New developments in: three-dimensional planning for orthognathic surgery.
Popat, Hashmat; Richmond, Stephen; Drage, Nicholas A
2010-03-01
The limitations of plain film radiographs are well documented and the recent introduction of cone beam computed tomography (CBCT) imaging has been a breakthrough in enabling three-dimensional (3D) visualization of the bony skeleton and dentition. There are many reported applications for CBCT in the field of orthodontics and maxillofacial surgery, including the localization of impacted teeth and implant site assessment. More recently, by augmenting CBCT volumes of the maxilla, mandible and dentition, a virtual 3D patient can be created, which can allow planning of orthognathic surgery entirely in 3D. A commercially available software package for 3D orthognathic planning (Maxilim(R), Medicim NV, Belgium) is independently reviewed, familiarizing the reader with the technique for creating a virtual 3D patient, outlining the advantages and disadvantages of the software and concluding on the feasibility of its routine use in clinical practice.
Dosimetric evaluation of a three-dimensional treatment planning system
Murugan, Appasamy; Valas, Xavier Sidonia; Thayalan, Kuppusamy; Ramasubramanian, Velayudham
2011-01-01
The computerized treatment planning system plays a major role in radiation therapy in delivering correct radiation dose to the patients within ±5% as recommended by the ICRU. To evaluate the dosimetric performance of the Treatment Planning system (TPS) with three-dimensional dose calculation algorithm using the basic beam data measured for 6 MV X-rays. Eleven numbers of test cases were created according to the Technical Report Series-430 (TRS 430) and are used to evaluate the TPS in a homogeneous water phantom. These cases involve simple field arrangements as well as the presence of a low-density material in the beam to resemble an air in-homogeneity. Absolute dose measurements were performed for the each case with the MU calculation given by the TPS, and the measured dose is compared with the corresponding TPS calculated dose values. The result yields a percentage difference maximum of 2.38% for all simple test cases. For complex test cases in the presence of in-homogeneity, beam modifiers or beam modifiers with asymmetric fields a maximum percentage difference of 5.94% was observed. This study ensures that the dosimetric calculations performed by the TPS are within the accuracy of ±5% which is very much warranted in patient dose delivery. The test procedures are simple, not only during the installation of TPS, but also repeated at periodic intervals. PMID:21430854
Three-dimensional dosimetry for radioimmunotherapy treatment planning.
Sgouros, G; Chiu, S; Pentlow, K S; Brewster, L J; Kalaigian, H; Baldwin, B; Daghighian, F; Graham, M C; Larson, S M; Mohan, R
1993-09-01
Absorbed-dose calculations for radioimmunotherapy are generally based on tracer imaging studies of the labeled antibody. Such calculations yield estimates of the average dose to normal and target tissues assuming idealized geometries for both the radioactivity source volume and the target volume. This work describes a methodology that integrates functional information obtained from SPECT or PET with anatomical information from CT or MRI. These imaging modalities are used to define the actual shape and position of the radioactivity source volume relative to the patient's anatomy. This information is then used to calculate the spatially varying absorbed dose, depicted in "colorwash" superimposed on the anatomical imaging study. By accounting for individual uptake characteristics of a particular tumor and/or normal tissue volume and superimposing resulting absorbed-dose distribution over patient anatomy, this approach provides a patient-specific assessment of the target-to-surrounding normal tissue absorbed-dose ratio. Such information is particularly important in a treatment planning approach to radioimmunotherapy, wherein a therapeutic administration of antibody is preceded by a tracer imaging study to assess therapeutic benefit.
Three dimensional model for surgical planning in resection of thoracic tumors
Kim, Min P.; Ta, Anderson H.; Ellsworth, Warren A.; Marco, Rex A.; Gaur, Puja; Miller, Jordan S.
2015-01-01
Introduction The computed tomography scan provides vital information about the relationship of thoracic malignancies to the surrounding structures and aids in surgical planning. However, it can be difficult to visualize the images in a two-dimensional screen to interpret the full extent of the relationship between important structures in the surgical field. Presentation of case We report two cases where we used a three-dimensional printed model to aid in the surgical resection of thoracic malignancies. Discussion Careful planning is necessary to resect thoracic malignancies. Although two-dimensional images of the thoracic malignancies provide vital information about the tumor and its surrounding structures, the three-dimensional printed model can provide more accurate information about the tumor and assist in surgical planning. Conclusion Three-dimensional printed model provide better visualization of complex thoracic tumors, aid in counseling the patient about the surgical procedure and assisted in surgical resection of thoracic malignancy. PMID:26453940
Strategic planning for aircraft noise route impact analysis: A three dimensional approach
NASA Technical Reports Server (NTRS)
Bragdon, C. R.; Rowan, M. J.; Ahuja, K. K.
1993-01-01
The strategic routing of aircraft through navigable and controlled airspace to minimize adverse noise impact over sensitive areas is critical in the proper management and planning of the U.S. based airport system. A major objective of this phase of research is to identify, inventory, characterize, and analyze the various environmental, land planning, and regulatory data bases, along with potential three dimensional software and hardware systems that can be potentially applied for an impact assessment of any existing or planned air route. There are eight data bases that have to be assembled and developed in order to develop three dimensional aircraft route impact methodology. These data bases which cover geographical information systems, sound metrics, land use, airspace operational control measures, federal regulations and advisories, census data, and environmental attributes have been examined and aggregated. A three dimensional format is necessary for planning, analyzing space and possible noise impact, and formulating potential resolutions. The need to develop this three dimensional approach is essential due to the finite capacity of airspace for managing and planning a route system, including airport facilities. It appears that these data bases can be integrated effectively into a strategic aircraft noise routing system which should be developed as soon as possible, as part of a proactive plan applied to our FAA controlled navigable airspace for the United States.
SU-E-T-279: Realization of Three-Dimensional Conformal Dose Planning in Prostate Brachytherapy
Li, Z; Jiang, S; Yang, Z; Bai, H; Zhang, X
2014-06-01
Purpose: Successful clinical treatment in prostate brachytherapy is largely dependent on the effectiveness of pre-surgery dose planning. Conventional dose planning method could hardly arrive at a satisfy result. In this abstract, a three-dimensional conformal localized dose planning method is put forward to ensure the accuracy and effectiveness of pre-implantation dose planning. Methods: Using Monte Carlo method, the pre-calculated 3-D dose map for single source is obtained. As for multiple seeds dose distribution, the maps are combined linearly to acquire the 3-D distribution. The 3-D dose distribution is exhibited in the form of isodose surface together with reconstructed 3-D organs group real-timely. Then it is possible to observe the dose exposure to target volume and normal tissues intuitively, thus achieving maximum dose irradiation to treatment target and minimum healthy tissues damage. In addition, the exfoliation display of different isodose surfaces can be realized applying multi-values contour extraction algorithm based on voxels. The needles could be displayed in the system by tracking the position of the implanted seeds in real time to conduct block research in optimizing insertion trajectory. Results: This study extends dose planning from two-dimensional to three-dimensional, realizing the three-dimensional conformal irradiation, which could eliminate the limitations of 2-D images and two-dimensional dose planning. A software platform is developed using VC++ and Visualization Toolkit (VTK) to perform dose planning. The 3-D model reconstruction time is within three seconds (on a Intel Core i5 PC). Block research could be conducted to avoid inaccurate insertion into sensitive organs or internal obstructions. Experiments on eight prostate cancer cases prove that this study could make the dose planning results more reasonable. Conclusion: The three-dimensional conformal dose planning method could improve the rationality of dose planning by safely reducing
Computer-assisted three-dimensional surgical planning and simulation: 3D virtual osteotomy.
Xia, J; Ip, H H; Samman, N; Wang, D; Kot, C S; Yeung, R W; Tideman, H
2000-02-01
A computer-assisted three-dimensional virtual osteotomy system for orthognathic surgery (CAVOS) is presented. The virtual reality workbench is used for surgical planning. The surgeon immerses in a virtual reality environment with stereo eyewear, holds a virtual "scalpel" (3D Mouse) and operates on a "real" patient (3D visualization) to obtain pre-surgical prediction (3D bony segment movements). Virtual surgery on a computer-generated 3D head model is simulated and can be visualized from any arbitrary viewing point in a personal computer system.
Use of three-dimensional medical modeling methods for precise planning of orthognathic surgery.
Mavili, Mehmet Emin; Canter, Halil Ibrahim; Saglam-Aydinatay, Banu; Kamaci, Soner; Kocadereli, Ilken
2007-07-01
Stereolithographic (medical rapid prototyping) biomodeling allows three-dimensional computed tomography to be used to generate solid plastic replicas of anatomic structures. Reports in the literature suggest that such biomodels may have a use in maxillofacial surgery, craniofacial surgery, orthopedics, neurosurgery, otology, vascular, and nasal research. A prospective trial to assess the usefulness of biomodeling in orthognathic surgery has been performed. In 12 patients with mandibular prognathism and/or maxillary retrusion, in addition to routine preoperative cephalometric analysis, preoperative high-resolution (cutting slice thickness of 1 mm) three-dimensional computed tomography scan of the patients was obtained. Raw data obtained from computed tomography scanning was processed with a Mimics 9.22 Software (Materialise's Interactive Medical Image Control System, Belgium). Fabrication of three-dimensional medical models was obtained through a process called powder depositional modeling by use of a Spectrum Z 510 3D Color Printer (Z Corporation, Burlington, MA). Alveolar arches of the maxilla and mandibula of the models were replaced with orthodontic dental cast models. Temporomandibular joints of the models were fixed with Kirschner wire. Maxillary and mandibular bony segments were mobilized according to preoperative orthodontic planning done by analysis of cephalometric plain radiographs. The relation between proximal and distal mandibular segments after bilateral sagittal split osteotomies were evaluated on models preoperatively. The same surgeon had a role in both model cutting preoperatively and as an instructor preoperatively. The same bony relation was observed both in preoperative modelsand in the perioperative surgical field in all patients. Condylar malpositioning was not observed in any of the patients. Studying preoperative planned movements of osteotomized bone segments and observing relations of osteotomized segments of mandibula and maxilla in
Xia, J; Samman, N; Yeung, R W; Wang, D; Shen, S G; Ip, H H; Tideman, H
2000-08-01
The purpose of this paper is to report a new technique for three-dimensional facial soft-tissue-change prediction after simulated orthognathic surgical planning. A scheme for soft tissue deformation, "Computer-assisted three-dimensional virtual reality soft tissue planning and prediction for orthognathic surgery (CASP)", is presented. The surgical planning was based on three-dimensional reconstructed CT visualization. Soft tissue changes were predicted by two newly devised algorithms: Surface Normal-based Model Deformation Algorithm and Ray Projection-based Model Deformation Algorithm. A three-dimensional color facial texture-mapping technique was also used for generating the color photo-realistic facial model. As a final result, a predicted and simulated patient's color facial model can be visualized from arbitrary viewing points.
Zerr, Joseph; Chatzinoff, Yonatan; Chopra, Rajiv; Estrera, Kenneth; Chhabra, Avneesh
2016-10-01
Three dimensional (3D) printing can be used to create material models to aid preoperative planning of complex orthopedic procedures as exemplified by this case of total hip arthroplasty failure due to infection with resulting severe acetabular bone stock deficiency. The 3D model allowed for trialing of the acetabular component to determine cup size, position, and screw placement. Most importantly, the model confirmed that there was not a pelvic discontinuity and the revision shell would be sufficient for the reconstruction. Previously, the cost and complexity of utilization of 3D printers were prohibitive. Recent improvements in commercially available 3D printers have made rapid prototype model creation a realistic option, which can facilitate difficult surgery. PMID:27480617
Zerr, Joseph; Chatzinoff, Yonatan; Chopra, Rajiv; Estrera, Kenneth; Chhabra, Avneesh
2016-10-01
Three dimensional (3D) printing can be used to create material models to aid preoperative planning of complex orthopedic procedures as exemplified by this case of total hip arthroplasty failure due to infection with resulting severe acetabular bone stock deficiency. The 3D model allowed for trialing of the acetabular component to determine cup size, position, and screw placement. Most importantly, the model confirmed that there was not a pelvic discontinuity and the revision shell would be sufficient for the reconstruction. Previously, the cost and complexity of utilization of 3D printers were prohibitive. Recent improvements in commercially available 3D printers have made rapid prototype model creation a realistic option, which can facilitate difficult surgery.
Munzenrider, J.E.; Doppke, K.P.; Brown, A.P.; Burman, C.; Cheng, E.; Chu, J.; Chui, C.; Drzymala, R.E.; Goitein, M.; Manolis, J.M. )
1991-05-15
Three-dimensional treatment planning has been used by four cooperating centers to prepare and analyze multiple treatment plans on two cervix cancer patients. One patient had biopsy-proven and CT-demonstrable metastasis to the para-aortic nodes, while the other was at high risk for metastatic involvement of para-aortic nodes. Volume dose distributions were analyzed, and an attempt was made to define the role of 3-D treatment planning to the para-aortic region, where moderate to high doses (50-66 Gy) are required to sterilize microscopic and gross metastasis. Plans were prepared using the 3-D capabilities for tailoring fields to the target volumes, but using standard field arrangements (3-D standard), and with full utilization of the 3-D capabilities (3-D unconstrained). In some but not all 3-D unconstrained plans, higher doses were delivered to the large nodal volume and to the volume containing gross nodal disease than in plans analyzed but not prepared with full 3-D capability (3-D standard). The small bowel was the major dose limiting organ. Its tolerance would have been exceeded in all plans which prescribed 66 Gy to the gross nodal mass, although some reduction in small bowel near-maximum dose was achieved in the 3-D unconstrained plans. All plans were able to limit doses to other normal organs to tolerance levels or less, with significant reductions seen in doses to spinal cord, kidneys, and large bowel in the 3-D unconstrained plans, as compared to the 3-D standard plans. A high probability of small bowel injury was detected in one of four 3-D standard plans prescribed to receive 50 Gy to the large para-aortic nodal volume; the small bowel dose was reduced to an acceptable level in the corresponding 3-D unconstrained plan. An optimum beam energy for treating this site was not identified, with plans using 4, 6, 10, 15, 18, and 25 MV photons all being equally acceptable. (Abstract Truncated)
The importance of three-dimensional brachytherapy treatment planning for nasopharyngeal carcinoma.
Leung, T W; Wong, V Y; Tung, S Y; Lui, C M; Tsang, W W; Sze, W K; O, S K
1997-01-01
High dose rate (HDR) intracavitary brachytherapy is now more frequently incorporated into treatment programmes for patients with persistent and recurrent nasopharyngeal carcinoma (NPC). However, many centres still employ two-dimensional (2-D) image reconstruction for applicators with a three-dimensional (3-D) orientation. In this study, we introduced the use of a mobile modified Nucletron reconstruction box inside the brachytherapy suite for image reconstruction and quality assurance. Three-dimensional reconstruction of the applicators' configurations proved possible and the dose distributions generated by the 2-D and 3-D image reconstructions could be compared. Thirty-one applications were included in this part of the analysis. The results showed that, based on the 2-D planning method, the reference doses were under-prescribed by 1%-10% in all except one patient, whose dose was over-prescribed by 3%. The evaluated doses to the floor of the sphenoid, which was shown to be significant for subsequent local control, was shown to be underestimated by up to 19% or overestimated by 18%, with an average of 5.9% dose underestimation. With this system, the reliability of the anchoring techniques was verified by posttherapy radiographs. Any catheter displacement of more than 1 mm was counted as a failure. Nine of the 43 verified applications were classified as failures, although six of nine catheter displacements measured < or = 2.5 mm. We recommend the routine use of a modified reconstruction box for 3-D image reconstruction for dose calculation and prescription in the treatment of NPC with HDR intracavitary brachytherapy. Quality assurance programmes should be included as an integral part of any HDR treatment; their importance cannot be overemphasized.
NASA Astrophysics Data System (ADS)
Kay, Paul A.; Robb, Richard A.; King, Bernard F.; Myers, R. P.; Camp, Jon J.
1995-04-01
Thousands of radical prostatectomies for prostate cancer are performed each year. Radical prostatectomy is a challenging procedure due to anatomical variability and the adjacency of critical structures, including the external urinary sphincter and neurovascular bundles that subserve erectile function. Because of this, there are significant risks of urinary incontinence and impotence following this procedure. Preoperative interaction with three-dimensional visualization of the important anatomical structures might allow the surgeon to understand important individual anatomical relationships of patients. Such understanding might decrease the rate of morbidities, especially for surgeons in training. Patient specific anatomic data can be obtained from preoperative 3D MRI diagnostic imaging examinations of the prostate gland utilizing endorectal coils and phased array multicoils. The volumes of the important structures can then be segmented using interactive image editing tools and then displayed using 3-D surface rendering algorithms on standard work stations. Anatomic relationships can be visualized using surface displays and 3-D colorwash and transparency to allow internal visualization of hidden structures. Preoperatively a surgeon and radiologist can interactively manipulate the 3-D visualizations. Important anatomical relationships can better be visualized and used to plan the surgery. Postoperatively the 3-D displays can be compared to actual surgical experience and pathologic data. Patients can then be followed to assess the incidence of morbidities. More advanced approaches to visualize these anatomical structures in support of surgical planning will be implemented on virtual reality (VR) display systems. Such realistic displays are `immersive,' and allow surgeons to simultaneously see and manipulate the anatomy, to plan the procedure and to rehearse it in a realistic way. Ultimately the VR systems will be implemented in the operating room (OR) to assist the
Tsauo, Jiaywei Luo, Xuefeng; Ye, Linchao; Li, Xiao
2015-06-15
PurposeThis study was designed to report our results with a modified technique of three-dimensional (3D) path planning software assisted transjugular intrahepatic portosystemic shunt (TIPS).Methods3D path planning software was recently developed to facilitate TIPS creation by using two carbon dioxide portograms acquired at least 20° apart to generate a 3D path for overlay needle guidance. However, one shortcoming is that puncturing along the overlay would be technically impossible if the angle of the liver access set and the angle of the 3D path are not the same. To solve this problem, a prototype 3D path planning software was fitted with a utility to calculate the angle of the 3D path. Using this, we modified the angle of the liver access set accordingly during the procedure in ten patients.ResultsFailure for technical reasons occurred in three patients (unsuccessful wedged hepatic venography in two cases, software technical failure in one case). The procedure was successful in the remaining seven patients, and only one needle pass was required to obtain portal vein access in each case. The course of puncture was comparable to the 3D path in all patients. No procedure-related complication occurred following the procedures.ConclusionsAdjusting the angle of the liver access set to match the angle of the 3D path determined by the software appears to be a favorable modification to the technique of 3D path planning software assisted TIPS.
NASA Technical Reports Server (NTRS)
Scharfe, Nathan D.
2005-01-01
NASA's current mission planning system is based on point design, two-dimensional display, spread sheets, and report technology. This technology does not enable engineers to analyze the results of parametric studies of missions plans. This technology will not support the increased observational complexity and data volume of missions like Cassini, Mars Reconnaissance Orbiter (MRO), Mars Science Laboratory (MSL), and Mars Sample Return (MSR). The goal of the 3D-ROMPS task has been to establish a set of operational mission planning and analysis tools in the Image Processing Laboratory (IPL) Mission Support Area (MSA) that will respond to engineering requirements for planning future Solar System Exploration (SSE) missions using a three-dimensional display.
Conti, Alfredo; Pontoriero, Antonio; Farago, Giuseppe; Midili, Federica; Siragusa, Carmelo; Granata, Francesca; Pitrone, Antonio; De Renzis, Costantino; Longo, Marcello; Tomasello, Francesco
2011-11-01
Purpose: Accuracy in delineating the target volume is a major issue for successful stereotactic radiosurgery for arteriovenous malformations. The aim of the present study was to describe a method to integrate three-dimensional (3D) rotational angiography ( (3DRA)) into CyberKnife treatment planning and to investigate its potential advantages compared with computed tomography angiography (CTA) and magnetic resonance angiography. Methods and Materials: A total of 20 patients with a diagnosis of cerebral arteriovenous malformation were included in the present study. All patients underwent multislice computed tomography and 3D-volumetric CTA, (3DRA), and 3D magnetic resonance angiography. The contouring of the target and critical volumes was done separately using CTA and thereafter directly using (3DRA). The composite, conjoint, and disjoint volumes were measured. Results: The use of CTA or (3DRA) resulted in significant differences in the target and critical volumes. The target volume averaged 3.49 {+-} 3.01 mL measured using CTA and 3.26 {+-} 2.93 mL measured using (3DRA), for a difference of 8% (p < .05). The conjoint and disjoint volume analysis showed an 88% volume overlap. The qualitative evaluation showed that the excess volume obtained using CTA was mostly tissue surrounding the nidus and venous structures. The mean contoured venous volume was 0.67 mL measured using CTA and 0.88 mL (range, 0.1-2.7) measured using (3DRA) (p < .05). Conclusions: (3DRA) is a volumetric angiographic study that can be integrated into computer-based treatment planning. Although whether (3DRA) provides superior accuracy has not yet been proved, its high spatial resolution is attractive and offers a superior 3D view. This allows a better 3D understanding of the target volume and distribution of the radiation doses within the volume. Additional technical efforts to improve the temporal resolution and the development of software tools aimed at improving the performance of 3D contouring
Kau, Chung How; Bejemir, Morvarid Poorsattar
2015-01-01
This case report describes the successful treatment of an adult patient with idiopathic condylar resorption and Class II skeletal open bite malocclusion and temporomandibular joint disorder. A segmental Le Fort I bilateral osteotomy, ramus increasing length inverted L–osteotomy, and genioplasty combined with orthodontic treatment were performed. The treatment plan and surgery was aided by three-dimensional medical modeling, and we managed to resolve functional, esthetic, and pain concerns to a satisfactory level. PMID:26981482
Gao, Ming-ke; Chen, Yi-min; Liu, Quan; Huang, Chen; Li, Ze-yu; Zhang, Dian-hua
2015-11-01
Preoperative path planning plays a critical role in vascular access surgery. Vascular access surgery has superior difficulties and requires long training periods as well as precise operation. Yet doctors are on different leves, thus bulky size of blood vessels is usually chosen to undergo surgery and other possible optimal path is not considered. Moreover, patients and surgeons will suffer from X-ray radiation during the surgical procedure. The study proposed an improved ant colony algorithm to plan a vascular optimal three-dimensional path with overall consideration of factors such as catheter diameter, vascular length, diameter as well as the curvature and torsion. To protect the doctor and patient from exposing to X-ray long-term, the paper adopted augmented reality technology to register the reconstructed vascular model and physical model meanwhile, locate catheter by the electromagnetic tracking system and used Head Mounted Display to show the planning path in real time and monitor catheter push procedure. The experiment manifests reasonableness of preoperative path planning and proves the reliability of the algorithm. The augmented reality experiment real time and accurately displays the vascular phantom model, planning path and the catheter trajectory and proves the feasibility of this method. The paper presented a useful and feasible surgical scheme which was based on the improved ant colony algorithm to plan vascular three-dimensional path in augmented reality. The study possessed practical guiding significance in preoperative path planning, intraoperative catheter guiding and surgical training, which provided a theoretical method of path planning for vascular access surgery. It was a safe and reliable path planning approach and possessed practical reference value.
Computer-assisted three-dimensional surgical planning: 3D virtual articulator: technical note.
Ghanai, S; Marmulla, R; Wiechnik, J; Mühling, J; Kotrikova, B
2010-01-01
This study presents a computer-assisted planning system for dysgnathia treatment. It describes the process of information gathering using a virtual articulator and how the splints are constructed for orthognathic surgery. The deviation of the virtually planned splints is shown in six cases on the basis of conventionally planned cases. In all cases the plaster models were prepared and scanned using a 3D laser scanner. Successive lateral and posterior-anterior cephalometric images were used for reconstruction before surgery. By identifying specific points on the X-rays and marking them on the virtual models, it was possible to enhance the 2D images to create a realistic 3D environment and to perform virtual repositioning of the jaw. A hexapod was used to transfer the virtual planning to the real splints. Preliminary results showed that conventional repositioning could be replicated using the virtual articulator.
Radiotoxic model for three-dimensional treatment planning. Part 1: Theoretical basis
Caudry, M.; Causse, N.; Trouette, R.; Recaldini, L.; Maire, J.P.; Demeaux, H. )
1993-04-02
Since recent treatment planning systems calculate volumetric dose distribution, an objective evaluation of potential toxicity in the main critical organs may be helpful in treatment optimization. Modeling the toxicity of radiotherapy must at least account for: (a) specific risks in every critical organ; (b) total dose and dose per fraction; (c) partial irradiation of critical organs; (d) heterogeneous dose distribution. The Radiation Damage Factor formula is aimed at estimating the delayed toxicity of a given treatment plan on every critical organ concerned. The formulation uses a double exponential function: RDF = 100 e[sup [minus]Ke[sup [minus](a+bd)DV[sup c
Xia, J; Samman, N; Yeung, R W; Shen, S G; Wang, D; Ip, H H; Tideman, H
2000-01-01
A new integrated computer system, the 3-dimensional (3D) virtual reality surgical planning and simulation workbench for orthognathic surgery (VRSP), is presented. Five major functions are implemented in this system: post-processing and reconstruction of computed tomographic (CT) data, transformation of 3D unique coordinate system geometry, generation of 3D color facial soft tissue models, virtual surgical planning and simulation, and presurgical prediction of soft tissue changes. The basic mensuration functions, such as linear and spatial measurements, are also included. The surgical planning and simulation are based on 3D CT reconstructions, whereas soft tissue prediction is based on an individualized, texture-mapped, color facial soft tissue model. The surgeon "enters" the virtual operatory with virtual reality equipment, "holds" a virtual scalpel, and "operates" on a virtual patient to accomplish actual surgical planning, simulation of the surgical procedure, and prediction of soft tissue changes before surgery. As a final result, a quantitative osteotomy-simulated bone model and predicted color facial model with photorealistic quality can be visualized from any arbitrary viewing point in a personal computer system. This system can be installed in any hospital for daily use.
Three-dimensional FE analysis of a nailed soil wall curved in plan
NASA Astrophysics Data System (ADS)
Smith, I. M.; Su, N.
1997-09-01
A nailed soil wall curved in plan was modelled in three-dimensions by the finite element method for construction, service and ultimate loading conditions. The behaviour of the nailed soil wall, the soil-nail interaction, the role of the reinforcement, and the overall and internal failure mechanisms were investigated.
Criteria and techniques for three-dimensional treatment planning with pions
Berardo, P.; Zink, S.; Paciotti, M.; Bradbury, J.
1981-01-01
The ability to predict a pion dose distribution in a patient is a major objective of the clinical trials at LAMPF. Accurate predictions are essential for evaluation of pion therapy. But accuracy must be in the context of clinical utility. That is, reasonable approximations must be made in calculational methods so that treatment planning can proceed in a timely and efficient manner. A few of the techniques and current developments used to achieve that objective are presented here.
Three dimensional dose verification of VMAT plans using the Octavius 4D dosimetric system
NASA Astrophysics Data System (ADS)
Arumugam, Sankar; Xing, Aitang; Young, Tony; Thwaites, David; Holloway, Lois
2015-01-01
The Octavius 4D dosimetric system generates a 3D dose matrix based on a measured planar dose and user supplied Percentage Depth Dose (PDD) data. The accuracy of 3D dose matrices reconstructed by the Octavius 4D dosimetric system was systematically studied for an open static field, an open arc field and clinical VMAT plans. The Octavius reconstructed 3D dose matrices were compared with the Treatment Planning System (TPS) calculated 3D dose matrices using 3D gamma (γ) analysis with 2%/2mm and 3%/3mm tolerance criteria. The larger detector size in the 2D detector array of the Octavius system resulted in failed voxels in the high dose gradient regions. For the open arc fields mean (1σ) γ pass rates of 84.5(8.9) % and 94.2(4.5) % were observed with 2%/2mm and 3%/3mm tolerance criteria respectively and for clinical VMAT plans mean (1σ) γ pass rates of 86.8(3.5) % and 96.7(1.4) % were observed.
Baechler, Sebastien; Hobbs, Robert F.; Boubaker, Ariane; Buchegger, Franz; He Bin; Frey, Eric C.; Sgouros, George
2012-10-15
Purpose: Peptide receptor radionuclide therapy (PRRT) delivers high absorbed doses to kidneys and may lead to permanent nephropathy. Reliable dosimetry of kidneys is thus critical for safe and effective PRRT. The aim of this work was to assess the feasibility of planning PRRT based on 3D radiobiological dosimetry (3D-RD) in order to optimize both the amount of activity to administer and the fractionation scheme, while limiting the absorbed dose and the biological effective dose (BED) to the renal cortex. Methods: Planar and SPECT data were available for a patient examined with {sup 111}In-DTPA-octreotide at 0.5 (planar only), 4, 24, and 48 h post-injection. Absorbed dose and BED distributions were calculated for common therapeutic radionuclides, i.e., {sup 111}In, {sup 90}Y and {sup 177}Lu, using the 3D-RD methodology. Dose-volume histograms were computed and mean absorbed doses to kidneys, renal cortices, and medullae were compared with results obtained using the MIRD schema (S-values) with the multiregion kidney dosimetry model. Two different treatment planning approaches based on (1) the fixed absorbed dose to the cortex and (2) the fixed BED to the cortex were then considered to optimize the activity to administer by varying the number of fractions. Results: Mean absorbed doses calculated with 3D-RD were in good agreement with those obtained with S-value-based SPECT dosimetry for {sup 90}Y and {sup 177}Lu. Nevertheless, for {sup 111}In, differences of 14% and 22% were found for the whole kidneys and the cortex, respectively. Moreover, the authors found that planar-based dosimetry systematically underestimates the absorbed dose in comparison with SPECT-based methods, up to 32%. Regarding the 3D-RD-based treatment planning using a fixed BED constraint to the renal cortex, the optimal number of fractions was found to be 3 or 4, depending on the radionuclide administered and the value of the fixed BED. Cumulative activities obtained using the proposed simulated
NASA Astrophysics Data System (ADS)
Zamorano, Lucia J.; Dujovny, Manuel; Ausman, James I.
1990-01-01
"Real time" surgical treatment planning utilizing multimodality imaging (CT, MRI, DA) has been developed to provide the neurosurgeon with 2D multiplanar and 3D views of a patient's lesion for stereotactic planning. Both diagnostic and therapeutic stereotactic procedures have been implemented utilizing workstation (SUN 1/10) and specially developed software and hardware (developed in collaboration with TOMO Medical Imaging Technology, Southfield, MI). This provides complete 3D and 2D free-tilt views as part of the system instrumentation. The 2D Multiplanar includes reformatted sagittal, coronal, paraaxial and free tilt oblique vectors at any arbitrary plane of the patient's lesion. The 3D includes features for extracting a view of the target volume localized by a process including steps of automatic segmentation, thresholding, and/or boundary detection with 3D display of the volumes of interest. The system also includes the capability of interactive playback of reconstructed 3D movies, which can be viewed at any hospital network having compatible software on strategical locations or at remote sites through data transmission and record documentation by image printers. Both 2D and 3D menus include real time stereotactic coordinate measurements and trajectory definition capabilities as well as statistical functions for computing distances, angles, areas, and volumes. A combined interactive 3D-2D multiplanar menu allows simultaneous display of selected trajectory, final optimization, and multiformat 2D display of free-tilt reformatted images perpendicular to selected trajectory of the entire target volume.
Three-dimensional print of a liver for preoperative planning in living donor liver transplantation.
Zein, Nizar N; Hanouneh, Ibrahim A; Bishop, Paul D; Samaan, Maggie; Eghtesad, Bijan; Quintini, Cristiano; Miller, Charles; Yerian, Lisa; Klatte, Ryan
2013-12-01
The growing demand for liver transplantation and the concomitant scarcity of cadaveric livers have increased the need for living donor liver transplantation (LDLT). Ensuring the safety of donors and recipients is critical. The preoperative identification of the vascular and biliary tract anatomy with 3-dimensional (3D) printing may allow better preoperative surgical planning, avert unnecessary surgery in patients with potentially unsuitable anatomy, and thereby decrease the complications of liver transplant surgery. We developed a protocol and successfully 3D-printed synthetic livers (along with their complex networks of vascular and biliary structures) replicating the native livers of 6 patients: 3 living donors and 3 respective recipients who underwent LDLT. To our knowledge, these are the first complete 3D-printed livers. Using standardized preoperative, intraoperative, and postoperative assessments, we demonstrated identical anatomical and geometrical landmarks in the 3D-printed models and native livers.
Three-dimensional visualization system as an aid for facial surgical planning
NASA Astrophysics Data System (ADS)
Barre, Sebastien; Fernandez-Maloigne, Christine; Paume, Patricia; Subrenat, Gilles
2001-05-01
We present an aid for facial deformities treatment. We designed a system for surgical planning and prediction of human facial aspect after maxillo-facial surgery. We study the 3D reconstruction process of the tissues involved in the simulation, starting from CT acquisitions. 3D iso-surfaces meshes of soft tissues and bone structures are built. A sparse set of still photographs is used to reconstruct a 360 degree(s) texture of the facial surface and increase its visual realism. Reconstructed objects are inserted into an object-oriented, portable and scriptable visualization software allowing the practitioner to manipulate and visualize them interactively. Several LODs (Level-Of- Details) techniques are used to ensure usability. Bone structures are separated and moved by means of cut planes matching orthognatic surgery procedures. We simulate soft tissue deformations by creating a physically-based springs model between both tissues. The new static state of the facial model is computed by minimizing the energy of the springs system to achieve equilibrium. This process is optimized by transferring informations like participation hints at vertex-level between a warped generic model and the facial mesh.
Plooij, Joanneke M; Maal, Thomas J J; Haers, Piet; Borstlap, Wilfred A; Kuijpers-Jagtman, Anne Marie; Bergé, Stefaan J
2011-04-01
The three important tissue groups in orthognathic surgery (facial soft tissues, facial skeleton and dentition) can be referred to as a triad. This triad plays a decisive role in planning orthognathic surgery. Technological developments have led to the development of different three-dimensional (3D) technologies such as multiplanar CT and MRI scanning, 3D photography modalities and surface scanning. An objective method to predict surgical and orthodontic outcome should be established based on the integration of structural (soft tissue envelope, facial skeleton and dentition) and photographic 3D images. None of the craniofacial imaging techniques can capture the complete triad with optimal quality. This can only be achieved by 'image fusion' of different imaging techniques to create a 3D virtual head that can display all triad elements. A systematic search of current literature on image fusion in the craniofacial area was performed. 15 articles were found describing 3D digital image fusion models of two or more different imaging techniques for orthodontics and orthognathic surgery. From these articles it is concluded, that image fusion and especially the 3D virtual head are accurate and realistic tools for documentation, analysis, treatment planning and long term follow up. This may provide an accurate and realistic prediction model.
Cengiz, Mustafa Guerdalli, Salih; Selek, Ugur; Yildiz, Ferah; Saglam, Yuecel; Ozyar, Enis; Atahan, I. Lale
2008-02-01
Purpose: To quantify the effect of bladder volume on the dose distribution during intracavitary brachytherapy for cervical cancer. Methods and Patients: The study was performed on 10 women with cervical cancer who underwent brachytherapy treatment. After insertion of the brachytherapy applicator, the patients were transferred to the computed tomography unit. Two sets of computed tomography slices were taken, including the pelvis, one with an empty bladder and one after the bladder was filled with saline. The target and critical organs were delineated by the radiation oncologist and checked by the expert radiologist. The radiotherapy plan was run on the Plato planning system, version 14.1, to determine the dose distributions, dose-volume histograms, and maximal dose points. The doses and organ volumes were compared with the Wilcoxon signed ranks test on a personal computer using the Statistical Package for Social Sciences, version 11.0, statistical program. Results: No significant difference regarding the dose distribution and target volumes between an empty or full bladder was observed. Bladder fullness significantly affected the dose to the small intestine, rectum, and bladder. The median of maximal doses to the small intestine was significantly greater with an empty bladder (493 vs. 284 cGy). Although dosimetry revealed lower doses for larger volumes of bladder, the median maximal dose to the bladder was significantly greater with a full bladder (993 vs. 925 cGy). The rectal doses were also affected by bladder distension. The median maximal dose was significantly lower in the distended bladder (481vs. 628 cGy). Conclusions: Bladder fullness changed the dose distributions to the bladder, rectum, and small intestine. The clinical importance of these changes is not known and an increase in the use of three-dimensional brachytherapy planning will highlight the answer to this question.
Cone Beam CT-Based Three-Dimensional Planning in High-Dose-Rate Brachytherapy for Cervical Cancer
Al-Halabi, Hani; Portelance, Lorraine; Duclos, Marie; Reniers, Brigitte; Bahoric, Boris; Souhami, Luis
2010-07-15
Purpose: To evaluate dose-volume histograms (DVHs) of bladder and rectum from the use of cone beam CT (CBCT)-based three-dimensional (3D) treatment planning in intracavitary high-dose-rate brachytherapy (HDRB) for cervical cancer patients and to compare these parameters with International Commission on Radiation Units and Measurements (ICRU) of rectal and bladder reference point dose measurements. Methods and Materials: Thirteen patients with cervical cancer underwent HDRB insertions. CT-compatible tandem and ovoid applicators were used to obtain intraoperative CBCT images. The use of a rectal tube and injection of bladder contrast before scanning facilitated contouring the rectum and bladder. All patients underwent intraoperative orthogonal x-ray filming, and treatments were prescribed using standard two-dimensional planning and dosimetry. DVHs for the bladder and rectum were constructed for each treatment. The minimum dose in the most irradiated 2.0-cm{sup 3} volume of bladder (B{sub D2V}) and rectum (R{sub D2V}) were determined from DVHs and compared to ICRU reference point estimates of bladder (B{sub ICRU}) and rectum (R{sub ICRU}) doses. Results: Twenty-six CBCT-based plans were evaluated. The median B{sub ICRU} dose (347 cGy; range, 164-601 cGy) was significantly lower (p < 0.001) than the median B{sub D2V} (594 cGy; range, 260-969 cGy). The median R{sub ICRU} dose (405 cGy; range, 189-700 cGy) was also significantly lower (p = 0.037) than the median R{sub D2V} (488 cGy; range, 227-786 cGy). Conclusions: CBCT-based 3D planning can be used in HDRB for cervical cancer and is a convenient alternative to CT-based planning, with the advantage of minimizing applicator motion. Correlation with late effects will further define the role of CBCT-based 3D dosimetry in HDRB planning.
Shafi, M I; Ayoub, A; Ju, X; Khambay, B
2013-07-01
The motivation for orthognathic surgery is to improve facial appearance and quality of life. This study aimed to validate a three-dimensional (3D) orthognathic planning programme (Maxilim) for predicting soft tissue changes following Le Fort I advancements. Cone beam computed tomography (CBCT) scans were taken before surgery (T(1)) and at 6-12 months after surgery (T(2)) for 13 patients. For each patient the 3D hard tissue changes between T(1) and T(2) were determined by CBCT superimposition on the cranial vault. Using Maxilim, each patient's skeletal movements were used to generate a 3D soft tissue prediction. The actual soft tissue mesh at T(2) was compared to the predicted mesh. The face was divided into areas: nose, right and left nares, right and left paranasal regions, upper and lower lip, and chin. The absolute distance between meshes for each region was calculated. A one-sample t-test showed the distances between the meshes for all of the areas were within 3 mm (P<0.05), except for the upper lip which was greater than 3 mm (P=0.577). Using Maxilim, 3D soft tissue predictions for Le Fort I advancements were clinically satisfactory in the regions assessed, but associated with marked errors around the region of the upper lip.
NASA Astrophysics Data System (ADS)
Shih, Chihhsiong; Yang, Yuanfan
2012-02-01
A novel three-dimensional (3-D) photorealistic texturing process is presented that applies a view-planning and view-sequencing algorithm to the 3-D coarse model to determine a set of best viewing angles for capturing the individual real-world objects/building's images. The best sequence of views will generate sets of visible edges in each view to serve as a guide for camera field shots by either manual adjustment or equipment alignment. The best view tries to cover as many objects/building surfaces as possible in one shot. This will lead to a smaller total number of shots taken for a complete model reconstruction requiring texturing with photo-realistic effects. The direct linear transformation method (DLT) is used for reprojection of 3-D model vertices onto a two-dimensional (2-D) images plane for actual texture mapping. Given this method, the actual camera orientations do not have to be unique and can be set arbitrarily without heavy and expensive positioning equipment. We also present results of a study on the texture-mapping precision as a function of the level of visible mesh subdivision. In addition, the control points selection for the DLT method used for reprojection of 3-D model vertices onto 2-D textured images is also investigated for its effects on mapping precision. By using DLT and perspective projection theories on a coarse model feature points, this technique will allow accurate 3-D texture mapping of refined model meshes of real-world buildings. The novel integration flow of this research not only greatly reduces the human labor and intensive equipment requirements of traditional methods, but also generates a more appealing photo-realistic appearance of reconstructed models, which is useful in many multimedia applications. The roles of view planning (VP) are multifold. VP can (1) reduce the repetitive texture-mapping computation load, (2) can present a set of visible model wireframe edges that can serve as a guide for images with sharp edges and
Hobbs, Robert F.; McNutt, Todd; Baechler, Sebastien; He Bin; Esaias, Caroline E.; Frey, Eric C.; Loeb, David M.; Wahl, Richard L.; Shokek, Ori; Sgouros, George
2011-07-15
Purpose: Effective cancer treatment generally requires combination therapy. The combination of external beam therapy (XRT) with radiopharmaceutical therapy (RPT) requires accurate three-dimensional dose calculations to avoid toxicity and evaluate efficacy. We have developed and tested a treatment planning method, using the patient-specific three-dimensional dosimetry package 3D-RD, for sequentially combined RPT/XRT therapy designed to limit toxicity to organs at risk. Methods and Materials: The biologic effective dose (BED) was used to translate voxelized RPT absorbed dose (D{sub RPT}) values into a normalized total dose (or equivalent 2-Gy-fraction XRT absorbed dose), NTD{sub RPT} map. The BED was calculated numerically using an algorithmic approach, which enabled a more accurate calculation of BED and NTD{sub RPT}. A treatment plan from the combined Samarium-153 and external beam was designed that would deliver a tumoricidal dose while delivering no more than 50 Gy of NTD{sub sum} to the spinal cord of a patient with a paraspinal tumor. Results: The average voxel NTD{sub RPT} to tumor from RPT was 22.6 Gy (range, 1-85 Gy); the maximum spinal cord voxel NTD{sub RPT} from RPT was 6.8 Gy. The combined therapy NTD{sub sum} to tumor was 71.5 Gy (range, 40-135 Gy) for a maximum voxel spinal cord NTD{sub sum} equal to the maximum tolerated dose of 50 Gy. Conclusions: A method that enables real-time treatment planning of combined RPT-XRT has been developed. By implementing a more generalized conversion between the dose values from the two modalities and an activity-based treatment of partial volume effects, the reliability of combination therapy treatment planning has been expanded.
NASA Astrophysics Data System (ADS)
Ke, M. C.
2015-12-01
Large scale earthquakes often cause serious economic losses and a lot of deaths. Because the seismic magnitude, the occurring time and the occurring location of earthquakes are still unable to predict now. The pre-disaster risk modeling and post-disaster operation are really important works of reducing earthquake damages. In order to understanding disaster risk of earthquakes, people usually use the technology of Earthquake simulation to build the earthquake scenarios. Therefore, Point source, fault line source and fault plane source are the models which often are used as a seismic source of scenarios. The assessment results made from different models used on risk assessment and emergency operation of earthquakes are well, but the accuracy of the assessment results could still be upgrade. This program invites experts and scholars from Taiwan University, National Central University, and National Cheng Kung University, and tries using historical records of earthquakes, geological data and geophysical data to build underground three-dimensional structure planes of active faults. It is a purpose to replace projection fault planes by underground fault planes as similar true. The analysis accuracy of earthquake prevention efforts can be upgraded by this database. Then these three-dimensional data will be applied to different stages of disaster prevention. For pre-disaster, results of earthquake risk analysis obtained by the three-dimensional data of the fault plane are closer to real damage. For disaster, three-dimensional data of the fault plane can be help to speculate that aftershocks distributed and serious damage area. The program has been used 14 geological profiles to build the three dimensional data of Hsinchu fault and HisnCheng faults in 2015. Other active faults will be completed in 2018 and be actually applied on earthquake disaster prevention.
Swennen, Gwen R J
2014-11-01
The purpose of this article is to evaluate the timing for three-dimensional (3D) virtual treatment planning of orthognathic surgery in the daily clinical routine. A total of 350 consecutive patients were included in this study. All patients were scanned following the standardized "Triple CBCT Scan Protocol" in centric relation. Integrated 3D virtual planning and actual surgery were performed by the same surgeon in all patients. Although clinically acceptable, still software improvements especially toward 3D virtual occlusal definition are mandatory to make 3D virtual planning of orthognathic surgery less time-consuming and more user-friendly to the clinician.
Ayoub, A F; Rehab, M; O'Neil, M; Khambay, B; Ju, X; Barbenel, J; Naudi, K
2014-04-01
A method of producing a composite model consisting of a three-dimensional printed mandible bearing plaster teeth is presented. Printed models were obtained from cone beam computed tomograms (CBCT) of dry human mandibles. The plaster casts of the teeth were obtained from impressions of the teeth of the dry mandibles. The distorted teeth of the printed models were removed and replaced by the plaster casts of the teeth using a simple transfer jig. The accuracy of the composite models obtained from six mandibles was assessed from laser scans. The scans of the dry mandibles and the composite models were superimposed and the magnitude of the discrepancies at six points on the dentition and six on the mandible were obtained. It was concluded that the errors of the method were small enough to be clinically significant. The use of the composite models is illustrated in two clinical cases.
Vrooijink, Gustaaf J.; Abayazid, Momen; Patil, Sachin; Alterovitz, Ron; Misra, Sarthak
2015-01-01
Needle insertion is commonly performed in minimally invasive medical procedures such as biopsy and radiation cancer treatment. During such procedures, accurate needle tip placement is critical for correct diagnosis or successful treatment. Accurate placement of the needle tip inside tissue is challenging, especially when the target moves and anatomical obstacles must be avoided. We develop a needle steering system capable of autonomously and accurately guiding a steerable needle using two-dimensional (2D) ultrasound images. The needle is steered to a moving target while avoiding moving obstacles in a three-dimensional (3D) non-static environment. Using a 2D ultrasound imaging device, our system accurately tracks the needle tip motion in 3D space in order to estimate the tip pose. The needle tip pose is used by a rapidly exploring random tree-based motion planner to compute a feasible needle path to the target. The motion planner is sufficiently fast such that replanning can be performed repeatedly in a closed-loop manner. This enables the system to correct for perturbations in needle motion, and movement in obstacle and target locations. Our needle steering experiments in a soft-tissue phantom achieves maximum targeting errors of 0.86 ± 0.35 mm (without obstacles) and 2.16 ± 0.88 mm (with a moving obstacle). PMID:26279600
Three-dimensional photovoltaics
NASA Astrophysics Data System (ADS)
Myers, Bryan; Bernardi, Marco; Grossman, Jeffrey C.
2010-02-01
The concept of three-dimensional (3D) photovoltaics is explored computationally using a genetic algorithm to optimize the energy production in a day for arbitrarily shaped 3D solar cells confined to a given area footprint and total volume. Our simulations demonstrate that the performance of 3D photovoltaic structures scales linearly with height, leading to volumetric energy conversion, and provides power fairly evenly throughout the day. Furthermore, we show that optimal 3D structures are not simple box-like shapes, and that design attributes such as reflectivity could be optimized using three-dimensionality.
Three-dimensional photovoltaics
NASA Astrophysics Data System (ADS)
Myers, Bryan; Bernardi, Marco; Grossman, Jeffrey C.
2010-03-01
The concept of three-dimensional (3D) photovoltaics is explored computationally using a genetic algorithm to optimize the energy production in a day for arbitrarily shaped 3D solar cells confined to a given area footprint and total volume. Our simulations demonstrate that the performance of 3D photovoltaic structures scales linearly with height, leading to volumetric energy conversion, and provides power fairly evenly throughout the day. Furthermore, we show that optimal 3D shapes are not simple box-like shapes, and that design attributes such as reflectivity can be optimized in new ways using three-dimensionality.
NASA Astrophysics Data System (ADS)
Kauweloa, Kevin Ikaika
The approximate BED (BEDA) is calculated for multi-phase cases due to current treatment planning systems (TPSs) being incapable of performing BED calculations. There has been no study on the mathematical accuracy and precision of BEDA relative to the true BED (BEDT), and how that might negatively impact patient care. The purpose of the first aim was to study the mathematical accuracy and precision in both hypothetical and clinical situations, while the next two aims were to create multi-phase BED optimization ideas for both multi-target liver stereotactic body radiation therapy (SBRT) cases, and gynecological cases where patients are treated with high-dose rate (HDR) brachytherapy along with external beam radiotherapy (EBRT). MATLAB algorithms created for this work were used to mathematically analyze the accuracy and precision of BEDA relative to BEDT in both hypothetical and clinical situations on a 3D basis. The organs-at-risk (OARs) of ten head & neck and ten prostate cancer patients were studied for the clinical situations. The accuracy of BEDA was shown to vary between OARs as well as between patients. The percentage of patients with an overall BEDA percent error less than 1% were, 50% for the Optic Chiasm and Brainstem, 70% for the Left and Right Optic Nerves, as well as the Rectum and Bladder, and 80% for the Normal Brain and Spinal Cord. As seen for each OAR among different patients, there were always cases where the percent error was greater than 1%. This is a cause for concern since the goal of radiation therapy is to reduce the overall uncertainty of treatment, and calculating BEDA distributions increases the treatment uncertainty with percent errors greater than 1%. The revealed inaccuracy and imprecision of BEDA supports the argument to use BEDT. The multi-target liver study involved applying BEDT in order to reduce the number of dose limits to one rather than have one for each fractionation scheme in multi-target liver SBRT treatments. A BEDT limit
Wang, Wei; Li, Jianbin; Zhang, Yingjie; Shao, Qian; Xu, Min; Fan, Tingyong; Wang, Jinzhi
2016-01-01
Background and purpose To investigate the definition of planning target volumes (PTVs) based on four-dimensional computed tomography (4DCT) compared with conventional PTV definition and PTV definition using asymmetrical margins for thoracic primary esophageal cancer. Materials and methods Forty-three patients with esophageal cancer underwent 3DCT and 4DCT simulation scans during free breathing. The motions of primary tumors located in the proximal (group A), middle (group B), and distal (group C) thoracic esophagus were obtained from the 4DCT scans. PTV3D was defined on 3DCT using the tumor motion measured based on 4DCT, PTV conventional (PTVconv) was defined on 3DCT by adding a 1.0 cm margin to the clinical target volume, and PTV4D was defined as the union of the target volumes contoured on the ten phases of the 4DCT images. The centroid positions, volumetric differences, and dice similarity coefficients were evaluated for all PTVs. Results The median centroid shifts between PTV3D and PTV4D and between PTVconv and PTV4D in all three dimensions were <0.3 cm for the three groups. The median size ratios of PTV4D to PTV3D were 0.80, 0.88, and 0.71, and PTV4D to PTVconv were 0.67, 0.73, and 0.76 (χ2=−3.18, −2.98, and −3.06; P=0.001, 0.003, and 0.002) for groups A, B, and C, respectively. The dice similarity coefficients were 0.87, 0.90, and 0.81 between PTV4D and PTV3D and 0.80, 0.84, and 0.83 between PTV4D and PTVconv (χ2 =−3.18, −2.98, and −3.06; P=0.001, 0.003, and 0.002) for groups A, B, and C, respectively. The difference between the degree of inclusion of PTV4D in PTV3D and that of PTV4D in PTVconv was <2% for all groups. Compared with PTVconv, the amount of irradiated normal tissue for PTV3D was decreased by 11.81% and 11.86% in groups A and B, respectively, but was increased by 2.93% in group C. Conclusion For proximal and middle esophageal cancer, 3DCT-based PTV using asymmetrical margins provides good coverage of PTV4D; however, for distal
Lonic, Daniel; Pai, Betty Chien-Jung; Yamaguchi, Kazuaki; Chortrakarnkij, Peerasak; Lin, Hsiu-Hsia; Lo, Lun-Jou
2016-01-01
Background Although conventional two-dimensional (2D) methods for orthognathic surgery planning are still popular, the use of three-dimensional (3D) simulation is steadily increasing. In facial asymmetry cases such as in cleft lip/palate patients, the additional information can dramatically improve planning accuracy and outcome. The purpose of this study is to investigate which parameters are changed most frequently in transferring a traditional 2D plan to 3D simulation, and what planning parameters can be better adjusted by this method. Patients and Methods This prospective study enrolled 30 consecutive patients with cleft lip and/or cleft palate (mean age 18.6±2.9 years, range 15 to 32 years). All patients received two-jaw single-splint orthognathic surgery. 2D orthodontic surgery plans were transferred into a 3D setting. Severe bony collisions in the ramus area after 2D plan transfer were noted. The position of the maxillo-mandibular complex was evaluated and eventually adjusted. Position changes of roll, midline, pitch, yaw, genioplasty and their frequency within the patient group were recorded as an alternation of the initial 2D plan. Patients were divided in groups of no change from the original 2D plan and changes in one, two, three and four of the aforementioned parameters as well as subgroups of unilateral, bilateral cleft lip/palate and isolated cleft palate cases. Postoperative OQLQ scores were obtained for 20 patients who finished orthodontic treatment. Results 83.3% of 2D plans were modified, mostly concerning yaw (63.3%) and midline (36.7%) adjustments. Yaw adjustments had the highest mean values in total and in all subgroups. Severe bony collisions as a result of 2D planning were seen in 46.7% of patients. Possible asymmetry was regularly foreseen and corrected in the 3D simulation. Conclusion Based on our findings, 3D simulation renders important information for accurate planning in complex cleft lip/palate cases involving facial asymmetry that is
Three-dimensional metamaterials
Burckel, David Bruce
2012-06-12
A fabrication method is capable of creating canonical metamaterial structures arrayed in a three-dimensional geometry. The method uses a membrane suspended over a cavity with predefined pattern as a directional evaporation mask. Metallic and/or dielectric material can be evaporated at high vacuum through the patterned membrane to deposit resonator structures on the interior walls of the cavity, thereby providing a unit cell of micron-scale dimension. The method can produce volumetric metamaterial structures comprising layers of such unit cells of resonator structures.
Three Dimensional Dirac Semimetals
NASA Astrophysics Data System (ADS)
Zaheer, Saad
2014-03-01
Dirac points on the Fermi surface of two dimensional graphene are responsible for its unique electronic behavior. One can ask whether any three dimensional materials support similar pseudorelativistic physics in their bulk electronic spectra. This possibility has been investigated theoretically and is now supported by two successful experimental demonstrations reported during the last year. In this talk, I will summarize the various ways in which Dirac semimetals can be realized in three dimensions with primary focus on a specific theory developed on the basis of representations of crystal spacegroups. A three dimensional Dirac (Weyl) semimetal can appear in the presence (absence) of inversion symmetry by tuning parameters to the phase boundary separating a bulk insulating and a topological insulating phase. More generally, we find that specific rules governing crystal symmetry representations of electrons with spin lead to robust Dirac points at high symmetry points in the Brillouin zone. Combining these rules with microscopic considerations identifies six candidate Dirac semimetals. Another method towards engineering Dirac semimetals involves combining crystal symmetry and band inversion. Several candidate materials have been proposed utilizing this mechanism and one of the candidates has been successfully demonstrated as a Dirac semimetal in two independent experiments. Work carried out in collaboration with: Julia A. Steinberg, Steve M. Young, J.C.Y. Teo, C.L. Kane, E.J. Mele and Andrew M. Rappe.
Kauweloa, Kevin I. Gutierrez, Alonso N.; Bergamo, Angelo; Stathakis, Sotirios; Papanikolaou, Nikos; Mavroidis, Panayiotis
2014-07-15
Purpose: There is a growing interest in the radiation oncology community to use the biological effective dose (BED) rather than the physical dose (PD) in treatment plan evaluation and optimization due to its stronger correlation with radiobiological effects. Radiotherapy patients may receive treatments involving a single only phase or multiple phases (e.g., primary and boost). Since most treatment planning systems cannot calculate the analytical BED distribution in multiphase treatments, an approximate multiphase BED expression, which is based on the total physical dose distribution, has been used. The purpose of this paper is to reveal the mathematical properties of the approximate BED formulation, relative to the true BED. Methods: The mathematical properties of the approximate multiphase BED equation are analyzed and evaluated. In order to better understand the accuracy of the approximate multiphase BED equation, the true multiphase BED equation was derived and the mathematical differences between the true and approximate multiphase BED equations were determined. The magnitude of its inaccuracies under common clinical circumstances was also studied. All calculations were performed on a voxel-by-voxel basis using the three-dimensional dose matrices. Results: Results showed that the approximate multiphase BED equation is accurate only when the dose-per-fractions (DPFs) in both the first and second phases are equal, which occur when the dose distribution does not significantly change between the phases. In the case of heterogeneous dose distributions, which significantly vary between the phases, there are fewer occurrences of equal DPFs and hence the inaccuracy of the approximate multiphase BED is greater. These characteristics are usually seen in the dose distributions being delivered to organs at risk rather than to targets. Conclusions: The finding of this study indicates that the true multiphase BED equation should be implemented in the treatment planning
Mendes, Ruheena; Lavrenkov, Konstantin; Bedford, James L; Henrys, Anthony; Ashley, Sue; Brada, Michael
2006-03-01
The forward and inverse treatment plans of 10 patients with lung cancer were compared in terms of PTV coverage, sparing of normal lung and time required to generate a plan. The inverse planning produced as good treatment plans as an experienced dosimetrist with considerable reduction in staff time. When translated to other complex sites, inverse non-IMRT planning may have considerable impact on manpower requirements. PMID:16564591
Kaul, D; Nadobny, J; Wille, B; Sehouli, J; Budach, V
2013-01-01
Objective: To test the feasibility of volumetric modulated arc therapy (VMAT) in breast cancer and to compare it with three-dimensional conformal radiotherapy (3D-CRT) as conventional tangential field radiotheraphy (conTFRT). Methods: 12 patients (Stage I, 8: 6 left breast cancer and 2 right breast cancer; Stage II, 4: 2 on each side). Three plans were calculated for each case after breast-conserving surgery. Breast was treated with 50 Gy in four patients with supraclavicular lymph node inclusion, and in eight patients without the node inclusion. Multiple indices and dose parameters were measured. Results: V95% was not achieved by any modality. Heterogeneity index: 0.16 (VMAT), 0.13 [intensity-modulated radiotherapy (IMRT)] and 0.14 (conTFRT). Conformity index: 1.06 (VMAT), 1.15 (IMRT) and 1.69 (conTFRT). For both indices, IMRT was more effective than VMAT (p=0.009, p=0.002). Dmean and V20 for ipsilateral lung were lower for IMRT than VMAT (p=0.0001, p=0.003). Dmean, V2 and V5 of contralateral lung were lower for IMRT than VMAT (p>0.0001, p=0.005). Mean dose and V5 to the heart were lower for IMRT than for VMAT (p=0.015, p=0.002). Conclusion: The hypothesis of equivalence of VMAT to IMRT was not confirmed for planning target volume parameter or dose distribution to organs at risk. VMAT was inferior to IMRT and 3D-CRT with regard to dose distribution to organs at risk, especially at the low dose level. Advances in knowledge: New technology VMAT is not superior to IMRT or conventional radiotherapy in breast cancer in any aspect. PMID:24167182
Three dimensional ultrasonic imaging
Thomas, G. H.; Benson, S.; Crawford, S.
1993-03-01
Ultrasonic nondestructive evaluation techniques interrogate components with high frequency acoustic energy. A transducer generates the acoustic energy and converts acoustic energy to electrical signals. The acoustic energy is reflected by abrupt changes in modulus and/or density which can be caused by a defect. Thus defects reflect the ultrasonic energy which is converted into electrical signals. Ultrasonic evaluation typically provides a two dimensional image of internal defects. These images are either planar views (C-scans) or cross-sectional views (B-scans). The planar view is generated by raster scanning an ultrasonic transducer over the component and capturing the amplitude of internal reflections. Depth information is generally ignored. The cross-sectional view is generated by scanning the transducer along a single line and capturing the amplitude and time of flight for each internal reflection. The amplitude and time of flight information is converted into an image of the cross section of the component where the scan was performed. By fusing the C-scan information with the B-scan information a three dimension image of the internal structure of the component can be produced. The three dimensional image can be manipulated by rotating and slicing to produce the optimal view of the internal structure. The high frequency ultrasonic energy requires a liquid coupling media and thus applications for imaging in liquid environments are well suited to ultrasonic techniques. Examples of potential ultrasonic imaging applications are: Inside liquid filled tanks, inside the human body, and underwater.
Souzaki, Ryota; Kinoshita, Yoshiaki; Ieiri, Satoshi; Hayashida, Makoto; Koga, Yuhki; Shirabe, Ken; Hara, Toshiro; Maehara, Yoshihiko; Hashizume, Makoto; Taguchi, Tomoaki
2015-06-01
The patient is a 3-year-old female diagnosed with PRETEXT IV hepatoblastoma (HB). Although the tumor was decreased after the neoadjuvant chemotherapy, HB still located at the porta hepatis. The patient underwent extended left lobectomy successfully after surgical simulation using three-dimensional (3D) printing liver model based on preoperative CT.
Three-Dimensional Schlieren Measurements
NASA Astrophysics Data System (ADS)
Sutherland, Bruce; Cochrane, Andrea
2004-11-01
Schlieren systems visualise disturbances that change the index of refraction of a fluid, for example due to temperature or salinity disturbances. `Synthetic schlieren' refers to a recent advance in which these disturbances are visualised with a digital camera and image-processing technology rather than the classical use of parabolic mirrors and a knife-edge. In a typical setup, light from an image of horizontal lines or dots passes almost horizontally through the test section of a fluid to a CCD camera. Refractive index disturbances distort the image and digital comparison of successive images reveals the plan-form structure and time evolution of the disturbances. If the disturbance is effectively two-dimensional, meaning that it is uniform across the line-of-sight of the camera, then its magnitude as well as its structure can measured through simple inversion of an algebraic equation. If the structure is axisymmetric with rotation-axis perpendicular to the line of sight, the magnitude of the disturbance can be measured through inversion of a non-singular square matrix. Here we report upon the extension of this work toward measuring the magnitude of a fully three-dimensional disturbance. This is done by analysing images from two perspectives through the test section and using inversion tomography techniques to reconstruct the disturbance field. The results are tested against theoretical predictions and experimental measurements.
Three-Dimensional Printing Surgical Applications
Griffin, Michelle F.; Butler, Peter E.
2015-01-01
Introduction: Three-dimensional printing, a technology used for decades in the industrial field, gains a lot of attention in the medical field for its potential benefits. With advancement of desktop printers, this technology is accessible and a lot of research is going on in the medical field. Objective: To evaluate its application in surgical field, which may include but not limited to surgical planning, surgical education, implants, and prosthesis, which are the focus of this review. Methods: Research was conducted by searching PubMed, Web of science, and other reliable sources. We included original articles and excluded articles based on animals, those more than 10 years old, and those not in English. These articles were evaluated, and relevant studies were included in this review. Discussion: Three-dimensional printing shows a potential benefit in surgical application. Printed implants were used in patient in a few cases and show successful results; however, longer follow-up and more trials are needed. Surgical and medical education is believed to be more efficient with this technology than the current practice. Printed surgical instrument and surgical planning are also believed to improve with three-dimensional printing. Conclusion: Three-dimensional printing can be a very powerful tool in the near future, which can aid the medical field that is facing a lot of challenges and obstacles. However, despite the reported results, further research on larger samples and analytical measurements should be conducted to ensure this technology's impact on the practice. PMID:26301002
Xia, J J; Gateno, J; Teichgraeber, J F; Yuan, P; Li, J; Chen, K-C; Jajoo, A; Nicol, M; Alfi, D M
2015-12-01
Three-dimensional (3D) cephalometry is not as simple as just adding a 'third' dimension to a traditional two-dimensional cephalometric analysis. There are more complex issues in 3D analysis. These include how reference frames are created, how size, position, orientation and shape are measured, and how symmetry is assessed. The main purpose of this article is to present the geometric principles of 3D cephalometry. In addition, the Gateno-Xia cephalometric analysis is presented; this is the first 3D cephalometric analysis to observe these principles.
Three-Dimensional Printing in Orthopedic Surgery.
Eltorai, Adam E M; Nguyen, Eric; Daniels, Alan H
2015-11-01
Three-dimensional (3D) printing is emerging as a clinically promising technology for rapid prototyping of surgically implantable products. With this commercially available technology, computed tomography or magnetic resonance images can be used to create graspable objects from 3D reconstructed images. Models can enhance patients' understanding of their pathology and surgeon preoperative planning. Customized implants and casts can be made to match an individual's anatomy. This review outlines 3D printing, its current applications in orthopedics, and promising future directions.
Three-dimensional marginal separation
NASA Technical Reports Server (NTRS)
Duck, Peter W.
1988-01-01
The three dimensional marginal separation of a boundary layer along a line of symmetry is considered. The key equation governing the displacement function is derived, and found to be a nonlinear integral equation in two space variables. This is solved iteratively using a pseudo-spectral approach, based partly in double Fourier space, and partly in physical space. Qualitatively, the results are similar to previously reported two dimensional results (which are also computed to test the accuracy of the numerical scheme); however quantitatively the three dimensional results are much different.
Three-dimensional silicon micromachining
NASA Astrophysics Data System (ADS)
Azimi, S.; Song, J.; Dang, Z. Y.; Liang, H. D.; Breese, M. B. H.
2012-11-01
A process for fabricating arbitrary-shaped, two- and three-dimensional silicon and porous silicon components has been developed, based on high-energy ion irradiation, such as 250 keV to 1 MeV protons and helium. Irradiation alters the hole current flow during subsequent electrochemical anodization, allowing the anodization rate to be slowed or stopped for low/high fluences. For moderate fluences the anodization rate is selectively stopped only at depths corresponding to the high defect density at the end of ion range, allowing true three-dimensional silicon machining. The use of this process in fields including optics, photonics, holography and nanoscale depth machining is reviewed.
Three dimensional colorimetric assay assemblies
Charych, D.; Reichart, A.
2000-06-27
A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.
The Three-Dimensional Universe.
ERIC Educational Resources Information Center
Banks, Dale A.; Powell, Harry D.
1992-01-01
Provides instructions for helping students construct a three-dimensional model of a constellation. Aluminum foil spheres with various diameters are used to represent stars with various apparent magnitudes. The positions of the stars in the model are determined from constellation maps and by converting actual star distances into millimeters. (PR)
Three-Dimensional Lissajous Figures.
ERIC Educational Resources Information Center
D'Mura, John M.
1989-01-01
Described is a mechanically driven device for generating three-dimensional harmonic space figures with different frequencies and phase angles on the X, Y, and Z axes. Discussed are apparatus, viewing stereo pairs, equations of motion, and using space figures in classroom. (YP)
Creating Three-Dimensional Scenes
ERIC Educational Resources Information Center
Krumpe, Norm
2005-01-01
Persistence of Vision Raytracer (POV-Ray), a free computer program for creating photo-realistic, three-dimensional scenes and a link for Mathematica users interested in generating POV-Ray files from within Mathematica, is discussed. POV-Ray has great potential in secondary mathematics classrooms and helps in strengthening students' visualization…
Three dimensional colorimetric assay assemblies
Charych, Deborah; Reichart, Anke
2000-01-01
A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.
Three-dimensional stellarator codes
Garabedian, P. R.
2002-01-01
Three-dimensional computer codes have been used to develop quasisymmetric stellarators with modular coils that are promising candidates for a magnetic fusion reactor. The mathematics of plasma confinement raises serious questions about the numerical calculations. Convergence studies have been performed to assess the best configurations. Comparisons with recent data from large stellarator experiments serve to validate the theory. PMID:12140367
Ren, Juan; Yuan, Wei; Wang, Ruihua; Wang, Qiuping; Li, Yi; Xue, Chaofan; Yan, Yanli; Ma, Xiaowei; Tan, Li; Liu, Zi
2016-01-01
Objective The purpose of this study was to comprehensively compare the 3-dimensional (3D) magnetic resonance imaging (MRI)-guided and conventional 2-dimensional (2D) point A-based intracavitary brachytherapy (BT) planning for cervical cancer with regard to target dose coverage and dosages to adjacent organs-at risk (OARs). Methods A total of 79 patients with cervical cancer were enrolled to receive 2D point A-based BT planning and then immediately to receive 3D planning between October 2011 and April 2013 at the First Hospital Affiliated to Xi’an Jiao Tong University (Xi’an, China). The dose-volume histogram (DVH) parameters for gross tumor volume (GTV), high-risk clinical target volume (HR-CTV), intermediate-risk clinical target volume (IR-CTV) and OARs were compared between the 2D and 3D planning. Results In small tumors, there was no significant difference in most of the DVHs between 2D and 3D planning (all p>0.05). While in big tumors, 3D BT planning significantly increased the DVHs for most of the GTV, HR-CTV and IR-CTV, and some OARs compared with 2D planning (all P<0.05). In 3D planning, DVHs for GTV, HR-CTV, IR-CTV and some OARs were significantly higher in big tumors than in small tumors (all p<0.05). In contrast, in 2D planning, DVHs for almost all of the HR-CTV and IR-CTV were significantly lower in big tumors (all p<0.05). In eccentric tumors, 3D planning significantly increased dose coverage but decreased dosages to OARs compared with 2D planning (p<0.05). In tumors invading adjacent tissues, the target dose coverage in 3D planning was generally significantly higher than in 2D planning (P<0.05); the dosages to the adjacent rectum and bladder were significantly higher but those to sigmoid colon were lower in 3D planning (all P<0.05). Conclusions 3D MRI image-guided BT planning exhibits advantages over 2D planning in a complex way, generally showing advantages for the treatment of cervical cancer except small tumors. PMID:27611853
Facial three-dimensional morphometry.
Ferrario, V F; Sforza, C; Poggio, C E; Serrao, G
1996-01-01
Three-dimensional facial morphometry was investigated in a sample of 40 men and 40 women, with a new noninvasive computerized method. Subjects ranged in age between 19 and 32 years, had sound dentitions, and no craniocervical disorders. For each subject, 16 cutaneous facial landmarks were automatically collected by a system consisting of two infrared camera coupled device (CCD) cameras, real time hardware for the recognition of markers, and software for the three-dimensional reconstruction of landmarks' x, y, z coordinates. From these landmarks, 15 linear and 10 angular measurements, and four linear distance ratios were computed and averaged for sex. For all angular values, both samples showed a narrow variability and no significant gender differences were demonstrated. Conversely, all the linear measurements were significantly higher in men than in women. The highest intersample variability was observed for the measurements of facial height (prevalent vertical dimension), and the lowest for the measurements of facial depth (prevalent horizontal dimension). The proportions of upper and lower face height relative to the anterior face height showed a significant sex difference. Mean values were in good agreement with literature data collected with traditional methods. The described method allowed the direct and noninvasive calculation of three-dimensional linear and angular measurements that would be usefully applied in clinics as a supplement to the classic x-ray cephalometric analyses. PMID:8540488
Three-Dimensional Printing in Orthopedic Surgery.
Eltorai, Adam E M; Nguyen, Eric; Daniels, Alan H
2015-11-01
Three-dimensional (3D) printing is emerging as a clinically promising technology for rapid prototyping of surgically implantable products. With this commercially available technology, computed tomography or magnetic resonance images can be used to create graspable objects from 3D reconstructed images. Models can enhance patients' understanding of their pathology and surgeon preoperative planning. Customized implants and casts can be made to match an individual's anatomy. This review outlines 3D printing, its current applications in orthopedics, and promising future directions. PMID:26558661
Three-dimensional visual stimulator
NASA Astrophysics Data System (ADS)
Takeda, Tsunehiro; Fukui, Yukio; Hashimoto, Keizo; Hiruma, Nobuyuki
1995-02-01
We describe a newly developed three-dimensional visual stimulator (TVS) that can change independently the directions, distances, sizes, luminance, and varieties of two sets of targets for both eyes. It consists of liquid crystal projectors (LCP's) that generate the flexible images of targets, Badal otometers that change target distances without changing the visual angles, and relay-lens systems that change target directions. A special control program is developed for real-time control of six motors and two LCP's in the TVS together with a three-dimensional optometer III that simultaneously measures eye movement, accommodation, pupil diameter, and head movement. distance, 0 to -20 D; direction, 16 horizontally and 15 vertically; size, 0-2 deg visual angle; and luminance, 10-2-10 2 cd/m2. The target images are refreshed at 60 Hz and speeds with which the target makes a smooth change (ramp stimuli) are size, 10 deg/s. A simple application demonstrates the performance.
Three-dimensional coil inductor
Bernhardt, Anthony F.; Malba, Vincent
2002-01-01
A three-dimensional coil inductor is disclosed. The inductor includes a substrate; a set of lower electrically conductive traces positioned on the substrate; a core placed over the lower traces; a set of side electrically conductive traces laid on the core and the lower traces; and a set of upper electrically conductive traces attached to the side traces so as to form the inductor. Fabrication of the inductor includes the steps of forming a set of lower traces on a substrate; positioning a core over the lower traces; forming a set of side traces on the core; connecting the side traces to the lower traces; forming a set of upper traces on the core; and connecting the upper traces to the side traces so as to form a coil structure.
Three-dimensional aromatic networks.
Toyota, Shinji; Iwanaga, Tetsuo
2014-01-01
Three-dimensional (3D) networks consisting of aromatic units and linkers are reviewed from various aspects. To understand principles for the construction of such compounds, we generalize the roles of building units, the synthetic approaches, and the classification of networks. As fundamental compounds, cyclophanes with large aromatic units and aromatic macrocycles with linear acetylene linkers are highlighted in terms of transannular interactions between aromatic units, conformational preference, and resolution of chiral derivatives. Polycyclic cage compounds are constructed from building units by linkages via covalent bonds, metal-coordination bonds, or hydrogen bonds. Large cage networks often include a wide range of guest species in their cavity to afford novel inclusion compounds. Topological isomers consisting of two or more macrocycles are formed by cyclization of preorganized species. Some complicated topological networks are constructed by self-assembly of simple building units.
Three-dimensional television: a broadcaster's perspective
NASA Astrophysics Data System (ADS)
Jolly, S. J. E.; Armstrong, M.; Salmon, R. A.
2009-02-01
The recent resurgence of interest in the stereoscopic cinema and the increasing availability to the consumer of stereoscopic televisions and computer displays are leading broadcasters to consider, once again, the feasibility of stereoscopic broadcasting. High Definition Television is now widely deployed, and the R&D departments of broadcasters and consumer electronics manufacturers are starting to plan future enhancements to the experience of television. Improving the perception of depth via stereoscopy is a strong candidate technology. In this paper we will consider the challenges associated with the production, transmission and display of different forms of "three-dimensional" television. We will explore options available to a broadcaster wishing to start a 3D service using the technologies available at the present time, and consider how they could be improved to enable many more television programmes to be recorded and transmitted in a 3D-compatible form, paying particular attention to scenarios such as live broadcasting, where the workflows developed for the stereoscopic cinema are inapplicable. We will also consider the opportunities available for broadcasters to reach audiences with "three-dimensional" content via other media in the near future: for example, distributing content via the existing stereoscopic cinema network, or over the Internet to owners of stereoscopic computer displays.
Dynamic Three-Dimensional Echocardiography
NASA Astrophysics Data System (ADS)
Matsusaka, Katsuhiko; Doi, Motonori; Oshiro, Osamu; Chihara, Kunihiro
2000-08-01
Conventional three-dimensional (3D) ultrasound imaging equipment for diagnosis requires much time to reconstruct 3D images or fix the view point for observing the 3D image. Thus, it is inconvenient for cardiac diagnosis. In this paper, we propose a new dynamic 3D echocardiography system. The system produces 3D images in real-time and permits changes in view point. This system consists of ultrasound diagnostic equipment, a digitizer and a computer. B-mode images are projected to a virtual 3D space by referring to the position of the probe of the ultrasound diagnosis equipment. The position is obtained by the digitizer to which the ultrasound probe is attached. The 3D cardiac image is constructed from B-mode images obtained simultaneously in the cardiac cycle. To obtain the same moment of heartbeat in the cardiac cycle, this system uses the electrocardiography derived from the diagnosis equipment. The 3D images, which show various scenes of the stage of heartbeat action, are displayed sequentially. The doctor can observe 3D images cut in any plane by pushing a button of the digitizer and zooming with the keyboard. We evaluated our prototype system by observation of a mitral valve in motion.
Three-dimensional laser microvision.
Shimotahira, H; Iizuka, K; Chu, S C; Wah, C; Costen, F; Yoshikuni, Y
2001-04-10
A three-dimensional (3-D) optical imaging system offering high resolution in all three dimensions, requiring minimum manipulation and capable of real-time operation, is presented. The system derives its capabilities from use of the superstructure grating laser source in the implementation of a laser step frequency radar for depth information acquisition. A synthetic aperture radar technique was also used to further enhance its lateral resolution as well as extend the depth of focus. High-speed operation was made possible by a dual computer system consisting of a host and a remote microcomputer supported by a dual-channel Small Computer System Interface parallel data transfer system. The system is capable of operating near real time. The 3-D display of a tunneling diode, a microwave integrated circuit, and a see-through image taken by the system operating near real time are included. The depth resolution is 40 mum; lateral resolution with a synthetic aperture approach is a fraction of a micrometer and that without it is approximately 10 mum. PMID:18357177
Three dimensional magnetic abacus memory
NASA Astrophysics Data System (ADS)
Zhang, Shilei; Zhang, Jingyan; Baker, Alexander A.; Wang, Shouguo; Yu, Guanghua; Hesjedal, Thorsten
2014-08-01
Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered `quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory.
Three dimensional magnetic abacus memory.
Zhang, ShiLei; Zhang, JingYan; Baker, Alexander A; Wang, ShouGuo; Yu, GuangHua; Hesjedal, Thorsten
2014-08-22
Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered 'quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory.
Three dimensional magnetic abacus memory
NASA Astrophysics Data System (ADS)
Zhang, Shilei; Zhang, Jingyan; Baker, Alexander; Wang, Shouguo; Yu, Guanghua; Hesjedal, Thorsten
2015-03-01
Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the individual data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme which envisages a classical abacus with the beads operated by electron spins. It is inspired by the idea of second quantization, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered `quantized' Hall voltage, representing a count of the spin-up and spin-down layers in the stack. This concept of `second quantization of memory' realizes the 3D memory architecture with superior reading and operation efficiency, thus is a promising approach for future nonvolatile magnetic random access memory.
NASA Astrophysics Data System (ADS)
Kornreich, Philipp; Farell, Bart
2013-01-01
An imager that can measure the distance from each pixel to the point on the object that is in focus at the pixel is described. This is accomplished by short photo-conducting lightguides at each pixel. In the eye the rods and cones are the fiber-like lightguides. The device uses ambient light that is only coherent in spherical shell-shaped light packets of thickness of one coherence length. Modern semiconductor technology permits the construction of lightguides shorter than a coherence length of ambient light. Each of the frequency components of the broad band light arriving at a pixel has a phase proportional to the distance from an object point to its image pixel. Light frequency components in the packet arriving at a pixel through a convex lens add constructively only if the light comes from the object point in focus at this pixel. The light in packets from all other object points cancels. Thus the pixel receives light from one object point only. The lightguide has contacts along its length. The lightguide charge carriers are generated by the light patterns. These light patterns, and thus the photocurrent, shift in response to the phase of the input signal. Thus, the photocurrent is a function of the distance from the pixel to its object point. Applications include autonomous vehicle navigation and robotic vision. Another application is a crude teleportation system consisting of a camera and a three-dimensional printer at a remote location.
Three-dimensional display technologies
Geng, Jason
2014-01-01
The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain’s power effectively. With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies. PMID:25530827
Advancing three-dimensional MEMS by complimentary laser micro manufacturing
NASA Astrophysics Data System (ADS)
Palmer, Jeremy A.; Williams, John D.; Lemp, Tom; Lehecka, Tom M.; Medina, Francisco; Wicker, Ryan B.
2006-01-01
This paper describes improvements that enable engineers to create three-dimensional MEMS in a variety of materials. It also provides a means for selectively adding three-dimensional, high aspect ratio features to pre-existing PMMA micro molds for subsequent LIGA processing. This complimentary method involves in situ construction of three-dimensional micro molds in a stand-alone configuration or directly adjacent to features formed by x-ray lithography. Three-dimensional micro molds are created by micro stereolithography (MSL), an additive rapid prototyping technology. Alternatively, three-dimensional features may be added by direct femtosecond laser micro machining. Parameters for optimal femtosecond laser micro machining of PMMA at 800 nanometers are presented. The technical discussion also includes strategies for enhancements in the context of material selection and post-process surface finish. This approach may lead to practical, cost-effective 3-D MEMS with the surface finish and throughput advantages of x-ray lithography. Accurate three-dimensional metal microstructures are demonstrated. Challenges remain in process planning for micro stereolithography and development of buried features following femtosecond laser micro machining.
Three-dimensional surgical simulation.
Cevidanes, Lucia H C; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael
2010-09-01
In this article, we discuss the development of methods for computer-aided jaw surgery, which allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3-dimensional surface models from cone-beam computed tomography, dynamic cephalometry, semiautomatic mirroring, interactive cutting of bone, and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intraoperative guidance. The system provides further intraoperative assistance with a computer display showing jaw positions and 3-dimensional positioning guides updated in real time during the surgical procedure. The computer-aided surgery system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training, and assessing the difficulties of the surgical procedures before the surgery. Computer-aided surgery can make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases.
Three Dimensional Illustrating--Three-Dimensional Vision and Deception of Sensibility
ERIC Educational Resources Information Center
Szállassy, Noémi; Gánóczy, Anita; Kriska, György
2009-01-01
The wide-spread digital photography and computer use gave the opportunity for everyone to make three-dimensional pictures and to make them public. The new opportunities with three-dimensional techniques give chance for the birth of new artistic photographs. We present in detail the biological roots of three-dimensional visualization, the phenomena…
Three-dimensional laser window formation
NASA Technical Reports Server (NTRS)
Verhoff, Vincent G.
1992-01-01
The NASA Lewis Research Center has developed and implemented a unique process for forming flawless three-dimensional laser windows. These windows represent a major part of specialized, nonintrusive laser data acquisition systems used in a variety of compressor and turbine research test facilities. This report discusses in detail the aspects of three-dimensional laser window formation. It focuses on the unique methodology and the peculiarities associated with the formation of these windows. Included in this discussion are the design criteria, bonding mediums, and evaluation testing for three-dimensional laser windows.
Three Dimensional Optic Tissue Culture and Process
NASA Technical Reports Server (NTRS)
OConnor, Kim C. (Inventor); Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); Aten, Laurie A. (Inventor); Francis, Karen M. (Inventor); Caldwell, Delmar R. (Inventor); Prewett, Tacey L. (Inventor); Fitzgerald, Wendy S. (Inventor)
1999-01-01
A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioireactor at low shear conditions. The tissue forms as normal, functional tissue grows with tissue organization and extracellular matrix formation.
Three dimensional optic tissue culture and process
NASA Technical Reports Server (NTRS)
Spaulding, Glenn F. (Inventor); Prewett, Tacey L. (Inventor); Goodwin, Thomas J. (Inventor); Francis, Karen M. (Inventor); Cardwell, Delmar R. (Inventor); Oconnor, Kim (Inventor); Fitzgerald, Wendy S. (Inventor); Aten, Laurie A. (Inventor)
1994-01-01
A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioreactor at low shear conditions. The tissue forms normal, functional tissue organization and extracellular matrix.
Three-Dimensional Icosahedral Phase Field Quasicrystal
NASA Astrophysics Data System (ADS)
Subramanian, P.; Archer, A. J.; Knobloch, E.; Rucklidge, A. M.
2016-08-01
We investigate the formation and stability of icosahedral quasicrystalline structures using a dynamic phase field crystal model. Nonlinear interactions between density waves at two length scales stabilize three-dimensional quasicrystals. We determine the phase diagram and parameter values required for the quasicrystal to be the global minimum free energy state. We demonstrate that traits that promote the formation of two-dimensional quasicrystals are extant in three dimensions, and highlight the characteristics required for three-dimensional soft matter quasicrystal formation.
Viswanathan, A N
2008-02-01
The use of three-dimensional image guidance in radiation therapy has increased dramatically over the past decade. In gynaecological malignancies, three-dimensional image guidance assists with both external beam and brachytherapy treatment planning, increasing the accuracy of dose delivery. During his lifetime, Frank Ellis made significant contributions to gynaecological brachytherapy. This lecture will focus on novel advances in three-dimensional image-guided radiation therapy for cervical cancer, with the ultimate goal of improving outcomes for our patients.
Which animal model for understanding human navigation in a three-dimensional world?
Orban, Guy A
2013-10-01
Single-cell studies of monkey posterior parietal cortex (PPC) have revealed the extensive neuronal representations of three-dimensional subject motion and three-dimensional layout of the environment. I propose that navigational planning integrates this PPC information, including gravity signals, with horizontal-plane based information provided by the hippocampal formation, modified in primates by expansion of the ventral stream.
Vision in our three-dimensional world
2016-01-01
Many aspects of our perceptual experience are dominated by the fact that our two eyes point forward. Whilst the location of our eyes leaves the environment behind our head inaccessible to vision, co-ordinated use of our two eyes gives us direct access to the three-dimensional structure of the scene in front of us, through the mechanism of stereoscopic vision. Scientific understanding of the different brain regions involved in stereoscopic vision and three-dimensional spatial cognition is changing rapidly, with consequent influences on fields as diverse as clinical practice in ophthalmology and the technology of virtual reality devices. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269595
Three-dimensional separation and reattachment
NASA Technical Reports Server (NTRS)
Peake, D. J.; Tobak, M.
1982-01-01
The separation of three dimensional turbulent boundary layers from the lee of flight vehicles at high angles of attack is investigated. The separation results in dominant, large scale, coiled vortex motions that pass along the body in the general direction of the free stream. In all cases of three dimensional flow separation and reattachment, the assumption of continuous vector fields of skin friction lines and external flow streamlines, coupled with simple laws of topology, provides a flow grammar whose elemental constituents are the singular points: the nodes, spiral nodes (foci), and saddles. The phenomenon of three dimensional separation may be constrained as either a local or a global event, depending on whether the skin friction line that becomes a line of separation originates at a node or a saddle point.
Topology of three-dimensional separated flows
NASA Technical Reports Server (NTRS)
Tobak, M.; Peake, D. J.
1981-01-01
Based on the hypothesis that patterns of skin-friction lines and external streamlines reflect the properties of continuous vector fields, topology rules define a small number of singular points (nodes, saddle points, and foci) that characterize the patterns on the surface and on particular projections of the flow (e.g., the crossflow plane). The restricted number of singular points and the rules that they obey are considered as an organizing principle whose finite number of elements can be combined in various ways to connect together the properties common to all steady three dimensional viscous flows. Introduction of a distinction between local and global properties of the flow resolves an ambiguity in the proper definition of a three dimensional separated flow. Adoption of the notions of topological structure, structural stability, and bifurcation provides a framework to describe how three dimensional separated flows originate and succeed each other as the relevant parameters of the problem are varied.
Three-Dimensional Robotic Vision System
NASA Technical Reports Server (NTRS)
Nguyen, Thinh V.
1989-01-01
Stereoscopy and motion provide clues to outlines of objects. Digital image-processing system acts as "intelligent" automatic machine-vision system by processing views from stereoscopic television cameras into three-dimensional coordinates of moving object in view. Epipolar-line technique used to find corresponding points in stereoscopic views. Robotic vision system analyzes views from two television cameras to detect rigid three-dimensional objects and reconstruct numerically in terms of coordinates of corner points. Stereoscopy and effects of motion on two images complement each other in providing image-analyzing subsystem with clues to natures and locations of principal features.
Three-Dimensional Extended Bargmann Supergravity
NASA Astrophysics Data System (ADS)
Bergshoeff, Eric; Rosseel, Jan
2016-06-01
We show that three-dimensional general relativity, augmented with two vector fields, allows for a nonrelativistic limit, different from the standard limit leading to Newtonian gravity, that results in a well-defined action which is of the Chern-Simons type. We show that this three-dimensional "extended Bargmann gravity," after coupling to matter, leads to equations of motion allowing a wider class of background geometries than the ones that one encounters in Newtonian gravity. We give the supersymmetric generalization of these results and point out an important application in the context of calculating partition functions of nonrelativistic field theories using localization techniques.
Three-Dimensional Extended Bargmann Supergravity.
Bergshoeff, Eric; Rosseel, Jan
2016-06-24
We show that three-dimensional general relativity, augmented with two vector fields, allows for a nonrelativistic limit, different from the standard limit leading to Newtonian gravity, that results in a well-defined action which is of the Chern-Simons type. We show that this three-dimensional "extended Bargmann gravity," after coupling to matter, leads to equations of motion allowing a wider class of background geometries than the ones that one encounters in Newtonian gravity. We give the supersymmetric generalization of these results and point out an important application in the context of calculating partition functions of nonrelativistic field theories using localization techniques. PMID:27391712
Three-Dimensional Icosahedral Phase Field Quasicrystal.
Subramanian, P; Archer, A J; Knobloch, E; Rucklidge, A M
2016-08-12
We investigate the formation and stability of icosahedral quasicrystalline structures using a dynamic phase field crystal model. Nonlinear interactions between density waves at two length scales stabilize three-dimensional quasicrystals. We determine the phase diagram and parameter values required for the quasicrystal to be the global minimum free energy state. We demonstrate that traits that promote the formation of two-dimensional quasicrystals are extant in three dimensions, and highlight the characteristics required for three-dimensional soft matter quasicrystal formation. PMID:27563973
Three Dimensional Display Of Meteorological Scientific Data
NASA Astrophysics Data System (ADS)
Grotch, Stanley L.
1988-01-01
Even a cursory reading of any daily newspaper shows that we are in the midst of a dramatic revolution in computer graphics. Virtually every day some new piece of hardware or software is announced, adding to the tools available to the working scientist. Three dimensional graphics form a significant part of this revolution having become virtually commonplace in advertising and on television.
Three-Dimensional Messages for Interstellar Communication
NASA Astrophysics Data System (ADS)
Vakoch, Douglas A.
One of the challenges facing independently evolved civilizations separated by interstellar distances is to communicate information unique to one civilization. One commonly proposed solution is to begin with two-dimensional pictorial representations of mathematical concepts and physical objects, in the hope that this will provide a foundation for overcoming linguistic barriers. However, significant aspects of such representations are highly conventional, and may not be readily intelligible to a civilization with different conventions. The process of teaching conventions of representation may be facilitated by the use of three-dimensional representations redundantly encoded in multiple formats (e.g., as both vectors and as rasters). After having illustrated specific conventions for representing mathematical objects in a three-dimensional space, this method can be used to describe a physical environment shared by transmitter and receiver: a three-dimensional space defined by the transmitter--receiver axis, and containing stars within that space. This method can be extended to show three-dimensional representations varying over time. Having clarified conventions for representing objects potentially familiar to both sender and receiver, novel objects can subsequently be depicted. This is illustrated through sequences showing interactions between human beings, which provide information about human behavior and personality. Extensions of this method may allow the communication of such culture-specific features as aesthetic judgments and religious beliefs. Limitations of this approach will be noted, with specific reference to ETI who are not primarily visual.
Three-Dimensional Visualization of Particle Tracks.
ERIC Educational Resources Information Center
Julian, Glenn M.
1993-01-01
Suggests ways to bring home to the introductory physics student some of the excitement of recent discoveries in particle physics. Describes particle detectors and encourages the use of the Standard Model along with real images of particle tracks to determine three-dimensional views of tracks. (MVL)
Three-dimensional RF structure calculations
NASA Astrophysics Data System (ADS)
Cooper, R. K.; Browman, M. J.; Weiland, T.
1989-04-01
The calculation of three-dimensional rf structures is rapidly approaching adolescence, after having been in its infancy for the last four years. This paper will show the kinds of calculations that are currently being performed in the frequency domain and is a companion paper to one in which time-domain calculations are described.
Three-dimensional rf structure calculations
Cooper, R.K.; Browman, M.J.; Weiland, T.
1988-01-01
The calculation of three-dimensional rf structures is rapidly approaching adolescence, after having been in its infancy for the last four years. This paper will show the kinds of calculations that are currently being performed in the frequency domain and is a companion paper to one in which time-domain calculations are described. 13 refs., 14 figs.
Three-dimensional colorimetric assay assemblies
Charych, Deborah; Reichert, Anke
2001-01-01
A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flue virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.
Artifacts in three-dimensional transesophageal echocardiography.
Faletra, Francesco Fulvio; Ramamurthi, Alamelu; Dequarti, Maria Cristina; Leo, Laura Anna; Moccetti, Tiziano; Pandian, Natesa
2014-05-01
Three-dimensional (3D) transesophageal echocardiography (TEE) is subject to the same types of artifacts encountered on two-dimensional TEE. However, when displayed in a 3D format, some of the artifacts appear more "realistic," whereas others are unique to image acquisition and postprocessing. Three-dimensional TEE is increasingly used in the setting of percutaneous catheter-based interventions and ablation procedures, and 3D artifacts caused by the metallic components of catheters and devices are particularly frequent. Knowledge of these artifacts is of paramount relevance to avoid misinterpretation of 3D images. Although artifacts and pitfalls on two-dimensional echocardiography are well described and classified, a systematic description of artifacts in 3D transesophageal echocardiographic images and how they affect 3D imaging is still absent. The aim of this review is to describe the most relevant artifacts on 3D TEE, with particular emphasis on those occurring during percutaneous interventions for structural heart disease and ablation procedures.
Real time three dimensional sensing system
Gordon, S.J.
1996-12-31
The invention is a three dimensional sensing system which utilizes two flexibly located cameras for receiving and recording visual information with respect to a sensed object illuminated by a series of light planes. Each pixel of each image is converted to a digital word and the words are grouped into stripes, each stripe comprising contiguous pixels. One pixel of each stripe in one image is selected and an epi-polar line of that point is drawn in the other image. The three dimensional coordinate of each selected point is determined by determining the point on said epi-polar line which also lies on a stripe in the second image and which is closest to a known light plane. 7 figs.
Three-dimensional effects on airfoils
NASA Technical Reports Server (NTRS)
Chevallier, J. P.
1983-01-01
The effects of boundary layer flows along the walls of wind tunnels were studied to validate the transfer of two dimensional calculations to three dimensional transonic flowfield calculations. Results from trials in various wind tunnels were examind to determine the effects of the wall boundary flow on the control surfaces of an airfoil. Models sliding along a groove in the wall of a channel at sub- and transonic speeds were examined, with the finding that with either nonuniformities in the groove, or even if the channel walls are uniform, the lateral boundary layer can cause variations in the central flow region or alter the onset of shock at the transition point. Models for the effects in both turbulence and in the absence of turbulence are formulated, and it is noted that the characteristics of individual wind tunnels must be studied to quantify any existing three dimensional effects.
Three-Dimensional Reconstruction of Helical Polymers
Egelman, Edward H.
2015-01-01
The field of three-dimensional electron microscopy began more than 45 years ago with a reconstruction of a helical phage tail, and helical polymers continue to be important objects for three-dimensional reconstruction due to the centrality of helical protein and nucleoprotein polymers in all aspects of biology. We are now witnessing a fundamental revolution in this area, made possible by direct electron detectors, which has led to near-atomic resolution for a number of important helical structures. Most importantly, the possibility of achieving such resolution routinely for a vast number of helical samples is within our reach. One of the main problems in helical reconstruction, ambiguities in assigning the helical symmetry, is overcome when one reaches a resolution where secondary structure is clearly visible. However, obstacles still exist due to the intrinsic variability within many helical filaments. PMID:25912526
Three dimensional fabrication at small size scales
Leong, Timothy G.; Zarafshar, Aasiyeh M.; Gracias, David H.
2010-01-01
Despite the fact that we live in a three-dimensional (3D) world and macroscale engineering is 3D, conventional sub-mm scale engineering is inherently two-dimensional (2D). New fabrication and patterning strategies are needed to enable truly three-dimensionally-engineered structures at small size scales. Here, we review strategies that have been developed over the last two decades that seek to enable such millimeter to nanoscale 3D fabrication and patterning. A focus of this review is the strategy of self-assembly, specifically in a biologically inspired, more deterministic form known as self-folding. Self-folding methods can leverage the strengths of lithography to enable the construction of precisely patterned 3D structures and “smart” components. This self-assembling approach is compared with other 3D fabrication paradigms, and its advantages and disadvantages are discussed. PMID:20349446
Three dimensional contact/impact methodology
Kulak, R.F.
1987-01-01
The simulation of three-dimensional interface mechanics between reactor components and structures during static contact or dynamic impact is necessary to realistically evaluate their structural integrity to off-normal loads. In our studies of postulated core energy release events, we have found that significant structure-structure interactions occur in some reactor vessel head closure designs and that fluid-structure interactions occur within the reactor vessel. Other examples in which three-dimensional interface mechanics play an important role are: (1) impact response of shipping casks containing spent fuel, (2) whipping pipe impact on reinforced concrete panels or pipe-to-pipe impact after a pipe break, (3) aircraft crash on secondary containment structures, (4) missiles generated by turbine failures or tornados, and (5) drops of heavy components due to lifting accidents. The above is a partial list of reactor safety problems that require adequate treatment of interface mechanics and are discussed in this paper.
Three-dimensional bio-printing.
Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi
2015-05-01
Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing. PMID:25921944
Three-dimensional reconstruction of helical polymers.
Egelman, Edward H
2015-09-01
The field of three-dimensional electron microscopy began more than 45years ago with a reconstruction of a helical phage tail, and helical polymers continue to be important objects for three-dimensional reconstruction due to the centrality of helical protein and nucleoprotein polymers in all aspects of biology. We are now witnessing a fundamental revolution in this area, made possible by direct electron detectors, which has led to near-atomic resolution for a number of important helical structures. Most importantly, the possibility of achieving such resolution routinely for a vast number of helical samples is within our reach. One of the main problems in helical reconstruction, ambiguities in assigning the helical symmetry, is overcome when one reaches a resolution where secondary structure is clearly visible. However, obstacles still exist due to the intrinsic variability within many helical filaments.
Three-dimensional bio-printing.
Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi
2015-05-01
Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing.
Three-dimensional imaging modalities in endodontics
Mao, Teresa
2014-01-01
Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome. PMID:25279337
Real time three dimensional sensing system
Gordon, Steven J.
1996-01-01
The invention is a three dimensional sensing system which utilizes two flexibly located cameras for receiving and recording visual information with respect to a sensed object illuminated by a series of light planes. Each pixel of each image is converted to a digital word and the words are grouped into stripes, each stripe comprising contiguous pixels. One pixel of each stripe in one image is selected and an epi-polar line of that point is drawn in the other image. The three dimensional coordinate of each selected point is determined by determining the point on said epi-polar line which also lies on a stripe in the second image and which is closest to a known light plane.
Three-dimensional Allan fault plane analysis
Hoffman, K.S.; Taylor, D.R.; Schnell, R.T.
1994-12-31
Allan fault-plane analysis is a useful tool for determining hydrocarbon migration paths and the location of possible traps. While initially developed for Gulf coast deltaic and interdeltaic environments, fault-plane analysis has been successfully applied in many other geologic settings. Where the geology involves several intersecting faults and greater complexity, many two-dimensional displays are required in the investigation and it becomes increasingly difficult to accurately visualize both fault relationships and migration routes. Three-dimensional geospatial fault and structure modeling using computer techniques, however, facilitates both visualization and understanding and extends fault-plane analysis into much more complex situations. When a model is viewed in three dimensions, the strata on both sides of a fault can be seen simultaneously while the true structural character of one or more fault surfaces is preserved. Three-dimensional analysis improves the speed and accuracy of the fault plane methodology.
Simulation of complex three-dimensional flows
NASA Technical Reports Server (NTRS)
Diewert, G. S.; Rothmund, H. J.; Nakahashi, K.
1985-01-01
The concept of splitting is used extensively to simulate complex three dimensional flows on modern computer architectures. Used in all aspects, from initial grid generation to the determination of the final converged solution, splitting is used to enhance code vectorization, to permit solution driven grid adaption and grid enrichment, to permit the use of concurrent processing, and to enhance data flow through hierarchal memory systems. Three examples are used to illustrate these concepts to complex three dimensional flow fields: (1) interactive flow over a bump; (2) supersonic flow past a blunt based conical afterbody at incidence to a free stream and containing a centered propulsive jet; and (3) supersonic flow past a sharp leading edge delta wing at incidence to the free stream.
Three-dimensional Lorentz-violating action
NASA Astrophysics Data System (ADS)
Nascimento, J. R.; Petrov, A. Yu.; Wotzasek, C.; Zarro, C. A. D.
2014-03-01
We demonstrate the generation of the three-dimensional Chern-Simons-like Lorentz-breaking "mixed" quadratic action via an appropriate Lorentz-breaking coupling of vector and scalar fields to the spinor field and study some features of the scalar QED with such a term. We show that the same term emerges through a nonperturbative method, namely the Julia-Toulouse approach of condensation of charges and defects.
Three-dimensional ballistocardiography in weightlessness
NASA Technical Reports Server (NTRS)
Scano, A.
1981-01-01
An experiment is described the aim of which is to record a three dimensional ballistocardiogram under the condition of weightlessness and to compare it with tracings recorded on the same subject on the ground as a means of clarifying the meaning of ballistocardiogram waves in different physiological and perphaps pathological conditions. Another purpose is to investigate cardiovascular and possibly fluid adaptations to weightlessness from data collected almost simultaneously on the same subjects during the other cardiovascular during the other cardiovascular and metabolic experiments.
Stress tensor correlators in three dimensional gravity
NASA Astrophysics Data System (ADS)
Bagchi, Arjun; Grumiller, Daniel; Merbis, Wout
2016-03-01
We calculate holographically arbitrary n -point correlators of the boundary stress tensor in three-dimensional Einstein gravity with negative or vanishing cosmological constant. We provide explicit expressions up to 5-point (connected) correlators and show consistency with the Galilean conformal field theory Ward identities and recursion relations of correlators, which we derive. This provides a novel check of flat space holography in three dimensions.
Three-Dimensional Dispaly Of Document Set
Lantrip, David B.; Pennock, Kelly A.; Pottier, Marc C.; Schur, Anne; Thomas, James J.; Wise, James A.
2003-06-24
A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.
Three-dimensional display of document set
Lantrip, David B [Oxnard, CA; Pennock, Kelly A [Richland, WA; Pottier, Marc C [Richland, WA; Schur, Anne [Richland, WA; Thomas, James J [Richland, WA; Wise, James A [Richland, WA
2001-10-02
A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.
Three-dimensional display of document set
Lantrip, David B.; Pennock, Kelly A.; Pottier, Marc C.; Schur, Anne; Thomas, James J.; Wise, James A.
2006-09-26
A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may e transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.
Three-dimensional display of document set
Lantrip, David B.; Pennock, Kelly A.; Pottier, Marc C.; Schur, Anne; Thomas, James J.; Wise, James A.; York, Jeremy
2009-06-30
A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.
Three-dimensional printing of scintillating materials.
Mishnayot, Y; Layani, M; Cooperstein, I; Magdassi, S; Ron, G
2014-08-01
We demonstrate, for the first time, the applicability of three-dimensional printing techniques to the manufacture of scintillation detectors. We report on the development of a formulation, usable in stereolithographic printing, that exhibits scintillation efficiency on the order of 30% of that of commercial polystyrene based scintillators. We discuss the applicability of these techniques and propose future enhancements that will allow tailoring the printed scintillation detectors to various applications.
Method and apparatus for three dimensional braiding
NASA Technical Reports Server (NTRS)
Farley, Gary L. (Inventor)
1997-01-01
A machine for three-dimensional braiding of fibers is provided in which carrier members travel on a curved, segmented and movable braiding surface. The carrier members are capable of independent, self-propelled motion along the braiding surface. Carrier member position on the braiding surface is controlled and monitored by computer. Also disclosed is a yarn take-up device capable of maintaining tension in the braiding fiber.
Method and apparatus for three dimensional braiding
NASA Technical Reports Server (NTRS)
Farley, Gary L. (Inventor)
1995-01-01
A machine for three-dimensional braiding of fibers is provided in which carrier members travel on a curved, segmented and movable braiding surface. The carrier members are capable of independent, self-propelled motion along the braiding surface. Carrier member position on the braiding surface is controlled and monitored by computer. Also disclosed is a yarn take-up device capable of maintaining tension in the braiding fiber.
Mineralized three-dimensional bone constructs
NASA Technical Reports Server (NTRS)
Clarke, Mark S. F. (Inventor); Sundaresan, Alamelu (Inventor); Pellis, Neal R. (Inventor)
2011-01-01
The present disclosure provides ex vivo-derived mineralized three-dimensional bone constructs. The bone constructs are obtained by culturing osteoblasts and osteoclast precursors under randomized gravity vector conditions. Preferably, the randomized gravity vector conditions are obtained using a low shear stress rotating bioreactor, such as a High Aspect Ratio Vessel (HARV) culture system. The bone constructs of the disclosure have utility in physiological studies of bone formation and bone function, in drug discovery, and in orthopedics.
Mineralized Three-Dimensional Bone Constructs
NASA Technical Reports Server (NTRS)
Clarke, Mark S. F. (Inventor); Sundaresan, Alamelu (Inventor); Pellis, Neal R. (Inventor)
2013-01-01
The present disclosure provides ex vivo-derived mineralized three-dimensional bone constructs. The bone constructs are obtained by culturing osteoblasts and osteoclast precursors under randomized gravity vector conditions. Preferably, the randomized gravity vector conditions are obtained using a low shear stress rotating bioreactor, such as a High Aspect Ratio Vessel (HARV) culture system. The bone constructs of the disclosure have utility in physiological studies of bone formation and bone function, in drug discovery, and in orthopedics.
Three-dimensional motor schema based navigation
NASA Technical Reports Server (NTRS)
Arkin, Ronald C.
1989-01-01
Reactive schema-based navigation is possible in space domains by extending the methods developed for ground-based navigation found within the Autonomous Robot Architecture (AuRA). Reformulation of two dimensional motor schemas for three dimensional applications is a straightforward process. The manifold advantages of schema-based control persist, including modular development, amenability to distributed processing, and responsiveness to environmental sensing. Simulation results show the feasibility of this methodology for space docking operations in a cluttered work area.
Three-dimensional adjustment of trilateration data
NASA Technical Reports Server (NTRS)
Sung, L.-Y.; Jackson, D. D.
1985-01-01
The three-dimensional locations of the monuments in the USGS Hollister trilateration network were adjusted to fit line length observations observed in 1977, using a Bayesian approach, and incorporating prior elevation estimates as data in the adjustment procedure. No significant discrepancies in the measured line lengths were found, but significant elevation adjustments (up to 1.85 m) were needed to fit the length data.
Three-dimensional photogrammetry for laboratory applications
NASA Astrophysics Data System (ADS)
Alem, Nabih M.
1994-12-01
The direct linear transformation (DLT) is a method that simplifies measurements of the three-dimensional coordinates of a point target in the laboratory using photographic two-dimensional imagery. This report describes a procedure to implement the DLT equations and gives the Fortran code of computer programs for the DLT calibration of multicamera system and 3-D reconstruction of a single point from several images.
Three-Dimensional Audio Client Library
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.
2005-01-01
The Three-Dimensional Audio Client Library (3DAudio library) is a group of software routines written to facilitate development of both stand-alone (audio only) and immersive virtual-reality application programs that utilize three-dimensional audio displays. The library is intended to enable the development of three-dimensional audio client application programs by use of a code base common to multiple audio server computers. The 3DAudio library calls vendor-specific audio client libraries and currently supports the AuSIM Gold-Server and Lake Huron audio servers. 3DAudio library routines contain common functions for (1) initiation and termination of a client/audio server session, (2) configuration-file input, (3) positioning functions, (4) coordinate transformations, (5) audio transport functions, (6) rendering functions, (7) debugging functions, and (8) event-list-sequencing functions. The 3DAudio software is written in the C++ programming language and currently operates under the Linux, IRIX, and Windows operating systems.
Three-dimensional Chiral Plasmonic Oligomers
NASA Astrophysics Data System (ADS)
Hentschel, Mario
2013-03-01
We demonstrate chiral optical response in stacked arrangements of plasmonic nanostructures. We show that three-dimensional arrangements of plasmonic ``meta-atoms'' only exhibit a chiral optical response if similar plasmonic ``atoms'' are arranged in a handed fashion as we require resonant plasmonic coupling. Moreover, we demonstrate that such particle groupings, similarly to molecular systems, possess the capability to encode their three-dimensional arrangement in unique and well-modulated spectra, making them ideal candidates for a three-dimensional chiral plasmon ruler. Furthermore, we discuss the onset of a broadband chiral optical response in the wavelength regime between 700 nm and 3500 nm upon charge transfer between the nanoparticles. We show in experiment and simulation that this response is due to the ohmic contact between adjacent particles which causes a strong red-shift of the fundamental mode. The geometrical shape of the resulting fused particles allows for efficient excitation of higher order modes. Calculated spectra and field distributions confirm our interpretation and show a number of interacting plasmonic modes. Finally, we will discuss plasmonic diastereomers which consist of multiple chiral centers. We find that the chiral optical response of the composite molecules can be traced back to the properties of the constituting building blocks. We demonstrate that the optical response of complex chiral plasmonic systems can be decomposed and understood in terms of fundamental building blocks, offering simple and straightforward design rules for future applications such as chiral optical elements and enantiomer sensors.
Reconfigurable, braced, three-dimensional DNA nanostructures
NASA Astrophysics Data System (ADS)
Goodman, Russell P.; Heilemann, Mike; Doose, Sören; Erben, Christoph M.; Kapanidis, Achillefs N.; Turberfield, Andrew J.
2008-02-01
DNA nanotechnology makes use of the exquisite self-recognition of DNA in order to build on a molecular scale. Although static structures may find applications in structural biology and computer science, many applications in nanomedicine and nanorobotics require the additional capacity for controlled three-dimensional movement. DNA architectures can span three dimensions and DNA devices are capable of movement, but active control of well-defined three-dimensional structures has not been achieved. We demonstrate the operation of reconfigurable DNA tetrahedra whose shapes change precisely and reversibly in response to specific molecular signals. Shape changes are confirmed by gel electrophoresis and by bulk and single-molecule Förster resonance energy transfer measurements. DNA tetrahedra are natural building blocks for three-dimensional construction; they may be synthesized rapidly with high yield of a single stereoisomer, and their triangulated architecture conveys structural stability. The introduction of shape-changing structural modules opens new avenues for the manipulation of matter on the nanometre scale.
Multiparallel Three-Dimensional Optical Microscopy
NASA Technical Reports Server (NTRS)
Nguyen, Lam K.; Price, Jeffrey H.; Kellner, Albert L.; Bravo-Zanoquera, Miguel
2010-01-01
Multiparallel three-dimensional optical microscopy is a method of forming an approximate three-dimensional image of a microscope sample as a collection of images from different depths through the sample. The imaging apparatus includes a single microscope plus an assembly of beam splitters and mirrors that divide the output of the microscope into multiple channels. An imaging array of photodetectors in each channel is located at a different distance along the optical path from the microscope, corresponding to a focal plane at a different depth within the sample. The optical path leading to each photodetector array also includes lenses to compensate for the variation of magnification with distance so that the images ultimately formed on all the photodetector arrays are of the same magnification. The use of optical components common to multiple channels in a simple geometry makes it possible to obtain high light-transmission efficiency with an optically and mechanically simple assembly. In addition, because images can be read out simultaneously from all the photodetector arrays, the apparatus can support three-dimensional imaging at a high scanning rate.
Three-dimensional printing of the retina
Lorber, Barbara; Hsiao, Wen-Kai; Martin, Keith R.
2016-01-01
Purpose of review Biological three-dimensional printing has received a lot of media attention over recent years with advances made in printing cellular structures, including skin and heart tissue for transplantation. Although limitations exist in creating functioning organs with this method, the hope has been raised that creating a functional retina to cure blindness is within reach. The present review provides an update on the advances made toward this goal. Recent findings It has recently been shown that two types of retinal cells, retinal ganglion cells and glial cells, can be successfully printed using a piezoelectric inkjet printer. Importantly, the cells remained viable and did not change certain phenotypic features as a result of the printing process. In addition, recent advances in the creation of complex and viable three-dimensional cellular structures have been made. Summary Some first promising steps toward the creation of a functional retina have been taken. It now needs to be investigated whether recent findings can be extended to other cells of the retina, including those derived from human tissue, and if a complex and viable retinal structure can be created through three-dimensional printing. PMID:27045545
Three-dimensional deformation of orthodontic brackets
Melenka, Garrett W; Nobes, David S; Major, Paul W
2013-01-01
Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire–bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design. PMID:23762201
NASA Astrophysics Data System (ADS)
Obara, Masaki; Yoshimori, Kyu
2015-07-01
A four-dimensional impulse response function for the digital holographic three-dimensional imaging spectrometry has been fully derived in closed form. Due to its factorizing nature of the mathematical expression of four-dimensional impulse response function, three-dimensional spatial part of impulse response function directly corresponds to threedimensional point spread function of in-line digital holography with rectangular aperture. Based on these mathematical results, this paper focuses on the investigation of spectral resolution and three-dimensional spatial resolution in digital holographic three-dimensional imaging spectrometry and digital holography. We found that the theoretical prediction agree well with the experimental results. This work suggests a new criterion and estimate method regarding threedimensional spatial resolution of in-line digital holography.
Chang, Jessica B; Small, Kevin H; Choi, Mihye; Karp, Nolan S
2015-05-01
Three-dimensional surface imaging has gained clinical acceptance in plastic and reconstructive surgery. In contrast to computed tomography/magnetic resonance imaging, three-dimensional surface imaging relies on triangulation in stereophotography to measure surface x, y, and z coordinates. This study reviews the past, present, and future directions of three-dimensional topographic imaging in plastic surgery. Historically, three-dimensional imaging technology was first used in a clinical setting in 1944 to diagnose orthodontologic conditions. Karlan established its use in the field of plastic surgery in 1979, analyzing contours and documenting facial asymmetries. Present use of three-dimensional surface imaging has focused on standardizing patient topographic measurements to enhance preoperative planning and to improve postoperative outcomes. Various measurements (e.g., volume, surface area, vector distance, curvature) have been applied to breast, body, and facial topography to augment patient analysis. Despite the rapid progression of the clinical applications of three-dimensional imaging, current use of this technology is focused on the surgeon's perspective and secondarily the patient's perspective. Advancements in patient simulation may improve patient-physician communication, education, and satisfaction. However, a communal database of three-dimensional surface images integrated with emerging three-dimensional printing and portable information technology will validate measurements and strengthen preoperative planning and postoperative outcomes. Three-dimensional surface imaging is a useful adjunct to plastic and reconstructive surgery practices and standardizes measurements to create objectivity in a subjective field. Key improvements in three-dimensional imaging technology may significantly enhance the quality of plastic and reconstructive surgery in the near future. PMID:25835245
Three-dimensional nanoscopy of colloidal crystals.
Harke, Benjamin; Ullal, Chaitanya K; Keller, Jan; Hell, Stefan W
2008-05-01
We demonstrate the direct three-dimensional imaging of densely packed colloidal nanostructures using stimulated emission depletion microscopy. A combination of two de-excitation patterns yields a resolution of 43 nm in the lateral and 125 nm in the axial direction and an effective focal volume that is by 126-fold smaller than that of a corresponding confocal microscope. The mapping of a model system of spheres organized by confined convective assembly unambiguously identified face-centered cubic, hexagonal close-packed, random hexagonal close-packed, and body-centered cubic structures.
High resolution three-dimensional doping profiler
Thundat, Thomas G.; Warmack, Robert J.
1999-01-01
A semiconductor doping profiler provides a Schottky contact at one surface and an ohmic contact at the other. While the two contacts are coupled to a power source, thereby establishing an electrical bias in the semiconductor, a localized light source illuminates the semiconductor to induce a photocurrent. The photocurrent changes in accordance with the doping characteristics of the semiconductor in the illuminated region. By changing the voltage of the power source the depth of the depletion layer can be varied to provide a three dimensional view of the local properties of the semiconductor.
Three dimensional digital holographic aperture synthesis.
Crouch, Stephen; Kaylor, Brant M; Barber, Zeb W; Reibel, Randy R
2015-09-01
Aperture synthesis techniques are applied to temporally and spatially diverse digital holograms recorded with a fast focal-plane array. Because the technique fully resolves the downrange dimension using wide-bandwidth FMCW linear-chirp waveforms, extremely high resolution three dimensional (3D) images can be obtained even at very long standoff ranges. This allows excellent 3D image formation even when targets have significant structure or discontinuities, which are typically poorly rendered with multi-baseline synthetic aperture ladar or multi-wavelength holographic aperture ladar approaches. The background for the system is described and system performance is demonstrated through both simulation and experiments. PMID:26368474
Electrode With Porous Three-Dimensional Support
Bernard, Patrick; Dauchier, Jean-Michel; Simonneau, Olivier
1999-07-27
Electrode including a paste containing particles of electrochemically active material and a conductive support consisting of a three-dimensional porous material comprising strands delimiting contiguous pores communicating via passages, characterized in that the average width L in .mu.m of said passages is related to the average diameter .O slashed. in .mu.m of said particles by the following equation, in which W and Y are dimensionless coefficients: wherein W=0.16 Y=1.69 X=202.4 .mu.m and Z=80 .mu.m
Three dimensional model of the human mandible.
Muftić, O; Milcić, D; Saucha, J; Carek, V
2000-07-01
A new biomechanical three-dimensional (3D) model for the human mandible is proposed. A simple two-dimensional model cannot explain the biomechanics of the human mandible, where muscular forces through occlusion and condylar surfaces are in a state of dynamical 3D equilibrium. All forces are resolved into components according to a selected coordinate system. The muscular forces, which during clenching act on the jaw, along with the necessary force level for chewing, also act as some kind of stabilizers of the mandibular condyles preventing dislocation and loading of nonarticular tissues.
Three-dimensional ultrasonic colloidal crystals
NASA Astrophysics Data System (ADS)
Caleap, Mihai; Drinkwater, Bruce W.
2016-05-01
Colloidal assembly represents a powerful method for the fabrication of functional materials. In this article, we describe how acoustic radiation forces can guide the assembly of colloidal particles into structures that serve as microscopic elements in novel acoustic metadevices or act as phononic crystals. Using a simple three-dimensional orthogonal system, we show that a diversity of colloidal structures with orthorhombic symmetry can be assembled with megahertz-frequency (MHz) standing pressure waves. These structures allow rapid tuning of acoustic properties and provide a new platform for dynamic metamaterial applications. xml:lang="fr"
Three-dimensional echocardiography in valve disease
COLOMBO, CHIARA; TAMBORINI, GLORIA; PEPI, MAURO; ALIMENTO, MARINA; FIORENTINI, CESARE
2007-01-01
This review covers the role of three-dimensional (3D) echocardiography in the diagnosis of heart valve disease. Several factors have contributed to the evolution of this technique, which is currently a simple and routine method: rapid evolution in probe and computer technologies, demonstration that 3D data sets allowed more complete and accurate evaluation of cardiac structures, emerging clinical experience indicating the strong potential particularly in valve diseases, volume and function of the two ventricle measurements and several other fields. This report will review current and future applications of 3D echocardiography in mitral, aortic and tricuspid valve diseases underlying both qualitative (morphologic) and quantitative advantages of this technique. PMID:21977273
Three-dimensional flow about penguin wings
NASA Astrophysics Data System (ADS)
Noca, Flavio; Sudki, Bassem; Lauria, Michel
2012-11-01
Penguins, contrary to airborne birds, do not need to compensate for gravity. Yet, the kinematics of their wings is highly three-dimensional and seems exceedingly complex for plain swimming. Is such kinematics the result of an evolutionary optimization or is it just a forced adaptation of an airborne flying apparatus to underwater swimming? Some answers will be provided based on flow dynamics around robotic penguin wings. Updates will also be presented on the development of a novel robotic arm intended to simulate penguin swimming and enable novel propulsion devices.
Three-dimensional turbopump flowfield analysis
NASA Technical Reports Server (NTRS)
Sharma, O. P.; Belford, K. A.; Ni, R. H.
1992-01-01
A program was conducted to develop a flow prediction method applicable to rocket turbopumps. The complex nature of a flowfield in turbopumps is described and examples of flowfields are discussed to illustrate that physics based models and analytical calculation procedures based on computational fluid dynamics (CFD) are needed to develop reliable design procedures for turbopumps. A CFD code developed at NASA ARC was used as the base code. The turbulence model and boundary conditions in the base code were modified, respectively, to: (1) compute transitional flows and account for extra rates of strain, e.g., rotation; and (2) compute surface heat transfer coefficients and allow computation through multistage turbomachines. Benchmark quality data from two and three-dimensional cascades were used to verify the code. The predictive capabilities of the present CFD code were demonstrated by computing the flow through a radial impeller and a multistage axial flow turbine. Results of the program indicate that the present code operated in a two-dimensional mode is a cost effective alternative to full three-dimensional calculations, and that it permits realistic predictions of unsteady loadings and losses for multistage machines.
Three-dimensional flow in Kupffer's Vesicle.
Montenegro-Johnson, T D; Baker, D I; Smith, D J; Lopes, S S
2016-09-01
Whilst many vertebrates appear externally left-right symmetric, the arrangement of internal organs is asymmetric. In zebrafish, the breaking of left-right symmetry is organised by Kupffer's Vesicle (KV): an approximately spherical, fluid-filled structure that begins to form in the embryo 10 hours post fertilisation. A crucial component of zebrafish symmetry breaking is the establishment of a cilia-driven fluid flow within KV. However, it is still unclear (a) how dorsal, ventral and equatorial cilia contribute to the global vortical flow, and (b) if this flow breaks left-right symmetry through mechanical transduction or morphogen transport. Fully answering these questions requires knowledge of the three-dimensional flow patterns within KV, which have not been quantified in previous work. In this study, we calculate and analyse the three-dimensional flow in KV. We consider flow from both individual and groups of cilia, and (a) find anticlockwise flow can arise purely from excess of cilia on the dorsal roof over the ventral floor, showing how this vortical flow is stabilised by dorsal tilt of equatorial cilia, and (b) show that anterior clustering of dorsal cilia leads to around 40 % faster flow in the anterior over the posterior corner. We argue that these flow features are supportive of symmetry breaking through mechano-sensory cilia, and suggest a novel experiment to test this hypothesis. From our new understanding of the flow, we propose a further experiment to reverse the flow within KV to potentially induce situs inversus.
Three-dimensional fluorescence lifetime tomography
Godavarty, Anuradha; Sevick-Muraca, Eva M.; Eppstein, Margaret J.
2005-04-01
Near-infrared fluorescence tomography using molecularly targeted lifetime-sensitive, fluorescent contrast agents have applications for early-stage cancer diagnostics. Yet, although the measurement of fluorescent lifetime imaging microscopy (FLIM) is extensively used in microscopy and spectroscopy applications, demonstration of fluorescence lifetime tomography for medical imaging is limited to two-dimensional studies. Herein, the feasibility of three-dimensional fluorescence-lifetime tomography on clinically relevant phantom volumes is established, using (i) a gain-modulated intensified charge coupled device (CCD) and modulated laser diode imaging system, (ii) two fluorescent contrast agents, e.g., Indocyanine green and 3-3'-Diethylthiatricarbocyanine iodide differing in their fluorescence lifetime by 0.62 ns, and (iii) a two stage approximate extended Kalman filter reconstruction algorithm. Fluorescence measurements of phase and amplitude were acquired on the phantom surface under different target to background fluorescence absorption (70:1, 100:1) and fluorescence lifetime (1:1, 2.1:1) contrasts at target depths of 1.4-2 cm. The Bayesian tomography algorithm was employed to obtain three-dimensional images of lifetime and absorption owing to the fluorophores.
Three-dimensional head anthropometric analysis
NASA Astrophysics Data System (ADS)
Enciso, Reyes; Shaw, Alex M.; Neumann, Ulrich; Mah, James
2003-05-01
Currently, two-dimensional photographs are most commonly used to facilitate visualization, assessment and treatment of facial abnormalities in craniofacial care but are subject to errors because of perspective, projection, lack metric and 3-dimensional information. One can find in the literature a variety of methods to generate 3-dimensional facial images such as laser scans, stereo-photogrammetry, infrared imaging and even CT however each of these methods contain inherent limitations and as such no systems are in common clinical use. In this paper we will focus on development of indirect 3-dimensional landmark location and measurement of facial soft-tissue with light-based techniques. In this paper we will statistically evaluate and validate a current three-dimensional image-based face modeling technique using a plaster head model. We will also develop computer graphics tools for indirect anthropometric measurements in a three-dimensional head model (or polygonal mesh) including linear distances currently used in anthropometry. The measurements will be tested against a validated 3-dimensional digitizer (MicroScribe 3DX).
In-lab three-dimensional printing
Partridge, Roland; Conlisk, Noel; Davies, Jamie A.
2012-01-01
The development of the microscope in 1590 by Zacharias Janssenby and Hans Lippershey gave the world a new way of visualizing details of morphogenesis and development. More recent improvements in this technology including confocal microscopy, scanning electron microscopy (SEM) and optical projection tomography (OPT) have enhanced the quality of the resultant image. These technologies also allow a representation to be made of a developing tissue’s three-dimensional (3-D) form. With all these techniques however, the image is delivered on a flat two-dimensional (2-D) screen. 3-D printing represents an exciting potential to reproduce the image not simply on a flat screen, but in a physical, palpable three-dimensional structure. Here we explore the scope that this holds for exploring and interacting with the structure of a developing organ in an entirely novel way. As well as being useful for visualization, 3-D printers are capable of rapidly and cost-effectively producing custom-made structures for use within the laboratory. We here describe the advantages of producing hardware for a tissue culture system using an inexpensive in-lab printer. PMID:22652907
Three-dimensional model of lignin structure
Jurasek, L.
1995-12-01
An attempt to build a three-dimensional model of lignin structure using a computer program is described. The program simulates the biosynthesis of spruce lignin by allowing coniferyl alcohol subunits to be added randomly by six different types of linkages, assumed to be most common. The simulated biosynthesis starts from a number of seed points within restricted space, corresponding to 50 mM initial concentration of coniferyl alcohol. Rules of three-dimensional packing of the subunits within the lignin macro-molecule are observed during the simulated biosynthetic process. Branched oligomeric structures thus generated form crosslinks at those positions where the chains grow close enough to form a link. Inter-chain crosslinking usually joins the oligomers into one macromolecule. Intra-chain crosslinks are also formed and result in closed loops. Typically, a macromolecule with molecular weight of approx. 2 x 105 is formed, with internal density of 1.35g/cm3. Various characteristics of the internal structure, such as branching, crosslinking, bond frequencies, and chain length distribution are described. Breakdown of the polymer was also simulated and the effect of closed loops on the weight average molecular weight is shown. The effect of the shape of the biosynthetic space on the degree of crosslinking is discussed and predictions of the overall molecular shape of lignin particles are made.
Nanowired three-dimensional cardiac patches
NASA Astrophysics Data System (ADS)
Dvir, Tal; Timko, Brian P.; Brigham, Mark D.; Naik, Shreesh R.; Karajanagi, Sandeep S.; Levy, Oren; Jin, Hongwei; Parker, Kevin K.; Langer, Robert; Kohane, Daniel S.
2011-11-01
Engineered cardiac patches for treating damaged heart tissues after a heart attack are normally produced by seeding heart cells within three-dimensional porous biomaterial scaffolds. These biomaterials, which are usually made of either biological polymers such as alginate or synthetic polymers such as poly(lactic acid) (PLA), help cells organize into functioning tissues, but poor conductivity of these materials limits the ability of the patch to contract strongly as a unit. Here, we show that incorporating gold nanowires within alginate scaffolds can bridge the electrically resistant pore walls of alginate and improve electrical communication between adjacent cardiac cells. Tissues grown on these composite matrices were thicker and better aligned than those grown on pristine alginate and when electrically stimulated, the cells in these tissues contracted synchronously. Furthermore, higher levels of the proteins involved in muscle contraction and electrical coupling are detected in the composite matrices. It is expected that the integration of conducting nanowires within three-dimensional scaffolds may improve the therapeutic value of current cardiac patches.
Two component-three dimensional catalysis
Schwartz, Michael; White, James H.; Sammells, Anthony F.
2002-01-01
This invention relates to catalytic reactor membranes having a gas-impermeable membrane for transport of oxygen anions. The membrane has an oxidation surface and a reduction surface. The membrane is coated on its oxidation surface with an adherent catalyst layer and is optionally coated on its reduction surface with a catalyst that promotes reduction of an oxygen-containing species (e.g., O.sub.2, NO.sub.2, SO.sub.2, etc.) to generate oxygen anions on the membrane. The reactor has an oxidation zone and a reduction zone separated by the membrane. A component of an oxygen containing gas in the reduction zone is reduced at the membrane and a reduced species in a reactant gas in the oxidation zone of the reactor is oxidized. The reactor optionally contains a three-dimensional catalyst in the oxidation zone. The adherent catalyst layer and the three-dimensional catalyst are selected to promote a desired oxidation reaction, particularly a partial oxidation of a hydrocarbon.
Three-dimensional strain analysis using Mathematica
NASA Astrophysics Data System (ADS)
Mookerjee, Matty; Nickleach, Scott
2011-10-01
A suite of geological computer programs written in Mathematica is currently available both within the online repository for the Journal of Structural Geology as well as on the first author's website ( http://www.sonoma.edu/users/m/mookerje/ProgramPage.htm). The majority of these programs focus on three-dimensional strain analysis (e.g., determining best-fit strain ellipsoids, plotting elliptical data on either a Flinn or Hsu diagram, and determining error bounds for three-dimensional strain data). This program suite also includes a ternary diagram plotting program, a rose diagram program, an equal area and equal angle projections program, and an instructional program for creating two-dimensional strain path animations. The bulk of this paper focuses on a new method for determining a best-fit ellipsoid from arbitrarily oriented sectional ellipses and methods for determining appropriate error bounds for strain parameters and orientation data. This best-fit ellipsoid method utilizes a least-squares approach and minimizes the error associated with the two-dimensional data-ellipse matrix elements with the corresponding matrix elements from sectional ellipses through a general ellipsoid. Furthermore, a kernel density estimator is utilized to yield reliable error margins for the strain parameters, octahedral shear strain, Flinn's k-value, and Lode's ratio. By assuming a gamma distribution for the simulated principal axes orientations, more realistic error bounds can be estimated for these axes orientations.
Automatic three-dimensional underground mine mapping
Huber, D.F.; Vandapel, N.
2006-01-15
For several years, our research group has been developing methods for automated modeling of three-dimensional environments. In September 2002, we were given the opportunity to demonstrate our mapping capability in an underground coal mine. The opportunity arose as a result of the Quecreek mine accident, in which an inaccurate map caused miners to breach an abandoned, water-filled mine, trapping them for several days. Our field test illustrates the feasibility and potential of high-resolution 3D mapping of an underground coal mine using a cart-mounted 3D laser scanner In this paper we present our experimental setup, the automatic 3D modeling method used, and the results of the field test.
Three-dimensional hologram display system
NASA Technical Reports Server (NTRS)
Mintz, Frederick (Inventor); Chao, Tien-Hsin (Inventor); Bryant, Nevin (Inventor); Tsou, Peter (Inventor)
2009-01-01
The present invention relates to a three-dimensional (3D) hologram display system. The 3D hologram display system includes a projector device for projecting an image upon a display medium to form a 3D hologram. The 3D hologram is formed such that a viewer can view the holographic image from multiple angles up to 360 degrees. Multiple display media are described, namely a spinning diffusive screen, a circular diffuser screen, and an aerogel. The spinning diffusive screen utilizes spatial light modulators to control the image such that the 3D image is displayed on the rotating screen in a time-multiplexing manner. The circular diffuser screen includes multiple, simultaneously-operated projectors to project the image onto the circular diffuser screen from a plurality of locations, thereby forming the 3D image. The aerogel can use the projection device described as applicable to either the spinning diffusive screen or the circular diffuser screen.
Three-dimensional printing physiology laboratory technology.
Sulkin, Matthew S; Widder, Emily; Shao, Connie; Holzem, Katherine M; Gloschat, Christopher; Gutbrod, Sarah R; Efimov, Igor R
2013-12-01
Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories.
Numerical simulation of three dimensional transonic flows
NASA Technical Reports Server (NTRS)
Sahu, Jubaraj; Steger, Joseph L.
1987-01-01
The three-dimensional flow over a projectile has been computed using an implicit, approximately factored, partially flux-split algorithm. A simple composite grid scheme has been developed in which a single grid is partitioned into a series of smaller grids for applications which require an external large memory device such as the SSD of the CRAY X-MP/48, or multitasking. The accuracy and stability of the composite grid scheme has been tested by numerically simulating the flow over an ellipsoid at angle of attack and comparing the solution with a single grid solution. The flowfield over a projectile at M = 0.96 and 4 deg angle-of-attack has been computed using a fine grid, and compared with experiment.
Three dimensional fabric evolution of sheared sand
Hasan, Alsidqi; Alshibli, Khalid
2012-10-24
Granular particles undergo translation and rolling when they are sheared. This paper presents a three-dimensional (3D) experimental assessment of fabric evolution of sheared sand at the particle level. F-75 Ottawa sand specimen was tested under an axisymmetric triaxial loading condition. It measured 9.5 mm in diameter and 20 mm in height. The quantitative evaluation was conducted by analyzing 3D high-resolution x-ray synchrotron micro-tomography images of the specimen at eight axial strain levels. The analyses included visualization of particle translation and rotation, and quantification of fabric orientation as shearing continued. Representative individual particles were successfully tracked and visualized to assess the mode of interaction between them. This paper discusses fabric evolution and compares the evolution of particles within and outside the shear band as shearing continues. Changes in particle orientation distributions are presented using fabric histograms and fabric tensor.
Scaffolding for Three-Dimensional Embryonic Vasculogenesis
NASA Astrophysics Data System (ADS)
Kraehenbuehl, Thomas P.; Aday, Sezin; Ferreira, Lino S.
Biomaterial scaffolds have great potential to support efficient vascular differentiation of embryonic stem cells. Vascular cell fate-specific biochemical and biophysical cues have been identified and incorporated into three-dimensional (3D) biomaterials to efficiently direct embryonic vasculogenesis. The resulting vascular-like tissue can be used for regenerative medicine applications, further elucidation of biophysical and biochemical cues governing vasculogenesis, and drug discovery. In this chapter, we give an overview on the following: (1) developmental cues for directed differentiation of human embryonic stem cells (hESCs) into vascular cells, (2) 3D vascular differentiation in embryoid bodies (EBs), (3) preparation of 3D scaffolds for the vascular differentiation of hESCs, and (4) the most significant studies combining scaffolding and hESCs for development of vascular-like tissue.
Three dimensional thrust chamber life prediction
NASA Technical Reports Server (NTRS)
Armstrong, W. H.; Brogren, E. W.
1976-01-01
A study was performed to analytically determine the cyclic thermomechanical behavior and fatigue life of three configurations of a Plug Nozzle Thrust Chamber. This thrust chamber is a test model which represents the current trend in nozzle design calling for high performance coupled with weight and volume limitations as well as extended life for reusability. The study involved the use of different materials and material combinations to evaluate their application to the problem of low-cycle fatigue in the thrust chamber. The thermal and structural analyses were carried out on a three-dimensional basis. Results are presented which show plots of continuous temperature histories and temperature distributions at selected times during the operating cycle of the thrust chamber. Computed structural data show critical regions for low-cycle fatigue and the histories of strain within the regions for each operation cycle.
Three-dimensional comparative analysis of bitemarks.
Lasser, Allan J; Warnick, Allan J; Berman, Gary M
2009-05-01
Historically, the inability to accurately represent bitemarks and other wound patterns has limited their evidentiary value. The development of the ABFO #2 scale by Krauss and Hyzer enabled forensic odontologists to correct for most photographic plane distortions. The technique presented here uses the ABFO #2 scale in conjunction with the evolving technologies of laser scanners and comparative software commonly used by the automobile industry for three-dimensional (3D) analysis. The 3D software comparison was performed in which measurements were analyzed of the normal distance for each point on the teeth relative to the bitemarks. It created a color-mapped display of the bitemark model, with the color indicating the deviation at each point. There was a correlation between the bitemark and the original teeth. PMID:19432742
Three-dimensional tori and Arnold tongues
Sekikawa, Munehisa; Inaba, Naohiko; Kamiyama, Kyohei; Aihara, Kazuyuki
2014-03-15
This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary.
Quantum interferometry with three-dimensional geometry
Spagnolo, Nicolò; Aparo, Lorenzo; Vitelli, Chiara; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto; Mataloni, Paolo; Sciarrino, Fabio
2012-01-01
Quantum interferometry uses quantum resources to improve phase estimation with respect to classical methods. Here we propose and theoretically investigate a new quantum interferometric scheme based on three-dimensional waveguide devices. These can be implemented by femtosecond laser waveguide writing, recently adopted for quantum applications. In particular, multiarm interferometers include “tritter” and “quarter” as basic elements, corresponding to the generalization of a beam splitter to a 3- and 4-port splitter, respectively. By injecting Fock states in the input ports of such interferometers, fringe patterns characterized by nonclassical visibilities are expected. This enables outperforming the quantum Fisher information obtained with classical fields in phase estimation. We also discuss the possibility of achieving the simultaneous estimation of more than one optical phase. This approach is expected to open new perspectives to quantum enhanced sensing and metrology performed in integrated photonics. PMID:23181189
Towards microscale electrohydrodynamic three-dimensional printing
NASA Astrophysics Data System (ADS)
He, Jiankang; Xu, Fangyuan; Cao, Yi; Liu, Yaxiong; Li, Dichen
2016-02-01
It is challenging for the existing three-dimensional (3D) printing techniques to fabricate high-resolution 3D microstructures with low costs and high efficiency. In this work we present a solvent-based electrohydrodynamic 3D printing technique that allows fabrication of microscale structures like single walls, crossed walls, lattice and concentric circles. Process parameters were optimized to deposit tiny 3D patterns with a wall width smaller than 10 μm and a high aspect ratio of about 60. Tight bonding among neighbour layers could be achieved with a smooth lateral surface. In comparison with the existing microscale 3D printing techniques, the presented method is low-cost, highly efficient and applicable to multiple polymers. It is envisioned that this simple microscale 3D printing strategy might provide an alternative and innovative way for application in MEMS, biosensor and flexible electronics.
Steady inviscid three-dimensional flows
NASA Technical Reports Server (NTRS)
Adamczyk, J. J.; Chang, S.-C.
1985-01-01
The present analysis combines some of the theoretical concepts suggested by Hawthorne (1955) with a numerical integration procedure suggested by Martin (1978). The resulting algorithm is for inviscid subsonic flows. Thus, it is restricted to high Reynolds number flows. Chang and Adamczyk (1983) have provided a detailed derivation of the present algorithm along with a discussion of its stability bounds. The present paper represents a summary of this work. The integration of the continuity equation is considered along with an evaluation of the entropy, total temperature, and vorticity field. Attention is given to the shear-flow algorithm construction, and an application to a shear flow in a turning channel. A description of numerical results is also provided. The discussed algorithm represents a new procedure for solving inviscid subsonic three-dimensional rotational flows.
Three-dimensional printing physiology laboratory technology
Sulkin, Matthew S.; Widder, Emily; Shao, Connie; Holzem, Katherine M.; Gloschat, Christopher; Gutbrod, Sarah R.
2013-01-01
Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories. PMID:24043254
Three-dimensional modular electronic interconnection system
NASA Technical Reports Server (NTRS)
Bolotin, Gary S. (Inventor); Cardone, John (Inventor)
2001-01-01
A three-dimensional connection system uses a plurality of printed wiring boards with connectors completely around the printed wiring boards, and connected by an elastomeric interface connector. The device includes internal space to allow room for circuitry. The device is formed by stacking an electronics module, an elastomeric interface board on the electronics module such that the interface board's exterior makes electrical connection with the connectors around the perimeter of the interface board, but the internal portion is open to allow room for the electrical devices on the printed wiring board. A plurality of these devices are stacked between a top stiffener and a bottom device, and held into place by alignment elements.
Surface fitting three-dimensional bodies
NASA Technical Reports Server (NTRS)
Dejarnette, F. R.; Ford, C. P., III
1975-01-01
The geometry of general three-dimensional bodies was generated from coordinates of points in several cross sections. Since these points may not be on smooth curves, they are divided into groups forming segments and general conic sections are curve fit in a least-squares sense to each segment of a cross section. The conic sections are then blended in the longitudinal direction through longitudinal curves. Both the cross-sectional and longitudinal curves may be modified by specifying particular segments as straight lines or specifying slopes at selected points. This method was used to surface fit a 70 deg slab delta wing and the HL-10 Lifting Body. The results for the delta wing were very close to the exact geometry. Although there is no exact solution for the lifting body, the surface fit generated a smooth surface with cross-sectional planes very close to prescribed coordinate points.
Magneto Transport in Three Dimensional Carbon Nanostructures
NASA Astrophysics Data System (ADS)
Datta, Timir; Wang, Lei; Jaroszynski, Jan; Yin, Ming; Alameri, Dheyaa
Electrical properties of self-assembled three dimensional nanostructures are interesting topic. Here we report temperature dependence of magneto transport in such carbon nanostructures with periodic spherical voids. Specimens with different void diameters in the temperature range from 200 mK to 20 K were studied. Above 2 K, magnetoresistance, MR = [R(B) - R(0)] / R(0), crosses over from quadratic to a linear dependence with the increase of magnetic field [Wang et al., APL 2015; DOI:10.1063/1.4926606]. We observe MR to be non-saturating even up to 18 Tesla. Furthermore, MR demonstrates universality because all experimental data can be collapsed on to a single curve, as a universal function of B/T. Below 2 K, magnetoresistance saturates with increasing field. Quantum Hall like steps are also observed in this low temperature regime. Remarkably, MR of our sample displays orientation independence, an attractive feature for technological applications.
Three-dimensional cultured glioma cell lines
NASA Technical Reports Server (NTRS)
Gonda, Steve R. (Inventor); Marley, Garry M. (Inventor)
1991-01-01
Three-dimensional glioma spheroids were produced in vitro with size and histological differentiation previously unattained. The spheroids were grown in liquid media suspension in a Johnson Space Center (JSC) Rotating Wall Bioreactor without using support matrices such as microcarrier beads. Spheroid volumes of greater than 3.5 cu mm and diameters of 2.5 mm were achieved with a viable external layer or rim of proliferating cells, a transitional layer beneath the external layer with histological differentiation, and a degenerative central region with a hypoxic necrotic core. Cell debris was evident in the degenerative central region. The necrotics centers of some of the spheroids had hyaline droplets. Granular bodies were detected predominantly in the necrotic center.
Masking in three-dimensional auditory displays.
Doll, T J; Hanna, T E; Russotti, J S
1992-06-01
The extent to which simultaneous inputs in a three-dimensional (3D) auditory display mask one another was studied in a simulated sonar task. The minimum signal-to-noise ratio (SNR) required to detect an amplitude-modulated 500-Hz tone in a background of broadband noise was measured using a loudspeaker array in a free field. Three aspects of the 3D array were varied: angular separation of the sources, degree of correlation of the background noises, and listener head movement. Masking was substantially reduced when the sources were uncorrelated. The SNR needed for detection decreased with source separation, and the rate of decrease was significantly greater with uncorrelated sources than with partially or fully correlated sources. Head movement had no effect on the SNR required for detection. Implications for the design and application of 3D auditory displays are discussed.
Three-dimensional tori and Arnold tongues
NASA Astrophysics Data System (ADS)
Sekikawa, Munehisa; Inaba, Naohiko; Kamiyama, Kyohei; Aihara, Kazuyuki
2014-03-01
This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary.
Three-dimensional pancreas organogenesis models.
Grapin-Botton, A
2016-09-01
A rediscovery of three-dimensional culture has led to the development of organ biogenesis, homeostasis and disease models applicable to human tissues. The so-called organoids that have recently flourished serve as valuable models bridging between cell lines or primary cells grown on the bottom of culture plates and experiments performed in vivo. Though not recapitulating all aspects of organ physiology, the miniature organs generated in a dish are useful models emerging for the pancreas, starting from embryonic progenitors, adult cells, tumour cells and stem cells. This review focusses on the currently available systems and their relevance to the study of the pancreas, of β-cells and of several pancreatic diseases including diabetes. We discuss the expected future developments for studying human pancreas development and function, for developing diabetes models and for producing therapeutic cells. PMID:27615129
The Three-Dimensional EIT Wave
NASA Technical Reports Server (NTRS)
Thompson, B. J.; Biesecker, D. A.; Gilbert, H. R.; Lawrence, G. R.; Ofman, L.; Wu, S. T.; Warmuth, A.; Fisher, Richard R. (Technical Monitor)
2002-01-01
An EIT wave is an impulsive disturbance which has been observed in the EUV, Soft X-ray and white light corona, with corresponding observations in the chromosphere. The effects of these disturbances can be observed across the entire solar disk of the Sun, and throughout the inner heliosphere as well. However, the picture is not complete; observations alone do not establish a complete understanding of the nature of this three-dimensional phenomenon. A number of associated phenomena have been documented, though in most cases causality has not determined. Additionally, it is unclear which factors govern the impulse's ability to affect regions of the corona and heliosphere. We discuss the various observations and the models which provided links between the associated phenomena.
Three-Dimensional Reflectance Traction Microscopy
Jones, Christopher A. R.; Groves, Nicholas Scott; Sun, Bo
2016-01-01
Cells in three-dimensional (3D) environments exhibit very different biochemical and biophysical phenotypes compared to the behavior of cells in two-dimensional (2D) environments. As an important biomechanical measurement, 2D traction force microscopy can not be directly extended into 3D cases. In order to quantitatively characterize the contraction field, we have developed 3D reflectance traction microscopy which combines confocal reflection imaging and partial volume correlation postprocessing. We have measured the deformation field of collagen gel under controlled mechanical stress. We have also characterized the deformation field generated by invasive breast cancer cells of different morphologies in 3D collagen matrix. In contrast to employ dispersed tracing particles or fluorescently-tagged matrix proteins, our methods provide a label-free, computationally effective strategy to study the cell mechanics in native 3D extracellular matrix. PMID:27304456
Multiscale modeling of three-dimensional genome
NASA Astrophysics Data System (ADS)
Zhang, Bin; Wolynes, Peter
The genome, the blueprint of life, contains nearly all the information needed to build and maintain an entire organism. A comprehensive understanding of the genome is of paramount interest to human health and will advance progress in many areas, including life sciences, medicine, and biotechnology. The overarching goal of my research is to understand the structure-dynamics-function relationships of the human genome. In this talk, I will be presenting our efforts in moving towards that goal, with a particular emphasis on studying the three-dimensional organization, the structure of the genome with multi-scale approaches. Specifically, I will discuss the reconstruction of genome structures at both interphase and metaphase by making use of data from chromosome conformation capture experiments. Computationally modeling of chromatin fiber at atomistic level from first principles will also be presented as our effort for studying the genome structure from bottom up.
Clinical application of three-dimensional echocardiography.
Morbach, Caroline; Lin, Ben A; Sugeng, Lissa
2014-01-01
Echocardiography is one of the most valuable diagnostic tools in cardiology. Technological advances in ultrasound, computer and electronics enables three-dimensional (3-D) imaging to be a clinically viable modality which has significant impact on diagnosis, management and interventional procedures. Since the inception of 3D fully-sampled matrix transthoracic and transesophageal technology it has enabled easier acquisition, immediate on-line display, and availability of on-line analysis for the left ventricle, right ventricle and mitral valve. The use of 3D TTE has mainly focused on mitral valve disease, left and right ventricular volume and functional analysis. As structural heart disease procedures become more prevalent, 3D TEE has become a requirement for preparation of the procedure, intra-procedural guidance as well as monitoring for complications and device function. We anticipate that there will be further software development, improvement in image quality and workflow.
Three dimensional fog forecasting in complex terrain
NASA Astrophysics Data System (ADS)
Mueller, M.; Masbou, M.; Bott, A.
2010-07-01
Fog in complex terrain shows large temporal and spatial variations that can only be simulated with a three-dimensional model, but more modifications than increasing the resolution are needed. For a better representation of fog we present a second moment cloud water scheme with a parametrization of the Köhler theory which is combined with the mixed phase Ferrier microphysics scheme. The more detailed microphysics produce many differences to the first moment Ferrier scheme and are responsible for reproducing the typically low liquid water content of fog. With explicitly predicted droplet number concentrations, sedimentation of cloud water can be modeled without a prescribed fall speed, which mainly affects the vertical distribution of cloud water and the end of the fogs life cycle. The complex topography of the Swiss Alps and its surroundings are used for model testing. As the focus is on the models ability to forecast the spatial distribution of fog, cloud patterns derived from high resolution MSG satellite data, rather than few point observations from ground stations are used. In a continous five day period of anticyclonic conditions, the satellite observed fog patterns showed large day to day variations with almost no fog to large areas of fog. This variability was very well simulated in the three-dimensional fog forecast. The simulations also demonstrate the need for high horizontal resolutions between 1 and 3 km. For model initialization the complex topography is actually a simplifying factor, as cold air flow and pooling are dominating the more uncertain processes of evapotranspiration or errors in the soil moisture field.
Three-dimensional image contrast using biospeckle
NASA Astrophysics Data System (ADS)
Godinho, Robson Pierangeli; Braga, Roberto A., Jr.
2010-09-01
The biospeckle laser (BSL) has been applied in many areas of knowledge and a variety of approaches has been presented to address the best results in biological and non-biological samples, in fast or slow activities, or else in defined flow of materials or in random activities. The methodologies accounted in the literature consider the apparatus used in the image assembling and the way the collected data is processed. The image processing steps presents in turn a variety of procedures with first or second order statistics analysis, and as well with different sizes of data collected. One way to access the biospeckle in defined flow, such as in capillary blood flow in alive animals, was the adoption of the image contrast technique which uses only one image from the illuminated sample. That approach presents some problems related to the resolution of the image, which is reduced during the image contrast processing. In order to help the visualization of the low resolution image formed by the contrast technique, this work presents the three-dimensional procedure as a reliable alternative to enhance the final image. The work based on a parallel processing, with the generation of a virtual map of amplitudes, and maintaining the quasi-online characteristic of the contrast technique. Therefore, it was possible to generate in the same display the observed material, the image contrast result and in addiction the three-dimensional image with adjustable options of rotation. The platform also offers to the user the possibility to access the 3D image offline.
Shi, Li-Wan; Lai, You-Qun; Lin, Qin; Ha, Hui-Ming; Fu, Li-Rong
2015-07-01
Flattening filter free (FFF) may affect outcome measures of radiotherapy. The objective of this study is to compare the dosimetric parameters in three types of radiotherapy plans, three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT), with or without the flattening filter (FF), developed for the treatment of metastatic brain tumors from non-small cell lung cancer (NSCLC). From July 2013 to October 2013, 3D-CRT, IMRT, and VMAT treatment plans were designed using 6 MV and 10 MV, with and without FF, for 10 patients with brain metastasis from NSCLC. The evaluation of the treatment plans included homogeneity index (HI), conformity index (CI), monitor units (MU), mean dose (Dmean), treatment time, and the influence of FFF on volumes. There was no difference in CI or HI between FFF and FF models with 3D-CRT, IMRT, and VMAT plans. At 6 MV, a lower Dmean was seen in the FFF model of 3D-CRT and in the VMAT plan at 10 MV. In the IMRT 6 MV, IMRT 10 MV, and VMAT 10 MV plans, higher MUs were seen in the FFF models. FFF treatments are similar in quality to FF plans, generally lead to more monitor units, and are associated with shorter treatment times. FFF plans ranked by the order of superiority in terms of a time advantage are VMAT, 3D-CRT, and IMRT.
Shi, Li-Wan; Lai, You-Qun; Lin, Qin; Ha, Hui-Ming; Fu, Li-Rong
2015-07-01
Flattening filter free (FFF) may affect outcome measures of radiotherapy. The objective of this study is to compare the dosimetric parameters in three types of radiotherapy plans, three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT), with or without the flattening filter (FF), developed for the treatment of metastatic brain tumors from non-small cell lung cancer (NSCLC). From July 2013 to October 2013, 3D-CRT, IMRT, and VMAT treatment plans were designed using 6 MV and 10 MV, with and without FF, for 10 patients with brain metastasis from NSCLC. The evaluation of the treatment plans included homogeneity index (HI), conformity index (CI), monitor units (MU), mean dose (Dmean), treatment time, and the influence of FFF on volumes. There was no difference in CI or HI between FFF and FF models with 3D-CRT, IMRT, and VMAT plans. At 6 MV, a lower Dmean was seen in the FFF model of 3D-CRT and in the VMAT plan at 10 MV. In the IMRT 6 MV, IMRT 10 MV, and VMAT 10 MV plans, higher MUs were seen in the FFF models. FFF treatments are similar in quality to FF plans, generally lead to more monitor units, and are associated with shorter treatment times. FFF plans ranked by the order of superiority in terms of a time advantage are VMAT, 3D-CRT, and IMRT. PMID:26011493
Primary and Secondary Three Dimensional Microbatteries
NASA Astrophysics Data System (ADS)
Cirigliano, Nicolas
Today's MEMS devices are limited more so by the batteries that supply their power than the fabrication methods used to build them. Thick battery electrodes are capable of providing adequate energy, but long and tortuous diffusion pathways lead to low power capabilities. On the other hand, thin film batteries can operate at significant current densities but require large surface areas to supply practical energy. This dilemma can be solved by either developing new high capacity materials or by engineering new battery designs that decouple power and energy. Three dimensional batteries redesign traditional configurations to create nonplanar interfaces between battery components. This can be done by introducing hierarchical structures into the electrode shape. Designs such as these provide a maximum surface area over which chemical reactions can occur. Furthermore, by maintaining small feature sizes, ion diffusion and electronic transport distances can remain minimal. Manipulating these properties ensures fast kinetics that are required for high power situations. Energy density is maximized by layering material in the vertical direction, thus ensuring a minimal footprint area. Three dimensional carbon electrodes are fabricated using basic MEMS techniques. A silicon mold is anisotropically etched to produce channels of a predetermined diameter. The channels are then filled using an infiltration technique with electrode slurry. Once dried, the mold is attached to a current collector and etched using a XeF2 process. Electrodes of varying feature sizes have been fabricated using this method with aspect ratios ranging from 3.5:1 to 7:1. 3D carbon electrodes are shown to obtain capacities over 8 mAh/cm2 at 0.1 mA/cm2, or nearly 700% higher than planar carbon electrodes. When assembled with a planar cathode, the battery cell produced an average discharge capacity of 40 J/cm 2 at a current density of 0.2 mA/cm2. This places the energy density values slightly less than thick
Flow Fields Over Unsteady Three Dimensional Dunes
NASA Astrophysics Data System (ADS)
Hardy, R. J.; Reesink, A.; Parsons, D. R.; Ashworth, P. J.; Best, J.
2013-12-01
The flow field over dunes has been extensively measured in laboratory conditions and there is general understanding on the nature of the flow over dunes formed under equilibrium flow conditions. However, fluvial systems typically experience unsteady flow and therefore the sediment-water interface is constantly responding and reorganizing to these unsteady flows, over a range of both spatial and temporal scales. This is primarily through adjustment of bed forms (including ripples, dunes and bar forms) which then subsequently alter the flow field. This paper investigates, through the application of a numerical model, the influence of these roughness elements on the overall flow and the increase in flow resistance. A series of experiments were undertaken in a flume, 16m long and 2m wide, where a fine sand (D50 of 239μm) mobile bed was water worked under a range of unsteady hydraulic conditions to generate a series of quasi-equilibrium three dimensional bed forms. During the experiments flow was measured with acoustic Doppler velocimeters, (aDv's). On four occasions the flume was drained and the bed topography measured with terrestrial LiDAR to create digital elevation models. This data provide the necessary boundary conditions and validation data for a Large Eddy Simulation (LES) model, which provided a three dimensional time dependent prediction of flow over the four static beds. The numerical predicted flow is analyzed through a series of approaches, and included: i) standard Reynolds decomposition to the flow fields; ii) Eulerian coherent structure detection methods based on the invariants of the velocity gradient tensor; iii) Lagrangian coherent structure identification methods based upon direct Lyapunov exponents (DLE). The results show that superimposed bed forms can cause changes in the nature of the classical separated flow region in particularly the number of locations where vortices are shed and the point of flow reattachment, which may be important for
Isotropic three-dimensional MRI-Fricke-infused gel dosimetry
Cho, Nai-Yu; Chu, Woei-Chyn; Huang, Sung-Cheng; Chung, Wen-Yuh; Guo, Wan-Yuo
2013-05-15
Purpose: Fricke-infused gel has been shown to be a simple and attainable method for the conformal measurement of absorbed radiation dose. Nevertheless, its accuracy is seriously hindered by the irreversible ferric ion diffusion during magnetic resonance imaging, particularly when three-dimensional (3D) dose measurement in radiosurgery is considered. In this study, the authors developed a fast three-dimensional spin-echo based Fricke gel dosimetry technique to reduce the adverse effects of ferric ion diffusion and to obtain an accurate isotropic 3D dose measurement. Methods: A skull shaped phantom containing Fricke-infused gel was irradiated using Leksell Gamma Knife. The rapid image-based dosimetry technique was applied with the use of a 3D fast spin-echo magnetic resonance imaging sequence. The authors mathematically derived and experimentally validated the correlations between dose-response characteristics and parameters of the 3D fast spin-echo MR imaging sequence. Absorbed dose profiles were assessed and compared to the calculated profiles given by the Gamma Knife treatment planning system. Coefficient of variance (CV%) and coefficient of determination (R{sup 2}) were used to evaluate the precision of dose-response curve estimation. The agreement between the measured and the planned 3D dose distributions was quantified by gamma-index analysis of two acceptance criteria. Results: Proper magnetic resonance imaging parameters were explored to render an accurate three-dimensional absorbed dose mapping with a 1 mm{sup 3} isotropic image resolution. The efficacy of the dose-response estimation was approved by an R{sup 2} > 0.99 and an average CV% of 1.6%. Average gamma pass-rate between the experimentally measured and GammaPlan calculated dose distributions were 83.8% and 99.7% for 2%/2 and 3%/3 mm criteria, respectively. Conclusions: With the designed MR imaging sequence and parameters, total 3D MR acquisition time was confined to within 20 min postirradiation
Lymphedema: A General Outline of Its Anatomical Base.
Amore, M; Tapia, L; Mercado, D; Pattarone, G; Ciucci, J
2016-01-01
The anatomic research of the lymphatic system has been a very controversial subject throughout due to the complexity of the methods for its visualization. More than 30 years ago, together with Prof. Caplan, we began the vascular anatomy research, focusing on the lymphatic anatomy, developing and adapting different techniques of injection. On the third Normal Anatomy Chair of Buenos Aires University, we summarized the lymphatic drainage of the breast and the limbs to interpret the anatomic bases of lymphedema.
Three-dimensional Printing in the Intestine.
Wengerter, Brian C; Emre, Gulus; Park, Jea Young; Geibel, John
2016-08-01
Intestinal transplantation remains a life-saving option for patients with severe intestinal failure. With the advent of advanced tissue engineering techniques, great strides have been made toward manufacturing replacement tissues and organs, including the intestine, which aim to avoid transplant-related complications. The current paradigm is to seed a biocompatible support material (scaffold) with a desired cell population to generate viable replacement tissue. Although this technique has now been extended by the three-dimensional (3D) printing of geometrically complex scaffolds, the overall approach is hindered by relatively slow turnover and negative effects of residual scaffold material, which affects final clinical outcome. Methods recently developed for scaffold-free 3D bioprinting may overcome such obstacles and should allow for rapid manufacture and deployment of "bioprinted organs." Much work remains before 3D bioprinted tissues can enter clinical use. In this brief review we examine the present state and future perspectives of this nascent technology before full clinical implementation. PMID:27189913
Three dimensional simulations of internal solitary waves
NASA Astrophysics Data System (ADS)
Li, Guotu; Rizzi, Francesco; Knio, Omar
2014-11-01
This study focuses on mass transport and mixing induced by mode-2 internal solitary waves (ISWs) propagating along a pycnocline between two continuously stratified fluid layers. A direct numerical simulation (DNS) model is developed for the incompressible three-dimensional Navier-Stokes equations in the Boussinesq limit. By using high order schemes in both space and time, the model is able to accurately capture the convection-dominated flow at high Reynolds and Schmidt numbers. Simulations both with and without background shear are conducted. The spatial frequency analysis of both density and vorticity fields reveals that no long range spanwise structures are present during the propagation of ISWs, which makes a relatively short spanwise depth sufficient to characterize the evolution of the flow. The growth of 3D structures during the propagation of ISWs is quantified using a spanwise roughness measure. The flow energy budget, dye transport, density mixing and vortex circulations are also analyzed. Work supported by the Office of Naval Research, Physical Oceanography Program.
Three dimensional characterization and archiving system
Sebastian, R.L.; Clark, R.; Gallman, P.
1995-10-01
The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D&D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D&D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. The 3D-ICAS system robotically conveys a multisensor probe near the surface to be inspected. The sensor position and orientation are monitored and controlled by Coherent laser radar (CLR) tracking. The ICAS fills the need for high speed automated organic analysis by means of gas chromatography-mass spectrometry sensors, and also by radionuclide sensors which combines alpha, beta, and gamma counting.
Three dimensional structures of solar active regions
NASA Technical Reports Server (NTRS)
Kundu, M. R.
1986-01-01
Three dimensional structure of an active region is determined from observations with the Very Large Array (VLA) at 2, 6, and 20 cm. This region exhibits a single magnetic loop of length approx. 10 to the 10th power cm. The 2 cm radiation is mostly thermal bremsstrahlung and originates from the footpoints of the loop. The 6 and 20 cm radiation is dominated by the low harmonic gyroresonance radiation and originates from the upper portion of the legs or the top of the loop. The loop broadens toward the apex. The top of the loop is not found to be the hottest point, but two temperature maxima on either side of the loop apex are observed, which is consistent with the model proposed for long loops. From 2 and 6 cm observations it can be concluded that the electron density and temperature cannot be uniform in a plane perpendicular to the axis of the loop; the density should decrease away from the axis of the loop.
Three-dimensional landing zone ladar
NASA Astrophysics Data System (ADS)
Savage, James; Goodrich, Shawn; Burns, H. N.
2016-05-01
Three-Dimensional Landing Zone (3D-LZ) refers to a series of Air Force Research Laboratory (AFRL) programs to develop high-resolution, imaging ladar to address helicopter approach and landing in degraded visual environments with emphasis on brownout; cable warning and obstacle avoidance; and controlled flight into terrain. Initial efforts adapted ladar systems built for munition seekers, and success led to a the 3D-LZ Joint Capability Technology Demonstration (JCTD) , a 27-month program to develop and demonstrate a ladar subsystem that could be housed with the AN/AAQ-29 FLIR turret flown on US Air Force Combat Search and Rescue (CSAR) HH-60G Pave Hawk helicopters. Following the JCTD flight demonstration, further development focused on reducing size, weight, and power while continuing to refine the real-time geo-referencing, dust rejection, obstacle and cable avoidance, and Helicopter Terrain Awareness and Warning (HTAWS) capability demonstrated under the JCTD. This paper summarizes significant ladar technology development milestones to date, individual LADAR technologies within 3D-LZ, and results of the flight testing.
Three-dimensional charge coupled device
Conder, Alan D.; Young, Bruce K. F.
1999-01-01
A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated. Charge diffusion is greatly reduced because the E-field is strong due to the proximity of the bulk electrodes.
Three-dimensional modeling of tsunami waves
Mader, C.L.
1985-01-01
Two- and three-dimensional, time-dependent, nonlinear, incompressible, viscous flow calculations of realistic models of tsunami wave formation and run up have been performed using the Los Alamos-developed SOLA-3D code. The results of the SOLA calculations are compared with shallow-water, long-wave calculations for the same problems using the SWAN code. Tsunami wave formation by a continental slope subsidence has been examined using the two numerical models. The SOLA waves were slower than the SWAN waves and the interaction with the shoreline was more complicated for the SOLA waves. In the SOLA calculation, the first wave was generated by the cavity being filled along the shoreline close to the source of motion. The second wave was generated by the cavity being filled from the deep water end. The two waves interacted along the shoreline resulting in the second wave being the largest wave with a velocity greater than the first wave. The second wave overtook the first wave at later times and greater distances from the source. In the SWAN calculation, the second wave was smaller than the first wave. 6 refs.
Three-dimensional supersonic internal flows
NASA Astrophysics Data System (ADS)
Mohan, J. A.; Skews, B. W.
2013-09-01
In order to examine the transition between regular and Mach reflection in a three-dimensional flow, a range of special geometry test pieces, and inlets, were designed. The concept is to have a geometry consisting of two plane wedges which results in regular reflection between the incident waves off the top and bottom of the inlet capped by two curved end sections causing Mach reflection. The merging of these two reflection patterns and the resulting downstream flow are studied using laser vapor screen and shadowgraph imaging supported by numerical simulation. An angled Mach disc is formed which merges with the line of regular reflection. A complex wave pattern results with the generation of a bridging shock connecting the reflected wave from the Mach reflection with the reflected waves from the regular reflection. In order to experimentally access the flow within the duct, a number of tests were conducted with one end cap removed. This resulted in a modified flow due to the expansive flow at the open end the influence of which was also studied in more detail.
Collimation and Stability of Three Dimensional Jets
NASA Astrophysics Data System (ADS)
Hardee, P. E.; Clarke, D. A.; Howell, D. A.
1993-12-01
Three-dimensional numerical simulations of cylindrical jets established in equilibrium with a surrounding uniform medium have been performed. Large scale structures such as helical twisting of the jet, elliptical distortion and bifurcation of the jet, and triangular distortion and trifurcation of the jet have been seen in the simulations. The grid resolution has been sufficient to allow the development of structures on smaller scales and has revealed higher order distortions of the jet surface and complex structure internal to the jet. However, smaller scale surface distortion and internal jet structure do not significantly modify the large scale dynamics. It is the large scale surface distortions and accompanying filamentation that dominate the jet dynamics. Decollimation occurs as the jet bifurcates or trifurcates. Jets with density less than the immediately surrounding medium rapidly decollimate and expand as the jet filaments into multiple streams leading to shock heating and mass entrainment. The resulting morphology resembles a turbulent plume and might be relevant to some FRI type radio sources. Jet densities higher than the immediately surrounding medium are required to produce FRII type radio source jet morphology and protostellar jet morphology. Thus, while jets may be denser or lighter than the external medium through which they propagate, it is the conditions in the cocoon or lobe around the jet that governs the dynamics far behind the jet front. This work was supported by NSF grant AST-8919180, EPSCoR grant EHR-9108761 and NSF-REU grant AST-9300413.
Three-dimensional subband coding of video.
Podilchuk, C I; Jayant, N S; Farvardin, N
1995-01-01
We describe and show the results of video coding based on a three-dimensional (3-D) spatio-temporal subband decomposition. The results include a 1-Mbps coder based on a new adaptive differential pulse code modulation scheme (ADPCM) and adaptive bit allocation. This rate is useful for video storage on CD-ROM. Coding results are also shown for a 384-kbps rate that are based on ADPCM for the lowest frequency band and a new form of vector quantization (geometric vector quantization (GVQ)) for the data in the higher frequency bands. GVQ takes advantage of the inherent structure and sparseness of the data in the higher bands. Results are also shown for a 128-kbps coder that is based on an unbalanced tree-structured vector quantizer (UTSVQ) for the lowest frequency band and GVQ for the higher frequency bands. The results are competitive with traditional video coding techniques and provide the motivation for investigating the 3-D subband framework for different coding schemes and various applications. PMID:18289965
Survey Of Three-Dimensional Television
NASA Astrophysics Data System (ADS)
Butterfield, James F.
1980-06-01
Since the introduction of television, various types of three-dimensional video systems have been used for industrial, medical, educational and entertainment purposes. The systems can be divided into two classes: (1) Stereoscopic Video Systems, which require special glasses or viewing aids; (2) Autostereoscopic Video Systems, which do not require glasses and are viewed by free vision. The two or more images required for these displays are picked-up by stereo optics with a single camera and multiplexed on a single communi-cation channel or they are picked up by two or more cameras utilizing an individual channel for each camera. One or more CRT's with stereo optics are employed in the receiver. The stereoscopic display provides the viewer with added realism and spacial information not available in any other manner. For entertainment purposes, the 3D picture enhances almost any program, including sports, drama and news. Typical industrial applications are for: remote viewing in connection with the remote driving of vehicles or operating manipulators; educational studies of solid geometry and atomic structure; and medical studies of surgical procedures. Stereo video also is being used in connection with microscopic optics to provide a stereo video microscope which has numerous advantages over a conventional optical microscope.
Three dimensional characterization and archiving system
Sebastian, R.L.; Clark, R.; Gallman, P.
1995-12-01
The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D&D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D&D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. Chemical analysis plays a vital role throughout the process of decontamination. Before clean-up operations can begin the site must be characterized with respect to the type and concentration of contaminants, and detailed site mapping must clarify areas of both high and low risk. During remediation activities chemical analysis provides a means to measure progress and to adjust clean-up strategy. Once the clean-up process has been completed the results of chemical analysis will verify that the site is in compliance with federal and local regulations.
Three-dimensional null point reconnection regimes
Priest, E. R.; Pontin, D. I.
2009-12-15
Recent advances in theory and computational experiments have shown the need to refine the previous categorization of magnetic reconnection at three-dimensional null points--points at which the magnetic field vanishes. We propose here a division into three different types, depending on the nature of the flow near the spine and fan of the null. The spine is an isolated field line which approaches the null (or recedes from it), while the fan is a surface of field lines which recede from it (or approach it). So-called torsional spine reconnection occurs when field lines in the vicinity of the fan rotate, with current becoming concentrated along the spine so that nearby field lines undergo rotational slippage. In torsional fan reconnection field lines near the spine rotate and create a current that is concentrated in the fan with a rotational flux mismatch and rotational slippage. In both of these regimes, the spine and fan are perpendicular and there is no flux transfer across spine or fan. The third regime, called spine-fan reconnection, is the most common in practice and combines elements of the previous spine and fan models. In this case, in response to a generic shearing motion, the null point collapses to form a current sheet that is focused at the null itself, in a sheet that locally spans both the spine and fan. In this regime the spine and fan are no longer perpendicular and there is flux transfer across both of them.
Three-Dimensional Optical Coherence Tomography
NASA Technical Reports Server (NTRS)
Gutin, Mikhail; Wang, Xu-Ming; Gutin, Olga
2009-01-01
Three-dimensional (3D) optical coherence tomography (OCT) is an advanced method of noninvasive infrared imaging of tissues in depth. Heretofore, commercial OCT systems for 3D imaging have been designed principally for external ophthalmological examination. As explained below, such systems have been based on a one-dimensional OCT principle, and in the operation of such a system, 3D imaging is accomplished partly by means of a combination of electronic scanning along the optical (Z) axis and mechanical scanning along the two axes (X and Y) orthogonal to the optical axis. In 3D OCT, 3D imaging involves a form of electronic scanning (without mechanical scanning) along all three axes. Consequently, the need for mechanical adjustment is minimal and the mechanism used to position the OCT probe can be correspondingly more compact. A 3D OCT system also includes a probe of improved design and utilizes advanced signal- processing techniques. Improvements in performance over prior OCT systems include finer resolution, greater speed, and greater depth of field.
Three dimensional characterization and archiving system
Sebastian, R.L.; Clark, R.; Gallman, P.
1996-04-01
The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D and D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D and D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. The 3D-ICAS system robotically conveys a multisensor probe near the surfaces to be inspected. The sensor position and orientation are monitored and controlled using coherent laser radar (CLR) tracking. The CLR also provides 3D facility maps which establish a 3D world view within which the robotic sensor system can operate.
Lattice theory of three-dimensional cracks
NASA Technical Reports Server (NTRS)
Esterling, D. M.
1976-01-01
The problem of the stability of a three-dimensional crack is analyzed within a lattice-statics approximation. The consequence of introducing a jog into the crack face as well as the effects of various nonlinear-force laws are studied. The phenomenon of lattice trapping (upper and lower bounds on the applied stress for an equilibrium crack of given length) is again obtained. It is possible to obtain some physical insight into which aspects of the force law are critical for crack stability. In particular, the inadequacy of a thermodynamic approach - which relates the critical stress to a surface energy corresponding to the area under the cohesive-force-vs-displacement curve - is demonstrated. Surface energy is a global property of the cohesive-force law. Crack stability is sensitive to much more refined aspects of the cohesive-force law. Crack healing is sensitive to the long-range portion of the cohesive force. Crack expansion is sensitive to the position of the maximum in the cohesive-force relation.
Surface fitting three-dimensional bodies
NASA Technical Reports Server (NTRS)
Dejarnette, F. R.
1974-01-01
The geometry of general three-dimensional bodies is generated from coordinates of points in several cross sections. Since these points may not be smooth, they are divided into segments and general conic sections are curve fit in a least-squares sense to each segment of a cross section. The conic sections are then blended in the longitudinal direction by fitting parametric cubic-spline curves through coordinate points which define the conic sections in the cross-sectional planes. Both the cross-sectional and longitudinal curves may be modified by specifying particular segments as straight lines and slopes at selected points. Slopes may be continuous or discontinuous and finite or infinite. After a satisfactory surface fit has been obtained, cards may be punched with the data necessary to form a geometry subroutine package for use in other computer programs. At any position on the body, coordinates, slopes and second partial derivatives are calculated. The method is applied to a blunted 70 deg delta wing, and it was found to generate the geometry very well.
Magnetophotonic response of three-dimensional opals.
Caicedo, José Manuel; Pascu, Oana; López-García, Martín; Canalejas, Víctor; Blanco, Alvaro; López, Cefe; Fontcuberta, Josep; Roig, Anna; Herranz, Gervasi
2011-04-26
Three-dimensional magnetophotonic crystals (3D-MPCs) are being postulated as appropriate platforms to tailor the magneto-optical spectral response of magnetic materials and to incorporate this functionality in a new generation of optical devices. By infiltrating self-assembled inverse opal structures with monodisperse nickel nanoparticles we have fabricated 3D-MPCs that show a sizable enhancement of the magneto-optical signal at frequencies around the stop-band edges of the photonic crystals. We have established a proper methodology to disentangle the intrinsic magneto-optical spectra from the nonmagnetic optical activity of the 3D-MPCs. The results of the optical and magneto-optical characterization are consistent with a homogeneous magnetic infiltration of the opal structure that gives rise to both a red-shift of the optical bandgap and a modification of the magneto-optical spectral response due to photonic bandgap effects. The results of our investigation demonstrate the potential of 3D-MPCs fabricated following the approach outlined here and offer opportunities to adapt the magneto-optical spectral response at optical frequencies by appropriate design of the opal structure or magnetic field strength.
Two and three dimensional magnetotelluric inversion
NASA Astrophysics Data System (ADS)
Booker, J. R.
Improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral, and geothermal resources, and in characterizing oil fields and waste sites. Because the electromagnetic inverse problem for natural sources is generally multidimensional, most imaging algorithms saturate available computer power long before they can deal with complete data sets. We have developed an algorithm to directly invert large multidimensional magnetotelluric data sets that is orders of magnitude faster than competing methods. In the past year, we have extended the two-dimensional (2D) version to permit incorporation of geological constraints, have developed ways to assess model resolution, and have completed work on an accurate and fast three-dimensional (3D) forward algorithm. We are proposing to further enhance the capabilities of the 2D code and to incorporate the 3D forward code in a fully 3D inverse algorithm. Finally, we will embark on an investigation of related EM imaging techniques which may have the potential for further increasing resolution.
Two and three dimensional magnetotelluric inversion
Booker, J.R.
1994-07-01
Improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral and geothermal resources, and in characterizing oil fields and waste sites. Because the electromagnetic inverse problem for natural sources is generally multi-dimensional, most imaging algorithms saturate available computer power long before they can deal with complete data sets. We have developed an algorithm to directly invert large multi-dimensional magnetotelluric data sets that is orders of magnitude faster than competing methods. In the past year, we have extended the two- dimensional (2D) version to permit incorporation of geological constraints, have developed ways to assess model resolution and have completed work on an accurate and fast three-dimensional (3D) forward algorithm. We are proposing to further enhance the capabilities of the 2D code and to incorporate the 3D forward code in a fully 3D inverse algorithm. Finally, we will embark on an investigation of related EM imaging techniques which may have the potential for further increasing resolution.
Two and three dimensional magnetotelluric inversion
Booker, J.
1993-01-01
Electrical conductivity depends on properties such as the presence of ionic fluids in interconnected pores that are difficult to sense with other remote sensing techniques. Thus improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral and geothermal resources, and in assessing the diffusion of fluids in oil fields and waste sites. Because the electromagnetic inverse problem is fundamentally multi-dimensional, most imaging algorithms saturate available computer power long before they can deal with the complete data set. We have developed an algorithm to directly invert large multi-dimensional data sets that is orders of magnitude faster than competing methods. We have proven that a two-dimensional (2D) version of the algorithm is highly effective for real data and have made substantial progress towards a three-dimensional (3D) version. We are proposing to cure identified shortcomings and substantially expand the utility of the existing 2D program, overcome identified difficulties with extending our method to three-dimensions (3D) and embark on an investigation of related EM imaging techniques which may have the potential for even further increasing resolution.
A three-dimensional human walking model
NASA Astrophysics Data System (ADS)
Yang, Q. S.; Qin, J. W.; Law, S. S.
2015-11-01
A three-dimensional human bipedal walking model with compliant legs is presented in this paper. The legs are modeled with time-variant dampers, and the model is able to characterize the gait pattern of an individual using a minimal set of parameters. Feedback control, for both the forward and lateral movements, is implemented to regulate the walking performance of the pedestrian. The model provides an improvement over classic invert pendulum models. Numerical studies were undertaken to investigate the effects of leg stiffness and attack angle. Simulation results show that when walking at a given speed, increasing the leg stiffness with a constant attack angle results in a longer step length, a higher step frequency, a faster walking speed and an increase in both the peak vertical and lateral ground reaction forces. Increasing the attack angle with a constant leg stiffness results in a higher step frequency, a decrease in the step length, an increase in the total energy of the system and a decrease in both the peak vertical and lateral ground reaction forces.
Hoevenaren, Inge A.; Meulstee, J.; Krikken, E.; Bergé, S. J.; Ulrich, D. J. O.; Maal, Thomas J. J.
2015-01-01
Purpose Using three-dimensional (3D) stereophotogrammetry precise images and reconstructions of the human body can be produced. Over the last few years, this technique is mainly being developed in the field of maxillofacial reconstructive surgery, creating fusion images with computed tomography (CT) data for precise planning and prediction of treatment outcome. Though, in hand surgery 3D stereophotogrammetry is not yet being used in clinical settings. Methods A total of 34 three-dimensional hand photographs were analyzed to investigate the reproducibility. For every individual, 3D photographs were captured at two different time points (baseline T0 and one week later T1). Using two different registration methods, the reproducibility of the methods was analyzed. Furthermore, the differences between 3D photos of men and women were compared in a distance map as a first clinical pilot testing our registration method. Results The absolute mean registration error for the complete hand was 1.46 mm. This reduced to an error of 0.56 mm isolating the region to the palm of the hand. When comparing hands of both sexes, it was seen that the male hand was larger (broader base and longer fingers) than the female hand. Conclusions This study shows that 3D stereophotogrammetry can produce reproducible images of the hand without harmful side effects for the patient, so proving to be a reliable method for soft tissue analysis. Its potential use in everyday practice of hand surgery needs to be further explored. PMID:26366860
NASA Astrophysics Data System (ADS)
Geroux, Christopher M.; Deupree, Robert G.
2015-02-01
Three-dimensional hydrodynamic simulations of full amplitude RR Lyrae stars have been computed for several models across the instability strip. The three-dimensional nature of the calculations allows convection to be treated without reference to a phenomenological approach such as the local mixing length theory. Specifically, the time-dependent interaction of large-scale eddies and radial pulsation is controlled by conservation laws, while the effects of smaller convective eddies are simulated by an eddy viscosity model. The light amplitudes for these calculations are quite similar to those of our previous two-dimensional calculations in the middle of the instability strip, but somewhat lower near the red edge, the fundamental blue edge, and for the one first overtone model we computed. The time-dependent interaction between the radial pulsation and the convective energy transport is essentially the same in three dimensions as it is in two dimensions. There are some differences between the light curves of the two- and three-dimensional simulations, particularly during decreasing light. Reasons for the differences, both numerical and physical, are explored.
Geroux, Christopher M.; Deupree, Robert G.
2015-02-10
Three-dimensional hydrodynamic simulations of full amplitude RR Lyrae stars have been computed for several models across the instability strip. The three-dimensional nature of the calculations allows convection to be treated without reference to a phenomenological approach such as the local mixing length theory. Specifically, the time-dependent interaction of large-scale eddies and radial pulsation is controlled by conservation laws, while the effects of smaller convective eddies are simulated by an eddy viscosity model. The light amplitudes for these calculations are quite similar to those of our previous two-dimensional calculations in the middle of the instability strip, but somewhat lower near the red edge, the fundamental blue edge, and for the one first overtone model we computed. The time-dependent interaction between the radial pulsation and the convective energy transport is essentially the same in three dimensions as it is in two dimensions. There are some differences between the light curves of the two- and three-dimensional simulations, particularly during decreasing light. Reasons for the differences, both numerical and physical, are explored.
Applications of three-dimensional printing technology in urological practice.
Youssef, Ramy F; Spradling, Kyle; Yoon, Renai; Dolan, Benjamin; Chamberlin, Joshua; Okhunov, Zhamshid; Clayman, Ralph; Landman, Jaime
2015-11-01
A rapid expansion in the medical applications of three-dimensional (3D)-printing technology has been seen in recent years. This technology is capable of manufacturing low-cost and customisable surgical devices, 3D models for use in preoperative planning and surgical education, and fabricated biomaterials. While several studies have suggested 3D printers may be a useful and cost-effective tool in urological practice, few studies are available that clearly demonstrate the clinical benefit of 3D-printed materials. Nevertheless, 3D-printing technology continues to advance rapidly and promises to play an increasingly larger role in the field of urology. Herein, we review the current urological applications of 3D printing and discuss the potential impact of 3D-printing technology on the future of urological practice.
Three-dimensional multimodal image-guidance for neurosurgery
Peters, T.; Munger, P.; Comeau, R.; Evans, A.; Olivier, A.; Davey, B.
1996-04-01
The authors address the use of multimodality imaging as an aid to the planning and guidance of neurosurgical procedures, and discuss the integration of anatomical (CT and MRI), vascular (DSA), and functional (PET) data for presentation to the surgeon during surgery. The workstation is an enhancement of a commercially available system, and in addition to the guidance offered via a hand-held probe, it incorporates the use of multimodality imaging and adds enhanced realism to the surgeon through the use of a stereoscopic three-dimensional (3-D) image display. The probe may be visualized stereoscopically in single or multimodality images. The integration of multimodality data in this manner provides the surgeon with a complete overview of brain structures on which he is performing surgery, or through which he is passing probes or cannulas, enabling him to avoid critical vessels and/or structures of functional significance.
Three-Dimensional Integrated Survey for Building Investigations.
Costantino, Domenica; Angelini, Maria Giuseppa
2015-11-01
The study shows the results of a survey aimed to represent a building collapse and the feasibility of the modellation as a support of structure analysis. An integrated survey using topographic, photogrammetric, and terrestrial laser techniques was carried out to obtain a three-dimensional (3D) model of the building, plans and prospects, and the particulars of the collapsed area. Authors acquired, by a photogrammetric survey, information about regular parties of the structure; while using laser scanner data they reconstructed a set of more interesting architectural details and areas with higher surface curvature. Specifically, the process of texture provided a detailed 3D structure of the areas under investigation. The analysis of the data acquired resulted to be very useful both in identifying the causes of the disaster and also in helping the reconstruction of the collapsed corner showing the contribution that the integrated surveys can give in preserving architectural and historic heritage.
Three-dimensional landing zone joint capability technology demonstration
NASA Astrophysics Data System (ADS)
Savage, James; Goodrich, Shawn; Ott, Carl; Szoboszlay, Zoltan; Perez, Alfonso; Soukup, Joel; Burns, H. N.
2014-06-01
The Three-Dimensional Landing Zone (3D-LZ) Joint Capability Technology Demonstration (JCTD) is a 27-month program to develop an integrated LADAR and FLIR capability upgrade for USAF Combat Search and Rescue HH-60G Pave Hawk helicopters through a retrofit of current Raytheon AN/AAQ-29 turret systems. The 3D-LZ JCTD builds upon a history of technology programs using high-resolution, imaging LADAR to address rotorcraft cruise, approach to landing, landing, and take-off in degraded visual environments with emphasis on brownout, cable warning and obstacle avoidance, and avoidance of controlled flight into terrain. This paper summarizes ladar development, flight test milestones, and plans for a final flight test demonstration and Military Utility Assessment in 2014.
Three-dimensional structure of Theiler virus.
Grant, R A; Filman, D J; Fujinami, R S; Icenogle, J P; Hogle, J M
1992-01-01
Theiler murine encephalomyelitis virus strains are categorized into two groups, a neurovirulent group that rapidly kills the host, and a demyelinating group that causes a generally nonlethal infection of motor neurons followed by a persistent infection of the white matter with demyelinating lesions similar to those found in multiple sclerosis. The three-dimensional structure of the DA strain, a member of the demyelinating group, has been determined at 2.8 A resolution. As in other picornaviruses, the icosahedral capsid is formed by the packing of wedge-shaped eight-stranded antiparallel beta barrels. The surface of Theiler virus has large star-shaped plateaus at the fivefold axes and broad depressions spanning the twofold axes. Several unusual structural features are clustered near one edge of the depression. These include two finger-like loops projecting from the surface (one formed by residues 78-85 of VP1, and the other formed by residues 56-65 of VP3) and a third loop containing three cysteines (residues 87, 89, and 91 of VP3), which appear to be covalently modified. Most of the sequence differences between the demyelinating and neurovirulent groups that could play a role in determining pathogenesis map to the surface of the star-shaped plateau. The distribution of these sequence differences on the surface of the virion is consistent with models in which the differences in the pathogenesis of the two groups of Theiler viruses are the result of differences in immunological or receptor-mediated recognition processes. Images PMID:1549565
Three-dimensional kinematics of hummingbird flight.
Tobalske, Bret W; Warrick, Douglas R; Clark, Christopher J; Powers, Donald R; Hedrick, Tyson L; Hyder, Gabriel A; Biewener, Andrew A
2007-07-01
Hummingbirds are specialized for hovering flight, and substantial research has explored this behavior. Forward flight is also important to hummingbirds, but the manner in which they perform forward flight is not well documented. Previous research suggests that hummingbirds increase flight velocity by simultaneously tilting their body angle and stroke-plane angle of the wings, without varying wingbeat frequency and upstroke: downstroke span ratio. We hypothesized that other wing kinematics besides stroke-plane angle would vary in hummingbirds. To test this, we used synchronized high-speed (500 Hz) video cameras and measured the three-dimensional wing and body kinematics of rufous hummingbirds (Selasphorus rufus, 3 g, N=5) as they flew at velocities of 0-12 m s(-1) in a wind tunnel. Consistent with earlier research, the angles of the body and the stroke plane changed with velocity, and the effect of velocity on wingbeat frequency was not significant. However, hummingbirds significantly altered other wing kinematics including chord angle, angle of attack, anatomical stroke-plane angle relative to their body, percent of wingbeat in downstroke, wingbeat amplitude, angular velocity of the wing, wingspan at mid-downstroke, and span ratio of the wingtips and wrists. This variation in bird-centered kinematics led to significant effects of flight velocity on the angle of attack of the wing and the area and angles of the global stroke planes during downstroke and upstroke. We provide new evidence that the paths of the wingtips and wrists change gradually but consistently with velocity, as in other bird species that possess pointed wings. Although hummingbirds flex their wings slightly at the wrist during upstroke, their average wingtip-span ratio of 93% revealed that they have kinematically ;rigid' wings compared with other avian species.
Three dimensional study of Lutetia lineaments network
NASA Astrophysics Data System (ADS)
Giacomini, Lorenza; Massironi, Matteo; Aboudan, Alessio; Bistacchi, Andrea; Barbieri, Cesare
2014-05-01
The Scientific Imaging System for Rosetta, OSIRIS, acquired an imaging sequence of the Lutetia asteroid, allowing detection of a large number of lineaments distributed over most of its surface (Thomas et al., 2012, Planet. Space Sci., 66, 96-124; Massironi et al., 2012, Planet. Space Sci., 66, 125-136). In general these lineaments can be interpreted as the surface expression of discontinuities such as faults or fractures. Several categories of features has been observed, like troughs, scarps, faults, and ridges. These lineaments are generally more than 50 km long and up to 1.2 km in width, and seem to be arranged in systems (e.g. with common orientation). Moreover, in different geological regions of the asteroid a preferred orientation of lineaments can be recognized, but in all regions there are also lineaments which cross the local preferred trend. Noteworthy, lineaments radial to impact craters, that are common on other asteroidal bodies, are mostly absent on Lutetia (Thomas et al., 2012, Planet. Space Sci., 66, 96-124). However, on a non-spherical body it is not obvious to reconstruct the relationships occurring between the different lineaments. Indeed, lineations that appear to be similarly oriented on different asteroid facets could have no correlation at all (Buczkowski et al., 2007, Icarus, 193, 39-52). In this context, the 3D mapping of lineaments, that we performed directly on the Lutetia shape model, allowed us to obtain a three-dimensional model of these structures that have been reconstructed as planes cutting through the asteroid. This innovative methodology allowed us to detect several structures concentric with respect to the North Pole Crater Cluster, suggesting that these lineaments were originated by these impact events. However most lineaments can be reasonably grouped in different systems of lineaments with no obvious correlation with any impact event detected on the imaged surface. This opens new questions on the origin of these structures and
Three-dimensional ring current decay model
NASA Astrophysics Data System (ADS)
Fok, Mei Ching; Moore, Thomas E.; Kozyra, Janet U.; Ho, George C.; Hamilton, Douglas C.
1995-06-01
This work is an extension of a previous ring current decay model. In the previous work, a two-dimensional kinetic model was constructed to study the temporal variations of the equatorially mirroring ring current ions, considering charge exchange and Coulomb drag losses along drift paths in a magnetic dipole field. In this work, particles with arbitrary pitch angle are considered. By bounce averaging the kinetic equation of the phase space density, information along magnetic field lines can be inferred from the equator. The three-dimensional model is used to simulate the recovery phase of a model great magnetic storm, similar to that which occurred in early February 1986. The initial distribution of ring current ions (at the minimum Dst) is extrapolated to all local times from AMPTE/CCE spacecraft observations on the dawnside and duskside of the inner magnetosphere spanning the L value range L=2.25 to 6.75. Observations by AMPTE/CCE of ring current distributions over subsequent orbits during the storm recovery phase are compared to model outputs. In general, the calculated ion fluxes are consistent with observations, except for H+ fluxes at tens of keV, which are always overestimated. A newly invented visualization idea, designated as a chromogram, is used to display the spatial and energy dependence of the ring current ion diifferential flux. Important features of storm time ring current, such as day-night asymmetry during injection and drift hole on the dayside at low energies (<10 keV), are manifested in the chromogram representation. The pitch angle distribution is well fit by the function, j0(1+Ayn), where y is sine of the equatorial pitch angle. The evolution of the index n is a combined effect of charge exchange loss and particle drift. At low energies (<30 keV), both drift dispersion and charge exchange are important in determining n. ©American Geophysical 1995
Three-dimensional ring current decay model
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching; Moore, Thomas E.; Kozyra, Janet U.; Ho, George C.; Hamilton, Douglas C.
1995-01-01
This work is an extension of a previous ring current decay model. In the previous work, a two-dimensional kinetic model was constructed to study the temporal variations of the equatorially mirroring ring current ions, considering charge exchange and Coulomb drag losses along drift paths in a magnetic dipole field. In this work, particles with arbitrary pitch angle are considered. By bounce averaging the kinetic equation of the phase space density, information along magnetic field lines can be inferred from the equator. The three-dimensional model is used to simulate the recovery phase of a model great magnetic storm, similar to that which occurred in early February 1986. The initial distribution of ring current ions (at the minimum Dst) is extrapolated to all local times from AMPTE/CCE spacecraft observations on the dawnside and duskside of the inner magnetosphere spanning the L value range L = 2.25 to 6.75. Observations by AMPTE/CCE of ring current distributions over subsequent orbits during the storm recovery phase are compared to model outputs. In general, the calculated ion fluxes are consistent with observations, except for H(+) fluxes at tens of keV, which are always overestimated. A newly invented visualization idea, designated as a chromogram, is used to display the spatial and energy dependence of the ring current ion differential flux. Important features of storm time ring current, such as day-night asymmetry during injection and drift hole on the dayside at low energies (less than 10 keV), are manifested in the chromogram representation. The pitch angle distribution is well fit by the function, J(sub o)(1 + Ay(sup n)), where y is sine of the equatorial pitch angle. The evolution of the index n is a combined effect of charge exchange loss and particle drift. At low energies (less than 30 keV), both drift dispersion and charge exchange are important in determining n.
Three-dimensional Physical Modeling: Applications and Experience at Mayo Clinic.
Matsumoto, Jane S; Morris, Jonathan M; Foley, Thomas A; Williamson, Eric E; Leng, Shuai; McGee, Kiaran P; Kuhlmann, Joel L; Nesberg, Linda E; Vrtiska, Terri J
2015-01-01
Radiologists will be at the center of the rapid technologic expansion of three-dimensional (3D) printing of medical models, as accurate models depend on well-planned, high-quality imaging studies. This article outlines the available technology and the processes necessary to create 3D models from the radiologist's perspective. We review the published medical literature regarding the use of 3D models in various surgical practices and share our experience in creating a hospital-based three-dimensional printing laboratory to aid in the planning of complex surgeries.
Zhu, Daqi; Huang, Huan; Yang, S X
2013-04-01
For a 3-D underwater workspace with a variable ocean current, an integrated multiple autonomous underwater vehicle (AUV) dynamic task assignment and path planning algorithm is proposed by combing the improved self-organizing map (SOM) neural network and a novel velocity synthesis approach. The goal is to control a team of AUVs to reach all appointed target locations for only one time on the premise of workload balance and energy sufficiency while guaranteeing the least total and individual consumption in the presence of the variable ocean current. First, the SOM neuron network is developed to assign a team of AUVs to achieve multiple target locations in 3-D ocean environment. The working process involves special definition of the initial neural weights of the SOM network, the rule to select the winner, the computation of the neighborhood function, and the method to update weights. Then, the velocity synthesis approach is applied to plan the shortest path for each AUV to visit the corresponding target in a dynamic environment subject to the ocean current being variable and targets being movable. Lastly, to demonstrate the effectiveness of the proposed approach, simulation results are given in this paper. PMID:22949070
Zhu, Daqi; Huang, Huan; Yang, S X
2013-04-01
For a 3-D underwater workspace with a variable ocean current, an integrated multiple autonomous underwater vehicle (AUV) dynamic task assignment and path planning algorithm is proposed by combing the improved self-organizing map (SOM) neural network and a novel velocity synthesis approach. The goal is to control a team of AUVs to reach all appointed target locations for only one time on the premise of workload balance and energy sufficiency while guaranteeing the least total and individual consumption in the presence of the variable ocean current. First, the SOM neuron network is developed to assign a team of AUVs to achieve multiple target locations in 3-D ocean environment. The working process involves special definition of the initial neural weights of the SOM network, the rule to select the winner, the computation of the neighborhood function, and the method to update weights. Then, the velocity synthesis approach is applied to plan the shortest path for each AUV to visit the corresponding target in a dynamic environment subject to the ocean current being variable and targets being movable. Lastly, to demonstrate the effectiveness of the proposed approach, simulation results are given in this paper.
Three-dimensional carbon nanotube based photovoltaics
NASA Astrophysics Data System (ADS)
Flicker, Jack
2011-12-01
Photovoltaic (PV) cells with a three dimensional (3D) morphology are an exciting new research thrust with promise to create cheaper, more efficient solar cells. This work introduces a new type of 3D PV device based on carbon nanotube (CNT) arrays. These arrays are paired with the thin film heterojunction, CdTe/CdS, to form a complete 3D carbon nanotube PV device (3DCNTPV). Marriage of a complicated 3D structure with production methods traditionally used for planar CdTe solar cell is challenging. This work examines the problems associated with processing these types of cells and systematically alters production methods of the semiconductor layers and electrodes to increase the short circuit current (Isc), eliminate parasitic shunts, and increase the open circuit voltage (Voc). The main benefit of 3D solar cell is the ability to utilize multiple photon interactions with the solar cell surface. The three dimensionality allows photons to interact multiple times with the photoactive material, which increases the absorption and the overall power output over what is possible with a two dimensional (2D) morphology. To quantify the increased power output arising from these multiple photon interactions, a new absorption efficiency term, eta3D, is introduced. The theoretical basis behind this new term and how it relates to the absorption efficiency of a planar cell, eta 2D, is derived. A unique model for the average number of multiple photon impingements, Gamma, is proposed based on three categories of 3D morphology: an infinite trench, an enclosed box, and an array of towers. The derivation of eta3D and Gamma for these 3D PV devices gives a complete picture of the enhanced power output over 2D cells based on CNT array height, pitch, radius, and shape. This theory is validated by monte carlo simulations and experiment. This new type of 3D PV devices has been shown to work experimentally. The first 3DCNTPV cells created posses Isc values of 0.085 to 17.872mA/cm2 and Voc values
Structured image reconstruction for three-dimensional ghost imaging lidar.
Yu, Hong; Li, Enrong; Gong, Wenlin; Han, Shensheng
2015-06-01
A structured image reconstruction method has been proposed to obtain high quality images in three-dimensional ghost imaging lidar. By considering the spatial structure relationship between recovered images of scene slices at different longitudinal distances, orthogonality constraint has been incorporated to reconstruct the three-dimensional scenes in remote sensing. Numerical simulations have been performed to demonstrate that scene slices with various sparse ratios can be recovered more accurately by applying orthogonality constraint, and the enhancement is significant especially for ghost imaging with less measurements. A simulated three-dimensional city scene has been successfully reconstructed by using structured image reconstruction in three-dimensional ghost imaging lidar. PMID:26072814
Advanced Three-Dimensional Display System
NASA Technical Reports Server (NTRS)
Geng, Jason
2005-01-01
A desktop-scale, computer-controlled display system, initially developed for NASA and now known as the VolumeViewer(TradeMark), generates three-dimensional (3D) images of 3D objects in a display volume. This system differs fundamentally from stereoscopic and holographic display systems: The images generated by this system are truly 3D in that they can be viewed from almost any angle, without the aid of special eyeglasses. It is possible to walk around the system while gazing at its display volume to see a displayed object from a changing perspective, and multiple observers standing at different positions around the display can view the object simultaneously from their individual perspectives, as though the displayed object were a real 3D object. At the time of writing this article, only partial information on the design and principle of operation of the system was available. It is known that the system includes a high-speed, silicon-backplane, ferroelectric-liquid-crystal spatial light modulator (SLM), multiple high-power lasers for projecting images in multiple colors, a rotating helix that serves as a moving screen for displaying voxels [volume cells or volume elements, in analogy to pixels (picture cells or picture elements) in two-dimensional (2D) images], and a host computer. The rotating helix and its motor drive are the only moving parts. Under control by the host computer, a stream of 2D image patterns is generated on the SLM and projected through optics onto the surface of the rotating helix. The system utilizes a parallel pixel/voxel-addressing scheme: All the pixels of the 2D pattern on the SLM are addressed simultaneously by laser beams. This parallel addressing scheme overcomes the difficulty of achieving both high resolution and a high frame rate in a raster scanning or serial addressing scheme. It has been reported that the structure of the system is simple and easy to build, that the optical design and alignment are not difficult, and that the
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view from the southwest looking northeast, from an altitude just above the high haze layer. The streaks in the lower cloud leading towards the hotspot are visible. The upper haze layer is mostly flat, with notable small peaks that can be matched with features in the lower cloud. In reality, these areas may represent a continuous vertical cloud column.
Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.
The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view to the northeast, from between the cloud layers and above the streaks in the lower cloud leading towards the hotspot. The upper haze layer has some features that match the lower cloud, such as the bright streak in the foreground of the frame. These are probably thick clouds that span several tens of vertical kilometers.
Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.
The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view from above and to the south of the visualized area, showing the entire model. The entire region is overlain by a thin, transparent haze. In places the haze is high and thick, especially to the east (to the right of) the hotspot.
Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.
The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view to the northeast, from between the cloud layers and above the streaks in the lower cloud leading towards the hotspot. The hotspot is clearly visible as a deep blue feature. The cloud streaks end near the hotspot, consistent with the idea that clouds traveling along these streak lines descend and evaporate as they approach the hotspot. The upper haze layer is slightly bowed upwards above the hotspot.
Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.
The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view to the southeast, from between the cloud layers and over the north center of the region. The tall white clouds in the lower cloud deck are probably much like large terrestrial thunderclouds. They may be regions where atmospheric water powers vertical convection over large horizontal distances.
Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.
The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view to the west, from between the cloud layers and over the patchy white clouds to the east of the hotspot. This is probably an area where moist convection is occurring over large horizontal distances, similar to the atmosphere over the equatorial ocean on Earth. The clouds are high and thick, and are observed to change rapidly over short time scales.
Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.
The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756
Ren, Jiayin; Zhou, Zhongwei; Li, Peng; Tang, Wei; Guo, Jixiang; Wang, Hu; Tian, Weidong
2016-09-01
This study aimed to evaluate an innovative workflow for maxillofacial fracture surgery planning and surgical splint designing. The maxillofacial multislice computerized tomography (MSCT) data and dental cone beam computerized tomography (CBCT) data both were obtained from 40 normal adults and 58 adults who suffered fractures. The each part of the CBCT dentition image was registered into MSCT image by the use of the iterative closest point algorithm. Volume evaluation of the virtual splints that were designed by the registered MSCT images and MSCT images of the same object was performed. Eighteen patients (group 1) were operated without any splint. Twenty-one (group 2) and 19 patients (group 3) used the splints designed according to the MSCT images and registered MSCT images, respectively. The authors' results showed that the mean errors between the 2 models ranged from 0.53 to 0.92 mm and the RMS errors ranged from 0.38 to 0.69 mm in fracture patients. The mean errors between the 2 models ranged from 0.47 to 0.85 mm and the RMS errors ranged from 0.33 to 0.71 mm in normal adults. 72.22% patients in group 1 recovered occlusion. 85.71% patients in group 2, and 94.73% patients in group 3 reconstructed occlusion. There was a statistically significant difference between the MSCT images based splints' volume and the registered MSCT splints' volume in patients (P <0.05). The MSCT images based splints' volume was statistically significantly distinct from the registered MSCT splints' volume in normal adults (P <0.05). There was a statistically significant difference between the MSCT images based splints' volume and the registered MSCT splints' volume in patients and normal adults (P <0.05). The occlusion recovery rate of group 3 was better than that of group 1 and group 2. The way of integrating CBCT images into MSCT images for splints designing was feasible. The volume of the splints designed by MSCT images tended to be smaller than the splints designed by
Ren, Jiayin; Zhou, Zhongwei; Li, Peng; Tang, Wei; Guo, Jixiang; Wang, Hu; Tian, Weidong
2016-09-01
This study aimed to evaluate an innovative workflow for maxillofacial fracture surgery planning and surgical splint designing. The maxillofacial multislice computerized tomography (MSCT) data and dental cone beam computerized tomography (CBCT) data both were obtained from 40 normal adults and 58 adults who suffered fractures. The each part of the CBCT dentition image was registered into MSCT image by the use of the iterative closest point algorithm. Volume evaluation of the virtual splints that were designed by the registered MSCT images and MSCT images of the same object was performed. Eighteen patients (group 1) were operated without any splint. Twenty-one (group 2) and 19 patients (group 3) used the splints designed according to the MSCT images and registered MSCT images, respectively. The authors' results showed that the mean errors between the 2 models ranged from 0.53 to 0.92 mm and the RMS errors ranged from 0.38 to 0.69 mm in fracture patients. The mean errors between the 2 models ranged from 0.47 to 0.85 mm and the RMS errors ranged from 0.33 to 0.71 mm in normal adults. 72.22% patients in group 1 recovered occlusion. 85.71% patients in group 2, and 94.73% patients in group 3 reconstructed occlusion. There was a statistically significant difference between the MSCT images based splints' volume and the registered MSCT splints' volume in patients (P <0.05). The MSCT images based splints' volume was statistically significantly distinct from the registered MSCT splints' volume in normal adults (P <0.05). There was a statistically significant difference between the MSCT images based splints' volume and the registered MSCT splints' volume in patients and normal adults (P <0.05). The occlusion recovery rate of group 3 was better than that of group 1 and group 2. The way of integrating CBCT images into MSCT images for splints designing was feasible. The volume of the splints designed by MSCT images tended to be smaller than the splints designed by
Three-dimensional image reconstruction for electrical impedance tomography.
Kleinermann, F; Avis, N J; Judah, S K; Barber, D C
1996-11-01
Very little work has been conducted on three-dimensional aspects of electrical impedance tomography (EIT), partly due to the increased computational complexity over the two-dimensional aspects of EIT. Nevertheless, extending EIT to three-dimensional data acquisition and image reconstruction may afford significant advantages such as an increase in the size of the independent data set and improved spatial resolution. However, considerable challenges are associated with the software aspects of three-dimensional EIT systems due to the requirement for accurate three-dimensional forward problem modelling and the derivation of three-dimensional image reconstruction algorithms. This paper outlines the work performed to date to derive a three-dimensional image reconstruction algorithm for EIT based on the inversion of the sensitivity matrix approach for a finite right circular cylinder. A comparison in terms of the singular-value spectra and the singular vectors between the sensitivity matrices for a three-dimensional cylinder and a two-dimensional disc has been performed. This comparison shows that the three-dimensional image reconstruction algorithm recruits more central information at lower condition numbers than the two-dimensional image reconstruction algorithm.
Three-dimensional plasma equilibrium near a separatrix
Reiman, A.H.; Pomphrey, N.; Boozer, A.H.
1988-08-01
The limiting behavior of a general three-dimensional MHD equilibrium near a separatrix is calculated explicitly. No expansions in ..beta.. or assumptions about island widths are made. Implications of the results for the numerical calculation of such equilibria, are discussed, as well as for issues concerning the existence of three-dimensional MHD equilibria. 16 refs., 2 figs.
Three-dimensional imaging of the myocardium with isotopes
NASA Technical Reports Server (NTRS)
Budinger, T. F.
1975-01-01
Three methods of imaging the three-dimensional distribution of isotopes in the myocardium are discussed. Three-dimensional imaging was examined using multiple Anger-camera views. Longitudinal tomographic images with compensation for blurring were studied. Transverse-section reconstruction using coincidence detection of annihilation gammas from positron emitting isotopes was investigated.
Pathogen propagation in cultured three-dimensional tissue mass
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor); Spaulding, Glenn F. (Inventor); Wolf, David A. (Inventor)
2000-01-01
A process for propagating a pathogen in a three-dimensional tissue mass cultured at microgravity conditions in a culture vessel containing culture media and a culture matrix is provided. The three-dimensional tissue mass is inoculated with a pathogen and pathogen replication in the cells of the tissue mass achieved.
Secondary instability in three-dimensional magnetic reconnection
NASA Technical Reports Server (NTRS)
Dahlburg, R. B.; Antiochos, S. K.; Zang, T. A.
1992-01-01
We consider the transition to turbulence in three-dimensional reconnection of a magnetic neutral sheet. We find that the transition can occur via a three-step process. First, the sheet undergoes the usual tearing instability. Second, the tearing mode saturates to form a two-dimensional quasi-steady state. Third, this secondary equilibrium is itself unstable when it is perturbed by three-dimensional disturbances. Most of this paper is devoted to the analysis and simulation of the three-dimensional linear stability properties of the two-dimensional saturated tearing layer. The numerical simulations are performed with a semi-implicit, pseudospectral-Fourier collocation algorithm. We identify a three-dimensional secondary linear stability which grows on the ideal timescale. An examination of the modal energetics reveals that the largest energy transfer is from the mean field to the three-dimensional field, with the two-dimensional field acting as a catalyst.
Occlusion-free monocular three-dimensional vision system
NASA Astrophysics Data System (ADS)
Theodoracatos, Vassilios E.
1994-10-01
This paper describes a new, occlusion-free, monocular three-dimensional vision system. A matrix of light beams (lasers, fiber optics, etc.), substantially parallel to the optic axis of the lens of a video camera, is projected onto a scene. The corresponding coordinates of the perspective image generated on the video-camera sensor, the focal length of the camera lens, and the lateral position of the projected beams of light are used to determine the 'perspective depth' z* of the three-dimensional real image in the space between the lens and the image plane. Direct inverse perspective transformations are used to reconstruct the three- dimensional real-world scene. This system can lead to the development of three-dimensional real-image sensing devices for manufacturing, medical, and defense-related applications. If combined with existing technology, it has high potential for the development of three- dimensional television.
Virtual three-dimensional blackboard: three-dimensional finger tracking with a single camera
NASA Astrophysics Data System (ADS)
Wu, Andrew; Hassan-Shafique, Khurram; Shah, Mubarak; da Vitoria Lobo, N.
2004-01-01
We present a method for three-dimensional (3D) tracking of a human finger from a monocular sequence of images. To recover the third dimension from the two-dimensional images, we use the fact that the motion of the human arm is highly constrained owing to the dependencies between elbow and forearm and the physical constraints on joint angles. We use these anthropometric constraints to derive a 3D trajectory of a gesticulating arm. The system is fully automated and does not require human intervention. The system presented can be used as a visualization tool, as a user-input interface, or as part of some gesture-analysis system in which 3D information is important.
Kinematic and dynamic analysis of an anatomically based knee joint.
Lee, Kok-Meng; Guo, Jiajie
2010-05-01
This paper presents a knee-joint model to provide a better understanding on the interaction between natural joints and artificial mechanisms for design and control of rehabilitation exoskeletons. The anatomically based knee model relaxes several commonly made assumptions that approximate a human knee as engineering pin-joint in exoskeleton design. Based on published MRI data, we formulate the kinematics of a knee-joint and compare three mathematical approximations; one model bases on two sequential circles rolling a flat plane; and the other two are mathematically differentiable ellipses-based models with and without sliding at the contact. The ellipses-based model taking sliding contact into accounts shows that the rolling-sliding ratio of a knee-joint is not a constant but has an average value consistent with published measurements. This knee-joint kinematics leads to a physically more accurate contact-point trajectory than methods based on multiple circles or lines, and provides a basis to derive a knee-joint kinetic model upon which the effects of a planar exoskeleton mechanism on the internal joint forces and torque during flexion can be numerically investigated. Two different knee-joint kinetic models (pin-joint approximation and anatomically based model) are compared against a condition with no exoskeleton. The leg and exoskeleton form a closed kinematic chain that has a significant effect on the joint forces in the knee. Human knee is more tolerant than pin-joint in negotiating around a singularity but its internal forces increase with the exoskeleton mass-to-length ratio. An oversimplifying pin-joint approximation cannot capture the finite change in the knee forces due to the singularity effect.
Use of three-dimensional models to assist in the resection of malignant cardiac tumors.
Al Jabbari, Odeaa; Abu Saleh, Walid K; Patel, Avni P; Igo, Stephen R; Reardon, Michael J
2016-09-01
The application of three-dimensional (3D) printing enables the creation of material objects from digital images by depositing layers of plastic material into 3D structures and can be used for training, education, and surgical planning. We report two patients with large complex cardiac tumors where 3D technology was utilized to analyze the tumor size, location, and extension more precisely, allowing better preoperative planning and decision making. PMID:27455392
Three-dimensional aerodynamic shape optimization using discrete sensitivity analysis
NASA Technical Reports Server (NTRS)
Burgreen, Gregory W.
1995-01-01
An aerodynamic shape optimization procedure based on discrete sensitivity analysis is extended to treat three-dimensional geometries. The function of sensitivity analysis is to directly couple computational fluid dynamics (CFD) with numerical optimization techniques, which facilitates the construction of efficient direct-design methods. The development of a practical three-dimensional design procedures entails many challenges, such as: (1) the demand for significant efficiency improvements over current design methods; (2) a general and flexible three-dimensional surface representation; and (3) the efficient solution of very large systems of linear algebraic equations. It is demonstrated that each of these challenges is overcome by: (1) employing fully implicit (Newton) methods for the CFD analyses; (2) adopting a Bezier-Bernstein polynomial parameterization of two- and three-dimensional surfaces; and (3) using preconditioned conjugate gradient-like linear system solvers. Whereas each of these extensions independently yields an improvement in computational efficiency, the combined effect of implementing all the extensions simultaneously results in a significant factor of 50 decrease in computational time and a factor of eight reduction in memory over the most efficient design strategies in current use. The new aerodynamic shape optimization procedure is demonstrated in the design of both two- and three-dimensional inviscid aerodynamic problems including a two-dimensional supersonic internal/external nozzle, two-dimensional transonic airfoils (resulting in supercritical shapes), three-dimensional transport wings, and three-dimensional supersonic delta wings. Each design application results in realistic and useful optimized shapes.
Three dimensional water quality modeling of a shallow subtropical estuary.
Wan, Yongshan; Ji, Zhen-Gang; Shen, Jian; Hu, Guangdou; Sun, Detong
2012-12-01
Knowledge of estuarine hydrodynamics and water quality comes mostly from studies of large estuarine systems. The processes affecting algae, nutrients, and dissolved oxygen (DO) in small and shallow subtropical estuaries are relatively less studied. This paper documents the development, calibration, and verification of a three dimensional (3D) water quality model for the St. Lucie Estuary (SLE), a small and shallow estuary located on the east coast of south Florida. The water quality model is calibrated and verified using two years of measured data. Statistical analyses indicate that the model is capable of reproducing key water quality characteristics of the estuary within an acceptable range of accuracy. The calibrated model is further applied to study hydrodynamic and eutrophication processes in the estuary. Modeling results reveal that high algae concentrations in the estuary are likely caused by excessive nutrient and algae supplies in freshwater inflows. While algal blooms may lead to reduced DO concentrations near the bottom of the waterbody, this study indicates that stratification and circulation induced by freshwater inflows may also contribute significantly to bottom water hypoxia in the estuary. It is also found that high freshwater inflows from one of the tributaries can change the circulation pattern and nutrient loading, thereby impacting water quality conditions of the entire estuary. Restoration plans for the SLE ecosystem need to consider both a reduction of nutrient loading and regulation of the freshwater discharge pattern.
Three-dimensional simulation and prediction of craniofacial surgery.
Meehan, M; Teschner, M; Girod, S
2003-01-01
The treatment of patients with complex facial deformities is one of the most challenging multidisciplinary tasks in plastic surgery. Due to advancements in medical technology and surgical techniques in the last 20 years correction of severe malformations has become possible and is performed by highly specialized teams frequently in a single operation. Recent developments in three-dimensional (3-D) imaging techniques have already greatly facilitated diagnosis of complex craniofacial deformities. Computer-based simulation methods for surgical procedures that are based on imaging data have the potential to improve surgical treatment by providing the ability to perform 'virtual surgery' preoperatively and thus reduce patient risk and morbidity intraoperatively. A method is presented for interactive computer-assisted craniofacial plastic surgery planning and visualization, especially simulation of soft tissue changes using an experimental Craniofacial Surgery Planner. The system computes non-linear soft-tissue deformation because of bone realignment. It is capable of simulating bone cutting and bone realignment with integrated interactive collision detection. Furthermore, soft-tissue deformation and cutting due to surgical instruments can be visualized. Simulation processes are based on an individual patient's preoperative 3-D computed tomography and on a 3-D, photo-realistic model of the patient's preoperative appearance obtained by a laser range scanner. Very fast and robust prediction of non-linear soft-tissue deformation is computed by optimizing a non-linear cost function. PMID:14606542
Antenatal Three-Dimensional Printing of Aberrant Facial Anatomy.
VanKoevering, Kyle K; Morrison, Robert J; Prabhu, Sanjay P; Torres, Maria F Ladino; Mychaliska, George B; Treadwell, Marjorie C; Hollister, Scott J; Green, Glenn E
2015-11-01
Congenital airway obstruction poses a life-threatening challenge to the newborn. We present the first case of three-dimensional (3D) modeling and 3D printing of complex fetal maxillofacial anatomy after prenatal ultrasound indicated potential upper airway obstruction from a midline mass of the maxilla. Using fetal MRI and patient-specific computer-aided modeling, the craniofacial anatomy of the fetus was manufactured using a 3D printer. This model demonstrated the mass to be isolated to the upper lip and maxilla, suggesting the oral airway to be patent. The decision was made to deliver the infant without a planned ex utero intrapartum treatment procedure. The neonate was born with a protuberant cleft lip and palate deformity, without airway obstruction, as predicted by the patient-specific model. The delivery was uneventful, and the child was discharged without need for airway intervention. This case demonstrates that 3D modeling may improve prenatal evaluation of complex patient-specific fetal anatomy and facilitate the multidisciplinary approach to perinatal management of complex airway anomalies. PMID:26438708
Antenatal Three-Dimensional Printing of Aberrant Facial Anatomy
VanKoevering, Kyle K.; Morrison, Robert J.; Prabhu, Sanjay P.; Torres, Maria F. Ladino; Mychaliska, George B.; Treadwell, Marjorie C.; Hollister, Scott J.
2015-01-01
Congenital airway obstruction poses a life-threatening challenge to the newborn. We present the first case of three-dimensional (3D) modeling and 3D printing of complex fetal maxillofacial anatomy after prenatal ultrasound indicated potential upper airway obstruction from a midline mass of the maxilla. Using fetal MRI and patient-specific computer-aided modeling, the craniofacial anatomy of the fetus was manufactured using a 3D printer. This model demonstrated the mass to be isolated to the upper lip and maxilla, suggesting the oral airway to be patent. The decision was made to deliver the infant without a planned ex utero intrapartum treatment procedure. The neonate was born with a protuberant cleft lip and palate deformity, without airway obstruction, as predicted by the patient-specific model. The delivery was uneventful, and the child was discharged without need for airway intervention. This case demonstrates that 3D modeling may improve prenatal evaluation of complex patient-specific fetal anatomy and facilitate the multidisciplinary approach to perinatal management of complex airway anomalies. PMID:26438708
A THREE-DIMENSIONAL BABCOCK-LEIGHTON SOLAR DYNAMO MODEL
Miesch, Mark S.; Dikpati, Mausumi
2014-04-10
We present a three-dimensional (3D) kinematic solar dynamo model in which poloidal field is generated by the emergence and dispersal of tilted sunspot pairs (more generally bipolar magnetic regions, or BMRs). The axisymmetric component of this model functions similarly to previous 2.5 dimensional (2.5D, axisymmetric) Babcock-Leighton (BL) dynamo models that employ a double-ring prescription for poloidal field generation but we generalize this prescription into a 3D flux emergence algorithm that places BMRs on the surface in response to the dynamo-generated toroidal field. In this way, the model can be regarded as a unification of BL dynamo models (2.5D in radius/latitude) and surface flux transport models (2.5D in latitude/longitude) into a more self-consistent framework that builds on the successes of each while capturing the full 3D structure of the evolving magnetic field. The model reproduces some basic features of the solar cycle including an 11 yr periodicity, equatorward migration of toroidal flux in the deep convection zone, and poleward propagation of poloidal flux at the surface. The poleward-propagating surface flux originates as trailing flux in BMRs, migrates poleward in multiple non-axisymmetric streams (made axisymmetric by differential rotation and turbulent diffusion), and eventually reverses the polar field, thus sustaining the dynamo. In this Letter we briefly describe the model, initial results, and future plans.
Three dimensional optical coherence tomography imaging: advantages and advances.
Gabriele, Michelle L; Wollstein, Gadi; Ishikawa, Hiroshi; Xu, Juan; Kim, Jongsick; Kagemann, Larry; Folio, Lindsey S; Schuman, Joel S
2010-11-01
Three dimensional (3D) ophthalmic imaging using optical coherence tomography (OCT) has revolutionized assessment of the eye, the retina in particular. Recent technological improvements have made the acquisition of 3D-OCT datasets feasible. However, while volumetric data can improve disease diagnosis and follow-up, novel image analysis techniques are now necessary in order to process the dense 3D-OCT dataset. Fundamental software improvements include methods for correcting subject eye motion, segmenting structures or volumes of interest, extracting relevant data post hoc and signal averaging to improve delineation of retinal layers. In addition, innovative methods for image display, such as C-mode sectioning, provide a unique viewing perspective and may improve interpretation of OCT images of pathologic structures. While all of these methods are being developed, most remain in an immature state. This review describes the current status of 3D-OCT scanning and interpretation, and discusses the need for standardization of clinical protocols as well as the potential benefits of 3D-OCT scanning that could come when software methods for fully exploiting these rich datasets are available clinically. The implications of new image analysis approaches include improved reproducibility of measurements garnered from 3D-OCT, which may then help improve disease discrimination and progression detection. In addition, 3D-OCT offers the potential for preoperative surgical planning and intraoperative surgical guidance.
Three-dimensional assessment of brain tissue morphology
NASA Astrophysics Data System (ADS)
Müller, Bert; Germann, Marco; Jeanmonod, Daniel; Morel, Anne
2006-08-01
The microstructure of brain tissues becomes visible using different types of optical microscopy after the tissue sectioning. This preparation procedure introduces stress and strain in the anisotropic and inhomogeneous soft tissue slices, which are several 10 μm thick. Consequently, the three-dimensional dataset, generated out of the two-dimensional images with lateral submicrometer resolution, needs algorithms to correct the deformations, which can be significant for mellow tissue such as brain segments. The spatial resolution perpendicular to the slices is much worse with respect to the lateral sub-micrometer resolution. Therefore, we propose as complementary method the synchrotron-radiation-based micro computed tomography (SRμCT), which avoids any kind of preparation artifacts due to sectioning and histological processing and yields true micrometer resolution in the three orthogonal directions. The visualization of soft matter by the use of SRμCT, however, is often based on elaborate staining protocols, since the tissue exhibits (almost) the same x-ray absorption as the surrounding medium. Therefore, it is unexpected that human tissue from the pons and the medulla oblongata in phosphate buffer show several features such as the blood vessels and the inferior olivary nucleus without staining. The value of these tomograms lies especially in the precise non-rigid registration of the different sets of histological slices. Applications of this method to larger pieces of brain tissue, such as the human thalamus are planned in the context of stereotactic functional neurosurgery.
Three-dimensional X-ray micro-velocimetry
Lee, Wah-Keat; Fezzaa, Kamel; Uemura, Tomomasa
2011-01-01
A direct measurement of three-dimensional X-ray velocimetry with micrometer spatial resolution is presented. The key to this development is the use of a Laue crystal as an X-ray beam splitter and mirror. Three-dimensional flow velocities in a 0.4 mm-diameter tubing were recorded, with <5 µm spatial resolution and speeds of 0.7 mm s−1. This development paves the way for three-dimensional velocimetry in many cases where visible-light techniques are not effective, such as multiphase flow or flow of optically opaque liquids. PMID:21335921
NASA Astrophysics Data System (ADS)
Lu, Cunwei; Kamitomo, Hiroya; Sun, Ke; Tsujino, Kazuhiro; Cho, Genki
Three-dimensional (3-D) image measurement is a technique that uses a digital camera to determine the shape and dimensions of the surface of an object. Although it has been studied for a long time, various problems still remain to be solved for practical applications. The goal of our research is to solve these problems and to develop a 3-D camera that can be used for practical 3-D image measurements. This paper analyzes the problems associated with the conventional technology and introduces development goals for the new 3-D camera. The key techniques of this 3-D camera are explained, including techniques for optimizing the intensity-modulation pattern projection, controlling the projection pattern intensity, determining the projection position, and controlling the stripe period. The system is evaluated and some examples of applications are given. The proposed 3-D camera can automatically adjust for variations in an object's size, form, surface color, and reflection characteristics and it can measure non-stationary objects. Consequently, it has the potential to be used in a wide range of applications including product quality control, human measurement, and face recognition.
Improving Students' Sense of Three-Dimensional Shapes.
ERIC Educational Resources Information Center
Leeson, Neville J.
1994-01-01
Describes activities to be used with fifth and sixth graders to improve students' spatial sense with respect to three-dimensional shapes. Includes the use of cubes, triangular prisms, tetrahedrons, and square pyramids. (MKR)
Three-dimensional Simulation of Backward Raman Amplification
A.A. Balakin; G.M. Fraiman; N.J. Fisch
2005-11-12
Three-dimensional (3-D) simulations for the Backward Raman Amplification (BRA) are presented. The images illustrate the effects of pump depletion, pulse diffraction, non-homogeneous plasma density, and plasma ionization.
Visual Chemistry: Three-Dimensional Perception of Chemical Structures.
ERIC Educational Resources Information Center
Balaban, Alexandru T.
1999-01-01
Discusses in great detail aspects connected with the visual and mental processing of chemical images. Presents various types of conventions for translating three-dimensional objects into two-dimensional representations. (Author/CCM)
Three-Dimensional Lithium-Ion Battery Model (Presentation)
Kim, G. H.; Smith, K.
2008-05-01
Nonuniform battery physics can cause unexpected performance and life degradations in lithium-ion batteries; a three-dimensional cell performance model was developed by integrating an electrode-scale submodel using a multiscale modeling scheme.
Construction of Three Dimensional Solutions for the Maxwell Equations
NASA Technical Reports Server (NTRS)
Yefet, A.; Turkel, E.
1998-01-01
We consider numerical solutions for the three dimensional time dependent Maxwell equations. We construct a fourth order accurate compact implicit scheme and compare it to the Yee scheme for free space in a box.
Three-dimensional reconstructions of solid surfaces using conventional microscopes.
Ficker, Tomáš; Martišek, Dalibor
2016-01-01
The three-dimensional digital replicas of solid surfaces are subject of interest of different branches of science and technology. The present paper in its introductory parts brings an overview of the various microscopic reconstructive techniques based on optical sectioning. The main attention is devoted to conventional reconstruction methods and especially to that one employing the Fourier transform. The three-dimensional replicas of this special reconstructive frequency method are compared graphically and numerically with the three-dimensional replicas of the confocal method. Based on the comparative study it has been concluded that the quality of the conventional replicas of surfaces possessing textures of intermediate height irregularities is acceptable and almost comparable with the quality of confocal replicas. This study is relevant both for identifying a convenient technique that provides good qualities of three-dimensional replicas and for selecting the hardware whose price is affordable even for small research groups studying rougher surface textures.
Three-dimensional reconstructions of solid surfaces using conventional microscopes.
Ficker, Tomáš; Martišek, Dalibor
2016-01-01
The three-dimensional digital replicas of solid surfaces are subject of interest of different branches of science and technology. The present paper in its introductory parts brings an overview of the various microscopic reconstructive techniques based on optical sectioning. The main attention is devoted to conventional reconstruction methods and especially to that one employing the Fourier transform. The three-dimensional replicas of this special reconstructive frequency method are compared graphically and numerically with the three-dimensional replicas of the confocal method. Based on the comparative study it has been concluded that the quality of the conventional replicas of surfaces possessing textures of intermediate height irregularities is acceptable and almost comparable with the quality of confocal replicas. This study is relevant both for identifying a convenient technique that provides good qualities of three-dimensional replicas and for selecting the hardware whose price is affordable even for small research groups studying rougher surface textures. PMID:26381761
Analysis and validation of carbohydrate three-dimensional structures
Lütteke, Thomas
2009-02-01
The article summarizes the information that is gained from and the errors that are found in carbohydrate structures in the Protein Data Bank. Validation tools that can locate these errors are described. Knowledge of the three-dimensional structures of the carbohydrate molecules is indispensable for a full understanding of the molecular processes in which carbohydrates are involved, such as protein glycosylation or protein–carbohydrate interactions. The Protein Data Bank (PDB) is a valuable resource for three-dimensional structural information on glycoproteins and protein–carbohydrate complexes. Unfortunately, many carbohydrate moieties in the PDB contain inconsistencies or errors. This article gives an overview of the information that can be obtained from individual PDB entries and from statistical analyses of sets of three-dimensional structures, of typical problems that arise during the analysis of carbohydrate three-dimensional structures and of the validation tools that are currently available to scientists to evaluate the quality of these structures.
Direct Linear Transformation Method for Three-Dimensional Cinematography
ERIC Educational Resources Information Center
Shapiro, Robert
1978-01-01
The ability of Direct Linear Transformation Method for three-dimensional cinematography to locate points in space was shown to meet the accuracy requirements associated with research on human movement. (JD)
Effect of three-dimensionality on compressible mixing
Papamoschou, D. )
1992-02-01
Existing experimental data and hypotheses on the growth rates of compressible and incompressible turbulent shear layers are used to estimate the effect of three-dimensionality in the turbulent mixing enhancement in compressible shear flows that is critically important to the efficiency of scramjet powerplants. The general trend is found to be a decrease in growth rate with increasing three-dimensionality, excepting only the restricted regime, where the growth-rate increase is modest. 9 refs.
Alignment-free three-dimensional optical metamaterials.
Zhao, Yang; Shi, Jinwei; Sun, Liuyang; Li, Xiaoqin; Alù, Andrea
2014-03-01
Three-dimensional optical metamaterials based on multilayers typically rely on critical vertical alignment to achieve the desired functionality. Here the conditions under which three-dimensional metamaterials with different functionalities may be realized without constraints on alignment are analyzed and demonstrated experimentally. This study demonstrates that the release of alignment constraints for multilayered metamaterials is allowed, while their anomalous interaction with light is preserved.
Initialization and Simulation of Three-Dimensional Aircraft Wake Vortices
NASA Technical Reports Server (NTRS)
Ash, Robert L.; Zheng, Z. C.
1997-01-01
This paper studies the effects of axial velocity profiles on vortex decay, in order to properly initialize and simulate three-dimensional wake vortex flow. Analytical relationships are obtained based on a single vortex model and computational simulations are performed for a rather practical vortex wake, which show that the single vortex analytical relations can still be applicable at certain streamwise sections of three-dimensional wake vortices.
Three-dimensional study of the multi-cavity FEL
Krishnagopal, S.; Kumar, V.
1995-12-31
The Multi-Cavity Free-Electron Laser has been proposed earlier, as a new configuration to obtain short, intense pulses of radiation, the key idea being to pre-bunch the electron beam in a number of very short cavities. Those studies were one-dimensional. Here we use three-dimensional simulations to study the viability of this concept when three-dimensional effects are included, particularly with regard to the transverse modes of the optical beam.
Three dimensional separation effects on a simplified wind turbine blade
Soerensen, N.N.; Michelsen, J.A.
1996-10-01
A qualitative investigation of the three dimensional effects on a twisted non-rotating wing without tapering is performed, using a general purpose Navier-Stokes solver. Different location of twist center as well as different twist ratios are examined for fully attached flow. The case of a partially separated blade is investigated as well. The three dimensional effects are primarily identified by comparing the lift and C{sub p} distribution of the blade with the two dimensional counterpart.
Three-dimensional scanning microscopy through thin turbid media.
Yang, Xin; Hsieh, Chia-Lung; Pu, Ye; Psaltis, Demetri
2012-01-30
We demonstrate three-dimensional imaging through a thin turbid medium using digital phase conjugation of the second harmonic signal emitted from a beacon nanoparticle. The digitally phase-conjugated focus scans the volume in the vicinity of its initial position through numerically manipulated phase patterns projected onto the spatial light modulator. Accurate three dimensional images of a fluorescent sample placed behind a turbid medium are obtained.
Integrated Aeromechanics with Three-Dimensional Solid-Multibody Structures
NASA Technical Reports Server (NTRS)
Datta, Anubhav; Johnson, Wayne
2014-01-01
A full three-dimensional finite element-multibody structural dynamic solver is coupled to a three-dimensional Reynolds-averaged Navier-Stokes solver for the prediction of integrated aeromechanical stresses and strains on a rotor blade in forward flight. The objective is to lay the foundations of all major pieces of an integrated three-dimensional rotor dynamic analysis - from model construction to aeromechanical solution to stress/strain calculation. The primary focus is on the aeromechanical solution. Two types of three-dimensional CFD/CSD interfaces are constructed for this purpose with an emphasis on resolving errors from geometry mis-match so that initial-stage approximate structural geometries can also be effectively analyzed. A three-dimensional structural model is constructed as an approximation to a UH-60A-like fully articulated rotor. The aerodynamic model is identical to the UH-60A rotor. For preliminary validation measurements from a UH-60A high speed flight is used where CFD coupling is essential to capture the advancing side tip transonic effects. The key conclusion is that an integrated aeromechanical analysis is indeed possible with three-dimensional structural dynamics but requires a careful description of its geometry and discretization of its parts.
Ordered three-dimensional interconnected nanoarchitectures in anodic porous alumina
Martín, Jaime; Martín-González, Marisol; Fernández, Jose Francisco; Caballero-Calero, Olga
2014-01-01
Three-dimensional nanostructures combine properties of nanoscale materials with the advantages of being macro-sized pieces when the time comes to manipulate, measure their properties, or make a device. However, the amount of compounds with the ability to self-organize in ordered three-dimensional nanostructures is limited. Therefore, template-based fabrication strategies become the key approach towards three-dimensional nanostructures. Here we report the simple fabrication of a template based on anodic aluminum oxide, having a well-defined, ordered, tunable, homogeneous 3D nanotubular network in the sub 100 nm range. The three-dimensional templates are then employed to achieve three-dimensional, ordered nanowire-networks in Bi2Te3 and polystyrene. Lastly, we demonstrate the photonic crystal behavior of both the template and the polystyrene three-dimensional nanostructure. Our approach may establish the foundations for future high-throughput, cheap, photonic materials and devices made of simple commodity plastics, metals, and semiconductors. PMID:25342247
Anatomically based modelling of the human skull and jaw.
van Essen, N L; Anderson, I A; Hunter, P J; Carman, J; Clarke, R D; Pullan, A J
2005-01-01
We present here an anatomically based model of the human masticatory system that provides a framework for simulating the complex chewing process. The initial motivation for creating this model was the desire to have a computational model of the human jaw that can be used to simulate the action of simple bites, and to calculate the stresses and forces on the teeth that are involved. The model created also provides a platform that can be used to investigate other features of the masticatory system. To construct this global model, individual models of the bones of the skull and jaw were created from generic data sets. Geometric models of the muscles of mastication were also created and attached to the appropriate bones. To complete this initial model, representations of the crowns of the teeth were created and a basic model of the temporomandibular joint (TMJ) was included. The finite element method was used to solve for the stresses and strains created by the loading conditions during a clenching simulation involving the mandible bone. The model presented here is also discussed in relation to a model of the entire musculo-skeletal system being developed as part of the Physiome Project.
Three Dimensional Probability Distributions of the Interplanetary Magnetic Field
NASA Astrophysics Data System (ADS)
Podesta, J. J.
2014-12-01
Empirical probability density functions (PDFs) of the interplanetary magnetic field (IMF) have been derived from spacecraft data since the early years of the space age. A survey of the literature shows that past studies have investigated the separate Cartesian components of the magnetic field, the vector magnitude, and the direction of the IMF by means of one-dimensional or two-dimensional PDFs. But, to my knowledge, there exist no studies which investigate the three dimensional nature of the IMF by means of three dimensional PDFs, either in (Bx,By,Bz)(B_x,B_y,B_z)-coordinates or (BR,BT,BN)(B_R,B_T,B_N)-coordinates or some other appropriate system of coordinates. Likewise, there exist no studies which investigate three dimensional PDFs of magnetic field fluctuations, that is, vector differences bmB(t+τ)-bmB(t)bm{B}(t+tau)-bm{B}(t). In this talk, I shall present examples of three dimensional PDFs obtained from spacecraft data that demonstrate the solar wind magnetic field possesses a very interesting spatial structure that, to my knowledge, has not previously been identified. Perhaps because of the well known model of Barnes (1981) in which the magnitude of the IMF remains constant, it may be commonly believed that there is nothing new to learn from a full three dimensional PDF. To the contrary, there is much to learn from the investigation of three dimensional PDFs of the solar wind plasma velocity and the magnetic field, as well as three dimensional PDFs of their fluctuations. Knowledge of these PDFs will not only improve understanding of solar wind physics, it is an essential prerequisite for the construction of realistic models of the stochastic time series measured by a single spacecraft, one of the longstanding goals of space physics research. In addition, three dimensional PDFs contain valuable information about the anisotropy of solar wind fluctuations in three dimensional physical space, information that may help identify the reason why the three
Development Report on the Idaho National Laboratory Sitewide Three-Dimensional Aquifer Model
Thomas R. Wood; Catherine M. Helm-Clark; Hai Huang; Swen Magnuson; Travis McLing; Brennon Orr; Michael J. Rohe; Mitchell A. Plummer; Robert Podgorney; Erik Whitmore; Michael S. Roddy
2007-09-01
A sub-regional scale, three-dimensional flow model of the Snake River Plain Aquifer was developed to support remediation decisions for Waste Area Group 10, Operable Unit 10 08 at the Idaho National Laboratory (INL) Site. This model has been calibrated primarily to water levels and secondarily to groundwater velocities interpreted from stable isotope disequilibrium studies and the movement of anthropogenic contaminants in the aquifer from facilities at the INL. The three-dimensional flow model described in this report is one step in the process of constructing a fully three-dimensional groundwater flow and contaminant transport model as prescribed in the Idaho National Engineering and Environmental Laboratory Operable Unit 10-08 Sitewide Groundwater Model Work Plan. An updated three-dimensional hydrogeologic conceptual model is presented along with the geologic basis for the conceptual model. Sediment-dominated three-dimensional volumes were used to represent the geology and constrain groundwater flow as part of the conceptual model. Hydrological, geochemical, and geological data were summarized and evaluated to infer aquifer behavior. A primary observation from development and evaluation of the conceptual model was that relative to flow on a regional scale, the aquifer can be treated with steady-state conditions. Boundary conditions developed for the three-dimensional flow model are presented along with inverse simulations that estimate parameterization of hydraulic conductivity. Inverse simulations were performed using the pilot-point method to estimate permeability distributions. Thermal modeling at the regional aquifer scale and at the sub-regional scale using the inverted permeabilities is presented to corroborate the results of the flow model. The results from the flow model show good agreement with simulated and observed water levels almost always within 1 meter. Simulated velocities show generally good agreement with some discrepancies in an interpreted low
Shawkey, Matthew D.; Saranathan, Vinodkumar; Pálsdóttir, Hildur; Crum, John; Ellisman, Mark H.; Auer, Manfred; Prum, Richard O.
2009-01-01
Organismal colour can be created by selective absorption of light by pigments or light scattering by photonic nanostructures. Photonic nanostructures may vary in refractive index over one, two or three dimensions and may be periodic over large spatial scales or amorphous with short-range order. Theoretical optical analysis of three-dimensional amorphous nanostructures has been challenging because these structures are difficult to describe accurately from conventional two-dimensional electron microscopy alone. Intermediate voltage electron microscopy (IVEM) with tomographic reconstruction adds three-dimensional data by using a high-power electron beam to penetrate and image sections of material sufficiently thick to contain a significant portion of the structure. Here, we use IVEM tomography to characterize a non-iridescent, three-dimensional biophotonic nanostructure: the spongy medullary layer from eastern bluebird Sialia sialis feather barbs. Tomography and three-dimensional Fourier analysis reveal that it is an amorphous, interconnected bicontinuous matrix that is appropriately ordered at local spatial scales in all three dimensions to coherently scatter light. The predicted reflectance spectra from the three-dimensional Fourier analysis are more precise than those predicted by previous two-dimensional Fourier analysis of transmission electron microscopy sections. These results highlight the usefulness, and obstacles, of tomography in the description and analysis of three-dimensional photonic structures. PMID:19158016
A practical three-dimensional dosimetry system for radiation therapy.
Guo, Pengyi; Adamovics, John; Oldham, Mark
2006-10-01
There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE) and a commercial optical computed tomography (CT) scanning system (OCTOPUS). PRESAGE is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need for an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE/OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of < or = 1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R2 value of 0.9979 and a standard error of estimation of approximately 1%) relative to independent measurement. The overall performance of the PRESAGE/OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC EBT film and the calculated dose from a commissioned planning system. The "measured" dose distribution in a cylindrical PRESAGE dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE, EBT and calculated dose distributions, showed full agreement in measurable region of PRESAGE dosimeter (approximately 90% of radius). The EBT and PRESAGE distributions agreed
A practical three-dimensional dosimetry system for radiation therapy.
Guo, Pengyi; Adamovics, John; Oldham, Mark
2006-10-01
There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE) and a commercial optical computed tomography (CT) scanning system (OCTOPUS). PRESAGE is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need for an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE/OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of < or = 1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R2 value of 0.9979 and a standard error of estimation of approximately 1%) relative to independent measurement. The overall performance of the PRESAGE/OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC EBT film and the calculated dose from a commissioned planning system. The "measured" dose distribution in a cylindrical PRESAGE dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE, EBT and calculated dose distributions, showed full agreement in measurable region of PRESAGE dosimeter (approximately 90% of radius). The EBT and PRESAGE distributions agreed
A practical three-dimensional dosimetry system for radiation therapy
Guo Pengyi; Adamovics, John; Oldham, Mark
2006-10-15
There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE trade mark sign ) and a commercial optical computed tomography (CT) scanning system (OCTOPUS trade mark sign ). PRESAGE trade mark sign is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need for an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE trade mark sign /OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of {<=}1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R{sup 2} value of 0.9979 and a standard error of estimation of {approx}1%) relative to independent measurement. The overall performance of the PRESAGE trade mark sign /OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC[reg] EBT film and the calculated dose from a commissioned planning system. The 'measured' dose distribution in a cylindrical PRESAGE trade mark sign dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE trade mark sign , EBT and calculated dose distributions, showed full
Three-dimensional facial analyses of Indian and Malaysian women
Kusugal, Preethi; Ruttonji, Zarir; Gowda, Roopa; Rajpurohit, Ladusingh; Lad, Pritam; Ritu
2015-01-01
Context: Facial measurements serve as a valuable tool in the treatment planning of maxillofacial rehabilitation, orthodontic treatment, and orthognathic surgeries. The esthetic guidelines of face are still based on neoclassical canons, which were used in the ancient art. These canons are considered to be highly subjective, and there is ample evidence in the literature, which raises such questions as whether or not these canons can be applied for the modern population. Aims: This study was carried out to analyze the facial features of Indian and Malaysian women by using three-dimensional (3D) scanner and thus determine the prevalence of neoclassical facial esthetic canons in both the groups. Subjects and Methods: The study was carried out on 60 women in the age range of 18–25 years, out of whom 30 were Indian and 30 Malaysian. As many as 16 facial measurements were taken by using a noncontact 3D scanner. Statistical Analysis Used: Unpaired t-test was used for comparison of facial measurements between Indian and Malaysian females. Two-tailed Fisher exact test was used to determine the prevalence of neoclassical canons. Results: Orbital Canon was prevalent in 80% of Malaysian women; the same was found only in 16% of Indian women (P = 0.00013). About 43% of Malaysian women exhibited orbitonasal canon (P = 0.0470) whereas nasoaural canon was prevalent in 73% of Malaysian and 33% of Indian women (P = 0.0068). Conclusions: Orbital, orbitonasal, and nasoaural canon were more prevalent in Malaysian women. Facial profile canon, nasooral, and nasofacial canons were not seen in either group. Though some canons provide guidelines in esthetic analyses of face, complete reliance on these canons is not justifiable. PMID:26321831
[The clinical advantage of using three dimensional visualization technology in hepatic surgery].
Lau, Y Y; Lau, X X
2016-09-01
The three-dimensional body visible system is a further development of the three-dimensional CT reconstruction system. It has a lot of merits over the latter system. Clinical application of the three-dimensional body visible system in liver surgery showed the system to have the following merits: (1) The system can support the Couinaud classification of liver anatomy into two hemilivers, four sectors and eight segments. As the system can rotate the liver to any angle and it has the ability to make part or whole of the liver transparent thus making the internal blood vessels and bile ducts visible. Learning liver anatomy and liver surgery becomes easier. (2)The system can clearly localize liver tumors within the liver segment(s). (3)It can help clinicians to decide and to plan different operations on an individual. (4)By carrying out simulation partial hepatectomy using this system, it can help clinicians to estimate the difficulty and the risks involved in different options of liver resection and finally.(5)The system helps clinicians to identify anomalies in hepatic artery, portal vein, hepatic vein and bile duct, thus making the operation safer. In conclusion, this system significantly improves on the conventional three-dimensional CT reconstruction system. It is especially useful for inexperienced liver surgeons. PMID:27587207
Three-dimensional facial surface analysis of patients with skeletal malocclusion.
Alves, Patrícia Valéria Milanezi; Zhao, Linping; Patel, Pravin K; Bolognese, Ana M
2009-03-01
Three-dimensional (3D) laser surface scanning analysis has taken hold in orthodontics, as well as craniomaxillofacial and plastic surgery as a new tool that can navigate away from the limitations of conventional two-dimensional methods. Various techniques for 3D reconstruction of the face have been used in diagnosis, treatment planning and simulation, and outcomes follow-up. The aim of the current prospective study was to present some technical aspects for the assessment of facial changes after orthodontic and orthognathic surgery treatment using 3D laser surface scanning. The technique proposed for facial surface shape analysis represented three-dimensionally the expected surgical changes, and the reduction of the postoperative swelling was verified. This study provides technical information from the data collection to the 3D virtual soft-tissue analysis that can be useful for diagnostic information, treatment planning, future comparisons of treatment stability or facial postoperative swelling, and soft-tissue profile assessment.
A moving observer in a three-dimensional world
2016-01-01
For many tasks such as retrieving a previously viewed object, an observer must form a representation of the world at one location and use it at another. A world-based three-dimensional reconstruction of the scene built up from visual information would fulfil this requirement, something computer vision now achieves with great speed and accuracy. However, I argue that it is neither easy nor necessary for the brain to do this. I discuss biologically plausible alternatives, including the possibility of avoiding three-dimensional coordinate frames such as ego-centric and world-based representations. For example, the distance, slant and local shape of surfaces dictate the propensity of visual features to move in the image with respect to one another as the observer's perspective changes (through movement or binocular viewing). Such propensities can be stored without the need for three-dimensional reference frames. The problem of representing a stable scene in the face of continual head and eye movements is an appropriate starting place for understanding the goal of three-dimensional vision, more so, I argue, than the case of a static binocular observer. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269608
Biodynamic profiling of three-dimensional tissue growth techniques
NASA Astrophysics Data System (ADS)
Sun, Hao; Merrill, Dan; Turek, John; Nolte, David
2016-03-01
Three-dimensional tissue culture presents a more biologically relevant environment in which to perform drug development than conventional two-dimensional cell culture. However, obtaining high-content information from inside three dimensional tissue has presented an obstacle to rapid adoption of 3D tissue culture for pharmaceutical applications. Biodynamic imaging is a high-content three-dimensional optical imaging technology based on low-coherence interferometry and digital holography that uses intracellular dynamics as high-content image contrast. In this paper, we use biodynamic imaging to compare pharmaceutical responses to Taxol of three-dimensional multicellular spheroids grown by three different growth techniques: rotating bioreactor, hanging-drop and plate-grown spheroids. The three growth techniques have systematic variations among tissue cohesiveness and intracellular activity and consequently display different pharmacodynamics under identical drug dose conditions. The in vitro tissue cultures are also compared to ex vivo living biopsies. These results demonstrate that three-dimensional tissue cultures are not equivalent, and that drug-response studies must take into account the growth method.
A moving observer in a three-dimensional world.
Glennerster, Andrew
2016-06-19
For many tasks such as retrieving a previously viewed object, an observer must form a representation of the world at one location and use it at another. A world-based three-dimensional reconstruction of the scene built up from visual information would fulfil this requirement, something computer vision now achieves with great speed and accuracy. However, I argue that it is neither easy nor necessary for the brain to do this. I discuss biologically plausible alternatives, including the possibility of avoiding three-dimensional coordinate frames such as ego-centric and world-based representations. For example, the distance, slant and local shape of surfaces dictate the propensity of visual features to move in the image with respect to one another as the observer's perspective changes (through movement or binocular viewing). Such propensities can be stored without the need for three-dimensional reference frames. The problem of representing a stable scene in the face of continual head and eye movements is an appropriate starting place for understanding the goal of three-dimensional vision, more so, I argue, than the case of a static binocular observer.This article is part of the themed issue 'Vision in our three-dimensional world'.
A moving observer in a three-dimensional world.
Glennerster, Andrew
2016-06-19
For many tasks such as retrieving a previously viewed object, an observer must form a representation of the world at one location and use it at another. A world-based three-dimensional reconstruction of the scene built up from visual information would fulfil this requirement, something computer vision now achieves with great speed and accuracy. However, I argue that it is neither easy nor necessary for the brain to do this. I discuss biologically plausible alternatives, including the possibility of avoiding three-dimensional coordinate frames such as ego-centric and world-based representations. For example, the distance, slant and local shape of surfaces dictate the propensity of visual features to move in the image with respect to one another as the observer's perspective changes (through movement or binocular viewing). Such propensities can be stored without the need for three-dimensional reference frames. The problem of representing a stable scene in the face of continual head and eye movements is an appropriate starting place for understanding the goal of three-dimensional vision, more so, I argue, than the case of a static binocular observer.This article is part of the themed issue 'Vision in our three-dimensional world'. PMID:27269608
Three-dimensional calculation of windmill surface pressures
NASA Astrophysics Data System (ADS)
Valarezo, W. O.; Liebeck, R. H.
A three-dimensional panel method capable of computing the flow about propellers is applied to the prediction of blade surface pressures for windmill configurations. Computed surface pressures at various conditions are compared to experimental data and to predictions based on Blade Element Theory (BET). The panel method is used to compute flows about complex three-dimensional geometries and to numerically predict trends not easily obtainable from experimental efforts due to the difficulty and expense of the required instrumentation. These new three-dimensional computations exhibit better agreement with experimental data than standard BET-based predictions. Also, the reported increment in lift carrying capability of rotating lifting surfaces over surfaces in rectilinear translational motion is captured by the panel method and is shown to be an inviscid effect.
Three-dimensional, three-component wall-PIV
NASA Astrophysics Data System (ADS)
Berthe, André; Kondermann, Daniel; Christensen, Carolyn; Goubergrits, Leonid; Garbe, Christoph; Affeld, Klaus; Kertzscher, Ulrich
2010-06-01
This paper describes a new time-resolved three-dimensional, three-component (3D-3C) measurement technique called wall-PIV. It was developed to assess near wall flow fields and shear rates near non-planar surfaces. The method is based on light absorption according to Beer-Lambert’s law. The fluid containing a molecular dye and seeded with buoyant particles is illuminated by a monochromatic, diffuse light. Due to the dye, the depth of view is limited to the near wall layer. The three-dimensional particle positions can be reconstructed by the intensities of the particle’s projection on an image sensor. The flow estimation is performed by a new algorithm, based on learned particle trajectories. Possible sources of measurement errors related to the wall-PIV technique are analyzed. The accuracy analysis was based on single particle experiments and a three-dimensional artificial data set simulating a rotating sphere.
Coupled particle dispersion by three-dimensional vortex structures
Troutt, T.R.; Chung, J.N.; Crowe, C.T.
1996-12-31
The primary objective of this research program is to obtain understanding concerning the role of three-dimensional vortex structures in the dispersion of particles and droplets in free shear flows. This research program builds on previous studies which focused on the nature of particle dispersion in large scale quasi two-dimensional vortex structures. This investigation employs time dependent experimental and numerical techniques to provide information concerning the particulate dispersion produced by three dimensional vortex structures in free shear layers. The free shear flows investigated include modified plane mixing layers, and modified plane wakes. The modifications to these flows involve slight perturbations to the initiation boundary conditions such that three-dimensional vortex structures are rapidly generated by the experimental and numerical flow fields. Recent results support the importance of these vortex structures in the particle dispersion process.
Imaging protein three-dimensional nanocrystals with cryo-EM.
Nederlof, Igor; Li, Yao Wang; van Heel, Marin; Abrahams, Jan Pieter
2013-05-01
Flash-cooled three-dimensional crystals of the small protein lysozyme with a thickness of the order of 100 nm were imaged by 300 kV cryo-EM on a Falcon direct electron detector. The images were taken close to focus and to the eye appeared devoid of contrast. Fourier transforms of the images revealed the reciprocal lattice up to 3 Å resolution in favourable cases and up to 4 Å resolution for about half the crystals. The reciprocal-lattice spots showed structure, indicating that the ordering of the crystals was not uniform. Data processing revealed details at higher than 2 Å resolution and indicated the presence of multiple mosaic blocks within the crystal which could be separately processed. The prospects for full three-dimensional structure determination by electron imaging of protein three-dimensional nanocrystals are discussed. PMID:23633595
Radiation hardness of three-dimensional polycrystalline diamond detectors
Lagomarsino, Stefano Sciortino, Silvio; Bellini, Marco; Corsi, Chiara; Cindro, Vladimir; Kanxheri, Keida; Servoli, Leonello; Morozzi, Arianna; Passeri, Daniele; Schmidt, Christian J.
2015-05-11
The three-dimensional concept in particle detection is based on the fabrication of columnar electrodes perpendicular to the surface of a solid state radiation sensor. It permits to improve the radiation resistance characteristics of a material by lowering the necessary bias voltage and shortening the charge carrier path inside the material. If applied to a long-recognized exceptionally radiation-hard material like diamond, this concept promises to pave the way to the realization of detectors of unprecedented performances. We fabricated conventional and three-dimensional polycrystalline diamond detectors, and tested them before and after neutron damage up to 1.2 ×10{sup 16 }cm{sup −2}, 1 MeV-equivalent neutron fluence. We found that the signal collected by the three-dimensional detectors is up to three times higher than that of the conventional planar ones, at the highest neutron damage ever experimented.
Time of Closest Approach in Three-Dimensional Airspace
NASA Technical Reports Server (NTRS)
Munoz, Cesar A.; Narkawicz, Anthony J.
2010-01-01
In air traffic management, the aircraft separation requirement is defined by a minimum horizontal distance and a minimum vertical distance that the aircraft have to maintain. Since this requirement defines a cylinder around each aircraft rather than a sphere, the three-dimensional Euclidean distance does not provide an appropriate basis for the definition of time of closest approach. For instance, conflicting aircraft are not necessarily in loss of separation at the time of closest three-dimensional Euclidean distance. This paper proposes a definition of time of closest approach that characterizes conflicts in a three-dimensional airspace. The proposed time is defined as the time that minimizes a distance metric called cylindrical norm. An algorithm that computes the time of closest approach between two aircraft is provided and the formal verification of its main properties is reported.
Ray tracing a three dimensional scene using a grid
Wald, Ingo; Ize, Santiago; Parker, Steven G; Knoll, Aaron
2013-02-26
Ray tracing a three-dimensional scene using a grid. One example embodiment is a method for ray tracing a three-dimensional scene using a grid. In this example method, the three-dimensional scene is made up of objects that are spatially partitioned into a plurality of cells that make up the grid. The method includes a first act of computing a bounding frustum of a packet of rays, and a second act of traversing the grid slice by slice along a major traversal axis. Each slice traversal includes a first act of determining one or more cells in the slice that are overlapped by the frustum and a second act of testing the rays in the packet for intersection with any objects at least partially bounded by the one or more cells overlapped by the frustum.
Three-dimensional diamagnetic particle deflection in ferrofluid microchannel flows
Liang, Litao; Zhu, Junjie; Xuan, Xiangchun
2011-01-01
Magnetic field-induced particle manipulation is a promising technique for biomicrofluidics applications. It is simple, cheap, and also free of fluid heating issues that accompany other common electric, acoustic, and optical methods. This work presents a fundamental study of diamagnetic particle motion in ferrofluid flows through a rectangular microchannel with a nearby permanent magnet. Due to their negligible magnetization relative to the ferrofluid, diamagnetic particles experience negative magnetophoresis and are repelled away from the magnet. The result is a three-dimensionally focused particle stream flowing near the bottom outer corner of the microchannel that is the farthest to the center of the magnet and hence has the smallest magnetic field. The effects of the particle’s relative position to the magnet, particle size, ferrofluid flow rate, and concentration on this three-dimensional diamagnetic particle deflection are systematically studied. The obtained experimental results agree quantitatively with the predictions of a three-dimensional analytical model. PMID:22662037
Three-dimensional epithelial morphogenesis in the developing Drosophila egg
Osterfield, Miriam; Du, XinXin; Schüpbach, Trudi; Wieschaus, Eric; Shvartsman, Stanislav Y.
2013-01-01
Morphogenesis of the respiratory appendages on eggshells of Drosophila species provides a powerful experimental system for studying how cell sheets give rise to complex three-dimensional structures. In Drosophila melanogaster, each of the two tubular eggshell appendages is derived from a primordium comprising two distinct cell types. Using live imaging and three-dimensional image reconstruction, we demonstrate that the transformation of this two-dimensional primordium into a tube involves out-of-plane bending followed by a sequence of spatially ordered cell intercalations. These morphological transformations correlate with the appearance of complementary distributions of myosin and Bazooka in the primordium. These distributions suggest that a two-dimensional pattern of line tensions along cell-cell edges on the apical side of the epithelium is sufficient to produce the observed changes in morphology. Computational modeling shows that this mechanism could explain the main features of tissue deformation and cell rearrangements observed during three-dimensional morphogenesis. PMID:23449472
Hydrofocusing Bioreactor for Three-Dimensional Cell Culture
NASA Technical Reports Server (NTRS)
Gonda, Steve R.; Spaulding, Glenn F.; Tsao, Yow-Min D.; Flechsig, Scott; Jones, Leslie; Soehnge, Holly
2003-01-01
The hydrodynamic focusing bioreactor (HFB) is a bioreactor system designed for three-dimensional cell culture and tissue-engineering investigations on orbiting spacecraft and in laboratories on Earth. The HFB offers a unique hydrofocusing capability that enables the creation of a low-shear culture environment simultaneously with the "herding" of suspended cells, tissue assemblies, and air bubbles. Under development for use in the Biotechnology Facility on the International Space Station, the HFB has successfully grown large three-dimensional, tissuelike assemblies from anchorage-dependent cells and grown suspension hybridoma cells to high densities. The HFB, based on the principle of hydrodynamic focusing, provides the capability to control the movement of air bubbles and removes them from the bioreactor without degrading the low-shear culture environment or the suspended three-dimensional tissue assemblies. The HFB also provides unparalleled control over the locations of cells and tissues within its bioreactor vessel during operation and sampling.
Numerical simulation of three-dimensional boattail afterbody flow fields
NASA Technical Reports Server (NTRS)
Deiwert, G. S.
1980-01-01
The thin shear layer approximations of the three-dimensional, compressible Navier-Stokes equations are solved for subsonic, transonic, and supersonic flow over axisymmetric boattail bodies at moderate angles of attack. The plume is modeled by a solid body configuration identical to those used in experimental tests. An implicit algorithm of second-order accuracy is used to solve the equations on the ILLIAC IV computer. The turbulence is expressed by an algebraic model applicable to three-dimensional flow fields with moderate separation. The computed results compare favorably with three different sets of experimental data reported by Reubush, Shrewsbury, and Benek, respectively
Hydrodynamic stability of three-dimensional homogeneous flow topologies.
Mishra, Aashwin A; Girimaji, Sharath S
2015-11-01
This article examines the hydrodynamic stability of various homogeneous three-dimensional flow topologies. The influence of inertial and pressure effects on the stability of flows undergoing strain, rotation, convergence, divergence, and swirl are isolated. In marked contrast to two-dimensional topologies, for three-dimensional flows the inertial effects are always destabilizing, whereas pressure effects are always stabilizing. In streamline topologies with a negative velocity-gradient third invariant, inertial effects prevail leading to instability. Vortex-stretching is identified as the underlying instability mechanism. In flows with positive velocity-gradient third derivative, pressure overcomes inertial effects to stabilize the flow. PMID:26651773
Three Dimensional Imaging with Multiple Wavelength Speckle Interferometry
Bernacki, Bruce E.; Cannon, Bret D.; Schiffern, John T.; Mendoza, Albert
2014-05-28
We present the design, modeling, construction, and results of a three-dimensional imager based upon multiple-wavelength speckle interferometry. A surface under test is illuminated with tunable laser light in a Michelson interferometer configuration while a speckled image is acquired at each laser frequency step. The resulting hypercube is Fourier transformed in the frequency dimension and the beat frequencies that result map the relative offsets of surface features. Synthetic wavelengths resulting from the laser tuning can probe features ranging from 18 microns to hundreds of millimeters. Three dimensional images will be presented along with modeling results.
Flow shaping using three-dimensional microscale gas discharge
Wang, C.-C.; Roy, Subrata
2009-08-24
We introduce a flow shaping mechanism using surface compliant microscale gas discharge. A three-dimensional finite element-based multiscale ionized gas flow code is utilized to analyze charge separation, potential distribution, and flow inducement mechanism. For the case of quiescent flow, a horseshoe-shaped plasma generator is introduced. Due to its unusual shape, the three-dimensional electric force excites a pinching effect on the fluid inside selectively powered electrode arc. Such effect is capable of tripping the flow-ejecting fluid normal to the plane of the actuator and thus can be very useful for many applications.
Microperiodic structures: Direct writing of three-dimensional webs
NASA Astrophysics Data System (ADS)
Gratson, Gregory M.; Xu, Mingjie; Lewis, Jennifer A.
2004-03-01
Applications are emerging that require the creation of fine-scale structures in three dimensions - examples include scaffolds for tissue engineering, micro-fluidic devices and photonic materials that control light propagation over a range of frequencies. But writing methods such as dip-pen nanolithography and ink-jet printing are either confined to two dimensions or beset by wetting and spreading problems. Here we use concentrated polyelectrolyte inks to write three-dimensional microperiodic structures directly without using masks. Our technique enables us to write arbitrary three-dimensional patterns whose features are nearly two orders of magnitude smaller than those attained with other multilayer printing techniques.
Visualization of three-dimensional liquid flow on sieve trays
NASA Astrophysics Data System (ADS)
Wang, Xiaoling
2004-03-01
This paper presents the simulated result of three-dimensional liquid velocity profile on sieve trays by using a computational flow dynamics (CFD) model with considerations of volume fraction of gas and liquid and the interfacial forces. The Κ-ɛ equation is used for the closure of basic equations. For the first time the three-dimensional liquid flow on a distillation column with ten trays under total reflux is visualized. The simulation was carried out with an Origin 200 Server Workstation of SGI Company using Star-CD V3.1 program. Simulation provides the detailed information of the distribution of 3D liquid velocity on the distillation column.
Binary Colloidal Alloy Test-5: Three-Dimensional Melt
NASA Technical Reports Server (NTRS)
Yodh, Arjun G.
2008-01-01
Binary Colloidal Alloy Test - 5: Three-Dimensional Melt (BCAT-5-3DMelt) photographs initially randomized colloidal samples in microgravity to determine their resulting structure over time. BCAT-5-3D-Melt will allow the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-3D-Melt will look at the mechanisms of melting using three-dimensional temperature sensitive colloidal crystals. Results will help scientists develop fundamental physics concepts previously shadowed by the effects of gravity.
Angled Exposure Method for Pattering on Three-Dimensional Structures
NASA Astrophysics Data System (ADS)
Singh, Vijay Kumar; Sasaki, Minoru; Hane, Kazuhiro
2007-09-01
Photolithography on three-dimensional structures is becoming a key process for realizing new micromechanical devices. Patterning on three-dimensional structures using the conventional mask aligner is a difficult task. In this paper, we present an approach for transferring patterns on cavities prepared by anisotropic etching. A new method of angled exposing is introduced for improving the uniformity of the incident-light-power density transmitted into the resist film deposited on the cavities. This method also reduces the number of reflections coming from the sidewalls of the cavities. Polarized light is used for realizing a pattern on the narrow cavities with a high aspect ratio.
Three-dimensional analysis of partially open butterfly valve flows
Huang, C.; Kim, R.H.
1996-09-01
A numerical simulation of butterfly valve flows is a useful technique to investigate the physical phenomena of the flow field. A three-dimensional numerical analysis was carried out on incompressible fluid flows in a butterfly valve by using FLUENT, which solves difference equations. Characteristics of the butterfly valve flows at different valve disk angles with a uniform incoming velocity were investigated. Comparisons of FLUENT results with other results, i.e., experimental results, were made to determine the accuracy of the employed method. Results of the three-dimensional analysis may be useful in the valve design.
Three-dimensional echocardiography of the mitral valve: lessons learned.
Maffessanti, Francesco; Mirea, Oana; Tamborini, Gloria; Pepi, Mauro
2013-07-01
Three-dimensional echocardiography has markedly improved our understanding of normal and pathologic mitral valve (MV) mechanics. Qualitative and quantitative analysis of three-dimensional (3D) data on the mitral valve could have a clinical impact on diagnosis, patient referral, surgical strategies, annuloplasty ring design and evaluation of the immediate and long-term surgical outcome. This review covers the contribution of 3D echocardiography in the diagnosis of MV disease, its role in selecting and monitoring surgical procedures, and in the assessment of surgical outcomes. Moreover, advantages of this technique versus the standard 2D modality, as well as future applications of advanced analysis techniques, will be reviewed. PMID:23686753
Structure of turbulence in three-dimensional boundary layers
NASA Technical Reports Server (NTRS)
Subramanian, Chelakara S.
1993-01-01
This report provides an overview of the three dimensional turbulent boundary layer concepts and of the currently available experimental information for their turbulence modeling. It is found that more reliable turbulence data, especially of the Reynolds stress transport terms, is needed to improve the existing modeling capabilities. An experiment is proposed to study the three dimensional boundary layer formed by a 'sink flow' in a fully developed two dimensional turbulent boundary layer. Also, the mean and turbulence field measurement procedure using a three component laser Doppler velocimeter is described.
Three-dimensional boron particle loaded thermal neutron detector
Nikolic, Rebecca J.; Conway, Adam M.; Graff, Robert T.; Kuntz, Joshua D.; Reinhardt, Catherine; Voss, Lars F.; Cheung, Chin Li; Heineck, Daniel
2014-09-09
Three-dimensional boron particle loaded thermal neutron detectors utilize neutron sensitive conversion materials in the form of nano-powders and micro-sized particles, as opposed to thin films, suspensions, paraffin, etc. More specifically, methods to infiltrate, intersperse and embed the neutron nano-powders to form two-dimensional and/or three-dimensional charge sensitive platforms are specified. The use of nano-powders enables conformal contact with the entire charge-collecting structure regardless of its shape or configuration.
A system of three-dimensional complex variables
NASA Technical Reports Server (NTRS)
Martin, E. Dale
1986-01-01
Some results of a new theory of multidimensional complex variables are reported, including analytic functions of a three-dimensional (3-D) complex variable. Three-dimensional complex numbers are defined, including vector properties and rules of multiplication. The necessary conditions for a function of a 3-D variable to be analytic are given and shown to be analogous to the 2-D Cauchy-Riemann equations. A simple example also demonstrates the analogy between the newly defined 3-D complex velocity and 3-D complex potential and the corresponding ordinary complex velocity and complex potential in two dimensions.
Bootstrapping Critical Ising Model on Three Dimensional Real Projective Space.
Nakayama, Yu
2016-04-01
Given conformal data on a flat Euclidean space, we use crosscap conformal bootstrap equations to numerically solve the Lee-Yang model as well as the critical Ising model on a three dimensional real projective space. We check the rapid convergence of our bootstrap program in two dimensions from the exact solutions available. Based on the comparison, we estimate that our systematic error on the numerically solved one-point functions of the critical Ising model on a three dimensional real projective space is less than 1%. Our method opens up a novel way to solve conformal field theories on nontrivial geometries.
Development of Three-Dimensional Object Completion in Infancy
ERIC Educational Resources Information Center
Soska, Kasey C.; Johnson, Scott P.
2008-01-01
Three-dimensional (3D) object completion was investigated by habituating 4- and 6-month-old infants (n = 24 total) with a computer-generated wedge stimulus that pivoted 15[degrees], providing only a limited view. Two displays, rotating 360[degrees], were then shown: a complete, solid volume and an incomplete, hollow form composed only of the sides…
Development of Three-Dimensional Completion of Complex Objects
ERIC Educational Resources Information Center
Soska, Kasey C.; Johnson, Scott P.
2013-01-01
Three-dimensional (3D) object completion, the ability to perceive the backs of objects seen from a single viewpoint, emerges at around 6 months of age. Yet, only relatively simple 3D objects have been used in assessing its development. This study examined infants' 3D object completion when presented with more complex stimuli. Infants…
Optimal eavesdropping in cryptography with three-dimensional quantum states.
Bruss, D; Macchiavello, C
2002-03-25
We study optimal eavesdropping in quantum cryptography with three-dimensional systems, and show that this scheme is more secure against symmetric attacks than protocols using two-dimensional states. We generalize the according eavesdropping transformation to arbitrary dimensions, and discuss the connection with optimal quantum cloning.
Assembly of Viral Hydrogels for Three-Dimensional Conducting Nanocomposites
Chen, Po-Yen; Hyder, Md Nasim; Mackanic, David; Courchesne, Noémie-Manuelle Dorval; Qi, Jifa
2014-01-01
M13 bacteriophages act as versatile scaffolds capable of organizing single-walled carbon nanotubes and fabricating three-dimensional conducting nanocomposites. The morphological, electrical, and electrochemical properties of the nanocomposites are presented, as well as its ability to disperse and utilize single-walled carbon nanotubes effectively. PMID:24782428
Three-dimensionally assembled gold nanostructures for plasmonic biosensors.
Guo, Longhua; Chen, Guonan; Kim, Dong-Hwan
2010-06-15
Three-dimensional gold nanoarchitecture was fabricated by layer-by-layer (LbL) deposition of gold nanoparticles (AuNPs) and multiwalled carbon nanotubes (MWCNTs) on a glass substrate for a highly sensitive plasmonic biosensor using a conventional UV-vis instrument. Carboxyl-functionalized MWCNTs were reacted with 3-mercaptopropyltriethoxysilane (MPTES) to introduce multiple thiol groups onto MWCNTs. A self-assembled monolayer (SAM) of AuNPs on a glass chip was sequentially dipped into MPTES-functionalized MWCNTs (MWCNT-Si-SH) and AuNPs to form multilayers of AuNPs on MWCNTs. Such three-dimensionally assembled AuNPs provided a large surface area and multiple binding sites within a few steps of modification and microporous structures of multilayered MWCNTs to allow a high accessibility of target molecules. It was shown that the bulk refractive index (RI) sensitivity of these multilayered AuNPs (three-dimensional chip) appeared to be 5.6 times better than that of a monolayer of AuNPs on a glass chip (two-dimensional chip). The three-dimensional chips were further used for a biomolecular binding study, showing a detection limit as low as 0.5 nM for streptavidin and 3.33 nM for anti-human serum albumin (HSA), both of which were approximately 20 times higher than the sensitivity of the two-dimensional chips.
Three-dimensional cell to tissue development process
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor); Parker, Clayton R. (Inventor)
2008-01-01
An improved three-dimensional cell to tissue development process using a specific time varying electromagnetic force, pulsed, square wave, with minimum fluid shear stress, freedom for 3-dimensional spatial orientation of the suspended particles and localization of particles with differing or similar sedimentation properties in a similar spatial region.
Exciton condensation in microcavities under three-dimensional quantization conditions
Kochereshko, V. P. Platonov, A. V.; Savvidis, P.; Kavokin, A. V.; Bleuse, J.; Mariette, H.
2013-11-15
The dependence of the spectra of the polarized photoluminescence of excitons in microcavities under conditions of three-dimensional quantization on the optical-excitation intensity is investigated. The cascade relaxation of polaritons between quantized states of a polariton Bose condensate is observed.
A three dimensional calculation of elastic equilibrium for composite materials
NASA Technical Reports Server (NTRS)
Lustman, Liviu R.; Rose, Milton E.
1986-01-01
A compact scheme is applied to three-dimensional elasticity problems for composite materials, involving simple geometries. The mathematical aspects of this approach are discussed, in particular the iteration method. A vector processor code implementing the compact scheme is presented, and several numerical experiments are summarized.
A three dimensional calculation of elastic equilibrium for composite materials
NASA Technical Reports Server (NTRS)
Lustman, Liviu R.; Rose, Milton E.
1988-01-01
A compact scheme is applied to three-dimensional elasticity problems for composite materials, involving simple geometries. The mathematical aspects of this approach are discussed, in particular the iteration method. A vector processor code implementing the compact scheme is presented, and several numerical experiments are summarized.
Interactive Multimedia and Concrete Three-Dimensional Modelling.
ERIC Educational Resources Information Center
Baxter, J. H.; Preece, Peter F. W.
1999-01-01
Compares a multimedia package for teaching about the phases of the moon to grade 8 (12-year-old) students with a conventional three-dimensional modeling approach. Results show both methods were equally effective in terms of student learning, for male and female students, and prior computer experience was not a factor in multimedia use. (Author/LRW)
Highly monodisperse bismuth nanoparticles and their three-dimensional superlattices.
Yarema, Maksym; Kovalenko, Maksym V; Hesser, Günter; Talapin, Dmitri V; Heiss, Wolfgang
2010-11-01
A simple and reproducible synthesis of highly monodisperse and ligand-protected bismuth nanoparticles (Bi NPs) is reported. The size of the single-crystalline and spherically shaped NPs is controlled between 11 and 22 nm mainly by the reaction temperature. The high uniformity of the NPs allows their self-assembly into long-range-ordered two- and three-dimensional superstructures.
Three-dimensional superdiffusive chemical waves in a precipitation system.
Ayass, M M; Lagzi, I; Al-Ghoul, M
2014-12-01
We report novel results on self-organized three-dimensional spiral and target patterns exhibiting anomalous superdiffusive behaviour in a reaction-diffusion system with simultaneous precipitation and polymorphic transformation of mercuric iodide without external forcing. The superdiffusive dynamics of propagation of the targets/spirals and their breakup are presented. PMID:25219662
Two- and three-dimensional blade vortex interactions
NASA Technical Reports Server (NTRS)
Davoudzadeh, F.; Liu, N.-S; Briley, W. R.; Buggeln, R. C.; Shamroth, S. J.
1990-01-01
A three-dimensional time dependent Navier-Stokes analysis was applied to the rotor blade vortex interaction (BVI) problem. The numerical procedure is an iterative implicit procedure using three point central differences to represent spatial derivatives. A series of calculations were made to determine the time steps, pseudo-time steps, iterations, artificial dissipation level, etc. required to maintain a nondissipative vortex. Results show the chosen method to have excellent non-dissipative properties provided the correct parameters are chosen. This study was used to set parameters for both two- and three-dimensional blade vortex interaction studies. The two-dimensional study considered the interaction between a vortex and a NACA0012 airfoil. The results showed the detailed physics during the interaction including the pressure pulse propagating from the blade. The simulated flow physics was qualitatively similar to that experimentally observed. The 2-D BVI phenomena is the result of the buildup and violent collapse of the shock waves and local supersonic pockets on the blade surfaces. The resulting pressure pulse build-up appears to be centered at the blade leading edge. The three-dimensional interaction study considered the case of a vortex at 20 deg incidence to the blade leading edge. Although the qualitative results were similar to that of the two-dimensional interaction, details clearly showed the three-dimensional nature of the interaction process.
A DETERMINISTIC METHOD FOR TRANSIENT, THREE-DIMENSIONAL NUETRON TRANSPORT
Goluoglu, S.; Bentley, C.; Demeglio, R.; Dunn, M.; Norton, K.; Pevey, R.; Suslov, I.; Dodds, H. L.
1998-01-14
A deterministic method for solving the time-dependent, three-dimensional Boltzmam transport equation with explicit representation of delayed neutrons has been developed and evaluated. The methodology used in this study for the time variable of the neutron flux is known as the improved quasi-static (IQS) method. The position, energy, and angle-dependent neutron flux is computed deterministically by using the three-dimensional discrete ordinates code TORT. This paper briefly describes the methodology and selected results. The code developed at the University of Tennessee based on this methodology is called TDTORT. TDTORT can be used to model transients involving voided and/or strongly absorbing regions that require transport theory for accuracy. This code can also be used to model either small high-leakage systems, such as space reactors, or asymmetric control rod movements. TDTORT can model step, ramp, step followed by another step, and step followed by ramp type perturbations. It can also model columnwise rod movement can also be modeled. A special case of columnwise rod movement in a three-dimensional model of a boiling water reactor (BWR) with simple adiabatic feedback is also included. TDTORT is verified through several transient one-dimensional, two-dimensional, and three-dimensional benchmark problems. The results show that the transport methodology and corresponding code developed in this work have sufficient accuracy and speed for computing the dynamic behavior of complex multidimensional neutronic systems.
A deterministic method for transient, three-dimensional neutron transport
Goluoglu, S.; Bentley, C.; DeMeglio, R.; Dunn, M.; Norton, K.; Pevey, R.; Suslov, I.; Dodds, H.L.
1998-05-01
A deterministic method for solving the time-dependent, three-dimensional Boltzmann transport equation with explicit representation of delayed neutrons has been developed and evaluated. The methodology used in this study for the time variable of the neutron flux is known as the improved quasi-static (IQS) method. The position, energy, and angle-dependent neutron flux is computed deterministically by using the three-dimensional discrete ordinates code TORT. This paper briefly describes the methodology and selected results. The code developed at the University of Tennessee based on this methodology is called TDTORT. TDTORT can be used to model transients involving voided and/or strongly absorbing regions that require transport theory for accuracy. This code can also be used to model either small high-leakage systems, such as space reactors, or asymmetric control rod movements. TDTORT can model step, ramp, step followed by another step, and step followed by ramp type perturbations. It can also model columnwise rod movement. A special case of columnwise rod movement in a three-dimensional model of a boiling water reactor (BWR) with simple adiabatic feedback is also included. TDTORT is verified through several transient one-dimensional, two-dimensional, and three-dimensional benchmark problems. The results show that the transport methodology and corresponding code developed in this work have sufficient accuracy and speed for computing the dynamic behavior of complex multi-dimensional neutronic systems.
Modern cosmology and the origin of our three dimensionality.
Woodbury, M A; Woodbury, M F
1998-01-01
We are three dimensional egocentric beings existing within a specific space/time continuum and dimensionality which we assume wrongly is the same for all times and places throughout the entire universe. Physicists name Omnipoint the origin of the universe at Dimension zero, which exploded as a Big Bang of energy proceeding at enormous speed along one dimension which eventually curled up into matter: particles, atoms, molecules and Galaxies which exist in two dimensional space. Finally from matter spread throughout the cosmos evolved life generating eventually the DNA molecules which control the construction of brains complex enough to construct our three dimensional Body Representation from which is extrapolated what we perceive as a 3-D universe. The whole interconnected structures which conjure up our three dimensionality are as fragile as Humpty Dumpty, capable of breaking apart with terrifying effects for the individual patient during a psychotic panic, revealing our three dimensionality to be but "maya", an illusion, which we psychiatrists work at putting back together.
THREE-DIMENSIONAL NAPL FATE AND TRANSPORT MODEL
We have added several new and significant capabilities to UTCHEM to make it into a general-purpose NAPL simulator. The simulator is now capable of modeling transient and steady-state three-dimensional flow and mass transport in the groundwater (saturated) and vadose (unsaturated...
Three dimensional boundary layers on submarine conning towers and rudders
NASA Astrophysics Data System (ADS)
Gleyzes, C.
1988-01-01
Solutions for the definition of grids adapted to the calculation of three-dimensional boundary layers on submarine conning towers and on submarine rudders and fins are described. The particular geometry of such bodies (oblique shaped hull, curved fins) required special adaptations. The grids were verified on examples from a test basin.
Direct Three-Dimensional Measurement With The Reflex Instruments
NASA Astrophysics Data System (ADS)
Scott, P. J.
1986-07-01
Two instruments are described which are used for three dimensional measurement of stationary objects. Available computer software for the equipment is discussed. It is designed to run on an IBM Personal Computer and allows the user to specify his own measuring requirements from a library of standard routines. Applications to research in dentistry, medicine and anthropology are also discussed.
Three-dimensional AOTV flowfields in chemical nonequilibrium
NASA Technical Reports Server (NTRS)
Gnoffo, P. A.; Mccandless, R. S.
1986-01-01
A technique for upwind differencing of the three-dimensional species continuity equations is presented which permits computation of steady flows in chemical equilibrium and nonequilibrium. The capabilities and shortcomings of the present approach for equilibrium and nonequilibrium flows is discussed. Modifications now being investigated to improve computational time are outlined.
Studies of origin of three-dimensionality in laminar wakes
NASA Astrophysics Data System (ADS)
Gharib, Morteza
1993-02-01
Wind tunnel experiments, using hot-wire anemometry and smoke-wire flow visualization, were conducted to study the process of transition from laminar to turbulent flow of parallel and oblique vortex streets from circular cylinders. It was found that the origin and scale of three-dimensionality which appears at Reynolds numbers just below the transition from laminar to turbulent flow are dependent on the vortex shedding geometry in the near-wake. Oblique vortex streets develop large scale three-dimensional structures and undergo an early transition, i.e. at lower Reynolds numbers, when compared to parallel vortex streets. This is due to the presence of three-dimensionality in oblique wakes at pretransition Reynolds numbers, whereas parallel wakes remain laminar until the vortices themselves develop three-dimensional features. The downstream evolution of these two wake geometries from the primary Karman vortices to the far-wake vortical structures was also investigated. The far-wake structures are parallel to the cylinder axis for parallel shedding. For oblique shedding, these structures are initially parallel to the cylinder axis, but further downstream they develop a strong spanwise modulation whose wavelength is the spanwise distance between two consecutive Karman vortices of the same sign of vorticity.
Three-dimensional analysis of condylar hyperplasia with computed tomography.
Mutoh, Y; Ohashi, Y; Uchiyama, N; Terada, K; Hanada, K; Sasaki, F
1991-02-01
Three-dimensional surface reconstruction imaging from CT scans was used to study the deformity of the mandible in six patients with mandibular asymmetry. High-resolution axial CT scans of the mandible were obtained using Somatom-DR3 (Siemens). COSMOZONE-2SA (Nikon) with PC-9801VX21 (NEC) was used to reconstruct the three-dimensional images. The six patients were divided into two groups. One group was classified as unilateral hybrid forms and the other group was classified hemimandibular elongation on the diagnostic criteria of Obwegeser and Makek (1986). In the three-dimensional surface reconstruction, exact location and the degree of the deformity in the region from the ascending ramus to the condylar head and the lingual aspect from the ascending ramus to the mandibular body were accurately represented. In addition, the three-dimensional images could be easily rotated arbitrarily, precise evaluation could be done at every part of the mandible. On diagnosis, the mandibular morphology classified into the unilateral hybrid forms was presumed to vary from case to case even in the same classification. PMID:2037691
A Three-Dimensional Extension to Zatrikean Pregeometry
NASA Astrophysics Data System (ADS)
Geroyannis, V. S.; Dallas, T. G.
2006-08-01
The zatrikean abacus was originally defined as a two-dimensional chessboard-like lattice with square geobits. In this paper we generalize the zatrikean abacus in three dimensions by using a three-dimensional lattice with cubic geobits. We then calculate the values of certain interesting pregeometric quantities for the solar system.
KOBRA3-three dimensional raytracing including space-charge effects
Spadtke, P.
1985-10-01
Using the three-dimensional computer code KOBRA3, we have simulated the behaviour of the space charge compensating electrons within the potential of ion beams and magnetic fields. Measured field maps of a solenoid and a quadrupole have been used for these simulations. The predictions of the code are compared with measurements.
Real-time construction of three-dimensional occupancy maps
Jones, J.P.
1992-01-01
This paper describes a preliminary sensory system for real-time sensor-based navigation in a three-dimensional, dynamic environment. Data from a laser range camera are processed on an iWarp parallel computer to create a 3D occupancy map. This map is rendered using raytracing. The construction and rendering consume less than 800 milliseconds.
Real-time construction of three-dimensional occupancy maps
Jones, J.P.
1992-12-01
This paper describes a preliminary sensory system for real-time sensor-based navigation in a three-dimensional, dynamic environment. Data from a laser range camera are processed on an iWarp parallel computer to create a 3D occupancy map. This map is rendered using raytracing. The construction and rendering consume less than 800 milliseconds.
Three-dimensional Stress Analysis Using the Boundary Element Method
NASA Technical Reports Server (NTRS)
Wilson, R. B.; Banerjee, P. K.
1984-01-01
The boundary element method is to be extended (as part of the NASA Inelastic Analysis Methods program) to the three-dimensional stress analysis of gas turbine engine hot section components. The analytical basis of the method (as developed in elasticity) is outlined, its numerical implementation is summarized, and the approaches to be followed in extending the method to include inelastic material response indicated.
A Novel Three-Dimensional Tool for Teaching Human Neuroanatomy
ERIC Educational Resources Information Center
Estevez, Maureen E.; Lindgren, Kristen A.; Bergethon, Peter R.
2010-01-01
Three-dimensional (3D) visualization of neuroanatomy can be challenging for medical students. This knowledge is essential in order for students to correlate cross-sectional neuroanatomy and whole brain specimens within neuroscience curricula and to interpret clinical and radiological information as clinicians or researchers. This study implemented…
Three-Dimensional Extension of a Digital Library Service System
ERIC Educational Resources Information Center
Xiao, Long
2010-01-01
Purpose: The paper aims to provide an overall methodology and case study for the innovation and extension of a digital library, especially the service system. Design/methodology/approach: Based on the three-dimensional structure theory of the information service industry, this paper combines a comprehensive analysis with the practical experiences…
Three-Dimensional Printing Using a Photoinitiated Polymer
ERIC Educational Resources Information Center
Muskin, Joseph; Ragusa, Matthew; Gelsthorpe, Thomas
2010-01-01
Printers capable of producing three-dimensional objects are becoming more common. Most of these printers are impractical for use in the chemistry classroom because of the expense incurred in fabricating a print head that must be controlled in three dimensions. We propose a simpler solution to this problem that allows the emerging technology of…
Three-Dimensional Printing: A Journey in Visualization
ERIC Educational Resources Information Center
Poetzel, Adam; Muskin, Joseph; Munroe, Anne; Russell, Craig
2012-01-01
Imagine high school students glued to computer screens--not playing video games but applying their mathematical knowledge of functions to the design of three-dimensional sculptures. Imagine these students engaging in rich discourse as they transform functions of their choosing to design unique creations. Now, imagine these students using…
The Mediation of Three-Dimensional Visualization for Isolinal Graphics.
ERIC Educational Resources Information Center
Dutton, Ronald
1978-01-01
A school-based experimental investigation concerned with contour maps is described. The results, together with those of some other related investigations, point to probable value of models, stereograms, anaglyphs, and other stereoscopic presentations in the teaching of three-dimensional subjects. (Author)
Nonaffine behavior of three-dimensional semiflexible polymer networks
NASA Astrophysics Data System (ADS)
Hatami-Marbini, Hamed
2016-04-01
Three-dimensional semiflexible polymer networks are the structural building blocks of various biological and structural materials. Previous studies have primarily used two-dimensional models for understanding the behavior of these networks. In this paper, we develop a three-dimensional nonaffinity measure capable of providing direct comparison with continuum level homogenized quantities, i.e., strain field. The proposed nonaffinity measure is capable of capturing possible anisotropic microstructures of the filamentous networks. This strain-based nonaffinity measure is used to probe the mechanical behavior at different length scales and investigate the effects of network mechanical and microstructural properties. Specifically, it is found that although all nonaffinity measure components have a power-law variation with the probing length scale, the degree of nonaffinity decreases with increasing the length scale of observation. Furthermore, the amount of nonaffinity is a function of network fiber density, bending stiffness of the constituent filaments, and the network architecture. Finally, it is found that the two power-law scaling regimes previously reported for two-dimensional systems do not appear in three-dimensional networks. Also, unlike two-dimensional models, the exponent of the power-law relation depends weakly on the density of the three-dimensional networks.
Pupils' Perceptions of Three-Dimensional Structures in Biology Lessons.
ERIC Educational Resources Information Center
Russell-Gebbett, Jean
1984-01-01
Investigated 11 to 15 year olds' abilities to understand three-dimensional structures (including sectional views of eggs, cells, stems, and fish) studies in biology. Results indicate two skills needed for success: abstracting sectional shapes and appreciating spatial relationships of internal parts. Gives examples of students "talking through"…
A Three-Dimensional Haptic Matrix Test of Nonverbal Reasoning
ERIC Educational Resources Information Center
Miller, Joseph C.; Skillman, Gemma D.; Benedetto, Joanne M.; Holtz, Ann M.; Nassif, Carrie L.; Weber, Anh D.
2007-01-01
Three-dimensional haptic matrices were pilot-tested as a nonvisual measure of cognitive ability. The results indicated that they correlated with convergent measures, with emphasis on spatial processing and that the participants who described items "visually" completed them more quickly and accurately and tended to have become visually impaired…
Binocular three-dimensional measurement system using a Dammann grating
NASA Astrophysics Data System (ADS)
Liu, Kun; Zhou, Changhe; Wei, Shengbin; Wang, Shaoqing; Li, Shubin; Li, Yanyang; Wang, Jin; Lu, Yancong
2014-11-01
In this paper, we develop a binocular three-dimensional measurement system using a Dammann grating. A laser diode and a Dammann grating are employed to generate a regular and square laser spot array. Dammann array illuminator is placed between two cameras and narrowband-pass filters are embedded in the project lens to eliminate the interference of background light. During the measurement, a series of laser spot arrays are projected toward the target object and captured by two cameras simultaneously. Similar to stereo vision of human eyes, stereo matching will be performed to search the homologous spot which is a pair of image points resulting from the same object point. At first, the sub-pixel coordinates of the laser spots are extracted from the stereo images. Then stereo matching is easily performed based on a fact that laser spots with the same diffraction order are homologous ones. Because the system has been calibrated before measurement, single frame three-dimensional point cloud can be obtained using the disparity of homologous points by triangulation methods. Finally, three-dimensional point clouds belong to different frame which represent different view of the object will be registered to build up an integral three-dimensional object using ICP algorithm. On one hand, this setup is small enough to meet the portable outdoor applications. On the other hand, measurement accuracy of this system is better than 0.3 mm which can meet the measurement accuracy requirements in most situations.
Three-dimensional acousto-optic spectrum analysis
NASA Technical Reports Server (NTRS)
Ansari, Homayoon; Metscher, Brian; Lesh, James R.
1990-01-01
A three-dimensional acoustooptic spectrum analyzer with subhertz resolution is demonstrated experimentally. The first and second dimensions are the two spatial dimensions of the output detector array, and the third dimension is time as sampled by the detector array frame rate. A superfine resolution of 0.12 Hz has been achieved.
Three-dimensional ultrasound imaging of the vasculature.
Fenster, A; Lee, D; Sherebrin, S; Rankin, R; Downey, D
1998-02-01
With conventional ultrasonography, the diagnostician must view a series of two-dimensional images in order to form a mental impression of the three-dimensional anatomy, an efficient and time consuming practice prone to operator variability, which may cause variable or even incorrect diagnoses. Also, a conventional two-dimensional ultrasound image represents a thin slice of the patients anatomy at a single location and orientation, which is difficult to reproduce at a later time. These factors make conventional ultrasonography non-optimal for prospective or follow-up studies. Our efforts have focused on overcoming these deficiencies by developing three-dimensional ultrasound imaging techniques that are capable of acquiring B-mode, colour Doppler and power Doppler images of the vasculature, by using a conventional ultrasound system to acquire a series of two-dimensional images and then mathematically reconstructing them into a single three-dimensional image, which may then be viewed interactively on an inexpensive desktop computer. We report here on two approaches: (1) free-hand scanning, in which a magnetic positioning device is attached to the ultrasound transducer to record the position and orientation of each two-dimensional image needed for the three-dimensional image reconstruction; and (2) mechanical scanning, in which a motor-driven assembly is used to translate the transducer linearly across the neck, yielding a set of uniformly-spaced parallel two-dimensional images.
Three-dimensional phase matching in four-wave mixing
NASA Astrophysics Data System (ADS)
Prior, Y.
1980-06-01
Three-dimensional phase matching is considered for the case of coherent anti-Stokes Raman scattering (CARS), which can be readily generalized to any other four-wave mixing processes. Attention is given to an alignment procedure, and the fact that only two frequencies are required for this technique is emphasized.
Three-dimensional measurements of fatigue crack closure
NASA Technical Reports Server (NTRS)
Ray, S. K.; Grandt, A. F., Jr.
1984-01-01
Fatigue crack growth and retardation experiments conducted in polycarbonate test specimen are described. The transparent test material allows optical interferometry measurements of the fatigue crack opening (and closing) profiles. Crack surface displacements are obtained through the specimen thickness and three dimensional aspects of fatigue crack closure are discussed.
View Factor Calculation for Three-Dimensional Geometries.
1989-06-20
Version 00 MCVIEW calculates the radiation geometric view factor between surfaces for three dimensional geometries with and without interposed third surface obstructions. It was developed to calculate view factors for input data to heat transfer analysis programs such as SCA-03/TRUMP, SCA-01/HEATING-5 and PSR-199/HEATING-6.
Polyimide Aerogels with Three-Dimensional Cross-Linked Structure
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B. (Inventor)
2016-01-01
A method for creating a three dimensional cross-linked polyimide structure includes dissolving a diamine, a dianhydride, and a triamine in a solvent, imidizing a polyamic acid gel by heating the gel, extracting the gel in a second solvent, supercritically drying the gel, and removing the solvent to create a polyimide aerogel.
Quantum field between moving mirrors: A three dimensional example
NASA Technical Reports Server (NTRS)
Hacyan, S.; Jauregui, Roco; Villarreal, Carlos
1995-01-01
The scalar quantum field uniformly moving plates in three dimensional space is studied. Field equations for Dirichlet boundary conditions are solved exactly. Comparison of the resulting wavefunctions with their instantaneous static counterpart is performed via Bogolubov coefficients. Unlike the one dimensional problem, 'particle' creation as well as squeezing may occur. The time dependent Casimir energy is also evaluated.
Three-dimensional evolution of early solar nebula
NASA Technical Reports Server (NTRS)
Boss, Alan P.
1991-01-01
The progress is reported toward the goal of a complete theory of solar nebula formation, with an emphasis on three spatial dimension models of solar nebular formation and evolution. The following subject areas are covered: (1) initial conditions for protostellar collapse; (2) single versus binary star formation; (3) angular momentum transport mechanisms; (4) three dimensional solar nebula models; and (5) implications for planetary formation.
Constructing Mental Representations of Complex Three-Dimensional Objects.
ERIC Educational Resources Information Center
Aust, Ronald
This exploratory study investigated whether there are differences between males and females in the strategies used to construct mental representations from three-dimensional objects in a dimensional travel display. A Silicon Graphics IRIS computer was used to create the travel displays and mathematical models were created for each of the objects…
Human vocal organ: visible-human-male-based three-dimensional visualization
NASA Astrophysics Data System (ADS)
Kim, Jae-woo; Lee, Donghun; Han, Jong H.; Kim, Bohyung; Kim, Dongsung; Kang, Heung Sik
2002-05-01
The Visible Human Project planned and promoted by National Library of Medicine (NLM) provides cryosection images of the normal male and female human bodies. The anatomy of human vocal organ is difficult to understand and to imagine due to its complexity. The purpose of this study is to develop the three-dimensionally computerized atlas of the human vocal organ using Visible Human male dataset. A self-developed program with C language and a recent personal computer can show specific organs and structures separately or together, rotate them at three axes, cross-section them transparently at any angles, and zoom them in and out. As a result, our own PC-based program will be a more interactive, more detailed, and more realistic three-dimensional computerized atlas of a human vocal organ including larygopharynx.
Simon, Ron D B; Rinaldi, C Aldo; Baszko, Artur; Gill, Jaswinder S
2004-03-01
The ablation of arrhythmias progresses towards an approach based upon application of linear lesions between nonconducting anatomic/electrical areas. Hence the identification of detailed anatomy together with electrical behavior becomes increasingly important. This study aims to achieve true electroanatomic mapping by the use of three-dimensional intracardiac imaging of the right atrium combined with use of a right atrial basket to obtain detailed electrical information. We studied nine patients, seven requiring atrial flutter ablation. A 9 Fr, 9 MHZ intracardiac echo catheter was pulled back from SVC to IVC using respiratory and ECG gating. The images, recorded on a Clearview ultrasound machine, were reconstructed using commercially available software. The intracardiac basket was placed into the atrium using the markers and fluoroscopy to allow orientation. Isochronal maps were obtained from the basket in sinus rhythm, pacing from different sites within the atrium and in atrial flutter. Isochronal maps were constructed and superimposed on the ICE image. The maps with pacing were consistent with that which was expected, confirming the validity of this approach. We were able to visualize changes in activation sequence following the placement of bidirectional isthmus block. True electroanatomic mapping is possible by the use of three-dimensional ICE reconstruction of the right atrium with electrical activation obtained from an intracardiac basket. This has significance for anatomically based arrhythmia ablations such as the ablation of atrial flutter, atrial fibrillation, with transcatheter MAZE procedures and pulmonary vein isolation. Further developments in software will allow such maps to be produced simultaneously with greater rapidity.
Three-dimensional simulations of Nova capsule implosion experiments
Marinak, M.M.; Tipton, R.E.; Landen, O.L.
1995-11-01
Capsule implosion experiments carried out on the Nova laser are simulated with the three-dimensional HYDRA radiation hydrodynamics code. Simulations of ordered near single mode perturbations indicate that structures which evolve into round spikes can penetrate farthest into the hot spot. Bubble-shaped perturbations can burn through the capsule shell fastest, however, causing even more damage. Simulations of a capsule with multimode perturbations shows spike amplitudes evolving in good agreement with a saturation model during the deceleration phase. The presence of sizable low mode asymmetry, caused either by drive asymmetry or perturbations in the capsule shell, can dramatically affect the manner in which spikes approach the center of the hot spot. Three-dimensional coupling between the low mode shell perturbations intrinsic to Nova capsules and the drive asymmetry brings the simulated yields into closer agreement with the experimental values.
Video-rate three-dimensional optical coherence tomography
NASA Astrophysics Data System (ADS)
Laubscher, Markus; Ducros, Mathieu; Karamata, Boris; Lasser, Theo; Salathe, Rene
2002-05-01
Most current optical coherence tomography systems provide two-dimensional cross-sectional or en face images. Successive adjacent images have to be acquired to reconstruct three-dimensional objects, which can be time consuming. Here we demonstrate three-dimensional optical coherence tomography (3D OCT) at video rate. A 58 by 58 smart-pixel detector array was employed. A sample volume of 210x210x80 m3 (corresponding to 58x58x58 voxels) was imaged at 25 Hz. The longitudinal and transverse resolutions are 3 m and 9 m respectively. The sensitivity of the system was 76 dB. Video rate 3D OCT is illustrated by movies of a strand of hair undergoing fast thermal damage.
Numerical Simulation of Three-Dimensional Boattail Afterbody Flowfields
NASA Technical Reports Server (NTRS)
Deiwert, G. S.
1981-01-01
The thin shear-layer approximations of the three-dimensional, compressible Navier-Stokes equations are solved for subsonic, transonic, and supersonic now over axisymmetric boattail bodies at moderate angles of attack. The plume is simulated by a solid body configuration identical to those used In experimental tests. An implicit algorithm of second-order accuracy is used to solve the equations on the ILLIAC 4 computer. The turbulence is expressed by an algebraic model applicable to three-dimensional flowfields with moderate separation. The formulation used is attractive in its independence of boundary-layer parameters. Such a simple model, however, is incapable of supporting detailed quantitative descriptions of complex shear flows. Never-the-less, good qualitative comparisons are found with three different sets of experimental date. Quantitative improvement will depend on improved turbulence transport descriptions.
Identification of Jiangxi wines by three-dimensional fluorescence fingerprints
NASA Astrophysics Data System (ADS)
Wan, Yiqun; Pan, Fengqin; Shen, Mingyue
2012-10-01
A new assay of identifying wines was developed based on fingerprints of three-dimensional fluorescence spectra, and 30 samples from different manufacturers were analyzed. The techniques of principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used to differentiate and evaluate the character parameters of wines' three-dimensional fluorescence spectra. At the same time, the back-propagation network (BPN) was applied to predict the attribution of unknown samples. The results of PCA and HCA showed that there was definite different information among the wine samples from different manufacturers. It was promising that the method could be applied to distinguish wine samples produced by different manufacturers. The proposed method could provide the criterion for the quality control of wines.
Three-dimensional surface reconstruction for industrial computed tomography
NASA Technical Reports Server (NTRS)
Vannier, M. W.; Knapp, R. H.; Gayou, D. E.; Sammon, N. P.; Butterfield, R. L.; Larson, J. W.
1985-01-01
Modern high resolution medical computed tomography (CT) scanners can produce geometrically accurate sectional images of many types of industrial objects. Computer software has been developed to convert serial CT scans into a three-dimensional surface form, suitable for display on the scanner itself. This software, originally developed for imaging the skull, has been adapted for application to industrial CT scanning, where serial CT scans thrrough an object of interest may be reconstructed to demonstrate spatial relationships in three dimensions that cannot be easily understood using the original slices. The methods of three-dimensional reconstruction and solid modeling are reviewed, and reconstruction in three dimensions from CT scans through familiar objects is demonstrated.
Three-dimensional potential energy surface of Ar–CO
Sumiyoshi, Yoshihiro; Endo, Yasuki
2015-01-14
A three-dimensional intermolecular potential energy surface of the Ar–CO complex has been determined by fitting most of the previously reported spectroscopic data, where observed transition frequencies by microwave, millimeter-wave, submillimeter-wave, and infrared spectroscopy were reproduced simultaneously within their experimental accuracies. A free rotor model Hamiltonian considering all the freedom of motions for an atom-diatom system was applied to calculate vibration-rotation energies. A three-dimensional potential energy surface obtained by ab initio calculations at the CCSD(T)-F12b/aug-cc-pV5Z level of theory was parameterized by a model function consisting of 46 parameters. They were used as initial values for the least-squares analysis of the experimental data. A total of 20 parameters were optimized to reproduce all the spectroscopic data.
Three-dimensional mapping of single-atom magnetic anisotropy.
Yan, Shichao; Choi, Deung-Jang; Burgess, Jacob A J; Rolf-Pissarczyk, Steffen; Loth, Sebastian
2015-03-11
Magnetic anisotropy plays a key role in the magnetic stability and spin-related quantum phenomena of surface adatoms. It manifests as angular variations of the atom's magnetic properties. We measure the spin excitations of individual Fe atoms on a copper nitride surface with inelastic electron tunneling spectroscopy. Using a three-axis vector magnet we rotate the magnetic field and map out the resulting variations of the spin excitations. We quantitatively determine the three-dimensional distribution of the magnetic anisotropy of single Fe atoms by fitting the spin excitation spectra with a spin Hamiltonian. This experiment demonstrates the feasibility of fully mapping the vector magnetic properties of individual spins and characterizing complex three-dimensional magnetic systems.
Influence of stable stratification on three-dimensional isotropic turbulence
NASA Astrophysics Data System (ADS)
Metais, O.
The influence of a stable stratification on three-dimensional homogeneous turbulence is investigated by performing large eddy simulations with the subgrid scales procedure developed by Chollet and Lesieur for isotropic turbulence. Computational initial conditions close to those of the experiments performed by Itsweire, Helland and Van Atta allow the comparison of the experimental and numerical evolutions of density-stratified turbulent flows. Theoretical works by Riley, Metcalfe and Weisman and by Lilly suggest that low Froude number stably-stratified turbulence may be a nearly noninteracting superposition of wave and quasi-horizontal turbulent vortex motions. For our computations the stably-stratified turbulence seems to be a decaying three-dimensional turbulence pulsed by internal gravity waves. However some tendencies towards two-dimensional turbulence are observed.
Viscous three-dimensional analyses for nozzles for hypersonic propulsion
NASA Technical Reports Server (NTRS)
Harloff, G. J.; Reddy, D. R.; Lai, H. T.
1990-01-01
A Navier-Stokes computer code was validated using a number of two- and three-dimensional configurations for both laminar and turbulent flows. The validation data covers a range of freestream Mach numbers from 3 to 14, includes wall pressures, velocity profiles, and skin friction. Nozzle flow fields computed for a generic scramjet nozzle from Mach 3 to 20, wall pressures, wall skin friction values, heat transfer values, and overall performance are presented. In addition, three-dimensional solutions obtained for two asymmetric, single expansion ramp nozzles at a pressure ratio of 10 consists of the internal expansion region in the converging/diverging sections and the external supersonic exhaust in a quiescent ambient environment. The fundamental characteristics that were captured successfully include expansion fans; Mach wave reflections; mixing layers; and nonsymmetrical, multiple inviscid cell, supersonic exhausts. Comparison with experimental data for wall pressure distributions at the center planes shows good agreement.
COMOC: Three dimensional boundary region variant, programmer's manual
NASA Technical Reports Server (NTRS)
Orzechowski, J. A.; Baker, A. J.
1974-01-01
The three-dimensional boundary region variant of the COMOC computer program system solves the partial differential equation system governing certain three-dimensional flows of a viscous, heat conducting, multiple-species, compressible fluid including combustion. The solution is established in physical variables, using a finite element algorithm for the boundary value portion of the problem description in combination with an explicit marching technique for the initial value character. The computational lattice may be arbitrarily nonregular, and boundary condition constraints are readily applied. The theoretical foundation of the algorithm, a detailed description on the construction and operation of the program, and instructions on utilization of the many features of the code are presented.
Three dimensional graphics in the statistical analysis of scientific data
Grotch, S.L.
1986-05-01
In scientific data analysis, the two-dimensional plot has become an indispensable tool. As the scientist more commonly encounters multivariate data, three dimensional graphics will form the natural extension of these more traditional representations. There can be little doubt that as the accessibility to ever more powerful graphics tools increases, their use will expand dramatically. In using three dimensional graphics in routine data analysis for nearly a decade, they have proved to be a powerful means for obtaining insights into data simply not available with traditional 2D methods. Examples of this work, taken primarily from chemistry and meteorology, are presented to illustrate a variety of 3D graphics found to be practically useful. Some approaches for improving these presentations are also highlighted.
Covalently interconnected three-dimensional graphene oxide solids.
Sudeep, Parambath M; Narayanan, Tharangattu N; Ganesan, Aswathi; Shaijumon, Manikoth M; Yang, Hyunseung; Ozden, Sehmus; Patra, Prabir K; Pasquali, Matteo; Vajtai, Robert; Ganguli, Sabyasachi; Roy, Ajit K; Anantharaman, Maliemadom R; Ajayan, Pulickel M
2013-08-27
The creation of three-dimensionally engineered nanoporous architectures via covalently interconnected nanoscale building blocks remains one of the fundamental challenges in nanotechnology. Here we report the synthesis of ordered, stacked macroscopic three-dimensional (3D) solid scaffolds of graphene oxide (GO) fabricated via chemical cross-linking of two-dimensional GO building blocks. The resulting 3D GO network solids form highly porous interconnected structures, and the controlled reduction of these structures leads to formation of 3D conductive graphene scaffolds. These 3D architectures show promise for potential applications such as gas storage; CO2 gas adsorption measurements carried out under ambient conditions show high sorption capacity, demonstrating the possibility of creating new functional carbon solids starting with two-dimensional carbon layers.
Three-dimensional optical encryption based on ptychography
NASA Astrophysics Data System (ADS)
Zhang, Jun; Li, Tuo; Wang, Yali; Qiao, Liang; Yang, Xiubo; Shi, Yishi
2015-10-01
We propose a novel optical encryption system for three-dimension imaging combined with three-dimension Ptychography. Employing the proposed cryptosystem, a 3D object can be encrypted and decrypted successfully. Compared with the conventional three-dimensional cryptosystem, not only encrypting the pure amplitude 3D object is available, but also the encryption of complex amplitude 3D object is achievable. Considering that the probes overlapping with each other is the crucial factor in ptychography, their complex-amplitude functions can serve as a kind of secret keys that lead to the enlarged key space and the enhanced system security. Varies of simulation results demonstrate that the feasibility and robust of the cryptosystem. Furthermore, the proposed system could also be used for other potential applications, such as three-dimensional information hiding and multiple images encryption.
Three dimensional calculation of flux of low energy atmospheric neutrinos
NASA Technical Reports Server (NTRS)
Lee, H.; Bludman, S. A.
1985-01-01
Results of three-dimensional Monte Carlo calculation of low energy flux of atmospheric neutrinos are presented and compared with earlier one-dimensional calculations 1,2 valid at higher neutrino energies. These low energy neutrinos are the atmospheric background in searching for neutrinos from astrophysical sources. Primary cosmic rays produce the neutrino flux peaking at near E sub=40 MeV and neutrino intensity peaking near E sub v=100 MeV. Because such neutrinos typically deviate by 20 approximately 30 from the primary cosmic ray direction, three-dimensional effects are important for the search of atmospheric neutrinos. Nevertheless, the background of these atmospheric neutrinos is negligible for the detection of solar and supernova neutrinos.
Electroencephalographic (EEG) control of three-dimensional movement
NASA Astrophysics Data System (ADS)
McFarland, Dennis J.; Sarnacki, William A.; Wolpaw, Jonathan R.
2010-06-01
Brain-computer interfaces (BCIs) can use brain signals from the scalp (EEG), the cortical surface (ECoG), or within the cortex to restore movement control to people who are paralyzed. Like muscle-based skills, BCIs' use requires activity-dependent adaptations in the brain that maintain stable relationships between the person's intent and the signals that convey it. This study shows that humans can learn over a series of training sessions to use EEG for three-dimensional control. The responsible EEG features are focused topographically on the scalp and spectrally in specific frequency bands. People acquire simultaneous control of three independent signals (one for each dimension) and reach targets in a virtual three-dimensional space. Such BCI control in humans has not been reported previously. The results suggest that with further development noninvasive EEG-based BCIs might control the complex movements of robotic arms or neuroprostheses.
Three-dimensional collagen architecture in bovine articular cartilage.
Jeffery, A K; Blunn, G W; Archer, C W; Bentley, G
1991-09-01
The three-dimensional architecture of bovine articular cartilage collagen and its relationship to split lines has been studied with scanning electron microscopy. In the middle and superficial zones, collagen was organised in a layered or leaf-like manner. The orientation was vertical in the intermediate zone, curving to become horizontal and parallel to the articular surface in the superficial zone. Each leaf consisted of a fine network of collagen fibrils. Adjacent leaves merged or were closely linked by bridging fibrils and were arranged according to the split-line pattern. The surface layer (lamina splendens) was morphologically distinct. Although ordered, the overall collagen structure was different in each plane (anisotropic) a property described in previous morphological and biophysical studies. As all components of the articular cartilage matrix interact closely, the three-dimensional organisation of collagen is important when considering cartilage function and the processes of cartilage growth, injury and repair. PMID:1894669
Three-dimensional control of Tetrahymena pyriformis using artificial magnetotaxis
NASA Astrophysics Data System (ADS)
Hyung Kim, Dal; Seung Soo Kim, Paul; Agung Julius, Anak; Jun Kim, Min
2012-01-01
We demonstrate three-dimensional control with the eukaryotic cell Tetrahymena pyriformis (T. pyriformis) using two sets of Helmholtz coils for xy-plane motion and a single electromagnet for z-direction motion. T. pyriformis is modified to have artificial magnetotaxis with internalized magnetite. To track the cell's z-axis position, intensity profiles of non-motile cells at varying distances from the focal plane are used. During vertical motion along the z-axis, the intensity difference is used to determine the position of the cell. The three-dimensional control of the live microorganism T. pyriformis as a cellular robot shows great potential for practical applications in microscale tasks, such as target transport and cell therapy.
Slightly two- or three-dimensional self-similar solutions
NASA Astrophysics Data System (ADS)
Sari, Re'em; Bode, Nate; Yalinewich, Almog; MacFadyen, Andrew
2012-08-01
Self-similarity allows for analytic or semi-analytic solutions to many hydrodynamics problems. Most of these solutions are one-dimensional. Using linear perturbation theory, expanded around such a one-dimensional solution, we find self-similar hydrodynamic solutions that are two- or three-dimensional. Since the deviation from a one-dimensional solution is small, we call these slightly two-dimensional and slightly three-dimensional self-similar solutions, respectively. As an example, we treat strong spherical explosions of the second type. A strong explosion propagates into an ideal gas with negligible temperature and density profile of the form ρ(r, θ, ϕ) = r-ω[1 + σF(θ, ϕ)], where ω > 3 and σ ≪ 1. Analytical solutions are obtained by expanding the arbitrary function F(θ, ϕ) in spherical harmonics. We compare our results with two-dimensional numerical simulations, and find good agreement.
Three-dimensional modelling in magnetotelluric and magnetic variational sounding
NASA Technical Reports Server (NTRS)
Reddy, I. K.; Phillips, R. J.; Rankin, D.
1977-01-01
The Galerkin finite-element method is used to obtain approximate solutions for the three-dimensional induction problem. A rectangular conductive prism is considered as an example, and solutions are obtained for linear and circularly polarized incident plane-wave fields. Magnetotelluric tensor impedances and magnetic transfer functions are computed. Polar diagrams of the tensor impedances and magnetic transfer functions along with their amplitude contour maps are presented. The dimensionality parameter, skew, is contoured at the surface of the earth. It is shown that the relative amplitudes and shapes of the additional and principal impedance polar diagrams can be used to determine the dimensionality of geoelectrical structures. Stations with skew values greater than 0.2 are significantly influenced by the three-dimensionality of the geoelectric structure. The amplitudes of the magnetic transfer function and the orientations of its polar diagrams exhibit large anomalies in the vicinity of the intersection of the lateral contacts.
Three-dimensional radiation transfer modeling in a dicotyledon leaf
NASA Astrophysics Data System (ADS)
Govaerts, Yves M.; Jacquemoud, Stéphane; Verstraete, Michel M.; Ustin, Susan L.
1996-11-01
The propagation of light in a typical dicotyledon leaf is investigated with a new Monte Carlo ray-tracing model. The three-dimensional internal cellular structure of the various leaf tissues, including the epidermis, the palisade parenchyma, and the spongy mesophyll, is explicitly described. Cells of different tissues are assigned appropriate morphologies and contain realistic amounts of water and chlorophyll. Each cell constituent is characterized by an index of refraction and an absorption coefficient. The objective of this study is to investigate how the internal three-dimensional structure of the tissues and the optical properties of cell constituents control the reflectance and transmittance of the leaf. Model results compare favorably with laboratory observations. The influence of the roughness of the epidermis on the reflection and absorption of light is investigated, and simulation results confirm that convex cells in the epidermis focus light on the palisade parenchyma and increase the absorption of radiation.
Granular temperature profiles in three-dimensional vibrofluidized granular beds
Wildman, R. D.; Huntley, J. M.; Parker, D. J.
2001-06-01
The motion of grains in a three-dimensional vibrofluidized granular bed has been measured using the technique of positron emission particle tracking, to provide three-dimensional packing fraction and granular temperature distributions. The mean square fluctuation velocity about the mean was calculated through analysis of the short time mean squared displacement behavior, allowing measurement of the granular temperature at packing fractions of up to {eta}{similar_to}0.15. The scaling relationship between the granular temperature, the number of layers of grains, and the base velocity was determined. Deviations between the observed scaling exponents and those predicted by recent theories are attributed to the influence of dissipative grain-sidewall collisions.
Three Dimensional Iterative Reconstruction Techniques in Positron Tomography.
NASA Astrophysics Data System (ADS)
Sloka, Scott
The acquisition of positron tomographic data in three dimensions is an improvement over the two dimensional acquisition of data because the greater the number of measurements taken of a stochastic process, the more accurately determined the desired parameter may be. This research pursues the goal of three dimensional image reconstruction in Positron Tomography using an iterative approach. This thesis has followed a systematic approach to the exploration of a system for three dimensional iterative reconstruction. System design parameters were discussed such as the advantages and disadvantages of iterative vs analytic methods, the implementation of two, three dimensional iterative algorithms, the selection of a ray passing method, and the choice of an analytic method for comparison to the iterative methods. Several qualitative and quantitative tests were used/developed and performed to analyse and compare the results. Three dimensional reconstruction in Positron Tomography using two iterative techniques (ART and ML-EM) was demonstrated. The ML-EM algorithm was adapted to satisfy the objective of equalizing the estimates with the measurements via division of the sampling density. A new multi-objective function methodology was developed for two dimensions and its extension to three dimensions discussed. A smoothly-varying Gaussian phantom was created for comparing artifacts from different ray passing methods. The analysis of voxel trends over many iterations was used. The use of the output from a two dimensional filtered backprojection algorithm as the seed for three dimensional algorithms to accelerate the reconstruction the was explored. The importance of the selection of a good ray ordering in ART and its effects on the total squared error were explored. For the phantoms studied in this thesis, the ML -EM algorithm tended to perform better under most conditions. This algorithm is slower than ART to achieve both a low total squared error and good contrast, but the
Three-dimensional tissue culture based on magnetic cell levitation.
Souza, Glauco R; Molina, Jennifer R; Raphael, Robert M; Ozawa, Michael G; Stark, Daniel J; Levin, Carly S; Bronk, Lawrence F; Ananta, Jeyarama S; Mandelin, Jami; Georgescu, Maria-Magdalena; Bankson, James A; Gelovani, Juri G; Killian, T C; Arap, Wadih; Pasqualini, Renata
2010-04-01
Cell culture is an essential tool in drug discovery, tissue engineering and stem cell research. Conventional tissue culture produces two-dimensional cell growth with gene expression, signalling and morphology that can be different from those found in vivo, and this compromises its clinical relevance. Here, we report a three-dimensional tissue culture based on magnetic levitation of cells in the presence of a hydrogel consisting of gold, magnetic iron oxide nanoparticles and filamentous bacteriophage. By spatially controlling the magnetic field, the geometry of the cell mass can be manipulated, and multicellular clustering of different cell types in co-culture can be achieved. Magnetically levitated human glioblastoma cells showed similar protein expression profiles to those observed in human tumour xenografts. Taken together, these results indicate that levitated three-dimensional culture with magnetized phage-based hydrogels more closely recapitulates in vivo protein expression and may be more feasible for long-term multicellular studies. PMID:20228788
Three-dimensional transport with variational nodal methods
Lewis, E.E.; Palmiotti, G.; Shalil, H.S.; Laurin-Kovitz, K.; Fanning, T.; Hanebutte, U.R.
1996-12-31
The development of the variational nodal method contained in the three-dimensional transport code VARIANT is reviewed. This Argonne National Laboratory code treats two- and three- dimensional multigroup problems with anisotropic scattering in hexagonal and Cartesian geometries. The methodology couples hybrid finite elements in space, which enforce nodal balance, with spherical harmonics expansions in angle. The resulting response matrix equations are solved by red-black or four-color iterations. Several enhancements to VARIANT are discussed: The simplified spherical harmonics option provides near spherical harmonic accuracy for many problems at a fraction of the cost. Adjoint and perturbation calculations are performed without the physical- and mathematical adjoint dichotomy appearing in other nodal methods. Heterogeneous node methods extend the problem classes to which the method may be applied. Computational strategies and trade-offs are discussed and possible future research directions are outlined.
Three-dimensional theory of the magneto-optical trap
Prudnikov, O. N. Taichenachev, A. V.; Yudin, V. I.
2015-04-15
The kinetics of atoms in a three-dimensional magneto-optical trap (MOT) is considered. A three-dimensional MOT model has been constructed for an atom with the optical transition J{sub g} = 0 → J{sub e} = 1 (J{sub g,} {sub e} is the total angular momentum in the ground and excited states) in the semiclassical approximation by taking into account the influence of the relative phases of light fields on the kinetics of atoms. We show that the influence of the relative phases can be neglected only in the limit of low light field intensities. Generally, the choice of relative phases can have a strong influence on the kinetics of atoms in a MOT.
Three-dimensional optical holography using a plasmonic metasurface
Huang, Lingling; Chen, Xianzhong; Mühlenbernd, Holger; Zhang, Hao; Chen, Shumei; Bai, Benfeng; Tan, Qiaofeng; Jin, Guofan; Cheah, Kok-Wai; Qiu, Cheng-Wei; Li, Jensen; Zentgraf, Thomas; Zhang, Shuang
2013-01-01
Benefitting from the flexibility in engineering their optical response, metamaterials have been used to achieve control over the propagation of light to an unprecedented level, leading to highly unconventional and versatile optical functionalities compared with their natural counterparts. Recently, the emerging field of metasurfaces, which consist of a monolayer of photonic artificial atoms, has offered attractive functionalities for shaping wave fronts of light by introducing an abrupt interfacial phase discontinuity. Here we realize three-dimensional holography by using metasurfaces made of subwavelength metallic nanorods with spatially varying orientations. The phase discontinuity takes place when the helicity of incident circularly polarized light is reversed. As the phase can be continuously controlled in each subwavelength unit cell by the rod orientation, metasurfaces represent a new route towards high-resolution on-axis three-dimensional holograms with a wide field of view. In addition, the undesired effect of multiple diffraction orders usually accompanying holography is eliminated.
Collective modes in three-dimensional magnonic vortex crystals
Hänze, Max; Adolff, Christian F.; Schulte, Benedikt; Möller, Jan; Weigand, Markus; Meier, Guido
2016-01-01
Collective modes in three-dimensional crystals of stacked permalloy disks with magnetic vortices are investigated by ferromagnetic resonance spectroscopy and scanning transmission X-ray microscopy. The size of the arrangements is increased step by step to identify the different contributions to the interaction between the vortices. These contributions are the key requirement to understand complex dynamics of three dimensional vortex crystals. Both vertical and horizontal coupling determine the collective modes. In-plane dipoles strongly influence the interaction between the disks in the stacks and lead to polarity-dependent resonance frequencies. Weaker contributions discern arrangements with different polarities and circularities that result from the lateral coupling of the stacks and the interaction of the core regions inside a stack. All three contributions are identified in the experiments and are explained in a rigid particle model. PMID:26932833
Recent developments in three-dimensional numerical estuarine models
Cheng, Ralph T.; Smith, Peter E.; Casulli, Vincenzo
1993-01-01
For a fixed cost, computing power increases 5 to 10 times every five years. The readily available computing resources have inspired new modal formulations and innovative model applications. Significant progress has been advanced in three-dimensional numerical estuarine modeling within the past three or four years. This paper attempts to review and summarize properties of new 3-D estuarine hydrodynamic models. The emphasis of the review is placed on the formulation, numerical methods. The emphasis of the review is placed on the formulation, numerical methods, spatial and temporal resolution, computational efficiency, and turbulence closure of new models. Recent research has provided guidelines for the proper use of 3-D models involving in the σ-transformation. Other models resort to a fixed level discretization in the vertical. The semi-implicit treatment in time-stepping models appears to have gained momentum. Future research in three-dimensional numerical modeling remains to be on computational efficiency and turbulent closure.
Three Dimensional Thermal Abuse Reaction Model for Lithium Ion Batteries
2006-06-29
Three dimensional computer models for simulating thermal runaway of lithium ion battery was developed. The three-dimensional model captures the shapes and dimensions of cell components and the spatial distributions of materials and temperatures, so we could consider the geometrical features, which are critical especially in large cells. An array of possible exothermic reactions, such as solid-electrolyte-interface (SEI) layer decomposition, negative active/electrolyte reaction, and positive active/electrolyte reaction, were considered and formulated to fit experimental data frommore » accelerating rate calorimetry and differential scanning calorimetry. User subroutine code was written to implement NREL developed approach and to utilize a commercially available solver. The model is proposed to use for simulation a variety of lithium-ion battery safety events including thermal heating and short circuit.« less
High-resolution three-dimensional imaging radar
NASA Technical Reports Server (NTRS)
Cooper, Ken B. (Inventor); Chattopadhyay, Goutam (Inventor); Siegel, Peter H. (Inventor); Dengler, Robert J. (Inventor); Schlecht, Erich T. (Inventor); Mehdi, Imran (Inventor); Skalare, Anders J. (Inventor)
2010-01-01
A three-dimensional imaging radar operating at high frequency e.g., 670 GHz, is disclosed. The active target illumination inherent in radar solves the problem of low signal power and narrow-band detection by using submillimeter heterodyne mixer receivers. A submillimeter imaging radar may use low phase-noise synthesizers and a fast chirper to generate a frequency-modulated continuous-wave (FMCW) waveform. Three-dimensional images are generated through range information derived for each pixel scanned over a target. A peak finding algorithm may be used in processing for each pixel to differentiate material layers of the target. Improved focusing is achieved through a compensation signal sampled from a point source calibration target and applied to received signals from active targets prior to FFT-based range compression to extract and display high-resolution target images. Such an imaging radar has particular application in detecting concealed weapons or contraband.
Three-dimensional vibrations of cantilevered right triangular plates
NASA Astrophysics Data System (ADS)
McGee, O. G.; Giaimo, G. T.
1992-12-01
The first known three-dimensional continuum vibration solutions for cantilevered right triangular plates with variable thickness are obtained using the Ritz method. Assumed displacement functions are in the form of algebraic polynomials, which satisfy the fixed face conditions exactly, and which are mathematically complete. Reasonably accurate natural frequencies are calculated for low aspect ratio, right triangular thin plates having arbitrary values of thickness taper ratios in the spanwise direction. Detailed numerical studies show that a three-dimensional analysis is essential to monitoring coupled-mode sensitivities in the variation of non-dimensional natural frequencies with increasing thickness taper ratio. Upper bound results, obtained using the present method, are compared with those obtained by other investigators using ordinary beam theories, two-dimensional finite element and finite difference procedures, and experimental methods. This unified comparison of upper and lower bound solutions is presented here with the aim of 'bracketing' the exact analytical solution of the subject problem.
Surface reconstruction of a three-dimensional ultrasonic flaw
Koo, Lat S.
1992-08-01
In three-dimensional inverse scattering problems, the reconstruction of a solid scatterter is often difficult, if not impossible, and computationally expensive due to the dimensionality. To obtain only the geometrical information, a surface reconstruction algorithm is naturally more desirable since no additional knowledge can be gained from doing the solid reconstruction and the computation is reduced to two dimensions. With the application of the first Born approximation, this paper proposes a simple surfaces reconstruction technique for a three-dimensional target. In general, this method is ill-posed. However, the numerical instability part of the ill-posedness is removable when the surface has a two-fold symmetry with respect to a plane. To demonstrate this approach, three analytical examples are shown. 10 refs.
Surface reconstruction of a three-dimensional ultrasonic flaw
Koo, Lat S.
1992-01-01
In three-dimensional inverse scattering problems, the reconstruction of a solid scatterter is often difficult, if not impossible, and computationally expensive due to the dimensionality. To obtain only the geometrical information, a surface reconstruction algorithm is naturally more desirable since no additional knowledge can be gained from doing the solid reconstruction and the computation is reduced to two dimensions. With the application of the first Born approximation, this paper proposes a simple surfaces reconstruction technique for a three-dimensional target. In general, this method is ill-posed. However, the numerical instability part of the ill-posedness is removable when the surface has a two-fold symmetry with respect to a plane. To demonstrate this approach, three analytical examples are shown. 10 refs.
Dimer problem for some three dimensional lattice graphs
NASA Astrophysics Data System (ADS)
Lin, Fenggen; Chen, Ailian; Lai, Jiangzhou
2016-02-01
Dimer problem for three dimensional lattice is an unsolved problem in statistical mechanics and solid-state chemistry. In this paper, we obtain asymptotical expressions of the number of close-packed dimers (perfect matchings) for two types of three dimensional lattice graphs. Let M(G) denote the number of perfect matchings of G. Then log(M(K2 ×C4 ×Pn)) ≈(- 1.171 ṡn-1.1223 + 3.146) n, and log(M(K2 ×P4 ×Pn)) ≈(- 1.164 ṡn-1.196 + 2.804) n, where log() denotes the natural logarithm. Furthermore, we obtain a sufficient condition under which the lattices with multiple cylindrical and multiple toroidal boundary conditions have the same entropy.
THREE-DIMENSIONAL STRUCTURE OF SOLAR WIND TURBULENCE
Chen, C. H. K.; Bale, S. D.; Mallet, A.; Schekochihin, A. A.; Horbury, T. S.; Wicks, R. T.
2012-10-20
We present a measurement of the scale-dependent, three-dimensional structure of the magnetic field fluctuations in inertial range solar wind turbulence with respect to a local, physically motivated coordinate system. The Alfvenic fluctuations are three-dimensionally anisotropic, with the sense of this anisotropy varying from large to small scales. At the outer scale, the magnetic field correlations are longest in the local fluctuation direction, consistent with Alfven waves. At the proton gyroscale, they are longest along the local mean field direction and shortest in the direction perpendicular to the local mean field and the local field fluctuation. The compressive fluctuations are highly elongated along the local mean field direction, although axially symmetric perpendicular to it. Their large anisotropy may explain why they are not heavily damped in the solar wind.
Nonisentropic unsteady three dimensional small disturbance potential theory
NASA Technical Reports Server (NTRS)
Gibbons, M. D.; Whitlow, W., Jr.; Williams, M. H.
1986-01-01
Modifications that allow for more accurate modeling of flow fields when strong shocks are present were made into three dimensional transonic small disturbance (TSD) potential theory. The Engquist-Osher type-dependent differencing was incorporated into the solution algorithm. The modified theory was implemented in the XTRAN3S computer code. Steady flows over a rectangular wing with a constant NACA 0012 airfoil section and an aspect ratio of 12 were calculated for freestream Mach numbers (M) of 0.82, 0.84, and 0.86. The obtained results are compared using the modified and unmodified TSD theories and the results from a three dimensional Euler code are presented. Nonunique solutions in three dimensions are shown to appear for the rectangular wing as aspect ratio increases. Steady and unsteady results are shown for the RAE tailplane model at M = 0.90. Calculations using unmodified theory, modified theory and experimental data are compared.
Three-dimensional Analysis of Nanomaterials by Scanning Probe Nanotomography
NASA Astrophysics Data System (ADS)
Efimov, Anton E.; Agapova, Olga I.; Mochalov, Konstantin E.; Agapov, Igor I.
Micro and nanostructure of scaffolds made from fibroin of Bombyx mori silkworm by salt leaching technique was studied by scanning probe nanotomography. Nanopores with dimensions in range from 30 to 180 nm are observed in the scaffold volume. Three - dimensional analysis of obtained data shows that degree of scaffold nanoporosity is 0.5% and nanopores are not interconnected with each other. Usage of scanning probe nanotomography technique enables to obtain unique nanoscale information of 3D structure of biopolymer nanomaterials.
Analysis of autostereoscopic three-dimensional images using multiview wavelets.
Saveljev, Vladimir; Palchikova, Irina
2016-08-10
We propose that multiview wavelets can be used in processing multiview images. The reference functions for the synthesis/analysis of multiview images are described. The synthesized binary images were observed experimentally as three-dimensional visual images. The symmetric multiview B-spline wavelets are proposed. The locations recognized in the continuous wavelet transform correspond to the layout of the test objects. The proposed wavelets can be applied to the multiview, integral, and plenoptic images. PMID:27534470
Fully Three-Dimensional Virtual-Reality System
NASA Technical Reports Server (NTRS)
Beckman, Brian C.
1994-01-01
Proposed virtual-reality system presents visual displays to simulate free flight in three-dimensional space. System, virtual space pod, is testbed for control and navigation schemes. Unlike most virtual-reality systems, virtual space pod would not depend for orientation on ground plane, which hinders free flight in three dimensions. Space pod provides comfortable seating, convenient controls, and dynamic virtual-space images for virtual traveler. Controls include buttons plus joysticks with six degrees of freedom.
Three-dimensional optical trapping of partially silvered silica microparticles.
Jordan, P; Cooper, J; McNay, G; Docherty, F T; Smith, W E; Sinclair, G; Padgett, M J
2004-11-01
We demonstrate three-dimensional trapping of micrometer-diameter silica particles, partially coated with silver, within conventional optical tweezers. Although metallic particles are usually repelled from the beam focus by the scattering force, we show that transparent spheres partially coated with silver can be trapped with efficiencies comparable with dielectric particles. The trapping characteristics of these particles are examined as a function of metallic coverage, and the application of these particles to surface-enhanced resonance Raman scattering is investigated.
Linear stability theory and three-dimensional boundary layer transition
NASA Technical Reports Server (NTRS)
Spall, Robert E.; Malik, Mujeeb R.
1992-01-01
The viewgraphs and discussion of linear stability theory and three dimensional boundary layer transition are provided. The ability to predict, using analytical tools, the location of boundary layer transition over aircraft-type configurations is of great importance to designers interested in laminar flow control (LFC). The e(sup N) method has proven to be fairly effective in predicting, in a consistent manner, the location of the onset of transition for simple geometries in low disturbance environments. This method provides a correlation between the most amplified single normal mode and the experimental location of the onset of transition. Studies indicate that values of N between 8 and 10 correlate well with the onset of transition. For most previous calculations, the mean flows were restricted to two-dimensional or axisymmetric cases, or have employed simple three-dimensional mean flows (e.g., rotating disk, infinite swept wing, or tapered swept wing with straight isobars). Unfortunately, for flows over general wing configurations, and for nearly all flows over fuselage-type bodies at incidence, the analysis of fully three-dimensional flow fields is required. Results obtained for the linear stability of fully three-dimensional boundary layers formed over both wing and fuselage-type geometries, and for both high and low speed flows are discussed. When possible, transition estimates form the e(sup N) method are compared to experimentally determined locations. The stability calculations are made using a modified version of the linear stability code COSAL. Mean flows were computed using both Navier Stokes and boundary-layer codes.
Three-dimensional image reconstruction in object space
Kinahan, P.E.; Rogers, J.G.; Harrop, R.; Johnson, R.R.
1988-02-01
An analytic three-dimensional image reconstruction algorithm which can utilize the cross-plane gamma rays detected by a wide solid-angle PET system is presented. Unlike current analytic algorithms it does not use Fourier transform methods, although mathematical equivalence to Fourier transform methods is proven. Results of implementing the algorithm are briefly discussed. An extension of the algorithm to utilize all measured cross-plane gamma rays is discussed.
Hydrothermal fabrication of three-dimensional secondary battery anodes.
Liu, Jinyun; Zhang, Hui Gang; Wang, Junjie; Cho, Jiung; Pikul, James H; Epstein, Eric S; Huang, Xingjiu; Liu, Jinhuai; King, William P; Braun, Paul V
2014-11-01
A generalized hydrothermal strategy for fabricating three-dimensional (3D) battery electrodes is presented. The hydrothermal growth deposits electrochemically active nanomaterials uniformly throughout the complex 3D mesostructure of the scaffold. Ni inverse opals coated with SnO2 nanoparticles or Co3O4 nanoplatelets, and SiO2 inverse opals coated with Fe3O4 are fabricated, all of which show attractive properties including good capacity retention and C-rate performances. PMID:25195592
Environmental, Transient, Three-Dimensional, Hydrothermal, Mass Transport Code - FLESCOT
Onishi, Yasuo; Bao, Jie; Glass, Kevin A.; Eyler, L. L.; Okumura, Masahiko
2015-03-28
The purpose of the project was to modify and apply the transient, three-dimensional FLESCOT code to be able to effectively simulate cesium behavior in Fukushima lakes/dam reservoirs, river mouths, and coastal areas. The ultimate objective of the FLESCOT simulation is to predict future changes of cesium accumulation in Fukushima area reservoirs and costal water. These evaluation results will assist ongoing and future environmental remediation activities and policies in a systematic and comprehensive manner.
Three dimensional mesh generation by triangulation of arbitrary point sets
NASA Technical Reports Server (NTRS)
Baker, Timothy J.
1987-01-01
A method for generating an unstructured mesh is described. The approach is quite general and joins an arbitrary set of points to produce a covering of three dimensional space by tetrahedra. After removing the tetrahedra that connect surface points, a mesh suitable for a finite element based flow solver is obtained. Details of the triangulation algorithm are provided together with an analysis of the algorithm efficiency and validity.
Coherent states on horospheric three-dimensional Lobachevsky space
NASA Astrophysics Data System (ADS)
Kurochkin, Yu.; Rybak, I.; Shoukavy, Dz.
2016-08-01
In the paper it is shown that due to separation of variables in the Laplace-Beltrami operator (Hamiltonian of a free quantum particle) in horospheric and quasi-Cartesian coordinates of three dimensional Lobachevsky space, it is possible to introduce standard ("conventional" according to Perelomov [Generalized Coherent States and Their Applications (Springer-Verlag, 1986), p. 320]) coherent states. Some problems (oscillator on horosphere, charged particle in analogy of constant uniform magnetic field) where coherent states are suitable for treating were considered.
Three-dimensional models. [For orbital celestial mechanics
Hunter, C. )
1990-06-01
The Schwarzschild (1979) approach to the analysis of three-dimensional galactic models is reviewed. An analysis of triaxial Staeckel models is discussed which shows that such models have a wide variety of possible distribution functions. The uniqueness that Schwarzschild first encountered in his discrete formulation of the problem of finding a three-integral distribution function for a triaxial density is real and not an artifact of the finite cell approximation. 27 refs.
Three-dimensional range imaging apparatus and method
NASA Technical Reports Server (NTRS)
Scott, Vibart Stan (Inventor); Blair, James Bryan (Inventor); Izquierdo, Luis R. (Inventor)
2011-01-01
A three-dimensional range imager includes a light source for providing a modulated light signal, a multiplexer, an optical fiber connecting the light source to the multiplexer, a plurality of optical fibers connected at first ends to the multiplexer and at second ends to a first fiber array, and a transmitter optic disposed adjacent the first fiber array for projecting a pixel pattern of the array onto a target.
Time-Domain Simulation of Three Dimensional Quantum Wires.
Sullivan, Dennis M; Mossman, Sean; Kuzyk, Mark G
2016-01-01
A method is presented to calculate the eigenenergies and eigenfunctions of quantum wires. This is a true three-dimensional method based on a direct implementation of the time-dependent Schrödinger equation. It makes no approximations to the Schrödinger equation other than the finite-difference approximation of the space and time derivatives. The accuracy of our method is tested by comparing it to analytical results in a cylindrical wire. PMID:27124603
Simulating Photons and Plasmons in a Three-dimensional Lattice
Pletzer, A.; Shvets, G.
2002-09-03
Three-dimensional metallic photonic structures are studied using a newly developed mixed finite element-finite difference (FE-FD) code, Curly3d. The code solves the vector Helmholtz equation as an eigenvalue problem in the unit cell of a triply periodic lattice composed of conductors and/or dielectrics. The mixed FE-FD discretization scheme ensures rapid numerical convergence of the eigenvalue and allows the code to run at low resolution. Plasmon and photonic band structure calculations are presented.
Four-Dimensional Entropy from Three-Dimensional Gravity.
Carlip, S
2015-08-14
At the horizon of a black hole, the action of (3+1)-dimensional loop quantum gravity acquires a boundary term that is formally identical to an action for three-dimensional gravity. I show how to use this correspondence to obtain the entropy of the (3+1)-dimensional black hole from well-understood conformal field theory computations of the entropy in (2+1)-dimensional de Sitter space. PMID:26317707
Three-dimensional discrete ordinates reactor assembly calculations on GPUs
Evans, Thomas M; Joubert, Wayne; Hamilton, Steven P; Johnson, Seth R; Turner, John A; Davidson, Gregory G; Pandya, Tara M
2015-01-01
In this paper we describe and demonstrate a discrete ordinates sweep algorithm on GPUs. This sweep algorithm is nested within a multilevel comunication-based decomposition based on energy. We demonstrated the effectiveness of this algorithm on detailed three-dimensional critical experiments and PWR lattice problems. For these problems we show improvement factors of 4 6 over conventional communication-based, CPU-only sweeps. These sweep kernel speedups resulted in a factor of 2 total time-to-solution improvement.
High-Speed Three-Dimensional Nodal Diffusion Code System.
2001-03-21
Version 00 MOSRA-Light is a three-dimensional diffusion calculation code for X-Y-Z geometry. It can be used in: validation of discontinuity factor for adjoint problem; benchmark on discontinuity factor (forward & adjoint cal.); DVP BWR Benchmark (2D,2G calculation); and void reactivity effect benchmark; etc. A utility code called More-MOSRA provides many useful functions with the file produced by MOSRA-Light.
Rapid measurement of three-dimensional diffusion tensor
NASA Astrophysics Data System (ADS)
Cho, H.; Ren, X.-H.; Sigmund, E. E.; Song, Y.-Q.
2007-04-01
In this article, the authors demonstrate a rapid NMR method to measure a full three-dimensional diffusion tensor. This method is based on a multiple modulation multiple echo sequence and utilizes static and pulsed magnetic field gradients to measure diffusion along multiple directions simultaneously. The pulse sequence was optimized using a well-known linear inversion metric (condition number) and successfully tested on both isotropic (water) and anisotropic (asparagus) diffusion systems.
Three dimensional flow computations in a turbine scroll
NASA Technical Reports Server (NTRS)
Hamed, A.; Ghantous, C. A.
1982-01-01
The compressible three dimensional inviscid flow in the scroll and vaneless nozzle of radial inflow turbines is analyzed. A FORTRAN computer program for the numerical solution of this complex flow field using the finite element method is presented. The program input consists of the mass flow rate and stagnation conditions at the scroll inlet and of the finite element discretization parameters and nodal coordinates. The output includes the pressure, Mach number and velocity magnitude and direction at all the nodal points.
Three-dimensional nonparaxial beams in parabolic rotational coordinates.
Deng, Dongmei; Gao, Yuanmei; Zhao, Juanying; Zhang, Peng; Chen, Zhigang
2013-10-01
We introduce a class of three-dimensional nonparaxial optical beams found in a parabolic rotational coordinate system. These beams, representing exact solutions of the nonparaxial Helmholtz equation, have inherent parabolic symmetries. Assisted with a computer-generated holography, we experimentally demonstrate the generation of different modes of these beams. The observed transverse beam patterns along the propagation direction agree well with those from our theoretical predication.
Convection Effects in Three-dimensional Dendritic Growth
NASA Technical Reports Server (NTRS)
Lu, Yili; Beckermann, C.; Karma, A.
2003-01-01
A phase-field model is developed to simulate free dendritic growth coupled with fluid flow for a pure material in three dimensions. The preliminary results presented here illustrate the strong influence of convection on the three-dimensional (3D) dendrite growth morphology. The detailed knowledge of the flow and temperature fields in the melt around the dendrite from the simulations allows for a detailed understanding of the convection effects on dendritic growth.
Multi-cellular, three-dimensional living mammalian tissue
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor); Wolf, David A. (Inventor)
1994-01-01
The present invention relates to a multicellular, three-dimensional, living mammalian tissue. The tissue is produced by a co-culture process wherein two distinct types of mammalian cells are co-cultured in a rotating bioreactor which is completely filled with culture media and cell attachment substrates. As the size of the tissue assemblies formed on the attachment substrates changes, the rotation of the bioreactor is adjusted accordingly.
Three-dimensional finite element modeling of liquid crystal devices
NASA Astrophysics Data System (ADS)
Vanbrabant, Pieter J. M.; James, Richard; Beeckman, Jeroen; Neyts, Kristiaan; Willman, Eero; Fernandez, F. Anibal
2011-03-01
A finite element framework is presented to combine advanced three-dimensional liquid crystal director calculations with a full-vector beam propagation analysis. This approach becomes especially valuable to analyze and design structures in which disclinations or diffraction effects play an important role. The wide applicability of the approach is illustrated in our overview from several examples including small pixel LCOS microdisplays with homeotropic alignment.
Three-dimensional source reconstruction with a scanned pinhole camera.
Marks, D L; Brady, D J
1998-06-01
We present a simple reconstruction algorithm for three-dimensional (3D) incoherent source distributions imaged by a laterally scanned pinhole camera. We consider digital sampling of multiple pinhole images for 3D reconstruction and implement an experimental demonstration with lateral resolution of 2x10(-3) rad and longitudinal resolution of approximately 0.14z(2) m , where z is the object-to-pinhole distance in meters.
Three-dimensional chiral skyrmions with attractive interparticle interactions
NASA Astrophysics Data System (ADS)
Leonov, A. O.; Monchesky, T. L.; Loudon, J. C.; Bogdanov, A. N.
2016-09-01
We introduce a new class of isolated three-dimensional skyrmion that can occur within the cone phase of chiral magnetic materials. These novel solitonic states consist of an axisymmetric core separated from the host phase by an asymmetric shell. These skyrmions attract one another. We derive regular solutions for isolated skyrmions arising in the cone phase of cubic helimagnets and investigate their bound states.
A Flow Solver for Three-Dimensional DRAGON Grids
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Zheng, Yao
2002-01-01
DRAGONFLOW code has been developed to solve three-dimensional Navier-Stokes equations over a complex geometry whose flow domain is discretized with the DRAGON grid-a combination of Chimera grid and a collection of unstructured grids. In the DRAGONFLOW suite, both OVERFLOW and USM3D are presented in form of module libraries, and a master module controls the invoking of these individual modules. This report includes essential aspects, programming structures, benchmark tests and numerical simulations.
Code System for Three-Dimensional Hydraulic Reactor Core Analysis.
2001-03-05
Version 00 SCORE-EVET was developed to study multidimensional transient fluid flow in nuclear reactor fuel rod arrays. The conservation equations used were derived by volume averaging the transient compressible three-dimensional local continuum equations in Cartesian coordinates. No assumptions associated with subchannel flow have been incorporated into the derivation of the conservation equations. In addition to the three-dimensional fluid flow equations, the SCORE-EVET code contains a one-dimensional steady state solution scheme to initialize the flow field,more » steady state and transient fuel rod conduction models, and comprehensive correlation packages to describe fluid-to-fuel rod interfacial energy and momentum exchange. Velocity and pressure boundary conditions can be specified as a function of time and space to model reactor transient conditions, such as a hypothesized loss-of-coolant accident (LOCA) or flow blockage. The basic volume-averaged transient three-dimensional equations for flow in porous media are solved in their general form with constitutive relationships and boundary conditions tailored to define the porous medium as a matrix of fuel rods. By retaining generality in the form of the conservation equations, a wide range of fluid flow problem configurations, from computational regions representing a single fuel rod subchannel to multichannels, or even regions without a fuel rod, can be modeled without restrictive assumptions. The completeness of the conservation equations has allowed SCORE-EVET to be used, with modification to the constitutive relationships, to calculate three-dimensional laminar boundary layer development, flow fields in large bodies of water, and, with the addition of a turbulence model, turbulent flow in pipe expansions and tees.« less
Three-dimensional stiffness of the carpal arch.
Gabra, Joseph N; Li, Zong-Ming
2016-01-01
The carpal arch of the wrist is formed by irregularly shaped carpal bones interconnected by numerous ligaments, resulting in complex structural mechanics. The purpose of this study was to determine the three-dimensional stiffness characteristics of the carpal arch using displacement perturbations. It was hypothesized that the carpal arch would exhibit an anisotropic stiffness behavior with principal directions that are oblique to the conventional anatomical axes. Eight (n=8) cadavers were used in this study. For each specimen, the hamate was fixed to a custom stationary apparatus. An instrumented robot arm applied three-dimensional displacement perturbations to the ridge of trapezium and corresponding reaction forces were collected. The displacement-force data were used to determine a three-dimensional stiffness matrix using least squares fitting. Eigendecomposition of the stiffness matrix was used to identify the magnitudes and directions of the principal stiffness components. The carpal arch structure exhibited anisotropic stiffness behaviors with a maximum principal stiffness of 16.4±4.6N/mm that was significantly larger than the other principal components of 3.1±0.9 and 2.6±0.5N/mm (p<0.001). The principal direction of the maximum stiffness was pronated within the cross section of the carpal tunnel which is accounted for by the stiff transverse ligaments that tightly bind distal carpal arch. The minimal principal stiffness is attributed to the less constraining articulation between the trapezium and scaphoid. This study provides advanced characterization of the wrist׳s three-dimensional structural stiffness for improved insight into wrist biomechanics, stability, and function.
A new three-dimensional general-relativistic hydrodynamics code
NASA Astrophysics Data System (ADS)
Baiotti, L.; Hawke, I.; Montero, P. J.; Rezzolla, L.
We present a new three-dimensional general relativistic hydrodynamics code, the Whisky code. This code incorporates the expertise developed over the past years in the numerical solution of Einstein equations and of the hydrodynamics equations in a curved spacetime, and is the result of a collaboration of several European Institutes. We here discuss the ability of the code to carry out long-term accurate evolutions of the linear and nonlinear dynamics of isolated relativistic stars.
Three-dimensional electromagnetic articulography: a measurement principle.
Kaburagi, Tokihiko; Wakamiya, Kohei; Honda, Masaaki
2005-07-01
A measurement principle of the three-dimensional electromagnetic articulographic device is presented. The state of the miniature receiver coil is described by five variables representing the position in the three-dimensional coordinate system and the rotation angles relative to it. When the receiver coil is placed in the magnetic field produced from the distributed transmitter coils, its state can be optimally estimated by minimizing the difference between the measured strength of the received signal and the predicted one using the known spatial pattern of the magnetic field. Therefore, the design and calibration of the field function inherently determine the accuracy in estimating the state of the receiver coil. The field function in our method is expressed in the form of a multivariate B spline as a function of position in the three-dimensional space. Because of the piecewise property of the basis function and the freedom in the selection of the rank and the number of basis functions, the spline field function has a superior ability to flexibly and accurately represent the actual magnetic field. Given a set of calibration data, the spline function is designed to form a smooth curved surface interpolating all of these data samples. Then, an iterative procedure is employed to solve the nonlinear estimation problem of the receiver state variables. Because the spline basis function is a polynomial, it is also shown that the calculation of the Jacobian or Hessian required to obtain updated quantities for the state variables can be efficiently performed. Finally, experimental results reveal that the measurement accuracy is about 0.2 mm for a preliminary condition, indicating that the method can achieve the degree of precision required for observing articulatory movements in a three-dimensional space. It is also experimentally shown that the Marquardt method is a better nonlinear programming technique than the Gauss-Newton or Newton-Raphson method for solving the
Four-Dimensional Entropy from Three-Dimensional Gravity.
Carlip, S
2015-08-14
At the horizon of a black hole, the action of (3+1)-dimensional loop quantum gravity acquires a boundary term that is formally identical to an action for three-dimensional gravity. I show how to use this correspondence to obtain the entropy of the (3+1)-dimensional black hole from well-understood conformal field theory computations of the entropy in (2+1)-dimensional de Sitter space.
Transverse confinement of waves in three-dimensional random media.
Cherroret, N; Skipetrov, S E; van Tiggelen, B A
2010-11-01
We study the transmission of a tightly focused beam through a thick slab of three-dimensional disordered medium in the Anderson localized regime. We show that the transverse profile of the transmitted beam exhibits clear signatures of Anderson localization and that its mean square width provides a direct measure of the localization length. For a short incident pulse, the width is independent of absorption.
Time-Domain Simulation of Three Dimensional Quantum Wires
Mossman, Sean; Kuzyk, Mark G.
2016-01-01
A method is presented to calculate the eigenenergies and eigenfunctions of quantum wires. This is a true three-dimensional method based on a direct implementation of the time-dependent Schrödinger equation. It makes no approximations to the Schrödinger equation other than the finite-difference approximation of the space and time derivatives. The accuracy of our method is tested by comparing it to analytical results in a cylindrical wire. PMID:27124603
Three-dimensional strong Langmuir turbulence and wave collapse
NASA Technical Reports Server (NTRS)
Robinson, P. A.; Newman, D. L.; Goldman, M. V.
1988-01-01
Results from the first fully three-dimensional simulations of driven damped strong Langmuir turbulence and wave collapse are presented. Key results are that turbulence is maintained at least in part by nucleation, the cores of most collapsing objects are pancake shaped in form, and the power spectrum falls off approximately as the product of a power law and an exponential at large wave number.
On a three-dimensional implementation of the baker's transformation
NASA Astrophysics Data System (ADS)
Carrière, Philippe
2007-11-01
A three-dimensional, steady flow configuration intended to mimic the baker's map is studied by means of numerical simulation. The Poincaré sections computed from a finite element solution of the velocity field show that the behavior is dominated by chaotic advection. The value obtained for the Lyapunov exponent is very close to the theoretical value of ln2 predicted by the baker's map.
Three-dimensional compressible and stretchable conductive composites.
Yu, You; Zeng, Jifang; Chen, Chaojian; Xie, Zhuang; Guo, Ruisheng; Liu, Zhilu; Zhou, Xuechang; Yang, Yong; Zheng, Zijian
2014-02-01
Three-dimensional (3D) conductive composites with remarkable flexibility, compressibility, and stretchability are fabricated by solution deposition of thin metal coatings on chemically modified, macroscopically continuous, 3D polyurethane sponges, followed by infiltration of the metallic sponges with polydimethylsiloxane (PDMS). These low-cost conductive composites are used as high-performance interconnects for flexible and stretchable light-emitting diode (LED) arrays, even with severe surface abrasion or cutting. PMID:24307070
Wong, Philip; Muanza, Thierry; Reynard, Eric; Robert, Karine; Barker, Jennifer; Sultanem, Khalil
2011-01-01
Purpose: To evaluate the feasibility and usefulness of a three-dimensional ultrasound (3D-US) image-guided system in identifying and tracking the tumor bed (TB) for planning and daily localization before radiation delivery for breast cancer. Methods and Materials: Twenty breast cancer patients underwent two CT scans at the time of simulation and just before their boost. Three-dimensional ultrasound images were acquired immediately after the CT scans, to which the images were automatically fused. Three-dimensional ultrasound images were also acquired immediately before treatment. Spatial and temporal TB differences between CT and US were evaluated. Results: The TB was not visible on US and CT in 1 subject who had and 1 subject who had not received chemotherapy before whole-breast radiotherapy. The mean (SD) TB volume overlap was 78% (14%). The mean centroid position of the TB on CT vs. US differed by 0.1, 0.2, and 0.4 mm in the anterior-posterior, left-right, and superior-inferior directions. The mean (SD) absolute radial displacement of the TB on each fraction from the treatment plan was 10.8 (6.3) mm. Conclusions: The TB was well visualized by US for the majority of patients. Clinically insignificant differences in the displacements calculated by paired CT vs. paired US demonstrate the feasibility of using 3D-US. The present study suggests that a 10-mm planning target volume margin could result in undercoverage of the clinical target volumes in 50% of treatments. Multimodality planning and image-guided radiotherapy with US potentially offers an accurate and non-ionizing solution for the daily definition of the TB position during partial-breast irradiation and boost treatments.
Can Three-Dimensional Instabilities Enable Fast Reconnection?
NASA Astrophysics Data System (ADS)
McClymont, Alexander N.
1997-05-01
Most studies of magnetic reconnection have assumed a two-dimensional geometry. Gas swept into the current sheet halts the collapse to the near-singularity required to effectively dissipate magnetic energy. The gas is squeezed out of the current sheet along the separatrices at the local sound speed (McClymont and Craig, 1996, Ap. J. 466, 487). Although this allows collapse to proceed (at a slower pace) it is not yet clear whether all the gas can be removed, particularly in a closed system. Therefore it is of interest to examine how relaxing invariance along the third dimension might allow escape of gas from the current sheet and reconnection to proceed at an explosive rate. Uchida and Sakurai (1977, Solar Phys. 51, 413) have examined the possibility of reconnection rate enhancement by the three-dimensional interchange instability. Some three-dimensional analyses (e.g. Craig and Fabling, 1995, Ap. J. 462, 969) have assumed analytic forms of solution which preclude many outcomes. Another three dimensional simulation (Strauss, 1993, Geophys. Res. Lett., 20, 325) assumes a strong magnetic field along the current sheet. We discuss ideal instabilities and other phenomena which might allow gas to escape more effectively from the current sheet, and enhance the reconnection rate.
Three-dimensional fluorescence characteristics of white chrysanthemum flowers.
Fan, Yunchang; Li, Yang; Cai, Hongxin; Li, Jing; Miao, Juan; Fu, Dexue; Su, Kun
2014-09-15
White chrysanthemum flower is one of the most popular plants found everywhere in China and used as herbs. In the present work, three-dimensional fluorescence technique was used to discriminate species of white chrysanthemum flowers. Parameters affecting extraction efficiency were investigated. Under the optimal conditions, the three-dimensional fluorescence characteristics of three types of white chrysanthemum flowers were obtained. It was found that there were two main fluorescence peaks with remarkable difference in fluorescence intensity, one was corresponding to flavonoids and another was attributed to chlorophyll-like compounds. There were remarkable differences among the contours of the three white chrysanthemum flowers. Further studies showed that the fluorescence intensity ratios of chlorophyll-like compounds to flavonoids had a certain relationship with the species; those for Huai, Hang and Huangshan white chrysanthemum flowers were 6.9-7.4, 18.9-21.4 and 73.6-84.5, respectively. All of the results suggest that three-dimensional fluorescence spectra can be used for the discrimination of white chrysanthemum flowers with the advantages of low cost, ease for operation and intuition.
Three dimensional modelling of ICRF launchers for fusion devices
NASA Astrophysics Data System (ADS)
Carter, M. D.; Rasmussen, D. A.; Ryan, P. M.; Hanson, G. R.; Stallings, D. C.; Batchelor, D. B.; Bigelow, T. S.; England, A. C.; Hoffman, D. J.; Murakami, M.; Wang, C. Y.; Wilgen, J. B.; Rogers, J. H.; Wilson, J. R.; Majeski, R.; Schilling, G.
1996-02-01
The three dimensional (3-D) nature of antennas for fusion applications in the ion cyclotron range of frequencies (ICRF) requires accurate modelling to design and analyse new antennas. In this article, analysis and design tools for radiofrequency (RF) antennas are successfully benchmarked with experiment, and the 3-D physics of the launched waves is explored. The systematic analysis combines measured density profiles from a reflectometer system, transmission line circuit modelling, detailed 3-D magnetostatics modelling and a new 3-D electromagnetic antenna model including plasma. This analysis gives very good agreement with measured loading data from the Tokamak Fusion Test Reactor (TFTR) Bay-M antenna, thus demonstrating the validity of the analysis for the design of new RF antennas. The 3-D modelling is contrasted with 2-D models, and significant deficiencies are found in the latter. The 2-D models are in error by as much as a factor of 2 in real and reactive loading, even after they are corrected for the most obvious 3-D effects. Three dimensional effects play the most significant role at low parallel wavenumbers, where the launched power spectrum can be quite different from the predictions of 2-D models. Three dimensional effects should not be ignored for many RF designs, especially those intended for fast wave current drive
Three-dimensional jamming and flows of soft glassy materials.
Ovarlez, G; Barral, Q; Coussot, P
2010-02-01
Various disordered dense systems, such as foams, gels, emulsions and colloidal suspensions, undergo a jamming transition from a liquid state (they flow) to a solid state below a yield stress. Their structure, which has been thoroughly studied with powerful means of three-dimensional characterization, shows some analogy with that of glasses, which led to them being named soft glassy materials. However, despite its importance for geophysical and industrial applications, their rheological behaviour, and its microscopic origin, is still poorly known, in particular because of its nonlinear nature. Here we show from two original experiments that a simple three-dimensional continuum description of the behaviour of soft glassy materials can be built. We first show that when a flow is imposed in some direction there is no yield resistance to a secondary flow: these systems are always unjammed simultaneously in all directions of space. The three-dimensional jamming criterion seems to be the plasticity criterion encountered in most solids. We also find that they behave as simple liquids in the direction orthogonal to that of the main flow; their viscosity is inversely proportional to the main flow shear rate, as a signature of shear-induced structural relaxation, in close similarity to the structural relaxations driven by temperature and density in other glassy systems. PMID:20062046
Three-dimensional laser window formation for industrial application
NASA Technical Reports Server (NTRS)
Verhoff, Vincent G.; Kowalski, David
1993-01-01
The NASA Lewis Research Center has developed and implemented a unique process for forming flawless three-dimensional, compound-curvature laser windows to extreme accuracies. These windows represent an integral component of specialized nonintrusive laser data acquisition systems that are used in a variety of compressor and turbine research testing facilities. These windows are molded to the flow surface profile of turbine and compressor casings and are required to withstand extremely high pressures and temperatures. This method of glass formation could also be used to form compound-curvature mirrors that would require little polishing and for a variety of industrial applications, including research view ports for testing devices and view ports for factory machines with compound-curvature casings. Currently, sodium-alumino-silicate glass is recommended for three-dimensional laser windows because of its high strength due to chemical strengthening and its optical clarity. This paper discusses the main aspects of three-dimensional laser window formation. It focuses on the unique methodology and the peculiarities that are associated with the formation of these windows.
Three-dimensional magnetic recording using ferromagnetic resonance
NASA Astrophysics Data System (ADS)
Suto, Hirofumi; Kudo, Kiwamu; Nagasawa, Tazumi; Kanao, Taro; Mizushima, Koichi; Sato, Rie
2016-07-01
To meet the ever-increasing demand for data storage, future magnetic recording devices will need to be made three-dimensional by implementing multilayer recording. In this article, we present methods of detecting and manipulating the magnetization direction of a specific layer selectively in a vertically stacked multilayer magnetic system, which enable layer-selective read and write operations in three-dimensional magnetic recording devices. The principle behind the methods is ferromagnetic resonance excitation in a microwave magnetic field. By designing each magnetic recording layer to have a different ferromagnetic resonance frequency, magnetization excitation can be induced individually in each layer by tuning the frequency of an applied microwave magnetic field, and this selective magnetization excitation can be utilized for the layer-selective operations. Regarding media for three-dimensional recording, when layers of a perpendicular magnetic material are vertically stacked, dipolar interaction between multiple recording layers arises and is expected to cause problems, such as degradation of thermal stability and switching field distribution. To solve these problems, we propose the use of an antiferromagnetically coupled structure consisting of hard and soft magnetic layers. Because the stray fields from these two layers cancel each other, antiferromagnetically coupled media can reduce the dipolar interaction.
Three-dimensional unsteady viscous flow analysis over airfoil sections
NASA Technical Reports Server (NTRS)
Weinberg, B. C.; Shamroth, S. J.
1984-01-01
A three-dimensional solution procedure for the approximate form of the Navier-Stokes equation was exercised in the two- and three-dimensional modes to compute the unsteady turbulent boundary layer on a flat plate corresponding to the data of Karlsson. The procedure is based on the use of a consistently split Linearized Block Implicit technique in conjunction with a QR operator scheme. New time-dependent upstream boundary conditions were developed that yielded realistic solutions for the interior in the vicinity of the upstream boundary. Comparisons of the computation employing these boundary conditions with the data indicate that both qualitative and quantitative agreement was obtained for the mean velocity and the in phase and out of phase components of the first harmonic of the velocity. In addition, the calculation gave results for the skin friction phase angle that had expected physical behavior for large distances downstream of the inflow boundary. For the three-dimensional case, the two-dimensional data of Karlsson was considered, but in a coordinate system skewed at 45 deg to the free stream direction. The results of the calculations were in excellent agreement with the data and the two-dimensional computations.
Three dimensional self-assembly at the nanoscale
NASA Astrophysics Data System (ADS)
Gracias, D. H.
2013-05-01
At the nanoscale, three dimensional manipulation and assembly becomes extremely challenging and also cost prohibitive. Self-assembly provides an attractive and possibly the only highly parallel methodology to structure truly three dimensional patterned materials and devices at this size scale for applications in electronics, optics, robotics and medicine. This is a concise review along with a perspective of an important and exciting field in nanotechnology and is related to a Nanoengineering Pioneer Award that I received at this SPIE symposium for my contributions to the 3D selfassembly of nanostructures. I detail a historical account of 3D self-assembly and outline important developments in this area which is put into context with the larger research areas of 3D nanofabrication, assembly and nanomanufacturing. A focus in this review is on our work as it relates to the self-assembly with lithographically patterned units; this approach provides a means for heterogeneous integration of periodic, curved and angled nanostructures with precisely defined three dimensional patterns.
Three-dimensional fluorescence characteristics of white chrysanthemum flowers
NASA Astrophysics Data System (ADS)
Fan, Yunchang; Li, Yang; Cai, Hongxin; Li, Jing; Miao, Juan; Fu, Dexue; Su, Kun
2014-09-01
White chrysanthemum flower is one of the most popular plants found everywhere in China and used as herbs. In the present work, three-dimensional fluorescence technique was used to discriminate species of white chrysanthemum flowers. Parameters affecting extraction efficiency were investigated. Under the optimal conditions, the three-dimensional fluorescence characteristics of three types of white chrysanthemum flowers were obtained. It was found that there were two main fluorescence peaks with remarkable difference in fluorescence intensity, one was corresponding to flavonoids and another was attributed to chlorophyll-like compounds. There were remarkable differences among the contours of the three white chrysanthemum flowers. Further studies showed that the fluorescence intensity ratios of chlorophyll-like compounds to flavonoids had a certain relationship with the species; those for Huai, Hang and Huangshan white chrysanthemum flowers were 6.9-7.4, 18.9-21.4 and 73.6-84.5, respectively. All of the results suggest that three-dimensional fluorescence spectra can be used for the discrimination of white chrysanthemum flowers with the advantages of low cost, ease for operation and intuition.
Joint Torque Reduction of a Three Dimensional Redundant Planar Manipulator
Yahya, Samer; Moghavvemi, Mahmoud; Almurib, Haider Abbas F.
2012-01-01
Research on joint torque reduction in robot manipulators has received considerable attention in recent years. Minimizing the computational complexity of torque optimization and the ability to calculate the magnitude of the joint torque accurately will result in a safe operation without overloading the joint actuators. This paper presents a mechanical design for a three dimensional planar redundant manipulator with the advantage of the reduction in the number of motors needed to control the joint angle, leading to a decrease in the weight of the manipulator. Many efforts have been focused on decreasing the weight of manipulators, such as using lightweight joints design or setting the actuators at the base of the manipulator and using tendons for the transmission of power to these joints. By using the design of this paper, only three motors are needed to control any n degrees of freedom in a three dimensional planar redundant manipulator instead of n motors. Therefore this design is very effective to decrease the weight of the manipulator as well as the number of motors needed to control the manipulator. In this paper, the torque of all the joints are calculated for the proposed manipulator (with three motors) and the conventional three dimensional planar manipulator (with one motor for each degree of freedom) to show the effectiveness of the proposed manipulator for decreasing the weight of the manipulator and minimizing driving joint torques. PMID:22969326
Three-dimensional computations of transverse hydrogen jet combustion in a supersonic airstream
NASA Technical Reports Server (NTRS)
Uenishi, K.; Rogers, R. C.; Northam, G. B.
1987-01-01
A computational fluid dynamics (CFD) code is being developed to compute the mixing and combustion of hydrogen fuel in the turbulent flow fields of supersonic combustion ramjets (scramjet). The code solves the three-dimensional Reynolds time-averaged complete Navier-Stokes equations including transport equations for a four species, two reaction, global finite rate chemistry model. The code was applied to the case of transverse injection of hydrogen from a sonic circular orifice into a supersonic airstream. The equations were numerically integrated using MacCormack's explicit method, and the algebraic eddy viscosity model of Baldwin-Lomax was used to model the turbulence. In the species transport and energy equations, diffusion coefficients based on Fick's Law and an assumption of unit Lewis number were applied. Computed features of the three-dimensional flow field are depicted by static pressure, static temperature, mass fraction of species, and velocity vectors. For engineering interest, mixing and combustion parameters were examined to assess the effect of injector diameter, injected fuel pressure, fuel-air ratio, and spacing of fuel injectors. The objective of the present paper is to demonstrate the capability of the present three-dimensional spatially elliptic, CFD code for turbulent, reacting flow. Application of the code to specific supersonic combustion configurations is planned.
Application of three-dimensional computed tomography in craniofacial clinical practice and research.
Anderson, P J; Yong, R; Surman, T L; Rajion, Z A; Ranjitkar, S
2014-06-01
Following the invention of the first computed tomography (CT) scanner in the early 1970s, many innovations in three-dimensional (3D) diagnostic imaging technology have occurred, leading to a wide range of applications in craniofacial clinical practice and research. Three-dimensional image analysis provides superior and more detailed information compared with conventional plain two-dimensional (2D) radiography, with the added benefit of 3D printing for preoperative treatment planning and regenerative therapy. Current state-of-the-art multidetector CT (MDCT), also known as medical CT, has an important role in the diagnosis and management of craniofacial injuries and pathology. Three-dimensional cone beam CT (CBCT), pioneered in the 1990s, is gaining increasing popularity in dental and craniofacial clinical practice because of its faster image acquisition at a lower radiation dose, but sound guidelines are needed to ensure its optimal clinical use. Recent innovations in micro-computed tomography (micro-CT) have revolutionized craniofacial biology research by enabling higher resolution scanning of teeth beyond the capabilities of MDCT and CBCT, presenting new prospects for translational clinical research. Even after four decades of refinement, CT technology continues to advance and broaden the horizons of craniofacial clinical practice and phenomics research. PMID:24611727
Errors between two- and three-dimensional thermal model predictions of hyperthermia treatments.
Chen, Z P; Miller, W H; Roemer, R B; Cetas, T C
1990-01-01
A simulation program to study the three-dimensional temperature distributions produced by hyperthermia in anatomically realistic inhomogenous tissue models has been developed using the bioheat transfer equation. The anatomical data for the inhomogeneous tissues of the human body are entered on a digitizing tablet from serial computed tomography (CT) scans. Power deposition patterns from various heating modalities must be calculated independently. The program has been used to comparatively evaluate two- and three-dimensional simulations in a series of parametric calculations based on a simple inhomogeneous tissue model for uniform power deposition. The conclusions are that two-dimensional simulations always lead to significant errors at the ends of tumors (up to tens of degrees). However, they can give valid results for the central region of large tumors, but only with tumor blood perfusions greater than approximately 1 kg/m3/s. These conclusions from the geometrically simple model are substantiated by the results obtained using the full three-dimensional model for actual patient anatomical simulations. In summary, three-dimensional simulations will be necessary for accurate patient treatment planning. The effect of the thermal conductivity, used in the models, on the temperature field has also been studied. The results show that using any thermal conductivity value in the range of 0.4 to 0.6 W/m/degrees C sufficiently characterizes most soft tissues, especially in the presence of high blood perfusion. However, bone (thermal conductivity of 1.16 W/m/degrees C) and fat (thermal conductivity of 0.2 W/m/degrees C) do not fit this generalization and significant errors result if soft tissue values are used.
Use of a Three Dimensional Printed Cardiac Model to Assess Suitability for Biventricular Repair.
Farooqi, Kanwal M; Gonzalez-Lengua, Carlos; Shenoy, Rajesh; Sanz, Javier; Nguyen, Khanh
2016-05-01
Three dimensional (3D) printing is rapidly gaining interest in the medical field for use in presurgical planning. We present the case of a seven-year-old boy with double outlet right ventricle who underwent a bidirectional Glenn anastomosis. We used a 3D cardiac model to assess his suitability for a biventricular repair. He underwent a left ventricle-to-aorta baffle with a right ventricle-to-pulmonary artery conduit placement. He did well postoperatively and was discharged home with no evidence of baffle obstruction and good biventricular function. A 3D printed model can provide invaluable intracardiac spatial information in these complex patients.
Erkapic, Damir; Neumann, Thomas
2015-03-01
Preprocedural detailed characterization of premature ventricular complexes before ablation, currently limited to the 12-lead electrocardiogram, may aid in planning and improve procedural outcomes. This article summarizes current published data on feasibility, accuracy, and impact on clinical outcomes of a novel, three-dimensional, noninvasive, single-beat mapping system (ECVUE, CardioInsight). ECVUE technology offers premature ventricular complex characterization and localization with clinically relevant accuracy and performance superior to the surface electrocardiogram. With its noninvasive and single beat advantages, ECVUE has the potential to simplify mapping, and reduce ablation and procedural time.
Use of a Three Dimensional Printed Cardiac Model to Assess Suitability for Biventricular Repair.
Farooqi, Kanwal M; Gonzalez-Lengua, Carlos; Shenoy, Rajesh; Sanz, Javier; Nguyen, Khanh
2016-05-01
Three dimensional (3D) printing is rapidly gaining interest in the medical field for use in presurgical planning. We present the case of a seven-year-old boy with double outlet right ventricle who underwent a bidirectional Glenn anastomosis. We used a 3D cardiac model to assess his suitability for a biventricular repair. He underwent a left ventricle-to-aorta baffle with a right ventricle-to-pulmonary artery conduit placement. He did well postoperatively and was discharged home with no evidence of baffle obstruction and good biventricular function. A 3D printed model can provide invaluable intracardiac spatial information in these complex patients. PMID:27009890
Three-Dimensional Wind Profiling of Offshore Wind Energy Areas With Airborne Doppler Lidar
NASA Technical Reports Server (NTRS)
Koch, Grady J.; Beyon, Jeffrey Y.; Cowen, Larry J.; Kavaya, Michael J.; Grant, Michael S.
2014-01-01
A technique has been developed for imaging the wind field over offshore areas being considered for wind farming. This is accomplished with an eye-safe 2-micrometer wavelength coherent Doppler lidar installed in an aircraft. By raster scanning the aircraft over the wind energy area (WEA), a three-dimensional map of the wind vector can be made. This technique was evaluated in 11 flights over the Virginia and Maryland offshore WEAs. Heights above the ocean surface planned for wind turbines are shown to be within the marine boundary layer, and the wind vector is seen to show variation across the geographical area of interest at turbine heights.
Three-dimensional, geological representation of Quaternary deposits, Goettingen, Germany
NASA Astrophysics Data System (ADS)
Thomas, Katrin; Wagner, Bianca
2010-05-01
The Quaternary unconsolidated rock in north-eastern Goettingen was newly interpreted according to current scientific expertise. Especially the deposits of the Lutter River, a tributary to the Leine River, were examined using 253 drillings previously undertaken to create 24 two-dimensional cross-sections and a three-dimensional model of the geologic underground in the study area. The interpretation of the included data (drillings, previous studies, two-dimensional cross-sections) resulted in a stratigraphic sequence with 17 Quaternary model units, which was depicted three-dimensionally. During the investigation period, open pits were limited in the entire working area. Natural outcrops of Quaternary subsurfaces are absent. For the creation of a two-dimensional and three-dimensional representation of the geologic structure, it was necessary to fall back on available information of drillings. The spatial distribution of the drilling information in the scope of work is very heterogeneous. In addition, numerous engineer-geologic surveys were used for the interpretation and interpolation within areas where no other information could be obtained by drilling within this study. The production of a three-dimensional illustration of the unconsolidated rock first required an exact investigation and homogenisation of all available information. The choice of the drillings used in the scope of work were chosen with priority according to their depth with the aid of ArcMap. Two-dimensional cross-sections of the profiles of these drillings were produced with the help of the computer program GeoDin. Using the two-dimensional cross sections, the drillings were correlated with each other and compared and discussed extensively. The sequence of the geologic unities thereby presented itself more clearly and more exactly than in linear consideration. A geologic unity could be assigned to every examined layer of each drilling. Additionally, a top and a base were assigned to each geologic
Lyapunov Schmidt reduction algorithm for three-dimensional discrete vortices
NASA Astrophysics Data System (ADS)
Lukas, Mike; Pelinovsky, Dmitry; Kevrekidis, P. G.
2008-03-01
We address the persistence and stability of three-dimensional vortex configurations in the discrete nonlinear Schrödinger equation and develop a symbolic package based on Wolfram’s MATHEMATICA for computations of the Lyapunov-Schmidt reduction method. The Lyapunov-Schmidt reduction method is a theoretical tool which enables us to study continuations and terminations of the discrete vortices for small coupling between lattice nodes as well as the spectral stability of the persistent configurations. The method was developed earlier in the context of the two-dimensional lattice and applied to the onsite and offsite configurations (called the vortex cross and the vortex cell) by using semianalytical computations [D.E. Pelinovsky, P.G. Kevrekidis, D. Frantzeskakis, Physica D 212 (2005) 20-53; P.G. Kevrekidis, D.E. Pelinovsky, Proc. R. Soc. A 462 (2006) 2671-2694]. The present treatment develops a full symbolic computational package which takes a desired waveform at the anticontinuum limit of uncoupled sites, performs a required number of Lyapunov-Schmidt reductions and outputs the predictions on whether the configuration persists, for finite coupling, in the three-dimensional lattice and whether it is stable or unstable. It also provides approximations for the eigenvalues of the linearized stability problem. We report a number of applications of the algorithm to important multisite three-dimensional configurations, such as the simple cube, the double cross and the diamond. For each configuration, we identify exactly one solution, which is stable for small coupling between lattice nodes.
Three-dimensional reconstruction and morphological characterization of pituitary macroadenomas
Wei, Lin; Jing, Jun-Jie; Zhang, Shang-Ming
2016-01-01
Introduction The aim was to investigate the relationship between the tumor (clinicopathologic and radiological) characteristics and the morphological parameters of pituitary macroadenoma or giant adenoma patients using a three-dimensional (3D) reconstructed model. Material and methods Magnetic resoanance imaging (MRI) was performed preoperatively; tumor grade was determined by the Knosp-Steiner classification and tumor morphology by the SIPAP classification. Pituitary adenomas and adjacent structures were reconstructed three-dimensionally by volume rendering. Results Fifty-two and 6 patients underwent surgery via the transnasal transsphenoidal or pterional approach, respectively. Knosp-Steiner grades I to IV adenomas were observed in 5.2%, 25.9%, 22.4% and 46.6% of the patients, respectively. The 3D model was reconstructed in all cases with superb delineation of tumor morphology and the spatial relationship between the tumor and adjacent tissues. Pituitary adenomas were categorized into intrasellar (13.8%), suprasellar (20.7%), infrasellar (17.2%), and lobulated adenomas (48.3%). Suprasellar adenomas had the smallest (2.27 ±3.22 cm3) and lobulated adenomas the largest volume (24.61 ±30.50 cm3). Intrasellar adenomas were all functioning, while 75%, 60% and 60.7%, respectively, of suprasellar, infrasellar and lobulated adenomas were nonfunctioning, with a significant association between tumor morphology and secretory function (p = 0.005). Conclusions Three-dimensional reconstruction of pituitary macroadenomas offers a simplified morphological classification of pituitary adenomas and may be helpful for neurosurgeons to categorize and characterize pituitary adenomas. PMID:27279851
Asymmetric three-dimensional topography over mantle plumes.
Burov, Evgueni; Gerya, Taras
2014-09-01
The role of mantle-lithosphere interactions in shaping surface topography has long been debated. In general, it is supposed that mantle plumes and vertical mantle flows result in axisymmetric, long-wavelength topography, which strongly differs from the generally asymmetric short-wavelength topography created by intraplate tectonic forces. However, identification of mantle-induced topography is difficult, especially in the continents. It can be argued therefore that complex brittle-ductile rheology and stratification of the continental lithosphere result in short-wavelength modulation and localization of deformation induced by mantle flow. This deformation should also be affected by far-field stresses and, hence, interplay with the 'tectonic' topography (for example, in the 'active/passive' rifting scenario). Testing these ideas requires fully coupled three-dimensional numerical modelling of mantle-lithosphere interactions, which so far has not been possible owing to the conceptual and technical limitations of earlier approaches. Here we present new, ultra-high-resolution, three-dimensional numerical experiments on topography over mantle plumes, incorporating a weakly pre-stressed (ultra-slow spreading), rheologically realistic lithosphere. The results show complex surface evolution, which is very different from the smooth, radially symmetric patterns usually assumed as the canonical surface signature of mantle upwellings. In particular, the topography exhibits strongly asymmetric, small-scale, three-dimensional features, which include narrow and wide rifts, flexural flank uplifts and fault structures. This suggests a dominant role for continental rheological structure and intra-plate stresses in controlling dynamic topography, mantle-lithosphere interactions, and continental break-up processes above mantle plumes. PMID:25186903
Asymmetric three-dimensional topography over mantle plumes.
Burov, Evgueni; Gerya, Taras
2014-09-01
The role of mantle-lithosphere interactions in shaping surface topography has long been debated. In general, it is supposed that mantle plumes and vertical mantle flows result in axisymmetric, long-wavelength topography, which strongly differs from the generally asymmetric short-wavelength topography created by intraplate tectonic forces. However, identification of mantle-induced topography is difficult, especially in the continents. It can be argued therefore that complex brittle-ductile rheology and stratification of the continental lithosphere result in short-wavelength modulation and localization of deformation induced by mantle flow. This deformation should also be affected by far-field stresses and, hence, interplay with the 'tectonic' topography (for example, in the 'active/passive' rifting scenario). Testing these ideas requires fully coupled three-dimensional numerical modelling of mantle-lithosphere interactions, which so far has not been possible owing to the conceptual and technical limitations of earlier approaches. Here we present new, ultra-high-resolution, three-dimensional numerical experiments on topography over mantle plumes, incorporating a weakly pre-stressed (ultra-slow spreading), rheologically realistic lithosphere. The results show complex surface evolution, which is very different from the smooth, radially symmetric patterns usually assumed as the canonical surface signature of mantle upwellings. In particular, the topography exhibits strongly asymmetric, small-scale, three-dimensional features, which include narrow and wide rifts, flexural flank uplifts and fault structures. This suggests a dominant role for continental rheological structure and intra-plate stresses in controlling dynamic topography, mantle-lithosphere interactions, and continental break-up processes above mantle plumes.
Propagation uniqueness in three-dimensional coherent diffractive imaging
Huang Xiaojing; Harder, Ross; Xiong Gang; Shi Xiaowen; Robinson, Ian
2011-06-01
Propagation nonuniqueness in three-dimensional (3D) coherent diffractive imaging (CDI) arises from the fact that an ensemble of solutions, related by propagation, gives an identical far-field diffraction intensity. Tight support constraint and tight allowed phase range behave similarly in constraining the solution of phase retrieval process, thus removing this nonuniqueness in simple cases but not for strong-phase objects. For CDI in Bragg geometry, we introduce a two-step phasing procedure for reconstructing heavily-strained samples that balances the need to define both support and phase constraints.
Three-dimensional magnetic resonance microscopy of materials.
Botto, R E; Cody, G D; Dieckman, S L; French, D C; Gopalsami, N; Rizo, P
1996-07-01
Several aspects of magnetic resonance microscopy are examined employing three-dimensional (3D) back-projection reconstruction techniques in combination with either simple Bloch-decay methods or MREV-8 multiple-pulse line narrowing techniques in the presence of static field gradients. Applications to the areas of ceramic processing, catalyst porosity measurements and the characterization of polymeric materials are presented. The focus of the discussion centers on issues of sensitivity and resolution using this approach compared with other methods. Advantages and limitations of 3D microscopy over more commonly employed slice selection protocols are discussed, as well as potential remedies to some of the inherent limitations of the technique. PMID:8902960
Three-dimensional confocal optical imagery of precambrian microscopic organisms.
Schopf, J William; Tripathi, Abhishek B; Kudryavtsev, Anatoliy B
2006-02-01
A major difficulty that has long hindered studies of organic-walled Precambrian microbes in petrographic thin sections is the accurate documentation of their three-dimensional morphology. To address this need, we here demonstrate the use of confocal laser scanning microscopy. This technique, both non-intrusive and non-destructive, can provide data by which to objectively characterize, in situ and at submicron-scale resolution, the cellular and organismal morphology of permineralized (petrified) microorganisms. Application of this technique can provide information in three dimensions about the morphology, taphonomy, and fidelity of preservation of such fossils at a spatial resolution unavailable by any other means.
Ordinary polarization singularities in three-dimensional optical fields.
Freund, Isaac
2012-06-15
In generic three-dimensional optical fields the canonical point polarization singularities are points of circular polarization, C points on C lines, and points of linear polarization, L points on L lines. These special points are surrounded by a sea of ordinary points. In planes oriented normal to the principle axes of the polarization ellipse at the point, every ordinary point is also a singularity, here an ordinary polarization singularity, or O point. Interactions between O points, between O points and C points, and between O points and L points are described that highlight the fact that a consistent description of optical fields containing C and L lines must include O points.
Three-dimensional annihilation imaging of trapped antiprotons.
Fujiwara, M C; Amoretti, M; Bonomi, G; Bouchta, A; Bowe, P D; Carraro, C; Cesar, C L; Charlton, M; Doser, M; Filippini, V; Fontana, A; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Jørgensen, L V; Lagomarsino, V; Landua, R; Lodi-Rizzini, E; Marchesotti, M; Macri, M; Madsen, N; Manuzio, G; Montagna, P; Riedler, P; Rotondi, A; Rouleau, G; Testera, G; Variola, A; van der Werf, D P; Yamazaki, Y
2004-02-13
We demonstrate three-dimensional imaging of antiprotons in a Penning trap, by reconstructing annihilation vertices from the trajectories of the charged annihilation products. The unique capability of antiparticle imaging has allowed, for the first time, the observation of the spatial distribution of the particle loss in a Penning trap. The radial loss of antiprotons on the trap wall is localized to small spots, strongly breaking the azimuthal symmetry expected for an ideal trap. Our observations have important implications for detection of antihydrogen annihilations. PMID:14995248
Transitional Suspensions Containing Thermosensitive Dispersant for Three-Dimensional Printing.
Wang, Xiaofeng; Sun, Yuehua; Peng, Chaoqun; Luo, Hang; Wang, Richu; Zhang, Dou
2015-12-01
Tailoring the rheology of suspensions is an essential and persistent issue form many applications, especially three-dimensional (3D) printing. Colloidal suspensions of ceramic powder (Al2O3) dispersed by a special thermosensitive dispersant (poly(acrylic acid)-poly(N-isopropylacrylamide), PAA-PNIPAM) were designed, which underwent a remarkable fluid-gel transition in response to thermal stimulus due to the phase transition of the graft chains (-PNIPAM). 3D periodic structures with a fine size of 100 μm were assembled by 3D printing. PMID:26552611
Development of a three-dimensional supersonic inlet flow analysis
NASA Technical Reports Server (NTRS)
Buggeln, R. C.; Mcdonald, H.; Levy, R.; Kreskovsky, J. P.
1980-01-01
A method for computing three dimensional flow in supersonic inlets is described. An approximate set of governing equations is given for viscous flows which have a primary flow direction. The governing equations are written in general orthogonal coordinates. These equations are modified in the subsonic region of the flow to prevent the phenomenon of branching. Results are presented for the two sample cases: a Mach number equals 2.5 flow in a square duct, and a Mach number equals 3.0 flow in a research jet engine inlet. In the latter case the computed results are compared with the experimental data. A users' manual is included.
The three-dimensional crystal structure of cholera toxin
Zhang, Rong-Guang; Westbrook, M.L.; Nance, S.; Spangler, B.D.; Scott, D.L.; Westbrook, E.M.
1996-02-01
The clinical manifestations of cholera are largely attributable to the actions of a secreted hexameric AB{sub 5} enterotoxin (choleragen). We have solved the three-dimensional structure of choleragen at 2.5 {Angstrom} resolution and compared the refined coordinates with those of choleragenoid (isolated B pentamer) and the heat-labile enterotoxin from Escherichia coli (LT). The crystalline coordinates provide a detailed view of the stereochemistry implicated in binding to GM1 gangliosides and in carrying out ADP-ribosylation. The A2 chain of choleragen, in contrast to that of LT, is a nearly continuous {alpha}-helix with an interpretable carboxyl tail.
Three-dimensional simulation of a translating strut inlet
NASA Technical Reports Server (NTRS)
Singh, D. J.; Trexler, Carl A.; Hudgens, Julie A.
1992-01-01
A three-dimensional Navier-Stokes code is used to numerically simulate the flow through a translating strut scramjet inlet. The inlet has variable geometry for efficient operation over a wide speed range. Overall flow-field features such as the corner flow, topwall separation, shockwave coalescence, cowl pressure increase, and flow distortion at the throat are investigated. Comparisons are made with experimental results to provide for the assessment of the present analysis. Effects of boundary-layer ingestion on the overall flow features are also investigated.
Three-dimensional multifunctional optical coherence tomography for skin imaging
NASA Astrophysics Data System (ADS)
Li, En; Makita, Shuichi; Hong, Young-Joo; Kasaragod, Deepa; Sasaoka, Tomoko; Yamanari, Masahiro; Sugiyama, Satoshi; Yasuno, Yoshiaki
2016-02-01
Optical coherence tomography (OCT) visualizes cross-sectional microstructures of biological tissues. Recent developments of multifunctional OCT (MF-OCT) provides multiple optical contrasts which can reveal currently unknown tissue properties. In this contribution we demonstrate multifunctional OCT specially designed for dermatological investigation. And by utilizing it to measure four different body parts of in vivo human skin, three-dimensional scattering OCT, OCT angiography, polarization uniformity tomography, and local birefringence tomography images were obtained by a single scan. They respectively contrast the structure and morphology, vasculature, melanin content and collagen traits of the tissue.
Spatial clustering method based on three-dimensional cloud model
NASA Astrophysics Data System (ADS)
Wang, Haijun; Wang, Li; Deng, Yu; Liu, Jia
2008-12-01
Spatial clustering is one of those major methods applying to spatial data mining and knowledge discovery. The purpose of this paper is to set forth Spatial Clustering Method Based on Multidimensional Cloud Model, which can be widely applied to the research on classification and hierarchy in realm of spatial data mining and knowledge discovery. This paper summarizes all kinds of cloud model and analyzes the optimalizing form of spatial data-three-dimensional cloud model. The limitation which sets the weighing value subjectively in traditional way and propagation of error can be avoided. The implementation procedure of this method is advanced, and the feasibility of this method is proven through experiments effectively.
Three Dimensional Sector Design with Optimal Number of Sectors
NASA Technical Reports Server (NTRS)
Xue, Min
2010-01-01
In the national airspace system, sectors get overloaded due to high traffic demand and inefficient airspace designs. Overloads can be eliminated in some cases by redesigning sector boundaries. This paper extends the Voronoi-based sector design method by automatically selecting the number of sectors, allowing three-dimensional partitions, and enforcing traffic pattern conformance. The method was used to design sectors at Fort-Worth and Indianapolis centers for current traffic scenarios. Results show that new designs can eliminate overloaded sectors, although not in all cases, reduce the number of necessary sectors, and conform to major traffic patterns. Overall, the new methodology produces enhanced and efficient sector designs.
Three-dimensional assessment of facial asymmetry: A systematic review
Akhil, Gopi; Senthil Kumar, Kullampalayam Palanisamy; Raja, Subramani; Janardhanan, Kumaresan
2015-01-01
For patients with facial asymmetry, complete and precise diagnosis, and surgical treatments to correct the underlying cause of the asymmetry are significant. Conventional diagnostic radiographs (submento-vertex projections, posteroanterior radiography) have limitations in asymmetry diagnosis due to two-dimensional assessments of three-dimensional (3D) images. The advent of 3D images has greatly reduced the magnification and projection errors that are common in conventional radiographs making it as a precise diagnostic aid for assessment of facial asymmetry. Thus, this article attempts to review the newly introduced 3D tools in the diagnosis of more complex facial asymmetries. PMID:26538893
Three-dimensional materials analysis by confocal Raman microspectroscopy.
Kador, L; Schittkowski, T; Bauer, M; Fan, Y
2001-10-01
Two- and three-dimensional spatial analysis of various composite materials was performed with a scanning confocal Raman microspectrometer. Samples include TiO(2) microparticles, mixtures of polymers, and the surface of an older Eprom computer chip. In the last case both structural and compositional information was obtained by means of comparing the signal intensity of the Rayleigh line with that of the silicon Raman line at 520 cm(-1). The spatial compositions of a pain-relief medicine and a pharmaceutical salt mixture could be visualized from characteristic Raman lines of the components.
Three-dimensional imaging techniques: A literature review
Karatas, Orhan Hakki; Toy, Ebubekir
2014-01-01
Imaging is one of the most important tools for orthodontists to evaluate and record size and form of craniofacial structures. Orthodontists routinely use 2-dimensional (2D) static imaging techniques, but deepness of structures cannot be obtained and localized with 2D imaging. Three-dimensional (3D) imaging has been developed in the early of 1990's and has gained a precious place in dentistry, especially in orthodontics. The aims of this literature review are to summarize the current state of the 3D imaging techniques and to evaluate the applications in orthodontics. PMID:24966761
Three-dimensional "Mercedes-Benz" model for water.
Dias, Cristiano L; Ala-Nissila, Tapio; Grant, Martin; Karttunen, Mikko
2009-08-01
In this paper we introduce a three-dimensional version of the Mercedes-Benz model to describe water molecules. In this model van der Waals interactions and hydrogen bonds are given explicitly through a Lennard-Jones potential and a Gaussian orientation-dependent terms, respectively. At low temperature the model freezes forming Ice-I and it reproduces the main peaks of the experimental radial distribution function of water. In addition to these structural properties, the model also captures the thermodynamical anomalies of water: The anomalous density profile, the negative thermal expansivity, the large heat capacity, and the minimum in the isothermal compressibility.
Three-dimensional ``Mercedes-Benz'' model for water
NASA Astrophysics Data System (ADS)
Dias, Cristiano L.; Ala-Nissila, Tapio; Grant, Martin; Karttunen, Mikko
2009-08-01
In this paper we introduce a three-dimensional version of the Mercedes-Benz model to describe water molecules. In this model van der Waals interactions and hydrogen bonds are given explicitly through a Lennard-Jones potential and a Gaussian orientation-dependent terms, respectively. At low temperature the model freezes forming Ice-I and it reproduces the main peaks of the experimental radial distribution function of water. In addition to these structural properties, the model also captures the thermodynamical anomalies of water: The anomalous density profile, the negative thermal expansivity, the large heat capacity, and the minimum in the isothermal compressibility.
A Three-Dimensional Virtual Simulator for Aircraft Flyover Presentation
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Sullivan, Brenda M.; Sandridge, Christopher A.
2003-01-01
This paper presents a system developed at NASA Langley Research Center to render aircraft flyovers in a virtual reality environment. The present system uses monaural recordings of actual aircraft flyover noise and presents these binaurally using head tracking information. The three-dimensional audio is simultaneously rendered with a visual presentation using a head-mounted display (HMD). The final system will use flyover noise synthesized using data from various analytical and empirical modeling systems. This will permit presentation of flyover noise from candidate low-noise flight operations to subjects for psychoacoustical evaluation.
Three-Dimensional Printing of Prosthetic Hands for Children.
Burn, Matthew B; Ta, Anderson; Gogola, Gloria R
2016-05-01
Children with hand reductions, whether congenital or traumatic, have unique prosthetic needs. They present a challenge because of their continually changing size due to physical growth as well as changing needs due to psychosocial development. Conventional prosthetics are becoming more technologically advanced and increasingly complex. Although these are welcome advances for adults, the concomitant increases in weight, moving parts, and cost are not beneficial for children. Pediatric prosthetic needs may be better met with simpler solutions. Three-dimensional printing can be used to fabricate rugged, light-weight, easily replaceable, and very low cost assistive hands for children. PMID:26972557
Growing Three-Dimensional Cartilage-Cell Cultures
NASA Technical Reports Server (NTRS)
Spaulding, Glenn F.; Prewett, Tacey L.; Goodwin, Thomas J.
1995-01-01
Process for growing three-dimensional cultures of mammalian cartilage from normal mammalian cells devised. Effected using horizontal rotating bioreactor described in companion article, "Simplified Bioreactor for Growing Mammalian Cells" (MSC-22060). Bioreactor provides quiescent environment with generous supplies of nutrient and oxygen. Initiated with noncartilage cells. Artificially grown tissue resembles that in mammalian cartilage. Potential use in developing therapies for damage to cartilage by joint and back injuries and by such inflammatory diseases as arthritis and temporal-mandibular joint disease. Also used to test nonsteroid anti-inflammation medicines.
Chalcogenide glass-based three-dimensional photonic crystals
NASA Astrophysics Data System (ADS)
Feigel, A.; Kotler, Z.; Sfez, B.; Arsh, A.; Klebanov, M.; Lyubin, V.
2000-11-01
AsSeTe chalcogenide glasses are materials that are photosensitive and have a large refractive index. These properties make these glasses particularly suitable for the fabrication of photonic crystals. We present a way to build three-dimensional photonic structures from chalcogenide glasses using vapor deposition and direct holographic writing. We show that this technique is intrinsically self-aligned, providing a simple way to build layer-by-layer photonic crystals and a four-layer structure demonstrating the principle of the technique.
Multiple scattering of light in three-dimensional photonic quasicrystals.
Ledermann, Alexandra; Wiersma, Diederik S; Wegener, Martin; von Freymann, Georg
2009-02-01
Recent experiments on three-dimensional icosahedral dielectric photonic quasicrystals have shown several unexpected features: transmitted femtosecond pulses developed a trailing "diffusive" exponential tail and the sum of (zeroth-order) transmittance and reflectance was well below unity. These experimental findings have previously been ascribed to sample imperfections. Here, we analyze these findings by using 3D periodic approximants of the ideal photonic quasicrystals. We show that the experimental observations can be explained in terms of multiple scattering of light within these structures, i.e., in terms of intrinsic rather than purely extrinsic quasicrystal properties.
Three-dimensional structure of human serum albumin
NASA Technical Reports Server (NTRS)
Carter, Daniel C.; He, Xiao-Min; Munson, Sibyl H.; Twigg, Pamela D.; Gernert, Kim M.; Broom, M. Beth; Miller, Teresa Y.
1989-01-01
The three-dimensional structure of human serum albumin has been solved at 6.0 A resolution by the method of multiple isomorphous replacement. Crystals were grown from solutions of polyethylene glycol in the infrequently observed space group P42(1)2 and diffracted X-rays to lattice d-spacings of less than 2.9 A. The electron density maps are of high quality and revealed the structure as a predominantly alpha-helical globin protein in which the course of the polypeptide can be traced. The binding loci of several organic compounds have been determined.
Three dimensional global modeling of atmospheric CO2
NASA Technical Reports Server (NTRS)
Fung, I.; Hansen, J.; Rind, D.
1983-01-01
A model was developed to study the prospects of extracting information on carbon dioxide sources and sinks from observed CO2 variations. The approach uses a three dimensional global transport model, based on winds from a 3-D general circulation model (GCM), to advect CO2 noninteractively, i.e., as a tracer, with specified sources and sinks of CO2 at the surface. The 3-D model employed is identified and biosphere, ocean and fossil fuel sources and sinks are discussed. Some preliminary model results are presented.
Methods for preparation of three-dimensional bodies
Mulligan, Anthony C.; Rigali, Mark J.; Sutaria, Manish P.; Artz, Gregory J.; Gafner, Felix H.; Vaidyanathan, K. Ranji
2008-06-17
Processes for mechanically fabricating two and three-dimensional fibrous monolith composites include preparing a fibrous monolith filament from a core composition of a first powder material and a boundary material of a second powder material. The filament includes a first portion of the core composition surrounded by a second portion of the boundary composition. One or more filaments are extruded through a mechanically-controlled deposition nozzle onto a working surface to create a fibrous monolith composite object. The objects may be formed directly from computer models and have complex geometries.
Methods for preparation of three-dimensional bodies
Mulligan, Anthony C.; Rigali, Mark J.; Sutaria, Manish P.; Artz, Gregory J.; Gafner, Felix H.; Vaidyanathan, K. Ranji
2004-09-28
Processes for mechanically fabricating two and three-dimensional fibrous monolith composites include preparing a fibrous monolith filament from a core composition of a first powder material and a boundary material of a second powder material. The filament includes a first portion of the core composition surrounded by a second portion of the boundary composition. One or more filaments are extruded through a mechanically-controlled deposition nozzle onto a working surface to create a fibrous monolith composite object. The objects may be formed directly from computer models and have complex geometries.
Laser-field-free three-dimensional molecular orientation
NASA Astrophysics Data System (ADS)
Takei, Daisuke; Mun, Je Hoi; Minemoto, Shinichirou; Sakai, Hirofumi
2016-07-01
Laser-field-free three-dimensional orientation, corresponding to the complete control of spatial directions of asymmetric top molecules, is achieved with combined weak electrostatic and elliptically polarized laser fields with an 8-ns turnon and a 150-fs turnoff, which is shaped by a plasma shutter. Rotationally cold 3,4-dibromothiophene molecules are used as a sample, and their lower-lying rotational states are selected by a molecular deflector to increase the degrees of orientation. After the rapid turnoff of the pump pulse, higher degrees of orientation are maintained for 5-10 ps, which is long enough for various applications including electronic stereodynamics in molecules with femtosecond pulses.
Three dimensional separation trap based on dielectrophoresis and use thereof
Mariella, Jr., Raymond P.
2004-05-04
An apparatus is adapted to separate target materials from other materials in a flow containing the target materials and other materials. A dielectrophoretic trap is adapted to receive the target materials and the other materials. At least one electrode system is provided in the trap. The electrode system has a three-dimensional configuration. The electrode system includes a first electrode and a second electrode that are shaped and positioned relative to each such that application of an electrical voltage to the first electrode and the second electrode creates a dielectrophoretic force and said dielectrophoretic force does not reach zero between the first electrode and the second electrode.
Three-Dimensional Printing: An Enabling Technology for IR.
Sheth, Rahul; Balesh, Elie R; Zhang, Yu Shrike; Hirsch, Joshua A; Khademhosseini, Ali; Oklu, Rahmi
2016-06-01
Rapid prototyping, also known as three-dimensional (3D) printing, is a recent technologic advancement with tremendous potential for advancing medical device design. A wide range of raw materials can be incorporated into complex 3D structures, including plastics, metals, biocompatible polymers, and even living cells. With its promise of highly customized, adaptable, and personalized device design at the point of care, 3D printing stands to revolutionize medical care. The present review summarizes the methods for 3D printing and their current and potential roles in medical device design, with an emphasis on their potential relevance to interventional radiology. PMID:27117948
Single-shot afocal three-dimensional microscopy.
Feldkhun, Daniel; Wagner, Kelvin H
2016-08-01
Fourier-basis agile structured illumination sensing (F-BASIS) employs acousto-optically synthesized moving interference patterns, sparse RF-encoded aperture synthesis, nonredundant spatiotemporal frequency multiplexing, and single-pixel detection to measure dense clouds of three-dimensional (3D) Fourier samples without scanning, enabling high-speed focus-free volume microscopy. We present 3D fluorescence imaging results using F-BASIS, including an unprecedented wide-field single-shot volumetric measurement in under 10 ms. The unique capabilities provided by F-BASIS could prove instrumental for capturing fleeting dynamic processes such as neuron signaling in 3D.
Three dimensional audio versus head down TCAS displays
NASA Technical Reports Server (NTRS)
Begault, Durand R.; Pittman, Marc T.
1994-01-01
The advantage of a head up auditory display was evaluated in an experiment designed to measure and compare the acquisition time for capturing visual targets under two conditions: Standard head down traffic collision avoidance system (TCAS) display, and three-dimensional (3-D) audio TCAS presentation. Ten commercial airline crews were tested under full mission simulation conditions at the NASA Ames Crew-Vehicle Systems Research Facility Advanced Concepts Flight Simulator. Scenario software generated targets corresponding to aircraft which activated a 3-D aural advisory or a TCAS advisory. Results showed a significant difference in target acquisition time between the two conditions, favoring the 3-D audio TCAS condition by 500 ms.
Ghost imaging for three-dimensional optical security
Chen, Wen Chen, Xudong
2013-11-25
Ghost imaging has become increasingly popular in quantum and optical application fields. Here, we report three-dimensional (3D) optical security using ghost imaging. The series of random phase-only masks are sparsified, which are further converted into particle-like distributions placed in 3D space. We show that either an optical or digital approach can be employed for the encoding. The results illustrate that a larger key space can be generated due to the application of 3D space compared with previous works.
Ventricular Septal Defect: the Three-Dimensional Point of View
Parisi, V; Ratto, E; Silvestri, C; Pastore, F
This case highlights the clinical usefulness of three-dimensional (3D) echocardiography. The diagnosis of inter-ventricular septal defect associated with aortic regurgitation has been performed in a 50-year-old man using 3D echocardiography. This advanced echocardiography could accurately reproduce the anatomy of the defect and provide further insights in the mechanisms of aortic regurgitation showing an unusual non-coronary cusp prolapse. The routinely use of 3D echocardiography in clinics might allow a better characterization of cardiac anatomy, especially of aortic valve disorders. PMID:24251244
Three dimensional thermal analysis of rocket thrust chambers
Naraghi, M.H.N.; Armstrong, E.S.
1988-06-01
A numerical model for the three dimensional thermal analysis of rocket thrust chambers and nozzles has been developed. The input to the model consists of the composition of the fuel/oxidant mixture and flow rates, chamber pressure, coolant entrance temperature and pressure, dimensions of the engine, materials and the number of nodes in different parts of the engine. The model allows for temperature variation in three dimensions: axial, radial and circumferential directions and by implementing an iterative scheme, it provides nodal temperature distribution, rates of heat transfer, hot gas and coolant thermal and transport properties.
Three-dimensional structure of brain tissue at submicrometer resolution
NASA Astrophysics Data System (ADS)
Saiga, Rino; Mizutani, Ryuta; Inomoto, Chie; Takekoshi, Susumu; Nakamura, Naoya; Tsuboi, Akio; Osawa, Motoki; Arai, Makoto; Oshima, Kenichi; Itokawa, Masanari; Uesugi, Kentaro; Takeuchi, Akihisa; Terada, Yasuko; Suzuki, Yoshio
2016-01-01
Biological objects are composed of submicrometer structures such as cells and organelles that are essential for their functions. Here, we report on three-dimensional X-ray visualization of cells and organelles at resolutions up to 100 nm by imaging microtomography (micro-CT) equipped with Fresnel zone plate optics. Human cerebral tissue, fruit fly cephalic ganglia, and Escherichia coli bacteria labeled with high atomic-number elements were embedded in epoxy resin and subjected to X-ray microtomography at the BL37XU and BL47XU beamlines of the SPring-8 synchrotron radiation facility. The obtained results indicated that soft tissue structures can be visualized with the imaging microtomography.
Teaching veterinary obstetrics using three-dimensional animation technology.
Scherzer, Jakob; Buchanan, M Flint; Moore, James N; White, Susan L
2010-01-01
In this three-year study, test scores for students taught veterinary obstetrics in a classroom setting with either traditional media (photographs, text, and two-dimensional graphical presentations) were compared with those for students taught by incorporating three-dimensional (3D) media (linear animations and interactive QuickTime Virtual Reality models) into the classroom lectures. Incorporation of the 3D animations and interactive models significantly increased students' scores on essay questions designed to assess their comprehension of the subject matter. This approach to education may help to better prepare students for dealing with obstetrical cases during their final clinical year and after graduation. PMID:20847340
A Three-dimensional Map of Milky Way Dust
NASA Astrophysics Data System (ADS)
Green, Gregory M.; Schlafly, Edward F.; Finkbeiner, Douglas P.; Rix, Hans-Walter; Martin, Nicolas; Burgett, William; Draper, Peter W.; Flewelling, Heather; Hodapp, Klaus; Kaiser, Nicholas; Kudritzki, Rolf Peter; Magnier, Eugene; Metcalfe, Nigel; Price, Paul; Tonry, John; Wainscoat, Richard
2015-09-01
We present a three-dimensional map of interstellar dust reddening, covering three-quarters of the sky out to a distance of several kiloparsecs, based on Pan-STARRS 1 (PS1) and 2MASS photometry. The map reveals a wealth of detailed structure, from filaments to large cloud complexes. The map has a hybrid angular resolution, with most of the map at an angular resolution of 3\\buildrel{ \\prime}\\over{.} 4-13\\buildrel{ \\prime}\\over{.} 7, and a maximum distance resolution of ˜ 25%. The three-dimensional distribution of dust is determined in a fully probabilistic framework, yielding the uncertainty in the reddening distribution along each line of sight, as well as stellar distances, reddenings, and classifications for 800 million stars detected by PS1. We demonstrate the consistency of our reddening estimates with those of two-dimensional emission-based maps of dust reddening. In particular, we find agreement with the Planck {τ }353{GHz}-based reddening map to within 0.05 {mag} in E(B-V) to a depth of 0.5 {mag}, and explore systematics at reddenings less than E(B-V)≈ 0.08 {mag}. We validate our per-star reddening estimates by comparison with reddening estimates for stars with both Sloan Digital Sky Survey photometry and Sloan Extension for Galactic Understanding and Exploration spectral classifications, finding per-star agreement to within 0.1 {mag} out to a stellar E(B-V) of 1 mag. We compare our map to two existing three-dimensional dust maps, by Marshall et al. and Lallement et al., demonstrating our finer angular resolution, and better distance resolution compared to the former within ˜ 3 {kpc}. The map can be queried or downloaded at http://argonaut.skymaps.info. We expect the three-dimensional reddening map presented here to find a wide range of uses, among them correcting for reddening and extinction for objects embedded in the plane of the Galaxy, studies of Galactic structure, calibration of future emission-based dust maps, and determining distances to
Numerical simulation of a three-dimensional wall separation
NASA Astrophysics Data System (ADS)
Billet, G.
1980-09-01
A three-dimensional unsteady separated flow over a step having a chevron planform placed in a channel, bounded by vertical walls is studied using a numerical approach in which the walls are replaced by a surface distribution of quadrilateral vortex rings, and the vortex sheet by a discrete vortex volumic distribution. It is shown that various improvements brought to the method, in particular concerning the vorticity emission mechanism and the interactions between the vortex-sheets and the wall, allow to describe correctly the time-evolution of the vortex-sheets and to obtain numerical results in good agreement with experiment.
Numerical simulation of a three-dimensional wall separation
NASA Astrophysics Data System (ADS)
Billet, G.
1980-08-01
A three-dimensional unsteady separated flow over a step having a chevron planform placed in a channel, bounded by vertical walls is studied using a numerical approach in which the walls are replaced by a surface distribution of quadrilateral vortex rings, and the vortex sheet by a discrete vortex volumic distribution. It is shown that various improvements brought to the method, in particular concerning the vorticity emission mechanism and the interactions between the vortex-sheets and the wall, allow to describe correctly the time-evolution of the vortex-sheets and to obtain numerical results in good agreement with experiment.
Numerical simulation of a three dimensional wall separation
NASA Astrophysics Data System (ADS)
Billet, G.
1981-03-01
A three dimensional unsteady separated flow over a step having a chevron planform in a channel, bounded by vertical walls was studied. A numerical approach was used in which the walls are replaced by a surface distribution of quadrilateral vortex rings, and the vortex sheet by a discrete vortex volumic distribution. It is shown that the vorticity emission mechanism and the interactions between the vortex sheets and the wall, allow a correct description of the time evolution of the vortex sheets and show numerical results in good agreement with experiment.
Three-dimensional annihilation imaging of trapped antiprotons.
Fujiwara, M C; Amoretti, M; Bonomi, G; Bouchta, A; Bowe, P D; Carraro, C; Cesar, C L; Charlton, M; Doser, M; Filippini, V; Fontana, A; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Jørgensen, L V; Lagomarsino, V; Landua, R; Lodi-Rizzini, E; Marchesotti, M; Macri, M; Madsen, N; Manuzio, G; Montagna, P; Riedler, P; Rotondi, A; Rouleau, G; Testera, G; Variola, A; van der Werf, D P; Yamazaki, Y
2004-02-13
We demonstrate three-dimensional imaging of antiprotons in a Penning trap, by reconstructing annihilation vertices from the trajectories of the charged annihilation products. The unique capability of antiparticle imaging has allowed, for the first time, the observation of the spatial distribution of the particle loss in a Penning trap. The radial loss of antiprotons on the trap wall is localized to small spots, strongly breaking the azimuthal symmetry expected for an ideal trap. Our observations have important implications for detection of antihydrogen annihilations.
Customizing mesoscale self-assembly with three-dimensional printing
NASA Astrophysics Data System (ADS)
Poty, M.; Lumay, G.; Vandewalle, N.
2014-02-01
Self-assembly due to capillary forces is a common method for generating two-dimensional mesoscale structures from identical floating particles at the liquid-air interface. Designing building blocks to obtain a desired mesoscopic structure is a scientific challenge. We show herein that it is possible to shape the particles with a low cost three-dimensional printer, for composing specific mesoscopic structures. Our method is based on the creation of capillary multipoles inducing either attractive or repulsive forces. Since capillary interactions can be downscaled, our method opens new paths toward low cost microfabrication.
Self-supported three-dimensional nanoelectrodes for microbattery applications.
Cheah, Seng Kian; Perre, Emilie; Rooth, Mårten; Fondell, Mattis; Hårsta, Anders; Nyholm, Leif; Boman, Mats; Gustafsson, Torbjörn; Lu, Jun; Simon, Patrice; Edström, Kristina
2009-09-01
A nanostructured three-dimensional (3D) microbattery has been produced and cycled in a Li-ion battery. It consists of a current collector of aluminum nanorods, a uniform layer of 17 nm TiO(2) covering the nanorods made using ALD, an electrolyte and metallic lithium counter electrode. The battery is electrochemically cycled more than 50 times. The increase in total capacity is 10 times when using a 3D architecture compared to a 2D system for the same footprint area.
The three-dimensional evolution of a plane wake
NASA Technical Reports Server (NTRS)
Maekawa, H.; Moser, R. D.; Mansour, N. N.
1993-01-01
In the past three decades, linear stability analysis has led to a comprehensive understanding of the linear stages of transition in plane wakes. Our understanding of the nonlinear and turbulent stages is less developed. Nonlinear theory developed by Papageorgiou and Smith was used to study the long-wavelength regime in wakes. The nonlinear and turbulent stages were investigated experimentally, and few numerical studies examined the early nonlinear stages of forced wakes. The evolution of three dimensional disturbances in an incompressible wake is investigated using direct numerical simulations. The instantaneous three-dimaensional structures and corresponding statistics are presented.
The Electron in Three-Dimensional Momentum Space
NASA Astrophysics Data System (ADS)
Mantovani, L.; Bacchetta, A.; Pasquini, B.
2016-07-01
We study the electron as a system composed of an electron and a photon and derive the leading-twist transverse-momentum-dependent distribution functions for both the electron and photon in the dressed electron, thereby offering a three-dimensional description of the dressed electron in momentum space. To obtain the distribution functions, we apply both the formalism of light-front wave function overlap representation and the diagrammatic approach; we discuss the comparison of our results between light-cone gauge and Feynman gauge, discussing the role of the Wilson lines to obtain gauge-independent results. We provide examples of plots of the computed distributions.
Numerical simulation of three-dimensional self-gravitating flow
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1993-01-01
The three-dimensional flow of a self-gravitating fluid is numerically simulated using a Fourier pseudospectral method with a logarithmic variable formulation. Two cases with zero total angular momentum are studied in detail, a 323 simulation (Run B). Other than the grid size, the primary difference between the two cases are that Run A modeled atomic hydrogen and had considerably more compressible motion initially than Run B, which modeled molecular hydrogen. The numerical results indicate that gravitational collapse can proceed in a variety of ways. In the Run A, collapse led to an elongated tube-like structure, while in the Run B, collapse led to a flatter, disklike structure.
Single-shot afocal three-dimensional microscopy.
Feldkhun, Daniel; Wagner, Kelvin H
2016-08-01
Fourier-basis agile structured illumination sensing (F-BASIS) employs acousto-optically synthesized moving interference patterns, sparse RF-encoded aperture synthesis, nonredundant spatiotemporal frequency multiplexing, and single-pixel detection to measure dense clouds of three-dimensional (3D) Fourier samples without scanning, enabling high-speed focus-free volume microscopy. We present 3D fluorescence imaging results using F-BASIS, including an unprecedented wide-field single-shot volumetric measurement in under 10 ms. The unique capabilities provided by F-BASIS could prove instrumental for capturing fleeting dynamic processes such as neuron signaling in 3D. PMID:27472599
Three-Dimensional Analysis of Frequency-Chirped FELs
Huang, Z.; Ding, Y.; Wu, J.; /SLAC
2010-09-14
Frequency-chirped free-electron lasers (FELs) are useful to generate a large photon bandwidth or a shorter x-ray pulse duration. In this paper, we present a three-dimensional analysis of a high-gain FEL driven by the energy-chirped electron beam. We show that the FEL eigenmode equation is the same for a frequency-chirped FEL as for an undulator-tapered FEL. We study the transverse effects of such FELs including mode properties and transverse coherence.
Complete structural characterization of foams using three-dimensional images
NASA Astrophysics Data System (ADS)
Montminy, Matthew Dennis
Open-celled foams are three-dimensional networks of polymeric cells. The mechanical properties of a foam depend on the size and geometry of its cells. Since foams have a three-dimensional polyhedral structure, the two-dimensional imaging techniques currently used to characterize foams provide only limited accuracy. Magnetic resonance imaging (MRI) and x-ray computerized tomography (x-ray CT) methods offer opportunities for three-dimensional imaging of these polyhedral structures. This thesis involves the development of computer algorithms and software which can use digital three-dimensional images to determine structural parameters such as strut length distribution, window size distributions, and cell volume distributions. A novel set of algorithms has been designed specifically to analyze images of open-celled foams. The image processing approach uses conformal curvature flow (CCF) segmentation to find foam struts in the 3-D images. Once these struts have been detected, volume thinning is used to find the structural skeleton of the foam. This skeleton, which resembles a stick figure model of the foam, can used to determine many statistical characteristics of the foam, including strut length distributions, window size and shape distributions, and cell volume distributions. A Windows-based software package called FoamView was developed to facilitate 3D foam image processing using this specialized image analysis approach. FoamView includes a graphical user interface which allows the user to interact with visualizations of the foam structure, aiding the image analysis process. FoamView facilitates the analysis of relatively large foam samples containing 50 to 100 cells in relatively short times ranging from 1--3 hours. This software was used to analyze open-celled and closed-celled polyurethane foam samples obtained using x-ray computerized tomography. The structural schematics resulting from the analysis were used to compute strut length, interior angle, window size
Isometry groups of three-dimensional Riemannian metrics
Bona, C. ); Coll, B. )
1992-01-01
The necessary and sufficient conditions for a three-dimensional Riemannian metric to admit a group {ital G}{sub {ital r}} of isometries acting on {ital s}-dimensional orbits are given. This provides the list of (abstract) groups that can act isometrically and maximally on such metrics. The conditions are expressed in terms of the eigenvalues and eigenvectors of the Ricci tensor. In any case, the order of differentiability of these data necessary to determine the isometry group is less than 4.
Electrified magnetic catalysis in three-dimensional topological insulators
NASA Astrophysics Data System (ADS)
Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.
2016-09-01
The gap equations for the surface quasiparticle propagators in a slab of three-dimensional topological insulator in external electric and magnetic fields perpendicular to the slab surfaces are analyzed and solved. A different type of magnetic catalysis is revealed with the dynamical generation of both Haldane and Dirac gaps. Its characteristic feature manifests itself in the crucial role that the electric field plays in dynamical symmetry breaking and the generation of a Dirac gap in the slab. It is argued that, for a sufficiently large external electric field, the ground state of the system is a phase with a homogeneous surface charge density.
Three-Dimensional Computer Aided Design of a Vertical Winnower
NASA Astrophysics Data System (ADS)
Bao, Yumei; Lin, Saijia; Weng, Lijie
The research states home and abroad of the winnowing technology and winnowers are reviewed in brief. For the air duct, the core component of the winnower, the relevant technical parameters in the winnowing process are calculated based on the winnowing principle. The three-dimensional computer aided design (3D-CAD) software Solidworks is applied. The designed vertical winnower is able to separate different raw materials by adjusting the air speed and has been put into practical production to separate the Chinese traditional medicine with high separating effect.