Interfacial force field characterization of a constrained vapor bubble thermosyphon using IAI
NASA Technical Reports Server (NTRS)
Dasgupta, Sunando; Plawsky, Joel L.; Wayner, Peter C., Jr.
1994-01-01
The isothermal profiles of the extended meniscus in a quartz cuvette were measured in a gravitational field using IAI (image analyzing interferometer) which is based on computer enhanced video microscopy of the naturally occurring interference fringes. The experimental results for heptane and pentane menisci were analyzed using the extended Young-Laplace Equation. These isothermal results characterized the interfacial force field in-situ at the start of the heat transfer experiments by quantifying the dispersion constant for the specific liquid-solid system. The experimentally obtained values of the disjoining pressures and the dispersion constants are compared to the subsequent non-isothermal experiments because one of the major variables in the heat sink capability of the CVBT is the dispersion constant. In all previous studies of micro heat pipes the value of the dispersion constant has been 'guesstimated'. The major advantages of the current glass cell is the ability to view the extended meniscus at all times. Experimentally, we find that the extended Young-Laplace Equation is an excellent model for for the force field at the solid-liquid vapor interfaces.
Microscopic image processing systems for measuring nonuniform film thickness profiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, A.H.; Plawsky, J.L.; DasGupta, S.
1994-01-01
In very thin liquid films. transport processes are controlled by the temperature and the interfacial intermolecular force field which is a function of the film thickness profile and interfacial properties. The film thickness profile and interfacial properties can be measured most efficiently using a microscopic image processing system. IPS, to record the intensity pattern of the reflected light from the film. There are two types of IPS: an image analyzing interferometer (IAI) and/or an image scanning ellipsometer (ISE). The ISE is a novel technique to measure the two dimensional thickness profile of a nonuniform, thin film, from 1 nm upmore » to several {mu}m, in a steady state as well as in a transient state. It is a full field imaging technique which can study every point on the surface simultaneously with high spatial resolution and thickness sensitivity, i.e., it can measure and map the 2-D film thickness profile. Using the ISE, the transient thickness profile of a draining thin liquid film was measured and modeled. The interfacial conditions were determined in situ by measuring the Hamaker constant. The ISE and IAI systems are compared.« less
Furtado, Rita Nely Vilar; Machado, Flavia Soares; Luz, Karine Rodrigues da; Santos, Marla Francisca dos; Konai, Monique Sayuri; Lopes, Roberta Vilela; Natour, Jamil
2015-01-01
Identify good response predictors to intra-articular injection (IAI) with triamcinolone hexacetonide (TH). This study was carried out in rheumatoid arthritis (RA) patients (American College of Rheumatology criteria) submitted to IAI (mono, pauci or polyarticular injection). A "blinded" observer prospectively evaluated joints at one week (T1), four weeks (T4), twelve weeks (T12) and 24 weeks (T24) after IAI. Outcome measurements included Visual Analogue Scale (0-10 cm) at rest, in movement and for swollen joints. Clinical, demographic and variables related to injection at baseline were analyzed according to IAI response. We studied 289 patients with RA (635 joints) with a mean age of 48.7 years (±10.68), 48.5% of them Caucasians, VAS for global pain=6.52 (±1.73). Under univariate analysis, the variables relating the best responses following IAI (improvement > 70%) were: "elbow and metacarpophalangeal (MCP) IAI, and functional class II". Under multivariate analysis, "males" and "non-whites" were the predictors with the best response to IAI at T4, while "elbow and MCP IAI", "polyarticular injection", "use of methotrexate" and "higher total dose of TH" obtained the best response at T24. Several predictors of good response to IAI in patients with RA were identified. The best-response predictors for TH IAI of long term were "apply elbow and MCP IAI" and "apply polyarticular injection". Copyright © 2014 Elsevier Editora Ltda. All rights reserved.
Ren, Huajian; Wang, Gefei; Gu, Guosheng; Hu, Qiongyuan; Li, Guanwei; Hong, Zhiwu; Wu, Xiuwen; Ren, Jianan
2017-05-25
To investigate the predictive value of procalcitonin(PCT) in postoperative intra-abdominal infections (IAI) after definitive operation of intestinal fistulae(IF). With the exclusion of emergence operation, preoperative clinical infection, preoperative renal or hepatic dysfunction, and age less than 18 years, a total of 356 consecutive patients who underwent elective digestive tract reconstruction of intestinal fistulae from February 2012 to December 2015 at Intestinal Fistula Center of Jinling Hospital were prospectively enrolled in the study. All the patients were divided into IAI group (26 cases, 21 of anastomosis leakage and 5 of peritoneal abscess) and non-IAI group (330 cases) based on the existence of postoperative IAI. The non-IAI group was then divided into two subgroups of other infection (93 cases) and non-infection(237 cases) according to the presence of other infections. Plasma PCT level, serum CRP concentration and WBC count were assessed preoperatively and on postoperative days (PODs) 1, 3, 5, 7 by immunofluorescence, turbidimetry and automatic blood analyzer, respectively. The predictive value of each marker for IAI was calculated by receiver operating characteristic (ROC) curve. There was no significant difference in general clinical data between IAI and non-IAI group (all P>0.05). The proportions of multi-IF (53.8%, 14/26) and colectomy (61.5%, 16/26) in IAI group were higher than those of non-IAI group [20.0% (66/330), χ 2 =15.847, P=0.000 and 31.2%(103/330), χ 2 =9.961, P=0.002]. Differences of preoperative PCT, CRP and WBC levels among IAI, other infection and non-infection groups were not significant. These three markers all increased obviously and immediately after surgery. PCT and WBC values reached the peak point on POD 1, whereas CRP on POD 3. In IAI group, mean PCT values were (5.4±4.2) μg/L, (2.9±1.9) μg/L and (1.6±1.8) μg/L on POD 1, POD 3 and POD 5, respectively, which were higher than those of other infection group [(4.2±8.7) μg/L, (1.9±3.8) μg/L and (0.6±0.8) μg/L] and non-infection group [(2.7±5.8) μg/L, (1.1±1.7) μg/L and (0.5±0.7) μg/L, all P<0.05]. Mean CRP values in IAI group were 99.4 mg/L and 183.9 mg/L respectively on POD 1 and POD 3,and mean WBC values of IAI group on POD 1, POD 3 and POD 5 were 16.0×10 9 /L, 10.8×10 9 /L and 8.7×10 9 /L, respectively, which were all significantly higher than those in the other 2 groups (all P<0.05). No significant differences were obtained between other infection group and non-infection group in all these three markers (all P>0.05). ROC curve demonstrated that PCT had the biggest area under the curve (AUC) of 0.86 and 0.84 on POD 3 and POD 5, with the cut-off value of 0.98 μg/L and 0.83 μg/L, 92.0% sensitivity and 74.0% specificity, 91.0% sensitivity and 73.0% specificity, respectively. The highest AUC was 0.72 on POD 3 for CRP and 0.71 on POD 3 for WBC, with 80.0% sensitivity and 54.0% specificity, 56.0% sensitivity and 73.0% specificity, respectively. The value of procalcitonin above 0.98 μg/L on POD 3 and 0.83 μg/L on POD 5 can predict the occurrence of IAI after definitive operations of intestinal fistulae.
Amniotic fluid cathepsin-G in pregnancies complicated by the preterm prelabor rupture of membranes.
Musilova, Ivana; Andrys, Ctirad; Drahosova, Marcela; Soucek, Ondrej; Pliskova, Lenka; Stepan, Martin; Bestvina, Tomas; Maly, Jan; Jacobsson, Bo; Kacerovsky, Marian
2017-09-01
The aim of this study was to evaluate the amniotic fluid cathepsin-G concentrations in women with preterm prelabor rupture of membranes (PPROM) based on the presence of the microbial invasion of the amniotic cavity (MIAC) and/or intra-amniotic inflammation (IAI). A total of 154 women with singleton pregnancies complicated by PPROM were included in this study. Amniotic fluid samples were obtained by transabdominal amniocentesis. Amniotic fluid cathepsin-G concentrations were assessed by ELISA. MIAC was determined using a non-cultivation approach. IAI was defined as an amniotic fluid bedside interleukin-6 concentration ≥ 745 pg/mL. Women with MIAC had higher amniotic fluid cathepsin-G concentrations than women without MIAC (with MIAC: median 82.7 ng/mL, versus without MIAC: median 64.7 ng/mL; p = 0.0003). Women with IAI had higher amniotic fluid cathepsin-G concentrations than women without this complication (with IAI: median 103.0 ng/mL, versus without IAI: median 66.2 ng/mL; p < 0.0001). Women with microbial-associated (with both MIAC and IAI) IAI and sterile (IAI without MIAC) IAI had higher amniotic fluid cathepsin-G concentrations than women with colonization (MIAC without IAI) and women without both MIAC and IAI (p < 0.0001). The presence of either microbial-associated or sterile IAI was associated with increased amniotic fluid cathepsin-G concentrations in pregnancies complicated by PPROM. Amniotic fluid cathepsin-G appears to be a potential marker of IAI.
Antibiotic management of complicated intra-abdominal infections in adults: The Asian perspective
Kurup, Asok; Liau, Kui-Hin; Ren, Jianan; Lu, Min-Chi; Navarro, Narciso S.; Farooka, Muhammad Waris; Usman, Nurhayat; Destura, Raul V.; Sirichindakul, Boonchoo; Tantawichien, Terapong; Lee, Christopher K.C.; Solomkin, Joseph S.
2014-01-01
Regional epidemiological data and resistance profiles are essential for selecting appropriate antibiotic therapy for intra-abdominal infections (IAIs). However, such information may not be readily available in many areas of Asia and current international guidelines on antibiotic therapy for IAIs are for Western countries, with the most recent guidance for the Asian region dating from 2007. Therefore, the Asian Consensus Taskforce on Complicated Intra-Abdominal Infections (ACT-cIAI) was convened to develop updated recommendations for antibiotic management of complicated IAIs (cIAIs) in Asia. This review article is based on a thorough literature review of Asian and international publications related to clinical management, epidemiology, microbiology, and bacterial resistance patterns in cIAIs, combined with the expert consensus of the Taskforce members. The microbiological profiles of IAIs in the Asian region are outlined and compared with Western data, and the latest available data on antimicrobial resistance in key pathogens causing IAIs in Asia is presented. From this information, antimicrobial therapies suitable for treating cIAIs in patients in Asian settings are proposed in the hope that guidance relevant to Asian practices will prove beneficial to local physicians managing IAIs. PMID:25568794
Musilova, Ivana; Andrys, Ctirad; Drahosova, Marcela; Soucek, Ondrej; Pliskova, Lenka; Jacobsson, Bo; Kacerovsky, Marian
2018-04-01
To determine if cervical fluid interleukin (IL)-6 concentrations in women with preterm prelabor rupture of membranes (PPROM) allows identification of microbial invasion of the amniotic cavity (MIAC) and/or intra-amniotic inflammation (IAI). One hundred forty-four women with singleton pregnancies complicated by PPROM were included in this prospective cohort study. Cervical and amniotic fluids were collected at the time of admission and concentrations of IL-6 were measured using an ELISA and point-of-care test, respectively. Cervical fluid was obtained using a Dacron polyester swab and amniotic fluid was obtained by transabdominal amniocentesis. MIAC was diagnosed based on a positive PCR result for Ureaplasma species, M. hominis, and/or C. trachomatis and/or by positivity for the 16 S rRNA gene. IAI was defined as amniotic fluid point-of-care IL-6 concentrations ≥745 pg/mL. The women were assigned to four subgroups based on the presence of MIAC and/or IAI: microbial-associated IAI (both MIAC and IAI), sterile IAI (IAI alone), MIAC alone, and without either MIAC or IAI. (1) Women with microbial-associated IAI had higher cervical fluid IL-6 concentrations (median 560 pg/mL) than did women with sterile IAI (median 303 pg/mL; p = .001), women with MIAC alone (median 135 pg/mL; p = .0004), and women without MIAC and IAI (median 180 pg/mL; p = .0001). (2) No differences were found in cervical fluid IL-6 concentrations among women with sterile IAI, with MIAC alone, and without MIAC and IAI. (3) A positive correlation was observed between cervical fluid IL-6 concentrations and the amount of Ureaplasma species in amniotic fluid (copies DNA/mL; rho = 0.57, p < .0001). (4) A weak positive correlation was detected between cervical and amniotic fluid IL-6 concentrations (rho = 0.33, p < .0001). The presence of microbial-associated IAI is associated with the highest cervical fluid IL-6 concentrations. Cervical IL-6 can be helpful in the identification of microbial-associated IAI.
Musilova, Ivana; Pliskova, Lenka; Gerychova, Romana; Janku, Petr; Simetka, Ondrej; Matlak, Petr; Jacobsson, Bo
2017-01-01
Objective The main aim of this study was to determine the relationship between the maternal white blood cell (WBC) count at the time of hospital admission in pregnancies complicated by preterm prelabor rupture of membranes (PPROM) and the presence of microbial invasion of the amniotic cavity (MIAC) and/or intra-amniotic inflammation (IAI). The second aim was to test WBC diagnostic indices with respect to the presence of MIAC and/or IAI. Methods Four hundred and seventy-nine women with singleton pregnancies complicated by PPROM, between February 2012 and June 2017, were included in this study. Maternal blood and amniotic fluid samples were collected at the time of admission. Maternal WBC count was assessed. Amniotic fluid interleukin-6 (IL-6) concentration was measured using a point-of-care test, and IAI was characterized by an IL-6 concentration of ≥ 745 pg/mL. MIAC was diagnosed based on a positive polymerase chain reaction result for the Ureaplasma species, Mycoplasma hominis, and/or Chlamydia trachomatis and/or for the 16S rRNA gene. Results Women with MIAC or IAI had higher WBC counts than those without (with MIAC: median, 12.8 × 109/L vs. without MIAC: median, 11.9 × 109/L; p = 0.0006; with IAI: median, 13.7 × 109/L vs. without IAI: median, 11.9 × 109/L; p < 0.0001). When the women were divided into four subgroups based on the presence of MIAC and/or IAI, the women with both MIAC and IAI had a higher WBC count than those with either IAI or MIAC alone, and those without MIAC and IAI [both MIAC and IAI: median, 14.0 × 109/L; IAI alone: 12.1 × 109/L (p = 0.03); MIAC alone: 12.1 × 109/L (p = 0.0001); and without MIAC and IAI: median, 11.8 × 109/L (p < 0.0001)]. No differences in the WBC counts were found among the women with IAI alone, MIAC alone, and without MIAC and IAI. Conclusion The women with both MIAC and IAI had a higher maternal WBC count at the time of hospital admission than the remaining women with PPROM. The maternal WBC count at the time of admission showed poor diagnostic indices for the identification of the presence of both MIAC and IAI. Maternal WBC count at the time of admission cannot serve as a non-invasive screening tool for identifying these complications in women with PPROM. PMID:29232399
Musilova, Ivana; Kacerovsky, Marian; Stepan, Martin; Bestvina, Tomas; Pliskova, Lenka; Zednikova, Barbora; Jacobsson, Bo
2017-01-01
To evaluate maternal serum C-reactive protein (CRP) concentrations in pregnancies complicated by preterm prelabor rupture of membranes (PPROM) in relation to the presence of microbial invasion of the amniotic cavity (MIAC) and/or intra-amniotic inflammation (IAI). Two hundred and eighty-seven women with singleton pregnancies complicated by PPROM between 2014 and 2016 were included in this study. Maternal blood and amniotic fluid samples were collected at the time of admission. Maternal serum CRP concentration was measured using a high-sensitivity immunoturbidimetric assay. Interleukin-6 (IL-6) concentration was measured using a point-of-care test. MIAC was diagnosed based on a positive polymerase chain reaction result for Ureaplasma species, Mycoplasma hominis, and/or Chlamydia trachomatis and for the 16S rRNA gene. IAI was characterized by an amniotic fluid IL-6 concentration of ≥ 745 pg/mL. Women with MIAC and IAI had higher maternal serum CRP concentrations than did women without (with MIAC: median 6.9 mg/L vs. without MIAC: median 4.9 mg/L; p = 0.02; with IAI: median 8.6 mg/L vs. without IAI: median 4.7 mg/L; p < 0.0001). When women were split into four subgroups based on the presence of MIAC and/or IAI, women with the presence of both MIAC and IAI had higher maternal serum CRP than did women with IAI alone, with MIAC alone, and women without MIAC and IAI (both MIAC and IAI: median: 13.1 mg/L; IAI alone: 6.0 mg/L; MIAC alone: 3.9 mg/L; and without MIAC and IAI: median 4.8 mg/L; p < 0.0001). The maternal serum CRP cutoff value of 17.5 mg/L was the best level to identify the presence of both MIAC and IAI, with sensitivity of 47%, specificity of 96%, positive predictive value of 42%, negative predictive value of 96%, and the positive likelihood ratio of 10.9. The presence of both MIAC and IAI was associated with the highest maternal serum CRP concentrations. Maternal serum CRP concentration in women with PPROM at the time of admission can rule out the presence of the combined condition of both MIAC and IAI, therefore, it may serve as a non-invasive screening tool to distinguish between women with PPROM who are at high or at low risk for the presence of both MIAC and IAI.
Musilova, Ivana; Stepan, Martin; Bestvina, Tomas; Pliskova, Lenka; Zednikova, Barbora; Jacobsson, Bo
2017-01-01
Objective To evaluate maternal serum C-reactive protein (CRP) concentrations in pregnancies complicated by preterm prelabor rupture of membranes (PPROM) in relation to the presence of microbial invasion of the amniotic cavity (MIAC) and/or intra-amniotic inflammation (IAI). Methods Two hundred and eighty-seven women with singleton pregnancies complicated by PPROM between 2014 and 2016 were included in this study. Maternal blood and amniotic fluid samples were collected at the time of admission. Maternal serum CRP concentration was measured using a high-sensitivity immunoturbidimetric assay. Interleukin-6 (IL-6) concentration was measured using a point-of-care test. MIAC was diagnosed based on a positive polymerase chain reaction result for Ureaplasma species, Mycoplasma hominis, and/or Chlamydia trachomatis and for the 16S rRNA gene. IAI was characterized by an amniotic fluid IL-6 concentration of ≥ 745 pg/mL. Result Women with MIAC and IAI had higher maternal serum CRP concentrations than did women without (with MIAC: median 6.9 mg/L vs. without MIAC: median 4.9 mg/L; p = 0.02; with IAI: median 8.6 mg/L vs. without IAI: median 4.7 mg/L; p < 0.0001). When women were split into four subgroups based on the presence of MIAC and/or IAI, women with the presence of both MIAC and IAI had higher maternal serum CRP than did women with IAI alone, with MIAC alone, and women without MIAC and IAI (both MIAC and IAI: median: 13.1 mg/L; IAI alone: 6.0 mg/L; MIAC alone: 3.9 mg/L; and without MIAC and IAI: median 4.8 mg/L; p < 0.0001). The maternal serum CRP cutoff value of 17.5 mg/L was the best level to identify the presence of both MIAC and IAI, with sensitivity of 47%, specificity of 96%, positive predictive value of 42%, negative predictive value of 96%, and the positive likelihood ratio of 10.9. Conclusion The presence of both MIAC and IAI was associated with the highest maternal serum CRP concentrations. Maternal serum CRP concentration in women with PPROM at the time of admission can rule out the presence of the combined condition of both MIAC and IAI, therefore, it may serve as a non-invasive screening tool to distinguish between women with PPROM who are at high or at low risk for the presence of both MIAC and IAI. PMID:28813455
Li, Yuan; Ren, Jianan; Wu, Xiuwen; Li, Jieshou
2018-02-28
Some patients with intra-abdominal infection (IAI) may develop intra-abdominal hypertension (IAH) during treatment. The present study investigated the impact of IAI combined with IAH on the intestinal mucosal barrier in a rabbit model. Forty-eight New Zealand white rabbits were randomly divided into four groups: (i) IAI and IAH; (ii) IAI alone; (iii) IAH alone; and (iv) Control group. IAI model: cecal ligation and puncture for 48 h; IAH model: raised intra-abdominal pressure (IAP) of 20 mmHg for 4 h. Pathological changes in intestinal mucosa were confirmed by light and scanning electron microscopy. FITC-conjugated dextran (FITC-dextran) by gavage was used to measure intestinal mucosal permeability in plasma. Endotoxin, d-Lactate, and diamine oxidase (DAO) in plasma were measured to determine intestinal mucosal damage. Malonaldehyde (MDA), superoxide dismutase (SOD), and GSH in ileum tissues were measured to evaluate intestinal mucosal oxidation and reducing state. Histopathologic scores were significantly higher in the IAI and IAH group, followed by IAI alone, IAH alone, and the control group. FITC-dextran, d-Lactate, DAO, and endotoxin in plasma and MDA in ileum tissues had similar trends. GSH and SOD were significantly lowest the in IAI and IAH group. Occludin levels were lowest in the ileums of the IAI and IAH group. All differences were statistically significant ( P -values <0.001). IAI combined with IAH aggravates damage of the intestinal mucosal barrier in a rabbit model. The combined effects were significantly more severe compared with a single factor. IAI combined with IAH should be prevented and treated effectively. © 2018 The Author(s).
Heier, Jeffrey S; Clark, W Lloyd; Boyer, David S; Brown, David M; Vitti, Robert; Berliner, Alyson J; Kazmi, Husain; Ma, Yu; Stemper, Brigitte; Zeitz, Oliver; Sandbrink, Rupert; Haller, Julia A
2014-07-01
To evaluate the efficacy and safety of intravitreal aflibercept injection (IAI) for the treatment of macular edema secondary to central retinal vein occlusion (CRVO). Randomized, double-masked, phase 3 trial. A total of 188 patients with macular edema secondary to CRVO. Patients received IAI 2 mg (IAI 2Q4) (n = 114) or sham injections (n = 74) every 4 weeks up to week 24. During weeks 24 to 52, patients from both arms were evaluated monthly and received IAI as needed, or pro re nata (PRN) (IAI 2Q4 + PRN and sham + IAI PRN). During weeks 52 to 100, patients were evaluated at least quarterly and received IAI PRN. The primary efficacy end point was the proportion of patients who gained ≥ 15 letters in best-corrected visual acuity (BCVA) from baseline to week 24. This study reports week 100 results. The proportion of patients gaining ≥ 15 letters was 56.1% versus 12.3% (P<0.001) at week 24, 55.3% versus 30.1% (P<0.001) at week 52, and 49.1% versus 23.3% (P<0.001) at week 100 in the IAI 2Q4 + PRN and sham + IAI PRN groups, respectively. The mean change from baseline BCVA was also significantly higher in the IAI 2Q4 + PRN group compared with the sham + IAI PRN group at week 24 (+17.3 vs. -4.0 letters; P<0.001), week 52 (+16.2 vs. +3.8 letters; P<0.001), and week 100 (+13.0 vs. +1.5 letters; P<0.0001). The mean reduction from baseline in central retinal thickness was 457.2 versus 144.8 μm (P<0.001) at week 24, 413.0 versus 381.8 μm at week 52 (P = 0.546), and 390.0 versus 343.3 μm at week 100 (P = 0.366) in the IAI 2Q4 + PRN and sham + IAI PRN groups, respectively. The mean number (standard deviation) of PRN injections in the IAI 2Q4 + PRN and sham + IAI PRN groups was 2.7 ± 1.7 versus 3.9 ± 2.0 during weeks 24 to 52 and 3.3 ± 2.1 versus 2.9 ± 2.0 during weeks 52 to 100, respectively. The most frequent ocular serious adverse event from baseline to week 100 was vitreous hemorrhage (0.9% vs. 6.8% in the IAI 2Q4 + PRN and sham + IAI PRN groups, respectively). The visual and anatomic improvements after fixed dosing through week 24 and PRN dosing with monthly monitoring from weeks 24 to 52 were diminished after continued PRN dosing, with a reduced monitoring frequency from weeks 52 to 100. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
IASI Radiance Data Assimilation in Local Ensemble Transform Kalman Filter
NASA Astrophysics Data System (ADS)
Cho, K.; Hyoung-Wook, C.; Jo, Y.
2016-12-01
Korea institute of Atmospheric Prediction Systems (KIAPS) is developing NWP model with data assimilation systems. Local Ensemble Transform Kalman Filter (LETKF) system, one of the data assimilation systems, has been developed for KIAPS Integrated Model (KIM) based on cubed-sphere grid and has successfully assimilated real data. LETKF data assimilation system has been extended to 4D- LETKF which considers time-evolving error covariance within assimilation window and IASI radiance data assimilation using KPOP (KIAPS package for observation processing) with RTTOV (Radiative Transfer for TOVS). The LETKF system is implementing semi operational prediction including conventional (sonde, aircraft) observation and AMSU-A (Advanced Microwave Sounding Unit-A) radiance data from April. Recently, the semi operational prediction system updated radiance observations including GPS-RO, AMV, IASI (Infrared Atmospheric Sounding Interferometer) data at July. A set of simulation of KIM with ne30np4 and 50 vertical levels (of top 0.3hPa) were carried out for short range forecast (10days) within semi operation prediction LETKF system with ensemble forecast 50 members. In order to only IASI impact, our experiments used only conventional and IAIS radiance data to same semi operational prediction set. We carried out sensitivity test for IAIS thinning method (3D and 4D). IASI observation number was increased by temporal (4D) thinning and the improvement of IASI radiance data impact on the forecast skill of model will expect.
Garantziotis, Stavros; Zudaire, Enrique; Trempus, Carol S; Hollingsworth, John W; Jiang, Dianhua; Lancaster, Lisa H; Richardson, Elizabeth; Zhuo, Lisheng; Cuttitta, Frank; Brown, Kevin K; Noble, Paul W; Kimata, Koji; Schwartz, David A
2008-11-01
The etiology and pathogenesis of angiogenesis in idiopathic pulmonary fibrosis (IPF) is poorly understood. Inter-alpha-trypsin inhibitor (IaI) is a serum protein that can bind to hyaluronan (HA) and may contribute to the angiogenic response to tissue injury. To determine whether IaI promotes HA-mediated angiogenesis in tissue injury. An examination was undertaken of angiogenesis in IaI-sufficient and -deficient mice in the bleomycin model of pulmonary fibrosis and in angiogenesis assays in vivo and in vitro. IaI and HA in patients with IPF were examined. IaI significantly enhances the angiogenic response to short-fragment HA in vivo and in vitro. lal deficiency Ieads to decreased angiogenesis in the matrigel model, and decreases lung angiogenesis after bleomycin exposure in mice. IaI is found in fibroblastic foci in IPF, where it colocalizes with HA. The colocalization is particularly strong in vascular areas around fibroblastic foci. Serum levels of IaI and HA are significantly elevated in patients with IPF compared with control subjects. High serum IaI and HA levels are associated with decreased lung diffusing capacity, but not FVC. Our findings indicate that serum IaI interacts with HA, and promotes angiogenesis in lung injury. IaI appears to contribute to the vascular response to lung injury and may lead to aberrant angiogenesis. Clinical trial registered with www.clinicaltrials.gov (NCT00016627).
Passos, Sheila Pestana; Gressler May, Liliana; Faria, Renata; Özcan, Mutlu; Bottino, Marco Antonio
2013-10-01
Microorganisms from the oral cavity may settle at the implant-abutment interface (IAI). As a result, tissue inflammation could occur around these structures. The databases MEDLINE/PubMed and PubMed Central were used to identify articles published from 1981 through 2012 related to the microbial colonization in the implant-abutment gap and its consequence in terms of crest bone loss and osseointegration. The following considerations could be put forward, with respect to the clinical importance of IAI: (a) the space present at the IAI seems to allow bacterial leakage to occur, in spite of the size of this space; (b) bacterial leakage seems to occur at the IAI, irrespective of the type of connection. More studies are necessary to clarify the relationship between leakage at IAI and abutment connection designs; (c) losses at the peri-implant bone crests cannot be related to the IAI size, since few studies have shown no relationship. Also, the microbial leakage at the IAI cannot be related to the bone crest loss, since there are no articles reporting this relationship; remains controversial the influence of the IAI position on the bone crest losses. Copyright © 2013 Wiley Periodicals, Inc.
Recommendations for intra-abdominal infections consensus report
Avkan-Oğuz, Vildan; Baykam, Nurcan; Sökmen, Selman; Güner, Rahmet; Agalar, Fatih; Alp, Emine; Doğrul, Ahmet; Turhan, Özge; Ağalar, Canan; Kurtaran, Behice; Geçim, İbrahim Ethem; Özaras, Reşat; Yılmaz, Gürdal; Akbulut, Ayhan; Koksal, İftihar
2016-01-01
Guidelines include the recommendations of experts from various specialties within a topic in consideration of data specific to each country. However, to date there has not been a guideline standardizing the nomenclature and offering recommendations for intra-abdominal infections (IAIs) in Turkey. This is mainly due to the paucity of laboratory studies regarding the clinical diagnosis and treatment of IAIs or the sensitivity of microorganisms isolated from patients with IAIs. However, due to the diversification of host characteristics and advancements in technological treatment methods, it has become imperative to ‘speak a common language’. For this purpose May 2015, a group of 15 experts in intra-abdominal infections, under the leadership of the Infectious Diseases and Clinical Microbiology Specialty Society of Turkey (EKMUD) and with representatives from the Turkish Surgical Association, Turkish Society of Colon and Rectal Surgery, Hernia Society, Turkish Society of Hepato-pancreato-biliary Surgery, and the Turkish Society of Hospital Infections and Control, was formed to analyze relevant studies in the literature. Ultimately, the suggestions for adults found in this consensus report were developed using available data from Turkey, referring predominantly to the 2010 guidelines for diagnosing and managing complicated IAIs in adults and children by the Infectious Diseases Society of America (IDSA) and the Surgical Infection Society. The recommendations are presented in two sections, from the initial diagnostic evaluation of patients to the treatment approach for IAI. This Consensus Report was presented at the EKMUD 2016 Congress in Antalya and was subsequently opened for suggestions on the official websites of the Infectious Diseases and Clinical Microbiology Specialty Society of Turkey and Turkish Surgical Association for one month. The manuscript was revised according to the feedback received. PMID:28149134
Spolidoro Paschoal, Natalia de Oliva; Natour, Jamil; Machado, Flavia S; de Oliveira, Hilda Alcântara Veiga; Furtado, Rita Nely Vilar
2015-10-01
To evaluate the effectiveness and tolerance of intraarticular injection (IAI) of triamcinolone hexacetonide (TH) for the treatment of osteoarthritis (OA) of hand interphalangeal (IP) joints. Sixty patients who underwent IAI at the most symptomatic IP joint were randomly assigned to receive TH/lidocaine (LD; n = 30) with TH 20 mg/ml and LD 2%, or just LD (n = 30). The injected joint was immobilized with a splint for 48 h in both groups. Patients were assessed at baseline and at 1, 4, 8, and 12 weeks by a blinded observer. The following variables were assessed: pain at rest [visual analog scale (VAS)r], pain at movement (VASm), swelling (physician VASs), goniometry, grip and pinch strength, hand function, treatment improvement, daily requirement of paracetamol, and local adverse effects. The proposed treatment (IAI with TH/LD) was successful if statistical improvement (p < 0.05) was achieved in at least 2 of 3 VAS. Repeated-measures ANOVA test was used to analyze intervention response. Fifty-eight patients (96.67%) were women, and the mean age was 60.7 years (± 8.2). The TH/LD group showed greater improvement than the LD group for VASm (p = 0.014) and physician VASs (p = 0.022) from the first week until the end of the study. In other variables, there was no statistical difference between groups. No significant adverse effects were observed. The IAI with TH/LD has been shown to be more effective than the IAI with LD for pain on movement and joint swelling in patients with OA of the IP joints. Regarding pain at rest, there was no difference between groups. ClinicalTrials.gov (NCT02102620).
Serum Inter–α-Trypsin Inhibitor and Matrix Hyaluronan Promote Angiogenesis in Fibrotic Lung Injury
Garantziotis, Stavros; Zudaire, Enrique; Trempus, Carol S.; Hollingsworth, John W.; Jiang, Dianhua; Lancaster, Lisa H.; Richardson, Elizabeth; Zhuo, Lisheng; Cuttitta, Frank; Brown, Kevin K.; Noble, Paul W.; Kimata, Koji; Schwartz, David A.
2008-01-01
Rationale: The etiology and pathogenesis of angiogenesis in idiopathic pulmonary fibrosis (IPF) is poorly understood. Inter-α-trypsin inhibitor (IaI) is a serum protein that can bind to hyaluronan (HA) and may contribute to the angiogenic response to tissue injury. Objectives: To determine whether IaI promotes HA-mediated angiogenesis in tissue injury. Methods: An examination was undertaken of angiogenesis in IaI-sufficient and -deficient mice in the bleomycin model of pulmonary fibrosis and in angiogenesis assays in vivo and in vitro. IaI and HA in patients with IPF were examined. Measurements and Main Results: IaI significantly enhances the angiogenic response to short-fragment HA in vivo and in vitro. lal deficiency Ieads to decreased angiogenesis in the matrigel model, and decreases lung angiogenesis after bleomycin exposure in mice. IaI is found in fibroblastic foci in IPF, where it colocalizes with HA. The colocalization is particularly strong in vascular areas around fibroblastic foci. Serum levels of IaI and HA are significantly elevated in patients with IPF compared with control subjects. High serum IaI and HA levels are associated with decreased lung diffusing capacity, but not FVC. Conclusions: Our findings indicate that serum IaI interacts with HA, and promotes angiogenesis in lung injury. IaI appears to contribute to the vascular response to lung injury and may lead to aberrant angiogenesis. Clinical trial registered with www.clinicaltrials.gov (NCT00016627). PMID:18703791
Jagoda, Evelyn; Lawson, Daniel J; Wall, Jeffrey D; Lambert, David; Muller, Craig; Westaway, Michael; Leavesley, Matthew; Capellini, Terence D; Mirazón Lahr, Marta; Gerbault, Pascale; Thomas, Mark G; Migliano, Andrea Bamberg; Willerslev, Eske; Metspalu, Mait; Pagani, Luca
2018-01-01
Abstract Recent studies have reported evidence suggesting that portions of contemporary human genomes introgressed from archaic hominin populations went to high frequencies due to positive selection. However, no study to date has specifically addressed the postintrogression population dynamics of these putative cases of adaptive introgression. Here, for the first time, we specifically define cases of immediate adaptive introgression (iAI) in which archaic haplotypes rose to high frequencies in humans as a result of a selective sweep that occurred shortly after the introgression event. We define these cases as distinct from instances of selection on standing introgressed variation (SI), in which an introgressed haplotype initially segregated neutrally and subsequently underwent positive selection. Using a geographically diverse data set, we report novel cases of selection on introgressed variation in living humans and shortlist among these cases those whose selective sweeps are more consistent with having been the product of iAI rather than SI. Many of these novel inferred iAI haplotypes have potential biological relevance, including three that contain immune-related genes in West Siberians, South Asians, and West Eurasians. Overall, our results suggest that iAI may not represent the full picture of positive selection on archaically introgressed haplotypes in humans and that more work needs to be done to analyze the role of SI in the archaic introgression landscape of living humans. PMID:29220488
NASA Astrophysics Data System (ADS)
Ohira, M. S.
2007-05-01
The IAI's Training and Education (T&E) activities are designed to encourage capacity building in the Americas and are developed within and in parallel with the IAI research programs in global environmental change (GEC). The IAI has various training priorities: (1) support for graduate students in the form of fellowships through research programs; (2) development of IAI Training Institutes in Interdisciplinary Sciences and Science-Policy Fora; and (3) support for technical workshops, scientific meetings, and seminars. It becomes increasingly evident that institutions such as IAI must provide training and support to policy and decision makers who deal with environmental issues. The IAI Training Institutes emphasize an exchange of information about the various scientific languages, needs, and methodologies of disciplines that study GEC. Particular attention is given to socio-economic impacts and ways in which nations can gain a better understanding of the complex mechanisms, degrees of change, causes, and consequences - and therefore, plan sound public and private policies to minimize problems and maximize opportunities. The IAI has also implemented a Training Institute Seed Grant (TISG) Program as an assessment activity of the Training Institutes to further encourage network building and multinational and multidisciplinary collaboration among its 19 member countries in the Americas. By fostering the development of such new multidisciplinary, multinational teams, the IAI ensures a future generation of professionals who will be engaged in IAI research programs and networks and will lead the integrated science programs in the next decades. Furthermore, IAI has organized Science-Policy Fora, which focus on the science- policy interface and ways to incorporate scientific information into policy and decision-making processes. Participants discussed what scientific information is available, what aspects need to be better understood, translation of scientific information for the nonscientific community, potential uses of technical information, and policy issues that should be incorporated into the scientific community's agenda. Participants are individuals from governmental agencies, national and international organizations, nongovernmental organizations (NGO), universities, and private companies. Various other T&E-based initiatives that contribute to the building of scientific capacity in the Americas are supported by the IAI. Workshops, seminars, conferences, and other venues encourage the exchange of information and data providing scientists and professionals in global change related fields many opportunities to interact and benefit from multinational, multidisciplinary collaborations.
Brown, David M; Heier, Jeffrey S; Clark, W Lloyd; Boyer, David S; Vitti, Robert; Berliner, Alyson J; Zeitz, Oliver; Sandbrink, Rupert; Zhu, Xiaoping; Haller, Julia A
2013-03-01
To evaluate intravitreal aflibercept injections (IAI; also called VEGF Trap-Eye) for patients with macular edema secondary to central retinal vein occlusion (CRVO). Randomized controlled trial. This multicenter study randomized 189 patients (1 eye/patient) with macular edema secondary to CRVO to receive 6 monthly injections of either 2 mg intravitreal aflibercept (IAI 2Q4) (n = 115) or sham (n = 74). From week 24 to week 52, all patients received 2 mg intravitreal aflibercept as needed (IAI 2Q4 + PRN and sham + IAI PRN) according to retreatment criteria. The primary endpoint was the proportion of patients who gained ≥15 ETDRS letters from baseline at week 24. Additional endpoints included visual, anatomic, and quality-of-life NEI VFQ-25 outcomes at weeks 24 and 52. At week 24, 56.1% of IAI 2Q4 patients gained ≥15 letters from baseline compared with 12.3% of sham patients (P < .001). At week 52, 55.3% of IAI 2Q4 + PRN patients gained ≥15 letters compared with 30.1% of sham + IAI PRN patients (P < .001). At week 52, IAI 2Q4 + PRN patients gained a mean of 16.2 letters of vision vs 3.8 letters for sham + IAI PRN (P < .001). The most common adverse events for both groups were conjunctival hemorrhage, eye pain, reduced visual acuity, and increased intraocular pressure. Monthly injections of 2 mg intravitreal aflibercept for patients with macular edema secondary to CRVO resulted in a statistically significant improvement in visual acuity at week 24, which was largely maintained through week 52 with intravitreal aflibercept PRN dosing. Intravitreal aflibercept injection was generally well tolerated. Copyright © 2013 Elsevier Inc. All rights reserved.
Lin, Shang-Yi; Huang, Chung-Hao; Ko, Wen-Chien; Chen, Yen-Hsu; Hsueh, Po-Ren
2016-01-01
Treatment of complicated intra-abdominal infections (cIAIs) is becoming increasingly difficult because of the widespread emergence of multidrug-resistant organisms. In this review, we discuss the effectiveness of several new antibiotics for the treatment of cIAIs, including new β-lactamase inhibitor combinations (BLICs) and tetracycline-class drugs, recently developed aminoglycosides and quinolones, and novel lipoglycopeptides and oxazolidinones. Of the new BLICs, ceftolozane/tazobactam is associated with adequate clinical cure rates in patients with cIAIs. Currently, two new β-lactamase inhibitors, namely avibactam and MK-7655, are under development for clinical use in the treatment of cIAIs. Eravacycline, a novel, fully synthetic tetracycline-class drug, has been shown in Phase II and III clinical trials to be more potent than tigecycline against a significant number of multidrug-resistant organisms causing cIAIs. Plazomicin, a next-generation aminoglycoside, is a promising agent for treatment of cIAIs due to multidrug-resistant pathogens. Of the recently developed quinolones, delafloxacin and finafloxacin have been shown to be effective against pathogens that survive and multiply in mildly acidic environments, although further clinical studies examining their clinical utility in the treatment of cIAIs are warranted. Oritavancin, a new semisynthetic lipoglycopeptide agent, has been demonstrated to be a potent antibiotic in the treatment of cIAIs due to drug-resistant Gram-positive organisms. Several other new antibiotics in development also show promise and will hopefully broaden the possibilities for treatment of complicated intra-abdominal infections due to MDR pathogens.
Bonadio, William; Langer, Miriam; Cueva, Julie; Haaland, Astrid
2017-10-01
Perforated appendicitis can result in potentially serious complications requiring prolonged medical care. The optimal approach to successfully managing this condition is controversial. Review of 80 consecutive cases of pediatric acute perforated appendicitis with intra-abdominal infection (IAI) medically managed with parenteral antibiotics and percutaneous drainage (PD) during a 7-year period. All patients received broad spectrum parenteral antibiotic therapy. One-third were hospitalized for >2 weeks. IAI was identified on admission in 60% compared with developing during hospitalization in 40% of cases. Before performing PD, the mean duration of antibiotic therapy in those who developed IAI during hospitalization was 6 days. IAI cultures yielded 127 bacterial isolates; polymicrobial infection occurred in 65% of cases. Only 7% of aspirates were sterile. The most common pathogens were Escherichia coli (82%), of which 5 isolates exhibited extended-spectrum β-lactamase production, and streptococci (40%). At the time of PD, 60% were febrile (mean duration of in-hospital fever, 7.5 days); 67% defervesced within 24 hours after the procedure. Posthospitalization abdominal complications (recurrent IAI or appendicitis) occurred in one-third of patients. Children with perforated appendicitis and IAI often have a complicated and prolonged clinical course. Medical management consisting solely of parenteral antibiotic therapy is frequently ineffective in resolving IAI. Rapid clinical improvement commonly follows PD.
Kusanovic, Juan Pedro; Romero, Roberto; Jodicke, Cristiano; Mazaki-Tovi, Shali; Vaisbuch, Edi; Erez, Offer; Mittal, Pooja; Gotsch, Francesca; Chaiworapongsa, Tinnakorn; Edwin, Sam S.; Pacora, Percy; Hassan, Sonia S.
2012-01-01
Objective Circulating soluble HLA-G (sHLA-G) has been associated with pregnancy complications, and determination of sHLA-G concentrations in amniotic fluid (AF) has been reported in normal pregnancies. Our aim was to determine if the AF concentrations of sHLA-G change with advancing gestation, spontaneous labor at term, and in patients with spontaneous preterm labor (PTL) with intact membranes, as well as in those with preterm prelabor rupture of membranes (PROM), in the presence or absence of intraamniotic infection/inflammation (IAI). Study design This cross-sectional study included the following groups: 1) midtrimester (n=55); 2) normal pregnancy at term with (n=50) and without (n=50) labor; 3) spontaneous PTL with intact membranes divided into: a) PTL who delivered at term (n=153); b) PTL who delivered preterm without IAI (n=108); and c) PTL with IAI (n=84); and 4) preterm PROM with (n=46) and without (n=44) IAI. sHLA-G concentrations were determined by ELISA. Non-parametric statistics were used for analysis. Results 1) Among patients with PTL, the median AF sHLA-G concentration was higher in patients with IAI than in those without IAI or women that delivered at term (p<0.001 for both comparisons); 2) Similarly, patients with preterm PROM and IAI had higher median AF sHLA-G concentrations than those without IAI (p=0.004); 3) Among patients with PTL and delivery, those with histologic chorioamnionitis and/or funisitis had a higher median AF sHLA-G concentration than those without histologic inflammation (p<0.001); and 4) The median AF sHLA-G concentration did not change with advancing gestational age. Conclusions AF sHLA-G concentrations are elevated in preterm parturition associated to IAI as well as in histologic chorioamnionitis. We propose that sHLA-G may participate in the regulation of the host immune response against intra-amniotic infection. PMID:19916713
Riley, William T; Serrano, Katrina J; Nilsen, Wendy; Atienza, Audie A
2015-10-01
Recent advances in mobile and wireless technologies have made real-time assessments of health behaviors and their influences possible with minimal respondent burden. These tech-enabled real-time assessments provide the basis for intensively adaptive interventions (IAIs). Evidence of such studies that adjust interventions based on real-time inputs is beginning to emerge. Although IAIs are promising, the development of intensively adaptive algorithms generate new research questions, and the intensive longitudinal data produced by IAIs require new methodologies and analytic approaches. Research considerations and future directions for IAIs in health behavior research are provided.
Liao, Kang; Chen, Yili; Wang, Menghe; Guo, Penghao; Yang, Qiwen; Ni, Yuxing; Yu, Yunsong; Hu, Bijie; Sun, Ziyong; Huang, Wenxiang; Wang, Yong; Wu, Anhua; Feng, Xianju; Luo, Yanping; Hu, Zhidong; Chu, Yunzhuo; Chen, Shulan; Cao, Bin; Su, Jianrong; Gui, Bingdong; Duan, Qiong; Zhang, Shufang; Shao, Haifeng; Kong, Haishen; Xu, Yingchun
2017-01-01
Recently, the emergence of multidrug-resistant organisms such as extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae has raised considerable concern regarding the appropriate treatment of intra-abdominal infections (IAIs). In this study, we investigated the molecular characteristics of ESBL among clinical isolates of Escherichia coli and Klebsiella pneumoniae causing IAIs and their pattern of antimicrobial resistance, which can provide useful information about the epidemiology and risk factors associated with these infections. One hundred sixty-seven E.coli and 47 K. pneumoniae ESBL-producing strains causing IAIs were collected from 9 hospitals in China, during 2012 and 2013. The antimicrobial susceptibility profile of these strains was determined. Polymerase chain reaction and sequencing were performed to identify genes for β-lactamase (blaTEM, blaSHV, blaOXA-1-like, and blaCTX-M). The isolates were also analyzed by pulsed-field gel electrophoresis (PFGE). In 167 ESBL-producing E. coli strains, 104 strains (62.3%) were positive for CTX-M, and 9 strains (5.39%) were positive for SHV. Among the 47 K. pneumoniae strains, 35 strains (74.5%) were positive for SHV-2a, 12 strains (25.5%) were positive for CTX-M. No TEM-type and OXA-1-like strain was detected among all the ESBL-producing strains. Regarding the CTX-M-positive E. coli and K. pneumoniae strains, CTX-M-15 was the most common genotype in E. coli and K. pneumoniae strains, accounting for 28.7% and 17.0%, respectively, followed by CTX-M-55 accounting for 16.2% and 2.13%, respectively; the remaining genotypes included CTX-M-123 and CTX-M-82. PFGE showed that E.coli and K. pneumoniae ESBL-producing strains causing IAIs were diverse and that emerging resistance may not be due to the dissemination of national clones. The present study revealed that in ESBL-producing strains causing IAIs in China, the most common genotype for E.coli was CTX-M-15 and for K. pneumoniae was SHV-2a. However, there was a wide diversity of strains causing IAIs among the ESBL-producing E. coli and K. pneumoniae. Copyright © 2016 Elsevier Inc. All rights reserved.
Rodríguez-Trujillo, Adriano; Cobo, Teresa; Vives, Irene; Bosch, Jordi; Kacerovsky, Marian; Posadas, David E; Ángeles, Martina A; Gratacós, Eduard; Jacobsson, Bo; Palacio, Montse
2016-08-01
The aim of this study was to evaluate, in women with preterm prelabor rupture of membranes (PPROM), the impact on short-term neonatal outcome of microbial invasion of the amniotic cavity (MIAC), intra-amniotic inflammation (IAI), and the microorganisms isolated in women with MIAC, when gestational age is taken into account. Prospective cohort study. We included women with PPROM (22.0-34.0 weeks of gestation) with available information about MIAC, IAI and short-term neonatal outcome. MIAC was defined as positive aerobic/anaerobic/genital Mycoplasma culture in amniotic fluid. Definition of IAI was based on interleukin-6 levels in amniotic fluid. Main outcome measures were Apgar score <7 at 5 min, umbilical artery pH ≤7.0, days in the neonatal intensive care unit, and composite neonatal morbidity, including any of the following: intraventricular hemorrhage grade III-IV, respiratory distress syndrome, early-onset neonatal sepsis, periventricular leukomalacia, necrotizing enterocolitis, and fetal or neonatal death. Labor was induced after 32.0 weeks if lung maturity was confirmed; and otherwise after 34.0 weeks. MIAC and IAI were found in 38% (72/190) and 67% (111/165), respectively. After adjustment for gestational age at delivery, no differences in short-term neonatal outcome were found between women with either MIAC or IAI, compared with the non-infection/non-inflammation ("No-MIAC/No-IAI") group. Furthermore, short-term neonatal outcome did not differ between the MIAC caused by Ureaplasma spp. group, the MIAC caused by other microorganisms group and the "No-MIAC/No-IAI" group. Gestational age at delivery seems to be more important for short-term neonatal outcome than MIAC or IAI in PPROM. © 2016 Nordic Federation of Societies of Obstetrics and Gynecology.
Maddipati, Krishna Rao; Romero, Roberto; Chaiworapongsa, Tinnakorn; Chaemsaithong, Piya; Zhou, Sen-Lin; Xu, Zhonghui; Tarca, Adi L.; Kusanovic, Juan Pedro; Gomez, Ricardo; Chaiyasit, Noppadol; Honn, Kenneth V.
2016-01-01
Bioactive lipids derived from the metabolism of polyunsaturated fatty acids are important mediators of the inflammatory response. Labor per se is considered a sterile inflammatory process. Intra-amniotic inflammation (IAI) due to microorganisms (i.e., intra-amniotic infection) or danger signals (i.e., sterile IAI) has been implicated in the pathogenesis of preterm labor and clinical chorioamnionitis at term. Early and accurate diagnosis of microbial invasion of the amniotic cavity (MIAC) requires analysis of amniotic fluid (AF). It is possible that IAI caused by microorganisms is associated with a stereotypic lipidomic profile, and that analysis of AF may help in the identification of patients with this condition. To test this hypothesis, we analyzed the fatty acyl lipidome of AF by liquid chromatography—mass spectrometry from patients in spontaneous labor at term and preterm gestations. We report that the AF concentrations of proinflammatory lipid mediators of the 5-lipoxygenase pathway are significantly higher in MIAC than in cases of sterile IAI. These results suggest that the concentrations of 5-lipoxygenase metabolites of arachidonic acid, 5-hydroxyeicosatetraenoic acid, and leukotriene B4 in particular could serve as potential biomarkers of MIAC. This finding could have important implications for the rapid identification of patients who may benefit from anti-microbial treatment.—Maddipati, K. R., Romero, R., Chaiworapongsa ,T., Chaemsaithong, P., Zhou, S.-L., Xu, Z., Tarca, A. L., Kusanovic, J. P., Gomez, R., Chaiyasit, N., Honn, K. V. Lipidomic analysis of patients with microbial invasion of the amniotic cavity reveals up-regulation of leukotriene B4. PMID:27312808
Erez, Offer; Romero, Roberto; Vaisbuch, Edi; Chaiworapongsa, Tinnakorn; Kusanovic, Juan Pedro; Mazaki-Tovi, Shali; Gotsch, Francesca; Gomez, Ricardo; Maymon, Eli; Pacora, Percy; Edwin, Samuel S.; Kim, Chong Jai; Than, Nandor Gabor; Mittal, Pooja; Yeo, Lami; Dong, Zhong; Yoon, Bo Hyun; Hassan, Sonia S; Mazor, Moshe
2012-01-01
Objective Preterm labor is associated with excessive maternal thrombin generation as evidenced by increased circulating thrombin–antithrombin (TAT) III complexes concentration. In addition to its hemostatic functions, thrombin has uterotonic properties that may participate in the mechanism leading to preterm birth in cases of intrauterine bleeding. Thrombin also has a proinflammatory role, and inflammation is associated with increased thrombin generation. The aim of this study was to determine whether intra-amniotic infection/inflammation (IAI) is associated with increased amniotic fluid (AF) thrombin generation in women with preterm and term deliveries. Study design This cross-sectional study included the following groups: 1) mid-trimester (n=74); 2) term not in labor (n=39); 3) term in labor (n=25); 4) term in labor with IAI (n=22); 5) spontaneous preterm labor (PTL) who delivered at term (n=62); 6) PTL without IAI who delivered preterm (n=59); 7) PTL with IAI (n=71). The AF TAT III complexes concentration was measured by ELISA. Non-parametric statistics were used for analysis. Results 1) TAT III complexes were identified in all AF samples; 2) patients with PTL who delivered preterm, with and without IAI, had a significantly higher median AF TAT III complexes concentration than those with an episode of PTL who delivered at term (p<0.001, p=0.03, respectively); 3) among patients with preterm labor without IAI, elevated AF TAT III complexes concentration were independently associated with a shorter amniocentesis-to-delivery interval (hazard ratio- 1.5, 95%CI, 1.07–2.1); 4) among patients at term, those with IAI had a higher median AF TAT III complexes concentration than those without IAI, whether in labor or not in labor (p=0.02); 5) there was no significant difference between the median AF TAT III complexes concentration of patients at term with and without labor; and 6) patients who had a mid-trimester amniocentesis had a lower median AF TAT III complexes concentration than that of patients at term not in labor (p<0.001). Conclusions We present herein a distinct difference in the pattern of intra-amniotic thrombin generation between term and preterm parturition. Preterm labor leading to preterm delivery is associated with an increased intra-amniotic thrombin generation, regardless of the presence of IAI. In contrast, term delivery is associated with an increased intra-amniotic thrombin generation only in patients with IAI. PMID:19900035
Romero, Roberto; Chaiworapongsa, Tinnakorn; Savasan, Zeynep Alpay; Xu, Yi; Hussein, Youssef; Dong, Zhong; Kusanovic, Juan Pedro; Kim, Chong Jai; Hassan, Sonia S
2012-01-01
Objective Preterm parturition is a syndrome caused by multiple etiologies. Although intra-amniotic infection is causally linked with intrauterine inflammation and the onset of preterm labor, other patients have preterm labor in the absence of demonstrable infection. It is now clear that inflammation may be elicited by activation of the Damage-Associated Molecular Patterns (DAMPs), which include pathogen-associated molecular patterns (PAMPs) as well as “alarmins” (endogenous molecules that signal tissue and cellular damage). A prototypic alarmin is high-mobility group box-1 (HMGB1) protein, capable of inducing inflammation and tissue repair when it reaches the extracellular environment. HMGB1 is a late-mediator of sepsis, and blockade of HMGB1 activity reduces mortality in an animal model of endotoxemia, even if administered late during the course of the disorder. The objectives of this study were to: 1) determine whether intra-amniotic infection/inflammation (IAI) is associated with changes in amniotic fluid concentrations of HMGB1; and 2) localize immunoreactivity of HMGB1 in the fetal membranes and umbilical cord of patients with chorioamnionitis. Methods Amniotic fluid samples were collected from the following groups: 1) preterm labor with intact membranes (PTL) with (n=42) and without IAI (n=84); and 2) preterm prelabor rupture of membranes (PROM) with (n=38) and without IAI (n=35). IAI was defined as either a positive amniotic fluid culture or amniotic fluid concentration of interleukin-6 (IL-6) ≥2.6 ng/mL. HMGB1 concentrations in amniotic fluid were determined by ELISA. Immunofluorescence staining for HMGB1 was performed in the fetal membranes and umbilical cord of pregnancies with acute chorioamnionitis. Results Amniotic fluid HMGB1 concentrations were higher in patients with IAI than in those without IAI in both the PTL and preterm PROM groups (PTL IAI: median 3.1 ng/mL vs. without IAI; median 0.98 ng/mL; p<0.001; and preterm PROM with IAI median 7.3 ng/mL vs. without IAI median 2.6 ng/mL; p=0.002); patients with preterm PROM without IAI had a higher median amniotic fluid HMGB1 concentration than those with PTL and intact membranes without IAI (p<0.001); and HMGB1 was immunolocalized to amnion epithelial cells and stromal cells in the Wharton’s jelly (prominent in the nuclei and cytoplasm). Myofibroblasts and macrophages of the chorioamniotic connective tissue layer and infiltrating neutrophils showed diffuse cytoplasmic HMGB1 immunoreactivity. Conclusions Intra-amniotic infection/inflammation is associated with elevated amniotic fluid HMGB1 concentrations regardless of membrane status; preterm PROM was associated with a higher amniotic fluid HMGB1 concentration than PTL with intact membranes, suggesting that rupture of membranes is associated with an elevation of alarmins; immunoreactive HMGB1 was localized to amnion epithelial cells, Wharton’s jelly and cells involved in the innate immune response; and we propose that HMGB1 released from stress or injured cells into amniotic fluid may be responsible, in part, for intra-amniotic inflammation due to non-microbial insults. PMID:21958433
Vaisbuch, Edi; Romero, Roberto; Erez, Offer; Tovi, Shali Mazaki; Pedro, Kusanovic Juan; Soto, Eleazar; Gotsch, Francesca; Dong, Zhong; Chaiworapongsa, Tinnakorn; Kim, Sun Kwon; Mittal, Pooja; Pacora, Percy; Yeo, Lami; Hassan, Sonia S.
2013-01-01
Objective Fragment Bb is an activator of the alternative pathway of the complement system. Recently, increased first trimester maternal plasma concentrations of this fragment were reported in patients destined to have a spontaneous preterm delivery before 34 weeks of gestation. The aim of this study was to determine whether the amniotic fluid (AF) concentrations of fragment Bb change with gestational age, spontaneous labor (term and preterm), and in the presence of intra-amniotic infection/ inflammation (IAI). Study design This cross-sectional study included patients in the following groups: 1) midtrimester (n=64); 2) term in spontaneous labor (n=70); 3) term not in labor (n=43); 4) spontaneous preterm labor (PTL) who delivered at term (n=76); 5) PTL without IAI who delivered preterm (n=73); 6) PTL with IAI (n=76); 7) prelabor rupture of the membranes (preterm PROM) without IAI (n=71); and 8) preterm PROM with IAI (n=71). Fragment Bb concentration in amniotic fluid was determined by an enzyme-linked immunoassay. Non-parametric statistics were used for analyses. Results 1) Fragment Bb was detected in all AF samples (n=544); 2) The median AF concentration of fragment Bb in patients at term not in labor was significantly higher than that of those in the mid-trimester [2.42 μg/mL, interquartile range (IQR) 1.78-3.22 vs. 1.64 μg/mL, IQR 1.06-3.49; p<0.001]; 3) Among patients with PTL, those with IAI had a higher median AF fragment Bb concentration than that of woman without IAI who delivered preterm (4.82 μg/mL, IQR 3.32-6.08 vs. 3.67 μg/mL, IQR 2.35-4.57; p<0.001) and than that of women with an episode of PTL who delivered at term (3.21 μg/mL, IQR 2.39-4.16; p<0.001); 4) Similarly, among patients with preterm PROM, the median AF fragment Bb concentration was higher in individuals with IAI than in those without IAI (4.24 μg/mL, IQR 2.58-5.79 vs. 2.79 μg/mL, IQR 2.09-3.89; p<0.001). 5) Among patients at term, the median AF fragment Bb concentration did not differ between women with spontaneous labor and those without labor (term in labor: 2.47 μg/mL, IQR 1.86-3.22; p=0.97). Conclusions 1) Fragment Bb, an activator of the alternative complement pathway, is a physiologic constituent of the amniotic fluid, and its concentration increases with advancing gestational age; 2) Amniotic fluid concentrations of fragment Bb are higher in pregnancies complicated with IAI; and 3) Labor at term is not associated with changes in the amniotic fluid concentrations of fragment Bb. These findings suggest a role for fragment Bb in the host immune response against IAI. PMID:19603351
5-Iodo-2-aminoindan, a nonneurotoxic analogue of p-iodoamphetamine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, D.E.; Johnson, M.P.; Oberlender, R.
1991-01-01
A rigid analogue, 5-iodo-2-aminoindan (5-IAI), of the serotonin neurotoxic halogenated amphetamine p-iodoamphetamine (PIA) was pharmacologically evaluated for production of serotonin neurotoxicity. A comparison was also made between 5-IAI and PIA in the two-lever drug discrimination paradigm in rats trained to discriminate saline from 3,4-methylenedioxymethamphetamine (MDMA) or saline from the alpha-ethyl homologue of MDMA, MBDB. PIA and 5-IAI were both behaviorally active, and fully substituted in both groups of animals, but were considerably less potent than p-chloroamphetamine (PCA). PIA had about twice the potency of PCA as an inhibitor of {sup 3}H-5-HT uptake in rat brain cortical synaptosomes, while 5-IAI wasmore » only about 75% as potent as PCA in this assay. A single 40 mg/kg dose of PIA resulted in a 40% reduction of 5-HT and 5-HIAA levels and in the number of 5-HT uptake sites in rat cortex at one week sacrifice. The same dose of 5-IAI with one week sacrifice led to about a 15% decrease in 5-HIAA levels and number of 5-HT uptake sites, but only the latter was statistically significant. In rat hippocampus, PIA gave significant decreases in all serotonin markers examined, while 5-IAI slightly but significantly decreased only 5-HT levels. Neither compound produced any change in catecholamine or catecholamine metabolite levels. The results confirm earlier reports of the selective serotonin neurotoxicity of PIA, which is less severe than that of PCA, and also demonstrate that its rigid analogue 5-IAI does not appear to cause significant serotonin deficits in the rat.« less
The modified iron avidity index: a promising phenotypic predictor in HFE-related haemochromatosis.
Verhaegh, Pauline L M; Moris, Wenke; Koek, Ger H; van Deursen, Cees Th B M
2016-10-01
Phenotypes of the HFE-related haemochromatosis vary considerably, making it hard to predict the course of iron accumulation. The aim of this retrospective study was to determine if the Iron Avidity Index (IAI) is a good phenotypic predictor of the number of phlebotomies needed per year during maintenance treatment (NPDMT) in patients with homozygous p.C282Y hereditary haemochromatosis (HH). Patients with HH homozygous for p.C282Y, on maintenance treatment for at least 1 year were included. The IAI (ferritin level at diagnosis/age at diagnosis) was calculated. Ninety-five patients were included in the analysis. Linear regression analysis showed the confounding effect of sex on the relationship between IAI and NPDMT. A modified IAI, adjusted for sex, was calculated. As proton pump inhibitor (PPI) use was independently associated with NPDMT, the group was split in PPI- and non-PPI-users. A positive correlation between the modified IAI and the NPDMT was shown in both groups (PPI r = 0.367, P = 0.023; non-PPI r = 0.453, P < 0.001). An ROC was computed to measure the accuracy of the modified IAI to predict who needed 0-2 vs. ≥3 maintenance treatments per year. The AUROC in the PPI and non-PPI group were respectively 0.576 (0.368-0.784) and 0.752 (0.606-0.899). The modified IAI is a fairly good predictor in non-PPI-using homozygous C282Y HH patients, to differentiate who needs ≥3 maintenance phlebotomies per year. Therefore, this index might help to select patients that benefit from an alternative less frequent therapy, e.g. erythrocytapheresis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
IAI Training in Climate and Health in the Americas
NASA Astrophysics Data System (ADS)
Aron, J. L.
2007-05-01
The Inter-American Institute for Global Change Research (IAI) has addressed training in climate and health in the Americas in two major ways. First, IAI supports students to engage in research training. A multi-country health activity funded by IAI was the collaborative research network (CRN) on Diagnostics and Prediction of Human Health Impacts in the Tropical Americas, which focused principally on the effect of El Nino/Southern Oscillation and other aspects of climate variability on mosquito-borne diseases malaria and dengue. The CRN involved students in Brazil, Mexico, Venezuela, Colombia and Jamaica. The CRN was also linked to other climate and health projects that used a similar approach. Second, IAI organizes training institutes to expand the network of global change research scientists and facilitate the transfer of global change research into practice. The IAI Training Institute on Climate and Health in the Americas was held on November 7 - 18, 2005 at the University of the West Indies in Kingston, Jamaica, engaging participants from the CRN and other programs in the Americas. The Training Institute's central objective was to help strengthen local and regional capacity to address the impacts of climate variability and climate change on human health in the populations of the Americas, particularly Latin America and the Caribbean. The Training Institute had three core components: Science; Applications; and Proposal Development for Seed Grants. Recommendations for future Training Institutes included incorporating new technologies and communicating with policy-makers to develop more proactive societal strategies to manage risks.
Kim, Youngju; Kim, Jongyul; Kim, Daeseung; Hussey, Daniel S; Lee, Seung Wook
2018-03-01
We introduce an analyzer grating based on a structured scintillator fabricated by a gadolinium oxysulfide powder filling method for a symmetric Talbot-Lau neutron grating interferometer. This is an alternative way to analyze the Talbot self-image of a grating interferometer without using an absorption grating to block neutrons. Since the structured scintillator analyzer grating itself generates the signal for neutron detection, we do not need an additional scintillator screen as an absorption analyzer grating. We have developed and tested an analyzer grating based on a structured scintillator in our symmetric Talbot-Lau neutron grating interferometer to produce high fidelity absorption, differential phase, and dark-field contrast images. The acquired images have been compared to results of a grating interferometer utilizing a typical absorption analyzer grating with two commercial scintillation screens. The analyzer grating based on the structured scintillator enhances interference fringe visibility and shows a great potential for economical fabrication, compact system design, and so on. We report the performance of the analyzer grating based on a structured scintillator and evaluate its feasibility for the neutron grating interferometer.
NASA Astrophysics Data System (ADS)
Kim, Youngju; Kim, Jongyul; Kim, Daeseung; Hussey, Daniel. S.; Lee, Seung Wook
2018-03-01
We introduce an analyzer grating based on a structured scintillator fabricated by a gadolinium oxysulfide powder filling method for a symmetric Talbot-Lau neutron grating interferometer. This is an alternative way to analyze the Talbot self-image of a grating interferometer without using an absorption grating to block neutrons. Since the structured scintillator analyzer grating itself generates the signal for neutron detection, we do not need an additional scintillator screen as an absorption analyzer grating. We have developed and tested an analyzer grating based on a structured scintillator in our symmetric Talbot-Lau neutron grating interferometer to produce high fidelity absorption, differential phase, and dark-field contrast images. The acquired images have been compared to results of a grating interferometer utilizing a typical absorption analyzer grating with two commercial scintillation screens. The analyzer grating based on the structured scintillator enhances interference fringe visibility and shows a great potential for economical fabrication, compact system design, and so on. We report the performance of the analyzer grating based on a structured scintillator and evaluate its feasibility for the neutron grating interferometer.
Blunt abdominal trauma in children.
Schonfeld, Deborah; Lee, Lois K
2012-06-01
This review will examine the current evidence regarding pediatric blunt abdominal trauma and the physical exam findings, laboratory values, and radiographic imaging associated with the diagnosis of intra-abdominal injuries (IAI), as well as review the current literature on pediatric hollow viscus injuries and emergency department disposition after diagnosis. The importance of the seat belt sign on physical examination and screening laboratory data remains controversial, although screening hepatic enzymes are recommended in the evaluation of nonaccidental trauma to identify occult abdominal organ injuries. Focused Assessment with Sonography for Trauma (FAST) has modest sensitivity for hemoperitoneum and IAI in the pediatric trauma patient. Patients with concern for undiagnosed IAI, including bowel injury, may be considered for hospital admission and serial abdominal exams without an increased risk of complications, if an exploratory laparotomy is not performed emergently. Although the FAST exam is not recommended as the sole screening tool to rule out IAI in hemodynamically stable trauma patients, it may be used in conjunction with the physical exam and laboratory findings to identify children at risk for IAI. Children with a normal physical exam and normal abdominal CT may not require routine hospitalization after blunt abdominal trauma.
Soluble ST2, a Modulator of the Inflammatory Response, in Preterm and Term Labor
Stampalija, Tamara; Chaiworapongsa, Tinnakorn; Romero, Roberto; Tarca, Adi L.; Bhatti, Gaurav; Chiang, Po Jen; Than, Nandor Gabor; Ferrazzi, Enrico; Hassan, Sonia S.; Yeo, Lami
2014-01-01
Objective Intra-amniotic infection/inflammation (IAI) is causally linked with spontaneous preterm labor and delivery. The ST2L receptor and its soluble form (sST2) are capable of binding to interleukin (IL)-33, a member of the IL-1 superfamily. Members of this cytokine family have been implicated in the onset of spontaneous preterm labor in the context of infection. Soluble ST2 has anti-inflammatory properties, and plasma concentrations are elevated in systemic inflammation, such as sepsis, acute pyelonephritis in pregnancy and the fetal inflammatory response syndrome. The aims of this study were to examine: 1) whether amniotic fluid concentrations of sST2 change with IAI, preterm, and term parturition; and 2) if mRNA expression of ST2 in the chorioamniotic membranes changes with acute histologic chorioamnionitis in women who deliver preterm. Methods A cross-sectional study was conducted to determine amniotic fluid concentrations of sST2 in: 1) women with preterm labor (PTL) who delivered at term (n=49); 2) women with PTL who delivered preterm without IAI (n=21); 3) women with PTL who delivered preterm with IAI (n=31); 4) term pregnancies not in labor (n=13); and 5) term pregnancies in labor (n=43). The amniotic fluid concentration of sST2 was determined by ELISA. The mRNA expression of ST2 in the chorioamniotic membranes of women who delivered preterm with (n=24), and without acute histologic chorioamnionitis (n=19) was determined by qRT-PCR. Results 1) Patients with PTL who delivered preterm with IAI had a lower median amniotic fluid concentration of sST2 compared to those with PTL who delivered preterm without IAI [median 410 ng/mL, inter-quartile range (IQR) 152-699 ng/mL vs. median 825 ng/mL, IQR 493-1216 ng/mL; p=0.0003] and those with PTL who delivered at term [median 410 ng/mL, IQR 152-699 ng/mL vs. median 673 ng/mL, IQR 468-1045ng/mL; p=0.0003]; 2) no significant differences in the median amniotic fluid concentration of sST2 were observed between patients with PTL who delivered at term and those who delivered preterm without IAI (p=0.4), and between women at term in labor and those at term not in labor (p=0.9); 3) the mean mRNA expression of ST2 was 4-fold lower in women who delivered preterm with acute histologic chorioamnionitis than in those without this lesion (p=0.008). Conclusions The median sST2 amniotic fluid concentration and mRNA expression of ST2 by chorioamniotic membranes is lower in PTL associated with IAI and acute histologic chorioamnionitis than in PTL without these conditions. Changes in the median amniotic fluid sST2 concentration are not observed in preterm and term parturition without IAI. Thus, amniotic fluid sST2 in the presence of IAI behaves differently when compared to sST2 in the plasma of individuals affected by fetal inflammatory response syndrome, acute pyelonephritis in pregnancy, and adult sepsis. Decreased concentrations of sST2 in IAI are likely to promote a pro-inflammatory response, which is important for parturition in the context of infection. PMID:23688338
Furtado, Rita Nely Vilar; Pereira, Daniele Freitas; da Luz, Karine Rodrigues; dos Santos, Marla Francisca; Konai, Monique Sayuri; Mitraud, Sonia de Aguiar Vilela; Rosenfeld, Andre; Fernandes, Artur da Rocha Correa; Natour, Jamil
2013-01-01
Compare the effectiveness of ultrasound and fluoroscopy to guide intra-articular injections (IAI) in selected cases. A prospective study in our outpatient clinics at the Rheumatology Division at Universidade Federal de São Paulo (UNIFESP), Brazil, was conducted to compare the short-term (4 weeks) effectiveness of ultrasound and fluoroscopy-guided IAI in patients with rheumatic diseases. Inclusion criteria were: adults with refractory synovitis undergoing IAI with glucocorticoid. All patients had IAI performed with triamcinolone hexacetonide (20mg/ml) with varying doses according to the joint injected. A total of 71 rheumatic patients were evaluated (52 women, 44 whites). Mean age was 51.9 ± 13 years and 47 of them (66.2%) were on regular DMARD use. Analysis of the whole sample (71 patients) and hip sub-analysis (23 patients) showed that significant improvement was observed for both groups in terms of pain (P < 0.001). Global analysis also demonstrated better outcomes for patients in the FCG in terms of joint flexion (P < 0.001) and percentage change in joint flexion as compared to the USG. Likert scale score analyses demonstrated better results for the patients in the USG as compared to the FCG at the end of the study (P < 0.05). No statistically significant difference between groups was observed for any other study variable. Imaging-guided IAI improves regional pain in patients with various types of synovitis in the short term. For the vast majority of variables, no significant difference in terms of effectiveness was observed between fluoroscopy and ultrasound guided IAI.
Sheng, Wang-Huei; Badal, Robert E.
2013-01-01
The increasing trend of β-lactam resistance among Enterobacteriaceae is a worldwide threat. Enterobacteriaceae isolates causing intra-abdominal infections (IAI) from the Study for Monitoring Antimicrobial Resistance Trends (SMART) collected in 2008 and 2009 from the Asia-Pacific region were investigated. Detection of extended-spectrum β-lactamases (ESBLs), AmpC β-lactamases, and carbapenemases was performed by multiplex PCR. A total of 699 Enterobacteriaceae isolates with positive genotypic results, included Escherichia coli (n = 443), Klebsiella pneumoniae (n = 187), Enterobacter cloacae (n = 45), Klebsiella oxytoca (n = 9), Citrobacter freundii (n = 5), Proteus mirabilis (n = 3), Enterobacter aerogenes (n = 2), Morganella morganii (n = 2), and one each of Enterobacter asburiae, Proteus vulgaris, and Providencia rettgeri were analyzed. Nearly 20% of these β-lactamase-producing Enterobacteriaceae isolates were from community-associated IAI. CTX-M (588 isolates, including 428 [72.8%] with CTX-M-15) was the most common ESBL, followed by SHV (n = 59) and TEM (n = 4). CMY (n = 110, including 102 [92.7%] with CMY-2) was the most common AmpC β-lactamase, followed by DHA (n = 46) and ACT/MIR (n = 40). NDM (n = 65, including 62 [95.4%] with NDM-1) was the most common carbapenemase, followed by IMP (n = 7) and OXA (n = 7). Isolates from hospital-associated IAI had more complicated β-lactamase combinations than isolates from the community. Carbapenemases were all exclusively detected in Enterobacteriaceae isolates from India, except that IMP β-lactamases were also detected in Philippines and Australia. CTX-M β-lactamases were the predominant ESBLs produced by Enterobacteriaceae causing IAI in the Asia-Pacific region. Emergence of CTX-M-15-, CMY-2-, and NDM-1-producing Enterobacteriaceae isolates is of major concern and highlights the need for further surveillance in this area. PMID:23587958
Stability of matter-wave solitons in optical lattices
NASA Astrophysics Data System (ADS)
Ali, Sk. Golam; Roy, S. K.; Talukdar, B.
2010-08-01
We consider localized states of both single- and two-component Bose-Einstein condensates (BECs) confined in a potential resulting from the superposition of linear and nonlinear optical lattices and make use of Vakhitov-Kolokolov criterion to investigate the effect of nonlinear lattice on the stability of the soliton solutions in the linear optical lattice (LOL). For the single-component case we show that a weak nonlinear lattice has very little effect on the stability of such solitons while sufficiently strong nonlinear optical lattice (NOL) squeezes them to produce narrow bound states. For two-component condensates we find that when the strength of the NOL (γ1) is less than that of the LOL (V0) a relatively weak intra-atomic interaction (IAI) has little effect on the stability of the component solitons. This is true for both attractive and repulsive IAI. A strong attractive IAI, however, squeezes the BEC solitons while a similar repulsive IAI makes the component solitons wider. For γ1 > V0, only a strong attractive IAI squeezes the BEC solitons but the squeezing effect is less prominent than that found for γ1 < V0. We make useful checks on the results of our semianalytical stability analysis by solving the appropriate Gross-Pitaevskii equations numerically.
NASA Astrophysics Data System (ADS)
Suja Priyadharsini, S.; Edward Rajan, S.; Femilin Sheniha, S.
2016-03-01
Electroencephalogram (EEG) is the recording of electrical activities of the brain. It is contaminated by other biological signals, such as cardiac signal (electrocardiogram), signals generated by eye movement/eye blinks (electrooculogram) and muscular artefact signal (electromyogram), called artefacts. Optimisation is an important tool for solving many real-world problems. In the proposed work, artefact removal, based on the adaptive neuro-fuzzy inference system (ANFIS) is employed, by optimising the parameters of ANFIS. Artificial Immune System (AIS) algorithm is used to optimise the parameters of ANFIS (ANFIS-AIS). Implementation results depict that ANFIS-AIS is effective in removing artefacts from EEG signal than ANFIS. Furthermore, in the proposed work, improved AIS (IAIS) is developed by including suitable selection processes in the AIS algorithm. The performance of the proposed method IAIS is compared with AIS and with genetic algorithm (GA). Measures such as signal-to-noise ratio, mean square error (MSE) value, correlation coefficient, power spectrum density plot and convergence time are used for analysing the performance of the proposed method. From the results, it is found that the IAIS algorithm converges faster than the AIS and performs better than the AIS and GA. Hence, IAIS tuned ANFIS (ANFIS-IAIS) is effective in removing artefacts from EEG signals.
When Should Abdominal Computed Tomography Be Considered in Patients with Lower Rib Fractures?
Jeroukhimov, Igor; Hershkovitz, Yehuda; Wiser, Itay; Kessel, Boris; Ayyad, Mohammed; Gatot, Inbar; Shapira, Zahar; Jeoravlev, Svetlana; Halevy, Ariel; Lavy, Ron
2017-05-01
Lower rib fractures are considered as a marker of intra-abdominal organ injury. Abdominal computed tomography (CT) is the "gold standard" examination for patients with lower rib fractures. However, the reported incidence of concomitant intra-abdominal injuries (IAI) is 20%-40%. The purpose of this study was to evaluate the incidence of intra-abdominal organ injuries in blunt trauma patients with lower rib fractures. Medical charts and radiology reports of patients with lower rib (from the 8th to 12th rib) fractures admitted to our center during a 6-year period were retrospectively reviewed. Patients were divided into two groups. Group I included patients with intra-abdominal injury (IAI) diagnosed either by CT or on urgent laparotomy, and Group II included those with normal abdominal CT scans. Data included demographics, mechanism of injury, laboratory tests, radiology results including number and location of fractured ribs, and incidence of IAI. Overall 318 patients were included in the study. Fifty-seven patients (17.9%) had 71 IAIs compared with 265 (82.1%) patients with no IAI. Logistic regression identified age younger than 55 years (relative risk [RR] = 7.2; 95% confidence interval [CI] 3.1-16.8; p = 0.001), bilateral rib fractures (RR = 3.9; 95% CI 1.1-13.5; p = 0.03) and decreased levels of hematocrit (RR = 2.4; 95% CI 1.2-4.8; p = 0.016) as independent risk factors for the presence of IAI. Abdominal CT should be considered in blunt trauma patients with lower rib fractures who are younger than 55 years of age and have bilateral rib fractures and decreased levels of hematocrit on admission. Copyright © 2016 Elsevier Inc. All rights reserved.
Jean, Shio-Shin; Hsueh, Po-Ren
2017-01-01
To investigate the antimicrobial resistance and assess the molecular characteristics of β-lactamases (ESBLs, AmpC β-lactamases and carbapenemases) among Enterobacteriaceae isolates that caused intra-abdominal infections (IAIs) in patients hospitalized in the Asia-Pacific region during 2008-14. Multiplex PCR was used to detect the specific types of β-lactamase in 2893 isolates with MICs of ertapenem >0.5 mg/L. In-hospital acquisition times for most isolates were also delineated. Among 2728 (94.3%) isolates proven with β-lactamase production, the rates of non-susceptibility to imipenem were low (average = 7.9%) among IAI Enterobacteriaceae isolates from all Asia-Pacific countries except Vietnam (17.7%) and the Philippines (10.2%). A stepwise and significant increase in annual rates of carbapenemase production among these isolates was noted. CTX-M-15 and CTX-M-14 were the dominant ESBL variants in most IAI Enterobacteriaceae species. The most abundant AmpC β-lactamase variants were bla CMY-2 among isolates of Escherichia coli and bla DHA-1 among isolates of Klebsiella pneumoniae. In addition, the IAI Enterobacteriaceae isolates harbouring a bla CMY-2 or bla DHA-1 allele were associated with high community-acquired rates (38.0% and 42.6%, respectively). AmpC ACT and MIR variants were mostly detected in Enterobacter species. The bla NDM-1,4,5,7 -harbouring isolates of E. coli, K. pneumoniae and Enterobacter cloacae were most commonly identified among IAI isolates from Vietnam and the Philippines. Also of note, bla OXA-48 -harbouring IAI Enterobacteriaceae isolates were detected exclusively in Vietnam. The high resistance burden in Vietnam and the Philippines warrants aggressive control policies to combat the worsening trend in antimicrobial resistance among Enterobacteriaceae species causing IAIs. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Pacora, Percy; Romero, Roberto; Chaiworapongsa, Tinnakorn; Kusanovic, Juan Pedro; Erez, Offer; Vaisbuch, Edi; Mazaki-Tovi1, Shali; Gotsch, Francesca; Kim, Chong Jai; Than, Nandor Gabor; Yeo, Lami; Mittal1, Pooja; Hassan, Sonia S.
2012-01-01
Objective Recent observations have revealed an interaction between inflammation and angiogenesis, which may be mediated by angiopoietins and chemokines. Given the importance of inflammation in parturition, we sought to determine whether angiopoietin-2 (Ang-2) is present in amniotic fluid (AF) and if its concentration changes with gestational age, labor, and in intra-amniotic infection/inflammation (IAI) in patients with spontaneous preterm labor and intact membranes. Study design This cross-sectional study included 486 patients in the following groups: 1) women in the midtrimester of pregnancy (14–18 weeks) who underwent amniocentesis for genetic indications and delivered a normal neonate at term (n=52); 2) normal pregnant women at term with (n=48) and without (n=45) spontaneous labor; 3) patients with an episode of spontaneous preterm labor (PTL) and intact membranes who were classified into: a) PTL without IAI who delivered at term (n=152); b) PTL without IAI who delivered preterm (<37 weeks gestation; n=107); and c) PTL with IAI (n=82). Ang-2 concentration in AF was determined by enzyme-linked immunoassay. Non-parametric statistics were used for analysis. Results 1) Ang-2 was detected in all AF samples; 2) the median AF Ang-2 concentration at term was significantly lower than that in the mid-trimester (1877.4 pg/mL vs. 3525.2 pg/mL; P<0.001); 3) among patients with PTL, the median AF Ang-2 concentration was significantly higher in patients with IAI than in those without IAI (4031.3 pg/mL vs. 2599.4 pg/mL; P<0.001) and those with PTL without IAI who delivered at term (4031.3 pg/mL vs. 2707.3 pg/mL; P<0.001); and 4) no significant differences were observed in the median AF Ang-2 concentration between patients with spontaneous labor at term and those at term not in labor (1722.9 pg/mL vs. 1877.4 pg/mL; P=0.6). Conclusions 1) Ang-2, a protein involved in the process of vascular remodeling, is a physiologic constituent of the amniotic fluid and its concentration decreased with advancing gestation; 2) the median Ang-2 concentration in amniotic fluid is higher in patients with IAI than in those without; and 3) spontaneous parturition at term is not associated with changes in the AF concentration of Ang-2. These findings support the view of a link between angiopoietins and inflammation. PMID:19435449
Bassetti, Matteo; McGovern, Paul C; Wenisch, Christoph; Meyer, R Daniel; Yan, Jean Li; Wible, Michele; Rottinghaus, Scott T; Quintana, Alvaro
2015-09-01
An imbalance in all-cause mortality was noted in tigecycline phase 3 and 4 comparative clinical trials across all studied indications. We investigated clinical failure and mortality in phase 3 and 4 complicated skin and soft-tissue infection (cSSTI) and complicated intra-abdominal infection (cIAI) tigecycline trials using descriptive analyses of a blinded adjudication of mortality and multivariate regression analyses. Attributable mortality analyses of cSSTI revealed death due to infection in 0.1% of each treatment group (P=1.000). In cIAI, there were no significant differences between tigecycline (1.2%) and comparator (0.7%) subjects who died due to infection (P=0.243). For cIAI clinical failure, treatment interaction with organ dysfunction was observed with no difference observed between clinical cure for tigecycline (85.4%) and comparator (76.7%) treatment groups (odds ratio=0.58, 95% confidence interval 0.28-1.19). Tigecycline-treated subjects had more adverse events of secondary pneumonias (2.1% vs. 1.2%) and more adverse events of secondary pneumonias with an outcome of death (0.5% vs. 0.1%). These analyses do not suggest that tigecycline is a factor either for failure (cSSTI and cIAI studies) or for death (cIAI studies). Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Motohashi, Ryosuke; Noma, Hidetaka; Yasuda, Kanako; Kotake, Osamu; Goto, Hiroshi; Shimura, Masahiko
2017-01-01
To evaluate the dynamic changes of the aqueous humor levels of inflammatory factors between patients receiving intravitreal ranibizumab injection (IRI) and aflibercept injection (IAI) in patients with exudative age-related macular degeneration (AMD). The study was performed on 30 eyes with AMD that were scheduled to receive 3 doses of IRI (15 eyes) or IAI (15 eyes) at monthly intervals. Aqueous humor samples were collected when injection was done. The concentrations of VEGF, monocyte chemoattractant protein 1 (MCP-1), platelet-derived growth factor (PDGF)-AA, interleukin (IL)-6, and IL-8 were measured in aqueous humor samples from the 30 AMD patients and 10 cataract patients (as controls) by the suspension array method. Aqueous levels of the inflammatory factors (MCP-1, PDGF-AA, IL-6, and IL-8) were significantly correlated with each other. In both the IRI-treated eyes and the IAI-treated eyes, visual acuity and central macular thickness improved significantly, and the aqueous level of VEGF showed a significant decrease. In IAI-treated eyes, the aqueous levels of MCP-1 and PDGF-AA were significantly decreased at 2 months. These findings suggest that the inflammatory factors are involved in the pathogenesis of AMD and also the possibility that the interaction between these inflammatory factors and IRI or IAI is different. © 2017 S. Karger AG, Basel.
Vallejo, Marta; Cuesta, Diana P; Flórez, Luz E; Correa, Adriana; Llanos, Carmen E; Isaza, Berenice; Vanegas, Stella; Osorio, Johanna; Casanova, Lucía; Villegas, María V
2016-06-01
Complicated community-acquired intra-abdominal infections (CA-cIAI) are a common cause of acute abdomen. To identify the clinical and microbiology profile of CA-cIAI in four Colombian hospitals. This is a prospective, descriptive study, between 08-2012 and 09-2014, including patients with CA-cIAI > 15 years. Data collected included: socio-demographic, clinical, diagnosis, and isolates of the first culture obtained aseptically during surgery with antimicrobial susceptibility. 192 patients were included, 62% men, median age 47.3 years. Co-morbidities were present in 38.4%, 13% had been hospitalized in the previous year 13%, and 9.4% had received antibiotics in the last 6 months; 44.3% were admitted for appendicitis, 17.7% for peritonitis and 16.7% for bowel perforation. CA-cIAI were assessed as moderate in 64.1% of the cases and were treated with ampicillin/sulbactam (SAM) and ertapenem. In 70.8% of cases a bacteria was isolated: 65.1% were gramnegative rods (80.0% Escherichia coli, 44.8% of them susceptible to pipercillin/tazobactam, 65.7% to SAM; 11.2 % were K.pneumoniae, 85% was susceptible for SAM; 16.7% were grampositive cocci (28.1% Streptococci viridans group). The median hospital stay was 7 days and 15.1% died. E. coli, K. pneumoniae and S. viridans were the main organisms to consider in an empiric therapy for CA-cIAI and it is important to know the local epidemiology in order to choose the right antibiotic.
Analysis for signal-to-noise ratio of hyper-spectral imaging FTIR interferometer
NASA Astrophysics Data System (ADS)
Li, Xun-niu; Zheng, Wei-jian; Lei, Zheng-gang; Wang, Hai-yang; Fu, Yan-peng
2013-08-01
Signal-to-noise Ratio of hyper-spectral imaging FTIR interferometer system plays a decisive role on the performance of the instrument. It is necessary to analyze them in the development process. Based on the simplified target/background model, the energy transfer model of the LWIR hyper-spectral imaging interferometer has been discussed. The noise equivalent spectral radiance (NESR) and its influencing factors of the interferometer system was analyzed, and the signal-to-noise(SNR) was calculated by using the properties of NESR and incident radiance. In a typical application environment, using standard atmospheric model of USA(1976 COESA) as a background, and set a reasonable target/background temperature difference, and take Michelson spatial modulation Fourier Transform interferometer as an example, the paper had calculated the NESR and the SNR of the interferometer system which using the commercially LWIR cooled FPA and UFPA detector. The system noise sources of the instrument were also analyzed in the paper. The results of those analyses can be used to optimize and pre-estimate the performance of the interferometer system, and analysis the applicable conditions of use different detectors. It has important guiding significance for the LWIR interferometer spectrometer design.
Chang, Ya-Ting; Coombs, Geoffrey; Ling, Thomas; Balaji, V; Rodrigues, Camilla; Mikamo, Hiroshige; Kim, Min-Ja; Rajasekaram, Datin Ganeswrie; Mendoza, Myrna; Tan, Thean Yen; Kiratisin, Pattarachai; Ni, Yuxing; Barry, Weinman; Xu, Yingchun; Chen, Yen-Hsu; Hsueh, Po-Ren
2017-06-01
This study was conducted to investigate the epidemiology and antimicrobial susceptibility patterns of Gram-negative bacilli (GNB) isolated from intra-abdominal infections (IAIs) in the Asia-Pacific region (APR) from 2010-2013. A total of 17 350 isolates were collected from 54 centres in 13 countries in the APR. The three most commonly isolated GNB were Escherichia coli (46.1%), Klebsiella pneumoniae (19.3%) and Pseudomonas aeruginosa (9.8%). Overall, the rates of extended-spectrum β-lactamase (ESBL)-producing E. coli and K. pneumoniae were 38.2% and 24.3%, respectively, and they were highest in China (66.6% and 38.7%, respectively), Thailand (49.8% and 36.5%, respectively) and Vietnam (47.9% and 30.4%, respectively). During 2010-2013, the rates of ESBL-producing E. coli and K. pneumoniae isolates causing community-associated (CA) IAIs (collected <48 h after admission) were 26.0% and 13.5%, respectively, and those causing hospital-associated (HA) IAIs were 48.0% and 30.6%, respectively. Amikacin, ertapenem and imipenem were the most effective agents against ESBL-producing isolates. Piperacillin/tazobactam displayed good in vitro activity (91.4%) against CA ESBL-producing E. coli. For other commonly isolated Enterobacteriaceae, fluoroquinolones, cefepime and carbapenems exhibited better in vitro activities than third-generation cephalosporins. Amikacin possessed high in vitro activity against all GNB isolates (>80%) causing IAIs, except for Acinetobacter calcoaceticus-baumannii (ACB) complex (30.9% for HA-IAI isolates). All of the antimicrobial agents tested exhibited <45% in vitro activity against ACB complex. Antimicrobial resistance is a persistent threat in the APR and continuous monitoring of evolutionary trends in the susceptibility patterns of GNB causing IAIs in this region is mandatory. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Karlowsky, James A; Hoban, Daryl J; Hackel, Meredith A; Lob, Sibylle H; Sahm, Daniel F
2017-01-01
Gram-negative ESKAPE pathogens (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) are responsible for increases in antimicrobial-resistant infections worldwide. We determined in vitro susceptibilities to eight parenteral antimicrobial agents using Clinical and Laboratory Standards Institute broth microdilution methodology for Gram-negative ESKAPE pathogens isolated from hospitalized patients with intra-abdominal infections (IAIs) (n=3052) and urinary tract infections (UTIs) (n=1088) in 11 Asia-Pacific countries/regions from 2013 to 2015. Amikacin (98.3, 96.4 %), imipenem (97.1, 95.5 %) and ertapenem (95.3, 93.2 %) demonstrated the highest rates of susceptibility for isolates of K. pneumoniae from IAI and UTI, respectively, whereas susceptibility to advanced-generation cephalosporins was <84 and <71 %, respectively. K. pneumoniae with an extended-spectrum β-lactamase-positive phenotype were more common in UTI (27.1 %) than IAI (16.2 %). Imipenem and amikacin were the most active agents against extended-spectrum β-lactamase-positive K. pneumoniae from IAI (95.1, 91.8 %) and UTI (94.9, 92.3 %), respectively, whereas <54 % were susceptible to piperacillin-tazobactam. Against Enterobacter spp. and P. aeruginosa, amikacin demonstrated the highest rates of susceptibility for isolates from IAI (99.7, 95.5 %) and UTI (90.9, 91.5 %), respectively. K. pneumoniae, Enterobacter spp. and P. aeruginosa from urine demonstrated lower susceptibility to levofloxacin (74.1, 81.8 and 73.8 %) than from IAI (87.6, 91.8 and 85.4 %). For A. baumannii, rates of susceptibility to all agents tested were <43 %. We conclude that the studied Gram-negative ESKAPE pathogens demonstrated reduced susceptibility to commonly prescribed advanced-generation cephalosporins, piperacillin-tazobactam and levofloxacin, while amikacin and carbapenems were the most active. Ongoing surveillance to monitor evolving resistance trends and the development of novel antimicrobial agents with potent activity against Gram-negative ESKAPE pathogens are mandatory.
Mittal, Pooja; Romero, Roberto; Kusanovic, Juan Pedro; Edwin, Samuel S.; Gotsch, Francesca; Mazaki-Tovi, Shali; Espinoza, Jimmy; Erez, Offer; Nhan-Chang, Chia-Ling; Than, Nandor G; Vaisbuch, Edi; Hassan, Sonia S
2008-01-01
PROBLEM CXCL6 is a potent pro-inflammatory neutrophil chemoattractant and activator whose activity during pregnancy is not well-established. The purpose of this study was to determine if CXCL6 is present in amniotic fluid (AF) and if CXCL6 concentrations in AF change with labor (preterm and term) or intra-amniotic infection/inflammation (IAI). METHOD OF STUDY A cross-sectional study was conducted with the following groups: 1) mid-trimester (n=65); 2) term no labor (n=20); 3) term labor (n=44); 4) patients with PTL with subsequent term delivery (n=57); 5) preterm labor (PTL) without IAI who delivered preterm (n=47); and 6) PTL with IAI (n=62). AF CXCL6 concentrations were determined by ELISA. RESULTS CXCL6 was present in all term samples, but undetectable in 64/65 mid-trimester specimens. Patients with PTL and IAI had a significantly higher median CXCL6 AF concentration than those with PTL without IAI [228.9 pg/ml (0.0–8344.8) vs. 55.7 pg/ml (0–454.4); p<0.05] and those with PTL and term delivery [41.5 pg/ml (0–279.0); p<0.05]. Median AF CXCL6 concentration did not change with spontaneous term labor [term no labor: 81.1 pg/ml (8.5–201.7) vs. term labor: 75.2 pg/ml (6.7–378.7): p=0.74]. CONCLUSIONS 1) CXCL6 is detectable in AF and its concentration increases with gestational age; 2) IAI results in increased CXCL6 AF concentrations, suggesting that CXCL6 plays a role in the deployment of an inflammatory response; 3) In contrast to related chemokines, specifically IL-8, AF CXCL6 does not appear to be involved in spontaneous term parturition. These observations are novel, and suggest a role for CXCL6 in the innate immune response to microbial invasion of the amniotic cavity. PMID:18782286
Kusanovic, Juan Pedro; Romero, Roberto; Chaiworapongsa, Tinnakorn; Mittal, Pooja; Mazaki-Tovi, Shali; Vaisbuch, Edi; Erez, Offer; Gotsch, Francesca; Than, Nandor Gabor; Edwin, Sam S.; Pacora, Percy; Jodicke, Cristiano; Yeo, Lami; Hassan, Sonia S.
2010-01-01
Objective Intra-amniotic infection/inflammation (IAI) is one of the most important mechanisms of disease in preterm birth. Triggering receptor expressed on myeloid cells (TREM)-1 is a transmembrane glycoprotein expressed by neutrophils, macrophages and mature monocytes. TREM-1 is upregulated in biological fluids and tissues infected by Gram (+) and Gram (-) bacteria and fungi, amplifies the production of pro-inflammatory cytokines and chemokines, and its soluble form (sTREM-1) is released in the presence of infection. The aim of this study was to determine the effect of gestational age, parturition (term and preterm) and intra-amniotic infection/inflammation in the amniotic fluid (AF) concentrations of sTREM-1. Study design This cross-sectional study included 434 patients in the following groups: 1) mid-trimester of pregnancy (14-18 weeks, n=38); 2) normal pregnant women at term with (n=39) and without (n=39) labor; 3) patients with spontaneous preterm labor (PTL) and intact membranes classified into: a) PTL who delivered at term (n=99); b) PTL who delivered preterm (<37 weeks gestation) without IAI (n=80); and c) PTL with IAI (n=59); and 4) women with preterm prelabor rupture of membranes (PROM) with (n=40) and without (n=40) IAI. The AF concentration of sTREM-1 was determined by enzyme-linked immunoassay. Non-parametric statistics were used for analyses. Results 1) sTREM-1 was detected in all AF samples; 2) the median AF sTREM-1 concentration at term was higher than in the mid-trimester (4277.6 pg/mL vs. 1140.4 pg/mL; p<0.001); 3) among patients with PTL, the median AF sTREM-1 concentration was significantly higher in patients with IAI than in those without IAI (6154.4 pg/mL vs. 3282.8 pg/mL; p<0.001) and those with PTL who delivered at term (6154.4 pg/mL vs. 2794 pg/mL; p<0.001); 4) patients with preterm PROM with IAI had a higher median AF sTREM-1 concentration than those without IAI (7893.1 pg/mL vs. 3386.6 pg/mL; p<0.001); 5) no differences were observed in the median AF sTREM-1 concentration between patients with spontaneous labor at term and those at term not in labor (4712.4 pg/mL vs. 4277.6 pg/mL repectively; p=0.4); and 6) an AF sTREM-1 concentration ≥6,416 pg/mL (derived from a ROC curve) had a sensitivity of 72% and a specificity of 89% for the diagnosis of intra-amniotic infection. Conclusions sTREM-1 is a physiologic constituent of the AF, and its concentration: 1) is significantly elevated in the presence of IAI; 2) increases with advancing gestation; and 3) does not change in the presence of spontaneous labor at term. We propose that sTREM-1 play a role in the innate immune response against intra-amniotic infection. PMID:19591072
High resolution Fourier interferometer-spectrophotopolarimeter
NASA Technical Reports Server (NTRS)
Fymat, A. L. (Inventor)
1976-01-01
A high-resolution Fourier interferometer-spectrophotopolarimeter is provided using a single linear polarizer-analyzer the transmission axis azimuth of which is positioned successively in the three orientations of 0 deg, 45 deg, and 90 deg, in front of a detector; four flat mirrors, three of which are switchable to either of two positions to direct an incoming beam from an interferometer to the polarizer-analyzer around a sample cell transmitted through a medium in a cell and reflected by medium in the cell; and four fixed focussing lenses, all located in a sample chamber attached at the exit side of the interferometer. This arrangement can provide the distribution of energy and complete polarization state across the spectrum of the reference light entering from the interferometer; the same light after a fixed-angle reflection from the sample cell containing a medium to be analyzed; and the same light after direct transmission through the same sample cell, with the spectral resolution provided by the interferometer.
Clinical characteristics of ceftriaxone plus metronidazole in complicated intra-abdominal infection
2015-01-01
Purpose Empirical antibiotics in complicated intra-abdominal infection (c-IAI), such as secondary peritonitis are a first step of treatment. Empirical antibiotic regimen is very diverse. Ceftriaxone plus metronidazole regimen (CMR) is one of the empirical antibiotic regimens used in treatment of c-IAI. However, although CMR is a widely used empirical antibiotic regimen, study regarding success, failure or efficacy of CMR has been poorly understood. This retrospective study is conducted to compare the clinical efficacy of this regimen in c-IAI according to clinical characteristics. Methods The subjects were patients in this hospital who were diagnosed as secondary peritonitis between 2009 and 2013. Retrospective analysis was performed based on the records made after surgery regarding clinical characteristics including albumin level, blood pressure, pulse rate, respiration rate, smoking, age, sex, body mass index, hemoglobin, coexisting disease, leukocytosis, and APACHE (acute physiology and chronic health evaluation) II score. Results A total of 114 patients were enrolled. In univariated analysis, the success and failure of CMR showed significant association with preoperative low albumin, old age, and preoperative tachycardia. In multivariated analysis, low albumin and preoperative tachycardia were significant. Conclusion It is thought that an additional antibiotic treatment plan is necessary in patients with low albumin and tachycardia when the empirical antibiotic regimen is CMR in c-IAI. Conduct of research through well-designed prospective randomized clinical study is also necessary in order to evaluate the appropriateness of CMR and decide on a proper empirical antibiotic regimen between many regimens in c-IAI based on our country. PMID:26131444
Schöneberg, C; Tampier, S; Hussmann, B; Lendemans, S; Waydhas, C
2014-12-01
The objective of this systematic review was to investigate the diagnostic management in paediatric blunt abdominal injuries. A literature research was performed using following sources: MEDLINE, Embase and Cochrane. Where it was possible a meta-analysis was performed. Furthermore the level of evidence for all publications was assigned. Indicators for intraabdominal injury (IAI) were elevated liver transaminases, abnormal abdominal examinations, low systolic blood pressure, reduced haematocrit and microhematuria. Detecting IAI with focused assessment with sonography for trauma (FAST) had an overall sensitivity of 56.5 %, a specificity of 94.68 %, a positive likelihood ratio of 10.63 and a negative likelihood ratio of 0.46. The accuracy was 84.02 %. Among haemodynamically unstable children the sensitivity and specificity were 100 %. The overall prevalence of IAI and negative CT was 0.19 %. The NPV of abdominal CT for diagnosing IAI was 99.8 %. The laparotomy rate in patients with isolated intraperitoneal fluid (IIF) in one location was 3.48 % and 56.52 % in patients with IIF in more than one location. FAST as an isolated tool in the diagnostics after blunt abdominal injury is very uncertain, because of the modest sensitivity. Discharging children after blunt abdominal trauma with a negative abdominal CT scan seems to be safe. When IIF is detected on CT scan, it depends on the number of locations involved. If IIF is found only in 1 location, IAI is uncommon, while IIF in two or more locations results in a high laparotomy rate. Georg Thieme Verlag KG Stuttgart · New York.
Goodlet, Kellie J; Nicolau, David P; Nailor, Michael D
2016-01-01
Complicated intra-abdominal infections (cIAI) represent a large proportion of all hospital admissions and are a major cause of morbidity and mortality in the intensive care unit. Rising rates of multidrug resistant organisms (MDRO), including extended-spectrum β-lactamase producing Enterobacteriaceae and carbapenem-nonsusceptible Pseudomonas spp., for which there are few remaining active antimicrobial agents, pose an increased challenge to clinicians. Patients with frequent exposures to the health care system or multiple recurrent IAIs are at increased risk for MDRO; however, treatment options have traditionally been limited, in some cases necessitating the utilization of last-line agents with unfavorable side-effect profiles. Ceftolozane/tazobactam and ceftazidime/avibactam are two new cephalosporin and β-lactamase inhibitor combinations with recent US Food and Drug Administration approvals for the treatment of cIAI in combination with metronidazole. Ceftolozane/tazobactam has demonstrated excellent in vitro activity against MDR and extensively drug-resistant Pseudomonas spp., including carbapenem-nonsusceptible strains, while ceftazidime/avibactam effectively inhibits a broad range of β-lactamases, making it an excellent option for the treatment of carbapenem-resistant Enterobacteriaceae. Both agents were shown to be noninferior to meropenem for treatment of cIAI in Phase III trials; however, reduced responses in patients with renal impairment at baseline highlight the importance of routine serum creatinine monitoring and ongoing dose adjustments. This review highlights in vitro and in vivo data of these two agents and suggests their proper place in cIAI treatment to ensure adequate therapy in our most at-risk patients while sparing unnecessary use in patients without MDRO risk factors. PMID:27942218
Variables influencing condom use in a cohort of gay and bisexual men.
Valdiserri, R O; Lyter, D; Leviton, L C; Callahan, C M; Kingsley, L A; Rinaldo, C R
1988-07-01
Nine hundred fifty-five of 1,384 (69 per cent) gay and bisexual men enrolled in a prospective study of the natural history of human immunodeficiency virus (HIV) infection who reported engaging in anal intercourse in the past six months were surveyed about condom use practices for both insertive (IAI) and receptive anal intercourse (RAI). The following results were obtained: 23 per cent of the men reported that they always used condoms for IAI and 21 per cent for RAI; 32 per cent sometimes used condoms for IAI; 28 per cent sometimes used condoms for RAI; 45 per cent never used condoms for IAI; and 50 per cent never used condoms for RAI. Multiple logistic regression analysis revealed that the following variables were associated with both insertive and receptive condom use: condom acceptability; a history of multiple and/or anonymous partners in the past six months, and the number of partners with whom one is "high" (drugs/alcohol) during sex. Knowledge of positive HIV serostatus was more strongly associated with receptive than with insertive use. Condom use is a relatively complex health-related behavior, and condom promotion programs should not limit themselves to stressing the dangers of unprotected intercourse.
Design of an integrated aerial image sensor
NASA Astrophysics Data System (ADS)
Xue, Jing; Spanos, Costas J.
2005-05-01
The subject of this paper is a novel integrated aerial image sensor (IAIS) system suitable for integration within the surface of an autonomous test wafer. The IAIS could be used as a lithography processing monitor, affording a "wafer's eye view" of the process, and therefore facilitating advanced process control and diagnostics without integrating (and dedicating) the sensor to the processing equipment. The IAIS is composed of an aperture mask and an array of photo-detectors. In order to retrieve nanometer scale resolution of the aerial image with a practical photo-detector pixel size, we propose a design of an aperture mask involving a series of spatial phase "moving" aperture groups. We demonstrate a design example aimed at the 65nm technology node through TEMPEST simulation. The optimized, key design parameters include an aperture width in the range of 30nm, aperture thickness in the range of 70nm, and offer a spatial resolution of about 5nm, all with comfortable fabrication tolerances. Our preliminary simulation work indicates the possibility of the IAIS being applied to the immersion lithography. A bench-top far-field experiment verifies that our approach of the spatial frequency down-shift through forming large Moire patterns is feasible.
Zhang, Hui; Yang, Qiwen; Liao, Kang; Ni, Yuxing; Yu, Yunsong; Hu, Bijie; Sun, Ziyong; Huang, Wenxiang; Wang, Yong; Wu, Anhua; Feng, Xianju; Luo, Yanping; Chu, Yunzhuo; Chen, Shulan; Cao, Bin; Su, Jianrong; Duan, Qiong; Zhang, Shufang; Shao, Haifeng; Kong, Haishen; Gui, Bingdong; Hu, Zhidong; Badal, Robert; Xu, Yingchun
2017-12-18
To evaluate in vitro susceptibilities of aerobic and facultative Gram-negative bacterial (GNB) isolates from intra-abdominal infections (IAIs) to 12 selected antimicrobials in Chinese hospitals from 2012 to 2014. Hospital acquired (HA) and community acquired (CA) IAIs were collected from 21 centers in 16 Chinese cities. Extended spectrum beta-lactamase (ESBL) status and antimicrobial susceptibilities were determined at a central laboratory using CLSI broth microdilution and interpretive standards. From all isolated strains the Enterobacteriaceae (81.1%) Escherichia coli accounted for 45.4% and Klebsiella pneumoniae for 20.1%, followed by Enterobacter cloacae (5.2%), Proteus mirabilis (2.1%), Citrobacter freundii (1.8%), Enterobacter aerogenes (1.8%), Klebsiella oxytoca (1.4%), Morganella morganii (1.2%), Serratia marcescens (0.7%), Citrobacter koseri (0.3%), Proteus vulgaris (0.3%) and others (1.0%). Non- Enterobacteriaceae (18.9%) included Pseudomonas aeruginosa (9.8%), Acinetobacter baumannii (6.7%), Stenotrophomonas maltophilia (0.9%), Aeromonas hydrophila (0.4%) and others (1.1%). ESBL-screen positive Escherichia coli isolates (ESBL+) showed a decreasing trend from 67.5% in 2012 to 58.9% in 2014 of all Escherichia coli isolates and the percentage of ESBL+ Klebsiella pneumoniae isolates also decreased from 2012 through 2014 (40.4% to 26.6%), which was due to reduced percentages of ESBL+ isolates in HA IAIs for both bacteria. The overall susceptibilities of all 5160 IAI isolates were 87.53% to amikacin (AMK), 78.12% to piperacillin-tazobactam (TZP) 81.41% to imipenem (IMP) and 73.12% to ertapenem (ETP). The susceptibility of ESBL-screen positive Escherichia coli strains was 96.77%-98.8% to IPM, 91.26%-93.16% to ETP, 89.48%-92.75% to AMK and 84.86%-89.34% to TZP, while ESBL-screen positive Klebsiella pneumoniae strains were 70.56%-80.15% susceptible to ETP, 80.0%-87.5% to IPM, 83.82%-87.06% to AMK and 63.53%-68.38% to TZP within the three year study. Susceptibilities to all cephalosporins and fluoroquinolones were less than 50% beside 66.5% and 56.07% to cefoxitin (FOX) for ESBL+ Escherichia coli and Klebsiella pneumoniae strains respectively. The total ESBL+ rates decreased in Escherichia coli and Klebsiella pneumoniae IAI isolates due to fewer prevalence in HA infections. IPM, ETP and AMK were the most effective antimicrobials against ESBL+ Escherichia coli and Klebsiella pneumoniae IAI isolates in 2012-2014 and a change of fluoroquinolone regimens for Chinese IAIs is recommended.
Mazaki-Tovi, Shali; Romero, Roberto; Vaisbuch, Edi; Kusanovic, Juan Pedro; Erez, Offer; Mittal, Pooja; Gotsch, Francesca; Chaiworapongsa, Tinnakorn; Than, Nandor Gabor; Kim, Sun Kwon; Pacora, Percy; Yeo, Lami; Dong, Zhong; Hassan, Sonia S.
2012-01-01
Objective Adiponectin, an anti-inflammatory and anti-diabetogenic adipokine, has an important regulatory effect on both the innate and adaptive limbs of the immune response. The objective of this study was to determine whether adiponectin is present in amniotic fluid (AF) and if its concentration changes with gestational age, in the presence of labor and in the presence of intra-amniotic infection (IAI) in patients with spontaneous preterm labor (PTL) and intact membranes. Study design This cross-sectional study included 468 patients in the following groups: 1) women in the mid-trimester of pregnancy (14–18 weeks) who underwent amniocentesis for genetic indications and delivered a normal neonate at term (n=52); 2) normal pregnant women at term with (n=49) and without (n=41) spontaneous labor; 3) patients with an episode of PTL and intact membranes who were classified into: a) PTL who delivered at term (n=149); b) PTL who delivered preterm (<37 weeks gestation) without IAI (n=108); and c) PTL with IAI (n=69) Adiponectin concentration in AF was determined by ELISA. Results 1) The median AF adiponectin concentration at term was significantly higher than in the mid-trimester (35.6 ng/mL, interquartile range [IQR] 26.4–52.7 vs. 29.9 ng/mL, IQR 19.9–35.2; p=0.01); 2) among women with PTL and intact membranes, the median amniotic fluid adiponectin concentration was significantly higher in patients with IAI than in those without IAI who delivered either at term (54.3 ng/mL, 39.0–91.8 vs. 50.1 ng/mL, 33.2–72.8; p = 0.02) or preterm (47.6 ng/mL, 32.6–74.6; p = 0.01); and 3) among women at term, there was no significant difference in the median amniotic fluid adiponectin concentration between those with and without labor (33.7 ng/mL, IQR 21.7–53.9 vs. 35.6 ng/mL IQR 26.4–52.7; respectively p=0.5). Conclusions 1) Adiponectin is a physiologic constituent of AF; and 2) adiponectin concentrations in AF are increased significantly with advancing gestation and in the presence of IAI. Collectively, these findings suggest that adiponectin plays a dynamic role in normal gestation and in the presence of IAI. PMID:19591073
Tallarico, Marco; Canullo, Luigi; Caneva, Martina; Özcan, Mutlu
2017-07-01
The aim of this systematic review and meta-analysis was to evaluate the microbial colonization at the implant-abutment interfaces (IAI) on bone-level implants and to identify possible association with peri-implant conditions. The focus question aimed to answer whether two-piece osseointegrated implants, in function for at least 1 year, in human, relate to higher bacterial count and the onset of periimplantitis, compared to healthy peri-implant conditions. Search strategy encompassed the on-line (MedLine, Google scholar, Cochrane library) literature from 1990 up to March 2015 published in English using combinations of MeSH (Medical Subject Headings) and search terms. Quality assessment of selected full-text articles was performed according to the ARRIVE and CONSORT statement guidelines. For data analysis, the total bacterial count of Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Prevotella intermedia, and Fusobacterium nucleatum was calculated and compared to IAI with or without peri-implant pathology. A total of 14 articles, reporting data from 1126 implants, fulfilled the inclusion criteria and subjected to quality assessment. The selected studies revealed contamination of the IAI, in patients who received two-piece implant systems. Meta-analysis indicated significant difference in total bacterial count between implants affected by periimplantitis versus healthy peri-implant tissues (0.387±0.055; 95% CI 0.279-0.496). Less bacterial counts were identified in the healthy IAI for all the investigated gram-negative bacteria except for T. forsythia. Significantly higher bacterial counts were found for periodontal pathogenic bacteria within the IAI of implants in patients with periimplantitis compared to those implants surrounded by healthy peri-implant tissues. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Stakeholder Definition for Indonesian Integrated Agriculture Information System (IAIS)
NASA Astrophysics Data System (ADS)
Budi Santoso, Halim; Delima, Rosa
2017-03-01
Stakeholders plays an important roles to determine the system requirements. Stakeholders are people or organizations that has an interest to the enterprise. Timely and effective consultation of relevant stakeholders is a paramount importance in the requirements engineering process. From the research and analysis of system stakeholder finds that there are four stakeholder groups in IAIS. Stakeholder analysis is being implemented by identifying stakeholder, stakeholder category, and analysis interaction between stakeholders.
Rausei, Stefano; Pappalardo, Vincenzo; Ruspi, Laura; Colella, Antonio; Giudici, Simone; Ardita, Vincenzo; Frattini, Francesco; Rovera, Francesca; Boni, Luigi; Dionigi, Gianlorenzo
2018-03-01
Time to source control plays a determinant prognostic role in patients having severe intra-abdominal infections (IAIs). Open abdomen (OA) management became an effective treatment option for peritonitis. Aim of this study was to analyze the correlation between time to source control and outcome in patients presenting with abdominal sepsis and treated by OA. We retrospectively analyzed 111 patients affected by abdominal sepsis and treated with OA from May 2007 to May 2015. Patients were classified according to time interval from first patient evaluation to source control. The end points were intra-hospital mortality and primary fascial closure rate. The in-hospital mortality rate was 21.6% (24/111), and the primary fascial closure rate was 90.9% (101/111). A time to source control ≥6 h resulted significantly associated with a poor prognosis and a lower fascial closure rate (mortality 27.0 vs 9.0%, p = 0.04; primary fascial closure 86 vs 100%, p = 0.02). We observed a direct increase in mortality (and a reduction in closure rate) for each 6-h delay in surgery to source control. Early source control using OA management significantly improves outcome of patients with severe IAIs. This damage control approach well fits to the treatment of time-related conditions, particularly in case of critically ill patients.
Liu, Chao; Liu, Jinhong; Zhang, Junxiang; Zhu, Shiyao
2018-02-05
The direct counterfactual quantum communication (DCQC) is a surprising phenomenon that quantum information can be transmitted without using any carriers of physical particles. The nested interferometers are promising devices for realizing DCQC as long as the number of interferometers goes to be infinity. Considering the inevitable loss or dissipation in practical experimental interferometers, we analyze the dependence of reliability on the number of interferometers, and show that the reliability of direct communication is being rapidly degraded with the large number of interferometers. Furthermore, we simulate and test this counterfactual deterministic communication protocol with a finite number of interferometers, and demonstrate the improvement of the reliability using dissipation compensation in interferometers.
Markarian, Roberto Adrian; Galles, Deborah Pedroso; Gomes França, Fabiana Mantovani
To measure the microgap between dental implants and custom abutments fabricated using different computer-aided design/computer-aided manufacture (CAD/CAM) methods before and after mechanical cycling. CAD software (Dental System, 3Shape) was used to design a custom abutment for a single-unit, screw-retained crown compatible with a 4.1-mm external hexagon dental implant. The resulting stereolithography file was sent for manufacturing using four CAD/CAM methods (n = 40): milling and sintering of zirconium dioxide (ZO group), cobalt-chromium (Co-Cr) sintered via selective laser melting (SLM group), fully sintered machined Co-Cr alloy (MM group), and machined and sintered agglutinated Co-Cr alloy powder (AM group). Prefabricated titanium abutments (TI group) were used as controls. Each abutment was placed on a dental implant measuring 4.1× 11 mm (SA411, SIN) inserted into an aluminum block. Measurements were taken using scanning electron microscopy (SEM) (×4,000) on four regions of the implant-abutment interface (IAI) and at a relative distance of 90 degrees from each other. The specimens were mechanically aged (1 million cycles, 2 Hz, 100 N, 37°C) and the IAI width was measured again using the same approach. Data were analyzed using two-way analysis of variance, followed by the Tukey test. After mechanical cycling, the best adaptation results were obtained from the TI (2.29 ± 1.13 μm), AM (3.58 ± 1.80 μm), and MM (1.89 ± 0.98 μm) groups. A significantly worse adaptation outcome was observed for the SLM (18.40 ± 20.78 μm) and ZO (10.42 ± 0.80 μm) groups. Mechanical cycling had a marked effect only on the AM specimens, which significantly increased the microgap at the IAI. Custom abutments fabricated using fully sintered machined Co-Cr alloy and machined and sintered agglutinated Co-Cr alloy powder demonstrated the best adaptation results at the IAI, similar to those obtained with commercial prefabricated titanium abutments after mechanical cycling. The adaptation of custom abutments made by means of SLM or milling and sintering of zirconium dioxide were worse both before and after mechanical cycling.
Ganguly, Koustav; Ettehadieh, Dariusch; Upadhyay, Swapna; Takenaka, Shinji; Adler, Thure; Karg, Erwin; Krombach, Fritz; Kreyling, Wolfgang G; Schulz, Holger; Schmid, Otmar; Stoeger, Tobias
2017-06-20
The death toll associated with inhaled ambient particulate matter (PM) is attributed mainly to cardio-vascular rather than pulmonary effects. However, it is unclear whether the key event for cardiovascular impairment is particle translocation from lung to circulation (direct effect) or indirect effects due to pulmonary particle-cell interactions. In this work, we addressed this issue by exposing healthy mice via inhalation and intra-arterial infusion (IAI) to carbon nanoparticles (CNP) as surrogate for soot, a major constituent of (ultrafine) urban PM. Equivalent surface area CNP doses in the blood (30mm 2 per animal) were applied by IAI or inhalation (lung-deposited dose 10,000mm 2 ; accounting for 0.3% of lung-to-blood CNP translocation). Mice were analyzed for changes in hematology and molecular markers of endothelial/epithelial dysfunction, pro-inflammatory reactions, oxidative stress, and coagulation in lungs and extra-pulmonary organs after CNP inhalation (4 h and 24 h) and CNP infusion (4 h). For methodological reasons, we used two different CNP types (spark-discharge and Printex90), with very similar physicochemical properties [≥98 and ≥95% elemental carbon; 10 and 14 nm primary particle diameter; and 800 and 300 m 2 /g specific surface area] for inhalation and IAI respectively. Mild pulmonary inflammatory responses and significant systemic effects were observed following 4 h and 24 h CNP inhalation. Increased retention of activated leukocytes, secondary thrombocytosis, and pro-inflammatory responses in secondary organs were detected following 4 h and 24 h of CNP inhalation only. Interestingly, among the investigated extra-pulmonary tissues (i.e. aorta, heart, and liver); aorta revealed as the most susceptible extra-pulmonary target following inhalation exposure. Bypassing the lungs by IAI however did not induce any extra-pulmonary effects at 4 h as compared to inhalation. Our findings indicate that extra-pulmonary effects due to CNP inhalation are dominated by indirect effects (particle-cell interactions in the lung) rather than direct effects (translocated CNPs) within the first hours after exposure. Hence, CNP translocation may not be the key event inducing early cardiovascular impairment following air pollution episodes. The considerable response detected in the aorta after CNP inhalation warrants more emphasis on this tissue in future studies.
Interferometer for the measurement of plasma density
Jacobson, Abram R.
1980-01-01
An interferometer which combines the advantages of a coupled cavity interferometer requiring alignment of only one light beam, and a quadrature interferometer which has the ability to track multi-fringe phase excursions unambiguously. The device utilizes a Bragg cell for generating a signal which is electronically analyzed to unambiguously determine phase modulation which is proportional to the path integral of the plasma density.
Management of intra-abdominal infections: recommendations by the WSES 2016 consensus conference.
Sartelli, Massimo; Catena, Fausto; Abu-Zidan, Fikri M; Ansaloni, Luca; Biffl, Walter L; Boermeester, Marja A; Ceresoli, Marco; Chiara, Osvaldo; Coccolini, Federico; De Waele, Jan J; Di Saverio, Salomone; Eckmann, Christian; Fraga, Gustavo P; Giannella, Maddalena; Girardis, Massimo; Griffiths, Ewen A; Kashuk, Jeffry; Kirkpatrick, Andrew W; Khokha, Vladimir; Kluger, Yoram; Labricciosa, Francesco M; Leppaniemi, Ari; Maier, Ronald V; May, Addison K; Malangoni, Mark; Martin-Loeches, Ignacio; Mazuski, John; Montravers, Philippe; Peitzman, Andrew; Pereira, Bruno M; Reis, Tarcisio; Sakakushev, Boris; Sganga, Gabriele; Soreide, Kjetil; Sugrue, Michael; Ulrych, Jan; Vincent, Jean-Louis; Viale, Pierluigi; Moore, Ernest E
2017-01-01
This paper reports on the consensus conference on the management of intra-abdominal infections (IAIs) which was held on July 23, 2016, in Dublin, Ireland, as a part of the annual World Society of Emergency Surgery (WSES) meeting. This document covers all aspects of the management of IAIs. The Grading of Recommendations Assessment, Development and Evaluation recommendation is used, and this document represents the executive summary of the consensus conference findings.
Vaisbuch, Edi; Romero, Roberto; Erez, Offer; Mazaki-Tovi, Shali; Kusanovic, Juan Pedro; Soto, Eleazar; Dong, Zhong; Chaiworapongsa, Tinnakorn; Kim, Sun Kwon; Ogge, Giovanna; Pacora, Percy; Yeo, Lami; Hassan, Sonia S.
2012-01-01
Problem Plasma concentrations of fragment Bb (FBb) are a marker for activation of the alternative pathway of the complement system. High concentrations of FBb in maternal blood, as early as the first trimester, are associated with subsequent spontaneous preterm delivery <34 weeks of gestation. The study aim was to determine whether spontaneous preterm labor with intact membranes (PTL), intra-amniotic infection/inflammation (IAI) or labor at term are associated with alterations in circulating maternal FBb concentrations. Method of Study This cross-sectional study included women in the following groups: 1) non-pregnant (n=40); 2) normal pregnancy (gestational age range 20-36 6/7 weeks, n=63); 2) women at term not in labor (n=70); 3) women at term in spontaneous labor (n=59); 4) patients with an episode of PTL who delivered at term (n=62); 5) PTL without IAI who delivered preterm (n=30); and 6) PTL with IAI who delivered preterm (n=67). Maternal plasma FBb concentrations were determined by ELISA. Results 1) Among patients with PTL, those who had a preterm delivery either with IAI (1.21 μg/ml, IQR 0.77-2.16) or without IAI (1.13 μg/ml, IQR 0.92-2.08;) had a higher median maternal plasma FBb concentration than those who delivered at term (0.86 μg/ml, IQR 0.64-1.57; p=0.007 and p=0.026, respectively); 2) there was no difference in the median plasma FBb concentration between patients with and without IAI who delivered preterm (p=0.9); 3) in contrast, spontaneous labor at term was not associated with a significant change in the maternal plasma FBb concentration (p=0.8); 4) maternal plasma concentration of FBb did not differ significantly between normal pregnant women and the non-pregnant controls (p=0.8) and were not correlated with advancing gestational age (r −0.28, p=0.8). Conclusions 1) Preterm parturition is associated with activation of the alternative complement pathway in maternal circulation; 2) such activation is not detectable in spontaneous labor at term; 3) intra-amniotic infection/inflammation does not explain the activation of the alternative pathway of complement in preterm labor. Collectively, these observations suggest that preterm and term labor have fundamental differences in the regulation of innate immunity. PMID:20163401
Sartelli, Massimo; Weber, Dieter G; Ruppé, Etienne; Bassetti, Matteo; Wright, Brian J; Ansaloni, Luca; Catena, Fausto; Coccolini, Federico; Abu-Zidan, Fikri M; Coimbra, Raul; Moore, Ernest E; Moore, Frederick A; Maier, Ronald V; De Waele, Jan J; Kirkpatrick, Andrew W; Griffiths, Ewen A; Eckmann, Christian; Brink, Adrian J; Mazuski, John E; May, Addison K; Sawyer, Rob G; Mertz, Dominik; Montravers, Philippe; Kumar, Anand; Roberts, Jason A; Vincent, Jean-Louis; Watkins, Richard R; Lowman, Warren; Spellberg, Brad; Abbott, Iain J; Adesunkanmi, Abdulrashid Kayode; Al-Dahir, Sara; Al-Hasan, Majdi N; Agresta, Ferdinando; Althani, Asma A; Ansari, Shamshul; Ansumana, Rashid; Augustin, Goran; Bala, Miklosh; Balogh, Zsolt J; Baraket, Oussama; Bhangu, Aneel; Beltrán, Marcelo A; Bernhard, Michael; Biffl, Walter L; Boermeester, Marja A; Brecher, Stephen M; Cherry-Bukowiec, Jill R; Buyne, Otmar R; Cainzos, Miguel A; Cairns, Kelly A; Camacho-Ortiz, Adrian; Chandy, Sujith J; Che Jusoh, Asri; Chichom-Mefire, Alain; Colijn, Caroline; Corcione, Francesco; Cui, Yunfeng; Curcio, Daniel; Delibegovic, Samir; Demetrashvili, Zaza; De Simone, Belinda; Dhingra, Sameer; Diaz, José J; Di Carlo, Isidoro; Dillip, Angel; Di Saverio, Salomone; Doyle, Michael P; Dorj, Gereltuya; Dogjani, Agron; Dupont, Hervé; Eachempati, Soumitra R; Enani, Mushira Abdulaziz; Egiev, Valery N; Elmangory, Mutasim M; Ferrada, Paula; Fitchett, Joseph R; Fraga, Gustavo P; Guessennd, Nathalie; Giamarellou, Helen; Ghnnam, Wagih; Gkiokas, George; Goldberg, Staphanie R; Gomes, Carlos Augusto; Gomi, Harumi; Guzmán-Blanco, Manuel; Haque, Mainul; Hansen, Sonja; Hecker, Andreas; Heizmann, Wolfgang R; Herzog, Torsten; Hodonou, Adrien Montcho; Hong, Suk-Kyung; Kafka-Ritsch, Reinhold; Kaplan, Lewis J; Kapoor, Garima; Karamarkovic, Aleksandar; Kees, Martin G; Kenig, Jakub; Kiguba, Ronald; Kim, Peter K; Kluger, Yoram; Khokha, Vladimir; Koike, Kaoru; Kok, Kenneth Y Y; Kong, Victory; Knox, Matthew C; Inaba, Kenji; Isik, Arda; Iskandar, Katia; Ivatury, Rao R; Labbate, Maurizio; Labricciosa, Francesco M; Laterre, Pierre-François; Latifi, Rifat; Lee, Jae Gil; Lee, Young Ran; Leone, Marc; Leppaniemi, Ari; Li, Yousheng; Liang, Stephen Y; Loho, Tonny; Maegele, Marc; Malama, Sydney; Marei, Hany E; Martin-Loeches, Ignacio; Marwah, Sanjay; Massele, Amos; McFarlane, Michael; Melo, Renato Bessa; Negoi, Ionut; Nicolau, David P; Nord, Carl Erik; Ofori-Asenso, Richard; Omari, AbdelKarim H; Ordonez, Carlos A; Ouadii, Mouaqit; Pereira Júnior, Gerson Alves; Piazza, Diego; Pupelis, Guntars; Rawson, Timothy Miles; Rems, Miran; Rizoli, Sandro; Rocha, Claudio; Sakakushev, Boris; Sanchez-Garcia, Miguel; Sato, Norio; Segovia Lohse, Helmut A; Sganga, Gabriele; Siribumrungwong, Boonying; Shelat, Vishal G; Soreide, Kjetil; Soto, Rodolfo; Talving, Peep; Tilsed, Jonathan V; Timsit, Jean-Francois; Trueba, Gabriel; Trung, Ngo Tat; Ulrych, Jan; van Goor, Harry; Vereczkei, Andras; Vohra, Ravinder S; Wani, Imtiaz; Uhl, Waldemar; Xiao, Yonghong; Yuan, Kuo-Ching; Zachariah, Sanoop K; Zahar, Jean-Ralph; Zakrison, Tanya L; Corcione, Antonio; Melotti, Rita M; Viscoli, Claudio; Viale, Perluigi
2016-01-01
Intra-abdominal infections (IAI) are an important cause of morbidity and are frequently associated with poor prognosis, particularly in high-risk patients. The cornerstones in the management of complicated IAIs are timely effective source control with appropriate antimicrobial therapy. Empiric antimicrobial therapy is important in the management of intra-abdominal infections and must be broad enough to cover all likely organisms because inappropriate initial antimicrobial therapy is associated with poor patient outcomes and the development of bacterial resistance. The overuse of antimicrobials is widely accepted as a major driver of some emerging infections (such as C. difficile), the selection of resistant pathogens in individual patients, and for the continued development of antimicrobial resistance globally. The growing emergence of multi-drug resistant organisms and the limited development of new agents available to counteract them have caused an impending crisis with alarming implications, especially with regards to Gram-negative bacteria. An international task force from 79 different countries has joined this project by sharing a document on the rational use of antimicrobials for patients with IAIs. The project has been termed AGORA (Antimicrobials: A Global Alliance for Optimizing their Rational Use in Intra-Abdominal Infections). The authors hope that AGORA, involving many of the world's leading experts, can actively raise awareness in health workers and can improve prescribing behavior in treating IAIs.
Innate and adaptive immunity gene expression of human keratinocytes cultured of severe burn injury.
Noronha, Silvana Aparecida Alves Corrêa de; Noronha, Samuel Marcos Ribeiro de; Lanziani, Larissa Elias; Ferreira, Lydia Masako; Gragnani, Alfredo
2014-01-01
Evaluate the expression profile of genes related to Innate and Adaptive Immune System (IAIS) of human Primary Epidermal keratinocytes (hPEKP) of patients with severe burns. After obtaining viable fragments of skin with and without burning, culture hKEP was initiated by the enzymatic method using Dispase (Sigma-Aldrich). These cells were treated with Trizol(r) (Life Technologies) for extraction of total RNA. This was quantified and analyzed for purity for obtaining cDNA for the analysis of gene expression using specific IAIS PCR Arrays plates (SA Biosciences). After the analysis of gene expression we found that 63% of these genes were differentially expressed, of which 77% were repressed and 23% were hyper-regulated. Among these, the following genes (fold increase or decrease): IL8 (41), IL6 (32), TNF (-92), HLA-E (-86), LYS (-74), CCR6 (- 73), CD86 (-41) and HLA-A (-35). This study contributes to the understanding of the molecular mechanisms underlying wound infection caused by the burn. Furthermore, it may provide new strategies to restore normal expression of these genes and thereby change the healing process and improve clinical outcome.
Prabhu, Vimalanand S; Solomkin, Joseph S; Medic, Goran; Foo, Jason; Borse, Rebekah H; Kauf, Teresa; Miller, Benjamin; Sen, Shuvayu S; Basu, Anirban
2017-01-01
The prevalence of antimicrobial resistance among gram-negative pathogens in complicated intra-abdominal infections (cIAIs) has increased. In the absence of timely information on the infecting pathogens and their susceptibilities, local or regional epidemiology may guide initial empirical therapy and reduce treatment failure, length of stay and mortality. The objective of this study was to assess the cost-effectiveness of ceftolozane/tazobactam + metronidazole compared with piperacillin/tazobactam in the treatment of hospitalized US patients with cIAI at risk of infection with resistant pathogens. We used a decision-analytic Monte Carlo simulation model to compare the costs and quality-adjusted life years (QALYs) of persons infected with nosocomial gram-negative cIAI treated empirically with either ceftolozane/tazobactam + metronidazole or piperacillin/tazobactam. Pathogen isolates were randomly drawn from the Program to Assess Ceftolozane/Tazobactam Susceptibility (PACTS) database, a surveillance database of non-duplicate bacterial isolates collected from patients with cIAIs in medical centers in the USA from 2011 to 2013. Susceptibility to initial therapy was based on the measured susceptibilities reported in the PACTS database determined using standard broth micro-dilution methods as described by the Clinical and Laboratory Standards Institute (CLSI). Our model results, with baseline resistance levels from the PACTS database, indicated that ceftolozane/tazobactam + metronidazole dominated piperacillin/tazobactam, with lower costs ($44,226/patient vs. $44,811/patient respectively) and higher QALYs (12.85/patient vs. 12.70/patient, respectively). Ceftolozane/tazobactam + metronidazole remained the dominant choice in one-way and probabilistic sensitivity analyses. Based on surveillance data, ceftolozane/tazobactam is more likely to be an appropriate empiric therapy for cIAI in the US. Results from a decision-analytic simulation model indicate that use of ceftolozane/tazobactam + metronidazole would result in cost savings and improves QALYs, compared with piperacillin/tazobactam.
Pharmacokinetic study of anidulafungin in ICU patients with intra-abdominal candidiasis.
Dupont, H; Massias, L; Jung, B; Ammenouche, N; Montravers, P
2017-05-01
Only limited pharmacokinetic data are available for anidulafungin in ICU patients, especially in patients treated for severe intra-abdominal infection (IAI). This was a prospective multicentre observational study in ICU patients with suspected yeast IAI. All patients received an intravenous loading dose of 200 mg of anidulafungin, followed by 100 mg/day. Thirteen blood samples were drawn between day 1 and day 5 for pharmacokinetic analysis. Samples were analysed by an HPLC-tandem MS method. Demographics and SAPS2 and SOFA scores were recorded. Fourteen patients with a median age (IQR) of 62 years (48-70) and with a mean BMI of 30.5 kg/m 2 were included from three centres; 57.1% were women. Their median (IQR) SAPS2 score was 54 (45-67) and their median (IQR) SOFA score was 8 (7-12). Six patients with community-acquired IAI and eight patients with nosocomial-acquired IAI were included. Twelve yeasts were isolated: six Candida albicans , two Candida glabrata , two Candida tropicalis , one Candida parapsilosis and one Candida krusei . Pharmacokinetic parameters were as follows [mean (% coefficient of variation)]: C max (mg/L) = 6.0 (29%); T max (h) = 1.6 (25.8%); C min (mg/L) = 3.2 (36.8%); AUC 0-24 (mg·h/L) = 88.9 (38.6%); t 1/2 (h) = 42.1 (68.2%); CL (L/h) = 1.2 (42.3%); and V (L) = 72.8 (87.8%). A two-compartment model best described the anidulafungin concentrations in the population pharmacokinetic study. The pharmacokinetic parameters of anidulafungin in critically ill ICU patients with complicated IAI are similar to those observed in the literature. However, an increased V and a longer t 1/2 were observed in this study. (EudraCT No. 2010-018695-25). © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Civil-Defense Needs of High-Risk Areas of the United States. Revision A
1979-03-01
essencial to complement planning and increase the ability of the government to provide information to the public on demand, in a form that can basz be...CSP) apttons 175 ,: IAI WI o A ccI IAI ujj c oi -J I- 1 76 oh 00’t (V~ OIL 0 cj C~ to U1L -)0 at 0 C IM~CL0 0 _ 0. CL 0 41~~4 -. oc 0. cu 4) zc c ono
Satcher, Milan F; Segura, Eddy R; Silva-Santisteban, Alfonso; Sanchez, Jorge; Lama, Javier R; Clark, Jesse L
2017-08-01
Condomless anal intercourse among transgender women (TW) in Peru has been shown to vary by the type of partner involved (e.g. primary vs. casual vs. transactional sex partner), but no previous studies have explored variations in partner-level patterns of condom use according to type of anal intercourse. We evaluated the relationship between partnership characteristics and condom use during insertive (IAI) versus receptive anal intercourse (RAI) among TW with recent, non-female partners. Condomless IAI was more common with transactional and casual sex partners and by TW who self-reported HIV-uninfected serostatus (p < 0.05), alcohol use disorders, or substance use before sex. Condomless RAI was more common with primary partners and by TW who described their HIV serostatus as unknown (p < 0.05). Examining partner-level differences between condomless IAI and RAI reveals distinct patterns of HIV/STI risk among TW, suggesting a need for HIV prevention strategies tailored to the specific contexts of partners, practices, and networks.
NASA Astrophysics Data System (ADS)
Sanz-Felipe, Á.; Martín, J. C.
2017-11-01
The performance of a fiber-based modal interferometer as lateral stress sensor has been analyzed, both for static and periodic forces applied on it. The central fiber of the interferometer is a photonic crystal fiber. Forces are applied on it perpendicular to its axis, so that they squeeze it. In static situations, changes in the transmission spectrum of the interferometer are studied as a function of the charges applied. Measurements with several interferometers have been carried out in order to analyze the influence of its length and of its splices' transmission on the device operation, looking for optimization of its linearity and sensibility. The effect of periodic charges, as an emulation of vibrations, has also been studied. The analysis is centered on the frequency dependence of the response. In linear regime (small enough periodic charges), the results obtained are satisfactorily explained by treating the central fiber of the interferometer as a mechanical resonator whose vibration modes coincide with the ones of a cylinder with clamped ends. In nonlinear regime, period doubling and other anharmonic behaviors have been observed.
Liebenstein, Tyler; Schulz, Lucas T; Viesselmann, Chris; Bingen, Emma; Musuuza, Jackson; Safdar, Nasia; Rose, Warren E
2017-02-01
Because patients with abdominal solid organ transplants (SOTs) are at increased risk of polymicrobial intraabdominal infections (IAIs) following transplantation, the objective of this study was to compare the effectiveness and adverse event profile of tigecycline with those of other broad-spectrum therapies for polymicrobial IAIs in this population. Retrospective cohort study. Large academic medical center with multiple outpatient clinics. A total of 81 adult SOT recipients were included who were treated for confirmed or suspected polymicrobial IAIs from 2007-2012. Of these patients, 27 received tigecycline and 54 received comparator therapy with a broad-spectrum β-lactam (e.g., piperacillin-tazobactam, cefepime, or meropenem) with or without glycopeptide or lipopeptide gram-positive therapy (vancomycin or daptomycin) (comparator group). Patients in the comparator group were matched to tigecycline-treated patients based on transplant type (kidney, combined kidney-pancreas, combined kidney-liver, or solitary pancreas) in a 1:2 ratio (tigecycline-to-other broad-spectrum antibiotics). Data on patient demographics, comorbidities, and clinical variables were collected and compared by using bivariate analyses. Clinical outcomes-clinical cure, improvement or failure, and disease recurrence-as well as death within 1 year were analyzed by bivariate analyses and logistic regression. Clinical cure was lower in the tigecycline group versus the comparator group (40.7% vs 72.2%, p=0.008), but cure combined with improvement was similar between the two groups (85.2% vs 88.9%, p=0.724). Multiple logistic regression analysis showed that treatment with comparator antibiotics increased the odds of cure (odds ratio [OR] 1.37, 95% confidence interval [CI] 0.15-12.27) and reduced the odds of treatment failure (OR 0.59, 95% CI 0.07-4.55) and death within 1 year (OR 0.79, 95% CI 0.22-2.86); however, patients receiving comparator antibiotics were more likely to have disease recurrence (OR 1.45, 95% CI 0.33-6.36). Patients receiving tigecycline experienced a higher rate of adverse events than those receiving comparator antibiotics (29.6% vs 9.3%, p=0.026). Patients receiving tigecycline were less likely to achieve optimal clinical outcomes and had more adverse events. Alternative regimens should be selected over tigecycline for the treatment of polymicrobial IAIs in abdominal SOT recipients until additional studies are completed to examine its role in this population. © 2016 Pharmacotherapy Publications, Inc.
Ruggiero, Anthony J.
2005-05-03
An integrated optical capillary electrophoresis system for analyzing an analyte. A modulated optical pump beam impinges on an capillary containing the analyte/buffer solution which is separated by electrophoresis. The thermally-induced change in the index of refraction of light in said electrophoresis capillary is monitored using an integrated micro-interferometer. The interferometer includes a first interferometer arm intersecting the electrophoresis capillary proximate the excitation beam and a second, reference interferometer arm. Changes in index of refraction in the analyte measured by interrogating the interferometer state using white light interferometry and a phase-generated carrier demodulation technique. Background thermo-optical activity in the buffer solution is cancelled by splitting the pump beam and exciting pure buffer solution in a second section of capillary where it crosses the reference arm of the interferometer.
Li, Shu-ya; Jiang, Min; Yao, Tian-yu; Cheng, Yu-xuan; Fan, Ya-jie; Liu, Xu-ying; Zhang, Jin-ling; Liu, Lan; Wang, Zhi-zhong; Ma, Yu-ying; Hu, Xue-qin; Wang, Pan-pan; Yu, Jing-jing; Ma, Rong; Huang, Qi
2016-04-01
To explore the association of insulin resistance and β cell function with lipid metabolism in middle-aged and elderly Hui and Han populations. A total of 1000 subjects age over 40 years were recruited from five urban communities in Yinchuan and Wuzhong cities of Ningxia. The composition ratio between Hui and Han nationality was 1:2. A questionnaire-based survey was performed. Physical examinations were carried out to measure the height, body mass, waistline, and hipline. The levels of triglyceride (TG), total cholesterol (TC), blood uric acid (BUA), fasting blood glucose and insulin were measured. The boby mass index (BMI), waist-hip ratio (WHR), and secretion related index including insulin resistance index (IR), insulin sensitivity index (IAI), and beta cell function index (HBCI) were calculated. The BMI, WHR, IAI, HBCI, and the prevalence rate of diabetes in Hui nationality were significantly higher than those in Han nationality (P<0.01). The levels of BUA, fasting blood glucose, TC, and IR in Han nationality were significantly lower than those in Hui nationality (P<0.01). In Hui populations, TG, BMI, WHR, and BUA were positively correlated with IR (r=0.234, r=0.193, r=0.143, and r=0.129, respectively; P<0.01) and were negatively correlated with IAI (r=-0.234, r=-0.193, r=-0.143, r=-0.129, respectively; P<0.01), whereas TC was negatively correlated with HBCI (r=-0.169, P<0.01). In Han populations, TC, TG, BMI, WHR, and BUA were positively correlated with IR (r=0.140, r=0.257, r=0.288, r=0.163, r=0.104, P<0.01) and negatively correlated with IAI (r=-0.140, r=-0.257, r=-0.288, r=-0.163, and r=-0.104, P<0.01), whereas BMI was negatively correlated with HBCI (r=-0.111, P<0.01). After the influential factors such as gender, nationality, and age were adjusted, the TC, TG, BMI, WHR, BUA levels were positively correlated with IR (r=0.109, r=0.256, r=0.253, r=0.139, and r=0.142, P<0.01) and negatively correlated with IAI (r=-0.109, r=-0.256, r=-0.253, r=-0.139, and r=-0.142, P<0.01). TC and BMI were negatively correlated with HBCI (r=-0.113, r=-0.086, P<0.01). TG and BMI were independently associated with IR and IAI (r=0.218, r=0.182, r=-0.218, r=-0.182), while TC and BMI were independently associated with HBCI (r=-0.113, r=-0.086). The distributions of TC, TG, BMI, WHR, BUA, IR, IAI, and HBCI differ between Han and Hui populations. The development of insulin resistance is closely related with the increased levels of TC, TG, BMI, WHR, and BUA. However, the HBCI increases with the increased level of TC and BMI. TG and BMI may be related with insulin resistance. Also, TC and BMI may affect the secretion function of β cells.
Radochova, Vladimira; Kacerovska Musilova, Ivana; Stepan, Martin; Vescicik, Peter; Slezak, Radovan; Jacobsson, Bo; Kacerovsky, Marian
2017-08-04
Periodontal disease is frequently suggested as a possible causal factor for preterm delivery. The link between periodontal disease and preterm delivery is a possible translocation of periopathogenic bacteria to the placenta and amniotic fluid as well as a systemic response to this chronic inflammatory disease. However, there is a lack of information on whether there is an association between clinical periodontal status in women with preterm prelabor rupture of membranes (PPROM) and the presence of microbial invasion of the amniotic cavity (MIAC) and intra-amniotic inflammation (IAI). Therefore, the main aim of this study was to evaluate the incidence and severity of periodontal disease in women with PPROM. The secondary aim was to characterize an association between periodontal status and the presence of intra-amniotic PPROM complications (MIAC and/or IAI). Seventy-eight women with PPROM at gestational ages between 24 + 0 and 36 + 6 weeks were included in this study. The samples of amniotic fluid were obtained at admission via transabdominal amniocentesis, and amniotic fluid interleukin (IL)-6 concentrations were determined using a point-of-care test. All women had a full-mouth recording to determine the periodontal and oral hygiene status. Probing pocket depth and clinical attachment loss were measured at four sites on each fully erupted tooth. In total, 45% (35/78) of women with PPROM had periodontal disease. Mild, moderate, and severe periodontal disease was present in 19% (15/78), 19% (15/78), and 6% (5/78) of women, respectively. The presence of MIAC and IAI was found in 28% (22/78) and 26% (20/78) of women, respectively. Periopathogenic bacteria (2 × Streptococcus intermedius and 1 × Fusobacterium nucleatum) was found in the amniotic fluid of 4% (3/78) of women. There were no differences in periodontal status between women with MIAC and/or IAI and women without these intra-amniotic complications. The presence of MIAC and IAI was not related to the periodontal status of women with PPROM.
Solomkin, Joseph; Hershberger, Ellie; Miller, Benjamin; Popejoy, Myra; Friedland, Ian; Steenbergen, Judith; Yoon, Minjung; Collins, Sylva; Yuan, Guojun; Barie, Philip S.; Eckmann, Christian
2015-01-01
Background. Increasing antimicrobial resistance among pathogens causing complicated intra-abdominal infections (cIAIs) supports the development of new antimicrobials. Ceftolozane/tazobactam, a novel antimicrobial therapy, is active against multidrug-resistant Pseudomonas aeruginosa and most extended-spectrum β-lactamase (ESBL)–producing Enterobacteriaceae. Methods. ASPECT-cIAI (Assessment of the Safety Profile and Efficacy of Ceftolozane/Tazobactam in Complicated Intra-abdominal Infections) was a prospective, randomized, double-blind trial. Hospitalized patients with cIAI received either ceftolozane/tazobactam (1.5 g) plus metronidazole (500 mg) every 8 hours or meropenem (1 g) every 8 hours intravenously for 4–14 days. The prospectively defined objectives were to demonstrate statistical noninferiority in clinical cure rates at the test-of-cure visit (24–32 days from start of therapy) in the microbiological intent-to-treat (primary) and microbiologically evaluable (secondary) populations using a noninferiority margin of 10%. Microbiological outcomes and safety were also evaluated. Results. Ceftolozane/tazobactam plus metronidazole was noninferior to meropenem in the primary (83.0% [323/389] vs 87.3% [364/417]; weighted difference, −4.2%; 95% confidence interval [CI], −8.91 to .54) and secondary (94.2% [259/275] vs 94.7% [304/321]; weighted difference, −1.0%; 95% CI, −4.52 to 2.59) endpoints, meeting the prespecified noninferiority margin. In patients with ESBL-producing Enterobacteriaceae, clinical cure rates were 95.8% (23/24) and 88.5% (23/26) in the ceftolozane/tazobactam plus metronidazole and meropenem groups, respectively, and 100% (13/13) and 72.7% (8/11) in patients with CTX-M-14/15 ESBLs. The frequency of adverse events (AEs) was similar in both treatment groups (44.0% vs 42.7%); the most common AEs in either group were nausea and diarrhea. Conclusions. Treatment with ceftolozane/tazobactam plus metronidazole was noninferior to meropenem in adult patients with cIAI, including infections caused by multidrug-resistant pathogens. Clinical Trials Registration. NCT01445665 and NCT01445678. PMID:25670823
Intravitreal aflibercept for diabetic macular edema.
Korobelnik, Jean-François; Do, Diana V; Schmidt-Erfurth, Ursula; Boyer, David S; Holz, Frank G; Heier, Jeffrey S; Midena, Edoardo; Kaiser, Peter K; Terasaki, Hiroko; Marcus, Dennis M; Nguyen, Quan D; Jaffe, Glenn J; Slakter, Jason S; Simader, Christian; Soo, Yuhwen; Schmelter, Thomas; Yancopoulos, George D; Stahl, Neil; Vitti, Robert; Berliner, Alyson J; Zeitz, Oliver; Metzig, Carola; Brown, David M
2014-11-01
A head-to-head comparison was performed between vascular endothelial growth factor blockade and laser for treatment of diabetic macular edema (DME). Two similarly designed, double-masked, randomized, phase 3 trials, VISTA(DME) and VIVID(DME). We included 872 patients (eyes) with type 1 or 2 diabetes mellitus who presented with DME with central involvement. Eyes received either intravitreal aflibercept injection (IAI) 2 mg every 4 weeks (2q4), IAI 2 mg every 8 weeks after 5 initial monthly doses (2q8), or macular laser photocoagulation. The primary efficacy endpoint was the change from baseline in best-corrected visual acuity (BCVA) in Early Treatment Diabetic Retinopathy Study (ETDRS) letters at week 52. Secondary efficacy endpoints at week 52 included the proportion of eyes that gained ≥ 15 letters from baseline and the mean change from baseline in central retinal thickness as determined by optical coherence tomography. Mean BCVA gains from baseline to week 52 in the IAI 2q4 and 2q8 groups versus the laser group were 12.5 and 10.7 versus 0.2 letters (P < 0.0001) in VISTA, and 10.5 and 10.7 versus 1.2 letters (P < 0.0001) in VIVID. The corresponding proportions of eyes gaining ≥ 15 letters were 41.6% and 31.1% versus 7.8% (P < 0.0001) in VISTA, and 32.4% and 33.3% versus 9.1% (P < 0.0001) in VIVID. Similarly, mean reductions in central retinal thickness were 185.9 and 183.1 versus 73.3 μm (P < 0.0001) in VISTA, and 195.0 and 192.4 versus 66.2 μm (P < 0.0001) in VIVID. Overall incidences of ocular and nonocular adverse events and serious adverse events, including the Anti-Platelet Trialists' Collaboration-defined arterial thromboembolic events and vascular deaths, were similar across treatment groups. At week 52, IAI demonstrated significant superiority in functional and anatomic endpoints over laser, with similar efficacy in the 2q4 and 2q8 groups despite the extended dosing interval in the 2q8 group. In general, IAI was well-tolerated. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Wirth, Stefan; Emil, Sherif G S; Engelis, Arnis; Digtyar, Valeri; Criollo, Margarita; DiCasoli, Carl; Stass, Heino; Willmann, Stefan; Nkulikiyinka, Richard; Grossmann, Ulrike
2018-01-18
This study was designed to evaluate primarily the safety and also the efficacy of moxifloxacin (MXF) in children with complicated intra-abdominal infections (cIAIs). In this multicenter, randomized, double-blind, controlled study, 451 pediatric patients aged 3 months to 17 years with cIAIs were treated with intravenous/oral MXF (N = 301) or comparator (COMP, intravenous ertapenem followed by oral amoxicillin/clavulanate; N = 150) for 5 to 14 days. Doses of MXF were selected based on the results of a Phase 1 study in pediatric patients (NCT01049022). The primary endpoint was safety, with particular focus on cardiac and musculoskeletal safety; clinical and bacteriological efficacy at test of cure were also investigated. The proportion of patients with adverse events (AEs) was comparable between the two treatment arms (MXF: 58.1% and COMP: 54.7%). The incidence of drug-related AEs was higher in the MXF arm than the COMP arm (14.3% and 6.7%, respectively). No cases of QTc interval prolongation-related morbidity or mortality were observed. The proportion of patients with musculoskeletal AEs was comparable between treatment arms; no drug-related events were reported. Clinical cure rates were 84.6% and 95.5% in the MXF and COMP arms, respectively, in patients with confirmed pathogen(s) at baseline. MXF treatment was well tolerated in children with cIAIs. However, a lower clinical cure rate was observed with MXF treatment compared with COMP. This study does not support a recommendation of MXF for children with cIAIs when alternative more efficacious antibiotics with better safety profile are available.
IAI Global Change Agenda and Support of Higher Education in the Andean Amazon Countries.
NASA Astrophysics Data System (ADS)
Galarraga, R.; McClain, M.; Fierro, V.
2007-05-01
The Andean Amazon River Analysis and Management project, an IAI Collaborative Research Network operating during 1999-2004, examined the impacts of climate and land-use changes on the hydrobiogeochemistry of rivers draining the Amazon Andes of Ecuador, Peru, Colombia and Bolivia. The project also provided a means to strengthen scientific collaboration among these Andean countries and the USA. Research in these countries was carried out under the guidance of investigators with backgrounds in the relevant environmental fields, but the bulk of the research activities were carried out by undergraduate and graduate students who studied within these countries and overseas. Twenty graduate students and 15 undergraduates completed studies within the project, in topics related to monitoring hydrometeorological variables both in time and space. Student research and capacity building were focused in areas central to global environmental change, including modeling of precipitation and precipitation-runoff processes, basin-scale water quality characterization and biogeochemical cycling, and socioeconomic controls on the use and management of riverine resources. The analysis of human dimension aspects of climate change research was also featured, especially those aspects that linked the consequences of water quality degradation on human health. Most of undergraduate and graduate students that collaborated in the AARAM project have joined national environmental institutions and some have continued for higher scientific degrees in fields closely related to the IAI scientific agenda. Through this IAI initiative, the number of trained global change scientists in the Andean countries has grown and there is enhanced awareness of key global change science issues among the scientific community.
Parmigiani, Leandro; Furtado, Rita N V; Lopes, Roberta V; Ribeiro, Luiza H C; Natour, Jamil
2010-11-01
Compare the medium-term effectiveness and tolerance between joint lavage (JL) in combination with triamcinolone hexacetonide (TH) intra-articular injection (IAI) and IAI with TH alone for treatment of primary osteoarthritis (OA) of the knee. A randomized, double-blind, controlled study was carried out on 60 patients with primary OA of the knee, randomized into two intervention groups: JL/TH group, joint lavage in combination with TH intra-articular injection and TH group, TH intra-articular injection. Patients were followed for 12 weeks by a blind observer using the following outcome measurements: visual analogue scale for pain at rest and in movement, goniometry, WOMAC, Lequesne's index, timed 50-ft walk, perception of improvement, Likert scale for improvement assessment, use of nonsteroidal anti-inflammatory drugs and analgesics, and local side effects. There were no statistical differences in the inter-group analysis for any of the variables studied over the 12-week period. Although both groups demonstrated statistical improvement in the intra-group evaluation (except for Likert scale according to patient and the use of anti-inflammatory drugs). In the Kellgren-Lawrence scale (KL) 2 and 3 sub-analysis, there was a statistical difference regarding joint flexion among patients classified as KL 2, favoring the TH group (p=0.03). For the KL 3 patients, there were statistical differences favoring the JL/TH group regarding Lequesne (p=0.021), WOMAC pain score (p=0.01), and Likert scale according to the patient (p=0.028) and the physician (p=0.034). The combination of joint lavage and IAI with TH was not more effective than IAI with TH alone in the treatment of primary OA of the knee. However, KL 3 patients may receive a major benefit from this combination.
Data Processing for Atmospheric Phase Interferometers
NASA Technical Reports Server (NTRS)
Acosta, Roberto J.; Nessel, James A.; Morabito, David D.
2009-01-01
This paper presents a detailed discussion of calibration procedures used to analyze data recorded from a two-element atmospheric phase interferometer (API) deployed at Goldstone, California. In addition, we describe the data products derived from those measurements that can be used for site intercomparison and atmospheric modeling. Simulated data is used to demonstrate the effectiveness of the proposed algorithm and as a means for validating our procedure. A study of the effect of block size filtering is presented to justify our process for isolating atmospheric fluctuation phenomena from other system-induced effects (e.g., satellite motion, thermal drift). A simulated 24 hr interferometer phase data time series is analyzed to illustrate the step-by-step calibration procedure and desired data products.
Data Entities and Information System Matrix for Integrated Agriculture Information System (IAIS)
NASA Astrophysics Data System (ADS)
Budi Santoso, Halim; Delima, Rosa
2018-03-01
Integrated Agriculture Information System is a system that is developed to process data, information, and knowledge in Agriculture sector. Integrated Agriculture Information System brings valuable information for farmers: (1) Fertilizer price; (2) Agriculture technique and practise; (3) Pest management; (4) Cultivation; (5) Irrigation; (6) Post harvest processing; (7) Innovation in agriculture processing. Integrated Agriculture Information System contains 9 subsystems. To bring an integrated information to the user and stakeholder, it needs an integrated database approach. Thus, researchers describes data entity and its matrix relate to subsystem in Integrated Agriculture Information System (IAIS). As a result, there are 47 data entities as entities in single and integrated database.
Prabhu, Vimalanand; Foo, Jason; Ahir, Harblas; Sarpong, Eric; Merchant, Sanjay
2017-08-01
An increase in the prevalence of antimicrobial resistance among gram-negative pathogens has been noted recently. A challenge in empiric treatment of complicated intra-abdominal infection (cIAI) is identifying initial appropriate antibiotic therapy, which is associated with reduced length of stay and mortality compared with inappropriate therapy. The objective of this study was to assess the cost-effectiveness of ceftolozane/tazobactam + metronidazole compared with piperacillin/tazobactam (commonly used in this indication) in the treatment of patients with cIAI in UK hospitals. A decision-analytic Monte Carlo simulation model was used to compare costs (antibiotic and hospitalization costs) and quality-adjusted life years (QALYs) of patients infected with gram-negative cIAI and treated empirically with either ceftolozane/tazobactam + metronidazole or piperacillin/tazobactam. Bacterial isolates were randomly drawn from the Program to Assess Ceftolozane/Tazobactam Susceptibility (PACTS) database, a surveillance database of non-duplicate bacterial isolates collected from patients in the UK infected with gram-negative pathogens. Susceptibility to initial empiric therapy was based on the measured susceptibilities reported in the PACTS database. Ceftolozane/tazobactam + metronidazole was cost-effective when compared with piperacillin/tazobactam, with an incremental cost-effectiveness ratio (ICER) of £4,350/QALY and 0.36 hospitalization days/patient saved. Costs in the ceftolozane/tazobactam + metronidazole arm were £2,576/patient, compared with £2,168/patient in the piperacillin/tazobactam arm. The ceftolozane/tazobactam + metronidazole arm experienced a greater number of QALYs than the piperacillin/tazobactam arm (14.31/patient vs 14.21/patient, respectively). Ceftolozane/tazobactam + metronidazole remained cost-effective in one-way sensitivity and probabilistic sensitivity analyses. Economic models can help to identify the appropriate choice of empiric therapy for the treatment of cIAI. Results indicated that empiric use of ceftolozane/tazobactam + metronidazole is cost-effective vs piperacillin/tazobactam in UK patients with cIAI at risk of resistant infection. This will be valuable to commissioners and clinicians to aid decision-making on the targeting of resources for appropriate antibiotic therapy under the premise of antimicrobial stewardship.
Immune Protection against Lethal Fungal-Bacterial Intra-Abdominal Infections.
Lilly, Elizabeth A; Ikeh, Melanie; Nash, Evelyn E; Fidel, Paul L; Noverr, Mairi C
2018-01-16
Polymicrobial intra-abdominal infections (IAIs) are clinically prevalent and cause significant morbidity and mortality, especially those involving fungi. Our laboratory developed a mouse model of IAI and demonstrated that intraperitoneal inoculation with Candida albicans or other virulent non- albicans Candida (NAC) species plus Staphylococcus aureus resulted in 70 to 80% mortality in 48 to 72 h due to robust local and systemic inflammation (sepsis). Surprisingly, inoculation with Candida dubliniensis or Candida glabrata with S. aureus resulted in minimal mortality, and rechallenge of these mice with lethal C. albicans / S. aureus (i.e., coninfection) resulted in >90% protection. The purpose of this study was to define requirements for C. dubliniensis / S. aureus -mediated protection and interrogate the mechanism of the protective response. Protection was conferred by C. dubliniensis alone or by killed C. dubliniensis plus live S. aureus S. aureus alone was not protective, and killed S. aureus compromised C. dubliniensis -induced protection. C. dubliniensis / S. aureus also protected against lethal challenge by NAC plus S. aureus and could protect for a long-term duration (60 days between primary challenge and C. albicans/S. aureus rechallenge). Unexpectedly, mice deficient in T and B cells (Rag-1 knockouts [KO]) survived both the initial C. dubliniensis/S. aureus challenge and the C. albicans/S. aureus rechallenge, indicating that adaptive immunity did not play a role. Similarly, mice depleted of macrophages prior to rechallenge were also protected. In contrast, protection was associated with high numbers of Gr-1 hi polymorphonuclear leukocytes (PMNLs) in peritoneal lavage fluid within 4 h of rechallenge, and in vivo depletion of Gr-1 + cells prior to rechallenge abrogated protection. These results suggest that Candida species can induce protection against a lethal C. albicans / S. aureus IAI that is mediated by PMNLs and postulated to be a unique form of trained innate immunity. IMPORTANCE Polymicrobial intra-abdominal infections are clinically devastating infections with high mortality rates, particularly those involving fungal pathogens, including Candida species. Even in patients receiving aggressive antimicrobial therapy, mortality rates remain unacceptably high. There are no available vaccines against IAI, which is complicated by the polymicrobial nature of the infection. IAI leads to lethal systemic inflammation (sepsis), which is difficult to target pharmacologically, as components of the inflammatory response are also needed to control the infection. Our studies demonstrate that prior inoculation with low-virulence Candida species provides strong protection against subsequent lethal infection with C. albicans and S. aureus Surprisingly, protection is long-lived but not mediated by adaptive (specific) immunity. Instead, protection is dependent on cells of the innate immune system (nonspecific immunity) and provides protection against other virulent Candida species. This discovery implies that a form of trained innate immunity may be clinically effective against polymicrobial IAI. Copyright © 2018 Lilly et al.
Mencio, F; Papi, P; Di Carlo, S; Pompa, G
2016-06-01
The occurrence of bacterial leakage in the internal surface of implants, through implant-abutment interface (IAI), is one of the parameters for analyzing the fabrication quality of the connections. The aim of this in vitro study is to evaluate two different types of implant-abutment connections: the screwed connection (Group 1) and the cemented connection (Group 2), analyzing the permeability of the IAI to bacterial colonization, using human saliva as culture medium. A total of twelve implants were tested, six in each experimental group. Five healthy patients were enrolled in this study. Two milliliters of non-stimulated saliva were collected from each subject and mixed in a test tube. After 14 days of incubation of the bacteria sample in the implant fixtures, a PCR-Real Time analysis was performed. Fisher's exact test was used to compare the proportions of implant-abutment assembled structures detected with bacterial leakage. Differences in the bacterial counts of the two groups were compared using the Mann-Whitney U test. A p value < 0.05 was considered significant. The results showed a decreased stability with the screwed implant-abutment connections compared to the cemented implant-abutment connections. A mean total bacterial count of 1.2E+07 (± 0.25E+07) for Group 1 and of 7.2E+04 (± 14.4E+04) for Group 2 was found, with a high level of significance, p = .0001. Within the limitations of this study it can be concluded that bacterial species from human saliva may penetrate along the implant-abutment interface in both connections, however the cemented connection implants showed the lowest amount of bacterial colonization.
NASA Technical Reports Server (NTRS)
Crooke, Julie A.; Hagopian, John G.
1998-01-01
The Composite InfraRed Spectrometer (CIRS) instrument flying on the Cassini spacecraft to Saturn is a cryogenic spectrometer with far-infrared (FIR) and mid-infrared (MIR) channels. The CIRS FIR channel is a polarizing interferometer that contains three polarizing grid components. These components are an input polarizer, a polarizing beamsplitter, and an output polarizer/analyzer. They consist of a 1.5 micron thick mylar substrate with 2 gm wide copper wires, with 2 gm spacing (4 micron pitch) photolithographically deposited on the substrate. This paper details the polarization sensitivity studies performed on the output polarizer/analyzer, and the alignment sensitivity studies performed on the input polarizer and beamsplitter components in the FIR interferometer.
NASA Astrophysics Data System (ADS)
Carlson, Scott M.
1993-06-01
The design of a high resolution plane grating all-reflection Michelson interferometer for ionospheric spectroscopy was analyzed using ray tracing techniques. This interferometer produces an interference pattern whose spatial frequency is wavelength dependent. The instrument is intended for remote observations of the atomic oxygen triplet emission line profile at 1304 A in the thermosphere from sounding rocket or satellite platforms. The device was modeled using the PC-based ray tracing application, DART, and results analyzed through fourier techniques using the PC with Windows version of the Interactive Data Language (IDL). Through these methods, instrument resolution, resolving power, and bandpass were determined. An analysis of the effects of aperture size and shape on instrument performance was also conducted.
Confocal Fabry-Perot interferometer for frequency stabilization of laser
NASA Astrophysics Data System (ADS)
Pan, H.-J.; Ruan, P.; Wang, H.-W.; Li, F.
2011-02-01
The frequency shift of laser source of Doppler lidar is required in the range of a few megahertzs. To satisfy this demand, a confocal Fabry-Perot (F-P) interferometer was manufactured as the frequency standard for frequency stabilization. After analyzing and contrasting the center frequency shift of confocal Fabry-Perot interferometers that are made of three different types of material with the change of temperature, the zerodur material was selected to fabricate the interferometer, and the cavity mirrors were optically contacted onto the end of spacer. The confocal Fabry-Perot interferometer was situated within a double-walled chamber, and the change of temperature in the chamber was less than 0.01 K. The experimental results indicate that the free spectral range is 500 MHz, the full-width at half maximum is 3.33 MHz, and the finesse is 150.
galario: Gpu Accelerated Library for Analyzing Radio Interferometer Observations
NASA Astrophysics Data System (ADS)
Tazzari, Marco; Beaujean, Frederik; Testi, Leonardo
2017-10-01
The galario library exploits the computing power of modern graphic cards (GPUs) to accelerate the comparison of model predictions to radio interferometer observations. It speeds up the computation of the synthetic visibilities given a model image (or an axisymmetric brightness profile) and their comparison to the observations.
A coaxial cable Fabry-Perot interferometer for sensing applications.
Huang, Jie; Wang, Tao; Hua, Lei; Fan, Jun; Xiao, Hai; Luo, Ming
2013-11-07
This paper reports a novel coaxial cable Fabry-Perot interferometer for sensing applications. The sensor is fabricated by drilling two holes half-way into a coaxial cable. The device physics was described. The temperature and strain responses of the sensor were tested. The measurement error was calculated and analyzed.
Ceftolozane/tazobactam: place in therapy.
Giacobbe, Daniele Roberto; Bassetti, Matteo; De Rosa, Francesco Giuseppe; Del Bono, Valerio; Grossi, Paolo Antonio; Menichetti, Francesco; Pea, Federico; Rossolini, Gian Maria; Tumbarello, Mario; Viale, Pierluigi; Viscoli, Claudio
2018-04-01
Ceftolozane/tazobactam (C/T) is a new antibiotic resulting from the combination of a novel cephalosporin, structurally similar to ceftazidime, with tazobactam, a well-known beta-lactamase inhibitor. C/T remains active against extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae and multi-drug resistant (MDR) P. aeruginosa, and has been recently approved for the treatment of complicated intra-abdominal infections (cIAI) and complicated urinary tract infections (cUTI). A trial on hospital-acquired pneumonia is ongoing. Areas covered: The place in therapy of C/T is delineated by addressing the following main topics: (i) antimicrobial properties; (ii) pharmacological properties; (iii) results of clinical studies. Expert commentary: C/T is approved for cIAI and cUTI. However, the drug has a special value for clinicians in any kind of infectious localization for two main reasons. The first is that C/T is especially valuable in suspected or documented severe infections due to MDR P. aeruginosa, which is not a rare occurrence in many countries. The second is that C/T may provide an alternative to carbapenems for the treatment of infections caused by ESBL-producers, thus allowing a carbapenem-sparing strategy. Reporting of off-label use is mandatory to increase the body of evidence and the clinicians' confidence in using it for indications other than cIAI and cUTI.
Fizeau simultaneous phase-shifting interferometry based on extended source
NASA Astrophysics Data System (ADS)
Wang, Shanshan; Zhu, Qiudong; Hou, Yinlong; Cao, Zheng
2016-09-01
Coaxial Fizeau simultaneous phase-shifting interferometer plays an important role in many fields for its characteristics of long optical path, miniaturization, and elimination of reference surface high-frequency error. Based on the matching of coherence between extended source and interferometer, orthogonal polarization reference wave and measurement wave can be obtained by Fizeau interferometry with Michelson interferometer preposed. Through matching spatial coherence length between preposed interferometer and primary interferometer, high contrast interference fringes can be obtained and additional interference fringes can be eliminated. Thus, the problem of separation of measurement and reference surface in the common optical path Fizeau interferometer is solved. Numerical simulation and principle experiment is conducted to verify the feasibility of extended source interferometer. Simulation platform is established by using the communication technique of DDE (dynamic data exchange) to connect Zemax and Matlab. The modeling of the extended source interferometer is realized by using Zemax. Matlab codes are programmed to automatically rectify the field parameters of the optical system and conveniently calculate the visibility of interference fringes. Combined with the simulation, the experimental platform of the extended source interferometer is established. After experimental research on the influence law of scattering screen granularity to interference fringes, the granularity of scattering screen is determined. Based on the simulation platform and experimental platform, the impacts on phase measurement accuracy of the imaging system aberration and collimation system aberration of the interferometer are analyzed. Compared the visibility relation curves between experimental measurement and simulation result, the experimental result is in line with the theoretical result.
Kwon, Jeong Hyun; Park, Junhong; Lee, Myung Keun; Park, Jeong Woo; Jeon, Yongmin; Shin, Jeong Bin; Nam, Minwoo; Kim, Choong-Ki; Choi, Yang-Kyu; Choi, Kyung Cheol
2018-05-09
The lack of reliable, transparent, and flexible electrodes and insulators for applications in thin-film transistors (TFTs) makes it difficult to commercialize transparent, flexible TFTs (TF-TFTs). More specifically, conventional high process temperatures and the brittleness of these elements have been hurdles in developing flexible substrates vulnerable to heat. Here, we propose electrode and insulator fabrication techniques considering process temperature, transmittance, flexibility, and environmental stability. A transparent and flexible indium tin oxide (ITO)/Ag/ITO (IAI) electrode and an Al 2 O 3 /MgO (AM)-laminated insulator were optimized at the low temperature of 70 °C for the fabrication of TF-TFTs on a polyethylene terephthalate (PET) substrate. The optimized IAI electrode with a sheet resistance of 7 Ω/sq exhibited the luminous transmittance of 85.17% and maintained its electrical conductivity after exposure to damp heat conditions because of an environmentally stable ITO capping layer. In addition, the electrical conductivity of IAI was maintained after 10 000 bending cycles with a tensile strain of 3% because of the ductile Ag film. In the metal/insulator/metal structure, the insulating and mechanical properties of the optimized AM-laminated film deposited at 70 °C were significantly improved because of the highly dense nanolaminate system, compared to those of the Al 2 O 3 film deposited at 70 °C. In addition, the amorphous indium-gallium-zinc oxide (a-IGZO) was used as the active channel for TF-TFTs because of its excellent chemical stability. In the environmental stability test, the ITO, a-IGZO, and AM-laminated films showed the excellent environmental stability. Therefore, our IGZO-based TFT with IAI electrodes and the 70 °C AM-laminated insulator was fabricated to evaluate robustness, transparency, flexibility, and process temperature, resulting in transfer characteristics comparable to those of an IGZO-based TFT with a 150 °C Al 2 O 3 insulator.
CNV analysis in the Lithuanian population.
Urnikyte, A; Domarkiene, I; Stoma, S; Ambrozaityte, L; Uktveryte, I; Meskiene, R; Kasiulevičius, V; Burokiene, N; Kučinskas, V
2016-05-04
Although copy number variation (CNV) has received much attention, knowledge about the characteristics of CNVs such as occurrence rate and distribution in the genome between populations and within the same population is still insufficient. In this study, Illumina 770 K HumanOmniExpress-12 v1.0 (and v1.1) arrays were used to examine the diversity and distribution of CNVs in 286 unrelated individuals from the two main ethnolinguistic groups of the Lithuanian population (Aukštaičiai and Žemaičiai) (see Additional file 3). For primary data analysis, the Illumina GenomeStudio™ Genotyping Module v1.9 and two algorithms, cnvPartition 3.2.0 and QuantiSNP 2.0, were used to identify high-confidence CNVs. A total of 478 autosomal CNVs were detected by both algorithms, and those were clustered in 87 copy number variation regions (CNVRs), spanning ~12.5 Mb of the genome (see Table 1). At least 8.6 % of the CNVRs were unique and had not been reported in the Database of Genomic Variants. Most CNVRs (57.5 %) were rare, with a frequency of <1 %, whereas common CNVRs with at least 5 % frequency made up only 1.1 % of all CNVRs identified. About 49 % of non-singleton CNVRs were shared between Aukštaičiai and Žemaičiai, and the remaining CNVRs were specific to each group. Many of the CNVs detected (66 %) overlapped with known UCSC gene regions. The ethnolinguistic groups of the Lithuanian population could not be differentiated based on CNV profiles, which may reflect their geographical proximity and suggest the homogeneity of the Lithuanian population. In addition, putative novel CNVs unique to the Lithuanian population were identified. The results of our study enhance the CNV map of the Lithuanian population.
Ferrazzi, Enrico; Muggiasca, Maria Luisa; Fabbri, Elisa; Fontana, Paola; Castoldi, Francesco; Lista, Gianluca; Primerano, Liviana; Livio, Stefania; Di Francesco, Stefania
2012-10-01
There exists a huge gap between protocols issued by scientific bodies and evidence derived by system biology studies on the multifactorial origin of threatened preterm delivery and their different associations with neonatal outcome. The objective of this prospective study was the analysis obstetrical and neonatal outcome in a cohort of pregnant patients treated for the risk of preterm delivery according to maternal and fetal assessment determined by amniotic fluid samples. Methods. Threatened preterm delivery and premature rupture of membranes between 24 + 1 and 32 + 6 weeks of gestation were treated by prolonged tocolytic regimens and if necessary by antibiotics for maternal infections when intra-amniotic inflammation (IAI) was excluded on the basis of negative white blood cell count in the amniotic fluid, or opposite, by delivery after a course of betamethasone and 48 hours maintenance tocolysis. Twenty-three cases were compared with 22 historical controls treated by the same teams according to the 48 hours treat and wait criteria. In addition to this, cases with normal and abnormal amniotic fluid white blood cell were compared. Results. Maternal and fetal conditions at admission were not significantly different between the study and control cohort for all maternal and fetal variables. Clinical indices were significantly improved as regard to latency from admission to delivery, number of newborns admitted to neonatal intensive care unit and length of stay in neonatal intensive care unit. Not any perinatal death or sepsis occurred in the study cohort. Overall, improved neonatal outcomes were observed in the study cohort. Composite major neonatal eventful outcomes occurred in 26% of cases vs. 50% in controls. The limited number of cases was not powered enough to reach a statistical significance for these variables. Continued tocolysis on demand and full regimen of mono or combined antibiotic regimen for maternal infection achieved significantly longer delay between admission to delivery with improved in neonatal outcome in cases negative for IAI: only 2 of 14 newborns suffered of major neonatal complications vs. 4 of 9 newborns delivered for IAI. Conclusions. Fetuses without IAI can be treated conservatively and their stay in utero prolonged without harm. However, we confirmed that when IAI is already active in utero a worse neonatal outcome is already partly predetermined. These positive findings must be interpreted with cautions given the limited number of cases considered by this study.
A Coaxial Cable Fabry-Perot Interferometer for Sensing Applications
Huang, Jie; Wang, Tao; Hua, Lei; Fan, Jun; Xiao, Hai; Luo, Ming
2013-01-01
This paper reports a novel coaxial cable Fabry-Perot interferometer for sensing applications. The sensor is fabricated by drilling two holes half-way into a coaxial cable. The device physics was described. The temperature and strain responses of the sensor were tested. The measurement error was calculated and analyzed. PMID:24212121
Research on the Application of Fast-steering Mirror in Stellar Interferometer
NASA Astrophysics Data System (ADS)
Mei, R.; Hu, Z. W.; Xu, T.; Sun, C. S.
2017-07-01
For a stellar interferometer, the fast-steering mirror (FSM) is widely utilized to correct wavefront tilt caused by atmospheric turbulence and internal instrumental vibration due to its high resolution and fast response frequency. In this study, the non-coplanar error between the FSM and actuator deflection axis introduced by manufacture, assembly, and adjustment is analyzed. Via a numerical method, the additional optical path difference (OPD) caused by above factors is studied, and its effects on tracking accuracy of stellar interferometer are also discussed. On the other hand, the starlight parallelism between the beams of two arms is one of the main factors of the loss of fringe visibility. By analyzing the influence of wavefront tilt caused by the atmospheric turbulence on fringe visibility, a simple and efficient real-time correction scheme of starlight parallelism is proposed based on a single array detector. The feasibility of this scheme is demonstrated by laboratory experiment. The results show that starlight parallelism meets the requirement of stellar interferometer in wavefront tilt preliminarily after the correction of fast-steering mirror.
Investigation of Grating-Assisted Trimodal Interferometer Biosensors Based on a Polymer Platform.
Liang, Yuxin; Zhao, Mingshan; Wu, Zhenlin; Morthier, Geert
2018-05-10
A grating-assisted trimodal interferometer biosensor is proposed and numerically analyzed. A long period grating coupler, for adjusting the power between the fundamental mode and the second higher order mode, is investigated, and is shown to act as a conventional directional coupler for adjusting the power between the two arms. The trimodal interferometer can achieve maximal fringe visibility when the powers of the two modes are adjusted to the same value by the grating coupler, which means that a better limit of detection can be expected. In addition, the second higher order mode typically has a larger evanescent tail than the first higher order mode in bimodal interferometers, resulting in a higher sensitivity of the trimodal interferometer. The influence of fabrication tolerances on the performance of the designed interferometer is also investigated. The power difference between the two modes shows inertia to the fill factor of the grating, but high sensitivity to the modulation depth. Finally, a 2050 2π/RIU (refractive index unit) sensitivity and 43 dB extinction ratio of the output power are achieved.
NASA Astrophysics Data System (ADS)
Huang, Xinyue; Li, Xueming; Yang, Jianchun; Tao, Chuanyi; Guo, Xiaogang; Bao, Hebin; Yin, Yanjun; Chen, Huifei; Zhu, Yuhua
2017-04-01
Ammonia is an important indicator among environmental monitoring parameters. In this work, thin-core fiber Mach-Zehnder interferometer deposited with poly (acrylic acid) (PAA), poly (allyamine hydrochloride) (PAH) and single-walled carbon nanotubes (SWCNTs-COOH) sensing film for the detection of ammonia gas has been presented. The thin-core fiber modal interferometer was made by fusion splicing a small section of thin-core fiber (TCF) between two standard single mode fibers (SMF). A beam propagation method (BPM) is employed for the design of proposed interferometer and numerical simulation. Based on the simulation results, interferometer with a length of 2 cm of thin-core fiber is fabricated and experimentally studied. (PAH/PAA)2 + [PAH/(PAA + SWCNTs-COOH)]8 film is deposited on the outer surface of thin-core fiber via layer-by-layer (LbL) self-assembly technique. The gas sensor coated with (PAH/PAA)2 + [PAH/(PAA + SWCNTs-COOH)]8 film towards NH3 gas exposure at concentrations range from 1 to 960 ppm are analyzed and the sensing capability is demonstrated by optical spectrum analyzer (OSA). Experimental results show that the characteristic wavelength shift has an approximately linear relationship in the range 1-20 ppm, which is in accordance with the numerical simulation. Thus, this paper reveals the potential application of this sensor in monitoring low concentration NH3 gas.
Laser-Interferometric Broadband Seismometer for Epicenter Location Estimation
Lee, Kyunghyun; Kwon, Hyungkwan; You, Kwanho
2017-01-01
In this paper, we suggest a seismic signal measurement system that uses a laser interferometer. The heterodyne laser interferometer is used as a seismometer due to its high accuracy and robustness. Seismic data measured by the laser interferometer is used to analyze crucial earthquake characteristics. To measure P-S time more precisely, the short time Fourier transform and instantaneous frequency estimation methods are applied to the intensity signal (Iy) of the laser interferometer. To estimate the epicenter location, the range difference of arrival algorithm is applied with the P-S time result. The linear matrix equation of the epicenter localization can be derived using P-S time data obtained from more than three observatories. We prove the performance of the proposed algorithm through simulation and experimental results. PMID:29065515
Phase-contrast microtomography using an X-ray interferometer having a 40-μm analyzer
NASA Astrophysics Data System (ADS)
Momose, A.; Koyama, I.; Hamaishi, Y.; Yoshikawa, H.; Takeda, T.; Wu, J.; Itai, Y.; Takai, , K.; Uesugi, K.; Suzuki, Y.
2003-03-01
Phase-contrast X-ray tomographic experiment using a triple Laue-case (LLL) interferometer having a 40-μm lamella which was fabricated to improve spatial resolution, was carried out using undulator X-rays at SPring-8, Japan. Three-dimensional images mapping the refractive index were measured for various animal tissues. Comparing the images with those obtained in previous experiments using conventional LLL interferometers having a 1-mm lamella, improvement in the spatial resolution was demonstrated in that histological structures, such as hepatic lobules in liver and tubules in kidney, were revealed.
All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber
NASA Astrophysics Data System (ADS)
Choi, Hae Young; Kim, Myoung Jin; Lee, Byeong Ha
2007-04-01
We propose simple and compact methods for implementing all-fiber interferometers. The interference between the core and the cladding modes of a photonic crystal fiber (PCF) is utilized. To excite the cladding modes from the fundamental core mode of a PCF, a coupling point or region is formed by using two methods. One is fusion splicing two pieces of a PCF with a small lateral offset, and the other is partially collapsing the air-holes in a single piece of PCF. By making another coupling point at a different location along the fiber, the proposed all-PCF interferometer is implemented. The spectral response of the interferometer is investigated mainly in terms of its wavelength spectrum. The spatial frequency of the spectrum was proportional to the physical length of the interferometer and the difference between the modal group indices of involved waveguide modes. For the splicing type interferometer, only a single spatial frequency component was dominantly observed, while the collapsing type was associated with several components at a time. By analyzing the spatial frequency spectrum of the wavelength spectrum, the modal group index differences of the PCF were obtained from to . As potential applications of the all-PCF interferometer, strain sensing is experimentally demonstrated and ultra-high temperature sensing is proposed.
Improving interferometers by quantum light: toward testing quantum gravity on an optical bench
NASA Astrophysics Data System (ADS)
Ruo-Berchera, Ivano; Degiovanni, Ivo P.; Olivares, Stefano; Traina, Paolo; Samantaray, Nigam; Genovese, M.
2016-09-01
We analyze in detail a system of two interferometers aimed at the detection of extremely faint phase fluctuations. The idea behind is that a correlated phase-signal like the one predicted by some phenomenological theory of Quantum Gravity (QG) could emerge by correlating the output ports of the interferometers, even when in the single interferometer it confounds with the background. We demonstrated that injecting quantum light in the free ports of the interferometers can reduce the photon noise of the system beyond the shot-noise, enhancing the resolution in the phase-correlation estimation. Our results confirm the benefit of using squeezed beams together with strong coherent beams in interferometry, even in this correlated case. On the other hand, our results concerning the possible use of photon number entanglement in twin beam state pave the way to interesting and probably unexplored areas of application of bipartite entanglement and, in particular, the possibility of reaching surprising uncertainty reduction exploiting new interferometric configurations, as in the case of the system described here.
NASA Astrophysics Data System (ADS)
Zhang, Teng; Danilishin, Stefan L.; Steinlechner, Sebastian; Barr, Bryan W.; Bell, Angus S.; Dupej, Peter; Gräf, Christian; Hennig, Jan-Simon; Houston, E. Alasdair; Huttner, Sabina H.; Leavey, Sean S.; Pascucci, Daniela; Sorazu, Borja; Spencer, Andrew; Wright, Jennifer; Strain, Kenneth A.; Hild, Stefan
2017-03-01
With the recent detection of gravitational waves (GWs), marking the start of the new field of GW astronomy, the push for building more sensitive laser-interferometric gravitational wave detectors (GWDs) has never been stronger. Balanced homodyne detection (BHD) allows for a quantum-noise (QN) limited readout of arbitrary light field quadratures, and has therefore been suggested as a vital building block for upgrades to Advanced LIGO and third-generation observatories. In terms of the practical implementation of BHD, we develop a full framework for analyzing the static optical high-order modes (HOMs) occurring in the BHD paths related to the misalignment or mode matching at the input and output ports of the laser interferometer. We find the effects of HOMs on the quantum-noise limited sensitivity is independent of the actual interferometer configuration; e.g. Michelson and Sagnac interferometers are affected in the same way. We show that misalignment of the output ports of the interferometer (output misalignment) only affects the high-frequency part of the quantum-noise limited sensitivity (detection noise). However, at low frequencies, HOMs reduce the interferometer response and the radiation pressure noise (back-action noise) by the same amount and hence the quantum-noise limited sensitivity is not negatively affected in that frequency range. We show that the misalignment of the laser into the interferometer (input misalignment) produces the same effect as output misalignment and additionally decreases the power inside the interferometer. We also analyze dynamic HOM effects, such as beam jitter created by the suspended mirrors of the BHD. Our analyses can be directly applied to any BHD implementation in a future GWD. Moreover, we apply our analytical techniques to the example of the speed meter proof-of-concept experiment under construction in Glasgow. We find that for our experimental parameters, the performance of our seismic isolation system in the BHD paths is compatible with the design sensitivity of the experiment.
Chen, Benyong; Cheng, Liang; Yan, Liping; Zhang, Enzheng; Lou, Yingtian
2017-03-01
The laser beam drift seriously influences the accuracy of straightness or displacement measurement in laser interferometers, especially for the long travel measurement. To solve this problem, a heterodyne straightness and displacement measuring interferometer with laser beam drift compensation is proposed. In this interferometer, the simultaneous measurement of straightness error and displacement is realized by using heterodyne interferometry, and the laser beam drift is determined to compensate the measurement results of straightness error and displacement in real time. The optical configuration of the interferometer is designed. The principle of the simultaneous measurement of straightness, displacement, and laser beam drift is depicted and analyzed in detail. And the compensation of the laser beam drift for the straightness error and displacement is presented. Several experiments were performed to verify the feasibility of the interferometer and the effectiveness of the laser beam drift compensation. The experiments of laser beam stability show that the position stability of the laser beam spot can be improved by more than 50% after compensation. The measurement and compensation experiments of straightness error and displacement by testing a linear stage at different distances show that the straightness and displacement obtained from the interferometer are in agreement with those obtained from a compared interferometer and the measured stage. These demonstrate that the merits of this interferometer are not only eliminating the influence of laser beam drift on the measurement accuracy but also having the abilities of simultaneous measurement of straightness error and displacement as well as being suitable for long-travel linear stage metrology.
DYSREGULATION OF MATERNAL SERUM ADIPONECTIN IN PRETERM LABOR
Mazaki-Tovi, Shali; Romero, Roberto; Vaisbuch, Edi; Erez, Offer; Mittal, Pooja; Chaiworapongsa, Tinnakorn; Kim, Sun Kwon; Pacora, Percy; Yeo, Lami; Gotsch, Francesca; Dong, Zhong; Nhan-Chang, Chia-Ling; Jodicke, Cristiano; Yoon, Bo Hyun; Hassan, Sonia S.; Kusanovic, Juan Pedro
2013-01-01
Objective Intra-amniotic and systemic infection/inflammation have been causally linked to preterm parturition and fetal injury. An emerging theme is that adipose tissue can orchestrate a metabolic response to insults, but also an inflammatory response via the production of adipocytokines, and that these two phenomenon are interrelated. Adiponectin, an insulin-sensitizing, anti-inflammatory adipocytokine, circulates in multimeric complexes including low-molecular-weight (LMW) trimers, medium-molecular-weight (MMW) hexamers and high-molecular-weight (HMW) isoforms. Each of these complexes can exert differential biological effects. The aim of this study was to determine whether spontaneous preterm labor (PTL) with intact membranes and intra-amniotic infection/inflammation (IAI) is associated with changes in maternal serum circulating adiponectin multimers. Study design This cross-sectional study included patients in the following groups: 1) normal pregnant women (n=158); 2) patients with an episode of preterm labor and intact membranes without IAI who delivered at term (n=41); 3) preterm labor without IAI who delivered preterm (n=27); and 4) preterm labor with IAI who delivered preterm (n=36). Serum adiponectin multimers (total, HMW, MMW and LMW) concentrations were determined by ELISA. Non-parametric statistics were used for analyses. Results 1) Preterm labor leading to preterm delivery or an episode of preterm labor which does not lead to preterm delivery, was associated with a lower median maternal serum concentration of total and HMW adiponectin, a lower median HMW/total adiponectin ratio, and a higher median LMW/total adiponectin ratio than normal pregnancy; 2) among patients with preterm labor, those with IAI had the lowest median concentration of total and HMW adiponectin, as well as the lowest median HMW/total adiponectin ratio; 3) The changes in maternal adiponectin and adiponectin multimers remained significant after adjusting for confounding factors such as maternal age, BMI, gestational age at sampling, and parity. Conclusion 1) Preterm labor is characterized by a change in the profile of adiponectin multimers concentrations and their relative isoforms. These changes were observed in patients with an episode of preterm labor not leading to preterm delivery, in patients with intra-amniotic inflammation, or in those without evidence of intra-amniotic inflammation; 2) The changes in adiponectin multimer concentrations reported in preterm labor are different from those previously reported in spontaneous labor at term, suggesting that there is a fundamental difference between preterm labor and labor at term; 3) The findings reported herein, provide the first evidence for the participation of adiponectin multimer in preterm parturition. We propose that adiponectins and adipokines in general provide a mechanism to organize the metabolic demands generated by the process of preterm parturition regardless of the nature of the insult (intra-amniotic inflammation or not). PMID:19579094
Demonstration of analyzers for multimode photonic time-bin qubits
NASA Astrophysics Data System (ADS)
Jin, Jeongwan; Agne, Sascha; Bourgoin, Jean-Philippe; Zhang, Yanbao; Lütkenhaus, Norbert; Jennewein, Thomas
2018-04-01
We demonstrate two approaches for unbalanced interferometers as time-bin qubit analyzers for quantum communication, robust against mode distortions and polarization effects as expected from free-space quantum communication systems including wavefront deformations, path fluctuations, pointing errors, and optical elements. Despite strong spatial and temporal distortions of the optical mode of a time-bin qubit, entangled with a separate polarization qubit, we verify entanglement using the Negative Partial Transpose, with the measured visibility of up to 0.85 ±0.01 . The robustness of the analyzers is further demonstrated for various angles of incidence up to 0 .2∘ . The output of the interferometers is coupled into multimode fiber yielding a high system throughput of 0.74. Therefore, these analyzers are suitable and efficient for quantum communication over multimode optical channels.
Velocity measurement using frequency domain interferometer and chirped pulse laser
NASA Astrophysics Data System (ADS)
Ishii, K.; Nishimura, Y.; Mori, Y.; Hanayama, R.; Kitagawa, Y.; Sekine, T.; Sato, N.; Kurita, T.; Kawashima, T.; Sunahara, A.; Sentoku, Y.; Miura, E.; Iwamoto, A.; Sakagami, H.
2017-02-01
An ultra-intense short pulse laser induces a shock wave in material. The pressure of shock compression is stronger than a few tens GPa. To characterize shock waves, time-resolved velocity measurement in nano- or pico-second time scale is needed. Frequency domain interferometer and chirped pulse laser provide single-shot time-resolved measurement. We have developed a laser-driven shock compression system and frequency domain interferometer with CPA laser. In this paper, we show the principle of velocity measurement using a frequency domain interferometer and a chirped pulse laser. Next, we numerically calculated spectral interferograms and show the time-resolved velocity measurement can be done from the phase analysis of spectral interferograms. Moreover we conduct the laser driven shock generation and shock velocity measurement. From the spectral fringes, we analyze the velocities of the sample and shockwaves.
Huang, Xinyue; Li, Xueming; Yang, Jianchun; Tao, Chuanyi; Guo, Xiaogang; Bao, Hebin; Yin, Yanjun; Chen, Huifei; Zhu, Yuhua
2017-01-01
Ammonia is an important indicator among environmental monitoring parameters. In this work, thin-core fiber Mach-Zehnder interferometer deposited with poly (acrylic acid) (PAA), poly (allyamine hydrochloride) (PAH) and single-walled carbon nanotubes (SWCNTs-COOH) sensing film for the detection of ammonia gas has been presented. The thin-core fiber modal interferometer was made by fusion splicing a small section of thin-core fiber (TCF) between two standard single mode fibers (SMF). A beam propagation method (BPM) is employed for the design of proposed interferometer and numerical simulation. Based on the simulation results, interferometer with a length of 2 cm of thin-core fiber is fabricated and experimentally studied. (PAH/PAA)2 + [PAH/(PAA + SWCNTs-COOH)]8 film is deposited on the outer surface of thin-core fiber via layer-by-layer (LbL) self-assembly technique. The gas sensor coated with (PAH/PAA)2 + [PAH/(PAA + SWCNTs-COOH)]8 film towards NH3 gas exposure at concentrations range from 1 to 960 ppm are analyzed and the sensing capability is demonstrated by optical spectrum analyzer (OSA). Experimental results show that the characteristic wavelength shift has an approximately linear relationship in the range 1–20 ppm, which is in accordance with the numerical simulation. Thus, this paper reveals the potential application of this sensor in monitoring low concentration NH3 gas. PMID:28378783
A refractive index sensor based on taper Michelson interferometer in multimode fiber
NASA Astrophysics Data System (ADS)
Fu, Xinghu; Zhang, Jiangpeng; Wang, Siwen; Fu, Guangwei; Liu, Qiang; Jin, Wa; Bi, Weihong
2016-11-01
A refractive index sensor based on taper Michelson interferometer in multimode fiber is proposed. The Hydrofluoric acid corrosion processing is studied in the preparation of single cone multimode optical fiber sensor. The taper Michelson interferometer is fabricated by changing corrosion time. The relationship between fiber sensor feature and corrosion time is analyzed. The experimental results show that the interference spectrum shift in the direction of short wave with the increase of the refractive index. The refractive index sensitivity can reach 115.8008 nm/RIU. Thereby, it can be used in detecting the refractive index in different areas including the environmental protection, health care and food production.
NASA Astrophysics Data System (ADS)
Wang, Xiu-lin; Wei, Zheng; Wang, Rui; Huang, Wen-cai
2018-05-01
A self-mixing interferometer (SMI) with resolution twenty times higher than that of a conventional interferometer is developed by multiple reflections. Only by employing a simple external reflecting mirror, the multiple-pass optical configuration can be constructed. The advantage of the configuration is simple and easy to make the light re-injected back into the laser cavity. Theoretical analysis shows that the resolution of measurement is scalable by adjusting the number of reflections. The experiment shows that the proposed method has the optical resolution of approximate λ/40. The influence of displacement sensitivity gain ( G) is further analyzed and discussed in practical experiments.
Karlowsky, James A; Hoban, Daryl J; Hackel, Meredith A; Lob, Sibylle H; Sahm, Daniel F
Gram-negative ESKAPE pathogens (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are important etiologic agents of nosocomial infection that are frequently resistant to broad-spectrum antimicrobial agents. Gram-negative ESKAPE pathogens were collected from hospitalized patients in 11 Latin American countries from 2013 to 2015 as part of the Study for Monitoring Antimicrobial Resistance Trends (SMART) global surveillance program. In total, 2113 isolates from intra-abdominal infections (IAI) and 970 isolates from urinary tract infections (UTI) were tested against antimicrobial agents using standardized CLSI broth microdilution methodology. Of the agents tested, amikacin demonstrated the highest rates of susceptibility (%) for K. pneumoniae (92.2, 92.3), Enterobacter spp. (97.5, 92.1), and P. aeruginosa (85.3, 75.2) isolates from both IAI and UTI, respectively. Ertapenem (68.5, 62.6) and imipenem (79.2, 75.9) showed substantially higher rates of susceptibility (%) than other β-lactams, including piperacillin-tazobactam (35.9, 37.4) against ESBL-positive isolates of K. pneumoniae from IAI and UTI, respectively. Rates of susceptibility to all agents tested against A. baumannii were ≤30.9%. Gram-negative ESKAPE pathogens isolated from Latin America demonstrated compromised in vitro susceptibility to commonly prescribed broad-spectrum, parenteral antimicrobial agents. Continued surveillance is warranted. New antimicrobial agents with potent activity against Gram-negative ESKAPE pathogens are urgently needed. Copyright © 2017 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.
Zhang, Hui; Yang, Qiwen; Xiao, Meng; Chen, Minjun; Badal, Robert E; Xu, Yingchun
2014-01-01
The Study for Monitoring Antimicrobial Resistance Trends program monitors the activity of antibiotics against aerobic and facultative Gram-negative bacilli (GNBs) from intra-abdominal infections (IAIs) in patients worldwide. In 2011, 1 929 aerobic and facultative GNBs from 21 hospitals in 16 cities in China were collected. All isolates were tested using a panel of 12 antimicrobial agents, and susceptibility was determined following the Clinical Laboratory Standards Institute guidelines. Among the Gram-negative pathogens causing IAIs, Escherichia coli (47.3%) was the most commonly isolated, followed by Klebsiella pneumoniae (17.2%), Pseudomonas aeruginosa (10.1%), and Acinetobacter baumannii (8.3%). Enterobacteriaceae comprised 78.8% (1521/1929) of the total isolates. Among the antimicrobial agents tested, ertapenem and imipenem were the most active agents against Enterobacteriaceae, with susceptibility rates of 95.1% and 94.4%, followed by amikacin (93.9%) and piperacillin/tazobactam (87.7%). Susceptibility rates of ceftriaxone, cefotaxime, ceftazidime, and cefepime against Enterobacteriaceae were 38.3%, 38.3%, 61.1%, and 50.8%, respectively. The leastactive agent against Enterobacteriaceae was ampicillin/sulbactam (25.9%). The extended-spectrum β-lactamase (ESBL) rates among E. coli, K. pneumoniae, Klebsiella oxytoca, and Proteus mirabilis were 68.8%, 38.1%, 41.2%, and 57.7%, respectively. Enterobacteriaceae were the major pathogens causing IAIs, and the most active agents against the study isolates (including those producing ESBLs) were ertapenem, imipenem, and amikacin. Including the carbapenems, most agents exhibited reduced susceptibility against ESBL-positive and multidrug-resistant isolates.
Multipath induced errors in meteorological Doppler/interferometer location systems
NASA Technical Reports Server (NTRS)
Wallace, R. G.
1984-01-01
One application of an RF interferometer aboard a low-orbiting spacecraft to determine the location of ground-based transmitters is in tracking high-altitude balloons for meteorological studies. A source of error in this application is reflection of the signal from the sea surface. Through propagating and signal analysis, the magnitude of the reflection-induced error in both Doppler frequency measurements and interferometer phase measurements was estimated. The theory of diffuse scattering from random surfaces was applied to obtain the power spectral density of the reflected signal. The processing of the combined direct and reflected signals was then analyzed to find the statistics of the measurement error. It was found that the error varies greatly during the satellite overpass and attains its maximum value at closest approach. The maximum values of interferometer phase error and Doppler frequency error found for the system configuration considered were comparable to thermal noise-induced error.
Squeezing on Momentum States for Atom Interferometry.
Salvi, Leonardo; Poli, Nicola; Vuletić, Vladan; Tino, Guglielmo M
2018-01-19
We propose and analyze a method that allows for the production of squeezed states of the atomic center-of-mass motion that can be injected into an atom interferometer. Our scheme employs dispersive probing in a ring resonator on a narrow transition in order to provide a collective measurement of the relative population of two momentum states. We show that this method is applicable to a Bragg diffraction-based strontium atom interferometer with large diffraction orders. This technique can be extended also to small diffraction orders and large atom numbers N by inducing atomic transparency at the frequency of the probe field, reaching an interferometer phase resolution scaling Δϕ∼N^{-3/4}. We show that for realistic parameters it is possible to obtain a 20 dB gain in interferometer phase estimation compared to the standard quantum limit. Our method is applicable to other atomic species where a narrow transition is available or can be synthesized.
NASA Astrophysics Data System (ADS)
Nedoma, Jan; Fajkus, Marcel; Martinek, Radek; Zboril, Ondrej; Bednarek, Lukas; Novak, Martin; Witas, Karel; Vasinek, Vladimir
2017-05-01
Fiber-optic sensors (FOS), today among the most widespread measuring sensors and during various types of measuring, are irreplaceable. Among the distinctive features include immunity to electromagnetic interference, passivity regarding power supply and high sensitivity. One of the representatives FOS is the interferometric sensors working on the principle of interference of light. Authors of this article focused on the analysis of the detection material as resonant pads for attaching the measuring arm of the interferometer when sensing mechanical vibrations (low frequencies). A typical example is the use of interferometer sensors in automobile traffic while sensing a vibration response from the roadway while passing the cars. For analysis was used sensor with Mach-Zehnder interferometer. Defined were different detection materials about different size and thickness. We analyzed the influence on the sensitivity (amplitude response) of the interferometer. Based on the results we have defined the best material for sensing mechanical vibrations. The signal was processed by applications created in LabView development environment. The results were verified by repeated testing in laboratory conditions.
Transport phenomena in helical edge state interferometers: A Green's function approach
NASA Astrophysics Data System (ADS)
Rizzo, Bruno; Arrachea, Liliana; Moskalets, Michael
2013-10-01
We analyze the current and the shot noise of an electron interferometer made of the helical edge states of a two-dimensional topological insulator within the framework of nonequilibrium Green's functions formalism. We study, in detail, setups with a single and with two quantum point contacts inducing scattering between the different edge states. We consider processes preserving the spin as well as the effect of spin-flip scattering. In the case of a single quantum point contact, a simple test based on the shot-noise measurement is proposed to quantify the strength of the spin-flip scattering. In the case of two single point contacts with the additional ingredient of gate voltages applied within a finite-size region at the top and bottom edges of the sample, we identify two types of interference processes in the behavior of the currents and the noise. One such process is analogous to that taking place in a Fabry-Pérot interferometer, while the second one corresponds to a configuration similar to a Mach-Zehnder interferometer. In the helical interferometer, these two processes compete.
Density Measurement of Compact Toroid with Mach-Zehnder Interferometer
NASA Astrophysics Data System (ADS)
Laufman-Wollitzer, Lauren; Endrizzi, Doug; Brookhart, Matt; Flanagan, Ken; Forest, Cary
2016-10-01
Utilizing a magnetized coaxial plasma gun (MCPG) built by Tri Alpha Energy, a dense compact toroid (CT) is created and injected at high speed into the Wisconsin Plasma Astrophysics Laboratory (WiPAL) vessel. A modified Mach-Zehnder interferometer from the Line-Tied Reconnection Experiment (LTRX) provides an absolute measurement of electron density. The interferometer is located such that the beam intersects the plasma across the diameter of the MCPG drift region before the CT enters the vessel. This placement ensures that the measurement is taken before the CT expand. Results presented will be used to further analyze characteristics of the CT. Funding provided by DoE, NSF, and WISE Summer Research.
Study on avalanche photodiode influence on heterodyne laser interferometer linearity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budzyn, Grzegorz, E-mail: grzegorz.budzyn@pwr.wroc.pl; Podzorny, Tomasz
2016-06-28
In the paper we analyze factors reducing the possible accuracy of the heterodyne laser interferometers. The analysis is performed for the avalanche-photodiode input stages but is in main points valid also for stages with other type of photodetectors. Instrumental error originating from optical, electronic and digital signal processing factors is taken into consideration. We stress factors which are critical and those which can be neglected at certain accuracy requirements. In the work we prove that it is possible to reduce errors of the laser instrument below 1 nm point for multiaxial APD based interferometers by precise control of incident optical powermore » and the temperature of the photodiode.« less
Oya, Masayuki; Kishikawa, Hiroki; Goto, Nobuo; Yanagiya, Shin-ichiro
2012-11-19
At routing nodes in future photonic networks, pico-second switching will be a key function. We propose an all-optical switch consisting of two-stage Mach-Zehnder interferometers, whose arms contain graphene saturable absorption films. Optical amplitudes along the interferometers are controlled to perform switching between two output ports instead of phase control used in conventional switches. Since only absorption is used for realizing complete switching, insertion loss of 10.2 dB is accompanied in switching. Picosecond response can be expected because of the fast response of saturable absorption of graphene. The switching characteristics are theoretically analyzed and numerically simulated by the finite-difference beam propagation method (FD-BPM).
Investigation on a fiber optic accelerometer based on FBG-FP interferometer
NASA Astrophysics Data System (ADS)
Lin, Chongyu; Luo, Hong; Xiong, Shuidong; Li, Haitao
2014-12-01
A fiber optic accelerometer based on fiber Bragg grating Fabry-Perot (FBG-FP) interferometer is presented. The sensor is a FBG-FP cavity which is formed with two weak fiber Bragg gratings (FBGs) in a single-mode fiber. The reflectivity of the two FBGs is 9.42% and 7.74% respectively, and the fiber between them is 10 meters long. An optical demodulation system was set up to analyze the reflected light of FBG-FP cavity. Acceleration signals of different frequencies and intensities were demodulated correctly and stably by the system. Based on analyzing the optical spectrum of weak FBG based FBG-FP cavity, we got the equivalent length of FBG-FP cavity. We used a path-matching Michelson interferometer (MI) to demodulate the acceleration signal. The visibility of the interference fringe we got was 41%~42% while the theory limit was 50%. This indicated that the difference of interferometer's two arms and the equivalent length of FBG-FP cavity were matched well. Phase generated carrier (PGC) technology was used to eliminate phase fading caused by random phase shift and Faraday rotation mirrors (FRMs) were used to eliminate polarization-induced phase fading. The accelerometer used a compliant cylinder design and its' sensitivity and frequency response were analyzed and simulated based on elastic mechanics. Experiment result showed that the accelerometer had a flat frequency response over the frequency range of 31-630Hz. The sensitivity was about 31dB (0dB=1rad/g) with fluctuation less than 1.5dB.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-01
.... A wide variety of bacterial pathogens are responsible for cIAIs, including Gram-negative aerobic bacteria, Gram-positive bacteria, and anaerobic bacteria, and there are also mixed infections. This draft...
Cabin noise and weight reduction program for the Gulfstream G200
NASA Astrophysics Data System (ADS)
Barton, C. Kearney
2002-11-01
This paper describes the approach and logic involved in a cabin noise and weight reduction program for an existing aircraft that was already in service with a pre-existing insulation package. The aircraft, a Gulfstream G200, was formally an IAI Galaxy, and the program was purchased from IAI in 2001. The approach was to investigate every aspect of the aircraft that could be a factor for cabin noise. This included such items as engine mounting and balancing criteria, the hydraulic system, the pressurization and air-conditioning system, the outflow valve, the interior shell and mounting system, antennae and other hull protuberances, as well as the insulation package. Each of these items was evaluated as potential candidates for noise and weight control modifications. Although the program is still ongoing, the results to date include a 175-lb weight savings and a 5-dB reduction in the cabin average Speech Interference Level (SIL).
Development of an optical fiber interferometer for detection of surface flaws in aluminum
NASA Technical Reports Server (NTRS)
Gilbert, John A.
1991-01-01
The main objective was to demonstrate the potential of using an optical fiber interferometer (OFI) to detect surface flaws in aluminum samples. Standard ultrasonic excitation was used to generate Rayleigh surface waves. After the waves interacted with a defect, the modified responses were detected using the OFI and the results were analyzed for time-of-flight and frequency content to predict the size and location of the flaws.
Sartelli, Massimo; Abu-Zidan, Fikri M; Catena, Fausto; Griffiths, Ewen A; Di Saverio, Salomone; Coimbra, Raul; Ordoñez, Carlos A; Leppaniemi, Ari; Fraga, Gustavo P; Coccolini, Federico; Agresta, Ferdinando; Abbas, Asrhaf; Abdel Kader, Saleh; Agboola, John; Amhed, Adamu; Ajibade, Adesina; Akkucuk, Seckin; Alharthi, Bandar; Anyfantakis, Dimitrios; Augustin, Goran; Baiocchi, Gianluca; Bala, Miklosh; Baraket, Oussama; Bayrak, Savas; Bellanova, Giovanni; Beltràn, Marcelo A; Bini, Roberto; Boal, Matthew; Borodach, Andrey V; Bouliaris, Konstantinos; Branger, Frederic; Brunelli, Daniele; Catani, Marco; Che Jusoh, Asri; Chichom-Mefire, Alain; Cocorullo, Gianfranco; Colak, Elif; Costa, David; Costa, Silvia; Cui, Yunfeng; Curca, Geanina Loredana; Curry, Terry; Das, Koray; Delibegovic, Samir; Demetrashvili, Zaza; Di Carlo, Isidoro; Drozdova, Nadezda; El Zalabany, Tamer; Enani, Mushira Abdulaziz; Faro, Mario; Gachabayov, Mahir; Giménez Maurel, Teresa; Gkiokas, Georgios; Gomes, Carlos Augusto; Gonsaga, Ricardo Alessandro Teixeira; Guercioni, Gianluca; Guner, Ali; Gupta, Sanjay; Gutierrez, Sandra; Hutan, Martin; Ioannidis, Orestis; Isik, Arda; Izawa, Yoshimitsu; Jain, Sumita A; Jokubauskas, Mantas; Karamarkovic, Aleksandar; Kauhanen, Saila; Kaushik, Robin; Kenig, Jakub; Khokha, Vladimir; Kim, Jae Il; Kong, Victor; Koshy, Renol; Krasniqi, Avidyl; Kshirsagar, Ashok; Kuliesius, Zygimantas; Lasithiotakis, Konstantinos; Leão, Pedro; Lee, Jae Gil; Leon, Miguel; Lizarazu Pérez, Aintzane; Lohsiriwat, Varut; López-Tomassetti Fernandez, Eudaldo; Lostoridis, Eftychios; Mn, Raghuveer; Major, Piotr; Marinis, Athanasios; Marrelli, Daniele; Martinez-Perez, Aleix; Marwah, Sanjay; McFarlane, Michael; Melo, Renato Bessa; Mesina, Cristian; Michalopoulos, Nick; Moldovanu, Radu; Mouaqit, Ouadii; Munyika, Akutu; Negoi, Ionut; Nikolopoulos, Ioannis; Nita, Gabriela Elisa; Olaoye, Iyiade; Omari, Abdelkarim; Ossa, Paola Rodríguez; Ozkan, Zeynep; Padmakumar, Ramakrishnapillai; Pata, Francesco; Pereira Junior, Gerson Alves; Pereira, Jorge; Pintar, Tadeja; Pouggouras, Konstantinos; Prabhu, Vinod; Rausei, Stefano; Rems, Miran; Rios-Cruz, Daniel; Sakakushev, Boris; Sánchez de Molina, Maria Luisa; Seretis, Charampolos; Shelat, Vishal; Simões, Romeo Lages; Sinibaldi, Giovanni; Skrovina, Matej; Smirnov, Dmitry; Spyropoulos, Charalampos; Tepp, Jaan; Tezcaner, Tugan; Tolonen, Matti; Torba, Myftar; Ulrych, Jan; Uzunoglu, Mustafa Yener; van Dellen, David; van Ramshorst, Gabrielle H; Vasquez, Giorgio; Venara, Aurélien; Vereczkei, Andras; Vettoretto, Nereo; Vlad, Nutu; Yadav, Sanjay Kumar; Yilmaz, Tonguç Utku; Yuan, Kuo-Ching; Zachariah, Sanoop Koshy; Zida, Maurice; Zilinskas, Justas; Ansaloni, Luca
2015-01-01
To validate a new practical Sepsis Severity Score for patients with complicated intra-abdominal infections (cIAIs) including the clinical conditions at the admission (severe sepsis/septic shock), the origin of the cIAIs, the delay in source control, the setting of acquisition and any risk factors such as age and immunosuppression. The WISS study (WSES cIAIs Score Study) is a multicenter observational study underwent in 132 medical institutions worldwide during a four-month study period (October 2014-February 2015). Four thousand five hundred thirty-three patients with a mean age of 51.2 years (range 18-99) were enrolled in the WISS study. Univariate analysis has shown that all factors that were previously included in the WSES Sepsis Severity Score were highly statistically significant between those who died and those who survived (p < 0.0001). The multivariate logistic regression model was highly significant (p < 0.0001, R2 = 0.54) and showed that all these factors were independent in predicting mortality of sepsis. Receiver Operator Curve has shown that the WSES Severity Sepsis Score had an excellent prediction for mortality. A score above 5.5 was the best predictor of mortality having a sensitivity of 89.2 %, a specificity of 83.5 % and a positive likelihood ratio of 5.4. WSES Sepsis Severity Score for patients with complicated Intra-abdominal infections can be used on global level. It has shown high sensitivity, specificity, and likelihood ratio that may help us in making clinical decisions.
Lass, Jonathan H; Benetz, Beth Ann; Menegay, Harry J; Tsipis, Constantinos P; Cook, Jane Caty; Boyer, David S; Singer, Michael; Erickson, Kristine; Saroj, Namrata; Vitti, Robert; Chu, Karen W; Moini, Hadi; Soo, Yuhwen; Cheng, Yenchieh
2018-05-01
The effects of repeated intravitreal aflibercept injection (IAI) on the corneal endothelium were studied in patients with unilateral neovascular age-related macular degeneration. RE-VIEW was a phase 4, open-label, single-arm, multicenter study. Patients received IAI every 8 weeks after 3 monthly doses. Slit-lamp biomicroscopy was performed at all study visits. The central corneal endothelial health was evaluated by specular microscopy in the treated versus untreated fellow eyes at baseline and weeks 24 and 52. No slit-lamp abnormalities were noted in 154 enrolled patients (eyes). Baseline versus 52-week mean (±SD) endothelial morphometric values (n = 118) for the treated versus untreated fellow eyes were respectively as follows: endothelial cell density was 2410 ± 364 versus 2388 ± 384 cells/mm at baseline and remained unchanged at 2401 ± 353 versus 2376 ± 364 cells/mm at 52 weeks (P = 0.87); the coefficient of variation was 33.5 ± 4.4% versus 34.0 ± 5.0% at baseline and remained unchanged at 34.2 ± 4.7% versus 34.1 ± 4.9% at 52 weeks (P = 0.18); the percentage of hexagonal cells was 59.5 ± 5.8% versus 59.6 ± 6.4% at baseline and remained unchanged at 59.5 ± 6.0% versus 59.5 ± 5.8% at 52 weeks (P = 0.96). Repeated IAI for 52 weeks had no apparent corneal endothelial toxicity noted on specular microscopy in patients treated for neovascular age-related macular degeneration.
Brink, Adrian J; Botha, Roelof F; Poswa, Xoliswa; Senekal, Marthinus; Badal, Robert E; Grolman, David C; Richards, Guy A; Feldman, Charles; Boffard, Kenneth D; Veller, Martin; Joubert, Ivan; Pretorius, Jan
2012-02-01
The Study for Monitoring Antimicrobial Resistance Trends (SMART) follows trends in resistance among aerobic and facultative anaerobic gram-negative bacilli (GNB) isolated from complicated intra-abdominal infections (cIAIs) in patients around the world. During 2004-2009, three centralized clinical microbiology laboratories serving 59 private hospitals in three large South African cities collected 1,218 GNB from complicated intra-abdominal infections (cIAIs) and tested them for susceptibility to 12 antibiotics according to the 2011 Clinical Laboratory Standards Institute (CLSI) guidelines. Enterobacteriaceae comprised 83.7% of the isolates. Escherichia coli was the species isolated most commonly (46.4%), and 7.6% of these were extended-spectrum β-lactamase (ESBL)-positive. The highest ESBL rate was documented for Klebsiella pneumoniae (41.2%). Overall, ertapenem was the antibiotic most active against susceptible species for which it has breakpoints (94.6%) followed by amikacin (91.9%), piperacillin-tazobactam (89.3%), and imipenem-cilastatin (87.1%), whereas rates of resistance to ceftriaxone, cefotaxime, ciprofloxacin, and levofloxacin were documented to be 29.7%, 28.7%, 22.5%, and 21.1%, respectively. Multi-drug resistance (MDR), defined as resistance to three or more antibiotic classes, was significantly more common in K. pneumoniae (27.9%) than in E. coli (4.9%; p<0.0001) or Proteus mirabilis (4.1%; p<0.05). Applying the new CLSI breakpoints for carbapenems, susceptibility to ertapenem was reduced significantly in ESBL-positive E. coli compared with ESBL-negative isolates (91% vs. 98%; p<0.05), but this did not apply to imipenem-cilastatin (95% vs. 99%; p=0.0928). A large disparity between imipenem-cilastatin and ertapenem susceptibility in P. mirabilis and Morganella morganii was documented (24% vs. 96% and 15% vs. 92%, respectively), as most isolates of these two species had imipenem-cilastatin minimum inhibitory concentrations in the 2-4 mcg/mL range, which is no longer regarded as susceptible. This study documented substantial resistance to standard antimicrobial therapy among GNB commonly isolated from cIAIs in South Africa. With the application of the new CLSI carbapenem breakpoints, discrepancies were noted between ertapenem and imipenem-cilastatin with regard to the changes in their individual susceptibilities. Longitudinal surveillance of susceptibility patterns is useful to guide recommendations for empiric antibiotic use in cIAIs.
SPM interferometer with large range for mirco-vibration measurement
NASA Astrophysics Data System (ADS)
Fu, Mingyi; Tang, Chaowei; He, Guotian; Hu, Jun; Wang, Li
2007-12-01
The measuring range and precision are two inconsistent parameters of traditional optical interferometry. In this paper, the interferometer measuring vibration with high precision and large range is proposed and its measuring principle is analyzed in detail. The interferometer obtains phase information by processing interference signals with two real-time phase discriminator and the vibration displacement could be gotten by expanding this phase. The measuring range was enlarged from half wavelength to millimeter. Meanwhile, the measuring precision was independent of external disturbance and vibration displacement measurement with high precision was realized. The measuring range of vibration displacement for 6000.5nm and the repeatable measuring precision was 5.72nm from experiment. The feasibility of the measuring method was validated by experiments.
Frequency-tuned microwave photon counter based on a superconductive quantum interferometer
NASA Astrophysics Data System (ADS)
Shnyrkov, V. I.; Yangcao, Wu; Soroka, A. A.; Turutanov, O. G.; Lyakhno, V. Yu.
2018-03-01
Various types of single-photon counters operating in infrared, ultraviolet, and optical wavelength ranges are successfully used to study electromagnetic fields, analyze radiation sources, and solve problems in quantum informatics. However, their operating principles become ineffective at millimeter band, S-band, and ultra-high frequency bands of wavelengths due to the decrease in quantum energy by 4-5 orders of magnitude. Josephson circuits with discrete Hamiltonians and qubits are a good foundation for the construction of single-photon counters at these frequencies. This paper presents a frequency-tuned microwave photon counter based on a single-junction superconducting quantum interferometer and flux qutrit. The control pulse converts the interferometer into a two-level system for resonance absorption of photons. Decay of the photon-induced excited state changes the magnetic flux in the interferometer, which is measured by a SQUID magnetometer. Schemes for recording the magnetic flux using a DC SQUID or ideal parametric detector, based on a qutrit with high-frequency excitation, are discussed. It is shown that the counter consisting of an interferometer with a Josephson junction and a parametric detector demonstrates high performance and is capable of detecting single photons in a microwave band.
Simulation of the fixed optical path difference of near infrared wind imaging interferometer
NASA Astrophysics Data System (ADS)
Rong, Piao; Zhang, Chunmin; Yan, Tingyu; Liu, Dongdong; Li, Yanfen
2017-02-01
As an important part of the earth, atmosphere plays a vital role in filtering the solar radiation, adjusting the temperature and organizing the water circulation and keeping human survival. The passive atmospheric wind measurement is based on the imaging interferometer technology and Doppler effect of electromagnetic wave. By using the wind imaging interferometer to get four interferograms of airglow emission lines, the atmospheric wind velocity, temperature, pressure and emission rate can be derived. Exploring the multi-functional and integrated innovation of detecting wind temperature, wind velocity and trace gas has become a research focus in the field. In the present paper, the impact factors of the fixed optical path difference(OPD) of near infrared wind imaging interferometer(NIWII) are analyzed and the optimum value of the fixed optical path difference is simulated, yielding the optimal results of the fixed optical path difference is 20 cm in near infrared wave band (the O2(a1Δg) airglow emission at 1.27 microns). This study aims at providing theoretical basis and technical support for the detection of stratosphere near infrared wind field and giving guidance for the design and development of near infrared wind imaging interferometer.
Integrated structural and optical modeling of the orbiting stellar interferometer
NASA Astrophysics Data System (ADS)
Shaklan, Stuart B.; Yu, Jeffrey W.; Briggs, Hugh C.
1993-11-01
The Integrated Modeling of Optical Systems (IMOS) Integration Workbench at JPL has been used to model the effects of structural perturbations on the optics in the proposed Orbiting Stellar Interferometer (OSI). OSI consists of 3 pairs of interferometers and delay lines attached to a 7.5 meter truss. They are interferometrically monitored from a separate boom by a laser metrology system. The spatially distributed nature of the science instrument calls for a high level of integration between the optics and support structure. Because OSI is designed to achieve micro-arcsecond astrometry, many of its alignment, stability, and knowledge tolerances are in the submicron regime. The spacecraft will be subject to vibrations caused by reaction wheels and on-board equipment, as well as thermal strain due to solar and terrestrial heating. These perturbations affect optical parameters such as optical path differences and beam co-parallelism which are critical to instrument performance. IMOS provides an environment that allows one to design and perturb the structure, attach optics to structural or non-structural nodes, trace rays, and analyze the impact of mechanical perturbations on optical performance. This tool makes it simple to change the structure and immediately see performance enhancement/degradation. We have employed IMOS to analyze the effect of reaction wheel disturbances on the optical path difference in both the science and metrology interferometers.
Digital signal processing for velocity measurements in dynamical material's behaviour studies.
Devlaminck, Julien; Luc, Jérôme; Chanal, Pierre-Yves
2014-03-01
In this work, we describe different configurations of optical fiber interferometers (types Michelson and Mach-Zehnder) used to measure velocities during dynamical material's behaviour studies. We detail the algorithms of processing developed and optimized to improve the performance of these interferometers especially in terms of time and frequency resolutions. Three methods of analysis of interferometric signals were studied. For Michelson interferometers, the time-frequency analysis of signals by Short-Time Fourier Transform (STFT) is compared to a time-frequency analysis by Continuous Wavelet Transform (CWT). The results have shown that the CWT was more suitable than the STFT for signals with low signal-to-noise, and low velocity and high acceleration areas. For Mach-Zehnder interferometers, the measurement is carried out by analyzing the phase shift between three interferometric signals (Triature processing). These three methods of digital signal processing were evaluated, their measurement uncertainties estimated, and their restrictions or operational limitations specified from experimental results performed on a pulsed power machine.
Observation of the quantum paradox of separation of a single photon from one of its properties
NASA Astrophysics Data System (ADS)
Ashby, James M.; Schwarz, Peter D.; Schlosshauer, Maximilian
2016-07-01
We report an experimental realization of the quantum paradox of the separation of a single photon from one of its properties (the so-called "quantum Cheshire cat"). We use a modified Sagnac interferometer with displaced paths to produce appropriately pre- and postselected states of heralded single photons. Weak measurements of photon presence and circular polarization are performed in each arm of the interferometer by introducing weak absorbers and small polarization rotations and analyzing changes in the postselected signal. The absorber is found to have an appreciable effect only in one arm of the interferometer, while the polarization rotation significantly affects the signal only when performed in the other arm. We carry out both sequential and simultaneous weak measurements and find good agreement between measured and predicted weak values. In the language of Aharonov et al. and in the sense of the ensemble averages described by weak values, the experiment establishes the separation of a particle from one its properties during the passage through the interferometer.
Laser interferometer used for nanometer vibration measurements
NASA Astrophysics Data System (ADS)
Sun, Jiaxing; Yang, Jun; Liu, Zhihai; Yuan, Libo
2007-01-01
A novel laser interferometer which adopts alternating modulation phase tracking homodyne technique is proposed. The vibration of nanometer-accuracy is measured with the improved Michelson interferometer by adding cat's eye moving mirror and PZT phase modulation tracking structure. The working principle and the structure of the interferometer are analyzed and the demodulation scheme of alternating phase modulation and tracking is designed. The signal detection is changed from direct current detecting to alternating current detecting. The signal's frequency spectrum transform is achieved, the low-frequency noise jamming is abated, the Signal-to-Noise of the system is improved and the measured resolution is enhanced. Phase tracking technique effectively suppresses the low-frequency noise which is caused by outside environment factors such as temperature and vibration, and the stability of the system is enhanced. The experimental results indicate that for the signal with the frequency of 100Hz and the amplitude of 25nm, the output Signal-to-Noise is 30dB and the measured resolution is 1nm.
Parallel Wavefront Analysis for a 4D Interferometer
NASA Technical Reports Server (NTRS)
Rao, Shanti R.
2011-01-01
This software provides a programming interface for automating data collection with a PhaseCam interferometer from 4D Technology, and distributing the image-processing algorithm across a cluster of general-purpose computers. Multiple instances of 4Sight (4D Technology s proprietary software) run on a networked cluster of computers. Each connects to a single server (the controller) and waits for instructions. The controller directs the interferometer to several images, then assigns each image to a different computer for processing. When the image processing is finished, the server directs one of the computers to collate and combine the processed images, saving the resulting measurement in a file on a disk. The available software captures approximately 100 images and analyzes them immediately. This software separates the capture and analysis processes, so that analysis can be done at a different time and faster by running the algorithm in parallel across several processors. The PhaseCam family of interferometers can measure an optical system in milliseconds, but it takes many seconds to process the data so that it is usable. In characterizing an adaptive optics system, like the next generation of astronomical observatories, thousands of measurements are required, and the processing time quickly becomes excessive. A programming interface distributes data processing for a PhaseCam interferometer across a Windows computing cluster. A scriptable controller program coordinates data acquisition from the interferometer, storage on networked hard disks, and parallel processing. Idle time of the interferometer is minimized. This architecture is implemented in Python and JavaScript, and may be altered to fit a customer s needs.
In-flight Far-Infrared Performance of the CIRS Instrument on Cassini
NASA Technical Reports Server (NTRS)
Nixon, Conor A.; Brasunas, John C.; Lakew, Brook; Fettig, Rainer; Jennings, Donald E.; Carlson, Ronald; Kunde, Virgil G.
2004-01-01
The Composite Infrared Spectrometer (CIRS) on-board Cassini consists of two interferometers: a conventional Michelson for the mid-infrared; and a Martin-Puplett type in the far-infrared employing wire grid polarizers to split, recombine and analyze the radiation. The far-IR focal plane (FP1) assembly uses two thermopile detectors to measure the final transmitted and reflected beams at the polarizer-analyzer: if one fails, the interferometer can still operate, albeit with a lower efficiency. The combined effect is for good response from 10 to 300/cm, and declining response to 600/cm. This paper will examine in-flight performance of the far-IR interferometer, including NESR and response. Regular noise spikes, resulting from pickup from other electrical sub-systems has been found on the CIRS interferograms, and the removal of these effects is discussed. The radiometric calibration is described, and then we show how the calibration was applied to science data taken during the Jupiter flyby of December 2000. Finally, we discuss signal-to-noise on the calibrated spectra, emphasizing limitations of the current instrument and the potential for improvement in future missions.
Error Analysis of Wind Measurements for the University of Illinois Sodium Doppler Temperature System
NASA Technical Reports Server (NTRS)
Pfenninger, W. Matthew; Papen, George C.
1992-01-01
Four-frequency lidar measurements of temperature and wind velocity require accurate frequency tuning to an absolute reference and long term frequency stability. We quantify frequency tuning errors for the Illinois sodium system, to measure absolute frequencies and a reference interferometer to measure relative frequencies. To determine laser tuning errors, we monitor the vapor cell and interferometer during lidar data acquisition and analyze the two signals for variations as functions of time. Both sodium cell and interferometer are the same as those used to frequency tune the laser. By quantifying the frequency variations of the laser during data acquisition, an error analysis of temperature and wind measurements can be calculated. These error bounds determine the confidence in the calculated temperatures and wind velocities.
Adair, C D; Weeks, J W; Johnson, G; Burlison, S; London, S; Lewis, D F
1997-01-01
To evaluate the utility of intrapartum amnioinfusion (AI) in reducing the infectious morbidity of patients with meconium-stained fluid (MSF). Previous studies have shown increased intraamniotic infection (IAI) and postpartum endometritis (PPE) rates in patients with MSF. Intraamniotic infection has been reduced with the prophylactic administration of ampicillin-sulbactam in MSF. Intraamniotic infection and PPE have been reduced with the use of AI in patients with clear fluid. No investigators have specifically examined the efficacy of AI in reducing meconium-stained, amniotic-fluid-associated infectious morbidity. A retrospective cohort study of all cases of MSF was conducted and included patients who delivered at Louisiana State University Medical Center-Shreveport during the one-year period from January to December 1996. Patients were identified from the perinatal database by the diagnosis code of MSF. The medical records were reviewed to determine the consistency of MSF and the presence or absence of infectious morbidity. Patient demographics, labor characteristics, and various risk factors for infection were sought. The main outcome measures were the occurrence of clinical IAI or PPE. Statistical analysis included two-tailed unpaired t-test, X(2), ANOVA, and Fisher exact test when appropriate. Two hundred seventy-three medical records of patients with MSF were studied. One hundred twenty nine patients received AI, and 144 did not receive AI. No significant differences in demographics, labor characteristics, or outcome variables were noted between the two groups. The incidences of IAI were 18.6% and 24.3%, P = 0.13, in the AI and non-AI groups, respectively. Postpartum endometritis occurred in 22.5% of AI patients and 21.5% of non-AI patients, P = 0.97. The use of AI confers no benefit for the reduction of infectious morbidity in patients with MSF.
Sakurada, Yoichi; Kikushima, Wataru; Sugiyama, Atsushi; Yoneyama, Seigo; Tanabe, Naohiko; Matsubara, Mio; Iijima, Hiroyuki
2018-01-01
To investigate whether the severity of the condition in the untreated fellow eye is a predictive factor for the response to intravitreal aflibercept injection (IAI) for exudative age-related macular degeneration (AMD). A retrospective medical chart review was conducted for 88 patients with treatment-naïve neovascular AMD, who were initially treated with three monthly IAIs, followed by monthly monitoring and re-injection as needed for at least 12 months. Subjects were classified into three groups according to the severity of the condition in their untreated eye, based on the severity scale in the Age-Related Eye Disease Study (AREDS): group 0, AREDS severity level 1 (no drusen); group 1, AREDS severity level 2 or 3 (any drusen); group 2, AREDS severity level 4 (advanced AMD). Genotyping was performed in all cases for ARMS2 A69S and CFH I62V. Fellow-eye severity was associated with age and the risk variant of ARMS2 A69S (P = 0.005 and 0.001, respectively). Although best-corrected visual acuity (BCVA) had improved significantly after 12 months in all groups, this improvement was significantly greater in group 0 than in the other groups (P = 0.008). The retreatment-free period was also significantly longer for group 0 than for the other groups (P = 0.016), and the number of additional injections was significantly associated with fellow-eye severity (P = 0.007). Fellow-eye severity was associated with treatment response in terms of visual improvement and retreatment and may be a predictive factor for response to IAI for neovascular AMD.
Weeks, J. W.; Johnson, G.; Burlison, S.; London, S.; Lewis, D. F.
1997-01-01
Objectives: To evaluate the utility of intrapartum amnioinfusion (AI) in reducing the infectious morbidity of patients with meconium-stained fluid (MSF). Previous studies have shown increased intraamniotic infection (IAI) and postpartum endometritis (PPE) rates in patients with MSF. Intraamniotic infection has been reduced with the prophylactic administration of ampicillin–sulbactam in MSF. Intraamniotic infection and PPE have been reduced with the use of AI in patients with clear fluid. No investigators have specifically examined the efficacy of AI in reducing meconium-stained, amniotic-fluid-associated infectious morbidity. Methods: A retrospective cohort study of all cases of MSF was conducted and included patients who delivered at Louisiana State University Medical Center–Shreveport during the one-year period from January to December 1996. Patients were identified from the perinatal database by the diagnosis code of MSF. The medical records were reviewed to determine the consistency of MSF and the presence or absence of infectious morbidity. Patient demographics, labor characteristics, and various risk factors for infection were sought. The main outcome measures were the occurrence of clinical IAI or PPE. Statistical analysis included two-tailed unpaired t-test, X2, ANOVA, and Fisher exact test when appropriate. Results: Two hundred seventy-three medical records of patients with MSF were studied. One hundred twenty nine patients received AI, and 144 did not receive AI. No significant differences in demographics, labor characteristics, or outcome variables were noted between the two groups. The incidences of IAI were 18.6% and 24.3%, P = 0.13, in the AI and non-AI groups, respectively. Postpartum endometritis occurred in 22.5% of AI patients and 21.5% of non-AI patients, P = 0.97. Conclusions: The use of AI confers no benefit for the reduction of infectious morbidity in patients with MSF. PMID:18476189
A tension insensitive PbS fiber temperature sensor based on Sagnac interferometer
NASA Astrophysics Data System (ADS)
Fu, Xing-hu; Zhang, Jiang-peng; Yang, Kai-li; Dong, Yan-hua; Wen, Jian-xiang; Fu, Guang-wei; Bi, Wei-hong
2017-03-01
In this paper, a tension insensitive PbS fiber temperature sensor based on Sagnac interferometer is proposed and demonstrated. The sensing mechanism of tension and temperature is analyzed. The relationships between the interference spectrum, temperature and tension are analyzed, respectively. The experimental temperature range is 36—70 °C. The experimental results show that the interference spectrum is red shifted, and its sensitivity is 53.89 pm/°C. In tension experiment, the tension range is 0—1 400 μɛ. The experimental results show that there is no wavelength shift in the interference spectrum. The sensor is immune to tension cross-sensitivity compared with other sensors. It can be used for temperature testing in aerospace, chemistry and pharmacy.
Guillen Bonilla, José Trinidad; Guillen Bonilla, Alex; Rodríguez Betancourtt, Verónica M.; Guillen Bonilla, Héctor; Casillas Zamora, Antonio
2017-01-01
The application of the sensor optical fibers in the areas of scientific instrumentation and industrial instrumentation is very attractive due to its numerous advantages. In the industry of civil engineering for example, quasi-distributed sensors made with optical fiber are used for reliable strain and temperature measurements. Here, a quasi-distributed sensor in the frequency domain is discussed. The sensor consists of a series of low-finesse Fabry-Perot interferometers where each Fabry-Perot interferometer acts as a local sensor. Fabry-Perot interferometers are formed by pairs of identical low reflective Bragg gratings imprinted in a single mode fiber. All interferometer sensors have different cavity length, provoking frequency-domain multiplexing. The optical signal represents the superposition of all interference patterns which can be decomposed using the Fourier transform. The frequency spectrum was analyzed and sensor’s properties were defined. Following that, a quasi-distributed sensor was numerically simulated. Our sensor simulation considers sensor properties, signal processing, noise system, and instrumentation. The numerical results show the behavior of resolution vs. signal-to-noise ratio. From our results, the Fabry-Perot sensor has high resolution and low resolution. Both resolutions are conceivable because the Fourier Domain Phase Analysis (FDPA) algorithm elaborates two evaluations of Bragg wavelength shift. PMID:28420083
Guillen Bonilla, José Trinidad; Guillen Bonilla, Alex; Rodríguez Betancourtt, Verónica M; Guillen Bonilla, Héctor; Casillas Zamora, Antonio
2017-04-14
The application of the sensor optical fibers in the areas of scientific instrumentation and industrial instrumentation is very attractive due to its numerous advantages. In the industry of civil engineering for example, quasi-distributed sensors made with optical fiber are used for reliable strain and temperature measurements. Here, a quasi-distributed sensor in the frequency domain is discussed. The sensor consists of a series of low-finesse Fabry-Perot interferometers where each Fabry-Perot interferometer acts as a local sensor. Fabry-Perot interferometers are formed by pairs of identical low reflective Bragg gratings imprinted in a single mode fiber. All interferometer sensors have different cavity length, provoking frequency-domain multiplexing. The optical signal represents the superposition of all interference patterns which can be decomposed using the Fourier transform. The frequency spectrum was analyzed and sensor's properties were defined. Following that, a quasi-distributed sensor was numerically simulated. Our sensor simulation considers sensor properties, signal processing, noise system, and instrumentation. The numerical results show the behavior of resolution vs. signal-to-noise ratio. From our results, the Fabry-Perot sensor has high resolution and low resolution. Both resolutions are conceivable because the Fourier Domain Phase Analysis (FDPA) algorithm elaborates two evaluations of Bragg wavelength shift.
NASA Astrophysics Data System (ADS)
Pushin, D. A.; Sarenac, D.; Hussey, D. S.; Miao, H.; Arif, M.; Cory, D. G.; Huber, M. G.; Jacobson, D. L.; LaManna, J. M.; Parker, J. D.; Shinohara, T.; Ueno, W.; Wen, H.
2017-04-01
The phenomenon of interference plays a crucial role in the field of precision measurement science. Wave-particle duality has expanded the well-known interference effects of electromagnetic waves to massive particles. The majority of the wave-particle interference experiments require a near monochromatic beam which limits its applications due to the resulting low intensity. Here we demonstrate white beam interference in the far-field regime using a two-phase-grating neutron interferometer and its application to phase-contrast imaging. The functionality of this interferometer is based on the universal moiré effect that allows us to improve upon the standard Lau setup. Interference fringes were observed with monochromatic and polychromatic neutron beams for both continuous and pulsed beams. Far-field neutron interferometry allows for the full utilization of intense neutron sources for precision measurements of gradient fields. It also overcomes the alignment, stability, and fabrication challenges associated with the more familiar perfect-crystal neutron interferometer, as well as avoids the loss of intensity due to the absorption analyzer grating requirement in Talbot-Lau interferometer.
Optical diffraction interpretation: an alternative to interferometers
NASA Astrophysics Data System (ADS)
Bouillet, S.; Audo, F.; Fréville, S.; Eupherte, L.; Rouyer, C.; Daurios, J.
2015-08-01
The Laser MégaJoule (LMJ) is a French high power laser project that requires thousands of large optical components. The wavefront performances of all those optics are critical to achieve the desired focal spot shape and to limit the hot spots that could damage the components. Fizeau interferometers and interferometric microscopes are the most commonly used tools to cover the whole range of interesting spatial frequencies. Anyway, in some particular cases like diffractive and/or coated and/or aspheric optics, an interferometric set-up becomes very expensive with the need to build a costly reference component or a specific to-the-wavelength designed interferometer. Despite the increasing spatial resolution of Fizeau interferometers, it may even not be enough, if you are trying to access the highest spatial frequencies of a transmitted wavefront for instance. The method we developed is based upon laser beam diffraction intermediate field measurements and their interpretation with a Fourier analysis and the Talbot effect theory. We demonstrated in previous papers that it is a credible alternative to classical methods. In this paper we go further by analyzing main error sources and discussing main practical difficulties.
Analytically solvable model of an electronic Mach-Zehnder interferometer
NASA Astrophysics Data System (ADS)
Ngo Dinh, Stéphane; Bagrets, Dmitry A.; Mirlin, Alexander D.
2013-05-01
We consider a class of models of nonequilibrium electronic Mach-Zehnder interferometers built on integer quantum Hall edges states. The models are characterized by the electron-electron interaction being restricted to the inner part of the interferometer and transmission coefficients of the quantum quantum point contacts, defining the interferometer, which may take arbitrary values from zero to one. We establish an exact solution of these models in terms of single-particle quantities, determinants and resolvents of Fredholm integral operators. In the general situation, the results can be obtained numerically. In the case of strong charging interaction, the operators acquire the block Toeplitz form. Analyzing the corresponding Riemann-Hilbert problem, we reduce the result to certain singular single-channel determinants (which are a generalization of Toeplitz determinants with Fisher-Hartwig singularities) and obtain an analytic result for the interference current (and, in particular, for the visibility of Aharonov-Bohm oscillations). Our results, which are in good agreement with experimental observations, show an intimate connection between the observed “lobe” structure in the visibility of Aharonov-Bohm oscillations and multiple branches in the asymptotics of singular integral determinants.
Individualized Additional Instruction for Calculus
ERIC Educational Resources Information Center
Takata, Ken
2010-01-01
College students enrolling in the calculus sequence have a wide variance in their preparation and abilities, yet they are usually taught from the same lecture. We describe another pedagogical model of Individualized Additional Instruction (IAI) that assesses each student frequently and prescribes further instruction and homework based on the…
Processing of Signals from Fiber Bragg Gratings Using Unbalanced Interferometers
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory; Juergens, Jeff; Floyd, Bertram
2005-01-01
Fiber Bragg gratings (FBG) have become preferred sensory structures in fiber optic sensing system. High sensitivity, embedability, and multiplexing capabilities make FBGs superior to other sensor configurations. The main feature of FBGs is that they respond in the wavelength domain with the wavelength of the returned signal as the indicator of the measured parameter. The wavelength is then converted to optical intensity by a photodetector to detect corresponding changes in intensity. This wavelength-to-intensity conversion is a crucial part in any FBG-based sensing system. Among the various types of wavelength-to-intensity converters, unbalanced interferometers are especially attractive because of their small weight and volume, lack of moving parts, easy integration, and good stability. In this paper we investigate the applicability of unbalanced interferometers to analyze signals reflected from Bragg gratings. Analytical and experimental data are presented.
Development of measurement system for gauge block interferometer
NASA Astrophysics Data System (ADS)
Chomkokard, S.; Jinuntuya, N.; Wongkokua, W.
2017-09-01
We developed a measurement system for collecting and analyzing the fringe pattern images from a gauge block interferometer. The system was based on Raspberry Pi which is an open source system with python programming and opencv image manipulation library. The images were recorded by the Raspberry Pi camera with five-megapixel capacity. The noise of images was suppressed for the best result in analyses. The low noise images were processed to find the edge of fringe patterns using the contour technique for the phase shift analyses. We tested our system with the phase shift patterns between a gauge block and a reference plate. The phase shift patterns were measured by a Twyman-Green type of interferometer using the He-Ne laser with the temperature controlled at 20.0 °C. The results of the measurement will be presented and discussed.
Falaggis, Konstantinos; Towers, David P; Towers, Catherine E
2012-09-20
Multiwavelength interferometry (MWI) is a well established technique in the field of optical metrology. Previously, we have reported a theoretical analysis of the method of excess fractions that describes the mutual dependence of unambiguous measurement range, reliability, and the measurement wavelengths. In this paper wavelength, selection strategies are introduced that are built on the theoretical description and maximize the reliability in the calculated fringe order for a given measurement range, number of wavelengths, and level of phase noise. Practical implementation issues for an MWI interferometer are analyzed theoretically. It is shown that dispersion compensation is best implemented by use of reference measurements around absolute zero in the interferometer. Furthermore, the effects of wavelength uncertainty allow the ultimate performance of an MWI interferometer to be estimated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritboon, Atirach, E-mail: atirach.3.14@gmail.com; Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112; Daengngam, Chalongrat, E-mail: chalongrat.d@psu.ac.th
2016-08-15
Biakynicki-Birula introduced a photon wave function similar to the matter wave function that satisfies the Schrödinger equation. Its second quantization form can be applied to investigate nonlinear optics at nearly full quantum level. In this paper, we applied the photon wave function formalism to analyze both linear optical processes in the well-known Mach–Zehnder interferometer and nonlinear optical processes for sum-frequency generation in dispersive and lossless medium. Results by photon wave function formalism agree with the well-established Maxwell treatments and existing experimental verifications.
A New Long-Period Vertical-Component Seismometer
1965-11-01
34Geneva Conference of Experts" that considerable reiearch would be required into the detection uf both short-perind body waves and of Iong-peried...on these recommendatioils is shown sketched in Figures 14 iAi 15. These sketches show the propoted desigm actual size. hlie instrument is intend d to
Index of Alien Impact: A method for evaluating potential ecological impact of alien plant species
Alien plant species are stressors to ecosystems and indicators of reduced ecosystem integrity. The magnitude of the stress reflects not only the quantity of aliens present, but also the quality of their interactions with native ecosystems. We develop an Index of Alien Impact (IAI...
A role for CXCL13 (BCA-1) in pregnancy and intra-amniotic infection/inflammation
Nhan-Chang, Chia-Ling; Romero, Roberto; Kusanovic, Juan Pedro; Gotsch, Francesca; Edwin, Samuel S.; Erez, Offer; Mittal, Pooja; Kim, Chong Jai; Kim, Mi Jeong; Espinoza, Jimmy; Friel, Lara A.; Vaisbuch, Edi; Than, Nandor Gabor; Mazaki-Tovi, Shali; Hassan, Sonia S.
2011-01-01
Objective CXCL13 is a potent chemokine, produced by mature and recently recruited macrophages to sites of inflammation, which has anti-microbial and anti-angiogenic properties. The purpose of this study was to determine whether CXCL13 is present in maternal serum, umbilical cord blood and amniotic fluid (AF); if AF concentration changes with intra-amniotic infection/inflammation (IAI); and localize the production of CXCL13 in chorio-amniotic membranes and umbilical cord. Study design A cross-sectional study on maternal serum was performed including patients in the following groups: 1) non-pregnant women (n=20); 2) normal pregnant women (n=49); 3) patients at term not in labor (n=30); and 4) patients in spontaneous labor at term (n=29). Umbilical cord blood was collected from term neonates with (n=30) and without labor (n=28). Amniotic fluid was attained from patients in the following groups: 1) midtrimester (n=65); 2) term not in labor (n=22); 3) term in labor (n=47); 4) preterm labor (PTL) with intact membranes leading to term delivery (n=70); and 5) PTL leading to preterm delivery with IAI (n=79) and without IAI (n=60). CXCL13 concentrations were determined by ELISA. Chorio-amniotic membranes and umbilical cords were examined with immunohistochemistry. Non-parametric statistics were used for analysis. Results 1) CXCL13 was present in 100% of serum and cord blood samples, and 99% of AF samples (339/343); 2) Serum CXCL13 concentration was significantly higher in pregnant women when compared to non-pregnant women [median 313.3 pg/mL (IQR: 197.2–646.9) vs. 40.5 pg/mL (IQR: 29.5–93.5), respectively; p<0.001]; 3) Serum CXCL13 concentration decreases with advancing gestational age (Spearman’s rho = −0.424; p<0.001); 4) There were no significant differences in the median serum CXCL13 concentration between women at term with and without labor [371.6 pg/mL (IQR: 194.3–614.3) vs. 235.1 pg/mL (IQR: 182.8–354.7), respectively; p=0.6]; 5) The concentration of CXCL13 in AF did not change with gestational age (p=0.11); 6) Patients with PTL and delivery with IAI had a significantly higher median concentration of CXCL13 than those without IAI [median 513.2 pg/mL (199.7–2505.5) vs 137.3 pg/mL (96.7–209.6), respectively; p<0.001] and those who delivered at term [133.7 pg/mL (97.8–174.8); p<0.001]; 7) Spontaneous labor did not result in a change in the median AF concentration of CXCL13 [labor: 86.9 pg/mL (55.6–152) vs no labor: 77.8 pg/mL (68–98); p=0.75]; 8) CXCL13 was immunolocalized to macrophages in fetal membranes and umbilical vein. Conclusions 1) We report for the first time the presence of CXCL13 in AF; 2) AF CXCL13 concentrations are dramatically increased in intra-amniotic infection/inflammation; 3) Unlike other chemokines, AF and serum CXCL13 concentrations did not change with spontaneous parturition. PMID:19031272
Optical Fiber-Tip Sensors Based on In-Situ µ-Printed Polymer Suspended-Microbeams.
Yao, Mian; Ouyang, Xia; Wu, Jushuai; Zhang, A Ping; Tam, Hwa-Yaw; Wai, P K A
2018-06-05
Miniature optical fiber-tip sensors based on directly µ-printed polymer suspended-microbeams are presented. With an in-house optical 3D μ-printing technology, SU-8 suspended-microbeams are fabricated in situ to form Fabry⁻Pérot (FP) micro-interferometers on the end face of standard single-mode optical fiber. Optical reflection spectra of the fabricated FP micro-interferometers are measured and fast Fourier transform is applied to analyze the cavity of micro-interferometers. The applications of the optical fiber-tip sensors for refractive index (RI) sensing and pressure sensing, which showed 917.3 nm/RIU to RI change and 4.29 nm/MPa to pressure change, respectively, are demonstrated in the experiments. The sensors and their optical µ-printing method unveil a new strategy to integrate complicated microcomponents on optical fibers toward 'lab-on-fiber' devices and applications.
Permutational symmetries for coincidence rates in multimode multiphotonic interferometry
NASA Astrophysics Data System (ADS)
Khalid, Abdullah; Spivak, Dylan; Sanders, Barry C.; de Guise, Hubert
2018-06-01
We obtain coincidence rates for passive optical interferometry by exploiting the permutational symmetries of partially distinguishable input photons, and our approach elucidates qualitative features of multiphoton coincidence landscapes. We treat the interferometer input as a product state of any number of photons in each input mode with photons distinguished by their arrival time. Detectors at the output of the interferometer count photons from each output mode over a long integration time. We generalize and prove the claim of Tillmann et al. [Phys. Rev. X 5, 041015 (2015), 10.1103/PhysRevX.5.041015] that coincidence rates can be elegantly expressed in terms of immanants. Immanants are functions of matrices that exhibit permutational symmetries and the immanants appearing in our coincidence-rate expressions share permutational symmetries with the input state. Our results are obtained by employing representation theory of the symmetric group to analyze systems of an arbitrary number of photons in arbitrarily sized interferometers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, Edward K.; Cornish, Neil J.
Massive black hole binaries are key targets for the space based gravitational wave Laser Interferometer Space Antenna (LISA). Several studies have investigated how LISA observations could be used to constrain the parameters of these systems. Until recently, most of these studies have ignored the higher harmonic corrections to the waveforms. Here we analyze the effects of the higher harmonics in more detail by performing extensive Monte Carlo simulations. We pay particular attention to how the higher harmonics impact parameter correlations, and show that the additional harmonics help mitigate the impact of having two laser links fail, by allowing for anmore » instantaneous measurement of the gravitational wave polarization with a single interferometer channel. By looking at parameter correlations we are able to explain why certain mass ratios provide dramatic improvements in certain parameter estimations, and illustrate how the improved polarization measurement improves the prospects for single interferometer operation.« less
NASA Technical Reports Server (NTRS)
Abbott, B. P.; Hughey, Brennan; Zanolin, Michele; Szczepanczyk, Marek; Gill, Kiranjyot; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.;
2016-01-01
We present an archival search for transient gravitational-wave bursts in coincidence with 27 single-pulse triggers from Green Bank Telescope pulsar surveys, using the LIGO (Laser Interferometer Gravitational Wave Observatory), Virgo (Variability of Solar Irradiance and Gravity Oscillations) and GEO (German-UK Interferometric Detector) interferometer network. We also discuss a check for gravitational-wave signals in coincidence with Parkes fast radio bursts using similar methods. Data analyzed in these searches were collected between 2007 and 2013. Possible sources of emission of both short-duration radio signals and transient gravitational-wave emission include star quakes on neutron stars, binary coalescence of neutron stars, and cosmic string cusps. While no evidence for gravitational-wave emission in coincidence with these radio transients was found, the current analysis serves as a prototype for similar future searches using more sensitive second-generation interferometers.
Thermal Noise in the Initial LIGO Interferometers
NASA Astrophysics Data System (ADS)
Gillespie, Aaron D.
1995-01-01
Gravitational wave detectors capable of detecting broadband gravitational wave bursts with a strain amplitude sensitivity near 10^{-21} at frequencies around 100 Hz are currently under construction by the LIGO (Laser Interferometer Gravitational-wave Observatory) and VIRGO groups. One challenge facing these groups is how to detect the motion of the center of an inertial mass to a precision of 10^{-18} m when the mass consists of atoms each of which individually moves much more than that due to thermal energy. The uncertainty in the interferometer's measurement due to these thermal motions is called thermal noise. This thesis describes the thermal noise of the initial LIGO detectors. The thermal noise was analyzed by modelling the normal modes of the test mass suspension system as harmonic oscillators with dissipation and applying the fluctuation dissipation theorem. The dissipation of all modes which contribute significant thermal noise to the interferometer was measured and from these measurements the total thermal noise was estimated. The frequency dependence of the dissipation of the pendulum mode was characterized from measurements of the violin modes. A steel music wire suspension system was found to meet the goals of the initial LIGO detectors. A mathematical technique was developed which relates the energy in each vibrational mode to the motion of the mirror surface measured by the interferometer. Modes with acoustic wavelengths greater than the laser beam spot size can contribute significant thermal noise to the interferometer measurements. The dissipation of the test masses of LIGO's 40 -m interferometer at Caltech was investigated, and a technique for suspending and controlling the test masses which lowered the dissipation and met the thermal noise goals of the initial LIGO detector was developed. New test masses were installed in the 40-m interferometer resulting in improved noise performance. The implications of thermal noise to detecting gravitational waves from inspiralling compact binaries was investigated. An optimal pendulum length for detecting these signals was found. It was shown that the narrow band thermally excited violin resonances could be efficiently filtered from the broadband gravitational wave signal.
First Searches for Optical Counterparts to Gravitational-wave Candidate Events
NASA Astrophysics Data System (ADS)
Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M., Jr.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Deleeuw, E.; Deléglise, S.; Denker, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jaranowski, P.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kucharczyk, C.; Kudla, S.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, J.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levine, B.; Lewis, J. B.; Lhuillier, V.; Li, T. G. F.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Liu, F.; Liu, H.; Liu, Y.; Liu, Z.; Lloyd, D.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Mokler, F.; Moraru, D.; Moreno, G.; Morgado, N.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R.; Necula, V.; Neri, I.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; Ortega Larcher, W.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Peiris, P.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pindor, B.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poole, V.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Roever, C.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Soden, K.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vlcek, B.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vrinceanu, D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Wan, Y.; Wang, J.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wibowo, S.; Wiesner, K.; Wilkinson, C.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Akerlof, C.; Baltay, C.; Bloom, J. S.; Cao, Y.; Cenko, S. B.; Ćwiek, A.; Ćwiok, M.; Dhillon, V.; Fox, D. B.; Gal-Yam, A.; Kasliwal, M. M.; Klotz, A.; Laas-Bourez, M.; Laher, R. R.; Law, N. M.; Majcher, A.; Małek, K.; Mankiewicz, L.; Nawrocki, K.; Nissanke, S.; Nugent, P. E.; Ofek, E. O.; Opiela, R.; Piotrowski, L.; Poznanski, D.; Rabinowitz, D.; Rapoport, S.; Richards, J. W.; Schmidt, B.; Siudek, M.; Sokołowski, M.; Steele, I. A.; Sullivan, M.; Żarnecki, A. F.; Zheng, W.
2014-03-01
During the Laser Interferometer Gravitational-wave Observatory and Virgo joint science runs in 2009-2010, gravitational wave (GW) data from three interferometer detectors were analyzed within minutes to select GW candidate events and infer their apparent sky positions. Target coordinates were transmitted to several telescopes for follow-up observations aimed at the detection of an associated optical transient. Images were obtained for eight such GW candidates. We present the methods used to analyze the image data as well as the transient search results. No optical transient was identified with a convincing association with any of these candidates, and none of the GW triggers showed strong evidence for being astrophysical in nature. We compare the sensitivities of these observations to several model light curves from possible sources of interest, and discuss prospects for future joint GW-optical observations of this type.
First Searches for Optical Counterparts to Gravitational-Wave Candidate Events
NASA Technical Reports Server (NTRS)
Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.;
2014-01-01
During the Laser Interferometer Gravitational-wave Observatory and Virgo joint science runs in 2009-2010, gravitational wave (GW) data from three interferometer detectors were analyzed within minutes to select GW candidate events and infer their apparent sky positions. Target coordinates were transmitted to several telescopes for follow-up observations aimed at the detection of an associated optical transient. Images were obtained for eight such GW candidates. We present the methods used to analyze the image data as well as the transient search results. No optical transient was identified with a convincing association with any of these candidates, and none of the GW triggers showed strong evidence for being astrophysical in nature. We compare the sensitivities of these observations to several model light curves from possible sources of interest, and discuss prospects for future joint GW-optical observations of this type.
Multi-link laser interferometry architecture for interspacecraft displacement metrology
NASA Astrophysics Data System (ADS)
Francis, Samuel P.; Lam, Timothy T.-Y.; McClelland, David E.; Shaddock, Daniel A.
2018-03-01
Targeting a future Gravity Recovery and Climate Experiment (GRACE) mission, we present a new laser interferometry architecture that can be used to recover the displacement between two spacecraft from multiple interspacecraft measurements. We show it is possible to recover the displacement between the spacecraft centers of mass in post-processing by forming linear combinations of multiple, spatially offset, interspacecraft measurements. By canceling measurement error due to angular misalignment of the spacecraft, we remove the need for precise placement or alignment of the interferometer, potentially simplifying spacecraft integration. To realize this multi-link architecture, we propose an all-fiber interferometer, removing the need for any ultrastable optical components such as the GRACE Follow-On mission's triple mirror assembly. Using digitally enhanced heterodyne interferometry, the number of links is readily scalable, adding redundancy to our measurement. We present the concept, an example multi-link implementation and the signal processing required to recover the center of mass displacement from multiple link measurements. Finally, in a simulation, we analyze the limiting noise sources in a 9 link interferometer and ultimately show we can recover the 80 {nm}/√{ {Hz}} displacement sensitivity required by the GRACE Follow-On laser ranging interferometer.
Kreisbeck, C; Kramer, T; Molina, R A
2017-04-20
We have performed time-dependent wave packet simulations of realistic Aharonov-Bohm (AB) devices with a quantum dot embedded in one of the arms of the interferometer. The AB ring can function as a measurement device for the intrinsic transmission phase through the quantum dot, however, care has to be taken in analyzing the influence of scattering processes in the junctions of the interferometer arms. We consider a harmonic quantum dot and show how the Darwin-Fock spectrum emerges as a unique pattern in the interference fringes of the AB oscillations.
Fiber Fabry-Perot interferometer sensor for measuring resonances of piezoelectric elements
NASA Astrophysics Data System (ADS)
da Silva, Ricardo E.; Oliveira, Roberson A.; Pohl, Alexandre A. P.
2011-05-01
The development of a fiber extrinsic Fabry-Perot interferometer for measuring vibration amplitude and resonances of piezoelectric elements is reported. The signal demodulation method based on the use of an optical spectrum analyzer allows the measurement of displacements and resonances with high resolution. The technique consists basically in monitoring changes in the intensity or the wavelength of a single interferometric fringe at a point of high sensitivity in the sensor response curve. For sensor calibration, three signal processing techniques were employed. Vibration amplitude measurement with 0.84 nm/V sensitivity and the characterization of the piezo resonance is demonstrated.
Study of Optical Fiber Sensors for Cryogenic Temperature Measurements.
De Miguel-Soto, Veronica; Leandro, Daniel; Lopez-Aldaba, Aitor; Beato-López, Juan Jesus; Pérez-Landazábal, José Ignacio; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; Lopez-Amo, Manuel
2017-11-30
In this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG), and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser have been studied. Their sensitivities and resolutions as sensors for cryogenic temperatures have been compared regarding their advantages and disadvantages. Additionally, the results have been compared with the given by a commercial optical backscatter reflectometer that allowed for distributed temperature measurements of a single mode fiber.
Buican, T.N.
1993-05-04
Apparatus and method is described for measuring intensities at a plurality of wavelengths and lifetimes. A source of multiple-wavelength electromagnetic radiation is passed through a first interferometer modulated at a first frequency, the output thereof being directed into a sample to be investigated. The light emitted from the sample as a result of the interaction thereof with the excitation radiation is directed into a second interferometer modulated at a second frequency, and the output detected and analyzed. In this manner excitation, emission, and lifetime information may be obtained for a multiplicity of fluorochromes in the sample.
Study of Optical Fiber Sensors for Cryogenic Temperature Measurements
Leandro, Daniel; Lopez-Aldaba, Aitor; Beato-López, Juan Jesus; Pérez-Landazábal, José Ignacio; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; Lopez-Amo, Manuel
2017-01-01
In this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG), and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser have been studied. Their sensitivities and resolutions as sensors for cryogenic temperatures have been compared regarding their advantages and disadvantages. Additionally, the results have been compared with the given by a commercial optical backscatter reflectometer that allowed for distributed temperature measurements of a single mode fiber. PMID:29189755
Physical Bases of Aircraft Icing,
1979-08-31
infinite size it is equal to zerc. huw~ver, the local coefficient of capture DOC =79116107 PAGjE does not depend on the avaial1 sia of wedge, but it...Limitalions and matherna- tical I,a-is ior predicting aircraft icing characteristics from scall -niodel studes Tran, ,ctun. of the ASMF. Vol. 70, N 8
JPIC-Rad-Hard JPEG2000 Image Compression ASIC
NASA Astrophysics Data System (ADS)
Zervas, Nikos; Ginosar, Ran; Broyde, Amitai; Alon, Dov
2010-08-01
JPIC is a rad-hard high-performance image compression ASIC for the aerospace market. JPIC implements tier 1 of the ISO/IEC 15444-1 JPEG2000 (a.k.a. J2K) image compression standard [1] as well as the post compression rate-distortion algorithm, which is part of tier 2 coding. A modular architecture enables employing a single JPIC or multiple coordinated JPIC units. JPIC is designed to support wide data sources of imager in optical, panchromatic and multi-spectral space and airborne sensors. JPIC has been developed as a collaboration of Alma Technologies S.A. (Greece), MBT/IAI Ltd (Israel) and Ramon Chips Ltd (Israel). MBT IAI defined the system architecture requirements and interfaces, The JPEG2K-E IP core from Alma implements the compression algorithm [2]. Ramon Chips adds SERDES interfaces and host interfaces and integrates the ASIC. MBT has demonstrated the full chip on an FPGA board and created system boards employing multiple JPIC units. The ASIC implementation, based on Ramon Chips' 180nm CMOS RadSafe[TM] RH cell library enables superior radiation hardness.
NASA Astrophysics Data System (ADS)
Chen, Hsi-Chao; Huang, Kuo-Ting; Lo, Yen-Ming; Chiu, Hsuan-Yi; Chen, Guan-Jhen
2011-09-01
The purpose of this research was to construct a measurement system which can fast and accurately analyze the residual stress of the flexible electronics. The transparent conductive oxide (TCO) films, tin-doped indium oxide (ITO), were deposited by radio frequency (RF) magnetron sputtering using corresponding oxide targets on PET substrate. As we know that the shadow Moiré interferometry is a useable way to measure the large deformation. So we set up a double beam shadow Moiré interferometer to measure and analyze the residual stress of TCO films on PET. The feature was to develop a mathematical model and combine the image processing software. By the LabVIEW graphical software, we could measure the distance which is between the left and right fringe on the pattern to solve the curvature of deformed surface. Hence, the residual stress could calculate by the Stoney correction formula for the flexible electronics. By combining phase shifting method with shadow Moiré, the measurement resolution and accuracy have been greatly improved. We also had done the error analysis for the system whose relative error could be about 2%. Therefore, shadow Moiré interferometer is a non-destructive, fast, and simple system for the residual stress on TCO/PET films.
New scoring system for intra-abdominal injury diagnosis after blunt trauma.
Shojaee, Majid; Faridaalaee, Gholamreza; Yousefifard, Mahmoud; Yaseri, Mehdi; Arhami Dolatabadi, Ali; Sabzghabaei, Anita; Malekirastekenari, Ali
2014-01-01
An accurate scoring system for intra-abdominal injury (IAI) based on clinical manifestation and examination may decrease unnecessary CT scans, save time, and reduce healthcare cost. This study is designed to provide a new scoring system for a better diagnosis of IAI after blunt trauma. This prospective observational study was performed from April 2011 to October 2012 on patients aged above 18 years and suspected with blunt abdominal trauma (BAT) admitted to the emergency department (ED) of Imam Hussein Hospital and Shohadaye Hafte Tir Hospital. All patients were assessed and treated based on Advanced Trauma Life Support and ED protocol. Diagnosis was done according to CT scan findings, which was considered as the gold standard. Data were gathered based on patient's history, physical exam, ultrasound and CT scan findings by a general practitioner who was not blind to this study. Chi-square test and logistic regression were done. Factors with significant relationship with CT scan were imported in multivariate regression models, where a coefficient (β) was given based on the contribution of each of them. Scoring system was developed based on the obtained total β of each factor. Altogether 261 patients (80.1% male) were enrolled (48 cases of IAI). A 24-point blunt abdominal trauma scoring system (BATSS) was developed. Patients were divided into three groups including low (score<8), moderate (8≤score<12) and high risk (score≥12). In high risk group immediate laparotomy should be done, moderate group needs further assessments, and low risk group should be kept under observation. Low risk patients did not show positive CT-scans (specificity 100%). Conversely, all high risk patients had positive CT-scan findings (sensitivity 100%). The receiver operating characteristic curve indicated a close relationship between the results of CT scan and BATSS (sensitivity=99.3%). The present scoring system furnishes a high precision and reproducible diagnostic tool for BAT detection and has the potential to reduce unnecessary CT scan and cut unnecessary costs.
Yang, Qiwen; Wang, Hui; Chen, Minjun; Ni, Yuxing; Yu, Yunsong; Hu, Bijie; Sun, Ziyong; Huang, Wenxiang; Hu, Yunjian; Ye, Huifen; Badal, Robert E; Xu, Yingchun
2010-12-01
The objective of this study was to investigate the distribution and susceptibility of aerobic and facultative Gram-negative bacilli (GNB) isolated from patients with intra-abdominal infections (IAIs) in China. From 2002 to 2009, minimum inhibitory concentrations of 14 antibiotics for 3420 aerobic and facultative GNB from up to eight hospitals in six cities were determined by the broth microdilution method. Enterobacteriaceae comprised 82.9% (2834/3420) of the total isolates, with Escherichia coli (49.2%) being the most commonly isolated species followed by Klebsiella pneumoniae (17.0%), Enterobacter cloacae (5.8%) and Citrobacter freundii (2.3%). Amongst the antimicrobial agents tested, the three carbapenems (ertapenem, imipenem and meropenem) were the most active agents against Enterobacteriaceae, with susceptibility rates of 96.1-99.6% (2002-2009), 98.2-100% (2002-2009) and 99.6-100% (2002-2004), respectively, followed by amikacin (86.8-95.1%) and piperacillin/tazobactam (84.5-94.3%). Susceptibility rates of all tested third- and fourth-generation cephalosporins against Enterobacteriaceae declined by nearly 30%, with susceptibility rates of 40.2%, 39.1%, 56.3% and 51.8% in 2009 for ceftriaxone, cefotaxime, ceftazidime and cefepime, respectively. The occurrence of extended-spectrum β-lactamases increased rapidly, especially for E. coli (from 20.8% in 2002 to 64.9% in 2009). Susceptibility of E. coli to ciprofloxacin decreased from 57.6% in 2002 to 24.2% in 2009. The least active agent against Enterobacteriaceae was ampicillin/sulbactam (SAM) (25.3-44.3%). In conclusion, Enterobacteriaceae were the major pathogens causing IAIs, and carbapenems retained the highest susceptibility rates over the 8-year study period. Third- and fourth-generation cephalosporins, fluoroquinolones and SAM may not be ideal choices for empirical therapy of IAIs in China. Copyright © 2010 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Immune Protection against Lethal Fungal-Bacterial Intra-Abdominal Infections
Lilly, Elizabeth A.; Ikeh, Melanie; Nash, Evelyn E.; Fidel, Paul L.
2018-01-01
ABSTRACT Polymicrobial intra-abdominal infections (IAIs) are clinically prevalent and cause significant morbidity and mortality, especially those involving fungi. Our laboratory developed a mouse model of IAI and demonstrated that intraperitoneal inoculation with Candida albicans or other virulent non-albicans Candida (NAC) species plus Staphylococcus aureus resulted in 70 to 80% mortality in 48 to 72 h due to robust local and systemic inflammation (sepsis). Surprisingly, inoculation with Candida dubliniensis or Candida glabrata with S. aureus resulted in minimal mortality, and rechallenge of these mice with lethal C. albicans/S. aureus (i.e., coninfection) resulted in >90% protection. The purpose of this study was to define requirements for C. dubliniensis/S. aureus-mediated protection and interrogate the mechanism of the protective response. Protection was conferred by C. dubliniensis alone or by killed C. dubliniensis plus live S. aureus. S. aureus alone was not protective, and killed S. aureus compromised C. dubliniensis-induced protection. C. dubliniensis/S. aureus also protected against lethal challenge by NAC plus S. aureus and could protect for a long-term duration (60 days between primary challenge and C. albicans/S. aureus rechallenge). Unexpectedly, mice deficient in T and B cells (Rag-1 knockouts [KO]) survived both the initial C. dubliniensis/S. aureus challenge and the C. albicans/S. aureus rechallenge, indicating that adaptive immunity did not play a role. Similarly, mice depleted of macrophages prior to rechallenge were also protected. In contrast, protection was associated with high numbers of Gr-1hi polymorphonuclear leukocytes (PMNLs) in peritoneal lavage fluid within 4 h of rechallenge, and in vivo depletion of Gr-1+ cells prior to rechallenge abrogated protection. These results suggest that Candida species can induce protection against a lethal C. albicans/S. aureus IAI that is mediated by PMNLs and postulated to be a unique form of trained innate immunity. PMID:29339423
Bartoletti, Michele; Tedeschi, Sara; Pascale, Renato; Raumer, Luigi; Maraolo, Alberto Enrico; Palmiero, Giulia; Tumietto, Fabio; Cristini, Francesco; Ambretti, Simone; Giannella, Maddalena; Lewis, Russell Edward; Viale, Pierluigi
2018-03-01
We hypothesised that treatment with a tigecycline-based antimicrobial regimen for intra-abdominal infection (IAI) could be associated with lower rates of subsequent carbapenem-resistant Enterobacteriaceae (CRE) colonisation or Clostridium difficile infection (CDI) compared with a meropenem-based regimen. We performed a retrospective, single-centre, matched (1:1) cohort analysis of all patients who received at least 5 days of empirical or targeted tigecycline (TIG)- or meropenem (MER)-based treatment regimens for IAI over a 50-month period. Patients with previous CRE colonisation and CDI were excluded. Risk factors for CRE and CDI were assessed with a Cox regression model that included treatment duration as a time-dependent variable. Thirty-day mortality was assessed with Kaplan-Meier curves. We identified 168 TIG-treated and 168 MER-treated patients. The cumulative incidence rate ratio of CDI was 10-fold lower in TIG-treated vs. MER-treated patients (incidence rate ratio [IRR] 0.10/1000 patient-days, 95%CI 0.002-0.72, P = 0.007), but similar incidence rates were found for CRE colonisation (IRR 1.39/1000 patient-days, 95%CI 0.68-2.78, P = 0.36). In a multivariate Cox regression model, the receipt of a TIG- vs. MER-based regimen was associated with significantly lower rates of CDI (HR 0.07, 95%CI 0.03-0.71, P = 0.02), but not CRE (HR 1.12, 95% CI 0.45-2.83, P = 0.80). All-cause 30-day mortality was similar in the two groups (P = 0.46). TIG-based regimens for IAI were associated with a 10-fold lower incidence of CDI compared with MER-based regimens, but there was no difference in the incidence of CRE colonisation. Copyright © 2018 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
A technique for phase correction in Fourier transform spectroscopy
NASA Astrophysics Data System (ADS)
Artsang, P.; Pongchalee, P.; Palawong, K.; Buisset, C.; Meemon, P.
2018-03-01
Fourier transform spectroscopy (FTS) is a type of spectroscopy that can be used to analyze components in the sample. The basic setup that is commonly used in this technique is "Michelson interferometer". The interference signal obtained from interferometer can be Fourier transformed into the spectral pattern of the illuminating light source. To experimentally study the concept of the Fourier transform spectroscopy, the project started by setup the Michelson interferometer in the laboratory. The implemented system used a broadband light source in near infrared region (0.81-0.89 μm) and controlled the movable mirror by using computer controlled motorized translation stage. In the early study, there is no sample the interference path. Therefore, the theoretical spectral results after the Fourier transformation of the captured interferogram must be the spectral shape of the light source. One main challenge of the FTS is to retrieve the correct phase information of the inferferogram that relates with the correct spectral shape of the light source. One main source of the phase distortion in FTS that we observed from our system is the non-linear movement of the movable reference mirror of the Michelson interferometer. Therefore, to improve the result, we coupled a monochromatic light source to the implemented interferometer. We simultaneously measured the interferograms of the monochromatic and broadband light sources. The interferogram of the monochromatic light source was used to correct the phase of the interferogram of the broadband light source. The result shows significant improvement in the computed spectral shape.
View of Expedition 15 FE Anderson performing the ANITA Experiment in the Node 1
2007-10-06
ISS015-E-32200 (6 Oct. 2007) --- Astronaut Clay Anderson, Expedition 15 flight engineer, uses an air sample pump and 2.5 liter gas sample bag to gather and analyze air samples for the Analyzing Interferometer for Ambient Air (ANITA) experiment in the Unity node of the International Space Station.
Holographic Interferometry--A Laboratory Experiment.
ERIC Educational Resources Information Center
de Frutos, A. M.; de la Rosa, M. I.
1988-01-01
Explains the problem of analyzing a phase object, separating the contribution due to thickness variations and that due to refractive index variations. Discusses the design of an interferometer and some applications. Provides diagrams and pictures of holographic images. (YP)
ERIC Educational Resources Information Center
Illinois Community Coll. Board, Springfield.
Developed by the Illinois Articulation Initiative (IAI), this report provides recommendations for improving articulation through state high schools, community colleges, and institutions of higher education. The recommendations are presented by field of study for business, clinical laboratory science, early childhood education, elementary…
NASA Astrophysics Data System (ADS)
Zhang, Liang; Tian, Ming; Dong, Lei
2017-10-01
In order to improve the detection distance and the sensitivity, we propose a novel distributed optical fiber sensing system. This system is composed of bidirectional pumping fiber Raman amplifier and unbalanced fiber Mach-Zehnder interferometer. Based on the interference mechanism of phase sensitive optical time domain reflectometer (φ-OTDR), the system can get the sensing information of the whole optical fiber by analyzing the backward scattered light. The interferometer is used as the demodulator of the sensing system, which consists of a 3×3 coupler and two faraday rotator mirrors. By means of the demodulator, the signal light is divided into three beams with fixed phase difference. To deal with these three signals, we can get the vibration information directly on the optical fiber. Through experimental study, this system has a high sensitivity. The maximum sensing length and the spatial resolution of the φ-OTDR system are 100 km and 10 m. The signal to noise ratio about 18 dB is achieved.
Oden, Jérémy; Lavrov, Roman; Chembo, Yanne K; Larger, Laurent
2017-11-01
We propose a chaos communication scheme based on a chaotic optical phase carrier generated with an optoelectronic oscillator with nonlinear time-delay feedback. The system includes a dedicated non-local nonlinearity, which is a customized three-wave imbalanced interferometer. This particular feature increases the complexity of the chaotic waveform and thus the security of the transmitted information, as these interferometers are characterized by four independent parameters which are part of the secret key for the chaos encryption scheme. We first analyze the route to chaos in the system, and evidence a sequence of period doubling bifurcations from the steady-state to fully developed chaos. Then, in the chaotic regime, we study the synchronization between the emitter and the receiver, and achieve chaotic carrier cancellation with a signal-to-noise ratio up to 20 dB. We finally demonstrate error-free chaos communications at a data rate of 3 Gbit/s.
A laser spectrometer and wavemeter for pulsed lasers
NASA Technical Reports Server (NTRS)
Mckay, J. A.; Laufer, P. M.; Cotnoir, L. J.
1989-01-01
The design, construction, calibration, and evaluation of a pulsed laser wavemeter and spectral analyzer are described. This instrument, called the Laserscope for its oscilloscope-like display of laser spectral structure, was delivered to NASA Langley Research Center as a prototype of a laboratory instrument. The key component is a multibeam Fizeau wedge interferometer, providing high (0.2 pm) spectral resolution and a linear dispersion of spectral information, ideally suited to linear array photodiode detectors. Even operating alone, with the classic order-number ambiguity of interferometers unresolved, this optical element will provide a fast, real-time display of the spectral structure of a laser output. If precise wavelength information is also desired then additional stages must be provided to obtain a wavelength measurement within the order-number uncertainty, i.e., within the free spectral range of the Fizeau wedge interferometer. A Snyder (single-beam Fizeau) wedge is included to provide this initial wavelength measurement. Difficulties in achieving the required wide-spectrum calibration limit the usefulness of this function.
Participation in the Analysis of the Far-Infrared/Submillmeter Interferometer
NASA Technical Reports Server (NTRS)
Lorenzini, Enrico C.
2005-01-01
We have contributed to the development of the Submillimiter Probe of the Evolution of Cosmic Structure (SPECS) by analyzing various aspects related to the tethers that connect the spacecraft of this space interferometer. We have focused our analysis on key topics as follows: (a) helping in the configuration selection; (b) computing the system eigenfrequencies as a function of baseline length; (c) developing techniques and conceptual design of devices for damping the tether oscillations; (d) carrying out numerical simulations of tethered formation to assess the effects of environmental perturbations upon the baseline length variation; (e) developing control laws for reconfiguring the baseline length; (f) devising control laws for fast retargeting of the interferometer at moderate baseline lengths; (g) estimating the survivability to micrometeoroid impacts of a tether at L2; and (h) developing a conceptual design of a high- strength and survivable tether. The work was conducted for NASA Goddard Space Flight Center under Grant NNG04GQ21G with William Danchi as technical monitor.
NASA Astrophysics Data System (ADS)
Oden, Jérémy; Lavrov, Roman; Chembo, Yanne K.; Larger, Laurent
2017-11-01
We propose a chaos communication scheme based on a chaotic optical phase carrier generated with an optoelectronic oscillator with nonlinear time-delay feedback. The system includes a dedicated non-local nonlinearity, which is a customized three-wave imbalanced interferometer. This particular feature increases the complexity of the chaotic waveform and thus the security of the transmitted information, as these interferometers are characterized by four independent parameters which are part of the secret key for the chaos encryption scheme. We first analyze the route to chaos in the system, and evidence a sequence of period doubling bifurcations from the steady-state to fully developed chaos. Then, in the chaotic regime, we study the synchronization between the emitter and the receiver, and achieve chaotic carrier cancellation with a signal-to-noise ratio up to 20 dB. We finally demonstrate error-free chaos communications at a data rate of 3 Gbit/s.
An Analysis of Coupling between the x1 and x12 Interferometers for LISA Pathfinder
NASA Astrophysics Data System (ADS)
Howard, Brittany
2017-01-01
Due to tolerances in the manufacturing process, noise from the jittering of the spacecraft housing LISA Pathfinder (LPF) is appearing in the differential measurement between its two test masses (TM's). This phenomenon manifests as a small but measurable coupling between the readouts of LPF's two heterodyne interferometers, x1 and x12. In this study, two LISA Pathfinder experiments are analyzed using three methods in an effort to characterize and quantify the coupling as well as to potentially identify its source. The main question considered is this: does the coupling change with the absolute displacement between the TM's? As a result of this work, reliable values for coupling between LPF's x1 and x12 interferometers are found, and they are seen to depend on the absolute displacement between the test masses to some degree. Completed at the Albert Einstein Institute for Gravitational Physics under the International REU program from the University of Florida.
An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO)
NASA Astrophysics Data System (ADS)
Hogan, Jason M.; Johnson, David M. S.; Dickerson, Susannah; Kovachy, Tim; Sugarbaker, Alex; Chiow, Sheng-Wey; Graham, Peter W.; Kasevich, Mark A.; Saif, Babak; Rajendran, Surjeet; Bouyer, Philippe; Seery, Bernard D.; Feinberg, Lee; Keski-Kuha, Ritva
2011-07-01
We propose an atom interferometer gravitational wave detector in low Earth orbit (AGIS-LEO). Gravitational waves can be observed by comparing a pair of atom interferometers separated by a 30 km baseline. In the proposed configuration, one or three of these interferometer pairs are simultaneously operated through the use of two or three satellites in formation flight. The three satellite configuration allows for the increased suppression of multiple noise sources and for the detection of stochastic gravitational wave signals. The mission will offer a strain sensitivity of {<10^{-18}/sqrt{Hz}} in the 50mHz-10Hz frequency range, providing access to a rich scientific region with substantial discovery potential. This band is not currently addressed with the LIGO, VIRGO, or LISA instruments. We analyze systematic backgrounds that are relevant to the mission and discuss how they can be mitigated at the required levels. Some of these effects do not appear to have been considered previously in the context of atom interferometry, and we therefore expect that our analysis will be broadly relevant to atom interferometric precision measurements. Finally, we present a brief conceptual overview of shorter-baseline ({lesssim100 m}) atom interferometer configurations that could be deployed as proof-of-principle instruments on the International Space Station (AGIS-ISS) or an independent satellite.
Britzger, Michael; Wimmer, Maximilian H; Khalaidovski, Alexander; Friedrich, Daniel; Kroker, Stefanie; Brückner, Frank; Kley, Ernst-Bernhard; Tünnermann, Andreas; Danzmann, Karsten; Schnabel, Roman
2012-11-05
Michelson-type laser-interferometric gravitational-wave (GW) observatories employ very high light powers as well as transmissively-coupled Fabry-Perot arm resonators in order to realize high measurement sensitivities. Due to the absorption in the transmissive optics, high powers lead to thermal lensing and hence to thermal distortions of the laser beam profile, which sets a limit on the maximal light power employable in GW observatories. Here, we propose and realize a Michelson-type laser interferometer with arm resonators whose coupling components are all-reflective second-order Littrow gratings. In principle such gratings allow high finesse values of the resonators but avoid bulk transmission of the laser light and thus the corresponding thermal beam distortion. The gratings used have three diffraction orders, which leads to the creation of a second signal port. We theoretically analyze the signal response of the proposed topology and show that it is equivalent to a conventional Michelson-type interferometer. In our proof-of-principle experiment we generated phase-modulation signals inside the arm resonators and detected them simultaneously at the two signal ports. The sum signal was shown to be equivalent to a single-output-port Michelson interferometer with transmissively-coupled arm cavities, taking into account optical loss. The proposed and demonstrated topology is a possible approach for future all-reflective GW observatory designs.
Statkiewicz-Barabach, Gabriela; Olszewski, Jacek; Mergo, Pawel; Urbanczyk, Waclaw.
2017-01-01
We present a comprehensive study of an in-line Mach-Zehnder intermodal interferometer fabricated in a boron-doped two-mode highly birefringent microstructured fiber. We observed different interference signals at the output of the interferometer, related to the intermodal interference of the fundamental and the first order modes of the orthogonal polarizations and a beating of the polarimetric signal related to the difference in the group modal birefringence between the fundamental and the first order modes, respectively. The proposed interferometer was tested for measurements of hydrostatic pressure and temperature for different alignments of the input polarizer with no analyzer at the output. The sensitivities to hydrostatic pressure of the intermodal interference signals for x- and y-polarizations had an opposite sign and were equal to 0.229 nm/MPa and −0.179 nm/MPa, respectively, while the temperature sensitivities for both polarizations were similar and equal 0.020 nm/°C and 0.019 nm/°C. In the case of pressure, for the simultaneous excitation of both polarization modes, we observed a displacement of intermodal fringes with a sensitivity depending on the azimuth of the input polarization state, as well as on the displacement of their envelope with a sensitivity of 2.14 nm/MPa, accompanied by a change in the fringes visibility. Such properties of the proposed interferometer allow for convenient adjustments to the pressure sensitivity of the intermodal fringes and possible applications for the simultaneous interrogation of temperature and pressure. PMID:28718796
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-25
... Railroad, Ltd.--Lease Exemption--Line of Cedar Rapids and Iowa City Railway Company AGENCY: Surface... from the prior approval requirements of 49 U.S.C. 10902 for Iowa Interstate Railroad, Ltd. (IAIS), a Class II rail carrier, to lease and operate 8.4 miles of railroad owned by Cedar Rapids & Iowa City...
The Network Structure Underlying the Earth Observation Assessment
NASA Astrophysics Data System (ADS)
Vitkin, S.; Doane, W. E. J.; Mary, J. C.
2017-12-01
The Earth Observations Assessment (EOA 2016) is a multiyear project designed to assess the effectiveness of civil earth observation data sources (instruments, sensors, models, etc.) on societal benefit areas (SBAs) for the United States. Subject matter experts (SMEs) provided input and scored how data sources inform products, product groups, key objectives, SBA sub-areas, and SBAs in an attempt to quantify the relationships between data sources and SBAs. The resulting data were processed by Integrated Applications Incorporated (IAI) using MITRE's PALMA software to create normalized relative impact scores for each of these relationships. However, PALMA processing obscures the natural network representation of the data. Any network analysis that might identify patterns of interaction among data sources, products, and SBAs is therefore impossible. Collaborating with IAI, we cleaned and recreated a network from the original dataset. Using R and Python we explore the underlying structure of the network and apply frequent itemset mining algorithms to identify groups of data sources and products that interact. We reveal interesting patterns and relationships in the EOA dataset that were not immediately observable from the EOA 2016 report and provide a basis for further exploration of the EOA network dataset.
Microbial changes in patients with acute periodontal abscess after treatment detected by PadoTest.
Eguchi, T; Koshy, G; Umeda, M; Iwanami, T; Suga, J; Nomura, Y; Kawanami, M; Ishikawa, I
2008-03-01
To investigate changes in bacterial counts in subgingival plaque from patients with acute periodontal abscess by IAI-PadoTest. Ninety-one patients were randomly allocated to either test or control groups. In all the patients, pockets with acute periodontal abscess were irrigated with sterilized physiological saline, and in the test group, 2% minocycline hydrochloride ointment was applied once into the pocket in addition. Subgingival plaque samples were collected by paper point before treatment and 7 days after treatment. The total bacterial count was determined and Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia, were detected using IAI-PadoTest, a DNA/RNA probe method. The total bacterial count decreased in both groups, with a significant decrease in the test group. The counts and number of sites positive for P. gingivalis, T. forsythia and T. denticola significantly decreased in the test group after treatment, compared with those in the control group. Pocket depth decreased in the both groups, with a statistically significant decrease in the test group. Topical treatment with minocycline in pockets with acute periodontal abscess was effective in reducing the bacterial counts as shown by the microbiological investigation using PadoTest 4.5.
Grigsby, Peta L.; Novy, Miles J.; Sadowsky, Drew W.; Morgan, Terry K.; Long, Mary; Acosta, Ed; Duffy, Lynn B; Waites, Ken B.
2012-01-01
Objective We assessed the efficacy of a maternal multi–dose azithromycin (AZI) regimen, with and without anti–inflammatory agents to delay preterm birth and to mitigate fetal lung injury associated with Ureaplasma parvum intra–amniotic infection (IAI). Study Design Long–term catheterized rhesus monkeys (n=16) received intra–amniotic inoculation of U. parvum (107 CFU/ml, serovar 1). After contraction onset, rhesus monkeys received either no treatment (n=6); AZI (12.5mg/kg, q12h, IV for 10 days; n=5); or AZI plus dexamethasone (DEX) and indomethacin (INDO; n=5). Outcomes included amniotic fluid pro–inflammatory mediators, U. parvum cultures & PCR, AZI pharmacokinetics and the extent of fetal lung inflammation. Results Maternal AZI therapy eradicated U. parvum IAI from the amniotic fluid within 4 days. Placenta and fetal tissues were 90% culture negative at delivery. AZI therapy significantly delayed preterm delivery and prevented advanced fetal lung injury, although residual acute chorioamnionitis persisted. Conclusions Specific maternal antibiotic therapy can eradicate U. parvum from the amniotic fluid and key fetal organs, with subsequent prolongation of pregnancy which provides a therapeutic window of opportunity to effectively reduce the severity of fetal lung injury. PMID:23111115
Constraining Modified Theories of Gravity with Gravitational-Wave Stochastic Backgrounds
NASA Astrophysics Data System (ADS)
Maselli, Andrea; Marassi, Stefania; Ferrari, Valeria; Kokkotas, Kostas; Schneider, Raffaella
2016-08-01
The direct discovery of gravitational waves has finally opened a new observational window on our Universe, suggesting that the population of coalescing binary black holes is larger than previously expected. These sources produce an unresolved background of gravitational waves, potentially observable by ground-based interferometers. In this Letter we investigate how modified theories of gravity, modeled using the parametrized post-Einsteinian formalism, affect the expected signal, and analyze the detectability of the resulting stochastic background by current and future ground-based interferometers. We find the constraints that Advanced LIGO would be able to set on modified theories, showing that they may significantly improve the current bounds obtained from astrophysical observations of binary pulsars.
Levitated optomechanics with a fiber Fabry-Perot interferometer
NASA Astrophysics Data System (ADS)
Pontin, A.; Mourounas, L. S.; Geraci, A. A.; Barker, P. F.
2018-02-01
In recent years, quantum phenomena have been experimentally demonstrated on variety of optomechanical systems ranging from micro-oscillators to photonic crystals. Since single photon couplings are quite small, most experimental approaches rely on the realization of high finesse Fabry-Perot cavities in order to enhance the effective coupling. Here we show that by exploiting a, long path, low finesse fiber Fabry-Perot interferometer ground state cooling can be achieved. We model a 100 m long cavity with a finesse of 10 and analyze the impact of additional noise sources arising from the fiber. As a mechanical oscillator we consider a levitated microdisk but the same approach could be applied to other optomechanical systems.
Koch, Jeffrey A [Livermore, CA
2003-07-08
An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.
NASA Technical Reports Server (NTRS)
Grzenia, B. J.; Tycner, C.; Jones, C. E.; Rinehart, S. A.; vanBelle, G. T.; Sigut, T. A. A.
2013-01-01
Geometrical (uniform disk) and numerical models were calculated for a set of B-emission (Be) stars observed with the Palomar Testbed Interferometer (PTI). Physical extents have been estimated for the disks of a total of15 stars via uniform disk models. Our numerical non-LTE models used parameters for the B0, B2, B5, and B8spectral classes and following the framework laid by previous studies, we have compared them to infrared K-band interferometric observations taken at PTI. This is the first time such an extensive set of Be stars observed with long-baseline interferometry has been analyzed with self-consistent non-LTE numerical disk models.
Marčiulionienė, D; Mažeika, J; Lukšienė, B; Jefanova, O; Mikalauskienė, R; Paškauskas, R
2015-07-01
Based on γ-ray emitting artificial radionuclide spectrometric measurements, an assessment of areal and vertical distribution of (137)Cs, (60)Co and (54)Mn activity concentrations in bottom sediments of Lake Drūkšiai was performed. Samples of bottom sediments from seven monitoring stations within the cooling basin were collected in 1988-1996 and 2007-2010 (in July-August). For radionuclide areal distribution analysis, samples from the surface 0-5 cm layer were used. Multi sample cores sliced 2 cm, 3 cm or 5 cm thick were used to study the vertical distribution of radionuclides. The lowest (137)Cs activity concentrations were obtained for two stations that were situated close to channels with radionuclide discharges, but with sediments that had a significantly smaller fraction of organic matter related to finest particles and consequently smaller radionuclide retention potential. The (137)Cs activity concentration was distributed quite evenly in the bottom sediments from other investigated monitoring stations. The highest (137)Cs activity concentrations in the bottom sediments of Lake Drūkšiai were measured in the period of 1988-1989; in 1990, the (137)Cs activity concentrations slightly decreased and they varied insignificantly over the investigation period. The obtained (238)Pu/(239,240)Pu activity ratio values in the bottom sediments of Lake Drūkšiai represented radioactive pollution with plutonium from nuclear weapon tests. Higher (60)Co and (54)Mn activity concentrations were observed in the monitoring stations that were close to the impact zones of the technical water outlet channel and industrial rain drainage system channel. (60)Co and (54)Mn activity concentrations in the bottom sediments of Lake Drūkšiai significantly decreased when operations at both INPP reactor units were stopped. The vertical distribution of radionuclides in bottom sediments revealed complicated sedimentation features, which may have been affected by a number of natural and anthropogenic factors resulting in mixing, resuspension and remobilization of sediments and radionuclides. The associated with particles (137)Cs flux was 129 Bq/(m(2) year). The (137)Cs transfer rate from water into bottom sediments was 14.3 year(-1) (or, the removal time was 25 days). The Kd value for (137)Cs in situ estimated from trap material was 80 m(3)/kg. The associated with particles (60)Co flux was 21 Bq/(m(2) year), when (60)Co activity concentration in sediment trap particles was 15.7 ± 5 Bq/kg. (60)Co activity concentration in soluble form was less than the minimum detectable activity (MDA = 1.3 Bq/m(3)). Then, the conservatively derived Kd value for (60)Co was >90 m(3)/kg. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Fabry-Pérot interferometer with wire-grid polarizers as beamsplitters at terahertz frequencies
NASA Astrophysics Data System (ADS)
Harrison, H.; Lancaster, A. J.; Konoplev, I. V.; Doucas, G.; Aryshev, A.; Shevelev, M.; Terunuma, N.; Urakawa, J.; Huggard, P. G.
2018-03-01
The design of a compact Fabry-Pérot interferometer (FPi) and results of the experimental studies carried out using the device are presented. Our FPi uses freestanding wire-grid polarizers (WGPs) as beamsplitters and is suitable for use at terahertz (THz) frequencies. The FPi was studied at the LUCX facility, KEK, Japan, and an 8 MeV linear electron accelerator was used to generate coherent Smith-Purcell radiation. The FPi was designed to be easy to align and reposition for experiments at linear accelerator facilities. All of the components used were required to have a flat or well understood frequency response in the THz range. The performance of the FPi with WGPs was compared to that of a Michelson interferometer and the FPi is seen to perform well. The effectiveness of the beamsplitters used in the FPi is also investigated. Measurements made with the FPi using WGPs, the preferred beamsplitters, are compared to measurements made with the FPi using silicon wafers as alternative beamsplitters. The FPi performs well with both types of beamsplitter in the frequency range used (0.3-0.5 THz). The successful measurements taken with the FPi demonstrate a compact and adaptable interferometer that is capable of analyzing THz radiation over a broad frequency range. The scheme is particularly well suited for polarization studies of THz radiation produced in an accelerator environment.
2012-06-28
... Hfl-I INPUI liNE ID", ••• I •..•. 2 .•... J, .... 4" .. ".S,."",b" .. I . .... H..•.. q . .llI ... Pkt' IPIIAIION OAT" • II I'B SIU~M I) • ./ I) IIA', IN III I AI I'RII 11'1 IAI IUN • ...
NASA Astrophysics Data System (ADS)
Liu, Yang; Yang, Linghui; Guo, Yin; Lin, Jiarui; Cui, Pengfei; Zhu, Jigui
2018-02-01
An interferometer technique based on temporal coherence function of femtosecond pulses is demonstrated for practical distance measurement. Here, the pulse-to-pulse alignment is analyzed for large delay distance measurement. Firstly, a temporal coherence function model between two femtosecond pulses is developed in the time domain for the dispersive unbalanced Michelson interferometer. Then, according to this model, the fringes analysis and the envelope extraction process are discussed. Meanwhile, optimization methods of pulse-to-pulse alignment for practical long distance measurement are presented. The order of the curve fitting and the selection of points for envelope extraction are analyzed. Furthermore, an averaging method based on the symmetry of the coherence function is demonstrated. Finally, the performance of the proposed methods is evaluated in the absolute distance measurement of 20 μ m with path length difference of 9 m. The improvement of standard deviation in experimental results shows that these approaches have the potential for practical distance measurement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hechenblaikner, Gerald; Gerndt, Ruediger; Johann, Ulrich
We describe the first investigations of the complete engineering model of the optical metrology system (OMS), a key subsystem of the LISA Pathfinder science mission to space. The latter itself is a technological precursor mission to LISA, a spaceborne gravitational wave detector. At its core, the OMS consists of four heterodyne Mach-Zehnder interferometers, a highly stable laser with an external modulator, and a phase meter. It is designed to monitor and track the longitudinal motion and attitude of two floating test masses in the optical reference frame with (relative) precision in the picometer and nanorad range, respectively. We analyze sensormore » signal correlations and determine a physical sensor noise limit. The coupling parameters between motional degrees of freedom and interferometer signals are analytically derived and compared to measurements. We also measure adverse cross-coupling effects originating from system imperfections and limitations and describe algorithmic mitigation techniques to overcome some of them. Their impact on system performance is analyzed within the context of the Pathfinder mission.« less
Vibration analysis based on electronic stroboscopic speckle-shearing pattern interferometry
NASA Astrophysics Data System (ADS)
Jia, Dagong; Yu, Changsong; Xu, Tianhua; Jin, Chao; Zhang, Hongxia; Jing, Wencai; Zhang, Yimo
2008-12-01
In this paper, an electronic speckle-shearing pattern interferometer with pulsed laser and pulse frequency controller is fabricated. The principle of measuring the vibration in the object using electronic stroboscopic speckle--shearing pattern interferometer is analyzed. Using a metal plate, the edge of which is clamped, as an experimental specimen, the shear interferogram are obtained under two experimental frequencies, 100 Hz and 200 Hz. At the same time, the vibration of this metal plate under the same experimental conditions is measured using the time-average method in order to test the performance of this electronic stroboscopic speckle-shearing pattern interferometer. The result indicated that the fringe of shear interferogram become dense with the experimental frequency increasing. Compared the fringe pattern obtained by the stroboscopic method with the fringe obtained by the time-average method, the shearing interferogram of stroboscopic method is clearer than the time-average method. In addition, both the time-average method and stroboscopic method are suited for qualitative analysis for the vibration of the object. More over, the stroboscopic method is well adapted to quantitative vibration analysis.
Wavelength calibration of an imaging spectrometer based on Savart interferometer
NASA Astrophysics Data System (ADS)
Li, Qiwei; Zhang, Chunmin; Yan, Tingyu; Quan, Naicheng; Wei, Yutong; Tong, Cuncun
2017-09-01
The basic principle of Fourier-transform imaging spectrometer (FTIS) based on Savart interferometer is outlined. The un-identical distribution of the optical path difference which leads to the wavelength drift of each row of the interferogram is analyzed. Two typical methods for wavelength calibration of the presented system are described. The first method unifies different spectral intervals and maximum spectral frequencies of each row by a reference monochromatic light with known wavelength, and the dispersion compensation of Savart interferometer is also involved. The second approach is based on the least square fitting which builds the functional relation between recovered wavelength, row number and calibrated wavelength by concise equations. The effectiveness of the two methods is experimentally demonstrated with monochromatic lights and mixed light source across the detecting band of the system, and the results indicate that the first method has higher precision and the mean root-mean-square error of the recovered wavelengths is significantly reduced from 19.896 nm to 1.353 nm, while the second method is more convenient to implement and also has good precision of 2.709 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Benyong, E-mail: chenby@zstu.edu.cn; Zhang, Enzheng; Yan, Liping
2014-10-15
Correct return of the measuring beam is essential for laser interferometers to carry out measurement. In the actual situation, because the measured object inevitably rotates or laterally moves, not only the measurement accuracy will decrease, or even the measurement will be impossibly performed. To solve this problem, a novel orthogonal return method for linearly polarized beam based on the Faraday effect is presented. The orthogonal return of incident linearly polarized beam is realized by using a Faraday rotator with the rotational angle of 45°. The optical configuration of the method is designed and analyzed in detail. To verify its practicabilitymore » in polarization interferometry, a laser heterodyne interferometer based on this method was constructed and precision displacement measurement experiments were performed. These results show that the advantage of the method is that the correct return of the incident measuring beam is ensured when large lateral displacement or angular rotation of the measured object occurs and then the implementation of interferometric measurement can be ensured.« less
Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology
Xie, Wen-Ge; Wang, Peng-Zhao; Wang, Jian-Zhang
2018-01-01
A review for optical fiber sensors based on fiber ring laser (FRL) demodulation technology is presented. The review focuses on the principles, main structures, and the sensing performances of different kinds of optical fiber sensors based on FRLs. First of all, the theory background of the sensors has been discussed. Secondly, four different types of sensors are described and compared, which includes Mach–Zehnder interferometer (MZI) typed sensors, Fabry–Perot interferometer (FPI) typed sensors, Sagnac typed sensors, and fiber Bragg grating (FBG) typed sensors. Typical studies and main properties of each type of sensors are presented. Thirdly, a comparison of different types of sensors are made. Finally, the existing problems and future research directions are pointed out and analyzed. PMID:29419745
Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology.
Xie, Wen-Ge; Zhang, Ya-Nan; Wang, Peng-Zhao; Wang, Jian-Zhang
2018-02-08
A review for optical fiber sensors based on fiber ring laser (FRL) demodulation technology is presented. The review focuses on the principles, main structures, and the sensing performances of different kinds of optical fiber sensors based on FRLs. First of all, the theory background of the sensors has been discussed. Secondly, four different types of sensors are described and compared, which includes Mach-Zehnder interferometer (MZI) typed sensors, Fabry-Perot interferometer (FPI) typed sensors, Sagnac typed sensors, and fiber Bragg grating (FBG) typed sensors. Typical studies and main properties of each type of sensors are presented. Thirdly, a comparison of different types of sensors are made. Finally, the existing problems and future research directions are pointed out and analyzed.
Interferometer with Continuously Varying Path Length Measured in Wavelengths to the Reference Mirror
NASA Technical Reports Server (NTRS)
Ohara, Tetsuo (Inventor)
2016-01-01
An interferometer in which the path length of the reference beam, measured in wavelengths, is continuously changing in sinusoidal fashion and the interference signal created by combining the measurement beam and the reference beam is processed in real time to obtain the physical distance along the measurement beam between the measured surface and a spatial reference frame such as the beam splitter. The processing involves analyzing the Fourier series of the intensity signal at one or more optical detectors in real time and using the time-domain multi-frequency harmonic signals to extract the phase information independently at each pixel position of one or more optical detectors and converting the phase information to distance information.
GeoChronos: An On-line Collaborative Platform for Earth Observation Scientists
NASA Astrophysics Data System (ADS)
Gamon, J. A.; Kiddle, C.; Curry, R.; Markatchev, N.; Zonta-Pastorello, G., Jr.; Rivard, B.; Sanchez-Azofeifa, G. A.; Simmonds, R.; Tan, T.
2009-12-01
Recent advances in cyberinfrastructure are offering new solutions to the growing challenges of managing and sharing large data volumes. Web 2.0 and social networking technologies, provide the means for scientists to collaborate and share information more effectively. Cloud computing technologies can provide scientists with transparent and on-demand access to applications served over the Internet in a dynamic and scalable manner. Semantic Web technologies allow for data to be linked together in a manner understandable by machines, enabling greater automation. Combining all of these technologies together can enable the creation of very powerful platforms. GeoChronos (http://geochronos.org/), part of a CANARIE Network Enabled Platforms project, is an online collaborative platform that incorporates these technologies to enable members of the earth observation science community to share data and scientific applications and to collaborate more effectively. The GeoChronos portal is built on an open source social networking platform called Elgg. Elgg provides a full set of social networking functionalities similar to Facebook including blogs, tags, media/document sharing, wikis, friends/contacts, groups, discussions, message boards, calendars, status, activity feeds and more. An underlying cloud computing infrastructure enables scientists to access dynamically provisioned applications via the portal for visualizing and analyzing data. Users are able to access and run the applications from any computer that has a Web browser and Internet connectivity and do not need to manage and maintain the applications themselves. Semantic Web Technologies, such as the Resource Description Framework (RDF) are being employed for relating and linking together spectral, satellite, meteorological and other data. Social networking functionality plays an integral part in facilitating the sharing of data and applications. Examples of recent GeoChronos users during the early testing phase have included the IAI International Wireless Sensor Networking Summer School at the University of Alberta, and the IAI Tropi-Dry community. Current GeoChronos activities include the development of a web-based spectral library and related analytical and visualization tools, in collaboration with members of the SpecNet community. The GeoChronos portal will be open to all members of the earth observation science community when the project nears completion at the end of 2010.
2014-06-01
in the formation of a European monetary union further contributing to the European countries’ political union . Among Italy’s reasons to participate...of abandoning participation in the EU project. 14. SUBJECT TERMS Italy, European Union , European institutions, Mussolini, Hitler, NATO...System EMU European Monetary Union EU European Union GDP gross domestic product Km kilometer IAI Istituto Affari Internazionali [Institute of
Advanced Rotorcraft Transmission Program
1990-05-21
600 a/c, 25 year, 420 FH per year.] Sikorskya Boeing MDHC Bell (ACA) (FAR-TTR) (FAR) (FAR-TTR) Transmission weight, lb 7879 (-27%) 1359(-25%) 1344(-25...LII " IVI NI I V f NWlY - f Nj Ii ( 1111 Cl AI 111011 CANIAL RAI P) IOW~I~t N*S SP-I - I CMl’ l A NI S I AR Il VIA.Ill j I~~)J Nil VI ~ IAI AANY
A/E/C CAD Standard, Release 4.0
2009-07-01
Insulating (Transformer) Oil System Lubrication Oil Hot Water Heating System Machine Design Appendix A Model File Level/Layer Assignment Tables A51...of the A /E/C CAD Standard are: “Uniform Drawing System ” The Construction Specifications Institute 99 Canal Center Plaza, Suite 300 Alexandria, VA...FM – Facility Management GIS – Geographic Information System IAI – International Alliance for Interoperability IFC – Industry Foundation
Intelligent and Adaptive Interface (IAI) for Cognitive Cockpit (CC)
2004-03-31
goals3 and plans and generating system plans would be incorporated as task knowledge. The Dialogue Model, which is currently undeveloped in LOCATE...pieces of software. Modularity can also serve to improve the organisational effectiveness of software, whereby a suitable division of labour among...a sophisticated tool in support of future combat aircraft acquisition. While CA can monitor similar activities in countries like the UK and USA we
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiuchi, T.; Sakurai, H.
1988-09-20
This patent describes an apparatus for controlling the solenoid current of a solenoid valve which controls suction air in an internal combustion engine. The apparatus consists of: (a) engine rotational speed detector means for detecting engine rotational speed; (b) aimed idle speed setting means for generating a signal corresponding to a predetermined idling speed; (c) first calculating means coupled to the engine rotational speed detector means and the aimed idle speed setting means for calculating a feedback control term (Ifb(n)) as a function of an integration term (Iai), a proportion term (Ip), and a differentiation term (Id); (d) first determiningmore » and storing means coupled to the first calculating means, for determining an integration term (Iai(n)) of the the feedback control term (Ifb(n)) and for determining a determined value (Ixref) in accordance therewith; (e) changeover means coupled to the first calculating means and the first determining and storing means for selecting the output of one of the first calculating means or the first determining and storing means; (f) first signal generating means coupled to the changeover means for generating a solenoid current control value (Icmd) as a function of the output of the changeover means.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiuchi, T.; Yasuoka, A.
1988-09-13
This patent describes apparatus for controlling the solenoid current of a selenoid valve which controls the amount of suction air in an internal combustion engine, the apparatus comprising: (a) engine rotational speed detector means for detecting engine rotational speed; (b) aimed idle speed setting means for generating a signal corresponding to a predetermined idling speed; (c) first calculating means coupled to the engine rotational speed detector means and the aimed idle speed setting means for calculating a feedback control term Ifb(n) as a function of an integration term (Iai), a proportion term (Ip), and a differentiation term (Id); (d) firstmore » determining and storing means coupled to the first calculating means, for determining an integration term (Iai(n)) of the feedback control term (Ifb(n)) and for determining a determined value (Ixref) in accordance therewith; (e) changeover means coupled to the first calculating means and the first determining and storing means for selecting the output of one of the first calculating means or the first determining and storing means; (f) first signal generating means coupled to the changeover means for generating a solenoid current control value (Icmd) as a function of the output of the changeover.« less
DuPaul, George J; Jitendra, Asha K; Volpe, Robert J; Tresco, Katy E; Lutz, J Gary; Vile Junod, Rosemary E; Cleary, Kristi S; Flammer, Lizette M; Mannella, Mark C
2006-10-01
The purpose of this investigation was to evaluate the relative efficacy of two consultation-based models for designing academic interventions to enhance the educational functioning of children with attention-deficit/hyperactivity disorder (ADHD). Children (N=167) meeting DSM-IV criteria for ADHD were randomly assigned to one of two consultation groups: Individualized Academic Intervention (IAI; interventions designed using a data-based decision-making model that involved ongoing feedback to teachers) and Generic Academic Intervention (GAI; interventions designed based on consultant-teacher collaboration, representing "consultation as usual"). Teachers implemented academic interventions over 15 months. Academic outcomes (e.g., standardized achievement test, and teacher ratings of academic skills) were assessed on four occasions (baseline, 3 months, 12 months, 15 months). Hierarchical linear modeling analyses indicated significant positive growth for 8 of the 14 dependent variables; however, trajectories did not differ significantly across consultation groups. Interventions in the IAI group were delivered with significantly greater integrity; however, groups did not differ with respect to teacher ratings of treatment acceptability. The results of this study provide partial support for the effectiveness of consultation-based academic interventions in enhancing educational functioning in children with ADHD; however, the relative advantages of an individualized model over "consultation as usual" have yet to be established.
Plasma emission spectroscopy method of tumor therapy
Fleming, Kevin J.
1997-01-01
Disclosed are a method and apparatus for performing photon diagnostics using a portable and durable apparatus which incorporates the use of a remote sensing probe in fiberoptic communication with an interferometer or spectrometer. Also disclosed are applications for the apparatus including optically measuring high velocities and analyzing plasma/emission spectral characteristics.
NASA Technical Reports Server (NTRS)
Dowling, Jonathan P.
2000-01-01
Recently, several researchers, including yours truly, have been able to demonstrate theoretically that quantum photon entanglement has the potential to also revolutionize the entire field of optical interferometry, by providing many orders of magnitude improvement in interferometer sensitivity. The quantum entangled photon interferometer approach is very general and applies to many types of interferometers. In particular, without nonlocal entanglement, a generic classical interferometer has a statistical-sampling shot-noise limited sensitivity that scales like 1/Sqrt[N], where N is the number of particles (photons, electrons, atoms, neutrons) passing through the interferometer per unit time. However, if carefully prepared quantum correlations are engineered between the particles, then the interferometer sensitivity improves by a factor of Sqrt[N] (square root of N) to scale like 1/N, which is the limit imposed by the Heisenberg Uncertainty Principle. For optical (laser) interferometers operating at milliwatts of optical power, this quantum sensitivity boost corresponds to an eight-order-of-magnitude improvement of signal to noise. Applications are to tests of General Relativity such as ground and orbiting optical interferometers for gravity wave detection, Laser Interferometer Gravity Observatory (LIGO) and the European Laser Interferometer Space Antenna (LISA), respectively.
In-Line Fiber Optic Interferometric Sensors in Single-Mode Fibers
Zhu, Tao; Wu, Di; Liu, Min; Duan, De-Wen
2012-01-01
In-line fiber optic interferometers have attracted intensive attention for their potential sensing applications in refractive index, temperature, pressure and strain measurement, etc. Typical in-line fiber-optic interferometers are of two types: Fabry-Perot interferometers and core-cladding-mode interferometers. It's known that the in-line fiber optic interferometers based on single-mode fibers can exhibit compact structures, easy fabrication and low cost. In this paper, we review two kinds of typical in-line fiber optic interferometers formed in single-mode fibers fabricated with different post-processing techniques. Also, some recently reported specific technologies for fabricating such fiber optic interferometers are presented. PMID:23112608
New methods of multimode fiber interferometer signal processing
NASA Astrophysics Data System (ADS)
Vitrik, Oleg B.; Kulchin, Yuri N.; Maxaev, Oleg G.; Kirichenko, Oleg V.; Kamenev, Oleg T.; Petrov, Yuri S.
1995-06-01
New methods of multimode fiber interferometers signal processing are suggested. For scheme of single fiber multimode interferometers with two excited modes, the method based on using of special fiber unit is developed. This unit provides the modes interaction and further sum optical field filtering. As a result the amplitude of output signal is modulated by external influence on interferometer. The stabilization of interferometer sensitivity is achieved by using additional special modulation of output signal. For scheme of single fiber multimode interferometers with excitation of wide mode spectrum, the signal of intermode interference is registered by photodiode matrix and then special electronic unit performs correlation processing. For elimination of temperature destabilization, the registered signal is adopted to multimode interferometers optical signal temperature changes. The achieved parameters for double mode scheme: temporary stability--0.6% per hour, sensitivity to interferometer length deviations--3,2 nm; for multimode scheme: temperature stability--(0.5%)/(K), temporary nonstability--0.2% per hour, sensitivity to interferometer length deviations--20 nm, dynamic range--35 dB.
2014-03-01
Humanitarian Assistance and Disaster Relief HTML HyperText Markup Language IA Information Assurance IAI Israel Aerospace Industries IASA Information ...decision maker at the Command and Control “mini cloud” was of upmost interest . This discussion not only confirmed the need to have information ...2) monitoring for specific cyber attacks on a specified system, (3) alerting information of interest to an operator, and finally (4) allowing the
2012-04-01
tactical electronic and optical reconnaissance (both high and low altitude); and 3) electronic combat (jamming and chaff dispensing).7 In contrast, the...sites or other radar sites. IAI designed the Harpy as a loitering UAS that would sit over the battlefield and search for electronic emissions from...tactical reconnaissance, and can be modified to carry different payloads for electronic warfare or attack missions. The Hermes 450 is the smallest
HIBAL Program. Preliminary Warhead-Design. Volume II. Appendices.
1980-09-15
Mild Steel (iAi i018). ............. 11-2 B. SAE 4130 .. .. .. .... ...... ....... 11-3 C. SAE 4140 ......... .... .... ......... 11-3 D, SAE 4340...11-7 - Test Data for SAE 4140 Steel Frag- ments ...... ................ 11-14 Figure II-7A - 4142 ... .............. 11-15 Figure 11-8 - Test Data...included the following types of steel: SAE 1018, 4130, 4140 and 4340; 5-317 and 5-876 Carpenter tool steel; Anico HY-80 and SSS-100 steel; AISI-S7
Mechanism of Flutter a Theoretical and Experimental Investigation of the Flutter Problem
1940-01-01
I1 ti me at least. to Iso it somie pairiimeters nuire precisely t iai by lw direct toa fligrlit-tist iiietlild as at finial rissiiralie aginlit taiil...41a1 ’ 5. I’a]i of:. Lk -(.5 -V.45 -41.4 -113 -V4., -0(, 1I 0 (I 0 I 0 ti II IIo 30; 11 -. 01(940 (-.10122 - 01240 -. ( 11352 -. 0460 -. 0633I 36647 I
Investigation of Space Interferometer Control Using Imaging Sensor Output Feedback
NASA Technical Reports Server (NTRS)
Leitner, Jesse A.; Cheng, Victor H. L.
2003-01-01
Numerous space interferometry missions are planned for the next decade to verify different enabling technologies towards very-long-baseline interferometry to achieve high-resolution imaging and high-precision measurements. These objectives will require coordinated formations of spacecraft separately carrying optical elements comprising the interferometer. High-precision sensing and control of the spacecraft and the interferometer-component payloads are necessary to deliver sub-wavelength accuracy to achieve the scientific objectives. For these missions, the primary scientific product of interferometer measurements may be the only source of data available at the precision required to maintain the spacecraft and interferometer-component formation. A concept is studied for detecting the interferometer's optical configuration errors based on information extracted from the interferometer sensor output. It enables precision control of the optical components, and, in cases of space interferometers requiring formation flight of spacecraft that comprise the elements of a distributed instrument, it enables the control of the formation-flying vehicles because independent navigation or ranging sensors cannot deliver the high-precision metrology over the entire required geometry. Since the concept can act on the quality of the interferometer output directly, it can detect errors outside the capability of traditional metrology instruments, and provide the means needed to augment the traditional instrumentation to enable enhanced performance. Specific analyses performed in this study include the application of signal-processing and image-processing techniques to solve the problems of interferometer aperture baseline control, interferometer pointing, and orientation of multiple interferometer aperture pairs.
NASA Astrophysics Data System (ADS)
Zhao, Chen-Guang; Tan, Jiu-Bin; Liu, Tao
2010-09-01
The mechanism of a non-polarizing beam splitter (NPBS) with asymmetrical transfer coefficients causing the rotation of polarization direction is explained in principle, and the measurement nonlinear error caused by NPBS is analyzed based on Jones matrix theory. Theoretical calculations show that the nonlinear error changes periodically, and the error period and peak values increase with the deviation between transmissivities of p-polarization and s-polarization states. When the transmissivity of p-polarization is 53% and that of s-polarization is 48%, the maximum error reaches 2.7 nm. The imperfection of NPBS is one of the main error sources in simultaneous phase-shifting polarization interferometer, and its influence can not be neglected in the nanoscale ultra-precision measurement.
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, K. N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stiles, D.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Archibald, A. M.; Banaszak, S.; Berndsen, A.; Boyles, J.; Cardoso, R. F.; Chawla, P.; Cherry, A.; Dartez, L. P.; Day, D.; Epstein, C. R.; Ford, A. J.; Flanigan, J.; Garcia, A.; Hessels, J. W. T.; Hinojosa, J.; Jenet, F. A.; Karako-Argaman, C.; Kaspi, V. M.; Keane, E. F.; Kondratiev, V. I.; Kramer, M.; Leake, S.; Lorimer, D.; Lunsford, G.; Lynch, R. S.; Martinez, J. G.; Mata, A.; McLaughlin, M. A.; McPhee, C. A.; Penucci, T.; Ransom, S.; Roberts, M. S. E.; Rohr, M. D. W.; Stairs, I. H.; Stovall, K.; van Leeuwen, J.; Walker, A. N.; Wells, B. L.; LIGO Scientific Collaboration; Virgo Collaboration
2016-06-01
We present an archival search for transient gravitational-wave bursts in coincidence with 27 single-pulse triggers from Green Bank Telescope pulsar surveys, using the LIGO, Virgo, and GEO interferometer network. We also discuss a check for gravitational-wave signals in coincidence with Parkes fast radio bursts using similar methods. Data analyzed in these searches were collected between 2007 and 2013. Possible sources of emission of both short-duration radio signals and transient gravitational-wave emission include starquakes on neutron stars, binary coalescence of neutron stars, and cosmic string cusps. While no evidence for gravitational-wave emission in coincidence with these radio transients was found, the current analysis serves as a prototype for similar future searches using more sensitive second-generation interferometers.
NASA Astrophysics Data System (ADS)
Ushakov, Nikolai; Liokumovich, Leonid
2014-05-01
A novel approach for extrinsic Fabry-Perot interferometer baseline measurement has been developed. The principles of frequency-scanning interferometry are utilized for registration of the interferometer spectral function, from which the baseline is demodulated. The proposed approach enables one to capture the absolute baseline variations at frequencies much higher than the spectral acquisition rate. Despite the conventional approaches, associating a single baseline indication to the registered spectrum, in the proposed method a modified frequency detection procedure is applied to the spectrum. This provides an ability to capture the baseline variations which took place during the spectrum acquisition. The limitations on the parameters of the possibly registered baseline variations are formulated. The experimental verification of the proposed approach for different perturbations has been performed.
NASA Technical Reports Server (NTRS)
Reed, D. L.; Wallace, R. G.
1981-01-01
The results of system analyses and implementation studies of an advanced location and data collection system (ALDCS) , proposed for inclusion on the National Oceanic Satellite System (NOSS) spacecraft are reported. The system applies Doppler processing and radiofrequency interferometer position location technqiues both alone and in combination. Aspects analyzed include: the constraints imposed by random access to the system by platforms, the RF link parameters, geometric concepts of position and velocity estimation by the two techniques considered, and the effects of electrical measurement errors, spacecraft attitude errors, and geometric parameters on estimation accuracy. Hardware techniques and trade-offs for interferometric phase measurement, ambiguity resolution and calibration are considered. A combined Doppler-interferometer ALDCS intended to fulfill the NOSS data validation and oceanic research support mission is also described.
On the effect of tilted roof reflectors in Martin-Puplett spectrometers
NASA Astrophysics Data System (ADS)
Schillaci, Alessandro; de Bernardis, Paolo
2012-01-01
In this paper we analyze theoretically and experimentally the effect of tilt of the roof mirrors in a double pendulum Martin-Puplett Polarizing Interferometer (MPI), focusing on the polarization of the interfering beams. In principle, the tilt affects the efficiency and polarimetric properties of the interferometer. The case of a moderate resolution spectrometer is analysed in detail. Using the Stokes formalism we recover the analytical expressions for the orientation angle and the ellipticity of the beam reflected from a metallic surface, and we compute these quantities for the roof-mirror of a MPI. We find that the polarization rotation and depolarization are small. Using the Jones formalism we propagate their effect on the measured interferogram and spectrum, and demonstrate that the performance degradation is small compared to other systematic effects.
Plasma emission spectroscopy method of tumor therapy
Fleming, K.J.
1997-03-11
Disclosed are a method and apparatus for performing photon diagnostics using a portable and durable apparatus which incorporates the use of a remote sensing probe in fiberoptic communication with an interferometer or spectrometer. Also disclosed are applications for the apparatus including optically measuring high velocities and analyzing plasma/emission spectral characteristics. 6 figs.
A thin polymer insulator for Josephson tunneling applications
NASA Technical Reports Server (NTRS)
Wilmsen, C. M.
1973-01-01
The use of an organic monolayer formed from a vapor as an insulating barrier for thin film Josephson junctions is considered, and the effect of an organic monolayer on the transition temperature of a thin film superconductor is investigated. Also analyzed are the geometric factors which influence Josephson junctions and Josephson junction interferometers.
Nonlocal polarization interferometer for entanglement detection
Williams, Brian P.; Humble, Travis S.; Grice, Warren P.
2014-10-30
We report a nonlocal interferometer capable of detecting entanglement and identifying Bell states statistically. This is possible due to the interferometer's unique correlation dependence on the antidiagonal elements of the density matrix, which have distinct bounds for separable states and unique values for the four Bell states. The interferometer consists of two spatially separated balanced Mach-Zehnder or Sagnac interferometers that share a polarization-entangled source. Correlations between these interferometers exhibit nonlocal interference, while single-photon interference is suppressed. This interferometer also allows for a unique version of the Clauser-Horne-Shimony-Holt Bell test where the local reality is the photon polarization. In conclusion, wemore » present the relevant theory and experimental results.« less
Basis-neutral Hilbert-space analyzers
Martin, Lane; Mardani, Davood; Kondakci, H. Esat; Larson, Walker D.; Shabahang, Soroush; Jahromi, Ali K.; Malhotra, Tanya; Vamivakas, A. Nick; Atia, George K.; Abouraddy, Ayman F.
2017-01-01
Interferometry is one of the central organizing principles of optics. Key to interferometry is the concept of optical delay, which facilitates spectral analysis in terms of time-harmonics. In contrast, when analyzing a beam in a Hilbert space spanned by spatial modes – a critical task for spatial-mode multiplexing and quantum communication – basis-specific principles are invoked that are altogether distinct from that of ‘delay’. Here, we extend the traditional concept of temporal delay to the spatial domain, thereby enabling the analysis of a beam in an arbitrary spatial-mode basis – exemplified using Hermite-Gaussian and radial Laguerre-Gaussian modes. Such generalized delays correspond to optical implementations of fractional transforms; for example, the fractional Hankel transform is the generalized delay associated with the space of Laguerre-Gaussian modes, and an interferometer incorporating such a ‘delay’ obtains modal weights in the associated Hilbert space. By implementing an inherently stable, reconfigurable spatial-light-modulator-based polarization-interferometer, we have constructed a ‘Hilbert-space analyzer’ capable of projecting optical beams onto any modal basis. PMID:28344331
Wang, Qi; Li, Chunyue; Zhao, Chengwu; Li, Weizheng
2016-06-01
A cascaded symmetrical dual-taper Mach-Zehnder interferometer structure based on guided-mode and leaky-mode interference is proposed in this paper. Firstly, the interference spectrum characteristics of interferometer has been analyzed by the Finite Difference-Beam Propagation Method (FD-BPM). When the diameter of taper waist is 20 μm-30 μm, dual-taper length is 1 mm and taper distance is 4 cm-6 cm, the spectral contrast is higher, which is suitable for sensing. Secondly, experimental research on refractive index sensitivity is carried out. A refractive index sensitivity of 62.78 nm/RIU (refractive index unit) can achieved in the RI range of 1.3333-1.3792 (0%~25% NaCl solution), when the sensor structure parameters meet the following conditions: diameter of taper waist is 24 μm, dual-taper length is 837 μm and taper distance is 5.5 cm. The spectrum contrast is 0.8 and measurement resolution is 1.6 × 10(-5) RIU. The simulation analysis is highly consistent with experimental results. Research shows that the sensor has promising application in low RI fields where high-precision measurement is required due to its high sensitivity and stability.
One- and two-mode squeezed light in correlated interferometry
NASA Astrophysics Data System (ADS)
Ruo-Berchera, I.; Degiovanni, I. P.; Olivares, S.; Samantaray, N.; Traina, P.; Genovese, M.
2015-11-01
We study in detail a system of two interferometers aimed at detecting extremely faint phase fluctuations. This system can represent a breakthrough for detecting a faint correlated signal that would remain otherwise undetectable even using the most sensitive individual interferometric devices, as in the case of so-called holographic noise. The signature of this kind of noise emerges as a correlation between the output signals of the interferometers. On the other hand, when holographic noise is absent one expects uncorrelated signals since the time-averaged fluctuations due to shot noise and other independent contributions vanish (though limiting the overall sensitivity). We show how injecting quantum light in the free ports of the interferometers can reduce the photon noise of the system beyond the shot noise, enhancing the resolution in the phase-correlation estimation. We analyze the use of both the two-mode squeezed vacuum and two independent squeezed states. Our results confirm the benefit of using squeezed beams together with strong coherent beams in interferometry. We also investigate the possible use of the two-mode squeezed vacuum, discovering interesting and unexplored areas of application of bipartite entanglement, in particular the possibility of reaching in principle a surprising uncertainty reduction.
Coherence-length-gated distributed optical fiber sensing based on microwave-photonic interferometry.
Hua, Liwei; Song, Yang; Cheng, Baokai; Zhu, Wenge; Zhang, Qi; Xiao, Hai
2017-12-11
This paper presents a new optical fiber distributed sensing concept based on coherent microwave-photonics interferometry (CMPI), which uses a microwave modulated coherent light source to interrogate cascaded interferometers for distributed measurement. By scanning the microwave frequencies, the complex microwave spectrum is obtained and converted to time domain signals at known locations by complex Fourier transform. The amplitudes of these time domain pulses are a function of the optical path differences (OPDs) of the distributed interferometers. Cascaded fiber Fabry-Perot interferometers (FPIs) fabricated by femtosecond laser micromachining were used to demonstrate the concept. The experimental results indicated that the strain measurement resolution can be better than 0.6 µε using a FPI with a cavity length of 1.5 cm. Further improvement of the strain resolution to the nε level is achievable by increasing the cavity length of the FPI to over 1m. The tradeoff between the sensitivity and dynamic range was also analyzed in detail. To minimize the optical power instability (either from the light source or the fiber loss) induced errors, a single reflector was added in front of an individual FPI as an optical power reference for the purpose of compensation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCuller, Lee Patrick
2015-12-01
The Holometer is designed to test for a Planck diffractive-scaling uncertainty in long-baseline position measurements due to an underlying noncommutative geometry normalized to relate Black hole entropy bounds of the Holographic principle to the now-finite number of position states. The experiment overlaps two independent 40 meter optical Michelson interferometers to detect the proposed uncertainty as a common broadband length fluctuation. 150 hours of instrument cross-correlation data are analyzed to test the prediction of a correlated noise magnitude ofmore » $$7\\times10^{−21}$$ m/$$\\sqrt{\\rm Hz}$$ with an effective bandwidth of 750kHz. The interferometers each have a quantum-limited sensitivity of $$2.5\\times 10^{−18}$$ m/$$\\sqrt{\\rm Hz}$$, but their correlation with a time-bandwidth product of $$4\\times 10^{11}$$ digs between the noise floors in search for the covarying geometric jitter. The data presents an exclusion of 5 standard deviations for the tested model. This exclusion is defended through analysis of the calibration methods for the instrument as well as further sub shot noise characterization of the optical systems to limit spurious background-correlations from undermining the signal.« less
A Comparison of Structurally Connected and Multiple Spacecraft Interferometers
NASA Technical Reports Server (NTRS)
Surka, Derek M.; Crawley, Edward F.
1996-01-01
Structurally connected and multiple spacecraft interferometers are compared in an attempt to establish the maximum baseline (referred to as the "cross-over baseline") for which it is preferable to operate a single-structure interferometer in space rather than an interferometer composed of numerous, smaller spacecraft. This comparison is made using the total launched mass of each configuration as the comparison metric. A framework of study within which structurally connected and multiple spacecraft interferometers can be compared is presented in block diagram form. This methodology is then applied to twenty-two different combinations of trade space parameters to investigate the effects of different orbits, orientations, truss materials, propellants, attitude control actuators, onboard disturbance sources, and performance requirements on the cross-over baseline. Rotating interferometers and the potential advantages of adding active structural control to the connected truss of the structurally connected interferometer are also examined. The minimum mass design of the structurally connected interferometer that meets all performance-requirements and satisfies all imposed constraints is determined as a function of baseline. This minimum mass design is then compared to the design of the multiple spacecraft interferometer. It is discovered that the design of the minimum mass structurally connected interferometer that meets all performance requirements and constraints in solar orbit is limited by the minimum allowable aspect ratio, areal density, and gage of the struts. In the formulation of the problem used in this study, there is no advantage to adding active structural control to the truss for interferometers in solar orbit. The cross-over baseline for missions of practical duration (ranging from one week to thirty years) in solar orbit is approximately 400 m for non-rotating interferometers and 650 m for rotating interferometers.
NASA Technical Reports Server (NTRS)
Baker, John G.; Thorpe, J. I.
2012-01-01
We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe. Whether this potential advantage outweighs the additional complexity associated with including atom interferometers will require further study.
A compact semiconductor digital interferometer and its applications
NASA Astrophysics Data System (ADS)
Britsky, Oleksander I.; Gorbov, Ivan V.; Petrov, Viacheslav V.; Balagura, Iryna V.
2015-05-01
The possibility of using semiconductor laser interferometers to measure displacements at the nanometer scale was demonstrated. The creation principles of miniature digital Michelson interferometers based on semiconductor lasers were proposed. The advanced processing algorithm for the interferometer quadrature signals was designed. It enabled to reduce restrictions on speed of measured movements. A miniature semiconductor digital Michelson interferometer was developed. Designing of the precision temperature stability system for miniature low-cost semiconductor laser with 0.01ºС accuracy enabled to use it for creation of compact interferometer rather than a helium-neon one. Proper firmware and software was designed for the interferometer signals real-time processing and conversion in to respective shifts. In the result the relative displacement between 0-500 mm was measured with a resolution of better than 1 nm. Advantages and disadvantages of practical use of the compact semiconductor digital interferometer in seismometers for the measurement of shifts were shown.
A Martin-Puplett cartridge FIR interferometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Roger J.; Penniman, Edwin E.; Jarboe, Thomas R.
2004-10-01
A compact prealigned Martin-Puplett interferometer (MPI) cartridge for plasma interferometry is described. The MPI cartridge groups all components of a MP interferometer, with the exception of the end mirror for the scene beam, on a stand-alone rigid platform. The interferometer system is completed by positioning a cartridge anywhere along and coaxial with the scene beam, considerably reducing the amount of effort in alignment over a discrete component layout. This allows the interferometer to be expanded to any number of interferometry chords consistent with optical access, limited only by the laser power. The cartridge interferometer has been successfully incorporated as amore » second chord on the Helicity Injected Torus II (HIT-II) far infrared interferometer system and a comparison with the discrete component system is presented. Given the utility and compactness of the cartridge, a possible design for a five-chord interferometer arrangement on the HIT-II device is described.« less
Recent observations with phase-contrast x-ray computed tomography
NASA Astrophysics Data System (ADS)
Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi
1999-09-01
Recent development in phase-contrast X-ray computed tomography using an X-ray interferometer is reported. To observe larger samples than is possible with our previous X-ray interferometer, a large monolithic X-ray interferometer and a separated-type X-ray interferometer were studied. At the present time, 2.5 cm X 1.5 cm interference patterns have been generated with the X-ray interferometers using synchrotron X-rays. The large monolithic X-ray interferometer has produced interference fringes with 80% visibility, and has been used to measure various tissues. To produce images with higher spatial resolution, we fabricated another X-ray interferometer whose wafer was partially thinned by chemical etching. A preliminary test suggested that the spatial resolution has been improved.
A heterodyne interferometer with periodic nonlinearities smaller than ±10 pm
NASA Astrophysics Data System (ADS)
Weichert, C.; Köchert, P.; Köning, R.; Flügge, J.; Andreas, B.; Kuetgens, U.; Yacoot, A.
2012-09-01
The PTB developed a new optical heterodyne interferometer in the context of the European joint research project ‘Nanotrace’. A new optical concept using plane-parallel plates and spatially separated input beams to minimize the periodic nonlinearities was realized. Furthermore, the interferometer has the resolution of a double-path interferometer, compensates for possible angle variations between the mirrors and the interferometer optics and offers a minimal path difference between the reference and the measurement arm. Additionally, a new heterodyne phase evaluation based on an analogue to digital converter board with embedded field programmable gate arrays was developed, providing a high-resolving capability in the single-digit picometre range. The nonlinearities were characterized by a comparison with an x-ray interferometer, over a measurement range of 2.2 periods of the optical interferometer. Assuming an error-free x-ray interferometer, the nonlinearities are considered to be the deviation of the measured displacement from a best-fit line. For the proposed interferometer, nonlinearities smaller than ±10 pm were observed without any quadrature fringe correction.
NASA Astrophysics Data System (ADS)
Yacoot, Andrew; Downs, Michael J.
2000-08-01
The x-ray interferometer from the combined optical and x-ray interferometer (COXI) facility at NPL has been used to investigate the performance of the NPL Jamin Differential Plane Mirror Interferometer when it is fitted with stabilized and unstabilized lasers. This Jamin interferometer employs a common path design using a double pass configuration and one fringe is realized by a displacement of 158 nm between its two plane mirror retroreflectors. Displacements over ranges of several optical fringes were measured simultaneously using the COXI x-ray interferometer and the Jamin interferometer and the results were compared. In order to realize the highest measurement accuracy from the Jamin interferometer, the air paths were shielded to prevent effects from air turbulence and electrical signals generated by the photodetectors were analysed and corrected using an optimizing routine in order to subdivide the optical fringes accurately. When an unstabilized laser was used the maximum peak-to-peak difference between the two interferometers was 80 pm, compared with 20 pm when the stabilized laser was used.
Demonstration of improved sensitivity of echo interferometers to gravitational acceleration
NASA Astrophysics Data System (ADS)
Mok, C.; Barrett, B.; Carew, A.; Berthiaume, R.; Beattie, S.; Kumarakrishnan, A.
2013-08-01
We have developed two configurations of an echo interferometer that rely on standing-wave excitation of a laser-cooled sample of rubidium atoms. Both configurations can be used to measure acceleration a along the axis of excitation. For a two-pulse configuration, the signal from the interferometer is modulated at the recoil frequency and exhibits a sinusoidal frequency chirp as a function of pulse spacing. In comparison, for a three-pulse stimulated-echo configuration, the signal is observed without recoil modulation and exhibits a modulation at a single frequency as a function of pulse spacing. The three-pulse configuration is less sensitive to effects of vibrations and magnetic field curvature, leading to a longer experimental time scale. For both configurations of the atom interferometer (AI), we show that a measurement of acceleration with a statistical precision of 0.5% can be realized by analyzing the shape of the echo envelope that has a temporal duration of a few microseconds. Using the two-pulse AI, we obtain measurements of acceleration that are statistically precise to 6 parts per million (ppm) on a 25 ms time scale. In comparison, using the three-pulse AI, we obtain measurements of acceleration that are statistically precise to 0.4 ppm on a time scale of 50 ms. A further statistical enhancement is achieved by analyzing the data across the echo envelope so that the statistical error is reduced to 75 parts per billion (ppb). The inhomogeneous field of a magnetized vacuum chamber limited the experimental time scale and resulted in prominent systematic effects. Extended time scales and improved signal-to-noise ratio observed in recent echo experiments using a nonmagnetic vacuum chamber suggest that echo techniques are suitable for a high-precision measurement of gravitational acceleration g. We discuss methods for reducing systematic effects and improving the signal-to-noise ratio. Simulations of both AI configurations with a time scale of 300 ms suggest that an optimized experiment with improved vibration isolation and atoms selected in the mF=0 state can result in measurements of g statistically precise to 0.3 ppb for the two-pulse AI and 0.6 ppb for the three-pulse AI.
Special relativity and interferometers
NASA Technical Reports Server (NTRS)
Han, D.; Kim, Y. S.
1988-01-01
A new generation of gravitational wave detectors is expected to be based on interferometers. Yurke et al. (1986) introduced a class of interferometers characterized by SU(1,1) which can in principle achieve a phase sensitivity approaching 1/N, where N is thte total number of photons entering the interferometer. It is shown here that the SU(1,1) interferometer can serve as an analog computer for Wigner's little group of the Poincare\\'| group.
Optically guided atom interferometer tuned to magic wavelength
NASA Astrophysics Data System (ADS)
Akatsuka, Tomoya; Takahashi, Tadahiro; Katori, Hidetoshi
2017-11-01
We demonstrate an atom interferometer operating on the 1S0-3P0 clock transition of 87Sr atoms in a “magic” optical guide, where the light shift perturbations of the guiding potential are canceled. As a proof-of-principle demonstration, a Mach-Zehnder interferometer is set horizontally to map the acceleration introduced by the focused optical guide. This magic guide interferometer on the clock transition is applicable to atomic elements where magic wavelengths can be found. Possible applications of the magic guide interferometer, including a hollow-core fiber interferometer and gradiometer, are discussed.
Measurement Via Optical Near-Nulling and Subaperture Stitching
NASA Technical Reports Server (NTRS)
Forbes, Greg; De Vries, Gary; Murphy, Paul; Brophy, Chris
2012-01-01
A subaperture stitching interferometer system provides near-nulling of a subaperture wavefront reflected from an object of interest over a portion of a surface of the object. A variable optical element located in the radiation path adjustably provides near-nulling to facilitate stitching of subaperture interferograms, creating an interferogram representative of the entire surface of interest. This enables testing of aspheric surfaces without null optics customized for each surface prescription. The surface shapes of objects such as lenses and other precision components are often measured with interferometry. However, interferometers have a limited capture range, and thus the test wavefront cannot be too different from the reference or the interference cannot be analyzed. Furthermore, the performance of the interferometer is usually best when the test and reference wavefronts are nearly identical (referred to as a null condition). Thus, it is necessary when performing such measurements to correct for known variations in shape to ensure that unintended variations are within the capture range of the interferometer and accurately measured. This invention is a system for nearnulling within a subaperture stitching interferometer, although in principle, the concept can be employed by wavefront measuring gauges other than interferometers. The system employs a light source for providing coherent radiation of a subaperture extent. An object of interest is placed to modify the radiation (e.g., to reflect or pass the radiation), and a variable optical element is located to interact with, and nearly null, the affected radiation. A detector or imaging device is situated to obtain interference patterns in the modified radiation. Multiple subaperture interferograms are taken and are stitched, or joined, to provide an interferogram representative of the entire surface of the object of interest. The primary aspect of the invention is the use of adjustable corrective optics in the context of subaperture stitching near-nulling interferometry, wherein a complex surface is analyzed via multiple, separate, overlapping interferograms. For complex surfaces, the problem of managing the identification and placement of corrective optics becomes even more pronounced, to the extent that in most cases the null corrector optics are specific to the particular asphere prescription and no others (i.e. another asphere requires completely different null correction optics). In principle, the near-nulling technique does not require subaperture stitching at all. Building a near-null system that is practically useful relies on two key features: simplicity and universality. If the system is too complex, it will be difficult to calibrate and model its manufacturing errors, rendering it useless as a precision metrology tool and/or prohibitively expensive. If the system is not applicable to a wide range of test parts, then it does not provide significant value over conventional null-correction technology. Subaperture stitching enables simpler and more universal near-null systems to be effective, because a fraction of a surface is necessarily less complex than the whole surface (excepting the extreme case of a fractal surface description). The technique of near-nulling can significantly enhance aspheric subaperture stitching capability by allowing the interferometer to capture a wider range of aspheres. More over, subaperture stitching is essential to a truly effective near-nulling system, since looking at a fraction of the surface keeps the wavefront complexity within the capability of a relatively simple nearnull apparatus. Furthermore, by reducing the subaperture size, the complexity of the measured wavefront can be reduced until it is within the capability of the near-null design.
NASA Technical Reports Server (NTRS)
Baker, John G.
2012-01-01
We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.
Baker, John G; Thorpe, J I
2012-05-25
We consider a class of proposed gravitational-wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, noninertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g., multiple-arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and, in principle, favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.
Toward a Computational Theory of Early Visual Processing in Reading.
1980-09-01
Austin. I’R- 15,S 1979. I Iais I arrs S. miid Rosen kid A triel I i Irc iical rla xat~o r wa c WiNCCVl parIsinlg. C UIp hrI I( 1iSiwn -.l SI.S. eds. I I in...1977), 201-231. I ley F. It. i’e I’.’chohe’I Pedagog , of’Reading. Macmillan. New York, 1908. hles; . "Spatial nonlilicarities in the instanlaneous
Strengthening by Substitutional Solutes and the Temperature Dependence of the Flow Stress in Ni3Al
1989-05-26
stoichiometric composition in polycrystalline Ni3AI and Ni3Ga. 29 Fig. 3.1 The Ni-Al binary-alloy phase diagram in vacinity of Ni3A1 phase, as verified in...I <I- iai / I I- I I I I000 - - II 21 25 29 33 37 ATOMIC % Al Fig. 3.1 The Ni-Al binary-alloy phase diagram in vacinity of Ni3Al phase, as verified
The Mask Designs for Space Interferometer Mission (SIM)
NASA Technical Reports Server (NTRS)
Wang, Xu
2008-01-01
The Space Interferometer Mission (SIM) consists of three interferometers (science, guide1, and guide2) and two optical paths (metrology and starlight). The system requirements for each interferometer/optical path combination are different and sometimes work against each other. A diffraction model is developed to design and optimize various masks to simultaneously meet the system requirements of three interferometers. In this paper, the details of this diffraction model will be described first. Later, the mask design for each interferometer will be presented to demonstrate the system performance compliance. In the end, a tolerance sensitivity study on the geometrical dimension, shape, and the alignment of these masks will be discussed.
Modulated Source Interferometry with Combined Amplitude and Frequency Modulation
NASA Technical Reports Server (NTRS)
Gutierrez, Roman C. (Inventor)
1998-01-01
An improved interferometer is produced by modifying a conventional interferometer to include amplitude and/or frequency modulation of a coherent light source at radio or higher frequencies. The phase of the modulation signal can be detected in an interfering beam from an interferometer and can be used to determine the actual optical phase of the beam. As such, this improvement can be adapted to virtually any two-beam interferometer, including: Michelson, Mach-Zehnder, and Sagnac interferometers. The use of an amplitude modulated coherent tight source results in an interferometer that combines the wide range advantages of coherent interferometry with the precise distance measurement advantages of white light interferometry.
Comparison of the performance of the next generation of optical interferometers
NASA Astrophysics Data System (ADS)
Pisani, Marco; Yacoot, Andrew; Balling, Petr; Bancone, Nicola; Birlikseven, Cengiz; Çelik, Mehmet; Flügge, Jens; Hamid, Ramiz; Köchert, Paul; Kren, Petr; Kuetgens, Ulrich; Lassila, Antti; Bartolo Picotto, Gian; Şahin, Ersoy; Seppä, Jeremias; Tedaldi, Matthew; Weichert, Christoph
2012-08-01
Six European National Measurement Institutes (NMIs) have joined forces within the European Metrology Research Programme funded project NANOTRACE to develop the next generation of optical interferometers having a target uncertainty of 10 pm. These are needed for NMIs to provide improved traceable dimensional metrology that can be disseminated to the wider nanotechnology community, thereby supporting the growth in nanotechnology. Several approaches were followed in order to develop the interferometers. This paper briefly describes the different interferometers developed by the various partners and presents the results of a comparison of performance of the optical interferometers using an x-ray interferometer to generate traceable reference displacements.
A novel plane mirror interferometer without using corner cube reflectors
NASA Astrophysics Data System (ADS)
Büchner, H.-J.; Jäger, G.
2006-04-01
The conception and properties will be introduced of an interferometer that exclusively uses plane mirrors as reflectors; thus, these interferometers correspond well to the original Michelson interferometer. First, the relationship between the interference conditions and the detection with photodiodes will be discussed using the example of known interferometers as well as reasons given for primarily using corner cube reflectors in these devices. Next, the conceptual design of the plane mirror interferometer will be presented. This type of interferometer possesses new properties which are significant for metrological and technical applications. Only one measuring beam exists between the polarizing beam splitter and the measuring mirror and this beam alone represents the Abbe axis. This property allows the significant reduction of the Abbe error. The interferometer is able to tolerate tilting on the order of about 1'. This ensures the orthogonality between the measuring beam and the measuring mirror during the measurement. This property can be used in three-dimensional measurements to erect the three measuring beams as a x-y-z Cartesian coordinate system on the basis of three orthogonal mirrors. The plane-mirror interferometer also allows non-contact measurements of planar and curved surfaces, e.g. silicon wafers.
Miniature interferometer for refractive index measurement in microfluidic chip
NASA Astrophysics Data System (ADS)
Chen, Minghui; Geiser, Martial; Truffer, Frederic; Song, Chengli
2012-12-01
The design and development of the miniaturized interferometer for measurement of the refractive index or concentration of sub-microliter volume aqueous solution in microfludic chip is presented. It is manifested by a successful measurement of the refractive index of sugar-water solution, by utilizing a laser diode for light source and the small robust instrumentation for practical implementation. Theoretically, the measurement principle and the feasibility of the system are analyzed. Experimental device is constructed with a diode laser, lens, two optical plate and a complementary metal oxide semiconductor (CMOS). Through measuring the positional changes of the interference fringes, the refractive index change are retrieved. A refractive index change of 10-4 is inferred from the measured image data. The entire system is approximately the size of half and a deck of cards and can operate on battery power for long time.
Quan, Mingran; Tian, Jiajun; Yao, Yong
2015-11-01
An ultra-high sensitivity open-cavity Fabry-Perot interferometer (FPI) gas refractive index (RI) sensor based on the photonic crystal fiber (PCF) and Vernier effect is proposed and demonstrated. The sensor is prepared by splicing a section of PCF to a section of fiber tube fused with a section of single mode fiber. The air holes running along the cladding of the PCF enable the gas to enter or leave the cavity freely. The reflection beam from the last end face of the PCF is used to generate the Vernier effect, which significantly improves the sensitivity of the sensor. Experimental results show that the proposed sensor can provide an ultra-high RI sensitivity of 30899 nm/RIU. This sensor has potential applications in fields such as gas concentration analyzing and humidity monitoring.
Common path in-line holography using enhanced joint object reference digital interferometers
Kelner, Roy; Katz, Barak; Rosen, Joseph
2014-01-01
Joint object reference digital interferometer (JORDI) is a recently developed system capable of recording holograms of various types [Opt. Lett. 38(22), 4719 (2013)24322115]. Presented here is a new enhanced system design that is based on the previous JORDI. While the previous JORDI has been based purely on diffractive optical elements, displayed on spatial light modulators, the present design incorporates an additional refractive objective lens, thus enabling hologram recording with improved resolution and increased system applicability. Experimental results demonstrate successful hologram recording for various types of objects, including transmissive, reflective, three-dimensional, phase and highly scattering objects. The resolution limit of the system is analyzed and experimentally validated. Finally, the suitability of JORDI for microscopic applications is verified as a microscope objective based configuration of the system is demonstrated. PMID:24663838
Microwave interferometer controls cutting depth of plastics
NASA Technical Reports Server (NTRS)
Heisman, R. M.; Iceland, W. F.
1969-01-01
Microwave interferometer system controls the cutting of plastic materials to a prescribed depth. The interferometer is mounted on a carriage with a spindle and cutting tool. A cross slide, mounted on the carriage, allows the interferometer and cutter to move toward or away from the plastic workpiece.
Absolute metrology for space interferometers
NASA Astrophysics Data System (ADS)
Salvadé, Yves; Courteville, Alain; Dändliker, René
2017-11-01
The crucial issue of space-based interferometers is the laser interferometric metrology systems to monitor with very high accuracy optical path differences. Although classical high-resolution laser interferometers using a single wavelength are well developed, this type of incremental interferometer has a severe drawback: any interruption of the interferometer signal results in the loss of the zero reference, which requires a new calibration, starting at zero optical path difference. We propose in this paper an absolute metrology system based on multiplewavelength interferometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yung-Cheng; Shyu, Lih-Horng; Chang, Chung-Ping
The optical configuration of a Fabry-Perot interferometer is uncomplicated. This has already been applied in different measurement systems. For the displacement measurement with the Fabry-Perot interferometer, the result is significantly influenced by the tilt angles of the measurement mirror in the interferometer. Hence, only for the rather small measuring range, the Fabry-Perot interferometer is available. The goal of this investigation is to enhance the measuring range of Fabry-Perot interferometer by compensating the tilt angles. To verify the measuring characteristic of the self-developed Fabry-Perot interferometer, some comparison measurements with a reference standard have been performed. The maximum deviation of comparison experimentsmore » is less than 0.3 {mu}m in the traveling range of 30 mm. The experimental results show that the Fabry-Perot interferometer is highly stable, insensitive to environment effects, and can meet the measuring requirement of the submicrometer order.« less
Solar Confocal interferometers for Sub-Picometer-Resolution Spectral Filters
NASA Technical Reports Server (NTRS)
Gary, G. Allen; Pietraszewski, Chris; West, Edward A.; Dines. Terence C.
2007-01-01
The confocal Fabry-Perot interferometer allows sub-picometer spectral resolution of Fraunhofer line profiles. Such high spectral resolution is needed to keep pace with the higher spatial resolution of the new set of large-aperture solar telescopes. The line-of-sight spatial resolution derived for line profile inversions would then track the improvements of the transverse spatial scale provided by the larger apertures. In particular, profile inversion allows improved velocity and magnetic field gradients to be determined independent of multiple line analysis using different energy levels and ions. The confocal interferometer's unique properties allow a simultaneous increase in both etendue and spectral power. The higher throughput for the interferometer provides significant decrease in the aperture, which is important in spaceflight considerations. We have constructed and tested two confocal interferometers. A slow-response thermal-controlled interferometer provides a stable system for laboratory investigation, while a piezoelectric interferometer provides a rapid response for solar observations. In this paper we provide design parameters, show construction details, and report on the laboratory test for these interferometers. The field of view versus aperture for confocal interferometers is compared with other types of spectral imaging filters. We propose a multiple etalon system for observing with these units using existing planar interferometers as pre-filters. The radiometry for these tests established that high spectral resolution profiles can be obtained with imaging confocal interferometers. These sub-picometer spectral data of the photosphere in both the visible and near-infrared can provide important height variation information. However, at the diffraction-limited spatial resolution of the telescope, the spectral data is photon starved due to the decreased spectral passband.
Sommargren, Gary E.
1999-01-01
An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.
Sommargren, G.E.
1999-08-03
An interferometer is disclosed which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 11 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shyu, Lih-Horng; Chang, Chung-Ping; Wang, Yung-Cheng
Fabry-Perot interferometer is often used for the micro-displacement, because of its common optical path structure being insensitive to the environmental disturbances. Recently, the folded Fabry-Perot interferometer has been investigated for displacement measurements in large ranges. The advantages of a folded Fabry-Perot interferometer are insensitive to the tilt angle and higher optical resolution. But the design of the optical cavity has become more and more complicated. For this reason, the intensity loss in the cavity will be an important parameter for the distribution of the interferometric intensity. To obtain a more accurate result of such interferometer utilized for displacement measurements, themore » intensity loss of the cavity in the fabricated folded Fabry-Perot interferometer and the modified equation of the folded Fabry-Perot interferometer will be described. According to the theoretical and experimental results, the presented model is available for the analysis of displacement measurements by a folded Fabry-Perot interferometer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alekseev, A E; Potapov, V T; Gorshkov, B G
2015-10-31
Sensitivity of a fibre scattered-light interferometer to external phase perturbations is studied for the first time. An expression is derived for an average power of a useful signal at the interferometer output under external harmonic perturbations in a signal fibre of the interferometer. It is shown that the maximum sensitivity of the scattered-light interferometer depends on the dispersion of the interferogram intensity. An average signal-to-noise ratio is determined theoretically and experimentally at the output of the interferometer at different amplitudes of external perturbations. Using the measured dependences of the signal-to-noise ratio, the threshold sensitivity of the fibre scattered-light interferometer tomore » external phase perturbations is found. The results obtained can be used to optimise characteristics of optical time-domain reflectometers and to design individual phase-sensitive fibre-optic sensors. (laser applications and other topics in quantum electronics)« less
A Michelson-type radio interferometer for university education
NASA Astrophysics Data System (ADS)
Koda, Jin; Barrett, James; Shafto, Gene; Slechta, Jeff; Hasegawa, Tetsuo; Hayashi, Masahiko; Metchev, Stanimir
2016-04-01
We report development of a simple and affordable radio interferometer suitable as an educational laboratory experiment. The design of this interferometer is based on the Michelson and Pease stellar optical interferometer, but instead operates at the radio wavelength of ˜11 GHz (˜2.7 cm), requiring much less stringent optical accuracy in its design and use. We utilize a commercial broadcast satellite dish and feedhorn with two flat side mirrors that slide on a ladder, providing baseline coverage. This interferometer can resolve and measure the diameter of the Sun, even on a day with marginal weather. Commercial broadcast satellites provide convenient point sources for comparison to the Sun's extended disk. The mathematical background of an adding interferometer is presented, as is its design and development, including the receiver system, and sample measurements of the Sun. Results from a student laboratory report are shown. With the increasing importance of interferometry in astronomy, the lack of educational interferometers is an obstacle to training the future generation of astronomers. This interferometer provides the hands-on experience needed to fully understand the basic concepts of interferometry.
Michelson-type Radio Interferometer for University Education
NASA Astrophysics Data System (ADS)
Koda, Jin; Barrett, J. W.; Hasegawa, T.; Hayashi, M.; Shafto, G.; Slechta, J.
2013-01-01
Despite the increasing importance of interferometry in astronomy, the lack of educational interferometers is an obstacle to training the futue generation of astronomers. Students need hands-on experiments to fully understand the basic concepts of interferometry. Professional interferometers are often too complicated for education, and it is difficult to guarantee access for classes in a university course. We have built a simple and affordable radio interferometer for education and used it for an undergraduate and graduate laboratory project. This interferometer's design is based on the Michelson & Peace's stellar optical interferometer, but operates at a radio wavelength using a commercial broadcast satellite dish and receiver. Two side mirrors are surfaced with kitchen aluminum foil and slide on a ladder, providing baseline coverage. This interferometer can resolve and measure the diameter of the Sun, a nice daytime experiment which can be carried out even under a marginal weather (i.e., partial cloud coverage). Commercial broadcast satellites provide convenient point sources. By comparing the Sun and satellites, students can learn how an interferometer works and resolves structures in the sky.
Design of a Unique Azimuth Monitoring Device.
1980-11-10
which will direct two beams N (in close proximity to the receiving photomulttplters or image dsetr if these are the receiving sensors ) to the target...receiving sensors and data Av., recording equipment are also at the transmitting/receiving site. It is lrist 2 Iai ~~W5 s-i I I gJJ- I 1&I hoped that for...facility in Bedford, Massachusetts, close to a tiltmeter array site. Pillars will be constructed to accept the observing equipment and the targets with a
Ion Deposited Carbon Coatings.
1983-07-01
levels correspondant i la transition entre les nivellux 2 piao and 5 d, of the kr-ypton-86 atom. 2 p,,, et 5 d5, de l’atow~e krypton 86. kilogram (kg...6gal A la [Mafsse (II prototype inItern ational du the kilogram. (The international prototype of kilogrananric. the kilogram is at particular cylinder...seconde (s) The second is the duration of 9 192 631 770 La seconde est IaI dur&e de 9 192 63 1 770 periods of the radiation corresponding to the perioiles
1981-11-01
do not use program data during demand dpvel opment and subsequent sulpport periods- however, l,4Lngl. ?ep nent iaI smfot hi ug is applied . , P I orio...that DIA’s use of pr.g rain d, could bc Improved as foltlowe: (a) 1)rogram oriented items could b(, ident ified and procedures applied :or -mrlm.ditie...been promni sing i n imulat ion tests. If DFS(,-s new est imator proves sccec’sft I, it will he applIed to other DLA commodities. 5 . iter (rouping for
NASA Astrophysics Data System (ADS)
Ortiz, D.; Casas, Francisco J.; Ruiz-Lombera, R.; Mirapeix, J.
2017-04-01
In this paper, a microwave interferometer prototype with a near-infra-red optical correlator is proposed as a solution to get a large-format interferometer with hundreds of receivers for radio astronomy applications. A 10 Gbits/s Lithium Niobate modulator has been tested as part of an electro-optic correlator up-conversion stage that will be integrated in the interferometer prototype. Its internal circuitry consists of a single-drive modulator biased by a SubMiniature version A (SMA) connector allowing to up-convert microwave signals with bandwidths up to 12.5 GHz to the near infrared band. In order to characterize it, a 12 GHz tone and a bias voltage were applied to the SMA input using a polarization tee. Two different experimental techniques to stabilize the modulator operation point in its minimum optical carrier output power are described. The best achieved results showed a rather stable spectrum in amplitude and wavelength at the output of the modulator with an optical carrier level 23 dB lower than the signal of interest. On the other hand, preliminary measurements were made to analyze the correlation stage, using 4f and 6f optical configurations to characterize both the antenna/fiber array configuration and the corresponding point spread function.
Wang, Qi; Li, Chunyue; Zhao, Chengwu; Li, Weizheng
2016-01-01
A cascaded symmetrical dual-taper Mach-Zehnder interferometer structure based on guided-mode and leaky-mode interference is proposed in this paper. Firstly, the interference spectrum characteristics of interferometer has been analyzed by the Finite Difference-Beam Propagation Method (FD-BPM). When the diameter of taper waist is 20 μm–30 μm, dual-taper length is 1 mm and taper distance is 4 cm–6 cm, the spectral contrast is higher, which is suitable for sensing. Secondly, experimental research on refractive index sensitivity is carried out. A refractive index sensitivity of 62.78 nm/RIU (refractive index unit) can achieved in the RI range of 1.3333–1.3792 (0%~25% NaCl solution), when the sensor structure parameters meet the following conditions: diameter of taper waist is 24 μm, dual-taper length is 837 μm and taper distance is 5.5 cm. The spectrum contrast is 0.8 and measurement resolution is 1.6 × 10−5 RIU. The simulation analysis is highly consistent with experimental results. Research shows that the sensor has promising application in low RI fields where high-precision measurement is required due to its high sensitivity and stability. PMID:27258281
R and D work on the constrained vapor bubble system for a microgravity experiment
NASA Technical Reports Server (NTRS)
Wayner, P. C., Jr.; Plawsky, J. L.
2005-01-01
We are working with Project Scientists R. Balasubramanian and Sang Young Son, and a NASA Projects Team headed by Sue Motil at the Glenn Research Center on the design and development of an experimental system for use on the International Space Station during the year 2006. John Eustace is the coordinator for the flight experiment at Zin-Tech (previously Northrop-Grumman) for the design and development of the Constrained Vapor Bubble Heat Exchanger, CVBHX, cell which will fit into the Light Microscope Module, LMM. Good progress is being made. The CDR for the LMM being developed was held on December 10-1 1,2003. Experimental results obtained under microgravity conditions will be compared with those obtained at Rensselaer. Basic and applied research at Rensselaer continues on the experimental and theoretical details associated with passive phase change heat transfer processes controlled by interfacial forces in the CVBHX. The extensive results of our current research are presented in the 23 external publications listed below. Twenty-two external presentations have been given. Briefly, evaporation/condensation data from both vertical and horizontal CVBHX systems were obtained and analyzed for both polar (wetting) and apolar (partially wetting) fluids. The vertical system is axi-symmetric, but strongly effected by gravity. Whereas, the horizontal system is asymmetric, but weakly effected by gravity. Therefore, there will be significant differences in the operation of the cell in the earth s environment versus the operation under microgravity conditions. Due to its relative large size, the system s performance should be optimum under micro-gravity conditions, where the CVBHX should be a very effective passive heat exchanger. The CVBHX was found to be an ideal experimental setup in which to study the effects of interfacial phenomena on both the evaporation and drop-wise condensation processes. The optical technique (Image Analyzing Interferometry, IAI), which is based on the measurement and analysis of the reflectivity pattern of a thin film, was significantly improved. The accuracy of the IAI system is of critical importance to the success of the mission because it is used to measure the details of the pressure field in the liquid by measuring the film thickness profile. The accuracy was found to be excellent and various publications/presentations documenting these new results were written. Significant new results were also obtained for the effect of the oscillating contact line region on evaporation. Three doctoral students graduated under this grant. All three work in US industry, two for Intel. Another doctoral student is in his third year of study and will finish under an extension of the NASA grant: # NNC05GA27G.
Photonic compressed sensing nyquist folding receiver
2017-09-01
filter . Two independent photonic receiver architectures are designed and analyzed over the course of this research. Both receiver designs are...undersamples the signals using an opti- cal modulator configuration at 1550 nm and collects the detected samples in a low pass interpolation filter ...Electronic Intelligence EW Electronic Warfare FM Frequency Modulated LNA Low Noise Amplifier LPF Low Pass Filter MZI Mach-Zehnder Interferometer NYFR Nyquist
Advanced Optical Fiber Communication Systems.
1993-02-28
feedback (DFB) laser and a fiber Fabry - Perot (FFP) interferometer for optical frequency discrimination. After the photodetector and amplification, a...filter, an envelope detector, and an integrator; these three components function in tandem as a phase demodulator . We have analyzed the nonlinearities...down-converter and FSK demodulator extract the desired video signals. The measured carrier-to-noise ratio (CNR) at the photodiode must be approximately
Research on effects of phase error in phase-shifting interferometer
NASA Astrophysics Data System (ADS)
Wang, Hongjun; Wang, Zhao; Zhao, Hong; Tian, Ailing; Liu, Bingcai
2007-12-01
Referring to phase-shifting interferometry technology, the phase shifting error from the phase shifter is the main factor that directly affects the measurement accuracy of the phase shifting interferometer. In this paper, the resources and sorts of phase shifting error were introduction, and some methods to eliminate errors were mentioned. Based on the theory of phase shifting interferometry, the effects of phase shifting error were analyzed in detail. The Liquid Crystal Display (LCD) as a new shifter has advantage as that the phase shifting can be controlled digitally without any mechanical moving and rotating element. By changing coded image displayed on LCD, the phase shifting in measuring system was induced. LCD's phase modulation characteristic was analyzed in theory and tested. Based on Fourier transform, the effect model of phase error coming from LCD was established in four-step phase shifting interferometry. And the error range was obtained. In order to reduce error, a new error compensation algorithm was put forward. With this method, the error can be obtained by process interferogram. The interferogram can be compensated, and the measurement results can be obtained by four-step phase shifting interferogram. Theoretical analysis and simulation results demonstrate the feasibility of this approach to improve measurement accuracy.
Broad source fringe formation with a Fresnel biprism and a Mach-Zehnder interferometer.
Leon, S C
1987-12-15
A biprism is used to combine identical spatially incoherent wavefronts that have been split by an amplitude splitting interferometer such as the Mach-Zehnder. The performance of this composite interferometer is evaluated by tracing the chief ray through parallel optical systems using Snell's law and trigonometry. Fringes formed in spatially incoherent light with this optical system are compared with those formed using the Mach-Zehnder and grating interferometers. It is shown that the combination can exhibit extended source fringe formation capability greatly exceeding that of the Mach-Zehnder interferometer.
Techniques in Broadband Interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erskine, D J
2004-01-04
This is a compilation of my patents issued from 1997 to 2002, generally describing interferometer techniques that modify the coherence properties of broad-bandwidth light and other waves, with applications to Doppler velocimetry, range finding, imaging and spectroscopy. Patents are tedious to read in their original form. In an effort to improve their readability I have embedded the Figures throughout the manuscript, put the Figure captions underneath the Figures, and added section headings. Otherwise I have resisted the temptation to modify the words, though I found many places which could use healthy editing. There may be minor differences with the officialmore » versions issued by the US Patent and Trademark Office, particularly in the claims sections. In my shock physics work I measured the velocities of targets impacted by flyer plates by illuminating them with laser light and analyzing the reflected light with an interferometer. Small wavelength changes caused by the target motion (Doppler effect) were converted into fringe shifts by the interferometer. Lasers having long coherence lengths were required for the illumination. While lasers are certainly bright sources, and their collimated beams are convenient to work with, they are expensive. Particularly if one needs to illuminate a wide surface area, then large amounts of power are needed. Orders of magnitude more power per dollar can be obtained from a simple flashlamp, or for that matter, a 50 cent light bulb. Yet these inexpensive sources cannot practically be used for Doppler velocimetry because their coherence length is extremely short, i.e. their bandwidth is much too wide. Hence the motivation for patents 1 & 2 is a method (White Light Velocimetry) for allowing use of these powerful but incoherent lamps for interferometry. The coherence of the illumination is modified by passing it through a preparatory interferometer.« less
NASA Astrophysics Data System (ADS)
Bracken, Colm P.; Lightfoot, John; O'Sullivan, Creidhe; Murphy, J. Anthony; Donohoe, Anthony; Savini, Giorgio; Juanola-Parramon, Roser; The Fisica Consortium, On Behalf Of
2018-01-01
In the absence of 50-m class space-based observatories, subarcsecond astronomy spanning the full far-infrared wavelength range will require space-based long-baseline interferometry. The long baselines of up to tens of meters are necessary to achieve subarcsecond resolution demanded by science goals. Also, practical observing times command a field of view toward an arcminute (1‧) or so, not achievable with a single on-axis coherent detector. This paper is concerned with an application of an end-to-end instrument simulator PyFIInS, developed as part of the FISICA project under funding from the European Commission's seventh Framework Programme for Research and Technological Development (FP7). Predicted results of wide field of view spatio-spectral interferometry through simulations of a long-baseline, double-Fourier, far-infrared interferometer concept are presented and analyzed. It is shown how such an interferometer, illuminated by a multimode detector can recover a large field of view at subarcsecond angular resolution, resulting in similar image quality as that achieved by illuminating the system with an array of coherent detectors. Through careful analysis, the importance of accounting for the correct number of higher-order optical modes is demonstrated, as well as accounting for both orthogonal polarizations. Given that it is very difficult to manufacture waveguide and feed structures at sub-mm wavelengths, the larger multimode design is recommended over the array of smaller single mode detectors. A brief note is provided in the conclusion of this paper addressing a more elegant solution to modeling far-infrared interferometers, which holds promise for improving the computational efficiency of the simulations presented here.
NASA Astrophysics Data System (ADS)
Kotb, Amer; Zoiros, Kyriakos E.
2017-11-01
The photonic crystal (PC) can be used to prohibit, confine, or control the propagation of light in a photonic band-gap. The performance of an ultrafast exclusive disjunction (XOR) gate-implemented with a photonic crystal semiconductor optical amplifier (PC-SOA)-assisted Mach-Zehnder interferometer (MZI) is numerically investigated and analyzed at a data rate of 160 Gb/s. The impact of the data signals and PC-SOA's critical parameters on the output quality factor (Q-factor) is examined and assessed. The simulation results demonstrate that the XOR gate which is based on the proposed scheme is capable of operating at the target data rate with logical correctness and high quality. This is achieved with better performance than when having conventional SOAs in the MZI, which justifies employing PC-SOAs as nonlinear elements.
Multi-Point Interferometric Rayleigh Scattering using Dual-Pass Light Recirculation
NASA Technical Reports Server (NTRS)
Bivolaru, Daniel; Danehy, Paul M.; Cutler, Andrew D.
2008-01-01
This paper describes for the first time an interferometric Rayleigh scattering system using dual-pass light recirculation (IRS-LR) capable of simultaneously measuring at multiple points two orthogonal components of flow velocity in combustion flows using single shot laser probing. An additional optical path containing the interferometer input mirror, a quarter-wave plate, a polarization dependent beam combiner, and a high reflectivity mirror partially recirculates the light that is rejected by the interferometer. Temporally- and spatially-resolved acquisitions of Rayleigh spectra in a large-scale combustion-heated supersonic axi-symmetric jet were performed to demonstrate the technique. Recirculating of Rayleigh scattered light increases the number of photons analyzed by the system up to a factor of 1.8 compared with previous configurations. This is equivalent to performing measurements with less laser energy or performing measurements with the previous system in gas flows at higher temperatures.
NASA Astrophysics Data System (ADS)
Guo, Qi; Cheng, Liu-Yong; Chen, Li; Wang, Hong-Fu; Zhang, Shou
2014-10-01
The existing distributed quantum gates required physical particles to be transmitted between two distant nodes in the quantum network. We here demonstrate the possibility to implement distributed quantum computation without transmitting any particles. We propose a scheme for a distributed controlled-phase gate between two distant quantum-dot electron-spin qubits in optical microcavities. The two quantum-dot-microcavity systems are linked by a nested Michelson-type interferometer. A single photon acting as ancillary resource is sent in the interferometer to complete the distributed controlled-phase gate, but it never enters the transmission channel between the two nodes. Moreover, we numerically analyze the effect of experimental imperfections and show that the present scheme can be implemented with high fidelity in the ideal asymptotic limit. The scheme provides further evidence of quantum counterfactuality and opens promising possibilities for distributed quantum computation.
A compact LWIR imaging spectrometer with a variable gap Fabry-Perot interferometer
NASA Astrophysics Data System (ADS)
Zhang, Fang; Gao, Jiaobo; Wang, Nan; Zhao, Yujie; Zhang, Lei; Gao, Shan
2017-02-01
Fourier transform spectroscopy is a widely employed method for obtaining spectra, with applications ranging from the desktop to remote sensing. The long wave infrared (LWIR) interferometric spectral imaging system is always with huge volume and large weight. In order to miniaturize and light the instrument, a new method of LWIR spectral imaging system based on a variable gap Fabry-Perot (FP) interferometer is researched. With the system working principle analyzed, theoretically, it is researched that how to make certain the primary parameter, such as, the reflectivity of the two interferometric cavity surfaces, field of view (FOV) and f-number of the imaging lens. A prototype is developed and a good experimental result of CO2 laser is obtained. The research shows that besides high throughput and high spectral resolution, the advantage of miniaturization is also simultaneously achieved in this method.
Xiong, Qiao; Tong, Xinglin; Deng, Chengwei; Zhang, Cui; Wang, Pengfei; Zheng, Zhiyuan; Liu, Fang
2018-05-13
A novel Mach-Zehnder interferometer using eccentric-core fiber (ECF) design for optical coherence tomography (OCT) is proposed and demonstrated. Instead of the commercial single-mode fiber (SMF), the ECF is used as one interference arm of the implementation. Because of the offset location of the eccentric core, it is sensitive to directional bending and the optical path difference (OPD) of two interference arms can be adjusted with high precision. The birefringence of ECF is calculated and experimentally measured, which demonstrates the polarization sensitivity of the ECF proposed in the paper is similar to that of SMF. Such a structure can replace the reference optical delay line to form an all-fiber passive device. A mirror is used as a sample for analyzing the ECF bending responses of the system. Besides, four pieces of overlapping glass slides as sample are experimentally measured as well.
Gallego, Sergi; Márquez, Andrés; Méndez, David; Ortuño, Manuel; Neipp, Cristian; Fernández, Elena; Pascual, Inmaculada; Beléndez, Augusto
2008-05-10
One of the problems associated with photopolymers as optical recording media is the thickness variation during the recording process. Different values of shrinkages or swelling are reported in the literature for photopolymers. Furthermore, these variations depend on the spatial frequencies of the gratings stored in the materials. Thickness variations can be measured using different methods: studying the deviation from the Bragg's angle for nonslanted gratings, using MicroXAM S/N 8038 interferometer, or by the thermomechanical analysis experiments. In a previous paper, we began the characterization of the properties of a polyvinyl alcohol/acrylamide based photopolymer at the lowest end of recorded spatial frequencies. In this work, we continue analyzing the thickness variations of these materials using a reflection interferometer. With this technique we are able to obtain the variations of the layers refractive index and, therefore, a direct estimation of the polymer refractive index.
The Conceptual Design of the Magdalena Ridge Observatory Interferometer
NASA Astrophysics Data System (ADS)
Buscher, D. F.; Creech-Eakman, M.; Farris, A.; Haniff, C. A.; Young, J. S.
We describe the scientific motivation for and conceptual design of the Magdalena Ridge Observatory Interferometer, an imaging interferometer designed to operate at visible and near-infrared wavelengths. The rationale for the major technical decisions in the interferometer design is discussed, the success of the concept is appraised, and the implications of this analysis for the design of future arrays are drawn out.
NASA Technical Reports Server (NTRS)
Johnston, Ken J.; Mozurkewich, D.; Simon, R. S.; Shao, Michael; Colavita, M.
1992-01-01
Before contemplating an optical interferometer on the Moon one must first review the accomplishments achieved by this technology in scientific applications for astronomy. This will be done by presenting the technical status of optical interferometry as achieved by the Mount Wilson Optical Interferometer. The further developments needed for a future lunar-based interferometer are discussed.
NASA Technical Reports Server (NTRS)
Shukla, R. P.; Dokhanian, Mostafa; Venkateswarlu, Putcha; George, M. C.
1990-01-01
The present paper describes an application of a phase conjugate Twyman-Green interferometer using barium titanate as a self-pumping mirror for testing optical components like concave and convex spherical mirrors and lenses. The aberrations introduced by the beam splitter while testing concave or convex spherical mirrors of large aperture are automatically eliminated due to self-focussing property of the phase conjugate mirror. There is no necessity for a good spherical surface as a reference surface unlike in classical Twyman-Green interferometer or Williams interferometer. The phase conjugate Twyman Green interferometer with a divergent illumination can be used as a test plate for checking spherical surfaces. A nondestructive technique for measuring the refractive indices of a Fabry Perot etalon by using a phase conjugate interferometer is also suggested. The interferometer is found to be useful for measuring the refractive indices of liquids and solid transparent materials with an accuracy of the order of + or - 0.0004.
NASA Astrophysics Data System (ADS)
Chen, Xinwei; He, Shengnan; Li, Dandan; Wang, Kai; Fan, Yan'en; Wu, Shuai
2014-11-01
We present an optical fiber voltage sensor by Michelsion interferometer (MI) employing a Fabry-Perot (F-P) interferometer and the DC phase tracking (DCPT) signal processing method. By mounting a MI fabricated by an optical fiber coupler on a piezoelectric (PZT) transducer bar, a dynamic strain would be generated to change the optical path difference (OPD) of the interferometer when the measured voltage was applied on the PZT. Applying an F-P interferometer to demodulate the optical intensity variation output of the MI, the voltage can be obtained. The experiment results show that the relationship between the optical intensity variation and the voltage applied on the PZT is approximately linear. Furthermore, the phase generate carrier (PGC) algorithm was applied to demodulate the output of the sensor also.
Two-path plasmonic interferometer with integrated detector
Dyer, Gregory Conrad; Shaner, Eric A.; Aizin, Gregory
2016-03-29
An electrically tunable terahertz two-path plasmonic interferometer with an integrated detection element can down convert a terahertz field to a rectified DC signal. The integrated detector utilizes a resonant plasmonic homodyne mixing mechanism that measures the component of the plasma waves in-phase with an excitation field that functions as the local oscillator in the mixer. The plasmonic interferometer comprises two independently tuned electrical paths. The plasmonic interferometer enables a spectrometer-on-a-chip where the tuning of electrical path length plays an analogous role to that of physical path length in macroscopic Fourier transform interferometers.
Interferometer for measuring dynamic corneal topography
NASA Astrophysics Data System (ADS)
Micali, Jason Daniel
The cornea is the anterior most surface of the eye and plays a critical role in vision. A thin fluid layer, the tear film, coats the outer surface of the cornea and serves to protect, nourish, and lubricate the cornea. At the same time, the tear film is responsible for creating a smooth continuous surface where the majority of refraction takes place in the eye. A significant component of vision quality is determined by the shape of the cornea and stability of the tear film. It is desirable to possess an instrument that can measure the corneal shape and tear film surface with the same accuracy and resolution that is currently performed on common optical elements. A dual interferometer system for measuring the dynamic corneal topography is designed, built, and verified. The completed system is validated by testing on human subjects. The system consists of two co-aligned polarization splitting Twyman-Green interferometers designed to measure phase instantaneously. The primary interferometer measures the surface of the tear film while the secondary interferometer simultaneously tracks the absolute position of the cornea. Eye motion, ocular variation, and a dynamic tear film surface will result in a non-null configuration of the surface with respect to the interferometer system. A non-null test results in significant interferometer induced errors that add to the measured phase. New algorithms are developed to recover the absolute surface topography of the tear film and corneal surface from the simultaneous interferometer measurements. The results are high-resolution and high-accuracy surface topography measurements of the in vivo cornea that are captured at standard camera frame rates. This dissertation will cover the development and construction of an interferometer system for measuring the dynamic corneal topography of the human eye. The discussion starts with the completion of an interferometer for measuring the tear film. The tear film interferometer is part of an ongoing research project that has spanned multiple dissertations. For this research, the instrument was tested on human subjects and resulted in refinements to the interferometer design. The final configuration of the tear film interferometer and results from human subjects testing are presented. Feedback from this instrument was used to support the development and construction of the interferometric corneal topographer system. A calibration is performed on the instrument, and then verified against simulated eye surfaces. Finally, the instrument is validated by testing on human subjects. The result is an interferometer system that can non-invasively measure the dynamic corneal topography with greater accuracy and resolution than existing technologies.
Remote sounding of tropospheric minor constituents
NASA Technical Reports Server (NTRS)
Drayson, S. Roland; Hays, Paul B.; Wang, Jinxue
1993-01-01
The etalon interferometer, or Fabry-Perot interferometer (FPI), with its high throughput and high spectral resolution was widely used in the remote-sensing measurements of the earth's atmospheric composition, winds, and temperatures. The most recent satellite instruments include the Fabry-Perot interferometer flown on the Dynamics Explorer-2 (DE-2) and the High Resolution Doppler Imager (HRDI) to be flown on the Upper Atmosphere Research Satellite (UARS). These instruments measure the Doppler line profiles of the emission and absorption of certain atmospheric species (such as atomic oxygen) in the visible spectral region. The successful space flight of DE-FPI and the test and delivery of UARS-HRDI demonstrated the extremely high spectral resolution and ruggedness of the etalon system for the remote sensing of earth and planetary atmospheres. Recently, an innovative FPI focal plane detection technique called the Circle-to-Line Interferometer Optical (CLIO) system was invented at the Space Physics Research Laboratory (SPRL). The CLIO simplifies the FPI focal plane detection process by converting the circular rings or fringes into a linear pattern similar to that produced by a conventional spectrometer, while retaining the throughput advantage of the etalon interferometer. CLIO makes the use of linear array detectors more practical and efficient with FPI, the combination of FPI and CLIO represents a very promising new technique for the remote sensing of the lower atmospheres of Earth, Mars, Venus, Neptune, and other planets. The Multiorder Etalon Spectrometer (MOES), as a combination of the rugged etalon and the CLIO, compares very favorably to other spaceborne optical instruments in terms of performance versus complexity. The feasibility of an advanced etalon spectrometer for the remote sensing of tropospheric trace species, particularly carbon monoxide (CO), nitrous oxide (N2O), and methane (CH4) was discussed. The etalon atmospheric spectroscopy techniques are described, instrument design and related technical issues are discussed. The primary objective is to establish the concept of atmospheric spectroscopy with the CLIO and etalon system and its applications for the measurements of tropospheric trace species analyze system requirements and performance, determine the feasibility of components and subsystem implementation with available technology, and develop inversion algorithm for retrieval simulation and data analysis.
Tracking Solar Type II Bursts with Space Based Radio Interferometers
NASA Astrophysics Data System (ADS)
Hegedus, Alexander M.; Kasper, Justin C.; Manchester, Ward B.
2018-06-01
The Earth’s Ionosphere limits radio measurements on its surface, blocking out any radiation below 10 MHz. Valuable insight into many astrophysical processes could be gained by having a radio interferometer in space to image the low frequency window for the first time. One application is observing type II bursts tracking solar energetic particle acceleration in Coronal Mass Ejections (CMEs). In this work we create a simulated data processing pipeline for several space based radio interferometer (SBRI) concepts and evaluate their performance in the task of localizing these type II bursts.Traditional radio astronomy software is hard coded to assume an Earth based array. To circumvent this, we manually calculate the antenna separations and insert them along with the simulated visibilities into a CASA MS file for analysis. To create the realest possible virtual input data, we take a 2-temperature MHD simulation of a CME event, superimpose realistic radio emission models from the CME-driven shock front, and propagate the signal through simulated SBRIs. We consider both probabilistic emission models derived from plasma parameters correlated with type II bursts, and analytical emission models using plasma emission wave interaction theory.One proposed SBRI is the pathfinder mission SunRISE, a 6 CubeSat interferometer to circle the Earth in a GEO graveyard orbit. We test simulated trajectories of SunRISE and image what the array recovers, comparing it to the virtual input. An interferometer on the lunar surface would be a stable alternative that avoids noise sources that affect orbiting arrays, namely the phase noise from positional uncertainty and atmospheric 10s-100s kHz noise. Using Digital Elevation Models from laser altimeter data, we test different sets of locations on the lunar surface to find near optimal configurations for tracking type II bursts far from the sun. Custom software is used to model the response of different array configurations over the lunar year, combining ephemerides of the sun and moon to correlate the virtual data. We analyze the pros and cons of all approaches and offer recommendations for SRBIs that track type II bursts.
The WIND-HAARP-HIPAS Interferometer Experiment
1999-04-22
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6750--99-8349 The WIND- HAARP -HIPAS Interferometer Experiment P. RODRIGUEZ AND M. J...1999 3. REPORT TYPE AND DATES COVERED Interim Report 4. TITLE AND SUBTITLE The WIND- HAARP -HIPAS Interferometer Experiment 5. FUNDING NUMBERS JO...frequency transmitting facilities in a bistatic, interferometer mode. The HAARP and HIPAS facilities in Alaska radiated at 4525 kHz with total combined
2006-06-01
Polarisation measurement with a dual beam interferometer (CATSI) Exploratory results and preliminary phenomenological analysis H. Lavoie J.-M... Polarisation measurement with a dual beam interferometer (CATSI) Exploratory results and preliminary phenomenological analysis H. Lavoie J.-M. Thériault... Polarisation measurement with a dual beam interferometer (CATSI) - Exploratory results and preliminary phenomenological analysis. ECR 2004-372. DRDC Valcartier
Sola, Juan E; Cheung, Michael C; Yang, Relin; Koslow, Starr; Lanuti, Emma; Seaver, Chris; Neville, Holly L; Schulman, Carl I
2009-11-01
The current standard for the evaluation of children with blunt abdominal trauma (BAT) consists of physical examination, screening lab values, and computed tomography (CT) scan. We sought to determine if the focused assessment with sonography for trauma (FAST) combined with elevated liver transaminases (AST/ALT) could be used as a screening tool for intra-abdominal injury (IAI) in pediatric patients with BAT. Registry data at a level 1 trauma center was retrospectively reviewed from 1991-2007. Data collected on BAT patients under the age of 16 y included demographics, injury mechanism, ISS, GCS, imaging studies, serum ALT and AST levels, and disposition. AST and ALT were considered positive if either one was >100 IU/L. Overall, 3171 cases were identified. A total of 1008 (31.8%) patients received CT scan, 1148 (36.2%) had FAST, and 497 (15.7%) patients received both. Of the 497 patients, 400 (87.1%) also had AST and ALT measured. FAST was 50% sensitive, 91% specific, with a positive predictive value (PPV) of 68%, negative predictive value (NPV) of 83%, and accuracy of 80%. Combining FAST with elevated AST or ALT resulted in a statistically significant increase in all measures (sensitivity 88%, specificity 98%, PPV 94%, NPV 96%, accuracy 96%). FAST combined with AST or ALT > 100 IU/L is an effective screening tool for IAI in children following BAT. Pediatric patients with a negative FAST and liver transaminases < 100 IU/L should be observed rather than subjected to the radiation risk of CT.
Dumas, Stéphane; Coscas, Florence
2017-01-01
Purpose To evaluate the response of intravitreal aflibercept injection (IAI) in eyes with detachment of retinal pigment epithelium (DEP) secondary to nAMD refractory to monthly ranibizumab. Patients and Methods This is a retrospective, multicenter study. All patients received 3 IAI then treated as needed every 4 weeks for 12 months. During the second year, the eyes were treated with a treat- and-extend regimen. Results Forty-four eyes were included. Best-corrected visual acuity improved significantly after the loading phase (3.1 ± 6.4 letters) and at 6 months (2.8 ± 6.4 letters), but change was not significant at 1 year and 2 years. The height of the DEP was significantly decreased at 3 months and 6 months, but the difference did not reach statistical difference at 1 and 2 years. Rate of eyes with complete resolution of exudation was 59% after the loading phase and 34.3% at 2 years. Mean interval of anti-VEGF injection was extended from 31 ± 2.6 days to 61 ± 5 days after conversion. Conclusions Aflibercept intravitreal injection in patients with fibrovascular DEP due to nAMD who respond poorly to monthly ranibizumab led to short-term functional and anatomical improvement. Reduction of intravitreal injection frequency was obtained until 2 years of follow-up. PMID:29093970
SU(1,1)-type light-atom-correlated interferometer
NASA Astrophysics Data System (ADS)
Ma, Hongmei; Li, Dong; Yuan, Chun-Hua; Chen, L. Q.; Ou, Z. Y.; Zhang, Weiping
2015-08-01
The quantum correlation of light and atomic collective excitation can be used to compose an SU(1,1)-type hybrid light-atom interferometer, where one arm in the optical SU(1,1) interferometer is replaced by the atomic collective excitation. The phase-sensing probes include not only the photon field but also the atomic collective excitation inside the interferometer. For a coherent squeezed state as the phase-sensing field, the phase sensitivity can approach the Heisenberg limit under the optimal conditions. We also study the effects of the loss of light field and the dephasing of atomic excitation on the phase sensitivity. This kind of active SU(1,1) interferometer can also be realized in other systems, such as circuit quantum electrodynamics in microwave systems, which provides a different method for basic measurement using the hybrid interferometers.
NASA Technical Reports Server (NTRS)
Lu, Hui-Ling; Cheng, H. L.; Lyon, Richard G.; Carpenter, Kenneth G.
2007-01-01
The long-baseline space interferometer concept involving formation flying of multiple spacecraft holds great promise as future space missions for high-resolution imagery. A major challenge of obtaining high-quality interferometric synthesized images from long-baseline space interferometers is to accurately control these spacecraft and their optics payloads in the specified configuration. Our research focuses on the determination of the optical errors to achieve fine control of long-baseline space interferometers without resorting to additional sensing equipment. We present a suite of estimation tools that can effectively extract from the raw interferometric image relative x/y, piston translational and tip/tilt deviations at the exit pupil aperture. The use of these error estimates in achieving control of the interferometer elements is demonstrated using simulated as well as laboratory-collected interferometric stellar images.
NASA Technical Reports Server (NTRS)
Lu, Hui-Ling; Cheng, Victor H. L.; Lyon, Richard G.; Carpenter, Kenneth G.
2007-01-01
The long-baseline space interferometer concept involving formation flying of multiple spacecrafts holds great promise as future space missions for high-resolution imagery. A major challenge of obtaining high-quality interferometric synthesized images from long-baseline space interferometers is to accurately control these spacecraft and their optics payloads in the specified configuration. Our research focuses on the determination of the optical errors to achieve fine control of long-baseline space interferometers without resorting to additional sensing equipment. We present a suite of estimation tools that can effectively extract from the raw interferometric image relative x/y, piston translational and tip/tilt deviations at the exit pupil aperture. The use of these error estimates in achieving control of the interferometer elements is demonstrated using simulated as well as laboratory-collected interferometric stellar images.
Experimental generalized quantum suppression law in Sylvester interferometers
NASA Astrophysics Data System (ADS)
Viggianiello, Niko; Flamini, Fulvio; Innocenti, Luca; Cozzolino, Daniele; Bentivegna, Marco; Spagnolo, Nicolò; Crespi, Andrea; Brod, Daniel J.; Galvão, Ernesto F.; Osellame, Roberto; Sciarrino, Fabio
2018-03-01
Photonic interference is a key quantum resource for optical quantum computation, and in particular for so-called boson sampling devices. In interferometers with certain symmetries, genuine multiphoton quantum interference effectively suppresses certain sets of events, as in the original Hong–Ou–Mandel effect. Recently, it was shown that some classical and semi-classical models could be ruled out by identifying such suppressions in Fourier interferometers. Here we propose a suppression law suitable for random-input experiments in multimode Sylvester interferometers, and verify it experimentally using 4- and 8-mode integrated interferometers. The observed suppression occurs for a much larger fraction of input–output combinations than what is observed in Fourier interferometers of the same size, and could be relevant to certification of boson sampling machines and other experiments relying on bosonic interference, such as quantum simulation and quantum metrology.
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory; Lekki, John; Lock, James A.
2002-01-01
The dynamic response of a fiber optic Bragg grating to mechanical vibrations is examined both theoretically and experimentally. The theoretical expressions describing the consequences of changes in the grating's reflection spectrum are derived for partially coherent beams in an interferometer. The analysis is given in terms of the dominant wavelength, optical bandwidth, and optical path difference of the interfering signals. Changes in the reflection spectrum caused by a periodic stretching and compression of the grating were experimentally measured using an unbalanced Michelson interferometer, a Michelson interferometer with a non-zero optical path difference. The interferometer's sensitivity to changes in dominant wavelength of the interfering beams was measured as a function of interferometer unbalance and was compared to theoretical predictions. The theoretical analysis enables the user to determine the optimum performance for an unbalanced interferometer.
Numerical simulation and experimental verification of extended source interferometer
NASA Astrophysics Data System (ADS)
Hou, Yinlong; Li, Lin; Wang, Shanshan; Wang, Xiao; Zang, Haijun; Zhu, Qiudong
2013-12-01
Extended source interferometer, compared with the classical point source interferometer, can suppress coherent noise of environment and system, decrease dust scattering effects and reduce high-frequency error of reference surface. Numerical simulation and experimental verification of extended source interferometer are discussed in this paper. In order to provide guidance for the experiment, the modeling of the extended source interferometer is realized by using optical design software Zemax. Matlab codes are programmed to rectify the field parameters of the optical system automatically and get a series of interferometric data conveniently. The communication technique of DDE (Dynamic Data Exchange) was used to connect Zemax and Matlab. Then the visibility of interference fringes can be calculated through adding the collected interferometric data. Combined with the simulation, the experimental platform of the extended source interferometer was established, which consists of an extended source, interference cavity and image collection system. The decrease of high-frequency error of reference surface and coherent noise of the environment is verified. The relation between the spatial coherence and the size, shape, intensity distribution of the extended source is also verified through the analysis of the visibility of interference fringes. The simulation result is in line with the result given by real extended source interferometer. Simulation result shows that the model can simulate the actual optical interference of the extended source interferometer quite well. Therefore, the simulation platform can be used to guide the experiment of interferometer which is based on various extended sources.
United States Military Academy: 25 Years of Enlightening Research. 2012 Program Review
2012-01-01
is being used in agriculture to quickly assess produce for disease and ripeness. The technology has been incorporated into microscopes to conduct... disease and ripeness. The technology has been incorporated into microscopes to conduct micro analysis on chemical composition of pharmaceuticals...and electronically. The Optical spectrum analyzer (OSA) and Fabry -Perot interferometer (left inset) show a pure 150MHz tone with no extraneous
Static and (quasi)dynamic calibration of stroboscopic scanning white light interferometer
NASA Astrophysics Data System (ADS)
Seppä, Jeremias; Kassamakov, Ivan; Nolvi, Anton; Heikkinen, Ville; Paulin, Tor; Lassila, Antti; Hao, Ling; Hæggsröm, Edward
2013-04-01
A scanning white light interferometer can characterize out of plane features and motion in M(N)EMS devices. Like any other form and displacement measuring instrument, the scanning interferometer results should be linked to the metre definition to be comparable and unambiguous. Traceability is built up by careful error characterization and calibration of the interferometer. The main challenge in this calibration is to have a reference device producing accurate and reproducible dynamic out-of-plane displacement when submitted to standard loads. We use a flat mirror attached to a piezoelectric transducer for static and (quasi)dynamic calibration of a stroboscopic scanning light interferometer. First we calibrated the piezo-scanned flexure guided transducer stage using a symmetric differential heterodyne laser interferometer developed at the Centre for Metrology and Accreditation (MIKES). The standard uncertainty of the piezo stage motion calibration was 3.0 nm. Then we used the piezo-stage as a transfer standard to calibrate our stroboscopic interferometer whose light source was pulsed at 200 Hz and 400 Hz with 0.5% duty cycle. We measured the static position and (quasi)dynamic motion of the attached mirror relative to a reference surface. This methodology permits calibrating the vertical scale of the stroboscopic scanning white light interferometer.
Phase shifting diffraction interferometer
Sommargren, Gary E.
1996-01-01
An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.
Phase shifting diffraction interferometer
Sommargren, G.E.
1996-08-29
An interferometer which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 8 figs.
Experimental study of the mutual influence of fibre Faraday elements in a spun-fibre interferometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gubin, V P; Morshnev, S K; Przhiyalkovsky, Ya V
2015-08-31
An all-spun-fibre linear reflective interferometer with two linked Faraday fibre coils is studied. It is found experimentally that there is mutual influence of Faraday fibre coils in this interferometer. It manifests itself as an additional phase shift of the interferometer response, which depends on the circular birefringence induced by the Faraday effect in both coils. In addition, the interferometer contrast and magneto-optical sensitivity of one of the coils change. A probable physical mechanism of the discovered effect is the distributed coupling of orthogonal polarised waves in the fibre medium, which is caused by fibre bend in the coil. (interferometry)
An extreme ultraviolet Michelson interferometer for experiments at free-electron lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilbert, Vinzenz; Fuchs, Silvio; Paulus, Gerhard G.
2013-09-15
We present a Michelson interferometer for 13.5 nm soft x-ray radiation. It is characterized in a proof-of-principle experiment using synchrotron radiation, where the temporal coherence is measured to be 13 fs. The curvature of the thin-film beam splitter membrane is derived from the observed fringe pattern. The applicability of this Michelson interferometer at intense free-electron lasers is investigated, particularly with respect to radiation damage. This study highlights the potential role of such Michelson interferometers in solid density plasma investigations using, for instance, extreme soft x-ray free-electron lasers. A setup using the Michelson interferometer for pseudo-Nomarski-interferometry is proposed.
NASA Astrophysics Data System (ADS)
Çelik, Mehmet; Hamid, Ramiz; Kuetgens, Ulrich; Yacoot, Andrew
2012-08-01
X-ray interferometry is emerging as an important tool for dimensional nanometrology both for sub-nanometre measurement and displacement. It has been used to verify the performance of the next generation of displacement measuring optical interferometers within the European Metrology Research Programme project NANOTRACE. Within this project a more detailed set of comparison measurements between the x-ray interferometer and a dual channel Fabry-Perot optical interferometer (DFPI) have been made to demonstrate the capabilities of both instruments for picometre displacement metrology. The results show good agreement between the two instruments, although some minor differences of less than 5 pm have been observed.
Pardue, R.M.; Williams, R.R.
1980-09-12
A double-pass interferometer is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror interferometer may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarterwave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the interferometer housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser interferometer system.
Pardue, Robert M.; Williams, Richard R.
1982-01-01
A double-pass interferometer is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror interferometer may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarter-wave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the interferometer housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser interferometer system.
NASA Technical Reports Server (NTRS)
Breckinridge, Jim B. (Editor)
1990-01-01
Attention is given to such topics as ground interferometers, space interferometers, speckle-based and interferometry-based astronomical observations, adaptive and atmospheric optics, speckle techniques, and instrumentation. Particular papers are presented concerning recent progress on the IR Michelson array; the IOTA interferometer project; a space interferometer concept for the detection of extrasolar earth-like planets; IR speckle imaging at Palomar; optical diameters of stars measured with the Mt. Wilson Mark III interferometer; the IR array camera for interferometry with the cophased Multiple Mirror Telescope; optimization techniques appliesd to the bispectrum of one-dimensional IR astronomical speckle data; and adaptive optical iamging for extended objects.
Experimental implementation of phase locking in a nonlinear interferometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hailong; Jing, Jietai, E-mail: jtjing@phy.ecnu.edu.cn; Marino, A. M.
2015-09-21
Based upon two cascade four-wave mixing processes in two identical hot rubidium vapor cells, a nonlinear interferometer has been experimentally realized [Jing et al., Appl. Phys. Lett. 99, 011110 (2011); Hudelist et al., Nat. Commun. 5, 3049 (2014)]. It has a higher degree of phase sensitivity than a traditional linear interferometer and has many potential applications in quantum metrology. Phase locking of the nonlinear interferometer is needed before it can find its way into applications. In this letter, we investigate the experimental implementation of phase locking of the relative phase between the three beams at different frequencies involved in suchmore » a nonlinear interferometer. We have utilized two different methods, namely, beat note locking and coherent modulation locking. We find that coherent modulation locking can achieve much better phase stability than beat note locking in our system. Our results pave the way for real applications of a nonlinear interferometer in precision measurement and quantum manipulation, for example, phase control in phase-sensitive N-wave mixing process, N-port nonlinear interferometer and quantum-enhanced real-time phase tracking.« less
Benefits of Model Updating: A Case Study Using the Micro-Precision Interferometer Testbed
NASA Technical Reports Server (NTRS)
Neat, Gregory W.; Kissil, Andrew; Joshi, Sanjay S.
1997-01-01
This paper presents a case study on the benefits of model updating using the Micro-Precision Interferometer (MPI) testbed, a full-scale model of a future spaceborne optical interferometer located at JPL.
Terrestrial Planet Finder Interferometer: 2007-2008 Progress and Plans
NASA Technical Reports Server (NTRS)
Lawson, P. R.; Lay, O. P.; Martin, S. R.; Peters, R. D.; Gappinger, R. O.; Ksendzov, A.; Scharf, D. P.; Booth, A. J.; Beichman, C. A.; Serabyn, E.;
2008-01-01
This paper provides an overview of technology development for the Terrestrial Planet Finder Interferometer (TPF-I). TPF-I is a mid-infrared space interferometer being designed with the capability of detecting Earth-like planets in the habitable zones around nearby stars. The overall technology roadmap is presented and progress with each of the testbeds is summarized. The current interferometer architecture, design trades, and the viability of possible reduced-scope mission concepts are also presented.
Construction of a Fiber Optic Gradient Hydrophone Using a Michelson Configuration.
1986-03-27
Michelson interferometers; * Fabry - Perot interferometers; • Intermode interferometers; • Sagnac interferometers. Of these, the first two categories show the...most promise for hydrophone applications. The Fabry - Perot design is an excellent tool for precision length measurements but is extremely sensitive to...Pa was measured. Using the demodulation technique in Mills, [Ref. 13: pp. 94-95], one can make a comparison to the USRD type G63 stan- dard pressure
Collisional Decoherence in Trapped-Atom Interferometers that use Nondegenerate Sources
2009-01-22
a magneto - optical trap . The trap is switched off and the atomic cloud begins to fall due to gravity. At the time t=0, the cloud is illuminated with...model is used to find the optimal operating conditions of the interferometer and direct Monte-Carlo simulation of the interferometer is used to...A major difficulty with all trapped -atom interferometers that use optical pulses is that the residual potential along the guide causes
Solar Confocal Interferometers for Sub-Picometer-Resolution Spectral Filters
NASA Technical Reports Server (NTRS)
Gary, G. Allen; Pietraszewski, Chris; West, Edward A.; Dines, Terence C.
2006-01-01
The confocal Fabry-Perot interferometer allows sub-picometer spectral resolution of Fraunhofer line profiles. Such high spectral resolution is needed to keep pace with the higher spatial resolution of the new set of large-aperture solar telescopes. The line-of-sight spatial resolution derived for line profile inversions would then track the improvements of the transverse spatial scale provided by the larger apertures. The confocal interferometer's unique properties allow a simultaneous increase in both etendue and spectral power. Methods: We have constructed and tested two confocal interferometers. Conclusions: In this paper we compare the confocal interferometer with other spectral imaging filters, provide initial design parameters, show construction details for two designs, and report on the laboratory test results for these interferometers, and propose a multiple etalon system for future testing of these units and to obtain sub-picometer spectral resolution information on the photosphere in both the visible and near-infrared.
Surface profile measurement by using the integrated Linnik WLSI and confocal microscope system
NASA Astrophysics Data System (ADS)
Wang, Wei-Chung; Shen, Ming-Hsing; Hwang, Chi-Hung; Yu, Yun-Ting; Wang, Tzu-Fong
2017-06-01
The white-light scanning interferometer (WLSI) and confocal microscope (CM) are the two major optical inspection systems for measuring three-dimensional (3D) surface profile (SP) of micro specimens. Nevertheless, in practical applications, WLSI is more suitable for measuring smooth and low-slope surfaces. On the other hand, CM is more suitable for measuring uneven-reflective and low-reflective surfaces. As for aspect of surface profiles to be measured, the characteristics of WLSI and CM are also different. WLSI is generally used in semiconductor industry while CM is more popular in printed circuit board industry. In this paper, a self-assembled multi-function optical system was integrated to perform Linnik white-light scanning interferometer (Linnik WLSI) and CM. A connecting part composed of tubes, lenses and interferometer was used to conjunct finite and infinite optical systems for Linnik WLSI and CM in the self-assembled optical system. By adopting the flexibility of tubes and lenses, switching to perform two different optical measurements can be easily achieved. Furthermore, based on the shape from focus method with energy of Laplacian filter, the CM was developed to enhance the on focal information of each pixel so that the CM can provide all-in-focus image for performing the 3D SP measurement and analysis simultaneously. As for Linnik WLSI, eleven-step phase shifting algorithm was used to analyze vertical scanning signals and determine the 3D SP.
ON THE DETECTION OF GLOBAL 21-cm SIGNAL FROM REIONIZATION USING INTERFEROMETERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Saurabh; Subrahmanyan, Ravi; Shankar, N. Udaya
2015-12-20
Detection of the global redshifted 21-cm signal is an excellent means of deciphering the physical processes during the Dark Ages and subsequent Epoch of Reionization (EoR). However, detection of this faint monopole is challenging due to the high precision required in instrumental calibration and modeling of substantially brighter foregrounds and instrumental systematics. In particular, modeling of receiver noise with mK accuracy and its separation remains a formidable task in experiments aiming to detect the global signal using single-element spectral radiometers. Interferometers do not respond to receiver noise; therefore, here we explore the theory of the response of interferometers to globalmore » signals. In other words, we discuss the spatial coherence in the electric field arising from the monopole component of the 21-cm signal and methods for its detection using sensor arrays. We proceed by first deriving the response to uniform sky of two-element interferometers made of unit dipole and resonant loop antennas, then extend the analysis to interferometers made of one-dimensional arrays and also consider two-dimensional aperture antennas. Finally, we describe methods by which the coherence might be enhanced so that the interferometer measurements yield improved sensitivity to the monopole component. We conclude (a) that it is indeed possible to measure the global 21-cm from EoR using interferometers, (b) that a practically useful configuration is with omnidirectional antennas as interferometer elements, and (c) that the spatial coherence may be enhanced using, for example, a space beam splitter between the interferometer elements.« less
1983-03-01
trinitrobenzonitrile, 1, 3,5-trinitrobenzene, and 4,6-dinitroanthranil, which are phototransformation products of TNT and RDX. D D tA 1473 mSTIo ar I mov Is is...toxicity of these materials decreased as the photolytic degradation of TNT in- creased. The phototransformaticn products of TNT were generally mcre...Department of the Army endorsement or approval of the products or services of these organizations. Acco:sion For NTIS CG’iA&I DTIC TAB Unnnnoilinced
2004-11-30
Que, and A. S. Bayer. 2002. Pathogenesis of streptococcal and staphylococcal endocarditis . Infect . Dis. Clin. N. Am. 16:297–318. 26. Nabozny, G. H., J... INFECTION AND IMMUNITY, Apr. 2005, p. 2452–2460 Vol. 73, No. 4 0019-9567/05/$08.000 doi:10.1128/IAI.73.4.2452–2460.2005 Copyright © 2005, American... infections , including scarlet fever, pharyngitis, dermatitis, infectious ar- thritis, and toxic shock syndrome (2, 13, 18, 25, 31). These pathogenic bacteria
1992-05-29
Port of Seattle 10455 Metropolitan Blvd. P.O. Box 1209 PETER AMISH Montreal, PQ HIB -IAI Seattle, WA 98111 Northwest Airlines CANADA USA 5101 Northwest...PQ HIB lAI 703/689-4333 USA CANADA 214/988-3188x238 514/640-6400 MARC BRADELL Continental Airlines ALAN J. BILANIN JAMES E. BORSARI 8250 E. Smith Rd...20007-5201 CANADA 901/797-4159 USA 514/744-1511-1246 202/625-3500) STEVEN R. ERICKSON GEORGE H. EICHNER Air Transport Association PAUL DYKEMANN
Nondestructive Evaluation of Carbon-Carbon Coatings
1987-10-01
4, -4 3 2.0 17-21 15 18 21 :9." -: 4:tes: 1, Cll •easureren’. ;rown ire in Ill e::ceoI ".-ic.-ie: "-.- : .. - are hown in •iai:’l4m raw court form...scatter in the samples rather than the additional formation of cristo - balite. This was supported by later diffraction scans of material after extended...could not be avoided due to the brittle nature of the coating. , b. Coupons were then mounted in epoxy using a vacuum-oimpregnation technique. This
1984-06-01
designed such that the :77 be, Vas- to, validate both viscous and invis aid tbee, 2iesional flow fields with strong * e~daryflow velocities due to inlet...Variable Tmiperature. Gradients on Turbomachinery Sms 2ev dst~a.’ SP 5-304, Performance," J. of zncine~rzi for Iai OmsCh e aess and Design Power Vol. 97...N ~ m.a~* *hs- ACA flI 3015, October 1953. 910snesm ZesiesMA aepweeeib" 20. Sta&its, J.0., ’ Design of 2-0 Channels Sotfttt l 1).u.w- r esl moets with
1992-02-01
the levee is leased by the U.S. Government to private individuals for livestock grazing and cotton cultivation. Cultivation within the project area has...atiuj ng adapi-al tun to thIie wetter condi Lions tot lowing the dry hypor In .iaI. lna I us trrte.sponds to the sub-Boreal climatic episode (Sabo el...the Buckett phase of the Cairo Lowland alea . However. as rhillips (1970) noted, the phase is otherwise not well delktn|d. Specilic pottery types such as
Integrated Methodology for Adhesive Bonded Joint Life Predictions.
1982-11-01
holography with fictitious fringe-moire’, as pioneered and perfected over the last few years by Prof. Sciammarella and his students albeit on relatively... Sciammarella et al. have very recently solved this problem by using the holographic moire’ technique in rIAI ime combined with closed circuit TV (Ref. 74... Sciammarella et al. The in-plane (x) displacements are given by a moire’ 129 -- ~ -- ~ --.- ~4-4 00 e’J 00 00 wI 4. *~:1 r. .00 0 0 0 d u0 02( 1 0 r4
Chaotic Electron Motion Caused by Sidebands in Free Electron Lasers
1988-10-27
sideband. The total vector potential is then, A (z,t) = (1) •w (e~ )ri(krZ-Wr t) l(ksZ-Wst)] -c’-[(ex-iey)AweZ% _+V-(ex+iey)Are ikrzwr _) (ex+iey)Ase... light c, ignoring the small correction of order w 2/W 2 from the dielectric contribution of the beam. Electrostatic contributions to the fields are...mass to me and the vector potentials according to ai=IeIAi/mec2 the dimensionless Hamiltonian describing the electron motion in the fields of Eq. (1
2002-01-01
0U) co 0 t - ; m. ci* 0) 00 .-- 0) :9 0f F,0 0 0) -N 0) ( D01 CJO 0~ (00)0 0 -T MCl*0 (0 0)9n 0) 0 M 0)0C)0 0 0) m 00 CO (0) cl (000 R0oo-l toc 0 0 00...1483-ARPA, 1974. Nones, Michele, L’efficienza del Sistema Difesa, Rome, Italy: Documenti IAI, 1996. O’Keefe, Mary, W. Kip Viscusi, and Richard J
Manufacturing Technology for Apparel Automation. Phase 1, 2 and 3 Activity.
1987-10-15
A189 129 MANUFACTURING TECHNOLOGY FOR APPAREL AUTOMATION PHASE I t/l 2 AND I ACTIVITY(U) NORTH CAROLINA STATE UNIV ATRALEIGH SCHOOL OF TEXTILES E M...34III 1.8 - iai T ON HART St 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MTC FILE coax Report: NCSU/DLA-87/2 CDRL A004 MANUFACTURING TECHNOLOGY FOR APPAREL...I Report: NCSU/DLA-87/2 CDRL A004 MANUFACTURING TECHNOLOGY FOR APPAREL AUTOMATION Phase I, II and III Activity Edwin M. McPherson North Carolina
The Battalion Commander’s Handbook, 1980
1980-06-01
FEB 1 8 1981 1 _ E I ■ c: is Approved for public releas* distribution unllaitad. US ARMY WAR COLLEGE Carlisle Barracks, Pennsylvania...i mi immmiminw •• , i MM aauii mntnimu i • 05 O ■ JHE BAHALION COMMANDER’S /a "S a(Li 1 < /I. /Fe (ia^i •ou^c^S DT1C...jun» «ser , V -. ’NOT TO PROMOTE WAR , BUT TO PRESERVE PEACE" 81 2 17 080 . .. ^ ’ , Mim—^.iMMbiM^ilM ,w. . ^». J
High angular resolution and position determinations by infrared interferometry
NASA Technical Reports Server (NTRS)
1974-01-01
Interferometer systems are described in the form of publications and reports. 'Distance Meter Helps Track the Stars', 'Berkeley Heterodyne Interferometer', 'Infrared Heterodyne Spectroscopy of CO2 on Mars', and 'A 10 micron Heterodyne Stellar Interferometer' are papers reported.
Naturally stable Sagnac–Michelson nonlinear interferometer
Lukens, Joseph M.; Peters, Nicholas A.; Pooser, Raphael C.
2016-11-16
Interferometers measure a wide variety of dynamic processes by converting a phase change into an intensity change. Nonlinear interferometers, making use of nonlinear media in lieu of beamsplitters, promise substantial improvement in the quest to reach the ultimate sensitivity limits. Here we demonstrate a new nonlinear interferometer utilizing a single parametric amplifier for mode mixing conceptually, a nonlinear version of the conventional Michelson interferometer with its arms collapsed together. We observe up to 99.9% interference visibility and find evidence for noise reduction based on phase-sensitive gain. As a result, our configuration utilizes fewer components than previous demonstrations and requires nomore » active stabilization, offering new capabilities for practical nonlinear interferometric-based sensors.« less
NASA Astrophysics Data System (ADS)
Bulushev, A. G.; Dianov, Evgenii M.; Kuznetsov, A. V.; Okhotnikov, O. G.; Paramonov, Vladimir M.; Tsarev, Vladimir A.
1990-05-01
A study was made of the use of single-mode fiber ring interferometers in narrowing the emission lines of semiconductor lasers and increasing the optical radiation power. Efficient coupling of radiation, emitted by a multifrequency injection laser with an external resonator, into a fiber ring interferometer was achieved both under cw and mode-locking conditions. Matching of the optical lengths of the external resonator and the fiber interferometer made it possible to determine the mode width for this laser. A method for generation of optical pulses in a fiber ring interferometer from cw frequency modulated radiation was developed.
Ring-Interferometric Sol-Gel Bio-Sensor
NASA Technical Reports Server (NTRS)
Bearman, Gregory (Inventor); Cohen, David (Inventor)
2006-01-01
A biosensor embodying the invention includes a sensing volume having an array of pores sized for immobilizing a first biological entity tending to bind to a second biological entity in such a manner as to change an index of refraction of the sensing volume. The biosensor further includes a ring interferometer, one volumetric section of the ring interferometer being the sensing volume, a laser for supplying light to the ring interferometer, and a photodetector for receiving light from the interferometer.
Terrestrial Planet Finder Interferometer: Architecture, Mission Design, and Technology Development
NASA Technical Reports Server (NTRS)
Henry, Curt
2004-01-01
This slide presentation represents an overview progress report about the system design and technology development of two interferometer concepts studied for the Terrestrial Planet Finder (TPF) project. The two concepts are a structurally-connected interferometer (SCI) intended to fulfill minimum TPF science goals and a formation-flying interferometer (FFI) intended to fulfill full science goals. Described are major trades, analyses, and technology experiments completed. Near term plans are also described. This paper covers progress since August 2003
Fiber optic geophysical sensors
Homuth, Emil F.
1991-01-01
A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.
Interferometer for Measuring Displacement to Within 20 pm
NASA Technical Reports Server (NTRS)
Zhao, Feng
2003-01-01
An optical heterodyne interferometer that can be used to measure linear displacements with an error <=20 pm has been developed. The remarkable accuracy of this interferometer is achieved through a design that includes (1) a wavefront split that reduces (relative to amplitude splits used in other interferometers) self interference and (2) a common-optical-path configuration that affords common-mode cancellation of the interference effects of thermal-expansion changes in optical-path lengths. The most popular method of displacement- measuring interferometry involves two beams, the polarizations of which are meant to be kept orthogonal upstream of the final interference location, where the difference between the phases of the two beams is measured. Polarization leakages (deviations from the desired perfect orthogonality) contaminate the phase measurement with periodic nonlinear errors. In commercial interferometers, these phase-measurement errors result in displacement errors in the approximate range of 1 to 10 nm. Moreover, because prior interferometers lack compensation for thermal-expansion changes in optical-path lengths, they are subject to additional displacement errors characterized by a temperature sensitivity of about 100 nm/K. Because the present interferometer does not utilize polarization in the separation and combination of the two interfering beams and because of the common-mode cancellation of thermal-expansion effects, the periodic nonlinear errors and the sensitivity to temperature changes are much smaller than in other interferometers
[Optical-fiber Fourier transform spectrometer].
Liu, Yong; Li, Bao-sheng; Liu, Yan; Zhai, Yu-feng; Wang, An
2006-10-01
A novel Fourier transform spectrum analyzer based on a single mode fiber Mach-Zehnder interferometer is reported. An optical fiber Fourier transform spectrometer, with bulk optics components replaced by fiber optical components and with the moving mirror replaced by a piezoelectric element fiber stretcher was constructed. The output spectrum of a LD below threshold was measured. Experiment result agrees with that by using grating spectrum analyzer, showing the feasibility of the optic fiber Fourier transform spectrometer for practical spectrum measurement. Spectrum resolution -7 cm(-1) was obtained in our experiment. The resolution can be further improved by increasing the maximum optical path difference.
Observing binary black hole ringdowns by advanced gravitational wave detectors
NASA Astrophysics Data System (ADS)
Maselli, Andrea; Kokkotas, Kostas D.; Laguna, Pablo
2017-05-01
The direct discovery of gravitational waves from compact binary systems leads for the first time to explore the possibility of black hole spectroscopy. Newly formed black holes produced by coalescing events are copious emitters of gravitational radiation, in the form of damped sinusoids, the quasinormal modes. The latter provides a precious source of information on the nature of gravity in the strong field regime, as they represent a powerful tool to investigate the validity of the no-hair theorem. In this work we perform a systematic study on the accuracy with which current and future interferometers will measure the fundamental parameters of ringdown events, such as frequencies and damping times. We analyze how these errors affect the estimate of the mass and the angular momentum of the final black hole, constraining the parameter space which will lead to the most precise measurements. We explore both single and multimode events, showing how the uncertainties evolve when multiple detectors are available. We also prove that, for the second generation of interferometers, a network of instruments is a crucial and necessary ingredient to perform strong-gravity tests of the no-hair theorem. Finally, we analyze the constraints that a third generation of detectors may be able to set on the mode's parameters, comparing the projected bounds against those obtained for current facilities.
Principle and analysis of a rotational motion Fourier transform infrared spectrometer
NASA Astrophysics Data System (ADS)
Cai, Qisheng; Min, Huang; Han, Wei; Liu, Yixuan; Qian, Lulu; Lu, Xiangning
2017-09-01
Fourier transform infrared spectroscopy is an important technique in studying molecular energy levels, analyzing material compositions, and environmental pollutants detection. A novel rotational motion Fourier transform infrared spectrometer with high stability and ultra-rapid scanning characteristics is proposed in this paper. The basic principle, the optical path difference (OPD) calculations, and some tolerance analysis are elaborated. The OPD of this spectrometer is obtained by the continuously rotational motion of a pair of parallel mirrors instead of the translational motion in traditional Michelson interferometer. Because of the rotational motion, it avoids the tilt problems occurred in the translational motion Michelson interferometer. There is a cosine function relationship between the OPD and the rotating angle of the parallel mirrors. An optical model is setup in non-sequential mode of the ZEMAX software, and the interferogram of a monochromatic light is simulated using ray tracing method. The simulated interferogram is consistent with the theoretically calculated interferogram. As the rotating mirrors are the only moving elements in this spectrometer, the parallelism of the rotating mirrors and the vibration during the scan are analyzed. The vibration of the parallel mirrors is the main error during the rotation. This high stability and ultra-rapid scanning Fourier transform infrared spectrometer is a suitable candidate for airborne and space-borne remote sensing spectrometer.
Atom Interferometry: A Matter Wave Clock and a Measurement of α
NASA Astrophysics Data System (ADS)
Estey, Brian; Lan, Shau-Yu; Kuan, Pei-Chen; Hohensee, Michael; Haslinger, Philipp; Kehayias, Pauli; English, Damon; Müller, Holger
2012-06-01
Developments in large-momentum transfer beamsplitters (eg. Bragg diffraction) and conjugate Ramsey-Bord'e interferometers have enabled atom interferometers with unparalleled size and sensitivity. The atomic wave packet separation is large enough that the Coriolis force due to the earth's rotation reduces interferometer contrast. We compensate for this effect using a tip-tilt mirror, improving our contrast by up to a factor of 3.5, allowing pulse separations of up to 250 ms with 10k beamsplitters. This interferometer can be used to make a precise measurement of the recoil frequency (h/m) and thus the fine structure constant. The interferometer also gives us indirect access to the Compton frequency (νC≡mc^2/h) oscillations of the matter wave, since h/m is simply c^2/νC. Using an optical frequency comb we reference the interferometer's laser frequency to a multiple of a cesium atom's recoil frequency. This self-referenced interferometer thus locks a local oscillator to a specified fraction of the cesium Compton frequency, with a fractional stability of 2 pbb over several hours. This has potential application in redefining the kilogram in terms of the second. We also present a preliminary measurement of the fine structure constant.
NASA Astrophysics Data System (ADS)
Huttner, S. H.; Danilishin, S. L.; Barr, B. W.; Bell, A. S.; Gräf, C.; Hennig, J. S.; Hild, S.; Houston, E. A.; Leavey, S. S.; Pascucci, D.; Sorazu, B.; Spencer, A. P.; Steinlechner, S.; Wright, J. L.; Zhang, T.; Strain, K. A.
2017-01-01
Speedmeters are known to be quantum non-demolition devices and, by potentially providing sensitivity beyond the standard quantum limit, become interesting for third generation gravitational wave detectors. Here we introduce a new configuration, the sloshing-Sagnac interferometer, and compare it to the more established ring-Sagnac interferometer. The sloshing-Sagnac interferometer is designed to provide improved quantum noise limited sensitivity and lower coating thermal noise than standard position meter interferometers employed in current gravitational wave detectors. We compare the quantum noise limited sensitivity of the ring-Sagnac and the sloshing-Sagnac interferometers, in the frequency range, from 5 Hz to 100 Hz, where they provide the greatest potential benefit. We evaluate the improvement in terms of the unweighted noise reduction below the standard quantum limit, and by finding the range up to which binary black hole inspirals may be observed. The sloshing-Sagnac was found to give approximately similar or better sensitivity than the ring-Sagnac in all cases. We also show that by eliminating the requirement for maximally-reflecting cavity end mirrors with correspondingly-thick multi-layer coatings, coating noise can be reduced by a factor of approximately 2.2 compared to conventional interferometers.
A training course on tropical cyclones over the eastern Pacific Ocean
NASA Astrophysics Data System (ADS)
Farfan, L. M.; Pozo, D.; Raga, G.; Romero, R.; Zavala, J.
2008-05-01
As part of a research project funded by the Inter-American Institute for Global Change Research (IAI), we are performing a short course based on the current understanding of tropical cyclones in the eastern Pacific basin. In particular, we are focused in discussing the formation and intensification off the Mexican coast. Our main goal is to train students from higher-education institutions from selected countries in Latin America. Our approach includes the review of climatological features derived from the best-track dataset issued by the National Hurricane Center. Using this dataset, we built a climatology of relevant positions and storm tracks for the base period 1970-2006. Additionally, we designed hands-on sessions in which students analyze satellite imagery from several platforms (GOES, QuikSCATT and TRMM) along with mesoscale model simulations from the WRF model. Case studies that resulted in landfall over northwestern Mexico are used; this includes Hurricanes John, Lane and Paul all of which developed during the season of 2006. So far, the course has been taught in the Atmospheric Sciences Department at the University of Buenos Aires, Argentina, and in La Paz, Mexico, with students from Mexico, Chile, Brazil, Costa Rica and Cuba.
A Validation Study of Merging and Spacing Techniques in a NAS-Wide Simulation
NASA Technical Reports Server (NTRS)
Glaab, Patricia C.
2011-01-01
In November 2010, Intelligent Automation, Inc. (IAI) delivered an M&S software tool to that allows system level studies of the complex terminal airspace with the ACES simulation. The software was evaluated against current day arrivals in the Atlanta TRACON using Atlanta's Hartsfield-Jackson International Airport (KATL) arrival schedules. Results of this validation effort are presented describing data sets, traffic flow assumptions and techniques, and arrival rate comparisons between reported landings at Atlanta versus simulated arrivals using the same traffic sets in ACES equipped with M&S. Initial results showed the simulated system capacity to be significantly below arrival capacity seen at KATL. Data was gathered for Atlanta using commercial airport and flight tracking websites (like FlightAware.com), and analyzed to insure compatible techniques were used for result reporting and comparison. TFM operators for Atlanta were consulted for tuning final simulation parameters and for guidance in flow management techniques during high volume operations. Using these modified parameters and incorporating TFM guidance for efficiencies in flowing aircraft, arrival capacity for KATL was matched for the simulation. Following this validation effort, a sensitivity study was conducted to measure the impact of variations in system parameters on the Atlanta airport arrival capacity.
Gravitational Wave Detection with Single-Laser Atom Interferometers
NASA Technical Reports Server (NTRS)
Yu, Nan; Tinto, Massimo
2011-01-01
A new design for a broadband detector of gravitational radiation relies on two atom interferometers separated by a distance L. In this scheme, only one arm and one laser are used for operating the two atom interferometers. The innovation here involves the fact that the atoms in the atom interferometers are not only considered as perfect test masses, but also as highly stable clocks. Atomic coherence is intrinsically stable, and can be many orders of magnitude more stable than a laser.
Special topics in infrared interferometry. [Michelson interferometer development
NASA Technical Reports Server (NTRS)
Hanel, R. A.
1985-01-01
Topics in IR interferometry related to the development of a Michelson interferometer are treated. The selection and reading of the signal from the detector to the analog to digital converter is explained. The requirements for the Michelson interferometer advance speed are deduced. The effects of intensity modulation on the interferogram are discussed. Wavelength and intensity calibration of the interferometer are explained. Noise sources (Nyquist or Johnson noise, phonon noise), definitions of measuring methods of noise, and noise measurements are presented.
High sensitivity boundary layer transition detector
NASA Technical Reports Server (NTRS)
Azzazy, M.; Modarress, D.; Hoeft, T.
1985-01-01
A high sensitivity differential interferometer has been developed to locate the region where the boundary layer flow changes from laminar to turbulent. Two experimental configurations have been used to evaluate the performance of the interferometer, open shear layer configuration and wind tunnel turbulent spot configuration. In each experiment small temperature fluctuations were introduced as the signal source. Simultaneous cold wire measurements have been compared with the interferometer data. The comparison shows that the interferometer is sensitive to very weak phase variations in the order of .001 the laser wavelength.
Results from a Grazing Incidence X-Ray Interferometer
NASA Technical Reports Server (NTRS)
Joy, Marshall K.; Shipley, Ann; Cash, Webster; Carter, James
2000-01-01
A prototype grazing incidence interferometer has been built and tested at EUV and X-ray wavelengths using a 120 meter long vacuum test facility at Marshall Space Flight Center. We describe the design and construction of the interferometer, the EUV and x-ray sources, the detector systems, and compare the interferometric fringe measurements with theoretical predictions. We also describe the next-generation grazing incidence system which is designed to provide laboratory demonstration of key technologies that will be needed for a space-based x-ray interferometer.
Fiber optic geophysical sensors
Homuth, E.F.
1991-03-19
A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.
Balloon Exoplanet Nulling Interferometer (BENI)
NASA Technical Reports Server (NTRS)
Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Ford, Holland; Petro, Larry; Herman, Jay; Rinehart, Stephen; Carpenter, Kenneth; Marzouk, Joe
2009-01-01
We evaluate the feasibility of using a balloon-borne nulling interferometer to detect and characterize exosolar planets and debris disks. The existing instrument consists of a 3-telescope Fizeau imaging interferometer with 3 fast steering mirrors and 3 delay lines operating at 800 Hz for closed-loop control of wavefront errors and fine pointing. A compact visible nulling interferometer is under development which when coupled to the imaging interferometer would in-principle allow deep suppression of starlight. We have conducted atmospheric simulations of the environment above 100,000 feet and believe balloons are a feasible path forward towards detection and characterization of a limited set of exoplanets and their debris disks. Herein we will discuss the BENI instrument, the balloon environment and the feasibility of such as mission.
NASA Astrophysics Data System (ADS)
Narayanamurthy, C. S.
2009-01-01
Fringes formed in a Michelson interferometer never localize in any plane, in the detector plane and in the localization plane. Instead, the fringes are assumed to localize at infinity. Except for some explanation in Principles of Optics by Born and Wolf (1964 (New York: Macmillan)), the fringe localization phenomena of Michelson's interferometer have never been analysed seriously in any book. Because Michelson's interferometer is one of the important and fundamental optical experiments taught at both undergraduate and graduate levels, it would be appropriate to explain the localization of these fringes. In this paper, we analyse the localization of Michelson interferometer fringes using Fourier optics and temporal coherence, and show that they never localize at any plane even at infinity.
A chevron beam-splitter interferometer
NASA Technical Reports Server (NTRS)
Breckinridge, J. B.
1979-01-01
Fully tilt compensated double-pass chevron beam splitter, that removes channelling effects and permits optical phase tuning, is wavelength independent and allows small errors in alignment that are not tolerated in Michelson, Machzender, or Sagnac interferometers. Device is very useful in experiments where background vibration affects conventional interferometers.
NASA Technical Reports Server (NTRS)
Ni, Wei-Tou; Shy, Jow-Tsong; Tseng, Shiao-Min; Shao, Michael
1992-01-01
A propasal to study the second order light deflection in the solar gravitational field is presented. It is proposed to use 1 to 2 W frequency stabilized lasers on two microspacecraft about 0.25 degree apart in the sky with apparent positions near the Sun, and observe the relative angle of two spacecraft using ground based fiber linked interferometers with 10 km baseline to determine the second order relativistic light deflection effects. The first two years of work would emphasize the establishment of a prototype stabilized laser system and fiber linked interferometer. The first year, a prototype fiber linked interferometer would be set up to study the phase noise produced by external perturbations to fiber links. The second year, a second interferometer would be set up. The cancellation of phase drift due to fiber links of both interferometers in the same environment would be investigated.
NASA Astrophysics Data System (ADS)
Pan, Huang-Wei; Kuo, Ling-Chi; Huang, Shu-Yu; Wu, Meng-Yun; Juang, Yu-Hang; Lee, Chia-Wei; Chen, Hsin-Chieh; Wen, Ting Ting; Chao, Shiuh
2018-01-01
Silicon is a potential substrate material for the large-areal-size mirrors of the next-generation laser interferometer gravitational wave detector operated in cryogenics. Silicon nitride thin films uniformly deposited by a chemical vapor deposition method on large-size silicon wafers is a common practice in the silicon integrated circuit industry. We used plasma-enhanced chemical vapor deposition to deposit silicon nitride films on silicon and studied the physical properties of the films that are pertinent to application of mirror coatings for laser interferometer gravitational wave detectors. We measured and analyzed the structure, optical properties, stress, Young's modulus, and mechanical loss of the films, at both room and cryogenic temperatures. Optical extinction coefficients of the films were in the 10-5 range at 1550-nm wavelength. Room-temperature mechanical loss of the films varied in the range from low 10-4 to low 10-5 within the frequency range of interest. The existence of a cryogenic mechanical loss peak depended on the composition of the films. We measured the bond concentrations of N - H , Si - H , Si - N , and Si - Si bonds in the films and analyzed the correlations between bond concentrations and cryogenic mechanical losses. We proposed three possible two-level systems associated with the N - H , Si - H , and Si - N bonds in the film. We inferred that the dominant source of the cryogenic mechanical loss for the silicon nitride films is the two-level system of exchanging position between a H+ and electron lone pair associated with the N - H bond. Under our deposition conditions, superior properties in terms of high refractive index with a large adjustable range, low optical absorption, and low mechanical loss were achieved for films with lower nitrogen content and lower N - H bond concentration. Possible pairing of the silicon nitride films with other materials in the quarter-wave stack is discussed.
Measurement of M²-Curve for Asymmetric Beams by Self-Referencing Interferometer Wavefront Sensor.
Du, Yongzhao
2016-11-29
For asymmetric laser beams, the values of beam quality factor M x 2 and M y 2 are inconsistent if one selects a different coordinate system or measures beam quality with different experimental conditionals, even when analyzing the same beam. To overcome this non-uniqueness, a new beam quality characterization method named as M²-curve is developed. The M²-curve not only contains the beam quality factor M x 2 and M y 2 in the x -direction and y -direction, respectively; but also introduces a curve of M x α 2 versus rotation angle α of coordinate axis. Moreover, we also present a real-time measurement method to demonstrate beam propagation factor M²-curve with a modified self-referencing Mach-Zehnder interferometer based-wavefront sensor (henceforth SRI-WFS). The feasibility of the proposed method is demonstrated with the theoretical analysis and experiment in multimode beams. The experimental results showed that the proposed measurement method is simple, fast, and a single-shot measurement procedure without movable parts.
Universal sensitivity of speckle intensity correlations to wavefront change in light diffusers
Kim, KyungDuk; Yu, Hyeonseung; Lee, KyeoReh; Park, YongKeun
2017-01-01
Here, we present a concept based on the realization that a complex medium can be used as a simple interferometer. Changes in the wavefront of an incident coherent beam can be retrieved by analyzing changes in speckle patterns when the beam passes through a light diffuser. We demonstrate that the spatial intensity correlations of the speckle patterns are independent of the light diffusers, and are solely determined by the phase changes of an incident beam. With numerical simulations using the random matrix theory, and an experimental pressure-driven wavefront-deforming setup using a microfluidic channel, we theoretically and experimentally confirm the universal sensitivity of speckle intensity correlations, which is attributed to the conservation of optical field correlation despite multiple light scattering. This work demonstrates that a light diffuser works as a simple interferometer, and presents opportunities to retrieve phase information of optical fields with a compact scattering layer in various applications in metrology, analytical chemistry, and biomedicine. PMID:28322268
Measurement of M2-Curve for Asymmetric Beams by Self-Referencing Interferometer Wavefront Sensor
Du, Yongzhao
2016-01-01
For asymmetric laser beams, the values of beam quality factor Mx2 and My2 are inconsistent if one selects a different coordinate system or measures beam quality with different experimental conditionals, even when analyzing the same beam. To overcome this non-uniqueness, a new beam quality characterization method named as M2-curve is developed. The M2-curve not only contains the beam quality factor Mx2 and My2 in the x-direction and y-direction, respectively; but also introduces a curve of Mxα2 versus rotation angle α of coordinate axis. Moreover, we also present a real-time measurement method to demonstrate beam propagation factor M2-curve with a modified self-referencing Mach-Zehnder interferometer based-wavefront sensor (henceforth SRI-WFS). The feasibility of the proposed method is demonstrated with the theoretical analysis and experiment in multimode beams. The experimental results showed that the proposed measurement method is simple, fast, and a single-shot measurement procedure without movable parts. PMID:27916845
Measurement of elasto-plastic deformations by speckle interferometry
NASA Astrophysics Data System (ADS)
Bova, Marco; Bruno, Luigi; Poggialini, Andrea
2010-09-01
In the paper the authors present an experimental equipment for elasto-plastic characterization of engineering materials by tensile tests. The stress state is imposed to a dog bone shaped specimen by a testing machine fixed on the optical table and designed for optimizing the performance of a speckle interferometer. All three displacement components are measured by a portable speckle interferometer fed by three laser diodes of 50 mW, by which the deformations of a surface of about 6×8 mm2 can be fully analyzed in details. All the equipment is driven by control electronics designed and realized on purpose, by which it is possible to accurately modify the intensity of the illumination sources, the position of a PZT actuator necessary for applying phase-shifting procedure, and the overall displacement applied to the specimen. The experiments were carried out in National Instrument LabVIEW environment, while the processing of the experimental data in Wolfram Mathematica environment. The paper reports the results of the elasto-plastic characterization of a high strength steel specimen.
Parameter estimation by decoherence in the double-slit experiment
NASA Astrophysics Data System (ADS)
Matsumura, Akira; Ikeda, Taishi; Kukita, Shingo
2018-06-01
We discuss a parameter estimation problem using quantum decoherence in the double-slit interferometer. We consider a particle coupled to a massive scalar field after the particle passing through the double slit and solve the dynamics non-perturbatively for the coupling by the WKB approximation. This allows us to analyze the estimation problem which cannot be treated by master equation used in the research of quantum probe. In this model, the scalar field reduces the interference fringes of the particle and the fringe pattern depends on the field mass and coupling. To evaluate the contrast and the estimation precision obtained from the pattern, we introduce the interferometric visibility and the Fisher information matrix of the field mass and coupling. For the fringe pattern observed on the distant screen, we derive a simple relation between the visibility and the Fisher matrix. Also, focusing on the estimation precision of the mass, we find that the Fisher information characterizes the wave-particle duality in the double-slit interferometer.
Primordial gravitational waves for universality classes of pseudoscalar inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domcke, Valerie; Pieroni, Mauro; Binétruy, Pierre, E-mail: valerie.domcke@apc.univ-paris7.fr, E-mail: mpieroni@apc.univ-paris7.fr, E-mail: binetruy@apc.in2p3.fr
Current bounds from the polarization of the CMB predict the scale-invariant gravitational wave (GW) background of inflation to be out of reach for upcoming GW interferometers. This prospect dramatically changes if the inflaton is a pseudoscalar, in which case its generic coupling to any abelian gauge field provides a new source of GWs, directly related to the dynamics of inflation. This opens up new ways of probing the scalar potential responsible for cosmic inflation. Dividing inflation models into universality classes, we analyze the possible observational signatures. One of the most promising scenarios is Starobinsky inflation, which may lead to observationalmore » signatures both in direct GW detection as well as in upcoming CMB detectors. In this case, the complementarity between the CMB and direct GW detection, as well as the possibility of a multi-frequency analysis with upcoming ground and space based GW interferometers, may provide a first clue to the microphysics of inflation.« less
NASA Astrophysics Data System (ADS)
Korobko, M.; Kleybolte, L.; Ast, S.; Miao, H.; Chen, Y.; Schnabel, R.
2017-04-01
The shot-noise limited peak sensitivity of cavity-enhanced interferometric measurement devices, such as gravitational-wave detectors, can be improved by increasing the cavity finesse, even when comparing fixed intracavity light powers. For a fixed light power inside the detector, this comes at the price of a proportional reduction in the detection bandwidth. High sensitivity over a large span of signal frequencies, however, is essential for astronomical observations. It is possible to overcome this standard sensitivity-bandwidth limit using nonclassical correlations in the light field. Here, we investigate the internal squeezing approach, where the parametric amplification process creates a nonclassical correlation directly inside the interferometer cavity. We theoretically analyze the limits of the approach and measure 36% increase in the sensitivity-bandwidth product compared to the classical case. To our knowledge, this is the first experimental demonstration of an improvement in the sensitivity-bandwidth product using internal squeezing, opening the way for a new class of optomechanical force sensing devices.
Application of interferential correlation of spectrum to the detection of atmospheric pollutants
NASA Technical Reports Server (NTRS)
Fortunato, G.
1979-01-01
The general correlation principles for spectra and spectra derivatives are studied by using the Fourier transform of the spectral distribution of energy from a source illuminating a double beam interferometer with transverse splitting by dividing luminance. In this correlation technique, the use of such an interferometer has the advantage of greater luminosity as compared with a slit spectrometer. However, the correlation example indicates that it is necessary to adapt the correlator to the particular case considered, in order to obtain the best gain in the signal to noise ratio. In the case of sulfur dioxide detection, a very simple mounting which could be used in some interesting industrial applications was developed. This mounting can be used each time that the substance to be analyzed has a quasi-periodic absorption spectrum: in particular this is often the case with absorption spectra of gases, and a mounting identical to the one described for sulfur dioxide proved to be effective in the detection of nitrogen oxides.
Atomic Gravitational Wave Interferometric Sensors (AGIS) in Space
NASA Astrophysics Data System (ADS)
Sugarbaker, Alex; Hogan, Jason; Johnson, David; Dickerson, Susannah; Kovachy, Tim; Chiow, Sheng-Wey; Kasevich, Mark
2012-06-01
Atom interferometers have the potential to make sensitive gravitational wave detectors, which would reinforce our fundamental understanding of gravity and provide a new means of observing the universe. We focus here on the AGIS-LEO proposal [1]. Gravitational waves can be observed by comparing a pair of atom interferometers separated over an extended baseline. The mission would offer a strain sensitivity that would provide access to a rich scientific region with substantial discovery potential. This band is not currently addressed with the LIGO or LISA instruments. We analyze systematic backgrounds that are relevant to the mission and discuss how they can be mitigated at the required levels. Some of these effects do not appear to have been considered previously in the context of atom interferometry, and we therefore expect that our analysis will be broadly relevant to atom interferometric precision measurements. Many of the techniques relevant to an AGIS mission can be investigated in the Stanford 10-m drop tower.[4pt] [1] J.M. Hogan, et al., Gen. Rel. Grav. 43, 1953-2009 (2011).
NASA Astrophysics Data System (ADS)
Sierra-Calderon, A.; Rodriguez-Novelo, J. C.; Gamez-Aviles, E.; May-Alarcon, M.; Toral-Cruz, H.; Alvarez-Chavez, J. A.
2016-09-01
The spectral noise characteristic and relative intensity noise of an all fibre Sagnac interferometer system consisting of a 980nm pump source at 130mW maximum output power, a 980/1550nm wavelength division multiplexer, a 10m-piece of Erbium-doped fibre, a fibre Bragg grating (FBG) centered at 1.548um, an optical circulator at 1550nm and a 50/50 fibre coupler, were measured with an optical spectrum analyzer (OSA) for fine tuning for a range of temperature between 5 and 180 degrees Celsius in step of 1 degree Celsius. At the probing end, a high-bi piece of fibre and a Peltier were employed for temperature variation of the system. Spectral and temperature response of the noise reduction due to temperature variation was performed remotely using and Arduino micro-controller and a DS18B20 digital sensor, into a local area network. Full optical and thermal characterization of the system will be included in the presentation.
2016-09-01
Thanks to the elegant reciprocal geometry of the Sagnac interferometer, many sources of drift that would present in other polarimetry techniques were...interferometers. And is 2 orders of magnitude better than competing polarimetry -based Faraday techniques. Couple a Rb Vapor cell to the Sagnac interferometer
Imaging interferometer using dual broadband quantum well infrared photodetectors
NASA Technical Reports Server (NTRS)
Reininger, F.; Gunapala, S.; Bandara, S.; Grimm, M.; Johnson, D.; Peters, D.; Leland, S.; Liu, J.; Mumolo, J.; Rafol, D.;
2002-01-01
The Jet Propulsion Laboratory is developing a new imaging interferometer that has double the efficiency of conventional interferometers and only a fraction of the mass and volume. The project is being funded as part of the Defense Advanced Research Projects Agency (DARPA) Photonic Wavelength And Spatial Signal Processing program (PWASSSP).
Two-Particle Four-Mode Interferometer for Atoms
NASA Astrophysics Data System (ADS)
Dussarrat, Pierre; Perrier, Maxime; Imanaliev, Almazbek; Lopes, Raphael; Aspect, Alain; Cheneau, Marc; Boiron, Denis; Westbrook, Christoph I.
2017-10-01
We present a free-space interferometer to observe two-particle interference of a pair of atoms with entangled momenta. The source of atom pairs is a Bose-Einstein condensate subject to a dynamical instability, and the interferometer is realized using Bragg diffraction on optical lattices, in the spirit of our recent Hong-Ou-Mandel experiment. We report on an observation ruling out the possibility of a purely mixed state at the input of the interferometer. We explain how our current setup can be extended to enable a test of a Bell inequality on momentum observables.
Fourier-transform and global contrast interferometer alignment methods
Goldberg, Kenneth A.
2001-01-01
Interferometric methods are presented to facilitate alignment of image-plane components within an interferometer and for the magnified viewing of interferometer masks in situ. Fourier-transforms are performed on intensity patterns that are detected with the interferometer and are used to calculate pseudo-images of the electric field in the image plane of the test optic where the critical alignment of various components is being performed. Fine alignment is aided by the introduction and optimization of a global contrast parameter that is easily calculated from the Fourier-transform.
NASA Technical Reports Server (NTRS)
Byer, R. L.
1990-01-01
Two laser pumped Nd:YAG lasers were frequency stabilized to a commercial 6.327 GHz free spectral range Fabry-Perot interferometer yielding a best case beatnote linewidth of 330 MHz. In addition, a Fabry-Perot interferometer with a free spectral range of 680 MHz, a linewidth of 25 kHz, and a finesse of 27,500 was built, and when it was substituted in place of the commercial interferometer, it produced a robust and easily repeatable beatnote linewidth of 700 MHz.
A combined scanning tunnelling microscope and x-ray interferometer
NASA Astrophysics Data System (ADS)
Yacoot, Andrew; Kuetgens, Ulrich; Koenders, Ludger; Weimann, Thomas
2001-10-01
A monolithic x-ray interferometer made from silicon and a scanning tunnelling microscope have been combined and used to calibrate grating structures with periodicities of 100 nm or less. The x-ray interferometer is used as a translation stage which moves in discrete steps of 0.192 nm, the lattice spacing of the silicon (220) planes. Hence, movements are traceable to the definition of the metre and the nonlinearity associated with the optical interferometers used to measure displacement in more conventional metrological scanning probe microscopes (MSPMs) removed.
NASA Astrophysics Data System (ADS)
Schuhmann, Karsten; Kirch, Klaus; Marszałek, Mirosław; Pototschnig, Martin; Sinkunaite, Laura; Wichmann, Gunther; Zeyen, Manuel; Antognini, Aldo
2018-02-01
We present a frequency selective optical setup based on a Gires-Tournois interferometer suitable to enforce single-frequency operation of high power lasers. It is based on a birefringent Gires-Tournois interferometer combined with a λ/4 plate and a polarizer. The high-reflective part of the Gires-Tournois interferometer can be contacted to a heat sink to obtain efficient cooling (similar cooling principle as for the active medium in thin-disk lasers) enabling power scaling up to output powers in the kW range.
Improving the phase response of an atom interferometer by means of temporal pulse shaping
NASA Astrophysics Data System (ADS)
Fang, Bess; Mielec, Nicolas; Savoie, Denis; Altorio, Matteo; Landragin, Arnaud; Geiger, Remi
2018-02-01
We study theoretically and experimentally the influence of temporally shaping the light pulses in an atom interferometer, with a focus on the phase response of the interferometer. We show that smooth light pulse shapes allow rejecting high frequency phase fluctuations (above the Rabi frequency) and thus relax the requirements on the phase noise or frequency noise of the interrogation lasers driving the interferometer. The light pulse shape is also shown to modify the scale factor of the interferometer, which has to be taken into account in the evaluation of its accuracy budget. We discuss the trade-offs to operate when choosing a particular pulse shape, by taking into account phase noise rejection, velocity selectivity, and applicability to large momentum transfer atom interferometry.
NASA Astrophysics Data System (ADS)
Csonti, K.; Hanyecz, V.; Mészáros, G.; Kovács, A. P.
2017-06-01
In this work we have measured the group-delay dispersion of an empty Michelson interferometer for s- and p-polarized light beams applying two different non-polarizing beam splitter cubes. The interference pattern appearing at the output of the interferometer was resolved with two different spectrometers. It was found that the group-delay dispersion of the empty interferometer depended on the polarization directions in case of both beam splitter cubes. The results were checked by inserting a glass plate in the sample arm of the interferometer and similar difference was obtained for the two polarization directions. These results show that to reach high precision, linearly polarized white light beam should be used and the residual dispersion of the empty interferometer should be measured at both polarization directions.
The Palomar Testbed Interferometer
NASA Technical Reports Server (NTRS)
Colavita, M. M.; Wallace, J. K.; Hines, B. E.; Gursel, Y.; Malbet, F.; Palmer, D. L.; Pan, X. P.; Shao, M.; Yu, J. W.; Boden, A. F.
1999-01-01
The Palomar Testbed Interferometer (PTI) is a long-baseline infrared interferometer located at Palomar Observatory, California. It was built as a testbed for interferometric techniques applicable to the Keck Interferometer. First fringes were obtained in 1995 July. PTI implements a dual-star architecture, tracking two stars simultaneously for phase referencing and narrow-angle astrometry. The three fixed 40 cm apertures can be combined pairwise to provide baselines to 110 m. The interferometer actively tracks the white-light fringe using an array detector at 2.2 microns and active delay lines with a range of +/-38 m. Laser metrology of the delay lines allows for servo control, and laser metrology of the complete optical path enables narrow-angle astrometric measurements. The instrument is highly automated, using a multiprocessing computer system for instrument control and sequencing.
Advanced Gravitational Wave Detectors
NASA Astrophysics Data System (ADS)
Blair, D. G.; Howell, E. J.; Ju, L.; Zhao, C.
2012-02-01
Part I. An Introduction to Gravitational Wave Astronomy and Detectors: 1. Gravitational waves D. G. Blair, L. Ju, C. Zhao and E. J. Howell; 2. Sources of gravitational waves D. G. Blair and E. J. Howell; 3. Gravitational wave detectors D. G. Blair, L. Ju, C. Zhao, H. Miao, E. J. Howell, and P. Barriga; 4. Gravitational wave data analysis B. S. Sathyaprakash and B. F. Schutz; 5. Network analysis L. Wen and B. F. Schutz; Part II. Current Laser Interferometer Detectors: Three Case Studies: 6. The Laser Interferometer Gravitational-Wave Observatory P. Fritschel; 7. The VIRGO detector S. Braccini; 8. GEO 600 H. Lück and H. Grote; Part III. Technology for Advanced Gravitational Wave Detectors: 9. Lasers for high optical power interferometers B. Willke and M. Frede; 10. Thermal noise, suspensions and test masses L. Ju, G. Harry and B. Lee; 11. Vibration isolation: Part 1. Seismic isolation for advanced LIGO B. Lantz; Part 2. Passive isolation J-C. Dumas; 12. Interferometer sensing and control P. Barriga; 13. Stabilizing interferometers against high optical power effects C. Zhao, L. Ju, S. Gras and D. G. Blair; Part IV. Technology for Third Generation Gravitational Wave Detectors: 14. Cryogenic interferometers J. Degallaix; 15. Quantum theory of laser-interferometer GW detectors H. Miao and Y. Chen; 16. ET. A third generation observatory M. Punturo and H. Lück; Index.
Orbit analysis of a geostationary gravitational wave interferometer detector array
NASA Astrophysics Data System (ADS)
Tinto, Massimo; de Araujo, Jose C. N.; Kuga, Helio K.; Alves, Márcio E. S.; Aguiar, Odylio D.
2015-09-01
We analyze the trajectories of three geostationary satellites forming the geostationary gravitational wave interferometer (GEOGRAWI) [1], a space-based laser interferometer mission aiming to detect and study gravitational radiation in the (10-4-10) Hz band. The combined effects of the gravity fields of the Earth, the Sun and the Moon make the three satellites deviate from their nominally stationary, equatorial and equilateral configuration. Since changes in the satellites’s relative distances and orientations could negatively affect the precision of the laser heterodyne measurements, we have derived the time-dependence of the inter-satellite distances and velocities, the variations of the polar angles made by the constellation’s three arms with respect to a chosen reference frame and the time changes of the triangle’s enclosed angles. We find that during the time between two consecutive station-keeping maneuvers (about two weeks) the relative variations of the inter-satellite distances do not exceed a value of 0.05%, while the relative velocities between pairs of satellites remain smaller than about 0.7 m s-1. In addition, we find the angles made by the arms of the triangle with the equatorial plane to be periodic functions of time whose amplitudes grow linearly with time; the maximum variations experienced by these angles as well as by those within the triangle remain smaller than 3 arc-minutes, while the east-west angular variations of the three arms remain smaller than about 15 arc-minutes during the two-week period.
Design of a nonlinear, thin-film Mach-Zehnder interferometer
NASA Technical Reports Server (NTRS)
Pearson, Earl F.
1996-01-01
A Mach-Zehnder interferometer consists of a 3 db splitter to create the two separate beams, an optical path difference to control the interference between the two beams and another 3 db coupler to reconstruct the output signal. The performance of each of its components has been investigated. Since an optical path difference is required for its function, the performance of a Mach-Zehnder interferometer is not very sensitive to construction parameters. In designing an interferometer for this work, the following considerations must be observed: the interferometer is to be made of phthalocyanine or polydiacetylene thin films; in order to avoid thermal effects which are slower, the wavelength chosen must not be absorbed in either one or two photon processes; the wavelength chosen must be easily generated (laser line); the spacing between the interferometer arms must be large enough to allow attachment of external electrodes; the vapor deposition apparatus can accept disks no larger than 0.9 inches; and the design must allow multiple layer coating in order to determine the optimum film thickness or to change to another substance.
Detecting coupling of Majorana bound states with an Aharonov-Bohm interferometer
NASA Astrophysics Data System (ADS)
Ramos-Andrade, J. P.; Orellana, P. A.; Ulloa, S. E.
2018-01-01
We study the transport properties of an interferometer composed by a quantum dot (QD) coupled with two normal leads and two one-dimensional topological superconductor nanowires (TNWs) hosting Majorana bound states (MBS) at their ends. The geometry considered is such that one TNW has both ends connected with the QD, forming an Aharonov-Bohm (AB) interferometer threaded by an external magnetic flux, while the other TNW is placed near the interferometer TNW. This geometry can alternatively be seen as a long wire contacted across a local defect, with possible coupling between independent-MBS. We use the Green’s function formalism to calculate the conductance across normal current leads on the QD. We find that the conductance exhibits a half-quantum value regardless of the AB phase and location of the dot energy level, whenever the interferometer configuration interacts with the neighboring TNW. These findings suggest that such a geometry could be used for a sensitive detection of MBS interactions across TNWs, exploiting the high sensitivity of conductance to the AB phase in the interferometer.
Transport properties of a quantum dot and a quantum ring in series
NASA Astrophysics Data System (ADS)
Seo, Minky; Chung, Yunchul
2018-01-01
The decoherence mechanism of an electron interferometer is studied by using a serial quantum dot and ring device. By coupling a quantum dot to a quantum ring (closed-loop electron interferometer), we were able to observe both Coulomb oscillations and Aharonov-Bohm interference simultaneously. The coupled device behaves like an ordinary double quantum dot at zero magnetic field while the conductance of the Coulomb blockade peak is modulated by the electron interference at finite magnetic fields. By injecting one electron at a time (by exploiting the sequential tunneling of a quantum dot) into the interferometer, we were able to study the visibility of the electron interference at non-zero bias voltage. The visibility was found to decay rapidly as the electron energy was increased, which was consistent with the recently reported result for an electron interferometer. However, the lobe pattern and the sudden phase jump became less prominent. These results imply that the lobe pattern and the phase jump in an electron interferometer may be due to electron interactions inside the interferometer, as is predicted by the theory.
NASA Astrophysics Data System (ADS)
Hor, Yew Fong
2002-08-01
This thesis involves the design, fabrication and characterization of an integrated optical waveguide sensor. Prior to fabrication, design parameters of the waveguide need to be determined and optimized. The waveguide parameters such as waveguide dimension and the refractive index of the core and cladding are obtained from the single-mode cutoff frequency calculated using either analytical or numerical methods. In this thesis, details of analytical calculations to determine the cutoff frequency in terms of the waveguide parameters will be presented. The method discussed here is Marcatili's approximation. The purpose is to solve the scalar wave equation derived from Maxwell's equations because it describes the mode properties inside the waveguides. The Finite Element Method is used to simulate the electric and magnetic fields inside the waveguides and to determine the propagation characteristics in optical waveguides. This method is suited for problems involving complicated geometries and variable index of refraction. Fabrication of the Integrated Mach-Zehnder Interferometer sensor involves several important standard processes such as Chemical Vapor Deposition (CVD) for thin film fabrication, photolithography for mask transfer, and etching for ridge waveguide formation. The detailed fabrication procedures of the tested Mach-Zehnder Interferometer sensors are discussed. After completion of the sensor fabrication processes, the characterizations were carried out for the thin film of SiO2 and PSG, the waveguides and the Y-junction separately. The waveguides were analyzed to make sure that the sensors are working as expected. The experimental testing on the separated waveguide portions of the first batch Integrated Mach-Zehnder Interferometer (MZI) sensors are described. These testing procedures were also performed for the subsequent fabricated batches of the integrated MZI sensors until optimum performance is achieved. A new concept has been proposed for chemical sensing applications. The novelty of the approach is mainly based on utilizing the multi-wavelength or broadband source instead of single wavelength input to the integrated MZI. The shifting of output spectra resulting from the interference has shown the ability of the MZI to analyze the different concentrations of a chemical analyte. The sensitivity of the sensor is also determined from the plot of intensity versus concentration, which is around 0.013 (%ml)-1 and 0.007 (%ml)-l for the white light source and the 1.5 mum broadband source, respectively, while the lowest detectable concentration of ethanol for the sensor detection is around 8% using a intensity variation method and 0.6% using a peak wavelength variation method.
Hsieh, Hung-Lin; Pan, Ssu-Wen
2015-02-09
A grating-based interferometer for 6-DOF displacement and angle measurement is proposed in this study. The proposed interferometer is composed of three identical detection parts sharing the same light source. Each detection part utilizes three techniques: heterodyne, grating shearing, and Michelson interferometries. Displacement information in the three perpendicular directions (X, Y, Z) can be sensed simultaneously by each detection part. Furthermore, angle information (θX, θY, θZ) can be obtained by comparing the displacement measurement results between two corresponding detection parts. The feasibility and performance of the proposed grating-based interferometer are evaluated in displacement and angle measurement experiments. In comparison with the internal capacitance sensor built into the commercial piezo-stage, the measurement resolutions of the displacement and angle of our proposed interferometer are about 2 nm and 0.05 μrad.
High-Resolution Broadband Spectral Interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erskine, D J; Edelstein, J
2002-08-09
We demonstrate solar spectra from a novel interferometric method for compact broadband high-resolution spectroscopy. The spectral interferometer (SI) is a hybrid instrument that uses a spectrometer to externally disperse the output of a fixed-delay interferometer. It also has been called an externally dispersed interferometer (EDI). The interferometer can be used with linear spectrometers for imaging spectroscopy or with echelle spectrometers for very broad-band coverage. EDI's heterodyning technique enhances the spectrometer's response to high spectral-density features, increasing the effective resolution by factors of several while retaining its bandwidth. The method is extremely robust to instrumental insults such as focal spot sizemore » or displacement. The EDI uses no moving parts, such as purely interferometric FTS spectrometers, and can cover a much wider simultaneous bandpass than other internally dispersed interferometers (e.g. HHS or SHS).« less
NASA Astrophysics Data System (ADS)
Akiyama, T.; Yoshimura, S.; Tomita, K.; Shirai, N.; Murakami, T.; Urabe, K.
2017-12-01
When the electron density of a plasma generated in high pressure environment is measured by a conventional interferometer, the phase shifts due to changes of the neutral gas density cause significant measurement errors. A dispersion interferometer, which measures the phase shift that arises from dispersion of medium between the fundamental and the second harmonic wavelengths of laser light, can suppress the measured phase shift due to the variations of neutral gas density. In recent years, the CO2 laser dispersion interferometer has been applied to the atmospheric pressure plasmas and its feasibility has been demonstrated. By combining a low power laser and a high efficiency nonlinear crystal for the second harmonic component generation, a compact dispersion interferometer can be designed. The optical design and preliminary experiments are conducted.
High-sensitivity rotation sensing with atom interferometers using Aharonov-Bohm effect
NASA Astrophysics Data System (ADS)
Özcan, Meriac
2006-02-01
In recent years there has been significant activity in research and development of high sensitivity accelerometers and gyroscopes using atom interferometers. In these devices, a fringe shift in the interference of atom de Broglie waves indicates the rotation rate of the interferometer relative to an inertial frame of reference. In both optical and atomic conventional Sagnac interferometers, the resultant phase difference due to rotation is independent of the wave velocity. However, we show that if an atom interforemeter is enclosed in a Faraday cage which is at some potential, the phase difference of the counter-propagating waves is proportional to the inverse square of the particle velocity and it is proportional to the applied potential. This is due to Aharonov-Bohm effect and it can be used to increase the rotation sensitivity of atom interferometers.
The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xin, Jun; Wang, Hailong; Jing, Jietai, E-mail: jtjing@phy.ecnu.edu.cn
Quantum-noise cancellation (QNC) is an effective method to control the noise of the quantum system, which reduces or even eliminates the noise of the quantum systems by utilizing destructive interference in the quantum system. However, QNC can be extremely dependent on the losses inside the system. In this letter, we experimentally and theoretically study how the losses can affect the QNC in the SU(1,1) interferometer. We find that losses in the different arms inside the SU(1,1) interferometer can have different effects on the QNC in the output fields from the SU(1,1) interferometer. And the QNC in the SU(1,1) interferometer canmore » almost be insensitive to the losses in some cases. Our findings may find its potential applications in the quantum noise control.« less
NASA Astrophysics Data System (ADS)
Baccichet, Nicola; Caillat, Amandine; Rakotonimbahy, Eddy; Dohlen, Kjetil; Savini, Giorgio; Marcos, Michel
2016-08-01
In the framework of the European FP7-FISICA (Far Infrared Space Interferometer Critical Assessment) program, we developed a miniaturized version of the hyper-telescope to demonstrate multi-aperture interferometry on ground. This setup would be ultimately integrated into a CubeSat platform, therefore providing the first real demonstrator of a multi aperture Fizeau interferometer in space. In this paper, we describe the optical design of the ground testbed and the data processing pipeline implemented to reconstruct the object image from interferometric data. As a scientific application, we measured the Sun diameter by fitting a limb-darkening model to our data. Finally, we present the design of a CubeSat platform carrying this miniature Fizeau interferometer, which could be used to monitor the Sun diameter over a long in-orbit period.
Analytical evaluation of ILM sensors, volume 1
NASA Technical Reports Server (NTRS)
Kirk, R. J.
1975-01-01
The functional requirements and operating environment constraints are defined for an independent landing monitor ILM which provides the flight crew with an independent assessment of the operation of the primary automatic landing system. The capabilities of radars, TV, forward looking infrared radiometers, multilateration, microwave radiometers, interferometers, and nuclear sensing concepts to meet the ILM conditions are analyzed. The most critical need for the ILM appears in the landing sequence from 1000 to 2000 meters from threshold through rollout. Of the sensing concepts analyzed, the following show potential of becoming feasible ILM's: redundant microwave landings systems, precision approach radar, airborne triangulation radar, multilateration with radar altimetry, and nuclear sensing.
Modeling and Experimental Study of Fracture-Based Wellbore Strengthening
NASA Astrophysics Data System (ADS)
Zhong, Ruizhi
Measuring physical dimensions has always been one of the challenges for optical metrology. Specifically, the thickness is often a prerequisite piece of information for other optical properties when characterizing components and materials. For example, when measuring the index of refraction of materials using interferometric methods, the direct measurement is optical path length difference. To acquire index of refraction with high accuracy, the thickness must be predetermined with correspondingly high accuracy as well. In this dissertation, a prototype low-coherence interferometer system is developed through several design iterations to measure the absolute thickness map of a plane-parallel samples in a nondestructive manner. The prototype system is built with all off-the-shelf components in a configuration that combines a Twyman-Green interferometer and a Sagnac interferometer. The repeatability and accuracy of the measured thickness are characterized to be less than one micrometer. Based on the information acquired from the development of the prototype system, a permanent low-coherence interferometer system is designed and built to achieve a higher accuracy in thickness measurements, on the level of a hundred nanometers. A comprehensive uncertainty model is established for the thickness measurement using the low-coherence interferometer system. Additionally, this system is also capable of measuring the topography of both surfaces of the sample, as well as the wedge of the sample. This low-coherence dimensional metrology uses only the reflection signals from the sample surfaces. Thus, the measured physical dimensions are independent of the index of refraction, transparency, transmission, or homogeneity of the sample. In addition, a laser Sagnac interferometer is designed and built by repurposing the test arm of the low-coherence interferometer. The laser Sagnac interferometer provides a non-contact bulk index of refraction metrology for solid materials. The uncertainty model for the index of refraction measurement is detailed with analytical solutions. The laser Sagnac interferometer requires relatively simple sample preparation and fast turn-around time, which is suitable for applications in optical material research.
Liquid-Crystal Point-Diffraction Interferometer for Wave-Front Measurements
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Creath, Katherine
1996-01-01
A new instrument, the liquid-crystal point-diffraction interferometer (LCPDI), is developed for the measurement of phase objects. This instrument maintains the compact, robust design of Linnik's point-diffraction interferometer and adds to it a phase-stepping capability for quantitative interferogram analysis. The result is a compact, simple to align, environmentally insensitive interferometer capable of accurately measuring optical wave fronts with very high data density and with automated data reduction. We describe the theory and design of the LCPDI. A focus shift was measured with the LCPDI, and the results are compared with theoretical results,
Large-aperture interferometer using local reference beam
NASA Technical Reports Server (NTRS)
Howes, W. L.
1982-01-01
A large-aperture interferometer was devised by adding a local-reference-beam-generating optical system to a schlieren system. Two versions of the interferometer are demonstrated, one employing 12.7 cm (5 in.) diameter schlieren optics, the other employing 30.48 cm (12 in.) diameter parabolic mirrors in an off-axis system. In the latter configuration a cylindrical lens is introduced near the light source to correct for astigmatism. A zone plate is a satisfactory decollimating element in the reference-beam arm of the interferometer. Attempts to increase the flux and uniformity of irradiance in the reference beam by using a diffuser are discussed.
Jiang, Junfeng; Liu, Tiegen; Zhang, Yimo; Liu, Lina; Zha, Ying; Zhang, Fan; Wang, Yunxin; Long, Pin
2005-03-15
A parallel demodulation system for extrinsic Fabry-Perot interferometer (EFPI) and fiber Bragg grating (FBG) sensors is presented that is based on a Michelson interferometer and combines the methods of low-coherence interference and Fourier transform spectrum. Signals from EFPI and FBG sensors are obtained simultaneously by scanning one arm of a Michelson interferometer, and an algorithm model is established to process the signals and retrieve both the wavelength of the FBG and the cavity length of the EFPI at the same time, which are then used to determine the strain and temperature.
High-sensitivity density fluctuation detector
NASA Technical Reports Server (NTRS)
Azzazy, M.; Modarress, D.; Hoeft, T.
1987-01-01
A high-sensitivity differential interferometer has been developed to detect small density fluctuations over an optical path length of the order of the boundary layer thickness near transition. Two experimental configurations have been used to evaluate the performance of the interferometer: an open shear-layer configuration and a wind-tunnel turbulent spot configuration. In each experiment small temperature fluctuations were introduced as the signal source. Simultaneous cold-wire measurements have been compared with the interferometer data. The comparison shows that the interferometer is sensitive to very weak phase variations of the order of 0.001 of the laser wavelength.
Method of calibrating an interferometer and reducing its systematic noise
NASA Technical Reports Server (NTRS)
Hammer, Philip D. (Inventor)
1997-01-01
Methods of operation and data analysis for an interferometer so as to eliminate the errors contributed by non-responsive or unstable pixels, interpixel gain variations that drift over time, and spurious noise that would otherwise degrade the operation of the interferometer are disclosed. The methods provide for either online or post-processing calibration. The methods apply prescribed reversible transformations that exploit the physical properties of interferograms obtained from said interferometer to derive a calibration reference signal for subsequent treatment of said interferograms for interpixel gain variations. A self-consistent approach for treating bad pixels is incorporated into the methods.
Development of CO2 laser dispersion interferometer with photoelastic modulator
NASA Astrophysics Data System (ADS)
Akiyama, T.; Kawahata, K.; Okajima, S.; Nakayama, K.
2010-10-01
A dispersion interferometer is one of the promising methods of the electron density measurement on large and high density fusion devices. This paper describes development of a CO2 laser dispersion interferometer with a photoelastic modulator for phase modulation. In order to make the dispersion interferometer free from variations of the detected intensity, a new phase extraction method is introduced: The phase shift is evaluated from a ratio of amplitudes of the fundamental and the second harmonics of the phase modulation frequency in the detected interference signal. The proof-of-principle experiments demonstrate the feasibility of this method.
Development of CO2 laser dispersion interferometer with photoelastic modulator.
Akiyama, T; Kawahata, K; Okajima, S; Nakayama, K
2010-10-01
A dispersion interferometer is one of the promising methods of the electron density measurement on large and high density fusion devices. This paper describes development of a CO(2) laser dispersion interferometer with a photoelastic modulator for phase modulation. In order to make the dispersion interferometer free from variations of the detected intensity, a new phase extraction method is introduced: The phase shift is evaluated from a ratio of amplitudes of the fundamental and the second harmonics of the phase modulation frequency in the detected interference signal. The proof-of-principle experiments demonstrate the feasibility of this method.
Terrestrial Planet Finder Interferometer: Architecture, Mission Design and Technology Development
NASA Technical Reports Server (NTRS)
Henry, Curt; Lay, Oliver; Aung, MiMi; Gunter, Steven M.; Dubovitsky, Serge; Blackwood, Gary
2004-01-01
This overview paper is a progress report about the system design and technology development of two interferometer concepts studied for the Terrestrial Planet Finder (TPF) project. The two concepts are a structurally-connected interferometer (SCI) intended to fulfill minimum TPF science goals and a formation-flying interferometer (FFI) intended to fulfill full science goals. Described are major trades, analyses, and technology experiments completed. Near term plans are also described. This paper covers progress since August 2003 and serves as an update to a paper presented at that month's SPIE conference, 'Techniques and Instrumentation for Detection of Exoplanets.
Association of Bacillus anthracis Capsule with Lethal Toxin during Experimental Infection
2009-02-01
interacts with a specific receptor on the surface of CHO- K1 cells. Infect. Immun. 59:3381– 3386. 6. Ezzell, J. W., B. E . Ivins, and S. H. Leppla. 1984...Abshire,1 R. Panchal,3 D. Chabot,2 S. Bavari,2 E . K. Leffel,4 B. Purcell,2 A. M. Friedlander,5 and W. J. Ribot2* Diagnostic Systems Division,1 Bacteriology...2153. E -mail: Wilson.ribot@amedd.army.mil. Published ahead of print on 8 December 2008. 749 by on A ugust 27, 2009 iai.asm .org D ow nloaded from
Wide-area phase-contrast X-ray imaging using large X-ray interferometers
NASA Astrophysics Data System (ADS)
Momose, Atsushi; Takeda, Tohoru; Yoneyama, Akio; Koyama, Ichiro; Itai, Yuji
2001-07-01
Large X-ray interferometers are developed for phase-contrast X-ray imaging aiming at medical applications. A monolithic X-ray interferometer and a separate one are studied, and currently a 25 mm×20 mm view area can be generated. This paper describes the strategy of our research program and some recent developments.
Bandwidth in bolometric interferometry
NASA Astrophysics Data System (ADS)
Charlassier, R.; Bunn, E. F.; Hamilton, J.-Ch.; Kaplan, J.; Malu, S.
2010-05-01
Context. Bolometric interferometry is a promising new technology with potential applications to the detection of B-mode polarization fluctuations of the cosmic microwave background (CMB). A bolometric interferometer will have to take advantage of the wide spectral detection band of its bolometers to be competitive with imaging experiments. A crucial concern is that interferometers are assumed to be significantly affected by a spoiling effect known as bandwidth smearing. Aims: We investigate how the bandwidth modifies the work principle of a bolometric interferometer and affects its sensitivity to the CMB angular power spectra. Methods: We obtain analytical expressions for the broadband visibilities measured by broadband heterodyne and bolometric interferometers. We investigate how the visibilities must be reconstructed in a broadband bolometric interferometer and show that this critically depends on hardware properties of the modulation phase shifters. If the phase shifters produce shifts that are constant with respect to frequency, the instrument works like its monochromatic version (the modulation matrix is not modified), while if they vary (linearly or otherwise) with respect to frequency, one has to perform a special reconstruction scheme, which allows the visibilities to be reconstructed in frequency subbands. Using an angular power spectrum estimator that accounts for the bandwidth, we finally calculate the sensitivity of a broadband bolometric interferometer. A numerical simulation is performed that confirms the analytical results. Results: We conclude that (i) broadband bolometric interferometers allow broadband visibilities to be reconstructed regardless of the type of phase shifters used and (ii) for dedicated B-mode bolometric interferometers, the sensitivity loss caused by bandwidth smearing is quite acceptable, even for wideband instruments (a factor of 2 loss for a typical 20% bandwidth experiment).
Interferometric thickness calibration of 300 mm silicon wafers
NASA Astrophysics Data System (ADS)
Wang, Quandou; Griesmann, Ulf; Polvani, Robert
2005-12-01
The "Improved Infrared Interferometer" (IR 3) at the National Institute of Standards and Technology (NIST) is a phase-measuring interferometer, operating at a wavelength of 1550 nm, which is being developed for measuring the thickness and thickness variation of low-doped silicon wafers with diameters up to 300 mm. The purpose of the interferometer is to produce calibrated silicon wafers, with a certified measurement uncertainty, which can be used as reference wafers by wafer manufacturers and metrology tool manufacturers. We give an overview of the design of the interferometer and discuss its application to wafer thickness measurements. The conversion of optical thickness, as measured by the interferometer, to the wafer thickness requires knowledge of the refractive index of the material of the wafer. We describe a method for measuring the refractive index which is then used to establish absolute thickness and thickness variation maps for the wafer.
He, Haijun; Shao, Liyang; Qian, Heng; Zhang, Xinpu; Liang, Jiawei; Luo, Bin; Pan, Wei; Yan, Lianshan
2017-03-20
A novel demodulation method for Sagnac loop interferometer based sensor has been proposed and demonstrated, by unwrapping the phase changes with birefringence interrogation. A temperature sensor based on Sagnac loop interferometer has been used to verify the feasibility of the proposed method. Several tests with 40 °C temperature range have been accomplished with a great linearity of 0.9996 in full range. The proposed scheme is universal for all Sagnac loop interferometer based sensors and it has unlimited linear measurable range which overwhelming the conventional demodulation method with peak/dip tracing. Furthermore, the influence of the wavelength sampling interval and wavelength span on the demodulation error has been discussed in this work. The proposed interrogation method has a great significance for Sagnac loop interferometer sensor and it might greatly enhance the availability of this type of sensors in practical application.
NASA Astrophysics Data System (ADS)
Wells, Conrad; Hadaway, James B.; Olczak, Gene; Cosentino, Joseph; Johnston, John D.; Whitman, Tony; Connolly, Mark; Chaney, David; Knight, J. Scott; Telfer, Randal
2016-07-01
The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) consists of a 6.6 m clear aperture, 18 segment primary mirror, all-reflective, three-mirror anastigmat operating at cryogenic temperatures. To verify performance of the primary mirror, a full aperture center of curvature optical null test is performed under cryogenic conditions in Chamber A at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) using an instantaneous phase measuring interferometer. After phasing the mirrors during the JWST Pathfinder testing, the interferometer is utilized to characterize the mirror relative piston and tilt dynamics under different facility configurations. The correlation between the motions seen on detectors at the focal plane and the interferometer validates the use of the interferometer for dynamic investigations. The success of planned test hardware improvements will be characterized by the multi-wavelength interferometer (MWIF) at the Center of Curvature Optical Assembly (CoCOA).
Two-photon interference of temporally separated photons.
Kim, Heonoh; Lee, Sang Min; Moon, Han Seb
2016-10-06
We present experimental demonstrations of two-photon interference involving temporally separated photons within two types of interferometers: a Mach-Zehnder interferometer and a polarization-based Michelson interferometer. The two-photon states are probabilistically prepared in a symmetrically superposed state within the two interferometer arms by introducing a large time delay between two input photons; this state is composed of two temporally separated photons, which are in two different or the same spatial modes. We then observe two-photon interference fringes involving both the Hong-Ou-Mandel interference effect and the interference of path-entangled two-photon states simultaneously in a single interferometric setup. The observed two-photon interference fringes provide simultaneous observation of the interferometric properties of the single-photon and two-photon wavepackets. The observations can also facilitate a more comprehensive understanding of the origins of the interference phenomena arising from spatially bunched/anti-bunched two-photon states comprised of two temporally separated photons within the interferometer arms.
Highly sensitive force sensor based on balloon-like interferometer
NASA Astrophysics Data System (ADS)
Wu, Yue; Xiao, Shiying; Xu, Yao; Shen, Ya; Jiang, Youchao; Jin, Wenxing; Yang, Yuguang; Jian, Shuisheng
2018-07-01
An all-fiber highly sensitive force sensor based on modal interferometer has been presented and demonstrated. The single-mode fiber (SMF) with coating stripped is designed into a balloon-like shape to form a modal interferometer. Due to the bent SMF, the interference occurs between the core mode and cladding modes. With variation of the force applied to the balloon-like interferometer, the bending diameter changes, which caused the wavelength shift of the modal interference. Thus the measurement of the force variation can be achieved by monitoring the wavelength shift. The performances of the interferometer with different bending diameter are experimentally investigated, and the maximum force sensitivity of 24.9 pm/ μ N can be achieved with the bending diameter 14 mm ranging from 0 μ N to 1464.12 μ N. Furthermore, the proposed fiber sensor exhibits the advantages of easy fabrication and low cost, making it a suitable candidate in the optical fiber sensing field.
NASA Astrophysics Data System (ADS)
Blain, Pascal; Michel, Fabrice; Piron, Pierre; Renotte, Yvon; Habraken, Serge
2013-08-01
Noncontact optical measurement methods are essential tools in many industrial and research domains. A family of new noncontact optical measurement methods based on the polarization states splitting technique and monochromatic light projection as a way to overcome ambient lighting for in-situ measurement has been developed. Recent works on a birefringent element, a Savart plate, allow one to build a more flexible and robust interferometer. This interferometer is a multipurpose metrological device. On one hand the interferometer can be set in front of a charge-coupled device (CCD) camera. This optical measurement system is called a shearography interferometer and allows one to measure microdisplacements between two states of the studied object under coherent lighting. On the other hand, by producing and shifting multiple sinusoidal Young's interference patterns with this interferometer, and using a CCD camera, it is possible to build a three-dimensional structured light profilometer.
Laser interferometer for space-based mapping of Earth's gravity field
NASA Astrophysics Data System (ADS)
Dehne, Marina; Sheard, Benjamin; Gerberding, Oliver; Mahrdt, Christoph; Heinzel, Gerhard; Danzmann, Karsten
2010-05-01
Laser interferometry will play a key role in the next generation of GRACE-type satellite gravity missions. The measurement concepts for future missions include a heterodyne laser interferometer. Furthermore, it is favourable to use polarising components in the laser interferometer for beam splitting. In the first step the influence of these components on the interferometer sensitivity has been investigated. Additionally, a length stability on a nm-scale has been validated. The next step will include a performance test of an interferometric SST system in an active symmetric transponder setup including two lasers and two optical benches. The design and construction of a quasi-monolithic interferometer for comparing the interferometric performance of non-polarising and polarising optics will be discussed. The results of the interferometric readout of a heterodyne configuration together with polarising optics will be presented to fulfil the phase sensitivity requirement of 1nm/√Hz-- for a typical SSI scenario.
NASA Technical Reports Server (NTRS)
Wells, Conrad; Hadaway, James B.; Olczak, Gene; Cosentino, Joseph; Johnston, John D.; Whitman, Tony; Connolly, Mark; Chaney, David; Knight, J. Scott; Telfer, Randal
2016-01-01
The JWST (James Webb Space Telescope) Optical Telescope Element (OTE) consists of a 6.6 meter clear aperture, 18-segment primary mirror, all-reflective, three-mirror anastigmat operating at cryogenic temperatures. To verify performance of the primary mirror, a full aperture center of curvature optical null test is performed under cryogenic conditions in Chamber A at NASA Johnson Space Center using an instantaneous phase measuring interferometer. After phasing the mirrors during the JWST Pathfinder testing, the interferometer is utilized to characterize the mirror relative piston and tilt dynamics under different facility configurations. The correlation between the motions seen on detectors at the focal plane and the interferometer validates the use of the interferometer for dynamic investigations. The success of planned test hardware improvements will be characterized by the multi-wavelength interferometer (MWIF) at the Center of Curvature Optical Assembly (CoCOA).
An extrinsic fiber Fabry-Perot interferometer for dynamic displacement measurement
NASA Astrophysics Data System (ADS)
Pullteap, S.; Seat, H. C.
2015-03-01
A versatile fiber interferometer was proposed for high precision measurement. The sensor exploited a double-cavity within the unique sensing arm of an extrinsic-type fiber Fabry-Perot interferometer to produce the quadrature phase-shifted interference fringes. Interference signal processing was carried out using a modified zero-crossing (fringe) counting technique to demodulate two sets of fringes. The fiber interferometer has been successfully employed for dynamic displacement measurement under different displacement profiles over a range of 0.7 μm to 140 μm. A dedicated computer incorporating the demodulation algorithm was next used to interpret these detected data as well as plot the displacement information with a resolution of λ/64. A commercial displacement sensor was employed for comparison purposes with the experimental data obtained from the fiber interferometer as well as to gauge its performance, resulting in the maximum error of 2.8% over the entire displacement range studied.
Reducing tilt-to-length coupling for the LISA test mass interferometer
NASA Astrophysics Data System (ADS)
Tröbs, M.; Schuster, S.; Lieser, M.; Zwetz, M.; Chwalla, M.; Danzmann, K.; Fernández Barránco, G.; Fitzsimons, E. D.; Gerberding, O.; Heinzel, G.; Killow, C. J.; Perreur-Lloyd, M.; Robertson, D. I.; Schwarze, T. S.; Wanner, G.; Ward, H.
2018-05-01
Objects sensed by laser interferometers are usually not stable in position or orientation. This angular instability can lead to a coupling of angular tilt to apparent longitudinal displacement—tilt-to-length coupling (TTL). In LISA this is a potential noise source for both the test mass interferometer and the long-arm interferometer. We have experimentally investigated TTL coupling in a setup representative for the LISA test mass interferometer and used this system to characterise two different imaging systems (a two-lens design and a four-lens design) both designed to minimise TTL coupling. We show that both imaging systems meet the LISA requirement of ±25 μm rad‑1 for interfering beams with relative angles of up to ±300 μrad. Furthermore, we found a dependency of the TTL coupling on beam properties such as the waist size and location, which we characterised both theoretically and experimentally.
Double-slit interferometry with a Bose-Einstein condensate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, L.A.; Berman, G.P.; Bishop, A.R.
2005-03-01
A Bose-Einstein 'double-slit' interferometer has been recently realized experimentally by Y. Shin et al., Phys. Rev. Lett. 92 050405 (2004). We analyze the interferometric steps by solving numerically the time-dependent Gross-Pitaevskii equation in three-dimensional space. We focus on the adiabaticity time scales of the problem and on the creation of spurious collective excitations as a possible source of the strong degradation of the interference pattern observed experimentally. The role of quantum fluctuations is discussed.
VISAR Analysis in the Frequency Domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolan, D. H.; Specht, P.
2017-05-18
VISAR measurements are typically analyzed in the time domain, where velocity is approximately proportional to fringe shift. Moving to the frequency domain clarifies the limitations of this approximation and suggests several improvements. For example, optical dispersion preserves high-frequency information, so a zero-dispersion (air delay) interferometer does not provide optimal time resolution. Combined VISAR measurements can also improve time resolution. With adequate bandwidth and reasonable noise levels, it is quite possible to achieve better resolution than the VISAR approximation allows.
Blind operation of optical astronomical interferometers options and predicted performance
NASA Astrophysics Data System (ADS)
Beckers, Jacques M.
1991-01-01
Maximum sensitivity for optical interferometers is achieved only when the optical path lengths between the different arms can be equalized without using interference fringes on the research object itself. This is called 'blind operation' of the interferometer. This paper examines different options to achieve this, focusing on the application to the Very Large Telescope Interferometer (VLTI). It is proposed that blind operation should be done using a so-called coherence autoguider, working on an unresolved star of magnitude V = 11-13 within the isoplanatic patch for coherencing, which has a diameter of about 1 deg. Estimates of limiting magnitudes for the VLTI are also derived.
Glancing angle Talbot-Lau grating interferometers for phase contrast imaging at high x-ray energy
NASA Astrophysics Data System (ADS)
Stutman, D.; Finkenthal, M.
2012-08-01
A Talbot-Lau interferometer is demonstrated using micro-periodic gratings inclined at a glancing angle along the light propagation direction. Due to the increase in the effective thickness of the absorption gratings, the device enables differential phase contrast imaging at high x-ray energy, with improved fringe visibility (contrast). For instance, at 28° glancing angle, we obtain up to ˜35% overall interferometer contrast with a spectrum having ˜43 keV mean energy, suitable for medical applications. In addition, glancing angle interferometers could provide high contrast at energies above 100 keV, enabling industrial and security applications of phase contrast imaging.
The Design and Operation of Ultra-Sensitive and Tunable Radio-Frequency Interferometers.
Cui, Yan; Wang, Pingshan
2014-12-01
Dielectric spectroscopy (DS) is an important technique for scientific and technological investigations in various areas. DS sensitivity and operating frequency ranges are critical for many applications, including lab-on-chip development where sample volumes are small with a wide range of dynamic processes to probe. In this work, we present the design and operation considerations of radio-frequency (RF) interferometers that are based on power-dividers (PDs) and quadrature-hybrids (QHs). Such interferometers are proposed to address the sensitivity and frequency tuning challenges of current DS techniques. Verified algorithms together with mathematical models are presented to quantify material properties from scattering parameters for three common transmission line sensing structures, i.e., coplanar waveguides (CPWs), conductor-backed CPWs, and microstrip lines. A high-sensitivity and stable QH-based interferometer is demonstrated by measuring glucose-water solution at a concentration level that is ten times lower than some recent RF sensors while our sample volume is ~1 nL. Composition analysis of ternary mixture solutions are also demonstrated with a PD-based interferometer. Further work is needed to address issues like system automation, model improvement at high frequencies, and interferometer scaling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Shuai; Hu, Peng-Cheng, E-mail: hupc@hit.edu.cn; Ding, Xue-Mei, E-mail: X.M.Ding@outlook.com
A fiber-coupled displacement measuring interferometer capable of determining of the posture of a reflective surface of a measuring mirror is proposed. The newly constructed instrument combines fiber-coupled displacement and angular measurement technologies. The proposed interferometer has advantages of both the fiber-coupled and the spatially beam-separated interferometer. A portable dual-position sensitive detector (PSD)-based unit within this proposed interferometer measures the parallelism of the two source beams to guide the fiber-coupling adjustment. The portable dual PSD-based unit measures not only the pitch and yaw of the retro-reflector but also measures the posture of the reflective surface. The experimental results of displacement calibrationmore » show that the deviations between the proposed interferometer and a reference one, Agilent 5530, at two different common beam directions are both less than ±35 nm, thus verifying the effectiveness of the beam parallelism measurement. The experimental results of angular calibration show that deviations of pitch and yaw with the auto-collimator (as a reference) are less than ±2 arc sec, thus proving the proposed interferometer’s effectiveness for determination of the posture of a reflective surface.« less
NASA Astrophysics Data System (ADS)
Woillez, Julien; Lai, Olivier; Perrin, Guy; Reynaud, François; Baril, Marc; Dong, Yue; Fédou, Pierre
2017-06-01
Context. In comparison to the radio and sub-millimetric domains, imaging with optical interferometry is still in its infancy. Due to the limited number of telescopes in existing arrays, image generation is a demanding process that relies on time-consuming reconfiguration of the interferometer array and super-synthesis. Aims: Using single mode optical fibres for the coherent transport of light from the collecting telescopes to the focal plane, a new generation of interferometers optimized for imaging can be designed. Methods: To support this claim, we report on the successful completion of the `OHANA Iki project: an end-to-end, on-sky demonstration of a two-telescope interferometer, built around near-infrared single mode fibres, carried out as part of the `OHANA project. Results: Having demonstrated that coherent transport by single-mode fibres is feasible, we explore the concepts, performances, and limitations of a new imaging facility with single mode fibres at its heart: Agile Guided Interferometer for Longbaseline Imaging Synthesis (AGILIS). Conclusions: AGILIS has the potential of becoming a next generation facility or a precursor to a much larger project like the Planet Formation Imager (PFI).
Software system design for the non-null digital Moiré interferometer
NASA Astrophysics Data System (ADS)
Chen, Meng; Hao, Qun; Hu, Yao; Wang, Shaopu; Li, Tengfei; Li, Lin
2016-11-01
Aspheric optical components are an indispensable part of modern optics systems. With the development of aspheric optical elements fabrication technique, high-precision figure error test method of aspheric surfaces is a quite urgent issue now. We proposed a digital Moiré interferometer technique (DMIT) based on partial compensation principle for aspheric and freeform surface measurement. Different from traditional interferometer, DMIT consists of a real and a virtual interferometer. The virtual interferometer is simulated with Zemax software to perform phase-shifting and alignment. We can get the results by a series of calculation with the real interferogram and virtual interferograms generated by computer. DMIT requires a specific, reliable software system to ensure its normal work. Image acquisition and data processing are two important parts in this system. And it is also a challenge to realize the connection between the real and virtual interferometer. In this paper, we present a software system design for DMIT with friendly user interface and robust data processing features, enabling us to acquire the figure error of the measured asphere. We choose Visual C++ as the software development platform and control the ideal interferometer by using hybrid programming with Zemax. After image acquisition and data transmission, the system calls image processing algorithms written with Matlab to calculate the figure error of the measured asphere. We test the software system experimentally. In the experiment, we realize the measurement of an aspheric surface and prove the feasibility of the software system.
Nash, Evelyn E.; Peters, Brian M.; Fidel, Paul L.
2015-01-01
Intra-abdominal polymicrobial infections cause significant morbidity and mortality. An experimental mouse model of Candida albicans-Staphylococcus aureus intra-abdominal infection (IAI) results in 100% mortality by 48 to 72 h postinoculation, while monomicrobial infections are avirulent. Mortality is associated with robust local and systemic inflammation without a requirement for C. albicans morphogenesis. However, the contribution of virulence factors coregulated during the yeast-to-hypha transition is unknown. This also raised the question of whether other Candida species that are unable to form hyphae are as virulent as C. albicans during polymicrobial IAI. Therefore, the purpose of this study was to evaluate the ability of non-albicans Candida (NAC) species with various morphologies and C. albicans transcription factor mutants (efg1/efg1 and cph1/cph1) to induce synergistic mortality and the accompanying inflammation. Results showed that S. aureus coinoculated with C. krusei or C. tropicalis was highly lethal, similar to C. albicans, while S. aureus-C. dubliniensis, S. aureus-C. parapsilosis, and S. aureus-C. glabrata coinoculations resulted in little to no mortality. Local and systemic interleukin-6 (IL-6) and prostaglandin E2 (PGE2) levels were significantly elevated during symptomatic and/or lethal coinfections, and hypothermia strongly correlated with mortality. Coinoculation with C. albicans strains deficient in the transcription factor Efg1 but not Cph1 reversed the lethal outcome. These results support previous findings and demonstrate that select Candida species, without reference to any morphological requirement, induce synergistic mortality, with IL-6 and PGE2 acting as key inflammatory factors. Mechanistically, signaling pathways controlled by Efg1 are critical for the ability of C. albicans to induce mortality from an intra-abdominal polymicrobial infection. PMID:26483410
Nash, Evelyn E; Peters, Brian M; Fidel, Paul L; Noverr, Mairi C
2016-01-01
Intra-abdominal polymicrobial infections cause significant morbidity and mortality. An experimental mouse model of Candida albicans-Staphylococcus aureus intra-abdominal infection (IAI) results in 100% mortality by 48 to 72 h postinoculation, while monomicrobial infections are avirulent. Mortality is associated with robust local and systemic inflammation without a requirement for C. albicans morphogenesis. However, the contribution of virulence factors coregulated during the yeast-to-hypha transition is unknown. This also raised the question of whether other Candida species that are unable to form hyphae are as virulent as C. albicans during polymicrobial IAI. Therefore, the purpose of this study was to evaluate the ability of non-albicans Candida (NAC) species with various morphologies and C. albicans transcription factor mutants (efg1/efg1 and cph1/cph1) to induce synergistic mortality and the accompanying inflammation. Results showed that S. aureus coinoculated with C. krusei or C. tropicalis was highly lethal, similar to C. albicans, while S. aureus-C. dubliniensis, S. aureus-C. parapsilosis, and S. aureus-C. glabrata coinoculations resulted in little to no mortality. Local and systemic interleukin-6 (IL-6) and prostaglandin E2 (PGE2) levels were significantly elevated during symptomatic and/or lethal coinfections, and hypothermia strongly correlated with mortality. Coinoculation with C. albicans strains deficient in the transcription factor Efg1 but not Cph1 reversed the lethal outcome. These results support previous findings and demonstrate that select Candida species, without reference to any morphological requirement, induce synergistic mortality, with IL-6 and PGE2 acting as key inflammatory factors. Mechanistically, signaling pathways controlled by Efg1 are critical for the ability of C. albicans to induce mortality from an intra-abdominal polymicrobial infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Rodriguez-Osorio, Carlos A; Lima, Guadalupe; Herrera-Caceres, Jaime O; Villegas-Torres, Beatriz E; Zuñiga, Joaquin; Ponce-de-Leon, Sergio; Llorente, Luis; Sifuentes-Osornio, Jose
2013-06-01
Sepsis is a leading cause of death around the world, and 73-83% of all sepsis cases requiring attention in intensive care units are linked to intra-abdominal infection (IAI) or pneumonia. The activation of innate immunity is central to the manifestation of sepsis, and toll-like receptor (TLR) 4 plays an important role in this activation process. The 299G and 399I alleles of TLR4 have been linked with an increased risk of Gram-negative bacteria (GNB) infections and septic shock in some populations. This case-control study evaluated the prevalence of D299G/T399I polymorphisms in Mexican patients with IAI and/or pneumonia and in healthy controls. Genotyping revealed that 1 in 44 patients (2.3%; CI 95%: 0.05-12.0%) and 4 in 126 controls (3.2%; CI 95%: 0.9-7.9%) were heterozygous for both the D299G and T399l polymorphisms (OR: 0.71, CI 95%: 0.01-7.44, p = NS), confirming the co-segregation of these alleles in this population. Furthermore, the patients with a GNB infection and severe sepsis were not carriers of the risk alleles. In summary, this report shows that the frequency of the D299G and T399I polymorphisms in Mexican-Mestizos is lower than anticipated in comparison with other ethnic groups, emphasizing the variable distribution of TLR4 polymorphisms among different populations. Consequently, this study was not able to detect associations between TLR4 polymorphisms and sepsis in this population. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Prather, E. E.; Rudolph, A. L.; Brissenden, G.; Schlingman, W. M.
2011-09-01
We present the results of a national study on the teaching and learning of astronomy taught in general education, non-science major, introductory astronomy courses (Astro 101). Nearly 4000 students enrolled in 69 sections of Astro 101 taught at 31 institutions completed (pre- and post- instruction) the Light and Spectroscopy Concept Inventory (LSCI) from Fall 2006 to Fall 2007. The classes varied in size from very small (N < 10) to large (N˜180) and were from all types of institutions, including both 2-year and 4-year colleges and universities. To study how the instruction in different classrooms affected student learning, we developed and administered an Interactivity Assessment Instrument (IAI). This short survey, completed by instructors, allowed us to estimate the fraction of classroom time spent on learner- centered, active-engagement instruction such as Peer Instruction and collaborative tutorials. Pre-instruction LSCI scores were clustered around ˜25% (24 ± 2%), independent of class size and institution type; however, the gains measured varied from about (-)0.07-0.50. The distribution of gain scores indicates that differences were due to instruction in the classroom, not the type of class or institution. Interactivity Assessment Scores (IAS's) ranged from 0%-50%, showing that our IAI was able to distinguish between classes with higher and lower levels of interactivity. A comparison of class-averaged gain score to IAS showed that higher interactivity classes (IAS > 25%) were the only instructional environments capable of reaching the highest gains (
Demonstration of a Corner-cube-interferometer LWIR Hyperspectral Imager
NASA Astrophysics Data System (ADS)
Renhorn, Ingmar G. E.; Svensson, Thomas; Cronström, Staffan; Hallberg, Tomas; Persson, Rolf; Lindell, Roland; Boreman, Glenn D.
2010-01-01
An interferometric long-wavelength infrared (LWIR) hyperspectral imager is demonstrated, based on a Michelson corner-cube interferometer. This class of system is inherently mechanically robust, and should have advantages over Sagnac-interferometer systems in terms of relaxed beamsplitter-coating specifications, and wider unvignetted field of view. Preliminary performance data from the laboratory prototype system are provided regarding imaging, spectral resolution, and fidelity of acquired spectra.
Compact portable diffraction moire interferometer
Deason, Vance A.; Ward, Michael B.
1989-01-01
A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observation means including film and video cameras may be used to view and record the resultant fringe patterns.
NASA Astrophysics Data System (ADS)
Ward, William Edmund
The design and implementation of a Wide-Angle Michelson interferometer (WAMI) as a high spectral resolution device for measuring Doppler shifts and temperatures in the thermosphere is discussed in detail. A general theoretical framework is developed to describe the behavior of interferometers and is applied to the WAMI. Notions concerning the optical coupling of various surfaces within an interferometer are developed and used to investigate the effects of misalignments in the WAMI optics. In addition, these notions in combination with ideas on the polarization behavior of interferometers are used to suggest how complex multisurfaced interferometers might be developed, what features affect their behavior most strongly, and how this behavior might be controlled. Those aspects of the Michelson interferometer important to its use as a high resolution spectral device are outlined and expressions relating the physical features of the interferometer and the spectral features of the radiation passing through the instrument, to the form of the observed interference pattern are derived. The sensitivity of the WAMI to misalignments in its optical components is explored, and quantitative estimations of the effects of these misalignments made. A working WAMI with cube corners instead of plane mirrors was constructed and is described. The theoretical notions outlined above are applied to this instrument and found to account for most of its features. A general digital procedure is developed for the analysis of the observed interference fringes which permits an estimation of the amplitude, visibility and phase of the fringes. This instrument was taken to Bird, northern Manitoba as part of the ground based support for the Auroral Rocket and Image Excitation Study (ARIES) rocket campaign. Doppler shifts and linewidth variations in O(^1 D) and O(^1S) emissions in the aurora were observed during several nights and constitute the first synoptic wind measurements taken with a WAMI. The results from an eight hour period of O(^1 D) observations are analysed and found to be similar to those obtained with Fabry-Perot interferometers. Higher temporal resolution data than any previously published were obtained, and suggest the presence of previously undetected small scale structures in the wind and temperature data. (Abstract shortened with permission of author.).
Laser-based ultrasonics by dual-probe interferometer detection and narrow-band ultrasound generation
NASA Astrophysics Data System (ADS)
Huang, Jin
1993-01-01
Despite the advantages of laser-based ultrasonic (LBU) systems, the overall sensitivity of LBU systems needs to be improved for practical applications. Progress is reported to achieve better LBU detection accuracy and sensitivity for applications with surface waves and Lamb waves. A novel dual-probe laser interferometer has been developed to measure the same signal at two points. The dual-probe interferometer is a modification of a conventional single-probe interferometer in that the reference beam is guided to a second detecting point on the specimen surface to form a differential measurement mode, which measure the difference of the displacements at the two points. This dual-probe interferometer is particularly useful for accurate measurements of the speed and attenuation of surface waves and Lamb waves. The dual-probe interferometer has been applied to obtain accurate measurements of the surface wave speed and attenuation on surfaces of increasing surface roughness. It has also been demonstrated that with an appropriate signal processing method, namely, the power cepstrum method, the dual-probe interferometer is applicable to measure the local surface wave speed even when the probe separation is so small that the two waveforms in the interferometer output signal overlap in the time domain. Narrow-band signal generation and detection improve the sensitivity of LBU systems. It is proposed to use a diffraction grating to form an array of illuminating strips which form a source of narrowband surface and Lamb waves. The line-array of thermoelastic sources generates narrow-band signals whose frequency and bandwidth can be easily controlled. The optimum line-array parameters, such as width, spacing and the number of lines in the array have been derived theoretically and verified experimentally. Narrow-band signal generation with optimum parameters has been demonstrated. The enhanced LBU system with dual-probe detection and narrowband signal generation has been successfully applied to the detection of cracks emanating from rivet holes in aircraft fuselage panel samples. A compact fiber-optic dual-probe interferometer has also been developed and applied to the above mentioned problem of crack detection. Results agree well with those obtained with a bulk LBU system.
Direct Measurement of Large, Diffuse, Optical Structures
NASA Technical Reports Server (NTRS)
Saif, Babak N.; Keski-Kuha, Ritva; Feinberg, Lee; Wyant, J. C.; Atkinson, C.
2004-01-01
Digital Speckle Pattern Interferometry (DSPI) is a well-established method for the measurement of diffuse objects in experimental mechanics. DSPIs are phase shifting interferometers. Three or four bucket temporal phase shifting algorithms are commonly used to provide phase shifting. These algorithms are sensitive to vibrations and can not be used to measure large optical structures far away from the interferometer. In this research a simultaneous phase shifted interferometer, PhaseCam product of 4D Technology Corporation in Tucson Arizona, is modified to be a Simultaneous phase shifted Digital Speckle Pattern Interferometer (SDSPI). Repeatability, dynamic range, and accuracy of the SDSPI are characterized by measuring a 5 cm x 5 cm carbon fiber coupon.
NASA Technical Reports Server (NTRS)
Short, J. S.; Hyer, M. W.; Bowles, D. E.; Tompkins, S. S.
1982-01-01
The thermal expansion behavior of graphite epoxy laminates between 116 and 366 degrees Kelvin was investigated using as implementation of the Priest interferometer concept. The design, construction and use of the interferometer along with the experimental results it was used to generate are described. The experimental program consisted of 25 tests on 25.4 mm and 6.35 mm wide, 8 ply pi/4 quasi-isotropic T300-5208 graphite/epoxy specimens and 3 tests on a 25.4 mm wide unidirectional specimen. Experimental results are presented for all tests along with a discussion of the interferometer's limitations and some possible improvements in its design.
Two-photon interference of polarization-entangled photons in a Franson interferometer.
Kim, Heonoh; Lee, Sang Min; Kwon, Osung; Moon, Han Seb
2017-07-18
We present two-photon interference experiments with polarization-entangled photon pairs in a polarization-based Franson-type interferometer. Although the two photons do not meet at a common beamsplitter, a phase-insensitive Hong-Ou-Mandel type two-photon interference peak and dip fringes are observed, resulting from the two-photon interference effect between two indistinguishable two-photon probability amplitudes leading to a coincidence detection. A spatial quantum beating fringe is also measured for nondegenerate photon pairs in the same interferometer, although the two-photon states have no frequency entanglement. When unentangled polarization-correlated photons are used as an input state, the polarization entanglement is successfully recovered through the interferometer via delayed compensation.
Phase shift in atom interferometry due to spacetime curvature
NASA Astrophysics Data System (ADS)
Overstreet, Chris; Asenbaum, Peter; Kovachy, Tim; Brown, Daniel; Hogan, Jason; Kasevich, Mark
2017-04-01
In previous matter wave interferometers, the interferometer arm separation was small enough that gravitational tidal forces across the arms can be neglected. Gravitationally-induced phase shifts in such experiments arise from the acceleration of the interfering particles with respect to the interferometer beam splitters and mirrors. By increasing the interferometer arm separation, we enter a new regime in which the arms experience resolvably different gravitational forces. Using a single-source gravity gradiometer, we measure a phase shift associated with the tidal forces induced by a nearby test mass. This is the first observation of spacetime curvature across the spatial extent of a single quantum system. CO acknowledges funding from the Stanford Graduate Fellowship.
Optical refractometer based on an asymmetrical twin-core fiber Michelson interferometer.
Zhou, Ai; Zhang, Yanhui; Li, Guangping; Yang, Jun; Wang, Yuzhuo; Tian, Fengjun; Yuan, Libo
2011-08-15
We report and demonstrate an optical refractometer based on a compact fiber Michelson interferometer. The Michelson interferometer is composed of an asymmetrical twin-core fiber containing a central core and a side core. By chemically etching a segment of the twin-core fiber until the side core is exposed, the effective index of the side core in the etched region is sensitive to the environmental refractive index, which leads to a shift of the transmission spectrum of the Michelson interferometer. The experimental results show that such a device has a refractive index resolution of more than 800 nm/refractive index unit in the range of 1.34-1.37. © 2011 Optical Society of America
System identification of the JPL micro-precision interferometer truss - Test-analysis reconciliation
NASA Technical Reports Server (NTRS)
Red-Horse, J. R.; Marek, E. L.; Levine-West, M.
1993-01-01
The JPL Micro-Precision Interferometer (MPI) is a testbed for studying the use of control-structure interaction technology in the design of space-based interferometers. A layered control architecture will be employed to regulate the interferometer optical system to tolerances in the nanometer range. An important aspect of designing and implementing the control schemes for such a system is the need for high fidelity, test-verified analytical structural models. This paper focuses on one aspect of the effort to produce such a model for the MPI structure, test-analysis model reconciliation. Pretest analysis, modal testing, and model refinement results are summarized for a series of tests at both the component and full system levels.
Heterodyne interferometer with subatomic periodic nonlinearity.
Wu, C M; Lawall, J; Deslattes, R D
1999-07-01
A new, to our knowledge, heterodyne interferometer for differential displacement measurements is presented. It is, in principle, free of periodic nonlinearity. A pair of spatially separated light beams with different frequencies is produced by two acousto-optic modulators, avoiding the main source of periodic nonlinearity in traditional heterodyne interferometers that are based on a Zeeman split laser. In addition, laser beams of the same frequency are used in the measurement and the reference arms, giving the interferometer theoretically perfect immunity from common-mode displacement. We experimentally demonstrated a residual level of periodic nonlinearity of less than 20 pm in amplitude. The remaining periodic error is attributed to unbalanced ghost reflections that drift slowly with time.
Far-infrared laser diagnostics on the HT-6M tokamak
NASA Astrophysics Data System (ADS)
Gao, X.; Lu, H. J.; Guo, Q. L.; Wan, Y. X.; Tong, X. D.
1995-01-01
A multichannel far-infrared (FIR) hydrogen cyanide (HCN) laser interferometer was developed to measure plasma electron density profile on the HT-6M tokamak. The structure of the seven-channel FIR laser interferometer is described. The laser source used in the interferometer was a continuous-wave glow discharge HCN laser with a cavity length of 3.4 m and power output of about 100 mW at 337 μm. The detection sensitivity was 1/15 fringe with a temporal resolution of 0.1 ms. Experimental results were measured by the seven-channel FIR HCN laser interferometer with edge Ohmic heating, a pumping limiter, and ion cyclotron resonant heating on the HT-6M tokamak are reported.
Optimal phase measurements with bright- and vacuum-seeded SU(1,1) interferometers
NASA Astrophysics Data System (ADS)
Anderson, Brian E.; Schmittberger, Bonnie L.; Gupta, Prasoon; Jones, Kevin M.; Lett, Paul D.
2017-06-01
The SU(1,1) interferometer can be thought of as a Mach-Zehnder interferometer with its linear beam splitters replaced with parametric nonlinear optical processes. We consider the cases of bright- and vacuum-seeded SU(1,1) interferometers using intensity or homodyne detectors. A simplified truncated scheme with only one nonlinear interaction is introduced, which not only beats conventional intensity detection with a bright seed, but can saturate the phase-sensitivity bound set by the quantum Fisher information. We also show that the truncated scheme achieves a sub-shot-noise phase sensitivity in the vacuum-seeded case, despite the phase-sensing optical beams having no well-defined phase.
Practical aspects of modern interferometry for optical manufacturing quality control: Part 2
NASA Astrophysics Data System (ADS)
Smythe, Robert
2012-07-01
Modern phase shifting interferometers enable the manufacture of optical systems that drive the global economy. Semiconductor chips, solid-state cameras, cell phone cameras, infrared imaging systems, space based satellite imaging and DVD and Blu-Ray disks are all enabled by phase shifting interferometers. Theoretical treatments of data analysis and instrument design advance the technology but often are not helpful towards the practical use of interferometers. An understanding of the parameters that drive system performance is critical to produce useful results. Any interferometer will produce a data map and results; this paper, in three parts, reviews some of the key issues to minimize error sources in that data and provide a valid measurement.
Practical aspects of modern interferometry for optical manufacturing quality control, Part 3
NASA Astrophysics Data System (ADS)
Smythe, Robert A.
2012-09-01
Modern phase shifting interferometers enable the manufacture of optical systems that drive the global economy. Semiconductor chips, solid-state cameras, cell phone cameras, infrared imaging systems, space-based satellite imaging, and DVD and Blu-Ray disks are all enabled by phase-shifting interferometers. Theoretical treatments of data analysis and instrument design advance the technology but often are not helpful toward the practical use of interferometers. An understanding of the parameters that drive the system performance is critical to produce useful results. Any interferometer will produce a data map and results; this paper, in three parts, reviews some of the key issues to minimize error sources in that data and provide a valid measurement.
The Next Century Astrophysics Program
NASA Technical Reports Server (NTRS)
Swanson, Paul N.
1991-01-01
The Astrophysics Division within the NASA Office of Space Science and Applications (OSSA) has defined a set of major and moderate missions that are presently under study for flight sometime within the next 20 years. These programs include the: Advanced X Ray Astrophysics Facility; X Ray Schmidt Telescope; Nuclear Astrophysics Experiment; Hard X Ray Imaging Facility; Very High Throughput Facility; Gamma Ray Spectroscopy Observatory; Hubble Space Telescope; Lunar Transit Telescope; Astrometric Interferometer Mission; Next Generation Space Telescope; Imaging Optical Interferometer; Far Ultraviolet Spectroscopic Explorer; Gravity Probe B; Laser Gravity Wave Observatory in Space; Stratospheric Observatory for Infrared Astronomy; Space Infrared Telescope Facility; Submillimeter Intermediate Mission; Large Deployable Reflector; Submillimeter Interferometer; and Next Generation Orbiting Very Long Baseline Interferometer.
Desse, Jean-Michel; Olchewsky, François
2018-04-15
This Letter proposes a dual-reference digital holographic interferometer for analyzing the high refractive index encountered in transonic and supersonic flows. For that, a Wollaston prism is inserted in the reference arm in order to simultaneously generate two orthogonally polarized reference waves. As a consequence, recorded interferograms contain two crossed and perpendicular interference patterns that give two orders fully separated in the Fourier spectrum. It is then possible to analyze a transparent object regardless of the orientation of the refractive index gradient using the two phase maps reconstructed with each of the two first interference orders. Fusion of the phase maps yields a single phase map in which the phase singularities are removed. Experimental results demonstrate the suitability of the proposed approach for analyzing shock waves in the unsteady wake flow around a circular cylinder at Mach 0.75.
A pressure scanning Fabry-Perot magnetometer.
NASA Technical Reports Server (NTRS)
Fay, T. D.; Wyller, A. A.
1971-01-01
Description of an oscillating magnetic analyzer (KDP crystal plus Glan-Thompson prism) coupled to an echelle-interferometer spectrograph, and of single-slit magnetometer which by pressure variations can be made to scan the entire profiles of the circularly and linearly polarized Zeeman components. Freon gas is used as the scanner gas with wavelength displacements of 0.02 A per 0.1 in. Hg pressure change at the NaD lines. The available scan range is 15 A in the visual spectral region.
Fourier transform spectrometry for fiber-optic sensor systems
NASA Technical Reports Server (NTRS)
Beheim, Glenn; Tuma, Margaret L.; Sotomayor, Jorge L.; Flatico, Joseph M.
1993-01-01
An integrated-optic Mach-Zehnder interferometer is used as a Fourier transform spectrometer to analyze the input and output spectra of a temperature-sensing thin-film etalon. This type of spectrometer has an advantage over conventional grating spectrometers because it is better suited for use with time-division-multiplexed sensor networks. In addition, this spectrometer has the potential for low cost due to its use of a component that could be manufactured in large quantities for the optical communications industry.
Distributed measurement of birefringence dispersion in polarization-maintaining fibers
NASA Astrophysics Data System (ADS)
Tang, Feng; Wang, Xiang-Zhao; Zhang, Yimo; Jing, Wencai
2006-12-01
A new method to measure the birefringence dispersion in high-birefringence polarization-maintaining fibers is presented using white-light interferometry. By analyzing broadening of low-coherence interferograms obtained in a scanning Michelson interferometer, the birefringence dispersion and its variation along different fiber sections are acquired with high sensitivity and accuracy. Birefringence dispersions of two PANDA fibers at their operation wavelength are measured to be 0.011 ps/(km nm) and 0.018 ps/(km nm), respectively. Distributed measurement capability of the method is also verified experimentally.
Phase-Shifting Liquid Crystal Interferometers for Microgravity Fluid Physics
NASA Technical Reports Server (NTRS)
Griffin, DeVon W.; Marshall, Keneth L.
2002-01-01
The initial focus of this project was to eliminate both of these problems in the Liquid Crystal Point-Diffraction Interferometer (LCPDI). Progress toward that goal will be described, along with the demonstration of a phase shifting Liquid Crystal Shearing Interferometer (LCSI) that was developed as part of this work. The latest LCPDI, other than a lens to focus the light from a test section onto a diffracting microsphere within the interferometer and a collimated laser for illumination, the pink region contained within the glass plates on the rod-mounted platform is the complete interferometer. The total width is approximately 1.5 inches with 0.25 inches on each side for bonding the electrical leads. It is 1 inch high and there are only four diffracting microspheres within the interferometer. As a result, it is very easy to align, achieving the first goal. The liquid crystal electro-optical response time is a function of layer thickness, with thinner devices switching faster due to a reduction in long-range viscoelastic forces between the LC molecules. The LCPDI has a liquid crystal layer thickness of 10 microns, which is controlled by plastic or glass microspheres embedded in epoxy 'pads' at the corners of the device. The diffracting spheres are composed of polystyrene/divinyl benzene polymer with an initial diameter of 15 microns. The spheres deform slightly when the interferometer is assembled to conform to the spacing produced by the microsphere-filled epoxy spacer pads. While the speed of this interferometer has not yet been tested, previous LCPDIs fabricated at the Laboratory for Laser Energetics switched at a rate of approximately 3.3 Hz, a factor of 10 slower than desired. We anticipate better performance when the speed of these interferometers is tested since they are approximately three times thinner. Phase shifting in these devices is a function of the AC voltage level applied to the liquid crystal. As the voltage increases, the dye in the liquid crystal tends to become more transparent, thus introducing a rather large amount of error into the phase-shifting measurement. While that error can be greatly reduced by normalization, we prefer eliminating the source of the error. To that end, we have pursued development of a 'blend' of custom dyes that will not exhibit these properties. That goal has not yet been fully achieved. Guardalben, et al, presented a similar set of interferograms in a paper partially funded by this grant. Shearing interferometers are a second class of common path interferometers. Typically they consist of a thick glass plate optimized for equal reflection from the front and back surface. While not part of the original thrust of the project, through the course of laboratory work, we demonstrated a prototype of a shearing interferometer capable of phase shifting using a commercial liquid crystal retardation plate. A schematic of this liquid crystal shearing interferometer (LCSI) and a sample set of interferograms are in the reference. This work was also supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460, the University of Rochester, and the New York State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article. Additional information is included in the original extended abstract.
Thermal analysis and experimental study of end-pumped Nd: YLF laser at 1053 nm
NASA Astrophysics Data System (ADS)
El-Agmy, R. M.; Al-Hosiny, N.
2017-12-01
We have numerically analyzed the thermal effects in Nd: YLF laser rod. The calculations of temperature and stress distributions in the Nd: YLF laser rod was performed with finite element (FE) simulations. The calculations showed that the laser rod could be pumped up to a power of 40 W without fracture caused by thermal stress. The calculated thermal lens power of thermally induced lens in Nd: YLF ( σ-polarization) laser rod was analyzed and validated experimentally with two independent techniques. A Shack-Hartmann wavefront sensor and a Mach-Zehnder interferometer were used for direct measurements of focal thermal lens at different pump powers. The obtained measurements were coinciding with the FE simulations.
NASA Technical Reports Server (NTRS)
Bivolaru, Daniel (Inventor); Cutler, Andrew D. (Inventor); Danehy, Paul M. (Inventor)
2015-01-01
A system that simultaneously measures the translational temperature, bulk velocity, and density in gases by collecting, referencing, and analyzing nanosecond time-scale Rayleigh scattered light from molecules is described. A narrow-band pulsed laser source is used to probe two largely separated measurement locations, one of which is used for reference. The elastically scattered photons containing information from both measurement locations are collected at the same time and analyzed spectrally using a planar Fabry-Perot interferometer. A practical means of referencing the measurement of velocity using the laser frequency, and the density and temperature using the information from the reference measurement location maintained at constant properties is provided.
NASA Astrophysics Data System (ADS)
Chang, Wen-Chi; Chen, Yu-Chi; Chien, Chih-Jen; Wang, An-Bang; Lee, Chih-Kung
2011-04-01
A testing system contains an advanced vibrometer/interferometer device (AVID) and a high-speed electronic speckle pattern interferometer (ESPI) was developed. AVID is a laser Doppler vibrometer that can be used to detect single-point linear and angular velocity with DC to 20 MHz bandwidth and with nanometer resolution. In swept frequency mode, frequency response from mHz to MHz of the structure of interest can be measured. The ESPI experimental setup can be used to measure full-field out-of-plane displacement. A 5-1 phase shifting method and a correlation algorithm were used to analyze the phase difference between the reference signal and the speckle signal scattered from the sample surface. In order to show the efficiency and effectiveness of AVID and ESPI, we designed a micro-speaker composed of a plate with fixed boundaries and two piezo-actuators attached to the sides of the plate. The AVID was used to measure the vibration of one of the piezo-actuators and the ESPI was adopted to measure the two-dimensional out-of-plane displacement of the plate. A microphone was used to measure the acoustic response created by the micro-speaker. Driving signal includes random signal, sinusoidal signal, amplitude modulated high-frequency carrier signal, etc. Angular response induced by amplitude modulated high-frequency carrier signal was found to be significantly narrower than the frequency responses created by other types of driving signals. The validity of our newly developed NDE system are detailed by comparing the relationship between the vibration signal of the micro-speaker and the acoustic field generated.
Lan, Chengming; Zhou, Wensong; Xie, Yawen
2018-04-16
This work proposes a 3D shaped optic fiber sensor for ultrasonic stress waves detection based on the principle of a Mach–Zehnder interferometer. This sensor can be used to receive acoustic emission signals in the passive damage detection methods and other types of ultrasonic signals propagating in the active damage detection methods, such as guided wave-based methods. The sensitivity of an ultrasonic fiber sensor based on the Mach–Zehnder interferometer mainly depends on the length of the sensing optical fiber; therefore, the proposed sensor achieves the maximum possible sensitivity by wrapping an optical fiber on a hollow cylinder with a base. The deformation of the optical fiber is produced by the displacement field of guided waves in the hollow cylinder. The sensor was first analyzed using the finite element method, which demonstrated its basic sensing capacity, and the simulation signals have the same characteristics in the frequency domain as the excitation signal. Subsequently, the primary investigations were conducted via a series of experiments. The sensor was used to detect guided wave signals excited by a piezoelectric wafer in an aluminum plate, and subsequently it was tested on a reinforced concrete beam, which produced acoustic emission signals via impact loading and crack extension when it was loaded to failure. The signals obtained from a piezoelectric acoustic emission sensor were used for comparison, and the results indicated that the proposed 3D fiber optic sensor can detect ultrasonic signals in the specific frequency response range.
Xie, Yawen
2018-01-01
This work proposes a 3D shaped optic fiber sensor for ultrasonic stress waves detection based on the principle of a Mach–Zehnder interferometer. This sensor can be used to receive acoustic emission signals in the passive damage detection methods and other types of ultrasonic signals propagating in the active damage detection methods, such as guided wave-based methods. The sensitivity of an ultrasonic fiber sensor based on the Mach–Zehnder interferometer mainly depends on the length of the sensing optical fiber; therefore, the proposed sensor achieves the maximum possible sensitivity by wrapping an optical fiber on a hollow cylinder with a base. The deformation of the optical fiber is produced by the displacement field of guided waves in the hollow cylinder. The sensor was first analyzed using the finite element method, which demonstrated its basic sensing capacity, and the simulation signals have the same characteristics in the frequency domain as the excitation signal. Subsequently, the primary investigations were conducted via a series of experiments. The sensor was used to detect guided wave signals excited by a piezoelectric wafer in an aluminum plate, and subsequently it was tested on a reinforced concrete beam, which produced acoustic emission signals via impact loading and crack extension when it was loaded to failure. The signals obtained from a piezoelectric acoustic emission sensor were used for comparison, and the results indicated that the proposed 3D fiber optic sensor can detect ultrasonic signals in the specific frequency response range. PMID:29659540
NASA Astrophysics Data System (ADS)
Bunch, N. L.; Labelle, J. W.; Hughes, J. M.; Weatherwax, A. T.; Ye, S.; Lummerzheim, D.
2007-12-01
MF burst is an impulsive radio emission of auroral origin detected by ground-based instruments approximately between 1,300 and 3,700 kHz, and associated with substorm onsets. Its exact generation mechanism is unknown, though it has been speculated that it arises from mode conversion radiation. To discover the generation mechanism and the relation of MF burst to auroral processes, Dartmouth has deployed radio interferometers in Alaska, Northern Canada, Greenland, and Antarctica, including a three-element interferometer deployed at Toolik Lake Field Station in Alaska in 2006. This instrument measured spectra, amplitudes, and directions of arrival (DOA's) of over 47 MF burst events occurring between November 30, 2006 and May 26, 2007. These represent the first DOA measurements ever reported for the impulsive MF burst phenomenon. Preliminary analysis shows that the events originated from a wide range of directions in the sky, with all azimuths represented in the distribution of DOA's. The DOA of each individual event is well-defined, however. Many events show apparent motion, with southward motions more common than northward among the subset of events analyzed so far. Some of the events were detected simultaneously on an interferometer deployed at Kaktovik, Alaska, 400 km away. The all-sky imager at Toolik Lake was also operational for some events. Further analysis of these data promises to reveal first information about the locations and motions of MF burst sources, a first step towards discovering the generation mechanism of this mysterious radio emission and its relation to auroral processes.
NASA Astrophysics Data System (ADS)
Qiu, Shi; Zhou, Bi-Hua; Shi, Li-Hua
2012-10-01
A single-station-based lightning discharge channel reconstruction system by combining a two-dimensional (2D) VHF broadband interferometer and a three-dimensional (3D) acoustic lighting mapping system has been developed and used for lightning observations. Two cloud-to-ground (CG) flashes with highly branched leaders recorded by the system are analyzed and presented in this paper. VHF radiation could well delineate the development of simultaneous leader branches, while acoustic emissions mainly located on the main channel which was traversed by return stroke (RS) process. Localizations by VHF and acoustic emissions agree well with each other. The mapping results confirm that audible acoustic emission of lightning discharge is mainly associated with high current process like RS. Leaders could generate detectable acoustic signals, with amplitude at least an order weaker than ensuing RS, but they are hard to identify except in closer ranges than the main channel. As a significant phenomenon, this paper provides the first 3D locations associated with sources of tearing sounds, which are inferred to be generated by downward negative leaders when they approach ground. The synchronized observation enable VHF interferometer locate lightning development in spatially quasi 3D, and three stepped leaders, five dart leaders and two dart-stepped leaders are identified, with the 3D velocity (1.3-3.9) × 105 m/s, (1.0-2.9) × 107 m/s and from (1.0-1.3) × 107 m/s to (2.4-2.6) × 106 m/s, respectively. In addition, the application of this approach in improving the accuracy of thunder ranging is discussed.
HARDI: A high angular resolution deployable interferometer for space
NASA Technical Reports Server (NTRS)
Bely, Pierre Y.; Burrows, Christopher; Roddier, Francois; Weigelt, Gerd
1992-01-01
We describe here a proposed orbiting interferometer covering the UV, visible, and near-IR spectral ranges. With a 6-m baseline and a collecting area equivalent to about a 1.4 m diameter full aperture, this instrument will offer significant improvements in resolution over the Hubble Space Telescope, and complement the new generation of ground-based interferometers with much better limiting magnitude and spectral coverage. On the other hand, it has been designed as a considerably less ambitious project (one launch) than other current proposals. We believe that this concept is feasible given current technological capabilities, yet would serve to prove the concepts necessary for the much larger systems that must eventually be flown. The interferometer is of the Fizeau type. It therefore has a much larger field (for guiding) better UV throughout (only 4 surfaces) than phased arrays. Optimize aperture configurations and ideas for the cophasing and coalignment system are presented. The interferometer would be placed in a geosynchronous or sunsynchronous orbit to minimize thermal and mechanical disturbances and to maximize observing efficiency.
Enhancement of fiber-optic low-coherence Fabry-Pérot interferometer with ZnO ALD films
NASA Astrophysics Data System (ADS)
Hirsch, Marzena; Listewnik, Paulina; Jedrzejewska-Szczerska, Małgorzata
2018-04-01
In this paper investigation of the enhanced fiber-optic low coherence Fabry-Pérot interferometer with zinc oxide (ZnO) film deposited by atomic layer deposition (ALD) was presented. Model of the interferometer, which was constructed of single-mode optical fiber with applied ZnO ALD films, was built. The interferometer was also examined by means of experiment. Measurements were performed for both reflective and transmission modes, using wavelengths of 1300 nm and 1500 nm. The measurements with the air cavity showed the best performance in terms of a visibility of the interference signal can be achieved for small cavity lengths ( 50μm) in both configurations. Combined with the enhancement of reflectance of the interferometer mirrors due to the ALD film, proposed construction could be successfully applied in refractive index (RI) sensor that can operate with improved visibility of the signal even in 1.3-1.5 RI range as well as with small volume samples, as shown by the modeling.
NASA Astrophysics Data System (ADS)
Davis, E. M.; Rost, J. C.; Porkolab, M.; Marinoni, A.; van Zeeland, M. A.
2016-10-01
A heterodyne interferometer channel has been added to the DIII-D phase contrast imaging (PCI) system. Both measurements share a single 10.6 μm probe beam. Whereas the PCI excels at detecting medium- to high- k fluctuations (1.5 cm-1 <= k <= 20 cm-1), the interferometer extends the system sensitivity to low- k fluctuations (k <= 5 cm-1), allowing simultaneous measurement of electron- and ion-scale instabilities with sub-microsecond resolution. Further, correlating measurements from the interferometer channel with those from DIII-D's pre-existing, toroidally separated interferometer (Δ∅ = 45°) allows identification of low- n modes. This new capability has been corroborated against magnetic measurements and may allow novel investigations of core - localized MHD that is otherwise inaccessible via external magnetic measurements, with potential applications to fast particle transport and disruptions. Work supported by USDOE under DE-FG02-94ER54235, DE-FC02-04ER54698, and DE-FC02-99ER54512.
Tilt sensor based on intermodal photonic crystal fiber interferometer
NASA Astrophysics Data System (ADS)
Zhang, Xiaotong; Ni, Kai; Zhao, Chunliu; Ye, Manping; Jin, Yongxing
2014-09-01
A tilt sensor based on an intermodal photonic crystal fiber (PCF) interferometer is demonstrated. The sensor consists of a tubular filled with NaCl aqueous solutions and an intermodal PCF interferometer, which is formed by using a short PCF with two single-mode fibers (SMFs) spliced at both ends, and the air-holes in the splice regions are fully collapsed. The intermodal PCF interferometer is fixed in a rigid glass tubular with a slant orientation, and a half of the PCF is immersed in the NaCl aqueous solutions, while the other half is exposed in air. When tilting the tubular, the length of the PCF immersed changes so that the transmission spectrum moves. Therefore, by monitoring the wavelength shift, the tilt angle can be achieved. In the experiment, a 0.8-cm-length intermodal PCF interferometer was adopted. The sensitivity of the proposed sensor was obtained from -1.5461 nm/° to -30.1244 nm/° when measuring from -35.1° to 37.05°.
Apparatus and method for performing two-frequency interferometry
Johnston, Roger G.
1990-01-01
The present apparatus includes a two-frequency, Zeeman-effect laser and matched, doubly refracting crystals in the construction of an accurate interferometer. Unlike other interferometric devices, the subject invention exhibits excellent phase stability owing to the use of single piece means for producing parallel interferometer arms, making the interferometer relatively insensitive to thermal and mechanical instabilities. Interferometers respond to differences in optical path length between their two arms. Unlike many interferometric techniques, which require the measurement of the location of interference fringes in a brightly illuminated background, the present invention permits the determination of the optical path length difference by measuring the phase of an electronic sine wave. The present apparatus is demonstrated as a differential thermooptic spectrometer for measuring differential optical absorption simply and accurately which is but one of many applications therefor. The relative intensities of the heating beams along each arm of the interferometer can be easily adjusted by observing a zero phase difference with identical samples when this condition is obtained.
Spatially scanned two-color mid-infrared interferometer for FTU
NASA Astrophysics Data System (ADS)
Canton, A.; Innocente, P.; Martini, S.; Tasinato, L.; Tudisco, O.
2001-01-01
The design of a scanning beam two-color mid-infrared (MIR) interferometer is presented. The diagnostic is being developed for the Frascati Tokamak Upgrade (FTU) which calls for a new interferometer to perform detailed study of advanced confinement regimes in D-shaped plasmas. After performing a feasibility study and a prototype test, we designed a scanning interferometer based on a resonant tilting mirror providing 40 chords of ≈1 cm diameter and a full profile every 62 μs. Such a high number of chords is obtained with a very simple optical scheme, resulting in a system which is compact, low cost, and easy to align. An important feature of the interferometer is its higher immunity to fringe jumps compared to conventional far infrared (FIR) systems. Three main factors contribute to that: the high critical density associated to MIR beams, the large bandwidth provided by 40 MHz heterodyne detection, and the fact that each scan provides a "self-consistent" profile.
Apparatus and method for performing two-frequency interferometry
Johnston, R.G.
1988-01-25
The present apparatus includes a two-frequency, Zeeman Effect laser and matched, doubly refracting crystals in the construction of an accurate interferometer. Unlike other interferometric devices, the subject invention exhibits excellent phase stability owing to the use of single piece means for producing parallel interferometer arms, making the interferometer relatively insensitive to thermal and mechanical instabilities. Interferometers respond to differences in optical path length between their two arms. Unlike many interferometric techniques, which require the measurement of the location of interference fringes in a brightly illuminated background, the present invention permits the determination of the optical path length difference by measuring the phase of an electronic sine wave. The present apparatus is demonstrated as a differential thermooptic spectrometer for measuring differential optical absorption simply and accurately which is but one of many applications therefor. The relative intensities of the heating beams along each arm of the interferometer can be easily adjusted by observing a zero phase difference with identical samples when this condition is obtained. 6 figs.
Two-photon interference of temporally separated photons
Kim, Heonoh; Lee, Sang Min; Moon, Han Seb
2016-01-01
We present experimental demonstrations of two-photon interference involving temporally separated photons within two types of interferometers: a Mach-Zehnder interferometer and a polarization-based Michelson interferometer. The two-photon states are probabilistically prepared in a symmetrically superposed state within the two interferometer arms by introducing a large time delay between two input photons; this state is composed of two temporally separated photons, which are in two different or the same spatial modes. We then observe two-photon interference fringes involving both the Hong-Ou-Mandel interference effect and the interference of path-entangled two-photon states simultaneously in a single interferometric setup. The observed two-photon interference fringes provide simultaneous observation of the interferometric properties of the single-photon and two-photon wavepackets. The observations can also facilitate a more comprehensive understanding of the origins of the interference phenomena arising from spatially bunched/anti-bunched two-photon states comprised of two temporally separated photons within the interferometer arms. PMID:27708380
NASA Astrophysics Data System (ADS)
Kumar, Santosh
2017-07-01
Binary to Binary coded decimal (BCD) converter is a basic building block for BCD processing. The last few decades have witnessed exponential rise in applications of binary coded data processing in the field of optical computing thus there is an eventual increase in demand of acceptable hardware platform for the same. Keeping this as an approach a novel design exploiting the preeminent feature of Mach-Zehnder Interferometer (MZI) is presented in this paper. Here, an optical 4-bit binary to binary coded decimal (BCD) converter utilizing the electro-optic effect of lithium niobate based MZI has been demonstrated. It exhibits the property of switching the optical signal from one port to the other, when a certain appropriate voltage is applied to its electrodes. The projected scheme is implemented using the combinations of cascaded electro-optic (EO) switches. Theoretical description along with mathematical formulation of the device is provided and the operation is analyzed through finite difference-Beam propagation method (FD-BPM). The fabrication techniques to develop the device are also discussed.
NASA Astrophysics Data System (ADS)
Chen, Xi; Zhong, Jiaqi; Song, Hongwei; Zhu, Lei; Wang, Jin; Zhan, Mingsheng
2014-08-01
Vibrational noise is one of the most important noises that limits the performance of the nonisotopes atom-interferometers (AIs) -based weak-equivalence-principle (WEP) -test experiment. By analyzing the vibration-induced phases, we find that, although the induced phases are not completely common, their ratio is always a constant at every experimental data point, which is not fully utilized in the traditional elliptic curve-fitting method. From this point, we propose a strategy that can greatly suppress the vibration-induced phase noise by stabilizing the Raman laser frequencies at high precision and controlling the scanning-phase ratio. The noise rejection ratio can be as high as 1015 with arbitrary dual-species AIs. Our method provides a Lissajous curve, and the shape of the curve indicates the breakdown of the weak-equivalence-principle signal. Then we manage to derive an estimator for the differential phase of the Lissajous curve. This strategy could be helpful in extending the candidates of atomic species for high-precision AIs-based WEP-test experiments.
Remote refilling of LN2 cryostats for high sensitivity astronomical applications
NASA Astrophysics Data System (ADS)
l'Allemand, J. L. Lizon a.
2017-12-01
The most sensitive observation mode of the ESO VLT (European Southern Observatory Very Large Telescope) is the interferometric mode, where the 4 Units Telescopes are directed to the same stellar object in order to operate as a gigantic interferometer. The beam is then re-combined in the main interferometry laboratory and fed into the analyzing instruments. In order not to disturb the performance of the Interferometer, this room is considered as a sanctuary where one enters only in case of extreme need. A simple opening of the door would create air turbulences affecting the stability for hours. Any cold spot in the room could also cause convection which might change the optical path by fraction of a micron. Most of the instruments are operating at cryogenic temperatures using passive cooling based on LN2 bath cryostat. For this reason, dedicated strategy has been developed for the transfer of LN2 to the various instruments. The present document describes the various aspects and care taken in order to guarantee the very high thermal and mechanical environmental stability.
NASA Astrophysics Data System (ADS)
Shi, Min; Li, Shuguang; Chen, Hailiang
2018-06-01
A high-sensitivity temperature sensor based on photonic crystal fiber Sagnac interferometer is proposed and studied. All holes of the PCF are filled with ethanol with capillarity. The cladding air holes are uniform arrangements. The two air holes around the core are removed to form new core modes with high birefringence. The sensitivities of the temperature can be up to -8.7657 and 16.8142 nm/°C when temperature rises from 45 to 75 °C and the fiber length is 5.05 cm. And when temperature rises from 10 to 45 °C, the sensitivity can reach -7.848 and 16.655 nm/°C with fiber length 2.11 cm. The performance of the selective-filled and the fully-filled PCF with temperature from 45 to 75 °C and fiber length 5.05 cm are analyzed and compared. The fully filling can better achieve PCF's sensing performance. The simple structure and high sensitivities make the temperature sensor easy to achieve. The temperature sensor with high sensitivities and good linearity has great application value for environmental temperature detecting.
NASA Astrophysics Data System (ADS)
D'Alessandro, Giuseppe; de Bernardis, Paolo; di Tano, Silvio; Masi, Silvia; Mele, Lorenzo
2017-09-01
The spectroscopic measurement of the Cosmic Microwave Background at mm and sub-mm wavelengths received significant attention recently, aimed at measuring tiny spectral distortions of the Cosmic Microwave Background (CMB) relevant for cosmology. Several experiments, including OLIMPO (Masi et al. 2003), PRISM (André et al., 2014), MILLIMETRON (Smirnov and Baryshev, 2012), PIXIE (Kogut and Fixsen, 2011) are based on a Martin-Puplett Fourier-transform spectrometer. Its differential capabilities are the key to success in these difficult measurements. The polarizing beam splitter is the optical core of a Martin-Puplett interferometer. In this paper we analyze, analytically and experimentally, the systematic effects induced by a beam splitter orientation different from the canonical 45 ° . These effects are potenitally important for the delicate measurements of CMB spectral distortions. We find an analytical formula describing the effect, and verify experimentally, in the range 150-600 GHz, that our formula correctly describes the results (with a C.L. of 88 %). We also demonstrate that the rotation of the beam splitter does not induce distortions in the measured spectra.
NASA Technical Reports Server (NTRS)
Shukla, R. P.; Perera, G. M.; George, M. C.; Venkateswarlu, P.
1990-01-01
A nondestructive technique for measuring the refractive index of a negative lens using a wedged plate interferometer is described. The method can be also used for measuring the refractive index of convex or zero power lenses. Schematic diagrams are presented for the use of a wedged plate interferometer for measuring the refractive index of a concave lens and of a convex lens.
NASA Astrophysics Data System (ADS)
Tröbs, M.; Chwalla, M.; Danzmann, K.; Fernández Barránco, G.; Fitzsimons, E.; Gerberding, O.; Heinzel, G.; Killow, C. J.; Lieser, M.; Perreur-Lloyd, M.; Robertson, D. I.; Schuster, S.; Schwarze, T. S.; Ward, H.; Zwetz, M.
2017-09-01
Angular misalignment of one of the interfering beams in laser interferometers can couple into the interferometric length measurement and is called tilt-to-length (TTL) coupling in the following. In the noise budget of the planned space-based gravitational-wave detector evolved Laser Interferometer Space Antenna (eLISA) [1, 2] TTL coupling is the second largest noise source after shot noise [3].
Compact portable diffraction moire interferometer
Deason, V.A.; Ward, M.B.
1988-05-23
A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observations means including film and video cameras may be used to view and record the resultant fringe patterns. 7 figs.
Development of a Grazing Incidence X-Ray Interferometer
NASA Technical Reports Server (NTRS)
Shipley, Ann; Cash, Webster; Osterman, Steve; Joy, Marshall; Carter, James
1999-01-01
A grazing incidence x-ray interferometer design capable of micro-arcsecond level resolution is discussed. This practical design employs a Michelson Stellar interferometer approach to create x-ray interference fringes without the use of Wolter style optics or diffraction crystals. Design solutions accommodating alignment, vibration, and thermal constraints are reviewed. We present the development and demonstration of a working experiment along with tolerance studies, data analysis, and results.
Interferometer for measuring the dynamic surface topography of a human tear film
NASA Astrophysics Data System (ADS)
Primeau, Brian C.; Greivenkamp, John E.
2012-03-01
The anterior refracting surface of the eye is the thin tear film that forms on the surface of the cornea. Following a blink, the tear film quickly smoothes and starts to become irregular after 10 seconds. This irregularity can affect comfort and vision quality. An in vivo method of characterizing dynamic tear films has been designed based upon a near-infrared phase-shifting interferometer. This interferometer continuously measures light reflected from the tear film, allowing sub-micron analysis of the dynamic surface topography. Movies showing the tear film behavior can be generated along with quantitative metrics describing changes in the tear film surface. This tear film measurement allows analysis beyond capabilities of typical fluorescein visual inspection or corneal topography and provides better sensitivity and resolution than shearing interferometry methods. The interferometer design is capable of identifying features in the tear film much less than a micron in height with a spatial resolution of about ten microns over a 6 mm diameter. This paper presents the design of the tear film interferometer along with the considerations that must be taken when designing an interferometer for on-eye diagnostics. Discussions include eye movement, design of null optics for a range of ocular geometries, and laser emission limits for on-eye interferometry.
A High Resolution Phase Shifting Interferometer.
NASA Astrophysics Data System (ADS)
Bayda, Michael; Bartscher, Christoph; Wilkinson, Allen
1997-03-01
Configuration, operation, and performance details of a high resolution phase shifting Twyman-Green interferometer are presented. The instrument was used for density relaxation experiments of very compressible liquid-vapor critical fluids.(A companion talk in the Nonequilibrium Phenomena session under Complex Fluids presents density equilibration work.) A sample assembly contained the cell, beam splitter, phase shifter, and mirrors inside a 6 cm diameter by 6 cm long aluminum cylinder. This sample assembly was contained inside a thermostat stable to 50 μK RMS deviation. A thin phase retarding Liquid Crystal Cell (LCC) was placed in the reference arm of the interferometer. The LCC provided four cumulative 90 degree phase shifts to produce four images used in computing each phase map. The Carré technique was used to calculate a phase value for each pixel from the four intensities of each pixel. Four images for one phase map could be acquired in less than two seconds. The spatial resolution was 25 μm. The phase resolution of the interferometer in a six second period was better than λ/400. The phase stability of the interferometer during 25 hours was better than λ/70. Factors affecting timing, resolution, and other phase shifting devices will be discussed. WWW Presentation
Furnace control apparatus using polarizing interferometer
Schultz, Thomas J.; Kotidis, Petros A.; Woodroffe, Jaime A.; Rostler, Peter S.
1995-01-01
A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.
Polarizing optical interferometer having a dual use optical element
Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.
1995-04-04
A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.
Process control system using polarizing interferometer
Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.
1994-02-15
A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.
Polarizing optical interferometer having a dual use optical element
Kotidis, Petros A.; Woodroffe, Jaime A.; Rostler, Peter S.
1995-01-01
A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.
Process control system using polarizing interferometer
Schultz, Thomas J.; Kotidis, Petros A.; Woodroffe, Jaime A.; Rostler, Peter S.
1994-01-01
A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.
Furnace control apparatus using polarizing interferometer
Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.
1995-03-28
A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.
Method and apparatus for measuring surface movement of an object using a polarizing interferometer
Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.
1995-05-09
A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figs.
NASA Astrophysics Data System (ADS)
Coe, P. A.; Howell, D. F.; Nickerson, R. B.
2004-11-01
ATLAS is the largest particle detector under construction at CERN Geneva. Frequency scanning interferometry (FSI), also known as absolute distance interferometry, will be used to monitor shape changes of the SCT (semiconductor tracker), a particle tracker in the inaccessible, high radiation environment at the centre of ATLAS. Geodetic grids with several hundred fibre-coupled interferometers (30 mm to 1.5 m long) will be measured simultaneously. These lengths will be measured by tuning two lasers and comparing the resulting phase shifts in grid line interferometers (GLIs) with phase shifts in a reference interferometer. The novel inexpensive GLI design uses diverging beams to reduce sensitivity to misalignment, albeit with weaker signals. One micrometre precision length measurements of grid lines will allow 10 µm precision tracker shape corrections to be fed into ATLAS particle tracking analysis. The technique was demonstrated by measuring a 400 mm interferometer to better than 400 nm and a 1195 mm interferometer to better than 250 nm. Precise measurements were possible, even with poor quality signals, using numerical analysis of thousands of intensity samples. Errors due to drifts in interferometer length were substantially reduced using two lasers tuned in opposite directions and the precision was further improved by linking measurements made at widely separated laser frequencies.
A Multi-object Exoplanet Detecting Technique
NASA Astrophysics Data System (ADS)
Zhang, K.
2011-05-01
Exoplanet exploration is not only a meaningful astronomical action, but also has a close relation with the extra-terrestrial life. High resolution echelle spectrograph is the key instrument for measuring stellar radial velocity (RV). But with higher precision, better environmental stability and higher cost are required. An improved technique of RV means invented by David J. Erskine in 1997, External Dispersed Interferometry (EDI), can increase the RV measuring precision by combining the moderate resolution spectrograph with a fixed-delay Michelson interferometer. LAMOST with large aperture and large field of view is equipped with 16 multi-object low resolution fiber spectrographs. And these spectrographs are capable to work in medium resolution mode (R=5{K}˜10{K}). LAMOST will be one of the most powerful exoplanet detecting systems over the world by introducing EDI technique. The EDI technique is a new technique for developing astronomical instrumentation in China. The operating theory of EDI was generally verified by a feasibility experiment done in 2009. And then a multi-object exoplanet survey system based on LAMOST spectrograph was proposed. According to this project, three important tasks have been done as follows: Firstly, a simulation of EDI operating theory contains the stellar spectrum model, interferometer transmission model, spectrograph mediation model and RV solution model. In order to meet the practical situation, two detecting modes, temporal and spatial phase-stepping methods, are separately simulated. The interference spectrum is analyzed with Fourier transform algorithm and a higher resolution conventional spectrum is resolved. Secondly, an EDI prototype is composed of a multi-object interferometer prototype and the LAMOST spectrograph. Some ideas are used in the design to reduce the effect of central obscuration, for example, modular structure and external/internal adjusting frames. Another feasibility experiment was done at Xinglong Station in 2010. A related spectrum reduction program and the instrumental stability were tested by obtaining some multi-object interference spectrum. Thirdly, studying the parameter optimization of fixed-delay Michelson interferometer is helpful to increase its inner thermal stability and reduce the external environmental requirement. Referring to Wide-angle Michelson Interferometer successfully used in Upper Atmospheric Wind field, a glass pair selecting scheme is given. By choosing a suitable glass pair of interference arms, the RV error can be stable as several hundred m\\cdots^{-1}\\cdot{dg}C^{-1}. Therefore, this work is helpful to deeply study EDI technique and speed up the development of multi-object exoplanet survey system. LAMOST will make a greater contribution to astronomy when the combination between its spectrographs and EDI technique comes true.
Comprehensive analysis of "bath salts" purchased from California stores and the internet.
Schneir, A; Ly, B T; Casagrande, K; Darracq, M; Offerman, S R; Thornton, S; Smollin, C; Vohra, R; Rangun, C; Tomaszewski, C; Gerona, R R
2014-08-01
To analyze the contents of "bath salt" products purchased from California stores and the Internet qualitatively and quantitatively in a comprehensive manner. A convenience sample of "bath salt" products were purchased in person by multiple authors at retail stores in six California cities and over the Internet (U.S. sites only), between August 11, 2011 and December 15, 2011. Liquid chromatography-time-of-flight mass spectrometry was utilized to identify and quantify all substances in the purchased products. Thirty-five "bath salt" products were purchased and analyzed. Prices ranged from $9.95 to 49.99 (U.S. dollars). Most products had a warning against use. The majority (32/35, 91%) had one (n = 15) or multiple cathinones (n = 17) present. Fourteen different cathinones were identified, 3,4-methylenedioxypyrovalerone (MDPV) being the most common. Multiple drugs found including cathinones (buphedrone, ethcathinone, ethylone, MDPBP, and PBP), other designer amines (ethylamphetamine, fluoramphetamine, and 5-IAI), and the antihistamine doxylamine had not been previously identified in U.S. "bath salt" products. Quantification revealed high stimulant content and in some cases dramatic differences in either total cathinone or synthetic stimulant content between products with the same declared weight and even between identically named and outwardly appearing products. Comprehensive analysis of "bath salts" purchased from California stores and the Internet revealed the products to consistently contain cathinones, alone, or in different combinations, sometimes in high quantity. Multiple cathinones and other drugs found had not been previously identified in U.S. "bath salt" products. High total stimulant content in some products and variable qualitative and quantitative composition amongst products were demonstrated.
High-frequency acoustic spectrum analyzer based on polymer integrated optics
NASA Astrophysics Data System (ADS)
Yacoubian, Araz
This dissertation presents an acoustic spectrum analyzer based on nonlinear polymer-integrated optics. The device is used in a scanning heterodyne geometry by zero biasing a Michelson interferometer. It is capable of detecting vibrations from DC to the GHz range. Initial low frequency experiments show that the device is an effective tool for analyzing an acoustic spectrum even in noisy environments. Three generations of integrated sensors are presented, starting with a very lossy (86 dB total insertion loss) initial device that detects vibrations as low as λ/10, and second and third generation improvements with a final device of 44 dB total insertion loss. The sensor was further tested for detecting a pulsed laser-excited vibration and resonances due to the structure of the sample. The data are compared to the acoustic spectrum measured using a low loss passive fiber interferometer detection scheme which utilizes a high speed detector. The peaks present in the passive detection scheme are clearly visible with our sensor data, which have a lower noise floor. Hybrid integration of GHz electronics is also investigated in this dissertation. A voltage controlled oscillator (VCO) is integrated on a polymer device using a new approach. The VCO is shown to operate as specified by the manufacturer, and the RF signal is efficiently launched onto the micro-strip line used for EO modulation. In the future this technology can be used in conjunction with the presented sensor to produce a fully integrated device containing high frequency drive electronics controlled by low DC voltage. Issues related to device fabrication, loss analysis, RF power delivery to drive circuitry, efficient poling of large area samples, and optimizing poling conditions are also discussed throughout the text.
The effect of delay line on the performance of a fiber optic interferometric sensor
NASA Astrophysics Data System (ADS)
Lin, Yung-Li; Lin, Ken-Huang; Lin, Wuu-Wen; Chen, Mao-Hsiung
2007-09-01
The optical fiber has the features of low loss and wide bandwidth; it has replaced the coaxial cable as the mainstream of the communication system in recent years. Because of its high sensitivity characteristic, the interferometer is usually applied to long distance, weak signal detection. In general, if the area to be monitored is located far away, the weak signal will make it uneasy to detect. An interferometer is used for phase detection. Thus, the hydrophone which is based on interferometric fiber optic sensor has extremely high sensitivity. Sagnac interferometric hydrophone has low noise of marine environment, which is more suitably used to detect underwater acoustic signal than that of a Mach-Zehnder interferometer. In this paper, we propose the configuration of dual Sagnac interferometer, and use the mathematical methods to drive and design optimal two delay fiber lengths, which can enlarge the dynamic range of underwater acoustic detection. In addition, we also use software simulation to design optimal two delay fiber lengths. The experimental configuration of dual Sagnac interferometer with two optical delay line is shown as Fig. 1. The maximum and minimum measurable phase signal value of dual Sagnac interferometer (L II=2 km, L 4=222.2 m), shown in Fig. 3. The fiber optic sensor head is of mandrel type. The acoustic window is made of silicon rubbers. It was shown that we can increase their sensitivities by increasing number of wrapping fiber coils. In our experiment, the result shows that among all the mandrel sensor heads, the highest dynamic range is up to 37.6 +/- 1.4 dB, and its sensitivity is -223.3 +/-1.7 dB re V / 1μ Pa. As for the configuration of the optical interferometers, the intensity of the dual Sagnac interferometer is 20 dB larger than its Sagnac counterpart. Its dynamic range is above 66 dB where the frequency ranges is between 50 ~ 400 Hz, which is 24 dB larger than that of the Sagnac interferometer with the sensitivity of -192.0 dB re V / l μPa. In addition, by using software simulation to design optimal lengths of delay fibers, we can increase the dynamic range of interferometer on underwater acoustic detection. This paper verifies that, by means of adjusting the length of these two delay fibers, we can actually increase the dynamic range of acoustic signal detection.
1980-06-01
development and refinement of our model took place in three phases: 1. (a) The 3-dimensional structures of the rigid neuro- muscular blocking agents that...Table 1) is an anticholinesterase agent . Bullock (40) has reported that Soman can attack not only AChE irreversibly, but at high concentrations may... VIol AIiilioh’ 101 H At,% -. H~*\\U,,IN,%ttN *ILLIIILI.IIIA.LLIIAIL A I II LLL’L NlMII’LLL lt N AIIL 1AIIN .11I ’IRM INIIIN 911 ANAL I ILLIALIINIIN tMtINHNIN. 14%1AI4 A IAI11N 119
1975-02-21
3.9 S AA* .. aL __ LL J.2 WNW aL ..2. 6. . a _ L. mVm . -IAi . 1i.-4 L 1 TOMA NIU Of OUATIONS 6 USAFOAC Pm045 (OL.A) PUviOU WmfiO op Ums porn . ANS...a0l4 2i- ; lC i S 14 1 420 1 2* 2 4 As 3K sil .il ,4 , 3 2 h 33 | ’J sUtil il t l I I ! li Ito: a 84/32 bL "..., Iop .ha , erol Boy . L_- I"’SOW ,(4 I 01
1983-11-01
C )a IaI Ř aa 36 14 14 o* f iAt NJ *. 4 I E .3 .4 .4 C4 CE .4.4CE @ . ev 13.4 *0 a 4**m r m...NA C 0407 / /1 N 0 E ,. E hh IDETEhEEhE L.6 1.8:(1111_25 JllO MICROCOPY RESOLUTION TEST CHART NATIONAL SuRfAL) PA ,JANDARD t A PERSONNEL TECHNOLOGY 00...A MEANS OF CONFIRMING CULTURAL DIFFERENCES H. C . Triandis, Y. Kashima, E . Shimada & M. Villareal Technical Report ONR-27 NAVY RECRUIT’S
Department of Defense Logistics Data Element Dictionary/Directory (DED/ D)
1990-01-01
ac I. - 1- Z ZM 9u 1- U. I 4L 9 1c Z w In - Z 4U 4 0 -. 3 Z 1- - zZ~ - - MA Z Mi w z w I.-LA. 0n 01 r 00 LAJ *i .s. z -da Z > . Z* 0 -U tUn 0 cc...01 02 Laid 0 a : I-aI- a, o . LU zaW . 0 . 20. IU D - LL * LU 0! I- V) Li. 0. 0LU LU Lu a a C)1-4 > 0~ 2 -t LO L - 4 . z - U - J O* - N w U") :D (N- -j
Aircraft Skin Penetrator and Agent Applicator. Volume 2. Test and Evaluation.
1984-11-01
U IA FR IO%(LANr -,I WWL7 2 - TI) _T 39.75*10F X.Of AR NEOPRENE_ _ NAME TAG I 71LINK LOCK 2 LA CH sl AD 13 b 110 - 2 4 X 1. 25 U 2 SOCKET HEAD SCREW...ensure that it is secured. A broken flex hos(.’s whiplash can be very dangerous. 3) The charging system pressure gauge should be a calibrated gage and be...Seez ’(or -,*iuivalent A. iAi.: theh tool bit shaft with the bear inq/seal in the irrlr ,ssembly and push slowly through wh,_,n the f L,w ~i rr, r-. aches
The observation of the Aharonov-Bohm effect in suspended semiconductor ring interferometers
NASA Astrophysics Data System (ADS)
Pokhabov, D. A.; Pogosov, A. G.; Shevyrin, A. A.; Zhdanov, E. Yu; Bakarov, A. K.; Shklyaev, A. A.; Ishutkin, S. V.; Stepanenko, M. V.; Shesterikov, E. V.
2018-02-01
A suspended semiconductor quantum ring interferometer based on a GaAs/AlGaAs heterostructure with a two-dimensional electron gas (2DEG) is created and experimentally studied. The electron interference in suspended 2DEG is observed. The interference manifests itself as the Aharonov-Bohm oscillations of the interferometer magnetoresistance, clearly observed before as well as after suspension. The amplitude of the oscillations remains almost unchanged after suspension.
NASA Astrophysics Data System (ADS)
Nikitin, Alexander N.; Baryshnikov, Nikolay; Denisov, Dmitrii; Karasik, Valerii; Sakharov, Alexey; Romanov, Pavel; Sheldakova, Julia; Kudryashov, Alexis
2018-02-01
In this paper we consider two approaches widely used in testing of spherical optical surfaces: Fizeau interferometer and Shack-Hartmann wavefront sensor. Fizeau interferometer that is widely used in optical testing can be transformed to a device using Shack-Hartmann wavefront sensor, the alternative technique to check spherical optical components. We call this device Hartmannometer, and compare its features to those of Fizeau interferometer.
Optical system and method for gas detection and monitoring
NASA Technical Reports Server (NTRS)
Polzin, Kurt A. (Inventor); Sinko, John Elihu (Inventor); Korman, Valentin (Inventor); Witherow, William K. (Inventor); Hendrickson, Adam Gail (Inventor)
2011-01-01
A free-space optical path of an optical interferometer is disposed in an environment of interest. A light beam is guided to the optical interferometer using a single-mode optical fiber. The light beam traverses the interferometer's optical path. The light beam guided to the optical path is combined with the light beam at the end of the optical path to define an output light. A temporal history of the output light is recorded.
FIBER OPTICS: Polarization phase nonreciprocity in all-fiber ring interferometers
NASA Astrophysics Data System (ADS)
Andreev, A. Ts; Vasilev, V. D.; Kozlov, V. A.; Kuznetsov, A. V.; Senatorov, A. A.; Shubochkin, R. L.
1993-08-01
The polarization phase nonreciprocity in all-fiber ring interferometers based on single-mode optical fibers was studied experimentally. The results confirm existing theoretical models. Experimentally, it was possible to use fiber ring interferometers to measure the extinction coefficients of optical fiber polarizers. The largest extinction coefficients found for optical-fiber polarizers were 84 dB (for the wavelength 0.82 μm) and 86 dB (1.3 μm).
Software design for a compact interferometer
NASA Astrophysics Data System (ADS)
Vogel, Andreas
1993-01-01
Experience shows that very often a lot of similar elements have to be tested by the optician. Only a small number of input parameters are changed in a well defined manner. So it is useful to develop simplified software for special applications. The software is used in a compact phase shifting interferometer. Up to five interferometers can be controlled by a single PC-AT computer. Modular programming simplifies the software modification for new applications.
A new method for determining the plasma electron density using three-color interferometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arakawa, Hiroyuki; Kawano, Yasunori; Itami, Kiyoshi
2012-06-15
A new method for determining the plasma electron density using the fractional fringes on three-color interferometer is proposed. Integrated phase shift on each interferometer is derived without using the temporal history of the fractional fringes. The dependence on the fringe resolution and the electrical noise are simulated on the wavelengths of CO{sub 2} laser. Short-time integrations of the fractional fringes enhance the reliability of this method.