Sample records for anaphase

  1. Slk19p of Saccharomyces cerevisiae Regulates Anaphase Spindle Dynamics Through Two Independent Mechanisms

    PubMed Central

    Havens, Kyle A.; Gardner, Melissa K.; Kamieniecki, Rebecca J.; Dresser, Michael E.; Dawson, Dean S.

    2010-01-01

    Slk19p is a member of the Cdc-14 early anaphase release (FEAR) pathway, a signaling network that is responsible for activation of the cell-cycle regulator Cdc14p in Saccharomyces cerevisiae. Disruption of the FEAR pathway results in defects in anaphase, including alterations in the assembly and behavior of the anaphase spindle. Many phenotypes of slk19Δ mutants are consistent with a loss of FEAR signaling, but other phenotypes suggest that Slk19p may have FEAR-independent roles in modulating the behavior of microtubules in anaphase. Here, a series of SLK19 in-frame deletion mutations were used to test whether Slk19p has distinct roles in anaphase that can be ascribed to specific regions of the protein. Separation-of-function alleles were identified that are defective for either FEAR signaling or aspects of anaphase spindle function. The data suggest that in early anaphase one region of Slk19p is essential for FEAR signaling, while later in anaphase another region is critical for maintaining the coordination between spindle elongation and the growth of interpolar microtubules. PMID:20923975

  2. A Regulatory Switch Alters Chromosome Motions at the Metaphase to Anaphase Transition

    PubMed Central

    Su, Kuan-Chung; Barry, Zachary; Schweizer, Nina; Maiato, Helder; Bathe, Mark; Cheeseman, Iain McPherson

    2016-01-01

    Summary To achieve chromosome segregation during mitosis, sister chromatids must undergo a dramatic change in their behavior to switch from balanced oscillations at the metaphase plate to directed poleward motion during anaphase. However, the factors that alter chromosome behavior at the metaphase-to-anaphase transition remain incompletely understood. Here, we perform time-lapse imaging to analyze anaphase chromosome dynamics in human cells. Using multiple directed biochemical, genetic, and physical perturbations, our results demonstrate that differences in the global phosphorylation states between metaphase and anaphase are the major determinant of chromosome motion dynamics. Indeed, causing a mitotic phosphorylation state to persist into anaphase produces dramatic metaphase-like oscillations. These induced oscillations depend on both kinetochore-derived and polar ejection forces that oppose poleward motion. Thus, our analysis of anaphase chromosome motion reveals that dephosphorylation of multiple mitotic substrates is required to suppress metaphase chromosome oscillatory motions and achieve directed poleward motion for successful chromosome segregation. PMID:27829144

  3. Dinaciclib Induces Anaphase Catastrophe in Lung Cancer Cells via Inhibition of Cyclin-Dependent Kinases 1 and 2.

    PubMed

    Danilov, Alexey V; Hu, Shanhu; Orr, Bernardo; Godek, Kristina; Mustachio, Lisa Maria; Sekula, David; Liu, Xi; Kawakami, Masanori; Johnson, Faye M; Compton, Duane A; Freemantle, Sarah J; Dmitrovsky, Ethan

    2016-11-01

    Despite advances in targeted therapy, lung cancer remains the most common cause of cancer-related mortality in the United States. Chromosomal instability is a prominent feature in lung cancer and, because it rarely occurs in normal cells, it represents a potential therapeutic target. Our prior work discovered that lung cancer cells undergo anaphase catastrophe in response to inhibition of cyclin-dependent kinase 2 (CDK2), followed by apoptosis and reduced growth. In this study, the effects and mechanisms of the multi-CDK inhibitor dinaciclib on lung cancer cells were investigated. We sought to determine the specificity of CDK-dependent induction of anaphase catastrophe. Live cell imaging provided direct evidence that dinaciclib caused multipolar cell divisions resulting in extensive chromosome missegregation. Genetic knockdown of dinaciclib CDK targets revealed that repression of CDK2 and CDK1, but not CDK5 or CDK9, triggered anaphase catastrophe in lung cancer cells. Overexpression of CP110, which is a mediator of CDK2 inhibitor-induced anaphase catastrophe (and a CDK1 and 2 phosphorylation substrate), antagonized anaphase catastrophe and apoptosis following dinaciclib treatment. Consistent with our previous findings, acquisition of activated KRAS sensitized lung cancer cells to dinaciclib-mediated anaphase catastrophe and cell death. Combining dinaciclib with the mitotic inhibitor taxol augmented anaphase catastrophe induction and reduced cell viability of lung cancer cells. Thus, the multi-CDK inhibitor dinaciclib causes anaphase catastrophe in lung cancer cells and should be investigated as a potential therapeutic for wild-type and KRAS-mutant lung cancer, individually or in combination with taxanes. Mol Cancer Ther; 15(11); 2758-66. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. PICH and BLM limit histone association with anaphase centromeric DNA threads and promote their resolution

    PubMed Central

    Ke, Yuwen; Huh, Jae-Wan; Warrington, Ross; Li, Bing; Wu, Nan; Leng, Mei; Zhang, Junmei; Ball, Haydn L; Li, Bing; Yu, Hongtao

    2011-01-01

    Centromeres nucleate the formation of kinetochores and are vital for chromosome segregation during mitosis. The SNF2 family helicase PICH (Plk1-interacting checkpoint helicase) and the BLM (the Bloom's syndrome protein) helicase decorate ultrafine histone-negative DNA threads that link the segregating sister centromeres during anaphase. The functions of PICH and BLM at these threads are not understood, however. Here, we show that PICH binds to BLM and enables BLM localization to anaphase centromeric threads. PICH- or BLM-RNAi cells fail to resolve these threads in anaphase. The fragmented threads form centromeric-chromatin-containing micronuclei in daughter cells. Anaphase threads in PICH- and BLM-RNAi cells contain histones and centromere markers. Recombinant purified PICH has nucleosome remodelling activities in vitro. We propose that PICH and BLM unravel centromeric chromatin and keep anaphase DNA threads mostly free of nucleosomes, thus allowing these threads to span long distances between rapidly segregating centromeres without breakage and providing a spatiotemporal window for their resolution. PMID:21743438

  5. Thrombopoietin-induced Polyploidization of Bone Marrow Megakaryocytes Is Due to a Unique Regulatory Mechanism in Late Mitosis

    PubMed Central

    Nagata, Yuka; Muro, Yoshinao; Todokoro, Kazuo

    1997-01-01

    Megakaryocytes undergo a unique differentiation program, becoming polyploid through repeated cycles of DNA synthesis without concomitant cell division. However, the mechanism underlying this polyploidization remains totally unknown. It has been postulated that polyploidization is due to a skipping of mitosis after each round of DNA replication. We carried out immunohistochemical studies on mouse bone marrow megakaryocytes during thrombopoietin- induced polyploidization and found that during this process megakaryocytes indeed enter mitosis and progress through normal prophase, prometaphase, metaphase, and up to anaphase A, but not to anaphase B, telophase, or cytokinesis. It was clearly observed that multiple spindle poles were formed as the polyploid megakaryocytes entered mitosis; the nuclear membrane broke down during prophase; the sister chromatids were aligned on a multifaced plate, and the centrosomes were symmetrically located on either side of each face of the plate at metaphase; and a set of sister chromatids moved into the multiple centrosomes during anaphase A. We further noted that the pair of spindle poles in anaphase were located in close proximity to each other, probably because of the lack of outward movement of spindle poles during anaphase B. Thus, the reassembling nuclear envelope may enclose all the sister chromatids in a single nucleus at anaphase and then skip telophase and cytokinesis. These observations clearly indicate that polyploidization of megakaryocytes is not simply due to a skipping of mitosis, and that the megakaryocytes must have a unique regulatory mechanism in anaphase, e.g., factors regulating anaphase such as microtubule motor proteins might be involved in this polyploidization process. PMID:9334347

  6. TopBP1/Dpb11 binds DNA anaphase bridges to prevent genome instability

    PubMed Central

    Germann, Susanne M.; Schramke, Vera; Pedersen, Rune Troelsgaard; Gallina, Irene; Eckert-Boulet, Nadine; Oestergaard, Vibe H.

    2014-01-01

    DNA anaphase bridges are a potential source of genome instability that may lead to chromosome breakage or nondisjunction during mitosis. Two classes of anaphase bridges can be distinguished: DAPI-positive chromatin bridges and DAPI-negative ultrafine DNA bridges (UFBs). Here, we establish budding yeast Saccharomyces cerevisiae and the avian DT40 cell line as model systems for studying DNA anaphase bridges and show that TopBP1/Dpb11 plays an evolutionarily conserved role in their metabolism. Together with the single-stranded DNA binding protein RPA, TopBP1/Dpb11 binds to UFBs, and depletion of TopBP1/Dpb11 led to an accumulation of chromatin bridges. Importantly, the NoCut checkpoint that delays progression from anaphase to abscission in yeast was activated by both UFBs and chromatin bridges independently of Dpb11, and disruption of the NoCut checkpoint in Dpb11-depleted cells led to genome instability. In conclusion, we propose that TopBP1/Dpb11 prevents accumulation of anaphase bridges via stimulation of the Mec1/ATR kinase and suppression of homologous recombination. PMID:24379413

  7. TopBP1/Dpb11 binds DNA anaphase bridges to prevent genome instability.

    PubMed

    Germann, Susanne M; Schramke, Vera; Pedersen, Rune Troelsgaard; Gallina, Irene; Eckert-Boulet, Nadine; Oestergaard, Vibe H; Lisby, Michael

    2014-01-06

    DNA anaphase bridges are a potential source of genome instability that may lead to chromosome breakage or nondisjunction during mitosis. Two classes of anaphase bridges can be distinguished: DAPI-positive chromatin bridges and DAPI-negative ultrafine DNA bridges (UFBs). Here, we establish budding yeast Saccharomyces cerevisiae and the avian DT40 cell line as model systems for studying DNA anaphase bridges and show that TopBP1/Dpb11 plays an evolutionarily conserved role in their metabolism. Together with the single-stranded DNA binding protein RPA, TopBP1/Dpb11 binds to UFBs, and depletion of TopBP1/Dpb11 led to an accumulation of chromatin bridges. Importantly, the NoCut checkpoint that delays progression from anaphase to abscission in yeast was activated by both UFBs and chromatin bridges independently of Dpb11, and disruption of the NoCut checkpoint in Dpb11-depleted cells led to genome instability. In conclusion, we propose that TopBP1/Dpb11 prevents accumulation of anaphase bridges via stimulation of the Mec1/ATR kinase and suppression of homologous recombination.

  8. Microtubule Flux and Sliding in Mitotic Spindles of Drosophila EmbryosV⃞

    PubMed Central

    Brust-Mascher, Ingrid; Scholey, Jonathan M.

    2002-01-01

    We proposed that spindle morphogenesis in Drosophila embryos involves progression through four transient isometric structures in which a constant spacing of the spindle poles is maintained by a balance of forces generated by multiple microtubule (MT) motors and that tipping this balance drives pole-pole separation. Here we used fluorescent speckle microscopy to evaluate the influence of MT dynamics on the isometric state that persists through metaphase and anaphase A and on pole-pole separation in anaphase B. During metaphase and anaphase A, fluorescent punctae on kinetochore and interpolar MTs flux toward the poles at 0.03 μm/s, too slow to drive chromatid-to-pole motion at 0.11 μm/s, and during anaphase B, fluorescent punctae on interpolar MTs move away from the spindle equator at the same rate as the poles, consistent with MT-MT sliding. Loss of Ncd, a candidate flux motor or brake, did not affect flux in the metaphase/anaphase A isometric state or MT sliding in anaphase B but decreased the duration of the isometric state. Our results suggest that, throughout this isometric state, an outward force exerted on the spindle poles by MT sliding motors is balanced by flux, and that suppression of flux could tip the balance of forces at the onset of anaphase B, allowing MT sliding and polymerization to push the poles apart. PMID:12429839

  9. Automated mitotic spindle tracking suggests a link between spindle dynamics, spindle orientation, and anaphase onset in epithelial cells

    PubMed Central

    Larson, Matthew E.; Bement, William M.

    2017-01-01

    Proper spindle positioning at anaphase onset is essential for normal tissue organization and function. Here we develop automated spindle-tracking software and apply it to characterize mitotic spindle dynamics in the Xenopus laevis embryonic epithelium. We find that metaphase spindles first undergo a sustained rotation that brings them on-axis with their final orientation. This sustained rotation is followed by a set of striking stereotyped rotational oscillations that bring the spindle into near contact with the cortex and then move it rapidly away from the cortex. These oscillations begin to subside soon before anaphase onset. Metrics extracted from the automatically tracked spindles indicate that final spindle position is determined largely by cell morphology and that spindles consistently center themselves in the XY-plane before anaphase onset. Finally, analysis of the relationship between spindle oscillations and spindle position relative to the cortex reveals an association between cortical contact and anaphase onset. We conclude that metaphase spindles in epithelia engage in a stereotyped “dance,” that this dance culminates in proper spindle positioning and orientation, and that completion of the dance is linked to anaphase onset. PMID:28100633

  10. Anaphase B

    PubMed Central

    Scholey, Jonathan M.; Civelekoglu-Scholey, Gul; Brust-Mascher, Ingrid

    2016-01-01

    Anaphase B spindle elongation is characterized by the sliding apart of overlapping antiparallel interpolar (ip) microtubules (MTs) as the two opposite spindle poles separate, pulling along disjoined sister chromatids, thereby contributing to chromosome segregation and the propagation of all cellular life. The major biochemical “modules” that cooperate to mediate pole–pole separation include: (i) midzone pushing or (ii) braking by MT crosslinkers, such as kinesin-5 motors, which facilitate or restrict the outward sliding of antiparallel interpolar MTs (ipMTs); (iii) cortical pulling by disassembling astral MTs (aMTs) and/or dynein motors that pull aMTs outwards; (iv) ipMT plus end dynamics, notably net polymerization; and (v) ipMT minus end depolymerization manifest as poleward flux. The differential combination of these modules in different cell types produces diversity in the anaphase B mechanism. Combinations of antagonist modules can create a force balance that maintains the dynamic pre-anaphase B spindle at constant length. Tipping such a force balance at anaphase B onset can initiate and control the rate of spindle elongation. The activities of the basic motor filament components of the anaphase B machinery are controlled by a network of non-motor MT-associated proteins (MAPs), for example the key MT cross-linker, Ase1p/PRC1, and various cell-cycle kinases, phosphatases, and proteases. This review focuses on the molecular mechanisms of anaphase B spindle elongation in eukaryotic cells and briefly mentions bacterial DNA segregation systems that operate by spindle elongation. PMID:27941648

  11. Robust Ordering of Anaphase Events by Adaptive Thresholds and Competing Degradation Pathways.

    PubMed

    Kamenz, Julia; Mihaljev, Tamara; Kubis, Armin; Legewie, Stefan; Hauf, Silke

    2015-11-05

    The splitting of chromosomes in anaphase and their delivery into the daughter cells needs to be accurately executed to maintain genome stability. Chromosome splitting requires the degradation of securin, whereas the distribution of the chromosomes into the daughter cells requires the degradation of cyclin B. We show that cells encounter and tolerate variations in the abundance of securin or cyclin B. This makes the concurrent onset of securin and cyclin B degradation insufficient to guarantee that early anaphase events occur in the correct order. We uncover that the timing of chromosome splitting is not determined by reaching a fixed securin level, but that this level adapts to the securin degradation kinetics. In conjunction with securin and cyclin B competing for degradation during anaphase, this provides robustness to the temporal order of anaphase events. Our work reveals how parallel cell-cycle pathways can be temporally coordinated despite variability in protein concentrations. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Faithful anaphase is ensured by Mis4, a sister chromatid cohesion molecule required in S phase and not destroyed in G1 phase

    PubMed Central

    Furuya, Kanji; Takahashi, Kohta; Yanagida, Mitsuhiro

    1998-01-01

    The loss of sister chromatid cohesion triggers anaphase spindle movement. The budding yeast Mcd1/Scc1 protein, called cohesin, is required for associating chromatids, and proteins homologous to it exist in a variety of eukaryotes. Mcd1/Scc1 is removed from chromosomes in anaphase and degrades in G1. We show that the fission yeast protein, Mis4, which is required for equal sister chromatid separation in anaphase is a different chromatid cohesion molecule that behaves independent of cohesin and is conserved from yeast to human. Its inactivation in G1 results in cell lethality in S phase and subsequent premature sister chromatid separation. Inactivation in G2 leads to cell death in subsequent metaphase–anaphase progression but missegregation occurs only in the next round of mitosis. Mis4 is not essential for condensation, nor does it degrade in G1. Rather, it associates with chromosomes in a punctate fashion throughout the cell cycle. mis4 mutants are hypersensitive to hydroxyurea (HU) and UV irradiation but retain the ability to restrain cell cycle progression when damaged or sustaining a block to replication. The mis4 mutation results in synthetic lethality with a DNA ligase mutant. Mis4 may form a stable link between chromatids in S phase that is split rather than removed in anaphase. PMID:9808627

  13. Alp7/TACC recruits kinesin-8–PP1 to the Ndc80 kinetochore protein for timely mitotic progression and chromosome movement

    PubMed Central

    Tang, Ngang Heok; Toda, Takashi

    2015-01-01

    ABSTRACT Upon establishment of proper kinetochore–microtubule attachment, the spindle assembly checkpoint (SAC) must be silenced to allow onset of anaphase, which is when sister chromatids segregate equally to two daughter cells. However, how proper kinetochore–microtubule attachment leads to timely anaphase onset remains elusive. Furthermore, the molecular mechanisms of chromosome movement during anaphase A remain unclear. In this study, we show that the fission yeast Alp7/TACC protein recruits a protein complex consisting of the kinesin-8 (Klp5–Klp6) and protein phosphatase 1 (PP1) to the kinetochore upon kinetochore–microtubule attachment. Accumulation of this complex at the kinetochore, on the one hand, facilitates SAC inactivation through PP1, and, on the other hand, accelerates polewards chromosome movement driven by the Klp5–Klp6 motor. We identified an alp7 mutant that had specific defects in binding to the Klp5–Klp6–PP1 complex but with normal localisation to the microtubule and kinetochore. Consistent with our proposition, this mutant shows delayed anaphase onset and decelerated chromosome movement during anaphase A. We propose that the recruitment of kinesin-8–PP1 to the kinetochore through Alp7/TACC interaction plays a crucial role in regulation of timely mitotic progression and chromosome movement during anaphase A. PMID:25472718

  14. ULTRASTRUCTURAL CHANGES IN THE MITOTIC APPARATUS AT THE METAPHASE-TO-ANAPHASE TRANSITION

    PubMed Central

    Robbins, Elliott; Jentzsch, Gisela

    1969-01-01

    As the metaphase HeLa cell approaches anaphase, pericentriolar spindle tubules fragment and become encapsulated by a unit membrane. By early anaphase, the encapsulated forms appear to have expanded, giving rise to polar spherical aggregates. Some of these elements show ribosomes on their bounding membrane, and some of them localize on the condensed chromatin during reformation of the nuclear membrane. It thus is suggested that these elements are newly derived cisternae of the endoplasmic reticulum (ER). Similar transformations are seen in later anaphase in the interzonal region, and it may be that the ER serves as a storage depot for some fraction of depolymerized microtubules. The time and location of the pericentriolar transitions are consistent with their being intimately involved in the mechanics of chromosome separation. PMID:5765760

  15. Metaphase to Anaphase (mat) Transition–Defective Mutants inCaenorhabditis elegans

    PubMed Central

    Golden, Andy; Sadler, Penny L.; Wallenfang, Matthew R.; Schumacher, Jill M.; Hamill, Danielle R.; Bates, Gayle; Bowerman, Bruce; Seydoux, Geraldine; Shakes, Diane C.

    2000-01-01

    The metaphase to anaphase transition is a critical stage of the eukaryotic cell cycle, and, thus, it is highly regulated. Errors during this transition can lead to chromosome segregation defects and death of the organism. In genetic screens for temperature-sensitive maternal effect embryonic lethal (Mel) mutants, we have identified 32 mutants in the nematode Caenorhabditis elegans in which fertilized embryos arrest as one-cell embryos. In these mutant embryos, the oocyte chromosomes arrest in metaphase of meiosis I without transitioning to anaphase or producing polar bodies. An additional block in M phase exit is evidenced by the failure to form pronuclei and the persistence of phosphohistone H3 and MPM-2 antibody staining. Spermatocyte meiosis is also perturbed; primary spermatocytes arrest in metaphase of meiosis I and fail to produce secondary spermatocytes. Analogous mitotic defects cause M phase delays in mitotic germline proliferation. We have named this class of mutants “mat” for metaphase to anaphase transition defective. These mutants, representing six different complementation groups, all map near genes that encode subunits of the anaphase promoting complex or cyclosome, and, here, we show that one of the genes, emb-27, encodes the C. elegans CDC16 ortholog. PMID:11134076

  16. Kid-mediated chromosome compaction ensures proper nuclear envelope formation.

    PubMed

    Ohsugi, Miho; Adachi, Kenjiro; Horai, Reiko; Kakuta, Shigeru; Sudo, Katsuko; Kotaki, Hayato; Tokai-Nishizumi, Noriko; Sagara, Hiroshi; Iwakura, Yoichiro; Yamamoto, Tadashi

    2008-03-07

    Toward the end of mitosis, neighboring chromosomes gather closely to form a compact cluster. This is important for reassembling the nuclear envelope around the entire chromosome mass but not individual chromosomes. By analyzing mice and cultured cells lacking the expression of chromokinesin Kid/kinesin-10, we show that Kid localizes to the boundaries of anaphase and telophase chromosomes and contributes to the shortening of the anaphase chromosome mass along the spindle axis. Loss of Kid-mediated anaphase chromosome compaction often causes the formation of multinucleated cells, specifically at oocyte meiosis II and the first couple of mitoses leading to embryonic death. In contrast, neither male meiosis nor somatic mitosis after the morula-stage is affected by Kid deficiency. These data suggest that Kid-mediated anaphase/telophase chromosome compaction prevents formation of multinucleated cells. This protection is especially important during the very early stages of development, when the embryonic cells are rich in ooplasm.

  17. Chromosome Bridges Maintain Kinetochore-Microtubule Attachment throughout Mitosis and Rarely Break during Anaphase.

    PubMed

    Pampalona, Judit; Roscioli, Emanuele; Silkworth, William T; Bowden, Brent; Genescà, Anna; Tusell, Laura; Cimini, Daniela

    2016-01-01

    Accurate chromosome segregation during cell division is essential to maintain genome stability, and chromosome segregation errors are causally linked to genetic disorders and cancer. An anaphase chromosome bridge is a particular chromosome segregation error observed in cells that enter mitosis with fused chromosomes/sister chromatids. The widely accepted Breakage/Fusion/Bridge cycle model proposes that anaphase chromosome bridges break during mitosis to generate chromosome ends that will fuse during the following cell cycle, thus forming new bridges that will break, and so on. However, various studies have also shown a link between chromosome bridges and aneuploidy and/or polyploidy. In this study, we investigated the behavior and properties of chromosome bridges during mitosis, with the idea to gain insight into the potential mechanism underlying chromosome bridge-induced aneuploidy. We find that only a small number of chromosome bridges break during anaphase, whereas the rest persist through mitosis into the subsequent cell cycle. We also find that the microtubule bundles (k-fibers) bound to bridge kinetochores are not prone to breakage/detachment, thus supporting the conclusion that k-fiber detachment is not the cause of chromosome bridge-induced aneuploidy. Instead, our data suggest that while the microtubules bound to the kinetochores of normally segregating chromosomes shorten substantially during anaphase, the k-fibers bound to bridge kinetochores shorten only slightly, and may even lengthen, during anaphase. This causes some of the bridge kinetochores/chromosomes to lag behind in a position that is proximal to the cell/spindle equator and may cause the bridged chromosomes to be segregated into the same daughter nucleus or to form a micronucleus.

  18. Condensin II Resolves Chromosomal Associations to Enable Anaphase I Segregation in Drosophila Male Meiosis

    PubMed Central

    Hartl, Tom A.; Sweeney, Sarah J.; Knepler, Peter J.; Bosco, Giovanni

    2008-01-01

    Several meiotic processes ensure faithful chromosome segregation to create haploid gametes. Errors to any one of these processes can lead to zygotic aneuploidy with the potential for developmental abnormalities. During prophase I of Drosophila male meiosis, each bivalent condenses and becomes sequestered into discrete chromosome territories. Here, we demonstrate that two predicted condensin II subunits, Cap-H2 and Cap-D3, are required to promote territory formation. In mutants of either subunit, territory formation fails and chromatin is dispersed throughout the nucleus. Anaphase I is also abnormal in Cap-H2 mutants as chromatin bridges are found between segregating heterologous and homologous chromosomes. Aneuploid sperm may be generated from these defects as they occur at an elevated frequency and are genotypically consistent with anaphase I segregation defects. We propose that condensin II–mediated prophase I territory formation prevents and/or resolves heterologous chromosomal associations to alleviate their potential interference in anaphase I segregation. Furthermore, condensin II–catalyzed prophase I chromosome condensation may be necessary to resolve associations between paired homologous chromosomes of each bivalent. These persistent chromosome associations likely consist of DNA entanglements, but may be more specific as anaphase I bridging was rescued by mutations in the homolog conjunction factor teflon. We propose that the consequence of condensin II mutations is a failure to resolve heterologous and homologous associations mediated by entangled DNA and/or homolog conjunction factors. Furthermore, persistence of homologous and heterologous interchromosomal associations lead to anaphase I chromatin bridging and the generation of aneuploid gametes. PMID:18927632

  19. Sequestration of CDH1 by MAD2L2 prevents premature APC/C activation prior to anaphase onset

    PubMed Central

    Listovsky, Tamar

    2013-01-01

    The switch from activation of the anaphase-promoting complex/cyclosome (APC/C) by CDC20 to CDH1 during anaphase is crucial for accurate mitosis. APC/CCDC20 ubiquitinates a limited set of substrates for subsequent degradation, including Cyclin B1 and Securin, whereas APC/CCDH1 has a broader specificity. This switch depends on dephosphorylation of CDH1 and the APC/C, and on the degradation of CDC20. Here we show, in human cells, that the APC/C inhibitor MAD2L2 also contributes to ensuring the sequential activation of the APC/C by CDC20 and CDH1. In prometaphase, MAD2L2 sequestered free CDH1 away from the APC/C. At the onset of anaphase, MAD2L2 was rapidly degraded by APC/CCDC20, releasing CDH1 to activate the dephosphorylated APC/C. Loss of MAD2L2 led to premature association of CDH1 with the APC/C, early destruction of APC/CCDH1 substrates, and accelerated mitosis with frequent mitotic aberrations. Thus, MAD2L2 helps to ensure a robustly bistable switch between APC/CCDC20 and APC/CCDH1 during the metaphase-to-anaphase transition, thereby contributing to mitotic fidelity. PMID:24100295

  20. A Bir1p–Sli15p Kinetochore Passenger Complex Regulates Septin Organization during Anaphase

    PubMed Central

    Thomas, Scott

    2007-01-01

    Kinetochore–passenger complexes in metazoans have been proposed to coordinate the segregation of chromosomes in anaphase with the induction of cytokinesis. Passenger protein homologues in the budding yeast Saccharomyces cerevisiae play a critical role early in mitosis, ensuring proper biorientation of kinetochore–microtubule attachments. Our recent work has implicated the passenger protein Bir1p (Survivin) and the inner kinetochore complex centromere binding factor 3 (CBF3) in the regulation of septin dynamics during anaphase. Here, we present data that is consistent with there being multiple passenger protein complexes. Our data show that Bir1p links together a large passenger complex containing Ndc10p, Sli15p (INCENP), and Ipl1p (Aurora B) and that the interaction between Bir1p and Sli15p is specifically involved in regulating septin dynamics during anaphase. Neither conditional alleles nor mutants of BIR1 that disrupt the interaction between Bir1p and Sli15p resulted in mono-attached kinetochores, suggesting that the Bir1p–Sli15p complex functions in anaphase and independently from Sli15p–Ipl1p complexes. We present a model for how discrete passenger complexes coordinate distinct aspects of mitosis. PMID:17652458

  1. Cut2 proteolysis required for sister-chromatid seperation in fission yeast.

    PubMed

    Funabiki, H; Yamano, H; Kumada, K; Nagao, K; Hunt, T; Yanagida, M

    1996-05-30

    Although mitotic cyclins are well-known substrates for ubiquitin-mediated proteolysis at the metaphase-anaphase transition, their degradation is not essential for separation of sister chromatids; several lines of evidence suggest that proteolysis of other protein(s) is required, however. Here we report the anaphase-specific proteolysis of the Schizosaccharomyces pombe Cut2 protein, which is essential for sister-chromatid separation. Cut2 is located in the nucleus, where it is concentrated along the short metaphase spindle. The rapid degradation of Cut2 at anaphase requires its amino-terminal region and the activity of Cut9 (ref. 14), a component of the 20S cyclosome/anaphase-promoting complex (APC), which is necessary for cyclin destruction. Expression of non-degradable Cut2 blocks sister-chromatid separation but not cell-cycle progression. This defect can be overcome by grafting the N terminus of cyclin B onto the truncated Cut2, demonstrating that the regulated proteolysis of Cut2 is essential for sister-chromatid separation.

  2. Kinetochore Fiber Maturation in PtK1 Cells and Its Implications for the Mechanisms of Chromosome Congression and Anaphase Onset

    PubMed Central

    McEwen, Bruce F.; Heagle, Amy B.; Cassels, Grisel O.; Buttle, Karolyn F.; Rieder, Conly L.

    1997-01-01

    Kinetochore microtubules (kMts) are a subset of spindle microtubules that bind directly to the kinetochore to form the kinetochore fiber (K-fiber). The K-fiber in turn interacts with the kinetochore to produce chromosome motion toward the attached spindle pole. We have examined K-fiber maturation in PtK1 cells using same-cell video light microscopy/serial section EM. During congression, the kinetochore moving away from its spindle pole (i.e., the trailing kinetochore) and its leading, poleward moving sister both have variable numbers of kMts, but the trailing kinetochore always has at least twice as many kMts as the leading kinetochore. A comparison of Mt numbers on sister kinetochores of congressing chromosomes with their direction of motion, as well as distance from their associated spindle poles, reveals that the direction of motion is not determined by kMt number or total kMt length. The same result was observed for oscillating metaphase chromosomes. These data demonstrate that the tendency of a kinetochore to move poleward is not positively correlated with the kMt number. At late prometaphase, the average number of Mts on fully congressed kinetochores is 19.7 ± 6.7 (n = 94), at late metaphase 24.3 ± 4.9 (n = 62), and at early anaphase 27.8 ± 6.3 (n = 65). Differences between these distributions are statistically significant. The increased kMt number during early anaphase, relative to late metaphase, reflects the increased kMt stability at anaphase onset. Treatment of late metaphase cells with 1 μM taxol inhibits anaphase onset, but produces the same kMt distribution as in early anaphase: 28.7 ± 7.4 (n = 54). Thus, a full complement of kMts is not sufficient to induce anaphase onset. We also measured the time course for kMt acquisition and determined an initial rate of 1.9 kMts/min. This rate accelerates up to 10-fold during the course of K-fiber maturation, suggesting an increased concentration of Mt plus ends in the vicinity of the kinetochore at late metaphase and/or cooperativity for kMt acquisition. PMID:9199171

  3. Spatiotemporal Regulation of the Anaphase-Promoting Complex in Mitosis

    PubMed Central

    Sivakumar, Sushama; Gorbsky, Gary J

    2015-01-01

    The appropriate timing of events that lead to chromosome segregation during mitosis and cytokinesis is essential to prevent aneuploidy, and defects in these processes can contribute to tumorigenesis. Key mitotic regulators are controlled through ubiquitylation and proteasome-mediated degradation. The Anaphase-Promoting Complex or Cyclosome (APC/C) is an E3 ubiquitin ligase that has a crucial function in the regulation of the mitotic cell cycle, particularly at the onset of anaphase and during mitotic exit. Co-activator proteins, inhibitor proteins, protein kinases and phosphatases interact with the APC/C to temporally and spatially control its activity and thus ensure accurate timing of mitotic events. PMID:25604195

  4. Micromanipulation studies of the mitotic apparatus in sand dollar eggs.

    PubMed

    Hiramoto, Y; Nakano, Y

    1988-01-01

    Mechanical properties of the mitotic spindle and the effects of various operations of the mitotic apparatus on the chromosome movement and spindle elongation were investigated in fertilized eggs and blastomeres of the sand dollar, Clypeaster japonicus. On the basis of results with mechanical stretching and compression of the spindle with a pair of microneedles and the behavior of an oil drop microinjected into the spindle, it was concluded that the equatorial region of the spindle is mechanically weaker than the half-spindle region. Anaphase chromosome movement occurred in the spindle from which an aster had been removed or separated with its polar end and in the spindle in which the interzonal region had been removed. This fact indicates that chromosomes move poleward in anaphase by forces generated near the kinetochores in the half-spindle. Because of the effects of separation or removal of an aster from the spindle on the spindle elongation in anaphase and the behavior of the aster, it was concluded that the spindle elongation in anaphase is caused by pulling forces generated by asters attached to the ends of the spindle.

  5. Dynein-mediated pulling forces drive rapid mitotic spindle elongation in Ustilago maydis

    PubMed Central

    Fink, Gero; Schuchardt, Isabel; Colombelli, Julien; Stelzer, Ernst; Steinberg, Gero

    2006-01-01

    Spindle elongation segregates chromosomes and occurs in anaphase, an essential step in mitosis. Dynein-mediated pulling forces position the spindle, but their role in anaphase is a matter of debate. Here, we demonstrate that dynein is responsible for rapid spindle elongation in the model fungus Ustilago maydis. We show that initial slow elongation is supported by kinesin-5, which is located in the spindle mid-zone. When the spindle reaches ∼2 μm in length, the elongation rate increases four-fold. This coincides with the appearance of long and less-dynamic microtubules (MTs) at each pole that accumulate dynein at their tips. Laser-mediated nanosurgery revealed that these MTs exert pulling forces in control cells, but not in dynein mutants. In addition, dynein mutants undergo initial slow anaphase, but fail to establish less-dynamic MTs and do not perform rapid spindle elongation, suggesting that dynein drives anaphase B. This is most likely mediated by cortical sliding of astral MTs along stationary dynein, which is off-loaded from the MT plus-end to the cortex. PMID:17024185

  6. Aberrant meiotic behavior in Agave tequilana Weber var. azul

    PubMed Central

    Ruvalcaba-Ruiz, Domingo; Rodríguez-Garay, Benjamin

    2002-01-01

    Background Agave tequilana Weber var. azul, is the only one variety permitted by federal law in México to be used for tequila production which is the most popular contemporary alcoholic beverage made from agave and recognized worldwide. Despite the economic, genetic, and ornamental value of the plant, it has not been subjected to detailed cytogenetic research, which could lead to a better understanding of its reproduction for future genetic improvement. The objective of this work was to study the meiotic behavior in pollen mother cells and its implications on the pollen viability in Agave tequilana Weber var. azul. Results The analysis of Pollen Mother Cells in anaphase I (A-I) showed 82.56% of cells with a normal anaphase and, 17.44% with an irregular anaphase. In which 5.28% corresponded to cells with side arm bridges (SAB); 3.68% cells with one bridge and one fragment; 2.58% of irregular anaphase showed cells with one or two lagging chromosomes and 2.95% showed one acentric fragment; cells with two bridges and cells with two bridges and one acentric fragment were observed in frequencies of 1.60% and 1.35% respectively. In anaphase II some cells showed bridges and fragments too. Aberrant A-I cells had many shrunken or empty pollen grains (42.00%) and 58.00 % viable pollen. Conclusion The observed meiotic irregularities suggest that structural chromosome aberrations have occurred, such as heterozygous inversions, sister chromatid exchanges, deletions and duplications which in turn are reflected in a low pollen viability. PMID:12396234

  7. Aberrant meiotic behavior in Agave tequilana Weber var. azul.

    PubMed

    Ruvalcaba-Ruiz, Domingo; Rodríguez-Garay, Benjamin

    2002-10-23

    Agave tequilana Weber var. azul, is the only one variety permitted by federal law in México to be used for tequila production which is the most popular contemporary alcoholic beverage made from agave and recognized worldwide. Despite the economic, genetic, and ornamental value of the plant, it has not been subjected to detailed cytogenetic research, which could lead to a better understanding of its reproduction for future genetic improvement. The objective of this work was to study the meiotic behavior in pollen mother cells and its implications on the pollen viability in Agave tequilana Weber var. azul. The analysis of Pollen Mother Cells in anaphase I (A-I) showed 82.56% of cells with a normal anaphase and, 17.44% with an irregular anaphase. In which 5.28% corresponded to cells with side arm bridges (SAB); 3.68% cells with one bridge and one fragment; 2.58% of irregular anaphase showed cells with one or two lagging chromosomes and 2.95% showed one acentric fragment; cells with two bridges and cells with two bridges and one acentric fragment were observed in frequencies of 1.60% and 1.35% respectively. In anaphase II some cells showed bridges and fragments too. Aberrant A-I cells had many shrunken or empty pollen grains (42.00%) and 58.00 % viable pollen. The observed meiotic irregularities suggest that structural chromosome aberrations have occurred, such as heterozygous inversions, sister chromatid exchanges, deletions and duplications which in turn are reflected in a low pollen viability.

  8. Cell cycle-regulated proteolysis of mitotic target proteins.

    PubMed

    Bastians, H; Topper, L M; Gorbsky, G L; Ruderman, J V

    1999-11-01

    The ubiquitin-dependent proteolysis of mitotic cyclin B, which is catalyzed by the anaphase-promoting complex/cyclosome (APC/C) and ubiquitin-conjugating enzyme H10 (UbcH10), begins around the time of the metaphase-anaphase transition and continues through G1 phase of the next cell cycle. We have used cell-free systems from mammalian somatic cells collected at different cell cycle stages (G0, G1, S, G2, and M) to investigate the regulated degradation of four targets of the mitotic destruction machinery: cyclins A and B, geminin H (an inhibitor of S phase identified in Xenopus), and Cut2p (an inhibitor of anaphase onset identified in fission yeast). All four are degraded by G1 extracts but not by extracts of S phase cells. Maintenance of destruction during G1 requires the activity of a PP2A-like phosphatase. Destruction of each target is dependent on the presence of an N-terminal destruction box motif, is accelerated by additional wild-type UbcH10 and is blocked by dominant negative UbcH10. Destruction of each is terminated by a dominant activity that appears in nuclei near the start of S phase. Previous work indicates that the APC/C-dependent destruction of anaphase inhibitors is activated after chromosome alignment at the metaphase plate. In support of this, we show that addition of dominant negative UbcH10 to G1 extracts blocks destruction of the yeast anaphase inhibitor Cut2p in vitro, and injection of dominant negative UbcH10 blocks anaphase onset in vivo. Finally, we report that injection of dominant negative Ubc3/Cdc34, whose role in G1-S control is well established and has been implicated in kinetochore function during mitosis in yeast, dramatically interferes with congression of chromosomes to the metaphase plate. These results demonstrate that the regulated ubiquitination and destruction of critical mitotic proteins is highly conserved from yeast to humans.

  9. (abstract) Effects of Radiation and Oxidative Stress on Development and Morphology of Intestinal Cells

    NASA Technical Reports Server (NTRS)

    Honda, Shuji; Nelson, Gregory; Schubert, Wayne

    1993-01-01

    Intestinal cells when subjected to oxidative stress or radiation exhibit abnormal nuclear divisions observed as: 1) supernumerary cell divisions in anterior intestinal cells or 2) incomplete nuclear division and the persistence of anaphase bridges between daughter nuclei. Two oxygen sensitive mutants, mev-1 and rad-8 were observed to exhibit spontaneous supernumerary nuclear divisions at low frequency. N2 can be induced to undergo these divisions by treatment with the superoxide dismutase (SOD) inhibitor diethyl dithicarbamate or with the free radical generator methyl viologen. By contrast, the free radical generator bleomycin produces anaphase bridges in N2 intestinal nuclei at high frequency. Intestinal anaphase bridges can be induced by ionizing radiation and their formation is dependent on dose and radiation type.

  10. Multipolar Spindle Pole Coalescence Is a Major Source of Kinetochore Mis-Attachment and Chromosome Mis-Segregation in Cancer Cells

    PubMed Central

    Silkworth, William T.; Nardi, Isaac K.; Scholl, Lindsey M.; Cimini, Daniela

    2009-01-01

    Many cancer cells display a CIN (Chromosome Instability) phenotype, by which they exhibit high rates of chromosome loss or gain at each cell cycle. Over the years, a number of different mechanisms, including mitotic spindle multipolarity, cytokinesis failure, and merotelic kinetochore orientation, have been proposed as causes of CIN. However, a comprehensive theory of how CIN is perpetuated is still lacking. We used CIN colorectal cancer cells as a model system to investigate the possible cellular mechanism(s) underlying CIN. We found that CIN cells frequently assembled multipolar spindles in early mitosis. However, multipolar anaphase cells were very rare, and live-cell experiments showed that almost all CIN cells divided in a bipolar fashion. Moreover, fixed-cell analysis showed high frequencies of merotelically attached lagging chromosomes in bipolar anaphase CIN cells, and higher frequencies of merotelic attachments in multipolar vs. bipolar prometaphases. Finally, we found that multipolar CIN prometaphases typically possessed γ-tubulin at all spindle poles, and that a significant fraction of bipolar metaphase/early anaphase CIN cells possessed more than one centrosome at a single spindle pole. Taken together, our data suggest a model by which merotelic kinetochore attachments can easily be established in multipolar prometaphases. Most of these multipolar prometaphase cells would then bi-polarize before anaphase onset, and the residual merotelic attachments would produce chromosome mis-segregation due to anaphase lagging chromosomes. We propose this spindle pole coalescence mechanism as a major contributor to chromosome instability in cancer cells. PMID:19668340

  11. Merotelic kinetochore attachment in oocyte meiosis II causes sister chromatids segregation errors in aged mice.

    PubMed

    Cheng, Jin-Mei; Li, Jian; Tang, Ji-Xin; Hao, Xiao-Xia; Wang, Zhi-Peng; Sun, Tie-Cheng; Wang, Xiu-Xia; Zhang, Yan; Chen, Su-Ren; Liu, Yi-Xun

    2017-08-03

    Mammalian oocyte chromosomes undergo 2 meiotic divisions to generate haploid gametes. The frequency of chromosome segregation errors during meiosis I increase with age. However, little attention has been paid to the question of how aging affects sister chromatid segregation during oocyte meiosis II. More importantly, how aneuploid metaphase II (MII) oocytes from aged mice evade the spindle assembly checkpoint (SAC) mechanism to complete later meiosis II to form aneuploid embryos remains unknown. Here, we report that MII oocytes from naturally aged mice exhibited substantial errors in chromosome arrangement and configuration compared with young MII oocytes. Interestingly, these errors in aged oocytes had no impact on anaphase II onset and completion as well as 2-cell formation after parthenogenetic activation. Further study found that merotelic kinetochore attachment occurred more frequently and could stabilize the kinetochore-microtubule interaction to ensure SAC inactivation and anaphase II onset in aged MII oocytes. This orientation could persist largely during anaphase II in aged oocytes, leading to severe chromosome lagging and trailing as well as delay of anaphase II completion. Therefore, merotelic kinetochore attachment in oocyte meiosis II exacerbates age-related genetic instability and is a key source of age-dependent embryo aneuploidy and dysplasia.

  12. Sumoylation promotes optimal APC/C Activation and Timely Anaphase.

    PubMed

    Lee, Christine C; Li, Bing; Yu, Hongtao; Matunis, Michael J

    2018-03-08

    The Anaphase Promoting Complex/Cyclosome (APC/C) is a ubiquitin E3 ligase that functions as the gatekeeper to mitotic exit. APC/C activity is controlled by an interplay of multiple pathways during mitosis, including the spindle assembly checkpoint (SAC), that are not yet fully understood. Here, we show that sumoylation of the APC4 subunit of the APC/C peaks during mitosis and is critical for timely APC/C activation and anaphase onset. We have also identified a functionally important SUMO interacting motif in the cullin-homology domain of APC2 located near the APC4 sumoylation sites and APC/C catalytic core. Our findings provide evidence of an important regulatory role for SUMO modification and binding in affecting APC/C activation and mitotic exit. © 2018, Lee et al.

  13. The Anaphase-Promoting Complex is a dual integrator that regulates both microRNA-mediated transcriptional regulation of Cyclin B1 and degradation of Cyclin B1 during Arabidopsis male gametophyte development

    USDA-ARS?s Scientific Manuscript database

    The anaphase-promoting complex/cyclosome (APC/C), an essential ubiquitin protein ligase, regulates mitotic progression and exit by enhancing degradation of cell cycle regulatory proteins, such as CYCB1;1, whose transcripts are upregulated by DUO POLLEN1 (DUO1). DUO1 is required for cell division in ...

  14. The Anaphase-Promoting Complex Is a Dual Integrator That Regulates Both MicroRNA-Mediated Transcriptional Regulation of Cyclin B1 and Degradation of Cyclin B1 during Arabidopsis Male Gametophyte Development

    USDA-ARS?s Scientific Manuscript database

    The anaphase-promoting complex/cyclosome (APC/C), an essential ubiquitin protein ligase, regulates mitotic progression and exit by enhancing degradation of cell cycle regulatory proteins, such as CYCB1;1, whose transcripts are upregulated by DUO POLLEN1 (DUO1). DUO1 is required for cell division in ...

  15. Perturbation of Incenp function impedes anaphase chromatid movements and chromosomal passenger protein flux at centromeres

    PubMed Central

    Ahonen, Leena J.; Kukkonen, Anu M.; Pouwels, Jeroen; Bolton, Margaret A.; Jingle, Christopher D.; Stukenberg, P. Todd; Kallio, Marko J.

    2012-01-01

    Incenp is an essential mitotic protein that, together with Aurora B, Survivin, and Borealin, forms the core of the chromosomal passenger protein complex (CPC). The CPC regulates various mitotic processes and functions to maintain genomic stability. The proper subcellular localization of the CPC and its full catalytic activity require the presence of each core subunit in the complex. We have investigated the mitotic tasks of the CPC using a function blocking antibody against Incenp microinjected into cells at different mitotic phases. This method allowed temporal analysis of CPC functions without perturbation of complex assembly or activity prior to injection. We have also studied the dynamic properties of Incenp and Aurora B using fusion protein photobleaching. We found that in early mitotic cells, Incenp and Aurora B exhibit dynamic turnover at centromeres, which is prevented by the anti-Incenp antibody. In these cells, the loss of centromeric CPC turnover is accompanied by forced mitotic exit without the execution of cytokinesis. Introduction of anti-Incenp antibody into early anaphase cells causes abnormalities in sister chromatid separation through defects in anaphase spindle functions. In summary, our data uncovers new mitotic roles for the CPC in anaphase and proposes that CPC turnover at centromeres modulates spindle assembly checkpoint signaling. PMID:18784935

  16. Perturbation of Incenp function impedes anaphase chromatid movements and chromosomal passenger protein flux at centromeres.

    PubMed

    Ahonen, Leena J; Kukkonen, Anu M; Pouwels, Jeroen; Bolton, Margaret A; Jingle, Christopher D; Stukenberg, P Todd; Kallio, Marko J

    2009-02-01

    Incenp is an essential mitotic protein that, together with Aurora B, Survivin, and Borealin, forms the core of the chromosomal passenger protein complex (CPC). The CPC regulates various mitotic processes and functions to maintain genomic stability. The proper subcellular localization of the CPC and its full catalytic activity require the presence of each core subunit in the complex. We have investigated the mitotic tasks of the CPC using a function blocking antibody against Incenp microinjected into cells at different mitotic phases. This method allowed temporal analysis of CPC functions without perturbation of complex assembly or activity prior to injection. We have also studied the dynamic properties of Incenp and Aurora B using fusion protein photobleaching. We found that in early mitotic cells, Incenp and Aurora B exhibit dynamic turnover at centromeres, which is prevented by the anti-Incenp antibody. In these cells, the loss of centromeric CPC turnover is accompanied by forced mitotic exit without the execution of cytokinesis. Introduction of anti-Incenp antibody into early anaphase cells causes abnormalities in sister chromatid separation through defects in anaphase spindle functions. In summary, our data uncovers new mitotic roles for the CPC in anaphase and proposes that CPC turnover at centromeres modulates spindle assembly checkpoint signaling.

  17. Inhibition of CDK7 bypasses spindle assembly checkpoint via premature cyclin B degradation during oocyte meiosis.

    PubMed

    Wang, HaiYang; Jo, Yu-Jin; Sun, Tian-Yi; Namgoong, Suk; Cui, Xiang-Shun; Oh, Jeong Su; Kim, Nam-Hyung

    2016-12-01

    To ensure accurate chromosome segregation, the spindle assembly checkpoint (SAC) delays anaphase onset by preventing the premature activation of anaphase-promoting complex/cyclosome (APC/C) until all kinetochores are attached to the spindle. Although an escape from mitosis in the presence of unsatisfied SAC has been shown in several cancer cells, it has not been reported in oocyte meiosis. Here, we show that CDK7 activity is required to prevent a bypass of SAC during meiosis I in mouse oocytes. Inhibition of CDK7 using THZ1 accelerated the first meiosis, leading to chromosome misalignment, lag of chromosomes during chromosome segregation, and a high incidence of aneuploidy. Notably, this acceleration occurred in the presence of SAC proteins including Mad2 and Bub3 at the kinetochores. However, inhibition of APC/C-mediated cyclin B degradation blocked the THZ1-induced premature polar body extrusion. Moreover, chromosomal defects mediated by THZ1 were rescued when anaphase onset was delayed. Collectively, our results show that CDK7 activity is required to prevent premature anaphase onset by suppressing the bypass of SAC, thus ensuring chromosome alignment and proper segregation. These findings reveal new roles of CDK7 in the regulation of meiosis in mammalian oocytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The microtubule-binding and coiled-coil domains of Kid are required to turn off the polar ejection force at anaphase.

    PubMed

    Soeda, Shou; Yamada-Nomoto, Kaori; Ohsugi, Miho

    2016-10-01

    Mitotic chromosomes move dynamically along the spindle microtubules using the forces generated by motor proteins such as chromokinesin Kid (also known as KIF22). Kid generates a polar ejection force and contributes to alignment of the chromosome arms during prometaphase and metaphase, whereas during anaphase, Kid contributes to chromosome compaction. How Kid is regulated and how this regulation is important for chromosome dynamics remains unclear. Here, we address these questions by expressing mutant forms of Kid in Kid-deficient cells. We demonstrate that Cdk1-mediated phosphorylation of Thr463 is required to generate the polar ejection force on Kid-binding chromosomes, whereas dephosphorylation of Thr463 prevents generation of the ejection force on such chromosomes. In addition to activation of the second microtubule-binding domain through dephosphorylation of Thr463, the coiled-coil domain is essential in suspending generation of the polar ejection force, preventing separated chromosomes from becoming recongressed during anaphase. We propose that phosphorylation of Thr463 switches the mitotic chromosome movement from an anti-poleward direction to a poleward direction by converting the Kid functional mode from polar-ejection-force-ON to -OFF during the metaphase-anaphase transition, and that both the second microtubule-binding domain and the coiled-coil domain are involved in this switching process. © 2016. Published by The Company of Biologists Ltd.

  19. Conservation of the centromere/kinetochore protein ZW10.

    PubMed

    Starr, D A; Williams, B C; Li, Z; Etemad-Moghadam, B; Dawe, R K; Goldberg, M L

    1997-09-22

    Mutations in the essential Drosophila melanogaster gene zw10 disrupt chromosome segregation, producing chromosomes that lag at the metaphase plate during anaphase of mitosis and both meiotic divisions. Recent evidence suggests that the product of this gene, DmZW10, acts at the kinetochore as part of a tension-sensing checkpoint at anaphase onset. DmZW10 displays an intriguing cell cycle-dependent intracellular distribution, apparently moving from the centromere/kinetochore at prometaphase to kinetochore microtubules at metaphase, and back to the centromere/kinetochore at anaphase (Williams, B.C., M. Gatti, and M.L. Goldberg. 1996. J. Cell Biol. 134:1127-1140). We have identified ZW10-related proteins from widely diverse species with divergent centromere structures, including several Drosophilids, Caenorhabditis elegans, Arabidopsis thaliana, Mus musculus, and humans. Antibodies against the human ZW10 protein display a cell cycle-dependent staining pattern in HeLa cells strikingly similar to that previously observed for DmZW10 in dividing Drosophila cells. Injections of C. elegans ZW10 antisense RNA phenocopies important aspects of the mutant phenotype in Drosophila: these include a strong decrease in brood size, suggesting defects in meiosis or germline mitosis, a high percentage of lethality among the embryos that are produced, and the appearance of chromatin bridges at anaphase. These results indicate that at least some aspects of the functional role of the ZW10 protein in ensuring proper chromosome segregation are conserved across large evolutionary distances.

  20. Splitting the chromosome: cutting the ties that bind sister chromatids.

    PubMed

    Nasmyth, K; Peters, J M; Uhlmann, F

    2000-05-26

    In eukaryotic cells, sister DNA molecules remain physically connected from their production at S phase until their separation during anaphase. This cohesion is essential for the separation of sister chromatids to opposite poles of the cell at mitosis. It also permits chromosome segregation to take place long after duplication has been completed. Recent work has identified a multisubunit complex called cohesin that is essential for connecting sisters. Proteolytic cleavage of one of cohesin's subunits may trigger sister separation at the onset of anaphase.

  1. The Aurora-B-dependent NoCut checkpoint prevents damage of anaphase bridges after DNA replication stress.

    PubMed

    Amaral, Nuno; Vendrell, Alexandre; Funaya, Charlotta; Idrissi, Fatima-Zahra; Maier, Michael; Kumar, Arun; Neurohr, Gabriel; Colomina, Neus; Torres-Rosell, Jordi; Geli, María-Isabel; Mendoza, Manuel

    2016-05-01

    Anaphase chromatin bridges can lead to chromosome breakage if not properly resolved before completion of cytokinesis. The NoCut checkpoint, which depends on Aurora B at the spindle midzone, delays abscission in response to chromosome segregation defects in yeast and animal cells. How chromatin bridges are detected, and whether abscission inhibition prevents their damage, remain key unresolved questions. We find that bridges induced by DNA replication stress and by condensation or decatenation defects, but not dicentric chromosomes, delay abscission in a NoCut-dependent manner. Decatenation and condensation defects lead to spindle stabilization during cytokinesis, allowing bridge detection by Aurora B. NoCut does not prevent DNA damage following condensin or topoisomerase II inactivation; however, it protects anaphase bridges and promotes cellular viability after replication stress. Therefore, the molecular origin of chromatin bridges is critical for activation of NoCut, which plays a key role in the maintenance of genome stability after replicative stress.

  2. Release of Mps1 from kinetochores is crucial for timely anaphase onset.

    PubMed

    Jelluma, Nannette; Dansen, Tobias B; Sliedrecht, Tale; Kwiatkowski, Nicholas P; Kops, Geert J P L

    2010-10-18

    Mps1 kinase activity is required for proper chromosome segregation during mitosis through its involvements in microtubule-chromosome attachment error correction and the mitotic checkpoint. Mps1 dynamically exchanges on unattached kinetochores but is largely removed from kinetochores in metaphase. Here we show that Mps1 promotes its own turnover at kinetochores and that removal of Mps1 upon chromosome biorientation is a prerequisite for mitotic checkpoint silencing. Inhibition of Mps1 activity increases its half-time of recovery at unattached kinetochores and causes accumulation of Mps1 protein at these sites. Strikingly, preventing dissociation of active Mps1 from kinetochores delays anaphase onset despite normal chromosome attachment and alignment, and high interkinetochore tension. This delay is marked by continued recruitment of Mad1 and Mad2 to bioriented chromosomes and is attenuated by Mad2 depletion, indicating chronic engagement of the mitotic checkpoint in metaphase. We propose that release of Mps1 from kinetochores is essential for mitotic checkpoint silencing and a fast metaphase-to-anaphase transition.

  3. The perpetual movements of anaphase.

    PubMed

    Maiato, Helder; Lince-Faria, Mariana

    2010-07-01

    One of the most extraordinary events in the lifetime of a cell is the coordinated separation of sister chromatids during cell division. This is truly the essence of the entire mitotic process and the reason for the most profound morphological changes in cytoskeleton and nuclear organization that a cell may ever experience. It all occurs within a very short time window known as "anaphase", as if the cell had spent the rest of its existence getting ready for this moment in an ultimate act of survival. And there is a good reason for this: no space for mistakes. Problems in the distribution of chromosomes during cell division have been correlated with aneuploidy, a common feature observed in cancers and several birth defects, and the main cause of spontaneous abortion in humans. In this paper, we critically review the mechanisms of anaphase chromosome motion that resisted the scrutiny of more than 100 years of research, as part of a tribute to the pioneering work of Miguel Mota.

  4. Ase1/Prc1-dependent spindle elongation corrects merotely during anaphase in fission yeast

    PubMed Central

    Courtheoux, Thibault; Gay, Guillaume; Tournier, Sylvie

    2009-01-01

    Faithful segregation of sister chromatids requires the attachment of each kinetochore (Kt) to microtubules (MTs) that extend from opposite spindle poles. Merotelic Kt orientation is a Kt–MT misattachment in which a single Kt binds MTs from both spindle poles rather than just one. Genetic induction of merotelic Kt attachment during anaphase in fission yeast resulted in intra-Kt stretching followed by either correction or Kt disruption. Laser ablation of spindle MTs revealed that intra-Kt stretching and merotelic correction were dependent on MT forces. The presence of multiple merotelic chromosomes linearly antagonized the spindle elongation rate, and this phenomenon could be solved numerically using a simple force balance model. Based on the predictions of our mechanical model, we provide in vivo evidence that correction of merotelic attachment in anaphase is tension dependent and requires an Ase1/Prc1-dependent mechanism that prevents spindle collapse and thus asymmetric division and/or the appearance of the cut phenotype. PMID:19948483

  5. The Differential Roles of Budding Yeast Tem1p, Cdc15p, and Bub2p Protein Dynamics in Mitotic ExitD⃞V⃞

    PubMed Central

    Molk, Jeffrey N.; Schuyler, Scott C.; Liu, Jenny Y.; Evans, James G.; Salmon, E. D.; Pellman, David; Bloom, Kerry

    2004-01-01

    In the budding yeast Saccharomyces cerevisiae the mitotic spindle must be positioned along the mother-bud axis to activate the mitotic exit network (MEN) in anaphase. To examine MEN proteins during mitotic exit, we imaged the MEN activators Tem1p and Cdc15p and the MEN regulator Bub2p in vivo. Quantitative live cell fluorescence microscopy demonstrated the spindle pole body that segregated into the daughter cell (dSPB) signaled mitotic exit upon penetration into the bud. Activation of mitotic exit was associated with an increased abundance of Tem1p-GFP and the localization of Cdc15p-GFP on the dSPB. In contrast, Bub2p-GFP fluorescence intensity decreased in mid-to-late anaphase on the dSPB. Therefore, MEN protein localization fluctuates to switch from Bub2p inhibition of mitotic exit to Cdc15p activation of mitotic exit. The mechanism that elevates Tem1p-GFP abundance in anaphase is specific to dSPB penetration into the bud and Dhc1p and Lte1p promote Tem1p-GFP localization. Finally, fluorescence recovery after photobleaching (FRAP) measurements revealed Tem1p-GFP is dynamic at the dSPB in late anaphase. These data suggest spindle pole penetration into the bud activates mitotic exit, resulting in Tem1p and Cdc15p persistence at the dSPB to initiate the MEN signal cascade. PMID:14718561

  6. Splitting the chromosome: cutting the ties that bind sister chromatids.

    PubMed

    Nasmyth, K; Peters, J M; Uhlmann, F

    2001-01-01

    In eukaryotic cells, replicated DNA molecules remain physically connected from their synthesis in S phase until they are separated during anaphase. This phenomenon, called sister chromatid cohesion, is essential for the temporal separation of DNA replication and mitosis and for the equal separation of the duplicated genome. Recent work has identified a number of chromosomal proteins required for cohesion. In this review we discuss how these proteins may connect sister chromatids and how they are removed from chromosomes to allow sister chromatid separation at the onset of anaphase.

  7. Securin is a target of the UV response pathway in mammalian cells.

    PubMed

    Romero, Francisco; Gil-Bernabé, Ana M; Sáez, Carmen; Japón, Miguel A; Pintor-Toro, José A; Tortolero, María

    2004-04-01

    All eukaryotic cells possess elaborate mechanisms to protect genome integrity and ensure survival after DNA damage, ceasing proliferation and granting time for DNA repair. Securin is an inhibitory protein that is bound to a protease called Separase to inhibit sister chromatid separation until the onset of anaphase. At the metaphase-to-anaphase transition, Securin is degraded by the anaphase-promoting complex or cyclosome, and Separase contributes to the release of cohesins from the chromosome, allowing for the segregation of sister chromatids to opposite spindle poles. Here we provide evidence that human Securin (hSecurin) has a novel role in cell cycle arrest after exposure to UV light or ionizing radiation. In fact, irradiation downregulated the level of hSecurin protein, accelerating its degradation via the proteasome and reducing hSecurin mRNA translation, but the presence of hSecurin is necessary for cell proliferation arrest following UV treatment. Moreover, an alteration of UV-induced hSecurin downregulation could lead directly to the accumulation of DNA damage and the subsequent development of malignant tumors.

  8. Securin Is a Target of the UV Response Pathway in Mammalian Cells†

    PubMed Central

    Romero, Francisco; Gil-Bernabé, Ana M.; Sáez, Carmen; Japón, Miguel A.; Pintor-Toro, José A.; Tortolero, María

    2004-01-01

    All eukaryotic cells possess elaborate mechanisms to protect genome integrity and ensure survival after DNA damage, ceasing proliferation and granting time for DNA repair. Securin is an inhibitory protein that is bound to a protease called Separase to inhibit sister chromatid separation until the onset of anaphase. At the metaphase-to-anaphase transition, Securin is degraded by the anaphase-promoting complex or cyclosome, and Separase contributes to the release of cohesins from the chromosome, allowing for the segregation of sister chromatids to opposite spindle poles. Here we provide evidence that human Securin (hSecurin) has a novel role in cell cycle arrest after exposure to UV light or ionizing radiation. In fact, irradiation downregulated the level of hSecurin protein, accelerating its degradation via the proteasome and reducing hSecurin mRNA translation, but the presence of hSecurin is necessary for cell proliferation arrest following UV treatment. Moreover, an alteration of UV-induced hSecurin downregulation could lead directly to the accumulation of DNA damage and the subsequent development of malignant tumors. PMID:15024062

  9. Cdc20 hypomorphic mice fail to counteract de novo synthesis of cyclin B1 in mitosis

    PubMed Central

    Malureanu, Liviu; Jeganathan, Karthik B.; Jin, Fang; Baker, Darren J.; van Ree, Janine H.; Gullon, Oliver; Chen, Zheyan; Henley, John R.

    2010-01-01

    Cdc20 is an activator of the anaphase-promoting complex/cyclosome that initiates anaphase onset by ordering the destruction of cyclin B1 and securin in metaphase. To study the physiological significance of Cdc20 in higher eukaryotes, we generated hypomorphic mice that express small amounts of this essential cell cycle regulator. In this study, we show that these mice are healthy and not prone to cancer despite substantial aneuploidy. Cdc20 hypomorphism causes chromatin bridging and chromosome misalignment, revealing a requirement for Cdc20 in efficient sister chromosome separation and chromosome–microtubule attachment. We find that cyclin B1 is newly synthesized during mitosis via cytoplasmic polyadenylation element–binding protein-dependent translation, causing its rapid accumulation between prometaphase and metaphase of Cdc20 hypomorphic cells. Anaphase onset is significantly delayed in Cdc20 hypomorphic cells but not when translation is inhibited during mitosis. These data reveal that Cdc20 is particularly rate limiting for cyclin B1 destruction because of regulated de novo synthesis of this cyclin after prometaphase onset. PMID:20956380

  10. Substrate-specific regulation of ubiquitination by the anaphase-promoting complex

    PubMed Central

    Song, Ling

    2011-01-01

    By orchestrating the sequential degradation of a large number of cell cycle regulators, the ubiquitin ligase anaphase-promoting complex (APC/C) is essential for proliferation in all eukaryotes. The correct timing of APC/C-dependent substrate degradation, a critical feature of progression through mitosis, was long known to be controlled by mechanisms targeting the core APC/C-machinery. Recent experiments, however have revealed an important contribution of substrate-specific regulation of the APC/C to achieve accurate cell division. In this perspective, we describe different mechanisms of substrate-specific APC/C-regulation and discuss their importance for cell division. PMID:21191176

  11. Reorganization of microtubules in endosperm cells and cell fragments of the higher plant Haemanthus in vivo

    PubMed Central

    1986-01-01

    The reorganization of the microtubular meshwork was studied in intact Haemanthus endosperm cells and cell fragments (cytoplasts). This higher plant tissue is devoid of a known microtubule organizating organelle. Observations on living cells were correlated with microtubule arrangements visualized with the immunogold method. In small fragments, reorganization did not proceed. In medium and large sized fragments, microtubular converging centers formed first. Then these converging centers reorganized into either closed bushy microtubular spiral or chromosome-free cytoplasmic spindles/phragmoplasts. Therefore, the final shape of organized microtubular structures, including spindle shaped, was determined by the initial size of the cell fragments and could be achieved without chromosomes or centrioles. Converging centers elongate due to the formation of additional structures resembling microtubular fir trees. These structures were observed at the pole of the microtubular converging center in anucleate fragments, accessory phragmoplasts in nucleated cells, and in the polar region of the mitotic spindle during anaphase. Therefore, during anaphase pronounced assembly of new microtubules occurs at the polar region of acentriolar spindles. Moreover, statistical analysis demonstrated that during the first two-thirds of anaphase, when chromosomes move with an approximately constant speed, kinetochore fibers shorten, while the length of the kinetochore fiber complex remains constant due to the simultaneous elongation of their integral parts (microtubular fir trees). The half-spindle shortens only during the last one-third of anaphase. These data contradict the presently prevailing view that chromosome-to-pole movements in acentriolar spindles of higher plants are concurrent with the shortening of the half-spindle, the self- reorganizing property of higher plant microtubules (tubulin) in vivo. It may be specific for cells without centrosomes and may be superimposed also on other microtubule-related processes. PMID:3941154

  12. Exocyst-Dependent Membrane Addition Is Required for Anaphase Cell Elongation and Cytokinesis in Drosophila

    PubMed Central

    Giansanti, Maria Grazia; Vanderleest, Timothy E.; Jewett, Cayla E.; Sechi, Stefano; Frappaolo, Anna; Fabian, Lacramioara; Robinett, Carmen C.; Brill, Julie A.; Loerke, Dinah; Fuller, Margaret T.; Blankenship, J. Todd

    2015-01-01

    Mitotic and cytokinetic processes harness cell machinery to drive chromosomal segregation and the physical separation of dividing cells. Here, we investigate the functional requirements for exocyst complex function during cell division in vivo, and demonstrate a common mechanism that directs anaphase cell elongation and cleavage furrow progression during cell division. We show that onion rings (onr) and funnel cakes (fun) encode the Drosophila homologs of the Exo84 and Sec8 exocyst subunits, respectively. In onr and fun mutant cells, contractile ring proteins are recruited to the equatorial region of dividing spermatocytes. However, cytokinesis is disrupted early in furrow ingression, leading to cytokinesis failure. We use high temporal and spatial resolution confocal imaging with automated computational analysis to quantitatively compare wild-type versus onr and fun mutant cells. These results demonstrate that anaphase cell elongation is grossly disrupted in cells that are compromised in exocyst complex function. Additionally, we observe that the increase in cell surface area in wild type peaks a few minutes into cytokinesis, and that onr and fun mutant cells have a greatly reduced rate of surface area growth specifically during cell division. Analysis by transmission electron microscopy reveals a massive build-up of cytoplasmic astral membrane and loss of normal Golgi architecture in onr and fun spermatocytes, suggesting that exocyst complex is required for proper vesicular trafficking through these compartments. Moreover, recruitment of the small GTPase Rab11 and the PITP Giotto to the cleavage site depends on wild-type function of the exocyst subunits Exo84 and Sec8. Finally, we show that the exocyst subunit Sec5 coimmunoprecipitates with Rab11. Our results are consistent with the exocyst complex mediating an essential, coordinated increase in cell surface area that potentiates anaphase cell elongation and cleavage furrow ingression. PMID:26528720

  13. Lack of response to unaligned chromosomes in mammalian female gametes

    PubMed Central

    Sebestova, Jaroslava; Danylevska, Anna; Novakova, Lucia; Kubelka, Michal; Anger, Martin

    2012-01-01

    Chromosome segregation errors are highly frequent in mammalian female meiosis, and their incidence gradually increases with maternal age. The fate of aneuploid eggs is obviously dependent on the stringency of mechanisms for detecting unattached or repairing incorrectly attached kinetochores. In case of their failure, the newly formed embryo will inherit the impaired set of chromosomes, which will have severe consequences for its further development. Whether spindle assembly checkpoint (SAC) in oocytes is capable of arresting cell cycle progression in response to unaligned kinetochores was discussed for a long time. It is known that abolishing SAC increases frequency of chromosome segregation errors and causes precocious entry into anaphase; SAC, therefore, seems to be essential for normal chromosome segregation in meiosis I. However, it was also reported that for anaphase-promoting complex (APC) activation, which is a prerequisite for entering anaphase; alignment of only a critical mass of kinetochores on equatorial plane is sufficient. This indicates that the function of SAC and of cooperating chromosome attachment correction mechanisms in oocytes is different from somatic cells. To analyze this phenomenon, we used live cell confocal microscopy to monitor chromosome movements, spindle formation, APC activation and polar body extrusion (PBE) simultaneously in individual oocytes at various time points during first meiotic division. Our results, using oocytes from aged animals and interspecific crosses, demonstrate that multiple unaligned kinetochores and severe congression defects are tolerated at the metaphase to anaphase transition, although such cells retain sensitivity to nocodazole. This indicates that checkpoint mechanisms, operating in oocytes at this point, are essential for accurate timing of APC activation in meiosis I, but they are insufficient in detection or correction of unaligned chromosomes, preparing thus conditions for propagation of the aneuploidy to the embryo. PMID:22871737

  14. Mps1 directs the assembly of Cdc20 inhibitory complexes during interphase and mitosis to control M phase timing and spindle checkpoint signaling.

    PubMed

    Maciejowski, John; George, Kelly A; Terret, Marie-Emilie; Zhang, Chao; Shokat, Kevan M; Jallepalli, Prasad V

    2010-07-12

    The spindle assembly checkpoint (SAC) in mammals uses cytosolic and kinetochore-based signaling pathways to inhibit anaphase. In this study, we use chemical genetics to show that the protein kinase Mps1 regulates both aspects of the SAC. Human MPS1-null cells were generated via gene targeting and reconstituted with either the wild-type kinase (Mps1(wt)) or a mutant version (Mps1(as)) sensitized to bulky purine analogues. Mps1 inhibition sharply accelerated anaphase onset, such that cells completed mitosis in 12 min, and prevented Cdc20's association with either Mad2 or BubR1 during interphase, i.e., before the appearance of functional kinetochores. Furthermore, intramitotic Mps1 inhibition evicted Bub1 and all other known SAC transducers from the outer kinetochore, but contrary to a recent study, did not perturb aurora B-dependent phosphorylation. We conclude that Mps1 has two complementary roles in SAC regulation: (1) initial cytoplasmic activation of Cdc20 inhibitors and (2) recruitment of factors that promote sustained anaphase inhibition and chromosome biorientation to unattached kinetochores.

  15. Upregulated Op18/stathmin activity causes chromosomal instability through a mechanism that evades the spindle assembly checkpoint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmfeldt, Per; Sellin, Mikael E.; Gullberg, Martin, E-mail: Martin.Gullberg@molbiol.umu.se

    2010-07-15

    Op18/stathmin (Op18) is a microtubule-destabilizing protein that is phosphorylation-inactivated during mitosis and its normal function is to govern tubulin subunit partitioning during interphase. Human tumors frequently overexpress Op18 and a tumor-associated Q18{yields}E mutation has been identified that confers hyperactivity, destabilizes spindle microtubules, and causes mitotic aberrancies, polyploidization, and chromosome loss in K562 leukemia cells. Here we determined whether wild-type and mutant Op18 have the potential to cause chromosomal instability by some means other than interference with spindle assembly, and thereby bypassing the spindle assembly checkpoint. Our approach was based on Op18 derivatives with distinct temporal order of activity during mitosis,more » conferred either by differential phosphorylation inactivation or by anaphase-specific degradation through fusion with the destruction box of cyclin B1. We present evidence that excessive Op18 activity generates chromosomal instability through interference occurring subsequent to the metaphase-to-anaphase transition, which reduces the fidelity of chromosome segregation to spindle poles during anaphase. Similar to uncorrected merotelic attachment, this mechanism evades detection by the spindle assembly checkpoint and thus provides an additional route to chromosomal instability.« less

  16. The Long and Viscous Road: Uncovering Nuclear Diffusion Barriers in Closed Mitosis

    PubMed Central

    Zavala, Eder; Marquez-Lago, Tatiana T.

    2014-01-01

    Diffusion barriers are effective means for constraining protein lateral exchange in cellular membranes. In Saccharomyces cerevisiae, they have been shown to sustain parental identity through asymmetric segregation of ageing factors during closed mitosis. Even though barriers have been extensively studied in the plasma membrane, their identity and organization within the nucleus remains poorly understood. Based on different lines of experimental evidence, we present a model of the composition and structural organization of a nuclear diffusion barrier during anaphase. By means of spatial stochastic simulations, we propose how specialised lipid domains, protein rings, and morphological changes of the nucleus may coordinate to restrict protein exchange between mother and daughter nuclear lobes. We explore distinct, plausible configurations of these diffusion barriers and offer testable predictions regarding their protein exclusion properties and the diffusion regimes they generate. Our model predicts that, while a specialised lipid domain and an immobile protein ring at the bud neck can compartmentalize the nucleus during early anaphase; a specialised lipid domain spanning the elongated bridge between lobes would be entirely sufficient during late anaphase. Our work shows how complex nuclear diffusion barriers in closed mitosis may arise from simple nanoscale biophysical interactions. PMID:25032937

  17. Cdc15 integrates Tem1 GTPase-mediated spatial signals with Polo kinase-mediated temporal cues to activate mitotic exit.

    PubMed

    Rock, Jeremy M; Amon, Angelika

    2011-09-15

    In budding yeast, a Ras-like GTPase signaling cascade known as the mitotic exit network (MEN) promotes exit from mitosis. To ensure the accurate execution of mitosis, MEN activity is coordinated with other cellular events and restricted to anaphase. The MEN GTPase Tem1 has been assumed to be the central switch in MEN regulation. We show here that during an unperturbed cell cycle, restricting MEN activity to anaphase can occur in a Tem1 GTPase-independent manner. We found that the anaphase-specific activation of the MEN in the absence of Tem1 is controlled by the Polo kinase Cdc5. We further show that both Tem1 and Cdc5 are required to recruit the MEN kinase Cdc15 to spindle pole bodies, which is both necessary and sufficient to induce MEN signaling. Thus, Cdc15 functions as a coincidence detector of two essential cell cycle oscillators: the Polo kinase Cdc5 synthesis/degradation cycle and the Tem1 G-protein cycle. The Cdc15-dependent integration of these temporal (Cdc5 and Tem1 activity) and spatial (Tem1 activity) signals ensures that exit from mitosis occurs only after proper genome partitioning.

  18. ELECTRON MICROSCOPY OF MITOSIS IN A RADIOSENSITIVE GIANT AMOEBA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniels, E.W.; Roth, L.E.

    1962-10-01

    Pelomyxa illinoisensis amoebae, the large radiosensitive species, were fixed in OsO/sub 4/ and embedded in either Epon 812 or methacrylate. Ultrastructural morphology is demonstrated in subnuclear structures at interphase and during specific times in mitosis. Evidence of nuclear envelope breakdown and reconstruction is presented. Fragments of nuclear envelope membranes are traced throughout metaphase and anaphase to telophase. Annuli in the nuclear envelope and its fragments are demonstrated. P. illinoisensis is unique in mitochondrial arrangement during metaphase and anaphase-- mitochondria are aligned at the ends of fibrils distal to the chromosomes at the positions occupied by centrioles in other types ofmore » cells; there they remain until the end of anaphase. The radioresistant amoebae, Pelomyxa carolinensis and Amoeba proteus do not have polar mitochondria. P. illinoisensis also differs from the two radioresistant species in nucleolar morphology during interphase, and in the manner of nucleolar dissolution during prophase. On the other hand, helical coils are shown in the interphase nucleoplasm which appear similar to those in the radioresistant amoebae, P. carolinensis and A. groteus. A blister stage in the telophase of P. illinoisensis is described which is interpreted to be the result of a rapid nuclear expansion leading to interphase. This has not been observed in the radioresistant amoebae. (auth)« less

  19. Ubiquitination of Cdc20 by the APC occurs through an intramolecular mechanism

    PubMed Central

    Foe, Ian T.; Foster, Scott A.; Cheung, Stephanie K.; DeLuca, Steven Z.; Morgan, David O.; Toczyski, David P.

    2012-01-01

    SUMMARY Background Cells control progression through late mitosis by regulating Cdc20 and Cdh1, the two mitotic activators of the Anaphase Promoting Complex (APC). The control of Cdc20 protein levels during the cell cycle is not well understood. Results Here, we demonstrate that Cdc20 is degraded in budding yeast by multiple APC-dependent mechanisms. We find that the majority of Cdc20 turnover does not involve a second activator molecule, but instead depends on in cis Cdc20 autoubiquitination while it is bound to its activator-binding site on the APC core. Unlike in trans ubiquitination of Cdc20 substrates, the APC ubiquitinates Cdc20 independent of APC activation by Cdc20’s C-box. Cdc20 turnover by this intramolecular mechanism is cell cycle-regulated, contributing to the decline in Cdc20 levels that occurs after anaphase. Interestingly, high substrate levels in vitro significantly reduce Cdc20 autoubiquitination. Conclusion We show here that Cdc20 fluctuates through the cell cycle via a distinct form of APC-mediated ubiquitination. This in cis autoubiquitination may preferentially occur in early anaphase, following depletion of Cdc20 substrates. This suggests that distinct mechanisms are able to target Cdc20 for ubiquitination at different points during the cell cycle. PMID:22079111

  20. Regulation of cAMP on the first mitotic cell cycle of mouse embryos.

    PubMed

    Yu, Aiming; Zhang, Zhe; Bi, Qiang; Sun, Bingqi; Su, Wenhui; Guan, Yifu; Mu, Runqing; Miao, Changsheng; Zhang, Jie; Yu, Bingzhi

    2008-03-01

    Mitosis promoting factor (MPF) plays a central role during the first mitosis of mouse embryo. We demonstrated that MPF activity increased when one-cell stage mouse embryo initiated G2/M transition following the decrease of cyclic adenosine 3', 5'-monophosphate (cAMP) and cAMP-dependent protein kinase (PKA) activity. When cAMP and PKA activity increases again, MPF activity decreases and mouse embryo starts metaphase-anaphase transition. In the downstream of cAMP/PKA, there are some effectors such as polo-like kinase 1 (Plk1), Cdc25, Mos (mitogen-activated protein kinase kinase kinase), MEK (mitogen-activated protein kinase kinase), mitogen-activated protein kinase (MAPK), Wee1, anaphase-promoting complex (APC), and phosphoprotein phosphatase that are involved in the regulation of MPF activity. Here, we demonstrated that following activation of MPF, MAPK activity was steady, whereas Plk1 activity fluctuated during the first cell cycle. Plk1 activity was the highest at metaphase and decreased at metaphase-anaphase transition. Further, we established a mathematical model using Gepasi algorithm and the simulation was in agreement with the experimental data. Above all the evidences, we suggested that cAMP and PKA might be the upstream factors which were included in the regulation of the first cell cycle development of mouse embryo. Copyright 2007 Wiley-Liss, Inc.

  1. Initial diameter of the polar body contractile ring is minimized by the centralspindlin complex.

    PubMed

    Fabritius, Amy S; Flynn, Jonathan R; McNally, Francis J

    2011-11-01

    Polar body formation is an essential step in forming haploid eggs from diploid oocytes. This process involves completion of a highly asymmetric cytokinesis that results in a large egg and two small polar bodies. Unlike mitotic contractile rings, polar body contractile rings assemble over one spindle pole so that the spindle must move through the contractile ring before cytokinesis. During time-lapse imaging of C. elegans meiosis, the contractile ring moved downward along the length of the spindle and completed scission at the midpoint of the spindle, even when spindle length or rate of ring movement was increased. Patches of myosin heavy chain and dynamic furrowing of the plasma membrane over the entire embryo suggested that global cortical contraction forces the meiotic spindle and overlying membrane out through the contractile ring center. Consistent with this model, depletion of myosin phosphatase increased the velocity of ring movement along the length of the spindle. Global dynamic furrowing, which was restricted to anaphase I and II, was dependent on myosin II, the anaphase promoting complex and separase, but did not require cortical contact by the spindle. Large cortical patches of myosin during metaphase I and II indicated that myosin was already in the active form before activation of separase. To identify the signal at the midpoint of the anaphase spindle that induces scission, we depleted two proteins that mark the exact midpoint of the spindle during late anaphase, CYK-4 and ZEN-4. Depletion of either protein resulted in the unexpected phenotype of initial ingression of a polar body ring with twice the diameter of wild type. This phenotype revealed a novel mechanism for minimizing polar body size. Proteins at the spindle midpoint are required for initial ring ingression to occur close to the membrane-proximal spindle pole. 2011 Elsevier Inc. All rights reserved.

  2. Polo boxes and Cut23 (Apc8) mediate an interaction between polo kinase and the anaphase-promoting complex for fission yeast mitosis

    PubMed Central

    May, Karen M.; Reynolds, Nicola; Cullen, C. Fiona; Yanagida, Mitsuhiro; Ohkura, Hiroyuki

    2002-01-01

    The fission yeast plo1 + gene encodes a polo-like kinase, a member of a conserved family of kinases which play multiple roles during the cell cycle. We show that Plo1 kinase physically interacts with the anaphase-promoting complex (APC)/cyclosome through the noncatalytic domain of Plo1 and the tetratricopeptide repeat domain of the subunit, Cut23. A new cut23 mutation, which specifically disrupts the interaction with Plo1, results in a metaphase arrest. This arrest can be rescued by high expression of Plo1 kinase. We suggest that this physical interaction is crucial for mitotic progression by targeting polo kinase activity toward the APC. PMID:11777938

  3. Mutagenic and genotoxic effects of Guelma's urban wastewater, Algeria.

    PubMed

    Tabet, Mouna; Abda, Ahlem; Benouareth, Djamel E; Liman, Recep; Konuk, Muhsin; Khallef, Messaouda; Taher, Ali

    2015-02-01

    Assessment of water pollution and its effect upon river biotic communities and human health is indispensable to develop control and management strategies. In this study, the mutagenicity and genotoxicity of urban wastewater of the city of Guelma in Algeria were examined between April 2012 and April 2013. For this, two biological tests, namely Amesand chromosomal aberrations (CA) test in Allium cepa root tips were employed on the samples collected from five different sampling stages (S1-S5). In Ames test, two strains of Salmonella typhimurium TA98 and TA100 with or without metabolic activation (S9-mix) were used. All water samples were found to be mutagenic to S. typhimurium TA98 with or without S9-mix. A significant decrease in mitotic index (MI) was observed with a decrease in the percentage of cells in the prophase and an increase in the telophase. Main aberrations observed were anaphase bridges, disturbed anaphase-telophase cells, vagrants and stickiness in anaphase-telophase cells. All treatments of wastewater in April 2012, at S5 in July 2012, at S1 and S5 in November 2012, at S5 in February 2013, and at S1 in April 2013 induced CA when compared to the negative control. Some physicochemical parameters and heavy metals (Cd, Pb, and Cu) were also recorded in the samples examined.

  4. Regulation of nuclear envelope dynamics via APC/C is necessary for the progression of semi-open mitosis in Schizosaccharomyces japonicus.

    PubMed

    Aoki, Keita; Shiwa, Yuh; Takada, Hiraku; Yoshikawa, Hirofumi; Niki, Hironori

    2013-09-01

    Three types of mitosis, which are open, closed or semi-open mitosis, function in eukaryotic cells, respectively. The open mitosis involves breakage of the nuclear envelope before nuclear division, whereas the closed mitosis proceeds with an intact nuclear envelope. To understand the mechanism and significance of three types of mitotic division in eukaryotes, we investigated the process of semi-open mitosis, in which the nuclear envelope is only partially broken, in the fission yeast Schizosaccharomyces japonicus. In anaphase-promoting complex/cyclosome (APC/C) mutants of Sz. japonicus, the nuclear envelope remained relatively intact during anaphase, resulting in impaired semi-open mitosis. As a suppressor of apc2 mutant, a mutation of Oar2, which was a 3-oxoacyl-[acyl carrier protein] reductase, was obtained. The level of the Oar2, which had two destruction-box motifs recognized by APC/C, was increased in APC/C mutants. Furthermore, the defective semi-open mitosis observed in an apc2 mutant was restored by mutated oar2+. Based on these findings, we propose that APC/C regulates the dynamics of the nuclear envelope through degradation of Oar2 dependent on APC/C during the metaphase-to-anaphase transition of semi-open mitosis in Sz. japonicus. © 2013 The Authors Genes to Cells © 2013 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  5. A global, myosin light chain kinase-dependent increase in myosin II contractility accompanies the metaphase-anaphase transition in sea urchin eggs.

    PubMed

    Lucero, Amy; Stack, Christianna; Bresnick, Anne R; Shuster, Charles B

    2006-09-01

    Myosin II is the force-generating motor for cytokinesis, and although it is accepted that myosin contractility is greatest at the cell equator, the temporal and spatial cues that direct equatorial contractility are not known. Dividing sea urchin eggs were placed under compression to study myosin II-based contractile dynamics, and cells manipulated in this manner underwent an abrupt, global increase in cortical contractility concomitant with the metaphase-anaphase transition, followed by a brief relaxation and the onset of furrowing. Prefurrow cortical contractility both preceded and was independent of astral microtubule elongation, suggesting that the initial activation of myosin II preceded cleavage plane specification. The initial rise in contractility required myosin light chain kinase but not Rho-kinase, but both signaling pathways were required for successful cytokinesis. Last, mobilization of intracellular calcium during metaphase induced a contractile response, suggesting that calcium transients may be partially responsible for the timing of this initial contractile event. Together, these findings suggest that myosin II-based contractility is initiated at the metaphase-anaphase transition by Ca2+-dependent myosin light chain kinase (MLCK) activity and is maintained through cytokinesis by both MLCK- and Rho-dependent signaling. Moreover, the signals that initiate myosin II contractility respond to specific cell cycle transitions independently of the microtubule-dependent cleavage stimulus.

  6. A Global, Myosin Light Chain Kinase-dependent Increase in Myosin II Contractility Accompanies the Metaphase–Anaphase Transition in Sea Urchin Eggs

    PubMed Central

    Lucero, Amy; Stack, Christianna; Bresnick, Anne R.

    2006-01-01

    Myosin II is the force-generating motor for cytokinesis, and although it is accepted that myosin contractility is greatest at the cell equator, the temporal and spatial cues that direct equatorial contractility are not known. Dividing sea urchin eggs were placed under compression to study myosin II-based contractile dynamics, and cells manipulated in this manner underwent an abrupt, global increase in cortical contractility concomitant with the metaphase–anaphase transition, followed by a brief relaxation and the onset of furrowing. Prefurrow cortical contractility both preceded and was independent of astral microtubule elongation, suggesting that the initial activation of myosin II preceded cleavage plane specification. The initial rise in contractility required myosin light chain kinase but not Rho-kinase, but both signaling pathways were required for successful cytokinesis. Last, mobilization of intracellular calcium during metaphase induced a contractile response, suggesting that calcium transients may be partially responsible for the timing of this initial contractile event. Together, these findings suggest that myosin II-based contractility is initiated at the metaphase–anaphase transition by Ca2+-dependent myosin light chain kinase (MLCK) activity and is maintained through cytokinesis by both MLCK- and Rho-dependent signaling. Moreover, the signals that initiate myosin II contractility respond to specific cell cycle transitions independently of the microtubule-dependent cleavage stimulus. PMID:16837551

  7. Nuclear envelope breakdown and mitosis in sand dollar embryos is inhibited by microinjection of calcium buffers in a calcium-reversible fashion, and by antagonists of intracellular Ca2+ channels.

    PubMed

    Silver, R B

    1989-01-01

    Transient elevations in intracellular free Ca2+ are believed to signal the initiation of mitosis. This model predicts that mitosis might be arrested prior to nuclear envelope breakdown (NEB) or anaphase onset if intracellular Ca2+ concentration is buffered or dampened. Microinjection of a discrete dose of Ca2+ into the cell might then release the cell to resume mitotic cycling. Experimentally, one blastomere of two cell sand dollar (Echinaracnius parma) embryos was microinjected with Ca2+ buffers, Ca2+ solutions, or Ca2+ channel antagonists; the uninjected blastomere was the control. Cells were loaded with 10 pl doses of the Ca2+ buffer antipyrylazo III (ApIII) at specific times in the cell cycle to attempt a competitive inhibition of Ca2+-dependent steps in NEB and initiation of mitosis. Injection of 50 microM ApIII 6 min prior to NEB blocked NEB and further cell cycling. Injections of solutions between 0 and 30 microM ApIII were without observable effect. Control injections had no observable effect on the injected cell. Cells injected with 50 microM ApIII 2 min prior to the onset of anaphase in control cells were blocked in metaphase. Cells were sensitive to Ca2+ buffer injections 6 min prior to NEB (with a 40- to 45-sec duration), and 2 min prior to anaphase onset (with a 10- to 20-sec duration). Vital staining of these cells with H33342 demonstrated that they contained only one nucleus that had the same fluorescence intensity as seen prior to microinjection, and thus did not undergo DNA synthesis following the imposition of the Ca2+ buffer block to mitosis. Cells arrested in this fashion did not spontaneously resume mitotic cycling. This Ca2+ buffer-induced mitotic arrest was, however, experimentally reversible. Cells arrested with 50 microM ApIII 6 min prior to NEB could be returned to mitotic activity by injecting 300 microM CaCl2 5 min after the ApIII injection. The double injected cells resumed cycling, NEB, and mitosis after a delay of one cell cycle period, and remained one cell cycle out of phase with the sister (control) cell. Microinjection of antagonists of endomembrane Ca2+ channels inhibited NEB and anaphase onset in a concentration- and time-dependent fashion. The effective doses of compounds tested were 7 micrograms/ml ryanodine and 500 micrograms/ml TMB-8. These results indicate that a transient elevation of intracellular Ca2+ from endomembrane stores is required to initiate mitotic events, namely NEB and anaphase onset.(ABSTRACT TRUNCATED AT 400 WORDS)

  8. Chromosome movement in lysed mitotic cells is inhibited by vanadate

    PubMed Central

    1978-01-01

    Mitotic PtK1 cells, lysed at anaphase into a carbowax 20 M Brij 58 solution, continue to move chromosomes toward the spindle poles and to move the spindle poles apart at 50% in vivo rates for 10 min. Chromosome movements can be blocked by adding metabolic inhibitors to the lysis medium and inhibition of movement can be reversed by adding ATP to the medium. Vanadate at micromolar levels reversibly inhibits dynein ATPase activity and movement of demembranated flagella and cilia. It does not affect glycerinated myofibril contraction or myosin ATPase activty at less than millimolar concentrations. Vanadate at 10-- 100 micron reversibly inhibits anaphase movement of chromosomes and spindle elongation. After lysis in vanadate, spindles lose their fusiform appearance and become more barrel shaped. In vitro microtubule polymerization is insensitive to vanadate. PMID:152767

  9. Visualizing the complex functions and mechanisms of the anaphase promoting complex/cyclosome (APC/C)

    PubMed Central

    Alfieri, Claudio; Zhang, Suyang

    2017-01-01

    The anaphase promoting complex or cyclosome (APC/C) is a large multi-subunit E3 ubiquitin ligase that orchestrates cell cycle progression by mediating the degradation of important cell cycle regulators. During the two decades since its discovery, much has been learnt concerning its role in recognizing and ubiquitinating specific proteins in a cell-cycle-dependent manner, the mechanisms governing substrate specificity, the catalytic process of assembling polyubiquitin chains on its target proteins, and its regulation by phosphorylation and the spindle assembly checkpoint. The past few years have witnessed significant progress in understanding the quantitative mechanisms underlying these varied APC/C functions. This review integrates the overall functions and properties of the APC/C with mechanistic insights gained from recent cryo-electron microscopy (cryo-EM) studies of reconstituted human APC/C complexes. PMID:29167309

  10. E2 Ubiquitin-conjugating Enzyme, UBE2C Gene, Is Reciprocally Regulated by Wild-type and Gain-of-Function Mutant p53.

    PubMed

    Bajaj, Swati; Alam, Sk Kayum; Roy, Kumar Singha; Datta, Arindam; Nath, Somsubhra; Roychoudhury, Susanta

    2016-07-01

    Spindle assembly checkpoint governs proper chromosomal segregation during mitosis to ensure genomic stability. At the cellular level, this event is tightly regulated by UBE2C, an E2 ubiquitin-conjugating enzyme that donates ubiquitin to the anaphase-promoting complex/cyclosome. This, in turn, facilitates anaphase-onset by ubiquitin-mediated degradation of mitotic substrates. UBE2C is an important marker of chromosomal instability and has been associated with malignant growth. However, the mechanism of its regulation is largely unexplored. In this study, we report that UBE2C is transcriptionally activated by the gain-of-function (GOF) mutant p53, although it is transcriptionally repressed by wild-type p53. We showed that wild-type p53-mediated inhibition of UBE2C is p21-E2F4-dependent and GOF mutant p53-mediated transactivation of UBE2C is NF-Y-dependent. We further explored that DNA damage-induced wild-type p53 leads to spindle assembly checkpoint arrest by repressing UBE2C, whereas mutant p53 causes premature anaphase exit by increasing UBE2C expression in the presence of 5-fluorouracil. Identification of UBE2C as a target of wild-type and GOF mutant p53 further highlights the contribution of p53 in regulation of spindle assembly checkpoint. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. C. elegans Nuclear Envelope Proteins Emerin, MAN1, Lamin, and Nucleoporins Reveal Unique Timing of Nuclear Envelope Breakdown during Mitosis

    PubMed Central

    Lee, Kenneth K.; Gruenbaum, Yosef; Spann, Perah; Liu, Jun; Wilson, Katherine L.

    2000-01-01

    Emerin, MAN1, and LAP2 are integral membrane proteins of the vertebrate nuclear envelope. They share a 43-residue N-terminal motif termed the LEM domain. We found three putative LEM domain genes in Caenorhabditis elegans, designated emr-1, lem-2, and lem-3. We analyzed emr-l, which encodes Ce-emerin, and lem-2, which encodes Ce-MAN1. Ce-emerin and Ce-MAN1 migrate on SDS-PAGE as 17- and 52-kDa proteins, respectively. Based on their biochemical extraction properties and immunolocalization, both Ce-emerin and Ce-MAN1 are integral membrane proteins localized at the nuclear envelope. We used antibodies against Ce-MAN1, Ce-emerin, nucleoporins, and Ce-lamin to determine the timing of nuclear envelope breakdown during mitosis in C. elegans. The C. elegans nuclear envelope disassembles very late compared with vertebrates and Drosophila. The nuclear membranes remained intact everywhere except near spindle poles during metaphase and early anaphase, fully disassembling only during mid-late anaphase. Disassembly of pore complexes, and to a lesser extent the lamina, depended on embryo age: pore complexes were absent during metaphase in >30-cell embryos but existed until anaphase in 2- to 24-cell embryos. Intranuclear mRNA splicing factors disassembled after prophase. The timing of nuclear disassembly in C. elegans is novel and may reflect its evolutionary position between unicellular and more complex eukaryotes. PMID:10982402

  12. Replication Stress and Mitotic Dysfunction in Cells Expressing Simian Virus 40 Large T Antigen

    PubMed Central

    Hu, Liang; Filippakis, Harilaos; Huang, Haomin; Yen, Timothy J.

    2013-01-01

    We previously demonstrated that simian virus 40 (SV40) large T antigen (LT) binds to the Bub1 kinase, a key regulator of the spindle checkpoint and chromosome segregation. Bub1 mutations or altered expression patterns are linked to chromosome missegregation and are considered to be a driving force in some human cancers. Here we report that LT, dependent on Bub1 binding, causes micronuclei, lagging chromatin, and anaphase bridges, which are hallmarks of chromosomal instability (CIN) and Bub1 insufficiency. Using time-lapse microscopy, we demonstrate that LT imposes a Bub1 binding-dependent delay in the metaphase-to-anaphase transition. Kinetochore fibers reveal that LT, via Bub1 binding, causes aberrant kinetochore (KT)-microtubule (MT) attachments and a shortened interkinetochore distance, consistent with a lack of tension. Previously, we showed that LT also induces the DNA damage response (DDR) via Bub1 binding. Using inducible LT cell lines, we show that an activated DDR was observed before the appearance of anaphase bridges and micronuclei. Furthermore, LT induction in serum-starved cells demonstrated γ-H2AX accumulation in cells that had not yet entered mitosis. Thus, DDR activation can occur independently of chromosome segregation defects. Replication stress pathways may be responsible, because signatures of replication stress were observed, which were attenuated by exogenous supplementation with nucleosides. Our observations allow us to propose a model that explains and integrates the diverse manifestations of genomic instability induced by LT. PMID:24067972

  13. Defining the Centromere.

    ERIC Educational Resources Information Center

    Erickson, John

    1983-01-01

    Focusing on the centromere (kinetochore), discusses what term should be used to represent this cellular component. Also discusses centromere/kinetochore replication, structure of the kinetochore, and the nature of the binding material that holds until anaphase of mitosis and meiosis. (JN)

  14. [The dynamics of chromosomal instability of welsh onion (Allium fistulosum L.): the influence of seed storage temperature].

    PubMed

    Lazarenko, L M; Bezrukov, V F

    2008-01-01

    The age-related dynamics of chromosomal instability and germination capacity of welsh onion (Allium fistulosum L.) seeds have been studied under two different storage temperatures during six years after harvesting. Seeds that were kept at the room temperature (14-28 degrees C) during 6 years of storage have lost their germination capacity. The frequencies of aberrant anaphases grew from 2% on the first month of storage up to 80% on the 75th month of storage. The germination capacity of seeds kept at the lower temperature (4-9 degrees C) was 73-77% on the 6th year of storage and the frequency of aberrant anaphases remained within the limits of 2-4%. Thus, storage of welsh onion seeds during 6 years at the lower temperature allows to retain germination capacity and restrains the augmentation of chromosomal instability in root meristem cells of seedlings during this period.

  15. Monitoring the elasticity changes of HeLa cells during mitosis by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Ningcheng; Wang, Yuhua; Zeng, Jinshu; Ding, Xuemei; Xie, Shusen; Yang, Hongqin

    2016-10-01

    Cell mitosis plays a crucial role in cell life activity, which is one of the important phases in cell division cycle. During the mitosis, the cytoskeleton micro-structure of the cell changed and the biomechanical properties of the cell may vary depending upon different mitosis stages. In this study, the elasticity property of HeLa cells during mitosis was monitored by atomic force microscopy. Also, the actin filaments in different mitosis stages of the cells were observed by confocal imaging. Our results show that the cell in anaphase is stiffer than that in metaphase and telophase. Furthermore, lots of actin filaments gathered in cells' center area in anaphase, which contributes to the rigidity of the cell in this phase. Our findings demonstrate that the nano-biomechanics of living cells could provide a new index for characterizing cell physiological states.

  16. Improved mutagen testing systems in mice. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roderick, T.H.

    Our laboratory was the first to induce and ascertain a mammalian chromosomal inversion; we did this by searching for a high frequency of first meiotic anaphase bridges in testes of males whose fathers received post-spermatogonial radiation or mutagenesis from chromosomal breaking chemical mutagens. One test in was examined in each mouse, and those showing a high frequency were then mated to determine if the high frequency were passed on as a dominant and whether linkage analysis suggested the presence of an inversion. A very high incidence (exceeding 20% bridges in first meiotic anaphase bridges) was found in about 1 inmore » 150 males examined and this frequency was generally found to be passed on to the offspring an predicted. Later cytological banding techniques were developed elsewhere and we used them to show visually the inverted orders of the inverted chromosomal segments. Since that time we have induced inversions covering most of the mouse genome.« less

  17. Improved mutagen testing systems in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roderick, T.H.

    Our laboratory was the first to induce and ascertain a mammalian chromosomal inversion; we did this by searching for a high frequency of first meiotic anaphase bridges in testes of males whose fathers received post-spermatogonial radiation or mutagenesis from chromosomal breaking chemical mutagens. One test in was examined in each mouse, and those showing a high frequency were then mated to determine if the high frequency were passed on as a dominant and whether linkage analysis suggested the presence of an inversion. A very high incidence (exceeding 20% bridges in first meiotic anaphase bridges) was found in about 1 inmore » 150 males examined and this frequency was generally found to be passed on to the offspring an predicted. Later cytological banding techniques were developed elsewhere and we used them to show visually the inverted orders of the inverted chromosomal segments. Since that time we have induced inversions covering most of the mouse genome.« less

  18. Activator-inhibitor coupling between Rho signaling and actin assembly make the cell cortex an excitable medium

    PubMed Central

    Bement, William M.; Leda, Marcin; Moe, Alison M.; Kita, Angela M.; Larson, Matthew E.; Golding, Adriana E.; Pfeuti, Courtney; Su, Kuan-Chung; Miller, Ann L.; Goryachev, Andrew B.; von Dassow, George

    2016-01-01

    Animal cell cytokinesis results from patterned activation of the small GTPase Rho, which directs assembly of actomyosin in the equatorial cortex. Cytokinesis is restricted to a portion of the cell cycle following anaphase onset in which the cortex is responsive to signals from the spindle. We show that shortly after anaphase onset oocytes and embryonic cells of frogs and echinoderms exhibit cortical waves of Rho activity and F-actin polymerization. The waves are modulated by cyclin-dependent kinase 1 (Cdk1) activity and require the Rho GEF (guanine nucleotide exchange factor), Ect2. Surprisingly, during wave propagation, while Rho activity elicits F-actin assembly, F-actin subsequently inactivates Rho. Experimental and modeling results show that waves represent excitable dynamics of a reaction diffusion system with Rho as the activator and F-actin the inhibitor. We propose that cortical excitability explains fundamental features of cytokinesis including its cell cycle regulation. PMID:26479320

  19. Chromosome behaviour in Rhoeo spathacea var. variegata.

    PubMed

    Lin, Y J

    1980-01-01

    Rhoeo spathacea var. variegata is unusual in that its twelve chromosomes are arranged in a ring at meiosis. The order of the chromosomes has been established, and each chromosome arm has been designated a letter in accordance with the segmental interchange theory. Chromosomes are often irregularly orientated at metaphase I. Chromosomes at anaphase I are generally distributed equally (6-6, 58.75%) although not necessarily balanced. Due to adjacent distribution, 7-5 distribution at anaphase I was frequently observed (24.17%), and due to lagging, 6-1-5 and 5-2-5 distributions were also observed (10.83% and 3.33% respectively). Three types of abnormal distribution, 8-4, 7-1-4 and 6-2-4 were observed very infrequently (2.92% total), and their possible origins are discussed. Irregularities, such as adjacent distribution and lagging, undoubtedly reduce the fertility of the plant because of the resulting unbalanced gametes.

  20. High Mitotic Activity of Polo-like Kinase 1 Is Required for Chromosome Segregation and Genomic Integrity in Human Epithelial Cells*

    PubMed Central

    Lera, Robert F.; Burkard, Mark E.

    2012-01-01

    Protein kinases play key roles in regulating human cell biology, but manifold substrates and functions make it difficult to understand mechanism. We tested whether we could dissect functions of a pleiotropic mitotic kinase, Polo-like kinase 1 (Plk1), via distinct thresholds of kinase activity. We accomplished this by titrating Plk1 activity in RPE1 human epithelial cells using chemical genetics and verifying results in additional lines. We found that distinct activity thresholds are required for known functions of Plk1 including (from low to high activity) bipolar spindle formation, timely mitotic entry, and formation of a cytokinesis cleavage furrow. Subtle losses in Plk1 activity impaired chromosome congression and produced severe anaphase dysfunction characterized by poor separation of chromosome masses. These two phenotypes were separable, suggesting that they stem from distinct phosphorylation events. Impaired chromosome segregation in anaphase was the most sensitive to modest loss in Plk1 activity. Mechanistically, it was associated with unpaired sister chromatids with stretched kinetochores, suggestive of merotelic attachments. The C-terminal Polo box domain of Plk1 was required for its anaphase function, although it was dispensable for forming a bipolar spindle. The ultimate effect of partial inhibition of Plk1 was the formation of micronuclei, an increase in tetraploid progeny, and senescence. These results demonstrate that different thresholds of Plk1 activity can elicit distinct phenotypes, illustrating a general method for separating pleiotropic functions of a protein kinase even when these are executed close in time. PMID:23105120

  1. Mitotic and meiotic irregularities in somatic hybrids of Lycopersicon esculentum and Solanum tuberosum.

    PubMed

    Wolters, A M; Schoenmakers, H C; Kamstra, S; Eden, J; Koornneef, M; Jong, J H

    1994-10-01

    Chromosome numbers were determined in metaphase complements of root-tip meristems of 107 tomato (+) potato somatic hybrids, obtained from five different combinations of parental genotypes. Of these hybrids 79% were aneuploid, lacking one or two chromosomes in most cases. All four hybrids that were studied at mitotic anaphase of root tips showed laggards and bridges, the three aneuploids in a higher frequency than the single euploid. Hybrid K2H2-1C, which showed the highest percentage of aberrant anaphases, possessed 46 chromosomes. Fluorescence in situ hybridization with total genomic DNA showed that this hybrid contained 23 tomato, 22 potato, and 1 recombinant chromosome consisting of a tomato chromosome arm and a potato chromosome arm. The potato parent of K2H2-1C was aneusomatic in its root tips with a high frequency of monosomic and trisomic cells and a relatively high frequency of cells with one fragment or telosome. Meiotic analyses of three tomato (+) potato somatic hybrids revealed laggards, which occurred most frequently in the triploid hybrids, and bridges, which were frequently present in pollen mother cells (PMCs) at anaphase I of hypotetraploid K2H2-1C. We observed putative trivalents in PMCs at diakinesis and metaphase I of eutriploid A7-82A and quadrivalents in part of the PMCs of hypotetraploid K2H2-1C, suggesting that homoeologous recombination between tomato and potato chromosomes occurred in these hybrids. All three hybrids showed a high percentage of first division restitution, giving rise to unreduced gametes. However, shortly after the tetrad stage all microspores completely degenerated, resulting in exclusively sterile pollen.

  2. The Mps1 kinase modulates the recruitment and activity of Cnn1(CENP-T) at Saccharomyces cerevisiae kinetochores.

    PubMed

    Thapa, Kriti Shrestha; Oldani, Amanda; Pagliuca, Cinzia; De Wulf, Peter; Hazbun, Tony R

    2015-05-01

    Kinetochores are conserved protein complexes that bind the replicated chromosomes to the mitotic spindle and then direct their segregation. To better comprehend Saccharomyces cerevisiae kinetochore function, we dissected the phospho-regulated dynamic interaction between conserved kinetochore protein Cnn1(CENP-T), the centromere region, and the Ndc80 complex through the cell cycle. Cnn1 localizes to kinetochores at basal levels from G1 through metaphase but accumulates abruptly at anaphase onset. How Cnn1 is recruited and which activities regulate its dynamic localization are unclear. We show that Cnn1 harbors two kinetochore-localization activities: a C-terminal histone-fold domain (HFD) that associates with the centromere region and a N-terminal Spc24/Spc25 interaction sequence that mediates linkage to the microtubule-binding Ndc80 complex. We demonstrate that the established Ndc80 binding site in the N terminus of Cnn1, Cnn1(60-84), should be extended with flanking residues, Cnn1(25-91), to allow near maximal binding affinity to Ndc80. Cnn1 localization was proposed to depend on Mps1 kinase activity at Cnn1-S74, based on in vitro experiments demonstrating the Cnn1-Ndc80 complex interaction. We demonstrate that from G1 through metaphase, Cnn1 localizes via both its HFD and N-terminal Spc24/Spc25 interaction sequence, and deletion or mutation of either region results in anomalous Cnn1 kinetochore levels. At anaphase onset (when Mps1 activity decreases) Cnn1 becomes enriched mainly via the N-terminal Spc24/Spc25 interaction sequence. In sum, we provide the first in vivo evidence of Cnn1 preanaphase linkages with the kinetochore and enrichment of the linkages during anaphase. Copyright © 2015 by the Genetics Society of America.

  3. THE ROLE OF VALENCE AND METHYLATION STATE ON THE ACTIVITY OF ARSENIC DURING MITOSIS

    EPA Science Inventory

    Trivalent methylated arsenicals are much more potent DNA damaging agents, clastogens, and large deletion mutagens than are their inorganic and pentavalent counterparts. Previously we had noticed that many of the arsenicals induced "c-type" anaphases characteristic of spindle pois...

  4. Studying the Role of the Mitotic Exit Network in Cytokinesis.

    PubMed

    Foltman, Magdalena; Sanchez-Diaz, Alberto

    2017-01-01

    In budding yeast cells, cytokinesis is achieved by the successful division of the cytoplasm into two daughter cells, but the precise mechanisms of cell division and its regulation are still rather poorly understood. The Mitotic Exit Network (MEN) is the signaling cascade that is responsible for the release of Cdc14 phosphatase leading to the inactivation of the kinase activity associated to cyclin-dependent kinases (CDK), which drives exit from mitosis and a rapid and efficient cytokinesis. Mitotic CDK impairs the activation of MEN before anaphase, and activation of MEN in anaphase leads to the inactivation of CDK, which presents a challenge to determine the contribution that each pathway makes to the successful onset of cytokinesis. To determine CDK and MEN contribution to cytokinesis irrespectively of each other, here we present methods to induce cytokinesis after the inactivation of CDK activity in temperature sensitive mutants of the MEN pathway. An array of methods to monitor the cellular events associated with the successful cytokinesis is included.

  5. Forskolin: genotoxicity assessment in Allium cepa.

    PubMed

    Mohammed, Khalid Pasha; Aarey, Archana; Tamkeen, Shayesta; Jahan, Parveen

    2015-01-01

    Forskolin, a diterpene, 7β-acetoxy-8,13-epoxy-1α,6β,9α-trihydroxy-labd-14-en-11-one (C22H34O7) isolated from Coleus forskohlii, exerts multiple physiological effects by stimulating the enzyme adenylate cyclase and increasing cyclic adenosine monophosphate (cAMP) concentrations. Forskolin is used in the treatment of hypertension, congestive heart failure, eczema, and other diseases. A cytogenetic assay was performed in Allium cepa to assess possible genotoxic effects of forskolin. Forskolin was tested at concentrations 5-100 μM for exposure periods of 24 or 48 h. Treated samples showed significant reductions in mitotic index (p < 0.05) and increases in the frequency of chromosome aberrations (p < 0.01) at both exposure times. The treated meristems showed chromosome aberrations including sticky metaphases, sticky anaphases, laggard, anaphase bridges, micronuclei, polyploidy, fragments, breaks, and C-mitosis. Forskolin may cause genotoxic effects and further toxicological evaluations should be conducted to ensure its safety. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Postnatal telomere dysfunction induces cardiomyocyte cell-cycle arrest through p21 activation

    PubMed Central

    Aix, Esther; Gutiérrez-Gutiérrez, Óscar; Sánchez-Ferrer, Carlota; Aguado, Tania

    2016-01-01

    The molecular mechanisms that drive mammalian cardiomyocytes out of the cell cycle soon after birth remain largely unknown. Here, we identify telomere dysfunction as a critical physiological signal for cardiomyocyte cell-cycle arrest. We show that telomerase activity and cardiomyocyte telomere length decrease sharply in wild-type mouse hearts after birth, resulting in cardiomyocytes with dysfunctional telomeres and anaphase bridges and positive for the cell-cycle arrest protein p21. We further show that premature telomere dysfunction pushes cardiomyocytes out of the cell cycle. Cardiomyocytes from telomerase-deficient mice with dysfunctional telomeres (G3 Terc−/−) show precocious development of anaphase-bridge formation, p21 up-regulation, and binucleation. In line with these findings, the cardiomyocyte proliferative response after cardiac injury was lost in G3 Terc−/− newborns but rescued in G3 Terc−/−/p21−/− mice. These results reveal telomere dysfunction as a crucial signal for cardiomyocyte cell-cycle arrest after birth and suggest interventions to augment the regeneration capacity of mammalian hearts. PMID:27241915

  7. Building a pseudo-atomic model of the anaphase-promoting complex.

    PubMed

    Kulkarni, Kiran; Zhang, Ziguo; Chang, Leifu; Yang, Jing; da Fonseca, Paula C A; Barford, David

    2013-11-01

    The anaphase-promoting complex (APC/C) is a large E3 ubiquitin ligase that regulates progression through specific stages of the cell cycle by coordinating the ubiquitin-dependent degradation of cell-cycle regulatory proteins. Depending on the species, the active form of the APC/C consists of 14-15 different proteins that assemble into a 20-subunit complex with a mass of approximately 1.3 MDa. A hybrid approach of single-particle electron microscopy and protein crystallography of individual APC/C subunits has been applied to generate pseudo-atomic models of various functional states of the complex. Three approaches for assigning regions of the EM-derived APC/C density map to specific APC/C subunits are described. This information was used to dock atomic models of APC/C subunits, determined either by protein crystallography or homology modelling, to specific regions of the APC/C EM map, allowing the generation of a pseudo-atomic model corresponding to 80% of the entire complex.

  8. Mitotic Chromosome Biorientation in Fission Yeast Is Enhanced by Dynein and a Minus-end–directed, Kinesin-like Protein

    PubMed Central

    Spiridonov, Ilia S.; McIntosh, J. Richard

    2007-01-01

    Chromosome biorientation, the attachment of sister kinetochores to sister spindle poles, is vitally important for accurate chromosome segregation. We have studied this process by following the congression of pole-proximal kinetochores and their subsequent anaphase segregation in fission yeast cells that carry deletions in any or all of this organism's minus end–directed, microtubule-dependent motors: two related kinesin 14s (Pkl1p and Klp2p) and dynein. None of these deletions abolished biorientation, but fewer chromosomes segregated normally without Pkl1p, and to a lesser degree without dynein, than in wild-type cells. In the absence of Pkl1p, which normally localizes to the spindle and its poles, the checkpoint that monitors chromosome biorientation was defective, leading to frequent precocious anaphase. Ultrastructural analysis of mutant mitotic spindles suggests that Pkl1p contributes to error-free biorientation by promoting normal spindle pole organization, whereas dynein helps to anchor a focused bundle of spindle microtubules at the pole. PMID:17409356

  9. Protein Phosphatase 1 inactivates Mps1 to ensure efficient Spindle Assembly Checkpoint silencing.

    PubMed

    Moura, Margarida; Osswald, Mariana; Leça, Nelson; Barbosa, João; Pereira, António J; Maiato, Helder; Sunkel, Claudio E; Conde, Carlos

    2017-05-02

    Faithfull genome partitioning during cell division relies on the Spindle Assembly Checkpoint (SAC), a conserved signaling pathway that delays anaphase onset until all chromosomes are attached to spindle microtubules. Mps1 kinase is an upstream SAC regulator that promotes the assembly of an anaphase inhibitor through a sequential multi-target phosphorylation cascade. Thus, the SAC is highly responsive to Mps1, whose activity peaks in early mitosis as a result of its T-loop autophosphorylation. However, the mechanism controlling Mps1 inactivation once kinetochores attach to microtubules and the SAC is satisfied remains unknown. Here we show in vitro and in Drosophila that Protein Phosphatase 1 (PP1) inactivates Mps1 by dephosphorylating its T-loop. PP1-mediated dephosphorylation of Mps1 occurs at kinetochores and in the cytosol, and inactivation of both pools of Mps1 during metaphase is essential to ensure prompt and efficient SAC silencing. Overall, our findings uncover a mechanism of SAC inactivation required for timely mitotic exit.

  10. Chk1 and Wee1 kinases coordinate DNA replication, chromosome condensation, and anaphase entry

    PubMed Central

    Fasulo, Barbara; Koyama, Carol; Yu, Kristina R.; Homola, Ellen M.; Hsieh, Tao S.; Campbell, Shelagh D.; Sullivan, William

    2012-01-01

    Defects in DNA replication and chromosome condensation are common phenotypes in cancer cells. A link between replication and condensation has been established, but little is known about the role of checkpoints in monitoring chromosome condensation. We investigate this function by live analysis, using the rapid division cycles in the early Drosophila embryo. We find that S-phase and topoisomerase inhibitors delay both the initiation and the rate of chromosome condensation. These cell cycle delays are mediated by the cell cycle kinases chk1 and wee1. Inhibitors that cause severe defects in chromosome condensation and congression on the metaphase plate result in delayed anaphase entry. These delays are mediated by wee1 and are not the result of spindle assembly checkpoint activation. In addition, we provide the first detailed live analysis of the direct effect of widely used anticancer agents (aclarubicin, ICRF-193, VM26, doxorubicin, camptothecin, aphidicolin, hydroxyurea, cisplatin, mechlorethamine and x-rays) on key nuclear and cytoplasmic cell cycle events. PMID:22262459

  11. Kinetochore-independent chromosome segregation driven by lateral microtubule bundles

    PubMed Central

    Muscat, Christina C; Torre-Santiago, Keila M; Tran, Michael V; Powers, James A; Wignall, Sarah M

    2015-01-01

    During cell division, chromosomes attach to spindle microtubules at sites called kinetochores, and force generated at the kinetochore-microtubule interface is the main driver of chromosome movement. Surprisingly, kinetochores are not required for chromosome segregation on acentrosomal spindles in Caenorhabditis elegans oocytes, but the mechanism driving chromosomes apart in their absence is not understood. In this study, we show that lateral microtubule–chromosome associations established during prometaphase remain intact during anaphase to facilitate separation, defining a novel form of kinetochore-independent segregation. Chromosome dynamics during congression and segregation are controlled by opposing forces; plus-end directed forces are mediated by a protein complex that forms a ring around the chromosome center and dynein on chromosome arms provides a minus-end force. At anaphase onset, ring removal shifts the balance between these forces, triggering poleward movement along lateral microtubule bundles. This represents an elegant strategy for controlling chromosomal movements during cell division distinct from the canonical kinetochore-driven mechanism. DOI: http://dx.doi.org/10.7554/eLife.06462.001 PMID:26026148

  12. The asymmetry of female meiosis reduces the frequency of inheritance of unpaired chromosomes

    PubMed Central

    Cortes, Daniel B; McNally, Karen L; Mains, Paul E; McNally, Francis J

    2015-01-01

    Trisomy, the presence of a third copy of one chromosome, is deleterious and results in inviable or defective progeny if passed through the germ line. Random segregation of an extra chromosome is predicted to result in a high frequency of trisomic offspring from a trisomic parent. Caenorhabditis elegans with trisomy of the X chromosome, however, have far fewer trisomic offspring than expected. We found that the extra X chromosome was preferentially eliminated during anaphase I of female meiosis. We utilized a mutant with a specific defect in pairing of the X chromosome as a model to investigate the apparent bias against univalent inheritance. First, univalents lagged during anaphase I and their movement was biased toward the cortex and future polar body. Second, late-lagging univalents were frequently captured by the ingressing polar body contractile ring. The asymmetry of female meiosis can thus partially correct pre-existing trisomy. DOI: http://dx.doi.org/10.7554/eLife.06056.001 PMID:25848744

  13. Chromosome stickiness impairs meiosis and influences reproductive success in Panicum maximum (Poaceae) hybrid plants.

    PubMed

    Pessim, C; Pagliarini, M S; Silva, N; Jank, L

    2015-04-28

    Chromosome stickiness has been studied in several species of higher plants and is characterized by sticky clumps of chromatin resulting in sterility. Chromosome stickiness was recorded in Panicum maximum hybrid plants that were cultivated in the field. In the meiocytes affected, chromosomes clumped into amorphous masses that did not orient themselves on the equatorial plate, and anaphase I disjunction failed to occur. After a normal cytokinesis, the masses of chromatin were divided between both daughter cells. Metaphase and anaphase of the second division also did not occur, and after the second cytokinesis, polyads were formed. This abnormality arose spontaneously. Abnormalities that cause male sterility are an important tool for obtaining hybrid seeds in plant breeding. This is the first report of an abnormality affecting pollen viability in P. maximum. This finding can open a new opportunity in the breeding program of this species that is devoted to hybridization where manual cross-pollination is difficult and time consuming.

  14. ELECTRON MICROSCOPY OF MITOSIS IN A RADIOSENSITIVE GIANT AMOEBA

    PubMed Central

    Daniels, E. W.; Roth, L. E.

    1964-01-01

    Various aspects of the ultrastructure of the dividing nuclei in the large radiosensitive amoeba Pelomyxa illinoisensis are demonstrated. Evidence of nuclear envelope breakdown is presented, and membrane fragments are traced throughout metaphase to envelope reconstruction in anaphase and telophase. Annuli in the nuclear envelope and its fragments are shown throughout mitosis. During metaphase and anaphase some 15 to 20 mitochondria are aligned at each end of the spindle, and are called polar mitochondria. The radioresistant amoebae Pelomyxa carolinensis and Amoeba proteus do not have polar mitochondria, and Pelomyxa illinoisensis is unique in this regard. The shape of the P. illinoisensis interphase nucleoli differs from that in the two radioresistant species, and certain aspects of nucleolar dissolution in the prophase vary. Helical coils in the interphase nucleoplasm are similar to those in the radioresistant amoebae. A "blister" phase in the flatly shaped telophase nuclei of P. illinoisensis is described which is interpreted to be the result of a rapid nuclear expansion leading to the formation of the normal spherical interphase nuclei. PMID:14105218

  15. Presenting Mitosis

    ERIC Educational Resources Information Center

    Roche, Stephanie; Sterling, Donna R.

    2005-01-01

    When the topic of cell division is introduced in the classroom, students can showcase their interpretations of the stages of mitosis by creating a slide show illustrating prophase, metaphase, anaphase, and telophase (see samples in Figure 1). With the help of a computer, they can create a model of mitosis that will help them distinguish the…

  16. Antagonistic effects of pemoline to colchicine and caffeine.

    PubMed

    Röper, W

    1975-10-15

    Pemoline, the constituent of Tradon, is able to slow down the decrease of the mitotic index caused by 0.1% caffeine in roots of Vicia faba, and mitotic aberrations are reduced. With 0.005% colchicine and 3 x 10(-4) g/ml pemoline, no metaphase-accumulation can be observed, and anaphase-disorder is delayed.

  17. The Anaphase Promoting Complex Is Required for Memory Function in Mice

    ERIC Educational Resources Information Center

    Kuczera, Tanja; Stilling, Roman Manuel; Hsia, Hung-En; Bahari-Javan, Sanaz; Irniger, Stefan; Nasmyth, Kim; Sananbenesi, Farahnaz; Fischer, Andre

    2011-01-01

    Learning and memory processes critically involve the orchestrated regulation of de novo protein synthesis. On the other hand it has become clear that regulated protein degradation also plays a major role in neuronal plasticity and learning behavior. One of the key pathways mediating protein degradation is proteosomal protein destruction. The…

  18. Regulation of the Anaphase-promoting Complex–Separase Cascade by Transforming Growth Factor-β Modulates Mitotic Progression in Bone Marrow Stromal Cells

    PubMed Central

    Fujita, Takeo; Epperly, Michael W.; Zou, Hui; Greenberger, Joel S.

    2008-01-01

    Alteration of the tumor microenvironment by aberrant stromal cells influences many aspects of cell biology, including differentiation of stem cells and tumor metastasis. The role of transforming growth factor (TGF)-β signaling in stromal cells of the tissue microenvironment is critical to both pathways. We examined murine marrow stromal cells with deletion of Smad3 and found that they have an altered cell cycle profile, with a higher fraction of cells in G2/M phase. Deletion of Smad3 significantly abrogates TGF-β signaling and suppresses phosphorylation of CDC27–anaphase-promoting complex (APC) during mitosis, thereby resulting in elevated cyclin-dependent kinase (CDK)1 activity via increased levels of cyclin B. Enhanced CDK1 activity due to deregulation of APC leads in turn to hyperphosphorylation of separase, impeding chromatid separation. A residue Ser1126Ala mutation in separase specifically abolished separase hyperphosphorylation in Smad3-deficient cells. The present results unveil a new function for the TGF-β pathway in the regulation of APC to mediate chromatid separation during mitosis. PMID:18843049

  19. A sequential multi-target Mps1 phosphorylation cascade promotes spindle checkpoint signaling.

    PubMed

    Ji, Zhejian; Gao, Haishan; Jia, Luying; Li, Bing; Yu, Hongtao

    2017-01-10

    The master spindle checkpoint kinase Mps1 senses kinetochore-microtubule attachment and promotes checkpoint signaling to ensure accurate chromosome segregation. The kinetochore scaffold Knl1, when phosphorylated by Mps1, recruits checkpoint complexes Bub1-Bub3 and BubR1-Bub3 to unattached kinetochores. Active checkpoint signaling ultimately enhances the assembly of the mitotic checkpoint complex (MCC) consisting of BubR1-Bub3, Mad2, and Cdc20, which inhibits the anaphase-promoting complex or cyclosome bound to Cdc20 (APC/C Cdc20 ) to delay anaphase onset. Using in vitro reconstitution, we show that Mps1 promotes APC/C inhibition by MCC components through phosphorylating Bub1 and Mad1. Phosphorylated Bub1 binds to Mad1-Mad2. Phosphorylated Mad1 directly interacts with Cdc20. Mutations of Mps1 phosphorylation sites in Bub1 or Mad1 abrogate the spindle checkpoint in human cells. Therefore, Mps1 promotes checkpoint activation through sequentially phosphorylating Knl1, Bub1, and Mad1. This sequential multi-target phosphorylation cascade makes the checkpoint highly responsive to Mps1 and to kinetochore-microtubule attachment.

  20. Protein Phosphatase 1 inactivates Mps1 to ensure efficient Spindle Assembly Checkpoint silencing

    PubMed Central

    Moura, Margarida; Osswald, Mariana; Leça, Nelson; Barbosa, João; Pereira, António J; Maiato, Helder; Sunkel, Claudio E; Conde, Carlos

    2017-01-01

    Faithfull genome partitioning during cell division relies on the Spindle Assembly Checkpoint (SAC), a conserved signaling pathway that delays anaphase onset until all chromosomes are attached to spindle microtubules. Mps1 kinase is an upstream SAC regulator that promotes the assembly of an anaphase inhibitor through a sequential multi-target phosphorylation cascade. Thus, the SAC is highly responsive to Mps1, whose activity peaks in early mitosis as a result of its T-loop autophosphorylation. However, the mechanism controlling Mps1 inactivation once kinetochores attach to microtubules and the SAC is satisfied remains unknown. Here we show in vitro and in Drosophila that Protein Phosphatase 1 (PP1) inactivates Mps1 by dephosphorylating its T-loop. PP1-mediated dephosphorylation of Mps1 occurs at kinetochores and in the cytosol, and inactivation of both pools of Mps1 during metaphase is essential to ensure prompt and efficient SAC silencing. Overall, our findings uncover a mechanism of SAC inactivation required for timely mitotic exit. DOI: http://dx.doi.org/10.7554/eLife.25366.001 PMID:28463114

  1. Downregulation of Protein 4.1R impairs centrosome function,bipolar spindle organization and anaphase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spence, Jeffrey R.; Go, Minjoung M.; Bahmanyar, S.

    2006-03-17

    Centrosomes nucleate and organize interphase MTs and areinstrumental in the assembly of the mitotic bipolar spindle. Here wereport that two members of the multifunctional protein 4.1 family havedistinct distributions at centrosomes. Protein 4.1R localizes to maturecentrioles whereas 4.1G is a component of the pericentriolar matrixsurrounding centrioles. To selectively probe 4.1R function, we used RNAinterference-mediated depletion of 4.1R without decreasing 4.1Gexpression. 4.1R downregulation reduces MT anchoring and organization atinterphase and impairs centrosome separation during prometaphase.Metaphase chromosomes fail to properly condense/align and spindleorganization is aberrant. Notably 4.1R depletion causes mislocalizationof its binding partner NuMA (Nuclear Mitotic Apparatus Protein),essential for spindle pole focusing,more » and disrupts ninein. Duringanaphase/telophase, 4.1R-depleted cells have lagging chromosomes andaberrant MT bridges. Our data provide functional evidence that 4.1R makescrucial contributions to centrosome integrity and to mitotic spindlestructure enabling mitosis and anaphase to proceed with the coordinatedprecision required to avoid pathological events.« less

  2. The Giardia cell cycle progresses independently of the anaphase-promoting complex

    PubMed Central

    Gourguechon, Stéphane; Holt, Liam J.; Cande, W. Zacheus

    2013-01-01

    Summary Most cell cycle regulation research has been conducted in model organisms representing a very small part of the eukaryotic domain. The highly divergent human pathogen Giardia intestinalis is ideal for studying the conservation of eukaryotic pathways. Although Giardia has many cell cycle regulatory components, its genome lacks all anaphase-promoting complex (APC) components. In the present study, we show that a single mitotic cyclin in Giardia is essential for progression into mitosis. Strikingly, Giardia cyclin B lacks the conserved N-terminal motif required for timely degradation mediated by the APC and ubiquitin conjugation. Expression of Giardia cyclin B in fission yeast is toxic, leading to a prophase arrest, and this toxicity is suppressed by the addition of a fission yeast degradation motif. Cyclin B is degraded during mitosis in Giardia cells, but this degradation appears to be independent of the ubiquitination pathway. Other putative APC substrates, aurora and polo-like kinases, also show no evidence of ubiquitination. This is the first example of mitosis not regulated by the APC and might reflect an evolutionary ancient form of cell cycle regulation. PMID:23525017

  3. [Critical level of radiation damage of root apical meristem and mechanisms for its recovery in Pisum sativum L].

    PubMed

    Kravets, E A; Mikheev, A N; Ovsiannikova, L G; Grodzinskiĭ, D M

    2011-01-01

    The dose dependencies of growth and cytogenetical values have been built to determine the critical level of root apical meristem damage induced by cute irradiation in the range from 2 to 20 Gr. We have analyzed the frequencies of aberrant anaphases and the aberration distribution per cell, on the one hand, and the growth of biomass, the survival and regeneration of the root meristem, on the other hand. The critical level of damage to the stem apical meristem and root of seedlings was defined as 44-48% of aberrant anaphase. Exceeding of this level leads to the launch of suicidal program through induction of multiaberrant damages and interphase cell death. It appears that competition of clones of non-aberrant cells, the cells bearing 1 and 2 damages and multiaberrant cells plays the primary role in the mechanisms of recovery. The regeneration provides full or partial restoration of the main root apical meristem. However these local processes are insufficient to restore morphogenesis and survival of seedlings in excess of the critical level damage.

  4. Proliferating cell nuclear antigen (PCNA)-associated KIAA0101/PAF15 protein is a cell cycle-regulated anaphase-promoting complex/cyclosome substrate.

    PubMed

    Emanuele, Michael J; Ciccia, Alberto; Elia, Andrew E H; Elledge, Stephen J

    2011-06-14

    The anaphase-promoting complex/cyclosome (APC/C) is a cell cycle-regulated E3 ubiquitin ligase that controls the degradation of substrate proteins at mitotic exit and throughout the G1 phase. We have identified an APC/C substrate and cell cycle-regulated protein, KIAA0101/PAF15. PAF15 protein levels peak in the G2/M phase of the cell cycle and drop rapidly at mitotic exit in an APC/C- and KEN-box-dependent fashion. PAF15 associates with proliferating cell nuclear antigen (PCNA), and depletion of PAF15 decreases the number of cells in S phase, suggesting a role for it in cell cycle regulation. Following irradiation, PAF15 colocalized with γH2AX foci at sites of DNA damage through its interaction with PCNA. Finally, PAF15 depletion led to an increase in homologous recombination-mediated DNA repair, and overexpression caused sensitivity to UV-induced DNA damage. We conclude that PAF15 is an APC/C-regulated protein involved in both cell cycle progression and the DNA damage response.

  5. Multiple mechanisms determine the order of APC/C substrate degradation in mitosis

    PubMed Central

    Lu, Dan; Hsiao, Jennifer Y.; Davey, Norman E.; Van Voorhis, Vanessa A.; Foster, Scott A.

    2014-01-01

    The ubiquitin protein ligase anaphase-promoting complex or cyclosome (APC/C) controls mitosis by promoting ordered degradation of securin, cyclins, and other proteins. The mechanisms underlying the timing of APC/C substrate degradation are poorly understood. We explored these mechanisms using quantitative fluorescence microscopy of GFP-tagged APC/CCdc20 substrates in living budding yeast cells. Degradation of the S cyclin, Clb5, begins early in mitosis, followed 6 min later by the degradation of securin and Dbf4. Anaphase begins when less than half of securin is degraded. The spindle assembly checkpoint delays the onset of Clb5 degradation but does not influence securin degradation. Early Clb5 degradation depends on its interaction with the Cdk1–Cks1 complex and the presence of a Cdc20-binding “ABBA motif” in its N-terminal region. The degradation of securin and Dbf4 is delayed by Cdk1-dependent phosphorylation near their Cdc20-binding sites. Thus, a remarkably diverse array of mechanisms generates robust ordering of APC/CCdc20 substrate destruction. PMID:25287299

  6. SOLO: a meiotic protein required for centromere cohesion, coorientation, and SMC1 localization in Drosophila melanogaster.

    PubMed

    Yan, Rihui; Thomas, Sharon E; Tsai, Jui-He; Yamada, Yukihiro; McKee, Bruce D

    2010-02-08

    Sister chromatid cohesion is essential to maintain stable connections between homologues and sister chromatids during meiosis and to establish correct centromere orientation patterns on the meiosis I and II spindles. However, the meiotic cohesion apparatus in Drosophila melanogaster remains largely uncharacterized. We describe a novel protein, sisters on the loose (SOLO), which is essential for meiotic cohesion in Drosophila. In solo mutants, sister centromeres separate before prometaphase I, disrupting meiosis I centromere orientation and causing nondisjunction of both homologous and sister chromatids. Centromeric foci of the cohesin protein SMC1 are absent in solo mutants at all meiotic stages. SOLO and SMC1 colocalize to meiotic centromeres from early prophase I until anaphase II in wild-type males, but both proteins disappear prematurely at anaphase I in mutants for mei-S332, which encodes the Drosophila homologue of the cohesin protector protein shugoshin. The solo mutant phenotypes and the localization patterns of SOLO and SMC1 indicate that they function together to maintain sister chromatid cohesion in Drosophila meiosis.

  7. Anaphase-promoting complex/cyclosome protein Cdc27 is a target for curcumin-induced cell cycle arrest and apoptosis.

    PubMed

    Lee, Seung Joon; Langhans, Sigrid A

    2012-01-26

    Curcumin (diferuloylmethane), the yellow pigment in the Asian spice turmeric, is a hydrophobic polyphenol from the rhizome of Curcuma longa. Because of its chemopreventive and chemotherapeutic potential with no discernable side effects, it has become one of the major natural agents being developed for cancer therapy. Accumulating evidence suggests that curcumin induces cell death through activation of apoptotic pathways and inhibition of cell growth and proliferation. The mitotic checkpoint, or spindle assembly checkpoint (SAC), is the major cell cycle control mechanism to delay the onset of anaphase during mitosis. One of the key regulators of the SAC is the anaphase promoting complex/cyclosome (APC/C) which ubiquitinates cyclin B and securin and targets them for proteolysis. Because APC/C not only ensures cell cycle arrest upon spindle disruption but also promotes cell death in response to prolonged mitotic arrest, it has become an attractive drug target in cancer therapy. Cell cycle profiles were determined in control and curcumin-treated medulloblastoma and various other cancer cell lines. Pull-down assays were used to confirm curcumin binding. APC/C activity was determined using an in vitro APC activity assay. We identified Cdc27/APC3, a component of the APC/C, as a novel molecular target of curcumin and showed that curcumin binds to and crosslinks Cdc27 to affect APC/C function. We further provide evidence that curcumin preferably induces apoptosis in cells expressing phosphorylated Cdc27 usually found in highly proliferating cells. We report that curcumin directly targets the SAC to induce apoptosis preferably in cells with high levels of phosphorylated Cdc27. Our studies provide a possible molecular mechanism why curcumin induces apoptosis preferentially in cancer cells and suggest that phosphorylation of Cdc27 could be used as a biomarker to predict the therapeutic response of cancer cells to curcumin.

  8. Lethal and sublethal effects of marine sediment extracts on fish cells and chromosomes

    NASA Astrophysics Data System (ADS)

    Landolt, Marsha L.; Kocan, Richard M.

    1984-03-01

    The cost of conducting conventional chronic bioassays with every potentially toxic compound found in marine ecosystems is prohibitive; therefore short-term toxicity tests which can be used for rapid screening were developed. The tests employ cultured fish cells to measure lethal, sublethal or genotoxic effects of pure compounds and complex mixtures. The sensitivity of these tests has been proven under laboratory conditions; the following study used two of these tests, the anaphase aberration test and a cytotoxicity assay, under field conditions. Sediment was collected from 97 stations within Puget Sound, Washington. Serial washings of the sediment in methanol and dichloromethane yielded an organic extract which was dried, dissolved in DMSO and incubated as a series of dilutions with rainbow trout gonad (RTG-2) cells. The toxic effects of the extract were measured by examining the rate of cell proliferation and the percentage of damaged anaphase figures. Anaphase figures were considered to be abnormal if they exhibited non-disjunctions, chromosome fragments, or chromosome bridges. A second cell line (bluegill fry, BF-2) was also tested for cell proliferation and was included because, unlike the RTG-2 cell line, it contains little or no mixed function oxygenase activity. Of 97 stations tested, 35 showed no genotoxic activity, 42 showed high genotoxic activity (P≤.01) and the remainder were intermediate. Among the toxic sites were several deep water stations adjacent to municipal sewage outfalls and four urban waterways contaminated by industrial and municipal effluents. Extracts from areas that showed genotoxic effects also inhibited cell proliferation and were cytotoxic to RTG-2 cells. Few effects were noted in the MFO deficient BF-2 cells. Short term in vitro tests provide aquatic toxicologists with a versatile and cost effective tool for screening complex environments. Through these tests one can identify compounds or geographic regions that exhibit high cytotoxic or genotoxic potential.

  9. Degradation of the human mitotic checkpoint kinase Mps1 is cell cycle-regulated by APC-cCdc20 and APC-cCdh1 ubiquitin ligases.

    PubMed

    Cui, Yongping; Cheng, Xiaolong; Zhang, Ce; Zhang, Yanyan; Li, Shujing; Wang, Chuangui; Guadagno, Thomas M

    2010-10-22

    Mps1 is a dual specificity protein kinase with key roles in regulating the spindle assembly checkpoint and chromosome-microtubule attachments. Consistent with these mitotic functions, Mps1 protein levels fluctuate during the cell cycle, peaking at early mitosis and abruptly declining during mitotic exit and progression into the G(1) phase. Although evidence in budding yeast indicates that Mps1 is targeted for degradation at anaphase by the anaphase-promoting complex (APC)-c(Cdc20) complex, little is known about the regulatory mechanisms that govern Mps1 protein levels in human cells. Here, we provide evidence for the ubiquitin ligase/proteosome pathway in regulating human Mps1 levels during late mitosis through G(1) phase. First, we showed that treatment of HEK 293T cells with the proteosome inhibitor MG132 resulted in an increase in both the polyubiquitination and the accumulation of Mps1 protein levels. Next, Mps1 was shown to co-precipitate with APC and its activators Cdc20 and Cdh1 in a cell cycle-dependent manner. Consistent with this, overexpression of Cdc20 or Cdh1 led to a marked reduction of endogenous Mps1 levels during anaphase or G(1) phase, respectively. In contrast, depletion of Cdc20 or Cdh1 by RNAi treatment both led to the stabilization of Mps1 protein during mitosis or G(1) phase, respectively. Finally, we identified a single D-box motif in human Mps1 that is required for its ubiquitination and degradation. Failure to appropriately degrade Mps1 is sufficient to trigger centrosome amplification and mitotic abnormalities in human cells. Thus, our results suggest that the sequential actions of the APC-c(Cdc20) and APC-c(Cdh1) ubiquitin ligases regulate the clearance of Mps1 levels and are critical for Mps1 functions during the cell cycle in human cells.

  10. Anaphase-promoting complex/cyclosome protein Cdc27 is a target for curcumin-induced cell cycle arrest and apoptosis

    PubMed Central

    2012-01-01

    Background Curcumin (diferuloylmethane), the yellow pigment in the Asian spice turmeric, is a hydrophobic polyphenol from the rhizome of Curcuma longa. Because of its chemopreventive and chemotherapeutic potential with no discernable side effects, it has become one of the major natural agents being developed for cancer therapy. Accumulating evidence suggests that curcumin induces cell death through activation of apoptotic pathways and inhibition of cell growth and proliferation. The mitotic checkpoint, or spindle assembly checkpoint (SAC), is the major cell cycle control mechanism to delay the onset of anaphase during mitosis. One of the key regulators of the SAC is the anaphase promoting complex/cyclosome (APC/C) which ubiquitinates cyclin B and securin and targets them for proteolysis. Because APC/C not only ensures cell cycle arrest upon spindle disruption but also promotes cell death in response to prolonged mitotic arrest, it has become an attractive drug target in cancer therapy. Methods Cell cycle profiles were determined in control and curcumin-treated medulloblastoma and various other cancer cell lines. Pull-down assays were used to confirm curcumin binding. APC/C activity was determined using an in vitro APC activity assay. Results We identified Cdc27/APC3, a component of the APC/C, as a novel molecular target of curcumin and showed that curcumin binds to and crosslinks Cdc27 to affect APC/C function. We further provide evidence that curcumin preferably induces apoptosis in cells expressing phosphorylated Cdc27 usually found in highly proliferating cells. Conclusions We report that curcumin directly targets the SAC to induce apoptosis preferably in cells with high levels of phosphorylated Cdc27. Our studies provide a possible molecular mechanism why curcumin induces apoptosis preferentially in cancer cells and suggest that phosphorylation of Cdc27 could be used as a biomarker to predict the therapeutic response of cancer cells to curcumin. PMID:22280307

  11. [Inverted meiosis and its place in the evolution of sexual reproduction pathways].

    PubMed

    Bogdanov, Yu F

    2016-05-01

    Inverted meiosis is observed in plants (Cyperaceae and Juncaceae) and insects (Coccoidea, Aphididae) with holocentric chromosomes, the centromeres of which occupy from 70 to 90% of the metaphase chromosome length. In the first meiotic division (meiosis I), chiasmata are formed and rodlike bivalents orient equationally, and in anaphase I, sister chromatids segregate to the poles; the diploid chromosome number is maintained. Non-sister chromatids of homologous chromosomes remain in contact during interkinesis and prophase II and segregate in anaphase II, forming haploid chromosome sets. The segregation of sister chromatids in meiosis I was demonstrated by example of three plant species that were heterozygous for chromosomal rearrangements. In these species, sister chromatids, marked with rearrangement, segregated in anaphase I. Using fluorescent antibodies, it was demonstrated that meiotic recombination enzymes Spo11 and Rad5l, typical of canonical meiosis, functioned at the meiotic prophase I of pollen mother cells of Luzula elegance and Rhynchospora pubera. Moreover, antibodies to synaptonemal complexes proteins ASY1 and ZYP1 were visualized as filamentous structures, pointing to probable formation of synaptonemal complexes. In L. elegance, chiasmata are formed by means of chromatin threads containing satellite DNA. According to the hypothesis of the author of this review, equational division of sister chromatids at meiosis I in the organisms with inverted meiosis can be explained by the absence of specific meiotic proteins (shugoshins). These proteins are able to protect cohesins of holocentric centromeres from hydrolysis by separases at meiosis I, as occurs in the organisms with monocentric chromosomes and canonical meiosis. The basic type of inverted meiosis was described in Coccoidea and Aphididae males. In their females, the variants of parthenogenesis were also observed. Until now, the methods of molecular cytogenetics were not applied for the analysis of inverted meiosis in Coccoidea and Aphididae. Evolutionary, inverted meiosis is thought to have appeared secondarily as an adaptation of the molecular mechanisms of canonical meiosis to chromosome holocentrism.

  12. Molecular Basis of Genomic Instability in Breast Cancer: Regulation of the Centrosome Duplication Cycle

    DTIC Science & Technology

    2005-06-01

    anaphase mitotic figures were found in these transfected cells, suggesting cells arrested at prometaphase (Fig. 3b). Live cell imaging over a 4-h time...Bubulya for help in live cell imaging , M. McCurrach for advice in BrdUrd labeling, A. Denli and A. Caudy for their critical reading of the manuscript and

  13. Finding the middle ground: how kinetochores power chromosome congression

    PubMed Central

    Saurin, Adrian T.

    2010-01-01

    Genomic stability requires error-free chromosome segregation during mitosis. Chromosome congression to the spindle equator precedes chromosome segregation in anaphase and is a hallmark of metazoan mitosis. Here we review the current knowledge and concepts on the processes that underlie chromosome congression, including initial attachment to spindle microtubules, biorientation, and movements, from the perspective of the kinetochore. PMID:20232224

  14. Glycogen Synthase Kinase-3β (GSK3β) Negatively Regulates PTTG1/Human Securin Protein Stability, and GSK3β Inactivation Correlates with Securin Accumulation in Breast Tumors*

    PubMed Central

    Mora-Santos, Mar; Limón-Mortés, M. Cristina; Giráldez, Servando; Herrero-Ruiz, Joaquín; Sáez, Carmen; Japón, Miguel Á.; Tortolero, Maria; Romero, Francisco

    2011-01-01

    PTTG1, also known as securin, is an inactivating partner of separase, the major effector for chromosome segregation during mitosis. At the metaphase-to-anaphase transition, securin is targeted for proteasomal destruction by the anaphase-promoting complex or cyclosome, allowing activation of separase. In addition, securin is overexpressed in metastatic or genomically instable tumors, suggesting a relevant role for securin in tumor progression. Stability of securin is regulated by phosphorylation; some phosphorylated forms are degraded out of mitosis, by the action of the SKP1-CUL1-F-box protein (SCF) complex. The kinases targeting securin for proteolysis have not been identified, and mechanistic insight into the cause of securin accumulation in human cancers is lacking. Here, we demonstrate that glycogen synthase kinase-3β (GSK3β) phosphorylates securin to promote its proteolysis via SCFβTrCP E3 ubiquitin ligase. Importantly, a strong correlation between securin accumulation and GSK3β inactivation was observed in breast cancer tissues, indicating that GSK3β inactivation may account for securin accumulation in breast cancers. PMID:21757741

  15. Glycogen synthase kinase-3beta (GSK3beta) negatively regulates PTTG1/human securin protein stability, and GSK3beta inactivation correlates with securin accumulation in breast tumors.

    PubMed

    Mora-Santos, Mar; Limón-Mortés, M Cristina; Giráldez, Servando; Herrero-Ruiz, Joaquín; Sáez, Carmen; Japón, Miguel Á; Tortolero, Maria; Romero, Francisco

    2011-08-26

    PTTG1, also known as securin, is an inactivating partner of separase, the major effector for chromosome segregation during mitosis. At the metaphase-to-anaphase transition, securin is targeted for proteasomal destruction by the anaphase-promoting complex or cyclosome, allowing activation of separase. In addition, securin is overexpressed in metastatic or genomically instable tumors, suggesting a relevant role for securin in tumor progression. Stability of securin is regulated by phosphorylation; some phosphorylated forms are degraded out of mitosis, by the action of the SKP1-CUL1-F-box protein (SCF) complex. The kinases targeting securin for proteolysis have not been identified, and mechanistic insight into the cause of securin accumulation in human cancers is lacking. Here, we demonstrate that glycogen synthase kinase-3β (GSK3β) phosphorylates securin to promote its proteolysis via SCF(βTrCP) E3 ubiquitin ligase. Importantly, a strong correlation between securin accumulation and GSK3β inactivation was observed in breast cancer tissues, indicating that GSK3β inactivation may account for securin accumulation in breast cancers.

  16. Mechanism of Polyubiquitination by Human Anaphase-Promoting Complex: RING Repurposing for Ubiquitin Chain Assembly

    DOE PAGES

    Brown, Nicholas G.; Watson, Edmond R.; Weissmann, Florian; ...

    2014-10-09

    Polyubiquitination by E2 and E3 enzymes is a predominant mechanism regulating protein function. Some RING E3s, including anaphase-promoting complex/cyclosome (APC), catalyze polyubiquitination by sequential reactions with two different E2s. An initiating E2 ligates ubiquitin to an E3-bound substrate. Another E2 grows a polyubiquitin chain on the ubiquitin-primed substrate through poorly defined mechanisms. Here in this paper we show that human APC’s RING domain is repurposed for dual functions in polyubiquitination. The canonical RING surface activates an initiating E2-ubiquitin intermediate for substrate modification. However, APC engages and activates its specialized ubiquitin chain-elongating E2 UBE2S in ways that differ from current paradigms.more » During chain assembly, a distinct APC11 RING surface helps deliver a substrate-linked ubiquitin to accept another ubiquitin from UBE2S. Our data define mechanisms of APC/UBE2S-mediated polyubiquitination, reveal diverse functions of RING E3s and E2s, and provide a framework for understanding distinctive RING E3 features specifying ubiquitin chain elongation.« less

  17. Focal accumulation of preribosomes outside the nucleolus during metaphase–anaphase in budding yeast

    PubMed Central

    Moriggi, Giulia; Gaspar, Sonia G.; Nieto, Blanca; Bustelo, Xosé R.

    2017-01-01

    Saccharomyces cerevisiae contains one nucleolus that remains intact in the mother-cell side of the nucleus throughout most of mitosis. Based on this, it is assumed that the bulk of ribosome production during cell division occurs in the mother cell. Here, we show that the ribosome synthesis machinery localizes not only in the nucleolus but also at a center that is present in the bud side of the nucleus after the initiation of mitosis. This center can be visualized by live microscopy as a punctate body located in close proximity to the nuclear envelope and opposite to the nucleolus. It contains ribosomal DNA (rDNA) and precursors of both 40S and 60S ribosomal subunits. Proteins that actively participate in ribosome synthesis, but not functionally defective variants, accumulate in that site. The formation of this body occurs in the metaphase-to-anaphase transition when discrete regions of rDNA occasionally exit the nucleolus and move into the bud. Collectively, our data unveil the existence of a previously unknown mechanism for preribosome accumulation at the nuclear periphery in budding yeast. We propose that this might be a strategy to expedite the delivery of ribosomes to the growing bud. PMID:28588079

  18. Screening for Key Pathways Associated with the Development of Osteoporosis by Bioinformatics Analysis

    PubMed Central

    Liu, Yanqing; Wang, Yueqiu; Zhang, Yanxia; Liu, Zhiyong; Xiang, Hongfei; Peng, Xianbo

    2017-01-01

    Objectives. We aimed to find the key pathways associated with the development of osteoporosis. Methods. We downloaded expression profile data of GSE35959 and analyzed the differentially expressed genes (DEGs) in 3 comparison groups (old_op versus middle, old_op versus old, and old_op versus senescent). KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analyses were carried out. Besides, Venn diagram analysis and gene functional interaction (FI) network analysis were performed. Results. Totally 520 DEGs, 966 DEGs, and 709 DEGs were obtained in old_op versus middle, old_op versus old, and old_op versus senescent groups, respectively. Lysosome pathway was the significantly enriched pathways enriched by intersection genes. The pathways enriched by subnetwork modules suggested that mitotic metaphase and anaphase and signaling by Rho GTPases in module 1 had more proteins from module. Conclusions. Lysosome pathway, mitotic metaphase and anaphase, and signaling by Rho GTPases may be involved in the development of osteoporosis. Furthermore, Rho GTPases may regulate the balance of bone resorption and bone formation via controlling osteoclast and osteoblast. These 3 pathways may be regarded as the treatment targets for osteoporosis. PMID:28466021

  19. Arabidopsis kinetochore null2 is an upstream component for centromeric histone H3 variant cenH3 deposition at centromeres.

    PubMed

    Lermontova, Inna; Kuhlmann, Markus; Friedel, Swetlana; Rutten, Twan; Heckmann, Stefan; Sandmann, Michael; Demidov, Dmitri; Schubert, Veit; Schubert, Ingo

    2013-09-01

    The centromeric histone H3 variant cenH3 is an essential centromeric protein required for assembly, maintenance, and proper function of kinetochores during mitosis and meiosis. We identified a kinetochore null2 (KNL2) homolog in Arabidopsis thaliana and uncovered features of its role in cenH3 loading at centromeres. We show that Arabidopsis KNL2 colocalizes with cenH3 and is associated with centromeres during all stages of the mitotic cell cycle, except from metaphase to mid-anaphase. KNL2 is regulated by the proteasome degradation pathway. The KNL2 promoter is mainly active in meristematic tissues, similar to the cenH3 promoter. A knockout mutant for KNL2 shows a reduced level of cenH3 expression and reduced amount of cenH3 protein at chromocenters of meristematic nuclei, anaphase bridges during mitosis, micronuclei in pollen tetrads, and 30% seed abortion. Moreover, knl2 mutant plants display reduced expression of suppressor of variegation 3-9 homologs2, 4, and 9 and reduced DNA methylation, suggesting an impact of KNL2 on the epigenetic environment for centromere maintenance.

  20. Genotoxicity of the disinfection by-products resulting from peracetic acid- or hypochlorite-disinfected sewage wastewater.

    PubMed

    Crebelli, R; Conti, L; Monarca, S; Feretti, D; Zerbini, I; Zani, C; Veschetti, E; Cutilli, D; Ottaviani, M

    2005-03-01

    Wastewater disinfection is routinely carried out to prevent the spread of human pathogens present in wastewater effluents. To this aim, chemical and physical treatments are applied to the effluents before their emission in water bodies. In this study, the influence of two widely used disinfectants, peracetic acid (PAA) and sodium hypochlorite (NaClO), on the formation of mutagenic by-products was investigated. Wastewater samples were collected before and after disinfection, in winter and in summer, at a pilot plant installed in a municipal wastewater-treatment plant. Samples were adsorbed using silica C18 cartridges and the concentrates were tested for mutagenicity in the Salmonella typhimurium reversion test with strains TA98 and TA100. Non-concentrated water samples were tested with two plant genotoxicity assays (the Allium cepa root anaphase aberration test and the Tradescantia/micronucleus test). Mutagenicity assays in bacteria and in Tradescantia showed borderline mutagenicity in some of the wastewater samples, independent of the disinfection procedure applied. Negative results were obtained in the A. cepa anaphase aberration test. These results indicate that, in the conditions applied, wastewater disinfection with PAA and NaClO does not lead to the formation of significant amounts of genotoxic by-products.

  1. The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles

    PubMed Central

    Levesque, Aime A.; Compton, Duane A.

    2001-01-01

    Chromokinesins have been postulated to provide the polar ejection force needed for chromosome congression during mitosis. We have evaluated that possibility by monitoring chromosome movement in vertebrate-cultured cells using time-lapse differential interference contrast microscopy after microinjection with antibodies specific for the chromokinesin Kid. 17.5% of cells injected with Kid-specific antibodies have one or more chromosomes that remain closely opposed to a spindle pole and fail to enter anaphase. In contrast, 82.5% of injected cells align chromosomes in metaphase, progress to anaphase, and display chromosome velocities not significantly different from control cells. However, injected cells lack chromosome oscillations, and chromosome orientation is atypical because chromosome arms extend toward spindle poles during both congression and metaphase. Furthermore, chromosomes cluster into a mass and fail to oscillate when Kid is perturbed in cells containing monopolar spindles. These data indicate that Kid generates the polar ejection force that pushes chromosome arms away from spindle poles in vertebrate-cultured cells. This force increases the efficiency with which chromosomes make bipolar spindle attachments and regulates kinetochore activities necessary for chromosome oscillation, but is not essential for chromosome congression. PMID:11564754

  2. Revealing the micromechanics driving cellular division: optical manipulation of force-bearing substructure in mitotic cells

    NASA Astrophysics Data System (ADS)

    Ono, Matthew; Preece, Daryl; Duquette, Michelle; Forer, Arthur; Berns, Michael

    2017-08-01

    During the anaphase stage of mitosis, a motility force transports genetic material in the form of chromosomes to the poles of the cell. Chromosome deformations during anaphase transport have largely been attributed to viscous drag force, however LaFountain et. al. found that a physical tether connects separating chromosome ends in crane-fly spermatocytes such that a backwards tethering force elongates the separating chromosomes. In the presented study laser microsurgery was used to deduce the mechanistic basis of chromosome elongation in rat-kangaroo cells. In half of tested chromosome pairs, laser microsurgery between separating chromosome ends reduced elongation by 7+/-3% suggesting a source of chromosome strain independent of viscous drag. When microsurgery was used to sever chromosomes during transport, kinetochore attached fragments continued poleward travel while half of end fragments traveled towards the opposite pole and the remaining fragments either did not move or segregated to the proper pole. Microsurgery directed between chromosome ends always ceased cross-polar fragment travel suggesting the laser severed a physical tether transferring force to the fragment. Optical trapping of fragments moving towards the opposite pole estimates an upper boundary on the tethering force of 1.5 pN.

  3. A sequential multi-target Mps1 phosphorylation cascade promotes spindle checkpoint signaling

    PubMed Central

    Ji, Zhejian; Gao, Haishan; Jia, Luying; Li, Bing; Yu, Hongtao

    2017-01-01

    The master spindle checkpoint kinase Mps1 senses kinetochore-microtubule attachment and promotes checkpoint signaling to ensure accurate chromosome segregation. The kinetochore scaffold Knl1, when phosphorylated by Mps1, recruits checkpoint complexes Bub1–Bub3 and BubR1–Bub3 to unattached kinetochores. Active checkpoint signaling ultimately enhances the assembly of the mitotic checkpoint complex (MCC) consisting of BubR1–Bub3, Mad2, and Cdc20, which inhibits the anaphase-promoting complex or cyclosome bound to Cdc20 (APC/CCdc20) to delay anaphase onset. Using in vitro reconstitution, we show that Mps1 promotes APC/C inhibition by MCC components through phosphorylating Bub1 and Mad1. Phosphorylated Bub1 binds to Mad1–Mad2. Phosphorylated Mad1 directly interacts with Cdc20. Mutations of Mps1 phosphorylation sites in Bub1 or Mad1 abrogate the spindle checkpoint in human cells. Therefore, Mps1 promotes checkpoint activation through sequentially phosphorylating Knl1, Bub1, and Mad1. This sequential multi-target phosphorylation cascade makes the checkpoint highly responsive to Mps1 and to kinetochore-microtubule attachment. DOI: http://dx.doi.org/10.7554/eLife.22513.001 PMID:28072388

  4. Spindle checkpoint–independent inhibition of mitotic chromosome segregation by Drosophila Mps1

    PubMed Central

    Althoff, Friederike; Karess, Roger E.; Lehner, Christian F.

    2012-01-01

    Monopolar spindle 1 (Mps1) is essential for the spindle assembly checkpoint (SAC), which prevents anaphase onset in the presence of misaligned chromosomes. Moreover, Mps1 kinase contributes in a SAC-independent manner to the correction of erroneous initial attachments of chromosomes to the spindle. Our characterization of the Drosophila homologue reveals yet another SAC-independent role. As in yeast, modest overexpression of Drosophila Mps1 is sufficient to delay progression through mitosis during metaphase, even though chromosome congression and metaphase alignment do not appear to be affected. This delay in metaphase depends on the SAC component Mad2. Although Mps1 overexpression in mad2 mutants no longer causes a metaphase delay, it perturbs anaphase. Sister kinetochores barely move apart toward spindle poles. However, kinetochore movements can be restored experimentally by separase-independent resolution of sister chromatid cohesion. We propose therefore that Mps1 inhibits sister chromatid separation in a SAC-independent manner. Moreover, we report unexpected results concerning the requirement of Mps1 dimerization and kinase activity for its kinetochore localization in Drosophila. These findings further expand Mps1's significance for faithful mitotic chromosome segregation and emphasize the importance of its careful regulation. PMID:22553353

  5. Spindle checkpoint-independent inhibition of mitotic chromosome segregation by Drosophila Mps1.

    PubMed

    Althoff, Friederike; Karess, Roger E; Lehner, Christian F

    2012-06-01

    Monopolar spindle 1 (Mps1) is essential for the spindle assembly checkpoint (SAC), which prevents anaphase onset in the presence of misaligned chromosomes. Moreover, Mps1 kinase contributes in a SAC-independent manner to the correction of erroneous initial attachments of chromosomes to the spindle. Our characterization of the Drosophila homologue reveals yet another SAC-independent role. As in yeast, modest overexpression of Drosophila Mps1 is sufficient to delay progression through mitosis during metaphase, even though chromosome congression and metaphase alignment do not appear to be affected. This delay in metaphase depends on the SAC component Mad2. Although Mps1 overexpression in mad2 mutants no longer causes a metaphase delay, it perturbs anaphase. Sister kinetochores barely move apart toward spindle poles. However, kinetochore movements can be restored experimentally by separase-independent resolution of sister chromatid cohesion. We propose therefore that Mps1 inhibits sister chromatid separation in a SAC-independent manner. Moreover, we report unexpected results concerning the requirement of Mps1 dimerization and kinase activity for its kinetochore localization in Drosophila. These findings further expand Mps1's significance for faithful mitotic chromosome segregation and emphasize the importance of its careful regulation.

  6. Condensin suppresses recombination and regulates double-strand break processing at the repetitive ribosomal DNA array to ensure proper chromosome segregation during meiosis in budding yeast

    PubMed Central

    Li, Ping; Jin, Hui; Yu, Hong-Guo

    2014-01-01

    During meiosis, homologues are linked by crossover, which is required for bipolar chromosome orientation before chromosome segregation at anaphase I. The repetitive ribosomal DNA (rDNA) array, however, undergoes little or no meiotic recombination. Hyperrecombination can cause chromosome missegregation and rDNA copy number instability. We report here that condensin, a conserved protein complex required for chromosome organization, regulates double-strand break (DSB) formation and repair at the rDNA gene cluster during meiosis in budding yeast. Condensin is highly enriched at the rDNA region during prophase I, released at the prophase I/metaphase I transition, and reassociates with rDNA before anaphase I onset. We show that condensin plays a dual role in maintaining rDNA stability: it suppresses the formation of Spo11-mediated rDNA breaks, and it promotes DSB processing to ensure proper chromosome segregation. Condensin is unnecessary for the export of rDNA breaks outside the nucleolus but required for timely repair of meiotic DSBs. Our work reveals that condensin coordinates meiotic recombination with chromosome segregation at the repetitive rDNA sequence, thereby maintaining genome integrity. PMID:25103240

  7. The Apc5 Subunit of the Anaphase-Promoting Complex/Cyclosome Interacts with Poly(A) Binding Protein and Represses Internal Ribosome Entry Site-Mediated Translation

    PubMed Central

    Koloteva-Levine, Nadejda; Pinchasi, Dalia; Pereman, Idan; Zur, Amit; Brandeis, Michael; Elroy-Stein, Orna

    2004-01-01

    The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit ubiquitin ligase that mediates the proteolysis of cell cycle proteins in mitosis and G1. We used a yeast three-hybrid screen to identify proteins that interact with the internal ribosome entry site (IRES) of platelet-derived growth factor 2 mRNA. Surprisingly, this screen identified Apc5, although it does not harbor a classical RNA binding domain. We found that Apc5 binds the poly(A) binding protein (PABP), which directly binds the IRES element. PABP was found to enhance IRES-mediated translation, whereas Apc5 overexpression counteracted this effect. In addition to its association with the APC/C complex, Apc5 binds much heavier complexes and cosediments with the ribosomal fraction. In contrast to Apc3, which is associated only with the APC/C and remains intact during differentiation, Apc5 is degraded upon megakaryocytic differentiation in correlation with IRES activation. Expression of Apc5 in differentiated cells abolished IRES activation. This is the first report implying an additional role for an APC/C subunit, apart from its being part of the APC/C complex. PMID:15082755

  8. The Spindle Assembly Checkpoint Is Not Essential for Viability of Human Cells with Genetically Lowered APC/C Activity.

    PubMed

    Wild, Thomas; Larsen, Marie Sofie Yoo; Narita, Takeo; Schou, Julie; Nilsson, Jakob; Choudhary, Chunaram

    2016-03-01

    The anaphase-promoting complex/cyclosome (APC/C) and the spindle assembly checkpoint (SAC), which inhibits the APC/C, are essential determinants of mitotic timing and faithful division of genetic material. Activation of the APC/C is known to depend on two APC/C-interacting E2 ubiquitin-conjugating enzymes-UBE2C and UBE2S. We show that APC/C activity in human cells is tuned by the combinatorial use of three E2s, namely UBE2C, UBE2S, and UBE2D. Genetic deletion of UBE2C and UBE2S, individually or in combination, leads to discriminative reduction in APC/C function and sensitizes cells to UBE2D depletion. Reduction of APC/C activity results in loss of switch-like metaphase-to-anaphase transition and, strikingly, renders cells insensitive to chemical inhibition of MPS1 and genetic ablation of MAD2, both of which are essential for the SAC. These results provide insights into the regulation of APC/C activity and demonstrate that the essentiality of the SAC is imposed by the strength of the APC/C. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Effect of Initiation Time of Hydrostatic Pressure Shock on Chromosome Set Doubling of Tetraploidization in Turbot Scophthalmus maximus.

    PubMed

    Zhu, Xiangping; Lin, Zhengmei; Wu, Zhihao; Li, Jiandong; You, Feng

    2017-10-01

    The objective of the study was to clarify the effects of initiation time on chromosome set doubling induced by hydrostatic pressure shock through nuclear phase fluorescent microscopy in turbot Scophthalmus maximus. The ratio of developmentally delayed embryo and chromosome counting was used to assess induction efficiency. For the embryos subjected to a pressure of 67.5 MPa for 6 min at prometaphase (A group), chromosomes recovered to the pre-treatment condition after 11-min recovering. The first nuclear division and cytokinesis proceeded normally. During the second cell cycle, chromosomes did not enter into metaphase after prometaphase, but spread around for about 13 min, then assembled together and formed a large nucleus without anaphase separation; the second nuclear division and cytokinesis was inhibited. The ratio of developmentally delayed embryo showed that the second mitosis of 78% A group embryo was inhibited. The result of chromosome counting showed that the tetraploidization rate of A group was 72%. For the embryos subjected to a pressure of 67.5 MPa for 6 min at anaphase (B group), chromosomes recovered to the pre-treatment condition after about 31-min recovering. Afterwards, one telophase nucleus formed without anaphase separation; the first nuclear division was inhibited. The time of the first cleavage furrow occurrence of B group embryos delayed 27 min compared with that of A group embryos. With the first cytokinesis proceeding normally, 81.3% B group embryos were at two-cell stage around the middle of the second cell cycle after treatment. Those embryos were one of the two blastomeres containing DNA and the other without DNA. The first nuclear division of those embryos was inhibited. During the third cell cycle after treatment, 65.2% of those abovementioned embryos were at four-cell stage, cytokinesis occurred in both blastomeres, and nuclear division only occurred in the blastomere containing DNA. Of those abovementioned embryos, 14.0% were at three-cell stage and cytokinesis only occurred in the blastomere containing DNA. The result of chromosome counting showed that the tetraploidization rate of B group was only 7%. To summarize what had been mentioned above, mechanisms on chromosome set doubling of tetraploid induction would be different with different initiation time of hydrostatic pressure treatment. Chromosome set doubling was mainly due to inhibition of the second mitosis when hydrostatic pressure treatment was performed at prometaphase. Otherwise, chromosome set doubling was mainly due to inhibition of the first nuclear division when hydrostatic pressure treatment was performed at anaphase. Induction efficiency of tetraploidization resulted from inhibition of the second cleavage was higher than which resulted from inhibition of the first nuclear division. This study was the first to reveal biological mechanisms on the two viewpoints of chromosome set doubling through effect of initiation time of hydrostatic pressure treatment on chromosome set doubling in tetraploid induction.

  10. Slip slidin’ away of mitosis with CRL2Zyg11

    PubMed Central

    2016-01-01

    The spindle assembly checkpoint arrests mitotic cells by preventing degradation of cyclin B1 by the anaphase-promoting complex/cyclosome, but some cells evade this checkpoint and slip out of mitosis. Balachandran et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201601083) show that the E3 ligase CRL2ZYG11 degrades cyclin B1, allowing mitotic slippage. PMID:27810907

  11. The Effects of Deregulated Cyclin Expression in Mitosis. A Role in Breast Tumorigenesis

    DTIC Science & Technology

    2006-05-01

    At times, mitotic division completely fails resulting in polyploid cells containing double the amount of DNA and centrosomes, thus explaining how...more frequent event that was easily scorable under the experimental conditions. Polyploid cells, themselves unstable, can readily give rise to...anaphase but instead began to decondense chromosomes, resulting in a polyploid cell (supplementary movie 3). This was consistent with our observation

  12. Mip1 associates with both the Mps1 kinase and actin and is required for cell cortex stability and anaphase spindle positioning

    USDA-ARS?s Scientific Manuscript database

    The Mps1 family of protein kinases contributes to cell cycle control by regulating multiple microtubule cytoskeleton activities. We have uncovered a new Mps1 substrate that provides a novel link between Mps1 and the actin cytoskeleton. We have identified a conserved human Mps1 (hMps1) interacting pr...

  13. Mechanisms of pseudosubstrate inhibition of the anaphase promoting complex by Acm1

    PubMed Central

    Burton, Janet L; Xiong, Yong; Solomon, Mark J

    2011-01-01

    The anaphase promoting complex (APC) is a ubiquitin ligase that promotes the degradation of cell-cycle regulators by the 26S proteasome. Cdc20 and Cdh1 are WD40-containing APC co-activators that bind destruction boxes (DB) and KEN boxes within substrates to recruit them to the APC for ubiquitination. Acm1 is an APCCdh1 inhibitor that utilizes a DB and a KEN box to bind Cdh1 and prevent substrate binding, although Acm1 itself is not a substrate. We investigated what differentiates an APC substrate from an inhibitor. We identified the Acm1 A-motif that interacts with Cdh1 and together with the DB and KEN box is required for APCCdh1 inhibition. A genetic screen identified Cdh1 WD40 domain residues important for Acm1 A-motif interaction and inhibition that appears to reside near Cdh1 residues important for DB recognition. Specific lysine insertion mutations within Acm1 promoted its ubiquitination by APCCdh1 whereas lysine removal from the APC substrate Hsl1 converted it into a potent APCCdh1 inhibitor. These findings suggest that tight Cdh1 binding combined with the inaccessibility of ubiquitinatable lysines contributes to pseudosubstrate inhibition of APCCdh1. PMID:21460798

  14. Chk1 protects against chromatin bridges by constitutively phosphorylating BLM serine 502 to inhibit BLM degradation.

    PubMed

    Petsalaki, Eleni; Dandoulaki, Maria; Morrice, Nick; Zachos, George

    2014-09-15

    Chromatin bridges represent incompletely segregated chromosomal DNA connecting the anaphase poles and can result in chromosome breakage. The Bloom's syndrome protein helicase (BLM, also known as BLMH) suppresses formation of chromatin bridges. Here, we show that cells deficient in checkpoint kinase 1 (Chk1, also known as CHEK1) exhibit higher frequency of chromatin bridges and reduced BLM protein levels compared to controls. Chk1 inhibition leads to BLM ubiquitylation and proteasomal degradation during interphase. Furthermore, Chk1 constitutively phosphorylates human BLM at serine 502 (S502) and phosphorylated BLM localises to chromatin bridges. Mutation of S502 to a non-phosphorylatable alanine residue (BLM-S502A) reduces the stability of BLM, whereas expression of a phospho-mimicking BLM-S502D, in which S502 is mutated to aspartic acid, stabilises BLM and prevents chromatin bridges in Chk1-deficient cells. In addition, wild-type but not BLM-S502D associates with cullin 3, and cullin 3 depletion rescues BLM accumulation and localisation to chromatin bridges after Chk1 inhibition. We propose that Chk1 phosphorylates BLM-S502 to inhibit cullin-3-mediated BLM degradation during interphase. These results suggest that Chk1 prevents deleterious anaphase bridges by stabilising BLM. © 2014. Published by The Company of Biologists Ltd.

  15. Aurora B is dispensable for megakaryocyte polyploidization, but contributes to the endomitotic process.

    PubMed

    Lordier, Larissa; Chang, Yunhua; Jalil, Abdelali; Aurade, Frédéric; Garçon, Loïc; Lécluse, Yann; Larbret, Frédéric; Kawashima, Toshiyuki; Kitamura, Toshio; Larghero, Jérôme; Debili, Najet; Vainchenker, William

    2010-09-30

    Polyploidization of megakaryocytes (MKs), the platelet precursors, occurs by endomitosis, a mitotic process that fails at late stages of cytokinesis. Expression and function of Aurora B kinase during endomitosis remain controversial. Here, we report that Aurora B is normally expressed during the human MK endomitotic process. Aurora B localized normally in the midzone or midbody during anaphase and telophase in low ploidy megakaryocytes and in up to 16N rare endomitotic MKs was observed. Aurora B was also functional during cytokinesis as attested by phosphorylation of both its activation site and MgcRacGAP, its main substrate. However, despite its activation, Aurora B did not prevent furrow regression. Inhibition of Aurora B by AZD1152-HQPA decreased cell cycle entry both in 2N to 4N and polyploid MKs and induced apoptosis mainly in 2N to 4N cells. In both MK classes, AZD1152-HQPA induced p53 activation and retinoblastoma hypophosphorylation. Resistance of polyploid MKs to apoptosis correlated to a high BclxL level. Aurora B inhibition did not impair MK polyploidization but profoundly modified the endomitotic process by inducing a mis-segregation of chromosomes and a mitotic failure in anaphase. This indicates that Aurora B is dispensable for MK polyploidization but is necessary to achieve a normal endomitotic process.

  16. Relocalization of human chromatin remodeling cofactor TIP48 in mitosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigala, Barbara; Edwards, Mina; Puri, Teena

    2005-11-01

    TIP48 is a highly conserved eukaryotic AAA{sup +} protein which is an essential cofactor for several complexes involved in chromatin acetylation and remodeling, transcriptional and developmental regulation and nucleolar organization and trafficking. We show that TIP48 abundance in HeLa cells did not change during the cell cycle, nor did its distribution in various biochemical fractions. However, we observed distinct changes in the subcellular localization of TIP48 during M phase using immunofluorescence microscopy. Our studies demonstrate that in interphase cells TIP48 was found mainly in the nucleus and exhibited a distinct localization in the nuclear periphery. As the cells entered mitosis,more » TIP48 was excluded from the condensing chromosomes but showed association with the mitotic apparatus. During anaphase, some TIP48 was detected in the centrosome colocalizing with tubulin but the strongest staining appeared in the mitotic equator associated with the midzone central spindle. Accumulation of TIP48 in the midzone and the midbody was observed in late telophase and cytokinesis. This redeployment of TIP48 during anaphase and cytokinesis was independent of microtubule assembly. The relocation of endogenous TIP48 to the midzone/midbody under physiological conditions suggests a novel and distinct function for TIP48 in mitosis and possible involvement in the exit of mitosis.« less

  17. Role of Securin, Separase and Cohesins in female meiosis and polar body formation in Drosophila.

    PubMed

    Guo, Zhihao; Batiha, Osamah; Bourouh, Mohammed; Fifield, Eric; Swan, Andrew

    2016-02-01

    Chromosome segregation in meiosis is controlled by a conserved pathway that culminates in Separase-mediated cleavage of the α-kleisin Rec8, leading to dissolution of cohesin rings. Drosophila has no gene encoding Rec8, and the absence of a known Separase target raises the question of whether Separase and its regulator Securin (Pim in Drosophila) are important in Drosophila meiosis. Here, we investigate the role of Securin, Separase and the cohesin complex in female meiosis using fluorescence in situ hybridization against centromeric and arm-specific sequences to monitor cohesion. We show that Securin destruction and Separase activity are required for timely release of arm cohesion in anaphase I and centromere-proximal cohesion in anaphase II. They are also required for release of arm cohesion on polar body chromosomes. Cohesion on polar body chromosomes depends on the cohesin components SMC3 and the mitotic α-kleisin Rad21 (also called Vtd in Drosophila). We provide cytological evidence that SMC3 is required for arm cohesion in female meiosis, whereas Rad21, in agreement with recent findings, is not. We conclude that in Drosophila meiosis, cohesion is regulated by a conserved Securin-Separase pathway that targets a diverged Separase target, possibly within the cohesin complex. © 2016. Published by The Company of Biologists Ltd.

  18. Meikin-associated polo-like kinase specifies Bub1 distribution in meiosis I.

    PubMed

    Miyazaki, Seira; Kim, Jihye; Yamagishi, Yuya; Ishiguro, Tadashi; Okada, Yuki; Tanno, Yuji; Sakuno, Takeshi; Watanabe, Yoshinori

    2017-06-01

    In meiosis I, sister chromatids are captured by microtubules emanating from the same pole (mono-orientation), and centromeric cohesion is protected throughout anaphase. Shugoshin, which is localized to centromeres depending on the phosphorylation of histone H2A by Bub1 kinase, plays a central role in protecting meiotic cohesin Rec8 from separase cleavage. Another key meiotic kinetochore factor, meikin, may regulate cohesion protection, although the underlying molecular mechanisms remain elusive. Here, we show that fission yeast Moa1 (meikin), which associates stably with CENP-C during meiosis I, recruits Plo1 (polo-like kinase) to the kinetochores and phosphorylates Spc7 (KNL1) to accumulate Bub1. Consequently, in contrast to the transient kinetochore localization of mitotic Bub1, meiotic Bub1 persists at kinetochores until anaphase I. The meiotic Bub1 pool ensures robust Sgo1 (shugoshin) localization and cohesion protection at centromeres by cooperating with heterochromatin protein Swi6, which binds and stabilizes Sgo1. Furthermore, molecular genetic analyses show a hierarchical regulation of centromeric cohesion protection by meikin and shugoshin that is important for establishing meiosis-specific chromosome segregation. We provide evidence that the meiosis-specific Bub1 regulation is conserved in mouse. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  19. Targeting telomere-containing chromosome ends with a near-infrared femtosecond laser to study the activation of the DNA damage response and DNA damage repair pathways

    PubMed Central

    Silva, Bárbara Alcaraz; Stambaugh, Jessica R.

    2013-01-01

    Abstract. Telomeres are at the ends of chromosomes. Previous evidence suggests that laser-induced deoxyribose nucleic acid (DNA) breaks at chromosome ends during anaphase results in delayed cytokinesis. A possible explanation for this delay is that the DNA damage response (DDR) mechanism has been activated. We describe a live imaging method to study the effects of DDR activation following focal point near-infrared femtosecond laser microirradiation either at a single chromosome end or at a chromosome arm in mitotic anaphase cells. Laser microirradiation is used in combination with dual fluorescent labeling to monitor the co-localization of double-strand break marker γH2AX along with the DDR factors in PtK2 (Potorous tridactylus) cells. Laser-induced DNA breaks in chromosome ends as well as in chromosome arms results in recruitment of the following: poly(ADP-ribose) polymerase 1, checkpoint sensors (p-Chk1, p-Chk2), DNA repair protein Ku70/Ku80, and proliferating cell nuclear antigen. However, phosphorylated p53 at serine 15 is detected only at chromosome ends and not at chromosome arms. Full activation of DDR on damaged chromosome ends may explain previously published results that showed the delay of cytokinesis. PMID:24064949

  20. Pac-man motility of kinetochores unleashed by laser microsurgery

    PubMed Central

    LaFountain, James R.; Cohan, Christopher S.; Oldenbourg, Rudolf

    2012-01-01

    We report on experiments directly in living cells that reveal the regulation of kinetochore function by tension. X and Y sex chromosomes in crane fly (Nephrotoma suturalis) spermatocytes exhibit an atypical segregation mechanism in which each univalent maintains K-fibers to both poles. During anaphase, each maintains a leading fiber (which shortens) to one pole and a trailing fiber (which elongates) to the other. We used this intriguing behavior to study the motile states that X-Y kinetochores are able to support during anaphase. We used a laser microbeam to either sever a univalent along the plane of sister chromatid cohesion or knock out one of a univalent's two kinetochores to release one or both from the resistive influence of its sister's K-fiber. Released kinetochores with attached chromosome arms moved poleward at rates at least two times faster than normal. Furthermore, fluorescent speckle microscopy revealed that detached kinetochores converted their functional state from reverse pac-man to pac-man motility as a consequence of their release from mechanical tension. We conclude that kinetochores can exhibit pac-man motility, even though their normal behavior is dominated by traction fiber mechanics. Unleashing of kinetochore motility through loss of resistive force is further evidence for the emerging model that kinetochores are subject to tension-sensitive regulation. PMID:22740625

  1. Cell Cycle Synchronization of HeLa Cells to Assay EGFR Pathway Activation.

    PubMed

    Wee, Ping; Wang, Zhixiang

    2017-01-01

    Progression through the cell cycle causes changes in the cell's signaling pathways that can alter EGFR signal transduction. Here, we describe drug-derived protocols to synchronize HeLa cells in various phases of the cell cycle, including G1 phase, S phase, G2 phase, and mitosis, specifically in the mitotic stages of prometaphase, metaphase, and anaphase/telophase. The synchronization procedures are designed to allow synchronized cells to be treated for EGF and collected for the purpose of Western blotting for EGFR signal transduction components.S phase synchronization is performed by thymidine block, G2 phase with roscovitine, prometaphase with nocodazole, metaphase with MG132, and anaphase/telophase with blebbistatin. G1 phase synchronization is performed by culturing synchronized mitotic cells obtained by mitotic shake-off. We also provide methods to validate the synchronization methods. For validation by Western blotting, we provide the temporal expression of various cell cycle markers that are used to check the quality of the synchronization. For validation of mitotic synchronization by microscopy, we provide a guide that describes the physical properties of each mitotic stage, using their cellular morphology and DNA appearance. For validation by flow cytometry, we describe the use of imaging flow cytometry to distinguish between the phases of the cell cycle, including between each stage of mitosis.

  2. Focal accumulation of preribosomes outside the nucleolus during metaphase-anaphase in budding yeast.

    PubMed

    Moriggi, Giulia; Gaspar, Sonia G; Nieto, Blanca; Bustelo, Xosé R; Dosil, Mercedes

    2017-09-01

    Saccharomyces cerevisiae contains one nucleolus that remains intact in the mother-cell side of the nucleus throughout most of mitosis. Based on this, it is assumed that the bulk of ribosome production during cell division occurs in the mother cell. Here, we show that the ribosome synthesis machinery localizes not only in the nucleolus but also at a center that is present in the bud side of the nucleus after the initiation of mitosis. This center can be visualized by live microscopy as a punctate body located in close proximity to the nuclear envelope and opposite to the nucleolus. It contains ribosomal DNA (rDNA) and precursors of both 40S and 60S ribosomal subunits. Proteins that actively participate in ribosome synthesis, but not functionally defective variants, accumulate in that site. The formation of this body occurs in the metaphase-to-anaphase transition when discrete regions of rDNA occasionally exit the nucleolus and move into the bud. Collectively, our data unveil the existence of a previously unknown mechanism for preribosome accumulation at the nuclear periphery in budding yeast. We propose that this might be a strategy to expedite the delivery of ribosomes to the growing bud. © 2017 Moriggi et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  3. In vivo dynamics and kinetics of pKi-67: transition from a mobile to an immobile form at the onset of anaphase.

    PubMed

    Saiwaki, Takuya; Kotera, Ippei; Sasaki, Mitsuho; Takagi, Masatoshi; Yoneda, Yoshihiro

    2005-08-01

    A cell proliferation marker protein, pKi-67, distributes to the chromosome periphery during mitosis and nucleolar heterochromatin in the interphase. We report here on the structural domains of pKi-67 that are required for its correct distribution. While both the LR domain and the conserved domain were involved in localization to the nucleolar heterochromatin, both the LR domain and the Ki-67 repeat domain were required for its distribution to the mitotic chromosome periphery. Using in vivo time-lapse microscopy, GFP-pKi-67 was dynamically tracked from the mitotic chromosome periphery to reforming nucleoli via prenucleolar bodies (PNBs). The signals in PNBs then moved towards and fused into the reforming nucleoli with a thin string-like fluorescence during early G1 phase. An analysis of the in vivo kinetics of pKi-67 using photobleaching indicated that the association of pKi-67 with chromatin was progressively altered from "loose" to "tight" after the onset of anaphase. These findings indicate that pKi-67 dynamically alters the nature of the interaction with chromatin structure during the cell cycle, which is closely related to the reformation process of the interphase nucleolar chromatin.

  4. Human Artificial Chromosomes with Alpha Satellite-Based De Novo Centromeres Show Increased Frequency of Nondisjunction and Anaphase Lag

    PubMed Central

    Rudd, M. Katharine; Mays, Robert W.; Schwartz, Stuart; Willard, Huntington F.

    2003-01-01

    Human artificial chromosomes have been used to model requirements for human chromosome segregation and to explore the nature of sequences competent for centromere function. Normal human centromeres require specialized chromatin that consists of alpha satellite DNA complexed with epigenetically modified histones and centromere-specific proteins. While several types of alpha satellite DNA have been used to assemble de novo centromeres in artificial chromosome assays, the extent to which they fully recapitulate normal centromere function has not been explored. Here, we have used two kinds of alpha satellite DNA, DXZ1 (from the X chromosome) and D17Z1 (from chromosome 17), to generate human artificial chromosomes. Although artificial chromosomes are mitotically stable over many months in culture, when we examined their segregation in individual cell divisions using an anaphase assay, artificial chromosomes exhibited more segregation errors than natural human chromosomes (P < 0.001). Naturally occurring, but abnormal small ring chromosomes derived from chromosome 17 and the X chromosome also missegregate more than normal chromosomes, implicating overall chromosome size and/or structure in the fidelity of chromosome segregation. As different artificial chromosomes missegregate over a fivefold range, the data suggest that variable centromeric DNA content and/or epigenetic assembly can influence the mitotic behavior of artificial chromosomes. PMID:14560014

  5. Human artificial chromosomes with alpha satellite-based de novo centromeres show increased frequency of nondisjunction and anaphase lag.

    PubMed

    Rudd, M Katharine; Mays, Robert W; Schwartz, Stuart; Willard, Huntington F

    2003-11-01

    Human artificial chromosomes have been used to model requirements for human chromosome segregation and to explore the nature of sequences competent for centromere function. Normal human centromeres require specialized chromatin that consists of alpha satellite DNA complexed with epigenetically modified histones and centromere-specific proteins. While several types of alpha satellite DNA have been used to assemble de novo centromeres in artificial chromosome assays, the extent to which they fully recapitulate normal centromere function has not been explored. Here, we have used two kinds of alpha satellite DNA, DXZ1 (from the X chromosome) and D17Z1 (from chromosome 17), to generate human artificial chromosomes. Although artificial chromosomes are mitotically stable over many months in culture, when we examined their segregation in individual cell divisions using an anaphase assay, artificial chromosomes exhibited more segregation errors than natural human chromosomes (P < 0.001). Naturally occurring, but abnormal small ring chromosomes derived from chromosome 17 and the X chromosome also missegregate more than normal chromosomes, implicating overall chromosome size and/or structure in the fidelity of chromosome segregation. As different artificial chromosomes missegregate over a fivefold range, the data suggest that variable centromeric DNA content and/or epigenetic assembly can influence the mitotic behavior of artificial chromosomes.

  6. Imaging of DNA Ultrafine Bridges in Budding Yeast.

    PubMed

    Quevedo, Oliver; Lisby, Michael

    2018-01-01

    DNA ultrafine bridges (UFBs) are a type of chromatin-free DNA bridges that connect sister chromatids in anaphase and pose a threat to genome stability. However, little is known about the origin of these structures, and how they are sensed and resolved by the cell. In this chapter, we review tools and methods for studying UFBs by fluorescence microscopy including chemical and genetic approaches to induce UFBs in the model organism Saccharomyces cerevisiae.

  7. Desynapsis and spontaneous trisomy in jute (Corchorus olitorius L.).

    PubMed

    Basak, S L; Paria, P

    1980-11-01

    Cytological studies in desynaptic plants, isolated at the F6 generation of an intervarietal cross of Corchorus olitorius L., have shown variable numbers of bivalents and univalents in the PMC's at metaphase I, resulting in irregular distribution of chromosomes at anaphase I. The progenies of the desynaptic plants consisted of 9.24 percent of all possible primary trisomies except trisomie 6. The desynaptic condition is controlled by a pair of simple recessive genes.

  8. Many functions of the meiotic cohesin.

    PubMed

    Bardhan, Amit

    2010-12-01

    Sister chromatids are held together from the time of their formation in S phase until they segregate in anaphase by the cohesin complex. In meiosis of most organisms, the mitotic Mcd1/Scc1/Rad21 subunit of the cohesin complex is largely replaced by its paralog named Rec8. This article reviews the specialized functions of Rec8 that are crucial for diverse aspects of chromosome dynamics in meiosis, and presents some speculations relating to meiotic chromosome organization.

  9. The E3 Ligase APC/C-Cdh1 Is Required for Associative Fear Memory and Long-Term Potentiation in the Amygdala of Adult Mice

    ERIC Educational Resources Information Center

    Pick, Joseph E.; Malumbres, Marcos; Klann, Eric

    2013-01-01

    The anaphase promoting complex/cyclosome (APC/C) is an E3 ligase regulated by Cdh1. Beyond its role in controlling cell cycle progression, APC/C-Cdh1 has been detected in neurons and plays a role in long-lasting synaptic plasticity and long-term memory. Herein, we further examined the role of Cdh1 in synaptic plasticity and memory by generating…

  10. Genotoxicity of drinking water disinfection by-products (bromoform and chloroform) by using both Allium anaphase-telophase and comet tests.

    PubMed

    Khallef, Messaouda; Liman, Recep; Konuk, Muhsin; Ciğerci, İbrahim Hakkı; Benouareth, Djameleddine; Tabet, Mouna; Abda, Ahlem

    2015-03-01

    Genotoxic effects of bromoform and chloroform, disinfection by-products of the chlorination of drinking water, were examined by using mitotic index (MI), mitotic phase, chromosome aberrations (CAs) and comet assay on root meristematic cells of Allium cepa. Different concentrations of bromoform (25, 50, 75 and 100 μg/mL) and chloroform (25, 50, 100 and 200 μg/mL) were introduced to onion tuber roots. Distilled water was used as a negative control and methyl methansulfonate (MMS-10 μg/mL) as positive control. All obtained data were subjected to statistical analyses by using SPSS 15.0 for Windows software. For comparison purposes, Duncan multiple range tests by using one-way analysis of variance were employed and p < 0.05 was accepted as significant value. Exposure of both chemicals (except 25 μg/mL applications of bromoform) significantly decreased MI. Bromoform and chloroform (except 25 μg/mL applications) increased total CAs in Allium anaphase-telophase test. A significant increase in DNA damage was also observed at all concentrations of both bromoform and chloroform examined by comet assay. The damages were higher than that of positive control especially at 75-100 μg/mL for bromoform and 100-200 μg/mL for chloroform.

  11. A single mutation in Securin induces chromosomal instability and enhances cell invasion.

    PubMed

    Mora-Santos, Mar; Castilla, Carolina; Herrero-Ruiz, Joaquín; Giráldez, Servando; Limón-Mortés, M Cristina; Sáez, Carmen; Japón, Miguel Á; Tortolero, Maria; Romero, Francisco

    2013-01-01

    Pituitary tumour transforming gene (pttg1) encodes Securin, a protein involved in the inhibition of sister chromatid separation binding to Separase until the onset of anaphase. Separase is a cysteine-protease that degrades cohesin to segregate the sister chromatids to opposite poles of the cell. The amount of Securin is strongly regulated because it should allow Separase activation when it is degraded by the anaphase promoting complex/cyclosome, should arrest the cell cycle after DNA damage, when it is degraded through SKP1-CUL1-βTrCP ubiquitin ligase, and its overexpression induces tumour formation and correlates with metastasis in multiple tumours. Securin is a phosphoprotein that contains 32 potentially phosphorylatable residues. We mutated and analysed most of them, and found a single mutant, hSecT60A, that showed enhanced oncogenic properties. Our fluorescence activated cell sorting analysis, fluorescence in situ hybridisation assays, tumour cell migration and invasion experiments and gene expression by microarrays analysis clearly involved hSecT60A in chromosomal instability and cell invasion. These results show, for the first time, that a single mutation in pttg1 is sufficient to trigger the oncogenic properties of Securin. The finding of this point mutation in patients might be used as an effective strategy for early detection of cancer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Kinesin-5–dependent Poleward Flux and Spindle Length Control in Drosophila Embryo Mitosis

    PubMed Central

    Brust-Mascher, Ingrid; Sommi, Patrizia; Cheerambathur, Dhanya K.

    2009-01-01

    We used antibody microinjection and genetic manipulations to dissect the various roles of the homotetrameric kinesin-5, KLP61F, in astral, centrosome-controlled Drosophila embryo spindles and to test the hypothesis that it slides apart interpolar (ip) microtubules (MT), thereby controlling poleward flux and spindle length. In wild-type and Ncd null mutant embryos, anti-KLP61F dissociated the motor from spindles, producing a spatial gradient in the KLP61F content of different spindles, which was visible in KLP61F-GFP transgenic embryos. The resulting mitotic defects, supported by gene dosage experiments and time-lapse microscopy of living klp61f mutants, reveal that, after NEB, KLP61F drives persistent MT bundling and the outward sliding of antiparallel MTs, thereby contributing to several processes that all appear insensitive to cortical disruption. KLP61F activity contributes to the poleward flux of both ipMTs and kinetochore MTs and to the length of the metaphase spindle. KLP61F activity maintains the prometaphase spindle by antagonizing Ncd and another unknown force-generator and drives anaphase B, although the rate of spindle elongation is relatively insensitive to the motor's concentration. Finally, KLP61F activity contributes to normal chromosome congression, kinetochore spacing, and anaphase A rates. Thus, a KLP61F-driven sliding filament mechanism contributes to multiple aspects of mitosis in this system. PMID:19158379

  13. Mad2, Bub3, and Mps1 regulate chromosome segregation and mitotic synchrony in Giardia intestinalis, a binucleate protist lacking an anaphase-promoting complex

    PubMed Central

    Vicente, Juan-Jesus; Cande, W. Zacheus

    2014-01-01

    The binucleate pathogen Giardia intestinalis is a highly divergent eukaryote with a semiopen mitosis, lacking an anaphase-promoting complex/cyclosome (APC/C) and many of the mitotic checkpoint complex (MCC) proteins. However, Giardia has some MCC components (Bub3, Mad2, and Mps1) and proteins from the cohesin system (Smc1 and Smc3). Mad2 localizes to the cytoplasm, but Bub3 and Mps1 are either located on chromosomes or in the cytoplasm, depending on the cell cycle stage. Depletion of Bub3, Mad2, or Mps1 resulted in a lowered mitotic index, errors in chromosome segregation (including lagging chromosomes), and abnormalities in spindle morphology. During interphase, MCC knockdown cells have an abnormal number of nuclei, either one nucleus usually on the left-hand side of the cell or two nuclei with one mislocalized. These results suggest that the minimal set of MCC proteins in Giardia play a major role in regulating many aspects of mitosis, including chromosome segregation, coordination of mitosis between the two nuclei, and subsequent nuclear positioning. The critical importance of MCC proteins in an organism that lacks their canonical target, the APC/C, suggests a broader role for these proteins and hints at new pathways to be discovered. PMID:25057014

  14. Tissue-Specific Control of the Endocycle by the Anaphase Promoting Complex/Cyclosome Inhibitors UVI4 and DEL1.

    PubMed

    Heyman, Jefri; Polyn, Stefanie; Eekhout, Thomas; De Veylder, Lieven

    2017-09-01

    The endocycle represents a modified mitotic cell cycle that in plants is often coupled to cell enlargement and differentiation. Endocycle onset is controlled by activity of the Anaphase Promoting Complex/Cyclosome (APC/C), a multisubunit E3 ubiquitin ligase targeting cell-cycle factors for destruction. CELL CYCLE SWITCH52 (CCS52) proteins represent rate-limiting activator subunits of the APC/C. In Arabidopsis ( Arabidopsis thaliana ), mutations in either CCS52A1 or CCS52A2 activators result in a delayed endocycle onset, whereas their overexpression triggers increased DNA ploidy levels. Here, the relative contribution of the APC/C CCS52A1 and APC/C CCS52A2 complexes to different developmental processes was studied through analysis of their negative regulators, being the ULTRAVIOLET-B-INSENSITIVE4 protein and the DP-E2F-Like1 transcriptional repressor, respectively. Our data illustrate cooperative activity of the APC/C CCS52A1 and APC/C CCS52A2 complexes during root and trichome development, but functional interdependency during leaf development. Furthermore, we found APC/C CCS52A1 activity to control CCS52A2 expression. We conclude that interdependency of CCS52A-controlled APC/C activity is controlled in a tissue-specific manner. © 2017 American Society of Plant Biologists. All Rights Reserved.

  15. Genome-wide haploinsufficiency screen reveals a novel role for γ-TuSC in spindle organization and genome stability

    PubMed Central

    Choy, John S.; O'Toole, Eileen; Schuster, Breanna M.; Crisp, Matthew J.; Karpova, Tatiana S.; McNally, James G.; Winey, Mark; Gardner, Melissa K.; Basrai, Munira A.

    2013-01-01

    How subunit dosage contributes to the assembly and function of multimeric complexes is an important question with implications in understanding biochemical, evolutionary, and disease mechanisms. Toward identifying pathways that are susceptible to decreased gene dosage, we performed a genome-wide screen for haploinsufficient (HI) genes that guard against genome instability in Saccharomyces cerevisiae. This led to the identification of all three genes (SPC97, SPC98, and TUB4) encoding the evolutionarily conserved γ-tubulin small complex (γ-TuSC), which nucleates microtubule assembly. We found that hemizygous γ-TuSC mutants exhibit higher rates of chromosome loss and increases in anaphase spindle length and elongation velocities. Fluorescence microscopy, fluorescence recovery after photobleaching, electron tomography, and model convolution simulation of spc98/+ mutants revealed improper regulation of interpolar (iMT) and kinetochore (kMT) microtubules in anaphase. The underlying cause is likely due to reduced levels of Tub4, as overexpression of TUB4 suppressed the spindle and chromosome segregation defects in spc98/+ mutants. We propose that γ-TuSC is crucial for balanced assembly between iMTs and kMTs for spindle organization and accurate chromosome segregation. Taken together, the results show how gene dosage studies provide critical insights into the assembly and function of multisubunit complexes that may not be revealed by using traditional studies with haploid gene deletion or conditional alleles. PMID:23825022

  16. Genome-wide haploinsufficiency screen reveals a novel role for γ-TuSC in spindle organization and genome stability.

    PubMed

    Choy, John S; O'Toole, Eileen; Schuster, Breanna M; Crisp, Matthew J; Karpova, Tatiana S; McNally, James G; Winey, Mark; Gardner, Melissa K; Basrai, Munira A

    2013-09-01

    How subunit dosage contributes to the assembly and function of multimeric complexes is an important question with implications in understanding biochemical, evolutionary, and disease mechanisms. Toward identifying pathways that are susceptible to decreased gene dosage, we performed a genome-wide screen for haploinsufficient (HI) genes that guard against genome instability in Saccharomyces cerevisiae. This led to the identification of all three genes (SPC97, SPC98, and TUB4) encoding the evolutionarily conserved γ-tubulin small complex (γ-TuSC), which nucleates microtubule assembly. We found that hemizygous γ-TuSC mutants exhibit higher rates of chromosome loss and increases in anaphase spindle length and elongation velocities. Fluorescence microscopy, fluorescence recovery after photobleaching, electron tomography, and model convolution simulation of spc98/+ mutants revealed improper regulation of interpolar (iMT) and kinetochore (kMT) microtubules in anaphase. The underlying cause is likely due to reduced levels of Tub4, as overexpression of TUB4 suppressed the spindle and chromosome segregation defects in spc98/+ mutants. We propose that γ-TuSC is crucial for balanced assembly between iMTs and kMTs for spindle organization and accurate chromosome segregation. Taken together, the results show how gene dosage studies provide critical insights into the assembly and function of multisubunit complexes that may not be revealed by using traditional studies with haploid gene deletion or conditional alleles.

  17. Smad3 recruits the anaphase-promoting complex for ubiquitination and degradation of SnoN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stroschein, Shannon L.; Bonni, Shirin; Wrana, Jeffrey L.

    2001-09-11

    Smad proteins mediate transforming growth factor-b signaling to regulate cell growth and differentiation. SnoN is an important negative regulator of TGFb signaling that functions to maintain the repressed state of TGFb target genes in the absence of ligand. Upon TGFb stimulation, Smad3 and Smad2 translocate into the nucleus and induce a rapid degradation of SnoN, allowing activation of TGFb target genes. Here we show that Smad2- or Smad3-induced degradation of SnoN requires the ubiquitin-dependent proteasome and can be mediated by the anaphase promoting complex (APC) and the UbcH5 family of ubiquitin conjugating enzymes. Smad3 and to a lesser extent, Smad2,more » interact with both the APC and SnoN, resulting in the recruitment of the APC to SnoN and subsequent ubiquitination of SnoN in a destruction box-dependent manner. In addition to the destruction box, efficient degradation of SnoN also requires the Smad3 binding site in SnoN as well as key lysine residues necessary for ubiquitin attachment. Mutation of either the Smad3 binding site or lysine residues results in stabilization of SnoN and in enhanced antagonism of TGFb signaling. Our studies elucidate an important pathway for the degradation of SnoN and reveal a novel role of the APC in regulation of TGFb signaling.« less

  18. Functional Importance of the Anaphase-Promoting Complex-Cdh1-Mediated Degradation of TMAP/CKAP2 in Regulation of Spindle Function and Cytokinesis▿ †

    PubMed Central

    Hong, Kyung Uk; Park, Young Soo; Seong, Yeon-Sun; Kang, Dongmin; Bae, Chang-Dae; Park, Joobae

    2007-01-01

    Cytoskeleton-associated protein 2 (CKAP2), also known as tumor-associated microtubule-associated protein (TMAP), is a novel microtubule-associated protein that is frequently upregulated in various malignances. However, its cellular functions remain unknown. A previous study has shown that its protein level begins to increase during G1/S and peaks at G2/M, after which it decreases abruptly. Ectopic overexpression of TMAP/CKAP2 induced microtubule bundling related to increased microtubule stability. TMAP/CKAP2 overexpression also resulted in cell cycle arrest during mitosis due to a defect in centrosome separation and subsequent formation of a monopolar spindle. We also show that degradation of TMAP/CKAP2 during mitotic exit is mediated by the anaphase-promoting complex bound to Cdh1 and that the KEN box motif near the N terminus is necessary for its destruction. Compared to the wild type, expression of a nondegradable mutant of TMAP/CKAP2 significantly increased the occurrence of spindle defects and cytokinesis failure. These results suggest that TMAP/CKAP2 plays a role in the assembly and maintenance of mitotic spindles, presumably by regulating microtubule dynamics, and its destruction during mitotic exit serves an important role in the completion of cytokinesis and in the maintenance of spindle bipolarity in the next mitosis. PMID:17339342

  19. Functional importance of the anaphase-promoting complex-Cdh1-mediated degradation of TMAP/CKAP2 in regulation of spindle function and cytokinesis.

    PubMed

    Hong, Kyung Uk; Park, Young Soo; Seong, Yeon-Sun; Kang, Dongmin; Bae, Chang-Dae; Park, Joobae

    2007-05-01

    Cytoskeleton-associated protein 2 (CKAP2), also known as tumor-associated microtubule-associated protein (TMAP), is a novel microtubule-associated protein that is frequently upregulated in various malignances. However, its cellular functions remain unknown. A previous study has shown that its protein level begins to increase during G(1)/S and peaks at G(2)/M, after which it decreases abruptly. Ectopic overexpression of TMAP/CKAP2 induced microtubule bundling related to increased microtubule stability. TMAP/CKAP2 overexpression also resulted in cell cycle arrest during mitosis due to a defect in centrosome separation and subsequent formation of a monopolar spindle. We also show that degradation of TMAP/CKAP2 during mitotic exit is mediated by the anaphase-promoting complex bound to Cdh1 and that the KEN box motif near the N terminus is necessary for its destruction. Compared to the wild type, expression of a nondegradable mutant of TMAP/CKAP2 significantly increased the occurrence of spindle defects and cytokinesis failure. These results suggest that TMAP/CKAP2 plays a role in the assembly and maintenance of mitotic spindles, presumably by regulating microtubule dynamics, and its destruction during mitotic exit serves an important role in the completion of cytokinesis and in the maintenance of spindle bipolarity in the next mitosis.

  20. Dynamic reorganization of Eg5 in the mammalian spindle throughout mitosis requires dynein and TPX2

    PubMed Central

    Gable, Alyssa; Qiu, Minhua; Titus, Janel; Balchand, Sai; Ferenz, Nick P.; Ma, Nan; Collins, Elizabeth S.; Fagerstrom, Carey; Ross, Jennifer L.; Yang, Ge; Wadsworth, Patricia

    2012-01-01

    Kinesin-5 is an essential mitotic motor. However, how its spatial–temporal distribution is regulated in mitosis remains poorly understood. We expressed localization and affinity purification–tagged Eg5 from a mouse bacterial artificial chromosome (this construct was called mEg5) and found its distribution to be tightly regulated throughout mitosis. Fluorescence recovery after photobleaching analysis showed rapid Eg5 turnover throughout mitosis, which cannot be accounted for by microtubule turnover. Total internal reflection fluorescence microscopy and high-resolution, single-particle tracking revealed that mEg5 punctae on both astral and midzone microtubules rapidly bind and unbind. mEg5 punctae on midzone microtubules moved transiently both toward and away from spindle poles. In contrast, mEg5 punctae on astral microtubules moved transiently toward microtubule minus ends during early mitosis but switched to plus end–directed motion during anaphase. These observations explain the poleward accumulation of Eg5 in early mitosis and its redistribution in anaphase. Inhibition of dynein blocked mEg5 movement on astral microtubules, whereas depletion of the Eg5-binding protein TPX2 resulted in plus end–directed mEg5 movement. However, motion of Eg5 on midzone microtubules was not altered. Our results reveal differential and precise spatial and temporal regulation of Eg5 in the spindle mediated by dynein and TPX2. PMID:22337772

  1. Nuclear movement in fungi.

    PubMed

    Xiang, Xin

    2017-12-11

    Nuclear movement within a cell occurs in a variety of eukaryotic organisms including yeasts and filamentous fungi. Fungal molecular genetic studies identified the minus-end-directed microtubule motor cytoplasmic dynein as a critical protein for nuclear movement or orientation of the mitotic spindle contained in the nucleus. Studies in the budding yeast first indicated that dynein anchored at the cortex via its anchoring protein Num1 exerts pulling force on an astral microtubule to orient the anaphase spindle across the mother-daughter axis before nuclear division. Prior to anaphase, myosin V interacts with the plus end of an astral microtubule via Kar9-Bim1/EB1 and pulls the plus end along the actin cables to move the nucleus/spindle close to the bud neck. In addition, pushing or pulling forces generated from cortex-linked polymerization or depolymerization of microtubules drive nuclear movements in yeasts and possibly also in filamentous fungi. In filamentous fungi, multiple nuclei within a hyphal segment undergo dynein-dependent back-and-forth movements and their positioning is also influenced by cytoplasmic streaming toward the hyphal tip. In addition, nuclear movement occurs at various stages of fungal development and fungal infection of plant tissues. This review discusses our current understanding on the mechanisms of nuclear movement in fungal organisms, the importance of nuclear positioning and the regulatory strategies that ensure the proper positioning of nucleus/spindle. Published by Elsevier Ltd.

  2. Ama1p-activated anaphase-promoting complex regulates the destruction of Cdc20p during meiosis II

    PubMed Central

    Tan, Grace S.; Magurno, Jennifer; Cooper, Katrina F.

    2011-01-01

    The execution of meiotic divisions in Saccharomyces cerevisiae is regulated by anaphase-promoting complex/cyclosome (APC/C)–mediated protein degradation. During meiosis, the APC/C is activated by association with Cdc20p or the meiosis-specific activator Ama1p. We present evidence that, as cells exit from meiosis II, APC/CAma1 mediates Cdc20p destruction. APC/CAma1 recognizes two degrons on Cdc20p, the destruction box and destruction degron, with either domain being sufficient to mediate Cdc20p destruction. Cdc20p does not need to associate with the APC/C to bind Ama1p or be destroyed. Coimmunoprecipitation analyses showed that the diverged amino-terminal region of Ama1p recognizes both Cdc20p and Clb1p, a previously identified substrate of APC/CAma1. Domain swap experiments revealed that the C-terminal WD region of Cdh1p, when fused to the N-terminal region of Ama1p, could direct most of Ama1p functions, although at a reduced level. In addition, this fusion protein cannot complement the spore wall defect in ama1Δ strains, indicating that substrate specificity is also derived from the WD repeat domain. These findings provide a mechanism to temporally down-regulate APC/CCdc20 activity as the cells complete meiosis II and form spores. PMID:21118994

  3. Heterochromatin position effects on circularized sex chromosomes cause filicidal embryonic lethality in Drosophila melanogaster.

    PubMed

    Ferree, Patrick M; Gomez, Karina; Rominger, Peter; Howard, Dagnie; Kornfeld, Hannah; Barbash, Daniel A

    2014-04-01

    Some circularized X-Y chromosomes in Drosophila melanogaster are mitotically unstable and induce early embryonic lethality, but the genetic basis is unknown. Our experiments suggest that a large region of X-linked satellite DNA causes anaphase bridges and lethality when placed into a new heterochromatic environment within certain circularized X-Y chromosomes. These results reveal that repetitive sequences can be incompatible with one another in cis. The lethal phenotype also bears a remarkable resemblance to a case of interspecific hybrid lethality.

  4. Effects of polyamines and polyamine biosynthetic inhibitors on mitotic activity of Allium cepa root tips.

    PubMed

    Unal, Meral; Palavan-Unsal, Narcin; Tufekci, M A

    2008-03-01

    The genotoxic and cytotoxic effects of exogenous polyamines (PAs), putrescine (Put), spermidine (Spd), spermine (Spm) and PA biosynthetic inhibitors, alpha-difluoromethylornithine (DFMO), cyclohexilamine (CHA), methylglioxal bis-(guanylhydrazone) (MGBG) were investigated in the root meristems of Allium cepa L. The reduction of mitotic index and the induction of chromosomal aberrations such as bridges, stickiness, c-mitotic anaphases, micronuclei, endoredupliction by PAs and PA biosynthetic inhibitors were observed and these were used as evidence of genotoxicity and cytotoxicity.

  5. Condensin suppresses recombination and regulates double-strand break processing at the repetitive ribosomal DNA array to ensure proper chromosome segregation during meiosis in budding yeast.

    PubMed

    Li, Ping; Jin, Hui; Yu, Hong-Guo

    2014-10-01

    During meiosis, homologues are linked by crossover, which is required for bipolar chromosome orientation before chromosome segregation at anaphase I. The repetitive ribosomal DNA (rDNA) array, however, undergoes little or no meiotic recombination. Hyperrecombination can cause chromosome missegregation and rDNA copy number instability. We report here that condensin, a conserved protein complex required for chromosome organization, regulates double-strand break (DSB) formation and repair at the rDNA gene cluster during meiosis in budding yeast. Condensin is highly enriched at the rDNA region during prophase I, released at the prophase I/metaphase I transition, and reassociates with rDNA before anaphase I onset. We show that condensin plays a dual role in maintaining rDNA stability: it suppresses the formation of Spo11-mediated rDNA breaks, and it promotes DSB processing to ensure proper chromosome segregation. Condensin is unnecessary for the export of rDNA breaks outside the nucleolus but required for timely repair of meiotic DSBs. Our work reveals that condensin coordinates meiotic recombination with chromosome segregation at the repetitive rDNA sequence, thereby maintaining genome integrity. © 2014 Li et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Centralspindlin and Chromosomal Passenger Complex Behavior During Normal and Rappaport Furrow Specification in Echinoderm Embryos

    PubMed Central

    Argiros, Haroula; Henson, Lauren; Holguin, Christiana; Foe, Victoria; Shuster, Charles Bradley

    2014-01-01

    The chromosomal passenger (CPC) and Centralspindlin complexes are essential for organizing the anaphase central spindle and providing cues that position the cytokinetic furrow between daughter nuclei. However, echinoderm zygotes are also capable of forming “Rappaport furrows” between asters positioned back-to-back without intervening chromosomes. To understand how these complexes contribute to normal and Rappaport furrow formation, we studied the localization patterns of Survivin and mitotic-kinesin-like-protein1 (MKLP1), members respectively of the CPC and the Centralspindlin complex, and the effect of CPC inhibition on cleavage in mono- and binucleate echinoderm zygotes. In zygotes, Survivin initially localized to metaphase chromosomes, upon anaphase onset relocalized to the central spindle and then, together with MKLP1 spread towards the equatorial cortex in an Aurora-dependent manner. Inhibition of Aurora kinase activity resulted in disruption of central spindle organization and furrow regression, although astral microtubule elongation and furrow initiation were normal. In binucleate cells containing two parallel spindles MKLP1 and Survivin localized to the plane of the former metaphase plate, but were not observed in the secondary cleavage plane formed between unrelated spindle poles, except when chromosomes were abnormally present there. However, the secondary furrow was sensitive to Aurora inhibition, indicating that Aurora kinase may still contribute to furrow ingression without chromosomes nearby. Our results provide insights that reconcile classic micromanipulation studies with current molecular understanding of furrow specification in animal cells. PMID:22887753

  7. The Yeast Forkhead Transcription Factors Fkh1 and Fkh2 Regulate Lifespan and Stress Response Together with the Anaphase-Promoting Complex

    PubMed Central

    Postnikoff, Spike D. L.; Malo, Mackenzie E.; Wong, Berchman; Harkness, Troy A. A.

    2012-01-01

    Forkhead box O (FOXO) transcription factors have a conserved function in regulating metazoan lifespan. A key function in this process involves the regulation of the cell cycle and stress responses including free radical scavenging. We employed yeast chronological and replicative lifespan assays, as well as oxidative stress assays, to explore the potential evolutionary conservation of function between the FOXOs and the yeast forkhead box transcription factors FKH1 and FKH2. We report that the deletion of both FKH genes impedes normal lifespan and stress resistance, particularly in stationary phase cells, which are non-responsive to caloric restriction. Conversely, increased expression of the FKHs leads to extended lifespan and improved stress response. Here we show the Anaphase-Promoting Complex (APC) genetically interacts with the Fkh pathway, likely working in a linear pathway under normal conditions, as fkh1Δ fkh2Δ post-mitotic survival is epistatic to that observed in apc5CA mutants. However, under stress conditions, post-mitotic survival is dramatically impaired in apc5CA fkh1Δ fkh2Δ, while increased expression of either FKH rescues APC mutant growth defects. This study establishes the FKHs role as evolutionarily conserved regulators of lifespan in yeast and identifies the APC as a novel component of this mechanism under certain conditions, likely through combined regulation of stress response, genomic stability, and cell cycle regulation. PMID:22438832

  8. The significance of cytogenetics for the study of karyotype evolution and taxonomy of water bugs (Heteroptera, Belostomatidae) native to Argentina

    PubMed Central

    Gabriela, Chirino Mónica; Papeschi, Alba Graciela; Bressa, María José

    2013-01-01

    Abstract Male meiosis behaviour and heterochromatin characterization of three big water bug species were studied. Belostoma dentatum (Mayr, 1863), Belostoma elongatum Montandon, 1908 and Belostoma gestroi Montandon, 1903 possess 2n = 26 + X1X2Y (male). In these species, male meiosis is similar to that previously observed in Belostoma Latreille, 1807. In general, autosomal bivalents show a single chiasma terminally located and divide reductionally at anaphase I. On the other hand, sex chromosomes are achiasmatic, behave as univalents and segregate their chromatids equationally at anaphase I. The analysis of heterochromatin distribution and composition revealed a C-positive block at the terminal region of all autosomes in Belostoma dentatum, a C-positive block at the terminal region and C-positive interstitial dots on all autosomes in Belostoma elongatum, and a little C-positive band at the terminal region of autosomes in Belostoma gestroi. A C-positive band on one bivalent was DAPI negative/CMA3 positive in the three species. The CMA3-bright band, enriched in GC base pairs, was coincident with a NOR detected by FISH. The results obtained support the hypothesis that all species of Belostoma with multiple sex chromosome systems preserve NORs in autosomal bivalents. The karyotype analyses allow the cytogenetic characterization and identification of these species belonging to a difficult taxonomic group. Besides, the cytogenetic characterization will be useful in discussions about evolutionary trends of the genome organization and karyotype evolution in this genus. PMID:24260694

  9. Characterization of mitosis-specific phosphorylation of tumor-associated microtubule-associated protein.

    PubMed

    Hong, Kyung Uk; Kim, Hyun-Jun; Bae, Chang-Dae; Park, Joobae

    2009-11-30

    Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton associated protein 2 (CKAP2), has been recently shown to be involved in the assembly and maintenance of mitotic spindle and also plays an essential role in maintaining the fidelity of chromosome segregation during mitosis. We have previously reported that TMAP is phosphorylated at multiple residues specifically during mitosis, and characterized the mechanism and functional importance of phosphorylation at one of the mitosis-specific phosphorylation residues (i.e., Thr-622). However, the phosphorylation events at the remaining mitotic phosphorylation sites of TMAP have not been fully characterized in detail. Here, we report on generation and characterization of phosphorylated Thr-578- and phosphorylated Thr-596-specific antibodies. Using the antibodies, we show that phosphorylation of TMAP at Thr-578 and Thr-596 indeed occurs specifically during mitosis. Immunofluorescent staining using the antibodies shows that these residues become phosphorylated starting at prophase and then become rapidly dephosphorylated soon after initiation of anaphase. Subtle differences in the kinetics of phosphorylation between Thr-578 and Thr-596 imply that they may be under different mechanisms of phosphorylation during mitosis. Unlike the phosphorylation-deficient mutant form for Thr-622, the mutant in which both Thr-578 and Thr-596 had been mutated to alanines did not induce significant delay in progression of mitosis. These results show that the majority of mitosis-specific phosphorylation of TMAP is limited to pre-anaphase stages and suggest that the multiple phosphorylation may not act in concert but serve diverse functions.

  10. Cell cycle-related fluctuations in transcellular ionic currents and plasma membrane Ca2+/Mg2+ ATPase activity during early cleavages of Lymnaea stagnalis embryos.

    PubMed

    Zivkovic, Danica; Créton, Robbert; Dohmen, René

    1991-08-01

    During the first four mitotic division cycles of Lymnaea stagnalis embryos, we have detected cell cycle-dependent changes in the pattern of transcellular ionic currents and membrane-bound Ca 2+ -stimulated ATPase activity. Ionic currents ranging from 0.05 to 2.50 μA/cm 2 have been measured using the vibrating probe technique. Enzyme activity was detected using Ando's cytochemical method (Ando et al. 1981) which reveals Ca 2+ /Mg 2+ ATPase localization at the ultrastructural level, and under high-stringency conditions with respect to calcium availability, it reveals Ca 2+ -stimulated ATPase. The ionic currents and Ca 2+ -stimulated ATPase localization have in common that important changes occur during the M-phase of the cell cycles. Minimal outward current at the vegetal pole coincides with metaphase/anaphase. Maximal inward current at the animal pole coincides with the onset of cytokinesis at that pole. Ca 2+ -stimulated ATPase is absent from one half of the embryo at metaphase/anaphase of the two- and four-cell stage, whereas it is present in all cells during the remaining part of the cell cycle. Since fluctuations of cytosolic free calcium concentrations appear to correlate with both karyokinesis and cytokinesis, we speculate that part of the cyclic pattern of Ca 2+ -stimulated ATPase localization and of the transcellular ionic currents reflects the elevation of cytosolic free calcium concentration during the M-phase.

  11. Cell cycle effects of L-sulforaphane, a major antioxidant from cruciferous vegetables: The role of the anaphase promoting complex.

    PubMed

    Shelley, Zhaoping; Royce, Simon G; Ververis, Katherine; Karagiannis, Tom C

    2014-01-01

    L-sulforaphane (LSF) is a natural isothiocyanate found in cruciferous vegetables particularly broccoli. LSF has been identified as a potent antioxidant and anti-cancer agent and is widely known to regulate phase II detoxifying enzymes and induce cell cycle arrest or apoptosis in malignant cells in vitro and in vivo. Previous studies have found significant G2/M cell cycle arrest in response to LSF in various model of cancer and results have mainly been attributed to increased cyclin B1 protein levels and increased p21expression. Using genome-wide mRNA-Seq analysis we provide insights into the molecular mechanisms of action of LSF to identify a key pathway in cell cycle progression - the role of the anaphase promoting complex (APC) pathway. We evaluated gene expression changes in human erythroleukemic K562 cells following treatment with 15 μM LSF for 48h and compared them to immortalized human keratinocytes, human microvascular endothelial cells (HMEC-1) cells and normal human umbilical endothelial cells (HUVEC). We identified disparate gene expression changes in response to LSF between malignant and normal cells and immortalized cell lines. The results highlight significant down-regulation of kinase CDK1 which is suggestive that the existence and activity of APC/CDC20 complex will be inhibited along with its associated down-stream degradation of key cell cycle regulators preventing cell cycle progression from mitotic exit.

  12. The plant kinetochore.

    PubMed

    Yu, H G; Hiatt, E N; Dawe, R K

    2000-12-01

    Kinetochores are large protein complexes that bind to centromeres. By interacting with microtubules and their associated motor proteins, kinetochores both generate and regulate chromosome movement. Kinetochores also function in the spindle checkpoint; a surveillance mechanism that ensures that metaphase is complete before anaphase begins. Although the ultrastructure of plant kinetochores has been known for many years, only recently have specific kinetochore proteins been identified. The recent data indicate that plant kinetochores contain homologs of many of the proteins implicated in animal and fungal kinetochore function, and that the plant kinetochore is a redundant structure with distinct biochemical subdomains.

  13. MASTL is essential for anaphase entry of proliferating primordial germ cells and establishment of female germ cells in mice

    PubMed Central

    Risal, Sanjiv; Zhang, Jingjing; Adhikari, Deepak; Liu, Xiaoman; Shao, Jingchen; Hu, Mengwen; Busayavalasa, Kiran; Tu, Zhaowei; Chen, Zijiang; Kaldis, Philipp; Liu, Kui

    2017-01-01

    In mammals, primordial germ cells (PGCs) are the embryonic cell population that serve as germ cell precursors in both females and males. During mouse embryonic development, the majority of PGCs are arrested at the G2 phase when they migrate into the hindgut at 7.75–8.75 dpc (days post coitum). It is after 9.5 dpc that the PGCs undergo proliferation with a doubling time of 12.6 h. The molecular mechanisms underlying PGC proliferation are however not well studied. In this work. Here we studied how MASTL (microtubule-associated serine/threonine kinase-like)/Greatwall kinase regulates the rapid proliferation of PGCs. We generated a mouse model where we specifically deleted Mastl in PGCs and found a significant loss of PGCs before the onset of meiosis in female PGCs. We further revealed that the deletion of Mastl in PGCs did not prevent mitotic entry, but led to a failure of the cells to proceed beyond metaphase-like stage, indicating that MASTL-mediated molecular events are indispensable for anaphase entry in PGCs. These mitotic defects further led to the death of Mastl-null PGCs by 12.5 dpc. Moreover, the defect in mitotic progression observed in the Mastl-null PGCs was rescued by simultaneous deletion of Ppp2r1a (α subunit of PP2A). Thus, our results demonstrate that MASTL, PP2A, and therefore regulated phosphatase activity have a fundamental role in establishing female germ cell population in gonads by controlling PGC proliferation during embryogenesis. PMID:28224044

  14. Synergistic Blockade of Mitotic Exit by Two Chemical Inhibitors of the APC/C

    PubMed Central

    Sackton, Katharine L.; Dimova, Nevena; Zeng, Xing; Tian, Wei; Zhang, Mengmeng; Sackton, Timothy B.; Meaders, Johnathan; Pfaff, Kathleen L.; Sigoillot, Frederic; Yu, Hongtao; Luo, Xuelian; King, Randall W.

    2014-01-01

    Summary Protein machines are multi-subunit protein complexes that orchestrate highly regulated biochemical tasks. An example is the Anaphase-Promoting Complex/Cyclosome (APC/C), a thirteen-subunit ubiquitin ligase that initiates the metaphase-anaphase transition and mitotic exit by targeting proteins such as securin and cyclin B1 for ubiquitin-dependent destruction by the proteasome1,2. Because blocking mitotic exit is an effective approach for inducing tumor cell death3,4, the APC/C represents a potential novel target for cancer therapy. APC/C activation in mitosis requires binding of Cdc205, which forms a co-receptor with the APC/C to recognize substrates containing a Destruction box (D-box)6-14. Here we demonstrate that we can synergistically inhibit APC/C-dependent proteolysis and mitotic exit by simultaneously disrupting two protein-protein interactions within the APC/C-Cdc20-substrate ternary complex. We identified a small molecule, called apcin (APC inhibitor), which binds to Cdc20 and competitively inhibits the ubiquitylation of D-box-containing substrates. Analysis of the crystal structure of the apcin-Cdc20 complex suggests that apcin occupies the D-box-binding pocket on the side face of the WD40-domain. The ability of apcin to block mitotic exit is synergistically amplified by co-addition of tosyl-L-arginine methyl ester (TAME), a small molecule that blocks the APC/C-Cdc20 interaction15,16. This work suggests that simultaneous disruption of multiple, weak protein-protein interactions is an effective approach for inactivating a protein machine. PMID:25156254

  15. Molecular Characterization of Plant Ubiquitin-Conjugating Enzymes Belonging to the UbcP4/E2-C/UBCx/UbcH10 Gene Family1

    PubMed Central

    Criqui, Marie Claire; de Almeida Engler, Janice; Camasses, Alain; Capron, Arnaud; Parmentier, Yves; Inzé, Dirk; Genschik, Pascal

    2002-01-01

    The anaphase promoting complex or cyclosome is the ubiquitin-ligase that targets destruction box-containing proteins for proteolysis during the cell cycle. Anaphase promoting complex or cyclosome and its activator (the fizzy and fizzy-related) proteins work together with ubiquitin-conjugating enzymes (UBCs) (E2s). One class of E2s (called E2-C) seems specifically involved in cyclin B1 degradation. Although it has recently been shown that mammalian E2-C is regulated at the protein level during the cell cycle, not much is known concerning the expression of these genes. Arabidopsis encodes two genes belonging to the E2-C gene family (called UBC19 and UBC20). We found that UBC19 is able to complement fission yeast (Schizosaccharomyces pombe) UbcP4-140 mutant, indicating that the plant protein can functionally replace its yeast ortholog for protein degradation during mitosis. In situ hybridization experiments were performed to study the expression of the E2-C genes in various tissues of plants. Their transcripts were always, but not exclusively, found in tissues active for cell division. Thus, the UBC19/20 E2s may have a key function during cell cycle, but may also be involved in ubiquitylation reactions occurring during differentiation and/or in differentiated cells. Finally, we showed that a translational fusion protein between UBC19 and green fluorescent protein localized both in the cytosol and the nucleus in stable transformed tobacco (Nicotiana tabacum cv Bright Yellow 2) cells. PMID:12427990

  16. PTK2b function during fertilization of the mouse oocyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Jinping; McGinnis, Lynda K.; Carlton, Carol

    Highlights: • PTK2b is expressed in oocytes and is activated following fertilization. • PTK2b suppression in oocytes prevents fertilization, but not parthenogenetic activation. • PTK2b suppression prevents the oocyte from fusing with or incorporating bound sperm. • PTK2b suppressed oocytes that fail to fertilize do not exhibit calcium oscillations. - Abstract: Fertilization triggers rapid changes in intracellular free calcium that serve to activate multiple signaling events critical to the initiation of successful development. Among the pathways downstream of the fertilization-induced calcium transient is the calcium-calmodulin dependent protein tyrosine kinase PTK2b or PYK2 kinase. PTK2b plays an important role in fertilizationmore » of the zebrafish oocyte and the objective of the present study was to establish whether PTK2b also functions in mammalian fertilization. PTK2b was activated during the first few hours after fertilization of the mouse oocyte during the period when anaphase resumption was underway and prior to the pronuclear stage. Suppression of PTK2b kinase activity in oocytes blocked sperm incorporation and egg activation although sperm-oocyte binding was not affected. Oocytes that failed to incorporate sperm after inhibitor treatment showed no evidence of a calcium transient and no evidence of anaphase resumption suggesting that egg activation did not occur. The results indicate that PTK2b functions during the sperm-egg fusion process or during the physical incorporation of sperm into the egg cytoplasm and is therefore critical for successful development.« less

  17. The Spo12 protein of Saccharomyces cerevisiae: a regulator of mitotic exit whose cell cycle-dependent degradation is mediated by the anaphase-promoting complex.

    PubMed Central

    Shah, R; Jensen, S; Frenz, L M; Johnson, A L; Johnston, L H

    2001-01-01

    The Spo12 protein plays a regulatory role in two of the most fundamental processes of biology, mitosis and meiosis, and yet its biochemical function remains elusive. In this study we concentrate on the genetic and biochemical analysis of its mitotic function. Since high-copy SPO12 is able to suppress a wide variety of mitotic exit mutants, all of which arrest with high Clb-Cdc28 activity, we speculated whether SPO12 is able to facilitate exit from mitosis when overexpressed by antagonizing mitotic kinase activity. We show, however, that Spo12 is not a potent regulator of Clb-Cdc28 activity and can function independently of either the cyclin-dependent kinase inhibitor (CDKi), Sic1, or the anaphase-promoting complex (APC) regulator, Hct1. Spo12 protein level is regulated by the APC and the protein is degraded in G1 by an Hct1-dependent mechanism. We also demonstrate that in addition to localizing to the nucleus Spo12 is a nucleolar protein. We propose a model where overexpression of Spo12 may lead to the delocalization of a small amount of Cdc14 from the nucleolus, resulting in a sufficient lowering of mitotic kinase levels to facilitate mitotic exit. Finally, site-directed mutagenesis of highly conserved residues in the Spo12 protein sequence abolishes both its mitotic suppressor activity as well as its meiotic function. This result is the first indication that Spo12 may carry out the same biochemical function in mitosis as it does in meiosis. PMID:11729145

  18. Kinesin-related KIP3 of Saccharomyces cerevisiae Is Required for a Distinct Step in Nuclear Migration

    PubMed Central

    DeZwaan, Todd M.; Ellingson, Eric; Pellman, David; Roof, David M.

    1997-01-01

    Spindle orientation and nuclear migration are crucial events in cell growth and differentiation of many eukaryotes. Here we show that KIP3, the sixth and final kinesin-related gene in Saccharomyces cerevisiae, is required for migration of the nucleus to the bud site in preparation for mitosis. The position of the nucleus in the cell and the orientation of the mitotic spindle was examined by microscopy of fixed cells and by time-lapse microscopy of individual live cells. Mutations in KIP3 and in the dynein heavy chain gene defined two distinct phases of nuclear migration: a KIP3-dependent movement of the nucleus toward the incipient bud site and a dynein-dependent translocation of the nucleus through the bud neck during anaphase. Loss of KIP3 function disrupts the unidirectional movement of the nucleus toward the bud and mitotic spindle orientation, causing large oscillations in nuclear position. The oscillatory motions sometimes brought the nucleus in close proximity to the bud neck, possibly accounting for the viability of a kip3 null mutant. The kip3 null mutant exhibits normal translocation of the nucleus through the neck and normal spindle pole separation kinetics during anaphase. Simultaneous loss of KIP3 and kinesin-related KAR3 function, or of KIP3 and dynein function, is lethal but does not block any additional detectable movement. This suggests that the lethality is due to the combination of sequential and possibly overlapping defects. Epitope-tagged Kip3p localizes to astral and central spindle microtubules and is also present throughout the cytoplasm and nucleus. PMID:9281581

  19. E2fl1 is a meiosis-specific transcription factor in the protist Tetrahymena thermophila

    PubMed Central

    Zhang, Jing; Tian, Miao; Miao, Wei

    2017-01-01

    ABSTRACT Members of the E2F family of transcription factors have been reported to regulate the expression of genes involved in cell cycle control, DNA replication, and DNA repair in multicellular eukaryotes. Here, E2FL1, a meiosis-specific E2F transcription factor gene, was identified in the model ciliate Tetrahymena thermophila. Loss of this gene resulted in meiotic arrest prior to anaphase I. The cytological experiments revealed that the meiotic homologous pairing was not affected in the absence of E2FL1, but the paired homologous chromosomes did not separate and assumed a peculiar tandem arrangement. This is the first time that an E2F family member has been shown to regulate meiotic events. Moreover, BrdU incorporation showed that DSB processing during meiosis was abnormal upon the deletion of E2FL1. Transcriptome sequencing analysis revealed that E2FL1 knockout decreased the expression of genes involved in DNA replication and DNA repair in T. thermophila, suggesting that the function of E2F is highly conserved in eukaryotes. In addition, E2FL1 deletion inhibited the expression of related homologous chromosome segregation genes in T. thermophila. The result may explain the meiotic arrest phenotype at anaphase I. Finally, by searching for E2F DNA-binding motifs in the entire T. thermophila genome, we identified 714 genes containing at least one E2F DNA-binding motif; of these, 235 downregulated represent putative E2FL1 target genes. PMID:27892792

  20. Evaluation of the aneugenic potential of the fungicide Ferbam in mice.

    PubMed

    Shanthi, R; Krishnamoorthy, M

    2002-01-01

    Ferbam, a potent dithiocarbamate fungicide is used as a protectant against a wide variety of fungal diseases in fruits, vegetables, and ornamental plants. The wide-spread use of this chemical is likely to pollute the environment. Hence, it was planned to test the possible genotoxicity of Ferbam through its aneugenic potential in the in vivo mouse (Mus musculus) test system. Four different doses of Ferbam, namely, 7.5, 15.0, 30.0, 60.0 mg/kg body weight were administered orally to mice Mus musculus suspended in gum tragacanth representing, respectively, 1/16, 1/8, 1/4;, 1/2 th of the LD50 value. They were sacrificed at 6-, 12-, 24-, and 48-h intervals along with a distilled water negative control at 2 mg/kg body weight. Colchicine treated animals were used as positive controls. Bone marrow preparations were made following the standard Hypotonic flame dry Giemsa staining technique to study the dose and time yield effect of Ferbam. The aneugenic potential was evaluated for C-mitotic effects by scoring the mitotic index, c-mitoses frequency, anaphase reduction, and hyper/hypodiploidy induction. Ferbam showed a significant increase in the mitotic index and C-mitoses effects and anaphase decreased at the highest doses of 30 and 60 mg/kg at 12- and 24-h intervals. Colchicine induced significant effects in all the aneugenic parameters observed at all the time intervals. There was no significant induction of either hyperdiploidy or hypodiploidy by Ferbam, unlike colchicine, indicating that the fungicide Ferbam is not aneugenic in the mouse test system. Copyright 2002 Wiley-Liss, Inc.

  1. Characterization of mitosis-specific phosphorylation of tumor-associated microtubule-associated protein

    PubMed Central

    Hong, Kyung Uk; Kim, Hyun-Jun

    2009-01-01

    Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton associated protein 2 (CKAP2), has been recently shown to be involved in the assembly and maintenance of mitotic spindle and also plays an essential role in maintaining the fidelity of chromosome segregation during mitosis. We have previously reported that TMAP is phosphorylated at multiple residues specifically during mitosis, and characterized the mechanism and functional importance of phosphorylation at one of the mitosis-specific phosphorylation residues (i.e., Thr-622). However, the phosphorylation events at the remaining mitotic phosphorylation sites of TMAP have not been fully characterized in detail. Here, we report on generation and characterization of phosphorylated Thr-578- and phosphorylated Thr-596-specific antibodies. Using the antibodies, we show that phosphorylation of TMAP at Thr-578 and Thr-596 indeed occurs specifically during mitosis. Immunofluorescent staining using the antibodies shows that these residues become phosphorylated starting at prophase and then become rapidly dephosphorylated soon after initiation of anaphase. Subtle differences in the kinetics of phosphorylation between Thr-578 and Thr-596 imply that they may be under different mechanisms of phosphorylation during mitosis. Unlike the phosphorylation-deficient mutant form for Thr-622, the mutant in which both Thr-578 and Thr-596 had been mutated to alanines did not induce significant delay in progression of mitosis. These results show that the majority of mitosis-specific phosphorylation of TMAP is limited to pre-anaphase stages and suggest that the multiple phosphorylation may not act in concert but serve diverse functions. PMID:19641375

  2. Functional characterization of Anaphase Promoting Complex/Cyclosome (APC/C) E3 ubiquitin ligases in tumorigenesis

    PubMed Central

    Zhang, Jinfang; Wan, Lixin; Dai, Xiangpeng; Sun, Yi; Wei, Wenyi

    2014-01-01

    The Anaphase Promoting Complex/Cyclosome (APC/C) is a multi-subunit E3 ubiquitin ligase that primarily governs cell cycle progression. APC/C is composed of at least 14 core subunits and recruits its substrates for ubiquitination via one of the two adaptor proteins, Cdc20 or Cdh1, in M or M/early G1 phase, respectively. Furthermore, recent studies have shed light on crucial functions for APC/C in maintaining genomic integrity, neuronal differentiation, cellular metabolism and tumorigenesis. To gain better insight into the in vivo physiological functions of APC/C in regulating various cellular processes, particularly development and tumorigenesis, a number of mouse models of APC/C core subunits, coactivators or inhibitors have been established and characterized. However, due to their essential role in cell cycle regulation, most of the germline knockout mice targeting the APC/C pathway are embryonic lethal, indicating the need for generating conditional knockout mouse models to assess the role in tumorigenesis for each APC/C signaling component in specific tissues. In this review, we will first provide a brief introduction of the ubiquitin-proteasome system (UPS) and the biochemical activities and cellular functions of the APC/C E3 ligase. We will then focus primarily on characterizing genetic mouse models used to understand the physiological roles of each APC/C signaling component in embryogenesis, cell proliferation, development and carcinogenesis. Finally, we discuss future research directions to further elucidate the physiological contributions of APC/C components during tumorigenesis and validate their potentials as a novel class of anti-cancer targets. PMID:24569229

  3. Role of BRCA1 in Controlling Mitotic Arrest in Ovarian Cystadenoma Cells

    PubMed Central

    Yu, Vanessa M.; Marion, Christine M.; Austria, Theresa M.; Yeh, Jennifer; Schönthal, Axel H.; Dubeau, Louis

    2011-01-01

    Cancers that develop in BRCA1 mutation carriers are usually near tetraploid/polyploid. This led us to hypothesize that BRCA1 controls the mitotic checkpoint complex, as loss of such control could lead to mitotic errors resulting in tetraploidy/polyploidy with subsequent aneuploidy. We used an in vitro system mimicking pre-malignant conditions, consisting of cell strains derived from the benign counterparts of serous ovarian carcinomas (cystadenomas) and expressing SV40 large T antigen, conferring the equivalent of a p53 mutation. We previously showed that such cells undergo one or several doublings of their DNA content as they age in culture and approach the phenomenon of in vitro crisis. Here we show that such increase in DNA content reflects a cell cycle arrest possibly at the anaphase promoting complex, as evidenced by decreased BrdU incorporation and increased expression of the mitotic checkpoint complex. Down-regulation of BRCA1 in cells undergoing crisis leads to activation of the anaphase promoting complex and resumption of growth kinetics similar to those seen in cells before they reach crisis. Cells recovering from crisis after BRCA1 down-regulation become multinucleated, suggesting that reduced BRCA1 expression may lead to initiation of a new cell cycle without completion of cytokinesis. This is the first demonstration that BRCA1 controls a physiological arrest at the M phase apart from its established role in DNA damage response, a role that could represent an important mechanism for acquisition of aneuploidy during tumor development. This may be particularly relevant to cancers that have a near tetraploid/polyploid number of chromosomes. PMID:21792894

  4. Bystander signaling in C. elegans: proton microbeam studies

    PubMed Central

    Nelson, Gregory; Jones, Tamako; Ortloff, Leticia; Ford, John; Nuñez, Delia; Braby, Leslie

    2014-01-01

    Biological model: In this project, we investigated the control of radiation-induced genotoxic damage expression in somatic cells of the nematode Caenorhabditis elegans. We measured genotoxic damage in the C. elegans intestine by irradiating young larvae with 20 intestinal cells. Fourteen of these cells undergo exactly one nuclear division without cytoplasmic division leading to 14 binucleate cells. This nuclear division is synchronized and occurs at the first larval molt. Irradiation induces chromosome aberrations including dicentrics which we can quantify as stable anaphase bridges in the binucleate cells of young adult intestines. The endpoint is dose- and LET-dependent and we have demonstrated that individual intestinal cells have unique radiosensitivities. Results: The project has two components, a genetic screen for genes that control cell sensitivity and a microbeam component to directly probe individual cells. The genetic screen has identified several genes in NHEJ repair and telomere metabolism that modulate overall bridge frequency. Knockout mutants of cku-70, cku-80 and lig-4 greatly sensitize animals for anaphase bridge induction. A statistical method was used to determine whether induction of bridges was strictly random and cell autonomous and we determined that expression of bridges in pairs of cells was, in fact, non-random which suggested that signaling between cells affected the pattern of bridge expression. This allowed us to conduct an RNAi and mutation screen for genes that control the signaling (block non-random distributions) and several candidates have been identified. To directly test the notion that signaling of genotoxic damage occurs, we conducted experiments with alpha particles collimated through slits in metal foils and showed that genotoxic damage could be expressed many cell diameters away from a partial body exposure site. Thus, an in vivo bystander effect was demonstrated. Dose targeting was then improved to small regional exposures and eventually to individual cell targeting using 2 MeV protons from the microbeam facility at Texas A&M University. We now employ a green fluorescent protein (GFP)-expressing transgenic worm (rrIs1[elt-2::GFP]) to target GFP-positive gut cells via the gut-specific transcription factor elt-2. This allows alignment of the cell of interest over the microbeam aperture under appropriate fluorescence illumination. Microbeam irradiation experiments for many pairwise combinations of cell signal transmission and reception (observed as expression of anaphase bridges) have been conducted and several interesting patterns emerge. (i) The signaling pattern is cell-specific and does not simply reflect cell–cell distance or require direct contact between cell pairs. (ii) The signal range can be as far as from cell pair 2 to cell pair 8 (>100 µm). (iii) There appears to be a functional compartment boundary at the pharynx/intestine valve as even high-dose exposures to the posterior pharyngeal bulb fail to induce bridges in nearby intestinal cells. (iv) The frequency of signal transmission and reception corresponds broadly to the overall frequency of bridges observed during whole-body irradiations which suggests that direct irradiation and ‘out-of-field’ effects may be additive. These patterns have been analyzed in terms of a cellular logic circuit map for signal transmission and reception. A dose–response for a subset of microbeam-targeted cells was measured over the range of 5–20 Gy. Controlled cell pair targeting was used to test the potential additivity of signals and we found that effects were supra-additive. Finally, preliminary measurements were conducted on GFP-expressing transgenic strains that bore cku-70(tm1524) III and smk-1(mn156) V mutations which confer enhanced radiosensitivity. Cku-70 is a Ku-70 ortholog while smk-1 is orthologous to the mammalian and Dictyostelium discoideum SMEK (suppressor of MEK null) protein. In the cku-70(0/0) strain, the severity of the bridges in bystander cells was enhanced, suggesting that signal recipient cells employ NHEJ repair pathways in the expression of anaphase bridges. Clinical trial registration number: Not applicable.

  5. Two radiation-induced chromosomal inversions in mice (Mus musculus).

    PubMed

    Roderick, T H; Hawes, N L

    1970-10-01

    Whole-body x-irradiation of male mice has produced presumptive paracentric inversions in 15 animals, as evidenced by high frequencies of first meiotic anaphase bridges. Two of the highest frequencies observed have been propagated through several generations and found to behave as dominant genes. Acentric fragments were observed associated with about 10% of the bridges. The first inversion, in linkage group XIII, has been designated In(13)1Rk, and the second, in linkage group XVII, In(17)2Rk. For In(13)1Rk, recombination was reduced between loci inside and outside the inverted segment.

  6. Nuclei fluorescence microscopic observation on early embryonic development of mitogynogenetic diploid induced by hydrostatic pressure treatment in olive flounder (Paralichthys olivaceus).

    PubMed

    Lin, Zhengmei; Zhu, Xiangping; You, Feng; Wu, Zhihao; Cao, Yuanshui

    2015-05-01

    Sperm genetic material of olive flounder (Paralichthys olivaceus) was inactivated by ultraviolet irradiation. The nuclear phase changes during early embryonic development of diploid, haploid, and mitogynogenetic diploid induced by hydrostatic pressure treatment were observed under fluorescent microscope with 4',6-diamidino-2-phenylindole staining. The parameters of hydrostatic pressure treatment were 600 kg/cm(2) for 6 minutes at prometaphase stage. The data showed that developmental timing sequence of diploid and haploid fertilized eggs was similar. The cell cycle was about 48 minutes, including interphase (about 21 minutes), prophase (about 3 minutes), prometaphase (about 6 minutes), metaphase (about 6 minutes), anaphase (around 9 minutes), and telophase (about 3 minutes). After entering the fertilized egg, ultraviolet-inactivated sperm formed a male pronucleus and became a dense chromatin body in the cytoplasm. Dense chromatin body did not participate in nuclear division and unchanged all the time. For hydrostatic pressure-treated embryos, the first nuclear division and cytokinesis after treatment proceeded normally after about 15 minutes recovery. During the second mitosis, having undergone interphase, prophase, and prometaphase stage, chromosomes began to slowly spread around and scattered in the cell but not entered into metaphase and anaphase. The second nuclear division and cytokinesis was inhibited. The occurrence frequency of developmentally delayed embryos also showed that the second cleavage of about 80% treated eggs was inhibited. The inhibition of the second cleavage resulted to chromosome set doubling. So chromosome set doubling for mitogynogenetic flounder diploid induced by hydrostatic pressure treatment, performed at prometaphase stage, was mainly due to inhibition of the second mitosis rather than the first one. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Redistribution of fluorescently labeled tubulin in the mitotic apparatus of sand dollar eggs and the effects of taxol.

    PubMed

    Hamaguchi, Y; Toriyama, M; Sakai, H; Hiramoto, Y

    1987-02-01

    Fluorescently labeled tubulin was quickly incorporated into the mitotic apparatus when injected into a live sand dollar egg. After a rectangular area (1.6 X 16 microns) of the mitotic spindle was photobleached at metaphase or anaphase by the irradiation of a laser microbeam, redistribution of fluorescence was almost complete within 30 sec. The photobleached area did not change in shape during the redistribution. During the period of redistribution, the bleached area moved slightly toward the near pole at metaphase and anaphase (means: 1.6 and 1.8 micron/min, respectively). These results indicate that redistribution was not due to the exchange of tubulin subunits only at the ends of microtubules but to their rapid exchange at sites along the microtubules in the bleached region. Furthermore, treadmilling of tubulin molecules along with the spindle microtubules possibly occurred at the rate of 1.6 micron/min at metaphase. Birefringence of the mitotic apparatus increased with a large increase in both the number and length of astral rays shortly after taxol was injected. However, the microtubules did not all seem to elongate at the same rate but appeared to become equalized in length. Chromosome movement stopped within 60 sec after the injection. Centrospheres became large and the labeled tubulin already incorporated into the centrospheres was excluded from the enlarged centrospheres. Shortly after the labeled tubulin was injected following the injection of taxol, it accumulated in the peripheral region of the centrospheres, suggesting that microtubules first assembled at this region. Fluorescently labeled tubulin in the mitotic apparatus in the egg after injection of taxol was redistributed much more slowly after photobleaching than in uninjected eggs.

  8. Identification and purification of a soluble region of BubR1: a critical component of the mitotic checkpoint complex.

    PubMed

    Yoon, Jongchul; Kang, Yup; Kim, Kyunggon; Park, Jungeun; Kim, Youngsoo

    2005-11-01

    The mitotic checkpoint complex (MCC) ensures the fidelity of chromosomal segregation, by delaying the onset of anaphase until all sister chromatids have been properly attached to the mitotic spindle. In essence, this MCC-induced delay is achieved via the inhibition of the anaphase-promoting complex (APC). Among the components of the MCC, BubR1 plays two major roles in the functions of the mitotic checkpoint. First, BubR1 is able to inhibit APC activity, either by itself or as a component of the MCC, by sequestering a APC coactivator, known as Cdc20. Second, BubR1 activates mitotic checkpoint signaling cascades by binding to the centromere-associated protein E, a microtubule motor protein. Obtaining highly soluble BubR1 is a prerequisite for the study of its structure. BubR1 is a multi-domain protein, which includes a KEN box motif, a mad3-like region, a Bub3 binding domain, and a kinase domain. We obtained a soluble BubR1 construct using a three-step expression strategy. First, we obtained two constructs from BLAST sequence homology searches, both of which were expressed abundantly in the inclusion bodies. We then adjusted the lengths of the two constructs by secondary structure prediction, thereby generating partially soluble constructs. Third, we optimized the solubility of the two constructs by either chopping or adding a few residues at the C-terminus. Finally, we obtained a highly soluble BubR1 construct via the Escherichia coli expression system, which allowed for a yield of 10.8 mg/L culture. This report may provide insight into the design of highly soluble constructs of insoluble multi-domain proteins.

  9. Anaphase-Promoting Complex/Cyclosome-Cdh1-Mediated Proteolysis of the Forkhead Box M1 Transcription Factor Is Critical for Regulated Entry into S Phase▿

    PubMed Central

    Park, Hyun Jung; Costa, Robert H.; Lau, Lester F.; Tyner, Angela L.; Raychaudhuri, Pradip

    2008-01-01

    The forkhead box M1 (FoxM1) transcription factor is overexpressed in many cancers, and in mouse models it is required for tumor progression. FoxM1 activates expression of the cell cycle genes required for both S and M phase progression. Here we demonstrate that FoxM1 is degraded in late mitosis and early G1 phase by the anaphase-promoting complex/cyclosome (APC/C) E3 ubiquitin ligase. FoxM1 interacts with the APC/C complex and its adaptor, Cdh1. Expression of Cdh1 stimulated degradation of the FoxM1 protein, and depletion of Cdh1 resulted in stabilization of the FoxM1 protein in late mitosis and in early G1 phase of the cell cycle. Cdh1 has been implicated in regulating S phase entry. We show that codepletion of FoxM1 inhibits early S phase entry observed in Cdh1-depleted cells. The N-terminal region of FoxM1 contains both destruction box (D box) and KEN box sequences that are required for targeting by Cdh1. Mutation of either the D box sequence or the KEN box sequence stabilized FoxM1 and blocked Cdh1-induced proteolysis. Cells expressing a nondegradable form of FoxM1 entered S phase rapidly following release from M phase arrest. Together, our observations show that FoxM1 is one of the targets of Cdh1 in late M or early G1 phase and that its proteolysis is important for regulated entry into S phase. PMID:18573889

  10. Anaphase-promoting complex/cyclosome-CDH1-mediated proteolysis of the forkhead box M1 transcription factor is critical for regulated entry into S phase.

    PubMed

    Park, Hyun Jung; Costa, Robert H; Lau, Lester F; Tyner, Angela L; Raychaudhuri, Pradip

    2008-09-01

    The forkhead box M1 (FoxM1) transcription factor is overexpressed in many cancers, and in mouse models it is required for tumor progression. FoxM1 activates expression of the cell cycle genes required for both S and M phase progression. Here we demonstrate that FoxM1 is degraded in late mitosis and early G(1) phase by the anaphase-promoting complex/cyclosome (APC/C) E3 ubiquitin ligase. FoxM1 interacts with the APC/C complex and its adaptor, Cdh1. Expression of Cdh1 stimulated degradation of the FoxM1 protein, and depletion of Cdh1 resulted in stabilization of the FoxM1 protein in late mitosis and in early G(1) phase of the cell cycle. Cdh1 has been implicated in regulating S phase entry. We show that codepletion of FoxM1 inhibits early S phase entry observed in Cdh1-depleted cells. The N-terminal region of FoxM1 contains both destruction box (D box) and KEN box sequences that are required for targeting by Cdh1. Mutation of either the D box sequence or the KEN box sequence stabilized FoxM1 and blocked Cdh1-induced proteolysis. Cells expressing a nondegradable form of FoxM1 entered S phase rapidly following release from M phase arrest. Together, our observations show that FoxM1 is one of the targets of Cdh1 in late M or early G(1) phase and that its proteolysis is important for regulated entry into S phase.

  11. De Novo GMNN Mutations Cause Autosomal-Dominant Primordial Dwarfism Associated with Meier-Gorlin Syndrome.

    PubMed

    Burrage, Lindsay C; Charng, Wu-Lin; Eldomery, Mohammad K; Willer, Jason R; Davis, Erica E; Lugtenberg, Dorien; Zhu, Wenmiao; Leduc, Magalie S; Akdemir, Zeynep C; Azamian, Mahshid; Zapata, Gladys; Hernandez, Patricia P; Schoots, Jeroen; de Munnik, Sonja A; Roepman, Ronald; Pearring, Jillian N; Jhangiani, Shalini; Katsanis, Nicholas; Vissers, Lisenka E L M; Brunner, Han G; Beaudet, Arthur L; Rosenfeld, Jill A; Muzny, Donna M; Gibbs, Richard A; Eng, Christine M; Xia, Fan; Lalani, Seema R; Lupski, James R; Bongers, Ernie M H F; Yang, Yaping

    2015-12-03

    Meier-Gorlin syndrome (MGS) is a genetically heterogeneous primordial dwarfism syndrome known to be caused by biallelic loss-of-function mutations in one of five genes encoding pre-replication complex proteins: ORC1, ORC4, ORC6, CDT1, and CDC6. Mutations in these genes cause disruption of the origin of DNA replication initiation. To date, only an autosomal-recessive inheritance pattern has been described in individuals with this disorder, with a molecular etiology established in about three-fourths of cases. Here, we report three subjects with MGS and de novo heterozygous mutations in the 5' end of GMNN, encoding the DNA replication inhibitor geminin. We identified two truncating mutations in exon 2 (the 1(st) coding exon), c.16A>T (p.Lys6(∗)) and c.35_38delTCAA (p.Ile12Lysfs(∗)4), and one missense mutation, c.50A>G (p.Lys17Arg), affecting the second-to-last nucleotide of exon 2 and possibly RNA splicing. Geminin is present during the S, G2, and M phases of the cell cycle and is degraded during the metaphase-anaphase transition by the anaphase-promoting complex (APC), which recognizes the destruction box sequence near the 5' end of the geminin protein. All three GMNN mutations identified alter sites 5' to residue Met28 of the protein, which is located within the destruction box. We present data supporting a gain-of-function mechanism, in which the GMNN mutations result in proteins lacking the destruction box and hence increased protein stability and prolonged inhibition of replication leading to autosomal-dominant MGS. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  12. Radioprotective and cytoprotective activity of Tinospora cordifolia stem enriched extract containing cordifolioside-A

    PubMed Central

    Patel, Arti; Bigoniya, Papiya; Singh, Chandra Shekhar; Patel, Narayan Singh

    2013-01-01

    Objectives: The present study was undertaken to evaluate the radioprotective and cytoprotective potential of cordifolioside-A, a primary active constituent of n-butanol fraction of Tinospora Cordifolia (NBTC) against 4 Gy-γ radiation in mice and cyclophosphamide induced genotoxicity. Materials and Methods: Presence of cordifolioside-A in NBTC stem ethanolic extract was confirmed by high performance thin layer chromatography (HPTLC) analysis. Radioprotective activity was evaluated at 80 and 120 mg/kg, intraperitoneal (i.p.) dose of NBTC administered 15 days prior to whole body radiation exposure by observing survival rate, change in body weight, hematology, spleen colony forming unit (CFU), and micronucleus (MN) expression. Cytoprotective activity of NBTC was evaluated at 5, 10, and 15 mg/ml concentrations on Allium cepa root meristem growth against cyclophosphamide. Results: HPTLC analysis of standard cordifolioside A, and NBTC confirmed the presence of cordifolioside-A in NBTC with the retention factor value of 0.86. Administration of NBTC (120 mg/kg, i.p.) produced significant protection against radiation in terms of increased survival rate, body weight retention, hematological parameters, spleen CFU assay (P < 0.01), and decreased MN expression (P < 0.01). Cytoprotectivity was observed maximally at 10 mg/ml NBTC concentration with significant increase in root growth (P < 0.01), non-toxic mitotic index (MI) (65.9%) and lesser chromosomal aberrations (15.4%). NBTC at 10 mg/ml concentration showed very few C-anaphase compared to aberrations like fragmentation, C-anaphase, multipolarity and sticky chromosome in cyclophosphamide alone. Conclusion: The results suggest that enriched NBTC containing cordifolioside-A has a potential in vivo radioprotective effect as well as in vitro cytoprotective activity. PMID:23833365

  13. Dynamics and control of sister kinetochore behavior during the meiotic divisions in Drosophila spermatocytes

    PubMed Central

    2018-01-01

    Sister kinetochores are connected to the same spindle pole during meiosis I and to opposite poles during meiosis II. The molecular mechanisms controlling the distinct behavior of sister kinetochores during the two meiotic divisions are poorly understood. To study kinetochore behavior during meiosis, we have optimized time lapse imaging with Drosophila spermatocytes, enabling kinetochore tracking with high temporal and spatial resolution through both meiotic divisions. The correct bipolar orientation of chromosomes within the spindle proceeds rapidly during both divisions. Stable bi-orientation of the last chromosome is achieved within ten minutes after the onset of kinetochore-microtubule interactions. Our analyses of mnm and tef mutants, where univalents instead of bivalents are present during meiosis I, indicate that the high efficiency of normal bi-orientation depends on pronounced stabilization of kinetochore attachments to spindle microtubules by the mechanical tension generated by spindle forces upon bi-orientation. Except for occasional brief separation episodes, sister kinetochores are so closely associated that they cannot be resolved individually by light microscopy during meiosis I, interkinesis and at the start of meiosis II. Permanent evident separation of sister kinetochores during M II depends on spindle forces resulting from bi-orientation. In mnm and tef mutants, sister kinetochore separation can be observed already during meiosis I in bi-oriented univalents. Interestingly, however, this sister kinetochore separation is delayed until the metaphase to anaphase transition and depends on the Fzy/Cdc20 activator of the anaphase-promoting complex/cyclosome. We propose that univalent bi-orientation in mnm and tef mutants exposes a release of sister kinetochore conjunction that occurs also during normal meiosis I in preparation for bi-orientation of dyads during meiosis II. PMID:29734336

  14. Phospho-Bcl-xL(Ser62) influences spindle assembly and chromosome segregation during mitosis.

    PubMed

    Wang, Jianfang; Beauchemin, Myriam; Bertrand, Richard

    2014-01-01

    Functional analysis of a series of phosphorylation mutants reveals that Bcl-xL(Ser62Ala) influences cell entry into anaphase and mitotic exit in taxol-exposed cells compared with cells expressing wild-type Bcl-xL or a series of other phosphorylation mutants, an effect that appears to be independent of its anti-apoptotic activity. During normal mitosis progression, Bcl-xL(Ser62) is strongly phosphorylated by PLK1 and MAPK14/SAPKp38α at the prometaphase, metaphase, and the anaphase boundaries, while it is de-phosphorylated at telophase and cytokinesis. Phospho-Bcl-xL(Ser62) localizes in centrosomes with γ-tubulin and in the mitotic cytosol with some spindle-assembly checkpoint signaling components, including PLK1, BubR1, and Mad2. In taxol- and nocodazole-exposed cells, phospho-Bcl-xL(Ser62) also binds to Cdc20- Mad2-, BubR1-, and Bub3-bound complexes, while Bcl-xL(Ser62Ala) does not. Silencing Bcl-xL expression and expressing the phosphorylation mutant Bcl-xL(Ser62Ala) lead to an increased number of cells harboring mitotic spindle defects including multipolar spindle, chromosome lagging and bridging, aneuploidy with micro-, bi-, or multi-nucleated cells, and cells that fail to resolve undergo mitosis within 6 h. Together, the data indicate that during mitosis, Bcl-xL(Ser62) phosphorylation impacts on spindle assembly and chromosome segregation, influencing chromosome stability. Observations of mitotic cells harboring aneuploidy with micro-, bi-, or multi-nucleated cells, and cells that fail to resolve undergo mitosis within 6 h were also made with cells expressing the phosphorylation mutant Bcl-xL(Ser49Ala) and dual mutant Bcl-xL(Ser49/62Ala).

  15. Budding Yeast Kinetochore Proteins, Chl4 and Ctf19, Are Required to Maintain SPB-Centromere Proximity during G1 and Late Anaphase

    PubMed Central

    Sau, Soumitra; Sutradhar, Sabyasachi; Paul, Raja; Sinha, Pratima

    2014-01-01

    In the budding yeast, centromeres stay clustered near the spindle pole bodies (SPBs) through most of the cell cycle. This SPB-centromere proximity requires microtubules and functional kinetochores, which are protein complexes formed on the centromeres and capable of binding microtubules. The clustering is suggested by earlier studies to depend also on protein-protein interactions between SPB and kinetochore components. Previously it has been shown that the absence of non-essential kinetochore proteins of the Ctf19 complex weakens kinetochore-microtubule interaction, but whether this compromised interaction affects centromere/kinetochore positioning inside the nucleus is unknown. We found that in G1 and in late anaphase, SPB-centromere proximity was disturbed in mutant cells lacking Ctf19 complex members,Chl4p and/or Ctf19p, whose centromeres lay further away from their SPBs than those of the wild-type cells. We unequivocally show that the SPB-centromere proximity and distances are not dependent on physical interactions between SPB and kinetochore components, but involve microtubule-dependent forces only. Further insight on the positional difference between wild-type and mutant kinetochores was gained by generating computational models governed by (1) independently regulated, but constant kinetochore microtubule (kMT) dynamics, (2) poleward tension on kinetochore and the antagonistic polar ejection force and (3) length and force dependent kMT dynamics. Numerical data obtained from the third model concurs with experimental results and suggests that the absence of Chl4p and/or Ctf19p increases the penetration depth of a growing kMT inside the kinetochore and increases the rescue frequency of a depolymerizing kMT. Both the processes result in increased distance between SPB and centromere. PMID:25003500

  16. Fission Yeast Apc15 Stabilizes MCC-Cdc20-APC/C Complexes, Ensuring Efficient Cdc20 Ubiquitination and Checkpoint Arrest.

    PubMed

    May, Karen M; Paldi, Flora; Hardwick, Kevin G

    2017-04-24

    During mitosis, cells must segregate the replicated copies of their genome to their daughter cells with extremely high fidelity. Segregation errors lead to an abnormal chromosome number (aneuploidy), which typically results in disease or cell death [1]. Chromosome segregation and anaphase onset are initiated through the action of the multi-subunit E3 ubiquitin ligase known as the anaphase-promoting complex or cyclosome (APC/C [2]). The APC/C is inhibited by the spindle checkpoint in the presence of kinetochore attachment defects [3, 4]. Here we demonstrate that two non-essential APC/C subunits (Apc14 and Apc15) regulate association of spindle checkpoint proteins, in the form of the mitotic checkpoint complex (MCC), with the APC/C. apc14Δ mutants display increased MCC association with the APC/C and are unable to silence the checkpoint efficiently. Conversely, apc15Δ mutants display reduced association between the MCC and APC/C, are defective in poly-ubiquitination of Cdc20, and are checkpoint defective. In vitro reconstitution studies have shown that human MCC-APC/C can contain two molecules of Cdc20 [5-7]. Using a yeast strain expressing two Cdc20 genes with different epitope tags, we show by co-immunoprecipitation that this is true in vivo. MCC binding to the second molecule of Cdc20 is mediated via the C-terminal KEN box in Mad3. Somewhat surprisingly, complexes containing both molecules of Cdc20 accumulate in apc15Δ cells, and the implications of this observation are discussed. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. Cytogenetic studies on Metasequoia glyptostroboides, a living fossil species.

    PubMed

    He, Zican; Li, Jianqiang; Cai, Qing; Li, Xiaodong; Huang, Hongwen

    2004-11-01

    The chromosome morphology and meiotic pairing behavior in the pollen mother cells (PMCs) of Metasequoia glyptostroboides were investigated. The results showed that: (1) The chromosome number of the PMCs was 2n = 22. (2) The PMCs developed in the successive manner, and the nucleoids in the dynamic development were similar to those of the other gymnosperms. (3) At prophase, most of the chromosomes were unable to be identified distinctively because the chromosomes were long and tangled together. The chromosome segments were paired non-synchronously. At pachytene, the interstitial or terminal regions of some bivalents did not form synapsis and the paired chromosomes showed difference in sizes, indicating that there were structure differences between the homologous chromosomes. (4) At diakinesis, the ring bivalents showed complicated configurations due to the differences in location and number of chiasmata. In addition, there were cross-linked bivalents. (5) At metaphase I, the chromosome configuration of each cell was 8.2II(0) + 1.1II + 1.3II+ + 0.8I. Most of the chromosomes were ring bivalents, but some were cross-linked bivalents, rod bivalents, or univalents. (6) 15% PMCs at anaphase I and 22% PMCs at anaphase II presented chromosome bridges, chromosome fragments, micronuclei, and lagging chromosomes. Twenty seven percent microspores finally moved into one to three micronuclei. Twenty five percent pollens were abortive. The results indicated that the observed individual of M. glyptostroboides was probably a paracentric inversion heterozygote, and there were structural and behavioral differences between the homologous chromosomes. The chromosomal aberration of M. glyptostroboides may play an important role in the evolution of this relict species, which is known as a living fossil. Further evidence is needed to test whether the differences between homologous chromosomes were due to hybridization.

  18. Myo19 ensures symmetric partitioning of mitochondria and coupling of mitochondrial segregation to cell division.

    PubMed

    Rohn, Jennifer L; Patel, Jigna V; Neumann, Beate; Bulkescher, Jutta; Mchedlishvili, Nunu; McMullan, Rachel C; Quintero, Omar A; Ellenberg, Jan; Baum, Buzz

    2014-11-03

    During animal cell division, an actin-based ring cleaves the cell into two. Problems with this process can cause chromosome missegregation and defects in cytoplasmic inheritance and the partitioning of organelles, which in turn are associated with human diseases. Although much is known about how chromosome segregation is coupled to cell division, the way organelles coordinate their inheritance during partitioning to daughter cells is less well understood. Here, using a high-content live-imaging small interfering RNA screen, we identify Myosin-XIX (Myo19) as a novel regulator of cell division. Previously, this actin-based motor was shown to control the interphase movement of mitochondria. Our analysis shows that Myo19 is indeed localized to mitochondria and that its silencing leads to defects in the distribution of mitochondria within cells and in mitochondrial partitioning at division. Furthermore, many Myo19 RNAi cells undergo stochastic division failure--a phenotype that can be mimicked using a treatment that blocks mitochondrial fission and rescued by decreasing mitochondrial fusion, implying that mitochondria can physically interfere with cytokinesis. Strikingly, using live imaging we also observe the inappropriate movement of mitochondria to the poles of spindles in cells depleted for Myo19 as they enter anaphase. Since this phenocopies the results of an acute loss of actin filaments in anaphase, these data support a model whereby the Myo19 actin-based motor helps to control mitochondrial movement to ensure their faithful segregation during division. The presence of DNA within mitochondria makes their inheritance an especially important aspect of symmetrical cell division. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. De Novo GMNN Mutations Cause Autosomal-Dominant Primordial Dwarfism Associated with Meier-Gorlin Syndrome

    PubMed Central

    Burrage, Lindsay C.; Charng, Wu-Lin; Eldomery, Mohammad K.; Willer, Jason R.; Davis, Erica E.; Lugtenberg, Dorien; Zhu, Wenmiao; Leduc, Magalie S.; Akdemir, Zeynep C.; Azamian, Mahshid; Zapata, Gladys; Hernandez, Patricia P.; Schoots, Jeroen; de Munnik, Sonja A.; Roepman, Ronald; Pearring, Jillian N.; Jhangiani, Shalini; Katsanis, Nicholas; Vissers, Lisenka E.L.M.; Brunner, Han G.; Beaudet, Arthur L.; Rosenfeld, Jill A.; Muzny, Donna M.; Gibbs, Richard A.; Eng, Christine M.; Xia, Fan; Lalani, Seema R.; Lupski, James R.; Bongers, Ernie M.H.F.; Yang, Yaping

    2015-01-01

    Meier-Gorlin syndrome (MGS) is a genetically heterogeneous primordial dwarfism syndrome known to be caused by biallelic loss-of-function mutations in one of five genes encoding pre-replication complex proteins: ORC1, ORC4, ORC6, CDT1, and CDC6. Mutations in these genes cause disruption of the origin of DNA replication initiation. To date, only an autosomal-recessive inheritance pattern has been described in individuals with this disorder, with a molecular etiology established in about three-fourths of cases. Here, we report three subjects with MGS and de novo heterozygous mutations in the 5′ end of GMNN, encoding the DNA replication inhibitor geminin. We identified two truncating mutations in exon 2 (the 1st coding exon), c.16A>T (p.Lys6∗) and c.35_38delTCAA (p.Ile12Lysfs∗4), and one missense mutation, c.50A>G (p.Lys17Arg), affecting the second-to-last nucleotide of exon 2 and possibly RNA splicing. Geminin is present during the S, G2, and M phases of the cell cycle and is degraded during the metaphase-anaphase transition by the anaphase-promoting complex (APC), which recognizes the destruction box sequence near the 5′ end of the geminin protein. All three GMNN mutations identified alter sites 5′ to residue Met28 of the protein, which is located within the destruction box. We present data supporting a gain-of-function mechanism, in which the GMNN mutations result in proteins lacking the destruction box and hence increased protein stability and prolonged inhibition of replication leading to autosomal-dominant MGS. PMID:26637980

  20. Dual mechanism controls asymmetric spindle position in ascidian germ cell precursors.

    PubMed

    Prodon, François; Chenevert, Janet; Hébras, Céline; Dumollard, Rémi; Faure, Emmanuel; Gonzalez-Garcia, Jose; Nishida, Hiroki; Sardet, Christian; McDougall, Alex

    2010-06-01

    Mitotic spindle orientation with respect to cortical polarity cues generates molecularly distinct daughter cells during asymmetric cell division (ACD). However, during ACD it remains unknown how the orientation of the mitotic spindle is regulated by cortical polarity cues until furrowing begins. In ascidians, the cortical centrosome-attracting body (CAB) generates three successive unequal cleavages and the asymmetric segregation of 40 localized postplasmic/PEM RNAs in germ cell precursors from the 8-64 cell stage. By combining fast 4D confocal fluorescence imaging with gene-silencing and classical blastomere isolation experiments, we show that spindle repositioning mechanisms are active from prometaphase until anaphase, when furrowing is initiated in B5.2 cells. We show that the vegetal-most spindle pole/centrosome is attracted towards the CAB during prometaphase, causing the spindle to position asymmetrically near the cortex. Next, during anaphase, the opposite spindle pole/centrosome is attracted towards the border with neighbouring B5.1 blastomeres, causing the spindle to rotate (10 degrees /minute) and migrate (3 microm/minute). Dynamic 4D fluorescence imaging of filamentous actin and plasma membrane shows that precise orientation of the cleavage furrow is determined by this second phase of rotational spindle displacement. Furthermore, in pairs of isolated B5.2 blastomeres, the second phase of rotational spindle displacement was lost. Finally, knockdown of PEM1, a protein localized in the CAB and required for unequal cleavage in B5.2 cells, completely randomizes spindle orientation. Together these data show that two separate mechanisms active during mitosis are responsible for spindle positioning, leading to precise orientation of the cleavage furrow during ACD in the cells that give rise to the germ lineage in ascidians.

  1. High levels of telomere dysfunction bestow a selective disadvantage during the progression of human oral squamous cell carcinoma.

    PubMed

    Gordon, Katrina E; Ireland, Hazel; Roberts, Meryl; Steeghs, Karen; McCaul, James A; MacDonald, D Gordon; Parkinson, E Kenneth

    2003-01-15

    Human epithelial cells experience multiple barriers to cellular immortality in culture (mortality mechanisms 0, 1, and 2). Mortality mechanism 2 (M2) is termed crisis and involves telomere dysfunction due to lack of telomerase. However, proliferating normal keratinocytes in vivo can express telomerase, so it is unclear whether human squamous cell carcinomas (SCCs), which usually have high telomerase levels, develop from preexisting telomerase-positive precursors or by the activation of telomerase in telomerase-deficient somatic cells. We show that 6 of 29 oral SCCs show characteristics of M2 crisis in vivo, as indicated by a high anaphase bridge index (ABI), which is a good correlate of telomere dysfunction, and that 25 of 29 tumors possess some anaphase bridges. ABIs in excess of 0.2 in the primary tumor showed a decrease in the corresponding lymph node metastases. This suggests that high levels of telomere dysfunction (>0.2) and, by inference, M2 crisis bestow a selective disadvantage on SCCs during progression stages of the disease. Supporting this, SCCs with high levels of telomere dysfunction grow poorly in culture, and the ectopic expression of telomerase corrects this, together with other features of M2 crisis. Our data suggest that a substantial proportion of oral SCCs in vivo ultimately arise from telomerase-deficient keratinocytes rather than putative telomerase-proficient cells in the undifferentiated parts of the epithelium. Furthermore, the presence of significant levels of telomere dysfunction in a high proportion of SCCs at diagnosis but not in the normal epithelium implies that the therapeutic inhibition of telomerase should selectively compromise the growth of such tumors.

  2. CENTROSOMES AND MICROTUBULES DURING MEIOSIS IN THE MUSHROOM BOLETUS RUBINELLUS

    PubMed Central

    McLaughlin, David J.

    1971-01-01

    The double centrosome in the basidium of Boletus rubinellus has been observed in three planes with the electron microscope at interphase preceding nuclear fusion, at prophase I, and at interphase I. It is composed of two components connected by a band-shaped middle part. At anaphase I a single, enlarged centrosome is found at the spindle pole, which is attached to the cell membrane. Microtubules mainly oriented parallel to the longitudinal axis of the basidium are present at prefusion, prophase I and interphase I. Cytoplasmic microtubules are absent when the spindle is present. The relationship of the centrosome in B. rubinellus to that in other organisms and the role of the cytoplasmic microtubules are discussed. PMID:4329156

  3. Mechanical design principles of a mitotic spindle.

    PubMed

    Ward, Jonathan J; Roque, Hélio; Antony, Claude; Nédélec, François

    2014-12-18

    An organised spindle is crucial to the fidelity of chromosome segregation, but the relationship between spindle structure and function is not well understood in any cell type. The anaphase B spindle in fission yeast has a slender morphology and must elongate against compressive forces. This 'pushing' mode of chromosome transport renders the spindle susceptible to breakage, as observed in cells with a variety of defects. Here we perform electron tomographic analyses of the spindle, which suggest that it organises a limited supply of structural components to increase its compressive strength. Structural integrity is maintained throughout the spindle's fourfold elongation by organising microtubules into a rigid transverse array, preserving correct microtubule number and dynamically rescaling microtubule length.

  4. H3 Thr3 phosphorylation is crucial for meiotic resumption and anaphase onset in oocyte meiosis

    PubMed Central

    Wang, Qian; Wei, Haojie; Du, Juan; Cao, Yan; Zhang, Nana; Liu, Xiaoyun; Liu, Xiaoyu; Chen, Dandan; Ma, Wei

    2016-01-01

    Abstract Haspin-catalyzed histone H3 threonine 3 (Thr3) phosphorylation facilitates chromosomal passenger complex (CPC) docking at centromeres, regulating indirectly chromosome behavior during somatic mitosis. It is not fully known about the expression and function of H3 with phosphorylated Thr3 (H3T3-P) during meiosis in oocytes. In this study, we investigated the expression and sub-cellular distribution of H3T3-P, as well as its function in mouse oocytes during meiotic division. Western blot analysis revealed that H3T3-P expression was only detected after germinal vesicle breakdown (GVBD), and gradually increased to peak level at metaphase I (MI), but sharply decreased at metaphase II (MII). Immunofluorescence showed H3T3-P was only brightly labeled on chromosomes after GVBD, with relatively high concentration across the whole chromosome axis from pro-metaphase I (pro-MI) to MI. Specially, H3T3-P distribution was exclusively limited to the local space between sister centromeres at MII stage. Haspin inhibitor, 5-iodotubercidin (5-ITu), dose- and time-dependently blocked H3T3-P expression in mouse oocytes. H3T3-P inhibition delayed the resumption of meiosis (GVBD) and chromatin condensation. Moreover, the loss of H3T3-P speeded up the meiotic transition to MII of pro-MI oocytes in spite of the presence of non-aligned chromosomes, even reversed MI-arrest induced with Nocodazole. The inhibition of H3T3-P expression distinguishably damaged MAD1 recruitment on centromeres, which indicates the spindle assembly checkpoint was impaired in function, logically explaining the premature onset of anaphase I. Therefore, Haspin-catalyzed histone H3 phosphorylation is essential for chromatin condensation and the following timely transition from meiosis I to meiosis II in mouse oocytes during meiotic division. PMID:26636626

  5. Mutagenicity and genotoxicity of drinking water in Guelma region, Algeria.

    PubMed

    Abda, Ahlem; Benouareth, Djamel E; Tabet, Mouna; Liman, Recep; Konuk, Muhsin; Khallef, Messaouda; Taher, Ali

    2015-02-01

    In this study, a battery of genotoxicity assays for monitoring drinking water was performed to assess the quality of the water resulting from the treatment plants. Five different types of samples were collected: raw water (P1), treated after pre-chlorination (P2), treated after decantation (P3), treated post-chlorination (P4), and consumers' taps (P5-P12). This study aims to evaluate the formation/occurrence of mutagenic and/or genotoxic compounds in surface drinking waters treated with chlorine disinfectant, during four seasonal experiments: summer, autumn, winter, and spring between 2012 and 2013 by bacterial reverse mutation assay in both Salmonella typhimurium TA98 and TA100 strains with or without metabolic activation system (S9 mix) and Allium cepa root meristematic cells, respectively. All of water samples, except at P1, P2, and P5 in summer; P1 in autumn; and P1 and P3-P12 in spring without S9 mix, and at P1 and P2 in summer and P6 and P8-P12 in spring with S9 mix, were found to be mutagenic in S. typhimurium TA98. However, only P11 and P12 in winter were found to be mutagenic for TA100 without S9 mix. The tested preparations in Allium anaphase-telophase test revealed a significant decrease in mitotic index (MI) and a simultaneous increase in chromosome aberrations (CAs) compared to the control. The bridge, stickiness, vagrant chromosomes, and disturbed chromosome aberrations were observed in anaphase-telophase cells. Physicochemical analysis, trihalomethanes (THMs), romoform (CHBr3), chloroform (CHCl3), bromodichloromethane (CHBrCl2), and dibromochloromethane (CHBr2Cl) levels in water samples were also determined. The results show also that this short-term battery tests are applicable in the routine monitoring of drinking water quality before and after distribution.

  6. Chronic exposure to particulate chromate induces spindle assembly checkpoint bypass in human lung cells.

    PubMed

    Wise, Sandra S; Holmes, Amie L; Xie, Hong; Thompson, W Douglas; Wise, John Pierce

    2006-11-01

    One of the hallmarks of lung cancer is chromosome instability (CIN), particularly a tetraploid phenotype, which is normally prevented by the spindle assembly checkpoint. Hexavalent chromium Cr(VI) is an established human lung carcinogen, and Cr(VI) induces tumors at lung bifurcation sites where Cr(VI) particles impact and persist. However, the effects of Cr(VI) on the spindle assembly checkpoint are unknown and little is known about prolonged exposure to particulate Cr(VI). Accordingly, we investigated particulate Cr(VI)-induced bypass of the spindle assembly checkpoint after several days of exposure in WHTBF-6 cells. We found that lead chromate indeed induces spindle assembly checkpoint bypass in human lung cells, as 72, 96, and 120 h treatments with 0.5 or 1 microg/cm2 lead chromate induced significant increases in the percentage of cells with aberrant mitotic figures. For example, treatment with 1 microg/cm2 lead chromate for 96 h induced 11, 12.3, and 14% of cells with premature anaphase, centromere spreading and premature centromere division, respectively. In addition, we found a disruption of mitosis with more cells accumulating in anaphase; cells treated for 96 h increased from 18% in controls to 31% in cells treated with lead chromate. To confirm involvement of the spindle assembly checkpoint, Mad2 expression was used as a marker. Mad2 expression was decreased in cells exposed to chronic treatments of lead chromate, consistent with disruption of the checkpoint. We also found concentration- and time-dependent increases in tetraploid cells, which continued to grow and form colonies. When cells were treated with chronic lead alone there was no increase in aberrant mitotic cells or polyploidy; however, chronic exposure to a soluble Cr(VI) showed an increase in aberrant mitotic cells and polyploidy. These data suggest that lead chromate does induce CIN and may be one mechanism in the development of Cr(VI)-induced lung cancer.

  7. The Multiple Roles of Cyk1p in the Assembly and Function of the Actomyosin Ring in Budding Yeast

    PubMed Central

    Shannon, Katie B.; Li, Rong

    1999-01-01

    The budding yeast IQGAP-like protein Cyk1p/Iqg1p localizes to the mother-bud junction during anaphase and has been shown to be required for the completion of cytokinesis. In this study, video microscopy analysis of cells expressing green fluorescent protein-tagged Cyk1p/Iqg1p demonstrates that Cyk1p/Iqg1p is a dynamic component of the contractile ring during cytokinesis. Furthermore, in the absence of Cyk1p/Iqg1p, myosin II fails to undergo the contraction-like size change at the end of mitosis. To understand the mechanistic role of Cyk1p/Iqg1p in actomyosin ring assembly and dynamics, we have investigated the role of the structural domains that Cyk1p/Iqg1p shares with IQGAPs. An amino terminal portion containing the calponin homology domain binds to actin filaments and is required for the assembly of actin filaments to the ring. This result supports the hypothesis that Cyk1p/Iqg1p plays a direct role in F-actin recruitment. Deletion of the domain harboring the eight IQ motifs abolishes the localization of Cyk1p/Iqg1p to the bud neck, suggesting that Cyk1p/Iqg1p may be localized through interactions with a calmodulin-like protein. Interestingly, deletion of the COOH-terminal GTPase-activating protein-related domain does not affect Cyk1p/Iqg1p localization or actin recruitment to the ring but prevents actomyosin ring contraction. In vitro binding experiments show that Cyk1p/Iqg1p binds to calmodulin, Cmd1p, in a calcium-dependent manner, and to Tem1p, a small GTP-binding protein previously found to be required for the completion of anaphase. These results demonstrate the critical function of Cyk1p/Iqg1p in regulating various steps of actomyosin ring assembly and cytokinesis. PMID:9950677

  8. A Minimal Anaphase Promoting Complex/Cyclosome (APC/C) in Trypanosoma brucei

    PubMed Central

    Bessat, Mohamed; Knudsen, Giselle; Burlingame, Alma L.; Wang, Ching C.

    2013-01-01

    The anaphase-promoting complex/cyclosome (APC/C) is a multi-subunit E3 ubiquitin ligase that initiates chromosome segregation and mitotic exit by targeting critical cell-cycle regulators for proteolytic destruction. Previously, seven APC/C subunit homologues were identified in the genome of Trypanosoma brucei. In the present study, we tested five of them in yeast complementation studies and found none of them capable of complementing the yeast mutants lacking the corresponding subunits, suggesting significant discrepancies between the two APC/C’s. Subunit homologues of mitotic checkpoint complex (MCC) have not yet been identified in T. brucei, raising the possibility that a MCC-APC/C complex equivalent may not exist in T. brucei. We performed tandem affinity purification of the protein complex containing a APC1 fusion protein expressed in the cells enriched in different phases of the cell cycle of procyclic form T. brucei, and compared their protein profiles using LC-MS/MS analyses. The seven putative APC/C subunits were identified in the protein complex throughout the cell cycle together with three additional proteins designated the associated proteins (AP) AP1, AP2 and AP3. Abundance of the 10 proteins remained relatively unchanged throughout the cell cycle, suggesting that they are the core subunits of APC/C. AP1 turned out to be a homologue of APC4. An RNAi knockdown of APC4 and AP3 showed no detectable cellular phenotype, whereas an AP2 knockdown enriched the cells in G2/M phase. The AP2-depleted cells showed stabilized mitotic cyclin B. An accumulation of poly-ubiquitinated cyclin B was indicated in the cells treated with the proteasome inhibitor MG132, demonstrating the involvement of proteasome in degrading poly-ubiquitinated cyclin B. In all, a 10-subunit APC/C machinery with a conserved function is identified in T. brucei without linking to a MCC-like complex, thus indicating a unique T. brucei APC/C. PMID:23533609

  9. Single Site α-Tubulin Mutation Affects Astral Microtubules and Nuclear Positioning during Anaphase in Saccharomyces cerevisiae: Possible Role for Palmitoylation of α-Tubulin

    PubMed Central

    Caron, Joan M.; Vega, Leticia R.; Fleming, James; Bishop, Robert; Solomon, Frank

    2001-01-01

    We generated a strain of Saccharomyces cerevisiae in which the sole source of α-tubulin protein has a cys-to-ser mutation at cys-377, and then we examined microtubule morphology and nuclear positioning through the cell cycle. During G1 of the cell cycle, microtubules in the C377S α-tubulin (C377S tub1) mutant were indistinguishable from those in the control (TUB1) strain. However, mitotic C377S tub1 cells displayed astral microtubules that often appeared excessive in number, abnormally long, and/or misoriented compared with TUB1 cells. Although mitotic spindles were always correctly aligned along the mother-bud axis, translocation of spindles through the bud neck was affected. In late anaphase, spindles were often not laterally centered but instead appeared to rest along the sides of cells. When the doubling time was increased by growing cells at a lower temperature (15°C), we often found abnormally long mitotic spindles. No increase in the number of anucleate or multinucleate C377S mutant cells was found at any temperature, suggesting that, despite the microtubule abnormalities, mitosis proceeded normally. Because cys-377 is a presumptive site of palmitoylation in α-tubulin in S. cerevisiae, we next compared in vivo palmitoylation of wild-type and C377S mutant forms of the protein. We detected palmitoylated α-tubulin in TUB1 cells, but the cys-377 mutation resulted in approximately a 60% decrease in the level of palmitoylated α-tubulin in C377S tub1 cells. Our results suggest that cys-377 of α-tubulin, and possibly palmitoylation of this amino acid, plays a role in a subset of astral microtubule functions during nuclear migration in M phase of the cell cycle. PMID:11553707

  10. Somatic association of telocentric chromosomes carrying homologous centromeres in common wheat.

    PubMed

    Mello-Sampayo, T

    1973-01-01

    Measurements of distances between telocentric chromosomes, either homologous or representing the opposite arms of a metacentric chromosome (complementary telocentrics), were made at metaphase in root tip cells of common wheat carrying two homologous pairs of complementary telocentrics of chromosome 1 B or 6 B (double ditelosomic 1 B or 6 B). The aim was to elucidate the relative locations of the telocentric chromosomes within the cell. The data obtained strongly suggest that all four telocentrics of chromosome 1 B or 6 B are spacially and simultaneously co-associated. In plants carrying two complementary (6 B (S) and 6 B (L)) and a non-related (5 B (L)) telocentric, only the complementary chromosomes were found to be somatically associated. It is thought, therefore, that the somatic association of chromosomes may involve more than two chromosomes in the same association and, since complementary telocentrics are as much associated as homologous, that the homology between centromeres (probably the only homologous region that exists between complementary telocentrics) is a very important condition for somatic association of chromosomes. The spacial arrangement of chromosomes was studied at anaphase and prophase and the polar orientation of chromosomes at prophase was found to resemble anaphase orientation. This was taken as good evidence for the maintenance of the chromosome arrangement - the Rabl orientation - and of the peripheral location of the centromere and its association with the nuclear membrane. Within this general arrangement homologous telocentric chromosomes were frequently seen to have their centromeres associated or directed towards each other. The role of the centromere in somatic association as a spindle fibre attachment and chromosome binder is discussed. It is suggested that for non-homologous chromosomes to become associated in root tips, the only requirement needed should be the homology of centromeres such as exists between complementary telocentrics, or, as a possible alternative, common repeated sequences of DNA molecules around the centromere region.

  11. RING E3 mechanism for ubiquitin ligation to a disordered substrate visualized for human anaphase-promoting complex

    DOE PAGES

    Brown, Nicholas G.; VanderLinden, Ryan; Watson, Edmond R.; ...

    2015-03-30

    For many E3 ligases, a mobile RING (Really Interesting New Gene) domain stimulates ubiquitin (Ub) transfer from a thioester-linked E2~Ub intermediate to a lysine on a remotely bound disordered substrate. One such E3 is the gigantic, multisubunit 1.2-MDa anaphase-promoting complex/cyclosome (APC), which controls cell division by ubiquitinating cell cycle regulators to drive their timely degradation. Intrinsically disordered substrates are typically recruited via their KEN-box, D-box, and/or other motifs binding to APC and a coactivator such as CDH1. On the opposite side of the APC, the dynamic catalytic core contains the cullin-like subunit APC2 and its RING partner APC11, which collaboratesmore » with the E2 UBCH10 (UBE2C) to ubiquitinate substrates. However, how dynamic RING–E2~Ub catalytic modules such as APC11–UBCH10~Ub collide with distally tethered disordered substrates remains poorly understood. In this paper, we report structural mechanisms of UBCH10 recruitment to APC CDH1 and substrate ubiquitination. Unexpectedly, in addition to binding APC11’s RING, UBCH10 is corecruited via interactions with APC2, which we visualized in a trapped complex representing an APC CDH1–UBCH10~Ub–substrate intermediate by cryo-electron microscopy, and in isolation by X-ray crystallography. To our knowledge, this is the first structural view of APC, or any cullin–RING E3, with E2 and substrate juxtaposed, and it reveals how tripartite cullin–RING–E2 interactions establish APC’s specificity for UBCH10 and harness a flexible catalytic module to drive ubiquitination of lysines within an accessible zone. Finally, we propose that multisite interactions reduce the degrees of freedom available to dynamic RING E3–E2~Ub catalytic modules, condense the search radius for target lysines, increase the chance of active-site collision with conformationally fluctuating substrates, and enable regulation.« less

  12. Structure of an APC3–APC16 Complex: Insights into Assembly of the Anaphase-Promoting Complex/Cyclosome

    DOE PAGES

    Yamaguchi, Masaya; Yu, Shanshan; Qiao, Renping; ...

    2014-12-06

    The anaphase-promoting complex/cyclosome (APC/C) is a massive E3 ligase that controls mitosis by catalyzing ubiquitination of key cell cycle regulatory proteins. The APC/C assembly contains two subcomplexes: the “Platform” centers around a cullin-RING-like E3 ligase catalytic core; the “Arc Lamp” is a hub that mediates transient association with regulators and ubiquitination substrates. The Arc Lamp contains the small subunits APC16, CDC26, and APC13, and tetratricopeptide repeat (TPR) proteins (APC7, APC3, APC6, and APC8) that homodimerize and stack with quasi-2-fold symmetry. Within the APC/C complex, APC3 serves as center for regulation. APC3's TPR motifs recruit substrate-binding coactivators, CDC20 and CDH1, viamore » their C-terminal conserved Ile-Arg (IR) tail sequences. Human APC3 also binds APC16 and APC7 and contains a > 200-residue loop that is heavily phosphorylated during mitosis, although the basis for APC3 interactions and whether loop phosphorylation is required for ubiquitination are unclear. Here, we map the basis for human APC3 assembly with APC16 and APC7, report crystal structures of APC3Δloop alone and in complex with the C-terminal domain of APC16, and test roles of APC3's loop and IR tail binding surfaces in APC/C-catalyzed ubiquitination. The structures show how one APC16 binds asymmetrically to the symmetric APC3 dimer and, together with biochemistry and prior data, explain how APC16 recruits APC7 to APC3, show how APC3's C-terminal domain is rearranged in the full APC/C assembly, and visualize residues in the IR tail binding cleft important for coactivator-dependent ubiquitination. Overall, the results provide insights into assembly, regulation, and interactions of TPR proteins and the APC/C.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stairs, G. R.

    The production of pollen under conditions of chronic gamma irradiation was investigated for three oak species. Two chronically irradiated areas were studied: a low level (1 to 15r/day) area where trees had received varying amounts of radiation over a period of 11 years, and a second area receiving gamma radiation for about five months previous to the investigation. In the latter study dose levels ranged from lethal (45r/day) to a region of no detectable effect. In both areas pollen abortion showed a significant increase with increasing radiation exposure, although germinable pollen was produced at all survival levels examined. The germinatingmore » pollen tube length did not show a significant decrease in the irradiated material examined. In addition to cytological effects there was a marked deiny in floral phenology for both areas. Acute irradiation of male flower buds at different stages of meiosis, and of mature pollen were reported. The radiosensitivity of microsporogenesis was evaluated by cytological scoring at anaphase I, and by pollen abortion, germination, and tube lengih. Both the number of chromosome fragments/100 cells scored at anaphase I and pollen abortion showed a linear increase with an increase in radiation exposure. Pollen germination and tube length were less effected by radiation (based on a percent of unaborted grains). It was suggested that a range of 1 kr to 4 kr will be appropriate for irradiating male flower buds of oak to be utilized in a mutation breeding program. Contingent upon additional studies the range of radiation recommended for flower buds is also suggested for the induction of mutations in pollen. Pollen was found to be highly resistant to radiation when evaluated by germination and tube growth studies. No effect was found with irradiation of 100 kr; at 300 kr both germination and tube lengths were depressed. At these levels it is probable that germination is an expression of cytoplasmic growth and not of nuclear viability. No significant difference was found between responses of the two species for either chronic or acute irradiation. (auth)« less

  14. Cytogenetics off interpopulation Cuphea lanceolata hybrids.

    PubMed

    Ali, M S; Knapp, S J

    1995-12-01

    Cuphea lanceolata Ait. (Lythraceae) is an annual diploid (x = 6) with medium-chain fatty acid rich seed oils. Wild C. lanceolata populations are classified as C. lanceolata f. silenoides or C. lanceolata f. lanceolata on the basis of flower pigment differences. Although these taxa are taxonomically close, their interfertility has not been demonstrated. We describe meiotic phenomena underlying the sterility of hybrids between C. lanceolata f. silenoides (LNS-43) and C. lanceolata f. lanceolata (LNC-78) populations. We assayed metaphase and anaphase I microsporocytes of the parent and hybrid populations. The hybrids were female and male sterile. The mean percentage of stainable pollen was 94.9% for the parents and 1.1% for the hybrids. Chromosomes paired and disjoined normally in the parents (LNS-43 and LNC-78) and abnormally in the hybrids (LNS-43 x LNC-78 and LNC-78 x LNS-43). Univalents, unequal chromosome distributions, and laggards were observed in the hybrids. The mean number of univalents per cell was 0.00 for the parents and 5.95 for the hybrids, the mean number of bivalents per cell was 6.00 for the parents and 1.51 for the hybrids, and the mean number of chiasmata per cell was 9.19 for the parents and 4.04 for the hybrids. The most frequently observed (75%) anaphase I chromosome distribution for the hybrids was 7:5:0 (pole-pole-laggards). The genome affinities of the hybrids were half those of the parents (a mean of 0.5 for the hybrids as opposed to 1.0 for the parents). Although C. lanceolata f. silenoides and C. lanceolata f. lanceolata freely hybridize, their progeny are sterile, and the genetic diversity of LNC-78, and perhaps of C. lanceolata f. lanceolata as a whole, cannot be accessed through hybrids with C. lanceolata f. silenoides or C. viscosissima.

  15. Chromosomal Fragmentation: A Possible Marker for the Selection of High Gymnemic Acid Yielding Accessions of Gymnema sylvestre R. Br.

    PubMed

    Verma, Ashutosh Kumar; Dhawan, Sunita Singh

    2017-10-01

    Gymnema sylvestre R. Br. a member of family Asclepiadaceae as mentioned in Indian Pharmacopoeia popular among the researchers because of stimulatory effect of its phytoconstituent on pancreatic cells and potential to treat Type I and II type of diabetes. Development of cost-effective marker system for the selection of high gymnemic acid yielding accessions of G. sylvestre . Presoaked seeds of Brassica campestris treated with different dilutions of gymnemagenin and 10% leaf extract of twenty different accessions of G. sylvestre . Root tips of germinated seeds were fixed, and chromosomal studies were made by root tip bioassay method. Exposure of seeds to treatment solutions promotes various types of chromosomal anomalies in root meristem, and surprisingly, direct correlation between the percentage of chromosomal fragmentation and the percentage of gymnemic acid shared by treatment solution were observed. Later finding may be explored for the development of a novel methodology or marker system for the selection of high active principle yielding accessions of G. sylvestre . An experiment was carried out using root tip bioassay method for the study of effect of different dilutions of standard gymnemic acid and 10% leaf extract of twenty different accessions of Gymnema sylvestre on root tip meristem of Brassica campestris . Various types of chromosomal anomalies were observed. Of which, percentage of chromosomal fragmentation was showed a direct (∞) relationship with the percentage of gymnemic acid shared by treatment solution. This interesting result after more and more exploration and revalidation could be utilized for the development of a novel methodology for the selection of high active principle yielding accessions of G. sylvestre . Abbreviations used: MI: Mitotic index; CP: Condensed prophase; CM: Clumped metaphase; MC: Metaphase cleft; FR: Fragmentation; AP: Anaphase with persistent nucleolous; LA: Laggard, BR: Bridge; BI: Bi-nucleated cell; DA: Disturbed anaphasic polarity.

  16. Chromosomal Fragmentation: A Possible Marker for the Selection of High Gymnemic Acid Yielding Accessions of Gymnema sylvestre R. Br

    PubMed Central

    Verma, Ashutosh Kumar; Dhawan, Sunita Singh

    2017-01-01

    Background: Gymnema sylvestre R. Br. a member of family Asclepiadaceae as mentioned in Indian Pharmacopoeia popular among the researchers because of stimulatory effect of its phytoconstituent on pancreatic cells and potential to treat Type I and II type of diabetes. Objectives: Development of cost-effective marker system for the selection of high gymnemic acid yielding accessions of G. sylvestre. Materials and Methods: Presoaked seeds of Brassica campestris treated with different dilutions of gymnemagenin and 10% leaf extract of twenty different accessions of G. sylvestre. Root tips of germinated seeds were fixed, and chromosomal studies were made by root tip bioassay method. Results: Exposure of seeds to treatment solutions promotes various types of chromosomal anomalies in root meristem, and surprisingly, direct correlation between the percentage of chromosomal fragmentation and the percentage of gymnemic acid shared by treatment solution were observed. Conclusion: Later finding may be explored for the development of a novel methodology or marker system for the selection of high active principle yielding accessions of G. sylvestre. SUMMARY An experiment was carried out using root tip bioassay method for the study of effect of different dilutions of standard gymnemic acid and 10% leaf extract of twenty different accessions of Gymnema sylvestre on root tip meristem of Brassica campestris. Various types of chromosomal anomalies were observed. Of which, percentage of chromosomal fragmentation was showed a direct (∞) relationship with the percentage of gymnemic acid shared by treatment solution. This interesting result after more and more exploration and revalidation could be utilized for the development of a novel methodology for the selection of high active principle yielding accessions of G. sylvestre. Abbreviations used: MI: Mitotic index; CP: Condensed prophase; CM: Clumped metaphase; MC: Metaphase cleft; FR: Fragmentation; AP: Anaphase with persistent nucleolous; LA: Laggard, BR: Bridge; BI: Bi-nucleated cell; DA: Disturbed anaphasic polarity. PMID:29142402

  17. [Cytogenetical comparison of restorers TP-4 and D minghui63 and maintainer D46B of autotetraploid rice].

    PubMed

    Long, Wen-Bo; Luan, Li; Wang, Xing; Liu, Yu-Hua; Tu, Sheng-Bin; Kong, Fan-Lun; He, Tao

    2007-04-01

    Cytogenetical comparison was made between high seed set restorers TP-4 and D minghui63 and eminent maintainer line D46B of autotetraploid rice. The meiosis observation demonstrated the genomes of our autotetraploid materials were all 2n = 48, the same as those in mitosis observation. Low percentages of univalent and trivalent in metaphase I (MI) of restorers TP-4 and D minghui63 and in metaphase I (MI) of maintainer line D46B of autotetraploid rice were observed. And the percentages of chromosome pairing were all over 99%, showing eminent cytological character. The frequency of TP-4 and D minghui63 in metaphase I (MI) was 2.00/PMC and 2.26/PMC, respectively. However the frequency of D46B was 6.00/PMC, significantly higher than those of TP-4 and D minghui63. It indicated that the maintainer D46B has better chromosome pairing capability in metaphase I (MI). While, the frequency of lagging chromosomes of the maintainer D46B in anaphase I (AI) was 10.62%, significantly lower than that of TP-4 (19.44%) or D minghui63 (23.14%), and it was close to the level of diploid control (7.30%). In telophase I (TI), maintainer D46B exhibited a lower frequency of microkernel, and in telophase II (TII) the frequency of normal quartered microspore of maintainer D46B was not only higher than that of TP-4 or D minghui63 but also than that of diploid control. The percentage of the cell observed chromosome lagging in A1 and the percentage of abnormal cell in TI showed a greatly significant positive correlation. That may demonstrate chromo some separation in anaphase I (AI) and microkernel formation in telophase I (TI) are controlled by the same dominant single gene or the major gene of QTL.

  18. The Anaphase-Promoting Complex (APC) ubiquitin ligase affects chemosensory behavior in C. elegans.

    PubMed

    Wang, Julia; Jennings, Alexandra K; Kowalski, Jennifer R

    2016-01-01

    The regulation of fundamental aspects of neurobiological function has been linked to the ubiquitin signaling system (USS), which regulates the degradation and activity of proteins and is catalyzed by E1, E2, and E3 enzymes. The Anaphase-Promoting Complex (APC) is a multi-subunit E3 ubiquitin ligase that controls diverse developmental and signaling processes in post-mitotic neurons; however, potential roles for the APC in sensory function have yet to be explored. In this study, we examined the effect of the APC ubiquitin ligase on chemosensation in Caenorhabditis elegans by testing chemotaxis to the volatile odorants, diacetyl, pyrazine, and isoamyl alcohol, to which wild-type worms are attracted. Animals with loss of function mutations in either of two alleles (g48 and ye143) of the gene encoding the APC subunit EMB-27 APC6 showed increased chemotaxis towards diacetyl and pyrazine, odorants sensed by AWA neurons, but exhibited normal chemotaxis to isoamyl alcohol, which is sensed by AWC neurons. The statistically significant increase in chemotaxis in the emb-27 APC6 mutants suggests that the APC inhibits AWA-mediated chemosensation in C. elegans. Increased chemotaxis to pyrazine was also seen with mutants lacking another essential APC subunit, MAT-2 APC1; however, mat-2 APC1 mutants exhibited wild type responses to diacetyl. The difference in responsiveness of these two APC subunit mutants may be due to differential strength of these hypomorphic alleles or may indicate the presence of functional sub-complexes of the APC at work in this process. These findings are the first evidence for APC-mediated regulation of chemosensation and lay the groundwork for further studies aimed at identifying the expression levels, function, and targets of the APC in specific sensory neurons. Because of the similarity between human and C. elegans nervous systems, the role of the APC in sensory neurons may also advance our understanding of human sensory function and disease.

  19. De novo generation of plant centromeres at tandem repeats.

    PubMed

    Teo, Chee How; Lermontova, Inna; Houben, Andreas; Mette, Michael Florian; Schubert, Ingo

    2013-06-01

    Artificial minichromosomes are highly desirable tools for basic research, breeding, and biotechnology purposes. We present an option to generate plant artificial minichromosomes via de novo engineering of plant centromeres in Arabidopsis thaliana by targeting kinetochore proteins to tandem repeat arrays at non-centromeric positions. We employed the bacterial lactose repressor/lactose operator system to guide derivatives of the centromeric histone H3 variant cenH3 to LacO operator sequences. Tethering of cenH3 to non-centromeric loci led to de novo assembly of kinetochore proteins and to dicentric carrier chromosomes which potentially form anaphase bridges. This approach will be further developed and may contribute to generating minichromosomes from preselected genomic regions, potentially even in a diploid background.

  20. Induced chromosomal aberrations in somatic cells of Nigella sativa L. by mitomycin C.

    PubMed

    Kumar, P; Nizam, J

    1978-01-01

    A cytological study was carried out on root tips of Nigella sativa L. by treatment with Mitomycin C at 0.001% for six time intervals (10, 15, 20, 30, 40, and 50 min). The chromosomal abnormalities were increasingly proportionate to the increase in time of treatment. The seedlings treated with a 0.001% concentration of Mitomycin C for 10 min. did not show any significant effect. At other time intervals, the effect was observed to be quite significant. Beyond 40 min. treatment almost all the cells would become sticky. Thirty minutes' treatment showed significant effect, inducing various types of chromosomal aberrations in the anaphase, such as bridges and fragments of 34.13% and 48.07%, respectively.

  1. CYSTEAMINE PROTECTION OF GRASSHOPPER CHROMOSOMES FROM X-RAY-INDUCED ABERRATIONS UNDER AEROBIC AND ANAEROBIC CONDTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray-Chaudhuri, S.P.; Chaudhuri, J.P.; Chatterjee, S.

    1962-10-01

    The effect of cysteamine pre-treatment on the frequency of x-ray-induced chromosome aberrations was determined under both aerobic and anaerobic conditions by counting the dicentric bridges in the first division meiotic anaphase of the grasshopper, Gesonula punctifrons. Under aerobic conditions in the cysteamine- treated animals 20.73% bridges were scored as compared with 30 to 90% in the controls. Under anaerobic conditions the scores were 5.35% and 8.22% in the treated and controls, respectively. Thus the degree of protection by cysteamine under both aerobic and anaerobic conditions was found to be more or less the same. The possible mode of protection ismore » discussed. (auth)« less

  2. Effects of caffeine on mitotic index, mitotic aberrations and bimitosis with and without aeration.

    PubMed

    Röper, W

    1977-07-01

    The effects of 1 to 3 h 0.2% caffeine treatment on mitosis in lateral roots of Vicia faba with and without aeration have been investigated. During the treatment a marked decrease of the mitotic index followed by strong deviations and changing phase indices can be stated. By means of aeration the number of mitotic aberrations increases with time of treatment, while it decreases without aeration until 3 h treatment. Tetraploid cells are supposed to be formed by spindle aberrations at early anaphase. The number of binucleate and tetraploid cells is affected by aeration during caffeine treatment. During division of the binucleate cells tetraploid nuclei are formed by fusions, so the population of binucleate cells may become smaller.

  3. The roles of cohesins in mitosis, meiosis, and human health and disease

    PubMed Central

    Brooker, Amanda S.; Berkowitz, Karen M.

    2015-01-01

    Summary Mitosis and meiosis are essential processes that occur during development. Throughout these processes, cohesion is required to keep the sister chromatids together until their separation at anaphase. Cohesion is created by multi-protein subunit complexes called cohesins. Although the subunits differ slightly in mitosis and meiosis, the canonical cohesin complex is composed of four subunits that are quite diverse. The cohesin complexes are also important for DNA repair, gene expression, development, and genome integrity. Here we provide an overview of the roles of cohesins during these different events, as well as their roles in human health and disease, including the cohesinopathies. Although the exact roles and mechanisms of these proteins are still being elucidated, this review will serve as a guide for the current knowledge of cohesins. PMID:24906316

  4. Fanconi anemia and the cell cycle: new perspectives on aneuploidy

    PubMed Central

    2014-01-01

    Fanconi anemia (FA) is a complex heterogenic disorder of genomic instability, bone marrow failure, cancer predisposition, and congenital malformations. The FA signaling network orchestrates the DNA damage recognition and repair in interphase as well as proper execution of mitosis. Loss of FA signaling causes chromosome instability by weakening the spindle assembly checkpoint, disrupting centrosome maintenance, disturbing resolution of ultrafine anaphase bridges, and dysregulating cytokinesis. Thus, the FA genes function as guardians of genome stability throughout the cell cycle. This review discusses recent advances in diagnosis and clinical management of Fanconi anemia and presents the new insights into the origins of genomic instability in FA. These new discoveries may facilitate the development of rational therapeutic strategies for FA and for FA-deficient malignancies in the general population. PMID:24765528

  5. Fifteen years of APC/cyclosome: a short and impressive biography.

    PubMed

    Simpson-Lavy, Kobi J; Oren, Yifat S; Feine, Oren; Sajman, Julia; Listovsky, Tammy; Brandeis, Michael

    2010-02-01

    The APC/C (anaphase-promoting complex/cyclosome) discovered exactly 15 years ago by Avram Heshko and Marc Kirschner is by far the most complex ubiquitin ligase discovered so far. The APC/C is composed of roughly a dozen subunits and measures a massive 1.5 MDa. This huge complex, as well as its multiple modes of regulation, boasts impressive evolutionary conservation. One of its most puzzling features is its split personality: regulation of mitotic exit events on the one hand, and its ongoing activity during G(1)-phase, G(0)-phase and in terminally differentiated cells. The present short review is intended to provide a basic description of our current understanding of the APC/C, focusing on recent findings concerning its role in G(1)-phase and in differentiated cells.

  6. Phosphorylation and dephosphorylation regulate APC/CCdh1 substrate degradation

    PubMed Central

    Simpson-Lavy, Kobi J; Zenvirth, Drora; Brandeis, Michael

    2015-01-01

    The Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase activated by its G1 specific adaptor protein Cdh1 is a major regulator of the cell cycle. The APC/CCdh1 mediates degradation of dozens of proteins, however, the kinetics and requirements for their degradation are largely unknown. We demonstrate that overexpression of the constitutive active CDH1m11 mutant that is not inhibited by phosphorylation results in mitotic exit in the absence of the FEAR and MEN pathways, and DNA re-replication in the absence of Cdc7 activity. This mode of mitotic exit also reveals additional requirements for APC/CCdh1 substrate degradation, which for some substrates such as Pds1 or Clb5 is dephosphorylation, but for others such as Cdc5 is phosphorylation. PMID:26252546

  7. Monitoring genetic damage to ecosystems from hazardous waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, S.L.

    1992-03-01

    Applications of ecological toxicity testing to hazardous waste management have increased dramatically over the last few years, resulting in a greater awareness of the need for improved biomonitoring techniques. Our laboratory is developing advanced techniques to assess the genotoxic effects of environmental contamination on ecosystems. We have developed a novel mutagenesis assay using the nematode Caenorhabditis elegans, which is potentially applicable for multimedia studies in soil, sediment, and water. In addition, we are conducting validation studies of a previously developed anaphase aberration test that utilizes sea urchin embryos. Other related efforts include field validation studies of the new tests, evaluationmore » of their potential ecological relevance, and analysis of their sensitivity relative to that of existing toxicity tests that assess only lethal effects, rather than genetic damage.« less

  8. Mechanical design principles of a mitotic spindle

    PubMed Central

    Ward, Jonathan J; Roque, Hélio; Antony, Claude; Nédélec, François

    2014-01-01

    An organised spindle is crucial to the fidelity of chromosome segregation, but the relationship between spindle structure and function is not well understood in any cell type. The anaphase B spindle in fission yeast has a slender morphology and must elongate against compressive forces. This ‘pushing’ mode of chromosome transport renders the spindle susceptible to breakage, as observed in cells with a variety of defects. Here we perform electron tomographic analyses of the spindle, which suggest that it organises a limited supply of structural components to increase its compressive strength. Structural integrity is maintained throughout the spindle's fourfold elongation by organising microtubules into a rigid transverse array, preserving correct microtubule number and dynamically rescaling microtubule length. DOI: http://dx.doi.org/10.7554/eLife.03398.001 PMID:25521247

  9. Panta rhei: The APC/C at steady state

    PubMed Central

    2013-01-01

    The anaphase-promoting complex or cyclosome (APC/C) is a conserved, multisubunit E3 ubiquitin (Ub) ligase that is active both in dividing and in postmitotic cells. Its contributions to life are especially well studied in the domain of cell division, in which the APC/C lies at the epicenter of a regulatory network that controls the directionality and timing of cell cycle events. Biochemical and structural work is shedding light on the overall organization of APC/C subunits and on the mechanism of substrate recognition and Ub chain initiation and extension as well as on the molecular mechanisms of a checkpoint that seizes control of APC/C activity during mitosis. Here, we review how these recent advancements are modifying our understanding of the APC/C. PMID:23589490

  10. Functional characterization of rpn3 uncovers a distinct 19S proteasomal subunit requirement for ubiquitin-dependent proteolysis of cell cycle regulatory proteins in budding yeast.

    PubMed

    Bailly, E; Reed, S I

    1999-10-01

    By selectively eliminating ubiquitin-conjugated proteins, the 26S proteasome plays a pivotal role in a large variety of cellular regulatory processes, particularly in the control of cell cycle transitions. Access of ubiquitinated substrates to the inner catalytic chamber within the 20S core particle is mediated by the 19S regulatory particle (RP), whose subunit composition in budding yeast has been recently elucidated. In this study, we have investigated the cell cycle defects resulting from conditional inactivation of one of these RP components, the essential non-ATPase Rpn3/Sun2 subunit. Using temperature-sensitive mutant alleles, we show that rpn3 mutations do not prevent the G(1)/S transition but cause a metaphase arrest, indicating that the essential Rpn3 function is limiting for mitosis. rpn3 mutants appear severely compromised in the ubiquitin-dependent proteolysis of several physiologically important proteasome substrates. Thus, RPN3 function is required for the degradation of the G(1)-phase cyclin Cln2 targeted by SCF; the S-phase cyclin Clb5, whose ubiquitination is likely to involve a combination of E3 (ubiquitin protein ligase) enzymes; and anaphase-promoting complex targets, such as the B-type cyclin Clb2 and the anaphase inhibitor Pds1. Our results indicate that the Pds1 degradation defect of the rpn3 mutants most likely accounts for the metaphase arrest phenotype observed. Surprisingly, but consistent with the lack of a G(1) arrest phenotype in thermosensitive rpn3 strains, the Cdk inhibitor Sic1 exhibits a short half-life regardless of the RPN3 genotype. In striking contrast, Sic1 turnover is severely impaired by a temperature-sensitive mutation in RPN12/NIN1, encoding another essential RP subunit. While other interpretations are possible, these data strongly argue for the requirement of distinct RP subunits for efficient proteolysis of specific cell cycle regulators. The potential implications of these data are discussed in the context of possible Rpn3 function in multiubiquitin-protein conjugate recognition by the 19S proteasomal regulatory particle.

  11. A study of directional instability during mitotic chromosome movement

    NASA Astrophysics Data System (ADS)

    Joglekar, Ajit P.

    Mitotic chromosome movements are responsible for the correct segregation of duplicated chromosomes into the daughter cells. Errors in this process are known to play a role in some of the serious diseases such as cancer, and the little understood process of aging. A thorough comprehension of the physical basis of this process is therefore necessary. An intriguing aspect of chromosome movements during mitosis is "directional instability": runs with approximately constant speed punctuated by abrupt reversal in direction of motion. I have constructed a mechanistic model that views chromosome movement as a result of interplay between poleward and antipoleward or polar ejection forces (PEF) on a chromosome; and microtubule (MT) depolymerization-coupled movement of the chromosome. Computer simulations based on this model using a single set of parameters accurately and quantitatively predict: the force, character, speed, and duration of chromosome movements, oscillations of chromosomes associated with only one spindle pole, the larger force during anaphase, the effect of MT-depolymerizing drugs on chromosome movements, and the decreased turnover of kinetochore-MTs during anaphase. The model also predicts how chromosome behavior should respond to perturbations of the PEF. These predictions could be unequivocally tested if it were possible to destroy structures smaller than the light resolution limit with minimal collateral damage. To address these requirements, I developed a methodology for ultrahigh resolution microsurgery with tightly-focused, ultrafast lasers pulses. This entailed an in-depth study of optical breakdown in dielectrics. Characterization of the single pulse damage in test dielectric materials ranging from silicon and glass to cell walls and membranes has shown that in the target regions where the laser intensity exceeds critical intensity, optical breakdown proceeds by tunneling ionization followed by a runaway avalanche ionization that ends with the ionization of all the valence electrons. Highly reproducible features on the nanometer size-scale indicate that the valence electron density is the central factor determining the critical intensity, implying that high precision can be maintained in a wide range of solids. Along with the new understanding optical breakdown, this technique will find potential applications in diverse fields ranging from MEMS fabrication to nano-fluidics, as well as cellular nanosurgery.

  12. Microcystin-LR, a protein phosphatase inhibitor, induces alterations in mitotic chromatin and microtubule organization leading to the formation of micronuclei in Vicia faba

    PubMed Central

    Beyer, Dániel; Tándor, Ildikó; Kónya, Zoltán; Bátori, Róbert; Roszik, Janos; Vereb, György; Erdődi, Ferenc; Vasas, Gábor; M-Hamvas, Márta; Jambrovics, Károly; Máthé, Csaba

    2012-01-01

    Background and Aims Microcystin-LR (MCY-LR) is a cyanobacterial toxin, a specific inhibitor of type 1 and 2A protein phosphatases (PP1 and PP2A) with significant impact on aquatic ecosystems. It has the potential to alter regulation of the plant cell cycle. The aim of this study was improved understanding of the mitotic alterations induced by cyanotoxin in Vicia faba, a model organism for plant cell biology studies. Methods Vicia faba seedlings were treated over the long and short term with MCY-LR purified in our laboratory. Short-term treatments were performed on root meristems synchronized with hydroxylurea. Sections of lateral root tips were labelled for chromatin, phosphorylated histone H3 and β-tubulin via histochemical and immunohistochemical methods. Mitotic activity and the occurrence of mitotic alterations were detected and analysed by fluorescence microscopy. The phosphorylation state of histone H3 was studied by Western blotting. Key Results Long-term MCY-LR exposure of lateral root tip meristems increased the percentage of either early or late mitosis in a concentration-dependent manner. We observed hypercondensed chromosomes and altered sister chromatid segregation (lagging chromosomes) leading to the formation of micronuclei, accompanied by the formation of disrupted, multipolar and monopolar spindles, disrupted phragmoplasts and the hyperphosphorylation of histone H3 at Ser10. Short-term MCY-LR treatment of synchronized cells showed that PP1 and PP2A inhibition delayed the onset of anaphase at 1 µg mL−1 MCY-LR, accelerated cell cycle at 10 µg mL−1 MCY-LR and induced the formation of lagging chromosomes. In this case mitotic microtubule alterations were not detected, but histone H3 was hyperphosphorylated. Conclusions MCY-LR delayed metaphase–anaphase transition. Consequently, it induced aberrant chromatid segregation and micronucleus formation that could be associated with both H3 hyperphosphorylation and altered microtubule organization. However, these two phenomena seemed to be independent. The toxin may be a useful tool in the study of plant cell cycle regulation. PMID:22819947

  13. The Saccharomyces cerevisiae anaphase-promoting complex interacts with multiple histone-modifying enzymes to regulate cell cycle progression.

    PubMed

    Turner, Emma L; Malo, Mackenzie E; Pisclevich, Marnie G; Dash, Megan D; Davies, Gerald F; Arnason, Terra G; Harkness, Troy A A

    2010-10-01

    The anaphase-promoting complex (APC), a large evolutionarily conserved ubiquitin ligase complex, regulates cell cycle progression through mitosis and G(1). Here, we present data suggesting that APC-dependent cell cycle progression relies on a specific set of posttranslational histone-modifying enzymes. Multiple APC subunit mutants were impaired in total and modified histone H3 protein content. Acetylated H3K56 (H3K56(Ac)) levels were as reduced as those of total H3, indicating that loading histones with H3K56(Ac) is unaffected in APC mutants. However, under restrictive conditions, H3K9(Ac) and dimethylated H3K79 (H3K79(me2)) levels were more greatly reduced than those of total H3. In a screen for histone acetyltransferase (HAT) and histone deacetylase (HDAC) mutants that genetically interact with the apc5(CA) (chromatin assembly) mutant, we found that deletion of GCN5 or ELP3 severely hampered apc5(CA) temperature-sensitive (ts) growth. Further analyses showed that (i) the elp3Δ gcn5Δ double mutant ts defect was epistatic to that observed in apc5(CA) cells; (ii) gcn5Δ and elp3Δ mutants accumulate in mitosis; and (iii) turnover of the APC substrate Clb2 is not impaired in elp3Δ gcn5Δ cells. Increased expression of ELP3 and GCN5, as well as genes encoding the HAT Rtt109 and the chromatin assembly factors Msi1 and Asf1, suppressed apc5(CA) defects, while increased APC5 expression partially suppressed elp3Δ gcn5Δ growth defects. Finally, we demonstrate that Gcn5 is unstable during G(1) and following G(1) arrest and is stabilized in APC mutants. We present our working model in which Elp3/Gcn5 and the APC work together to facilitate passage through mitosis and G(1). To progress into S, we propose that at least Gcn5 must then be targeted for degradation in an APC-dependent fashion.

  14. Microcystin-LR, a protein phosphatase inhibitor, induces alterations in mitotic chromatin and microtubule organization leading to the formation of micronuclei in Vicia faba.

    PubMed

    Beyer, Dániel; Tándor, Ildikó; Kónya, Zoltán; Bátori, Róbert; Roszik, Janos; Vereb, György; Erdodi, Ferenc; Vasas, Gábor; M-Hamvas, Márta; Jambrovics, Károly; Máthé, Csaba

    2012-09-01

    Microcystin-LR (MCY-LR) is a cyanobacterial toxin, a specific inhibitor of type 1 and 2A protein phosphatases (PP1 and PP2A) with significant impact on aquatic ecosystems. It has the potential to alter regulation of the plant cell cycle. The aim of this study was improved understanding of the mitotic alterations induced by cyanotoxin in Vicia faba, a model organism for plant cell biology studies. Vicia faba seedlings were treated over the long and short term with MCY-LR purified in our laboratory. Short-term treatments were performed on root meristems synchronized with hydroxylurea. Sections of lateral root tips were labelled for chromatin, phosphorylated histone H3 and β-tubulin via histochemical and immunohistochemical methods. Mitotic activity and the occurrence of mitotic alterations were detected and analysed by fluorescence microscopy. The phosphorylation state of histone H3 was studied by Western blotting. Long-term MCY-LR exposure of lateral root tip meristems increased the percentage of either early or late mitosis in a concentration-dependent manner. We observed hypercondensed chromosomes and altered sister chromatid segregation (lagging chromosomes) leading to the formation of micronuclei, accompanied by the formation of disrupted, multipolar and monopolar spindles, disrupted phragmoplasts and the hyperphosphorylation of histone H3 at Ser10. Short-term MCY-LR treatment of synchronized cells showed that PP1 and PP2A inhibition delayed the onset of anaphase at 1 µg mL(-1) MCY-LR, accelerated cell cycle at 10 µg mL(-1) MCY-LR and induced the formation of lagging chromosomes. In this case mitotic microtubule alterations were not detected, but histone H3 was hyperphosphorylated. MCY-LR delayed metaphase-anaphase transition. Consequently, it induced aberrant chromatid segregation and micronucleus formation that could be associated with both H3 hyperphosphorylation and altered microtubule organization. However, these two phenomena seemed to be independent. The toxin may be a useful tool in the study of plant cell cycle regulation.

  15. Parkin Regulates Mitosis and Genomic Stability through Cdc20/Cdh1.

    PubMed

    Lee, Seung Baek; Kim, Jung Jin; Nam, Hyun-Ja; Gao, Bowen; Yin, Ping; Qin, Bo; Yi, Sang-Yeop; Ham, Hyoungjun; Evans, Debra; Kim, Sun-Hyun; Zhang, Jun; Deng, Min; Liu, Tongzheng; Zhang, Haoxing; Billadeau, Daniel D; Wang, Liewei; Giaime, Emilie; Shen, Jie; Pang, Yuan-Ping; Jen, Jin; van Deursen, Jan M; Lou, Zhenkun

    2015-10-01

    Mutations in the E3 ubiquitin ligase Parkin have been linked to familial Parkinson's disease. Parkin has also been implicated in mitosis through mechanisms that are unclear. Here we show that Parkin interacts with anaphase promoting complex/cyclosome (APC/C) coactivators Cdc20 and Cdh1 to mediate the degradation of several key mitotic regulators independent of APC/C. We demonstrate that ordered progression through mitosis is orchestrated by two distinct E3 ligases through the shared use of Cdc20 and Cdh1. Furthermore, Parkin is phosphorylated and activated by polo-like kinase 1 (Plk1) during mitosis. Parkin deficiency results in overexpression of its substrates, mitotic defects, genomic instability, and tumorigenesis. These results suggest that the Parkin-Cdc20/Cdh1 complex is an important regulator of mitosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Strasburger's legacy to mitosis and cytokinesis and its relevance for the Cell Theory.

    PubMed

    Baluška, František; Volkmann, Dieter; Menzel, Diedrik; Barlow, Peter

    2012-10-01

    Eduard Strasburger was one of the most prominent biologists contributing to the development of the Cell Theory during the nineteenth century. His major contribution related to the characterization of mitosis and cytokinesis and especially to the discovery of the discrete stages of mitosis, which he termed prophase, metaphase and anaphase. Besides his observations on uninucleate plant and animal cells, he also investigated division processes in multinucleate cells. Here, he emphasised the independent nature of mitosis and cytokinesis. We discuss these issues from the perspective of new discoveries in the field of cell division and conclude that Strasburger's legacy will in the future lead to a reformulation of the Cell Theory and that this will accommodate the independent and primary nature of the nucleus, together with its complement of perinuclear microtubules, for the organisation of the eukaryotic cell.

  17. Gravity and the orientation of cell division

    NASA Technical Reports Server (NTRS)

    Helmstetter, C. E.

    1997-01-01

    A novel culture system for mammalian cells was used to investigate division orientations in populations of Chinese hamster ovary cells and the influence of gravity on the positioning of division axes. The cells were tethered to adhesive sites, smaller in diameter than a newborn cell, distributed over a nonadhesive substrate positioned vertically. The cells grew and divided while attached to the sites, and the angles and directions of elongation during anaphase, projected in the vertical plane, were found to be random with respect to gravity. However, consecutive divisions of individual cells were generally along the same axis or at 90 degrees to the previous division, with equal probability. Thus, successive divisions were restricted to orthogonal planes, but the choice of plane appeared to be random, unlike the ordered sequence of cleavage orientations seen during early embryo development.

  18. [The chiral mutagens: cytogenetic effects on higher plants].

    PubMed

    Morgun, V V; Larchenko, E A; Kostianovskiĭ, R G; Keterinchuk, A M

    2011-01-01

    The paper covers investigation of cytogenetic activity of chiral mutagens and their specific effects on the plant cells chromosomes of soft winter wheat (Triticum aestivum L.). Comparative analysis of cytogenetic activity of chiral NEU: S(+)1-N-nitroso- 1-N-methyl-3-N-sec-buthylureas (S(+)NMsBU) and R(-)1-N-nitroso- 1N-methyl-3-Nsec-buthylureas (R(-)NMsBU) on winter wheat was performed. As it was shown by the frequency of chromosomal aberrations the S(+) stereoisomer was twice more active than R(-). In addition to typical anaphase aberrations (fragments, bridges, lagging chromosomes) the numerous mitosis pathologies were revealed - K-mitoses, hyperspiralization and despiralization of chromosomes, unequal allocation of chromosomes between the daughter nuclei, mass fragmentation, nondisjunction and chromosome adhesion, three-pole mitoses, etc. Neither of the mentioned pathologies was observed under the action of NEU and gamma-rays.

  19. The Rho-associated protein kinase p160ROCK is required for centrosome positioning

    PubMed Central

    Chevrier, Véronique; Piel, Matthieu; Collomb, Nora; Saoudi, Yasmina; Frank, Ronald; Paintrand, Michel; Narumiya, Shuh; Bornens, Michel; Job, Didier

    2002-01-01

    The p160–Rho-associated coiled-coil–containing protein kinase (ROCK) is identified as a new centrosomal component. Using immunofluorescence with a variety of p160ROCK antibodies, immuno EM, and depletion with RNA interference, p160ROCK is principally bound to the mother centriole (MC) and an intercentriolar linker. Inhibition of p160ROCK provoked centrosome splitting in G1 with the MC, which is normally positioned at the cell center and shows little motion during G1, displaying wide excursions around the cell periphery, similar to its migration toward the midbody during cytokinesis. p160ROCK inhibition late after anaphase in mitosis triggered MC migration to the midbody followed by completion of cell division. Thus, p160ROCK is required for centrosome positioning and centrosome-dependent exit from mitosis. PMID:12034773

  20. Rapid Discovery of Pyrido[3,4-d]pyrimidine Inhibitors of Monopolar Spindle Kinase 1 (MPS1) Using a Structure-Based Hybridization Approach.

    PubMed

    Innocenti, Paolo; Woodward, Hannah L; Solanki, Savade; Naud, Sébastien; Westwood, Isaac M; Cronin, Nora; Hayes, Angela; Roberts, Jennie; Henley, Alan T; Baker, Ross; Faisal, Amir; Mak, Grace Wing-Yan; Box, Gary; Valenti, Melanie; De Haven Brandon, Alexis; O'Fee, Lisa; Saville, Harry; Schmitt, Jessica; Matijssen, Berry; Burke, Rosemary; van Montfort, Rob L M; Raynaud, Florence I; Eccles, Suzanne A; Linardopoulos, Spiros; Blagg, Julian; Hoelder, Swen

    2016-04-28

    Monopolar spindle 1 (MPS1) plays a central role in the transition of cells from metaphase to anaphase and is one of the main components of the spindle assembly checkpoint. Chromosomally unstable cancer cells rely heavily on MPS1 to cope with the stress arising from abnormal numbers of chromosomes and centrosomes and are thus more sensitive to MPS1 inhibition than normal cells. We report the discovery and optimization of a series of new pyrido[3,4-d]pyrimidine based inhibitors via a structure-based hybridization approach from our previously reported inhibitor CCT251455 and a modestly potent screening hit. Compounds in this novel series display excellent potency and selectivity for MPS1, which translates into biomarker modulation in an in vivo human tumor xenograft model.

  1. On the role of the chaperonin CCT in the just-in-time assembly process of APC/CCdc20.

    PubMed

    Dekker, Carien

    2010-02-05

    The just-in-time hypothesis relates to the assembly of large multi-protein complexes and their regulation of activation in the cell. Here I postulate that chaperonins may contribute to the timely assembly and activation of such complexes. For the case of anaphase promoting complex/cyclosome(Cdc20) assembly by the eukaryotic chaperonin chaperonin containing Tcp1 it is shown that just-in-time synthesis and chaperone-assisted folding can synergise to generate a highly regulated assembly process of a protein complex that is vital for cell cycle progression. Once dependency has been established transcriptional regulation and chaperonin-dependency may have co-evolved to safeguard the timely activation of important multi-protein complexes. 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Measuring mitotic forces.

    PubMed

    Ye, Anna A; Maresca, Thomas J

    2018-01-01

    Productive chromosome movements require that a large multiprotein complex called the kinetochore assemble on sister centromeres. The kinetochore fulfills two critical functions as (1) the physical linkage between chromosomes and spindle microtubules and (2) a mechanomolecular sensor that relays a spindle assembly checkpoint signal delaying anaphase onset until chromosomes are attached to spindle microtubules and bioriented. Given its central roles in such a vital process, the kinetochore is one of the most important force-transducing structures in cells; yet it has been technically challenging to measure kinetochore forces. Barriers to measuring cellular forces have begun to be broken by the development of fluorescence-based tension sensors. In this chapter, two methods will be described for measuring kinetochore forces in living cells and strategies for applying these sensors to other force-transducing processes and molecules will be discussed. © 2018 Elsevier Inc. All rights reserved.

  3. Diverse Mitotic and Interphase Functions of Condensins in Drosophila

    PubMed Central

    Cobbe, Neville; Savvidou, Ellada; Heck, Margarete M. S.

    2006-01-01

    The condensin complex has been implicated in the higher-order organization of mitotic chromosomes in a host of model eukaryotes from yeasts to flies and vertebrates. Although chromosomes paradoxically appear to condense in condensin mutants, chromatids are not properly resolved, resulting in chromosome segregation defects during anaphase. We have examined the role of different condensin complex components in interphase chromatin function by examining the effects of various condensin mutations on position-effect variegation in Drosophila melanogaster. Surprisingly, most mutations affecting condensin proteins were often found to result in strong enhancement of variegation in contrast to what might be expected for proteins believed to compact the genome. This suggests either that the role of condensin proteins in interphase differs from their expected role in mitosis or that the way we envision condensin's activity needs to be modified to accommodate alternative possibilities. PMID:16272408

  4. Comparative analysis of mitotic aberrations induced by diethyl sulphate (DES) and sodium azide (SA) in Vicia faba L. (Fabaceae).

    PubMed

    Bhat, Tariq Ahmad; Sharma, Monika; Anis, M

    2007-03-01

    The present investigation provides a comparative account of different concentrations (0.01, 0.02, 0.03, 0.04, 0.05 and 0.06%) of diethylsulphate (DES) and Sodium Azide (SA) on mitotic aberrations, seed germination, seedling survival, plant height and mitotic index in Vicia faba L. variety major. The control plants were normal while as treated ones showed significant alterations. The mutagens caused dose dependent decrease in seed germination, seedling survival, plant height and mitotic index. All the parameters were found negatively affected and were positively correlated with mutagenic concentrations. The cytological study revealed various types of mitotic aberrations, among them the dominant were fragments, stickiness, precocious separation, c-metaphase, ring chromosomes, unequal separation, laggards, bridges, micronuclei, disturbed anaphase etc. Stickiness and fragments were more frequent as compared to other types.

  5. Cyclic lipopeptide biosurfactant from Bacillus tequilensis exhibits multifarious activity.

    PubMed

    Pradhan, Arun Kumar; Rath, Animesha; Pradhan, Nilotpala; Hazra, Rupenangshu Kumar; Nayak, Rati Ranjan; Kanjilal, Sanjit

    2018-06-01

    Bacillus tequilensis strain CH had been previously shown to produce a biosurfactant. In this study, chemical structure of the purified biosurfactant was determined by using high performance liquid chromatography and liquid chromatography-mass spectroscopy as a 10 amino acid cyclic lipopeptide (CL). The cyclic lipopeptide was found to be active against Anopheles culicifacies larvae with a LC 50 of 110 µg/ml in 2 days. 1 ppm cadmium (Cd) which had a profound mutagenic effect on the cell division of onion ( Allium cepa ) root tip cell resulting in abnormal metaphase, abnormal anaphase and nuclei elongation was partially reversed in the presence of 0.1 mg/ml of CL (52% cells dividing normally and 8% with abnormal division) and was comparable to control experiment where no Cd was present. Thus, the CL described in this report may have applications in eliminating larvae from water repository systems and in reversing the effects of cadmium pollution.

  6. Nup155 regulates nuclear envelope and nuclear pore complex formation in nematodes and vertebrates

    PubMed Central

    Franz, Cerstin; Askjaer, Peter; Antonin, Wolfram; Iglesias, Carmen López; Haselmann, Uta; Schelder, Malgorzata; de Marco, Ario; Wilm, Matthias; Antony, Claude; Mattaj, Iain W

    2005-01-01

    Nuclear envelope (NE) formation during cell division in multicellular organisms is a central yet poorly understood biological process. We report that the conserved nucleoporin Nup155 has an essential function in NE formation in Caenorhabditis elegans embryos and in Xenopus laevis egg extracts. In vivo depletion of Nup155 led to failure of nuclear lamina formation and defects in chromosome segregation at anaphase. Nup155 depletion inhibited accumulation of nucleoporins at the nuclear periphery, including those recruited to chromatin early in NE formation. Electron microscopy analysis revealed that Nup155 is also required for the formation of a continuous nuclear membrane in vivo and in vitro. Time-course experiments indicated that Nup155 is recruited to chromatin at the time of NE sealing, suggesting that nuclear pore complex assembly has to progress to a relatively late stage before NE membrane assembly occurs. PMID:16193066

  7. Cytogenetical and ultrastructural effects of copper on root meristem cells of Allium sativum L.

    PubMed

    Liu, Donghua; Jiang, Wusheng; Meng, Qingmin; Zou, Jin; Gu, Jiegang; Zeng, Muai

    2009-04-01

    Different copper concentrations, as well as different exposure times, were applied to investigate both cytogenetical and ultrastructural alterations in garlic (Allium sativum L.) meristem cells. Results showed that the mitotic index decreased progressively when either copper concentration or exposure time increased. C-mitosis, anaphase bridges, chromosome stickiness and broken nuclei were observed in the copper treated root tip cells. Some particulates containing the argyrophilic NOR-associated proteins were distributed in the nucleus of the root-tip cells and the amount of this particulate material progressively increased with increasing exposure time. Finally, the nucleolar material was extruded from the nucleus into the cytoplasm. Also, increased dictyosome vesicles in number, formation of cytoplasmic vesicles containing electron dense granules, altered mitochondrial shape, disruption of nuclear membranes, condensation of chromatin material, disintegration of organelles were observed. The mechanisms of detoxification and tolerance of copper are briefly discussed.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinshaw, Stephen M.; Makrantoni, Vasso; Kerr, Alastair

    The cohesin ring holds newly replicated sister chromatids together until their separation at anaphase. Initiation of sister chromatid cohesion depends on a separate complex, Scc2NIPBL/Scc4Mau2 (Scc2/4), which loads cohesin onto DNA and determines its localization across the genome. Proper cohesin loading is essential for cell division, and partial defects cause chromosome missegregation and aberrant transcriptional regulation, leading to severe developmental defects in multicellular organisms. We present here a crystal structure showing the interaction between Scc2 and Scc4. Scc4 is a TPR array that envelops an extended Scc2 peptide. Using budding yeast, we demonstrate that a conserved patch on the surfacemore » of Scc4 is required to recruit Scc2/4 to centromeres and to build pericentromeric cohesion. These findings reveal the role of Scc4 in determining the localization of cohesin loading and establish a molecular basis for Scc2/4 recruitment to centromeres.« less

  9. Microtubule-dependent regulation of mitotic protein degradation

    PubMed Central

    Song, Ling; Craney, Allison; Rape, Michael

    2014-01-01

    Accurate cell division depends on tightly regulated ubiquitylation events catalyzed by the anaphase-promoting complex. Among its many substrates, the APC/C triggers the degradation of proteins that stabilize the mitotic spindle, and loss or accumulation of such spindle assembly factors can result in aneuploidy and cancer. Although critical for cell division, it has remained poorly understood how the timing of spindle assembly factor degradation is established during mitosis. Here, we report that active spindle assembly factors are protected from APC/C-dependent degradation by microtubules. In contrast, those molecules that are not bound to microtubules are highly susceptible to proteolysis and turned over immediately after APC/C-activation. The correct timing of spindle assembly factor degradation, as achieved by this regulatory circuit, is required for accurate spindle structure and function. We propose that the localized stabilization of APC/C-substrates provides a mechanism for the selective disposal of cell cycle regulators that have fulfilled their mitotic roles. PMID:24462202

  10. Alternative meiotic chromatid segregation in the holocentric plant Luzula elegans

    PubMed Central

    Heckmann, Stefan; Jankowska, Maja; Schubert, Veit; Kumke, Katrin; Ma, Wei; Houben, Andreas

    2014-01-01

    Holocentric chromosomes occur in a number of independent eukaryotic lineages. They form holokinetic kinetochores along the entire poleward chromatid surfaces, and owing to this alternative chromosome structure, species with holocentric chromosomes cannot use the two-step loss of cohesion during meiosis typical for monocentric chromosomes. Here we show that the plant Luzula elegans maintains a holocentric chromosome architecture and behaviour throughout meiosis, and in contrast to monopolar sister centromere orientation, the unfused holokinetic sister centromeres behave as two distinct functional units during meiosis I, resulting in sister chromatid separation. Homologous non-sister chromatids remain terminally linked after metaphase I, by satellite DNA-enriched chromatin threads, until metaphase II. They then separate at anaphase II. Thus, an inverted sequence of meiotic sister chromatid segregation occurs. This alternative meiotic process is most likely one possible adaptation to handle a holocentric chromosome architecture and behaviour during meiosis. PMID:25296379

  11. Separase is recruited to mitotic chromosomes to dissolve sister chromatid cohesion in a DNA-dependent manner.

    PubMed

    Sun, Yuxiao; Kucej, Martin; Fan, Heng-Yu; Yu, Hong; Sun, Qing-Yuan; Zou, Hui

    2009-04-03

    Sister chromatid separation is triggered by the separase-catalyzed cleavage of cohesin. This process is temporally controlled by cell-cycle-dependent factors, but its biochemical mechanism and spatial regulation remain poorly understood. We report that cohesin cleavage by human separase requires DNA in a sequence-nonspecific manner. Separase binds to DNA in vitro, but its proteolytic activity, measured by its autocleavage, is not stimulated by DNA. Instead, biochemical characterizations suggest that DNA mediates cohesin cleavage by bridging the interaction between separase and cohesin. In human cells, a fraction of separase localizes to the mitotic chromosome. The importance of the chromosomal DNA in cohesin cleavage is further demonstrated by the observation that the cleavage of the chromosome-associated cohesins is sensitive to nuclease treatment. Our observations explain why chromosome-associated cohesins are specifically cleaved by separase and the soluble cohesins are left intact in anaphase.

  12. Mutations in genes encoding condensin complex proteins cause microcephaly through decatenation failure at mitosis

    PubMed Central

    Martin, Carol-Anne; Murray, Jennie E.; Carroll, Paula; Leitch, Andrea; Mackenzie, Karen J.; Halachev, Mihail; Fetit, Ahmed E.; Keith, Charlotte; Bicknell, Louise S.; Fluteau, Adeline; Gautier, Philippe; Hall, Emma A.; Joss, Shelagh; Soares, Gabriela; Silva, João; Bober, Michael B.; Duker, Angela; Wise, Carol A.; Quigley, Alan J.; Phadke, Shubha R.; Wood, Andrew J.; Vagnarelli, Paola; Jackson, Andrew P.

    2016-01-01

    Compaction of chromosomes is essential for accurate segregation of the genome during mitosis. In vertebrates, two condensin complexes ensure timely chromosome condensation, sister chromatid disentanglement, and maintenance of mitotic chromosome structure. Here, we report that biallelic mutations in NCAPD2, NCAPH, or NCAPD3, encoding subunits of these complexes, cause microcephaly. In addition, hypomorphic Ncaph2 mice have significantly reduced brain size, with frequent anaphase chromatin bridge formation observed in apical neural progenitors during neurogenesis. Such DNA bridges also arise in condensin-deficient patient cells, where they are the consequence of failed sister chromatid disentanglement during chromosome compaction. This results in chromosome segregation errors, leading to micronucleus formation and increased aneuploidy in daughter cells. These findings establish “condensinopathies” as microcephalic disorders, with decatenation failure as an additional disease mechanism for microcephaly, implicating mitotic chromosome condensation as a key process ensuring mammalian cerebral cortex size. PMID:27737959

  13. Chromosomal instability affects the tumorigenicity of glioblastoma tumor-initiating cells

    PubMed Central

    Godek, Kristina M.; Venere, Monica; Wu, Quilian; Mills, Kevin D.; Hickey, William F.; Rich, Jeremy N.; Compton, Duane A.

    2016-01-01

    Tumors are dynamic organs that evolve during disease progression with genetic, epigenetic, and environmental differences among tumor cells serving as the foundation for selection and evolution in tumors. Tumor-initiating cells (TICs) that are responsible for tumorigenesis are a source of functional cellular heterogeneity while chromosomal instability (CIN) is a source of karyotypic genetic diversity. However, the extent that CIN contributes to TIC genetic diversity and its relationship to TIC function remains unclear. Here we demonstrate that glioblastoma TICs display chromosomal instability with lagging chromosomes at anaphase and extensive non-clonal chromosome copy number variations. Elevating the basal chromosome mis-segregation rate in TICs both decreases proliferation and the stem-like phenotype of TICs in vitro. Consequently tumor formation is abolished in an orthotopic mouse model. These results demonstrate that TICs generate genetic heterogeneity within tumors but that TIC function is impaired if the rate of genetic change is elevated above a tolerable threshold. PMID:27001151

  14. Calmodulin point mutations affect Drosophila development and behavior.

    PubMed

    Nelson, H B; Heiman, R G; Bolduc, C; Kovalick, G E; Whitley, P; Stern, M; Beckingham, K

    1997-12-01

    Calmodulin (CAM) is recognized as a major intermediary in intracellular calcium signaling, but as yet little is known of its role in developmental and behavioral processes. We have generated and studied mutations to the endogenous Cam gene of Drosophila melanogaster that change single amino acids within the protein coding region. One of these mutations produces a striking pupal lethal phenotype involving failure of head eversion. Various mutant combinations produce specific patterns of ectopic wing vein formation or melanotic scabs on the cuticle. Anaphase chromosome bridging is also seen as a maternal effect during the early embryonic nuclear divisions. In addition, specific behavioral defects such as poor climbing and flightlessness are detected among these mutants. Comparisons with other Drosophila mutant phenotypes suggests potential CAM targets that may mediate these developmental and behavioral effects, and analysis of the CAM crystal structure suggests the structural consequences of the individual mutations.

  15. Calmodulin Point Mutations Affect Drosophila Development and Behavior

    PubMed Central

    Nelson, H. B.; Heiman, R. G.; Bolduc, C.; Kovalick, G. E.; Whitley, P.; Stern, M.; Beckingham, K.

    1997-01-01

    Calmodulin (CAM) is recognized as a major intermediary in intracellular calcium signaling, but as yet little is known of its role in developmental and behavioral processes. We have generated and studied mutations to the endogenous Cam gene of Drosophila melanogaster that change single amino acids within the protein coding region. One of these mutations produces a striking pupal lethal phenotype involving failure of head eversion. Various mutant combinations produce specific patterns of ectopic wing vein formation or melanotic scabs on the cuticle. Anaphase chromosome bridging is also seen as a maternal effect during the early embryonic nuclear divisions. In addition, specific behavioral defects such as poor climbing and flightlessness are detected among these mutants. Comparisons with other Drosophila mutant phenotypes suggests potential CAM targets that may mediate these developmental and behavioral effects, and analysis of the CAM crystal structure suggests the structural consequences of the individual mutations. PMID:9409836

  16. Stable transformation of a mosquito cell line results in extraordinarily high copy numbers of the plasmid.

    PubMed Central

    Monroe, T J; Muhlmann-Diaz, M C; Kovach, M J; Carlson, J O; Bedford, J S; Beaty, B J

    1992-01-01

    Stable incorporation of high copy numbers (greater than 10,000 per cell) of a plasmid vector containing a gene conferring resistance to the antibiotic hygromycin was achieved in a cell line derived from the Aedes albopictus mosquito. Plasmid sequences were readily observed by ethidium bromide staining of cellular DNA after restriction endonuclease digestion and agarose gel electrophoresis. The plasmid was demonstrated by in situ hybridization to be present in large arrays integrated in metaphase chromosomes and in minute and double-minute replicating elements. In one subclone, approximately 60,000 copies of the plasmid were organized in a large array that resembles a chromosome, morphologically and in the segregation of its chromatids during anaphase. The original as well as modified versions of the plasmid were rescued by transformation of Escherichia coli using total cellular DNA. Southern blot analyses of recovered plasmids indicate the presence of mosquito-derived sequences. Images PMID:1631052

  17. Fission yeast APC/C activators Slp1 and Fzr1 sequentially trigger two consecutive nuclear divisions during meiosis.

    PubMed

    Chikashige, Yuji; Yamane, Miho; Okamasa, Kasumi; Osakada, Hiroko; Tsutsumi, Chihiro; Nagahama, Yuki; Fukuta, Noriko; Haraguchi, Tokuko; Hiraoka, Yasushi

    2017-04-01

    In meiosis, two rounds of nuclear division occur consecutively without DNA replication between the divisions. We isolated a fission yeast mutant in which the nucleus divides only once to generate two spores, as opposed to four, in meiosis. In this mutant, we found that the initiation codon of the slp1 + gene is converted to ATA, producing a reduced amount of Slp1. As a member of the Fizzy family of anaphase-promoting complex/cyclosome (APC/C) activators, Slp1 is essential for vegetative growth; however, the mutant allele shows a phenotype only in meiosis. Slp1 insufficiency delays degradation of maturation-promoting factor at the first meiotic division, and another APC/C activator, Fzr1, which acts late in meiosis, terminates meiosis immediately after the delayed first division to produce two viable spores. © 2017 Federation of European Biochemical Societies.

  18. Calibrated mitotic oscillator drives motile ciliogenesis.

    PubMed

    Al Jord, Adel; Shihavuddin, Asm; Servignat d'Aout, Raphaël; Faucourt, Marion; Genovesio, Auguste; Karaiskou, Anthi; Sobczak-Thépot, Joëlle; Spassky, Nathalie; Meunier, Alice

    2017-11-10

    Cell division and differentiation depend on massive and rapid organelle remodeling. The mitotic oscillator, centered on the cyclin-dependent kinase 1-anaphase-promoting complex/cyclosome (CDK1-APC/C) axis, spatiotemporally coordinates this reorganization in dividing cells. Here we discovered that nondividing cells could also implement this mitotic clocklike regulatory circuit to orchestrate subcellular reorganization associated with differentiation. We probed centriole amplification in differentiating mouse-brain multiciliated cells. These postmitotic progenitors fine-tuned mitotic oscillator activity to drive the orderly progression of centriole production, maturation, and motile ciliation while avoiding the mitosis commitment threshold. Insufficient CDK1 activity hindered differentiation, whereas excessive activity accelerated differentiation yet drove postmitotic progenitors into mitosis. Thus, postmitotic cells can redeploy and calibrate the mitotic oscillator to uncouple cytoplasmic from nuclear dynamics for organelle remodeling associated with differentiation. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. Imaging Mitosis in the Moss Physcomitrella patens.

    PubMed

    Yamada, Moé; Miki, Tomohiro; Goshima, Gohta

    2016-01-01

    At first glance, mitosis in plants looks quite different from that in animals. In fact, terrestrial plants have lost the centrosome during evolution, and the mitotic spindle is assembled independently of a strong microtubule organizing center. The phragmoplast is a plant-specific mitotic apparatus formed after anaphase, which expands centrifugally towards the cell cortex. However, the extent to which plant mitosis differs from that of animals at the level of the protein repertoire is uncertain, largely because of the difficulty in the identification and in vivo characterization of mitotic genes of plants. Here, we discuss protocols for mitosis imaging that can be combined with endogenous green fluorescent protein (GFP) tagging or conditional RNA interference (RNAi) in the moss Physcomitrella patens, which is an emergent model plant for cell and developmental biology. This system has potential for use in the high-throughput study of mitosis and other intracellular processes, as is being done with various animal cell lines.

  20. Regulation of mRNA translation during mitosis.

    PubMed

    Tanenbaum, Marvin E; Stern-Ginossar, Noam; Weissman, Jonathan S; Vale, Ronald D

    2015-08-25

    Passage through mitosis is driven by precisely-timed changes in transcriptional regulation and protein degradation. However, the importance of translational regulation during mitosis remains poorly understood. Here, using ribosome profiling, we find both a global translational repression and identified ~200 mRNAs that undergo specific translational regulation at mitotic entry. In contrast, few changes in mRNA abundance are observed, indicating that regulation of translation is the primary mechanism of modulating protein expression during mitosis. Interestingly, 91% of the mRNAs that undergo gene-specific regulation in mitosis are translationally repressed, rather than activated. One of the most pronounced translationally-repressed genes is Emi1, an inhibitor of the anaphase promoting complex (APC) which is degraded during mitosis. We show that full APC activation requires translational repression of Emi1 in addition to its degradation. These results identify gene-specific translational repression as a means of controlling the mitotic proteome, which may complement post-translational mechanisms for inactivating protein function.

  1. Asymmetric spermatocyte division as a mechanism for controlling sex ratios

    PubMed Central

    Shakes, Diane C.; Neva, Bryan J.; Huynh, Henry; Chaudhuri, Jyotiska; Pires-daSilva, Andre

    2016-01-01

    Although Mendel's first law predicts that crosses between XY (or XO) males and XX females should yield equal numbers of males and females, individuals in a wide variety of metazoans transmit their sex chromosomes unequally and produce broods with highly skewed sex ratios. Here we report two modifications to the cellular program of spermatogenesis which, in combination, help explain why males of the free-living nematode species Rhabditis sp. SB347 sire less than 5% male progeny. First, the spermatogenesis program involves a modified meiosis in which chromatids of the unpaired X chromosome separate prematurely, in meiosis I. Second, during anaphase II, cellular components essential for sperm motility are partitioned almost exclusively to the X-bearing sperm. Our studies reveal a novel cellular mechanism for the differential transmission of X-bearing sperm and suggest R. sp. SB347 as a useful model for studying sex chromosome drive and the evolution of new mating systems. PMID:21245838

  2. Asymmetric spermatocyte division as a mechanism for controlling sex ratios.

    PubMed

    Shakes, Diane C; Neva, Bryan J; Huynh, Henry; Chaudhuri, Jyotiska; Pires-Dasilva, Andre

    2011-01-18

    Although Mendel's first law predicts that crosses between XY (or XO) males and XX females should yield equal numbers of males and females, individuals in a wide variety of metazoans transmit their sex chromosomes unequally and produce broods with highly skewed sex ratios. Here, we report two modifications to the cellular programme of spermatogenesis, which, in combination, help to explain why males of the free-living nematode species Rhabditis sp. SB347 sire <5% male progeny. First, the spermatogenesis programme involves a modified meiosis in which chromatids of the unpaired X chromosome separate prematurely, in meiosis I. Second, during anaphase II, cellular components essential for sperm motility are partitioned almost exclusively to the X-bearing sperm. Our studies reveal a novel cellular mechanism for the differential transmission of X-bearing sperm and suggest Rhabditis sp. SB347 as a useful model for studying sex chromosome drive and the evolution of new mating systems.

  3. Detection and Analysis of Cell Cycle-Associated APC/C-Mediated Cellular Ubiquitylation In Vitro and In Vivo.

    PubMed

    Cedeño, Cesyen; La Monaca, Esther; Esposito, Mara; Gutierrez, Gustavo J

    2016-01-01

    The anaphase-promoting complex or cyclosome (APC/C) is one of the major orchestrators of the cell division cycle in mammalian cells. The APC/C acts as a ubiquitin ligase that triggers sequential ubiquitylation of a significant number of substrates which will be eventually degraded by proteasomes during major transitions of the cell cycle. In this chapter, we present accessible methodologies to assess both in in vitro conditions and in cellular systems ubiquitylation reactions mediated by the APC/C. In addition, we also describe techniques to evidence the changes in protein stability provoked by modulation of the activity of the APC/C. Finally, specific methods to analyze interactors or posttranslational modifications of particular APC/C subunits are also discussed. Given the crucial role played by the APC/C in the regulation of the cell cycle, this review only focuses on its action and effects in actively proliferating cells.

  4. Chromothripsis and kataegis induced by telomere crisis

    PubMed Central

    Maciejowski, John; Li, Yilong; Bosco, Nazario; Campbell, Peter J.; de Lange, Titia

    2015-01-01

    Telomere crisis occurs during tumorigenesis when depletion of the telomere reserve leads to frequent telomere fusions. The resulting dicentric chromosomes have been proposed to drive genome instability. Here we examine the fate of dicentric human chromosomes in telomere crisis. We observed that dicentric chromosomes invariably persisted through mitosis and developed into 50-200 μm chromatin bridges connecting the daughter cells. Before their resolution at 3-20 h after anaphase, the chromatin bridges induced nuclear envelope rupture in interphase, accumulated the cytoplasmic 3' nuclease TREX1, and developed RPA-coated single stranded (ss) DNA. CRISPR knockouts showed that TREX1 contributed to the generation of the ssDNA and the resolution of the chromatin bridges. Post-crisis clones showed chromothripsis and kataegis, presumably resulting from DNA repair and APOBEC editing of the fragmented chromatin bridge DNA. We propose that chromothripsis in human cancer may arise through TREX1-mediated fragmentation of dicentric chromosomes formed in telomere crisis. PMID:26687355

  5. Human RTEL1 deficiency causes Hoyeraal-Hreidarsson syndrome with short telomeres and genome instability.

    PubMed

    Le Guen, Tangui; Jullien, Laurent; Touzot, Fabien; Schertzer, Michael; Gaillard, Laetitia; Perderiset, Mylène; Carpentier, Wassila; Nitschke, Patrick; Picard, Capucine; Couillault, Gérard; Soulier, Jean; Fischer, Alain; Callebaut, Isabelle; Jabado, Nada; Londono-Vallejo, Arturo; de Villartay, Jean-Pierre; Revy, Patrick

    2013-08-15

    Hoyeraal-Hreidarsson syndrome (HHS), a severe variant of dyskeratosis congenita (DC), is characterized by early onset bone marrow failure, immunodeficiency and developmental defects. Several factors involved in telomere length maintenance and/or protection are defective in HHS/DC, underlining the relationship between telomere dysfunction and these diseases. By combining whole-genome linkage analysis and exome sequencing, we identified compound heterozygous RTEL1 (regulator of telomere elongation helicase 1) mutations in three patients with HHS from two unrelated families. RTEL1 is a DNA helicase that participates in DNA replication, DNA repair and telomere integrity. We show that, in addition to short telomeres, RTEL1-deficient cells from patients exhibit hallmarks of genome instability, including spontaneous DNA damage, anaphase bridges and telomeric aberrations. Collectively, these results identify RTEL1 as a novel HHS-causing gene and highlight its role as a genomic caretaker in humans.

  6. Genotoxicity of municipal landfill leachate on root tips of Vicia faba.

    PubMed

    Sang, Nan; Li, Guangke

    2004-06-13

    The genotoxicity of municipal landfill leachate was studied using the Vicia faba root-tip cytogenetic bioassay. Results show that landfill leachates collected in different seasons decreased the mitotic index (MI) and caused significant increases of micronucleus (MN) frequencies and anaphase aberration (AA) frequencies in a concentration-dependent manner (concentration expressed as 'chemical oxygen demand' measured by the method of potassium dichromate oxidation (COD(Cr))). In addition, a seasonal difference in genotoxicity induced by leachate was observed. The results confirm that leachate is a genotoxic agent in plant cells and imply that exposure to leachate in the aquatic environment may pose a potential genotoxic risk to organisms. The results also show that the V. faba cytogenetic bioassay is efficient, simple and reproducible in genotoxicity studies of leachate, and that there is a correlation between the genotoxicity and the chemical measurement (COD(Cr)) of leachate.

  7. RCC1 regulates inner centromeric composition in a Ran-independent fashion.

    PubMed

    Zhang, Michael Shaofei; Furuta, Maiko; Arnaoutov, Alexei; Dasso, Mary

    2018-01-01

    RCC1 associates to chromatin dynamically within mitosis and catalyzes Ran-GTP production. Exogenous RCC1 disrupts kinetochore structure in Xenopus egg extracts (XEEs), but the molecular basis of this disruption remains unknown. We have investigated this question, utilizing replicated chromosomes that possess paired sister kinetochores. We find that exogenous RCC1 evicts a specific subset of inner KT proteins including Shugoshin-1 (Sgo1) and the chromosome passenger complex (CPC). We generated RCC1 mutants that separate its enzymatic activity and chromatin binding. Strikingly, Sgo1 and CPC eviction depended only on RCC1's chromatin affinity but not its capacity to produce Ran-GTP. RCC1 similarly released Sgo1 and CPC from synthetic kinetochores assembled on CENP-A nucleosome arrays. Together, our findings indicate RCC1 regulates kinetochores at the metaphase-anaphase transition through Ran-GTP-independent displacement of Sgo1 and CPC.

  8. Characterization of novel MPS1 inhibitors with preclinical anticancer activity.

    PubMed

    Jemaà, M; Galluzzi, L; Kepp, O; Senovilla, L; Brands, M; Boemer, U; Koppitz, M; Lienau, P; Prechtl, S; Schulze, V; Siemeister, G; Wengner, A M; Mumberg, D; Ziegelbauer, K; Abrieu, A; Castedo, M; Vitale, I; Kroemer, G

    2013-11-01

    Monopolar spindle 1 (MPS1), a mitotic kinase that is overexpressed in several human cancers, contributes to the alignment of chromosomes to the metaphase plate as well as to the execution of the spindle assembly checkpoint (SAC). Here, we report the identification and functional characterization of three novel inhibitors of MPS1 of two independent structural classes, N-(4-{2-[(2-cyanophenyl)amino][1,2,4]triazolo[1,5-a]pyridin-6-yl}phenyl)-2-phenylacetamide (Mps-BAY1) (a triazolopyridine), N-cyclopropyl-4-{8-[(2-methylpropyl)amino]-6-(quinolin-5-yl)imidazo[1,2-a]pyrazin-3-yl}benzamide (Mps-BAY2a) and N-cyclopropyl-4-{8-(isobutylamino)imidazo[1,2-a]pyrazin-3-yl}benzamide (Mps-BAY2b) (two imidazopyrazines). By selectively inactivating MPS1, these small inhibitors can arrest the proliferation of cancer cells, causing their polyploidization and/or their demise. Cancer cells treated with Mps-BAY1 or Mps-BAY2a manifested multiple signs of mitotic perturbation including inefficient chromosomal congression during metaphase, unscheduled SAC inactivation and severe anaphase defects. Videomicroscopic cell fate profiling of histone 2B-green fluorescent protein-expressing cells revealed the capacity of MPS1 inhibitors to subvert the correct timing of mitosis as they induce a premature anaphase entry in the context of misaligned metaphase plates. Hence, in the presence of MPS1 inhibitors, cells either divided in a bipolar (but often asymmetric) manner or entered one or more rounds of abortive mitoses, generating gross aneuploidy and polyploidy, respectively. In both cases, cells ultimately succumbed to the mitotic catastrophe-induced activation of the mitochondrial pathway of apoptosis. Of note, low doses of MPS1 inhibitors and paclitaxel (a microtubular poison) synergized at increasing the frequency of chromosome misalignments and missegregations in the context of SAC inactivation. This resulted in massive polyploidization followed by the activation of mitotic catastrophe. A synergistic interaction between paclitaxel and MPS1 inhibitors could also be demonstrated in vivo, as the combination of these agents efficiently reduced the growth of tumor xenografts and exerted superior antineoplastic effects compared with either compound employed alone. Altogether, these results suggest that MPS1 inhibitors may exert robust anticancer activity, either as standalone therapeutic interventions or combined with microtubule-targeting chemicals.

  9. Lack of Diaph3 relaxes the spindle checkpoint causing the loss of neural progenitors

    PubMed Central

    Damiani, Devid; Goffinet, André M.; Alberts, Arthur; Tissir, Fadel

    2016-01-01

    The diaphanous homologue Diaph3 (aka mDia2) is a major regulator of actin cytoskeleton. Loss of Diaph3 has been constantly associated with cytokinesis failure ascribed to impaired accumulation of actin in the cleavage furrow. Here we report that Diaph3 is required before cell fission, to ensure the accurate segregation of chromosomes. Inactivation of the Diaph3 gene causes a massive loss of cortical progenitor cells, with subsequent depletion of intermediate progenitors and neurons, and results in microcephaly. In embryonic brain extracts, Diaph3 co-immunoprecipitates with BubR1, a key regulator of the spindle assembly checkpoint (SAC). Diaph3-deficient cortical progenitors have decreased levels of BubR1 and fail to properly activate the SAC. Hence, they bypass mitotic arrest and embark on anaphase in spite of incorrect chromosome segregation, generating aneuploidy. Our data identify Diaph3 as a major guard of cortical progenitors, unravel novel functions of Diaphanous formins and add insights into the pathobiology of microcephaly. PMID:27848932

  10. Plk1 relieves centriole block to reduplication by promoting daughter centriole maturation

    PubMed Central

    Shukla, Anil; Kong, Dong; Sharma, Meena; Magidson, Valentin; Loncarek, Jadranka

    2015-01-01

    Centrosome overduplication promotes mitotic abnormalities, invasion and tumorigenesis. Cells regulate the number of centrosomes by limiting centriole duplication to once per cell cycle. The orthogonal orientation between a mother and a daughter centriole, established at the time of centriole duplication, is thought to block further duplication of the mother centriole. Loss of orthogonal orientation (disengagement) between two centrioles during anaphase is considered a licensing event for the next round of centriole duplication. Disengagement requires the activity of Polo-like kinase 1 (Plk1), but how Plk1 drives this process is not clear. Here we employ correlative live/electron microscopy and demonstrate that Plk1 induces maturation and distancing of the daughter centriole, allowing reduplication of the mother centriole even if the original daughter centriole is still orthogonal to it. We find that mother centrioles can undergo reduplication when original daughter centrioles are only ∼80 nm apart, which is the distance centrioles normally reach during prophase. PMID:26293378

  11. Characterization of the NTPR and BD1 interacting domains of the human PICH-BEND3 complex.

    PubMed

    Pitchai, Ganesha P; Hickson, Ian D; Streicher, Werner; Montoya, Guillermo; Mesa, Pablo

    2016-08-01

    Chromosome integrity depends on DNA structure-specific processing complexes that resolve DNA entanglement between sister chromatids. If left unresolved, these entanglements can generate either chromatin bridging or ultrafine DNA bridging in the anaphase of mitosis. These bridge structures are defined by the presence of the PICH protein, which interacts with the BEND3 protein in mitosis. To obtain structural insights into PICH-BEND3 complex formation at the atomic level, their respective NTPR and BD1 domains were cloned, overexpressed and crystallized using 1.56 M ammonium sulfate as a precipitant at pH 7.0. The protein complex readily formed large hexagonal crystals belonging to space group P6122, with unit-cell parameters a = b = 47.28, c = 431.58 Å and with one heterodimer in the asymmetric unit. A complete multiwavelength anomalous dispersion (MAD) data set extending to 2.2 Å resolution was collected from a selenomethionine-labelled crystal at the Swiss Light Source.

  12. Stable kinetochore-microtubule attachment is sufficient to silence the spindle assembly checkpoint in human cells.

    PubMed

    Tauchman, Eric C; Boehm, Frederick J; DeLuca, Jennifer G

    2015-12-01

    During mitosis, duplicated sister chromatids attach to microtubules emanating from opposing sides of the bipolar spindle through large protein complexes called kinetochores. In the absence of stable kinetochore-microtubule attachments, a cell surveillance mechanism known as the spindle assembly checkpoint (SAC) produces an inhibitory signal that prevents anaphase onset. Precisely how the inhibitory SAC signal is extinguished in response to microtubule attachment remains unresolved. To address this, we induced formation of hyper-stable kinetochore-microtubule attachments in human cells using a non-phosphorylatable version of the protein Hec1, a core component of the attachment machinery. We find that stable attachments are sufficient to silence the SAC in the absence of sister kinetochore bi-orientation and strikingly in the absence of detectable microtubule pulling forces or tension. Furthermore, we find that SAC satisfaction occurs despite the absence of large changes in intra-kinetochore distance, suggesting that substantial kinetochore stretching is not required for quenching the SAC signal.

  13. Cohesin Can Remain Associated with Chromosomes during DNA Replication.

    PubMed

    Rhodes, James D P; Haarhuis, Judith H I; Grimm, Jonathan B; Rowland, Benjamin D; Lavis, Luke D; Nasmyth, Kim A

    2017-09-19

    To ensure disjunction to opposite poles during anaphase, sister chromatids must be held together following DNA replication. This is mediated by cohesin, which is thought to entrap sister DNAs inside a tripartite ring composed of its Smc and kleisin (Scc1) subunits. How such structures are created during S phase is poorly understood, in particular whether they are derived from complexes that had entrapped DNAs prior to replication. To address this, we used selective photobleaching to determine whether cohesin associated with chromatin in G1 persists in situ after replication. We developed a non-fluorescent HaloTag ligand to discriminate the fluorescence recovery signal from labeling of newly synthesized Halo-tagged Scc1 protein (pulse-chase or pcFRAP). In cells where cohesin turnover is inactivated by deletion of WAPL, Scc1 can remain associated with chromatin throughout S phase. These findings suggest that cohesion might be generated by cohesin that is already bound to un-replicated DNA. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Mutations in genes encoding condensin complex proteins cause microcephaly through decatenation failure at mitosis.

    PubMed

    Martin, Carol-Anne; Murray, Jennie E; Carroll, Paula; Leitch, Andrea; Mackenzie, Karen J; Halachev, Mihail; Fetit, Ahmed E; Keith, Charlotte; Bicknell, Louise S; Fluteau, Adeline; Gautier, Philippe; Hall, Emma A; Joss, Shelagh; Soares, Gabriela; Silva, João; Bober, Michael B; Duker, Angela; Wise, Carol A; Quigley, Alan J; Phadke, Shubha R; Wood, Andrew J; Vagnarelli, Paola; Jackson, Andrew P

    2016-10-01

    Compaction of chromosomes is essential for accurate segregation of the genome during mitosis. In vertebrates, two condensin complexes ensure timely chromosome condensation, sister chromatid disentanglement, and maintenance of mitotic chromosome structure. Here, we report that biallelic mutations in NCAPD2, NCAPH, or NCAPD3, encoding subunits of these complexes, cause microcephaly. In addition, hypomorphic Ncaph2 mice have significantly reduced brain size, with frequent anaphase chromatin bridge formation observed in apical neural progenitors during neurogenesis. Such DNA bridges also arise in condensin-deficient patient cells, where they are the consequence of failed sister chromatid disentanglement during chromosome compaction. This results in chromosome segregation errors, leading to micronucleus formation and increased aneuploidy in daughter cells. These findings establish "condensinopathies" as microcephalic disorders, with decatenation failure as an additional disease mechanism for microcephaly, implicating mitotic chromosome condensation as a key process ensuring mammalian cerebral cortex size. © 2016 Martin et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Proteomic analysis of cell cycle progression in asynchronous cultures, including mitotic subphases, using PRIMMUS

    PubMed Central

    Whigham, Arlene; Clarke, Rosemary; Brenes-Murillo, Alejandro J; Estes, Brett; Madhessian, Diana; Lundberg, Emma; Wadsworth, Patricia

    2017-01-01

    The temporal regulation of protein abundance and post-translational modifications is a key feature of cell division. Recently, we analysed gene expression and protein abundance changes during interphase under minimally perturbed conditions (Ly et al., 2014, 2015). Here, we show that by using specific intracellular immunolabelling protocols, FACS separation of interphase and mitotic cells, including mitotic subphases, can be combined with proteomic analysis by mass spectrometry. Using this PRIMMUS (PRoteomic analysis of Intracellular iMMUnolabelled cell Subsets) approach, we now compare protein abundance and phosphorylation changes in interphase and mitotic fractions from asynchronously growing human cells. We identify a set of 115 phosphorylation sites increased during G2, termed ‘early risers’. This set includes phosphorylation of S738 on TPX2, which we show is important for TPX2 function and mitotic progression. Further, we use PRIMMUS to provide the first a proteome-wide analysis of protein abundance remodeling between prophase, prometaphase and anaphase. PMID:29052541

  16. Specifying peripheral heterochromatin during nuclear lamina reassembly

    PubMed Central

    Poleshko, Andrey; Katz, Richard A

    2014-01-01

    A conserved organizational feature of eukaryotic nuclei is the peripheral heterochromatin compartment, which provides a protected area for epigenetically silent genes and gene-poor DNA. In metazoan cells this compartment is associated with the nuclear lamina, the protein meshwork at the inner edge of the nucleus. Heterochromatin-nuclear lamina interactions promote epigenetic gene silencing, which may drive many normal and diseased biological processes. We recently obtained evidence that a previously unstudied human protein, PRR14, participates in the tethering of heterochromatin to the inner nuclear periphery. PRR14 associates with the nuclear lamina and attaches to heterochromatin through its binding partner, heterochromatin protein 1 (HP1). After disassembly early in mitosis, PRR14 reassembles in two steps, first binding to anaphase chromosomes through HP1, followed by association with the nuclear lamina in telophase. PRR14 may thereby play a role in specifying HP1-bound heterochromatin for reattachment to the nuclear lamina at mitotic exit. Here we review the relevant literature, summarize our initial work, and provide additional comments and findings. PMID:24637393

  17. Specifying peripheral heterochromatin during nuclear lamina reassembly.

    PubMed

    Poleshko, Andrey; Katz, Richard A

    2014-01-01

    A conserved organizational feature of eukaryotic nuclei is the peripheral heterochromatin compartment, which provides a protected area for epigenetically silent genes and gene-poor DNA. In metazoan cells this compartment is associated with the nuclear lamina, the protein meshwork at the inner edge of the nucleus. Heterochromatin-nuclear lamina interactions promote epigenetic gene silencing, which may drive many normal and diseased biological processes. We recently obtained evidence that a previously unstudied human protein, PRR14, participates in the tethering of heterochromatin to the inner nuclear periphery. PRR14 associates with the nuclear lamina and attaches to heterochromatin through its binding partner, heterochromatin protein 1 (HP1). After disassembly early in mitosis, PRR14 reassembles in two steps, first binding to anaphase chromosomes through HP1, followed by association with the nuclear lamina in telophase. PRR14 may thereby play a role in specifying HP1-bound heterochromatin for reattachment to the nuclear lamina at mitotic exit. Here we review the relevant literature, summarize our initial work, and provide additional comments and findings.

  18. The human protein PRR14 tethers heterochromatin to the nuclear lamina during interphase and mitotic exit.

    PubMed

    Poleshko, Andrey; Mansfield, Katelyn M; Burlingame, Caroline C; Andrake, Mark D; Shah, Neil R; Katz, Richard A

    2013-10-31

    The nuclear lamina is a protein meshwork that lies under the inner nuclear membrane of metazoan cells. One function of the nuclear lamina is to organize heterochromatin at the inner nuclear periphery. However, very little is known about how heterochromatin attaches to the nuclear lamina and how such attachments are restored at mitotic exit. Here, we show that a previously unstudied human protein, PRR14, functions to tether heterochromatin to the nuclear periphery during interphase, through associations with heterochromatin protein 1 (HP1) and the nuclear lamina. During early mitosis, PRR14 is released from the nuclear lamina and chromatin and remains soluble. Strikingly, at the onset of anaphase, PRR14 is incorporated rapidly into chromatin through HP1 binding. Finally, in telophase, PRR14 relocalizes to the reforming nuclear lamina. This stepwise reassembly of PRR14 suggests a function in the selection of HP1-bound heterochromatin for reattachment to the nuclear lamina as cells exit mitosis.

  19. The Human Protein PRR14 Tethers Heterochromatin to the Nuclear Lamina During Interphase and Mitotic Exit

    PubMed Central

    Poleshko, Andrey; Mansfield, Katelyn M.; Burlingame, Caroline C.; Andrake, Mark D.; Shah, Neil R.; Katz, Richard A.

    2013-01-01

    SUMMARY The nuclear lamina is a protein meshwork that lies under the inner nuclear membrane of metazoan cells. One function of the nuclear lamina is to organize heterochromatin at the inner nuclear periphery. However, very little is known about how heterochromatin attaches to the nuclear lamina and how such attachments are restored at mitotic exit. Here we show that a previously unstudied human protein, PRR14, functions to tether heterochromatin to the nuclear periphery during interphase, through associations with heterochromatin protein 1 (HP1) and the nuclear lamina. During early mitosis, PRR14 is released from the nuclear lamina and chromatin, and remains soluble. Strikingly, at the onset of anaphase, PRR14 is incorporated rapidly into chromatin through HP1 binding. Finally, in telophase, PRR14 relocalizes to the reforming nuclear lamina. This stepwise reassembly of PRR14 suggests a novel function in the selection of HP1–bound heterochromatin for reattachment to the nuclear lamina as cells exit mitosis. PMID:24209742

  20. The effect of cyanide compounds, fluorides, aluminum, and inorganic oxides present in spent pot liner on germination and root tip cells of Lactuca sativa.

    PubMed

    Andrade, L F; Davide, L C; Gedraite, L S

    2010-05-01

    SPL (spent pot liner) is a solid waste produced by the aluminum industry. This waste has a highly variable composition, consisting of cyanides, fluorides, organics, and metals. The aim of this work was to study the effect of SPL on root tips of Lactuca sativa using current plant bioassays. We observed a decrease in the germination rate with increasing concentrations of SPL. In addition, SPL was found to reduce root growth, which is correlated with a decrease in the mitotic index. Nevertheless, we noticed a significant enhancement in the percentage of stickiness, c-metaphase, anaphase bridges, and laggard chromosomes in dividing cells and also an increase in the number of cells with condensed nuclei. Moreover, SPL was found to alter the root tip surface, resulting in a reduction in the amount of root hair. These results demonstrate that SPL is a toxic agent that leads to cell damage and disturbance. Copyright 2009 Elsevier Inc. All rights reserved.

  1. Structure and substrate recruitment of the human spindle checkpoint kinase Bub1.

    PubMed

    Kang, Jungseog; Yang, Maojun; Li, Bing; Qi, Wei; Zhang, Chao; Shokat, Kevan M; Tomchick, Diana R; Machius, Mischa; Yu, Hongtao

    2008-11-07

    In mitosis, the spindle checkpoint detects a single unattached kinetochore, inhibits the anaphase-promoting complex or cyclosome (APC/C), and prevents premature sister chromatid separation. The checkpoint kinase Bub1 contributes to checkpoint sensitivity through phosphorylating the APC/C activator, Cdc20, and inhibiting APC/C catalytically. We report here the crystal structure of the kinase domain of Bub1, revealing the requirement of an N-terminal extension for its kinase activity. Though the activation segment of Bub1 is ordered and has structural features indicative of active kinases, the C-terminal portion of this segment sterically restricts substrate access to the active site. Bub1 uses docking motifs, so-called KEN boxes, outside its kinase domain to recruit Cdc20, one of two known KEN box receptors. The KEN boxes of Bub1 are required for the spindle checkpoint in human cells. Therefore, its unusual active-site conformation and mode of substrate recruitment suggest that Bub1 has an exquisitely tuned specificity for Cdc20.

  2. Stable and dynamic microtubules coordinately shape the myosin activation zone during cytokinetic furrow formation

    PubMed Central

    Foe, Victoria E.; von Dassow, George

    2008-01-01

    The cytokinetic furrow arises from spatial and temporal regulation of cortical contractility. To test the role microtubules play in furrow specification, we studied myosin II activation in echinoderm zygotes by assessing serine19-phosphorylated regulatory light chain (pRLC) localization after precisely timed drug treatments. Cortical pRLC was globally depressed before cytokinesis, then elevated only at the equator. We implicated cell cycle biochemistry (not microtubules) in pRLC depression, and differential microtubule stability in localizing the subsequent myosin activation. With no microtubules, pRLC accumulation occurred globally instead of equatorially, and loss of just dynamic microtubules increased equatorial pRLC recruitment. Nocodazole treatment revealed a population of stable astral microtubules that formed during anaphase; among these, those aimed toward the equator grew longer, and their tips coincided with cortical pRLC accumulation. Shrinking the mitotic apparatus with colchicine revealed pRLC suppression near dynamic microtubule arrays. We conclude that opposite effects of stable versus dynamic microtubules focuses myosin activation to the cell equator during cytokinesis. PMID:18955555

  3. An agent-based model contrasts opposite effects of dynamic and stable microtubules on cleavage furrow positioning

    PubMed Central

    Odell, Garrett M.; Foe, Victoria E.

    2008-01-01

    From experiments by Foe and von Dassow (Foe, V.E., and G. von Dassow. 2008. J. Cell Biol. 183:457–470) and others, we infer a molecular mechanism for positioning the cleavage furrow during cytokinesis. Computer simulations reveal how this mechanism depends on quantitative motor-behavior details and explore how robustly this mechanism succeeds across a range of cell sizes. The mechanism involves the MKLP1 (kinesin-6) component of centralspindlin binding to and walking along microtubules to stimulate cortical contractility where the centralspindlin complex concentrates. The majority of astral microtubules are dynamically unstable. They bind most MKLP1 and suppress cortical Rho/myosin II activation because the tips of unstable microtubules usually depolymerize before MKLP1s reach the cortex. A subset of astral microtubules stabilizes during anaphase, becoming effective rails along which MKLP1 can actually reach the cortex. Because stabilized microtubules aim statistically at the equatorial spindle midplane, that is where centralspindlin accumulates to stimulate furrow formation. PMID:18955556

  4. An agent-based model contrasts opposite effects of dynamic and stable microtubules on cleavage furrow positioning.

    PubMed

    Odell, Garrett M; Foe, Victoria E

    2008-11-03

    From experiments by Foe and von Dassow (Foe, V.E., and G. von Dassow. 2008. J. Cell Biol. 183:457-470) and others, we infer a molecular mechanism for positioning the cleavage furrow during cytokinesis. Computer simulations reveal how this mechanism depends on quantitative motor-behavior details and explore how robustly this mechanism succeeds across a range of cell sizes. The mechanism involves the MKLP1 (kinesin-6) component of centralspindlin binding to and walking along microtubules to stimulate cortical contractility where the centralspindlin complex concentrates. The majority of astral microtubules are dynamically unstable. They bind most MKLP1 and suppress cortical Rho/myosin II activation because the tips of unstable microtubules usually depolymerize before MKLP1s reach the cortex. A subset of astral microtubules stabilizes during anaphase, becoming effective rails along which MKLP1 can actually reach the cortex. Because stabilized microtubules aim statistically at the equatorial spindle midplane, that is where centralspindlin accumulates to stimulate furrow formation.

  5. Immobile myosin-II plays a scaffolding role during cytokinesis in budding yeast

    PubMed Central

    Wloka, Carsten; Vallen, Elizabeth A.; Thé, Lydia; Fang, Xiaodong; Oh, Younghoon

    2013-01-01

    Core components of cytokinesis are conserved from yeast to human, but how these components are assembled into a robust machine that drives cytokinesis remains poorly understood. In this paper, we show by fluorescence recovery after photobleaching analysis that Myo1, the sole myosin-II in budding yeast, was mobile at the division site before anaphase and became immobilized shortly before cytokinesis. This immobility was independent of actin filaments or the motor domain of Myo1 but required a small region in the Myo1 tail that is thought to be involved in higher-order assembly. As expected, proteins involved in actin ring assembly (tropomyosin and formin) and membrane trafficking (myosin-V and exocyst) were dynamic during cytokinesis. Strikingly, proteins involved in septum formation (the chitin synthase Chs2) and/or its coordination with the actomyosin ring (essential light chain, IQGAP, F-BAR, etc.) displayed Myo1-dependent immobility during cytokinesis, suggesting that Myo1 plays a scaffolding role in the assembly of a cytokinesis machine. PMID:23358243

  6. Functional reprogramming of polyploidization in megakaryocytes.

    PubMed

    Trakala, Marianna; Rodríguez-Acebes, Sara; Maroto, María; Symonds, Catherine E; Santamaría, David; Ortega, Sagrario; Barbacid, Mariano; Méndez, Juan; Malumbres, Marcos

    2015-01-26

    Polyploidization is a natural process that frequently accompanies differentiation; its deregulation is linked to genomic instability and cancer. Despite its relevance, why cells select different polyploidization mechanisms is unknown. Here we report a systematic genetic analysis of endomitosis, a process in which megakaryocytes become polyploid by entering mitosis but aborting anaphase. Whereas ablation of the APC/C cofactor Cdc20 results in mitotic arrest and severe thrombocytopenia, lack of the kinases Aurora-B, Cdk1, or Cdk2 does not affect megakaryocyte polyploidization or platelet levels. Ablation of Cdk1 forces a switch to endocycles without mitosis, whereas polyploidization in the absence of Cdk1 and Cdk2 occurs in the presence of aberrant re-replication events. Importantly, ablation of these kinases rescues the defects in Cdc20 null megakaryocytes. These findings suggest that endomitosis can be functionally replaced by alternative polyploidization mechanisms in vivo and provide the cellular basis for therapeutic approaches aimed to discriminate mitotic and polyploid cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Cell elongation is an adaptive response for clearing long chromatid arms from the cleavage plane

    PubMed Central

    Kotadia, Shaila; Montembault, Emilie; Sullivan, William

    2012-01-01

    Chromosome segregation must be coordinated with cell cleavage to ensure correct transmission of the genome to daughter cells. Here we identify a novel mechanism by which Drosophila melanogaster neuronal stem cells coordinate sister chromatid segregation with cleavage furrow ingression. Cells adapted to a dramatic increase in chromatid arm length by transiently elongating during anaphase/telophase. The degree of cell elongation correlated with the length of the trailing chromatid arms and was concomitant with a slight increase in spindle length and an enlargement of the zone of cortical myosin distribution. Rho guanine-nucleotide exchange factor (Pebble)–depleted cells failed to elongate during segregation of long chromatids. As a result, Pebble-depleted adult flies exhibited morphological defects likely caused by cell death during development. These studies reveal a novel pathway linking trailing chromatid arms and cortical myosin that ensures the clearance of chromatids from the cleavage plane at the appropriate time during cytokinesis, thus preserving genome integrity. PMID:23185030

  8. Potential control of Aedes aegypti (Diptera: Culicidae) with Piper aduncum L. (Piperaceae) extracts demonstrated by chromosomal biomarkers and toxic effects on interphase nuclei.

    PubMed

    Rafael, M S; Hereira-Rojas, W J; Roper, J J; Nunomura, S M; Tadei, W P

    2008-01-01

    Dillapiol, a phenylpropanoid isolate from essential oils of leaves of Piper aduncum (Piperaceae), has insecticidal, fungicidal and antimicrobial activities. The insecticidal activity of dillapiol was tested in vivo on the larvae and pupae of Aedes aegypti, the mosquito vector of dengue. Specifically, the effect of dillapiol on the formation of micronuclei and chromosome aberrations was analyzed. Dillapiol treatments comprised two concentrations of 200 and 400 micro dissolved in well water, and a pure well water control used to rear four generations of mosquitoes. Micronuclei occurred in mitotic diploid and tetraploid chromosomes of larvae; nuclear abnormalities also occurred in interphase, metaphase, telophase, and single nucleus cells of pupae. Mortality, oviposition, chromosome breakage, and anaphase bridges were significantly greater in the extract treatments than in controls. The genotoxic effects of dillapiol described here suggest that this natural product may be a useful alternative for the control of A. aegypti.

  9. Cyc17, a meiosis-specific cyclin, is essential for anaphase initiation and chromosome segregation in Tetrahymena thermophila.

    PubMed

    Yan, Guan-Xiong; Dang, Huai; Tian, Miao; Zhang, Jing; Shodhan, Anura; Ning, Ying-Zhi; Xiong, Jie; Miao, Wei

    2016-07-17

    Although the role of cyclins in controlling nuclear division is well established, their function in ciliate meiosis remains unknown. In ciliates, the cyclin family has undergone massive expansion which suggests that diverse cell cycle systems exist, and this warrants further investigation. A screen for cyclins in the model ciliate Tetrahymena thermophila showed that there are 34 cyclins in this organism. Only 1 cyclin, Cyc17, contains the complete cyclin core and is specifically expressed during meiosis. Deletion of CYC17 led to meiotic arrest at the diakinesis-like metaphase I stage. Expression of genes involved in DNA metabolism and chromosome organization (chromatin remodeling and basic chromosomal structure) was repressed in cyc17 knockout matings. Further investigation suggested that Cyc17 is involved in regulating spindle pole attachment, and is thus essential for chromosome segregation at meiosis. These findings suggest a simple model in which chromosome segregation is influenced by Cyc17.

  10. Casein Kinase 1 Coordinates Cohesin Cleavage, Gametogenesis, and Exit from M Phase in Meiosis II.

    PubMed

    Argüello-Miranda, Orlando; Zagoriy, Ievgeniia; Mengoli, Valentina; Rojas, Julie; Jonak, Katarzyna; Oz, Tugce; Graf, Peter; Zachariae, Wolfgang

    2017-01-09

    Meiosis consists of DNA replication followed by two consecutive nuclear divisions and gametogenesis or spore formation. While meiosis I has been studied extensively, less is known about the regulation of meiosis II. Here we show that Hrr25, the conserved casein kinase 1δ of budding yeast, links three mutually independent key processes of meiosis II. First, Hrr25 induces nuclear division by priming centromeric cohesin for cleavage by separase. Hrr25 simultaneously phosphorylates Rec8, the cleavable subunit of cohesin, and removes from centromeres the cohesin protector composed of shugoshin and the phosphatase PP2A. Second, Hrr25 initiates the sporulation program by inducing the synthesis of membranes that engulf the emerging nuclei at anaphase II. Third, Hrr25 mediates exit from meiosis II by activating pathways that trigger the destruction of M-phase-promoting kinases. Thus, Hrr25 synchronizes formation of the single-copy genome with gamete differentiation and termination of meiosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Cytological evidence for chromosome elimination in wheat x Imperata cylindrica hybrids.

    PubMed

    Komeda, Norio; Chaudhary, Harinder K; Suzuki, Go; Mukai, Yasuhiko

    2007-06-01

    Haploid induction of wheat by crossing with Imperata cylindrica pollen is an efficient method for doubled haploid breeding. We investigated the process of wheat haploid formation after crossing with I. cylindrica. Our cytological observations of zygotes showed the successful fertilization of parental gametes. Wheat haploids were formed by complete elimination of I. cylindrica chromosomes. Missegregation of I. cylindrica chromosomes was observed in the first cell division of zygote. At metaphase I. cylindrica chromosomes did not congress onto the equatorial plate. The sister chromosomes did not move toward the poles during anaphase, though their cohesion was released normally. I. cylindrica chromosomes were still in the cytoplasm at telophase and eliminated from daughter nuclei. After two-celled stage, we could find no I. cylindrica chromosome in the nuclei but micronuclei containing I. cylindrica chromatin in the cytoplasm. These observations indicate that I. cylindrica chromosomes are completely eliminated from nuclei in the first cell division probably due to lack of functional kinetochores.

  12. Changes in Ect2 Localization Couple Actomyosin-Dependent Cell Shape Changes to Mitotic Progression

    PubMed Central

    Matthews, Helen K.; Delabre, Ulysse; Rohn, Jennifer L.; Guck, Jochen; Kunda, Patricia; Baum, Buzz

    2012-01-01

    Summary As they enter mitosis, animal cells undergo profound actin-dependent changes in shape to become round. Here we identify the Cdk1 substrate, Ect2, as a central regulator of mitotic rounding, thus uncovering a link between the cell-cycle machinery that drives mitotic entry and its accompanying actin remodeling. Ect2 is a RhoGEF that plays a well-established role in formation of the actomyosin contractile ring at mitotic exit, through the local activation of RhoA. We find that Ect2 first becomes active in prophase, when it is exported from the nucleus into the cytoplasm, activating RhoA to induce the formation of a mechanically stiff and rounded metaphase cortex. Then, at anaphase, binding to RacGAP1 at the spindle midzone repositions Ect2 to induce local actomyosin ring formation. Ect2 localization therefore defines the stage-specific changes in actin cortex organization critical for accurate cell division. PMID:22898780

  13. Bio-efficacy of the essential oil of oregano (Origanum vulgare Lamiaceae. Ssp. Hirtum).

    PubMed

    Grondona, Ezequiel; Gatti, Gerardo; López, Abel G; Sánchez, Leonardo Rodolfo; Rivero, Virginia; Pessah, Oscar; Zunino, María P; Ponce, Andrés A

    2014-12-01

    The aim of this study was to investigate the bioactivity of the essential oil isolated from Origanum vulgare L. (EOv). We analyzed the in vivo anti-inflammatory properties in a mouse-airway inflammation model and the in vitro antimicrobial activity, genotoxicity over the anaphase-telophase with the Allium cepa strain and its cytotoxicity/viability in A549 culture cells. In vivo, EOv modified the levels of tumor necrosis factor -α and viable activated macrophages and was capable to mitigate the effects of degradation of conjugated dienes. In vitro, EOv reduced the viability of cultured A549 cells as well as the mitotic index and a number of chromosomal aberrations; however, it did not change the number of phases. We found that EOv presents antimicrobial activity against different Gram (-) and (+) strains, measured by disc-diffusion test and confirmed with a more accurate method, the AutoCad software. We postulate that EOv presents antibacterial, antioxidant and chemopreventive properties and could be play an important role as bioprotector agent.

  14. APC/C-Cdh1 coordinates neurogenesis and cortical size during development

    NASA Astrophysics Data System (ADS)

    Delgado-Esteban, Maria; García-Higuera, Irene; Maestre, Carolina; Moreno, Sergio; Almeida, Angeles

    2013-12-01

    The morphology of the adult brain is the result of a delicate balance between neural progenitor proliferation and the initiation of neurogenesis in the embryonic period. Here we assessed whether the anaphase-promoting complex/cyclosome (APC/C) cofactor, Cdh1—which regulates mitosis exit and G1-phase length in dividing cells—regulates neurogenesis in vivo. We use an embryo-restricted Cdh1 knockout mouse model and show that functional APC/C-Cdh1 ubiquitin ligase activity is required for both terminal differentiation of cortical neurons in vitro and neurogenesis in vivo. Further, genetic ablation of Cdh1 impairs the ability of APC/C to promote neurogenesis by delaying the exit of the progenitor cells from the cell cycle. This causes replicative stress and p53-mediated apoptotic death resulting in decreased number of cortical neurons and cortex size. These results demonstrate that APC/C-Cdh1 coordinates cortical neurogenesis and size, thus posing Cdh1 in the molecular pathogenesis of congenital neurodevelopmental disorders, such as microcephaly.

  15. Regulation of mRNA translation during mitosis

    PubMed Central

    Tanenbaum, Marvin E; Stern-Ginossar, Noam; Weissman, Jonathan S; Vale, Ronald D

    2015-01-01

    Passage through mitosis is driven by precisely-timed changes in transcriptional regulation and protein degradation. However, the importance of translational regulation during mitosis remains poorly understood. Here, using ribosome profiling, we find both a global translational repression and identified ∼200 mRNAs that undergo specific translational regulation at mitotic entry. In contrast, few changes in mRNA abundance are observed, indicating that regulation of translation is the primary mechanism of modulating protein expression during mitosis. Interestingly, 91% of the mRNAs that undergo gene-specific regulation in mitosis are translationally repressed, rather than activated. One of the most pronounced translationally-repressed genes is Emi1, an inhibitor of the anaphase promoting complex (APC) which is degraded during mitosis. We show that full APC activation requires translational repression of Emi1 in addition to its degradation. These results identify gene-specific translational repression as a means of controlling the mitotic proteome, which may complement post-translational mechanisms for inactivating protein function. DOI: http://dx.doi.org/10.7554/eLife.07957.001 PMID:26305499

  16. Molecular networks linked by Moesin drive remodeling of the cell cortex during mitosis

    PubMed Central

    Roubinet, Chantal; Decelle, Barbara; Chicanne, Gaëtan; Dorn, Jonas F.; Payrastre, Bernard; Payre, François; Carreno, Sébastien

    2011-01-01

    The cortical mechanisms that drive the series of mitotic cell shape transformations remain elusive. In this paper, we identify two novel networks that collectively control the dynamic reorganization of the mitotic cortex. We demonstrate that Moesin, an actin/membrane linker, integrates these two networks to synergize the cortical forces that drive mitotic cell shape transformations. We find that the Pp1-87B phosphatase restricts high Moesin activity to early mitosis and down-regulates Moesin at the polar cortex, after anaphase onset. Overactivation of Moesin at the polar cortex impairs cell elongation and thus cytokinesis, whereas a transient recruitment of Moesin is required to retract polar blebs that allow cortical relaxation and dissipation of intracellular pressure. This fine balance of Moesin activity is further adjusted by Skittles and Pten, two enzymes that locally produce phosphoinositol 4,5-bisphosphate and thereby, regulate Moesin cortical association. These complementary pathways provide a spatiotemporal framework to explain how the cell cortex is remodeled throughout cell division. PMID:21969469

  17. Malignancy without immortality? Cellular immortalization as a possible late event in melanoma progression

    PubMed Central

    Soo, Julia K; MacKenzie Ross, Alastair D; Kallenberg, David M; Milagre, Carla; Heung Chong, W; Chow, Jade; Hill, Lucy; Hoare, Stacey; Collinson, Rebecca S; Hossain, Mehnaz; Keith, W Nicol; Marais, Richard; Bennett, Dorothy C

    2011-01-01

    Cell senescence is a permanent growth arrest following extended proliferation. Cultured cancer cells including metastatic melanoma cells often appear immortal (proliferate indefinitely), while uncultured benign nevi (moles) show senescence markers. Here, with new explantation methods, we investigated which classes of primary pigmented lesions are typically immortal. Nevi yielded a few proliferating cells, consistent with most nevus cells being senescent. No nevus culture (0/28) appeared immortal. Some thin and thick melanoma cultures proved immortal under these conditions, but surprisingly few (4/37). All arrested cultures displayed three senescence markers in some cells: β-galactosidase, nuclear p16, and heterochromatic foci/aggregates. However, melanoma cultures also showed features of telomeric crisis (arrest because of ultrashort telomeres). Moreover, crisis markers including anaphase bridges were frequent in uncultured vertical growth-phase (VGP) melanomas. Conversely, all immortal melanoma cultures expressed telomerase reverse transcriptase and telomerase, showing aneuploidy. The findings suggest that primary melanomas are typically precrisis, with immortalization/telomere maintenance as a late event. PMID:21418545

  18. Atomic structure of the APC/C and its mechanism of protein ubiquitination

    PubMed Central

    Yang, Jing; McLaughlin, Stephen H.; Barford, David

    2015-01-01

    The anaphase-promoting complex (APC/C) is a multimeric RING E3 ubiquitin ligase that controls chromosome segregation and mitotic exit. Its regulation by coactivator subunits, phosphorylation, the mitotic checkpoint complex, and interphase inhibitor Emi1 ensures the correct order and timing of distinct cell cycle transitions. Here, we used cryo-electron microscopy to determine atomic structures of APC/C-coactivator complexes with either Emi1 or a UbcH10-ubiquitin conjugate. These structures define the architecture of all APC/C subunits, the position of the catalytic module, and explain how Emi1 mediates inhibition of the two E2s UbcH10 and Ube2S. Definition of Cdh1 interactions with the APC/C indicates how they are antagonized by Cdh1 phosphorylation. The structure of the APC/C with UbcH10-ubiquitin reveals insights into the initiating ubiquitination reaction. Our results provide a quantitative framework for the design of experiments to further investigate APC/C functions in vivo. PMID:26083744

  19. Measuring APC/C-Dependent Ubiquitylation In Vitro.

    PubMed

    Jarvis, Marc A; Brown, Nicholas G; Watson, Edmond R; VanderLinden, Ryan; Schulman, Brenda A; Peters, Jan-Michael

    2016-01-01

    The anaphase-promoting complex/cyclosome (APC/C) is a 1.2 MDa ubiquitin ligase complex with important functions in both proliferating and post-mitotic differentiated cells. In proliferating cells, APC/C controls cell cycle progression by targeting inhibitors of chromosome segregation and mitotic exit for degradation by the 26S proteasome. To understand how APC/C recruits and ubiquitylates its substrate proteins and how these processes are controlled, it is essential to analyze APC/C activity in vitro. In the past, such experiments have been limited by the fact that large quantities of purified APC/C were difficult to obtain and that mutated versions of the APC/C could not be easily generated. In this chapter we review recent advances in generating and purifying recombinant forms of the human APC/C and its co-activators, using methods that are scalable and compatible with mutagenesis. We also describe a method that allows the quantitative analysis of APC/C activity using fluorescently labeled substrate proteins.

  20. Stable kinetochore–microtubule attachment is sufficient to silence the spindle assembly checkpoint in human cells

    PubMed Central

    Tauchman, Eric C.; Boehm, Frederick J.; DeLuca, Jennifer G.

    2015-01-01

    During mitosis, duplicated sister chromatids attach to microtubules emanating from opposing sides of the bipolar spindle through large protein complexes called kinetochores. In the absence of stable kinetochore–microtubule attachments, a cell surveillance mechanism known as the spindle assembly checkpoint (SAC) produces an inhibitory signal that prevents anaphase onset. Precisely how the inhibitory SAC signal is extinguished in response to microtubule attachment remains unresolved. To address this, we induced formation of hyper-stable kinetochore–microtubule attachments in human cells using a non-phosphorylatable version of the protein Hec1, a core component of the attachment machinery. We find that stable attachments are sufficient to silence the SAC in the absence of sister kinetochore bi-orientation and strikingly in the absence of detectable microtubule pulling forces or tension. Furthermore, we find that SAC satisfaction occurs despite the absence of large changes in intra-kinetochore distance, suggesting that substantial kinetochore stretching is not required for quenching the SAC signal. PMID:26620470

  1. The timing of synthesis of proteins required for mitotic spindle and phragmoplast in partially synchronized root meristems of Vicia faba L.

    PubMed

    Olszewska, M J; Marciniak, K; Kuran, H

    1990-10-01

    After cycloheximide treatment (1 h, 2.5 micrograms/ml) protein synthesis was decreased by 70% and was partially restored after 7 h of postincubation (still 20% decrease). In partially synchronized root meristems of Vicia faba L. treated with cycloheximide at middle G2, a strong decrease of the mitotic index was observed. Exposure to the drug at late G2 did not modify the mitotic index; the changes in the phase indices suggested that the course of mitosis was blocked at prophase-metaphase/anaphase-telophase transitions. The use of indirect immunocytochemical staining of tubulin (second antibody labeled with peroxidase) made it possible to show a decreased number of cells with preprophase bands in cycloheximide-treated meristems and the mitotic spindles and phragmoplasts containing a reduced number of shortened bands of microtubules. As a result of these structural and functional disturbances, binucleate cells and polyploid nuclei were observed.

  2. Ecotoxicological evaluation of municipal sludge.

    PubMed

    Srivastava, Richa; Tewari, Anamika; Chauhan, Lalit K S; Kumar, Dinesh; Gupta, Shrawan K

    2005-02-01

    Municipal wastes originating from urban and industrial areas have become a major source of soil, ground and surface water pollution. These undesirable agents in our environment significantly interact with our flora and fauna. The aim of this study was to test samples of municipal sludge (MS) for their ecotoxicological potential by using sensitive bioassays involving a plant, Vicia faba, and the earthworm, Eisenia foetida. A 10% leachate of MS was prepared for the experiments, and V. faba seedlings were exposed to three leachate concentrations (2.5%, 5% and 10%) for 5 days. The findings revealed chromosome aberrations during the metaphase as well as the anaphase of cell division, and inhibition of the mitotic index, which reflects that MS originating from domestic and other human activities may be genotoxic to the living organisms of the ecosystem. Abnormalities in chlorophyll content, plant growth, root length, shoot length and root/shoot length ratio in V. faba clearly indicated the toxicity of the sludge. Behavioural and reproduction studies with E. foetida also provided evidence for the toxic nature of the MS.

  3. Identification of Drivers of Aneuploidy in Breast Tumors.

    PubMed

    Pfister, Katherine; Pipka, Justyna L; Chiang, Colby; Liu, Yunxian; Clark, Royden A; Keller, Ray; Skoglund, Paul; Guertin, Michael J; Hall, Ira M; Stukenberg, P Todd

    2018-05-29

    Although aneuploidy is found in the majority of tumors, the degree of aneuploidy varies widely. It is unclear how cancer cells become aneuploid or how highly aneuploid tumors are different from those of more normal ploidy. We developed a simple computational method that measures the degree of aneuploidy or structural rearrangements of large chromosome regions of 522 human breast tumors from The Cancer Genome Atlas (TCGA). Highly aneuploid tumors overexpress activators of mitotic transcription and the genes encoding proteins that segregate chromosomes. Overexpression of three mitotic transcriptional regulators, E2F1, MYBL2, and FOXM1, is sufficient to increase the rate of lagging anaphase chromosomes in a non-transformed vertebrate tissue, demonstrating that this event can initiate aneuploidy. Highly aneuploid human breast tumors are also enriched in TP53 mutations. TP53 mutations co-associate with the overexpression of mitotic transcriptional activators, suggesting that these events work together to provide fitness to breast tumors. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  4. [Effects of oil-refining microbes (genus Acinetobacter) on cytogenetical structures of human lymphocytes in cell cultures].

    PubMed

    Il'inskikh, N N; Il'inskikh, E N; Il'inskikh, I N

    2012-01-01

    The objective of this study was to assess ability of oil-refining bacteria Acinetobacter calcoaceticus and A. valentis to induce karyopathological abnormalities and chromosomal aberrations in human lymphocyte cultures. It was found that the cultures infected with A. calcoaceticus showed significantly high frequencies of cytogenetical effects and chromosomal aberrant cells as compared to the intact cultures and cultures infected with A. valentis. The most of chromosomal aberrations, mainly chromatid aberrations, were located in 1 and 2 chromosomes. Moreover, the aberrations were detected in some specific chromosome areas. Abnormalities of mitotic cell division and nucleus morphology were determined in lymphocyte cultures infected with A. calcoaceticus. There were found significantly high frequencies of cells with micronuclei, nucleus protrusions, anaphase or metaphase chromosome and chromosomal fragments lagging as well as multipolar and C-mitoses. Thus, the oil-refining bacteria A. calcoaceticus in contrast to A. valentis demonstrated strong genotoxic effects in human lymphocyte cultures in vitro.

  5. Surface functions during mitosis. III. Quantitative analysis of ligand- receptor movement into the cleavage furrow: diffusion vs. flow

    PubMed Central

    1982-01-01

    The surface distribution of concanavalin A (Con A) bound to cell membrane receptors varies dramatically as a function of mitotic phase. The lectin is distributed diffusely on cells labeled and observed between mid-prophase and early anaphase, whereas cells observed in late anaphase or telophase demonstrate a marked accumulation of Con A- receptor complexes over the developing cleavage furrow (Berlin, Oliver, and Walter. 1978. Cell. 15:327-341). In this report, we first use a system based on video intensification fluorescence microscopy to describe the simultaneous changes in cell shape and in lectin-receptor complex topography during progression of single cells through the mitotic cycle. The video analysis establishes that fluorescein succinyl Con A (F-S Con A)-receptor complex redistribution begins coincident with the first appearance of the cleavage furrow and is essentially complete within 2-3 min. This remarkable redistribution of surface fluorescence occurs during only a modest change in cell shape from a sphere to a belted cylinder. It reflects the translocation of complexes and not the accumulation of excess labeled membrane in the cleavage furrow: first, bound fluorescent cholera toxin which faithfully outlines the plasma membrane is not accumulated in the cleavage furrow, and, second, electron microscopy of peroxidase-Con A labeled cells undergoing cleavage shows that there is a high linear density of lectin within the furrow while Con A is virtually eliminated from the poles. The rate of surface movement of F-S Con A was quantitated by photon counting during a repetitive series of laser-excited fluorescence scans across dividing cells. Results were analyzed in terms of two alternative models of movement: a flow model in which complexes moved unidirectionally at constant velocity, and a diffusion model in which complexes could diffuse freely but were trapped at the cleavage furrow. According to these models, the observed rates of accumulation were attainable at either an effective flow velocity of approximately 1 micron/min, or an effective diffusion coefficient of approximately 10(- 9) cm2/s. However, in separate experiments the lectin-receptor diffusion rate measured directly by the method of fluorescence recovery after photobleaching (FRAP) on metaphase cells was only approximately 10(-10) cm2/s. Most importantly, photobleaching experiments during the actual period of F-S Con A accumulation showed that lectin-receptor movement during cleavage occurs unidirectionally. These results rule out diffusion and make a process of oriented flow of ligand-receptor complexes the most likely mechanism for ligand-receptor accumulation in the cleavage furrow. PMID:7119007

  6. Genotoxic action of an aqueous extract of Heliotropium curassavicum var. argentinum.

    PubMed

    Carballo, M; Mudry, M D; Larripa, I B; Villamil, E; D'Aquino, M

    1992-06-16

    Heliotropium curassavicum var. argentinum is widely employed in gout, rheumatism, neuralgias, arteriosclerotic disorders, muscular algias, phlebitis, varix and other illnesses. In order to analyze the genotoxic effect produced in vitro by this medicinal plant, chromosomal aberrations (CA), mitotic index (MI) and anaphase delay (AD) were studied in the CHO cell line, with and without the addition of S9 mix. Prepared according to the Argentine pharmacopeia 0.1, 1, 10 and 100 micrograms/ml plant decoction (aqueous extract) were assayed. One hundred cells per culture were studied for CA and AD, while MI was calculated for 2000 nuclei. The results revealed a significant increase in the percentage of abnormal metaphases (p less than 0.001) and in total aberrations (p less than 0.001). Both the MI and the AD affected the cell cycle. All results were enhanced by the addition of an S9 fraction. The toxic effect could be associated with pyrrolizidine alkaloids and their N-oxides, which through a process of in vitro metabolism become activated by microsomal oxidation and change into pyrrolic derivatives.

  7. Cell cycle-regulated oscillator coordinates core histone gene transcription through histone acetylation

    PubMed Central

    Kurat, Christoph F.; Lambert, Jean-Philippe; Petschnigg, Julia; Friesen, Helena; Pawson, Tony; Rosebrock, Adam; Gingras, Anne-Claude; Fillingham, Jeffrey; Andrews, Brenda

    2014-01-01

    DNA replication occurs during the synthetic (S) phase of the eukaryotic cell cycle and features a dramatic induction of histone gene expression for concomitant chromatin assembly. Ectopic production of core histones outside of S phase is toxic, underscoring the critical importance of regulatory pathways that ensure proper expression of histone genes. Several regulators of histone gene expression in the budding yeast Saccharomyces cerevisiae are known, yet the key oscillator responsible for restricting gene expression to S phase has remained elusive. Here, we show that suppressor of Ty (Spt)10, a putative histone acetyltransferase, and its binding partner Spt21 are key determinants of S-phase–specific histone gene expression. We show that Spt21 abundance is restricted to S phase in part by anaphase promoting complex Cdc20-homologue 1 (APCCdh1) and that it is recruited to histone gene promoters in S phase by Spt10. There, Spt21-Spt10 enables the recruitment of a cascade of regulators, including histone chaperones and the histone-acetyltransferase general control nonderepressible (Gcn) 5, which we hypothesize lead to histone acetylation and consequent transcription activation. PMID:25228766

  8. A novel TPR–BEN domain interaction mediates PICH–BEND3 association

    PubMed Central

    Pitchai, Ganesha P.; Kaulich, Manuel; Mesa, Pablo; Yao, Qi; Sarlos, Kata; Streicher, Werner W.; Nigg, Erich A.

    2017-01-01

    Abstract PICH is a DNA translocase required for the maintenance of chromosome stability in human cells. Recent data indicate that PICH co-operates with topoisomerase IIα to suppress pathological chromosome missegregation through promoting the resolution of ultra-fine anaphase bridges (UFBs). Here, we identify the BEN domain-containing protein 3 (BEND3) as an interaction partner of PICH in human cells in mitosis. We have purified full length PICH and BEND3 and shown that they exhibit a functional biochemical interaction in vitro. We demonstrate that the PICH–BEND3 interaction occurs via a novel interface between a TPR domain in PICH and a BEN domain in BEND3, and have determined the crystal structure of this TPR–BEN complex at 2.2 Å resolution. Based on the structure, we identified amino acids important for the TPR–BEN domain interaction, and for the functional interaction of the full-length proteins. Our data reveal a proposed new function for BEND3 in association with PICH, and the first example of a specific protein–protein interaction mediated by a BEN domain. PMID:28977671

  9. THE FINE STRUCTURE OF THE NUCLEOLUS DURING MITOSIS IN THE GRASSHOPPER NEUROBLAST CELL

    PubMed Central

    Stevens, Barbara J.

    1965-01-01

    The behavior of the nucleolus during mitosis was studied by electron microscopy in neuroblast cells of the grasshopper embryo, Chortophaga viridifasciata. Living neuroblast cells were observed in the light microscope, and their mitotic stages were identified and recorded. The cells were fixed and embedded; alternate thick and thin sections were made for light and electron microscopy. The interphase nucleolus consists of two fine structural components arranged in separate zones. Concentrations of 150 A granules form a dense peripheral zone, while the central regions are composed of a homogeneous background substance. Observations show that nucleolar dissolution in prophase occurs in two steps with a preliminary loss of the background substance followed by a dispersal of the granules. Nucleolar material reappears at anaphase as small clumps or layers at the chromosome surfaces. These later form into definite bodies, which disappear as the nucleolus grows in telophase. Evidence suggests both a collecting and a synthesizing role for the nucleolus-associated chromatin. The final, mature nucleolar form is produced by a rearrangement of the fine structural components and an increase in their mass. PMID:14326121

  10. Do centrioles generate a polar ejection force?

    PubMed

    Wells, Jonathan

    2005-01-01

    A microtubule-dependent polar ejection force that pushes chromosomes away from spindle poles during prometaphase is observed in animal cells but not in the cells of higher plants. Elongating microtubules and kinesin-like motor molecules have been proposed as possible causes, but neither accounts for all the data. In the hypothesis proposed here a polar ejection force is generated by centrioles, which are found in animals but not in higher plants. Centrioles consist of nine microtubule triplets arranged like the blades of a tiny turbine. Instead of viewing centrioles through the spectacles of molecular reductionism and neo-Darwinism, this hypothesis assumes that they are holistically designed to be turbines. Orthogonally oriented centriolar turbines could generate oscillations in spindle microtubules that resemble the motion produced by a laboratory vortexer. The result would be a microtubule-mediated ejection force tending to move chromosomes away from the spindle axis and the poles. A rise in intracellular calcium at the onset of anaphase could regulate the polar ejection force by shutting down the centriolar turbines, but defective regulation could result in an excessive force that contributes to the chromosomal instability characteristic of most cancer cells.

  11. A new cytogenetic mechanism for bacterial endosymbiont-induced parthenogenesis in Hymenoptera

    PubMed Central

    Adachi-Hagimori, Tetsuya; Miura, Kazuki; Stouthamer, Richard

    2008-01-01

    Vertically transmitted endosymbiotic bacteria, such as Wolbachia, Cardinium and Rickettsia, modify host reproduction in several ways to facilitate their own spread. One such modification results in parthenogenesis induction, where males, which are unable to transmit the bacteria, are not produced. In Hymenoptera, the mechanism of diploidization due to Wolbachia infection, known as gamete duplication, is a post-meiotic modification. During gamete duplication, the meiotic mechanism is normal, but in the first mitosis the anaphase is aborted. The two haploid sets of chromosomes do not separate and thus result in a single nucleus containing two identical sets of haploid chromosomes. Here, we outline an alternative cytogenetic mechanism for bacterial endosymbiont-induced parthenogenesis in Hymenoptera. During female gamete formation in Rickettsia-infected Neochrysocharis formosa (Westwood) parasitoids, meiotic cells undergo only a single equational division followed by the expulsion of a single polar body. This absence of meiotic recombination and reduction corresponds well with a non-segregation pattern in the offspring of heterozygous females. We conclude that diploidy in N. formosa is maintained through a functionally apomictic cloning mechanism that differs entirely from the mechanism induced by Wolbachia. PMID:18713719

  12. Cytogenetic toxicity effects of inorganic nickel and organic Ni(II) complexes on Brassica oleracea L. root meristem.

    PubMed

    Molas, J

    2001-01-01

    Experiments were carried out on the effect of nickel as an inorganic compound (NiSO4.7H2O) and organic Ni(II) complexes (i.e. Ni(II)-Glu and Ni(II)-EDTA) in concentrations of 20, 40 and 85 ?M dm-3 on meristematic cells of root tips of Brassica oleracea L. cv. Sława from Enkhouizen. All three tested chemical forms of nickel had a mitodepressive effect and inhibited root elongation. With respect to the degree of root elongation inhibition and mitodepressive effect, the tested forms of nickel can be put in the following order: Ni(II)-Glu NiSO4.7H2O Ni(II)-EDTA. In all three tested forms, nickel caused disturbances in mitotic divisions, resulting in anaphase bridges and binuclear cells, whose nuclei were joined by a bridge of condensed chromatin or separated. Inorganic nickel and Ni(II)-Glu in higher concentrations damaged nuclei (the amount of condensed chromatin increased), nucleoli (their structure became more condensed and vacuolisation was observed), endoplasmic reticulum (fragmentation, swelling of cisternae) and mitochondria (structure condensation).

  13. Structural organization of chromatin during the cell cycle of Entamoeba histolytica trophozoites.

    PubMed

    Argüello, C; Valenzuela, B; Rangel, E

    1992-01-01

    The nuclear division of E. histolytica trophozoites was analyzed by using specific stains for DNA, with the aim to define the sequential changes of chromatin during its life cycle. Furthermore, we characterized the internal structural arrangements of microtubules in the microtubular organizing center (MTOC) and determined the number of chromosomes and its association with the spindle. The MTOC is formed by multiple microtubule-nucleating centers, that are involved in the displacement of DNA during nuclear division. We found the existence of a single MTOC in one pole of the nucleus at early anaphase. Our results lead us to propose a new hypothesis in which it is suggested that metaphase corresponds to the arrangement of condensed DNA bodies, or "chromosomes" around the MTOC and, through the assembly of microtubules, one set of uncondensed chromatin is displaced to the opposite pole of the nucleus, while the other remains condensed and associated to the original MTOC. We observed six chromosomes in our preparations, corroborating previous observations (2,3). Whether or not a new MTOC is formed during nuclear division remains to be clarified.

  14. DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina.

    PubMed

    Zullo, Joseph M; Demarco, Ignacio A; Piqué-Regi, Roger; Gaffney, Daniel J; Epstein, Charles B; Spooner, Chauncey J; Luperchio, Teresa R; Bernstein, Bradley E; Pritchard, Jonathan K; Reddy, Karen L; Singh, Harinder

    2012-06-22

    A large fraction of the mammalian genome is organized into inactive chromosomal domains along the nuclear lamina. The mechanism by which these lamina associated domains (LADs) are established remains to be elucidated. Using genomic repositioning assays, we show that LADs, spanning the developmentally regulated IgH and Cyp3a loci contain discrete DNA regions that associate chromatin with the nuclear lamina and repress gene activity in fibroblasts. Lamina interaction is established during mitosis and likely involves the localized recruitment of Lamin B during late anaphase. Fine-scale mapping of LADs reveals numerous lamina-associating sequences (LASs), which are enriched for a GAGA motif. This repeated motif directs lamina association and is bound by the transcriptional repressor cKrox, in a complex with HDAC3 and Lap2β. Knockdown of cKrox or HDAC3 results in dissociation of LASs/LADs from the nuclear lamina. These results reveal a mechanism that couples nuclear compartmentalization of chromatin domains with the control of gene activity. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Visualization of diffuse centromeres with centromere-specific histone H3 in the holocentric plant Luzula nivea.

    PubMed

    Nagaki, Kiyotaka; Kashihara, Kazunari; Murata, Minoru

    2005-07-01

    Although holocentric species are scattered throughout the plant and animal kingdoms, only holocentric chromosomes of the nematode worm Caenorhabditis elegans have been analyzed with centromeric protein markers. In an effort to determine the holocentric structure in plants, we investigated the snowy woodrush Luzula nivea. From the young roots, a cDNA encoding a putative centromere-specific histone H3 (LnCENH3) was successfully isolated based on sequence similarity among plant CENH3s. The deduced amino acid sequence was then used to raise an anti-LnCENH3 antibody. Immunostaining clearly revealed the diffuse centromere-like structure that appears in the linear shape at prophase to telophase. Furthermore, it was shown that the amount of LnCENH3 decreased significantly at interphase. The polar side positioning on each chromatid at metaphase to anaphase also confirmed that LnCENH3 represents one of the centromere-specific proteins in L. nivea. These data from L. nivea are compared with those from C. elegans, and common features of holocentric chromosomes are discussed.

  16. The Aurora kinase Ipl1 maintains the centromeric localization of PP2A to protect cohesin during meiosis.

    PubMed

    Yu, Hong-Guo; Koshland, Douglas

    2007-03-26

    Homologue segregation during the first meiotic division requires the proper spatial regulation of sister chromatid cohesion and its dissolution along chromosome arms, but its protection at centromeric regions. This protection requires the conserved MEI-S332/Sgo1 proteins that localize to centromeric regions and also recruit the PP2A phosphatase by binding its regulatory subunit, Rts1. Centromeric Rts1/PP2A then locally prevents cohesion dissolution possibly by dephosphorylating the protein complex cohesin. We show that Aurora B kinase in Saccharomyces cerevisiae (Ipl1) is also essential for the protection of meiotic centromeric cohesion. Coupled with a previous study in Drosophila melanogaster, this meiotic function of Aurora B kinase appears to be conserved among eukaryotes. Furthermore, we show that Sgo1 recruits Ipl1 to centromeric regions. In the absence of Ipl1, Rts1 can initially bind to centromeric regions but disappears from these regions after anaphase I onset. We suggest that centromeric Ipl1 ensures the continued centromeric presence of active Rts1/PP2A, which in turn locally protects cohesin and cohesion.

  17. An astral simulacrum of the central spindle accounts for normal, spindle-less, and anucleate cytokinesis in echinoderm embryos

    PubMed Central

    Su, Kuan-Chung; Bement, William M.; Petronczki, Mark; von Dassow, George

    2014-01-01

    Cytokinesis in animal cells depends on spindle-derived spatial cues that culminate in Rho activation, and thereby actomyosin assembly, in a narrow equatorial band. Although the nature, origin, and variety of such cues have long been obscure, one component is certainly the Rho activator Ect2. Here we describe the behavior and function of Ect2 in echinoderm embryos, showing that Ect2 migrates from spindle midzone to astral microtubules in anaphase and that Ect2 shapes the pattern of Rho activation in incipient furrows. Our key finding is that Ect2 and its binding partner Cyk4 accumulate not only at normal furrows, but also at furrows that form in the absence of associated spindle, midzone, or chromosomes. In all these cases, the cell assembles essentially the same cytokinetic signaling ensemble—opposed astral microtubules decorated with Ect2 and Cyk4. We conclude that if multiple signals contribute to furrow induction in echinoderm embryos, they likely converge on the same signaling ensemble on an analogous cytoskeletal scaffold. PMID:25298401

  18. [The cytogenetic monitoring of the environmental conditions on the territories exposed by the radioactive contamination as a result of Chernobyl Nuclear Power Station accident (colony Urazovo Belgorod region as an example)].

    PubMed

    Artiukhov, V G; Kalaev, V N

    2006-01-01

    Cytogenetic characteristics of the seed progeny of birch (Betula pendula Roth), growing in colony Urazovo Belgorod region exposed by the impact of Chernobyl precipitation in 1986, were determinated. The changing of cytogenetic characteristics in comparison with the control (mitotic index and level of mitosis pathologies grown, their spectrum widens part of persistent nucleolies at the stages of metaphase, anaphase, telophase of mitosis enlarges, square of surface of single nucleolies decreases, part of moderate-active nucleolies "bark-core vacuolisated" type increase) on the experimental squares is revealed. The most considerable effects were observed in 2000, which connected with the increasing of the contaminations of mentioned territory as a result of brick factory work. By means of cluster analysis methods it was established that the cleanest in northwestern part of colony Urazovo, the most contaminated is central part. It was purposed, that chemical compounds, are main agents caused the changing of cytogenetic properties of test-object after the normalization of the radiation level.

  19. Specific end-to-end attachment of chromosomes in Ornithogalum virens.

    PubMed

    Ashley, T

    1979-08-01

    C-banding of nonhomologous chromosomes in haploid generative nuclei of Ornithogalum virens (n = 3) reveals a high degree of specificity with respect to end-to-end connexions. The centromeric end of chromosome 2 preferentially associates with the centromeric end of chromosome 3 and the telomeric end of chromosome 3 associates preferentially with the telomeric end of chromosome 1. This same association of nonhomologous chromosomes persists in prophase nuclei of diploid root tips. In addition, the telomeric ends of the 2 chromosome 2s are connected to one another as are the centromeric ends of the chromosome 1s. This results in a ring of chromosomes in which homologues lie opposite one another. Centromeric ends lie on one side of the nucleus and telomeric ends on the other. It is proposed that this specific association of chromosome ends reflects an order which was probably established at the preceding anaphase or telophase and which persists throughout interphase. The suggestion is made that the proximity of homologous ends and consequently homologous alignment may facilitate initiation of pairing at meiosis.

  20. Crystal Structure of the Cohesin Gatekeeper Pds5 and in Complex with Kleisin Scc1.

    PubMed

    Lee, Byung-Gil; Roig, Maurici B; Jansma, Marijke; Petela, Naomi; Metson, Jean; Nasmyth, Kim; Löwe, Jan

    2016-03-08

    Sister chromatid cohesion is mediated by cohesin, whose Smc1, Smc3, and kleisin (Scc1) subunits form a ring structure that entraps sister DNAs. The ring is opened either by separase, which cleaves Scc1 during anaphase, or by a releasing activity involving Wapl, Scc3, and Pds5, which bind to Scc1 and open its interface with Smc3. We present crystal structures of Pds5 from the yeast L. thermotolerans in the presence and absence of the conserved Scc1 region that interacts with Pds5. Scc1 binds along the spine of the Pds5 HEAT repeat fold and is wedged between the spine and C-terminal hook of Pds5. We have isolated mutants that confirm the observed binding mode of Scc1 and verified their effect on cohesin by immunoprecipitation and calibrated ChIP-seq. The Pds5 structure also reveals architectural similarities to Scc3, the other large HEAT repeat protein of cohesin and, most likely, Scc2. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. BuGZ is required for Bub3 stability, Bub1 kinetochore function, and chromosome alignment

    PubMed Central

    Toledo, Chad M.; Herman, Jacob A.; Olsen, Jonathan B.; Ding, Yu; Corrin, Philip; Girard, Emily J.; Olson, James M.; Emili, Andrew; DeLuca, Jennifer G.; Paddison, Patrick J.

    2014-01-01

    Summary During mitosis, the spindle assembly checkpoint (SAC) monitors the attachment of kinetochores (KTs) to the plus ends of spindle microtubules (MTs) and prevents anaphase onset until chromosomes are aligned and KTs are under proper tension. Here, we identify a SAC component, BuGZ/ZNF207, from an RNAi viability screen in human Glioblastoma multiforme (GBM) brain tumor stem cells. BuGZ binds to and stabilizes Bub3 during interphase and mitosis through a highly conserved GLE2p-binding sequence (GLEBS) domain. Inhibition of BuGZ results in loss of both Bub3 and its binding partner Bub1 from KTs, reduction of Bub1-dependent phosphorylation of centromeric histone H2A, attenuation of KT-based Aurora kinase B activity, and lethal chromosome congression defects in cancer cells. Phylogenetic analysis indicates that BuGZ orthologs are highly conserved among eukaryotes, but are conspicuously absent from budding and fission yeasts. These findings suggest BuGZ has evolved to facilitate Bub3 activity and chromosome congression in higher eukaryotes. PMID:24462187

  2. TRAMM/TrappC12 plays a role in chromosome congression, kinetochore stability, and CENP-E recruitment

    PubMed Central

    Milev, Miroslav P.; Hasaj, Benedeta; Saint-Dic, Djenann; Snounou, Sary; Zhao, Qingchuan

    2015-01-01

    Chromosome congression requires the stable attachment of microtubules to chromosomes mediated by the kinetochore, a large proteinaceous structure whose mechanism of assembly is unknown. In this paper, we present the finding that a protein called TRAMM (formerly known as TrappC12) plays a role in mitosis. Depletion of TRAMM resulted in noncongressed chromosomes and arrested cells in mitosis. Small amounts of TRAMM associated with chromosomes, and its depletion affected the localization of some kinetochore proteins, the strongest effect being seen for CENP-E. TRAMM interacts with CENP-E, and depletion of TRAMM prevented the recruitment of CENP-E to the kinetochore. TRAMM is phosphorylated early in mitosis and dephosphorylated at the onset of anaphase. Interestingly, this phosphorylation/dephosphorylation cycle correlates with its association/disassociation with CENP-E. Finally, we demonstrate that a phosphomimetic form of TRAMM recruited CENP-E to kinetochores more efficiently than did the nonphosphorylatable mutant. Our study identifies a moonlighting function for TRAMM during mitosis and adds a new component that regulates kinetochore stability and CENP-E recruitment. PMID:25918224

  3. Human chromokinesins promote chromosome congression and spindle microtubule dynamics during mitosis

    PubMed Central

    Wandke, Cornelia; Barisic, Marin; Sigl, Reinhard; Rauch, Veronika; Wolf, Frank; Amaro, Ana C.; Tan, Chia H.; Pereira, Antonio J.; Kutay, Ulrike; Maiato, Helder; Meraldi, Patrick

    2012-01-01

    Chromokinesins are microtubule plus end–directed motor proteins that bind to chromosome arms. In Xenopus egg cell-free extracts, Xkid and Xklp1 are essential for bipolar spindle formation but the functions of the human homologues, hKID (KIF22) and KIF4A, are poorly understood. By using RNAi-mediated protein knockdown in human cells, we find that only co-depletion delayed progression through mitosis in a Mad2-dependent manner. Depletion of hKID caused abnormal chromosome arm orientation, delayed chromosome congression, and sensitized cells to nocodazole. Knockdown of KIF4A increased the number and length of microtubules, altered kinetochore oscillations, and decreased kinetochore microtubule flux. These changes were associated with failures in establishing a tight metaphase plate and an increase in anaphase lagging chromosomes. Co-depletion of both chromokinesins aggravated chromosome attachment failures, which led to mitotic arrest. Thus, hKID and KIF4A contribute independently to the rapid and correct attachment of chromosomes by controlling the positioning of chromosome arms and the dynamics of microtubules, respectively. PMID:22945934

  4. Induction of polyploidization in leukemic cell lines and primary bone marrow by Src kinase inhibitor SU6656

    PubMed Central

    Lannutti, Brian J.; Blake, Noel; Gandhi, Manish J.; Reems, Jo Anna; Drachman, Jonathan G.

    2005-01-01

    Megakaryocytes (MKs) undergo successive rounds of endomitosis during differentiation, resulting in polyploidy (typically, 16-64N). Previous studies have demonstrated that this occurs through an interruption of normal cell cycle progression during anaphase. However, the molecular mechanism(s) controlling this unique process is undefined. In the present report, we examine the effect of an Src kinase inhibitor, SU6656, on thrombopoietin (TPO)-induced growth and differentiation. Remarkably, when SU6656 (2.5 μM) was added to a megakaryocytic cell line, UT-7/TPO, the cells ceased cell division but continued to accumulate DNA by endomitosis. During this interval, CD41 and CD61 expression on the cell surface increased. Similar effects on polyploidization and MK differentiation were seen with expanded primary MKs, bone marrow from 2 patients with myelodysplastic syndrome, and other cell lines with MK potential. Our data suggest that SU6656 might be useful as a differentiation-inducing agent for MKs and is an important tool for understanding the molecular basis of MK endomitosis. PMID:15677565

  5. Direct kinetochore–spindle pole connections are not required for chromosome segregation

    PubMed Central

    Sikirzhytski, Vitali; Magidson, Valentin; Steinman, Jonathan B.; He, Jie; Le Berre, Maël; Tikhonenko, Irina; Ault, Jeffrey G.; McEwen, Bruce F.; Chen, James K.; Sui, Haixin; Piel, Matthieu; Kapoor, Tarun M.

    2014-01-01

    Segregation of genetic material occurs when chromosomes move to opposite spindle poles during mitosis. This movement depends on K-fibers, specialized microtubule (MT) bundles attached to the chromosomes′ kinetochores. A long-standing assumption is that continuous K-fibers connect every kinetochore to a spindle pole and the force for chromosome movement is produced at the kinetochore and coupled with MT depolymerization. However, we found that chromosomes still maintained their position at the spindle equator during metaphase and segregated properly during anaphase when one of their K-fibers was severed near the kinetochore with a laser microbeam. We also found that, in normal fully assembled spindles, K-fibers of some chromosomes did not extend to the spindle pole. These K-fibers connected to adjacent K-fibers and/or nonkinetochore MTs. Poleward movement of chromosomes with short K-fibers was uncoupled from MT depolymerization at the kinetochore. Instead, these chromosomes moved by dynein-mediated transport of the entire K-fiber/kinetochore assembly. Thus, at least two distinct parallel mechanisms drive chromosome segregation in mammalian cells. PMID:25023516

  6. A role for the Rab6A′ GTPase in the inactivation of the Mad2-spindle checkpoint

    PubMed Central

    Miserey-Lenkei, Stéphanie; Couëdel-Courteille, Anne; Del Nery, Elaine; Bardin, Sabine; Piel, Matthieu; Racine, Victor; Sibarita, Jean-Baptiste; Perez, Franck; Bornens, Michel; Goud, Bruno

    2006-01-01

    The two isoforms of the Rab6 GTPase, Rab6A and Rab6A′, regulate a retrograde transport route connecting early endosomes and the endoplasmic reticulum via the Golgi complex in interphasic cells. Here we report that when Rab6A′ function is altered cells are unable to progress normally through mitosis. Such cells are blocked in metaphase, despite displaying a normal Golgi fragmentation and with the Mad2-spindle checkpoint activated. Furthermore, the Rab6 effector p150Glued, a subunit of the dynein/dynactin complex, remains associated with some kinetochores. A similar phenotype was observed when GAPCenA, a GTPase-activating protein of Rab6, was depleted from cells. Our results suggest that Rab6A′ likely regulates the dynamics of the dynein/dynactin complex at the kinetochores and consequently the inactivation of the Mad2-spindle checkpoint. Rab6A′, through its interaction with p150Glued and GAPCenA, may thus participate in a pathway involved in the metaphase/anaphase transition. PMID:16395330

  7. Dynamic autophosphorylation of mps1 kinase is required for faithful mitotic progression.

    PubMed

    Wang, Xinghui; Yu, Huijuan; Xu, Leilei; Zhu, Tongge; Zheng, Fan; Fu, Chuanhai; Wang, Zhiyong; Dou, Zhen

    2014-01-01

    The spindle assembly checkpoint (SAC) is a surveillance mechanism monitoring cell cycle progression, thus ensuring accurate chromosome segregation. The conserved mitotic kinase Mps1 is a key component of the SAC. The human Mps1 exhibits comprehensive phosphorylation during mitosis. However, the related biological relevance is largely unknown. Here, we demonstrate that 8 autophosphorylation sites within the N-terminus of Mps1, outside of the catalytic domain, are involved in regulating Mps1 kinetochore localization. The phospho-mimicking mutant of the 8 autophosphorylation sites impairs Mps1 localization to kinetochore and also affects the kinetochore recruitment of BubR1 and Mad2, two key SAC effectors, subsequently leading to chromosome segregation errors. Interestingly, the non-phosphorylatable mutant of the 8 autophosphorylation sites enhances Mps1 kinetochore localization and delays anaphase onset. We further show that the Mps1 phospho-mimicking and non-phosphorylatable mutants do not affect metaphase chromosome congression. Thus, our results highlight the importance of dynamic autophosphorylation of Mps1 in regulating accurate chromosome segregation and ensuring proper mitotic progression.

  8. Drosophila Polo regulates the spindle assembly checkpoint through Mps1-dependent BubR1 phosphorylation.

    PubMed

    Conde, Carlos; Osswald, Mariana; Barbosa, João; Moutinho-Santos, Tatiana; Pinheiro, Diana; Guimarães, Sofia; Matos, Irina; Maiato, Helder; Sunkel, Claudio E

    2013-06-12

    Maintenance of genomic stability during eukaryotic cell division relies on the spindle assembly checkpoint (SAC) that prevents mitotic exit until all chromosomes are properly attached to the spindle. Polo is a mitotic kinase proposed to be involved in SAC function, but its role has remained elusive. We demonstrate that Polo and Aurora B functional interdependency comprises a positive feedback loop that promotes Mps1 kinetochore localization and activity. Expression of constitutively active Polo restores normal Mps1 kinetochore levels even after Aurora B inhibition, highlighting a role for Polo in Mps1 recruitment to unattached kinetochores downstream of Aurora B. We also show that Mps1 kinetochore localization is required for BubR1 hyperphosphorylation and formation of the 3F3/2 phosphoepitope. This is essential to allow recruitment of Cdc20 to unattached kinetochores and the assembly of anaphase-promoting complex/cyclosome-inhibitory complexes to levels that ensure long-term SAC activity. We propose a model in which Polo controls Mps1-dependent BubR1 phosphorylation to promote Cdc20 kinetochore recruitment and sustained SAC function.

  9. Dynamic Autophosphorylation of Mps1 Kinase Is Required for Faithful Mitotic Progression

    PubMed Central

    Wang, Xinghui; Yu, Huijuan; Xu, Leilei; Zhu, Tongge; Zheng, Fan; Fu, Chuanhai; Wang, Zhiyong; Dou, Zhen

    2014-01-01

    The spindle assembly checkpoint (SAC) is a surveillance mechanism monitoring cell cycle progression, thus ensuring accurate chromosome segregation. The conserved mitotic kinase Mps1 is a key component of the SAC. The human Mps1 exhibits comprehensive phosphorylation during mitosis. However, the related biological relevance is largely unknown. Here, we demonstrate that 8 autophosphorylation sites within the N-terminus of Mps1, outside of the catalytic domain, are involved in regulating Mps1 kinetochore localization. The phospho-mimicking mutant of the 8 autophosphorylation sites impairs Mps1 localization to kinetochore and also affects the kinetochore recruitment of BubR1 and Mad2, two key SAC effectors, subsequently leading to chromosome segregation errors. Interestingly, the non-phosphorylatable mutant of the 8 autophosphorylation sites enhances Mps1 kinetochore localization and delays anaphase onset. We further show that the Mps1 phospho-mimicking and non-phosphorylatable mutants do not affect metaphase chromosome congression. Thus, our results highlight the importance of dynamic autophosphorylation of Mps1 in regulating accurate chromosome segregation and ensuring proper mitotic progression. PMID:25265012

  10. Drosophila Polo regulates the spindle assembly checkpoint through Mps1-dependent BubR1 phosphorylation

    PubMed Central

    Conde, Carlos; Osswald, Mariana; Barbosa, João; Moutinho-Santos, Tatiana; Pinheiro, Diana; Guimarães, Sofia; Matos, Irina; Maiato, Helder; Sunkel, Claudio E

    2013-01-01

    Maintenance of genomic stability during eukaryotic cell division relies on the spindle assembly checkpoint (SAC) that prevents mitotic exit until all chromosomes are properly attached to the spindle. Polo is a mitotic kinase proposed to be involved in SAC function, but its role has remained elusive. We demonstrate that Polo and Aurora B functional interdependency comprises a positive feedback loop that promotes Mps1 kinetochore localization and activity. Expression of constitutively active Polo restores normal Mps1 kinetochore levels even after Aurora B inhibition, highlighting a role for Polo in Mps1 recruitment to unattached kinetochores downstream of Aurora B. We also show that Mps1 kinetochore localization is required for BubR1 hyperphosphorylation and formation of the 3F3/2 phosphoepitope. This is essential to allow recruitment of Cdc20 to unattached kinetochores and the assembly of anaphase-promoting complex/cyclosome-inhibitory complexes to levels that ensure long-term SAC activity. We propose a model in which Polo controls Mps1-dependent BubR1 phosphorylation to promote Cdc20 kinetochore recruitment and sustained SAC function. PMID:23685359

  11. Regulation of kinetochore recruitment of two essential mitotic spindle checkpoint proteins by Mps1 phosphorylation.

    PubMed

    Xu, Quanbin; Zhu, Songcheng; Wang, Wei; Zhang, Xiaojuan; Old, William; Ahn, Natalie; Liu, Xuedong

    2009-01-01

    Mps1 is a protein kinase that plays essential roles in spindle checkpoint signaling. Unattached kinetochores or lack of tension triggers recruitment of several key spindle checkpoint proteins to the kinetochore, which delays anaphase onset until proper attachment or tension is reestablished. Mps1 acts upstream in the spindle checkpoint signaling cascade, and kinetochore targeting of Mps1 is required for subsequent recruitment of Mad1 and Mad2 to the kinetochore. The mechanisms that govern recruitment of Mps1 or other checkpoint proteins to the kinetochore upon spindle checkpoint activation are incompletely understood. Here, we demonstrate that phosphorylation of Mps1 at T12 and S15 is required for Mps1 recruitment to the kinetochore. Mps1 kinetochore recruitment requires its kinase activity and autophosphorylation at T12 and S15. Mutation of T12 and S15 severely impairs its kinetochore association and markedly reduces recruitment of Mad2 to the kinetochore. Our studies underscore the importance of Mps1 autophosphorylation in kinetochore targeting and spindle checkpoint signaling.

  12. INCENP Centromere and Spindle Targeting: Identification of Essential Conserved Motifs and Involvement of Heterochromatin Protein HP1

    PubMed Central

    Ainsztein, Alexandra M.; Kandels-Lewis, Stefanie E.; Mackay, Alastair M.; Earnshaw, William C.

    1998-01-01

    The inner centromere protein (INCENP) has a modular organization, with domains required for chromosomal and cytoskeletal functions concentrated near the amino and carboxyl termini, respectively. In this study we have identified an autonomous centromere- and midbody-targeting module in the amino-terminal 68 amino acids of INCENP. Within this module, we have identified two evolutionarily conserved amino acid sequence motifs: a 13–amino acid motif that is required for targeting to centromeres and transfer to the spindle, and an 11–amino acid motif that is required for transfer to the spindle by molecules that have targeted previously to the centromere. To begin to understand the mechanisms of INCENP function in mitosis, we have performed a yeast two-hybrid screen for interacting proteins. These and subsequent in vitro binding experiments identify a physical interaction between INCENP and heterochromatin protein HP1Hsα. Surprisingly, this interaction does not appear to be involved in targeting INCENP to the centromeric heterochromatin, but may instead have a role in its transfer from the chromosomes to the anaphase spindle. PMID:9864353

  13. Ploidy dimorphism and reproductive biology in Stenodrepanum bergii (Leguminosae), a rare South American endemism.

    PubMed

    Caponio, Irene; Anton, Ana M; Fortunato, Renée H; Norrmann, G A

    2012-01-01

    This is the first report on chromosome numbers and the reproductive behaviour in Stenodrepanum Harms, a rare endemic and monotypic legume genus from the arid and salty areas of central-western Argentina. Sixty individuals belonging to two populations from two salty areas ("salinas") were surveyed and included mostly triploid (2n = 3x = 36) and only two diploid (2n = 2x = 24) plants. Meiosis in diploids is regular, with bivalent pairing and uniform and viable pollen. In contrast, meiosis in triploids is characterized by high trivalent pairing, with irregularly shaped pollen and variation in cytoplasm content and stainability, which is in agreement with an unbalanced segregation occurring in anaphases I and II. However, different triploid plants/individuals showed various degrees of pollen fertility, which may be attributed to particular genotypes. Research on reproductive biology events indicates sexual cross-pollinated reproduction enhanced by protogyny in both cytotypes. All plants produced seeds, but seedlings were only recovered from diploid plants pollinated with triploids, and even those eventually perished. Chromosome counts in these seedlings revealed aneuploid chromosome numbers owing to the combination of unbalanced gametes.

  14. [Genotoxicity and toxicity assay of water sampled from the underground nuclear explosion site in the north of the Perm region (Russia)].

    PubMed

    Evseeva, T I; Geras'kin, S A; Shuktomova, I I; Taskaev, A I

    2004-01-01

    The results of our study revealed a local biologically relevant surface water contamination in the radionuclide anomaly in the north of Russia (Perm region) by means of Allium shoenoprasum L. the anaphase-telophase chromosome aberration assay. This radionuclide anomaly was formed in 1971 as a result of an underground nuclear explosion with soil excavation. Specific activities of main dose-forming radionuclides in all examined reservoirs are below intervention levels officially adopted in Russia for drinking water. We found that 90Sr significantly contribute to induction of cytogenetic disturbances. Our previous and described here data suggest that metal ions and radionuclides combined exposure on the various biota species (with the dose below permissible exposure limits for human) may cause substantial biological effects in part be due to synergic response. The findings described here indicated that development of a new concept of radiation protection for humans and biota should be based on the clear understanding of biological effects of low doses of radiation in chronic exposure to multi-pollutant mixtures.

  15. Genotoxicity and cytotoxicity assay of water sampled from the underground nuclear explosion site in the north of the Perm region (Russia).

    PubMed

    Evseeva, Tatiana I; Geras'kin, Stanislav A; Shuktomova, Ida I; Taskaev, Anatoliy I

    2005-01-01

    The results of our study revealed a local biologically relevant surface water contamination in the radionuclide anomaly in the north of Russia (Perm region) by means of Allium schoenoprasum L. anaphase-telophase chromosome aberration assay. This radionuclide anomaly was formed in 1971 as a result of an underground nuclear explosion with soil excavation. Specific activities of main dose-forming radionuclides in all examined reservoirs are below intervention levels officially adopted in Russia for drinking water. We found that (90)Sr significantly contributes to induction of cytogenetic disturbances. Our previous data and the data described here suggest that metal and radionuclide combined exposure (with the dose below permissible exposure limits for human) may cause substantial biological effects. These effects are in part due to synergic response. The findings described here indicated that development of a new concept of radiation protection for humans and biota should be based on the clear understanding of biological effects of low doses of radiation in chronic exposure to multi-pollutant mixtures.

  16. Kinesin-5-independent mitotic spindle assembly requires the antiparallel microtubule crosslinker Ase1 in fission yeast

    PubMed Central

    Rincon, Sergio A.; Lamson, Adam; Blackwell, Robert; Syrovatkina, Viktoriya; Fraisier, Vincent; Paoletti, Anne; Betterton, Meredith D.; Tran, Phong T.

    2017-01-01

    Bipolar spindle assembly requires a balance of forces where kinesin-5 produces outward pushing forces to antagonize the inward pulling forces from kinesin-14 or dynein. Accordingly, Kinesin-5 inactivation results in force imbalance leading to monopolar spindle and chromosome segregation failure. In fission yeast, force balance is restored when both kinesin-5 Cut7 and kinesin-14 Pkl1 are deleted, restoring spindle bipolarity. Here we show that the cut7Δpkl1Δ spindle is fully competent for chromosome segregation independently of motor activity, except for kinesin-6 Klp9, which is required for anaphase spindle elongation. We demonstrate that cut7Δpkl1Δ spindle bipolarity requires the microtubule antiparallel bundler PRC1/Ase1 to recruit CLASP/Cls1 to stabilize microtubules. Brownian dynamics-kinetic Monte Carlo simulations show that Ase1 and Cls1 activity are sufficient for initial bipolar spindle formation. We conclude that pushing forces generated by microtubule polymerization are sufficient to promote spindle pole separation and the assembly of bipolar spindle in the absence of molecular motors. PMID:28513584

  17. APC/CCdh1-Rock2 pathway controls dendritic integrity and memory

    PubMed Central

    Bobo-Jiménez, Verónica; Delgado-Esteban, María; Angibaud, Julie; Sánchez-Morán, Irene; de la Fuente, Antonio; Yajeya, Javier; Nägerl, U. Valentin; Castillo, José; Bolaños, Juan P.

    2017-01-01

    Disruption of neuronal morphology contributes to the pathology of neurodegenerative disorders such as Alzheimer’s disease (AD). However, the underlying molecular mechanisms are unknown. Here, we show that postnatal deletion of Cdh1, a cofactor of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase in neurons [Cdh1 conditional knockout (cKO)], disrupts dendrite arborization and causes dendritic spine and synapse loss in the cortex and hippocampus, concomitant with memory impairment and neurodegeneration, in adult mice. We found that the dendrite destabilizer Rho protein kinase 2 (Rock2), which accumulates in the brain of AD patients, is an APC/CCdh1 substrate in vivo and that Rock2 protein and activity increased in the cortex and hippocampus of Cdh1 cKO mice. In these animals, inhibition of Rock activity, using the clinically approved drug fasudil, prevented dendritic network disorganization, memory loss, and neurodegeneration. Thus, APC/CCdh1-mediated degradation of Rock2 maintains the dendritic network, memory formation, and neuronal survival, suggesting that pharmacological inhibition of aberrantly accumulated Rock2 may be a suitable therapeutic strategy against neurodegeneration. PMID:28396402

  18. Integrating high-throughput genetic interaction mapping and high-content screening to explore yeast spindle morphogenesis

    PubMed Central

    Vizeacoumar, Franco J.; van Dyk, Nydia; S.Vizeacoumar, Frederick; Cheung, Vincent; Li, Jingjing; Sydorskyy, Yaroslav; Case, Nicolle; Li, Zhijian; Datti, Alessandro; Nislow, Corey; Raught, Brian; Zhang, Zhaolei; Frey, Brendan; Bloom, Kerry

    2010-01-01

    We describe the application of a novel screening approach that combines automated yeast genetics, synthetic genetic array (SGA) analysis, and a high-content screening (HCS) system to examine mitotic spindle morphogenesis. We measured numerous spindle and cellular morphological parameters in thousands of single mutants and corresponding sensitized double mutants lacking genes known to be involved in spindle function. We focused on a subset of genes that appear to define a highly conserved mitotic spindle disassembly pathway, which is known to involve Ipl1p, the yeast aurora B kinase, as well as the cell cycle regulatory networks mitotic exit network (MEN) and fourteen early anaphase release (FEAR). We also dissected the function of the kinetochore protein Mcm21p, showing that sumoylation of Mcm21p regulates the enrichment of Ipl1p and other chromosomal passenger proteins to the spindle midzone to mediate spindle disassembly. Although we focused on spindle disassembly in a proof-of-principle study, our integrated HCS-SGA method can be applied to virtually any pathway, making it a powerful means for identifying specific cellular functions. PMID:20065090

  19. [The role of metabolic activation of promutagens in the genome destabilization under pheromonal stress in the house mouse (Mus musculus)].

    PubMed

    Zhuk, A S; Stepchenkova, E I; Dukel'skaia, A V; Daev, E V; Inge-Vechtomov, S G

    2011-10-01

    The hypothesis on a relationship between the high frequency of mitotic disturbances in bone marrow cells and the change in the activity of the S9 liver fraction containing promutagen-activating enzymes under olfactory stress in the house mouse Mus musculus has been tested. For this purpose, the effect of the pheromone 2,5-dimethylpyrazine on the frequency of mitotic disturbances in mouse bone marrow cells has been measured by the anaphase-telophase assay. The Ames test using Salmonella typhimurium has been employed to compare the capacities of the S9 liver fractions from stressed and intact mice for activating the promutagen 2-aminofluorene. It has been demonstrated that the increased frequency of mitotic disturbances in bone marrow cells induced by the pheromonal stressor in male house mice is accompanied by an increased promutagen-activating capacity of the S9 liver fraction. The model system used in the study allowed the genetic consequences of the exposure to the olfactory stressor to be estimated and the possible mechanisms of genome destabilization to be assumed.

  20. Kinetic Analysis of a Molecular Model of the Budding Yeast Cell Cycle

    PubMed Central

    Chen, Katherine C.; Csikasz-Nagy, Attila; Gyorffy, Bela; Val, John; Novak, Bela; Tyson, John J.

    2000-01-01

    The molecular machinery of cell cycle control is known in more detail for budding yeast, Saccharomyces cerevisiae, than for any other eukaryotic organism. In recent years, many elegant experiments on budding yeast have dissected the roles of cyclin molecules (Cln1–3 and Clb1–6) in coordinating the events of DNA synthesis, bud emergence, spindle formation, nuclear division, and cell separation. These experimental clues suggest a mechanism for the principal molecular interactions controlling cyclin synthesis and degradation. Using standard techniques of biochemical kinetics, we convert the mechanism into a set of differential equations, which describe the time courses of three major classes of cyclin-dependent kinase activities. Model in hand, we examine the molecular events controlling “Start” (the commitment step to a new round of chromosome replication, bud formation, and mitosis) and “Finish” (the transition from metaphase to anaphase, when sister chromatids are pulled apart and the bud separates from the mother cell) in wild-type cells and 50 mutants. The model accounts for many details of the physiology, biochemistry, and genetics of cell cycle control in budding yeast. PMID:10637314

  1. Quantitative phosphoproteomics reveals new roles for the protein phosphatase PP6 in mitotic cells.

    PubMed

    Rusin, Scott F; Schlosser, Kate A; Adamo, Mark E; Kettenbach, Arminja N

    2015-10-13

    Protein phosphorylation is an important regulatory mechanism controlling mitotic progression. Protein phosphatase 6 (PP6) is an essential enzyme with conserved roles in chromosome segregation and spindle assembly from yeast to humans. We applied a baculovirus-mediated gene silencing approach to deplete HeLa cells of the catalytic subunit of PP6 (PP6c) and analyzed changes in the phosphoproteome and proteome in mitotic cells by quantitative mass spectrometry-based proteomics. We identified 408 phosphopeptides on 272 proteins that increased and 298 phosphopeptides on 220 proteins that decreased in phosphorylation upon PP6c depletion in mitotic cells. Motif analysis of the phosphorylated sites combined with bioinformatics pathway analysis revealed previously unknown PP6c-dependent regulatory pathways. Biochemical assays demonstrated that PP6c opposed casein kinase 2-dependent phosphorylation of the condensin I subunit NCAP-G, and cellular analysis showed that depletion of PP6c resulted in defects in chromosome condensation and segregation in anaphase, consistent with dysregulation of condensin I function in the absence of PP6 activity. Copyright © 2015, American Association for the Advancement of Science.

  2. Quantitative phosphoproteomics reveals new roles for the protein phosphatase PP6 in mitotic cells

    PubMed Central

    Rusin, Scott F.; Schlosser, Kate A.; Adamo, Mark E.; Kettenbach, Arminja N.

    2017-01-01

    Protein phosphorylation is an important regulatory mechanism controlling mitotic progression. Protein phosphatase 6 (PP6) is an essential enzyme with conserved roles in chromosome segregation and spindle assembly from yeast to humans. We applied a baculovirus-mediated gene silencing approach to deplete HeLa cells of the catalytic subunit of PP6 (PP6c) and analyzed changes in the phosphoproteome and proteome in mitotic cells by quantitative mass spectrometry–based proteomics. We identified 408 phosphopeptides on 272 proteins that increased and 298 phosphopeptides on 220 proteins that decreased in phosphorylation upon PP6c depletion in mitotic cells. Motif analysis of the phosphorylated sites combined with bioinformatics pathway analysis revealed previously unknown PP6c–dependent regulatory pathways. Biochemical assays demonstrated that PP6c opposed casein kinase 2–dependent phosphorylation of the condensin I subunit NCAP-G, and cellular analysis showed that depletion of PP6c resulted in defects in chromosome condensation and segregation in anaphase, consistent with dysregulation of condensin I function in the absence of PP6 activity. PMID:26462736

  3. Functional organization of mitotic microtubules. Physical chemistry of the in vivo equilibrium system.

    PubMed Central

    Inoué, S; Fuseler, J; Salmon, E D; Ellis, G W

    1975-01-01

    Equilibrium between mitotic microtubules and tubulin is analyzed, using birefringence of mitotic spindle to measure microtubule concentration in vivo. A newly designed temperature-controlled slide and miniature, thermostated hydrostatic pressure chamber permit rapid alteration of temperature and of pressure. Stress birefringence of the windows is minimized, and a system for rapid recording of compensation is incorporated, so that birefringence can be measured to 0.1 nm retardation every few seconds. Both temperature and pressure data yield thermodynamic values (delta H similar to 35 kcal/mol, delta S similar to 120 entropy units [eu], delta V similar to 400 ml/mol of subunit polymerized) consistent with the explanation that polymerization of tubulin is entropy driven and mediated by hydrophobic interactions. Kinetic data suggest pseudo-zero-order polymerization and depolymerization following rapid temperature shifts, and a pseudo-first-order depolymerization during anaphase at constant temperature. The equilibrium properties of the in vivo mitotic microtubules are compared with properties of isolated brain tubules. Images FIGURE 1 FIGURE 2 FIGURE 5 FIGURE 12 FIGURE 13 FIGURE 14 FIGURE 19 PMID:1139037

  4. The APC/C Coordinates Retinal Differentiation with G1 Arrest through the Nek2-Dependent Modulation of Wingless Signaling.

    PubMed

    Martins, Torcato; Meghini, Francesco; Florio, Francesca; Kimata, Yuu

    2017-01-09

    The cell cycle is coordinated with differentiation during animal development. Here we report a cell-cycle-independent developmental role for a master cell-cycle regulator, the anaphase-promoting complex or cyclosome (APC/C), in the regulation of cell fate through modulation of Wingless (Wg) signaling. The APC/C controls both cell-cycle progression and postmitotic processes through ubiquitin-dependent proteolysis. Through an RNAi screen in the developing Drosophila eye, we found that partial APC/C inactivation severely inhibits retinal differentiation independently of cell-cycle defects. The differentiation inhibition coincides with hyperactivation of Wg signaling caused by the accumulation of a Wg modulator, Drosophila Nek2 (dNek2). The APC/C degrades dNek2 upon synchronous G1 arrest prior to differentiation, which allows retinal differentiation through local suppression of Wg signaling. We also provide evidence that decapentaplegic signaling may posttranslationally regulate this APC/C function. Thus, the APC/C coordinates cell-fate determination with the cell cycle through the modulation of developmental signaling pathways. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Histone H1 is essential for mitotic chromosome architecture and segregation in Xenopus laevis egg extracts

    PubMed Central

    Maresca, Thomas J.; Freedman, Benjamin S.; Heald, Rebecca

    2005-01-01

    During cell division, condensation and resolution of chromosome arms and the assembly of a functional kinetochore at the centromere of each sister chromatid are essential steps for accurate segregation of the genome by the mitotic spindle, yet the contribution of individual chromatin proteins to these processes is poorly understood. We have investigated the role of embryonic linker histone H1 during mitosis in Xenopus laevis egg extracts. Immunodepletion of histone H1 caused the assembly of aberrant elongated chromosomes that extended off the metaphase plate and outside the perimeter of the spindle. Although functional kinetochores assembled, aligned, and exhibited poleward movement, long and tangled chromosome arms could not be segregated in anaphase. Histone H1 depletion did not significantly affect the recruitment of known structural or functional chromosomal components such as condensins or chromokinesins, suggesting that the loss of H1 affects chromosome architecture directly. Thus, our results indicate that linker histone H1 plays an important role in the structure and function of vertebrate chromosomes in mitosis. PMID:15967810

  6. APC/C and retinoblastoma interaction: cross-talk of retinoblastoma protein with the ubiquitin proteasome pathway.

    PubMed

    Ramanujan, Ajeena; Tiwari, Swati

    2016-10-01

    The ubiquitin (Ub) ligase anaphase promoting complex/cyclosome (APC/C) and the tumour suppressor retinoblastoma protein (pRB) play key roles in cell cycle regulation. APC/C is a critical regulator of mitosis and G1-phase of the cell cycle whereas pRB keeps a check on proliferation by inhibiting transition to the S-phase. APC/C and pRB interact with each other via the co-activator of APC/C, FZR1, providing an alternative pathway of regulation of G1 to S transition by pRB using a post-translational mechanism. Both pRB and FZR1 have complex roles and are implicated not only in regulation of cell proliferation but also in differentiation, quiescence, apoptosis, maintenance of chromosomal integrity and metabolism. Both are also targeted by transforming viruses. We discuss recent advances in our understanding of the involvement of APC/C and pRB in cell cycle based decisions and how these insights will be useful for development of anti-cancer and anti-viral drugs. © 2016 The Author(s).

  7. APC/C and retinoblastoma interaction: cross-talk of retinoblastoma protein with the ubiquitin proteasome pathway

    PubMed Central

    Ramanujan, Ajeena; Tiwari, Swati

    2016-01-01

    The ubiquitin (Ub) ligase anaphase promoting complex/cyclosome (APC/C) and the tumour suppressor retinoblastoma protein (pRB) play key roles in cell cycle regulation. APC/C is a critical regulator of mitosis and G1-phase of the cell cycle whereas pRB keeps a check on proliferation by inhibiting transition to the S-phase. APC/C and pRB interact with each other via the co-activator of APC/C, FZR1, providing an alternative pathway of regulation of G1 to S transition by pRB using a post-translational mechanism. Both pRB and FZR1 have complex roles and are implicated not only in regulation of cell proliferation but also in differentiation, quiescence, apoptosis, maintenance of chromosomal integrity and metabolism. Both are also targeted by transforming viruses. We discuss recent advances in our understanding of the involvement of APC/C and pRB in cell cycle based decisions and how these insights will be useful for development of anti-cancer and anti-viral drugs. PMID:27402801

  8. The Linker Histone GH1-HMGA1 Is Involved in Telomere Stability and DNA Damage Repair1[OPEN

    PubMed Central

    Charbonnel, Cyril; Benyahya, Fatiha; Butter, Falk

    2018-01-01

    Despite intensive searches, few proteins involved in telomere homeostasis have been identified in plants. Here, we used pull-down assays to identify potential telomeric interactors in the model plant species Arabidopsis (Arabidopsis thaliana). We identified the candidate protein GH1-HMGA1 (also known as HON4), an uncharacterized linker histone protein of the High Mobility Group Protein A (HMGA) family in plants. HMGAs are architectural transcription factors and have been suggested to function in DNA damage repair, but their precise biological roles remain unclear. Here, we show that GH1-HMGA1 is required for efficient DNA damage repair and telomere integrity in Arabidopsis. GH1-HMGA1 mutants exhibit developmental and growth defects, accompanied by ploidy defects, increased telomere dysfunction-induced foci, mitotic anaphase bridges, and degraded telomeres. Furthermore, mutants have a higher sensitivity to genotoxic agents such as mitomycin C and γ-irradiation. Our work also suggests that GH1-HMGA1 is involved directly in the repair process by allowing the completion of homologous recombination. PMID:29622687

  9. Karyotyping of Transformed Human Epithelial Cells from Exposures of Heavy Ions

    NASA Technical Reports Server (NTRS)

    Yeshitla, Samrawit

    2013-01-01

    It is most likely that the untreated transformed single clone (clone #2) cell undergoes unequal segregation of chromosome in two daughter cell that result in 94 chromosome during mitosis, particularly in anaphase stage. Chromosome aberration observed. I. Breakage of part of chromosome 7. II. One additional number of chromosome 8 instead of the total chromosome can only be explained by early abnormal cell division. III. Complete lost of chromosome and translocation and fusion of chromosome 3 and X-chromosome. IV. Our result for translocation and fusion of chromosome 3 and X- Chromosome is conformed by mBAND pattern. There is no different between the transformed parental cell and the single cloned transformed cell. Both harbor the chromosome 5 and 16 translocation and both harbor has the trisomy chromosome 20. Transformed cells may have the number of chromosomes greater or less than 46. Doubling of chromosome numbers is a signature of tumor. Chromosomal aberration was observed on HBEC-3kt non-irradiated-soft agar (Clone #2) sample, and indication of chromosome instability in the tumor development process.

  10. Chromosome Missegregation Associated with RUVBL1 Deficiency

    PubMed Central

    Lauterbach, David; Gysi, Mario; Steigemann, Patrick; Gerlich, Daniel W.; Jiricny, Josef; Ferrari, Stefano

    2015-01-01

    RUVBL1 (RuvB-like1) and RUVBL2 (RuvB-like 2) are integral components of multisubunit protein complexes involved in processes ranging from cellular metabolism, transcription and chromatin remodeling to DNA repair. Here, we show that although RUVBL1 and RUVBL2 are known to form heterodimeric complexes in which they stabilize each other, the subunits separate during cytokinesis. In anaphase-to-telophase transition, RUVBL1 localizes to structures of the mitotic spindle apparatus, where it partially co-localizes with polo-like kinase 1 (PLK1). The ability of PLK1 to phosphorylate RUVBL1—but not RUVBL2—in vitro and their physical association in vivo suggest that this kinase differentially regulates the function of the RuvB-like proteins during mitosis. We further show that siRNA-mediated knock-down of RuvB-like proteins causes severe defects in chromosome alignment and segregation. In addition, we show that the ATPase activity of RUVBL1 is indispensable for cell proliferation. Our data thus demonstrate that RUVBL1 is essential for efficient mitosis and proliferation. PMID:26201077

  11. Direct kinetochore-spindle pole connections are not required for chromosome segregation.

    PubMed

    Sikirzhytski, Vitali; Magidson, Valentin; Steinman, Jonathan B; He, Jie; Le Berre, Maël; Tikhonenko, Irina; Ault, Jeffrey G; McEwen, Bruce F; Chen, James K; Sui, Haixin; Piel, Matthieu; Kapoor, Tarun M; Khodjakov, Alexey

    2014-07-21

    Segregation of genetic material occurs when chromosomes move to opposite spindle poles during mitosis. This movement depends on K-fibers, specialized microtubule (MT) bundles attached to the chromosomes' kinetochores. A long-standing assumption is that continuous K-fibers connect every kinetochore to a spindle pole and the force for chromosome movement is produced at the kinetochore and coupled with MT depolymerization. However, we found that chromosomes still maintained their position at the spindle equator during metaphase and segregated properly during anaphase when one of their K-fibers was severed near the kinetochore with a laser microbeam. We also found that, in normal fully assembled spindles, K-fibers of some chromosomes did not extend to the spindle pole. These K-fibers connected to adjacent K-fibers and/or nonkinetochore MTs. Poleward movement of chromosomes with short K-fibers was uncoupled from MT depolymerization at the kinetochore. Instead, these chromosomes moved by dynein-mediated transport of the entire K-fiber/kinetochore assembly. Thus, at least two distinct parallel mechanisms drive chromosome segregation in mammalian cells.

  12. Cellular effects of olomoucine, an inhibitor of cyclin-dependent kinases.

    PubMed

    Abraham, R T; Acquarone, M; Andersen, A; Asensi, A; Bellé, R; Berger, F; Bergounioux, C; Brunn, G; Buquet-Fagot, C; Fagot, D

    1995-01-01

    Olomoucine (2-(2-hydroxyethylamino)-6-benzylamino-9-methylpurine) has been recently described as a competitive inhibitor (ATP-binding site) of the cell cycle regulating p34cdc2/cyclin B, p33cdk2/cyclin A and p33cdk2/cyclin E kinases, the brain p33cdk5/p35 kinase and the ERK1/MAP-kinase. The unusual specificity of this compound towards cell cycle regulating enzymes suggests that it could inhibit certain steps of the cell cycle. The cellular effects of olomoucine were investigated in a large variety of plant and animal models. This compound inhibits the G1/S transition of unicellular algae (dinoflagellate and diatom). It blocks Fucus zygote cleavage and development of Laminaria gametophytes. Stimulated Petunia mesophyl protoplasts are arrested in G1 by olomoucine. By arresting cleavage it blocks the Laminaria gametophytes. Stimulated Petunia mesophyl protoplasts are arrested in G1 by olomoucine. By arresting cleavage it blocks the development of Calanus copepod larvae. It reversibly inhibits the early cleavages of Caenorhabditis elegans embryos and those of ascidian embryos. Olomoucine inhibits the serotonin-induced prophase/metaphase transition of clam oocytes; furthermore, it triggers the the release of these oocytes from their meiotic metaphase I arrest, and induces nuclei reformation. Olomoucine slows down the prophase/metaphase transition in cleaving sea urchin embryos, but does not affect the duration of the metaphase/anaphase and anaphase/telophase transitions. It also inhibits the prophase/metaphase transition of starfish oocytes triggered by various agonists. Xenopus oocyte maturation, the in vivo and in vitro phosphorylation of elongation factor EF-1 are inhibited by olomoucine. Mouse oocyte maturation is delayed by this compound, whereas parthenogenetic release from metaphase II arrest is facilitated. Growth of a variety of human cell lines (rhabdomyosarcoma cell lines Rh1, Rh18, Rh28 and Rh30; MCF-7, KB-3-1 and their adriamycin-resistant counterparts; National Cancer Institute 60 human tumor cell lines comprising nine tumor types) is inhibited by olomoucine. Cell cycle parameter analysis of the non-small cell lung cancer cell line MR65 shows that olomoucine affects G1 and S phase transits. Olomoucine inhibits DNA synthesis in interleukin-2-stimulated T lymphocytes (CTLL-2 cells) and triggers a G1 arrest similar to interleukin-2 deprivation. Both cdc2 and cdk2 kinases (immunoprecipitated from nocodazole- and hydroxyurea-treated CTLL-2 cells, respectively) are inhibited by olomoucine. Both yeast and Drosophila embryos were insensitive to olomoucine. Taken together the results of this Noah's Ark approach show that olomoucine arrests cells both at the G1/S and the G2/M boundaries, consistent with the hypothesis of a prevalent effect on the cdk2 and cdc2 kinases, respectively.

  13. Imaging the fate of histone Cse4 reveals de novo replacement in S phase and subsequent stable residence at centromeres

    PubMed Central

    Wisniewski, Jan; Hajj, Bassam; Chen, Jiji; Mizuguchi, Gaku; Xiao, Hua; Wei, Debbie; Dahan, Maxime; Wu, Carl

    2014-01-01

    The budding yeast centromere contains Cse4, a specialized histone H3 variant. Fluorescence pulse-chase analysis of an internally tagged Cse4 reveals that it is replaced with newly synthesized molecules in S phase, remaining stably associated with centromeres thereafter. In contrast, C-terminally-tagged Cse4 is functionally impaired, showing slow cell growth, cell lethality at elevated temperatures, and extra-centromeric nuclear accumulation. Recent studies using such strains gave conflicting findings regarding the centromeric abundance and cell cycle dynamics of Cse4. Our findings indicate that internally tagged Cse4 is a better reporter of the biology of this histone variant. Furthermore, the size of centromeric Cse4 clusters was precisely mapped with a new 3D-PALM method, revealing substantial compaction during anaphase. Cse4-specific chaperone Scm3 displays steady-state, stoichiometric co-localization with Cse4 at centromeres throughout the cell cycle, while undergoing exchange with a nuclear pool. These findings suggest that a stable Cse4 nucleosome is maintained by dynamic chaperone-in-residence Scm3. DOI: http://dx.doi.org/10.7554/eLife.02203.001 PMID:24844245

  14. COP1, a negative regulator of photomorphogenesis, positively regulates plant disease resistance via double-stranded RNA binding proteins

    PubMed Central

    Lim, Gah-Hyun; Zhu, Shifeng; Clavel, Marion; Yu, Keshun; Navarre, Duroy; Kachroo, Aardra; Deragon, Jean-Marc

    2018-01-01

    The E3 ubiquitin ligase COP1 (Constitutive Photomorphogenesis 1) is a well known component of the light-mediated plant development that acts as a repressor of photomorphogenesis. Here we show that COP1 positively regulates defense against turnip crinkle virus (TCV) and avrRPM1 bacteria by contributing to stability of resistance (R) protein HRT and RPM1, respectively. HRT and RPM1 levels and thereby pathogen resistance is significantly reduced in the cop1 mutant background. Notably, the levels of at least two double-stranded RNA binding (DRB) proteins DRB1 and DRB4 are reduced in the cop1 mutant background suggesting that COP1 affects HRT stability via its effect on the DRB proteins. Indeed, a mutation in either drb1 or drb4 resulted in degradation of HRT. In contrast to COP1, a multi-subunit E3 ligase encoded by anaphase-promoting complex (APC) 10 negatively regulates DRB4 and TCV resistance but had no effect on DRB1 levels. We propose that COP1-mediated positive regulation of HRT is dependent on a balance between COP1 and negative regulators that target DRB1 and DRB4. PMID:29513740

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Fangwei; Bringmann, Martin; Combs, Jonathon

    In plants, the presence of a load-bearing cell wall presents unique challenges during cell division. Unlike other eukaryotes, which undergo contractile cytokinesis upon completion of mitosis, plants instead synthesize and assemble a new dividing cell wall to separate newly formed daughter cells. In this study, we mine transcriptome data from individual cell types in the Arabidopsis thaliana stomatal lineage and identify CSLD5, a member of the Cellulose Synthase Like-D family, as a cell wall biosynthesis enzyme uniquely enriched in rapidly dividing cell populations. We further show that CSLD5 is a direct target of SPEECHLESS, the master transcriptional regulator of thesemore » divisions during stomatal development. Using a combination of genetic analysis and in vivo localization of fluorescently tagged fusion proteins, we show that CSLD5 preferentially accumulates in dividing plant cells where it participates in the construction of newly forming cell plates. We show that CSLD5 is an unstable protein that is rapidly degraded upon completion of cell division and that the protein turnover characteristics of CSLD5 are altered in ccs52a2 mutants, indicating that CSLD5 turnover may be regulated by a cell cycle-associated E3-ubiquitin ligase, the anaphase-promoting complex.« less

  16. Retinoic acid downregulates Rae1 leading to APC(Cdh1) activation and neuroblastoma SH-SY5Y differentiation.

    PubMed

    Cuende, J; Moreno, S; Bolaños, J P; Almeida, A

    2008-05-22

    In neuroblastoma cells, retinoic acid induces cell cycle arrest and differentiation through degradation of the F-box protein, Skp2, and stabilization of cyclin-dependent kinase inhibitor, p27. However, the mechanism responsible for retinoic acid-mediated Skp2 destabilization is unknown. Since Skp2 is degraded by anaphase-promoting complex (APC)(Cdh1), here we studied whether retinoic acid promotes differentiation of human SH-SY5Y neuroblastoma cells by modulating Cdh1. We found that retinoic acid induced the nuclear accumulation of Cdh1 that paralleled Skp2 destabilization and p27 accumulation. The mRNA and protein abundance of Rae1-a nuclear export factor that limits APC(Cdh1) activity in mitosis-decreased upon retinoic acid-induced inhibition of neuroblastoma cell proliferation. Furthermore, either Rae1 overexpression or Cdh1 inhibition promoted Skp2 accumulation, p27 destabilization and prevented retinoic acid-induced cell cycle arrest and differentiation. Conversely, inhibition of Rae1 accelerated retinoic acid-induced differentiation. Thus, retinoic acid downregulates Rae1, hence facilitating APC(Cdh1)-mediated Skp2 degradation leading to the arrest of cell cycle progression and neuroblastoma differentiation.

  17. Cleavage of cohesin rings coordinates the separation of centrioles and chromatids.

    PubMed

    Schöckel, Laura; Möckel, Martin; Mayer, Bernd; Boos, Dominik; Stemmann, Olaf

    2011-07-10

    Cohesin pairs sister chromatids by forming a tripartite Scc1-Smc1-Smc3 ring around them. In mitosis, cohesin is removed from chromosome arms by the phosphorylation-dependent prophase pathway. Centromeric cohesin is protected by shugoshin 1 and protein phosphatase 2A (Sgo1-PP2A) and opened only in anaphase by separase-dependent cleavage of Scc1 (refs 4-6). Following chromosome segregation, centrioles loosen their tight orthogonal arrangement, which licenses later centrosome duplication in S phase. Although a role of separase in centriole disengagement has been reported, the molecular details of this process remain enigmatic. Here, we identify cohesin as a centriole-engagement factor. Both premature sister-chromatid separation and centriole disengagement are induced by ectopic activation of separase or depletion of Sgo1. These unscheduled events are suppressed by expression of non-cleavable Scc1 or inhibition of the prophase pathway. When endogenous Scc1 is replaced by artificially cleavable Scc1, the corresponding site-specific protease triggers centriole disengagement. Separation of centrioles can alternatively be induced by ectopic cleavage of an engineered Smc3. Thus, the chromosome and centrosome cycles exhibit extensive parallels and are coordinated with each other by dual use of the cohesin ring complex.

  18. A novel TPR-BEN domain interaction mediates PICH-BEND3 association.

    PubMed

    Pitchai, Ganesha P; Kaulich, Manuel; Bizard, Anna H; Mesa, Pablo; Yao, Qi; Sarlos, Kata; Streicher, Werner W; Nigg, Erich A; Montoya, Guillermo; Hickson, Ian D

    2017-11-02

    PICH is a DNA translocase required for the maintenance of chromosome stability in human cells. Recent data indicate that PICH co-operates with topoisomerase IIα to suppress pathological chromosome missegregation through promoting the resolution of ultra-fine anaphase bridges (UFBs). Here, we identify the BEN domain-containing protein 3 (BEND3) as an interaction partner of PICH in human cells in mitosis. We have purified full length PICH and BEND3 and shown that they exhibit a functional biochemical interaction in vitro. We demonstrate that the PICH-BEND3 interaction occurs via a novel interface between a TPR domain in PICH and a BEN domain in BEND3, and have determined the crystal structure of this TPR-BEN complex at 2.2 Å resolution. Based on the structure, we identified amino acids important for the TPR-BEN domain interaction, and for the functional interaction of the full-length proteins. Our data reveal a proposed new function for BEND3 in association with PICH, and the first example of a specific protein-protein interaction mediated by a BEN domain. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Dual RING E3 Architectures Regulate Multiubiquitination and Ubiquitin Chain Elongation by APC/C.

    PubMed

    Brown, Nicholas G; VanderLinden, Ryan; Watson, Edmond R; Weissmann, Florian; Ordureau, Alban; Wu, Kuen-Phon; Zhang, Wei; Yu, Shanshan; Mercredi, Peter Y; Harrison, Joseph S; Davidson, Iain F; Qiao, Renping; Lu, Ying; Dube, Prakash; Brunner, Michael R; Grace, Christy R R; Miller, Darcie J; Haselbach, David; Jarvis, Marc A; Yamaguchi, Masaya; Yanishevski, David; Petzold, Georg; Sidhu, Sachdev S; Kuhlman, Brian; Kirschner, Marc W; Harper, J Wade; Peters, Jan-Michael; Stark, Holger; Schulman, Brenda A

    2016-06-02

    Protein ubiquitination involves E1, E2, and E3 trienzyme cascades. E2 and RING E3 enzymes often collaborate to first prime a substrate with a single ubiquitin (UB) and then achieve different forms of polyubiquitination: multiubiquitination of several sites and elongation of linkage-specific UB chains. Here, cryo-EM and biochemistry show that the human E3 anaphase-promoting complex/cyclosome (APC/C) and its two partner E2s, UBE2C (aka UBCH10) and UBE2S, adopt specialized catalytic architectures for these two distinct forms of polyubiquitination. The APC/C RING constrains UBE2C proximal to a substrate and simultaneously binds a substrate-linked UB to drive processive multiubiquitination. Alternatively, during UB chain elongation, the RING does not bind UBE2S but rather lures an evolving substrate-linked UB to UBE2S positioned through a cullin interaction to generate a Lys11-linked chain. Our findings define mechanisms of APC/C regulation, and establish principles by which specialized E3-E2-substrate-UB architectures control different forms of polyubiquitination. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Centromere inactivation and epigenetic modifications of a plant chromosome with three functional centromeres.

    PubMed

    Zhang, Wenli; Friebe, Bernd; Gill, Bikram S; Jiang, Jiming

    2010-10-01

    A chromosome with two functional centromeres is cytologically unstable and can only be stabilized when one of the two centromeres becomes inactivated via poorly understood mechanisms. Here, we report a transmissible chromosome with multiple centromeres in wheat. This chromosome encompassed one large and two small domains containing the centromeric histone CENH3. The two small centromeres are in a close vicinity and often fused as a single centromere on metaphase chromosomes. This fused centromere contained approximately 30% of the CENH3 compared to the large centromere. An intact tricentric chromosome was transmitted to about 70% of the progenies, which was likely a consequence of the dominating pulling capacity of the large centromere during anaphases of meiosis. The tricentric chromosome showed characteristics typical to dicentric chromosomes, including chromosome breaks and centromere inactivation. Remarkably, inactivation was always associated with the small centromeres, indicating that small centromeres are less likely to survive than large ones in dicentric chromosomes. The inactivation of the small centromeres also coincided with changes of specific histone modifications, including H3K27me2 and H3K27me3, of the pericentromeric chromatin.

  1. Behavior of centromeres in univalents and centric misdivision in wheat.

    PubMed

    Lukaszewski, A J

    2010-07-01

    Centromeres are responsible for the proper behavior of chromosomes in cell divisions. In meiosis the process is more complicated than in mitosis, as each chromosome in a bivalent has 2 sister centromeres and their behavior has to be strictly coordinated. Here, the behavior of sister centromeres in univalents in wheat is examined, showing that by metaphase I they often lose their coordination. This loss accelerates with the progression of anaphase I, leading to stable bipolar attachment and frequent separation of sister chromatids or to misdivision. Depending on the orientation of a univalent and its sister centromeres, misdivision may occur across the centromere region or across the pericentric chromatin. Chromosome fragments consisting of only the centromere region did not survive to the next generation. Midget chromosomes composed of the centromeres and parts of the pericentric chromatin did survive, but their transmission rates were low and appeared related to the amount of pericentric chromatin, probably because only the pericentric chromatin provides sister chromatid cohesion. As the cohesion of sister chromatids appears to be a function of the proximity to the kinetochore region, the definition of the centromere need not include pericentric regions. Copyright 2010 S. Karger AG, Basel.

  2. Microinjection of the monoclonal anti-tubulin antibody YL1/2 inhibits cleavage of sand dollar eggs.

    PubMed

    Oka, M T; Arai, T; Hamaguchi, Y

    1990-12-01

    Two monoclonal antibodies against alpha-tubulin (YL1/2 and D2D6) were microinjected into the egg of the sand dollar Clypeaster japonicus, and their effects on cleavage of the egg were investigated. They had already been shown by immunoblotting to react specifically with egg tubulin and by immunofluorescence to stain the mitotic apparatus [OKA et al., (1990). Cell Motil. Cytoskel. 16:239-250]. Injection of YL1/2 prevented chromosome movement and cleavage, although the cleavage furrow developed in some cases. In all eggs injected at prometaphase, metaphase, or anaphase, the birefringence of the mitotic apparatus disappeared immediately after injection. Injection of D2D6 had no significant effect on mitosis or cleavage of whole eggs injected after nuclear disappearance, although it prevented the disappearance of the nuclear envelope in 54% of the eggs injected before the disappearance. FITC-conjugated D2D6 did not accumulate in the spindle when injected into the dividing sand dollar egg. These results indicate that YL1/2 disassembled microtubules, whereas D2D6 did not bind to microtubules in the living cell.

  3. Mps1 Regulates Kinetochore-Microtubule Attachment Stability via the Ska Complex to Ensure Error-Free Chromosome Segregation.

    PubMed

    Maciejowski, John; Drechsler, Hauke; Grundner-Culemann, Kathrin; Ballister, Edward R; Rodriguez-Rodriguez, Jose-Antonio; Rodriguez-Bravo, Veronica; Jones, Mathew J K; Foley, Emily; Lampson, Michael A; Daub, Henrik; McAinsh, Andrew D; Jallepalli, Prasad V

    2017-04-24

    The spindle assembly checkpoint kinase Mps1 not only inhibits anaphase but also corrects erroneous attachments that could lead to missegregation and aneuploidy. However, Mps1's error correction-relevant substrates are unknown. Using a chemically tuned kinetochore-targeting assay, we show that Mps1 destabilizes microtubule attachments (K fibers) epistatically to Aurora B, the other major error-correcting kinase. Through quantitative proteomics, we identify multiple sites of Mps1-regulated phosphorylation at the outer kinetochore. Substrate modification was microtubule sensitive and opposed by PP2A-B56 phosphatases that stabilize chromosome-spindle attachment. Consistently, Mps1 inhibition rescued K-fiber stability after depleting PP2A-B56. We also identify the Ska complex as a key effector of Mps1 at the kinetochore-microtubule interface, as mutations that mimic constitutive phosphorylation destabilized K fibers in vivo and reduced the efficiency of the Ska complex's conversion from lattice diffusion to end-coupled microtubule binding in vitro. Our results reveal how Mps1 dynamically modifies kinetochores to correct improper attachments and ensure faithful chromosome segregation. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Chk1 and Mps1 jointly regulate correction of merotelic kinetochore attachments.

    PubMed

    Petsalaki, Eleni; Zachos, George

    2013-03-01

    If uncorrected, merotelic kinetochore attachments can induce mis-segregated chromosomes in anaphase. We show that checkpoint kinase 1 (Chk1) protects vertebrate cells against merotelic attachments and lagging chromosomes and is required for correction of merotelic attachments during a prolonged metaphase. Decreased Chk1 activity leads to hyper-stable kinetochore microtubules, unstable binding of MCAK, Kif2b and Mps1 to centromeres or kinetochores and reduced phosphorylation of Hec1 by Aurora-B. Phosphorylation of Aurora-B at serine 331 (Ser331) by Chk1 is high in prometaphase and decreases significantly in metaphase cells. We propose that Ser331 phosphorylation is required for optimal localization of MCAK, Kif2b and Mps1 to centromeres or kinetochores and for Hec1 phosphorylation. Furthermore, inhibition of Mps1 activity diminishes initial recruitment of MCAK and Kif2b to centromeres or kinetochores, impairs Hec1 phosphorylation and exacerbates merotelic attachments in Chk1-deficient cells. We propose that Chk1 and Mps1 jointly regulate Aurora-B, MCAK, Kif2b and Hec1 to correct merotelic attachments. These results suggest a role for Chk1 and Mps1 in error correction.

  5. Natural Loss of Mps1 Kinase in Nematodes Uncovers a Role for Polo-like Kinase 1 in Spindle Checkpoint Initiation.

    PubMed

    Espeut, Julien; Lara-Gonzalez, Pablo; Sassine, Mélanie; Shiau, Andrew K; Desai, Arshad; Abrieu, Ariane

    2015-07-07

    The spindle checkpoint safeguards against chromosome loss during cell division by preventing anaphase onset until all chromosomes are attached to spindle microtubules. Checkpoint signal is generated at kinetochores, the primary attachment site on chromosomes for spindle microtubules. Mps1 kinase initiates checkpoint signaling by phosphorylating the kinetochore-localized scaffold protein Knl1 to create phospho-docking sites for Bub1/Bub3. Mps1 is widely conserved but is surprisingly absent in many nematode species. Here, we show that PLK-1, which targets a substrate motif similar to that of Mps1, functionally substitutes for Mps1 in C. elegans by phosphorylating KNL-1 to direct BUB-1/BUB-3 kinetochore recruitment. This finding led us to re-examine checkpoint initiation in human cells, where we found that Plk1 co-inhibition significantly reduced Knl1 phosphorylation and Bub1 kinetochore recruitment relative to Mps1 inhibition alone. Thus, the finding that PLK-1 functionally substitutes for Mps1 in checkpoint initiation in C. elegans uncovered a role for Plk1 in species that have Mps1. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Cell cycle stage-specific differential expression of topoisomerase I in tobacco BY-2 cells and its ectopic overexpression and knockdown unravels its crucial role in plant morphogenesis and development.

    PubMed

    Singh, Badri Nath; Mudgil, Yashwanti; John, Riffat; Achary, V Mohan Murali; Tripathy, Manas Kumar; Sopory, Sudhir K; Reddy, Malireddy K; Kaul, Tanushri

    2015-11-01

    DNA topoisomerases catalyze the inter-conversion of different topological forms of DNA. Cell cycle coupled differential accumulation of topoisomerase I (Topo I) revealed biphasic expression maximum at S-phase and M/G1-phase of cultured synchronized tobacco BY-2 cells. This suggested its active role in resolving topological constrains during DNA replication (S-phase) and chromosome decondensation (M/G1 phase). Immuno-localization revealed high concentrations of Topo I in nucleolus. Propidium iodide staining and Br-UTP incorporation patterns revealed direct correlation between immunofluorescence intensity and rRNA transcription activity within nucleolus. Immuno-stained chromosomes during metaphase and anaphase suggested possible role of Topo I in resolving topological constrains during mitotic chromosome condensation. Inhibitor studies showed that in comparison to Topo I, Topo II was essential in resolving topological constrains during chromosome condensation. Probably, Topo II substituted Topo I functioning to certain extent during chromosome condensation, but not vice-versa. Transgenic Topo I tobacco lines revealed morphological abnormalities and highlighted its crucial role in plant morphogenesis and development. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. The effects of pilocarpine nitrate upon the mitotic index of mouse bone marrow cells.

    PubMed

    Prabhu, M P; Hegde, M J

    1991-11-01

    Aneuploidies are the most common chromosomal causes for spontaneous abortions and constitute a major part of genetic disorders among the neonates. Aneuploidy producing agents (aneugens) pose serious genetic hazards to the human population. Therefore, testing for aneuploidy induction should be part of the requirement in drug safety guidelines. The aneugenic potential of pilocarpine nitrate, an alkaloid drug used as an ophthalmic solution was screened by chromosome analysis studies in the bone marrow cells of mice. Using the technique developed by Miller and Adler (1989) we evaluated changes in the mitotic index (MI), induction of chromatid contraction and spreading (C-mitoses) and decrease of anaphase frequencies as indicators of the aneuploidy inducing potency of the drug. Concentrations of pilocarpine nitrate of 4, 8 and 12 mg/kg body weight were administered intraperitoneally to mice. Colchicine-treated and water-treated animals formed the positive and negative controls. The data obtained in the cytogenetic analysis of both dose-response and time-response studies showed a significant induction of C-mitotic effects in the mouse bone marrow. The positive results indicated that the drug is a potential aneugen and should be further evaluated.

  8. Micromanipulation studies of chromosome movement. II. Birefringent chromosomal fibers and the mechanical attachment of chromosomes to the spindle

    PubMed Central

    1979-01-01

    The degree of mechanical coupling of chromosomes to the spindles of Nephrotoma and Trimeratropis primary spermatocytes varies with the stage of meiosis and the birefringent retardation of the chromosomal fibers. In early prometaphase, before birefringent chromosomal fibers have formed, a bivalent can be displaced toward a spindle pole by a single, continuous pull with a microneedle. Resistance to poleward displacement increases with increased development of the chromosomal fibers, reaching a maximum at metaphase. At this stage kinetochores cannot be displaced greater than 1 micrometer toward either spindle pole, even by a force which is sufficient to displace the entire spindle within the cell. The abolition of birefringence with either colcemid or vinblastine results in the loss of chromosome-spindle attachment. In the absence of birefringent fibers a chromosome can be displaced anywhere within the cell. The photochemical inactivation of colcemid by irradiation with 366-nm light results in the reformation of birefringent chromosomal fibers and the concomitant re-establishment of chromosome attachment to the spindle. These results support the hypothesis that the birefringent chromosomal fibers anchor the chromosomes to the spindle and transmit the force for anaphase chromosome movement. PMID:479316

  9. Contact zone between chromosomal races of Mus musculus domesticus. 2. Fertility and segregation in laboratory-reared and wild mice heterozygous for multiple robertsonian rearrangements.

    PubMed

    Castiglia, R; Capanna, E

    2000-08-01

    Litter size, anaphase I nondisjunction and X-Y dissociation at metaphase I were studied in homozygous and heterozygous house mice from a central Italian chromosomal hybrid zone between the CD (2n=22) race and the standard race (2n=40). We also observed the segregation of the two chromosomal forms (Robertsonian and non-Robertsonian) in male and female multiple heterozygotes from the karyotype of their offspring and chromosomal arm counts of metaphase II. Litter size was significantly reduced in the F1 hybrids, but there was no difference in litter size between male and female F1s. Fertility in wild mice decreased with increasing numbers of structural heterozygosities (0-5). Some metacentrics appear to be under meiotic drive but there was no rule as to which of the two forms was favoured in backcrosses. An original observation of a negative correlation between the length of metacentrics and transmission rate was described in hybrids. Slight cosegregation of chromosomes with a similar morphology was present in the progeny of males and females. These observations are discussed in relation to the stability of this hybrid zone through time.

  10. Male meiosis and gametogenesis in wild house mice (Mus musculus domesticus) from a chromosomal hybrid zone; a comparison between "simple" Robertsonian heterozygotes and homozygotes.

    PubMed

    Wallace, B M; Searle, J B; Everett, C A

    1992-01-01

    Wild male house mice Mus musculus domesticus were collected from the hybrid zone between the John o'Groats race (2n = 32) and the standard race (2n = 40) in northern Scotland. Meiosis in both homozygotes (2n = 32, 36, and 40) and single Robertsonian heterozygotes (2n = 33, 35, and 37) was found to be orderly. At prophase/metaphase I in heterozygotes, a trivalent was formed from the metacentric and two homologous acrocentrics. At pachytene, this trivalent usually had a single side arm at the position of the centromeres, as a result of nonhomologous pairing of the acrocentrics. This side arm persisted into diplotene. Generally only a single chiasma was formed between each acrocentric and the metacentric. Anaphase I nondisjunction frequencies were estimated as 1.5% for the homozygotes and 2.7% for the heterozygotes. The extent of germ cell death between the pachytene and round spermatid stages was 18% greater in heterozygotes than in homozygotes. Our results concur with previous studies which indicate that single Robertsonian heterozygotes in wild house mice have near-normal fertility.

  11. Transcriptional and post-transcriptional regulation of Cdc20 during the spindle assembly checkpoint in S. cerevisiae

    PubMed Central

    Wang, Ruiwen; Burton, Janet L.; Solomon, Mark J.

    2017-01-01

    The anaphase-promoting complex (APC) is a ubiquitin ligase responsible for promoting the degradation of many cell cycle regulators. One of the activators and substrate-binding proteins for the APC is Cdc20. It has been shown previously that Cdc20 can promote its own degradation by the APC in normal cycling cells mainly through a cis-degradation mode (i.e. via an intramolecular mechanism). However, how Cdc20 is degraded during the spindle assembly checkpoint (SAC) is still not fully clear. In this study, we used a dual-Cdc20 system to investigate this issue and found that the cis-degradation mode is also the major pathway responsible for Cdc20 degradation during the SAC. In addition, we found that there is an inverse relationship between APCCdc20 activity and the transcriptional activity of the CDC20 promoter, which likely occurs through feedback regulation by APCCdc20 substrates, such as the cyclins Clb2 and Clb5. These findings contribute to our understanding of how the inhibition of APCCdc20 activity and enhanced Cdc20 degradation are required for proper spindle checkpoint arrest. PMID:28189585

  12. Fra-1 promotes growth and survival in RAS-transformed thyroid cells by controlling cyclin A transcription

    PubMed Central

    Casalino, Laura; Bakiri, Latifa; Talotta, Francesco; Weitzman, Jonathan B; Fusco, Alfredo; Yaniv, Moshe; Verde, Pasquale

    2007-01-01

    Fra-1 is frequently overexpressed in epithelial cancers and implicated in invasiveness. We previously showed that Fra-1 plays crucial roles in RAS transformation in rat thyroid cells and mouse fibroblasts. Here, we report a novel role for Fra-1 as a regulator of mitotic progression in RAS-transformed thyroid cells. Fra-1 expression and phosphorylation are regulated during the cell cycle, peaking at G2/M. Knockdown of Fra-1 caused a proliferative block and apoptosis. Although most Fra-1-knockdown cells accumulated in G2, a fraction of cells entering M-phase underwent abortive cell division and exhibited hallmarks of genomic instability (micronuclei, lagging chromosomes and anaphase bridges). Furthermore, we established a link between Fra-1 and the cell-cycle machinery by identifying cyclin A as a novel transcriptional target of Fra-1. During the cell cycle, Fra-1 was recruited to the cyclin A gene (ccna2) promoter, binding to previously unidentified AP-1 sites and the CRE. Fra-1 also induced the expression of JunB, which in turn interacts with the cyclin A promoter. Hence, Fra-1 induction is important in thyroid tumorigenesis, critically regulating cyclin expression and cell-cycle progression. PMID:17347653

  13. Evolution in an autopolyploid group displaying predominantly bivalent pairing at meiosis: genomic similarity of diploid Vaccinium darrowi and autotetraploid V. corymbosum (Ericaceae).

    PubMed

    Qu, L; Hancock, J; Whallon, J

    1998-05-01

    The genomic relationship between V. darrowi Camp (2n = 2x = 24) and V. corymbosum L. (2n = 4x = 48) was examined using an interspecific tetraploid hybrid, US 75, and representatives of the parental species. Two features in the background of US 75 led to the prediction that it was an allopolyploid: (1) the parental species are quite distinct morphologically and geographically, and (2) the diploid genome was incorporated into US 75 via an unreduced gamete. However, US 75 recently was shown to display tetrasomic inheritance using molecular markers. In the present cytological study, US 75 was found to have a lower than expected number of multivalents for an autopolyploid, although it had a significantly higher number of quadrivalents than its autotetraploid parent, V. corymbosum. Normal chromosome distributions were observed at anaphase I and II, and pollen viability was high. Our findings suggest that little genomic divergence has developed between the Vaccinium species and that the polyploids may freely exchange genes with sympatric diploid species via unreduced gametes. This pattern of hybridization could be an important component of evolution in all autopolyploid groups, making them much more dynamic than traditionally assumed.

  14. Transient phosphorylation of tumor associated microtubule associated protein (TMAP)/cytoskeleton associated protein 2 (CKAP2) at Thr-596 during early phases of mitosis.

    PubMed

    Hong, Kyung Uk; Choi, Yong-Bock; Lee, Jung-Hwa; Kim, Hyun-Jun; Kwon, Hye-Rim; Seong, Yeon-Sun; Kim, Heung Tae; Park, Joobae; Bae, Chang-Dae; Hong, Kyeong-Man

    2008-08-31

    Tumor associated microtubule associated protein (TMAP), also known as cytoskeleton associated protein 2 (CKAP2) is a mitotic spindle-associated protein whose expression is cell cycle-regulated and also frequently deregulated in cancer cells. Two monoclonal antibodies (mAbs) against TMAP/CKAP2 were produced: B-1-13 and D-12-3. Interestingly, the reactivity of mAb D-12-3 to TMAP/CKAP2 was markedly decreased specifically in mitotic cell lysate. The epitope mapping study showed that mAb D-12-3 recognizes the amino acid sequence between 569 and 625 and that phosphorylation at T596 completely abolishes the reactivity of the antibody, suggesting that the differential reactivity originates from the phosphorylation status at T596. Immunofluorescence staining showed that mAb D-12-3 fails to detect TMAP/CKAP2 in mitotic cells between prophase and metaphase, but the staining becomes evident again in anaphase, suggesting that phosphorylation at T596 occurs transiently during early phases of mitosis. These results suggest that the cellular functions of TMAP/CKAP2 might be regulated by timely phosphorylation and dephosphorylation during the course of mitosis.

  15. Transient phosphorylation of tumor associated microtubule associated protein (TMAP)/cytoskeleton associated protein 2 (CKAP2) at Thr-596 during early phases of mitosis

    PubMed Central

    Hong, Kyung Uk; Choi, Yong-Bock; Lee, Jung-Hwa; Kim, Hyun-Jun; Kwon, Hye-Rim; Seong, Yeon-Sun; Kim, Heung Tae; Park, Joobae

    2008-01-01

    Tumor associated microtubule associated protein (TMAP), also known as cytoskeleton associated protein 2 (CKAP2) is a mitotic spindle-associated protein whose expression is cell cycle-regulated and also frequently deregulated in cancer cells. Two monoclonal antibodies (mAbs) against TMAP/CKAP2 were produced: B-1-13 and D-12-3. Interestingly, the reactivity of mAb D-12-3 to TMAP/CKAP2 was markedly decreased specifically in mitotic cell lysate. The epitope mapping study showed that mAb D-12-3 recognizes the amino acid sequence between 569 and 625 and that phosphorylation at T596 completely abolishes the reactivity of the antibody, suggesting that the differential reactivity originates from the phosphorylation status at T596. Immunofluorescence staining showed that mAb D-12-3 fails to detect TMAP/CKAP2 in mitotic cells between prophase and metaphase, but the staining becomes evident again in anaphase, suggesting that phosphorylation at T596 occurs transiently during early phases of mitosis. These results suggest that the cellular functions of TMAP/CKAP2 might be regulated by timely phosphorylation and dephosphorylation during the course of mitosis. PMID:18779650

  16. Toxicity of two effluents from agricultural activity: Comparing the genotoxicity of sugar cane and orange vinasse.

    PubMed

    Garcia, Camila Fernandes H; Souza, Raphael B de; de Souza, Cleiton Pereira; Christofoletti, Cintya Ap; Fontanetti, Carmem S

    2017-08-01

    Vinasse, produced by several countries as a by-product of agricultural activity, has different alternatives for its reuse, mainly fertirrigation. Several monocultures, such as sugar cane and orange crops, produce this effluent. Sugar cane vinasse is already widely used in fertirrigation and orange vinasse has potential for this intention. However, its use as a fertilizer has caused great concern. Thus, ecotoxicological evaluation is extremely important in order to assess the possible effects on the environment. Therefore, the aim of this study was to evaluate the potential toxicity of vinasse of two different crops: sugar cane and orange. For this purpose, bioassays with Allium cepa as a test organism were performed with two vinasse dilutions (2.5% and 5%) to detect chromosomal aberrations and micronucleus induction. The results showed that both types of vinasse are able to induce chromosomal aberrations in meristematic cells, mainly nuclear and anaphasic bridges, suggesting genotoxic potential. The induction of micronuclei in cells of the F 1 region suggests that the two residues have mutagenic potential. Thus, caution is advised when applying these effluents in the environment. Copyright © 2017. Published by Elsevier Inc.

  17. Gene knockout of Zmym3 in mice arrests spermatogenesis at meiotic metaphase with defects in spindle assembly checkpoint.

    PubMed

    Hu, Xiangjing; Shen, Bin; Liao, Shangying; Ning, Yan; Ma, Longfei; Chen, Jian; Lin, Xiwen; Zhang, Daoqin; Li, Zhen; Zheng, Chunwei; Feng, Yanmin; Huang, Xingxu; Han, Chunsheng

    2017-06-29

    ZMYM3, a member of the MYM-type zinc finger protein family and a component of a LSD1-containing transcription repressor complex, is predominantly expressed in the mouse brain and testis. Here, we show that ZMYM3 in the mouse testis is expressed in somatic cells and germ cells until pachytene spermatocytes. Knockout (KO) of Zmym3 in mice using the CRISPR-Cas9 system resulted in adult male infertility. Spermatogenesis of the KO mice was arrested at the metaphase of the first meiotic division (MI). ZMYM3 co-immunoprecipitated with LSD1 in spermatogonial stem cells, but its KO did not change the levels of LSD1 or H3K4me1/2 or H3K9me2. However, Zmym3 KO resulted in elevated numbers of apoptotic germ cells and of MI spermatocytes that are positive for BUB3, which is a key player in spindle assembly checkpoint. Zmym3 KO also resulted in up-regulated expression of meiotic genes in spermatogonia. These results show that ZMYM3 has an essential role in metaphase to anaphase transition during mouse spermatogenesis by regulating the expression of diverse families of genes.

  18. The APC/C Ubiquitin Ligase: From Cell Biology to Tumorigenesis

    PubMed Central

    Penas, Clara; Ramachandran, Vimal; Ayad, Nagi George

    2011-01-01

    The ubiquitin proteasome system (UPS) is required for normal cell proliferation, vertebrate development, and cancer cell transformation. The UPS consists of multiple proteins that work in concert to target a protein for degradation via the 26S proteasome. Chains of an 8.5-kDa protein called ubiquitin are attached to substrates, thus allowing recognition by the 26S proteasome. Enzymes called ubiquitin ligases or E3s mediate specific attachment to substrates. Although there are over 600 different ubiquitin ligases, the Skp1–Cullin–F-box (SCF) complexes and the anaphase promoting complex/cyclosome (APC/C) are the most studied. SCF involvement in cancer has been known for some time while APC/C’s cancer role has recently emerged. In this review we will discuss the importance of APC/C to normal cell proliferation and development, underscoring its possible contribution to transformation. We will also examine the hypothesis that modulating a specific interaction of the APC/C may be therapeutically attractive in specific cancer subtypes. Finally, given that the APC/C pathway is relatively new as a cancer target, therapeutic interventions affecting APC/C activity may be beneficial in cancers that are resistant to classical chemotherapy. PMID:22655255

  19. State of the APC/C: Organization, function, and structure

    PubMed Central

    McLean, Janel R.; Chaix, Denis; Ohi, Melanie D.; Gould, Kathleen L.

    2016-01-01

    The ubiquitin-proteasome protein degradation system is involved in many essential cellular processes including cell cycle regulation, cell differentiation, and the unfolded protein response.The anaphase-promoting complex/cyclosome (APC/C), an evolutionary conserved E3 ubiquitin ligase, was discovered 15 years ago because of its pivotal role in cyclin degradation and mitotic progression. Since then, we have learned that the APC/C is a very large, complex E3 ligase composed of 13 subunits, yielding a molecular machine of approximately 1 MDa. The intricate regulation of the APC/C is mediated by the Cdc20 family of activators, pseudosubstrate inhibitors, protein kinases and phosphatases and the spindle assembly checkpoint. The large size, complexity, and dynamic nature of the APC/C represent significant obstacles toward high-resolution structural techniques; however, over the last decade, there have been a number of lower resolution APC/C structures determined using single particle electron microscopy. These structures, when combined with data generated from numerous genetic and biochemical studies, have begun to shed light on how APC/C activity is regulated. Here, we discuss the most recent developments in the APC/C field concerning structure, substrate recognition, and catalysis. PMID:21261459

  20. Mitotic effects of monochromatic ultraviolet radiation at 225, 265, and 280 nm on eleven stages of the cell cycle of the grasshopper neuroblast in culture. II. Changes in progression rate and cell sequence between the stage irradiated and nuclear membrane breakdown

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, J.G.

    1976-10-01

    Portions of embryos of the grasshopper, Chortophaga viridifasciata (DeGeer), were cultured in hanging drops under quartz cover slips. Immediately after exposure to 225, 265, or 280 nm radiation, microscope observations at 38/sup 0/C were begun. The morphologically identified stage and the time after treatment of selected neuroblasts were recorded at short-time intervals until prometaphase was reached. Mitotic retardation induced by irradiation of prereplication stages (metaphase, anaphase, or early telophase) or S phase (middle or late telophase, interphase, or very early prophase) is greatest in postreplication stages (early, middle, and late prophase) and absent or minimal in stages morphologically identified asmore » parts of S phase. Ultraviolet irradiation superimposes on the normal diversity of progression rates an additional variation factor, so that cells do not necessarily reach prometaphase in the order of their sequence at the time of treatment. This suggests the need for caution in ascribing particular radiosensitivities to substages of limited duration on the basis of the order in which they attain a subsequent stage.« less

  1. Potential genotoxic effects of melted snow from an urban area revealed by the Allium cepa test.

    PubMed

    Blagojević, Jelena; Stamenković, Gorana; Vujosević, Mladen

    2009-09-01

    The presence of well-known atmospheric pollutants is regularly screened for in large towns but knowledge about the effects of mixtures of different pollutants and especially their genotoxic potential is largely missing. Since falling snow collects pollutants from the air, melted snow samples could be suitable for evaluating potential genotoxicity. For this purpose the Allium cepa anaphase-telophase test was used to analyse melted snow samples from Belgrade, the capital city of Serbia. Samples of snow were taken at two sites, characterized by differences in pollution intensity, in three successive years. At the more polluted site the analyses showed a very high degree of both toxicity and genotoxicity in the first year of the study corresponding to the effects of the known mutagen used as the positive control. At the other site the situation was much better but not without warning signals. The results showed that standard analyses for the presence of certain contaminants in the air do not give an accurate picture of the possible consequences of urban air pollution because the genotoxic potential remains hidden. The A. cepa test has been demonstrated to be very convenient for evaluation of air pollution through analyses of melted snow samples.

  2. Chronic Exposure to Zinc Chromate Induces Centrosome Amplification and Spindle Assembly Checkpoint Bypass in Human Lung Fibroblasts

    PubMed Central

    Holmes, Amie L.; Wise, Sandra S.; Pelsue, Stephen C.; Aboueissa, AbouEl-Makarim; Lingle, Wilma; Salisbury, Jeffery; Gallagher, Jamie; Wise, John Pierce

    2010-01-01

    Hexavalent chromium (Cr(VI)) compounds are known human lung carcinogens. Solubility plays an important role in its carcinogenicity with the particulate or insoluble form being the most potent. Of the particulate Cr(VI) compounds, zinc chromate appears to be the most potent carcinogen, however, very few studies have investigated its carcinogenic mechanism. In this study, we investigated the ability of chronic exposure to zinc chromate to induce numerical chromosome instability. We found no increase in aneuploidy after a 24 hour exposure to zinc chromate, but with more chronic exposures, zinc chromate induced concentration- and time-dependent increases in aneuploidy in the form of hypodiploidy, hyperdiploidy and tetraploidy. Zinc chromate also induced centrosome amplification in a concentration- and time-dependent manner in both interphase and mitotic cells after chronic exposure, producing cells with centriolar defects. Further, chronic exposure to zinc chromate induced concentration- and time-dependent increases in spindle assembly checkpoint bypass with increases in centromere spreading, premature centromere division and premature anaphase. Lastly, we found that chronic exposure to zinc chromate induced a G2 arrest. All together, these data indicate that zinc chromate can induce chromosome instability after prolonged exposures. PMID:20030412

  3. [The effect of pemolin on the mitotic activity of Vicia faba L (author's transl)].

    PubMed

    Brabec, F; Röper, W

    1976-02-01

    The effect of diverse concentrations of 5-phenyl-2-imino-4-oxazolidone (PIO, pemolin, Tradon) on the mitotic activity in lateral roots of Vicia faba L. was studied by aerated and non-aerated hydrocultivation with and without mineral nutrition, respectively. With optimal conditions (aerated nutrient solution) weak PIO-concentrations, most significantly 10(-6) g/ml, effected a marked increase of the mitotic index. Contrarily, strong PIO-concentrations (10(-4) and 3 X 10(-4) g/ml = saturated solution) significantly decreased the mitotic index though simultaneously preserving the mitotic activity in long-term experiments, when on account of nutrient deficiency it had already collapsed in weak PIO-concentrations and the controls. The activating effect of weak PIO-concentrations compared with the controls is more significant in stress situations (nutrient deficiency, O2-deficiency) than under optimal conditions. Furthermore a slight acceleration of mid-mitotic phases (metaphase--anaphase) recognized by a marked decrease in percentage of these phases, can be stated with weak PIO-concentrations, again particularly so with 10(-6) g/ml. In total, dependent on concentration, pemolin presumably may either activate or suppress cell metabolism and particularly the mitotic cycle. The exact site of action of the substance is still unknown.

  4. NEIL3 Repairs Telomere Damage during S Phase to Secure Chromosome Segregation at Mitosis.

    PubMed

    Zhou, Jia; Chan, Jany; Lambelé, Marie; Yusufzai, Timur; Stumpff, Jason; Opresko, Patricia L; Thali, Markus; Wallace, Susan S

    2017-08-29

    Oxidative damage to telomere DNA compromises telomere integrity. We recently reported that the DNA glycosylase NEIL3 preferentially repairs oxidative lesions in telomere sequences in vitro. Here, we show that loss of NEIL3 causes anaphase DNA bridging because of telomere dysfunction. NEIL3 expression increases during S phase and reaches maximal levels in late S/G2. NEIL3 co-localizes with TRF2 and associates with telomeres during S phase, and this association increases upon oxidative stress. Mechanistic studies reveal that NEIL3 binds to single-stranded DNA via its intrinsically disordered C terminus in a telomere-sequence-independent manner. Moreover, NEIL3 is recruited to telomeres through its interaction with TRF1, and this interaction enhances the enzymatic activity of purified NEIL3. Finally, we show that NEIL3 interacts with AP Endonuclease 1 (APE1) and the long-patch base excision repair proteins PCNA and FEN1. Taken together, we propose that NEIL3 protects genome stability through targeted repair of oxidative damage in telomeres during S/G2 phase. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vazquez-Martin, Alejandro; Oliveras-Ferraros, Cristina; Girona Biomedical Research Institute

    Using a high-resolution, automated confocal high-content imaging system, we investigated the sub-cellular localization of the Serine 2481-autophosphorylated form of mTOR (PP-mTOR{sup Ser2481}) during mitosis and cytokinesis in human cancer cells. PP-mTOR{sup Ser2481} exhibited a punctate nuclear distribution in interphase cancer cells, with the number of PP-mTOR{sup Ser2481} nuclear speckles positively relating with the proliferative capacity of cancer cells. PP-mTOR{sup Ser2481} expression dynamically rearranged within the cytoplasm in a close association near and between separating chromosomes during early stages of mitosis. Towards the end of anaphase and in telophase, PP-mTOR{sup Ser2481} drastically focused on the midzone and ultimately in the centremore » of the midbody at the presumptive cleavage furrow. In cells at cytokinesis, PP-mTOR{sup Ser2481} appeared as a doublet facing each other at the apical ends of two daughter cells. Three-dimensional analysis confirmed that PP-mTOR{sup Ser2481} positioned at a ring structure wrapped round by microtubule bundles to connect daughter cells. These results reveal for the first time that PP-mTOR{sup Ser2481} may be unexpectedly involved in the terminal stages of cytokinesis.« less

  6. Regulating positioning and orientation of mitotic spindles via cell size and shape

    NASA Astrophysics Data System (ADS)

    Li, Jingchen; Jiang, Hongyuan

    2018-01-01

    Proper location of the mitotic spindle is critical for chromosome segregation and the selection of the cell division plane. However, how mitotic spindles sense cell size and shape to regulate their own position and orientation is still largely unclear. To investigate this question systematically, we used a general model by considering chromosomes, microtubule dynamics, and forces of various molecular motors. Our results show that in cells of various sizes and shapes, spindles can always be centered and oriented along the long axis robustly in the absence of other specified mechanisms. We found that the characteristic time of positioning and orientation processes increases with cell size. Spindles sense the cell size mainly by the cortical force in small cells and by the cytoplasmic force in large cells. In addition to the cell size, the cell shape mainly influences the orientation process. We found that more slender cells have a faster orientation process, and the final orientation is not necessarily along the longest axis but is determined by the radial profile and the symmetry of the cell shape. Finally, our model also reproduces the separation and repositioning of the spindle poles during the anaphase. Therefore, our work provides a general tool for studying the mitotic spindle across the whole mitotic phase.

  7. Phospho-eNOS Ser-1176 is associated with the nucleoli and the Golgi complex in C6 rat glioma cells.

    PubMed

    Klinz, Franz-Josef; Herberg, Natalie; Arnhold, Stefan; Addicks, Klaus; Bloch, Wilhelm

    2007-06-29

    Enzymatic activity of endothelial nitric oxide synthase (eNOS) is controlled by posttranslational modifications, protein-protein interactions, and subcellular localization. For example, N-terminal fatty acid modifications target eNOS to the Golgi complex where it becomes phosphorylated. We show here by immunofluorescence analysis that phospho-eNOS Ser-1176 is enriched in the perinuclear region of interphase C6 rat glioma cells. Confocal double immunofluorescence microscopy with the Golgi marker protein 58K revealed that phospho-eNOS Ser-1176 is associated with the Golgi complex. Surprisingly, we observed several spots in the nucleus of C6 cells that were positive for phospho-eNOS Ser-1176. Confocal double immunofluorescence analysis with the nucleolus marker protein fibrillarin revealed that within the nucleus phospho-eNOS Ser-1176 is exclusively associated with the nucleoli. It is known that in mitotic cells nucleoli are lost during prophase and rebuild during telophase. In agreement with this, we find no nucleoli-like distribution of phospho-eNOS Ser-1176 in metaphase and anaphase C6 glioma cells. Our finding that phospho-eNOS Ser-1176 is selectively associated with the nucleoli points to a so far unknown role for eNOS in interphase glioma cells.

  8. Mitosis-Specific Mechanosensing and Contractile Protein Redistribution Control Cell Shape

    PubMed Central

    Effler, Janet C.; Kee, Yee-Seir; Berk, Jason M.; Tran, Minhchau N.; Iglesias, Pablo A.; Robinson, Douglas N.

    2008-01-01

    Summary Because cell division failure is deleterious, promoting tumorigenesis in mammals [1], cells utilize numerous mechanisms to control their cell-cycle progression [2–4]. Though cell division is considered a well-ordered sequence of biochemical events [5], cytokinesis, an inherently mechanical process, must also be mechanically controlled to ensure that two equivalent daughter cells are produced with high fidelity. Since cells respond to their mechanical environment [6, 7], we hypothesized that cells utilize mechanosensing and mechanical feedback to sense and correct shape asymmetries during cytokinesis. Because the mitotic spindle and myosin-II are vital to cell division [8, 9], we explored their roles in responding to shape perturbations during cell division. We demonstrate that the contractile proteins, myosin-II and cortexillin-I, redistribute in response to intrinsic and externally induced shape asymmetries. In early cytokinesis, mechanical load overrides spindle cues and slows cytokinesis progression while contractile proteins accumulate and correct shape asymmetries. In late cytokinesis, mechanical perturbation also directs contractile proteins but without apparently disrupting cytokinesis. Significantly, this response only occurs during anaphase through cytokinesis, does not require microtubules, is independent of spindle orientation, but is dependent on myosin-II. Our data provide evidence for a mechanosensory system that directs contractile proteins to regulate cell shape during mitosis. PMID:17027494

  9. The therapeutic potential of cell cycle targeting in multiple myeloma.

    PubMed

    Maes, Anke; Menu, Eline; Veirman, Kim De; Maes, Ken; Vand Erkerken, Karin; De Bruyne, Elke

    2017-10-27

    Proper cell cycle progression through the interphase and mitosis is regulated by coordinated activation of important cell cycle proteins (including cyclin-dependent kinases and mitotic kinases) and several checkpoint pathways. Aberrant activity of these cell cycle proteins and checkpoint pathways results in deregulation of cell cycle progression, which is one of the key hallmarks of cancer. Consequently, intensive research on targeting these cell cycle regulatory proteins identified several candidate small molecule inhibitors that are able to induce cell cycle arrest and even apoptosis in cancer cells. Importantly, several of these cell cycle regulatory proteins have also been proposed as therapeutic targets in the plasma cell malignancy multiple myeloma (MM). Despite the enormous progress in the treatment of MM the past 5 years, MM still remains most often incurable due to the development of drug resistance. Deregulated expression of the cyclins D is observed in virtually all myeloma patients, emphasizing the potential therapeutic interest of cyclin-dependent kinase inhibitors in MM. Furthermore, other targets have also been identified in MM, such as microtubules, kinesin motor proteins, aurora kinases, polo-like kinases and the anaphase promoting complex/cyclosome. This review will provide an overview of the cell cycle proteins and checkpoint pathways deregulated in MM and discuss the therapeutic potential of targeting proteins or protein complexes involved in cell cycle control in MM.

  10. Recruitment of phosphorylated small heat shock protein Hsp27 to nuclear speckles without stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryantsev, A.L.; Chechenova, M.B.; Shelden, E.A.

    During stress, the mammalian small heat shock protein Hsp27 enters cell nuclei. The present study examines the requirements for entry of Hsp27 into nuclei of normal rat kidney (NRK) renal epithelial cells, and for its interactions with specific nuclear structures. We find that phosphorylation of Hsp27 is necessary for the efficient entry into nuclei during heat shock but not sufficient for efficient nuclear entry under control conditions. We further report that Hsp27 is recruited to an RNAse sensitive fraction of SC35 positive nuclear speckles, but not other intranuclear structures, in response to heat shock. Intriguingly, Hsp27 phosphorylation, in the absencemore » of stress, is sufficient for recruitment to speckles found in post-anaphase stage mitotic cells. Additionally, pseudophosphorylated Hsp27 fused to a nuclear localization peptide (NLS) is recruited to nuclear speckles in unstressed interphase cells, but wildtype and nonphosphorylatable Hsp27 NLS fusion proteins are not. The expression of NLS-Hsp27 mutants does not enhance colony forming abilities of cells subjected to severe heat shock, but does regulate nuclear speckle morphology. These data demonstrate that phosphorylation, but not stress, mediates Hsp27 recruitment to an RNAse soluble fraction of nuclear speckles and support a site-specific role for Hsp27 within the nucleus.« less

  11. EGG-4 and EGG-5 link events of the oocyte-to-embryo transition with meiotic cell cycle progression in Caenorhabditis elegans

    PubMed Central

    Parry, Jean M.; Velarde, Nathalie V.; Lefkovith, Ariel J.; Zegarek, Matthew H.; Hang, Julie S.; Ohm, Jonathan; Klancer, Richard; Maruyama, Rika; Druzhinina, Marina K.; Grant, Barth D.; Piano, Fabio; Singson, Andrew

    2009-01-01

    Summary The molecular underpinnings of the oocyte-to-embryo transition are poorly understood. Here we show that two protein tyrosine phosphatase-like (PTPL) family proteins, EGG-4 and EGG-5, are required for key events of the oocyte-to-embryo transition in Caenorhabditis elegans. The predicted EGG-4 and EGG-5 amino acid sequences are 99% identical and their functions are redundant. In embryos lacking EGG-4 and EGG-5 we observe defects in meiosis, polar body formation, the block to polyspermy, F-actin dynamics, and eggshell deposition. During oogenesis, EGG-4 and EGG-5 assemble at the oocyte cortex with the previously identified regulators or effectors of the oocyte-to-embryo transition EGG-3, CHS-1 and MBK-2 [1, 2]. All of these molecules share a complex interdependence with regards to their dynamics and subcellular localization. Shortly after fertilization, EGG-4 and EGG-5 are required to properly coordinate a redistribution of CHS-1 and EGG-3 away from the cortex during meiotic anaphase I. Therefore EGG-4 and EGG-5 are not only required for critical events of the oocyte-to-embryo transition but also link the dynamics of the regulatory machinery with the advancing cell cycle. PMID:19879147

  12. Different modes of APC/C activation control growth and neuron-glia interaction in the developing Drosophila eye.

    PubMed

    Neuert, Helen; Yuva-Aydemir, Yeliz; Silies, Marion; Klämbt, Christian

    2017-12-15

    The development of the nervous system requires tight control of cell division, fate specification and migration. The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that affects different steps of cell cycle progression, as well as having postmitotic functions in nervous system development. It can therefore link different developmental stages in one tissue. The two adaptor proteins, Fizzy/Cdc20 and Fizzy-related/Cdh1, confer APC/C substrate specificity. Here, we show that two distinct modes of APC/C function act during Drosophila eye development. Fizzy/Cdc20 controls the early growth of the eye disc anlage and the concomitant entry of glial cells onto the disc. In contrast, fzr/cdh1 acts during neuronal patterning and photoreceptor axon growth, and subsequently affects neuron-glia interaction. To further address the postmitotic role of Fzr/Cdh1 in controlling neuron-glia interaction, we identified a series of novel APC/C candidate substrates. Four of our candidate genes are required for fzr/cdh1 -dependent neuron-glia interaction, including the dynein light chain Dlc90F Taken together, our data show how different modes of APC/C activation can couple early growth and neuron-glia interaction during eye disc development. © 2017. Published by The Company of Biologists Ltd.

  13. Molecular Genetic Analysis of Orf Virus: A Poxvirus That Has Adapted to Skin

    PubMed Central

    Fleming, Stephen B.; Wise, Lyn M.; Mercer, Andrew A.

    2015-01-01

    Orf virus is the type species of the Parapoxvirus genus of the family Poxviridae. It induces acute pustular skin lesions in sheep and goats and is transmissible to humans. The genome is G+C rich, 138 kbp and encodes 132 genes. It shares many essential genes with vaccinia virus that are required for survival but encodes a number of unique factors that allow it to replicate in the highly specific immune environment of skin. Phylogenetic analysis suggests that both viral interleukin-10 and vascular endothelial growth factor genes have been “captured” from their host during the evolution of the parapoxviruses. Genes such as a chemokine binding protein and a protein that binds granulocyte-macrophage colony-stimulating factor and interleukin-2 appear to have evolved from a common poxvirus ancestral gene while three parapoxvirus nuclear factor (NF)-κB signalling pathway inhibitors have no homology to other known NF-κB inhibitors. A homologue of an anaphase-promoting complex subunit that is believed to manipulate the cell cycle and enhance viral DNA synthesis appears to be a specific adaptation for viral-replication in keratinocytes. The review focuses on the unique genes of orf virus, discusses their evolutionary origins and their role in allowing viral-replication in the skin epidermis. PMID:25807056

  14. Checkpoint Defects Leading to Premature Mitosis Also Cause Endoreplication of DNA in Aspergillus nidulans

    PubMed Central

    De Souza, Colin P. C.; Ye, Xiang S.; Osmani, Stephen A.

    1999-01-01

    The G2 DNA damage and slowing of S-phase checkpoints over mitosis function through tyrosine phosphorylation of NIMXcdc2 in Aspergillus nidulans. We demonstrate that breaking these checkpoints leads to a defective premature mitosis followed by dramatic rereplication of genomic DNA. Two additional checkpoint functions, uvsB and uvsD, also cause the rereplication phenotype after their mutation allows premature mitosis in the presence of low concentrations of hydroxyurea. uvsB is shown to encode a rad3/ATR homologue, whereas uvsD displays homology to rad26, which has only previously been identified in Schizosaccharomyces pombe. uvsBrad3 and uvsDrad26 have G2 checkpoint functions over mitosis and another function essential for surviving DNA damage. The rereplication phenotype is accompanied by lack of NIMEcyclinB, but ectopic expression of active nondegradable NIMEcyclinB does not arrest DNA rereplication. DNA rereplication can also be induced in cells that enter mitosis prematurely because of lack of tyrosine phosphorylation of NIMXcdc2 and impaired anaphase-promoting complex function. The data demonstrate that lack of checkpoint control over mitosis can secondarily cause defects in the checkpoint system that prevents DNA rereplication in the absence of mitosis. This defines a new mechanism by which endoreplication of DNA can be triggered and maintained in eukaryotic cells. PMID:10564263

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erenpreisa, Jekaterina; Cragg, Mark S.; Salmina, Kristine

    Escape from mitotic catastrophe and generation of endopolyploid tumour cells (ETCs) represents a potential survival strategy of tumour cells in response to genotoxic treatments. ETCs that resume the mitotic cell cycle have reduced ploidy and are often resistant to these treatments. In search for a mechanism for genome reduction, we previously observed that ETCs express meiotic proteins among which REC8 (a meiotic cohesin component) is of particular interest, since it favours reductional cell division in meiosis. In the present investigation, we induced endopolyploidy in p53-dysfunctional human tumour cell lines (Namalwa, WI-L2-NS, HeLa) by gamma irradiation, and analysed the sub-cellular localisationmore » of REC8 in the resulting ETCs. We observed by RT-PCR and Western blot that REC8 is constitutively expressed in these tumour cells, along with SGOL1 and SGOL2, and that REC8 becomes modified after irradiation. REC8 localised to paired sister centromeres in ETCs, the former co-segregating to opposite poles. Furthermore, REC8 localised to the centrosome of interphase ETCs and to the astral poles in anaphase cells where it colocalised with the microtubule-associated protein NuMA. Altogether, our observations indicate that radiation-induced ETCs express features of meiotic cell divisions and that these may facilitate chromosome segregation and genome reduction.« less

  16. Roles of human POLD1 and POLD3 in genome stability

    PubMed Central

    Tumini, Emanuela; Barroso, Sonia; -Calero, Carmen Pérez; Aguilera, Andrés

    2016-01-01

    DNA replication is essential for cellular proliferation. If improperly controlled it can constitute a major source of genome instability, frequently associated with cancer and aging. POLD1 is the catalytic subunit and POLD3 is an accessory subunit of the replicative Pol δ polymerase, which also functions in DNA repair, as well as the translesion synthesis polymerase Pol ζ, whose catalytic subunit is REV3L. In cells depleted of POLD1 or POLD3 we found a differential but general increase in genome instability as manifested by DNA breaks, S-phase progression impairment and chromosome abnormalities. Importantly, we showed that both proteins are needed to maintain the proper amount of active replication origins and that POLD3-depletion causes anaphase bridges accumulation. In addition, POLD3-associated DNA damage showed to be dependent on RNA-DNA hybrids pointing toward an additional and specific role of this subunit in genome stability. Interestingly, a similar increase in RNA-DNA hybrids-dependent genome instability was observed in REV3L-depleted cells. Our findings demonstrate a key role of POLD1 and POLD3 in genome stability and S-phase progression revealing RNA-DNA hybrids-dependent effects for POLD3 that might be partly due to its Pol ζ interaction. PMID:27974823

  17. Effects of the phosphatase inhibitors, okadaic acid, ATPgammaS, and calyculin A on the dividing sand dollar egg.

    PubMed

    Hamaguchi, Yukihisa; Kuriyama, Ryoko

    2002-06-01

    The effects of the phosphatase inhibitors, okadaic acid (OA), adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS), and calyculin A (CL-A) on anaphase chromosome movement, cytokinesis, and cytoskeletal structures at cell division were examined by being microinjected into mitotic sand dollar eggs. When OA was injected, chromosome movement was inhibited and, moreover, chromosomes were ejected from the polar regions of the mitotic apparatus. By immunofluorescence, microtubules were observed to be severed in the OA-injected eggs, causing the smooth cell surface to be changed to an irregular surface. When ATPgammaS and CL-A were injected, the effect on cell shape was remarkable: In dividing eggs, furrowing stopped within several seconds after injection, small blebs appeared on the cell surface and became large, spherical or dumbbell cell shapes then changed to irregular forms, and subsequently cytoplasmic flow occurred. Microfilament detection revealed that actin accumulation in the cortex, which was not limited to the furrow cortex, occurred shortly after injection. Cortical accumulation of actin is thought to induce force generation and random cortical contraction, and accordingly to result in bleb extrusion from the cortex. Consequently, the phosphatase inhibitors inhibited the transition from mitosis to interphase by mediating cortical accumulation of actin filaments and/or fragmentation of microtubules.

  18. Two distinct cytokinesis pathways drive trypanosome cell division initiation from opposite cell ends

    PubMed Central

    Zhou, Qing; Gu, Jianhua; Lun, Zhao-Rong; Ayala, Francisco J.; Li, Ziyin

    2016-01-01

    Cytokinesis in Trypanosoma brucei, an early branching protozoan, occurs along its longitudinal axis uni-directionally from the anterior tip of the new flagellum attachment zone filament toward the cell’s posterior end. However, the underlying mechanisms remain elusive. Here we report that cytokinesis in T. brucei is regulated by a concerted action of Polo-like kinase, Aurora B kinase, and a trypanosome-specific protein CIF1. Phosphorylation of CIF1 by Polo-like kinase targets it to the anterior tip of the new flagellum attachment zone filament, where it subsequently recruits Aurora B kinase to initiate cytokinesis. Consistent with its role, CIF1 depletion inhibits cytokinesis initiation from the anterior end of the cell, but, surprisingly, triggers cytokinesis initiation from the posterior end of the cell, suggesting the activation of an alternative cytokinesis from the opposite cell end. Our results reveal the mechanistic roles of CIF1 and Polo-like kinase in cytokinesis initiation and elucidate the mechanism underlying the recruitment of Aurora B kinase to the cytokinesis initiation site at late anaphase. These findings also delineate a signaling cascade controlling cytokinesis initiation from the anterior end of the cell and uncover a backup cytokinesis that is initiated from the posterior end of the cell when the typical anterior-to-posterior cytokinesis is compromised. PMID:26929336

  19. STAG2 promotes error correction in mitosis by regulating kinetochore-microtubule attachments.

    PubMed

    Kleyman, Marianna; Kabeche, Lilian; Compton, Duane A

    2014-10-01

    Mutations in the STAG2 gene are present in ∼20% of tumors from different tissues of origin. STAG2 encodes a subunit of the cohesin complex, and tumors with loss-of-function mutations are usually aneuploid and display elevated frequencies of lagging chromosomes during anaphase. Lagging chromosomes are a hallmark of chromosomal instability (CIN) arising from persistent errors in kinetochore-microtubule (kMT) attachment. To determine whether the loss of STAG2 increases the rate of formation of kMT attachment errors or decreases the rate of their correction, we examined mitosis in STAG2-deficient cells. STAG2 depletion does not impair bipolar spindle formation or delay mitotic progression. Instead, loss of STAG2 permits excessive centromere stretch along with hyperstabilization of kMT attachments. STAG2-deficient cells display mislocalization of Bub1 kinase, Bub3 and the chromosome passenger complex. Importantly, strategically destabilizing kMT attachments in tumor cells harboring STAG2 mutations by overexpression of the microtubule-destabilizing enzymes MCAK (also known as KIF2C) and Kif2B decreased the rate of lagging chromosomes and reduced the rate of chromosome missegregation. These data demonstrate that STAG2 promotes the correction of kMT attachment errors to ensure faithful chromosome segregation during mitosis. © 2014. Published by The Company of Biologists Ltd.

  20. Withaferin A modulates the Spindle assembly checkpoint by degradation of Mad2-Cdc20 complex in colorectal cancer cell lines.

    PubMed

    Das, Tania; Roy, Kumar Singha; Chakrabarti, Tulika; Mukhopadhyay, Sibabrata; Roychoudhury, Susanta

    2014-09-01

    Withania somnifera L. Dunal (Ashwagandha) is used over centuries in the ayurvedic medicines in India. Withaferin A, a withanolide, is the major compound present in leaf extract of the plant which shows anticancer activity against leukemia, breast cancer and colorectal cancer. It arrests the ovarian cancer cells in the G2/M phase in dose dependent manner. In the current study we show the effect of Withaferin A on cell cycle regulation of colorectal cancer cell lines HCT116 and SW480 and its effect on cell fate. Treatment of these cells with this compound leads to apoptosis in a dose dependent manner. It causes the G2/M arrest in both the cell lines. We show that Withaferin A (WA) causes mitotic delay by blocking Spindle assembly checkpoint (SAC) function. Apoptosis induced by Withaferin A is associated with proteasomal degradation of Mad2 and Cdc20, an important constituent of the Spindle Checkpoint Complex. Further overexpression of Mad2 partially rescues the deleterious effect of WA by restoring proper anaphase initiation and keeping more number of cells viable. We hypothesize that Withaferin A kills cancer cells by delaying the mitotic exit followed by inducing chromosome instability. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Assessment of both environmental cytotoxicity and trace metal pollution using Populus simonii Carr. as a bioindicator.

    PubMed

    Sluchyk, Victor; Sluchyk, Iryna; Shyichuk, Alexander

    2014-10-01

    The level of environmental pollution in the city of Ivano-Frankivsk (Western Ukraine) has been assessed by means of roadside poplar trees as bioindicators. Dividable apical meristem cells of rudimentary leaves were quantitatively analysed for mitotic activity and distribution. Anaphases were further examined for chromosomal aberrations. Male catkins were also examined for sterile pollens. Accumulation of trace elements in vegetative buds was also evaluated in order to reveal source(s) of environmental pollution. Poplar trees growing in the urban environment proved to have increased chromosomal aberrations (up to 4-fold) and increased pollen sterility (up to 4-fold) as well as decreased mitotic activity (by factor 1.5) as compared to control sampling site. The biomarker data correlate moderately with increased (up to 4-fold) concentrations of Ni, Zn, Pb, Cd and Cu in vegetative tissues suggesting that probable cause of the environmental cytotoxicity may be vehicle emissions. The maximum increase in chromosomal aberrations (7-fold) and the minimum mitotic activity (half of the control one) were recorded in poplar trees growing in industrial suburb in vicinity of large cement production plant. Taking in mind insignificant bioaccumulation of trace elements in the industrial suburb, the high environmental toxicity has been ascribed to contamination in cement and asbestos particulates.

  2. GISH and AFLP analyses of novel Brassica napus lines derived from one hybrid between B. napus and Orychophragmus violaceus.

    PubMed

    Ma, Ni; Li, Zai-Yun; Cartagena, J A; Fukui, K

    2006-10-01

    New Brassica napus inbred lines with different petal colors and with canola quality and increased levels of oleic (approximately 70%, 10% higher than that of B. napus parent) and linoleic (28%) acids have been developed in the progenies of one B. napus cv. Oro x Orychophragmus violaceus F5 hybrid plant (2n = 31). Their genetic constituents were analyzed by using the methods of genomic in situ hybridization (GISH) and amplified fragments length polymorphism (AFLP). No intact chromosomes of O. violaceus origin were detected by GISH in their somatic cells of ovaries and root tips (2n = 38) and pollen mother cells (PMCs) with normal chromosome pairing (19 bivalents) and segregation (19:19), though signals of variable sizes and intensities were located mainly at terminal and centromeric parts of some mitotic chromosomes and meiotic bivalents at diakinesis or chromosomes in anaphase I groups and one large patch of chromatin was intensively labeled and separated spatially in some telophase I nuclei and metaphase II PMCs. AFLP analysis revealed that substantial genomic changes have occurred in these lines and O. violaceus-specific bands, deleted bands in 'Oro' and novel bands for two parents were detected. The possible mechanisms for these results were discussed.

  3. Kinetochore Dynein Is Required for Chromosome Motion and Congression Independent of the Spindle Checkpoint

    PubMed Central

    Yang, Zhenye; Tulu, U. Serdar; Wadsworth, Patricia; Rieder, Conly L.

    2008-01-01

    Summary During mitosis, the motor molecule cytoplasmic dynein plays key direct and indirect roles in organizing microtubules (MTs) into a functional spindle. At this time, dynein is also recruited to kinetochores, but its role or roles at these organelles remain vague, partly because inhibiting dynein globally disrupts spindle assembly [1-4]. However, dynein can be selectively depleted from kinetochores by disruption of ZW10 [5], and recent studies with this approach conclude that kinetochore-associated dynein (KD) functions to silence the spindle-assembly checkpoint (SAC) [6]. Here we use dynein-antibody microinjection and the RNAi of ZW10 to explore the role of KD in chromosome behavior during mitosis in mammals. We find that depleting or inhibiting KD prevents the rapid poleward motion of attaching kinetochores but not kinetochore fiber (K fiber) formation. However, after kinetochores attach to the spindle, KD is required for stabilizing kinetochore MTs, which it probably does by generating tension on the kinetochore, and in its absence, chromosome congression is defective. Finally, depleting KD reduces the velocity of anaphase chromosome motion by ∼40%, without affecting the rate of poleward MT flux. Thus, in addition to its role in silencing the SAC, KD is important for forming and stabilizing K fibers and in powering chromosome motion. PMID:17509882

  4. Aurora A kinase contributes to a pole-based error correction pathway

    PubMed Central

    Ye, Anna A.; Deretic, Jovana; Hoel, Christopher M.; Hinman, Albert W.; Cimini, Daniela; Welburn, Julie P.; Maresca, Thomas J.

    2015-01-01

    Summary Chromosome biorientation, where sister kinetochores attach to microtubules (MTs) from opposing spindle poles, is the configuration that best ensures equal partitioning of the genome during cell division. Erroneous kinetochore-microtubule (kt-MT) attachments are commonplace but often corrected prior to anaphase [1, 2]. Error correction, thought to be mediated primarily by the centromere-enriched Aurora B kinase (ABK) [3-5], typically occurs near spindle poles [6]; albeit, the relevance of this locale is unclear. Furthermore, polar ejection forces (PEFs), highest near poles [7], can stabilize improper attachments by pushing mal-oriented chromosome arms away from spindle poles [8, 9]. Hence, a conundrum: erroneous kt-MT attachments are weakened where PEFs are most likely to strengthen them. Here, we report that Aurora A kinase (AAK) opposes the stabilizing effect of PEFs. AAK activity contributes to phosphorylation of kinetochore substrates near poles and its inhibition results in chromosome mis-alignment and an increased incidence of erroneous kt-MT attachments. Furthermore, AAK directly phosphorylates a site in the N-terminal tail of Ndc80/Hec1 that has been implicated in reducing the affinity of the Ndc80 complex for MTs when phosphorylated [10-12]. We propose that an AAK activity gradient contributes to correcting mal-oriented kt-MT attachments in the vicinity of spindle poles. PMID:26166783

  5. Yeast cohesin complex embraces 2 micron plasmid sisters in a tri-linked catenane complex

    PubMed Central

    Ghosh, Santanu K.; Huang, Chu-Chun; Hajra, Sujata; Jayaram, Makkuni

    2010-01-01

    Sister chromatid cohesion, crucial for faithful segregation of replicated chromosomes in eukaryotes, is mediated by the multi-subunit protein complex cohesin. The Saccharomyces cerevisiae plasmid 2 micron circle mimics chromosomes in assembling cohesin at its partitioning locus. The plasmid is a multi-copy selfish DNA element that resides in the nucleus and propagates itself stably, presumably with assistance from cohesin. In metaphase cell lysates, or fractions enriched for their cohesed state by sedimentation, plasmid molecules are trapped topologically by the protein ring formed by cohesin. They can be released from cohesin’s embrace either by linearizing the DNA or by cleaving a cohesin subunit. Assays using two distinctly tagged cohesin molecules argue against the hand-cuff (an associated pair of monomeric cohesin rings) or the bracelet (a dimeric cohesin ring) model as responsible for establishing plasmid cohesion. Our cumulative results most easily fit a model in which a single monomeric cohesin ring, rather than a series of such rings, conjoins a pair of sister plasmids. These features of plasmid cohesion account for its sister-to-sister mode of segregation by cohesin disassembly during anaphase. The mechanistic similarities of cohesion between mini-chromosome sisters and 2 micron plasmid sisters suggest a potential kinship between the plasmid partitioning locus and centromeres. PMID:19920123

  6. Distinct chromosome segregation roles for spindle checkpoint proteins.

    PubMed

    Warren, Cheryl D; Brady, D Michelle; Johnston, Raymond C; Hanna, Joseph S; Hardwick, Kevin G; Spencer, Forrest A

    2002-09-01

    The spindle checkpoint plays a central role in the fidelity of chromosome transmission by ensuring that anaphase is initiated only after kinetochore-microtubule associations of all sister chromatid pairs are complete. In this study, we find that known spindle checkpoint proteins do not contribute equally to chromosome segregation fidelity in Saccharomyces cerevisiae. Loss of Bub1 or Bub3 protein elicits the largest effect. Analysis of Bub1p reveals the presence of two molecular functions. An N-terminal 608-amino acid (nonkinase) portion of the protein supports robust checkpoint activity, and, as expected, contributes to chromosome segregation. A C-terminal kinase-encoding segment independently contributes to chromosome segregation through an unknown mechanism. Both molecular functions depend on association with Bub3p. A 156-amino acid fragment of Bub1p functions in Bub3p binding and in kinetochore localization by one-hybrid assay. An adjacent segment is required for Mad1p binding, detected by deletion analysis and coimmunoprecipitation. Finally, overexpression of wild-type BUB1 or MAD3 genes leads to chromosome instability. Analysis of this activity indicates that the Bub3p-binding domain of Bub1p contributes to this phenotype through disruption of checkpoint activity as well as through introduction of kinetochore or spindle damage.

  7. Distinct Chromosome Segregation Roles for Spindle Checkpoint Proteins

    PubMed Central

    Warren, Cheryl D.; Brady, D. Michelle; Johnston, Raymond C.; Hanna, Joseph S.; Hardwick, Kevin G.; Spencer, Forrest A.

    2002-01-01

    The spindle checkpoint plays a central role in the fidelity of chromosome transmission by ensuring that anaphase is initiated only after kinetochore-microtubule associations of all sister chromatid pairs are complete. In this study, we find that known spindle checkpoint proteins do not contribute equally to chromosome segregation fidelity in Saccharomyces cerevisiae. Loss of Bub1 or Bub3 protein elicits the largest effect. Analysis of Bub1p reveals the presence of two molecular functions. An N-terminal 608-amino acid (nonkinase) portion of the protein supports robust checkpoint activity, and, as expected, contributes to chromosome segregation. A C-terminal kinase-encoding segment independently contributes to chromosome segregation through an unknown mechanism. Both molecular functions depend on association with Bub3p. A 156-amino acid fragment of Bub1p functions in Bub3p binding and in kinetochore localization by one-hybrid assay. An adjacent segment is required for Mad1p binding, detected by deletion analysis and coimmunoprecipitation. Finally, overexpression of wild-type BUB1 or MAD3 genes leads to chromosome instability. Analysis of this activity indicates that the Bub3p-binding domain of Bub1p contributes to this phenotype through disruption of checkpoint activity as well as through introduction of kinetochore or spindle damage. PMID:12221113

  8. Preliminary study on the effect of x-ray irradiation on Capsicum annum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subhash, K.; Nizam, J.

    The present experiment on Capsicum annum was conducted to study various cytological and genetic effects induced by x-ray irradiation. Dry and soaked seeds were exposed to irradiation by deep x rays at the Radium and Cancer Research Institute, Hyderabad at a dose rate of 99 rads/min. The doses administered were as follows: 3000 rads, 4000 rads, 5000 rads, and 10,000 rads. The cytological preparations were made by following Belling's technique. The irradiated seeds along with the controlled were sown in the soil to observe the morphological variations. The root tip squashes from the irradiated seed material revealed various chromosomal aberrationsmore » such as deletions, parallel bridges, and single and paired fragments of acentric chromosomes, showing cytological irregularities. Bridges were quite common at anaphases. The irradiated seeds were germinated in order to record morphological variations. A period of 150 days seems to be necessary from germination to seed formation; this period is not identical for the irradiated and controlled seeds. In some of the irradiated material the duration was reduced to 120 to 130 days. With this observation it may be presumed that mild doses of radiation have accelerated the germination time and also hastened the growth processes. (auth)« less

  9. Altered expression of Aurora kinases in Arabidopsis results in aneu- and polyploidization.

    PubMed

    Demidov, Dmitri; Lermontova, Inna; Weiss, Oda; Fuchs, Joerg; Rutten, Twan; Kumke, Katrin; Sharbel, Timothy F; Van Damme, Daniel; De Storme, Nico; Geelen, Danny; Houben, Andreas

    2014-11-01

    Aurora is an evolutionary conserved protein kinase family involved in monitoring of chromosome segregation via phosphorylation of different substrates. In plants, however, the involvement of Aurora proteins in meiosis and in sensing microtubule attachment remains to be proven, although the downstream components leading to the targeting of spindle assembly checkpoint signals to anaphase-promoting complex have been described. To analyze the three members of Aurora family (AtAurora1, -2, and -3) of Arabidopsis we employed different combinations of T-DNA insertion mutants and/or RNAi transformants. Meiotic defects and the formation of unreduced pollen were revealed including plants with an increased ploidy level. The effect of reduced expression of Aurora was mimicked by application of the ATP-competitive Aurora inhibitor II. In addition, strong overexpression of any member of the AtAurora family is not possible. Only tagged or truncated forms of Aurora kinases can be overexpressed. Expression of truncated AtAurora1 resulted in a high number of aneuploids in Arabidopsis, while expression of AtAurora1-TAPi construct in tobacco resulted in 4C (possible tetraploid) progeny. In conclusion, our data demonstrate an essential role of Aurora kinases in the monitoring of meiosis in plants. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  10. Mps1 inhibitors synergise with low doses of taxanes in promoting tumour cell death by enhancement of errors in cell division.

    PubMed

    Maia, Ana Rita R; Linder, Simon; Song, Ji-Ying; Vaarting, Chantal; Boon, Ute; Pritchard, Colin E J; Velds, Arno; Huijbers, Ivo J; van Tellingen, Olaf; Jonkers, Jos; Medema, René H

    2018-05-08

    Chromosomal instability (CIN) is a common trait of cancer characterised by the continuous gain and loss of chromosomes during mitosis. Excessive levels of CIN can suppress tumour growth, providing a possible therapeutic strategy. The Mps1/TTK kinase has been one of the prime targets to explore this concept, and indeed Mps1 inhibitors synergise with the spindle poison docetaxel in inhibiting the growth of tumours in mice. To investigate how the combination of docetaxel and a Mps1 inhibitor (Cpd-5) promote tumour cell death, we treated mice transplanted with BRCA1 -/- ;TP53 -/- mammary tumours with docetaxel and/or Cpd-5. The tumours were analysed regarding their histopathology, chromosome segregation errors, copy number variations and cell death to understand the mechanism of action of the drug combination. The enhanced efficacy of combining an Mps1 inhibitor with clinically relevant doses of docetaxel is associated with an increase in multipolar anaphases, aberrant nuclear morphologies and cell death. Tumours treated with docetaxel and Cpd-5 displayed more genomic deviations, indicating that chromosome stability is affected mostly in the combinatorial treatment. Our study shows that the synergy between taxanes and Mps1 inhibitors depends on increased errors in cell division, allowing further optimisation of this treatment regimen for cancer therapy.

  11. PP2A-B56 opposes Mps1 phosphorylation of Knl1 and thereby promotes spindle assembly checkpoint silencing.

    PubMed

    Espert, Antonio; Uluocak, Pelin; Bastos, Ricardo Nunes; Mangat, Davinderpreet; Graab, Philipp; Gruneberg, Ulrike

    2014-09-29

    The spindle assembly checkpoint (SAC) monitors correct attachment of chromosomes to microtubules, an important safeguard mechanism ensuring faithful chromosome segregation in eukaryotic cells. How the SAC signal is turned off once all the chromosomes have successfully attached to the spindle remains an unresolved question. Mps1 phosphorylation of Knl1 results in recruitment of the SAC proteins Bub1, Bub3, and BubR1 to the kinetochore and production of the wait-anaphase signal. SAC silencing is therefore expected to involve a phosphatase opposing Mps1. Here we demonstrate in vivo and in vitro that BubR1-associated PP2A-B56 is a key phosphatase for the removal of the Mps1-mediated Knl1 phosphorylations necessary for Bub1/BubR1 recruitment in mammalian cells. SAC silencing is thus promoted by a negative feedback loop involving the Mps1-dependent recruitment of a phosphatase opposing Mps1. Our findings extend the previously reported role for BubR1-associated PP2A-B56 in opposing Aurora B and suggest that BubR1-bound PP2A-B56 integrates kinetochore surveillance and silencing of the SAC. © 2014 Espert et al.

  12. Phosphoregulation of Spc105 by Mps1 and PP1 regulates Bub1 localization to kinetochores.

    PubMed

    London, Nitobe; Ceto, Steven; Ranish, Jeffrey A; Biggins, Sue

    2012-05-22

    Kinetochores are the macromolecular complexes that interact with microtubules to mediate chromosome segregation. Accurate segregation requires that kinetochores make bioriented attachments to microtubules from opposite poles. Attachments between kinetochores and microtubules are monitored by the spindle checkpoint, a surveillance system that prevents anaphase until every pair of chromosomes makes proper bioriented attachments. Checkpoint activity is correlated with the recruitment of checkpoint proteins to the kinetochore. Mps1 is a conserved protein kinase that regulates segregation and the spindle checkpoint, but few of the targets that mediate its functions have been identified. Here, we show that Mps1 is the major kinase activity that copurifies with budding yeast kinetochore particles and identify the conserved Spc105/KNL-1/blinkin kinetochore protein as a substrate. Phosphorylation of conserved MELT motifs within Spc105 recruits the Bub1 protein to kinetochores, and this is reversed by protein phosphatase I (PP1). Spc105 mutants lacking Mps1 phosphorylation sites are defective in the spindle checkpoint and exhibit growth defects. Together, these data identify Spc105 as a key target of the Mps1 kinase and show that the opposing activities of Mps1 and PP1 regulate the kinetochore localization of the Bub1 protein. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Phosphorylation of histone H3 on Ser-10 by Aurora B is essential for chromosome condensation in porcine embryos during the first mitotic division.

    PubMed

    Chen, Changchao; Zhang, Zixiao; Cui, Panpan; Liao, Yaya; Zhang, Yue; Yao, Lingyun; Rui, Rong; Ju, Shiqiang

    2017-07-01

    Phosphorylation of histone H3 on Ser-10 (H3S10ph) is involved in regulating mitotic chromosome condensation and decondensation, which plays an important regulatory role during mitotic cell cycle progression in mammalian cells. However, whether H3S10ph plays a similar role in early porcine embryos during the first mitotic division remains uncertain. In this study, the subcellular localization and possible roles of H3S10ph were evaluated in the first mitotic cell cycle progression of porcine embryos using western blot, indirect immunofluorescence and barasertib (H3S10ph upstream regulator Aurora-B inhibitor) treatments. H3S10ph exhibited a dynamic localization pattern and was localized to chromosomes from prometaphase to anaphase stages. Treatment of porcine embryos with barasertib inhibited mitotic division at the prophase stage and was associated with a defect in chromosome condensation accompanied by the reduction of H3S10ph. These results indicated that H3S10ph is involved in the first mitotic division in porcine embryos through its regulatory function in chromosome condensation, which further affects porcine embryo cell cycle progression during mitotic division.

  14. Idas, a Novel Phylogenetically Conserved Geminin-related Protein, Binds to Geminin and Is Required for Cell Cycle Progression*

    PubMed Central

    Pefani, Dafni-Eleutheria; Dimaki, Maria; Spella, Magda; Karantzelis, Nickolas; Mitsiki, Eirini; Kyrousi, Christina; Symeonidou, Ioanna-Eleni; Perrakis, Anastassis; Taraviras, Stavros; Lygerou, Zoi

    2011-01-01

    Development and homeostasis of multicellular organisms relies on an intricate balance between cell proliferation and differentiation. Geminin regulates the cell cycle by directly binding and inhibiting the DNA replication licensing factor Cdt1. Geminin also interacts with transcriptional regulators of differentiation and chromatin remodelling factors, and its balanced interactions are implicated in proliferation-differentiation decisions during development. Here, we describe Idas (Idas being a cousin of the Gemini in Ancient Greek Mythology), a previously uncharacterised coiled-coil protein related to Geminin. We show that human Idas localizes to the nucleus, forms a complex with Geminin both in cells and in vitro through coiled-coil mediated interactions, and can change Geminin subcellular localization. Idas does not associate with Cdt1 and prevents Geminin from binding to Cdt1 in vitro. Idas depletion from cells affects cell cycle progression; cells accumulate in S phase and are unable to efficiently progress to mitosis. Idas protein levels decrease in anaphase, whereas its overexpression causes mitotic defects. During development, we show that Idas exhibits high level expression in the choroid plexus and the cortical hem of the mouse telencephalon. Our data highlight Idas as a novel Geminin binding partner, implicated in cell cycle progression, and a putative regulator of proliferation-differentiation decisions during development. PMID:21543332

  15. Nucleocytoplasmic transfer of cyclin dependent kinase 5 and its binding to puromycin-sensitive aminopeptidase in Dictyostelium discoideum.

    PubMed

    Huber, Robert J; O'Day, Danton H

    2011-08-01

    The Dictyostelium discoideum homolog of mammalian cyclin dependent kinase 5 (Cdk5) has previously been shown to be required for optimal growth and differentiation in this model organism, however, the subcellular localization of the protein has not previously been studied. In this study, immunolocalizations and a GFP fusion construct localized Cdk5 predominantly to the nucleus of vegetative cells. Western blots showed that Cdk5 was present in both nuclear and non-nuclear fractions, suggesting a functional role in both cellular locales. During the early stages of mitosis, Cdk5 gradually moved from a punctate nucleoplasmic distribution to localize adjacent to the inner nuclear envelope. During anaphase and telophase, Cdk5 localized to the cytoplasm and was not detected in the nucleoplasm. Cdk5 returned to the nucleus during cytokinesis. Proteolytic activity has been shown to be a critical regulator of the cell cycle. Immunoprecipitations coupled with immunolocalizations identified puromycin-sensitive aminopeptidase A (PsaA) as a potential Cdk5 binding partner in Dictyostelium. Immunoprecipitations also identified two phosphotyrosine proteins (35 and 18 kDa) that may interact with Cdk5 in vivo. Together, this work provides new insight into the localization of Cdk5, its function during cell division, and its binding to a proteolytic enzyme in Dictyostelium.

  16. The Arabidopsis CSLD 5 functions in cell plate formation in a cell cycle-dependent manner

    DOE PAGES

    Gu, Fangwei; Bringmann, Martin; Combs, Jonathon; ...

    2016-06-27

    In plants, the presence of a load-bearing cell wall presents unique challenges during cell division. Unlike other eukaryotes, which undergo contractile cytokinesis upon completion of mitosis, plants instead synthesize and assemble a new dividing cell wall to separate newly formed daughter cells. In this study, we mine transcriptome data from individual cell types in the Arabidopsis thaliana stomatal lineage and identify CSLD5, a member of the Cellulose Synthase Like-D family, as a cell wall biosynthesis enzyme uniquely enriched in rapidly dividing cell populations. We further show that CSLD5 is a direct target of SPEECHLESS, the master transcriptional regulator of thesemore » divisions during stomatal development. Using a combination of genetic analysis and in vivo localization of fluorescently tagged fusion proteins, we show that CSLD5 preferentially accumulates in dividing plant cells where it participates in the construction of newly forming cell plates. We show that CSLD5 is an unstable protein that is rapidly degraded upon completion of cell division and that the protein turnover characteristics of CSLD5 are altered in ccs52a2 mutants, indicating that CSLD5 turnover may be regulated by a cell cycle-associated E3-ubiquitin ligase, the anaphase-promoting complex.« less

  17. Stable centrosomal roots disentangle to allow interphase centriole independence

    PubMed Central

    2018-01-01

    The centrosome is a non–membrane-bound cellular compartment consisting of 2 centrioles surrounded by a protein coat termed the pericentriolar material (PCM). Centrioles generally remain physically associated together (a phenomenon called centrosome cohesion), yet how this occurs in the absence of a bounding lipid membrane is unclear. One model posits that pericentriolar fibres formed from rootletin protein directly link centrioles, yet little is known about the structure, biophysical properties, or assembly kinetics of such fibres. Here, I combine live-cell imaging of endogenously tagged rootletin with cell fusion and find previously unrecognised plasticity in centrosome cohesion. Rootletin forms large, diffusionally stable bifurcating fibres, which amass slowly on mature centrioles over many hours from anaphase. Nascent centrioles (procentrioles), in contrast, do not form roots and must be licensed to do so through polo-like kinase 1 (PLK1) activity. Transient separation of roots accompanies centriolar repositioning during the interphase, suggesting that centrioles organize as independent units, each containing discrete roots. Indeed, forced induction of duplicate centriole pairs allows independent reshuffling of individual centrioles between the pairs. Therefore collectively, these findings suggest that progressively nucleated polymers mediate the dynamic association of centrioles as either 1 or 2 interphase centrosomes, with implications for the understanding of how non–membrane-bound organelles self-organise. PMID:29649211

  18. Chromosomal heterozygosity and fertility in house mice (Mus musculus domesticus) from Northern Italy.

    PubMed

    Hauffe, H C; Searle, J B

    1998-11-01

    Following the discovery of over 40 Robertsonian (Rb) races of Mus musculus domesticus in Europe and North Africa, the house mouse has been studied extensively as an ideal model to determine the chromosomal changes that may cause or accompany speciation. Current models of chromosomal speciation are based on the assumption that heterozygous individuals have a particularly low fertility, although recent studies indicate otherwise. Despite their importance, fertility estimates for the house mouse are incomplete because traditional measurements, such as anaphase I nondisjunction and germ cell death, are rarely estimated in conjunction with litter size. In an attempt to bridge this gap, we have taken advantage of the house mouse hybrid zone in Upper Valtellina (Lombardy, Italy) in which five Rb races interbreed. We present data on the fertility of naturally occurring ("wild-caught") hybrids and of offspring from laboratory crosses of wild-caught mice ("laboratory-reared"), using various measurements. Wild-caught mice heterozygous for one fusion were more infertile than predicted from past studies, possibly due to genic hybridity; laboratory-reared heterozygotes carrying seven or eight trivalents at meiosis I and heterozygotes carrying one pentavalent also had low fertilities. These low fertilities are especially significant given the probable occurrence of a reinforcement event in Upper Valtellina.

  19. [Effect of the estrous cycle stage on sensitivity to pheromone 2,5-dimethylpyrazine in the house mouse Mus musculus].

    PubMed

    Daev, E V; Dukel'skaia, A V; Kazarova, V E; Fil'kina, Ia A

    2007-01-01

    Frequency of cytogenetic disturbances was estimated in mitotically dividing bone marrow cells of CBA strain female mice after the 24-h long action of pheromone 2,5-dimethylpyrazine (2,5-DMP). The stage of the estrous cycle of each animal was taken into account at the moment of the end of the pheromone action. The analysis was performed using the anatelophase method that allows evaluating frequencies of various types of disturbances--bridges, fragments, delayed chromosomes. The spontaneous level of the mitotic disturbances revealed by the anatelophase method in animals of the control group amounts to 5.4 %. Action of pheromone 2,5-dimethylpyrasine induced the mitosis disturbances detected in the dividing bone marrow cells at the anaphase-telophase stage in the females at the di- + postestrus stage. The corresponding frequency of disturbances after the pheromone action was equal to 9.2%. In the female in estrus, the mitotic disturbance level amounted 6.7%, which did not differ statistically significantly from control. It is suggested that differences in the female mouse hormonal state at different estrous cycle stages affect sensitivity to olfactory signals. Mechanisms of the revealed effect and significance of the differences in sensitivity to pheromone for reproductive processes are discussed.

  20. Idas, a novel phylogenetically conserved geminin-related protein, binds to geminin and is required for cell cycle progression.

    PubMed

    Pefani, Dafni-Eleutheria; Dimaki, Maria; Spella, Magda; Karantzelis, Nickolas; Mitsiki, Eirini; Kyrousi, Christina; Symeonidou, Ioanna-Eleni; Perrakis, Anastassis; Taraviras, Stavros; Lygerou, Zoi

    2011-07-01

    Development and homeostasis of multicellular organisms relies on an intricate balance between cell proliferation and differentiation. Geminin regulates the cell cycle by directly binding and inhibiting the DNA replication licensing factor Cdt1. Geminin also interacts with transcriptional regulators of differentiation and chromatin remodelling factors, and its balanced interactions are implicated in proliferation-differentiation decisions during development. Here, we describe Idas (Idas being a cousin of the Gemini in Ancient Greek Mythology), a previously uncharacterised coiled-coil protein related to Geminin. We show that human Idas localizes to the nucleus, forms a complex with Geminin both in cells and in vitro through coiled-coil mediated interactions, and can change Geminin subcellular localization. Idas does not associate with Cdt1 and prevents Geminin from binding to Cdt1 in vitro. Idas depletion from cells affects cell cycle progression; cells accumulate in S phase and are unable to efficiently progress to mitosis. Idas protein levels decrease in anaphase, whereas its overexpression causes mitotic defects. During development, we show that Idas exhibits high level expression in the choroid plexus and the cortical hem of the mouse telencephalon. Our data highlight Idas as a novel Geminin binding partner, implicated in cell cycle progression, and a putative regulator of proliferation-differentiation decisions during development.

  1. The flavonoid eupatorin inactivates the mitotic checkpoint leading to polyploidy and apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salmela, Anna-Leena; Turku Graduate School of Biomedical Sciences, Turku; Turku Centre for Biotechnology, P.O. Box 123, University of Turku

    The spindle assembly checkpoint (SAC) is a conserved mechanism that ensures the fidelity of chromosome distribution in mitosis by preventing anaphase onset until the correct bipolar microtubule-kinetochore attachments are formed. Errors in SAC function may contribute to tumorigenesis by inducing numerical chromosome anomalies (aneuploidy). On the other hand, total disruption of SAC can lead to massive genomic imbalance followed by cell death, a phenomena that has therapeutic potency. We performed a cell-based high-throughput screen with a compound library of 2000 bioactives for novel SAC inhibitors and discovered a plant-derived phenolic compound eupatorin (3 Prime ,5-dihydroxy-4 Prime ,6,7-trimethoxyflavone) as an anti-mitoticmore » flavonoid. The premature override of the microtubule drug-imposed mitotic arrest by eupatorin is dependent on microtubule-kinetochore attachments but not interkinetochore tension. Aurora B kinase activity, which is essential for maintenance of normal SAC signaling, is diminished by eupatorin in cells and in vitro providing a mechanistic explanation for the observed forced mitotic exit. Eupatorin likely has additional targets since eupatorin treatment of pre-mitotic cells causes spindle anomalies triggering a transient M phase delay followed by impaired cytokinesis and polyploidy. Finally, eupatorin potently induces apoptosis in multiple cancer cell lines and suppresses cancer cell proliferation in organotypic 3D cell culture model.« less

  2. Genotoxicity effects of silver nanoparticles on wheat (Triticum aestivum L.) root tip cells.

    PubMed

    Abdelsalam, Nader R; Abdel-Megeed, Ahmed; Ali, Hayssam M; Salem, Mohamed Z M; Al-Hayali, Muwafaq F A; Elshikh, Mohamed S

    2018-07-15

    The distribution and use of nanoparticles have rapidly increased over recent years, but the available knowledge regarding their mode of action, ecological tolerance and biodegradability remains insufficient. Wheat (Triticum aestivum L.) is the most important crop worldwide. In the current study, the effects of silver nanoparticles (AgNPs) obtained from two different sources, namely, green and chemical syntheses, on chromosomal aberrations and cell division were investigated. Wheat root tips were treated with four different AgNP concentrations (10, 20, 40 and 50 ppm) for three different exposure durations (8, 16 and 24 h), and the different concentrations of the nanoparticles were added to the tested grains until the root lengths reached 1.5-2 cm. For each concentration, the mitotic indexes (%) were obtained from an analysis of ~ 2000 cells. The treated root-tip cells exhibited various types of chromosomal aberrations, such as incorrect orientation at metaphase, chromosomal breakage, metaphasic plate distortion, spindle dysfunction, stickiness, aberrant movement at metaphase, fragmentation, scattering, unequal separation, scattering, chromosomal gaps, multipolar anaphase, erosion, and distributed and lagging chromosomes. These results demonstrate that the root tip cells of wheat can readily internalize the AgNPs and that the internalized AgNPs can interfere with the cells' normal function. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Hypoxia and cell cycle regulation of the von Hippel-Lindau tumor suppressor

    PubMed Central

    Liu, Weijun; Xin, Hong; Eckert, David T.; Brown, Julie A.; Gnarra, James R.

    2010-01-01

    Inactivation of von Hippel-Lindau tumor suppressor protein (pVHL) is associated with von Hippel-Lindau disease, an inherited cancer syndrome, as well as the majority of patients with sporadic clear cell renal carcinoma (RCC). While the involvement of pVHL in oxygen sensing through targeting HIFα subunits to ubiquitin-dependent proteolysis has been well documented, less is known about pVHL regulation under both normoxic and hypoxic conditions. We found that pVHL levels decreased in hypoxia and that hypoxia-induced cell cycle arrest is associated with pVHL expression in RCC cells. pVHL levels fluctuate during the cell cycle, paralleling cyclin B1 levels, with decreased levels in mitosis and G1. pVHL contains consensus Destruction box sequences, and pVHL associates with Cdh1, an activator of the anaphase promoting complex/cyclosome (APC/C) E3 ubiquitin ligase. We show that pVHL has a decreased half-life in G1, Cdh1 downregulation results in increased pVHL expression, while Cdh1 overexpression results in decreased pVHL expression. Taken together these results suggest that pVHL is a novel substrate of APC/CCdh1. Destruction box-independent pVHL degradation was also detected, indicating that other ubiquitin ligases are also activated for pVHL degradation. PMID:20802534

  4. DNA-damage response during mitosis induces whole-chromosome missegregation.

    PubMed

    Bakhoum, Samuel F; Kabeche, Lilian; Murnane, John P; Zaki, Bassem I; Compton, Duane A

    2014-11-01

    Many cancers display both structural (s-CIN) and numerical (w-CIN) chromosomal instabilities. Defective chromosome segregation during mitosis has been shown to cause DNA damage that induces structural rearrangements of chromosomes (s-CIN). In contrast, whether DNA damage can disrupt mitotic processes to generate whole chromosomal instability (w-CIN) is unknown. Here, we show that activation of the DNA-damage response (DDR) during mitosis selectively stabilizes kinetochore-microtubule (k-MT) attachments to chromosomes through Aurora-A and PLK1 kinases, thereby increasing the frequency of lagging chromosomes during anaphase. Inhibition of DDR proteins, ATM or CHK2, abolishes the effect of DNA damage on k-MTs and chromosome segregation, whereas activation of the DDR in the absence of DNA damage is sufficient to induce chromosome segregation errors. Finally, inhibiting the DDR during mitosis in cancer cells with persistent DNA damage suppresses inherent chromosome segregation defects. Thus, the DDR during mitosis inappropriately stabilizes k-MTs, creating a link between s-CIN and w-CIN. The genome-protective role of the DDR depends on its ability to delay cell division until damaged DNA can be fully repaired. Here, we show that when DNA damage is induced during mitosis, the DDR unexpectedly induces errors in the segregation of entire chromosomes, thus linking structural and numerical chromosomal instabilities. ©2014 American Association for Cancer Research.

  5. The spatio-temporal dynamics of PKA activity profile during mitosis and its correlation to chromosome segregation.

    PubMed

    Vandame, Pauline; Spriet, Corentin; Trinel, Dave; Gelaude, Armance; Caillau, Katia; Bompard, Coralie; Biondi, Emanuele; Bodart, Jean-François

    2014-01-01

    The cyclic adenosine monophosphate dependent kinase protein (PKA) controls a variety of cellular processes including cell cycle regulation. Here, we took advantages of genetically encoded FRET-based biosensors, using an AKAR-derived biosensor to characterize PKA activity during mitosis in living HeLa cells using a single-cell approach. We measured PKA activity changes during mitosis. HeLa cells exhibit a substantial increase during mitosis, which ends with telophase. An AKAREV T>A inactive form of the biosensor and H89 inhibitor were used to ascertain for the specificity of the PKA activity measured. On a spatial point of view, high levels of activity near to chromosomal plate during metaphase and anaphase were detected. By using the PKA inhibitor H89, we assessed the role of PKA in the maintenance of a proper division phenotype. While this treatment in our hands did not impaired cell cycle progression in a drastic manner, inhibition of PKA leads to a dramatic increase in chromososme misalignement on the spindle during metaphase that could result in aneuploidies. Our study emphasizes the insights that can be gained with genetically encoded FRET-based biosensors, which enable to overcome the shortcomings of classical methologies and unveil in vivo PKA spatiotemporal profiles in HeLa cells.

  6. Elucidating the functional role of endoreduplication in tomato fruit development

    PubMed Central

    Chevalier, Christian; Nafati, Mehdi; Mathieu-Rivet, Elodie; Bourdon, Matthieu; Frangne, Nathalie; Cheniclet, Catherine; Renaudin, Jean-Pierre; Gévaudant, Frédéric; Hernould, Michel

    2011-01-01

    Background Endoreduplication is the major source of endopolyploidy in higher plants. The process of endoreduplication results from the ability of cells to modify their classical cell cycle into a partial cell cycle where DNA synthesis occurs independently from mitosis. Despite the ubiquitous occurrence of the phenomenon in eukaryotic cells, the physiological meaning of endoreduplication remains vague,although several roles during plant development have been proposed, mostly related to cell differentiation and cell size determination. Scope Here recent advances in the knowledge of endoreduplication and fruit organogenesis are reviewed, focusing on tomato (Solanum lycopersicum) as a model, and the functional analyses of endoreduplication-associated regulatory genes in tomato fruit are described. Conclusions The cyclin-dependent kinase inhibitory kinase WEE1 and the anaphase promoting complex activator CCS52A both participate in the control of cell size and the endoreduplication process driving cell expansion during early fruit development in tomato. Moreover the fruit-specific functional analysis of the tomato CDK inhibitor KRP1 reveals that cell size and fruit size determination can be uncoupled from DNA ploidy levels, indicating that endoreduplication acts rather as a limiting factor for cell growth. The overall functional data contribute to unravelling the physiological role of endoreduplication in growth induction of fleshy fruits. PMID:21199834

  7. Diverse mitotic functions of the cytoskeletal cross-linking protein Shortstop suggest a role in Dynein/Dynactin activity

    PubMed Central

    Dewey, Evan B.; Johnston, Christopher A.

    2017-01-01

    Proper assembly and orientation of the bipolar mitotic spindle is critical to the fidelity of cell division. Mitotic precision fundamentally contributes to cell fate specification, tissue development and homeostasis, and chromosome distribution within daughter cells. Defects in these events are thought to contribute to several human diseases. The underlying mechanisms that function in spindle morphogenesis and positioning remain incompletely defined, however. Here we describe diverse roles for the actin-microtubule cross-linker Shortstop (Shot) in mitotic spindle function in Drosophila. Shot localizes to mitotic spindle poles, and its knockdown results in an unfocused spindle pole morphology and a disruption of proper spindle orientation. Loss of Shot also leads to chromosome congression defects, cell cycle progression delay, and defective chromosome segregation during anaphase. These mitotic errors trigger apoptosis in Drosophila epithelial tissue, and blocking this apoptotic response results in a marked induction of the epithelial–mesenchymal transition marker MMP-1. The actin-binding domain of Shot directly interacts with Actin-related protein-1 (Arp-1), a key component of the Dynein/Dynactin complex. Knockdown of Arp-1 phenocopies Shot loss universally, whereas chemical disruption of F-actin does so selectively. Our work highlights novel roles for Shot in mitosis and suggests a mechanism involving Dynein/Dynactin activation. PMID:28747439

  8. Spatiotemporal dynamics of Aurora B-PLK1-MCAK signaling axis orchestrates kinetochore bi-orientation and faithful chromosome segregation

    PubMed Central

    Shao, Hengyi; Huang, Yuejia; Zhang, Liangyu; Yuan, Kai; Chu, Youjun; Dou, Zhen; Jin, Changjiang; Garcia-Barrio, Minerva; Liu, Xing; Yao, Xuebiao

    2015-01-01

    Chromosome segregation in mitosis is orchestrated by the dynamic interactions between the kinetochore and spindle microtubules. The microtubule depolymerase mitotic centromere-associated kinesin (MCAK) is a key regulator for an accurate kinetochore-microtubule attachment. However, the regulatory mechanism underlying precise MCAK depolymerase activity control during mitosis remains elusive. Here, we describe a novel pathway involving an Aurora B-PLK1 axis for regulation of MCAK activity in mitosis. Aurora B phosphorylates PLK1 on Thr210 to activate its kinase activity at the kinetochores during mitosis. Aurora B-orchestrated PLK1 kinase activity was examined in real-time mitosis using a fluorescence resonance energy transfer-based reporter and quantitative analysis of native PLK1 substrate phosphorylation. Active PLK1, in turn, phosphorylates MCAK at Ser715 which promotes its microtubule depolymerase activity essential for faithful chromosome segregation. Importantly, inhibition of PLK1 kinase activity or expression of a non-phosphorylatable MCAK mutant prevents correct kinetochore-microtubule attachment, resulting in abnormal anaphase with chromosome bridges. We reason that the Aurora B-PLK1 signaling at the kinetochore orchestrates MCAK activity, which is essential for timely correction of aberrant kinetochore attachment to ensure accurate chromosome segregation during mitosis. PMID:26206521

  9. Controlling the response to DNA damage by the APC/C-Cdh1.

    PubMed

    de Boer, H Rudolf; Guerrero Llobet, S; van Vugt, Marcel A T M

    2016-03-01

    Proper cell cycle progression is safeguarded by the oscillating activities of cyclin/cyclin-dependent kinase complexes. An important player in the regulation of mitotic cyclins is the anaphase-promoting complex/cyclosome (APC/C), a multi-subunit E3 ubiquitin ligase. Prior to entry into mitosis, the APC/C remains inactive, which allows the accumulation of mitotic regulators. APC/C activation requires binding to either the Cdc20 or Cdh1 adaptor protein, which sequentially bind the APC/C and facilitate targeting of multiple mitotic regulators for proteasomal destruction, including Securin and Cyclin B, to ensure proper chromosome segregation and mitotic exit. Emerging data have indicated that the APC/C, particularly in association with Cdh1, also functions prior to mitotic entry. Specifically, the APC/C-Cdh1 is activated in response to DNA damage in G2 phase cells. These observations are in line with in vitro and in vivo genetic studies, in which cells lacking Cdh1 expression display various defects, including impaired DNA repair and aberrant cell cycle checkpoints. In this review, we summarize the current literature on APC/C regulation in response to DNA damage, the functions of APC/C-Cdh1 activation upon DNA damage, and speculate how APC/C-Cdh1 can control cell fate in the context of persistent DNA damage.

  10. Synergistic inhibition of the APC/C by the removal of APC15 in HCT116 cells lacking UBE2C.

    PubMed

    Garvanska, Dimitriya H; Larsen, Marie Sofie Yoo; Nilsson, Jakob

    2016-10-15

    The spindle assembly checkpoint (SAC) inhibits the anaphase-promoting complex/cyclosome (APC/C) in response to unattached kinetochores by generating a diffusible inhibitor termed the mitotic checkpoint complex (MCC). At metaphase, rapid activation of the APC/C requires removal of the MCC, a process that has been shown to depend on the APC/C E2 enzymes, UBE2C and UBE2S. Here we investigate the in vivo role of the APC/C E2 enzymes in SAC silencing using CRISPR/Cas9 genetically engineered HCT116 UBE2C or UBE2S null cell lines. Using live cell assays, we show that UBE2C and UBE2S make a minor contribution to SAC silencing in HCT116 cells. Strikingly, in cells specifically lacking UBE2C, we observe a strong synergistic inhibition of mitotic progression when we stabilize the MCC on the APC/C by depleting APC15, potentially reflecting increased competition between the MCC and the remaining initiating E2 enzyme UBE2D. In conclusion, we provide in vivo insight into the APC/C E2 module and its interplay with SAC silencing components. © 2016. Published by The Company of Biologists Ltd.

  11. Molecular basis of APC/C regulation by the spindle assembly checkpoint

    PubMed Central

    Zhang, Ziguo; Yang, Jing; Maslen, Sarah; Skehel, Mark; Barford, David

    2016-01-01

    In the dividing eukaryotic cell the spindle assembly checkpoint (SAC) ensures each daughter cell inherits an identical set of chromosomes. The SAC coordinates the correct attachment of sister chromatid kinetochores to the mitotic spindle with activation of the anaphase-promoting complex/cyclosome (APC/C), the E3 ubiquitin ligase that initiates chromosome separation. In response to unattached kinetochores, the SAC generates the mitotic checkpoint complex (MCC), a multimeric assembly that inhibits the APC/C, delaying chromosome segregation. Here, using cryo-electron microscopy we determined the near-atomic resolution structure of an APC/C-MCC complex (APC/CMCC). We reveal how degron-like sequences of the MCC subunit BubR1 block degron recognition sites on Cdc20, the APC/C coactivator subunit (Cdc20APC/C) responsible for substrate interactions. BubR1 also obstructs binding of UbcH10 (APC/C’s initiating E2) to repress APC/C ubiquitination activity. Conformational variability of the complex allows for UbcH10 association, and we show from a structure of APC/CMCC in complex with UbcH10 how the Cdc20 subunit intrinsic to the MCC (Cdc20MCC) is ubiquitinated, a process that results in APC/C reactivation when the SAC is silenced. PMID:27509861

  12. Gravitational force modulates G2/M phase exit in mechanically unloaded myoblasts

    PubMed Central

    Benavides Damm, Tatiana; Franco-Obregón, Alfredo; Egli, Marcel

    2013-01-01

    Prolonged spaceflight gives rise to muscle loss and reduced strength, a condition commonly referred to as space atrophy. During exposure to microgravity, skeletal muscle myoblasts are mechanically unloaded and respond with attenuated cell proliferation, slowed cell cycle progression, and modified protein expression. To elucidate the underlying mechanisms by which muscle mass declines in response to prolonged microgravity exposure, we grew C2C12 mouse muscle cells under conditions of simulated microgravity (SM) and analyzed their proliferative capacity, cell cycle progression, and cyclin B and D expression. We demonstrated that the retarded cell growth observed in SM was correlated with an approximate 16 h delay in G2/M phase progression, where cells accumulated specifically between the G2 checkpoint and the onset of anaphase, concomitantly with a positive expression for cyclin B. The effect was specific for gravitational mechanical unloading as cells grown under conditions of hypergravity (HG, 4 g) for similar durations of time exhibited normal proliferation and normal cell cycle progression. Our results show that SM and HG exert phenomenological distinct responses over cell cycle progression. The deficits of SM can be restored by terrestrial gravitational force, whereas the effects of HG are indistinguishable from the 1 g control. This suggests that the mechanotransduction apparatus of cells responds differently to mechanical unloading and loading. PMID:23974110

  13. Aluminum induces chromosome aberrations, micronuclei, and cell cycle dysfunction in root cells of Vicia faba.

    PubMed

    Yi, Min; Yi, Huilan; Li, Honghai; Wu, Lihua

    2010-04-01

    Aluminum (Al) exists naturally in air, water, and soil, and also in our diet. Al can be absorbed into the human body and accumulates in different tissues, which has been linked to the occurrence of Alzheimer's disease and various neurological disorders. By using Vicia cytogenetic tests, which are commonly used to monitor the genotoxicity of environmental pollutants, cytogenetic effects of aluminum (AlCl(3)) were investigated in this study. Present results showed that Al caused significant increases in the frequencies of micronuclei (MN) and anaphase chromosome aberrations in Vicia faba root tips exposed to Al over a concentration-tested range of 0.01-10 mM for 12 h. The frequency of micronucleated cells was higher in Al-treated groups at pH 4.5 than that at pH 5.8. Similarly, AlCl(3) treatment caused a decrease in the number of mitotic cells in a dose- and pH-dependent manner. The number of cells in each mitotic phase changed in Al-treated samples. Mitotic indices (MI) decreased with the increases of pycnotic cells. Our results demonstrate that aluminum chloride is a clear clastogenic/genotoxic and cytotoxic agent in Vicia root cells. The V. faba cytogenetic test could be used for the genotoxicity monitoring of aluminum water contamination.

  14. [Effects of chlorobenzene stress on seedling growth and cell division of Vicia faba].

    PubMed

    Liu, Wan; Zhou, Qixing; Li, Peijun; Sun, Tieheng; Tai, Peidong; Xu, Huaxia; Zhang, Chungui; Zhang, Hairong

    2003-04-01

    Effects of 1, 2, 4-trichlorobenzene (TCB) stress on seedling growth, cell division and chromosomal aberration frequency of root-tip cells of Vicia faba were studied. The results indicated that the growth of the root length and mitotic index of root tip cells were successively decreased and even stopped with the increase of TCB concentrations and treatment duration. Numerical and structural chromosomal aberrations at metaphase and anaphase of root-tip cells in Vicia faba seedlings were produced by 50-300 micrograms.g-1 TCB treatment for 12-96 h. The percentage of c-mitosis, chromosomal bridge and chromosomal asymmetry array in root tip cells exposed to 50-100 micrograms.g-1 TCB for 12-24 h was up to 1.0-10.3%. The percentage of chromosomal stickness (S), chromosomal stickiness + chromosomal breakage (S + B), chromosomal stickness + chromosomal ring (S + R), chromosomal stickiness + chromosomal asymmetry array (S + A) and chromosomal stickness + chromosomal bridge (S + Be) in root tip cells reached 47.9-88.9%, and 18.1-29.6% for different kinds of chromosomal breakage at 300 micrograms.g-1 TCB for 12-96 h. Thus, the chromosomal aberration of root tip cells in Vicia faba seedlings could be used as a sensitive biomarker of monitoring soil contaminated with TCB.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, J.R.; Chang, L.W.; Meckes, M.C.

    Soil from a site heavily contaminated with polychlorinated biphenyls (PCBs) was treated with a pilot-scale, solvent extraction technology. Bioassays in earthworms and plants were used to examine the efficacy of the remediation process for reducing the toxicity of the soil. The earthworm toxicity bioassays were the 14-d survival test and 21-d reproduction test, using Lumbricus terrestris and Eisenia fetida andrei. The plant bioassays included phytotoxicity tests for seed germination and root elongation in lettuce and oats, and a genotoxicity test (anaphase aberrations) in Allium cepa (common onion). Although the PCB content of the soil was reduced by 99% (below themore » remediation goal), toxicity to earthworm reproduction remained essentially unchanged following remediation. Furthermore, phytotoxicity and genotoxicity were higher for the remediated soil compared to the untreated soil. The toxicity remaining after treatment appeared to be due to residual solvent introduced during the remediation process, and/or to heavy metals or other inorganic contaminants not removed by the treatment. Mixture studies involving isopropanol and known toxicants indicated possible synergistic effects of the extraction solvent and soil contaminants. The toxicity in plants was essentially eliminated by a postremediation, water-rinsing step. These results demonstrate a need for including toxicity measurements in the evaluation of technologies used in hazardous waste site remediations, and illustrate the potential value of such measurements for making modifications to remediation processes.« less

  16. An H2A Histone Isotype, H2ac, Associates with Telomere and Maintains Telomere Integrity

    PubMed Central

    Tzeng, Tsai-Yu; Lin, I-Hsuan; Hsu, Ming-Ta

    2016-01-01

    Telomeres are capped at the ends of eukaryotic chromosomes and are composed of TTAGGG repeats bound to the shelterin complex. Here we report that a replication-dependent histone H2A isotype, H2ac, was associated with telomeres in human cells and co-immunoprecipitates with telomere repeat factor 2 (TRF2) and protection of telomeres protein 1 (POT1), whereas other histone H2A isotypes and mutations of H2ac did not bind to telomeres or these two proteins. The amino terminal basic domain of TRF2 was necessary for the association with H2ac and for the recruitment of H2ac to telomeres. Depletion of H2ac led to loss of telomeric repeat sequences, the appearance of dysfunctional telomeres, and chromosomal instability, including chromosomal breaks and anaphase bridges, as well as accumulation of telomere-associated DNA damage factors in H2ac depleted cells. Additionally, knockdown of H2ac elicits an ATM-dependent DNA damage response at telomeres and depletion of XPF protects telomeres against H2ac-deficiency-induced G-strand overhangs loss and DNA damage response, and prevents chromosomal instability. These findings suggest that the H2A isotype, H2ac, plays an essential role in maintaining telomere functional integrity. PMID:27228173

  17. Drosophila cell cycle under arrest: uncapped telomeres plead guilty.

    PubMed

    Cenci, Giovanni

    2009-04-01

    Telomeres are specialized structures that protect chromosome ends from degradation and fusion events. In most organisms, telomeres consist of short, repetitive G-rich sequences added to chromosome ends by a reverse transcriptase with an internal RNA template, called telomerase. Specific DNA-binding protein complexes associate with telomeric sequences preventing chromosome ends from being recognized as DNA double strand breaks (DSBs). Telomeres that lose their cap activate the DNA damage response (DDR) likewise DSBs and, if inappropriately repaired, generate telomeric fusions, which eventually lead to genome instability. In Drosophila there is not telomerase, and telomere length is maintained by transposition of three specialized retroelements. However, fly telomeres are protected by multi protein complexes like their yeast and vertebrate counterparts; these complexes bind chromosome ends in a sequence-independent fashion and are required to prevent checkpoint activation and end-to-end fusion. Uncapped Drosophila telomeres elicit a DDR just as dysfunctional human telomeres. Most interestingly, uncapped Drosophila telomeres also activate the spindle assembly checkpoint (SAC) by recruiting the SAC kinase BubR1. BubR1 accumulations at chromosome ends trigger the SAC that inhibits the metaphase-to-anaphase transition. These findings, reviewed here, highlight an intriguing and unsuspected connection between telomeres and cell cycle regulation, providing a clue to understand human telomere function.

  18. The Deadbeat Paternal Effect of Uncapped Sperm Telomeres on Cell Cycle Progression and Chromosome Behavior in Drosophila melanogaster

    PubMed Central

    Yamaki, Takuo; Yasuda, Glenn K.; Wakimoto, Barbara T.

    2016-01-01

    Telomere-capping complexes (TCCs) protect the ends of linear chromosomes from illegitimate repair and end-to-end fusions and are required for genome stability. The identity and assembly of TCC components have been extensively studied, but whether TCCs require active maintenance in nondividing cells remains an open question. Here we show that Drosophila melanogaster requires Deadbeat (Ddbt), a sperm nuclear basic protein (SNBP) that is recruited to the telomere by the TCC and is required for TCC maintenance during genome-wide chromatin remodeling, which transforms spermatids to mature sperm. Ddbt-deficient males produce sperm lacking TCCs. Their offspring delay the initiation of anaphase as early as cycle 1 but progress through the first two cycles. Persistence of uncapped paternal chromosomes induces arrest at or around cycle 3. This early arrest can be rescued by selective elimination of paternal chromosomes and production of gynogenetic haploid or haploid mosaics. Progression past cycle 3 can also occur if embryos have reduced levels of the maternally provided checkpoint kinase Chk2. The findings provide insights into how telomere integrity affects the regulation of the earliest embryonic cell cycles. They also suggest that other SNBPs, including those in humans, may have analogous roles and manifest as paternal effects on embryo quality. PMID:27029731

  19. Condensin loaded onto the replication fork barrier site in the rRNA gene repeats during S phase in a FOB1-dependent fashion to prevent contraction of a long repetitive array in Saccharomyces cerevisiae.

    PubMed

    Johzuka, Katsuki; Terasawa, Masahiro; Ogawa, Hideyuki; Ogawa, Tomoko; Horiuchi, Takashi

    2006-03-01

    An average of 200 copies of the rRNA gene (rDNA) is clustered in a long tandem array in Saccharomyces cerevisiae. FOB1 is known to be required for expansion/contraction of the repeats by stimulating recombination, thereby contributing to the maintenance of the average copy number. In Deltafob1 cells, the repeats are still maintained without any fluctuation in the copy number, suggesting that another, unknown system acts to prevent repeat contraction. Here, we show that condensin acts together with FOB1 in a functionally complemented fashion to maintain the long tandem repeats. Six condensin mutants possessing severely contracted rDNA repeats were isolated in Deltafob1 cells but not in FOB1+ cells. We also found that the condensin complex associated with the nontranscribed spacer region of rDNA with a major peak coincided with the replication fork barrier (RFB) site in a FOB1-dependent fashion. Surprisingly, condensin association with the RFB site was established during S phase and was maintained until anaphase. These results indicate that FOB1 plays a novel role in preventing repeat contraction by regulating condensin association and suggest a link between replication termination and chromosome condensation and segregation.

  20. A Microbial Avenue to Cell Cycle Control in the Plant Superkingdom[C][W][OPEN

    PubMed Central

    Tulin, Frej; Cross, Frederick R.

    2014-01-01

    Research in yeast and animals has resulted in a well-supported consensus model for eukaryotic cell cycle control. The fit of this model to early diverging eukaryotes, such as the plant kingdom, remains unclear. Using the green alga Chlamydomonas reinhardtii, we developed an efficient pipeline, incorporating robotics, semiautomated image analysis, and deep sequencing, to molecularly identify >50 genes, mostly conserved in higher plants, specifically required for cell division but not cell growth. Mutated genes include the cyclin-dependent kinases CDKA (resembling yeast and animal Cdk1) and the plant-specific CDKB. The Chlamydomonas cell cycle consists of a long G1 during which cells can grow >10-fold, followed by multiple rapid cycles of DNA replication and segregation. CDKA and CDKB execute nonoverlapping functions: CDKA promotes transition between G1 and entry into the division cycle, while CDKB is essential specifically for spindle formation and nuclear division, but not for DNA replication, once CDKA-dependent initiation has occurred. The anaphase-promoting complex is required for similar steps in the Chlamydomonas cell cycle as in Opisthokonts; however, the spindle assembly checkpoint, which targets the APC in Opisthokonts, appears severely attenuated in Chlamydomonas, based on analysis of mutants affecting microtubule function. This approach allows unbiased integration of the consensus cell cycle control model with innovations specific to the plant lineage. PMID:25336509

  1. Molecular characterisation of a mosaicism with a complex chromosome rearrangement: evidence for coincident chromosome healing by telomere capture and neo‐telomere formation

    PubMed Central

    Chabchoub, Elyes; Rodríguez, Laura; Galán, Enrique; Mansilla, Elena; Martínez‐Fernandez, Maria Luisa; Martínez‐Frías, Maria Luisa; Fryns, Jean‐Pierre; Vermeesch, Joris Robert

    2007-01-01

    Background Broken chromosomes must acquire new telomeric “caps” to be structurally stable. Chromosome healing can be mediated either by telomerase through neo‐telomere synthesis or by telomere capture. Aim To unravel the mechanism(s) generating complex chromosomal mosaicisms and healing broken chromosomes. Methods G banding, array comparative genomic hybridization (aCGH), fluorescence in‐situ hybridisation (FISH) and short tandem repeat analysis (STR) was performed on a girl presenting with mental retardation, facial dysmorphism, urogenital malformations and limb anomalies carrying a complex chromosomal mosaicism. Results & discussion The karyotype showed a de novo chromosome rearrangement with two cell lines: one cell line with a deletion 9pter and one cell line carrying an inverted duplication 9p and a non‐reciprocal translocation 5pter fragment. aCGH, FISH and STR analysis enabled the deduction of the most likely sequence of events generating this complex mosaic. During embryogenesis, a double‐strand break occurred on the paternal chromosome 9. Following mitotic separation of both broken sister chromatids, one acquired a telomere vianeo‐telomere formation, while the other generated a dicentric chromosome which underwent breakage during anaphase, giving rise to the del inv dup(9) that was subsequently healed by chromosome 5 telomere capture. Conclusion Broken chromosomes can coincidently be rescued by both telomere capture and neo‐telomere synthesis. PMID:17172463

  2. Histone H3 Tails Containing Dimethylated Lysine and Adjacent Phosphorylated Serine Modifications Adopt a Specific Conformation during Mitosis and Meiosis▿ †

    PubMed Central

    Eberlin, Adrien; Grauffel, Cédric; Oulad-Abdelghani, Mustapha; Robert, Flavie; Torres-Padilla, Maria-Elena; Lambrot, Romain; Spehner, Danièle; Ponce-Perez, Lourdes; Würtz, Jean-Marie; Stote, Roland H.; Kimmins, Sarah; Schultz, Patrick; Dejaegere, Annick; Tora, Laszlo

    2008-01-01

    Condensation of chromatin, mediated in part by posttranslational modifications of histones, is essential for cell division during mitosis. Histone H3 tails are dimethylated on lysine (Kme2) and become phosphorylated on serine (Sp) residues during mitosis. We have explored the possibility that these double modifications are involved in the establishment of H3 tail conformations during the cell cycle. Here we describe a specific chromatin conformation occurring at Kme2 and adjacently phosphorylated S of H3 tails upon formation of a hydrogen bond. This conformation appears exclusively between early prophase and early anaphase of the mitosis, when chromatin condensation is highest. Moreover, we observed that the conformed H3Kme2Sp tail is present at the diplotene and metaphase stages in spermatocytes and oocytes. Our data together with results obtained by cryoelectron microscopy suggest that the conformation of Kme2Sp-modified H3 tails changes during mitosis and meiosis. This is supported by biostructural modeling of a modified histone H3 tail bound by an antibody, indicating that Kme2Sp-modified H3 tails can adopt at least two different conformations. Thus, the H3K9me2S10p and the H3K27me2S28p sites are involved in the acquisition of specific chromatin conformations during chromatin condensation for cell division. PMID:18180282

  3. CDC20 maintains tumor initiating cells

    PubMed Central

    Xie, Qi; Wu, Qiulian; Mack, Stephen C.; Yang, Kailin; Kim, Leo; Hubert, Christopher G.; Flavahan, William A.; Chu, Chengwei; Bao, Shideng; Rich, Jeremy N.

    2015-01-01

    Glioblastoma is the most prevalent and lethal primary intrinsic brain tumor. Glioblastoma displays hierarchical arrangement with a population of self-renewing and tumorigenic glioma tumor initiating cells (TICs), or cancer stem cells. While non-neoplastic neural stem cells are generally quiescent, glioblastoma TICs are often proliferative with mitotic control offering a potential point of fragility. Here, we interrogate the role of cell-division cycle protein 20 (CDC20), an essential activator of anaphase-promoting complex (APC) E3 ubiquitination ligase, in the maintenance of TICs. By chromatin analysis and immunoblotting, CDC20 was preferentially expressed in TICs relative to matched non-TICs. Targeting CDC20 expression by RNA interference attenuated TIC proliferation, self-renewal and in vivo tumor growth. CDC20 disruption mediated its effects through induction of apoptosis and inhibition of cell cycle progression. CDC20 maintains TICs through degradation of p21CIP1/WAF1, a critical negative regulator of TICs. Inhibiting CDC20 stabilized p21CIP1/WAF1, resulting in repression of several genes critical to tumor growth and survival, including CDC25C, c-Myc and Survivin. Transcriptional control of CDC20 is mediated by FOXM1, a central transcription factor in TICs. These results suggest CDC20 is a critical regulator of TIC proliferation and survival, linking two key TIC nodes – FOXM1 and p21CIP1/WAF1 — elucidating a potential point for therapeutic intervention. PMID:25938542

  4. Chromosomal Instability Affects the Tumorigenicity of Glioblastoma Tumor-Initiating Cells.

    PubMed

    Godek, Kristina M; Venere, Monica; Wu, Quilian; Mills, Kevin D; Hickey, William F; Rich, Jeremy N; Compton, Duane A

    2016-05-01

    Tumors are dynamic organs that evolve during disease progression with genetic, epigenetic, and environmental differences among tumor cells serving as the foundation for selection and evolution in tumors. Tumor-initiating cells (TIC) that are responsible for tumorigenesis are a source of functional cellular heterogeneity, whereas chromosomal instability (CIN) is a source of karyotypic genetic diversity. However, the extent that CIN contributes to TIC genetic diversity and its relationship to TIC function remains unclear. Here, we demonstrate that glioblastoma TICs display CIN with lagging chromosomes at anaphase and extensive nonclonal chromosome copy-number variations. Elevating the basal chromosome missegregation rate in TICs decreases both proliferation and the stem-like phenotype of TICs in vitro Consequently, tumor formation is abolished in an orthotopic mouse model. These results demonstrate that TICs generate genetic heterogeneity within tumors, but that TIC function is impaired if the rate of genetic change is elevated above a tolerable threshold. Genetic heterogeneity among TICs may produce advantageous karyotypes that lead to therapy resistance and relapse; however, we found that TICs have an upper tolerable limit for CIN. Thus, increasing the chromosome missegregation rate offers a new therapeutic strategy to eliminate TICs from tumors. Cancer Discov; 6(5); 532-45. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 461. ©2016 American Association for Cancer Research.

  5. NBS1 plays a synergistic role with telomerase in the maintenance of telomeres in Arabidopsis thaliana.

    PubMed

    Najdekrova, Lucie; Siroky, Jiri

    2012-09-17

    Telomeres, as elaborate nucleo-protein complexes, ensure chromosomal stability. When impaired, the ends of linear chromosomes can be recognised by cellular repair mechanisms as double-strand DNA breaks and can be healed by non-homologous-end-joining activities to produce dicentric chromosomes. During cell divisions, particularly during anaphase, dicentrics can break, thus producing naked chromosome tips susceptible to additional unwanted chromosome fusion. Many telomere-building protein complexes are associated with telomeres to ensure their proper capping function. It has been found however, that a number of repair complexes also contribute to telomere stability. We used Arabidopsis thaliana to study the possible functions of the DNA repair subunit, NBS1, in telomere homeostasis using knockout nbs1 mutants. The results showed that although NBS1-deficient plants were viable, lacked any sign of developmental aberration and produced fertile seeds through many generations upon self-fertilisation, plants also missing the functional telomerase (double mutants), rapidly, within three generations, displayed severe developmental defects. Cytogenetic inspection of cycling somatic cells revealed a very early onset of massive genome instability. Molecular methods used for examining the length of telomeres in double homozygous mutants detected much faster telomere shortening than in plants deficient in telomerase gene alone. Our findings suggest that NBS1 acts in concert with telomerase and plays a profound role in plant telomere renewal.

  6. Liaisons between survivin and Plk1 during cell division and cell death.

    PubMed

    Colnaghi, Rita; Wheatley, Sally P

    2010-07-16

    Survivin and Plk1 kinase are important mediators of cell survival that are required for chromosome alignment, cytokinesis, and protection from apoptosis. Interference with either survivin or Plk1 activity manifests many similar outcomes: prometaphase delay/arrest, multinucleation, and increased apoptosis. Moreover, the expression of both survivin and Plk1 is deregulated in cancer. Given these similarities, we speculated that these two proteins may cooperate during mitosis and/or in cell death pathways. Here we report that survivin and Plk1 interact during mitosis and that Plk1 phosphorylates survivin at serine 20. Importantly, we find that overexpression of a non-phosphorylatable version, S20A, is unable to correct chromosomes connected to the spindle in a syntelic manner during prometaphase and allows cells harboring these maloriented chromosomes to enter anaphase, evading the spindle tension checkpoint. By contrast, the constitutive phosphomimic, S20D, completes congression and division ahead of schedule and, unlike S20A, is able to support proliferation in the absence of the endogenous protein. Despite the importance of this residue in mitosis, its mutation does not appear to affect the anti-apoptotic activity of survivin in response to TRAIL. Together, these data suggest that phosphorylation of survivin at Ser(20) by Plk1 kinase is essential for accurate chromosome alignment and cell proliferation but is dispensable for its anti-apoptotic activity in cancer cells.

  7. Chromosomal instability in mouse embryonic fibroblasts null for the transcriptional co-repressor Ski

    PubMed Central

    Marcelain, Katherine; Armisen, Ricardo; Aguirre, Adam; Ueki, Nobuhide; Toro, Jessica; Colmenares, Clemencia; Hayman, Michael J

    2011-01-01

    Ski is a transcriptional regulator that has been considered an oncoprotein, given its ability to induce oncogenic transformation in avian model systems. However, studies in mouse and in some human tumor cells have also indicated a tumor suppressor activity for this protein. We found that Ski−/− mouse embryo fibroblasts exhibit high levels of genome instability, namely aneuploidy, consistent with a tumor suppressor function for Ski. Time-lapse microscopy revealed lagging chromosomes and chromatin/chromosome bridges as the major cause of micronuclei formation and the subsequent aneuploidy. Although these cells arrested in mitosis after treatment with spindle disrupting drugs and exhibited a delayed metaphase/anaphase transition, Spindle Assembly Checkpoint (SAC) was not sufficient to prevent chromosome missegregation, consistent with a weakened SAC. Our in vivo analysis also showed dynamic metaphase plate rearrangements with switches in polarity in cells arrested in metaphase. Importantly, after ectopic expression of Ski the cells that displayed this metaphase arrest died directly during metaphase or after aberrant cell division, relating SAC activation and mitotic cell death. This increased susceptibility to undergo mitosis-associated cell death reduced the number of micronuclei-containing cells. The presented data support a new role for Ski in the mitotic process and in maintenance of genetic stability, providing insights into the mechanism of tumor suppression mediated by this protein. PMID:21412778

  8. Two Geminin homologs regulate DNA replication in silkworm, Bombyx mori.

    PubMed

    Tang, Xiao-Fang; Chen, Xiang-Yun; Zhang, Chun-Dong; Li, Yao-Feng; Liu, Tai-Hang; Zhou, Xiao-Lin; Wang, La; Zhang, Qian; Chen, Peng; Lu, Cheng; Pan, Min-Hui

    2017-05-03

    DNA replication is rigorously controlled in cells to ensure that the genome duplicates exactly once per cell cycle. Geminin is a small nucleoprotein, which prevents DNA rereplication by directly binding to and inhibiting the DNA replication licensing factor, Cdt1. In this study, we have identified 2 Geminin genes, BmGeminin1 and BmGeminn2, in silkworm, Bombyx mori. These genes contain the Geminin conserved coiled-coil domain and are periodically localized in the nucleus during the S-G2 phase but are degraded at anaphase in mitosis. Both BmGeminin1 and BmGeminin2 are able to homodimerize and interact with BmCdt1 in cells. In addition, BmGeminin1 and BmGeminin2 can interact with each other. Overexpression of BmGeminin1 affects cell cycle progression: cell cycle is arrested in S phase, and RNA interference of BmGeminin1 leads to rereplication. In contrast, overexpression or knockdown of BmGeminin2 with RNAi did not significantly affect cell cycle, while more rereplication occurred when BmGeminin1 and BmGeminin2 together were knocked down in cells than when only BmGeminin1 was knocked down. These data suggest that both BmGeminin1 and BmGeminin2 are involved in the regulation of DNA replication. These findings provide insight into the function of Geminin and contribute to our understanding of the regulation mechanism of cell cycle in silkworm.

  9. Distinct chromatin environment associated with phosphorylated H3S10 histone during pollen mitosis I in orchids.

    PubMed

    Sharma, Santosh Kumar; Yamamoto, Maki; Mukai, Yasuhiko

    2017-01-01

    Pollen developmental pathway in plants involving synchronized transferal of cellular divisions from meiosis (microsporogenesis) to mitosis (pollen mitosis I/II) eventually offers a unique "meiosis-mitosis shift" at pollen mitosis I. Since the cell type (haploid microspore) and fate of pollen mitosis I differ from typical mitosis (in meristem cells), it is immensely important to analyze the chromosomal distribution of phosphorylated H3S10 histone during atypical pollen mitosis I to comprehend the role of histone phosphorylation in pollen development. We investigated the chromosomal phosphorylation of H3S10 histone during pollen mitosis I in orchids using immunostaining technique. The chromosomal distribution of H3S10ph during pollen mitosis I revealed differential pattern than that of typical mitosis in plants, however, eventually following the similar trends of mitosis in animals where H3S10 phosphorylation begins in the pericentromeric regions first, later extending to the whole chromosomes, and finally declining at anaphase/early cytokinesis (differentiation of vegetative and generative cells). The study suggests that the chromosomal distribution of H3S10ph during cell division is not universal and can be altered between different cell types encoded for diverse cellular processes. During pollen development, phosphorylation of histone might play a critical role in chromosome condensation events throughout pollen mitosis I in plants.

  10. Sperm nuclear expansion and meiotic maturation in normal and gynogenetic eggs of the scallop, Chlamys farreri

    NASA Astrophysics Data System (ADS)

    Pan, Ying; Li, Qi; Yu, Ruihai; Wang, Rucai

    2008-02-01

    Sperm nuclear expansion, meiosis and the association of the male and female pronuclei leading to the four-cell stage in normal Chlamys farreri eggs were observed under a fluorescence microscope. The effects of ultraviolet (UV) irradiation on the fertilizing sperm were also examined. Both normal and UV-irradiated sperm nuclei enlarged at three distinct phases (phase A, metaphase I; phase B, polar body formation; and phase C, female pronuclear development and expansion) that were temporally correlated with meiotic process of the maternal chromosomes. Sperm nuclei underwent a rapid, initial enlargement during phase A, but condensed slightly during phase B, then re-enlarged during phase C. The effects of UV irradiation were not apparent during transformation of the sperm nucleus into a male pronucleus, and there was not any apparent effect on meiotic maturation and development of the female pronucleus. However, the rate of expansion of the UV-irradiated sperm nuclei and the size of male pronuclei were reduced apparently. Unlike the female pronucleus, the male pronucleus derived from sperm genome inactivated by UV irradiation did not form chromosomes, but became a dense chromatin body (DCB). At mitotic anaphase, DCB did not participate in the karyokinesis of the first cleavage as evidenced by chromosomal nondisjunction, demonstrating the effectiveness of using UV irradiation to induce gynogenetic scallop embryos.

  11. APC/C-Cdc20 mediates deprotection of centromeric cohesin at meiosis II in yeast.

    PubMed

    Jonak, Katarzyna; Zagoriy, Ievgeniia; Oz, Tugce; Graf, Peter; Rojas, Julie; Mengoli, Valentina; Zachariae, Wolfgang

    2017-06-18

    Cells undergoing meiosis produce haploid gametes through one round of DNA replication followed by 2 rounds of chromosome segregation. This requires that cohesin complexes, which establish sister chromatid cohesion during S phase, are removed in a stepwise manner. At meiosis I, the separase protease triggers the segregation of homologous chromosomes by cleaving cohesin's Rec8 subunit on chromosome arms. Cohesin persists at centromeres because the PP2A phosphatase, recruited by the shugoshin protein, dephosphorylates Rec8 and thereby protects it from cleavage. While chromatids disjoin upon cleavage of centromeric Rec8 at meiosis II, it was unclear how and when centromeric Rec8 is liberated from its protector PP2A. One proposal is that bipolar spindle forces separate PP2A from Rec8 as cells enter metaphase II. We show here that sister centromere biorientation is not sufficient to "deprotect" Rec8 at meiosis II in yeast. Instead, our data suggest that the ubiquitin-ligase APC/C Cdc20 removes PP2A from centromeres by targeting for degradation the shugoshin Sgo1 and the kinase Mps1. This implies that Rec8 remains protected until entry into anaphase II when it is phosphorylated concurrently with the activation of separase. Here, we provide further support for this model and speculate on its relevance to mammalian oocytes.

  12. APC/C-Cdc20 mediates deprotection of centromeric cohesin at meiosis II in yeast

    PubMed Central

    Jonak, Katarzyna; Oz, Tugce; Graf, Peter; Rojas, Julie; Mengoli, Valentina; Zachariae, Wolfgang

    2017-01-01

    ABSTRACT Cells undergoing meiosis produce haploid gametes through one round of DNA replication followed by 2 rounds of chromosome segregation. This requires that cohesin complexes, which establish sister chromatid cohesion during S phase, are removed in a stepwise manner. At meiosis I, the separase protease triggers the segregation of homologous chromosomes by cleaving cohesin's Rec8 subunit on chromosome arms. Cohesin persists at centromeres because the PP2A phosphatase, recruited by the shugoshin protein, dephosphorylates Rec8 and thereby protects it from cleavage. While chromatids disjoin upon cleavage of centromeric Rec8 at meiosis II, it was unclear how and when centromeric Rec8 is liberated from its protector PP2A. One proposal is that bipolar spindle forces separate PP2A from Rec8 as cells enter metaphase II. We show here that sister centromere biorientation is not sufficient to “deprotect” Rec8 at meiosis II in yeast. Instead, our data suggest that the ubiquitin-ligase APC/CCdc20 removes PP2A from centromeres by targeting for degradation the shugoshin Sgo1 and the kinase Mps1. This implies that Rec8 remains protected until entry into anaphase II when it is phosphorylated concurrently with the activation of separase. Here, we provide further support for this model and speculate on its relevance to mammalian oocytes. PMID:28514186

  13. Abnormal mitosis triggers p53-dependent cell cycle arrest in human tetraploid cells.

    PubMed

    Kuffer, Christian; Kuznetsova, Anastasia Yurievna; Storchová, Zuzana

    2013-08-01

    Erroneously arising tetraploid mammalian cells are chromosomally instable and may facilitate cell transformation. An increasing body of evidence shows that the propagation of mammalian tetraploid cells is limited by a p53-dependent arrest. The trigger of this arrest has not been identified so far. Here we show by live cell imaging of tetraploid cells generated by an induced cytokinesis failure that most tetraploids arrest and die in a p53-dependent manner after the first tetraploid mitosis. Furthermore, we found that the main trigger is a mitotic defect, in particular, chromosome missegregation during bipolar mitosis or spindle multipolarity. Both a transient multipolar spindle followed by efficient clustering in anaphase as well as a multipolar spindle followed by multipolar mitosis inhibited subsequent proliferation to a similar degree. We found that the tetraploid cells did not accumulate double-strand breaks that could cause the cell cycle arrest after tetraploid mitosis. In contrast, tetraploid cells showed increased levels of oxidative DNA damage coinciding with the p53 activation. To further elucidate the pathways involved in the proliferation control of tetraploid cells, we knocked down specific kinases that had been previously linked to the cell cycle arrest and p53 phosphorylation. Our results suggest that the checkpoint kinase ATM phosphorylates p53 in tetraploid cells after abnormal mitosis and thus contributes to proliferation control of human aberrantly arising tetraploids.

  14. The Root Hair “Infectome” of Medicago truncatula Uncovers Changes in Cell Cycle Genes and Reveals a Requirement for Auxin Signaling in Rhizobial Infection[W][OPEN

    PubMed Central

    Breakspear, Andrew; Liu, Chengwu; Roy, Sonali; Stacey, Nicola; Rogers, Christian; Trick, Martin; Morieri, Giulia; Mysore, Kirankumar S.; Wen, Jiangqi; Oldroyd, Giles E.D.; Downie, J. Allan

    2014-01-01

    Nitrogen-fixing rhizobia colonize legume roots via plant-made intracellular infection threads. Genetics has identified some genes involved but has not provided sufficient detail to understand requirements for infection thread development. Therefore, we transcriptionally profiled Medicago truncatula root hairs prior to and during the initial stages of infection. This revealed changes in the responses to plant hormones, most notably auxin, strigolactone, gibberellic acid, and brassinosteroids. Several auxin responsive genes, including the ortholog of Arabidopsis thaliana Auxin Response Factor 16, were induced at infection sites and in nodule primordia, and mutation of ARF16a reduced rhizobial infection. Associated with the induction of auxin signaling genes, there was increased expression of cell cycle genes including an A-type cyclin and a subunit of the anaphase promoting complex. There was also induction of several chalcone O-methyltransferases involved in the synthesis of an inducer of Sinorhizobium meliloti nod genes, as well as a gene associated with Nod factor degradation, suggesting both positive and negative feedback loops that control Nod factor levels during rhizobial infection. We conclude that the onset of infection is associated with reactivation of the cell cycle as well as increased expression of genes required for hormone and flavonoid biosynthesis and that the regulation of auxin signaling is necessary for initiation of rhizobial infection threads. PMID:25527707

  15. Saccharomyces cerevisiae Gle2/Rae1 is involved in septin organization, essential for cell cycle progression.

    PubMed

    Zander, Gesa; Kramer, Wilfried; Seel, Anika; Krebber, Heike

    2017-11-01

    Gle2/Rae1 is highly conserved from yeast to humans and has been described as an mRNA export factor. Additionally, it is implicated in the anaphase-promoting complex-mediated cell cycle regulation in higher eukaryotes. Here we identify an involvement for Saccharomyces cerevisiae Gle2 in septin organization, which is crucial for cell cycle progression and cell division. Gle2 genetically and physically interacts with components of the septin ring. Importantly, deletion of GLE2 leads to elongated buds, severe defects in septin-assembly and their cellular mislocalization. Septin-ring formation is triggered by the septin-regulating GTPase Cdc42, which establishes and maintains cell polarity. Additionally, activity of the master cell cycle regulator Cdc28 (Cdk1) is needed, which is, besides other functions, also required for G 2 /M-transition, and in yeast particularly responsible for initiating the apical-isotropic switch. We show genetic and physical interactions of Gle2 with both Cdc42 and Cdc28. Most importantly, we find that gle2∆ severely mislocalizes Cdc42, leading to defects in septin-complex formation and cell division. Thus, our findings suggest that Gle2 participates in the efficient organization of the septin assembly network, where it might act as a scaffold protein. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd.

  16. Phenotypic analysis of separation-of-function alleles of MEI-41, Drosophila ATM/ATR.

    PubMed Central

    Laurençon, Anne; Purdy, Amanda; Sekelsky, Jeff; Hawley, R Scott; Su, Tin Tin

    2003-01-01

    ATM/ATR kinases act as signal transducers in eukaryotic DNA damage and replication checkpoints. Mutations in ATM/ATR homologs have pleiotropic effects that range from sterility to increased killing by genotoxins in humans, mice, and Drosophila. Here we report the generation of a null allele of mei-41, Drosophila ATM/ATR homolog, and the use of it to document a semidominant effect on a larval mitotic checkpoint and methyl methanesulfonate (MMS) sensitivity. We also tested the role of mei-41 in a recently characterized checkpoint that delays metaphase/anaphase transition after DNA damage in cellular embryos. We then compare five existing mei-41 alleles to the null with respect to known phenotypes (female sterility, cell cycle checkpoints, and MMS resistance). We find that not all phenotypes are affected equally by each allele, i.e., the functions of MEI-41 in ensuring fertility, cell cycle regulation, and resistance to genotoxins are genetically separable. We propose that MEI-41 acts not in a single rigid signal transduction pathway, but in multiple molecular contexts to carry out its many functions. Sequence analysis identified mutations, which, for most alleles, fall in the poorly characterized region outside the kinase domain; this allowed us to tentatively identify additional functional domains of MEI-41 that could be subjected to future structure-function studies of this key molecule. PMID:12807779

  17. TDM1 Regulation Determines the Number of Meiotic Divisions

    PubMed Central

    Cifuentes, Marta; Jolivet, Sylvie; Cromer, Laurence; Harashima, Hirofumi; Bulankova, Petra; Renne, Charlotte; Crismani, Wayne; Nomura, Yuko; Nakagami, Hirofumi; Sugimoto, Keiko; Schnittger, Arp; Riha, Karel; Mercier, Raphael

    2016-01-01

    Cell cycle control must be modified at meiosis to allow two divisions to follow a single round of DNA replication, resulting in ploidy reduction. The mechanisms that ensure meiosis termination at the end of the second and not at the end of first division are poorly understood. We show here that Arabidopsis thaliana TDM1, which has been previously shown to be essential for meiotic termination, interacts directly with the Anaphase-Promoting Complex. Further, mutations in TDM1 in a conserved putative Cyclin-Dependant Kinase (CDK) phosphorylation site (T16-P17) dominantly provoked premature meiosis termination after the first division, and the production of diploid spores and gametes. The CDKA;1-CYCA1.2/TAM complex, which is required to prevent premature meiotic exit, phosphorylated TDM1 at T16 in vitro. Finally, while CYCA1;2/TAM was previously shown to be expressed only at meiosis I, TDM1 is present throughout meiosis. These data, together with epistasis analysis, lead us to propose that TDM1 is an APC/C component whose function is to ensure meiosis termination at the end of meiosis II, and whose activity is inhibited at meiosis I by CDKA;1-TAM-mediated phosphorylation to prevent premature meiotic exit. This provides a molecular mechanism for the differential decision of performing an additional round of division, or not, at the end of meiosis I and II, respectively. PMID:26871453

  18. Aneuploidy in spermatids of Robertsonian (Rb) chromosome heterozygous mice.

    PubMed

    Manieu, Catalina; González, Marisel; López-Fenner, Julio; Page, Jesús; Ayarza, Eliana; Fernández-Donoso, Raúl; Berríos, Soledad

    2014-12-01

    Rb translocations are chromosomal rearrangements frequently found in natural populations of the house mouse Mus musculus domesticus. The standard diploid karyotype of the house mouse consisting of 40 telocentric chromosomes may be reduced by the emergence of metacentric Rb chromosomes. Multiple simple Rb heterozygotes form trivalents exhibiting higher anaphase nondisjunction frequency and consequently higher number of unbalanced gametes than in normal males. This work will attempt to establish whether frequencies of aneuploidy observed in heterozygote spermatids of the house mouse M. musculus domesticus show differences in chromosomes derived from different trivalents. Towards this goal, the number and distribution frequency of aneuploidy was assessed via FISH staining of specific chromosomes of spermatids derived from 2n = 32 individuals. Our results showed that for a given set of target chromosomes, 90% of the gametes were balanced, resulting from alternate segregation, and that there were no differences (approx. 10%) in aneuploidy frequencies in chromosomes derived from different trivalents. These observations suggest that segregation effectiveness does not depend on the type of chromosomes involved in trivalents. As a consequence of the trivalent's configuration, joint segregation of the telocentric chromosomes occurs thus favoring their appearance together in early spermatids. Our data suggest that Rb chromosomes and their telocentric homologs are subject to architectural constraints placing them close to each other. This proximity may ultimately facilitate fusion between them, hence contributing to a prevalence of Rb metacentric chromosomes.

  19. APC/C Dysfunction Limits Excessive Cancer Chromosomal Instability

    PubMed Central

    Sansregret, Laurent; López-García, Carlos; Koch, André; McGranahan, Nicholas; Chao, William Chong Hang; Barry, David J.; Rowan, Andrew; Instrell, Rachael; Horswell, Stuart; Way, Michael; Howell, Michael; Singleton, Martin R.; Medema, René H.; Nurse, Paul; Petronczki, Mark; Swanton, Charles

    2017-01-01

    Intercellular heterogeneity, exacerbated by chromosomal instability (CIN), fosters tumor heterogeneity and drug resistance. However, extreme CIN correlates with improved cancer outcome, suggesting that karyotypic diversity required to adapt to selection pressures might be balanced in tumors against the risk of excessive instability. Here, we used a functional genomics screen, genome editing, and pharmacologic approaches to identify CIN-survival factors in diploid cells. We find partial anaphase-promoting complex/cyclosome (APC/C) dysfunction lengthens mitosis, suppresses pharmacologically induced chromosome segregation errors, and reduces naturally occurring lagging chromosomes in cancer cell lines or following tetraploidization. APC/C impairment caused adaptation to MPS1 inhibitors, revealing a likely resistance mechanism to therapies targeting the spindle assembly checkpoint. Finally, CRISPR-mediated introduction of cancer somatic mutations in the APC/C subunit cancer driver gene CDC27 reduces chromosome segregation errors, whereas reversal of an APC/C subunit nonsense mutation increases CIN. Subtle variations in mitotic duration, determined by APC/C activity, influence the extent of CIN, allowing cancer cells to dynamically optimize fitness during tumor evolution. Significance We report a mechanism whereby cancers balance the evolutionary advantages associated with CIN against the fitness costs caused by excessive genome instability, providing insight into the consequence of CDC27 APC/C subunit driver mutations in cancer. Lengthening of mitosis through APC/C modulation may be a common mechanism of resistance to cancer therapeutics that increase chromosome segregation errors. PMID:28069571

  20. The role of meiotic cohesin REC8 in chromosome segregation in gamma irradiation-induced endopolyploid tumour cells.

    PubMed

    Erenpreisa, Jekaterina; Cragg, Mark S; Salmina, Kristine; Hausmann, Michael; Scherthan, Harry

    2009-09-10

    Escape from mitotic catastrophe and generation of endopolyploid tumour cells (ETCs) represents a potential survival strategy of tumour cells in response to genotoxic treatments. ETCs that resume the mitotic cell cycle have reduced ploidy and are often resistant to these treatments. In search for a mechanism for genome reduction, we previously observed that ETCs express meiotic proteins among which REC8 (a meiotic cohesin component) is of particular interest, since it favours reductional cell division in meiosis. In the present investigation, we induced endopolyploidy in p53-dysfunctional human tumour cell lines (Namalwa, WI-L2-NS, HeLa) by gamma irradiation, and analysed the sub-cellular localisation of REC8 in the resulting ETCs. We observed by RT-PCR and Western blot that REC8 is constitutively expressed in these tumour cells, along with SGOL1 and SGOL2, and that REC8 becomes modified after irradiation. REC8 localised to paired sister centromeres in ETCs, the former co-segregating to opposite poles. Furthermore, REC8 localised to the centrosome of interphase ETCs and to the astral poles in anaphase cells where it colocalised with the microtubule-associated protein NuMA. Altogether, our observations indicate that radiation-induced ETCs express features of meiotic cell divisions and that these may facilitate chromosome segregation and genome reduction.

  1. Regulation of cortical contractility and spindle positioning by the protein phosphatase 6 PPH-6 in one-cell stage C. elegans embryos

    PubMed Central

    Afshar, Katayoun; Werner, Michael E.; Tse, Yu Chung; Glotzer, Michael; Gönczy, Pierre

    2010-01-01

    Modulation of the microtubule and the actin cytoskeleton is crucial for proper cell division. Protein phosphorylation is known to be an important regulatory mechanism modulating these cytoskeletal networks. By contrast, there is a relative paucity of information regarding how protein phosphatases contribute to such modulation. Here, we characterize the requirements for protein phosphatase PPH-6 and its associated subunit SAPS-1 in one-cell stage C. elegans embryos. We establish that the complex of PPH-6 and SAPS-1 (PPH-6/SAPS-1) is required for contractility of the actomyosin network and proper spindle positioning. Our analysis demonstrates that PPH-6/SAPS-1 regulates the organization of cortical non-muscle myosin II (NMY-2). Accordingly, we uncover that PPH-6/SAPS-1 contributes to cytokinesis by stimulating actomyosin contractility. Furthermore, we demonstrate that PPH-6/SAPS-1 is required for the proper generation of pulling forces on spindle poles during anaphase. Our results indicate that this requirement is distinct from the role in organizing the cortical actomyosin network. Instead, we uncover that PPH-6/SAPS-1 contributes to the cortical localization of two positive regulators of pulling forces, GPR-1/2 and LIN-5. Our findings provide the first insights into the role of a member of the PP6 family of phosphatases in metazoan development. PMID:20040490

  2. Pancreatic cancer cells express CD44 variant 9 and multidrug resistance protein 1 during mitosis.

    PubMed

    Kiuchi, Shizuka; Ikeshita, Shunji; Miyatake, Yukiko; Kasahara, Masanori

    2015-02-01

    Pancreatic cancer is one of the most lethal cancers with high metastatic potential and strong chemoresistance. Its intractable natures are attributed to high robustness in tumor cells for their survival. We demonstrate here that pancreatic cancer cells (PCCs) with an epithelial phenotype upregulate cell surface expression of CD44 variant 9 (CD44v9), an important cancer stem cell marker, during the mitotic phases of the cell cycle. Of five human CD44(+) PCC lines examined, three cell lines, PCI-24, PCI-43 and PCI-55, expressed E-cadherin and CD44 variants, suggesting that they have an epithelial phenotype. By contrast, PANC-1 and MIA PaCa-2 cells expressed vimentin and ZEB1, suggesting that they have a mesenchymal phenotype. PCCs with an epithelial phenotype upregulated cell surface expression of CD44v9 in prophase, metaphase, anaphase and telophase and downregulated CD44v9 expression in late-telophase, cytokinesis and interphase. Sorted CD44v9-negative PCI-55 cells resumed CD44v9 expression when they re-entered the mitotic stage. Interestingly, CD44v9(bright) mitotic cells expressed multidrug resistance protein 1 (MDR1) intracellularly. Upregulated expression of CD44v9 and MDR1 might contribute to the intractable nature of PCCs with high proliferative activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Detection of potential genetic hazards in complex environmental mixtures using plant cytogenetics and microbial mutagenesis assays. [Arsenic-contaminated groundwater and power plant fly ash extract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantin, M J; Lowe, K; Rao, T K

    1980-01-01

    Solid wastes have been characterized to determine their potential hazards to humans and the environment. An arsenic-contaminated ground water sample increased the frequency of histidine revertants in Salmonella typhimurium (TA-98) at 0.025 to 5.000 ..mu..l per plate with Aroclor-induced S-9 liver microsomes. When 2.5 to 75 ..mu..l of the XAD-2 concentrate (12.5-fold, v:v) were used, the mutant frequency was increased in strains TA-98, TA-100, and TA-1537; metabolic activation was not required. Only the XAD-2 concentrate was mutagenic in the Saccharomyces cerevisiae haploid strain XL-7-10B; metabolic activation was not required. The mutagenic principal, which is not known, appears to be atmore » the limit of resolution; hence, the XAD-2 concentration is necessary to demonstrate mutagenic activity. The arsenic-contaminated ground water (0.0625 and 0.125 dilutions) and the power plant fly ash extract (undiluted) increased the frequency of bridges and fragements at anaphase in root tip cells of Hordeum. The fly ash sample was negative in the microbial assays. Results emphasize (1) the need for a battery of assays with different organisms and (2) the potential of a simple assay using plant root tip cells to detect mutagenic activity in complex environmental mixtures.« less

  4. A Mutation in γ-Tubulin Alters Microtubule Dynamics and Organization and Is Synthetically Lethal with the Kinesin-like Protein Pkl1pV⃞

    PubMed Central

    Paluh, Janet L.; Nogales, Eva; Oakley, Berl R.; McDonald, Kent; Pidoux, Alison L.; Cande, W. Z.

    2000-01-01

    Mitotic segregation of chromosomes requires spindle pole functions for microtubule nucleation, minus end organization, and regulation of dynamics. γ-Tubulin is essential for nucleation, and we now extend its role to these latter processes. We have characterized a mutation in γ-tubulin that results in cold-sensitive mitotic arrest with an elongated bipolar spindle but impaired anaphase A. At 30°C cytoplasmic microtubule arrays are abnormal and bundle into single larger arrays. Three-dimensional time-lapse video microscopy reveals that microtubule dynamics are altered. Localization of the mutant γ-tubulin is like the wild-type protein. Prediction of γ-tubulin structure indicates that non-α/β-tubulin protein–protein interactions could be affected. The kinesin-like protein (klp) Pkl1p localizes to the spindle poles and spindle and is essential for viability of the γ-tubulin mutant and in multicopy for normal cell morphology at 30°C. Localization and function of Pkl1p in the mutant appear unaltered, consistent with a redundant function for this protein in wild type. Our data indicate a broader role for γ-tubulin at spindle poles in regulating aspects of microtubule dynamics and organization. We propose that Pkl1p rescues an impaired function of γ-tubulin that involves non-tubulin protein–protein interactions, presumably with a second motor, MAP, or MTOC component. PMID:10749926

  5. Enhanced degradation performances of plate-like micro/nanostructured zero valent iron to DDT.

    PubMed

    Kang, Shenghong; Liu, Shengwen; Wang, Huimin; Cai, Weiping

    2016-04-15

    Micro/nanostructured zero valent iron (MNZVI) is successfully mass-synthesized by ball-milling the industrially-reduced iron powders. The as-prepared MNZVI is plate-like in morphology with about 2-5μm in planar size and 35-55nm in thickness, and ∼16m(2)/g in specific surface area. Such plate-like MNZVI has demonstrated much higher degradation performances to DDT [or 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane] in the aqueous solution than the commercial ZVI powders under acidic conditions. The MNZVI-induced DDT degradation is also much faster than the previously reported results. The time-dependent DDT removal amount can be described by the pseudo first-order kinetic model. Further experiments have shown that more than 50% of DDT can be mineralized in 20min and the rest is dechlorinated to DDX (the products with less chlorine). It has been revealed that the DDT degradation could be attributed to the acid assisted ZVI-induced mineralization and dechlorination. The mineralization process is dominant during the initial stage within 20min, and the dechlorination is the main reaction in the anaphase of the degradation. This work not only deepens understanding of DDT degradation but also could provide a highly efficient material for the practical treatment of the DDT in a real environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Unsuccessful mitosis in multicellular tumour spheroids.

    PubMed

    Molla, Annie; Couvet, Morgane; Coll, Jean-Luc

    2017-04-25

    Multicellular spheroids are very attractive models in oncology because they mimic the 3D organization of the tumour cells with their microenvironment. We show here using 3 different cell types (mammary TSA/pc, embryonic kidney Hek293 and cervical cancer HeLa), that when the cells are growing as spheroids the frequency of binucleated cells is augmented as occurs in some human tumours.We therefore describe mitosis in multicellular spheroids by following mitotic markers and by time-lapse experiments. Chromosomes alignment appears to be correct on the metaphasic plate and the passenger complex is well localized on centromere. Moreover aurora kinases are fully active and histone H3 is phosphorylated on Ser 10. Consequently, the mitotic spindle checkpoint is satisfied and, anaphase proceeds as illustrated by the transfer of survivin on the spindle and by the segregation of the two lots of chromosomes. However, the segregation plane is not well defined and oscillations of the dividing cells are observed. Finally, cytokinesis fails and the absence of separation of the two daughter cells gives rise to binucleated cells.Division orientation is specified during interphase and persists throughout mitosis. Our data indicate that the cancer cells, in multicellular spheroids, lose their ability to regulate their orientation, a feature commonly encountered in tumours.Moreover, multicellular spheroid expansion is still sensitive to mitotic drugs as pactlitaxel and aurora kinase inhibitors. The spheroids thus represent a highly relevant model for studying drug efficiency in tumours.

  7. A mitosis block links active cell cycle with human epidermal differentiation and results in endoreplication.

    PubMed

    Zanet, Jennifer; Freije, Ana; Ruiz, María; Coulon, Vincent; Sanz, J Ramón; Chiesa, Jean; Gandarillas, Alberto

    2010-12-20

    How human self-renewal tissues co-ordinate proliferation with differentiation is unclear. Human epidermis undergoes continuous cell growth and differentiation and is permanently exposed to mutagenic hazard. Keratinocytes are thought to arrest cell growth and cell cycle prior to terminal differentiation. However, a growing body of evidence does not satisfy this model. For instance, it does not explain how skin maintains tissue structure in hyperproliferative benign lesions. We have developed and applied novel cell cycle techniques to human skin in situ and determined the dynamics of key cell cycle regulators of DNA replication or mitosis, such as cyclins E, A and B, or members of the anaphase promoting complex pathway: cdc14A, Ndc80/Hec1 and Aurora kinase B. The results show that actively cycling keratinocytes initiate terminal differentiation, arrest in mitosis, continue DNA replication in a special G2/M state, and become polyploid by mitotic slippage. They unambiguously demonstrate that cell cycle progression coexists with terminal differentiation, thus explaining how differentiating cells increase in size. Epidermal differentiating cells arrest in mitosis and a genotoxic-induced mitosis block rapidly pushes epidermal basal cells into differentiation and polyploidy. These observations unravel a novel mitosis-differentiation link that provides new insight into skin homeostasis and cancer. It might constitute a self-defence mechanism against oncogenic alterations such as Myc deregulation.

  8. Chromosomal instability in mouse embryonic fibroblasts null for the transcriptional co-repressor Ski.

    PubMed

    Marcelain, Katherine; Armisen, Ricardo; Aguirre, Adam; Ueki, Nobuhide; Toro, Jessica; Colmenares, Clemencia; Hayman, Michael J

    2012-01-01

    Ski is a transcriptional regulator that has been considered an oncoprotein given its ability to induce oncogenic transformation in avian model systems. However, studies in mouse and in some human tumor cells have also indicated a tumor suppressor activity for this protein. We found that Ski-/- mouse embryo fibroblasts exhibit high levels of genome instability, namely aneuploidy, consistent with a tumor suppressor function for Ski. Time-lapse microscopy revealed lagging chromosomes and chromatin/chromosome bridges as the major cause of micronuclei (MN) formation and the subsequent aneuploidy. Although these cells arrested in mitosis after treatment with spindle disrupting drugs and exhibited a delayed metaphase/anaphase transition, spindle assembly checkpoint (SAC) was not sufficient to prevent chromosome missegregation, consistent with a weakened SAC. Our in vivo analysis also showed dynamic metaphase plate rearrangements with switches in polarity in cells arrested in metaphase. Importantly, after ectopic expression of Ski the cells that displayed this metaphase arrest died directly during metaphase or after aberrant cell division, relating SAC activation and mitotic cell death. This increased susceptibility to undergo mitosis-associated cell death reduced the number of MN-containing cells. The presented data support a new role for Ski in the mitotic process and in maintenance of genetic stability, providing insights into the mechanism of tumor suppression mediated by this protein. Copyright © 2011 Wiley Periodicals, Inc.

  9. LIS1 controls mitosis and mitotic spindle organization via the LIS1–NDEL1–dynein complex

    PubMed Central

    Moon, Hyang Mi; Youn, Yong Ha; Pemble, Hayley; Yingling, Jessica; Wittmann, Torsten; Wynshaw-Boris, Anthony

    2014-01-01

    Heterozygous LIS1 mutations are responsible for the human neuronal migration disorder lissencephaly. Mitotic functions of LIS1 have been suggested from many organisms throughout evolution. However, the cellular functions of LIS1 at distinct intracellular compartments such as the centrosome and the cell cortex have not been well defined especially during mitotic cell division. Here, we used detailed cellular approaches and time-lapse live cell imaging of mitosis from Lis1 mutant mouse embryonic fibroblasts to reveal critical roles of LIS1 in mitotic spindle regulation. We found that LIS1 is required for the tight control of chromosome congression and segregation to dictate kinetochore–microtubule (MT) interactions and anaphase progression. In addition, LIS1 is essential for the establishment of mitotic spindle pole integrity by maintaining normal centrosome number. Moreover, LIS1 plays crucial roles in mitotic spindle orientation by increasing the density of astral MT plus-end movements toward the cell cortex, which enhances cortical targeting of LIS1–dynein complex. Overexpression of NDEL1–dynein and MT stabilization rescues spindle orientation defects in Lis1 mutants, demonstrating that mouse LIS1 acts via the LIS1–NDEL1–dynein complex to regulate astral MT plus-ends dynamics and establish proper contacts of MTs with the cell cortex to ensure precise cell division. PMID:24030547

  10. HTLV-I Tax-dependent and -independent events associated with immortalization of human primary T lymphocytes

    PubMed Central

    Bellon, Marcia; Baydoun, Hicham H.; Yao, Yuan

    2010-01-01

    Human T-cell leukemia virus type I (HTLV-I)–associated malignancies are seen in a small percentage of infected persons. Although in vitro immortalization by HTLV-I virus is very efficient, we report that Tax has poor oncogenic activity in human primary T cells and that immortalization by Tax is rare. Sustained telomerase activity represents one of the oncogenic steps required for Tax-mediated immortalization. Tax expression was required for the growth of primary T cells, but was not sufficient to propel T cells into cell cycle in the absence of exogenous interleukin-2 (IL-2). Tax was sufficient to activate the phosphoinositide-3 kinase (PI3K)/Akt pathway as shown by down regulation of Src homology phosphatase-1 and increased phosphorylation of Akt. We also found disruption of putative tumor suppressors IL-16 and translocated promoter region (TPR) in Tax-immortalized and HTLV-I–transformed cell lines. Our results confirmed previous observations that Tax activates the anaphase-promoting complex. However, Tax did not affect the mitotic spindle checkpoint, which was also functional in HTLV-I–transformed cells. These data provide a better understanding of Tax functions in human T cells, and highlight the limitations of Tax, suggesting that other viral proteins are key to T-cell transformation and development of adult T-cell leukemia. PMID:20093405

  11. PP2A(Cdc55)'s role in reductional chromosome segregation during achiasmate meiosis in budding yeast is independent of its FEAR function.

    PubMed

    Kerr, Gary W; Wong, Jin Huei; Arumugam, Prakash

    2016-07-26

    PP2A(Cdc55) is a highly conserved serine-threonine protein phosphatase that is involved in diverse cellular processes. In budding yeast, meiotic cells lacking PP2A(Cdc55) activity undergo a premature exit from meiosis I which results in a failure to form bipolar spindles and divide nuclei. This defect is largely due to its role in negatively regulating the Cdc Fourteen Early Anaphase Release (FEAR) pathway. PP2A(Cdc55) prevents nucleolar release of the Cdk (Cyclin-dependent kinase)-antagonising phosphatase Cdc14 by counteracting phosphorylation of the nucleolar protein Net1 by Cdk. CDC55 was identified in a genetic screen for monopolins performed by isolating suppressors of spo11Δ spo12Δ lethality suggesting that Cdc55 might have a role in meiotic chromosome segregation. We investigated this possibility by isolating cdc55 alleles that suppress spo11Δ spo12Δ lethality and show that this suppression is independent of PP2A(Cdc55)'s FEAR function. Although the suppressor mutations in cdc55 affect reductional chromosome segregation in the absence of recombination, they have no effect on chromosome segregation during wild type meiosis. We suggest that Cdc55 is required for reductional chromosome segregation during achiasmate meiosis and this is independent of its FEAR function.

  12. Cell cycle progression is required for zebrafish somite morphogenesis but not segmentation clock function

    PubMed Central

    Zhang, Lixia; Kendrick, Christina; Jülich, Dörthe; Holley, Scott A.

    2010-01-01

    Summary Cell division, differentiation and morphogenesis are coordinated during embryonic development and frequently in disarray in pathologies such as cancer. Here, we present a zebrafish mutant that ceases mitosis at the beginning of gastrulation, but undergoes axis elongation and develops blood, muscle and a beating heart. We identify the mutation as being in early mitotic inhibitor 1 (emi1), a negative regulator of the Anaphase Promoting Complex, and utilize the mutant to examine the role of the cell cycle in somitogenesis. The mutant phenotype indicates that axis elongation during the segmentation period is substantially driven by cell migration. We find that the segmentation clock, which regulates somitogenesis, functions normally in the absence of cell cycle progression and observe that mitosis is a modest source of noise for the clock. Somite morphogenesis involves the epithelialization of the somite border cells around a core of mesenchyme. As in wild-type embryos, somite boundary cells are polarized along a Fibronectin matrix in emi1−/−. The mutants also display evidence of segment polarity. However, in the absence of a normal cell cycle, somites appear to hyper-epithelialize as the internal mesenchymal cells exit the core of the somite after initial boundary formation. Thus, cell cycle progression is not required during the segmentation period for segmentation clock function but is necessary for normal segmental arrangement of epithelial borders and internal mesenchymal cells. PMID:18480162

  13. LET-99 functions in the astral furrowing pathway, where it is required for myosin enrichment in the contractile ring

    PubMed Central

    Price, Kari L.; Rose, Lesilee S.

    2017-01-01

    The anaphase spindle determines the position of the cytokinesis furrow, such that the contractile ring assembles in an equatorial zone between the two spindle poles. Contractile ring formation is mediated by RhoA activation at the equator by the centralspindlin complex and midzone microtubules. Astral microtubules also inhibit RhoA accumulation at the poles. In the Caenorhabditis elegans one-cell embryo, the astral microtubule–dependent pathway requires anillin, NOP-1, and LET-99. LET-99 is well characterized for generating the asymmetric cortical localization of the Gα-dependent force-generating complex that positions the spindle during asymmetric division. However, whether the role of LET-99 in cytokinesis is specific to asymmetric division and whether it acts through Gα to promote furrowing are unclear. Here we show that LET-99 contributes to furrowing in both asymmetrically and symmetrically dividing cells, independent of its function in spindle positioning and Gα regulation. LET-99 acts in a pathway parallel to anillin and is required for myosin enrichment into the contractile ring. These and other results suggest a positive feedback model in which LET-99 localizes to the presumptive cleavage furrow in response to the spindle and myosin. Once positioned there, LET-99 enhances myosin accumulation to promote furrowing in both symmetrically and asymmetrically dividing cells. PMID:28701343

  14. Phosphorylation of PP1 Regulator Sds22 by PLK1 Ensures Accurate Chromosome Segregation.

    PubMed

    Duan, Hequan; Wang, Chunli; Wang, Ming; Gao, Xinjiao; Yan, Maomao; Akram, Saima; Peng, Wei; Zou, Hanfa; Wang, Dong; Zhou, Jiajia; Chu, Youjun; Dou, Zhen; Barrett, Gregory; Green, Hadiyah-Nichole; Wang, Fangjun; Tian, Ruijun; He, Ping; Wang, Wenwen; Liu, Xing; Yao, Xuebiao

    2016-09-30

    During cell division, accurate chromosome segregation is tightly regulated by Polo-like kinase 1 (PLK1) and opposing activities of Aurora B kinase and protein phosphatase 1 (PP1). However, the regulatory mechanisms underlying the aforementioned hierarchical signaling cascade during mitotic chromosome segregation have remained elusive. Sds22 is a conserved regulator of PP1 activity, but how it regulates PP1 activity in space and time during mitosis remains elusive. Here we show that Sds22 is a novel and cognate substrate of PLK1 in mitosis, and the phosphorylation of Sds22 by PLK1 elicited an inhibition of PP1-mediated dephosphorylation of Aurora B at threonine 232 (Thr 232 ) in a dose-dependent manner. Overexpression of a phosphomimetic mutant of Sds22 causes a dramatic increase in mitotic delay, whereas overexpression of a non-phosphorylatable mutant of Sds22 results in mitotic arrest. Mechanistically, the phosphorylation of Sds22 by PLK1 strengthens the binding of Sds22 to PP1 and inhibits the dephosphorylation of Thr 232 of Aurora B to ensure a robust, error-free metaphase-anaphase transition. These findings delineate a conserved signaling hierarchy that orchestrates dynamic protein phosphorylation and dephosphorylation of critical mitotic regulators during chromosome segregation to guard chromosome stability. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. New Functions of APC/C Ubiquitin Ligase in the Nervous System and Its Role in Alzheimer's Disease.

    PubMed

    Fuchsberger, Tanja; Lloret, Ana; Viña, Jose

    2017-05-14

    The E3 ubiquitin ligase Anaphase Promoting Complex/Cyclosome (APC/C) regulates important processes in cells, such as the cell cycle, by targeting a set of substrates for degradation. In the last decade, APC/C has been related to several major functions in the nervous system, including axon guidance, synaptic plasticity, neurogenesis, and neuronal survival. Interestingly, some of the identified APC/C substrates have been related to neurodegenerative diseases. There is an accumulation of some degradation targets of APC/C in Alzheimer's disease (AD) brains, which suggests a dysregulation of the protein complex in the disorder. Moreover, recently evidence has been provided for an inactivation of APC/C in AD. It has been shown that oligomers of the AD-related peptide, Aβ, induce degradation of the APC/C activator subunit cdh1, in vitro in neurons in culture and in vivo in the mouse hippocampus. Furthermore, in the AD mouse model APP/PS1, lower cdh1 levels were observed in pyramidal neurons in CA1 when compared to age-matched wildtype mice. In this review, we provide a complete list of APC/C substrates that are involved in the nervous system and we discuss their functions. We also summarize recent studies that show neurobiological effects in cdh1 knockout mouse models. Finally, we discuss the role of APC/C in the pathophysiology of AD.

  16. An APC/C-Cdh1 Biosensor Reveals the Dynamics of Cdh1 Inactivation at the G1/S Transition.

    PubMed

    Ondracka, Andrej; Robbins, Jonathan A; Cross, Frederick R

    2016-01-01

    B-type cyclin-dependent kinase activity must be turned off for mitotic exit and G1 stabilization. B-type cyclin degradation is mediated by the anaphase-promoting complex/cyclosome (APC/C); during and after mitotic exit, APC/C is dependent on Cdh1. Cdh1 is in turn phosphorylated and inactivated by cyclin-CDK at the Start transition of the new cell cycle. We developed a biosensor to assess the cell cycle dynamics of APC/C-Cdh1. Nuclear exit of the G1 transcriptional repressor Whi5 is a known marker of Start; APC/C-Cdh1 is inactivated 12 min after Whi5 nuclear exit with little measurable cell-to-cell timing variability. Multiple phosphorylation sites on Cdh1 act in a redundant manner to repress its activity. Reducing the number of phosphorylation sites on Cdh1 can to some extent be tolerated for cell viability, but it increases variability in timing of APC/C-Cdh1 inactivation. Mutants with minimal subsets of phosphorylation sites required for viability exhibit striking stochasticity in multiple responses including budding, nuclear division, and APC/C-Cdh1 activity itself. Multiple cyclin-CDK complexes, as well as the stoichiometric inhibitor Acm1, contribute to APC/C-Cdh1 inactivation; this redundant control is likely to promote rapid and reliable APC/C-Cdh1 inactivation immediately following the Start transition.

  17. Functional Analysis of Human Microtubule-based Motor Proteins, the Kinesins and Dyneins, in Mitosis/Cytokinesis Using RNA InterferenceD⃞V⃞

    PubMed Central

    Zhu, Changjun; Zhao, Jian; Bibikova, Marina; Leverson, Joel D.; Bossy-Wetzel, Ella; Fan, Jian-Bing; Abraham, Robert T.; Jiang, Wei

    2005-01-01

    Microtubule (MT)-based motor proteins, kinesins and dyneins, play important roles in multiple cellular processes including cell division. In this study, we describe the generation and use of an Escherichia coli RNase III-prepared human kinesin/dynein esiRNA library to systematically analyze the functions of all human kinesin/dynein MT motor proteins. Our results indicate that at least 12 kinesins are involved in mitosis and cytokinesis. Eg5 (a member of the kinesin-5 family), Kif2A (a member of the kinesin-13 family), and KifC1 (a member of the kinesin-14 family) are crucial for spindle formation; KifC1, MCAK (a member of the kinesin-13 family), CENP-E (a member of the kinesin-7 family), Kif14 (a member of the kinesin-3 family), Kif18 (a member of the kinesin-8 family), and Kid (a member of the kinesin-10 family) are required for chromosome congression and alignment; Kif4A and Kif4B (members of the kinesin-4 family) have roles in anaphase spindle dynamics; and Kif4A, Kif4B, MKLP1, and MKLP2 (members of the kinesin-6 family) are essential for cytokinesis. Using immunofluorescence analysis, time-lapse microscopy, and rescue experiments, we investigate the roles of these 12 kinesins in detail. PMID:15843429

  18. The nucleoporin Mlp2 is involved in chromosomal distribution during mitosis in trypanosomatids

    PubMed Central

    Morelle, Christelle; Sterkers, Yvon; Crobu, Lucien; MBang-Benet, Diane-Ethna; Kuk, Nada; Portalès, Pierre; Bastien, Patrick; Pagès, Michel; Lachaud, Laurence

    2015-01-01

    Nucleoporins are evolutionary conserved proteins mainly involved in the constitution of the nuclear pores and trafficking between the nucleus and cytoplasm, but are also increasingly viewed as main actors in chromatin dynamics and intra-nuclear mitotic events. Here, we determined the cellular localization of the nucleoporin Mlp2 in the ‘divergent’ eukaryotes Leishmania major and Trypanosoma brucei. In both protozoa, Mlp2 displayed an atypical localization for a nucleoporin, essentially intranuclear, and preferentially in the periphery of the nucleolus during interphase; moreover, it relocated at the mitotic spindle poles during mitosis. In T. brucei, where most centromeres have been identified, TbMlp2 was found adjacent to the centromeric sequences, as well as to a recently described unconventional kinetochore protein, in the periphery of the nucleolus, during interphase and from the end of anaphase onwards. TbMlp2 and the centromeres/kinetochores exhibited a differential migration towards the poles during mitosis. RNAi knockdown of TbMlp2 disrupted the mitotic distribution of chromosomes, leading to a surprisingly well-tolerated aneuploidy. In addition, diploidy was restored in a complementation assay where LmMlp2, the orthologue of TbMlp2 in Leishmania, was expressed in TbMlp2-RNAi-knockdown parasites. Taken together, our results demonstrate that Mlp2 is involved in the distribution of chromosomes during mitosis in trypanosomatids. PMID:25690889

  19. Multimodal effects of small molecule ROCK and LIMK inhibitors on mitosis, and their implication as anti-leukemia agents.

    PubMed

    Oku, Yusuke; Tareyanagi, Chiaki; Takaya, Shinichi; Osaka, Sayaka; Ujiie, Haruki; Yoshida, Kentaro; Nishiya, Naoyuki; Uehara, Yoshimasa

    2014-01-01

    Accurate chromosome segregation is vital for cell viability. Many cancer cells show chromosome instability (CIN) due to aberrant expression of the genes involved in chromosome segregation. The induction of massive chromosome segregation errors in such cancer cells by small molecule inhibitors is an emerging strategy to kill these cells selectively. Here we screened and characterized small molecule inhibitors which cause mitotic chromosome segregation errors to target cancer cell growth. We screened about 300 chemicals with known targets, and found that Rho-associated coiled-coil kinase (ROCK) inhibitors bypassed the spindle assembly checkpoint (SAC), which delays anaphase onset until proper kinetochore-microtubule interactions are established. We investigated how ROCK inhibitors affect chromosome segregation, and found that they induced microtubule-dependent centrosome fragmentation. Knockdown of ROCK1 and ROCK2 revealed their additive roles in centrosome integrity. Pharmacological inhibition of LIMK also induced centrosome fragmentation similar to that by ROCK inhibitors. Inhibition of ROCK or LIMK hyper-stabilized mitotic spindles and impaired Aurora-A activation. These results suggested that ROCK and LIMK are directly or indirectly involved in microtubule dynamics and activation of Aurora-A. Furthermore, inhibition of ROCK or LIMK suppressed T cell leukemia growth in vitro, but not peripheral blood mononuclear cells. They induced centrosome fragmentation and apoptosis in T cell leukemia cells. These results suggested that ROCK and LIMK can be a potential target for anti-cancer drugs.

  20. Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana.

    PubMed

    Van Leene, Jelle; Hollunder, Jens; Eeckhout, Dominique; Persiau, Geert; Van De Slijke, Eveline; Stals, Hilde; Van Isterdael, Gert; Verkest, Aurine; Neirynck, Sandy; Buffel, Yelle; De Bodt, Stefanie; Maere, Steven; Laukens, Kris; Pharazyn, Anne; Ferreira, Paulo C G; Eloy, Nubia; Renne, Charlotte; Meyer, Christian; Faure, Jean-Denis; Steinbrenner, Jens; Beynon, Jim; Larkin, John C; Van de Peer, Yves; Hilson, Pierre; Kuiper, Martin; De Veylder, Lieven; Van Onckelen, Harry; Inzé, Dirk; Witters, Erwin; De Jaeger, Geert

    2010-08-10

    Cell proliferation is the main driving force for plant growth. Although genome sequence analysis revealed a high number of cell cycle genes in plants, little is known about the molecular complexes steering cell division. In a targeted proteomics approach, we mapped the core complex machinery at the heart of the Arabidopsis thaliana cell cycle control. Besides a central regulatory network of core complexes, we distinguished a peripheral network that links the core machinery to up- and downstream pathways. Over 100 new candidate cell cycle proteins were predicted and an in-depth biological interpretation demonstrated the hypothesis-generating power of the interaction data. The data set provided a comprehensive view on heterodimeric cyclin-dependent kinase (CDK)-cyclin complexes in plants. For the first time, inhibitory proteins of plant-specific B-type CDKs were discovered and the anaphase-promoting complex was characterized and extended. Important conclusions were that mitotic A- and B-type cyclins form complexes with the plant-specific B-type CDKs and not with CDKA;1, and that D-type cyclins and S-phase-specific A-type cyclins seem to be associated exclusively with CDKA;1. Furthermore, we could show that plants have evolved a combinatorial toolkit consisting of at least 92 different CDK-cyclin complex variants, which strongly underscores the functional diversification among the large family of cyclins and reflects the pivotal role of cell cycle regulation in the developmental plasticity of plants.

  1. A Mitosis Block Links Active Cell Cycle with Human Epidermal Differentiation and Results in Endoreplication

    PubMed Central

    Zanet, Jennifer; Freije, Ana; Ruiz, María; Coulon, Vincent; Sanz, J. Ramón; Chiesa, Jean; Gandarillas, Alberto

    2010-01-01

    How human self-renewal tissues co-ordinate proliferation with differentiation is unclear. Human epidermis undergoes continuous cell growth and differentiation and is permanently exposed to mutagenic hazard. Keratinocytes are thought to arrest cell growth and cell cycle prior to terminal differentiation. However, a growing body of evidence does not satisfy this model. For instance, it does not explain how skin maintains tissue structure in hyperproliferative benign lesions. We have developed and applied novel cell cycle techniques to human skin in situ and determined the dynamics of key cell cycle regulators of DNA replication or mitosis, such as cyclins E, A and B, or members of the anaphase promoting complex pathway: cdc14A, Ndc80/Hec1 and Aurora kinase B. The results show that actively cycling keratinocytes initiate terminal differentiation, arrest in mitosis, continue DNA replication in a special G2/M state, and become polyploid by mitotic slippage. They unambiguously demonstrate that cell cycle progression coexists with terminal differentiation, thus explaining how differentiating cells increase in size. Epidermal differentiating cells arrest in mitosis and a genotoxic-induced mitosis block rapidly pushes epidermal basal cells into differentiation and polyploidy. These observations unravel a novel mitosis-differentiation link that provides new insight into skin homeostasis and cancer. It might constitute a self-defence mechanism against oncogenic alterations such as Myc deregulation. PMID:21187932

  2. A STUDY OF MEIOSIS IN THE PROGENY OF X-IRRADIATED LUZULA PURPUREA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordenskiold, H.

    1963-01-01

    In Luzula the chromosomes have diffuse or nonlocalized centromeres; thus, if the chromosomes are broken or rearranged by x-ray treatment, the changed chromosome patterns may survive through the mitotic cell divisions, on account of the centromeric action along the whole chromosomes. Hence, such plants with diffuse centromeres are able to survive and reach adult stages in spite of the fact that their chromosomes have been rearranged or broken by x-ray treatment of the seedlings. A study was made of plants selected from the progeny of material treated as seedlings with 1000 or 2500 r. Plants treated with stronger doses (5000more » to 10000 r) were almost or completely sterile. The chromosome patterns of the root tips of X/sub 2/ plants were investigated in order to find plants with desirable chrom-osome patterns for the meiotic investigation. The x-irradiated plants themselves showed intricate metaphasic configurations during meiosis. The separation of the multi-associations at first anaphase is cytologically equational, and in most cases without bridges. Migration of chromatids during second anaphase is also regular without lagging chromosomes, but chromosome sets of 4 tetrad cells usually become unbalanced, causing reduced fertility. The mitotic chromosome patterns of X/sub 2/ plants showed three categories of patterns: 2n = 6; most of these plants have all chromosomes the same size, but some of them possess one long and one short chromosome indicating a reciprocal translocation between two chromosomes; 2n = 7, with one of the original chromosomes fragmented into two pieces; and 2n = 8, with two of the original chromosomes fragmented into two pieces each. A study was made of meiosis in X/ sub 2/ plants with a cytologically observable rearrangement in the root tips, determined as a reciprocal progeny plants were obtained. Meiosis of X/sub 2/ plants heterozygous for one chromosome fragmented into two pieces, i.e., possessing 2n = 7 with five normal-sized and two small half-sized chromosomes, was also studied. The expected course of meiosis was realized, giving rise to four balanced chromosome sets of the tetrads, two of them containing three normal- sized chromosomes and the remaining two having two normal-sized and two half- sized ones. These studied plants were all fertile. Examination of somatic chromosome patterns of the progenies originating from the X/sub 2/ plants heterozygous for one fragmented chromosome revealed the three expected chromosome patterns, i.e., 2n =6, 2n =7, 2n =8. X/sub 2/ plants with 2n =8 were homozygous for the fragmented chromosome, and had a completely regular meiosis with two large and two small bivalents during first metaphase and a regular pairing and separation during the second division. Consequently they gave rise to a fertile strain with a constart chromosome pattern. The origin of the aneuploidy and endonuclear polyploidy of material with diffuse centromeres was discussed in relation to the survival of the fragmented chromosomes in L. purpurea. The survival of broken chromosomes through consecutive generations thus gives an explanation of the occurrence of aneuploid chromosome numbers in material with diffuse centromeres. However, no interpretation of the phenomenon causing the survival of the fragments was provided by this study, since sufficient knowledge about the nature of the diffuse or nonlocalized centromeres is unavailable. (BBB)« less

  3. The nucleoporin Mlp2 is involved in chromosomal distribution during mitosis in trypanosomatids.

    PubMed

    Morelle, Christelle; Sterkers, Yvon; Crobu, Lucien; MBang-Benet, Diane-Ethna; Kuk, Nada; Portalès, Pierre; Bastien, Patrick; Pagès, Michel; Lachaud, Laurence

    2015-04-30

    Nucleoporins are evolutionary conserved proteins mainly involved in the constitution of the nuclear pores and trafficking between the nucleus and cytoplasm, but are also increasingly viewed as main actors in chromatin dynamics and intra-nuclear mitotic events. Here, we determined the cellular localization of the nucleoporin Mlp2 in the 'divergent' eukaryotes Leishmania major and Trypanosoma brucei. In both protozoa, Mlp2 displayed an atypical localization for a nucleoporin, essentially intranuclear, and preferentially in the periphery of the nucleolus during interphase; moreover, it relocated at the mitotic spindle poles during mitosis. In T. brucei, where most centromeres have been identified, TbMlp2 was found adjacent to the centromeric sequences, as well as to a recently described unconventional kinetochore protein, in the periphery of the nucleolus, during interphase and from the end of anaphase onwards. TbMlp2 and the centromeres/kinetochores exhibited a differential migration towards the poles during mitosis. RNAi knockdown of TbMlp2 disrupted the mitotic distribution of chromosomes, leading to a surprisingly well-tolerated aneuploidy. In addition, diploidy was restored in a complementation assay where LmMlp2, the orthologue of TbMlp2 in Leishmania, was expressed in TbMlp2-RNAi-knockdown parasites. Taken together, our results demonstrate that Mlp2 is involved in the distribution of chromosomes during mitosis in trypanosomatids. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Protective Effects of Quercetin against Dimethoate-Induced Cytotoxicity and Genotoxicity in Allium sativum Test

    PubMed Central

    Ahmad, Waseem; Shaikh, Sibhghatulla; Nazam, Nazia; Lone, Mohammad Iqbal

    2014-01-01

    The present investigation was directed to study the possible protective activity of quercetin—a natural antioxidant against dimethoate-induced cyto- and genotoxicity in meristematic cells of Allium sativum. So far there is no report on the biological properties of quercetin in plant test systems. Chromosome breaks, multipolar anaphase, stick chromosome, and mitotic activity were undertaken in the current study as markers of cyto- and genotoxicity. Untreated control, quercetin controls (@ 5, 10 and 20 μg/mL for 3 h), and dimethoate exposed groups (@ 100 and 200 μg/mL for 3 h) were maintained. For protection against cytogenotoxicity, the root tip cells treated with dimethoate at 100 and 200 μg/mL for 3 h and quercetin treatment at 5, 10, and 20 μg/mL for 16 h, prior to dimethoate treatment, were undertaken. Quercetin was found to be neither cytotoxic nor genotoxic in Allium sativum control at these doses. A significant increase (P < 0.05) in chromosomal aberrations was noted in dimethoate treated Allium. Pretreatment of Allium sativum with quercetin significantly (P < 0.05) reduced dimethoate-induced genotoxicity and cytotoxicity in meristematic cells, and these effects were dose dependent. In conclusion, quercetin has a protective role in the abatement of dimethoate-induced cyto- and genotoxicity in the meristematic cells of Allium sativum that resides, at least in part, on its antioxidant effects. PMID:27379342

  5. Protective Effects of Quercetin against Dimethoate-Induced Cytotoxicity and Genotoxicity in Allium sativum Test.

    PubMed

    Ahmad, Waseem; Shaikh, Sibhghatulla; Nazam, Nazia; Lone, Mohammad Iqbal

    2014-01-01

    The present investigation was directed to study the possible protective activity of quercetin-a natural antioxidant against dimethoate-induced cyto- and genotoxicity in meristematic cells of Allium sativum. So far there is no report on the biological properties of quercetin in plant test systems. Chromosome breaks, multipolar anaphase, stick chromosome, and mitotic activity were undertaken in the current study as markers of cyto- and genotoxicity. Untreated control, quercetin controls (@ 5, 10 and 20 μg/mL for 3 h), and dimethoate exposed groups (@ 100 and 200 μg/mL for 3 h) were maintained. For protection against cytogenotoxicity, the root tip cells treated with dimethoate at 100 and 200 μg/mL for 3 h and quercetin treatment at 5, 10, and 20 μg/mL for 16 h, prior to dimethoate treatment, were undertaken. Quercetin was found to be neither cytotoxic nor genotoxic in Allium sativum control at these doses. A significant increase (P < 0.05) in chromosomal aberrations was noted in dimethoate treated Allium. Pretreatment of Allium sativum with quercetin significantly (P < 0.05) reduced dimethoate-induced genotoxicity and cytotoxicity in meristematic cells, and these effects were dose dependent. In conclusion, quercetin has a protective role in the abatement of dimethoate-induced cyto- and genotoxicity in the meristematic cells of Allium sativum that resides, at least in part, on its antioxidant effects.

  6. C. elegans MCM-4 is a general DNA replication and checkpoint component with an epidermis-specific requirement for growth and viability.

    PubMed

    Korzelius, Jerome; The, Inge; Ruijtenberg, Suzan; Portegijs, Vincent; Xu, Huihong; Horvitz, H Robert; van den Heuvel, Sander

    2011-02-15

    DNA replication and its connection to M phase restraint are studied extensively at the level of single cells but rarely in the context of a developing animal. C. elegans lin-6 mutants lack DNA synthesis in postembryonic somatic cell lineages, while entry into mitosis continues. These mutants grow slowly and either die during larval development or develop into sterile adults. We found that lin-6 corresponds to mcm-4 and encodes an evolutionarily conserved component of the MCM2-7 pre-RC and replicative helicase complex. The MCM-4 protein is expressed in all dividing cells during embryonic and postembryonic development and associates with chromatin in late anaphase. Induction of cell cycle entry and differentiation continues in developing mcm-4 larvae, even in cells that went through abortive division. In contrast to somatic cells in mcm-4 mutants, the gonad continues DNA replication and cell division until late larval development. Expression of MCM-4 in the epidermis (also known as hypodermis) is sufficient to rescue the growth retardation and lethality of mcm-4 mutants. While the somatic gonad and germline show substantial ability to cope with lack of zygotic mcm-4 function, mcm-4 is specifically required in the epidermis for growth and survival of the whole organism. Thus, C. elegans mcm-4 has conserved functions in DNA replication and replication checkpoint control but also shows unexpected tissue-specific requirements. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. RED, a Spindle Pole-associated Protein, Is Required for Kinetochore Localization of MAD1, Mitotic Progression, and Activation of the Spindle Assembly Checkpoint*

    PubMed Central

    Yeh, Pei-Chi; Yeh, Chang-Ching; Chen, Yi-Cheng; Juang, Yue-Li

    2012-01-01

    The spindle assembly checkpoint (SAC) is essential for ensuring the proper attachment of kinetochores to the spindle and, thus, the precise separation of paired sister chromatids during mitosis. The SAC proteins are recruited to the unattached kinetochores for activation of the SAC in prometaphase. However, it has been less studied whether activation of the SAC also requires the proteins that do not localize to the kinetochores. Here, we show that the nuclear protein RED, also called IK, a down-regulator of human leukocyte antigen (HLA) II, interacts with the human SAC protein MAD1. Two RED-interacting regions identified in MAD1 are from amino acid residues 301–340 and 439–480, designated as MAD1(301–340) and MAD1(439–480), respectively. Our observations reveal that RED is a spindle pole-associated protein that colocalizes with MAD1 at the spindle poles in metaphase and anaphase. Depletion of RED can cause a shorter mitotic timing, a failure in the kinetochore localization of MAD1 in prometaphase, and a defect in the SAC. Furthermore, the RED-interacting peptides MAD1(301–340) and MAD1(439–480), fused to enhanced green fluorescence protein, can colocalize with RED at the spindle poles in prometaphase, and their expression can abrogate the SAC. Taken together, we conclude that RED is required for kinetochore localization of MAD1, mitotic progression, and activation of the SAC. PMID:22351768

  8. Defining the molecular basis of BubR1 kinetochore interactions and APC/C-CDC20 inhibition.

    PubMed

    D'Arcy, Sheena; Davies, Owen R; Blundell, Tom L; Bolanos-Garcia, Victor M

    2010-05-07

    BubR1 is essential for the mitotic checkpoint that prevents aneuploidy in cellular progeny by triggering anaphase delay in response to kinetochores incorrectly/not attached to the mitotic spindle. Here, we define the molecular architecture of the functionally significant N-terminal region of human BubR1 and present the 1.8 A crystal structure of its tetratricopeptide repeat (TPR) domain. The structure reveals divergence from the classical TPR fold and is highly similar to the TPR domain of budding yeast Bub1. Shared distinctive features include a disordered loop insertion, a 3(10)-helix, a tight turn involving glycine positive Phi angles, and noncanonical packing of and between the TPR motifs. We also define the molecular determinants of the interaction between BubR1 and kinetochore protein Blinkin. We identify a shallow groove on the concave surface of the BubR1 TPR domain that forms multiple discrete and potentially cooperative interactions with Blinkin. Finally, we present evidence for a direct interaction between BubR1 and Bub1 mediated by regions C-terminal to their TPR domains. This interaction provides a mechanism for Bub1-dependent kinetochore recruitment of BubR1. We thus present novel molecular insights into the structure of BubR1 and its interactions at the kinetochore-microtubule interface. Our studies pave the way for future structure-directed engineering aimed at dissecting the roles of kinetochore-bound and other pools of BubR1 in vivo.

  9. C. elegans MCM-4 is a general DNA replication and checkpoint component with an epidermis-specific requirement for growth and viability

    PubMed Central

    Korzelius, Jerome; The, Inge; Ruijtenberg, Suzan; Portegijs, Vincent; Xu, Huihong; Horvitz, H. Robert; van den Heuvel, Sander

    2012-01-01

    DNA replication and its connection to M phase restraint are studied extensively at the level of single cells but rarely in the context of a developing animal. C. elegans lin-6 mutants lack DNA synthesis in postembryonic somatic cell lineages, while entry into mitosis continues. These mutants grow slowly and either die during larval development or develop into sterile adults. We found that lin-6 corresponds to mcm-4 and encodes an evolutionarily conserved component of the MCM2-7 pre-RC and replicative helicase complex. The MCM-4 protein is expressed in all dividing cells during embryonic and postembryonic development and associates with chromatin in late anaphase. Induction of cell-cycle entry and differentiation continues in developing mcm-4 larvae, even in cells that went through abortive division. In contrast to somatic cells in mcm-4 mutants, the gonad continues DNA replication and cell division until late larval development. Expression of MCM-4 in the epidermis (also known as hypodermis) is sufficient to rescue the growth retardation and lethality of mcm-4 mutants. While the somatic gonad and germline show substantial ability to cope with lack of zygotic mcm-4 function, mcm-4 is specifically required in the epidermis for growth and survival of the whole organism. Thus, C. elegans mcm-4 has conserved functions in DNA replication and replication checkpoint control but also shows unexpected tissue-specific requirements. PMID:21146520

  10. Xanthium strumarium extract inhibits mammalian cell proliferation through mitotic spindle disruption mediated by xanthatin.

    PubMed

    Sánchez-Lamar, Angel; Piloto-Ferrer, Janet; Fiore, Mario; Stano, Pasquale; Cozzi, Renata; Tofani, Daniela; Cundari, Enrico; Francisco, Marbelis; Romero, Aylema; González, Maria L; Degrassi, Francesca

    2016-12-24

    Xanthium strumarium L. is a member of the Asteraceae family popularly used with multiple therapeutic purposes. Whole extracts of this plant have shown anti-mitotic activity in vitro suggesting that some components could induce mitotic arrest in proliferating cells. Aim of the present work was to characterize the anti-mitotic properties of the X. strumarium whole extract and to isolate and purify active molecule(s). The capacity of the whole extract to inhibit mitotic progression in mammalian cultured cells was investigated to identify its anti-mitotic activity. Isolation of active component(s) was performed using a bioassay-guided multistep separation procedure in which whole extract was submitted to a progressive process of fractionation and fractions were challenged for their anti-mitotic activity. Our results show for the first time that X. strumarium whole extract inhibits assembly of the mitotic spindle and spindle-pole separation, thereby heavily affecting mitosis, impairing the metaphase to anaphase transition and inducing apoptosis. The purification procedure led to a fraction with an anti-mitotic activity comparable to that of the whole extract. Chemical analysis of this fraction showed that its major component was xanthatin. The present work shows a new activity of X. strumarium extract, i.e. the alteration of the mitotic apparatus in cultured cells that may be responsible for the anti-proliferative activity of the extract. Anti-mitotic activity is shown to be mainly exerted by xanthatin. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. RNase MRP cleaves the CLB2 mRNA to promote cell cycle progression: novel method of mRNA degradation.

    PubMed

    Gill, Tina; Cai, Ti; Aulds, Jason; Wierzbicki, Sara; Schmitt, Mark E

    2004-02-01

    RNase mitochondrial RNA processing (RNase MRP) mutants have been shown to have an exit-from-mitosis defect that is caused by an increase in CLB2 mRNA levels, leading to increased Clb2p (B-cyclin) levels and a resulting late anaphase delay. Here we describe the molecular defect behind this delay. CLB2 mRNA normally disappears rapidly as cells complete mitosis, but the level remains high in RNase MRP mutants. This is in direct contrast to other exit-from-mitosis mutants and is the result of an increase in CLB2 mRNA stability. We found that highly purified RNase MRP cleaved the 5' untranslated region (UTR) of the CLB2 mRNA in several places in an in vitro assay. In vivo, we identified RNase MRP-dependent cleavage products on the CLB2 mRNA that closely matched in vitro products. Disposal of these products was dependent on the 5'-->3' exoribonuclease Xrn1 and not the exosome. Our results demonstrate that the endoribonuclease RNase MRP specifically cleaves the CLB2 mRNA in its 5'-UTR to allow rapid 5' to 3' degradation by the Xrn1 nuclease. Degradation of the CLB2 mRNA by the RNase MRP endonuclease provides a novel way to regulate the cell cycle that complements the protein degradation machinery. In addition, these results denote a new mechanism of mRNA degradation not seen before in the yeast Saccharomyces cerevisiae.

  12. Selective Somatic Elimination of NICOTIANA GLUTINOSA Chromosomes in the F(1) Hybrids of N. SUAVEOLENS and N. GLUTINOSA.

    PubMed

    Gupta, S B; Gupta, P

    1973-04-01

    The F(1) hybrids of Nicotiana suaveolens (subgenus Petunioides, 2n = 32) and N. glutinosa (subgenus Tabacum, 2n = 24), were examined during their development, from seedlings to mature plants. It was observed that in the hybrids, there was a progressive change of dominant N. glutinosa morphological characteristics towards those of N. suaveolens, in leaf shape, stem, flower color and branching pattern. A study of mitotic chromosomes in the root-tips and in very young anthers of the mature plants indicated a significantly high average frequency of aberrant mitotic anaphases (bridges and fragments, 12% and 11% respectively). As a consequence of this phenomenon, variability in the number and size of chromosomes was observed in the PMC's and in mitotic metaphases (29-24 chromosomes). In order to establish whether the N. glutinosa chromosomes were preferentially lost, a karyological study of the parents and their F(1) hybrids was carried out and it was established that the F(1) hybrids were losing N. glutinosa chromosomes preferentially. A mechanism was suggested for the loss of these chromosomes by means of a chromatid type of breakage-fusion-bridge cycle (b-f-b cycle) and initiation of the b-f-b cycle in the hybrid due to an interaction of the regulatory mechanism of DNA replication in the haploid genomes of the parental species. However, loss of these chromosomes owing to interaction of certain genes from the two parental species cannot be ruled out.

  13. Cytogenetic effects of three commercially formulated pesticides on somatic and germ cells of Allium cepa.

    PubMed

    Kuchy, Aashiq H; Wani, Aijaz A; Kamili, Azra N

    2016-04-01

    Cytological effects of Endosri-ES (endosulfan), Nuvan-NU (dichlorvos), and Kvistin-KS (carbendazim) were evaluated on mitotic and meiotic cells of Allium cepa. Test concentrations were chosen by calculating EC50 values of formulated ES, NU, and KS, which turned to be 60, 200, and 500 ppm (parts per million), respectively. Cytological studies were undertaken on root meristem cells of A. cepa using EC50, 1/2 × EC50, and 2 × EC50 of these pesticides for 24 and 48 h. Similarly, a meiotic study was conducted by applying the pesticides at the aforesaid concentrations from seedling to bud stage. A set of onion bulbs exposed to tap water was run parallel for negative control and maleic hydrazide (112.09 ppm) as positive control. During the study period, mitotic index (MI) decreased at all the pesticide concentrations compared to the negative control. Among various chromosomal aberrations, chromatin bridges, breaks, stickiness, laggard, vagrant chromosomes, fragments, C-mitosis, multipolarity, ring chromosome as well as micronuclei were observed in mitotic preparations. In contrast, meiotic aberrations revealed comparatively less frequency of chromosomal aberrations and the most frequent were lagging chromosome, stray bivalents, secondary association, chromatin bridge, disturbed anaphase, and stickiness. Comparative analysis of the pesticides showed that NU was highly toxic to plant cells than KS, while as ES showed intermediate effects between the two. Further, our study revealed that all the three pesticides produce genotoxic effects which can cause health risks to the human populations. Graphical Abstract ᅟ.

  14. Structure of an intermediate conformer of the spindle checkpoint protein Mad2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hara, Mayuko; Özkan, Engin; Sun, Hongbin

    2015-08-24

    The spindle checkpoint senses unattached kinetochores during prometaphase and inhibits the anaphase-promoting complex or cyclosome (APC/C), thus ensuring accurate chromosome segregation. The checkpoint protein mitotic arrest deficient 2 (Mad2) is an unusual protein with multiple folded states. Mad2 adopts the closed conformation (C-Mad2) in a Mad1–Mad2 core complex. In mitosis, kinetochore-bound Mad1–C-Mad2 recruits latent, open Mad2 (O-Mad2) from the cytosol and converts it to an intermediate conformer (I-Mad2), which can then bind and inhibit the APC/C activator cell division cycle 20 (Cdc20) as C-Mad2. In this paper, we report the crystal structure and NMR analysis of I-Mad2 bound to C-Mad2.more » Although I-Mad2 retains the O-Mad2 fold in crystal and in solution, its core structural elements undergo discernible rigid-body movements and more closely resemble C-Mad2. Residues exhibiting methyl chemical shift changes in I-Mad2 form a contiguous, interior network that connects its C-Mad2–binding site to the conformationally malleable C-terminal region. Mutations of residues at the I-Mad2–C-Mad2 interface hinder I-Mad2 formation and impede the structural transition of Mad2. Finally, our study provides insight into the conformational activation of Mad2 and establishes the basis of allosteric communication between two distal sites in Mad2.« less

  15. Monopolar spindle 1 (MPS1) kinase promotes production of closed MAD2 (C-MAD2) conformer and assembly of the mitotic checkpoint complex.

    PubMed

    Tipton, Aaron R; Ji, Wenbin; Sturt-Gillespie, Brianne; Bekier, Michael E; Wang, Kexi; Taylor, William R; Liu, Song-Tao

    2013-12-06

    MPS1 kinase is an essential component of the spindle assembly checkpoint (SAC), but its functioning mechanisms are not fully understood. We have shown recently that direct interaction between BUBR1 and MAD2 is critical for assembly and function of the human mitotic checkpoint complex (MCC), the SAC effector. Here we report that inhibition of MPS1 kinase activity by reversine disrupts BUBR1-MAD2 as well as CDC20-MAD2 interactions, causing premature activation of the anaphase-promoting complex/cyclosome. The effect of MPS1 inhibition is likely due to reduction of closed MAD2 (C-MAD2), as expressing a MAD2 mutant (MAD2(L13A)) that is locked in the C conformation rescued the checkpoint defects. In the presence of reversine, exogenous C-MAD2 does not localize to unattached kinetochores but is still incorporated into the MCC. Contrary to a previous report, we found that sustained MPS1 activity is required for maintaining both the MAD1·C-MAD2 complex and open MAD2 (O-MAD2) at unattached kinetochores to facilitate C-MAD2 production. Additionally, mitotic phosphorylation of BUBR1 is also affected by MPS1 inhibition but seems dispensable for MCC assembly. Our results support the notion that MPS1 kinase promotes C-MAD2 production and subsequent MCC assembly to activate the SAC.

  16. Cardiomyocyte binucleation is associated with aberrant mitotic microtubule distribution, mislocalization of RhoA and IQGAP3, as well as defective actomyosin ring anchorage and cleavage furrow ingression.

    PubMed

    Leone, Marina; Musa, Gentian; Engel, Felix Benedikt

    2018-03-07

    After birth mammalian cardiomyocytes initiate a last cell cycle which results in binucleation due to cytokinesis failure. Despite its importance for cardiac regenerative therapies, this process is poorly understood. Here, we aimed at a better understanding of the difference between cardiomyocyte proliferation and binucleation, and providing a new tool to distinguish these two processes. Monitoring of cell division by time-lapse imaging revealed that rat cardiomyocyte binucleation stems from a failure to properly ingress the cleavage furrow. Astral microtubule required for actomyosin ring anchorage and thus furrow ingression were not symmetrically distributed at the periphery of the equatorial region during anaphase in binucleating cardiomyocytes. Consequently, RhoA, the master regulator of actomyosin ring formation and constriction, non-muscle myosin IIB, a central component of the actomyosin ring, as well as IQGAP3 were abnormally localized during cytokinesis. In agreement with improper furrow ingression, binucleation in vitro as well as in vivo was associated with a failure of RhoA as well as IQGAP3 to localize to the stembody of the midbody. Taken together, these results indicate that naturally occurring cytokinesis failure in primary cardiomyocytes is due to an aberrant mitotic microtubule apparatus resulting in inefficient anchorage of the actomyosin ring to the plasma cell membrane. Thus, cardiomyocyte binucleation and division can be discriminated by the analysis of RhoA as well as IQGAP3 localization.

  17. Two Geminin homologs regulate DNA replication in silkworm, Bombyx mori

    PubMed Central

    Tang, Xiao-Fang; Chen, Xiang-Yun; Zhang, Chun-Dong; Li, Yao-Feng; Liu, Tai-Hang; Zhou, Xiao-Lin; Wang, La; Zhang, Qian; Chen, Peng; Lu, Cheng; Pan, Min-Hui

    2017-01-01

    ABSTRACT DNA replication is rigorously controlled in cells to ensure that the genome duplicates exactly once per cell cycle. Geminin is a small nucleoprotein, which prevents DNA rereplication by directly binding to and inhibiting the DNA replication licensing factor, Cdt1. In this study, we have identified 2 Geminin genes, BmGeminin1 and BmGeminn2, in silkworm, Bombyx mori. These genes contain the Geminin conserved coiled-coil domain and are periodically localized in the nucleus during the S-G2 phase but are degraded at anaphase in mitosis. Both BmGeminin1 and BmGeminin2 are able to homodimerize and interact with BmCdt1 in cells. In addition, BmGeminin1 and BmGeminin2 can interact with each other. Overexpression of BmGeminin1 affects cell cycle progression: cell cycle is arrested in S phase, and RNA interference of BmGeminin1 leads to rereplication. In contrast, overexpression or knockdown of BmGeminin2 with RNAi did not significantly affect cell cycle, while more rereplication occurred when BmGeminin1 and BmGeminin2 together were knocked down in cells than when only BmGeminin1 was knocked down. These data suggest that both BmGeminin1 and BmGeminin2 are involved in the regulation of DNA replication. These findings provide insight into the function of Geminin and contribute to our understanding of the regulation mechanism of cell cycle in silkworm. PMID:28379781

  18. Sisters Unbound Is Required for Meiotic Centromeric Cohesion in Drosophila melanogaster

    PubMed Central

    Krishnan, Badri; Thomas, Sharon E.; Yan, Rihui; Yamada, Hirotsugu; Zhulin, Igor B.; McKee, Bruce D.

    2014-01-01

    Regular meiotic chromosome segregation requires sister centromeres to mono-orient (orient to the same pole) during the first meiotic division (meiosis I) when homologous chromosomes segregate, and to bi-orient (orient to opposite poles) during the second meiotic division (meiosis II) when sister chromatids segregate. Both orientation patterns require cohesion between sister centromeres, which is established during meiotic DNA replication and persists until anaphase of meiosis II. Meiotic cohesion is mediated by a conserved four-protein complex called cohesin that includes two structural maintenance of chromosomes (SMC) subunits (SMC1 and SMC3) and two non-SMC subunits. In Drosophila melanogaster, however, the meiotic cohesion apparatus has not been fully characterized and the non-SMC subunits have not been identified. We have identified a novel Drosophila gene called sisters unbound (sunn), which is required for stable sister chromatid cohesion throughout meiosis. sunn mutations disrupt centromere cohesion during prophase I and cause high frequencies of non-disjunction (NDJ) at both meiotic divisions in both sexes. SUNN co-localizes at centromeres with the cohesion proteins SMC1 and SOLO in both sexes and is necessary for the recruitment of both proteins to centromeres. Although SUNN lacks sequence homology to cohesins, bioinformatic analysis indicates that SUNN may be a structural homolog of the non-SMC cohesin subunit stromalin (SA), suggesting that SUNN may serve as a meiosis-specific cohesin subunit. In conclusion, our data show that SUNN is an essential meiosis-specific Drosophila cohesion protein. PMID:25194162

  19. The Yeast Polo Kinase Cdc5 Regulates the Shape of the Mitotic Nucleus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walters, Alison D.; May, Christopher K.; Dauster, Emma S.

    Abnormal nuclear size and shape are hallmarks of aging and cancer. However, the mechanisms regulating nuclear morphology and nuclear envelope (NE) expansion are poorly understood. In metazoans, the NE disassembles prior to chromosome segregation and reassembles at the end of mitosis. In budding yeast, the NE remains intact. The nucleus elongates as chromosomes segregate and then divides at the end of mitosis to form two daughter nuclei without NE disassembly. The budding yeast nucleus also undergoes remodeling during a mitotic arrest; the NE continues to expand despite the pause in chromosome segregation, forming a nuclear extension, or "flare," that encompassesmore » the nucleolus. The distinct nucleolar localization of the mitotic flare indicates that the NE is compartmentalized and that there is a mechanism by which NE expansion is confined to the region adjacent to the nucleolus. Here we show that mitotic flare formation is dependent on the yeast polo kinase Cdc5. This function of Cdc5 is independent of its known mitotic roles, including rDNA condensation. High-resolution imaging revealed that following Cdc5 inactivation, nuclei expand isometrically rather than forming a flare, indicating that Cdc5 is needed for NE compartmentalization. Lastly, even in an uninterrupted cell cycle, a small NE expansion occurs adjacent to the nucleolus prior to anaphase in a Cdc5-dependent manner. Our data provide the first evidence that polo kinase, a key regulator of mitosis, plays a role in regulating nuclear morphology and NE expansion.« less

  20. The Yeast Polo Kinase Cdc5 Regulates the Shape of the Mitotic Nucleus

    DOE PAGES

    Walters, Alison D.; May, Christopher K.; Dauster, Emma S.; ...

    2014-11-20

    Abnormal nuclear size and shape are hallmarks of aging and cancer. However, the mechanisms regulating nuclear morphology and nuclear envelope (NE) expansion are poorly understood. In metazoans, the NE disassembles prior to chromosome segregation and reassembles at the end of mitosis. In budding yeast, the NE remains intact. The nucleus elongates as chromosomes segregate and then divides at the end of mitosis to form two daughter nuclei without NE disassembly. The budding yeast nucleus also undergoes remodeling during a mitotic arrest; the NE continues to expand despite the pause in chromosome segregation, forming a nuclear extension, or "flare," that encompassesmore » the nucleolus. The distinct nucleolar localization of the mitotic flare indicates that the NE is compartmentalized and that there is a mechanism by which NE expansion is confined to the region adjacent to the nucleolus. Here we show that mitotic flare formation is dependent on the yeast polo kinase Cdc5. This function of Cdc5 is independent of its known mitotic roles, including rDNA condensation. High-resolution imaging revealed that following Cdc5 inactivation, nuclei expand isometrically rather than forming a flare, indicating that Cdc5 is needed for NE compartmentalization. Lastly, even in an uninterrupted cell cycle, a small NE expansion occurs adjacent to the nucleolus prior to anaphase in a Cdc5-dependent manner. Our data provide the first evidence that polo kinase, a key regulator of mitosis, plays a role in regulating nuclear morphology and NE expansion.« less

Top