspores to binucleate pollen grains or from binucleate to trinucleate pollen grains were identified. miRNAs that showed significantly enriched expression in a specific early stage of broccoli pollen development were also observed. In addition, 552 targets for 127 known miRNAs and 69 targets for 40 predicted novel miRNAs were bioinformatically identified. Functional annotation and GO (Gene Ontology) analysis indicated that the putative miRNA targets showed significant enrichment in GO terms that were related to plant organ formation and morphogenesis. Some of enriched GO terms were detected for the targets directly involved in plant male reproduction development. These findings provided new insights into the functions of miRNA-mediated regulatory networks in broccoli pollen development.

  11. MicroRNAome of Spodoptera frugiperda cells (Sf9) and its alteration following baculovirus infection.

    PubMed

    Mehrabadi, Mohammad; Hussain, Mazhar; Asgari, Sassan

    2013-06-01

    MicroRNAs (miRNAs) as small non-coding RNAs play important roles in many biological processes such as development, cell signalling and immune response. Studies also suggest that miRNAs are important in host-virus interactions where the host limits virus infection by differentially expressing miRNAs that target essential viral genes. Here, we identified conserved and new miRNAs from Spodoptera frugiperda cells (Sf9) using a combination of deep sequencing and bioinformatics as well as experimental approaches. S. frugiperda miRNAs share common features of miRNAs in other organisms, such as uracil (U) at the 5' end of miRNA. The 5' ends of the miRNAs were more conserved than the 3' ends, revealing evolutionary protection of the seed region in miRNAs. The predominant miRNAs were found to be conserved among arthropods. The majority of homologous miRNAs were found in Bombyx mori, with 76 of the 90 identified miRNAs. We found that seed shifting and arm switching have happened in this insect's miRNAs. Expression levels of the majority of miRNAs changed following baculovirus infection. Results revealed that baculovirus infection mainly led to an overall suppression of cellular miRNAs. We found four different genes being regulated by sfr-miR-184 at the post-transcriptional level. The data presented here further support conservation of miRNAs in insects and other organisms. In addition, the results reveal a differential expression of host miRNAs upon baculovirus infection, suggesting their potential roles in host-virus interactions. Seed shifting and arm switching happened during evolution of miRNAs in different insects and caused miRNA diversification, which led to changes in the target repository of miRNAs.

  12. Expressed microRNA associated with high rate of egg production in chicken ovarian follicles.

    PubMed

    Wu, N; Gaur, U; Zhu, Q; Chen, B; Xu, Z; Zhao, X; Yang, M; Li, D

    2017-04-01

    MicroRNA (miRNA) is a highly conserved class of small noncoding RNA about 19-24 nucleotides in length that function in a specific manner to post-transcriptionally regulate gene expression in organisms. Tissue miRNA expression studies have discovered a myriad of functions for miRNAs in various aspects, but a role for miRNAs in chicken ovarian tissue at 300 days of age has not hitherto been reported. In this study, we performed the first miRNA analysis of ovarian tissues in chickens with low and high rates of egg production using high-throughput sequencing. By comparing low rate of egg production chickens with high rate of egg production chickens, 17 significantly differentially expressed miRNAs were found (P < 0.05), including 11 known and six novel miRNAs. We found that all 11 known miRNAs were involved mainly in pathways of reproduction regulation, such as steroid hormone biosynthesis and dopaminergic synapse. Additionally, expression profiling of six randomly selected differentially regulated miRNAs were validated by quantitative real-time polymerase chain reaction (RT-qPCR). Some miRNAs, such as gga-miR-34b, gga-miR-34c and gga-miR-216b, were reported to regulate processes such as proliferation, cell cycle, apoptosis and metastasis and were expressed differentially in ovaries of chickens with high rates of egg production, suggesting that these miRNAs have an important role in ovary development and reproductive management of chicken. Furthermore, we uncovered that a significantly up-regulated miRNA-gga-miR-200a-3p-is ubiquitous in reproduction-regulation-related pathways. This miRNA may play a special central role in the reproductive management of chicken, and needs to be further studied for confirmation. © 2016 Stichting International Foundation for Animal Genetics.

  13. microRNA-10b Is Overexpressed and Critical for Cell Survival and Proliferation in Medulloblastoma

    PubMed Central

    Pal, Rekha; Greene, Stephanie

    2015-01-01

    This study demonstrates the effects of miRNA-10b on medulloblastoma proliferation through transcriptional induction of the anti-apoptotic protein BCL2. Using a cancer specific miRNA-array, high expression of miRNA-10b in medulloblastoma cell lines compared to a normal cerebellar control was shown, and this was confirmed with real time PCR (RT-PCR). Two medulloblastoma cell lines (DAOY and UW228) were transiently transfected with control miRNA, miRNA-10b inhibitor or miRNA-10b mimic and subjected to RT-PCR, MTT, apoptosis, clonogenic assay and western blot analysis. Transfection of miRNA-10b inhibitor induced a significant down-regulation of miRNA-10b expression, inhibited proliferation, and induced apoptosis, while miRNA-10b mimic exerted an opposite effect. Inhibition of miRNA-10b abrogated the colony-forming capability of medulloblastoma cells, and markedly down-regulated the expression of BCL2. Down-regulation of BCL2 by antisense oligonucleotides or siRNA also significantly down-regulated miRNA-10b, suggesting that BCL2 is a major mediator of the effects of miRNA-10b. ABT-737 and ABT-199, potent inhibitors of BCL2, downregulated the expression of miRNA-10b and increased apoptosis. Analysis of miRNA-10b levels in 13 primary medulloblastoma samples revealed that the 2 patients with the highest levels of miRNA-10b had multiple recurrences (4.5) and died within 8 years of diagnosis, compared with the 11 patients with low levels of miRNA-10b who had a mean of 1.2 recurrences and nearly 40% long-term survival. The data presented here indicate that miRNA-10b may act as an oncomir in medulloblastoma tumorigenesis, and reveal a previously unreported mechanism with Bcl-2 as a mediator of the effects of miRNA-10b upon medulloblastoma cell survival. PMID:26394044

  14. Yellow Fever Virus Modulates the Expression of Key Proteins Related to the microRNA Pathway in the Human Hepatocarcinoma Cell Line HepG2.

    PubMed

    Holanda, Gustavo Moraes; Casseb, Samir Mansour Moraes; Mello, Karla Fabiane Lopes; Vasconcelos, Pedro Fernando Costa; Cruz, Ana Cecília Ribeiro

    2017-06-01

    Yellow fever is a zoonotic disease caused by the yellow fever virus (YFV) and transmitted by mosquitoes of the family Culicidae. It is well known that cellular and viral microRNAs (miRNAs) are involved in modulation of viral and cellular gene expression, as well as immune response, and are considered by the scientific community as possible targets for an effective therapy against viral infections. This regulation may be involved in different levels of infection and clinical symptomatology. We used viral titration techniques, viral kinetics from 24 to 96 hours postinfection (hpi), and analyzed the expression of key proteins related to the miRNA pathway by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). The expression of Dicer was different when compared over the course of infection by the distinct YFV genotypes. Drosha expression was similar during infection by YFV genotype 1 or 2, with a decrease in their expression over time and a slight increase in 96 hpi. Ago1, Ago2, and Ago4 showed different levels of expression between the viral genotypes: for YFV genotype 1 infection, Ago1 presented a positive expression, while for YFV genotype 2, it showed a negative expression, when compared with negative controls. We conclude that YFV infection modulates the proteins involved in miRNA biogenesis, which can regulate both viral replication and cellular immune response.

  15. Profiling of expression of human papillomavirus-related cancer miRNAs in penile squamous cell carcinomas.

    PubMed

    Barzon, Luisa; Cappellesso, Rocco; Peta, Elektra; Militello, Valentina; Sinigaglia, Alessandro; Fassan, Matteo; Simonato, Francesca; Guzzardo, Vincenza; Ventura, Laura; Blandamura, Stella; Gardiman, Marina; Palù, Giorgio; Fassina, Ambrogio

    2014-12-01

    Penile squamous cell carcinoma (PSCC) is a rare tumor associated with high-risk human papillomavirus (HR-HPV) infection in 30% to 60% of cases. Altered expression of miRNAs has been reported in HPV-related cervical and head and neck cancers, but such data have not been available for PSCC. We analyzed a series of 59 PSCCs and 8 condylomata for presence of HPV infection, for p16(INK4a), Ki-67, and p53 immunohistochemical expression, and for expression of a panel of cellular miRNAs (let-7c, miR-23b, miR-34a, miR-145, miR-146a, miR-196a, and miR-218) involved in HPV-related cancer. HR-HPV DNA (HPV16 in most cases) was detected in 17/59 (29%) PSCCs; all penile condylomata (8/8) were positive for low-risk HPV6 or HPV11. HR-HPV(+) PSCCs overexpressed p16(INK4a) in 88% cases and p53 in 35% of cases, whereas HR-HPV(-) PSCCs were positive for p16(INK4a) and p53 immunostaining in 9% and 44% of cases, respectively. Among the miRNAs investigated, expression of miR-218 was lower in PSCCs with HR-HPV infection and in p53(-) cancers. Hypermethylation of the promoter of the SLIT2 gene, which contains miR-218-1 in its intronic region, was frequently observed in PSCCs, mainly in those with low miR-218 expression. Epigenetic silencing of miR-218 is a common feature in HR-HPV(+) PSCCs and in HR-HPV(-) PSCCs without immunohistochemical detection of p53. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. A Graphene-enhanced imaging of microRNA with enzyme-free signal amplification of catalyzed hairpin assembly in living cells.

    PubMed

    Liu, Haiyun; Tian, Tian; Ji, Dandan; Ren, Na; Ge, Shenguang; Yan, Mei; Yu, Jinghua

    2016-11-15

    In situ imaging of miRNA in living cells could help us to monitor the miRNA expression in real time and obtain accurate information for studying miRNA related bioprocesses and disease. Given the low-level expression of miRNA, amplification strategies for intracellular miRNA are imperative. Here, we propose an amplification strategy with a non-destructive enzyme-free manner in living cells using catalyzed hairpin assembly (CHA) based on graphene oxide (GO) for cellular miRNA imaging. The enzyme-free CHA exhibits stringent recognition and excellent signal amplification of miRNA in the living cells. GO is a good candidate as a fluorescence quencher and cellular carrier. Taking the advantages of the CHA and GO, we can monitor the miRNA at low level in living cells with a simple, sensitive and real-time manner. Finally, imaging of miRNAs in the different expression cells is realized. The novel method could supply an effective tool to visualize intracellular low-level miRNAs and help us to further understand the role of miRNAs in cellular processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Altered expression of miRNAs in the uterus from a letrozole-induced rat PCOS model.

    PubMed

    Li, Chunjin; Chen, Lu; Zhao, Yun; Chen, Shuxiong; Fu, Lulu; Jiang, Yanwen; Gao, Shan; Liu, Zhuo; Wang, Fengge; Zhu, Xiaoling; Rao, Jiahui; Zhang, Jing; Zhou, Xu

    2017-01-20

    Polycystic ovary syndrome (PCOS) causes female subfertility with ovarian disorders and may be associated with increased rate of early-pregnancy failure. Rat PCOS models were established using letrozole to understand the uterine pathogenesis of PCOS. The differential expression of microRNAs (miRNAs) was observed in rat uterus with PCOS. After estrous cycles were disrupted, significantly abnormal ovarian morphology and hormone level were observed in rats with PCOS. A total of 148 miRNAs differentially expressed were identified in the uterus from the letrozole-induced rat model compared with the control. These miRNAs included 111 upregulated miRNAs and 37 downregulated miRNAs. The differential expression of miR-484, miR-375-3p, miR-324-5p, and miR-223-3p was further confirmed by quantitative reverse transcription polymerase chain reaction. Bioinformatic analysis showed that these four miRNAs were predicted to regulate a large number of genes with different functions. Pathway analysis supported that target genes of miRNAs were involved in insulin secretion and signaling pathways, such as wnt, AMPK, PI3K-Akt, and Ras. These data indicated that miRNAs differentially expressed in rat uterus with PCOS may be associated with PCOS pathogenesis in the uterus. Our findings can help clarify the mechanism of uterine defects in PCOS. Copyright © 2016. Published by Elsevier B.V.

  18. Endothelial and circulating C19MC microRNAs are biomarkers of infantile hemangioma

    PubMed Central

    Strub, Graham M.; Kirsh, Andrew L.; Whipple, Mark E.; Kuo, Winston P.; Keller, Rachel B.; Kapur, Raj P.; Majesky, Mark W.; Perkins, Jonathan A.

    2016-01-01

    Infantile hemangioma (IH) is the most common vascular tumor of infancy, and it uniquely regresses in response to oral propranolol. MicroRNAs (miRNAs) have emerged as key regulators of vascular development and are dysregulated in many disease processes, but the role of miRNAs in IH growth has not been investigated. We report expression of C19MC, a primate-specific megacluster of miRNAs expressed in placenta with rare expression in postnatal tissues, in glucose transporter 1–expressing (GLUT-1–expressing) IH endothelial cells and in the plasma of children with IH. Tissue or circulating C19MC miRNAs were not detectable in patients having 9 other types of vascular anomalies or unaffected children, identifying C19MC miRNAs as the first circulating biomarkers of IH. Levels of circulating C19MC miRNAs correlated with IH tumor size and propranolol treatment response, and IH tissue from children treated with propranolol or from children with partially involuted tumors contained lower levels of C19MC miRNAs than untreated, proliferative tumors, implicating C19MC miRNAs as potential drivers of IH pathogenesis. Detection of C19MC miRNAs in the circulation of infants with IH may provide a specific and noninvasive means of IH diagnosis and identification of candidates for propranolol therapy as well as a means to monitor treatment response. PMID:27660822

  19. Non-targeted profiling of circulating microRNAs in women with polycystic ovary syndrome (PCOS): effects of obesity and sex hormones.

    PubMed

    Murri, Mora; Insenser, María; Fernández-Durán, Elena; San-Millán, José L; Luque-Ramírez, Manuel; Escobar-Morreale, Héctor F

    2018-02-02

    Circulating micro-ribonucleic acids (miRNAs) are small noncoding RNA molecules that influence gene transcription. We conducted the present profiling study to characterize the expression of circulating miRNAs in lean and obese patients with polycystic ovary syndrome (PCOS), the most common endocrine and metabolic disorder in premenopausal women. We selected 11 control women, 12 patients with PCOS and 12 men so that they were similar in terms of body mass index. Five control women, 6 men and 6 patients with PCOS had normal weight whereas 6 subjects per group were obese. We used miRCURY LNA™ Universal RT microRNA PCR for miRNA profiling. The expression of 38 miRNAs and was different between subjects with PCOS and male and female controls. The differences in 15 miRNAs followed a pattern suggestive of androgenization characterized by expression levels that were similar in patients with PCOS and men but were different compared with those of control women. The expression of 13 miRNAs in women with PCOS was similar to that of control women and different compared with the expression observed in men, suggesting sexual dimorphism and, lastly, we observed 5 miRNAs that were expressed differently in women with PCOS compared with both men and control women, suggesting a specific abnormality in expression associated with the syndrome. Obesity interacted with the differences in several of these miRNAs, and the expression levels of many of them correlated with the hirsutism score, sex hormones and/or indexes of obesity, adiposity and metabolic dysfunction. The present results suggest that several serum miRNAs are influenced by PCOS, sex hormones and obesity. Our findings may guide the targeted search of miRNAs as clinically relevant markers for PCOS and its association with obesity and metabolic dysfunction in future studies. Copyright © 2018. Published by Elsevier Inc.

  20. Aneurysm miRNA Signature Differs, Depending on Disease Localization and Morphology

    PubMed Central

    Busch, Albert; Busch, Martin; Scholz, Claus-Jürgen; Kellersmann, Richard; Otto, Christoph; Chernogubova, Ekaterina; Maegdefessel, Lars; Zernecke, Alma; Lorenz, Udo

    2016-01-01

    Limited comprehension of aneurysm pathology has led to inconclusive results from clinical trials. miRNAs are key regulators of post-translational gene modification and are useful tools in elucidating key features of aneurysm pathogenesis in distinct entities of abdominal and popliteal aneurysms. Here, surgically harvested specimens from 19 abdominal aortic aneurysm (AAA) and 8 popliteal artery aneurysm (PAA) patients were analyzed for miRNA expression and histologically classified regarding extracellular matrix (ECM) remodeling and inflammation. DIANA-based computational target prediction and pathway enrichment analysis verified our results, as well as previous ones. miRNA-362, -19b-1, -194, -769, -21 and -550 were significantly down-regulated in AAA samples depending on degree of inflammation. Similar or inverse regulation was found for miR-769, 19b-1 and miR-550, -21, whereas miR-194 and -362 were unaltered in PAA. In situ hybridization verified higher expression of miR-550 and -21 in PAA compared to AAA and computational analysis for target genes and pathway enrichment affirmed signal transduction, cell-cell-interaction and cell degradation pathways, in line with previous results. Despite the vague role of miRNAs for potential diagnostic and treatment purposes, the number of candidates from tissue signature studies is increasing. Tissue morphology influences subsequent research, yet comparison of distinct entities of aneurysm disease can unravel core pathways. PMID:26771601

  1. Analysis of phytoplasma-responsive sRNAs provide insight into the pathogenic mechanisms of mulberry yellow dwarf disease

    NASA Astrophysics Data System (ADS)

    Gai, Ying-Ping; Li, Yi-Qun; Guo, Fang-Yue; Yuan, Chuan-Zhong; Mo, Yao-Yao; Zhang, Hua-Liang; Wang, Hong; Ji, Xian-Ling

    2014-06-01

    The yellow dwarf disease associated with phytoplasmas is one of the most devastating diseases of mulberry and the pathogenesis involved in the disease is poorly understood. To analyze the molecular mechanisms mediating gene expression in mulberry-phytoplasma interaction, the comprehensive sRNA changes of mulberry leaf in response to phytoplasma-infection were examined. A total of 164 conserved miRNAs and 23 novel miRNAs were identified, and 62 conserved miRNAs and 13 novel miRNAs were found to be involved in the response to phytoplasma-infection. Meanwhile, target genes of the responsive miRNAs were identified by sequencing of the degradome library. In addition, the endogenous siRNAs were sequenced, and their expression profiles were characterized. Interestingly, we found that phytoplasma infection induced the accumulation of mul-miR393-5p which was resulted from the increased transcription of MulMIR393A, and mul-miR393-5p most likely initiate the biogenesis of siRNAs from TIR1 transcript. Based on the results, we can conclude that phytoplasma-responsive sRNAs modulate multiple hormone pathways and play crucial roles in the regulation of development and metabolism. These responsive sRNAs may work cooperatively in the response to phytoplasma-infection and be responsible for some symptoms in the infected plants.

  2. Detecting microRNAs of high influence on protein functional interaction networks: a prostate cancer case study

    PubMed Central

    2012-01-01

    Background The use of biological molecular network information for diagnostic and prognostic purposes and elucidation of molecular disease mechanism is a key objective in systems biomedicine. The network of regulatory miRNA-target and functional protein interactions is a rich source of information to elucidate the function and the prognostic value of miRNAs in cancer. The objective of this study is to identify miRNAs that have high influence on target protein complexes in prostate cancer as a case study. This could provide biomarkers or therapeutic targets relevant for prostate cancer treatment. Results Our findings demonstrate that a miRNA’s functional role can be explained by its target protein connectivity within a physical and functional interaction network. To detect miRNAs with high influence on target protein modules, we integrated miRNA and mRNA expression profiles with a sequence based miRNA-target network and human functional and physical protein interactions (FPI). miRNAs with high influence on target protein complexes play a role in prostate cancer progression and are promising diagnostic or prognostic biomarkers. We uncovered several miRNA-regulated protein modules which were enriched in focal adhesion and prostate cancer genes. Several miRNAs such as miR-96, miR-182, and miR-143 demonstrated high influence on their target protein complexes and could explain most of the gene expression changes in our analyzed prostate cancer data set. Conclusions We describe a novel method to identify active miRNA-target modules relevant to prostate cancer progression and outcome. miRNAs with high influence on protein networks are valuable biomarkers that can be used in clinical investigations for prostate cancer treatment. PMID:22929553

  3. Impaired expression of DICER and some microRNAs in HBZ expressing cells from acute adult T-cell leukemia patients

    PubMed Central

    Gazon, Hélène; Belrose, Gildas; Terol, Marie; Meniane, Jean-Come; Mesnard, Jean-Michel; Césaire, Raymond; Peloponese, Jean-Marie

    2016-01-01

    Global dysregulation of microRNAs (miRNAs), a class of non-coding RNAs that regulate genes expression, is a common feature of human tumors. Profiling of cellular miRNAs on Adult T cell Leukemia (ATL) cells by Yamagishi et al. showed a strong decrease in expression for 96.7% of cellular miRNAs in ATL cells. However, the mechanisms that regulate the expression of miRNAs in ATL cells are still largely unknown. In this study, we compared the expression of 12 miRs previously described for being overexpress by Tax and the expression of several key components of the miRNAs biogenesis pathways in different HBZ expressing cell lines as well as in primary CD4 (+) cells from acute ATL patients. We showed that the expression of miRNAs and Dicer1 were downregulated in cells lines expressing HBZ as well as in fresh CD4 (+) cells from acute ATL patients. Using qRT-PCR, western blotting analysis and Chromatin Immunoprecipitation, we showed that dicer transcription was regulated by c-Jun and JunD, two AP-1 transcription factors. We also demonstrated that HBZ affects the expression of Dicer by removing JunD from the proximal promoter. Furthermore, we showed that at therapeutic concentration of 1mM, Valproate (VPA) an HDAC inhibitors often used in cancer treatment, rescue Dicer expression and miRNAs maturation. These results might offer a rationale for clinical studies of new combined therapy in an effort to improve the outcome of patients with acute ATL. PMID:26849145

  4. Changes in microRNA (miRNA) expression during pancreatic cancer development and progression in a genetically engineered KrasG12D;Pdx1-Cre mouse (KC) model.

    PubMed

    Rachagani, Satyanarayana; Macha, Muzafar A; Menning, Melanie S; Dey, Parama; Pai, Priya; Smith, Lynette M; Mo, Yin-Yuan; Batra, Surinder K

    2015-11-24

    Differential expression of microRNAs (miRNAs) has been demonstrated in various cancers, including pancreatic cancer (PC). Due to the lack of tissue samples from early-stages of PC, the stage-specific alteration of miRNAs during PC initiation and progression is largely unknown. In this study, we investigated the global miRNA expression profile and their processing machinery during PC progression using the KrasG12D;Pdx1-Cre (KC) mouse model. At 25 weeks, the miRNA microarray analysis revealed significant downregulation of miR-150, miR-494, miR-138, miR-148a, miR-216a, and miR-217 and upregulation of miR-146b, miR-205, miR-31, miR-192, and miR-21 in KC mice compared to controls. Further, expression of miRNA biosynthetic machinery including Dicer, Exportin-5, TRKRA, and TARBP2 were downregulated, while DGCR8 and Ago2 were upregulated in KC mice. In addition, from 10 to 50 weeks of age, stage-specific expression profiling of miRNA in KC mice revealed downregulation of miR-216, miR-217, miR-100, miR-345, miR-141, miR-483-3p, miR-26b, miR-150, miR-195, Let-7b and Let-96 and upregulation of miR-21, miR-205, miR-146b, miR-34c, miR-1273, miR-223 and miR-195 compared to control mice. Interestingly, the differential expression of miRNA in mice also corroborated with the miRNA expression in human PC cell lines and tissue samples; ectopic expression of Let-7b in CD18/HPAF and Capan1 cells resulted in the downregulation of KRAS and MSST1 expression. Overall, the present study aids an understanding of miRNA expression patterns during PC pathogenesis and helps to facilitate the identification of promising and novel early diagnostic/prognostic markers and therapeutic targets.

  5. Changes in microRNA (miRNA) expression during pancreatic cancer development and progression in a genetically engineered KrasG12D;Pdx1-Cre mouse (KC) model

    PubMed Central

    Rachagani, Satyanarayana; Dey, Parama; Pai, Priya; Smith, Lynette M.; Mo, Yin-Yuan; Batra, Surinder K.

    2015-01-01

    Differential expression of microRNAs (miRNAs) has been demonstrated in various cancers, including pancreatic cancer (PC). Due to the lack of tissue samples from early-stages of PC, the stage-specific alteration of miRNAs during PC initiation and progression is largely unknown. In this study, we investigated the global miRNA expression profile and their processing machinery during PC progression using the KrasG12D;Pdx1-Cre (KC) mouse model. At 25 weeks, the miRNA microarray analysis revealed significant downregulation of miR-150, miR-494, miR-138, miR-148a, miR-216a, and miR-217 and upregulation of miR-146b, miR-205, miR-31, miR-192, and miR-21 in KC mice compared to controls. Further, expression of miRNA biosynthetic machinery including Dicer, Exportin-5, TRKRA, and TARBP2 were downregulated, while DGCR8 and Ago2 were upregulated in KC mice. In addition, from 10 to 50 weeks of age, stage-specific expression profiling of miRNA in KC mice revealed downregulation of miR-216, miR-217, miR-100, miR-345, miR-141, miR-483-3p, miR-26b, miR-150, miR-195, Let-7b and Let-96 and upregulation of miR-21, miR-205, miR-146b, miR-34c, miR-1273, miR-223 and miR-195 compared to control mice. Interestingly, the differential expression of miRNA in mice also corroborated with the miRNA expression in human PC cell lines and tissue samples; ectopic expression of Let-7b in CD18/HPAF and Capan1 cells resulted in downregulation of KRAS and MSST1 expression. Overall, the present study aids an understanding of miRNA expression patterns during PC pathogenesis and helps to facilitate the identification of promising and novel early diagnostic/prognostic markers and therapeutic targets. PMID:26516699

  6. Molecular mechanisms of repeated social defeat-induced glucocorticoid resistance: Role of microRNA.

    PubMed

    Jung, Seung Ho; Wang, Yufen; Kim, Taewan; Tarr, Andrew; Reader, Brenda; Powell, Nicole; Sheridan, John F

    2015-02-01

    Glucocorticoid (GC) resistance is a severe problem associated with various inflammatory diseases. Previous studies have shown that repeated social stress induces GC resistance in innate immune cells, but the underlying molecular mechanisms have not been fully elucidated. Therefore, the purpose of this study was to examine potential underlying molecular mechanism(s) of repeated social defeat (RSD) stress on GC resistance in splenic macrophages. It was hypothesized that mRNA expression of receptors for GC and nuclear translocating-associated regulators in splenic macrophages would be affected by RSD, and that these changes would be associated with epigenetic modification. The data showed that the mRNA expression of GC and mineralocorticoid receptors were significantly decreased in splenic macrophages by RSD. RSD also induced a significantly decreased mRNA expression in FK506-binding protein 52 (FKBP52), consequently resulting in a significantly increased ratio of FKBP51 to FKBP52. Moreover, DNA methyltransferases 3a and 3b showed a significant decrease in their mRNA expression in the RSD group as did mRNA expression of histone deacetyltransferase 2. The RSD group also showed a significantly reduced quantity of methylated DNA in splenic macrophages. Based on microRNA (miRNA) profiling data, it was determined that RSD induced significantly increased expression of 9 different miRNAs that were predicted to interact with mRNAs of the GC receptor (6 miRNAs), mineralocorticoid receptor (3 miRNAs) and FKBP52 (2 miRNAs). Spearman correlation analysis revealed significantly strong correlations between the expression of 2 miRNAs and their target mRNA expression for GC receptors. Among these miRNAs, we verified direct effects of miRNA-29b and -340 overexpression on mRNA expression of GC receptors in L929 cells. The overexpression of miRNA-29b or -340 in L929 cells significantly reduced LPS-induced overexpression of GC receptors. In conclusion, this study provides evidence that epigenetic regulation, such as DNA methylation and miRNA expression, may play a role in the RSD-induced GC resistance that we have observed in splenic macrophages. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Molecular Mechanisms of Repeated Social Defeat-Induced Glucocorticoid Resistance: Role of microRNA

    PubMed Central

    Jung, Seung Ho; Wang, Yufen; Kim, Taewan; Tarr, Andrew; Reader, Brenda; Powell, Nicole; Sheridan, John F.

    2014-01-01

    Glucocorticoid (GC) resistance is a severe problem associated with various inflammatory diseases. Previous studies have shown that repeated social stress induces GC resistance in innate immune cells, but the underlying molecular mechanisms have not been fully elucidated. Therefore, the purpose of this study was to examine potential underlying molecular mechanism(s) of repeated social defeat (RSD) stress on GC resistance in splenic macrophages. It was hypothesized that mRNA expression of receptors for GC and nuclear translocating-associated regulators in splenic macrophages would be affected by RSD, and that these changes would be associated with epigenetic modification. The data showed that the mRNA expression of GC and mineralocorticoid receptors were significantly decreased in splenic macrophages by RSD. RSD also induced a significantly decreased mRNA expression in FK506-binding protein 52 (FKBP52), consequently resulting in a significantly increased ratio of FKBP51 to FKBP52. Moreover, DNA methyltransferases 3a and 3b showed a significant decrease in their mRNA expression in the RSD group as did mRNA expression of histone deacetyltransferase 2. The RSD group also showed a significantly reduced quantity of methylated DNA in splenic macrophages. Based on microRNA (miRNA) profiling data, it was determined that RSD induced significantly increased expression of 9 different miRNAs that were predicted to interact with mRNAs of the GC receptor (6 miRNAs), mineralocorticoid receptor (3 miRNAs) and FKBP52 (2 miRNAs). Spearman correlation analysis revealed significantly strong correlations between the expression of 2 miRNAs and their target mRNA expression for GC receptors. Among these miRNAs, we verified direct effects of miRNA-29b and -340 overexpression on mRNA expression of GC receptors in L929 cells. The overexpression of miRNA-29b or -340 in L929 cells significantly reduced LPS-induced overexpression of GC receptors. In conclusion, this study provides evidence that epigenetic regulation, such as DNA methylation and miRNA expression, may play a role in the RSD-induced GC resistance that we have observed in splenic macrophages. PMID:25317829

  8. A genome-wide survey of sexually dimorphic expression of Drosophila miRNAs identifies the steroid hormone-induced miRNA let-7 as a regulator of sexual identity.

    PubMed

    Fagegaltier, Delphine; König, Annekatrin; Gordon, Assaf; Lai, Eric C; Gingeras, Thomas R; Hannon, Gregory J; Shcherbata, Halyna R

    2014-10-01

    MiRNAs bear an increasing number of functions throughout development and in the aging adult. Here we address their role in establishing sexually dimorphic traits and sexual identity in male and female Drosophila. Our survey of miRNA populations in each sex identifies sets of miRNAs differentially expressed in male and female tissues across various stages of development. The pervasive sex-biased expression of miRNAs generally increases with the complexity and sexual dimorphism of tissues, gonads revealing the most striking biases. We find that the male-specific regulation of the X chromosome is relevant to miRNA expression on two levels. First, in the male gonad, testis-biased miRNAs tend to reside on the X chromosome. Second, in the soma, X-linked miRNAs do not systematically rely on dosage compensation. We set out to address the importance of a sex-biased expression of miRNAs in establishing sexually dimorphic traits. Our study of the conserved let-7-C miRNA cluster controlled by the sex-biased hormone ecdysone places let-7 as a primary modulator of the sex-determination hierarchy. Flies with modified let-7 levels present doublesex-related phenotypes and express sex-determination genes normally restricted to the opposite sex. In testes and ovaries, alterations of the ecdysone-induced let-7 result in aberrant gonadal somatic cell behavior and non-cell-autonomous defects in early germline differentiation. Gonadal defects as well as aberrant expression of sex-determination genes persist in aging adults under hormonal control. Together, our findings place ecdysone and let-7 as modulators of a somatic systemic signal that helps establish and sustain sexual identity in males and females and differentiation in gonads. This work establishes the foundation for a role of miRNAs in sexual dimorphism and demonstrates that similar to vertebrate hormonal control of cellular sexual identity exists in Drosophila. Copyright © 2014 by the Genetics Society of America.

  9. Bioinformatic identification and expression analysis of banana microRNAs and their targets.

    PubMed

    Chai, Juan; Feng, Renjun; Shi, Hourui; Ren, Mengyun; Zhang, Yindong; Wang, Jingyi

    2015-01-01

    MicroRNAs (miRNAs) represent a class of endogenous non-coding small RNAs that play important roles in multiple biological processes by degrading targeted mRNAs or repressing mRNA translation. Thousands of miRNAs have been identified in many plant species, whereas only a limited number of miRNAs have been predicted in M. acuminata (A genome) and M. balbisiana (B genome). Here, previously known plant miRNAs were BLASTed against the Expressed Sequence Tag (EST) and Genomic Survey Sequence (GSS), a database of banana genes. A total of 32 potential miRNAs belonging to 13 miRNAs families were detected using a range of filtering criteria. 244 miRNA:target pairs were subsequently predicted, most of which encode transcription factors or enzymes that participate in the regulation of development, growth, metabolism, and other physiological processes. In order to validate the predicted miRNAs and the mutual relationship between miRNAs and their target genes, qRT-PCR was applied to detect the tissue-specific expression levels of 12 putative miRNAs and 6 target genes in roots, leaves, flowers, and fruits. This study provides some important information about banana pre-miRNAs, mature miRNAs, and miRNA target genes and these findings can be applied to future research of miRNA functions.

  10. Bioinformatic Identification and Expression Analysis of Banana MicroRNAs and Their Targets

    PubMed Central

    Shi, Hourui; Ren, Mengyun; Zhang, Yindong; Wang, Jingyi

    2015-01-01

    MicroRNAs (miRNAs) represent a class of endogenous non-coding small RNAs that play important roles in multiple biological processes by degrading targeted mRNAs or repressing mRNA translation. Thousands of miRNAs have been identified in many plant species, whereas only a limited number of miRNAs have been predicted in M. acuminata (A genome) and M. balbisiana (B genome). Here, previously known plant miRNAs were BLASTed against the Expressed Sequence Tag (EST) and Genomic Survey Sequence (GSS), a database of banana genes. A total of 32 potential miRNAs belonging to 13 miRNAs families were detected using a range of filtering criteria. 244 miRNA:target pairs were subsequently predicted, most of which encode transcription factors or enzymes that participate in the regulation of development, growth, metabolism, and other physiological processes. In order to validate the predicted miRNAs and the mutual relationship between miRNAs and their target genes, qRT-PCR was applied to detect the tissue-specific expression levels of 12 putative miRNAs and 6 target genes in roots, leaves, flowers, and fruits. This study provides some important information about banana pre-miRNAs, mature miRNAs, and miRNA target genes and these findings can be applied to future research of miRNA functions. PMID:25856313

  11. A whole-mount in situ hybridization method for microRNA detection in Caenorhabditis elegans.

    PubMed

    Andachi, Yoshiki; Kohara, Yuji

    2016-07-01

    Whole-mount in situ hybridization (WISH) is an outstanding method to decipher the spatiotemporal expression patterns of microRNAs (miRNAs) and provides important clues for elucidating their functions. The first WISH method for miRNA detection was developed in zebrafish. Although this method was quickly adapted for other vertebrates and fruit flies, WISH analysis has not been successfully used to detect miRNAs in Caenorhabditis elegans Here, we show a novel WISH method for miRNA detection in C. elegans Using this method, mir-1 miRNA was detected in the body-wall muscle where the expression and roles of mir-1 miRNA have been previously elucidated. Application of the method to let-7 family miRNAs, let-7, mir-48, mir-84, and mir-241, revealed their distinct but partially overlapping expression patterns, indicating that miRNAs sharing a short common sequence were distinguishably detected. In pash-1 mutants that were depleted of mature miRNAs, signals of mir-48 miRNA were greatly reduced, suggesting that mature miRNAs were detected by the method. These results demonstrate the validity of WISH to detect mature miRNAs in C. elegans. © 2016 Andachi and Kohara; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  12. A comparison of microRNA expression profiles from splenic hemangiosarcoma, splenic nodular hyperplasia, and normal spleens of dogs.

    PubMed

    Grimes, Janet A; Prasad, Nripesh; Levy, Shawn; Cattley, Russell; Lindley, Stephanie; Boothe, Harry W; Henderson, Ralph A; Smith, Bruce F

    2016-12-03

    Splenic masses are common in older dogs; yet diagnosis preceding splenectomy and histopathology remains elusive. MicroRNAs (miRNAs) are short, non-coding RNAs that play a role in post-transcriptional regulation, and differential expression of miRNAs between normal and tumor tissue has been used to diagnose neoplastic diseases. The objective of this study was to determine differential expression of miRNAs by use of RNA-sequencing in canine spleens that were histologically confirmed as hemangiosarcoma, nodular hyperplasia, or normal. Twenty-two miRNAs were found to be differentially expressed in hemangiosarcoma samples (4 between hemangiosarcoma and both nodular hyperplasia and normal spleen and 18 between hemangiosarcoma and normal spleen only). In particular, mir-26a, mir-126, mir-139, mir-140, mir-150, mir-203, mir-424, mir-503, mir-505, mir-542, mir-30e, mir-33b, mir-365, mir-758, mir-22, and mir-452 are of interest in the pathogenesis of hemangiosarcoma. Findings of this study confirm the hypothesis that miRNA expression profiles are different between canine splenic hemangiosarcoma, nodular hyperplasia, and normal spleens. A large portion of the differentially expressed miRNAs have roles in angiogenesis, with an additional group of miRNAs being dysregulated in vascular disease processes. Two other miRNAs have been implicated in cancer pathways such as PTEN and cell cycle checkpoints. The finding of multiple miRNAs with roles in angiogenesis and vascular disease is important, as hemangiosarcoma is a tumor of endothelial cells, which are driven by angiogenic stimuli. This study shows that miRNA dysregulation is a potential player in the pathogenesis of canine splenic hemangiosarcoma.

  13. High-Throughput Sequencing of microRNAs in Peripheral Blood Mononuclear Cells: Identification of Potential Weight Loss Biomarkers

    PubMed Central

    Milagro, Fermín I.; Miranda, Jonatan; Portillo, María P.; Fernandez-Quintela, Alfredo; Campión, Javier; Martínez, J. Alfredo

    2013-01-01

    Introduction MicroRNAs (miRNAs) are being increasingly studied in relation to energy metabolism and body composition homeostasis. Indeed, the quantitative analysis of miRNAs expression in different adiposity conditions may contribute to understand the intimate mechanisms participating in body weight control and to find new biomarkers with diagnostic or prognostic value in obesity management. Objective The aim of this study was the search for miRNAs in blood cells whose expression could be used as prognostic biomarkers of weight loss. Methods Ten Caucasian obese women were selected among the participants in a weight-loss trial that consisted in following an energy-restricted treatment. Weight loss was considered unsuccessful when <5% of initial body weight (non-responders) and successful when >5% (responders). At baseline, total miRNA isolated from peripheral blood mononuclear cells (PBMC) was sequenced with SOLiD v4. The miRNA sequencing data were validated by RT-PCR. Results Differential baseline expression of several miRNAs was found between responders and non-responders. Two miRNAs were up-regulated in the non-responder group (mir-935 and mir-4772) and three others were down-regulated (mir-223, mir-224 and mir-376b). Both mir-935 and mir-4772 showed relevant associations with the magnitude of weight loss, although the expression of other transcripts (mir-874, mir-199b, mir-766, mir-589 and mir-148b) also correlated with weight loss. Conclusions This research addresses the use of high-throughput sequencing technologies in the search for miRNA expression biomarkers in obesity, by determining the miRNA transcriptome of PBMC. Basal expression of different miRNAs, particularly mir-935 and mir-4772, could be prognostic biomarkers and may forecast the response to a hypocaloric diet. PMID:23335998

  14. MicroRNAs at the human 14q32 locus have prognostic significance in osteosarcoma

    PubMed Central

    2013-01-01

    Background Deregulation of microRNA (miRNA) transcript levels has been observed in many types of tumors including osteosarcoma. Molecular pathways regulated by differentially expressed miRNAs may contribute to the heterogeneous tumor behaviors observed in naturally occurring cancers. Thus, tumor-associated miRNA expression may provide informative biomarkers for disease outcome and metastatic potential in osteosarcoma patients. We showed previously that clusters of miRNAs at the 14q32 locus are downregulated in human osteosarcoma. Methods Human and canine osteosarcoma patient’s samples with clinical follow-up data were used in this study. We used bioinformatics and comparative genomics approaches to identify miRNA based prognostic biomarkers in osteosarcoma. Kaplan-Meier survival curves and Whitney Mann U tests were conducted for validating the statistical significance. Results Here we show that an inverse correlation exists between aggressive tumor behavior (increased metastatic potential and accelerated time to death) and the residual expression of 14q32 miRNAs (using miR-382 as a representative of 14q32 miRNAs) in a series of clinically annotated samples from human osteosarcoma patients. We also show a comparable decrease in expression of orthologous 14q32 miRNAs in canine osteosarcoma samples, with conservation of the inverse correlation between aggressive behavior and expression of orthologous miRNA miR-134 and miR-544. Conclusions We conclude that downregulation of 14q32 miRNA expression is an evolutionarily conserved mechanism that contributes to the biological behavior of osteosarcoma, and that quantification of representative transcripts from this family, such as miR-382, miR-134, and miR-544, provide prognostic and predictive markers that can assist in the management of patients with this disease. PMID:23311495

  15. Onco-GPCR signaling and dysregulated expression of microRNAs in human cancer.

    PubMed

    Nohata, Nijiro; Goto, Yusuke; Gutkind, J Silvio

    2017-01-01

    The G-protein-coupled receptor (GPCR) family is the largest family of cell-surface receptors involved in signal transduction. Aberrant expression of GPCRs and G proteins are frequently associated with prevalent human diseases, including cancer. In fact, GPCRs represent the therapeutic targets of more than a quarter of the clinical drugs currently on the market. MiRNAs (miRNAs) are also aberrantly expressed in many human cancers, and they have significant roles in the initiation, development and metastasis of human malignancies. Recent studies have revealed that dysregulation of miRNAs and their target genes expression are associated with cancer progression. The emerging information suggests that miRNAs play an important role in the fine tuning of many signaling pathways, including GPCR signaling. We summarize our current knowledge of the individual functions of miRNAs regulated by GPCRs and GPCR signaling-associated molecules, and miRNAs that regulate the expression and activity of GPCRs, their endogenous ligands and their coupled heterotrimeric G proteins in human cancer.

  16. Novel miRNA-31 and miRNA-200a-Mediated Regulation of Retinoblastoma Proliferation.

    PubMed

    Montoya, Vanessa; Fan, Hanli; Bryar, Paul J; Weinstein, Joanna L; Mets, Marilyn B; Feng, Gang; Martin, Joshua; Martin, Alissa; Jiang, Hongmei; Laurie, Nikia A

    2015-01-01

    Retinoblastoma is the most common intraocular tumor in children. Current management includes broad-based treatments such as chemotherapy, enucleation, laser therapy, or cryotherapy. However, therapies that target specific pathways important for retinoblastoma progression could provide valuable alternatives for treatment. MicroRNAs are short, noncoding RNA transcripts that can regulate the expression of target genes, and their aberrant expression often facilitates disease. The identification of post-transcriptional events that occur after the initiating genetic lesions could further define the rapidly aggressive growth displayed by retinoblastoma tumors. In this study, we used two phenotypically different retinoblastoma cell lines to elucidate the roles of miRNA-31 and miRNA-200a in tumor proliferation. Our approach confirmed that miRNAs-31 and -200a expression is significantly reduced in human retinoblastomas. Moreover, overexpression of these two miRNAs restricts the expansion of a highly proliferative cell line (Y79), but does not restrict the growth rate of a less aggressive cell line (Weri1). Gene expression profiling of miRNA-31 and/or miRNA-200a-overexpressing cells identified differentially expressed mRNAs associated with the divergent response of the two cell lines. This work has the potential to enhance the development of targeted therapeutic approaches for retinoblastoma and improve the efficacy of treatment.

  17. Human Milk Cells and Lipids Conserve Numerous Known and Novel miRNAs, Some of Which Are Differentially Expressed during Lactation

    PubMed Central

    Alsaweed, Mohammed; Lai, Ching Tat; Hartmann, Peter E.; Geddes, Donna T.; Kakulas, Foteini

    2016-01-01

    Human milk (HM) is rich in miRNAs, which are thought to contribute to infant protection and development. We used deep sequencing to profile miRNAs in the cell and lipid fractions of HM obtained post-feeding from 10 lactating women in months 2, 4, and 6 postpartum. In both HM fractions, 1,195 mature known miRNAs were identified, which were positively associated with the cell (p = 0.048) and lipid (p = 0.010) content of HM. An additional 5,167 novel miRNA species were predicted, of which 235 were high-confidence miRNAs. HM cells contained more known miRNAs than HM lipids (1,136 and 835 respectively, p<0.001). Although the profile of the novel miRNAs was very different between cells and lipids, with the majority conserved in the cell fraction and being mother-specific, 2/3 of the known miRNAs common between cells and lipids were similarly expressed (p>0.05). Great similarities between the two HM fractions were also found in the profile of the top 20 known miRNAs. These were largely similar also between the three lactation stages examined, as were the total miRNA concentration, and the number and expression of the known miRNAs common between cells and lipids (p>0.05). Yet, approximately a third of all known miRNAs were differentially expressed during the first 6 months of lactation (p<0.05), with more pronounced miRNA upregulation seen in month 4. These findings indicate that although the total miRNA concentration of HM cells and lipids provided to the infant does not change in first 6 months of lactation, the miRNA composition is altered, particularly in month 4 compared to months 2 and 6. This may reflect the remodeling of the gland in response to infant feeding patterns, which usually change after exclusive breastfeeding, suggesting adaptation to the infant’s needs. PMID:27074017

  18. Mobile microRNAs hit the target.

    PubMed

    Gursanscky, Nial R; Searle, Iain R; Carroll, Bernard J

    2011-11-01

    MicroRNAs (miRNAs) are negative regulators of gene expression in eukaryotic organisms, whereas small interfering RNAs (siRNAs) guide host-cell defence against viruses, transposons and transgenes. A key issue in plant biology is whether miRNAs act only in cells in which they are formed, or if, like siRNAs, they also function after passive diffusion or active transportation into other cells. Recent reports show that miRNAs are indeed able to move between plant cells to direct developmental programming of gene expression. In both leaf and root development, miRNAs establish intercellular gradients of gene expression that are essential for cell and tissue differentiation. Gradients in gene expression also play crucial roles in animal development, and there is strong evidence for intercellular movement of miRNAs in animals. Thus, intercellular movement of miRNAs may be crucial to animal developmental biology as well as plants. © 2011 John Wiley & Sons A/S.

  19. Analysis of microRNA and gene expression profiling in triazole fungicide-treated HepG2 cell line.

    PubMed

    An, Yu Ri; Kim, Seung Jun; Oh, Moon-Ju; Kim, Hyun-Mi; Shim, Il-Seob; Kim, Pil-Je; Choi, Kyunghee; Hwang, Seung Yong

    2013-01-07

    MicroRNA (miRNA) plays an important role in various diseases and in cellular and molecular responses to toxicants. In the present study, we investigated differential expression of miRNAs in response to three triazole fungicides (myclobutanil, propiconazole, and triadimefon). The human hepatoma cell line (HepG2) was treated with the above triazoles for 3 h or 48 h. miRNA-based microarray experiments were carried out using the Agilent human miRNA v13 array. At early exposure (3h), six miRNAs were differentially expressed and at late exposure (48 h), three miRNAs were significantly expressed. Overall, this study provides an array of potential biomarkers for the above triazole fungicides. Furthermore, these miRNAs induced by triazoles could be the foundation for the development of a miRNA-based toxic biomarker library that can predict environmental toxicity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Changes in mRNA expression precede changes in microRNA expression in lesional psoriatic skin during treatment with adalimumab.

    PubMed

    Raaby, L; Langkilde, A; Kjellerup, R B; Vinter, H; Khatib, S H; Hjuler, K F; Johansen, C; Iversen, L

    2015-08-01

    Tumour necrosis factor (TNF)-α inhibition is an effective treatment for moderate to severe plaque-type psoriasis. A change in the cytokine expression profile occurs in the skin after 4 days of treatment, preceding any clinical or histological improvements. MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression, but miRNA expression has never been studied in psoriatic skin during treatment. To investigate changes in miRNA expression in psoriatic skin during adalimumab treatment and to compare results with changes in miRNA expression in a mouse model of Aldara-induced psoriasis-like skin inflammation. Punch biopsies were obtained from nonlesional and lesional psoriatic skin during adalimumab treatment. In the mouse model of Aldara-induced skin inflammation, biopsies were obtained from TNF-α knockout (KO), IL-17A KO and wild-type mice. miRNA expression levels were analysed with microarray, reverse transcriptase quantitative polymerase chain reaction and in situ hybridization. In psoriatic skin, no changes in miRNA expression were seen 4 days after treatment initiation. After 14 days of treatment, the expression of several miRNAs was normalized towards the level seen in nonlesional skin before treatment. miR-23b expression increased after 14 days of treatment and remained high for 84 days, despite unaltered levels at baseline. In the mouse model of Aldara-induced skin inflammation, the level of miR-146a increased, whereas no regulation was seen for miR-203, miR-214-3p, miR-125a, miR-23b or let-7d-5p. This study demonstrates that the changes seen in the cytokine expression levels after 4 days of treatment with adalimumab are not facilitated by early changes in miRNA expression. © 2015 British Association of Dermatologists.

Top