Sample records for anatomical model-matching method

  1. Anatomically-Aided PET Reconstruction Using the Kernel Method

    PubMed Central

    Hutchcroft, Will; Wang, Guobao; Chen, Kevin T.; Catana, Ciprian; Qi, Jinyi

    2016-01-01

    This paper extends the kernel method that was proposed previously for dynamic PET reconstruction, to incorporate anatomical side information into the PET reconstruction model. In contrast to existing methods that incorporate anatomical information using a penalized likelihood framework, the proposed method incorporates this information in the simpler maximum likelihood (ML) formulation and is amenable to ordered subsets. The new method also does not require any segmentation of the anatomical image to obtain edge information. We compare the kernel method with the Bowsher method for anatomically-aided PET image reconstruction through a simulated data set. Computer simulations demonstrate that the kernel method offers advantages over the Bowsher method in region of interest (ROI) quantification. Additionally the kernel method is applied to a 3D patient data set. The kernel method results in reduced noise at a matched contrast level compared with the conventional ML expectation maximization (EM) algorithm. PMID:27541810

  2. Anatomically-aided PET reconstruction using the kernel method.

    PubMed

    Hutchcroft, Will; Wang, Guobao; Chen, Kevin T; Catana, Ciprian; Qi, Jinyi

    2016-09-21

    This paper extends the kernel method that was proposed previously for dynamic PET reconstruction, to incorporate anatomical side information into the PET reconstruction model. In contrast to existing methods that incorporate anatomical information using a penalized likelihood framework, the proposed method incorporates this information in the simpler maximum likelihood (ML) formulation and is amenable to ordered subsets. The new method also does not require any segmentation of the anatomical image to obtain edge information. We compare the kernel method with the Bowsher method for anatomically-aided PET image reconstruction through a simulated data set. Computer simulations demonstrate that the kernel method offers advantages over the Bowsher method in region of interest quantification. Additionally the kernel method is applied to a 3D patient data set. The kernel method results in reduced noise at a matched contrast level compared with the conventional ML expectation maximization algorithm.

  3. Anatomically-aided PET reconstruction using the kernel method

    NASA Astrophysics Data System (ADS)

    Hutchcroft, Will; Wang, Guobao; Chen, Kevin T.; Catana, Ciprian; Qi, Jinyi

    2016-09-01

    This paper extends the kernel method that was proposed previously for dynamic PET reconstruction, to incorporate anatomical side information into the PET reconstruction model. In contrast to existing methods that incorporate anatomical information using a penalized likelihood framework, the proposed method incorporates this information in the simpler maximum likelihood (ML) formulation and is amenable to ordered subsets. The new method also does not require any segmentation of the anatomical image to obtain edge information. We compare the kernel method with the Bowsher method for anatomically-aided PET image reconstruction through a simulated data set. Computer simulations demonstrate that the kernel method offers advantages over the Bowsher method in region of interest quantification. Additionally the kernel method is applied to a 3D patient data set. The kernel method results in reduced noise at a matched contrast level compared with the conventional ML expectation maximization algorithm.

  4. An eFTD-VP framework for efficiently generating patient-specific anatomically detailed facial soft tissue FE mesh for craniomaxillofacial surgery simulation

    PubMed Central

    Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime

    2017-01-01

    Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians’ need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical simulation of facial soft tissue change. PMID:29027022

  5. An eFTD-VP framework for efficiently generating patient-specific anatomically detailed facial soft tissue FE mesh for craniomaxillofacial surgery simulation.

    PubMed

    Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime; Liebschner, Michael A K; Xia, James J

    2018-04-01

    Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians' need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical simulation of facial soft tissue change.

  6. Anatomical and spatial matching in imitation: Evidence from left and right brain-damaged patients.

    PubMed

    Mengotti, Paola; Ripamonti, Enrico; Pesavento, Valentina; Rumiati, Raffaella Ida

    2015-12-01

    Imitation is a sensorimotor process whereby the visual information present in the model's movement has to be coupled with the activation of the motor system in the observer. This also implies that greater the similarity between the seen and the produced movement, the easier it will be to execute the movement, a process also known as ideomotor compatibility. Two components can influence the degree of similarity between two movements: the anatomical and the spatial component. The anatomical component is present when the model and imitator move the same body part (e.g., the right hand) while the spatial component is present when the movement of the model and that of the imitator occur at the same spatial position. Imitation can be achieved by relying on both components, but typically the model's and imitator's movements are matched either anatomically or spatially. The aim of this study was to ascertain the contribution of the left and right hemisphere to the imitation accomplished either with anatomical or spatial matching (or with both). Patients with unilateral left and right brain damage performed an ideomotor task and a gesture imitation task. Lesions in the left and right hemispheres gave rise to different performance deficits. Patients with lesions in the left hemisphere showed impaired imitation when anatomical matching was required, and patients with lesions in the right hemisphere showed impaired imitation when spatial matching was required. Lesion analysis further revealed a differential involvement of left and right hemispheric regions, such as the parietal opercula, in supporting imitation in the ideomotor task. Similarly, gesture imitation seemed to rely on different regions in the left and right hemisphere, such as parietal regions in the left hemisphere and premotor, somatosensory and subcortical regions in the right hemisphere. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Modelling tendon excursions and moment arms of the finger flexors: anatomic fidelity versus function.

    PubMed

    Kociolek, Aaron M; Keir, Peter J

    2011-07-07

    A detailed musculoskeletal model of the human hand is needed to investigate the pathomechanics of tendon disorders and carpal tunnel syndrome. The purpose of this study was to develop a biomechanical model with realistic flexor tendon excursions and moment arms. An existing upper extremity model served as a starting point, which included programmed movement of the index finger. Movement capabilities were added for the other fingers. Metacarpophalangeal articulations were modelled as universal joints to simulate flexion/extension and abduction/adduction while interphalangeal articulations used hinges to represent flexion. Flexor tendon paths were modelled using two approaches. The first method constrained tendons with control points, representing annular pulleys. The second technique used wrap objects at the joints as tendon constraints. Both control point and joint wrap models were iteratively adjusted to coincide with tendon excursions and moment arms from a anthropometric regression model using inputs for a 50th percentile male. Tendon excursions from the joint wrap method best matched the regression model even though anatomic features of the tendon paths were not preserved (absolute differences: mean<0.33 mm, peak<0.74 mm). The joint wrap model also produced similar moment arms to the regression (absolute differences: mean<0.63 mm, peak<1.58 mm). When a scaling algorithm was used to test anthropometrics, the scaled joint wrap models better matched the regression than the scaled control point models. Detailed patient-specific anatomical data will improve model outcomes for clinical use; however, population studies may benefit from simplified geometry, especially with anthropometric scaling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Fast correspondences search in anatomical trees

    NASA Astrophysics Data System (ADS)

    dos Santos, Thiago R.; Gergel, Ingmar; Meinzer, Hans-Peter; Maier-Hein, Lena

    2010-03-01

    Registration of multiple medical images commonly comprises the steps feature extraction, correspondences search and transformation computation. In this paper, we present a new method for a fast and pose independent search of correspondences using as features anatomical trees such as the bronchial system in the lungs or the vessel system in the liver. Our approach scores the similarities between the trees' nodes (bifurcations) taking into account both, topological properties extracted from their graph representations and anatomical properties extracted from the trees themselves. The node assignment maximizes the global similarity (sum of the scores of each pair of assigned nodes), assuring that the matches are distributed throughout the trees. Furthermore, the proposed method is able to deal with distortions in the data, such as noise, motion, artifacts, and problems associated with the extraction method, such as missing or false branches. According to an evaluation on swine lung data sets, the method requires less than one second on average to compute the matching and yields a high rate of correct matches compared to state of the art work.

  9. Building dynamic population graph for accurate correspondence detection.

    PubMed

    Du, Shaoyi; Guo, Yanrong; Sanroma, Gerard; Ni, Dong; Wu, Guorong; Shen, Dinggang

    2015-12-01

    In medical imaging studies, there is an increasing trend for discovering the intrinsic anatomical difference across individual subjects in a dataset, such as hand images for skeletal bone age estimation. Pair-wise matching is often used to detect correspondences between each individual subject and a pre-selected model image with manually-placed landmarks. However, the large anatomical variability across individual subjects can easily compromise such pair-wise matching step. In this paper, we present a new framework to simultaneously detect correspondences among a population of individual subjects, by propagating all manually-placed landmarks from a small set of model images through a dynamically constructed image graph. Specifically, we first establish graph links between models and individual subjects according to pair-wise shape similarity (called as forward step). Next, we detect correspondences for the individual subjects with direct links to any of model images, which is achieved by a new multi-model correspondence detection approach based on our recently-published sparse point matching method. To correct those inaccurate correspondences, we further apply an error detection mechanism to automatically detect wrong correspondences and then update the image graph accordingly (called as backward step). After that, all subject images with detected correspondences are included into the set of model images, and the above two steps of graph expansion and error correction are repeated until accurate correspondences for all subject images are established. Evaluations on real hand X-ray images demonstrate that our proposed method using a dynamic graph construction approach can achieve much higher accuracy and robustness, when compared with the state-of-the-art pair-wise correspondence detection methods as well as a similar method but using static population graph. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Atlas-based automatic measurements of the morphology of the tibiofemoral joint

    NASA Astrophysics Data System (ADS)

    Brehler, M.; Thawait, G.; Shyr, W.; Ramsay, J.; Siewerdsen, J. H.; Zbijewski, W.

    2017-03-01

    Purpose: Anatomical metrics of the tibiofemoral joint support assessment of joint stability and surgical planning. We propose an automated, atlas-based algorithm to streamline the measurements in 3D images of the joint and reduce userdependence of the metrics arising from manual identification of the anatomical landmarks. Methods: The method is initialized with coarse registrations of a set of atlas images to the fixed input image. The initial registrations are then refined separately for the tibia and femur and the best matching atlas is selected. Finally, the anatomical landmarks of the best matching atlas are transformed onto the input image by deforming a surface model of the atlas to fit the shape of the tibial plateau in the input image (a mesh-to-volume registration). We apply the method to weight-bearing volumetric images of the knee obtained from 23 subjects using an extremity cone-beam CT system. Results of the automated algorithm were compared to an expert radiologist for measurements of Static Alignment (SA), Medial Tibial Slope (MTS) and Lateral Tibial Slope (LTS). Results: Intra-reader variability as high as 10% for LTS and 7% for MTS (ratio of standard deviation to the mean in repeated measurements) was found for expert radiologist, illustrating the potential benefits of an automated approach in improving the precision of the metrics. The proposed method achieved excellent registration of the atlas mesh to the input volumes. The resulting automated measurements yielded high correlations with expert radiologist, as indicated by correlation coefficients of 0.72 for MTS, 0.8 for LTS, and 0.89 for SA. Conclusions: The automated method for measurement of anatomical metrics of the tibiofemoral joint achieves high correlation with expert radiologist without the need for time consuming and error prone manual selection of landmarks.

  11. Deformable torso phantoms of Chinese adults for personalized anatomy modelling.

    PubMed

    Wang, Hongkai; Sun, Xiaobang; Wu, Tongning; Li, Congsheng; Chen, Zhonghua; Liao, Meiying; Li, Mengci; Yan, Wen; Huang, Hui; Yang, Jia; Tan, Ziyu; Hui, Libo; Liu, Yue; Pan, Hang; Qu, Yue; Chen, Zhaofeng; Tan, Liwen; Yu, Lijuan; Shi, Hongcheng; Huo, Li; Zhang, Yanjun; Tang, Xin; Zhang, Shaoxiang; Liu, Changjian

    2018-04-16

    In recent years, there has been increasing demand for personalized anatomy modelling for medical and industrial applications, such as ergonomics device development, clinical radiological exposure simulation, biomechanics analysis, and 3D animation character design. In this study, we constructed deformable torso phantoms that can be deformed to match the personal anatomy of Chinese male and female adults. The phantoms were created based on a training set of 79 trunk computed tomography (CT) images (41 males and 38 females) from normal Chinese subjects. Major torso organs were segmented from the CT images, and the statistical shape model (SSM) approach was used to learn the inter-subject anatomical variations. To match the personal anatomy, the phantoms were registered to individual body surface scans or medical images using the active shape model method. The constructed SSM demonstrated anatomical variations in body height, fat quantity, respiratory status, organ geometry, male muscle size, and female breast size. The masses of the deformed phantom organs were consistent with Chinese population organ mass ranges. To validate the performance of personal anatomy modelling, the phantoms were registered to the body surface scan and CT images. The registration accuracy measured from 22 test CT images showed a median Dice coefficient over 0.85, a median volume recovery coefficient (RC vlm ) between 0.85 and 1.1, and a median averaged surface distance (ASD) < 1.5 mm. We hope these phantoms can serve as computational tools for personalized anatomy modelling for the research community. © 2018 Anatomical Society.

  12. Atlas-based automatic measurements of the morphology of the tibiofemoral joint.

    PubMed

    Brehler, M; Thawait, G; Shyr, W; Ramsay, J; Siewerdsen, J H; Zbijewski, W

    2017-02-11

    Anatomical metrics of the tibiofemoral joint support assessment of joint stability and surgical planning. We propose an automated, atlas-based algorithm to streamline the measurements in 3D images of the joint and reduce user-dependence of the metrics arising from manual identification of the anatomical landmarks. The method is initialized with coarse registrations of a set of atlas images to the fixed input image. The initial registrations are then refined separately for the tibia and femur and the best matching atlas is selected. Finally, the anatomical landmarks of the best matching atlas are transformed onto the input image by deforming a surface model of the atlas to fit the shape of the tibial plateau in the input image (a mesh-to-volume registration). We apply the method to weight-bearing volumetric images of the knee obtained from 23 subjects using an extremity cone-beam CT system. Results of the automated algorithm were compared to an expert radiologist for measurements of Static Alignment (SA), Medial Tibial Slope (MTS) and Lateral Tibial Slope (LTS). Intra-reader variability as high as ~10% for LTS and 7% for MTS (ratio of standard deviation to the mean in repeated measurements) was found for expert radiologist, illustrating the potential benefits of an automated approach in improving the precision of the metrics. The proposed method achieved excellent registration of the atlas mesh to the input volumes. The resulting automated measurements yielded high correlations with expert radiologist, as indicated by correlation coefficients of 0.72 for MTS, 0.8 for LTS, and 0.89 for SA. The automated method for measurement of anatomical metrics of the tibiofemoral joint achieves high correlation with expert radiologist without the need for time consuming and error prone manual selection of landmarks.

  13. An automatic bone segmentation method based on anatomical structure for the knee joint in MDCT image.

    PubMed

    Uozumi, Y; Nagamune, K

    2013-01-01

    The purpose of this study is to propose an automatic segmentation about each bone (the femur, the tibia, the patellar, and fibular) of the knee in MDCT image. The proposed method was applied for six patients (Age 33 ± 13, four males/tew females). The proposed method segmented the knee joint into each bone by using anatomical structure for the knee joint. The experiments calculate matching rate of the manual and the proposed method for evaluating it. As a result, The matching rate of the femur, the tibia, the patellar, and fibula were 95.84 ± 0.57%, 94.12 ± 1.01%, 94.49 ± 0.83%, 86.37 ± 4.28%, respectively. This study concluded that the proposed method is enough to segment the knee bones.

  14. A method for mandibular dental arch superimposition using 3D cone beam CT and orthodontic 3D digital model

    PubMed Central

    Park, Tae-Joon; Lee, Sang-Hyun

    2012-01-01

    Objective The purpose of this study was to develop superimposition method on the lower arch using 3-dimensional (3D) cone beam computed tomography (CBCT) images and orthodontic 3D digital modeling. Methods Integrated 3D CBCT images were acquired by substituting the dental portion of 3D CBCT images with precise dental images of an orthodontic 3D digital model. Images were acquired before and after treatment. For the superimposition, 2 superimposition methods were designed. Surface superimposition was based on the basal bone structure of the mandible by surface-to-surface matching (best-fit method). Plane superimposition was based on anatomical structures (mental and lingual foramen). For the evaluation, 10 landmarks including teeth and anatomic structures were assigned, and 30 times of superimpositions and measurements were performed to determine the more reproducible and reliable method. Results All landmarks demonstrated that the surface superimposition method produced relatively more consistent coordinate values. The mean distances of measured landmarks values from the means were statistically significantly lower with the surface superimpositions method. Conclusions Between the 2 superimposition methods designed for the evaluation of 3D changes in the lower arch, surface superimposition was the simpler, more reproducible, reliable method. PMID:23112948

  15. Anatomical knowledge gain through a clay-modeling exercise compared to live and video observations.

    PubMed

    Kooloos, Jan G M; Schepens-Franke, Annelieke N; Bergman, Esther M; Donders, Rogier A R T; Vorstenbosch, Marc A T M

    2014-01-01

    Clay modeling is increasingly used as a teaching method other than dissection. The haptic experience during clay modeling is supposed to correspond to the learning effect of manipulations during exercises in the dissection room involving tissues and organs. We questioned this assumption in two pretest-post-test experiments. In these experiments, the learning effects of clay modeling were compared to either live observations (Experiment I) or video observations (Experiment II) of the clay-modeling exercise. The effects of learning were measured with multiple choice questions, extended matching questions, and recognition of structures on illustrations of cross-sections. Analysis of covariance with pretest scores as the covariate was used to elaborate the results. Experiment I showed a significantly higher post-test score for the observers, whereas Experiment II showed a significantly higher post-test score for the clay modelers. This study shows that (1) students who perform clay-modeling exercises show less gain in anatomical knowledge than students who attentively observe the same exercise being carried out and (2) performing a clay-modeling exercise is better in anatomical knowledge gain compared to the study of a video of the recorded exercise. The most important learning effect seems to be the engagement in the exercise, focusing attention and stimulating time on task. © 2014 American Association of Anatomists.

  16. The impact of anthropometric patient-phantom matching on organ dose: A hybrid phantom study for fluoroscopy guided interventions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Perry B.; Geyer, Amy; Borrego, David

    Purpose: To investigate the benefits and limitations of patient-phantom matching for determining organ dose during fluoroscopy guided interventions. Methods: In this study, 27 CT datasets representing patients of different sizes and genders were contoured and converted into patient-specific computational models. Each model was matched, based on height and weight, to computational phantoms selected from the UF hybrid patient-dependent series. In order to investigate the influence of phantom type on patient organ dose, Monte Carlo methods were used to simulate two cardiac projections (PA/left lateral) and two abdominal projections (RAO/LPO). Organ dose conversion coefficients were then calculated for each patient-specific andmore » patient-dependent phantom and also for a reference stylized and reference hybrid phantom. The coefficients were subsequently analyzed for any correlation between patient-specificity and the accuracy of the dose estimate. Accuracy was quantified by calculating an absolute percent difference using the patient-specific dose conversion coefficients as the reference. Results: Patient-phantom matching was shown most beneficial for estimating the dose to heavy patients. In these cases, the improvement over using a reference stylized phantom ranged from approximately 50% to 120% for abdominal projections and for a reference hybrid phantom from 20% to 60% for all projections. For lighter individuals, patient-phantom matching was clearly superior to using a reference stylized phantom, but not significantly better than using a reference hybrid phantom for certain fields and projections. Conclusions: The results indicate two sources of error when patients are matched with phantoms: Anatomical error, which is inherent due to differences in organ size and location, and error attributed to differences in the total soft tissue attenuation. For small patients, differences in soft tissue attenuation are minimal and are exceeded by inherent anatomical differences. For large patients, difference in soft tissue attenuation can be large. In these cases, patient-phantom matching proves most effective as differences in soft tissue attenuation are mitigated. With increasing obesity rates, overweight patients will continue to make up a growing fraction of all patients undergoing medical imaging. Thus, having phantoms that better represent this population represents a considerable improvement over previous methods. In response to this study, additional phantoms representing heavier weight percentiles will be added to the UFHADM and UFHADF patient-dependent series.« less

  17. A probabilistic framework to infer brain functional connectivity from anatomical connections.

    PubMed

    Deligianni, Fani; Varoquaux, Gael; Thirion, Bertrand; Robinson, Emma; Sharp, David J; Edwards, A David; Rueckert, Daniel

    2011-01-01

    We present a novel probabilistic framework to learn across several subjects a mapping from brain anatomical connectivity to functional connectivity, i.e. the covariance structure of brain activity. This prediction problem must be formulated as a structured-output learning task, as the predicted parameters are strongly correlated. We introduce a model selection framework based on cross-validation with a parametrization-independent loss function suitable to the manifold of covariance matrices. Our model is based on constraining the conditional independence structure of functional activity by the anatomical connectivity. Subsequently, we learn a linear predictor of a stationary multivariate autoregressive model. This natural parameterization of functional connectivity also enforces the positive-definiteness of the predicted covariance and thus matches the structure of the output space. Our results show that functional connectivity can be explained by anatomical connectivity on a rigorous statistical basis, and that a proper model of functional connectivity is essential to assess this link.

  18. A multi-segment foot model based on anatomically registered technical coordinate systems: method repeatability and sensitivity in pediatric planovalgus feet.

    PubMed

    Saraswat, Prabhav; MacWilliams, Bruce A; Davis, Roy B; D'Astous, Jacques L

    2013-01-01

    Several multisegment foot models have been proposed and some have been used to study foot pathologies. These models have been tested and validated on typically developed populations; however application of such models to feet with significant deformities presents an additional set of challenges. For the first time, in this study, a multisegment foot model is tested for repeatability in a population of children with symptomatic abnormal feet. The results from this population are compared to the same metrics collected from an age matched (8-14 years) typically developing population. The modified Shriners Hospitals for Children, Greenville (mSHCG) foot model was applied to ten typically developing children and eleven children with planovalgus feet by two clinicians. Five subjects in each group were retested by both clinicians after 4-6 weeks. Both intra-clinician and inter-clinician repeatability were evaluated using static and dynamic measures. A plaster mold method was used to quantify variability arising from marker placement error. Dynamic variability was measured by examining trial differences from the same subjects when multiple clinicians carried out the data collection multiple times. For hindfoot and forefoot angles, static and dynamic variability in both groups was found to be less than 4° and 6° respectively. The mSHCG model strategy of minimal reliance on anatomical markers for dynamic measures and inherent flexibility enabled by separate anatomical and technical coordinate systems resulted in a model equally repeatable in typically developing and planovalgus populations. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. SU-E-J-111: Finite Element-Based Deformable Image Registration of Pleural Cavity for Photodynamic Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penjweini, R; Zhu, T

    Purpose: The pleural volumes will deform during surgery portion of the pleural photodynamic therapy (PDT) of lung cancer when the pleural cavity is opened. This impact the delivered dose when using highly conformal treatment techniques. In this study, a finite element-based (FEM) deformable image registration is used to quantify the anatomical variation between the contours for the pleural cavities obtained in the operating room and those determined from pre-surgery computed tomography (CT) scans. Methods: An infrared camera-based navigation system (NDI) is used during PDT to track the anatomical changes and contour the lung and chest cavity. A series of CTsmore » of the lungs, in the same patient, are also acquired before the surgery. The structure contour of lung and the CTs are processed and contoured in Matlab and MeshLab. Then, the contours are imported into COMSOL Multiphysics 5.0, where the FEM-based deformable image registration is obtained using the deformed mesh - moving mesh (ALE) model. The NDI acquired lung contour is considered as the reference contour, and the CT contour is used as the target one, which will be deformed. Results: The reconstructed three-dimensional contours from both NDI and CT can be converted to COMSOL so that a three-dimensional ALE model can be developed. The contours can be registered using COMSOL ALE moving mesh model, which takes into account the deformation along x, y and z-axes. The deformed contour has good matches to the reference contour after the dynamic matching process. The resulting 3D deformation map can be used to obtain the locations of other critical anatomic structures, e.g., heart, during surgery. Conclusion: Deformable image registration can fuse images acquired by different modalities. It provides insights into the development of phenomenon and variation in normal anatomical structures over time. The initial assessments of three-dimensional registration show good agreement.« less

  20. Anatomical modeling of the bronchial tree

    NASA Astrophysics Data System (ADS)

    Hentschel, Gerrit; Klinder, Tobias; Blaffert, Thomas; Bülow, Thomas; Wiemker, Rafael; Lorenz, Cristian

    2010-02-01

    The bronchial tree is of direct clinical importance in the context of respective diseases, such as chronic obstructive pulmonary disease (COPD). It furthermore constitutes a reference structure for object localization in the lungs and it finally provides access to lung tissue in, e.g., bronchoscope based procedures for diagnosis and therapy. This paper presents a comprehensive anatomical model for the bronchial tree, including statistics of position, relative and absolute orientation, length, and radius of 34 bronchial segments, going beyond previously published results. The model has been built from 16 manually annotated CT scans, covering several branching variants. The model is represented as a centerline/tree structure but can also be converted in a surface representation. Possible model applications are either to anatomically label extracted bronchial trees or to improve the tree extraction itself by identifying missing segments or sub-trees, e.g., if located beyond a bronchial stenosis. Bronchial tree labeling is achieved using a naïve Bayesian classifier based on the segment properties contained in the model in combination with tree matching. The tree matching step makes use of branching variations covered by the model. An evaluation of the model has been performed in a leaveone- out manner. In total, 87% of the branches resulting from preceding airway tree segmentation could be correctly labeled. The individualized model enables the detection of missing branches, allowing a targeted search, e.g., a local rerun of the tree-segmentation segmentation.

  1. Automatic Parameterization Strategy for Cardiac Electrophysiology Simulations.

    PubMed

    Costa, Caroline Mendonca; Hoetzl, Elena; Rocha, Bernardo Martins; Prassl, Anton J; Plank, Gernot

    2013-10-01

    Driven by recent advances in medical imaging, image segmentation and numerical techniques, computer models of ventricular electrophysiology account for increasingly finer levels of anatomical and biophysical detail. However, considering the large number of model parameters involved parameterization poses a major challenge. A minimum requirement in combined experimental and modeling studies is to achieve good agreement in activation and repolarization sequences between model and experiment or patient data. In this study, we propose basic techniques which aid in determining bidomain parameters to match activation sequences. An iterative parameterization algorithm is implemented which determines appropriate bulk conductivities which yield prescribed velocities. In addition, a method is proposed for splitting the computed bulk conductivities into individual bidomain conductivities by prescribing anisotropy ratios.

  2. Cluster-based upper body marker models for three-dimensional kinematic analysis: Comparison with an anatomical model and reliability analysis.

    PubMed

    Boser, Quinn A; Valevicius, Aïda M; Lavoie, Ewen B; Chapman, Craig S; Pilarski, Patrick M; Hebert, Jacqueline S; Vette, Albert H

    2018-04-27

    Quantifying angular joint kinematics of the upper body is a useful method for assessing upper limb function. Joint angles are commonly obtained via motion capture, tracking markers placed on anatomical landmarks. This method is associated with limitations including administrative burden, soft tissue artifacts, and intra- and inter-tester variability. An alternative method involves the tracking of rigid marker clusters affixed to body segments, calibrated relative to anatomical landmarks or known joint angles. The accuracy and reliability of applying this cluster method to the upper body has, however, not been comprehensively explored. Our objective was to compare three different upper body cluster models with an anatomical model, with respect to joint angles and reliability. Non-disabled participants performed two standardized functional upper limb tasks with anatomical and cluster markers applied concurrently. Joint angle curves obtained via the marker clusters with three different calibration methods were compared to those from an anatomical model, and between-session reliability was assessed for all models. The cluster models produced joint angle curves which were comparable to and highly correlated with those from the anatomical model, but exhibited notable offsets and differences in sensitivity for some degrees of freedom. Between-session reliability was comparable between all models, and good for most degrees of freedom. Overall, the cluster models produced reliable joint angles that, however, cannot be used interchangeably with anatomical model outputs to calculate kinematic metrics. Cluster models appear to be an adequate, and possibly advantageous alternative to anatomical models when the objective is to assess trends in movement behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segars, W. P.; Bond, Jason; Frush, Jack

    2013-04-15

    Purpose: The authors previously developed the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. The XCAT consisted of highly detailed whole-body models for the standard male and female adult, including the cardiac and respiratory motions. In this work, the authors extend the XCAT beyond these reference anatomies by developing a series of anatomically variable 4D XCAT adult phantoms for imaging research, the first library of 4D computational phantoms. Methods: The initial anatomy of each phantom was based on chest-abdomen-pelvis computed tomography data from normal patients obtained from the Duke University database. The major organs and structures for each phantommore » were segmented from the corresponding data and defined using nonuniform rational B-spline surfaces. To complete the body, the authors manually added on the head, arms, and legs using the original XCAT adult male and female anatomies. The structures were scaled to best match the age and anatomy of the patient. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from the template XCAT phantom (male or female) to the target patient model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. Each new phantom was refined by checking for anatomical accuracy via inspection of the models. Results: Using these methods, the authors created a series of computerized phantoms with thousands of anatomical structures and modeling cardiac and respiratory motions. The database consists of 58 (35 male and 23 female) anatomically variable phantoms in total. Like the original XCAT, these phantoms can be combined with existing simulation packages to simulate realistic imaging data. Each new phantom contains parameterized models for the anatomy and the cardiac and respiratory motions and can, therefore, serve as a jumping point from which to create an unlimited number of 3D and 4D variations for imaging research. Conclusions: A population of phantoms that includes a range of anatomical variations representative of the public at large is needed to more closely mimic a clinical study or trial. The series of anatomically variable phantoms developed in this work provide a valuable resource for investigating 3D and 4D imaging devices and the effects of anatomy and motion in imaging. Combined with Monte Carlo simulation programs, the phantoms also provide a valuable tool to investigate patient-specific dose and image quality, and optimization for adults undergoing imaging procedures.« less

  4. Model-driven harmonic parameterization of the cortical surface: HIP-HOP.

    PubMed

    Auzias, G; Lefèvre, J; Le Troter, A; Fischer, C; Perrot, M; Régis, J; Coulon, O

    2013-05-01

    In the context of inter subject brain surface matching, we present a parameterization of the cortical surface constrained by a model of cortical organization. The parameterization is defined via an harmonic mapping of each hemisphere surface to a rectangular planar domain that integrates a representation of the model. As opposed to previous landmark-based registration methods we do not match folds between individuals but instead optimize the fit between cortical sulci and specific iso-coordinate axis in the model. This strategy overcomes some limitation to sulcus-based registration techniques such as topological variability in sulcal landmarks across subjects. Experiments on 62 subjects with manually traced sulci are presented and compared with the result of the Freesurfer software. The evaluation involves a measure of dispersion of sulci with both angular and area distortions. We show that the model-based strategy can lead to a natural, efficient and very fast (less than 5 min per hemisphere) method for defining inter subjects correspondences. We discuss how this approach also reduces the problems inherent to anatomically defined landmarks and open the way to the investigation of cortical organization through the notion of orientation and alignment of structures across the cortex.

  5. Assistance to neurosurgical planning: using a fuzzy spatial graph model of the brain for locating anatomical targets in MRI

    NASA Astrophysics Data System (ADS)

    Villéger, Alice; Ouchchane, Lemlih; Lemaire, Jean-Jacques; Boire, Jean-Yves

    2007-03-01

    Symptoms of neurodegenerative pathologies such as Parkinson's disease can be relieved through Deep Brain Stimulation. This neurosurgical technique relies on high precision positioning of electrodes in specific areas of the basal ganglia and the thalamus. These subcortical anatomical targets must be located at pre-operative stage, from a set of MRI acquired under stereotactic conditions. In order to assist surgical planning, we designed a semi-automated image analysis process for extracting anatomical areas of interest. Complementary information, provided by both patient's data and expert knowledge, is represented as fuzzy membership maps, which are then fused by means of suitable possibilistic operators in order to achieve the segmentation of targets. More specifically, theoretical prior knowledge on brain anatomy is modelled within a 'virtual atlas' organised as a spatial graph: a list of vertices linked by edges, where each vertex represents an anatomical structure of interest and contains relevant information such as tissue composition, whereas each edge represents a spatial relationship between two structures, such as their relative directions. The model is built using heterogeneous sources of information such as qualitative descriptions from the expert, or quantitative information from prelabelled images. For each patient, tissue membership maps are extracted from MR data through a classification step. Prior model and patient's data are then matched by using a research algorithm (or 'strategy') which simultaneously computes an estimation of the location of every structures. The method was tested on 10 clinical images, with promising results. Location and segmentation results were statistically assessed, opening perspectives for enhancements.

  6. Evidence for a distributed hierarchy of action representation in the brain

    PubMed Central

    Grafton, Scott T.; de C. Hamilton, Antonia F.

    2007-01-01

    Complex human behavior is organized around temporally distal outcomes. Behavioral studies based on tasks such as normal prehension, multi-step object use and imitation establish the existence of relative hierarchies of motor control. The retrieval errors in apraxia also support the notion of a hierarchical model for representing action in the brain. In this review, three functional brain imaging studies of action observation using the method of repetition suppression are used to identify a putative neural architecture that supports action understanding at the level of kinematics, object centered goals and ultimately, motor outcomes. These results, based on observation, may match a similar functional anatomic hierarchy for action planning and execution. If this is true, then the findings support a functional anatomic model that is distributed across a set of interconnected brain areas that are differentially recruited for different aspects of goal oriented behavior, rather than a homogeneous mirror neuron system for organizing and understanding all behavior. PMID:17706312

  7. Automatic Marker-free Longitudinal Infrared Image Registration by Shape Context Based Matching and Competitive Winner-guided Optimal Corresponding

    PubMed Central

    Lee, Chia-Yen; Wang, Hao-Jen; Lai, Jhih-Hao; Chang, Yeun-Chung; Huang, Chiun-Sheng

    2017-01-01

    Long-term comparisons of infrared image can facilitate the assessment of breast cancer tissue growth and early tumor detection, in which longitudinal infrared image registration is a necessary step. However, it is hard to keep markers attached on a body surface for weeks, and rather difficult to detect anatomic fiducial markers and match them in the infrared image during registration process. The proposed study, automatic longitudinal infrared registration algorithm, develops an automatic vascular intersection detection method and establishes feature descriptors by shape context to achieve robust matching, as well as to obtain control points for the deformation model. In addition, competitive winner-guided mechanism is developed for optimal corresponding. The proposed algorithm is evaluated in two ways. Results show that the algorithm can quickly lead to accurate image registration and that the effectiveness is superior to manual registration with a mean error being 0.91 pixels. These findings demonstrate that the proposed registration algorithm is reasonably accurate and provide a novel method of extracting a greater amount of useful data from infrared images. PMID:28145474

  8. Automatic Parameterization Strategy for Cardiac Electrophysiology Simulations

    PubMed Central

    Costa, Caroline Mendonca; Hoetzl, Elena; Rocha, Bernardo Martins; Prassl, Anton J; Plank, Gernot

    2014-01-01

    Driven by recent advances in medical imaging, image segmentation and numerical techniques, computer models of ventricular electrophysiology account for increasingly finer levels of anatomical and biophysical detail. However, considering the large number of model parameters involved parameterization poses a major challenge. A minimum requirement in combined experimental and modeling studies is to achieve good agreement in activation and repolarization sequences between model and experiment or patient data. In this study, we propose basic techniques which aid in determining bidomain parameters to match activation sequences. An iterative parameterization algorithm is implemented which determines appropriate bulk conductivities which yield prescribed velocities. In addition, a method is proposed for splitting the computed bulk conductivities into individual bidomain conductivities by prescribing anisotropy ratios. PMID:24729986

  9. Toward magnetic resonance-guided electroanatomical voltage mapping for catheter ablation of scar-related ventricular tachycardia: a comparison of registration methods.

    PubMed

    Tao, Qian; Milles, Julien; VAN Huls VAN Taxis, Carine; Lamb, Hildo J; Reiber, Johan H C; Zeppenfeld, Katja; VAN DER Geest, Rob J

    2012-01-01

    Integration of preprocedural delayed enhanced magnetic resonance imaging (DE-MRI) with electroanatomical voltage mapping (EAVM) may provide additional high-resolution substrate information for catheter ablation of scar-related ventricular tachycardias (VT). Accurate and fast image integration of DE-MRI with EAVM is desirable for MR-guided ablation. Twenty-six VT patients with large transmural scar underwent catheter ablation and preprocedural DE-MRI. With different registration models and EAVM input, 3 image integration methods were evaluated and compared to the commercial registration module CartoMerge. The performance was evaluated both in terms of distance measure that describes surface matching, and correlation measure that describes actual scar correspondence. Compared to CartoMerge, the method that uses the translation-and-rotation model and high-density EAVM input resulted in a registration error of 4.32±0.69 mm as compared to 4.84 ± 1.07 (P <0.05); the method that uses the translation model and high-density EAVM input resulted in a registration error of 4.60 ± 0.65 mm (P = NS); and the method that uses the translation model and a single anatomical landmark input resulted in a registration error of 6.58 ± 1.63 mm (P < 0.05). No significant difference in scar correlation was observed between all 3 methods and CartoMerge (P = NS). During VT ablation procedures, accurate integration of EAVM and DE-MRI can be achieved using a translation registration model and a single anatomical landmark. This model allows for image integration in minimal mapping time and is likely to reduce fluoroscopy time and increase procedure efficacy. © 2011 Wiley Periodicals, Inc.

  10. Enhanced anatomical calibration in human movement analysis.

    PubMed

    Donati, Marco; Camomilla, Valentina; Vannozzi, Giuseppe; Cappozzo, Aurelio

    2007-07-01

    The representation of human movement requires knowledge of both movement and morphology of bony segments. The determination of subject-specific morphology data and their registration with movement data is accomplished through an anatomical calibration procedure (calibrated anatomical systems technique: CAST). This paper describes a novel approach to this calibration (UP-CAST) which, as compared with normally used techniques, achieves better repeatability, a shorter application time, and can be effectively performed by non-skilled examiners. Instead of the manual location of prominent bony anatomical landmarks, the description of which is affected by subjective interpretation, a large number of unlabelled points is acquired over prominent parts of the subject's bone, using a wand fitted with markers. A digital model of a template-bone is then submitted to isomorphic deformation and re-orientation to optimally match the above-mentioned points. The locations of anatomical landmarks are automatically made available. The UP-CAST was validated considering the femur as a paradigmatic case. Intra- and inter-examiner repeatability of the identification of anatomical landmarks was assessed both in vivo, using average weight subjects, and on bare bones. Accuracy of the identification was assessed using the anatomical landmark locations manually located on bare bones as reference. The repeatability of this method was markedly higher than that reported in the literature and obtained using the conventional palpation (ranges: 0.9-7.6 mm and 13.4-17.9, respectively). Accuracy resulted, on average, in a maximal error of 11 mm. Results suggest that the principal source of variability resides in the discrepancy between subject's and template bone morphology and not in the inter-examiner differences. The UP-CAST anatomical calibration could be considered a promising alternative to conventional calibration contributing to a more repeatable 3D human movement analysis.

  11. SU-F-T-114: A Novel Anatomically Predictive Extension Model of Computational Human Phantoms for Dose Reconstruction in Retrospective Epidemiological Studies of Second Cancer Risks in Radiotherapy Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuzmin, G; Lee, C; Lee, C

    Purpose: Recent advances in cancer treatments have greatly increased the likelihood of post-treatment patient survival. Secondary malignancies, however, have become a growing concern. Epidemiological studies determining secondary effects in radiotherapy patients require assessment of organ-specific dose both inside and outside the treatment field. An essential input for Monte Carlo modeling of particle transport is radiological images showing full patient anatomy. However, in retrospective studies it is typical to only have partial anatomy from CT scans used during treatment planning. In this study, we developed a multi-step method to extend such limited patient anatomy to full body anatomy for estimating dosemore » to normal tissues located outside the CT scan coverage. Methods: The first step identified a phantom from a library of body size-dependent computational human phantoms by matching the height and weight of patients. Second, a Python algorithm matched the patient CT coverage location in relation to the whole body phantom. Third, an algorithm cut the whole body phantom and scaled them to match the size of the patient. Then, merged the two anatomies into one whole body. We entitled this new approach, Anatomically Predictive Extension (APE). Results: The APE method was examined by comparing the original chest-abdomen-pelvis CT images of the five patients with the APE phantoms developed from only the chest part of the CAP images and whole body phantoms. We achieved average percent differences of tissue volumes of 25.7%, 34.2%, 16.5%, 26.8%, and 31.6% with an average of 27% across all patients. Conclusion: Our APE method extends the limited CT patient anatomy to whole body anatomy by using image processing and computational human phantoms. Our ongoing work includes evaluating the accuracy of these APE phantoms by comparing normal tissue doses in the APE phantoms and doses calculated for the original full CAP images under generic radiotherapy simulations. This research was supported by the NIH Intramural Research Program.« less

  12. The development of a population of 4D pediatric XCAT phantoms for CT imaging research and optimization

    NASA Astrophysics Data System (ADS)

    Norris, Hannah; Zhang, Yakun; Frush, Jack; Sturgeon, Gregory M.; Minhas, Anum; Tward, Daniel J.; Ratnanather, J. Tilak; Miller, M. I.; Frush, Donald; Samei, Ehsan; Segars, W. Paul

    2014-03-01

    With the increased use of CT examinations, the associated radiation dose has become a large concern, especially for pediatrics. Much research has focused on reducing radiation dose through new scanning and reconstruction methods. Computational phantoms provide an effective and efficient means for evaluating image quality, patient-specific dose, and organ-specific dose in CT. We previously developed a set of highly-detailed 4D reference pediatric XCAT phantoms at ages of newborn, 1, 5, 10, and 15 years with organ and tissues masses matched to ICRP Publication 89 values. We now extend this reference set to a series of 64 pediatric phantoms of a variety of ages and height and weight percentiles, representative of the public at large. High resolution PET-CT data was reviewed by a practicing experienced radiologist for anatomic regularity and was then segmented with manual and semi-automatic methods to form a target model. A Multi-Channel Large Deformation Diffeomorphic Metric Mapping (MC-LDDMM) algorithm was used to calculate the transform from the best age matching pediatric reference phantom to the patient target. The transform was used to complete the target, filling in the non-segmented structures and defining models for the cardiac and respiratory motions. The complete phantoms, consisting of thousands of structures, were then manually inspected for anatomical accuracy. 3D CT data was simulated from the phantoms to demonstrate their ability to generate realistic, patient quality imaging data. The population of pediatric phantoms developed in this work provides a vital tool to investigate dose reduction techniques in 3D and 4D pediatric CT.

  13. Statistical 3D shape analysis of gender differences in lateral ventricles

    NASA Astrophysics Data System (ADS)

    He, Qing; Karpman, Dmitriy; Duan, Ye

    2010-03-01

    This paper aims at analyzing gender differences in the 3D shapes of lateral ventricles, which will provide reference for the analysis of brain abnormalities related to neurological disorders. Previous studies mostly focused on volume analysis, and the main challenge in shape analysis is the required step of establishing shape correspondence among individual shapes. We developed a simple and efficient method based on anatomical landmarks. 14 females and 10 males with matching ages participated in this study. 3D ventricle models were segmented from MR images by a semiautomatic method. Six anatomically meaningful landmarks were identified by detecting the maximum curvature point in a small neighborhood of a manually clicked point on the 3D model. Thin-plate spline was used to transform a randomly selected template shape to each of the rest shape instances, and the point correspondence was established according to Euclidean distance and surface normal. All shapes were spatially aligned by Generalized Procrustes Analysis. Hotelling T2 twosample metric was used to compare the ventricle shapes between males and females, and False Discovery Rate estimation was used to correct for the multiple comparison. The results revealed significant differences in the anterior horn of the right ventricle.

  14. Knowledge-based segmentation of pediatric kidneys in CT for measuring parenchymal volume

    NASA Astrophysics Data System (ADS)

    Brown, Matthew S.; Feng, Waldo C.; Hall, Theodore R.; McNitt-Gray, Michael F.; Churchill, Bernard M.

    2000-06-01

    The purpose of this work was to develop an automated method for segmenting pediatric kidneys in contrast-enhanced helical CT images and measuring the volume of the renal parenchyma. An automated system was developed to segment the abdomen, spine, aorta and kidneys. The expected size, shape, topology an X-ray attenuation of anatomical structures are stored as features in an anatomical model. These features guide 3-D threshold-based segmentation and then matching of extracted image regions to anatomical structures in the model. Following segmentation, the kidney volumes are calculated by summing included voxels. To validate the system, the kidney volumes of 4 swine were calculated using our approach and compared to the 'true' volumes measured after harvesting the kidneys. Automated volume calculations were also performed retrospectively in a cohort of 10 children. The mean difference between the calculated and measured values in the swine kidneys was 1.38 (S.D. plus or minus 0.44) cc. For the pediatric cases, calculated volumes ranged from 41.7 - 252.1 cc/kidney, and the mean ratio of right to left kidney volume was 0.96 (S.D. plus or minus 0.07). These results demonstrate the accuracy of the volumetric technique that may in the future provide an objective assessment of renal damage.

  15. On the integral use of foundational concepts in verifying validity during skull-photo superimposition.

    PubMed

    Jayaprakash, Paul T

    2017-09-01

    Often cited reliability test on video superimposition method integrated scaling face-images in relation to skull-images, tragus-auditory meatus relationship in addition to exocanthion-Whitnall's tubercle relationship when orientating the skull-image and wipe mode imaging in addition to mix mode imaging when obtaining skull-face image overlay and evaluating the goodness of match. However, a report that found higher false positive matches in computer assisted superimposition method transited from the above foundational concepts and relied on images of unspecified sizes that are lesser than 'life-size', frontal plane landmarks in the skull- and face- images alone for orientating the skull-image and mix images alone for evaluating the goodness of match. Recently, arguing the use of 'life-size' images as 'archaic', the authors who tested the reliability in the computer assisted superimposition method have denied any method transition. This article describes that the use of images of unspecified sizes at lesser than 'life-size' eliminates the only possibility to quantify parameters during superimposition which alone enables dynamic skull orientation when overlaying a skull-image with a face-image in an anatomically acceptable orientation. The dynamic skull orientation process mandatorily requires aligning the tragus in the 2D face-image with the auditory meatus in the 3D skull-image for anatomically orientating the skull-image in relation to the posture in the face-image, a step not mentioned by the authors describing the computer assisted superimposition method. Furthermore, mere reliance on mix type images during image overlay eliminates the possibility to assess the relationship between the leading edges of the skull- and face-image outlines as also specific area match among the corresponding craniofacial organs during superimposition. Indicating the possibility of increased false positive matches as a consequence of the above method transitions, the need for testing the reliability in the superimposition method adopting concepts that are considered safe is stressed. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Atlas-based head modeling and spatial normalization for high-density diffuse optical tomography: in vivo validation against fMRI.

    PubMed

    Ferradal, Silvina L; Eggebrecht, Adam T; Hassanpour, Mahlega; Snyder, Abraham Z; Culver, Joseph P

    2014-01-15

    Diffuse optical imaging (DOI) is increasingly becoming a valuable neuroimaging tool when fMRI is precluded. Recent developments in high-density diffuse optical tomography (HD-DOT) overcome previous limitations of sparse DOI systems, providing improved image quality and brain specificity. These improvements in instrumentation prompt the need for advancements in both i) realistic forward light modeling for accurate HD-DOT image reconstruction, and ii) spatial normalization for voxel-wise comparisons across subjects. Individualized forward light models derived from subject-specific anatomical images provide the optimal inverse solutions, but such modeling may not be feasible in all situations. In the absence of subject-specific anatomical images, atlas-based head models registered to the subject's head using cranial fiducials provide an alternative solution. In addition, a standard atlas is attractive because it defines a common coordinate space in which to compare results across subjects. The question therefore arises as to whether atlas-based forward light modeling ensures adequate HD-DOT image quality at the individual and group level. Herein, we demonstrate the feasibility of using atlas-based forward light modeling and spatial normalization methods. Both techniques are validated using subject-matched HD-DOT and fMRI data sets for visual evoked responses measured in five healthy adult subjects. HD-DOT reconstructions obtained with the registered atlas anatomy (i.e. atlas DOT) had an average localization error of 2.7mm relative to reconstructions obtained with the subject-specific anatomical images (i.e. subject-MRI DOT), and 6.6mm relative to fMRI data. At the group level, the localization error of atlas DOT reconstruction was 4.2mm relative to subject-MRI DOT reconstruction, and 6.1mm relative to fMRI. These results show that atlas-based image reconstruction provides a viable approach to individual head modeling for HD-DOT when anatomical imaging is not available. Copyright © 2013. Published by Elsevier Inc.

  17. Contribution of the computed tomography of the anatomical aspects of the sphenoid sinuses to forensic identification.

    PubMed

    Auffret, Mathieu; Garetier, Marc; Diallo, Idris; Aho, Serge; Ben Salem, Douraied

    2016-12-01

    Body identification is the cornerstone of forensic investigation. It can be performed using radiographic techniques, if antemortem images are available. This study was designed to assess the value of visual comparison of the computed tomography (CT) anatomical aspects of the sphenoid sinuses, in forensic individual identification, especially if antemortem dental records, fingerprints or DNA samples are not available. This retrospective work took place in a French university hospital. The supervisor of this study randomly selected from the picture archiving and communication system (PACS), 58 patients who underwent one (16 patients) or two (42 patients) head CT in various neurological contexts. To avoid bias, those studies were prepared (anonymized, and all the head structures but the sphenoid sinuses were excluded), and used to constitute two working lists of 50 (42+8) CT studies of the sphenoid sinuses. An anatomical classification system of the sphenoid sinuses anatomical variations was created based on the anatomical and surgical literature. In these two working lists, three blinded readers had to identify, using the anatomical system and subjective visual comparison, 42 pairs of matched studies, and 16 unmatched studies. Readers were blinded from the exact numbers of matching studies. Each reader correctly identified the 42 pairs of CT with a concordance of 100% [97.5% confidence interval: 91-100%], and the 16 unmatched CT with a concordance of 100% [97.5% confidence interval: 79-100%]. Overall accuracy was 100%. Our study shows that establishing the anatomical concordance of the sphenoid sinuses by visual comparison could be used in personal identification. This easy method, based on a frequently and increasingly prescribed exam, still needs to be assessed on a postmortem cohort. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Object-oriented approach to the automatic segmentation of bones from pediatric hand radiographs

    NASA Astrophysics Data System (ADS)

    Shim, Hyeonjoon; Liu, Brent J.; Taira, Ricky K.; Hall, Theodore R.

    1997-04-01

    The purpose of this paper is to develop a robust and accurate method that automatically segments phalangeal and epiphyseal bones from digital pediatric hand radiographs exhibiting various stages of growth. The development of this system draws principles from object-oriented design, model- guided analysis, and feedback control. A system architecture called 'the object segmentation machine' was implemented incorporating these design philosophies. The system is aided by a knowledge base where all model contours and other information such as age, race, and sex, are stored. These models include object structure models, shape models, 1-D wrist profiles, and gray level histogram models. Shape analysis is performed first by using an arc-length orientation transform to break down a given contour into elementary segments and curves. Then an interpretation tree is used as an inference engine to map known model contour segments to data contour segments obtained from the transform. Spatial and anatomical relationships among contour segments work as constraints from shape model. These constraints aid in generating a list of candidate matches. The candidate match with the highest confidence is chosen to be the current intermediate result. Verification of intermediate results are perform by a feedback control loop.

  19. A method for automatic feature points extraction of human vertebrae three-dimensional model

    NASA Astrophysics Data System (ADS)

    Wu, Zhen; Wu, Junsheng

    2017-05-01

    A method for automatic extraction of the feature points of the human vertebrae three-dimensional model is presented. Firstly, the statistical model of vertebrae feature points is established based on the results of manual vertebrae feature points extraction. Then anatomical axial analysis of the vertebrae model is performed according to the physiological and morphological characteristics of the vertebrae. Using the axial information obtained from the analysis, a projection relationship between the statistical model and the vertebrae model to be extracted is established. According to the projection relationship, the statistical model is matched with the vertebrae model to get the estimated position of the feature point. Finally, by analyzing the curvature in the spherical neighborhood with the estimated position of feature points, the final position of the feature points is obtained. According to the benchmark result on multiple test models, the mean relative errors of feature point positions are less than 5.98%. At more than half of the positions, the error rate is less than 3% and the minimum mean relative error is 0.19%, which verifies the effectiveness of the method.

  20. Particle image velocimetry measurements in an anatomical vascular model fabricated using inkjet 3D printing

    NASA Astrophysics Data System (ADS)

    Aycock, Kenneth I.; Hariharan, Prasanna; Craven, Brent A.

    2017-11-01

    For decades, the study of biomedical fluid dynamics using optical flow visualization and measurement techniques has been limited by the inability to fabricate transparent physical models that realistically replicate the complex morphology of biological lumens. In this study, we present an approach for producing optically transparent anatomical models that are suitable for particle image velocimetry (PIV) using a common 3D inkjet printing process (PolyJet) and stock resin (VeroClear). By matching the index of refraction of the VeroClear material using a room-temperature mixture of water, sodium iodide, and glycerol, and by printing the part in an orientation such that the flat, optical surfaces are at an approximately 45° angle to the build plane, we overcome the challenges associated with using this 3D printing technique for PIV. Here, we summarize our methodology and demonstrate the process and the resultant PIV measurements of flow in an optically transparent anatomical model of the human inferior vena cava.

  1. Deformable medical image registration of pleural cavity for photodynamic therapy by using finite-element based method

    NASA Astrophysics Data System (ADS)

    Penjweini, Rozhin; Kim, Michele M.; Dimofte, Andrea; Finlay, Jarod C.; Zhu, Timothy C.

    2016-03-01

    When the pleural cavity is opened during the surgery portion of pleural photodynamic therapy (PDT) of malignant mesothelioma, the pleural volume will deform. This impacts the delivered dose when using highly conformal treatment techniques. To track the anatomical changes and contour the lung and chest cavity, an infrared camera-based navigation system (NDI) is used during PDT. In the same patient, a series of computed tomography (CT) scans of the lungs are also acquired before the surgery. The reconstructed three-dimensional contours from both NDI and CTs are imported into COMSOL Multiphysics software, where a finite element-based (FEM) deformable image registration is obtained. The CT contour is registered to the corresponding NDI contour by overlapping the center of masses and aligning their orientations. The NDI contour is considered as the reference contour, and the CT contour is used as the target one, which will be deformed. Deformed Geometry model is applied in COMSOL to obtain a deformed target contour. The distortion of the volume at X, Y and Z is mapped to illustrate the transformation of the target contour. The initial assessment shows that FEM-based image deformable registration can fuse images acquired by different modalities. It provides insights into the deformation of anatomical structures along X, Y and Z-axes. The deformed contour has good matches to the reference contour after the dynamic matching process. The resulting three-dimensional deformation map can be used to obtain the locations of other critical anatomic structures, e.g., heart, during surgery.

  2. Comparison of three methods for registration of abdominal/pelvic volume data sets from functional-anatomic scans

    NASA Astrophysics Data System (ADS)

    Mahmoud, Faaiza; Ton, Anthony; Crafoord, Joakim; Kramer, Elissa L.; Maguire, Gerald Q., Jr.; Noz, Marilyn E.; Zeleznik, Michael P.

    2000-06-01

    The purpose of this work was to evaluate three volumetric registration methods in terms of technique, user-friendliness and time requirements. CT and SPECT data from 11 patients were interactively registered using: a 3D method involving only affine transformation; a mixed 3D - 2D non-affine (warping) method; and a 3D non-affine (warping) method. In the first method representative isosurfaces are generated from the anatomical images. Registration proceeds through translation, rotation, and scaling in all three space variables. Resulting isosurfaces are fused and quantitative measurements are possible. In the second method, the 3D volumes are rendered co-planar by performing an oblique projection. Corresponding landmark pairs are chosen on matching axial slice sets. A polynomial warp is then applied. This method has undergone extensive validation and was used to evaluate the results. The third method employs visualization tools. The data model allows images to be localized within two separate volumes. Landmarks are chosen on separate slices. Polynomial warping coefficients are generated and data points from one volume are moved to the corresponding new positions. The two landmark methods were the least time consuming (10 to 30 minutes from start to finish), but did demand a good knowledge of anatomy. The affine method was tedious and required a fair understanding of 3D geometry.

  3. [Application of computer-aided osteotomy template design in treatment of developmental dysplasia of the hip with steel osteotomy].

    PubMed

    Tong, Kuang; Zhang, Yuanzhi; Zhang, Sheng; Yu, Bin

    2013-06-01

    To provide an accurate method for osteotomy in the treatment of developmental dysplasia of the hip with steel osteotomy by three-dimensional reconstruction and Reverse Engineering technique. Between January 2011 and December 2012, 13 children with developmental dysplasia of the hip underwent steel osteotomy. 3D CT scan pelvic images were obtained and transferred via a DICOM network into a computer workstation to construct 3D models of the hip using Materialise Mimics 14.1 software in STL format. These models were imported into Imageware 12.0 software for steel osteotomy simulation until a stable hip was attained in the anatomical position for dislocation or subluxation of the hip in older children. The osteotomy navigational templates were designed according to the anatomical features after a stable hip was reconstructed. These navigational templates were manufactured using a rapid prototyping technique. The reconstruction hips in these children show good matching property and acetabulum cover. The computer-aided design of osteotomy template provides personalized and accurate solutions in the treatment of developmental dysplasia of the hip with steel osteotomy in older children.

  4. The development of a population of 4D pediatric XCAT phantoms for imaging research and optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segars, W. P., E-mail: paul.segars@duke.edu; Norris, Hannah; Sturgeon, Gregory M.

    Purpose: We previously developed a set of highly detailed 4D reference pediatric extended cardiac-torso (XCAT) phantoms at ages of newborn, 1, 5, 10, and 15 yr with organ and tissue masses matched to ICRP Publication 89 values. In this work, we extended this reference set to a series of 64 pediatric phantoms of varying age and height and body mass percentiles representative of the public at large. The models will provide a library of pediatric phantoms for optimizing pediatric imaging protocols. Methods: High resolution positron emission tomography-computed tomography data obtained from the Duke University database were reviewed by a practicingmore » experienced radiologist for anatomic regularity. The CT portion of the data was then segmented with manual and semiautomatic methods to form a target model defined using nonuniform rational B-spline surfaces. A multichannel large deformation diffeomorphic metric mapping algorithm was used to calculate the transform from the best age matching pediatric XCAT reference phantom to the patient target. The transform was used to complete the target, filling in the nonsegmented structures and defining models for the cardiac and respiratory motions. The complete phantoms, consisting of thousands of structures, were then manually inspected for anatomical accuracy. The mass for each major tissue was calculated and compared to linearly interpolated ICRP values for different ages. Results: Sixty four new pediatric phantoms were created in this manner. Each model contains the same level of detail as the original XCAT reference phantoms and also includes parameterized models for the cardiac and respiratory motions. For the phantoms that were 10 yr old and younger, we included both sets of reproductive organs. This gave them the capability to simulate both male and female anatomy. With this, the population can be expanded to 92. Wide anatomical variation was clearly seen amongst the phantom models, both in organ shape and size, even for models of the same age and sex. The phantoms can be combined with existing simulation packages to generate realistic pediatric imaging data from different modalities. Conclusions: This work provides a large cohort of highly detailed pediatric phantoms with 4D capabilities of varying age, height, and body mass. The population of phantoms will provide a vital tool with which to optimize 3D and 4D pediatric imaging devices and techniques in terms of image quality and radiation-absorbed dose.« less

  5. A new combined surface and volume registration

    NASA Astrophysics Data System (ADS)

    Lepore, Natasha; Joshi, Anand A.; Leahy, Richard M.; Brun, Caroline; Chou, Yi-Yu; Pennec, Xavier; Lee, Agatha D.; Barysheva, Marina; De Zubicaray, Greig I.; Wright, Margaret J.; McMahon, Katie L.; Toga, Arthur W.; Thompson, Paul M.

    2010-03-01

    3D registration of brain MRI data is vital for many medical imaging applications. However, purely intensitybased approaches for inter-subject matching of brain structure are generally inaccurate in cortical regions, due to the highly complex network of sulci and gyri, which vary widely across subjects. Here we combine a surfacebased cortical registration with a 3D fluid one for the first time, enabling precise matching of cortical folds, but allowing large deformations in the enclosed brain volume, which guarantee diffeomorphisms. This greatly improves the matching of anatomy in cortical areas. The cortices are segmented and registered with the software Freesurfer. The deformation field is initially extended to the full 3D brain volume using a 3D harmonic mapping that preserves the matching between cortical surfaces. Finally, these deformation fields are used to initialize a 3D Riemannian fluid registration algorithm, that improves the alignment of subcortical brain regions. We validate this method on an MRI dataset from 92 healthy adult twins. Results are compared to those based on volumetric registration without surface constraints; the resulting mean templates resolve consistent anatomical features both subcortically and at the cortex, suggesting that the approach is well-suited for cross-subject integration of functional and anatomic data.

  6. Brain Surface Conformal Parameterization Using Riemann Surface Structure

    PubMed Central

    Wang, Yalin; Lui, Lok Ming; Gu, Xianfeng; Hayashi, Kiralee M.; Chan, Tony F.; Toga, Arthur W.; Thompson, Paul M.; Yau, Shing-Tung

    2011-01-01

    In medical imaging, parameterized 3-D surface models are useful for anatomical modeling and visualization, statistical comparisons of anatomy, and surface-based registration and signal processing. Here we introduce a parameterization method based on Riemann surface structure, which uses a special curvilinear net structure (conformal net) to partition the surface into a set of patches that can each be conformally mapped to a parallelogram. The resulting surface subdivision and the parameterizations of the components are intrinsic and stable (their solutions tend to be smooth functions and the boundary conditions of the Dirichlet problem can be enforced). Conformal parameterization also helps transform partial differential equations (PDEs) that may be defined on 3-D brain surface manifolds to modified PDEs on a two-dimensional parameter domain. Since the Jacobian matrix of a conformal parameterization is diagonal, the modified PDE on the parameter domain is readily solved. To illustrate our techniques, we computed parameterizations for several types of anatomical surfaces in 3-D magnetic resonance imaging scans of the brain, including the cerebral cortex, hippocampi, and lateral ventricles. For surfaces that are topologically homeomorphic to each other and have similar geometrical structures, we show that the parameterization results are consistent and the subdivided surfaces can be matched to each other. Finally, we present an automatic sulcal landmark location algorithm by solving PDEs on cortical surfaces. The landmark detection results are used as constraints for building conformal maps between surfaces that also match explicitly defined landmarks. PMID:17679336

  7. Development of a patient-specific anatomical foot model from structured light scan data.

    PubMed

    Lochner, Samuel J; Huissoon, Jan P; Bedi, Sanjeev S

    2014-01-01

    The use of anatomically accurate finite element (FE) models of the human foot in research studies has increased rapidly in recent years. Uses for FE foot models include advancing knowledge of orthotic design, shoe design, ankle-foot orthoses, pathomechanics, locomotion, plantar pressure, tissue mechanics, plantar fasciitis, joint stress and surgical interventions. Similar applications but for clinical use on a per-patient basis would also be on the rise if it were not for the high costs associated with developing patient-specific anatomical foot models. High costs arise primarily from the expense and challenges of acquiring anatomical data via magnetic resonance imaging (MRI) or computed tomography (CT) and reconstructing the three-dimensional models. The proposed solution morphs detailed anatomy from skin surface geometry and anatomical landmarks of a generic foot model (developed from CT or MRI) to surface geometry and anatomical landmarks acquired from an inexpensive structured light scan of a foot. The method yields a patient-specific anatomical foot model at a fraction of the cost of standard methods. Average error for bone surfaces was 2.53 mm for the six experiments completed. Highest accuracy occurred in the mid-foot and lowest in the forefoot due to the small, irregular bones of the toes. The method must be validated in the intended application to determine if the resulting errors are acceptable.

  8. Lung deformations and radiation-induced regional lung collapse in patients treated with stereotactic body radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diot, Quentin, E-mail: quentin.diot@ucdenver.edu; Kavanagh, Brian; Vinogradskiy, Yevgeniy

    2015-11-15

    Purpose: To differentiate radiation-induced fibrosis from regional lung collapse outside of the high dose region in patients treated with stereotactic body radiation therapy (SBRT) for lung tumors. Methods: Lung deformation maps were computed from pre-treatment and post-treatment computed tomography (CT) scans using a point-to-point translation method. Fifty anatomical landmarks inside the lung (vessel or airway branches) were matched on planning and follow-up scans for the computation process. Two methods using the deformation maps were developed to differentiate regional lung collapse from fibrosis: vector field and Jacobian methods. A total of 40 planning and follow-ups CT scans were analyzed for 20more » lung SBRT patients. Results: Regional lung collapse was detected in 15 patients (75%) using the vector field method, in ten patients (50%) using the Jacobian method, and in 12 patients (60%) by radiologists. In terms of sensitivity and specificity the Jacobian method performed better. Only weak correlations were observed between the dose to the proximal airways and the occurrence of regional lung collapse. Conclusions: The authors presented and evaluated two novel methods using anatomical lung deformations to investigate lung collapse and fibrosis caused by SBRT treatment. Differentiation of these distinct physiological mechanisms beyond what is usually labeled “fibrosis” is necessary for accurate modeling of lung SBRT-induced injuries. With the help of better models, it becomes possible to expand the therapeutic benefits of SBRT to a larger population of lung patients with large or centrally located tumors that were previously considered ineligible.« less

  9. Orbital and maxillofacial computer aided surgery: patient-specific finite element models to predict surgical outcomes.

    PubMed

    Luboz, Vincent; Chabanas, Matthieu; Swider, Pascal; Payan, Yohan

    2005-08-01

    This paper addresses an important issue raised for the clinical relevance of Computer-Assisted Surgical applications, namely the methodology used to automatically build patient-specific finite element (FE) models of anatomical structures. From this perspective, a method is proposed, based on a technique called the mesh-matching method, followed by a process that corrects mesh irregularities. The mesh-matching algorithm generates patient-specific volume meshes from an existing generic model. The mesh regularization process is based on the Jacobian matrix transform related to the FE reference element and the current element. This method for generating patient-specific FE models is first applied to computer-assisted maxillofacial surgery, and more precisely, to the FE elastic modelling of patient facial soft tissues. For each patient, the planned bone osteotomies (mandible, maxilla, chin) are used as boundary conditions to deform the FE face model, in order to predict the aesthetic outcome of the surgery. Seven FE patient-specific models were successfully generated by our method. For one patient, the prediction of the FE model is qualitatively compared with the patient's post-operative appearance, measured from a computer tomography scan. Then, our methodology is applied to computer-assisted orbital surgery. It is, therefore, evaluated for the generation of 11 patient-specific FE poroelastic models of the orbital soft tissues. These models are used to predict the consequences of the surgical decompression of the orbit. More precisely, an average law is extrapolated from the simulations carried out for each patient model. This law links the size of the osteotomy (i.e. the surgical gesture) and the backward displacement of the eyeball (the consequence of the surgical gesture).

  10. Live Donor Renal Anatomic Asymmetry and Post-Transplant Renal Function

    PubMed Central

    Tanriover, Bekir; Fernandez, Sonalis; Campenot, Eric S.; Newhouse, Jeffrey H.; Oyfe, Irina; Mohan, Prince; Sandikci, Burhaneddin; Radhakrishnan, Jai; Wexler, Jennifer J.; Carroll, Maureen A.; Sharif, Sairah; Cohen, David J.; Ratner, Lloyd E.; Hardy, Mark A.

    2014-01-01

    Background Relationship between live donor renal anatomic asymmetry and post-transplant recipient function has not been studied extensively. Methods We analyzed 96 live-kidney donors, who had anatomical asymmetry (>10% renal length and/or volume difference calculated from CT angiograms) and their matching recipients. Split function differences (SFD) were quantified with 99mTc-DMSA renography. Implantation biopsies at time-zero were semi-quantitatively scored. A comprehensive model utilizing donor renal volume adjusted to recipient weight (Vol/Wgt), SFD, and biopsy score was used to predict recipient estimated glomerular filtration rate (eGFR) at one-year. Primary analysis consisted of a logistic regression model of outcome (odds of developing eGFR>60ml/min/1.73 m2 at one-year), a linear regression model of outcome (predicting recipient eGFR at one-year, using the CKD-EPI formula), and a Monte Carlo simulation based on the linear regression model (N=10,000 iterations). Results In the study cohort, the mean Vol/Wgt and eGFR at one-year were 2.04 ml/kg and 60.4 ml/min/1.73m2, respectively. Volume and split ratios between two donor kidneys were strongly correlated (r=0.79, p-value<0.001). The biopsy scores among SFD categories (<5%, 5–10%, >10%) were not different (p=0.190). On multivariate models, only Vol/Wgt was significantly associated with higher odds of having eGFR>60ml/min/1.73 m2 (OR=8.94, 95% CI 2.47–32.25, p=0.001) and had a strong discriminatory power in predicting the risk of eGFR<60ml/min/1.73m2 at one-year (ROC curve=0.78, 95% CI 0.68–0.89). Conclusion In the presence of donor renal anatomic asymmetry, Vol/Wgt appears to be a major determinant of recipient renal function at one-year post-transplantation. Renography can be replaced with CT volume calculation in estimating split renal function. PMID:25719258

  11. Deformably registering and annotating whole CLARITY brains to an atlas via masked LDDMM

    NASA Astrophysics Data System (ADS)

    Kutten, Kwame S.; Vogelstein, Joshua T.; Charon, Nicolas; Ye, Li; Deisseroth, Karl; Miller, Michael I.

    2016-04-01

    The CLARITY method renders brains optically transparent to enable high-resolution imaging in the structurally intact brain. Anatomically annotating CLARITY brains is necessary for discovering which regions contain signals of interest. Manually annotating whole-brain, terabyte CLARITY images is difficult, time-consuming, subjective, and error-prone. Automatically registering CLARITY images to a pre-annotated brain atlas offers a solution, but is difficult for several reasons. Removal of the brain from the skull and subsequent storage and processing cause variable non-rigid deformations, thus compounding inter-subject anatomical variability. Additionally, the signal in CLARITY images arises from various biochemical contrast agents which only sparsely label brain structures. This sparse labeling challenges the most commonly used registration algorithms that need to match image histogram statistics to the more densely labeled histological brain atlases. The standard method is a multiscale Mutual Information B-spline algorithm that dynamically generates an average template as an intermediate registration target. We determined that this method performs poorly when registering CLARITY brains to the Allen Institute's Mouse Reference Atlas (ARA), because the image histogram statistics are poorly matched. Therefore, we developed a method (Mask-LDDMM) for registering CLARITY images, that automatically finds the brain boundary and learns the optimal deformation between the brain and atlas masks. Using Mask-LDDMM without an average template provided better results than the standard approach when registering CLARITY brains to the ARA. The LDDMM pipelines developed here provide a fast automated way to anatomically annotate CLARITY images; our code is available as open source software at http://NeuroData.io.

  12. Preliminary Study on Appearance-Based Detection of Anatomical Point Landmarks in Body Trunk CT Images

    NASA Astrophysics Data System (ADS)

    Nemoto, Mitsutaka; Nomura, Yukihiro; Hanaoka, Shohei; Masutani, Yoshitaka; Yoshikawa, Takeharu; Hayashi, Naoto; Yoshioka, Naoki; Ohtomo, Kuni

    Anatomical point landmarks as most primitive anatomical knowledge are useful for medical image understanding. In this study, we propose a detection method for anatomical point landmark based on appearance models, which include gray-level statistical variations at point landmarks and their surrounding area. The models are built based on results of Principal Component Analysis (PCA) of sample data sets. In addition, we employed generative learning method by transforming ROI of sample data. In this study, we evaluated our method with 24 data sets of body trunk CT images and obtained 95.8 ± 7.3 % of the average sensitivity in 28 landmarks.

  13. TU-D-209-03: Alignment of the Patient Graphic Model Using Fluoroscopic Images for Skin Dose Mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oines, A; Oines, A; Kilian-Meneghin, J

    2016-06-15

    Purpose: The Dose Tracking System (DTS) was developed to provide realtime feedback of skin dose and dose rate during interventional fluoroscopic procedures. A color map on a 3D graphic of the patient represents the cumulative dose distribution on the skin. Automated image correlation algorithms are described which use the fluoroscopic procedure images to align and scale the patient graphic for more accurate dose mapping. Methods: Currently, the DTS employs manual patient graphic selection and alignment. To improve the accuracy of dose mapping and automate the software, various methods are explored to extract information about the beam location and patient morphologymore » from the procedure images. To match patient anatomy with a reference projection image, preprocessing is first used, including edge enhancement, edge detection, and contour detection. Template matching algorithms from OpenCV are then employed to find the location of the beam. Once a match is found, the reference graphic is scaled and rotated to fit the patient, using image registration correlation functions in Matlab. The algorithm runs correlation functions for all points and maps all correlation confidences to a surface map. The highest point of correlation is used for alignment and scaling. The transformation data is saved for later model scaling. Results: Anatomic recognition is used to find matching features between model and image and image registration correlation provides for alignment and scaling at any rotation angle with less than onesecond runtime, and at noise levels in excess of 150% of those found in normal procedures. Conclusion: The algorithm provides the necessary scaling and alignment tools to improve the accuracy of dose distribution mapping on the patient graphic with the DTS. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less

  14. Creation of anatomical models from CT data

    NASA Astrophysics Data System (ADS)

    Alaytsev, Innokentiy K.; Danilova, Tatyana V.; Manturov, Alexey O.; Mareev, Gleb O.; Mareev, Oleg V.

    2018-04-01

    Computed tomography is a great source of biomedical data because it allows a detailed exploration of complex anatomical structures. Some structures are not visible on CT scans, and some are hard to distinguish due to partial volume effect. CT datasets require preprocessing before using them as anatomical models in a simulation system. The work describes segmentation and data transformation methods for an anatomical model creation from the CT data. The result models may be used for visual and haptic rendering and drilling simulation in a virtual surgery system.

  15. Stratification in anterior teeth using one dentine shade and a predefined thickness of enamel: a new concept in composite layering--Part I.

    PubMed

    Manauta, J; Salat, A; Putignano, A; Devoto, W; Paolone, G; Hardan, L S

    2014-06-01

    Restoring an anterior tooth has always been a challenge, regarding the shade matching, the choice of colors, opacities, translucencies of our composites and the final anatomical outcome. This article proposes a new method for color matching and a clinical stratification using a simple and reproducible procedure for anterior restorations. The physical and optical characteristics of enamel and dentine will be studied and applied to our dental materials that we are using to restore anterior teeth.

  16. Development of quantitative analysis method for stereotactic brain image: assessment of reduced accumulation in extent and severity using anatomical segmentation.

    PubMed

    Mizumura, Sunao; Kumita, Shin-ichiro; Cho, Keiichi; Ishihara, Makiko; Nakajo, Hidenobu; Toba, Masahiro; Kumazaki, Tatsuo

    2003-06-01

    Through visual assessment by three-dimensional (3D) brain image analysis methods using stereotactic brain coordinates system, such as three-dimensional stereotactic surface projections and statistical parametric mapping, it is difficult to quantitatively assess anatomical information and the range of extent of an abnormal region. In this study, we devised a method to quantitatively assess local abnormal findings by segmenting a brain map according to anatomical structure. Through quantitative local abnormality assessment using this method, we studied the characteristics of distribution of reduced blood flow in cases with dementia of the Alzheimer type (DAT). Using twenty-five cases with DAT (mean age, 68.9 years old), all of whom were diagnosed as probable Alzheimer's disease based on NINCDS-ADRDA, we collected I-123 iodoamphetamine SPECT data. A 3D brain map using the 3D-SSP program was compared with the data of 20 cases in the control group, who age-matched the subject cases. To study local abnormalities on the 3D images, we divided the whole brain into 24 segments based on anatomical classification. We assessed the extent of an abnormal region in each segment (rate of the coordinates with a Z-value that exceeds the threshold value, in all coordinates within a segment), and severity (average Z-value of the coordinates with a Z-value that exceeds the threshold value). This method clarified orientation and expansion of reduced accumulation, through classifying stereotactic brain coordinates according to the anatomical structure. This method was considered useful for quantitatively grasping distribution abnormalities in the brain and changes in abnormality distribution.

  17. Application of 3D models of palatal rugae to personal identification: hints at identification from 3D-3D superimposition techniques.

    PubMed

    Gibelli, Daniele; De Angelis, Danilo; Pucciarelli, Valentina; Riboli, Francesco; Ferrario, Virgilio F; Dolci, Claudia; Sforza, Chiarella; Cattaneo, Cristina

    2017-11-20

    Palatal rugae are known in literature as individualizing anatomical structures with a strong potential for personal identification. However, a 3D assessment of their uniqueness has not yet been performed. The present study aims at verifying the uniqueness of 3D models of the palate. Twenty-six subjects were recruited among the orthodontic patients of a private dental office; from every patient, at least two dental casts were taken in different time periods, for a total of 62 casts. Dental casts were digitized by a 3D laser scanner (iSeries, Dental Wings©, Montreal, Canada). The palatal area was identified, and a series of 250 superimpositions was then performed automatically through VAM©software in order to reach the minimum point-to point distance between two models. In 36 matches the models belonged to the same individual, whereas in 214 mismatches they came from different subjects. The RMS (root mean square) of point-to-point distances was then calculated by 3D software. Possible statistically significant differences were assessed through Mann-Whitney test (p < 0.05). Results showed a statistically significant difference in RMS mean point-to-point distance between matches (mean 0.26 mm; SD 0.12) and mismatches (mean 1.30; SD 0.44) (p < 0.0001).All matches reached an RMS value below 0.50 mm. This study first provided an assessment of uniqueness of palatal rugae, based on their anatomical 3D conformations, with consequent applications to personal identification.

  18. Multi-template analysis of human perirhinal cortex in brain MRI: Explicitly accounting for anatomical variability

    PubMed Central

    Xie, Long; Pluta, John B.; Das, Sandhitsu R.; Wisse, Laura E.M.; Wang, Hongzhi; Mancuso, Lauren; Kliot, Dasha; Avants, Brian B.; Ding, Song-Lin; Manjón, José V.; Wolk, David A.; Yushkevich, Paul A.

    2016-01-01

    Rational The human perirhinal cortex (PRC) plays critical roles in episodic and semantic memory and visual perception. The PRC consists of Brodmann areas 35 and 36 (BA35, BA36). In Alzheimer's disease (AD), BA35 is the first cortical site affected by neurofibrillary tangle pathology, which is closely linked to neural injury in AD. Large anatomical variability, manifested in the form of different cortical folding and branching patterns, makes it difficult to segment the PRC in MRI scans. Pathology studies have found that in ~97% of specimens, the PRC falls into one of three discrete anatomical variants. However, current methods for PRC segmentation and morphometry in MRI are based on single-template approaches, which may not be able to accurately model these discrete variants Methods A multi-template analysis pipeline that explicitly accounts for anatomical variability is used to automatically label the PRC and measure its thickness in T2-weighted MRI scans. The pipeline uses multi-atlas segmentation to automatically label medial temporal lobe cortices including entorhinal cortex, PRC and the parahippocampal cortex. Pairwise registration between label maps and clustering based on residual dissimilarity after registration are used to construct separate templates for the anatomical variants of the PRC. An optimal path of deformations linking these templates is used to establish correspondences between all the subjects. Experimental evaluation focuses on the ability of single-template and multi-template analyses to detect differences in the thickness of medial temporal lobe cortices between patients with amnestic mild cognitive impairment (aMCI, n=41) and age-matched controls (n=44). Results The proposed technique is able to generate templates that recover the three dominant discrete variants of PRC and establish more meaningful correspondences between subjects than a single-template approach. The largest reduction in thickness associated with aMCI, in absolute terms, was found in left BA35 using both regional and summary thickness measures. Further, statistical maps of regional thickness difference between aMCI and controls revealed different patterns for the three anatomical variants. PMID:27702610

  19. Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy.

    PubMed

    Wognum, S; Bondar, L; Zolnay, A G; Chai, X; Hulshof, M C C M; Hoogeman, M S; Bel, A

    2013-02-01

    Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors' unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumor and the lack of visible anatomical landmarks for validation. The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight parameters were determined for the weighted S-TPS-RPM. The weighted S-TPS-RPM registration algorithm with optimal parameters significantly improved the anatomical accuracy as compared to S-TPS-RPM registration of the bladder alone and reduced the range of the anatomical errors by half as compared with the simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. The weighted algorithm reduced the RDE range of lipiodol markers from 0.9-14 mm after rigid bone match to 0.9-4.0 mm, compared to a range of 1.1-9.1 mm with S-TPS-RPM of bladder alone and 0.9-9.4 mm for simultaneous nonweighted registration. All registration methods resulted in good geometric accuracy on the bladder; average error values were all below 1.2 mm. The weighted S-TPS-RPM registration algorithm with additional weight parameter allowed indirect control over structure-specific flexibility in multistructure registrations of bladder and bladder tumor, enabling anatomically coherent registrations. The availability of an anatomically validated deformable registration method opens up the horizon for improvements in IGART for bladder cancer.

  20. SU-D-BRA-04: Computerized Framework for Marker-Less Localization of Anatomical Feature Points in Range Images Based On Differential Geometry Features for Image-Guided Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soufi, M; Arimura, H; Toyofuku, F

    Purpose: To propose a computerized framework for localization of anatomical feature points on the patient surface in infrared-ray based range images by using differential geometry (curvature) features. Methods: The general concept was to reconstruct the patient surface by using a mathematical modeling technique for the computation of differential geometry features that characterize the local shapes of the patient surfaces. A region of interest (ROI) was firstly extracted based on a template matching technique applied on amplitude (grayscale) images. The extracted ROI was preprocessed for reducing temporal and spatial noises by using Kalman and bilateral filters, respectively. Next, a smooth patientmore » surface was reconstructed by using a non-uniform rational basis spline (NURBS) model. Finally, differential geometry features, i.e. the shape index and curvedness features were computed for localizing the anatomical feature points. The proposed framework was trained for optimizing shape index and curvedness thresholds and tested on range images of an anthropomorphic head phantom. The range images were acquired by an infrared ray-based time-of-flight (TOF) camera. The localization accuracy was evaluated by measuring the mean of minimum Euclidean distances (MMED) between reference (ground truth) points and the feature points localized by the proposed framework. The evaluation was performed for points localized on convex regions (e.g. apex of nose) and concave regions (e.g. nasofacial sulcus). Results: The proposed framework has localized anatomical feature points on convex and concave anatomical landmarks with MMEDs of 1.91±0.50 mm and 3.70±0.92 mm, respectively. A statistically significant difference was obtained between the feature points on the convex and concave regions (P<0.001). Conclusion: Our study has shown the feasibility of differential geometry features for localization of anatomical feature points on the patient surface in range images. The proposed framework might be useful for tasks involving feature-based image registration in range-image guided radiation therapy.« less

  1. Registration of opthalmic images using control points

    NASA Astrophysics Data System (ADS)

    Heneghan, Conor; Maguire, Paul

    2003-03-01

    A method for registering pairs of digital ophthalmic images of the retina is presented using anatomical features as control points present in both images. The anatomical features chosen are blood vessel crossings and bifurcations. These control points are identified by a combination of local contrast enhancement, and morphological processing. In general, the matching between control points is unknown, however, so an automated algorithm is used to determine the matching pairs of control points in the two images as follows. Using two control points from each image, rigid global transform (RGT) coefficients are calculated for all possible combinations of control point pairs, and the set of RGT coefficients is identified. Once control point pairs are established, registration of two images can be achieved by using linear regression to optimize an RGT, bilinear or second order polynomial global transform. An example of cross-modal image registration using an optical image and a fluorescein angiogram of an eye is presented to illustrate the technique.

  2. Take away body parts! An investigation into the use of 3D-printed anatomical models in undergraduate anatomy education.

    PubMed

    Smith, Claire F; Tollemache, Nicholas; Covill, Derek; Johnston, Malcolm

    2018-01-01

    Understanding the three-dimensional (3D) nature of the human form is imperative for effective medical practice and the emergence of 3D printing creates numerous opportunities to enhance aspects of medical and healthcare training. A recently deceased, un-embalmed donor was scanned through high-resolution computed tomography. The scan data underwent segmentation and post-processing and a range of 3D-printed anatomical models were produced. A four-stage mixed-methods study was conducted to evaluate the educational value of the models in a medical program. (1) A quantitative pre/post-test to assess change in learner knowledge following 3D-printed model usage in a small group tutorial; (2) student focus group (3) a qualitative student questionnaire regarding personal student model usage (4) teaching faculty evaluation. The use of 3D-printed models in small-group anatomy teaching session resulted in a significant increase in knowledge (P = 0.0001) when compared to didactic 2D-image based teaching methods. Student focus groups yielded six key themes regarding the use of 3D-printed anatomical models: model properties, teaching integration, resource integration, assessment, clinical imaging, and pathology and anatomical variation. Questionnaires detailed how students used the models in the home environment and integrated them with anatomical learning resources such as textbooks and anatomy lectures. In conclusion, 3D-printed anatomical models can be successfully produced from the CT data set of a recently deceased donor. These models can be used in anatomy education as a teaching tool in their own right, as well as a method for augmenting the curriculum and complementing established learning modalities, such as dissection-based teaching. Anat Sci Educ 11: 44-53. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  3. Patient specific computerized phantoms to estimate dose in pediatric CT

    NASA Astrophysics Data System (ADS)

    Segars, W. P.; Sturgeon, G.; Li, X.; Cheng, L.; Ceritoglu, C.; Ratnanather, J. T.; Miller, M. I.; Tsui, B. M. W.; Frush, D.; Samei, E.

    2009-02-01

    We create a series of detailed computerized phantoms to estimate patient organ and effective dose in pediatric CT and investigate techniques for efficiently creating patient-specific phantoms based on imaging data. The initial anatomy of each phantom was previously developed based on manual segmentation of pediatric CT data. Each phantom was extended to include a more detailed anatomy based on morphing an existing adult phantom in our laboratory to match the framework (based on segmentation) defined for the target pediatric model. By morphing a template anatomy to match the patient data in the LDDMM framework, it was possible to create a patient specific phantom with many anatomical structures, some not visible in the CT data. The adult models contain thousands of defined structures that were transformed to define them in each pediatric anatomy. The accuracy of this method, under different conditions, was tested using a known voxelized phantom as the target. Errors were measured in terms of a distance map between the predicted organ surfaces and the known ones. We also compared calculated dose measurements to see the effect of different magnitudes of errors in morphing. Despite some variations in organ geometry, dose measurements from morphing predictions were found to agree with those calculated from the voxelized phantom thus demonstrating the feasibility of our methods.

  4. Application of kernel method in fluorescence molecular tomography

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Baikejiang, Reheman; Li, Changqing

    2017-02-01

    Reconstruction of fluorescence molecular tomography (FMT) is an ill-posed inverse problem. Anatomical guidance in the FMT reconstruction can improve FMT reconstruction efficiently. We have developed a kernel method to introduce the anatomical guidance into FMT robustly and easily. The kernel method is from machine learning for pattern analysis and is an efficient way to represent anatomical features. For the finite element method based FMT reconstruction, we calculate a kernel function for each finite element node from an anatomical image, such as a micro-CT image. Then the fluorophore concentration at each node is represented by a kernel coefficient vector and the corresponding kernel function. In the FMT forward model, we have a new system matrix by multiplying the sensitivity matrix with the kernel matrix. Thus, the kernel coefficient vector is the unknown to be reconstructed following a standard iterative reconstruction process. We convert the FMT reconstruction problem into the kernel coefficient reconstruction problem. The desired fluorophore concentration at each node can be calculated accordingly. Numerical simulation studies have demonstrated that the proposed kernel-based algorithm can improve the spatial resolution of the reconstructed FMT images. In the proposed kernel method, the anatomical guidance can be obtained directly from the anatomical image and is included in the forward modeling. One of the advantages is that we do not need to segment the anatomical image for the targets and background.

  5. Use of a 3D Skull Model to Improve Accuracy in Cranioplasty for Autologous Flap Resorption in a 3-Year-Old Child.

    PubMed

    Maduri, Rodolfo; Viaroli, Edoardo; Levivier, Marc; Daniel, Roy T; Messerer, Mahmoud

    2017-01-01

    Cranioplasty is considered a simple reconstructive procedure, usually performed in a single stage. In some clinical conditions, such as in children with multifocal flap osteolysis, it could represent a surgical challenge. In these patients, the partially resorbed autologous flap should be removed and replaced with a precustomed prosthesis which should perfectly match the expected bone defect. We describe the technique used for a navigated cranioplasty in a 3-year-old child with multifocal autologous flap osteolysis. We decided to perform a cranioplasty using a custom-made hydroxyapatite porous ceramic flap. The prosthesis was produced with an epoxy resin 3D skull model of the patient, which included a removable flap corresponding to the planned cranioplasty. Preoperatively, a CT scan of the 3D skull model was performed without the removable flap. The CT scan images of the 3D skull model were merged with the preoperative 3D CT scan of the patient and navigated during the cranioplasty to define with precision the cranioplasty margins. After removal of the autologous resorbed flap, the hydroxyapatite prosthesis matched perfectly with the skull defect. The anatomical result was excellent. Thus, the implementation of cranioplasty with image merge navigation of a 3D skull model may improve cranioplasty accuracy, allowing precise anatomic reconstruction in complex skull defect cases. © 2017 S. Karger AG, Basel.

  6. Automatic segmentation of mandible in panoramic x-ray.

    PubMed

    Abdi, Amir Hossein; Kasaei, Shohreh; Mehdizadeh, Mojdeh

    2015-10-01

    As the panoramic x-ray is the most common extraoral radiography in dentistry, segmentation of its anatomical structures facilitates diagnosis and registration of dental records. This study presents a fast and accurate method for automatic segmentation of mandible in panoramic x-rays. In the proposed four-step algorithm, a superior border is extracted through horizontal integral projections. A modified Canny edge detector accompanied by morphological operators extracts the inferior border of the mandible body. The exterior borders of ramuses are extracted through a contour tracing method based on the average model of mandible. The best-matched template is fetched from the atlas of mandibles to complete the contour of left and right processes. The algorithm was tested on a set of 95 panoramic x-rays. Evaluating the results against manual segmentations of three expert dentists showed that the method is robust. It achieved an average performance of [Formula: see text] in Dice similarity, specificity, and sensitivity.

  7. Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wognum, S.; Chai, X.; Hulshof, M. C. C. M.

    2013-02-15

    Purpose: Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors' unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumormore » and the lack of visible anatomical landmarks for validation. Methods: The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight parameters were determined for the weighted S-TPS-RPM. Results: The weighted S-TPS-RPM registration algorithm with optimal parameters significantly improved the anatomical accuracy as compared to S-TPS-RPM registration of the bladder alone and reduced the range of the anatomical errors by half as compared with the simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. The weighted algorithm reduced the RDE range of lipiodol markers from 0.9-14 mm after rigid bone match to 0.9-4.0 mm, compared to a range of 1.1-9.1 mm with S-TPS-RPM of bladder alone and 0.9-9.4 mm for simultaneous nonweighted registration. All registration methods resulted in good geometric accuracy on the bladder; average error values were all below 1.2 mm. Conclusions: The weighted S-TPS-RPM registration algorithm with additional weight parameter allowed indirect control over structure-specific flexibility in multistructure registrations of bladder and bladder tumor, enabling anatomically coherent registrations. The availability of an anatomically validated deformable registration method opens up the horizon for improvements in IGART for bladder cancer.« less

  8. Gender Differences of Airway Dimensions in Anatomically Matched Sites on CT in Smokers

    PubMed Central

    Kim, Yu-Il; Schroeder, Joyce; Lynch, David; Newell, John; Make, Barry; Friedlander, Adam; Estépar, Raúl San José; Hanania, Nicola A.; Washko, George; Murphy, James R.; Wilson, Carla; Hokanson, John E.; Zach, Jordan; Butterfield, Kiel; Bowler, Russell P.

    2013-01-01

    Rationale and Objectives There are limited data on, and controversies regarding gender differences in the airway dimensions of smokers. Multi-detector CT (MDCT) images were analyzed to examine whether gender could explain differences in airway dimensions of anatomically matched airways in smokers. Materials and Methods We used VIDA imaging software to analyze MDCT scans from 2047 smokers (M:F, 1021:1026) from the COPDGene® cohort. The airway dimensions were analyzed from segmental to subsubsegmental bronchi. We compared the differences of luminal area, inner diameter, wall thickness, wall area percentage (WA%) for each airway between men and women, and multiple linear regression including covariates (age, gender, body sizes, and other relevant confounding factors) was used to determine the predictors of each airway dimensions. Results Lumen area, internal diameter and wall thickness were smaller for women than men in all measured airway (18.4 vs 22.5 mm2 for segmental bronchial lumen area, 10.4 vs 12.5 mm2 for subsegmental bronchi, 6.5 vs 7.7 mm2 for subsubsegmental bronchi, respectively p < 0.001). However, women had greater WA% in subsegmental and subsubsegmental bronchi. In multivariate regression, gender remained one of the most significant predictors of WA%, lumen area, inner diameter and wall thickness. Conclusion Women smokers have higher WA%, but lower luminal area, internal diameter and airway thickness in anatomically matched airways as measured by CT scan than do male smokers. This difference may explain, in part, gender differences in the prevalence of COPD and airflow limitation. PMID:21756032

  9. Magnetic Resonance Imaging of Three-Dimensional Cervical Anatomy in the Second and Third Trimester

    PubMed Central

    HOUSE, Michael; BHADELIA, Rafeeque A.; MYERS, Kristin; SOCRATE, Simona

    2009-01-01

    OBJECTIVE Although a short cervix is known to be associated with preterm birth, the patterns of three-dimensional, anatomic changes leading to a short cervix are unknown. Our objective was to 1) construct three-dimensional anatomic models during normal pregnancy and 2) use the models to compare cervical anatomy in the second and third trimester. STUDY DESIGN A cross sectional study was performed in a population of patients referred to magnetic resonance imaging (MRI) for a fetal indication. Using magnetic resonance images for guidance, three-dimensional solid models of the following anatomic structures were constructed: amniotic cavity, uterine wall, cervical stroma, cervical mucosa and anterior vaginal wall. To compare cervical anatomy in the second and third trimester, models were matched according the size of the bony pelvis. RESULTS Fourteen patients were imaged and divided into two groups according to gestational age: 20 – 24 weeks (n=7)) and 31 – 36 weeks (n=7). Compared to the second trimester, the third trimester was associated with significant descent of the amniotic sac. (p=.02). Descent of the amniotic sac was associated with modified anatomy of the uterocervical junction. These 3-dimensional changes were associated with a cervix that appeared shorter in the third trimester. CONCLUSION We report a technique for constructing MRI-based, three-dimensional anatomic models during pregnancy. Compared to the second trimester, the third trimester is associated with three-dimensional changes in the cervix and lower uterine segment. PMID:19297070

  10. Analysis of anatomic variability in children with low mathematical skills

    NASA Astrophysics Data System (ADS)

    Han, Zhaoying; Fuchs, Lynn; Davis, Nikki; Cannistraci, Christopher J.; Anderson, Adam W.; Gore, John C.; Dawant, Benoit M.

    2008-03-01

    Mathematical difficulty affects approximately 5-9% of the population. Studies on individuals with dyscalculia, a neurologically based math disorder, provide important insight into the neural correlates of mathematical ability. For example, cognitive theories, neuropsychological studies, and functional neuroimaging studies in individuals with dyscalculia suggest that the bilateral parietal lobes and intraparietal sulcus are central to mathematical performance. The purpose of the present study was to investigate morphological differences in a group of third grade children with poor math skills. We compare population averages of children with low math skill (MD) to gender and age matched controls with average math ability. Anatomical data were gathered with high resolution MRI and four different population averaging methods were used to study the effect of the normalization technique on the results. Statistical results based on the deformation fields between the two groups show anatomical differences in the bilateral parietal lobes, right frontal lobe, and left occipital/parietal lobe.

  11. Computed Intranasal Spray Penetration: Comparisons Before and After Nasal Surgery

    PubMed Central

    Frank, Dennis O.; Kimbell, Julia S.; Cannon, Daniel; Rhee, John S.

    2012-01-01

    Background Quantitative methods for comparing intranasal drug delivery efficiencies pre- and postoperatively have not been fully utilized. The objective of this study is to use computational fluid dynamics techniques to evaluate aqueous nasal spray penetration efficiencies before and after surgical correction of intranasal anatomic deformities. Methods Ten three-dimensional models of the nasal cavities were created from pre- and postoperative computed tomography scans in five subjects. Spray simulations were conducted using a particle size distribution ranging from 10–110μm, a spray speed of 3m/s, plume angle of 68°, and with steady state, resting inspiratory airflow present. Two different nozzle positions were compared. Statistical analysis was conducted using Student T-test for matched pairs. Results On the obstructed side, posterior particle deposition after surgery increased by 118% and was statistically significant (p-value=0.036), while anterior particle deposition decreased by 13% and was also statistically significant (p-value=0.020). The fraction of particles that by-passed the airways either pre- or post-operatively was less than 5%. Posterior particle deposition differences between obstructed and contralateral sides of the airways were 113% and 30% for pre- and post-surgery, respectively. Results showed that nozzle positions can influence spray delivery. Conclusions Simulations predicted that surgical correction of nasal anatomic deformities can improve spray penetration to areas where medications can have greater effect. Particle deposition patterns between both sides of the airways are more evenly distributed after surgery. These findings suggest that correcting anatomic deformities may improve intranasal medication delivery. For enhanced particle penetration, patients with nasal deformities may explore different nozzle positions. PMID:22927179

  12. The Epidemiology of Injuries in Australian Professional Rugby Union 2014 Super Rugby Competition

    PubMed Central

    Whitehouse, Timothy; Orr, Robin; Fitzgerald, Edward; Harries, Simon; McLellan, Christopher P.

    2016-01-01

    Background: Rugby union is a collision-based ball sport played at the professional level internationally. Rugby union has one of the highest reported incidences of injury of all team sports. Purpose: To identify the characteristics, incidence, and severity of injuries occurring in Australian professional Super Rugby Union. Design: Descriptive epidemiology study. Methods: The present study was a prospective epidemiology study on a cohort of 180 professional players from 5 Australian Super Rugby teams during the 2014 Super Rugby Union Tournament. Team medical staff collected and submitted daily training and match-play injury data through a secure, web-based electronic platform. The injury data included the main anatomic location of the injury, specific anatomic structure of the injury, injury diagnosis, training or match injury occurrence, main player position, mechanism of injury, and the severity of the injury quantified based on the number of days lost from training and/or competition due to injury. Results: The total combined incidence rate for injury during training and match-play across all Australian Super Rugby Union teams was 6.96 per 1000 hours, with a mean injury severity of 37.45 days lost from training and competition. The match-play injury incidence rate was 66.07 per 1000 hours, with a mean severity of 39.80 days lost from training and competition. No significant differences were observed between forward- and back-playing positions for match or training injury incidence rate or severity. Conclusion: The incidence of injury for the present study was lower during match-play than has previously been reported in professional rugby union; however, the overall time loss was higher compared with previous studies in professional rugby union. The high overall time loss was due fundamentally to a high incidence of injuries with greater than 28 days’ severity. PMID:27069947

  13. Implementation of an interactive liver surgery planning system

    NASA Astrophysics Data System (ADS)

    Wang, Luyao; Liu, Jingjing; Yuan, Rong; Gu, Shuguo; Yu, Long; Li, Zhitao; Li, Yanzhao; Li, Zhen; Xie, Qingguo; Hu, Daoyu

    2011-03-01

    Liver tumor, one of the most wide-spread diseases, has a very high mortality in China. To improve success rates of liver surgeries and life qualities of such patients, we implement an interactive liver surgery planning system based on contrastenhanced liver CT images. The system consists of five modules: pre-processing, segmentation, modeling, quantitative analysis and surgery simulation. The Graph Cuts method is utilized to automatically segment the liver based on an anatomical prior knowledge that liver is the biggest organ and has almost homogeneous gray value. The system supports users to build patient-specific liver segment and sub-segment models using interactive portal vein branch labeling, and to perform anatomical resection simulation. It also provides several tools to simulate atypical resection, including resection plane, sphere and curved surface. To match actual surgery resections well and simulate the process flexibly, we extend our work to develop a virtual scalpel model and simulate the scalpel movement in the hepatic tissue using multi-plane continuous resection. In addition, the quantitative analysis module makes it possible to assess the risk of a liver surgery. The preliminary results show that the system has the potential to offer an accurate 3D delineation of the liver anatomy, as well as the tumors' location in relation to vessels, and to facilitate liver resection surgeries. Furthermore, we are testing the system in a full-scale clinical trial.

  14. [Design of cross-sectional anatomical model focused on drainage pathways of paranasal sinuses].

    PubMed

    Zha, Y; Lv, W; Gao, Y L; Zhu, Z Z; Gao, Z Q

    2018-05-01

    Objective: To design and produce cross-sectional anatomical models of paranasal sinuses for the purpose of demonstrating drainage pathways of each nasal sinus for the young doctors. Method: We reconstructed the three-dimensional model of sinuses area based on CT scan data, and divided it into 5 thick cross-sectional anatomy models by 4 coronal plane,which cross middle points of agger nasi cell, ethmoid bulla, posterior ethmoid sinuses and sphenoid sinus respectively. Then a 3D printerwas used to make anatomical cross-sectional anatomical models. Result: Successfully produced a digital 3D printing cross-sectional models of paranasal sinuses. Sinus drainage pathways were observed on the models. Conclusion: The cross-sectional anatomical models made by us can exactly and intuitively demonstrate the ostia of each sinus cell and they can help the young doctors to understand and master the key anatomies and relationships which are important to the endoscopic sinus surgery. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.

  15. Automatic extraction of the mid-sagittal plane using an ICP variant

    NASA Astrophysics Data System (ADS)

    Fieten, Lorenz; Eschweiler, Jörg; de la Fuente, Matías; Gravius, Sascha; Radermacher, Klaus

    2008-03-01

    Precise knowledge of the mid-sagittal plane is important for the assessment and correction of several deformities. Furthermore, the mid-sagittal plane can be used for the definition of standardized coordinate systems such as pelvis or skull coordinate systems. A popular approach for mid-sagittal plane computation is based on the selection of anatomical landmarks located either directly on the plane or symmetrically to it. However, the manual selection of landmarks is a tedious, time-consuming and error-prone task, which requires great care. In order to overcome this drawback, previously it was suggested to use the iterative closest point (ICP) algorithm: After an initial mirroring of the data points on a default mirror plane, the mirrored data points should be registered iteratively to the model points using rigid transforms. Finally, a reflection transform approximating the cumulative transform could be extracted. In this work, we present an ICP variant for the iterative optimization of the reflection parameters. It is based on a closed-form solution to the least-squares problem of matching data points to model points using a reflection. In experiments on CT pelvis and skull datasets our method showed a better ability to match homologous areas.

  16. An ontology-based comparative anatomy information system

    PubMed Central

    Travillian, Ravensara S.; Diatchka, Kremena; Judge, Tejinder K.; Wilamowska, Katarzyna; Shapiro, Linda G.

    2010-01-01

    Introduction This paper describes the design, implementation, and potential use of a comparative anatomy information system (CAIS) for querying on similarities and differences between homologous anatomical structures across species, the knowledge base it operates upon, the method it uses for determining the answers to the queries, and the user interface it employs to present the results. The relevant informatics contributions of our work include (1) the development and application of the structural difference method, a formalism for symbolically representing anatomical similarities and differences across species; (2) the design of the structure of a mapping between the anatomical models of two different species and its application to information about specific structures in humans, mice, and rats; and (3) the design of the internal syntax and semantics of the query language. These contributions provide the foundation for the development of a working system that allows users to submit queries about the similarities and differences between mouse, rat, and human anatomy; delivers result sets that describe those similarities and differences in symbolic terms; and serves as a prototype for the extension of the knowledge base to any number of species. Additionally, we expanded the domain knowledge by identifying medically relevant structural questions for the human, the mouse, and the rat, and made an initial foray into the validation of the application and its content by means of user questionnaires, software testing, and other feedback. Methods The anatomical structures of the species to be compared, as well as the mappings between species, are modeled on templates from the Foundational Model of Anatomy knowledge base, and compared using graph-matching techniques. A graphical user interface allows users to issue queries that retrieve information concerning similarities and differences between structures in the species being examined. Queries from diverse information sources, including domain experts, peer-reviewed articles, and reference books, have been used to test the system and to illustrate its potential use in comparative anatomy studies. Results 157 test queries were submitted to the CAIS system, and all of them were correctly answered. The interface was evaluated in terms of clarity and ease of use. This testing determined that the application works well, and is fairly intuitive to use, but users want to see more clarification of the meaning of the different types of possible queries. Some of the interface issues will naturally be resolved as we refine our conceptual model to deal with partial and complex homologies in the content. Conclusions The CAIS system and its associated methods are expected to be useful to biologists and translational medicine researchers. Possible applications range from supporting theoretical work in clarifying and modeling ontogenetic, physiological, pathological, and evolutionary transformations, to concrete techniques for improving the analysis of genotype–phenotype relationships among various animal models in support of a wide array of clinical and scientific initiatives. PMID:21146377

  17. Application of thin-plate spline transformations to finite element models, or, how to turn a bog turtle into a spotted turtle to analyze both.

    PubMed

    Stayton, C Tristan

    2009-05-01

    Finite element (FE) models are popular tools that allow biologists to analyze the biomechanical behavior of complex anatomical structures. However, the expense and time required to create models from specimens has prevented comparative studies from involving large numbers of species. A new method is presented for transforming existing FE models using geometric morphometric methods. Homologous landmark coordinates are digitized on the FE model and on a target specimen into which the FE model is being transformed. These coordinates are used to create a thin-plate spline function and coefficients, which are then applied to every node in the FE model. This function smoothly interpolates the location of points between landmarks, transforming the geometry of the original model to match the target. This new FE model is then used as input in FE analyses. This procedure is demonstrated with turtle shells: a Glyptemys muhlenbergii model is transformed into Clemmys guttata and Actinemys marmorata models. Models are loaded and the resulting stresses are compared. The validity of the models is tested by crushing actual turtle shells in a materials testing machine and comparing those results to predictions from FE models. General guidelines, cautions, and possibilities for this procedure are also presented.

  18. Anatomical image-guided fluorescence molecular tomography reconstruction using kernel method

    NASA Astrophysics Data System (ADS)

    Baikejiang, Reheman; Zhao, Yue; Fite, Brett Z.; Ferrara, Katherine W.; Li, Changqing

    2017-05-01

    Fluorescence molecular tomography (FMT) is an important in vivo imaging modality to visualize physiological and pathological processes in small animals. However, FMT reconstruction is ill-posed and ill-conditioned due to strong optical scattering in deep tissues, which results in poor spatial resolution. It is well known that FMT image quality can be improved substantially by applying the structural guidance in the FMT reconstruction. An approach to introducing anatomical information into the FMT reconstruction is presented using the kernel method. In contrast to conventional methods that incorporate anatomical information with a Laplacian-type regularization matrix, the proposed method introduces the anatomical guidance into the projection model of FMT. The primary advantage of the proposed method is that it does not require segmentation of targets in the anatomical images. Numerical simulations and phantom experiments have been performed to demonstrate the proposed approach's feasibility. Numerical simulation results indicate that the proposed kernel method can separate two FMT targets with an edge-to-edge distance of 1 mm and is robust to false-positive guidance and inhomogeneity in the anatomical image. For the phantom experiments with two FMT targets, the kernel method has reconstructed both targets successfully, which further validates the proposed kernel method.

  19. Imaging muscle as a potential biomarker of denervation in motor neuron disease

    PubMed Central

    Jenkins, Thomas M; Alix, James J P; David, Charlotte; Pearson, Eilish; Rao, D Ganesh; Hoggard, Nigel; O’Brien, Eoghan; Baster, Kathleen; Bradburn, Michael; Bigley, Julia; McDermott, Christopher J; Wilkinson, Iain D; Shaw, Pamela J

    2018-01-01

    Objective To assess clinical, electrophysiological and whole-body muscle MRI measurements of progression in patients with motor neuron disease (MND), as tools for future clinical trials, and to probe pathophysiological mechanisms in vivo. Methods A prospective, longitudinal, observational, clinicoelectrophysiological and radiological cohort study was performed. Twenty-nine patients with MND and 22 age-matched and gender-matched healthy controls were assessed with clinical measures, electrophysiological motor unit number index (MUNIX) and T2-weighted whole-body muscle MRI, at first clinical presentation and 4 months later. Between-group differences and associations were assessed using age-adjusted and gender-adjusted multivariable regression models. Within-subject longitudinal changes were assessed using paired t-tests. Patterns of disease spread were modelled using mixed-effects multivariable regression, assessing associations between muscle relative T2 signal and anatomical adjacency to site of clinical onset. Results Patients with MND had 30% higher relative T2 muscle signal than controls at baseline (all regions mean, 95% CI 15% to 45%, p<0.001). Higher T2 signal was associated with greater overall disability (coefficient −0.009, 95% CI −0.017 to –0.001, p=0.023) and with clinical weakness and lower MUNIX in multiple individual muscles. Relative T2 signal in bilateral tibialis anterior increased over 4 months in patients with MND (right: 10.2%, 95% CI 2.0% to 18.4%, p=0.017; left: 14.1%, 95% CI 3.4% to 24.9%, p=0.013). Anatomically, contiguous disease spread on MRI was not apparent in this model. Conclusions Whole-body muscle MRI offers a new approach to objective assessment of denervation over short timescales in MND and enables investigation of patterns of disease spread in vivo. Muscles inaccessible to conventional clinical and electrophysiological assessment may be investigated using this methodology. PMID:29089397

  20. Automatic construction of subject-specific human airway geometry including trifurcations based on a CT-segmented airway skeleton and surface

    PubMed Central

    Miyawaki, Shinjiro; Tawhai, Merryn H.; Hoffman, Eric A.; Wenzel, Sally E.; Lin, Ching-Long

    2016-01-01

    We propose a method to construct three-dimensional airway geometric models based on airway skeletons, or centerlines (CLs). Given a CT-segmented airway skeleton and surface, the proposed CL-based method automatically constructs subject-specific models that contain anatomical information regarding branches, include bifurcations and trifurcations, and extend from the trachea to terminal bronchioles. The resulting model can be anatomically realistic with the assistance of an image-based surface; alternatively a model with an idealized skeleton and/or branch diameters is also possible. This method systematically identifies and classifies trifurcations to successfully construct the models, which also provides the number and type of trifurcations for the analysis of the airways from an anatomical point of view. We applied this method to 16 normal and 16 severe asthmatic subjects using their computed tomography images. The average distance between the surface of the model and the image-based surface was 11% of the average voxel size of the image. The four most frequent locations of trifurcations were the left upper division bronchus, left lower lobar bronchus, right upper lobar bronchus, and right intermediate bronchus. The proposed method automatically constructed accurate subject-specific three-dimensional airway geometric models that contain anatomical information regarding branches using airway skeleton, diameters, and image-based surface geometry. The proposed method can construct (i) geometry automatically for population-based studies, (ii) trifurcations to retain the original airway topology, (iii) geometry that can be used for automatic generation of computational fluid dynamics meshes, and (iv) geometry based only on a skeleton and diameters for idealized branches. PMID:27704229

  1. Internal respiratory surrogate in multislice 4D CT using a combination of Fourier transform and anatomical features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui, Cheukkai; Suh, Yelin; Robertson, Daniel

    Purpose: The purpose of this study was to develop a novel algorithm to create a robust internal respiratory signal (IRS) for retrospective sorting of four-dimensional (4D) computed tomography (CT) images. Methods: The proposed algorithm combines information from the Fourier transform of the CT images and from internal anatomical features to form the IRS. The algorithm first extracts potential respiratory signals from low-frequency components in the Fourier space and selected anatomical features in the image space. A clustering algorithm then constructs groups of potential respiratory signals with similar temporal oscillation patterns. The clustered group with the largest number of similar signalsmore » is chosen to form the final IRS. To evaluate the performance of the proposed algorithm, the IRS was computed and compared with the external respiratory signal from the real-time position management (RPM) system on 80 patients. Results: In 72 (90%) of the 4D CT data sets tested, the IRS computed by the authors’ proposed algorithm matched with the RPM signal based on their normalized cross correlation. For these data sets with matching respiratory signals, the average difference between the end inspiration times (Δt{sub ins}) in the IRS and RPM signal was 0.11 s, and only 2.1% of Δt{sub ins} were more than 0.5 s apart. In the eight (10%) 4D CT data sets in which the IRS and the RPM signal did not match, the average Δt{sub ins} was 0.73 s in the nonmatching couch positions, and 35.4% of them had a Δt{sub ins} greater than 0.5 s. At couch positions in which IRS did not match the RPM signal, a correlation-based metric indicated poorer matching of neighboring couch positions in the RPM-sorted images. This implied that, when IRS did not match the RPM signal, the images sorted using the IRS showed fewer artifacts than the clinical images sorted using the RPM signal. Conclusions: The authors’ proposed algorithm can generate robust IRSs that can be used for retrospective sorting of 4D CT data. The algorithm is completely automatic and requires very little processing time. The algorithm is cost efficient and can be easily adopted for everyday clinical use.« less

  2. Toward frameless stereotaxy: anatomical-vascular correlation and registration

    NASA Astrophysics Data System (ADS)

    Henri, Christopher J.; Cukiert, A.; Collins, D. Louis; Olivier, A.; Peters, Terence M.

    1992-09-01

    We present a method to correlate and register a projection angiogram with volume rendered tomographic data from the same patient. Previously, we have described how this may be accomplished using a stereotactic frame to handle the required coordinate transformations. Here we examine the efficacy of employing anatomically based landmarks as opposed to external fiducials to achieve the same results. The experiments required a neurosurgeon to identify several homologous points in a DSA image and a MRI volume which were subsequently used to compute the coordinate transformations governing the matching procedure. Correlation accuracy was assessed by comparing these results to those employing fiducial markers on a stereotactic frame, and by examining how different levels of noise in the positions of the homologous points affect the resulting coordinate transformations. Further simulations suggest that this method has potential to be used in planning stereotactic procedures without the use of a frame.

  3. The effects of metamaterial on electromagnetic fields absorption characteristics of human eye tissues.

    PubMed

    Gasmelseed, Akram; Yunus, Jasmy

    2014-01-01

    The interaction of a dipole antenna with a human eye model in the presence of a metamaterial is investigated in this paper. The finite difference time domain (FDTD) method with convolutional perfectly matched layer (CPML) formulation have been used. A three-dimensional anatomical model of the human eye with resolution of 1.25 mm × 1.25 mm × 1.25 mm was used in this study. The dipole antenna was driven by modulated Gaussian pulse and the numerical study is performed with dipole operating at 900 MHz. The analysis has been done by varying the size and value of electric permittivity of the metamaterial. By normalizing the peak SAR (1 g and 10 g) to 1 W for all examined cases, we observed how the SAR values are not affected by the different permittivity values with the size of the metamaterial kept fixed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. A set of 4D pediatric XCAT reference phantoms for multimodality research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norris, Hannah, E-mail: Hannah.norris@duke.edu; Zhang, Yakun; Bond, Jason

    Purpose: The authors previously developed an adult population of 4D extended cardiac-torso (XCAT) phantoms for multimodality imaging research. In this work, the authors develop a reference set of 4D pediatric XCAT phantoms consisting of male and female anatomies at ages of newborn, 1, 5, 10, and 15 years. These models will serve as the foundation from which the authors will create a vast population of pediatric phantoms for optimizing pediatric CT imaging protocols. Methods: Each phantom was based on a unique set of CT data from a normal patient obtained from the Duke University database. The datasets were selected tomore » best match the reference values for height and weight for the different ages and genders according to ICRP Publication 89. The major organs and structures were segmented from the CT data and used to create an initial pediatric model defined using nonuniform rational B-spline surfaces. The CT data covered the entire torso and part of the head. To complete the body, the authors manually added on the top of the head and the arms and legs using scaled versions of the XCAT adult models or additional models created from cadaver data. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from a template XCAT phantom (male or female 50th percentile adult) to the target pediatric model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. The masses of the organs in each phantom were matched to the reference values given in ICRP Publication 89. The new reference models were checked for anatomical accuracy via visual inspection. Results: The authors created a set of ten pediatric reference phantoms that have the same level of detail and functionality as the original XCAT phantom adults. Each consists of thousands of anatomical structures and includes parameterized models for the cardiac and respiratory motions. Based on patient data, the phantoms capture the anatomic variations of childhood, such as the development of bone in the skull, pelvis, and long bones, and the growth of the vertebrae and organs. The phantoms can be combined with existing simulation packages to generate realistic pediatric imaging data from different modalities. Conclusions: The development of patient-derived pediatric computational phantoms is useful in providing variable anatomies for simulation. Future work will expand this ten-phantom base to a host of pediatric phantoms representative of the public at large. This can provide a means to evaluate and improve pediatric imaging devices and to optimize CT protocols in terms of image quality and radiation dose.« less

  5. Transforming Clinical Imaging Data for Virtual Reality Learning Objects

    ERIC Educational Resources Information Center

    Trelease, Robert B.; Rosset, Antoine

    2008-01-01

    Advances in anatomical informatics, three-dimensional (3D) modeling, and virtual reality (VR) methods have made computer-based structural visualization a practical tool for education. In this article, the authors describe streamlined methods for producing VR "learning objects," standardized interactive software modules for anatomical sciences…

  6. Toward knowledge-enhanced viewing using encyclopedias and model-based segmentation

    NASA Astrophysics Data System (ADS)

    Kneser, Reinhard; Lehmann, Helko; Geller, Dieter; Qian, Yue-Chen; Weese, Jürgen

    2009-02-01

    To make accurate decisions based on imaging data, radiologists must associate the viewed imaging data with the corresponding anatomical structures. Furthermore, given a disease hypothesis possible image findings which verify the hypothesis must be considered and where and how they are expressed in the viewed images. If rare anatomical variants, rare pathologies, unfamiliar protocols, or ambiguous findings are present, external knowledge sources such as medical encyclopedias are consulted. These sources are accessed using keywords typically describing anatomical structures, image findings, pathologies. In this paper we present our vision of how a patient's imaging data can be automatically enhanced with anatomical knowledge as well as knowledge about image findings. On one hand, we propose the automatic annotation of the images with labels from a standard anatomical ontology. These labels are used as keywords for a medical encyclopedia such as STATdx to access anatomical descriptions, information about pathologies and image findings. On the other hand we envision encyclopedias to contain links to region- and finding-specific image processing algorithms. Then a finding is evaluated on an image by applying the respective algorithm in the associated anatomical region. Towards realization of our vision, we present our method and results of automatic annotation of anatomical structures in 3D MRI brain images. Thereby we develop a complex surface mesh model incorporating major structures of the brain and a model-based segmentation method. We demonstrate the validity by analyzing the results of several training and segmentation experiments with clinical data focusing particularly on the visual pathway.

  7. A graph-based approach for the retrieval of multi-modality medical images.

    PubMed

    Kumar, Ashnil; Kim, Jinman; Wen, Lingfeng; Fulham, Michael; Feng, Dagan

    2014-02-01

    In this paper, we address the retrieval of multi-modality medical volumes, which consist of two different imaging modalities, acquired sequentially, from the same scanner. One such example, positron emission tomography and computed tomography (PET-CT), provides physicians with complementary functional and anatomical features as well as spatial relationships and has led to improved cancer diagnosis, localisation, and staging. The challenge of multi-modality volume retrieval for cancer patients lies in representing the complementary geometric and topologic attributes between tumours and organs. These attributes and relationships, which are used for tumour staging and classification, can be formulated as a graph. It has been demonstrated that graph-based methods have high accuracy for retrieval by spatial similarity. However, naïvely representing all relationships on a complete graph obscures the structure of the tumour-anatomy relationships. We propose a new graph structure derived from complete graphs that structurally constrains the edges connected to tumour vertices based upon the spatial proximity of tumours and organs. This enables retrieval on the basis of tumour localisation. We also present a similarity matching algorithm that accounts for different feature sets for graph elements from different imaging modalities. Our method emphasises the relationships between a tumour and related organs, while still modelling patient-specific anatomical variations. Constraining tumours to related anatomical structures improves the discrimination potential of graphs, making it easier to retrieve similar images based on tumour location. We evaluated our retrieval methodology on a dataset of clinical PET-CT volumes. Our results showed that our method enabled the retrieval of multi-modality images using spatial features. Our graph-based retrieval algorithm achieved a higher precision than several other retrieval techniques: gray-level histograms as well as state-of-the-art methods such as visual words using the scale- invariant feature transform (SIFT) and relational matrices representing the spatial arrangements of objects. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. A tuneable approach to uniform light distribution for artificial daylight photodynamic therapy.

    PubMed

    O'Mahoney, Paul; Haigh, Neil; Wood, Kenny; Brown, C Tom A; Ibbotson, Sally; Eadie, Ewan

    2018-06-16

    Implementation of daylight photodynamic therapy (dPDT) is somewhat limited by variable weather conditions. Light sources have been employed to provide artificial dPDT indoors, with low irradiances and longer treatment times. Uniform light distribution across the target area is key to ensuring effective treatment, particularly for large areas. A novel light source is developed with tuneable direction of light emission in order to meet this challenge. Wavelength composition of the novel light source is controlled such that the protoporphyrin-IX (PpIX) weighed spectra of both the light source and daylight match. The uniformity of the light source is characterised on a flat surface, a model head and a model leg. For context, a typical conventional PDT light source is also characterised. Additionally, the wavelength uniformity across the treatment site is characterised. The PpIX-weighted spectrum of the novel light source matches with PpIX-weighted daylight spectrum, with irradiance values within the bounds for effective dPDT. By tuning the direction of light emission, improvements are seen in the uniformity across large anatomical surfaces. Wavelength uniformity is discussed. We have developed a light source that addresses the challenges in uniform, multiwavelength light distribution for large area artificial dPDT across curved anatomical surfaces. Copyright © 2018. Published by Elsevier B.V.

  9. Deformable templates guided discriminative models for robust 3D brain MRI segmentation.

    PubMed

    Liu, Cheng-Yi; Iglesias, Juan Eugenio; Tu, Zhuowen

    2013-10-01

    Automatically segmenting anatomical structures from 3D brain MRI images is an important task in neuroimaging. One major challenge is to design and learn effective image models accounting for the large variability in anatomy and data acquisition protocols. A deformable template is a type of generative model that attempts to explicitly match an input image with a template (atlas), and thus, they are robust against global intensity changes. On the other hand, discriminative models combine local image features to capture complex image patterns. In this paper, we propose a robust brain image segmentation algorithm that fuses together deformable templates and informative features. It takes advantage of the adaptation capability of the generative model and the classification power of the discriminative models. The proposed algorithm achieves both robustness and efficiency, and can be used to segment brain MRI images with large anatomical variations. We perform an extensive experimental study on four datasets of T1-weighted brain MRI data from different sources (1,082 MRI scans in total) and observe consistent improvement over the state-of-the-art systems.

  10. Robust Estimation of Electron Density From Anatomic Magnetic Resonance Imaging of the Brain Using a Unifying Multi-Atlas Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Shangjie; Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California; Hara, Wendy

    Purpose: To develop a reliable method to estimate electron density based on anatomic magnetic resonance imaging (MRI) of the brain. Methods and Materials: We proposed a unifying multi-atlas approach for electron density estimation based on standard T1- and T2-weighted MRI. First, a composite atlas was constructed through a voxelwise matching process using multiple atlases, with the goal of mitigating effects of inherent anatomic variations between patients. Next we computed for each voxel 2 kinds of conditional probabilities: (1) electron density given its image intensity on T1- and T2-weighted MR images; and (2) electron density given its spatial location in a referencemore » anatomy, obtained by deformable image registration. These were combined into a unifying posterior probability density function using the Bayesian formalism, which provided the optimal estimates for electron density. We evaluated the method on 10 patients using leave-one-patient-out cross-validation. Receiver operating characteristic analyses for detecting different tissue types were performed. Results: The proposed method significantly reduced the errors in electron density estimation, with a mean absolute Hounsfield unit error of 119, compared with 140 and 144 (P<.0001) using conventional T1-weighted intensity and geometry-based approaches, respectively. For detection of bony anatomy, the proposed method achieved an 89% area under the curve, 86% sensitivity, 88% specificity, and 90% accuracy, which improved upon intensity and geometry-based approaches (area under the curve: 79% and 80%, respectively). Conclusion: The proposed multi-atlas approach provides robust electron density estimation and bone detection based on anatomic MRI. If validated on a larger population, our work could enable the use of MRI as a primary modality for radiation treatment planning.« less

  11. Nonrigid mammogram registration using mutual information

    NASA Astrophysics Data System (ADS)

    Wirth, Michael A.; Narhan, Jay; Gray, Derek W. S.

    2002-05-01

    Of the papers dealing with the task of mammogram registration, the majority deal with the task by matching corresponding control-points derived from anatomical landmark points. One of the caveats encountered when using pure point-matching techniques is their reliance on accurately extracted anatomical features-points. This paper proposes an innovative approach to matching mammograms which combines the use of a similarity-measure and a point-based spatial transformation. Mutual information is a cost-function used to determine the degree of similarity between the two mammograms. An initial rigid registration is performed to remove global differences and bring the mammograms into approximate alignment. The mammograms are then subdivided into smaller regions and each of the corresponding subimages is matched independently using mutual information. The centroids of each of the matched subimages are then used as corresponding control-point pairs in association with the Thin-Plate Spline radial basis function. The resulting spatial transformation generates a nonrigid match of the mammograms. The technique is illustrated by matching mammograms from the MIAS mammogram database. An experimental comparison is made between mutual information incorporating purely rigid behavior, and that incorporating a more nonrigid behavior. The effectiveness of the registration process is evaluated using image differences.

  12. Anatomical image-guided fluorescence molecular tomography reconstruction using kernel method

    PubMed Central

    Baikejiang, Reheman; Zhao, Yue; Fite, Brett Z.; Ferrara, Katherine W.; Li, Changqing

    2017-01-01

    Abstract. Fluorescence molecular tomography (FMT) is an important in vivo imaging modality to visualize physiological and pathological processes in small animals. However, FMT reconstruction is ill-posed and ill-conditioned due to strong optical scattering in deep tissues, which results in poor spatial resolution. It is well known that FMT image quality can be improved substantially by applying the structural guidance in the FMT reconstruction. An approach to introducing anatomical information into the FMT reconstruction is presented using the kernel method. In contrast to conventional methods that incorporate anatomical information with a Laplacian-type regularization matrix, the proposed method introduces the anatomical guidance into the projection model of FMT. The primary advantage of the proposed method is that it does not require segmentation of targets in the anatomical images. Numerical simulations and phantom experiments have been performed to demonstrate the proposed approach’s feasibility. Numerical simulation results indicate that the proposed kernel method can separate two FMT targets with an edge-to-edge distance of 1 mm and is robust to false-positive guidance and inhomogeneity in the anatomical image. For the phantom experiments with two FMT targets, the kernel method has reconstructed both targets successfully, which further validates the proposed kernel method. PMID:28464120

  13. Design, development and clinical validation of computer-aided surgical simulation system for streamlined orthognathic surgical planning

    PubMed Central

    Yuan, Peng; Mai, Huaming; Li, Jianfu; Ho, Dennis Chun-Yu; Lai, Yingying; Liu, Siting; Kim, Daeseung; Xiong, Zixiang; Alfi, David M.; Teichgraeber, John F.; Gateno, Jaime

    2017-01-01

    Purpose There are many proven problems associated with traditional surgical planning methods for orthognathic surgery. To address these problems, we developed a computer-aided surgical simulation (CASS) system, the AnatomicAligner, to plan orthognathic surgery following our streamlined clinical protocol. Methods The system includes six modules: image segmentation and three-dimensional (3D) reconstruction, registration and reorientation of models to neutral head posture, 3D cephalometric analysis, virtual osteotomy, surgical simulation, and surgical splint generation. The accuracy of the system was validated in a stepwise fashion: first to evaluate the accuracy of AnatomicAligner using 30 sets of patient data, then to evaluate the fitting of splints generated by AnatomicAligner using 10 sets of patient data. The industrial gold standard system, Mimics, was used as the reference. Result When comparing the results of segmentation, virtual osteotomy and transformation achieved with AnatomicAligner to the ones achieved with Mimics, the absolute deviation between the two systems was clinically insignificant. The average surface deviation between the two models after 3D model reconstruction in AnatomicAligner and Mimics was 0.3 mm with a standard deviation (SD) of 0.03 mm. All the average surface deviations between the two models after virtual osteotomy and transformations were smaller than 0.01 mm with a SD of 0.01 mm. In addition, the fitting of splints generated by AnatomicAligner was at least as good as the ones generated by Mimics. Conclusion We successfully developed a CASS system, the AnatomicAligner, for planning orthognathic surgery following the streamlined planning protocol. The system has been proven accurate. AnatomicAligner will soon be available freely to the boarder clinical and research communities. PMID:28432489

  14. 3D deformable image matching: a hierarchical approach over nested subspaces

    NASA Astrophysics Data System (ADS)

    Musse, Olivier; Heitz, Fabrice; Armspach, Jean-Paul

    2000-06-01

    This paper presents a fast hierarchical method to perform dense deformable inter-subject matching of 3D MR Images of the brain. To recover the complex morphological variations in neuroanatomy, a hierarchy of 3D deformations fields is estimated, by minimizing a global energy function over a sequence of nested subspaces. The nested subspaces, generated from a single scaling function, consist of deformation fields constrained at different scales. The highly non linear energy function, describing the interactions between the target and the source images, is minimized using a coarse-to-fine continuation strategy over this hierarchy. The resulting deformable matching method shows low sensitivity to local minima and is able to track large non-linear deformations, with moderate computational load. The performances of the approach are assessed both on simulated 3D transformations and on a real data base of 3D brain MR Images from different individuals. The method has shown efficient in putting into correspondence the principle anatomical structures of the brain. An application to atlas-based MRI segmentation, by transporting a labeled segmentation map on patient data, is also presented.

  15. Joint kinematic calculation based on clinical direct kinematic versus inverse kinematic gait models.

    PubMed

    Kainz, H; Modenese, L; Lloyd, D G; Maine, S; Walsh, H P J; Carty, C P

    2016-06-14

    Most clinical gait laboratories use the conventional gait analysis model. This model uses a computational method called Direct Kinematics (DK) to calculate joint kinematics. In contrast, musculoskeletal modelling approaches use Inverse Kinematics (IK) to obtain joint angles. IK allows additional analysis (e.g. muscle-tendon length estimates), which may provide valuable information for clinical decision-making in people with movement disorders. The twofold aims of the current study were: (1) to compare joint kinematics obtained by a clinical DK model (Vicon Plug-in-Gait) with those produced by a widely used IK model (available with the OpenSim distribution), and (2) to evaluate the difference in joint kinematics that can be solely attributed to the different computational methods (DK versus IK), anatomical models and marker sets by using MRI based models. Eight children with cerebral palsy were recruited and presented for gait and MRI data collection sessions. Differences in joint kinematics up to 13° were found between the Plug-in-Gait and the gait 2392 OpenSim model. The majority of these differences (94.4%) were attributed to differences in the anatomical models, which included different anatomical segment frames and joint constraints. Different computational methods (DK versus IK) were responsible for only 2.7% of the differences. We recommend using the same anatomical model for kinematic and musculoskeletal analysis to ensure consistency between the obtained joint angles and musculoskeletal estimates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Modeling patterns of anatomical deformations in prostate patients undergoing radiation therapy with an endorectal balloon

    NASA Astrophysics Data System (ADS)

    Brion, Eliott; Richter, Christian; Macq, Benoit; Stützer, Kristin; Exner, Florian; Troost, Esther; Hölscher, Tobias; Bondar, Luiza

    2017-03-01

    External beam radiation therapy (EBRT) treats cancer by delivering daily fractions of radiation to a target volume. For prostate cancer, the target undergoes day-to-day variations in position, volume, and shape. For stereotactic photon and for proton EBRT, endorectal balloons (ERBs) can be used to limit variations. To date, patterns of non-rigid variations for patients with ERB have not been modeled. We extracted and modeled the patient-specific patterns of variations, using regularly acquired CT-images, non-rigid point cloud registration, and principal component analysis (PCA). For each patient, a non-rigid point-set registration method, called Coherent Point Drift, (CPD) was used to automatically generate landmark correspondences between all target shapes. To ensure accurate registrations, we tested and validated CPD by identifying parameter values leading to the smallest registration errors (surface matching error 0.13+/-0.09 mm). PCA demonstrated that 88+/-3.2% of the target motion could be explained using only 4 principal modes. The most dominant component of target motion is a squeezing and stretching in the anterior-posterior and superior-inferior directions. A PCA model of daily landmark displacements, generated using 6 to 10 CT-scans, could explain well the target motion for the CT-scans not included in the model (modeling error decreased from 1.83+/-0.8 mm for 6 CT-scans to 1.6+/-0.7 mm for 10 CT-scans). PCA modeling error was smaller than the naive approximation by the mean shape (approximation error 2.66+/-0.59 mm). Future work will investigate the use of the PCA-model to improve the accuracy of EBRT techniques that are highly susceptible to anatomical variations such as, proton therapy

  17. A methodology for generating normal and pathological brain perfusion SPECT images for evaluation of MRI/SPECT fusion methods: application in epilepsy

    NASA Astrophysics Data System (ADS)

    Grova, C.; Jannin, P.; Biraben, A.; Buvat, I.; Benali, H.; Bernard, A. M.; Scarabin, J. M.; Gibaud, B.

    2003-12-01

    Quantitative evaluation of brain MRI/SPECT fusion methods for normal and in particular pathological datasets is difficult, due to the frequent lack of relevant ground truth. We propose a methodology to generate MRI and SPECT datasets dedicated to the evaluation of MRI/SPECT fusion methods and illustrate the method when dealing with ictal SPECT. The method consists in generating normal or pathological SPECT data perfectly aligned with a high-resolution 3D T1-weighted MRI using realistic Monte Carlo simulations that closely reproduce the response of a SPECT imaging system. Anatomical input data for the SPECT simulations are obtained from this 3D T1-weighted MRI, while functional input data result from an inter-individual analysis of anatomically standardized SPECT data. The method makes it possible to control the 'brain perfusion' function by proposing a theoretical model of brain perfusion from measurements performed on real SPECT images. Our method provides an absolute gold standard for assessing MRI/SPECT registration method accuracy since, by construction, the SPECT data are perfectly registered with the MRI data. The proposed methodology has been applied to create a theoretical model of normal brain perfusion and ictal brain perfusion characteristic of mesial temporal lobe epilepsy. To approach realistic and unbiased perfusion models, real SPECT data were corrected for uniform attenuation, scatter and partial volume effect. An anatomic standardization was used to account for anatomic variability between subjects. Realistic simulations of normal and ictal SPECT deduced from these perfusion models are presented. The comparison of real and simulated SPECT images showed relative differences in regional activity concentration of less than 20% in most anatomical structures, for both normal and ictal data, suggesting realistic models of perfusion distributions for evaluation purposes. Inter-hemispheric asymmetry coefficients measured on simulated data were found within the range of asymmetry coefficients measured on corresponding real data. The features of the proposed approach are compared with those of other methods previously described to obtain datasets appropriate for the assessment of fusion methods.

  18. Interactive anatomical teaching: Integrating radiological anatomy within topographic anatomy.

    PubMed

    Abed Rabbo, F; Garrigues, F; Lefèvre, C; Seizeur, R

    2016-03-01

    Hours attributed to teaching anatomy have been reduced in medical curricula through out the world. In consequence, changes in anatomical curriculum as well as in teaching methods are becoming necessary. New methods of teaching are being evaluated. We present in the following paper an example of interactive anatomical teaching associating topographic anatomy with ultrasonographic radiological anatomy. The aim was to explicitly show anatomical structures of the knee and the ankle through dissection and ultrasonography. One cadaver was used as an ultrasonographic model and the other was dissected. Anatomy of the knee and ankle articulations was studied through dissection and ultrasonography. The students were able to simultaneously assimilate both anatomical aspects of radiological and topographic anatomy. They found the teaching very helpful and practical. This body of work provides example of a teaching method combining two important aspects of anatomy to help the students understand both aspects simultaneously. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  19. Using image mapping towards biomedical and biological data sharing

    PubMed Central

    2013-01-01

    Image-based data integration in eHealth and life sciences is typically concerned with the method used for anatomical space mapping, needed to retrieve, compare and analyse large volumes of biomedical data. In mapping one image onto another image, a mechanism is used to match and find the corresponding spatial regions which have the same meaning between the source and the matching image. Image-based data integration is useful for integrating data of various information structures. Here we discuss a broad range of issues related to data integration of various information structures, review exemplary work on image representation and mapping, and discuss the challenges that these techniques may bring. PMID:24059352

  20. A Computational Model Quantifies the Effect of Anatomical Variability on Velopharyngeal Function

    ERIC Educational Resources Information Center

    Inouye, Joshua M.; Perry, Jamie L.; Lin, Kant Y.; Blemker, Silvia S.

    2015-01-01

    Purpose: This study predicted the effects of velopharyngeal (VP) anatomical parameters on VP function to provide a greater understanding of speech mechanics and aid in the treatment of speech disorders. Method: We created a computational model of the VP mechanism using dimensions obtained from magnetic resonance imaging measurements of 10 healthy…

  1. Uncovered secret of a Vasseur-Tramond wax model.

    PubMed

    Pastor, J F; Gutiérrez, B; Montes, J M; Ballestriero, R

    2016-01-01

    The technique of anatomical wax modelling reached its heyday in Italy during the 18th century, through a fruitful collaboration between sculptors and anatomists. It soon spread to other countries, and prestigious schools were created in England, France, Spain and Austria. Paris subsequently replaced Italy as the major centre of manufacture, and anatomical waxes were created there from the mid-19th century in workshops such as that of Vasseur-Tramond. This workshop began to sell waxes to European Faculties of Medicine and Schools of Surgery around 1880. Little is known of the technique employed in the creation of such artefacts as this was deemed a professional secret. To gain some insight into the methods of construction, we have studied a Vasseur-Tramond wax model in the Valladolid University Anatomy Museum, Spain, by means of multi-slice computerised tomography and X-ray analysis by means of environmental scanning electron microscopy. Scanning electron microscopy was used to examine the hair. These results have revealed some of the methods used to make these anatomical models and the materials employed. © 2015 Anatomical Society.

  2. Development of a quantitative multivariable radiographic method to evaluate anatomic changes associated with laminitis in the forefeet of donkeys.

    PubMed

    Collins, Simon N; Dyson, Sue J; Murray, Rachel C; Newton, J Richard; Burden, Faith; Trawford, Andrew F

    2012-08-01

    To establish and validate an objective method of radiographic diagnosis of anatomic changes in laminitic forefeet of donkeys on the basis of data from a comprehensive series of radiographic measurements. 85 donkeys with and 85 without forelimb laminitis for baseline data determination; a cohort of 44 donkeys with and 18 without forelimb laminitis was used for validation analyses. For each donkey, lateromedial radiographic views of 1 weight-bearing forelimb were obtained; images from 11 laminitic and 2 nonlaminitic donkeys were excluded (motion artifact) from baseline data determination. Data from an a priori selection of 19 measurements of anatomic features of laminitic and nonlaminitic donkey feet were analyzed by use of a novel application of multivariate statistical techniques. The resultant diagnostic models were validated in a blinded manner with data from the separate cohort of laminitic and nonlaminitic donkeys. Data were modeled, and robust statistical rules were established for the diagnosis of anatomic changes within laminitic donkey forefeet. Component 1 scores ≤ -3.5 were indicative of extreme anatomic change, and scores from -2.0 to 0.0 denoted modest change. Nonlaminitic donkeys with a score from 0.5 to 1.0 should be considered as at risk for laminitis. Results indicated that the radiographic procedures evaluated can be used for the identification, assessment, and monitoring of anatomic changes associated with laminitis. Screening assessments by use of this method may enable early detection of mild anatomic change and identification of at-risk donkeys.

  3. Deformation Invariant Attribute Vector for Deformable Registration of Longitudinal Brain MR Images

    PubMed Central

    Li, Gang; Guo, Lei; Liu, Tianming

    2009-01-01

    This paper presents a novel approach to define deformation invariant attribute vector (DIAV) for each voxel in 3D brain image for the purpose of anatomic correspondence detection. The DIAV method is validated by using synthesized deformation in 3D brain MRI images. Both theoretic analysis and experimental studies demonstrate that the proposed DIAV is invariant to general nonlinear deformation. Moreover, our experimental results show that the DIAV is able to capture rich anatomic information around the voxels and exhibit strong discriminative ability. The DIAV has been integrated into a deformable registration algorithm for longitudinal brain MR images, and the results on both simulated and real brain images are provided to demonstrate the good performance of the proposed registration algorithm based on matching of DIAVs. PMID:19369031

  4. A review of US anthropometric reference data (1971 2000) with comparisons to both stylized and tomographic anatomic models

    NASA Astrophysics Data System (ADS)

    Huh, C.; Bolch, W. E.

    2003-10-01

    Two classes of anatomic models currently exist for use in both radiation protection and radiation dose reconstruction: stylized mathematical models and tomographic voxel models. The former utilize 3D surface equations to represent internal organ structure and external body shape, while the latter are based on segmented CT or MR images of a single individual. While tomographic models are clearly more anthropomorphic than stylized models, a given model's characterization as being anthropometric is dependent upon the reference human to which the model is compared. In the present study, data on total body mass, standing/sitting heights and body mass index are collected and reviewed for the US population covering the time interval from 1971 to 2000. These same anthropometric parameters are then assembled for the ORNL series of stylized models, the GSF series of tomographic models (Golem, Helga, Donna, etc), the adult male Zubal tomographic model and the UF newborn tomographic model. The stylized ORNL models of the adult male and female are found to be fairly representative of present-day average US males and females, respectively, in terms of both standing and sitting heights for ages between 20 and 60-80 years. While the ORNL adult male model provides a reasonably close match to the total body mass of the average US 21-year-old male (within ~5%), present-day 40-year-old males have an average total body mass that is ~16% higher. For radiation protection purposes, the use of the larger 73.7 kg adult ORNL stylized hermaphrodite model provides a much closer representation of average present-day US females at ages ranging from 20 to 70 years. In terms of the adult tomographic models from the GSF series, only Donna (40-year-old F) closely matches her age-matched US counterpart in terms of average body mass. Regarding standing heights, the better matches to US age-correlated averages belong to Irene (32-year-old F) for the females and Golem (38-year-old M) for the males. Both Helga (27-year-old F) and Donna, however, provide good matches to average US sitting heights for adult females, while Golem and Otoko (male of unknown age) yield sitting heights that are slightly below US adult male averages. Finally, Helga is seen as the only GSF tomographic female model that yields a body mass index in line with her average US female counterpart at age 26. In terms of dose reconstruction activities, however, all current tomographic voxel models are valuable assets in attempting to cover the broad distribution of individual anthropometric parameters representative of the current US population. It is highly recommended that similar attempts to create a broad library of tomographic models be initiated in the United States and elsewhere to complement and extend the limited number of tomographic models presently available for these efforts.

  5. [Medical Image Registration Method Based on a Semantic Model with Directional Visual Words].

    PubMed

    Jin, Yufei; Ma, Meng; Yang, Xin

    2016-04-01

    Medical image registration is very challenging due to the various imaging modality,image quality,wide inter-patients variability,and intra-patient variability with disease progressing of medical images,with strict requirement for robustness.Inspired by semantic model,especially the recent tremendous progress in computer vision tasks under bag-of-visual-word framework,we set up a novel semantic model to match medical images.Since most of medical images have poor contrast,small dynamic range,and involving only intensities and so on,the traditional visual word models do not perform very well.To benefit from the advantages from the relative works,we proposed a novel visual word model named directional visual words,which performs better on medical images.Then we applied this model to do medical registration.In our experiment,the critical anatomical structures were first manually specified by experts.Then we adopted the directional visual word,the strategy of spatial pyramid searching from coarse to fine,and the k-means algorithm to help us locating the positions of the key structures accurately.Sequentially,we shall register corresponding images by the areas around these positions.The results of the experiments which were performed on real cardiac images showed that our method could achieve high registration accuracy in some specific areas.

  6. Human anatomy: let the students tell us how to teach.

    PubMed

    Davis, Christopher R; Bates, Anthony S; Ellis, Harold; Roberts, Alice M

    2014-01-01

    Anatomy teaching methods have evolved as the medical undergraduate curriculum has modernized. Traditional teaching methods of dissection, prosection, tutorials and lectures are now supplemented by anatomical models and e-learning. Despite these changes, the preferences of medical students and anatomy faculty towards both traditional and contemporary teaching methods and tools are largely unknown. This study quantified medical student and anatomy faculty opinion on various aspects of anatomical teaching at the Department of Anatomy, University of Bristol, UK. A questionnaire was used to explore the perceived effectiveness of different anatomical teaching methods and tools among anatomy faculty (AF) and medical students in year one (Y1) and year two (Y2). A total of 370 preclinical medical students entered the study (76% response rate). Responses were quantified and intergroup comparisons were made. All students and AF were strongly in favor of access to cadaveric specimens and supported traditional methods of small-group teaching with medically qualified demonstrators. Other teaching methods, including e-learning, anatomical models and surgical videos, were considered useful educational tools. In several areas there was disharmony between the opinions of AF and medical students. This study emphasizes the importance of collecting student preferences to optimize teaching methods used in the undergraduate anatomy curriculum. © 2013 American Association of Anatomists.

  7. Automated anatomical labeling of bronchial branches using multiple classifiers and its application to bronchoscopy guidance based on fusion of virtual and real bronchoscopy

    NASA Astrophysics Data System (ADS)

    Ota, Shunsuke; Deguchi, Daisuke; Kitasaka, Takayuki; Mori, Kensaku; Suenaga, Yasuhito; Hasegawa, Yoshinori; Imaizumi, Kazuyoshi; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi

    2008-03-01

    This paper presents a method for automated anatomical labeling of bronchial branches (ALBB) extracted from 3D CT datasets. The proposed method constructs classifiers that output anatomical names of bronchial branches by employing the machine-learning approach. We also present its application to a bronchoscopy guidance system. Since the bronchus has a complex tree structure, bronchoscopists easily tend to get disoriented and lose the way to a target location. A bronchoscopy guidance system is strongly expected to be developed to assist bronchoscopists. In such guidance system, automated presentation of anatomical names is quite useful information for bronchoscopy. Although several methods for automated ALBB were reported, most of them constructed models taking only variations of branching patterns into account and did not consider those of running directions. Since the running directions of bronchial branches differ greatly in individuals, they could not perform ALBB accurately when running directions of bronchial branches were different from those of models. Our method tries to solve such problems by utilizing the machine-learning approach. Actual procedure consists of three steps: (a) extraction of bronchial tree structures from 3D CT datasets, (b) construction of classifiers using the multi-class AdaBoost technique, and (c) automated classification of bronchial branches by using the constructed classifiers. We applied the proposed method to 51 cases of 3D CT datasets. The constructed classifiers were evaluated by leave-one-out scheme. The experimental results showed that the proposed method could assign correct anatomical names to bronchial branches of 89.1% up to segmental lobe branches. Also, we confirmed that it was quite useful to assist the bronchoscopy by presenting anatomical names of bronchial branches on real bronchoscopic views.

  8. Toward morphological thoracic EIT: major signal sources correspond to respective organ locations in CT.

    PubMed

    Ferrario, Damien; Grychtol, Bartłomiej; Adler, Andy; Solà, Josep; Böhm, Stephan H; Bodenstein, Marc

    2012-11-01

    Lung and cardiovascular monitoring applications of electrical impedance tomography (EIT) require localization of relevant functional structures or organs of interest within the reconstructed images. We describe an algorithm for automatic detection of heart and lung regions in a time series of EIT images. Using EIT reconstruction based on anatomical models, candidate regions are identified in the frequency domain and image-based classification techniques applied. The algorithm was validated on a set of simultaneously recorded EIT and CT data in pigs. In all cases, identified regions in EIT images corresponded to those manually segmented in the matched CT image. Results demonstrate the ability of EIT technology to reconstruct relevant impedance changes at their anatomical locations, provided that information about the thoracic boundary shape (and electrode positions) are used for reconstruction.

  9. Simultaneous anatomical sketching as learning by doing method of teaching human anatomy

    PubMed Central

    Noorafshan, Ali; Hoseini, Leila; Amini, Mitra; Dehghani, Mohammad-Reza; Kojuri, Javad; Bazrafkan, Leila

    2014-01-01

    Objective: Learning by lecture is a passive experience. Many innovative techniques have been presented to stimulate students to assume a more active attitude toward learning. In this study, simultaneous sketch drawing, as an interactive learning technique was applied to teach anatomy to the medical students. Materials and Methods: We reconstructed a fun interactive model of teaching anatomy as simultaneous anatomic sketching. To test the model's instruction effectiveness, we conducted a quasi- experimental study and then the students were asked to write their learning experiences in their portfolio, also their view was evaluated by a questionnaire. Results: The results of portfolio evaluation revealed that students believed that this method leads to deep learning and understanding anatomical subjects better. Evaluation of the students’ views on this teaching approach was showed that, more than 80% of the students were agreed or completely agreed with this statement that leaning anatomy concepts are easier and the class is less boring with this method. More than 60% of the students were agreed or completely agreed to sketch anatomical figures with professor simultaneously. They also found the sketching make anatomy more attractive and it reduced the time for learning anatomy. These number of students were agree or completely agree that the method help them learning anatomical concept in anatomy laboratory. More than 80% of the students found the simultaneous sketching is a good method for learning anatomy overall. Conclusion: Sketch drawing, as an interactive learning technique, is an attractive for students to learn anatomy. PMID:25013843

  10. Ischemic stroke assessment with near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Weiguo; Li, Pengcheng; Zeng, Shaoqun; Luo, Qingming; Hu, Bo

    1999-09-01

    Many authors have elucidated the theory about oxygenated hemoglobin, deoxygenated hemoglobin absorption in near-infrared spectrum. And the theory has opened a window to measure the hemodynamic changes caused by stroke. However, no proper animal model still has established to confirm the theory. The aim of this study was to validate near-infrared cerebral topography (NCT) as a practical tool and to try to trace the focal hemodynamic changes of ischemic stroke. In the present study, middle cerebral artery occlusion model and the photosensitizer induced intracranial infarct model had been established. NCT and functional magnetic resonance image (fMRI) were obtained during pre- and post-operation. The geometric shape and infarct area of NCT image was compared with the fMRI images and anatomical samples of each rat. The results of two occlusion models in different intervene factors showed the NCT for infarct focus matched well with fMRI and anatomic sample of each rats. The instrument might become a practical tool for short-term prediction of stroke and predicting the rehabilitation after stroke in real time.

  11. Severity scores in trauma patients admitted to ICU. Physiological and anatomic models.

    PubMed

    Serviá, L; Badia, M; Montserrat, N; Trujillano, J

    2018-02-02

    The goals of this project were to compare both the anatomic and physiologic severity scores in trauma patients admitted to intensive care unit (ICU), and to elaborate mixed statistical models to improve the precision of the scores. A prospective study of cohorts. The combined medical/surgical ICU in a secondary university hospital. Seven hundred and eighty trauma patients admitted to ICU older than 16 years of age. Anatomic models (ISS and NISS) were compared and combined with physiological models (T-RTS, APACHE II [APII], and MPM II). The probability of death was calculated following the TRISS method. The discrimination was assessed using ROC curves (ABC [CI 95%]), and the calibration using the Hosmer-Lemeshoẃs H test. The mixed models were elaborated with the tree classification method type Chi Square Automatic Interaction Detection. A 14% global mortality was recorded. The physiological models presented the best discrimination values (APII of 0.87 [0.84-0.90]). All models were affected by bad calibration (P<.01). The best mixed model resulted from the combination of APII and ISS (0.88 [0.83-0.90]). This model was able to differentiate between a 7.5% mortality for elderly patients with pathological antecedents and a 25% mortality in patients presenting traumatic brain injury, from a pool of patients with APII values ranging from 10 to 17 and an ISS threshold of 22. The physiological models perform better than the anatomical models in traumatic patients admitted to the ICU. Patients with low scores in the physiological models require an anatomic analysis of the injuries to determine their severity. Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  12. Correlation among ultrasound, cross-sectional anatomy, and histology of the sciatic nerve: a review.

    PubMed

    Moayeri, Nizar; van Geffen, Geert J; Bruhn, Jörgen; Chan, Vincent W; Groen, Gerbrand J

    2010-01-01

    Efficient identification of the sciatic nerve (SN) requires a thorough knowledge of its topography in relation to the surrounding structures. Anatomic cross sections in similar oblique planes as observed during SN ultrasonography are lacking. A survey of sonoanatomy matched with ultrasound views of the major SN block sites will be helpful in pattern recognition, especially when combined with images that show the internal architecture of the nerve. From 1 cadaver, consecutive parts of the upper leg corresponding to the 4 major blocks sites were sectioned and deeply frozen. Using cryomicrotomy, consecutive transverse sections were acquired and photographed at 78-microm intervals, along with histologic sections at 5-mm intervals. Multiplanar reformatting was done to reconstruct the optimal planes for an accurate comparison of ultrasonography and gross anatomy. The anatomic and histologic images were matched with ultrasound images that were obtained from 2 healthy volunteers. By simulating the exact position and angulation as in the ultrasonographic images, detailed anatomic overviews of SN and adjacent structures were reconstructed in the gluteal, subgluteal, midfemoral, and popliteal regions. Throughout its trajectory, SN contains numerous fascicles with connective and adipose tissues. In this study, we provide an optimal matching between histology, anatomic cross sections, and short-axis ultrasound images of SN. Reconstructing ultrasonographic planes with this high-resolution digitized anatomy not only enables an overview but also shows detailed views of the architecture of internal SN. The undulating course of the nerve fascicles within SN may explain its varying echogenic appearance during probe manipulation.

  13. 4D XCAT phantom for multimodality imaging research

    PubMed Central

    Segars, W. P.; Sturgeon, G.; Mendonca, S.; Grimes, Jason; Tsui, B. M. W.

    2010-01-01

    Purpose: The authors develop the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. Methods: Highly detailed whole-body anatomies for the adult male and female were defined in the XCAT using nonuniform rational B-spline (NURBS) and subdivision surfaces based on segmentation of the Visible Male and Female anatomical datasets from the National Library of Medicine as well as patient datasets. Using the flexibility of these surfaces, the Visible Human anatomies were transformed to match body measurements and organ volumes for a 50th percentile (height and weight) male and female. The desired body measurements for the models were obtained using the PEOPLESIZE program that contains anthropometric dimensions categorized from 1st to the 99th percentile for US adults. The desired organ volumes were determined from ICRP Publication 89 [ICRP, ‘‘Basic anatomical and physiological data for use in radiological protection: reference values,” ICRP Publication 89 (International Commission on Radiological Protection, New York, NY, 2002)]. The male and female anatomies serve as standard templates upon which anatomical variations may be modeled in the XCAT through user-defined parameters. Parametrized models for the cardiac and respiratory motions were also incorporated into the XCAT based on high-resolution cardiac- and respiratory-gated multislice CT data. To demonstrate the usefulness of the phantom, the authors show example simulation studies in PET, SPECT, and CT using publicly available simulation packages. Results: As demonstrated in the pilot studies, the 4D XCAT (which includes thousands of anatomical structures) can produce realistic imaging data when combined with accurate models of the imaging process. With the flexibility of the NURBS surface primitives, any number of different anatomies, cardiac or respiratory motions or patterns, and spatial resolutions can be simulated to perform imaging research. Conclusions: With the ability to produce realistic, predictive 3D and 4D imaging data from populations of normal and abnormal patients under various imaging parameters, the authors conclude that the XCAT provides an important tool in imaging research to evaluate and improve imaging devices and techniques. In the field of x-ray CT, the phantom may also provide the necessary foundation with which to optimize clinical CT applications in terms of image quality versus radiation dose, an area of research that is becoming more significant with the growing use of CT. PMID:20964209

  14. Evaluation of influences of the Viennese Anatomical School on the work of the Croatian Anatomist Jelena Krmpotic-Nemanic.

    PubMed

    Dinjar, Kristijan; Toth, Jurica; Atalic, Bruno; Radanovic, Danijela; Maric, Svjetlana

    2012-01-01

    This paper tries to evaluate the connections between the Viennese Anatomical School and the Croatian Anatomist Jelena Krmpotic-Nemanic. 17 papers written by Professor Jelena Krmpotic-Nemanic in the last decade of her life were chosen for analyses. According to their themes they could be divided into three groups: ones which evaluate the anatomical terminology, ones which research the development of anatomical structures, and ones which describe the anatomical variations. Mentioned papers were analysed through their topics, methods of research and cited references. Analyses of the mentioned papers revealed the indirect link between the Viennese Anatomical School and the Professor Jelena Krmpotic-Nemanic, through her mentor Professor Drago Perovic, regarding the themes and the methods of her anatomical researches. It has also showed her preference for Austrian and German anatomical textbooks and atlases, primarily ones published in Vienna and Jena, rather than English and American ones. Finally, her direct connections with the Viennese Institute for the History of Medicine and the Viennese Josephinum Wax Models Museum were emphasized. Mentioned indirect and direct influences of the Viennese Anatomical School on the work of Professor Jelena Krmpotic-Nemanic were critically appraised.

  15. Using 3D modeling techniques to enhance teaching of difficult anatomical concepts

    PubMed Central

    Pujol, Sonia; Baldwin, Michael; Nassiri, Joshua; Kikinis, Ron; Shaffer, Kitt

    2016-01-01

    Rationale and Objectives Anatomy is an essential component of medical education as it is critical for the accurate diagnosis in organs and human systems. The mental representation of the shape and organization of different anatomical structures is a crucial step in the learning process. The purpose of this pilot study is to demonstrate the feasibility and benefits of developing innovative teaching modules for anatomy education of first-year medical students based on 3D reconstructions from actual patient data. Materials and Methods A total of 196 models of anatomical structures from 16 anonymized CT datasets were generated using the 3D Slicer open-source software platform. The models focused on three anatomical areas: the mediastinum, the upper abdomen and the pelvis. Online optional quizzes were offered to first-year medical students to assess their comprehension in the areas of interest. Specific tasks were designed for students to complete using the 3D models. Results Scores of the quizzes confirmed a lack of understanding of 3D spatial relationships of anatomical structures despite standard instruction including dissection. Written task material and qualitative review by students suggested that interaction with 3D models led to a better understanding of the shape and spatial relationships among structures, and helped illustrate anatomical variations from one body to another. Conclusion The study demonstrates the feasibility of one possible approach to the generation of 3D models of the anatomy from actual patient data. The educational materials developed have the potential to supplement the teaching of complex anatomical regions and help demonstrate the anatomic variation among patients. PMID:26897601

  16. Spine labeling in MRI via regularized distribution matching.

    PubMed

    Hojjat, Seyed-Parsa; Ayed, Ismail; Garvin, Gregory J; Punithakumar, Kumaradevan

    2017-11-01

    This study investigates an efficient (nearly real-time) two-stage spine labeling algorithm that removes the need for an external training while being applicable to different types of MRI data and acquisition protocols. Based solely on the image being labeled (i.e., we do not use training data), the first stage aims at detecting potential vertebra candidates following the optimization of a functional containing two terms: (i) a distribution-matching term that encodes contextual information about the vertebrae via a density model learned from a very simple user input, which amounts to a point (mouse click) on a predefined vertebra; and (ii) a regularization constraint, which penalizes isolated candidates in the solution. The second stage removes false positives and identifies all vertebrae and discs by optimizing a geometric constraint, which embeds generic anatomical information on the interconnections between neighboring structures. Based on generic knowledge, our geometric constraint does not require external training. We performed quantitative evaluations of the algorithm over a data set of 90 mid-sagittal MRI images of the lumbar spine acquired from 45 different subjects. To assess the flexibility of the algorithm, we used both T1- and T2-weighted images for each subject. A total of 990 structures were automatically detected/labeled and compared to ground-truth annotations by an expert. On the T2-weighted data, we obtained an accuracy of 91.6% for the vertebrae and 89.2% for the discs. On the T1-weighted data, we obtained an accuracy of 90.7% for the vertebrae and 88.1% for the discs. Our algorithm removes the need for external training while being applicable to different types of MRI data and acquisition protocols. Based on the current testing data, a subject-specific model density and generic anatomical information, our method can achieve competitive performances when applied to T1- and T2-weighted MRI images.

  17. Pediatric laryngeal simulator using 3D printed models: A novel technique.

    PubMed

    Kavanagh, Katherine R; Cote, Valerie; Tsui, Yvonne; Kudernatsch, Simon; Peterson, Donald R; Valdez, Tulio A

    2017-04-01

    Simulation to acquire and test technical skills is an essential component of medical education and residency training in both surgical and nonsurgical specialties. High-quality simulation education relies on the availability, accessibility, and reliability of models. The objective of this work was to describe a practical pediatric laryngeal model for use in otolaryngology residency training. Ideally, this model would be low-cost, have tactile properties resembling human tissue, and be reliably reproducible. Pediatric laryngeal models were developed using two manufacturing methods: direct three-dimensional (3D) printing of anatomical models and casted anatomical models using 3D-printed molds. Polylactic acid, acrylonitrile butadiene styrene, and high-impact polystyrene (HIPS) were used for the directly printed models, whereas a silicone elastomer (SE) was used for the casted models. The models were evaluated for anatomic quality, ease of manipulation, hardness, and cost of production. A tissue likeness scale was created to validate the simulation model. Fleiss' Kappa rating was performed to evaluate interrater agreement, and analysis of variance was performed to evaluate differences among the materials. The SE provided the most anatomically accurate models, with the tactile properties allowing for surgical manipulation of the larynx. Direct 3D printing was more cost-effective than the SE casting method but did not possess the material properties and tissue likeness necessary for surgical simulation. The SE models of the pediatric larynx created from a casting method demonstrated high quality anatomy, tactile properties comparable to human tissue, and easy manipulation with standard surgical instruments. Their use in a reliable, low-cost, accessible, modular simulation system provides a valuable training resource for otolaryngology residents. N/A. Laryngoscope, 127:E132-E137, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  18. Fluence-to-absorbed-dose conversion coefficients for neutron beams from 0.001 eV to 100 GeV calculated for a set of pregnant female and fetus models

    NASA Astrophysics Data System (ADS)

    Taranenko, Valery; Xu, X. George

    2008-03-01

    Protection of fetuses against external neutron exposure is an important task. This paper reports a set of absorbed dose conversion coefficients for fetal and maternal organs for external neutron beams using the RPI-P pregnant female models and the MCNPX code. The newly developed pregnant female models represent an adult female with a fetus including its brain and skeleton at the end of each trimester. The organ masses were adjusted to match the reference values within 1%. For the 3 mm cubic voxel size, the models consist of 10-15 million voxels for 35 organs. External monoenergetic neutron beams of six standard configurations (AP, PA, LLAT, RLAT, ROT and ISO) and source energies 0.001 eV-100 GeV were considered. The results are compared with previous data that are based on simplified anatomical models. The differences in dose depend on source geometry, energy and gestation periods: from 20% up to 140% for the whole fetus, and up to 100% for the fetal brain. Anatomical differences are primarily responsible for the discrepancies in the organ doses. For the first time, the dependence of mother organ doses upon anatomical changes during pregnancy was studied. A maximum of 220% increase in dose was observed for the placenta in the nine months model compared to three months, whereas dose to the pancreas, small and large intestines decreases by 60% for the AP source for the same models. Tabulated dose conversion coefficients for the fetus and 27 maternal organs are provided.

  19. Simultaneous anatomical sketching as learning by doing method of teaching human anatomy.

    PubMed

    Noorafshan, Ali; Hoseini, Leila; Amini, Mitra; Dehghani, Mohammad-Reza; Kojuri, Javad; Bazrafkan, Leila

    2014-01-01

    Learning by lecture is a passive experience. Many innovative techniques have been presented to stimulate students to assume a more active attitude toward learning. In this study, simultaneous sketch drawing, as an interactive learning technique was applied to teach anatomy to the medical students. We reconstructed a fun interactive model of teaching anatomy as simultaneous anatomic sketching. To test the model's instruction effectiveness, we conducted a quasi- experimental study and then the students were asked to write their learning experiences in their portfolio, also their view was evaluated by a questionnaire. The results of portfolio evaluation revealed that students believed that this method leads to deep learning and understanding anatomical subjects better. Evaluation of the students' views on this teaching approach was showed that, more than 80% of the students were agreed or completely agreed with this statement that leaning anatomy concepts are easier and the class is less boring with this method. More than 60% of the students were agreed or completely agreed to sketch anatomical figures with professor simultaneously. They also found the sketching make anatomy more attractive and it reduced the time for learning anatomy. These number of students were agree or completely agree that the method help them learning anatomical concept in anatomy laboratory. More than 80% of the students found the simultaneous sketching is a good method for learning anatomy overall. Sketch drawing, as an interactive learning technique, is an attractive for students to learn anatomy.

  20. [Construction and validation of a three-dimensional finite element model of cranio-maxillary complex with sutures in unilateral cleft lip and palate patient].

    PubMed

    Wu, Zhi-fang; Lei, Yong-hua; Li, Wen-jie; Liao, Sheng-hui; Zhao, Zi-jin

    2013-02-01

    To explore an effective method to construct and validate a finite element model of the unilateral cleft lip and palate(UCLP) craniomaxillary complex with sutures, which could be applied in further three-dimensional finite element analysis (FEA). One male patient aged 9 with left complete lip and palate cleft was selected and CT scan was taken at 0.75mm intervals on the skull. The CT data was saved in Dicom format, which was, afterwards, imported into Software Mimics 10.0 to generate a three-dimensional anatomic model. Then Software Geomagic Studio 12.0 was used to match, smoothen and transfer the anatomic model into a CAD model with NURBS patches. Then, 12 circum-maxillary sutures were integrated into the CAD model by Solidworks (2011 version). Finally meshing by E-feature Biomedical Modeler was done and a three-dimensional finite element model with sutures was obtained. A maxillary protraction force (500 g per side, 20° downward and forward from the occlusal plane) was applied. Displacement and stress distribution of some important craniofacial structures were measured and compared with the results of related researches in the literature. A three-dimensional finite element model of UCLP craniomaxillary complex with 12 sutures was established from the CT scan data. This simulation model consisted of 206 753 individual elements with 260 662 nodes, which was a more precise simulation and a better representation of human craniomaxillary complex than the formerly available FEA models. By comparison, this model was proved to be valid. It is an effective way to establish the three-dimensional finite element model of UCLP cranio-maxillary complex with sutures from CT images with the help of the following softwares: Mimics 10.0, Geomagic Studio 12.0, Solidworks and E-feature Biomedical Modeler.

  1. Uberon, an integrative multi-species anatomy ontology

    PubMed Central

    2012-01-01

    We present Uberon, an integrated cross-species ontology consisting of over 6,500 classes representing a variety of anatomical entities, organized according to traditional anatomical classification criteria. The ontology represents structures in a species-neutral way and includes extensive associations to existing species-centric anatomical ontologies, allowing integration of model organism and human data. Uberon provides a necessary bridge between anatomical structures in different taxa for cross-species inference. It uses novel methods for representing taxonomic variation, and has proved to be essential for translational phenotype analyses. Uberon is available at http://uberon.org PMID:22293552

  2. Development of new anatomy reconstruction software to localize cardiac isochrones to the cardiac surface from the 12 lead ECG.

    PubMed

    van Dam, Peter M; Gordon, Jeffrey P; Laks, Michael M; Boyle, Noel G

    2015-01-01

    Non-invasive electrocardiographic imaging (ECGI) of the cardiac muscle can help the pre-procedure planning of the ablation of ventricular arrhythmias by reducing the time to localize the origin. Our non-invasive ECGI system, the cardiac isochrone positioning system (CIPS), requires non-intersecting meshes of the heart, lungs and torso. However, software to reconstruct the meshes of the heart, lungs and torso with the capability to check and prevent these intersections is currently lacking. Consequently the reconstruction of a patient specific model with realistic atrial and ventricular wall thickness and incorporating blood cavities, lungs and torso usually requires additional several days of manual work. Therefore new software was developed that checks and prevents any intersections, and thus enables the use of accurate reconstructed anatomical models within CIPS. In this preliminary study we investigated the accuracy of the created patient specific anatomical models from MRI or CT. During the manual segmentation of the MRI data the boundaries of the relevant tissues are determined. The resulting contour lines are used to automatically morph reference meshes of the heart, lungs or torso to match the boundaries of the morphed tissue. Five patients were included in the study; models of the heart, lungs and torso were reconstructed from standard cardiac MRI images. The accuracy was determined by computing the distance between the segmentation contours and the morphed meshes. The average accuracy of the reconstructed cardiac geometry was within 2mm with respect to the manual segmentation contours on the MRI images. Derived wall volumes and left ventricular wall thickness were within the range reported in literature. For each reconstructed heart model the anatomical heart axis was computed using the automatically determined anatomical landmarks of the left apex and the mitral valve. The accuracy of the reconstructed heart models was well within the accuracy of the used medical image data (pixel size <1.5mm). For the lungs and torso the number of triangles in the mesh was reduced, thus decreasing the accuracy of the reconstructed mesh. A novel software tool has been introduced, which is able to reconstruct accurate cardiac anatomical models from MRI or CT within only a few hours. This new anatomical reconstruction tool might reduce the modeling errors within the cardiac isochrone positioning system and thus enable the clinical application of CIPS to localize the PVC/VT focus to the ventricular myocardium from only the standard 12 lead ECG. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Current and emerging applications of 3D printing in medicine.

    PubMed

    Liaw, Chya-Yan; Guvendiren, Murat

    2017-06-07

    Three-dimensional (3D) printing enables the production of anatomically matched and patient-specific devices and constructs with high tunability and complexity. It also allows on-demand fabrication with high productivity in a cost-effective manner. As a result, 3D printing has become a leading manufacturing technique in healthcare and medicine for a wide range of applications including dentistry, tissue engineering and regenerative medicine, engineered tissue models, medical devices, anatomical models and drug formulation. Today, 3D printing is widely adopted by the healthcare industry and academia. It provides commercially available medical products and a platform for emerging research areas including tissue and organ printing. In this review, our goal is to discuss the current and emerging applications of 3D printing in medicine. A brief summary on additive manufacturing technologies and available printable materials is also given. The technological and regulatory barriers that are slowing down the full implementation of 3D printing in the medical field are also discussed.

  4. An evaluation of objective rating methods for full-body finite element model comparison to PMHS tests.

    PubMed

    Vavalle, Nicholas A; Jelen, Benjamin C; Moreno, Daniel P; Stitzel, Joel D; Gayzik, F Scott

    2013-01-01

    Objective evaluation methods of time history signals are used to quantify how well simulated human body responses match experimental data. As the use of simulations grows in the field of biomechanics, there is a need to establish standard approaches for comparisons. There are 2 aims of this study. The first is to apply 3 objective evaluation methods found in the literature to a set of data from a human body finite element model. The second is to compare the results of each method, examining how they are correlated to each other and the relative strengths and weaknesses of the algorithms. In this study, the methods proposed by Sprague and Geers (magnitude and phase error, SGM and SGP), Rhule et al. (cumulative standard deviation, CSD), and Gehre et al. (CORrelation and Analysis, or CORA, size, phase, shape, corridor) were compared. A 40 kph frontal sled test presented by Shaw et al. was simulated using the Global Human Body Models Consortium midsized male full-body finite element model (v. 3.5). Mean and standard deviation experimental data (n = 5) from Shaw et al. were used as the benchmark. Simulated data were output from the model at the appropriate anatomical locations for kinematic comparison. Force data were output at the seat belts, seat pan, knee, and foot restraints. Objective comparisons from 53 time history data channels were compared to the experimental results. To compare the different methods, all objective comparison metrics were cross-plotted and linear regressions were calculated. The following ratings were found to be statistically significantly correlated (P < .01): SGM and CORrelation and Analysis (CORA) size, R (2) = 0.73; SGP and CORA shape, R (2) = 0.82; and CSD and CORA's corridor factor, R (2) = 0.59. Relative strengths of the correlated ratings were then investigated. For example, though correlated to CORA size, SGM carries a sign to indicate whether the simulated response is greater than or less than the benchmark signal. A further analysis of the advantages and drawbacks of each method is discussed. The results demonstrate that a single metric is insufficient to provide a complete assessment of how well the simulated results match the experiments. The CORA method provided the most comprehensive evaluation of the signal. Regardless of the method selected, one primary recommendation of this work is that for any comparison, the results should be reported to provide separate assessments of a signal's match to experimental variance, magnitude, phase, and shape. Future work planned includes implementing any forthcoming International Organization for Standardization standards for objective evaluations. Supplemental materials are available for this article. Go to the publisher's online edition of Traffic Injury Prevention to view the supplemental file.

  5. Polarization-Sensitive Hyperspectral Imaging in vivo: A Multimode Dermoscope for Skin Analysis

    NASA Astrophysics Data System (ADS)

    Vasefi, Fartash; MacKinnon, Nicholas; Saager, Rolf B.; Durkin, Anthony J.; Chave, Robert; Lindsley, Erik H.; Farkas, Daniel L.

    2014-05-01

    Attempts to understand the changes in the structure and physiology of human skin abnormalities by non-invasive optical imaging are aided by spectroscopic methods that quantify, at the molecular level, variations in tissue oxygenation and melanin distribution. However, current commercial and research systems to map hemoglobin and melanin do not correlate well with pathology for pigmented lesions or darker skin. We developed a multimode dermoscope that combines polarization and hyperspectral imaging with an efficient analytical model to map the distribution of specific skin bio-molecules. This corrects for the melanin-hemoglobin misestimation common to other systems, without resorting to complex and computationally intensive tissue optical models. For this system's proof of concept, human skin measurements on melanocytic nevus, vitiligo, and venous occlusion conditions were performed in volunteers. The resulting molecular distribution maps matched physiological and anatomical expectations, confirming a technologic approach that can be applied to next generation dermoscopes and having biological plausibility that is likely to appeal to dermatologists.

  6. Levels of detail analysis of microwave scattering from human head models for brain stroke detection

    PubMed Central

    2017-01-01

    In this paper, we have presented a microwave scattering analysis from multiple human head models. This study incorporates different levels of detail in the human head models and its effect on microwave scattering phenomenon. Two levels of detail are taken into account; (i) Simplified ellipse shaped head model (ii) Anatomically realistic head model, implemented using 2-D geometry. In addition, heterogenic and frequency-dispersive behavior of the brain tissues has also been incorporated in our head models. It is identified during this study that the microwave scattering phenomenon changes significantly once the complexity of head model is increased by incorporating more details using magnetic resonance imaging database. It is also found out that the microwave scattering results match in both types of head model (i.e., geometrically simple and anatomically realistic), once the measurements are made in the structurally simplified regions. However, the results diverge considerably in the complex areas of brain due to the arbitrary shape interface of tissue layers in the anatomically realistic head model. After incorporating various levels of detail, the solution of subject microwave scattering problem and the measurement of transmitted and backscattered signals were obtained using finite element method. Mesh convergence analysis was also performed to achieve error free results with a minimum number of mesh elements and a lesser degree of freedom in the fast computational time. The results were promising and the E-Field values converged for both simple and complex geometrical models. However, the E-Field difference between both types of head model at the same reference point differentiated a lot in terms of magnitude. At complex location, a high difference value of 0.04236 V/m was measured compared to the simple location, where it turned out to be 0.00197 V/m. This study also contributes to provide a comparison analysis between the direct and iterative solvers so as to find out the solution of subject microwave scattering problem in a minimum computational time along with memory resources requirement. It is seen from this study that the microwave imaging may effectively be utilized for the detection, localization and differentiation of different types of brain stroke. The simulation results verified that the microwave imaging can be efficiently exploited to study the significant contrast between electric field values of the normal and abnormal brain tissues for the investigation of brain anomalies. In the end, a specific absorption rate analysis was carried out to compare the ionizing effects of microwave signals to different types of head model using a factor of safety for brain tissues. It is also suggested after careful study of various inversion methods in practice for microwave head imaging, that the contrast source inversion method may be more suitable and computationally efficient for such problems. PMID:29177115

  7. Congenital blindness is associated with large-scale reorganization of anatomical networks.

    PubMed

    Hasson, Uri; Andric, Michael; Atilgan, Hicret; Collignon, Olivier

    2016-03-01

    Blindness is a unique model for understanding the role of experience in the development of the brain's functional and anatomical architecture. Documenting changes in the structure of anatomical networks for this population would substantiate the notion that the brain's core network-level organization may undergo neuroplasticity as a result of life-long experience. To examine this issue, we compared whole-brain networks of regional cortical-thickness covariance in early blind and matched sighted individuals. This covariance is thought to reflect signatures of integration between systems involved in similar perceptual/cognitive functions. Using graph-theoretic metrics, we identified a unique mode of anatomical reorganization in the blind that differed from that found for sighted. This was seen in that network partition structures derived from subgroups of blind were more similar to each other than they were to partitions derived from sighted. Notably, after deriving network partitions, we found that language and visual regions tended to reside within separate modules in sighted but showed a pattern of merging into shared modules in the blind. Our study demonstrates that early visual deprivation triggers a systematic large-scale reorganization of whole-brain cortical-thickness networks, suggesting changes in how occipital regions interface with other functional networks in the congenitally blind. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Measurement of the noise components in the medical x-ray intensity pattern due to overlaying nonrecognizable structures

    NASA Astrophysics Data System (ADS)

    Tischenko, Oleg; Hoeschen, Christoph; Effenberger, Olaf; Reissberg, Steffen; Buhr, Egbert; Doehring, Wilfried

    2003-06-01

    There are many aspects that influence and deteriorate the detection of pathologies in X-ray images. Some of those are due to effects taking place in the stage of forming the X-ray intensity pattern in front of the x-ray detector. These can be described as motion blurring, depth blurring, anatomical background, scatter noise and structural noise. Structural noise results from an overlapping of fine irrelevant anatomical structures. A method for measuring the combined effect of structural noise and scatter noise was developed and will be presented in this paper. This method is based on the consideration that within a pair of projections created after rotation of the object with a small angle (which is within the typical uncertainty in positioning the patient) both images would show the same relevant structures whereas the projection of the fine overlapping structures will appear quite differently in the two images. To demonstrate the method two X-ray radiographs of a lung phantom were produced. The second radiograph was achieved after rotating the lung by an angle of about 3. Dyadic wavelet representations of both images were regarded. For each value of the wavelet scale parameter the corresponding pair of approximations was matched using the cross correlation matching technique. The homologous regions of approximations were extracted. The image containing only those structures that appear in both images simultaneously was then reconstructed from the wavelet coefficients corresponding to the homologous regions. The difference between one of the original images and the noise-reduced image contains the structural noise and the scatter noise.

  9. Finite-element-based matching of pre- and intraoperative data for image-guided endovascular aneurysm repair

    PubMed Central

    Dumenil, Aurélien; Kaladji, Adrien; Castro, Miguel; Esneault, Simon; Lucas, Antoine; Rochette, Michel; Goksu, Cemil; Haigron, Pascal

    2013-01-01

    Endovascular repair of abdominal aortic aneurysms is a well-established technique throughout the medical and surgical communities. Although increasingly indicated, this technique does have some limitations. Because intervention is commonly performed under fluoroscopic control, two-dimensional (2D) visualization of the aneurysm requires the injection of a contrast agent. The projective nature of this imaging modality inevitably leads to topographic errors, and does not give information on arterial wall quality at the time of deployment. A specially-adapted intraoperative navigation interface could increase deployment accuracy and reveal such information, which preoperative three-dimensional (3D) imaging might otherwise provide. One difficulty is the precise matching of preoperative data (images and models) and intraoperative observations affected by anatomical deformations due to tool-tissue interactions. Our proposed solution involves a finite element-based preoperative simulation of tool/tissue interactions, its adaptive tuning regarding patient specific data, and the matching with intra-operative data. The biomechanical model was first tuned on a group of 10 patients and assessed on a second group of 8 patients. PMID:23269745

  10. Motion representation of the long fingers: a proposal for the definitions of new anatomical frames.

    PubMed

    Coupier, Jérôme; Moiseev, Fédor; Feipel, Véronique; Rooze, Marcel; Van Sint Jan, Serge

    2014-04-11

    Despite the availability of the International Society of Biomechanics (ISB) recommendations for the orientation of anatomical frames, no consensus exists about motion representations related to finger kinematics. This paper proposes novel anatomical frames for motion representation of the phalangeal segments of the long fingers. A three-dimensional model of a human forefinger was acquired from a non-pathological fresh-frozen hand. Medical imaging was used to collect phalangeal discrete positions. Data processing was performed using a customized software interface ("lhpFusionBox") to create a specimen-specific model and to reconstruct the discrete motion path. Five examiners virtually palpated two sets of landmarks. These markers were then used to build anatomical frames following two methods: a reference method following ISB recommendations and a newly-developed method based on the mean helical axis (HA). Motion representations were obtained and compared between examiners. Virtual palpation precision was around 1mm, which is comparable to results from the literature. The comparison of the two methods showed that the helical axis method seemed more reproducible between examiners especially for secondary, or accessory, motions. Computed Root Mean Square distances comparing methods showed that the ISB method displayed a variability 10 times higher than the HA method. The HA method seems to be suitable for finger motion representation using discrete positions from medical imaging. Further investigations are required before being able to use the methodology with continuous tracking of markers set on the subject's hand. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. An Automatic Segmentation and Classification Framework Based on PCNN Model for Single Tooth in MicroCT Images.

    PubMed

    Wang, Liansheng; Li, Shusheng; Chen, Rongzhen; Liu, Sze-Yu; Chen, Jyh-Cheng

    2016-01-01

    Accurate segmentation and classification of different anatomical structures of teeth from medical images plays an essential role in many clinical applications. Usually, the anatomical structures of teeth are manually labelled by experienced clinical doctors, which is time consuming. However, automatic segmentation and classification is a challenging task because the anatomical structures and surroundings of the tooth in medical images are rather complex. Therefore, in this paper, we propose an effective framework which is designed to segment the tooth with a Selective Binary and Gaussian Filtering Regularized Level Set (GFRLS) method improved by fully utilizing three dimensional (3D) information, and classify the tooth by employing unsupervised learning Pulse Coupled Neural Networks (PCNN) model. In order to evaluate the proposed method, the experiments are conducted on the different datasets of mandibular molars and the experimental results show that our method can achieve better accuracy and robustness compared to other four state of the art clustering methods.

  12. Magnetic resonance Spectroscopy with Linear Algebraic Modeling (SLAM) for higher speed and sensitivity

    PubMed Central

    Zhang, Yi; Gabr, Refaat E.; Schär, Michael; Weiss, Robert G.; Bottomley, Paul A.

    2012-01-01

    Speed and signal-to-noise ratio (SNR) are critical for localized magnetic resonance spectroscopy (MRS) of low-concentration metabolites. Matching voxels to anatomical compartments a priori yields better SNR than the spectra created by summing signals from constituent chemical-shift-imaging (CSI) voxels post-acquisition. Here, a new method of localized Spectroscopy using Linear Algebraic Modeling (SLAM) is presented, that can realize this additional SNR gain. Unlike prior methods, SLAM generates spectra from C signal-generating anatomic compartments utilizing a CSI sequence wherein essentially only the C central k-space phase-encoding gradient steps with highest SNR are retained. After MRI-based compartment segmentation, the spectra are reconstructed by solving a sub-set of linear simultaneous equations from the standard CSI algorithm. SLAM is demonstrated with one-dimensional CSI surface coil phosphorus MRS in phantoms, the human leg and the heart on a 3T clinical scanner. Its SNR performance, accuracy, sensitivity to registration errors and inhomogeneity, are evaluated. Compared to one-dimensional CSI, SLAM yielded quantitatively the same results 4-times faster in 24 cardiac patients and healthy subjects. SLAM is further extended with fractional phase-encoding gradients that optimize SNR and/or minimize both inter- and intra-compartmental contamination. In proactive cardiac phosphorus MRS of 6 healthy subjects, both SLAM and fractional-SLAM (fSLAM) produced results indistinguishable from CSI while preserving SNR gains of 36–45% in the same scan-time. Both SLAM and fSLAM are simple to implement and reduce the minimum scan-time for CSI, which otherwise limits the translation of higher SNR achievable at higher field strengths to faster scanning. PMID:22578557

  13. Warping of a computerized 3-D atlas to match brain image volumes for quantitative neuroanatomical and functional analysis

    NASA Astrophysics Data System (ADS)

    Evans, Alan C.; Dai, Weiqian; Collins, D. Louis; Neelin, Peter; Marrett, Sean

    1991-06-01

    We describe the implementation, experience and preliminary results obtained with a 3-D computerized brain atlas for topographical and functional analysis of brain sub-regions. A volume-of-interest (VOI) atlas was produced by manual contouring on 64 adjacent 2 mm-thick MRI slices to yield 60 brain structures in each hemisphere which could be adjusted, originally by global affine transformation or local interactive adjustments, to match individual MRI datasets. We have now added a non-linear deformation (warp) capability (Bookstein, 1989) into the procedure for fitting the atlas to the brain data. Specific target points are identified in both atlas and MRI spaces which define a continuous 3-D warp transformation that maps the atlas on to the individual brain image. The procedure was used to fit MRI brain image volumes from 16 young normal volunteers. Regional volume and positional variability were determined, the latter in such a way as to assess the extent to which previous linear models of brain anatomical variability fail to account for the true variation among normal individuals. Using a linear model for atlas deformation yielded 3-D fits of the MRI data which, when pooled across subjects and brain regions, left a residual mis-match of 6 - 7 mm as compared to the non-linear model. The results indicate a substantial component of morphometric variability is not accounted for by linear scaling. This has profound implications for applications which employ stereotactic coordinate systems which map individual brains into a common reference frame: quantitative neuroradiology, stereotactic neurosurgery and cognitive mapping of normal brain function with PET. In the latter case, the combination of a non-linear deformation algorithm would allow for accurate measurement of individual anatomic variations and the inclusion of such variations in inter-subject averaging methodologies used for cognitive mapping with PET.

  14. Biomechanics Simulations Using Cubic Hermite Meshes with Extraordinary Nodes for Isogeometric Cardiac Modeling

    PubMed Central

    Gonzales, Matthew J.; Sturgeon, Gregory; Segars, W. Paul; McCulloch, Andrew D.

    2016-01-01

    Cubic Hermite hexahedral finite element meshes have some well-known advantages over linear tetrahedral finite element meshes in biomechanical and anatomic modeling using isogeometric analysis. These include faster convergence rates as well as the ability to easily model rule-based anatomic features such as cardiac fiber directions. However, it is not possible to create closed complex objects with only regular nodes; these objects require the presence of extraordinary nodes (nodes with 3 or >= 5 adjacent elements in 2D) in the mesh. The presence of extraordinary nodes requires new constraints on the derivatives of adjacent elements to maintain continuity. We have developed a new method that uses an ensemble coordinate frame at the nodes and a local-to-global mapping to maintain continuity. In this paper, we make use of this mapping to create cubic Hermite models of the human ventricles and a four-chamber heart. We also extend the methods to the finite element equations to perform biomechanics simulations using these meshes. The new methods are validated using simple test models and applied to anatomically accurate ventricular meshes with valve annuli to simulate complete cardiac cycle simulations. PMID:27182096

  15. Using ventricular modeling to robustly probe significant deep gray matter pathologies: Application to cerebral palsy.

    PubMed

    Pagnozzi, Alex M; Shen, Kaikai; Doecke, James D; Boyd, Roslyn N; Bradley, Andrew P; Rose, Stephen; Dowson, Nicholas

    2016-11-01

    Understanding the relationships between the structure and function of the brain largely relies on the qualitative assessment of Magnetic Resonance Images (MRIs) by expert clinicians. Automated analysis systems can support these assessments by providing quantitative measures of brain injury. However, the assessment of deep gray matter structures, which are critical to motor and executive function, remains difficult as a result of large anatomical injuries commonly observed in children with Cerebral Palsy (CP). Hence, this article proposes a robust surrogate marker of the extent of deep gray matter injury based on impingement due to local ventricular enlargement on surrounding anatomy. Local enlargement was computed using a statistical shape model of the lateral ventricles constructed from 44 healthy subjects. Measures of injury on 95 age-matched CP patients were used to train a regression model to predict six clinical measures of function. The robustness of identifying ventricular enlargement was demonstrated by an area under the curve of 0.91 when tested against a dichotomised expert clinical assessment. The measures also showed strong and significant relationships for multiple clinical scores, including: motor function (r 2  = 0.62, P < 0.005), executive function (r 2  = 0.55, P < 0.005), and communication (r 2  = 0.50, P < 0.005), especially compared to using volumes obtained from standard anatomical segmentation approaches. The lack of reliance on accurate anatomical segmentations and its resulting robustness to large anatomical variations is a key feature of the proposed automated approach. This coupled with its strong correlation with clinically meaningful scores, signifies the potential utility to repeatedly assess MRIs for clinicians diagnosing children with CP. Hum Brain Mapp 37:3795-3809, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. An imaging-based stochastic model for simulation of tumour vasculature

    NASA Astrophysics Data System (ADS)

    Adhikarla, Vikram; Jeraj, Robert

    2012-10-01

    A mathematical model which reconstructs the structure of existing vasculature using patient-specific anatomical, functional and molecular imaging as input was developed. The vessel structure is modelled according to empirical vascular parameters, such as the mean vessel branching angle. The model is calibrated such that the resultant oxygen map modelled from the simulated microvasculature stochastically matches the input oxygen map to a high degree of accuracy (R2 ≈ 1). The calibrated model was successfully applied to preclinical imaging data. Starting from the anatomical vasculature image (obtained from contrast-enhanced computed tomography), a representative map of the complete vasculature was stochastically simulated as determined by the oxygen map (obtained from hypoxia [64Cu]Cu-ATSM positron emission tomography). The simulated microscopic vasculature and the calculated oxygenation map successfully represent the imaged hypoxia distribution (R2 = 0.94). The model elicits the parameters required to simulate vasculature consistent with imaging and provides a key mathematical relationship relating the vessel volume to the tissue oxygen tension. Apart from providing an excellent framework for visualizing the imaging gap between the microscopic and macroscopic imagings, the model has the potential to be extended as a tool to study the dynamics between the tumour and the vasculature in a patient-specific manner and has an application in the simulation of anti-angiogenic therapies.

  17. Effect of anatomy on human nasal air flow and odorant transport patterns: implications for olfaction.

    PubMed

    Zhao, Kai; Scherer, Peter W; Hajiloo, Shoreh A; Dalton, Pamela

    2004-06-01

    Recent studies that have compared CT or MRI images of an individual's nasal anatomy and measures of their olfactory sensitivity have found a correlation between specific anatomical areas and performance on olfactory assessments. Using computational fluid dynamics (CFD) techniques, we have developed a method to quickly (

  18. Live Donor Renal Anatomic Asymmetry and Posttransplant Renal Function.

    PubMed

    Tanriover, Bekir; Fernandez, Sonalis; Campenot, Eric S; Newhouse, Jeffrey H; Oyfe, Irina; Mohan, Prince; Sandikci, Burhaneddin; Radhakrishnan, Jai; Wexler, Jennifer J; Carroll, Maureen A; Sharif, Sairah; Cohen, David J; Ratner, Lloyd E; Hardy, Mark A

    2015-08-01

    Relationship between live donor renal anatomic asymmetry and posttransplant recipient function has not been studied extensively. We analyzed 96 live kidney donors, who had anatomical asymmetry (>10% renal length and/or volume difference calculated from computerized tomography angiograms) and their matching recipients. Split function differences (SFD) were quantified with technetium-dimercaptosuccinic acid renography. Implantation biopsies at time 0 were semiquantitatively scored. A comprehensive model using donor renal volume adjusted to recipient weight (Vol/Wgt), SFD, and biopsy score was used to predict recipient estimated glomerular filtration rate (eGFR) at 1 year. Primary analysis consisted of a logistic regression model of outcome (odds of developing eGFR>60 mL/min/1.73 m(2) at 1 year), a linear regression model of outcome (predicting recipient eGFR at one-year, using the chronic kidney disease-epidemiology collaboration formula), and a Monte Carlo simulation based on the linear regression model (N=10,000 iterations). In the study cohort, the mean Vol/Wgt and eGFR at 1 year were 2.04 mL/kg and 60.4 mL/min/1.73 m(2), respectively. Volume and split ratios between 2 donor kidneys were strongly correlated (r = 0.79, P < 0.001). The biopsy scores among SFD categories (<5%, 5%-10%, >10%) were not different (P = 0.190). On multivariate models, only Vol/Wgt was significantly associated with higher odds of having eGFR > 60 mL/min/1.73 m (odds ratio, 8.94, 95% CI 2.47-32.25, P = 0.001) and had a strong discriminatory power in predicting the risk of eGFR less than 60 mL/min/1.73 m(2) at 1 year [receiver operating curve (ROC curve), 0.78, 95% CI, 0.68-0.89]. In the presence of donor renal anatomic asymmetry, Vol/Wgt appears to be a major determinant of recipient renal function at 1 year after transplantation. Renography can be replaced with CT volume calculation in estimating split renal function.

  19. An investigation into the accuracy and reliability of skull-photo superimposition in a South African sample.

    PubMed

    Gordon, G M; Steyn, M

    2012-03-10

    One of the aims of forensic science is to determine the identities of victims of crime. In some cases the investigators may have ideas as to the identities of the victims and in these situations, ante mortem photographs of the victims could be used in order to try and establish identity through skull-photo superimposition. The aim of this study was to evaluate the accuracy of a newly developed digital photographic superimposition technique on a South African sample of cadaver photographs and skulls. Forty facial photographs were selected and for each photo, 10 skulls (including the skull corresponding to the photo) were used for superimposition. The investigator did not know which of the 10 skulls corresponded to the photograph in question. The skulls were scanned 3-dimensionally, using a Cyberware™ Model 3030 Colour-3D Scanhead scanner. The photos were also scanned. Superimposition was done in 3D Studio Max and involved a morphological superimposition, whereby a skull is superimposed over the photo and assessed for a morphological match. Superimposition using selected anatomical landmarks was also performed to assess the match. A total of 400 skull-photo superimpositions were carried out using the morphological assessment and another 400 using the anatomical landmarks. In 85% of cases the correct skull was included in the possible matches for a particular photo using morphological assessment. However, in all of these cases, between zero and three other skulls out of 10 possibilities could also match a specific photo. In the landmark based assessment, the correct skull was included in 80% of cases. Once again, however, between one and seven other skulls out of 10 possibilities also matched the photo. This indicates that skull-photo superimposition has limited use in the identification of human skeletal remains, but may be useful as an initial screening tool. Corroborative techniques should also be used in the identification process. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Limbic hyperconnectivity in the vegetative state.

    PubMed

    Di Perri, Carol; Bastianello, Stefano; Bartsch, Andreas J; Pistarini, Caterina; Maggioni, Giorgio; Magrassi, Lorenzo; Imberti, Roberto; Pichiecchio, Anna; Vitali, Paolo; Laureys, Steven; Di Salle, Francesco

    2013-10-15

    To investigate functional connectivity between the default mode network (DMN) and other networks in disorders of consciousness. We analyzed MRI data from 11 patients in a vegetative state and 7 patients in a minimally conscious state along with age- and sex-matched healthy control subjects. MRI data analysis included nonlinear spatial normalization to compensate for disease-related anatomical distortions. We studied brain connectivity data from resting-state MRI temporal series, combining noninferential (independent component analysis) and inferential (seed-based general linear model) methods. In DMN hypoconnectivity conditions, a patient's DMN functional connectivity shifts and paradoxically increases in limbic structures, including the orbitofrontal cortex, insula, hypothalamus, and the ventral tegmental area. Concurrently with DMN hypoconnectivity, we report limbic hyperconnectivity in patients in vegetative and minimally conscious states. This hyperconnectivity may reflect the persistent engagement of residual neural activity in self-reinforcing neural loops, which, in turn, could disrupt normal patterns of connectivity.

  1. Large Deformation Diffeomorphism and Momentum Based Hippocampal Shape Discrimination in Dementia of the Alzheimer type

    PubMed Central

    Wang, Lei; Beg, Faisal; Ratnanather, Tilak; Ceritoglu, Can; Younes, Laurent; Morris, John C.; Csernansky, John G.; Miller, Michael I.

    2010-01-01

    In large-deformation diffeomorphic metric mapping (LDDMM), the diffeomorphic matching of images are modeled as evolution in time, or a flow, of an associated smooth velocity vector field v controlling the evolution. The initial momentum parameterizes the whole geodesic and encodes the shape and form of the target image. Thus, methods such as principal component analysis (PCA) of the initial momentum leads to analysis of anatomical shape and form in target images without being restricted to small-deformation assumption in the analysis of linear displacements. We apply this approach to a study of dementia of the Alzheimer type (DAT). The left hippocampus in the DAT group shows significant shape abnormality while the right hippocampus shows similar pattern of abnormality. Further, PCA of the initial momentum leads to correct classification of 12 out of 18 DAT subjects and 22 out of 26 control subjects. PMID:17427733

  2. Semi-Automated Trajectory Analysis of Deep Ballistic Penetrating Brain Injury

    PubMed Central

    Folio, Les; Solomon, Jeffrey; Biassou, Nadia; Fischer, Tatjana; Dworzak, Jenny; Raymont, Vanessa; Sinaii, Ninet; Wassermann, Eric M.; Grafman, Jordan

    2016-01-01

    Background Penetrating head injuries (PHIs) are common in combat operations and most have visible wound paths on computed tomography (CT). Objective We assess agreement between an automated trajectory analysis-based assessment of brain injury and manual tracings of encephalomalacia on CT. Methods We analyzed 80 head CTs with ballistic PHI from the Institutional Review Board approved Vietnam head injury registry. Anatomic reports were generated from spatial coordinates of projectile entrance and terminal fragment location. These were compared to manual tracings of the regions of encephalomalacia. Dice’s similarity coefficients, kappa, sensitivities, and specificities were calculated to assess agreement. Times required for case analysis were also compared. Results Results show high specificity of anatomic regions identified on CT with semiautomated anatomical estimates and manual tracings of tissue damage. Radiologist’s and medical students’ anatomic region reports were similar (Kappa 0.8, t-test p < 0.001). Region of probable injury modeling of involved brain structures was sensitive (0.7) and specific (0.9) compared with manually traced structures. Semiautomated analysis was 9-fold faster than manual tracings. Conclusion Our region of probable injury spatial model approximates anatomical regions of encephalomalacia from ballistic PHI with time-saving over manual methods. Results show potential for automated anatomical reporting as an adjunct to current practice of radiologist/neurosurgical review of brain injury by penetrating projectiles. PMID:23707123

  3. Ultrasound of the fingers for human identification using biometrics.

    PubMed

    Narayanasamy, Ganesh; Fowlkes, J Brian; Kripfgans, Oliver D; Jacobson, Jon A; De Maeseneer, Michel; Schmitt, Rainer M; Carson, Paul L

    2008-03-01

    It was hypothesized that the use of internal finger structure as imaged using commercially available ultrasound (US) scanners could act as a supplement to standard methods of biometric identification, as well as a means of assessing physiological and cardiovascular status. Anatomical structures in the finger including bone contour, tendon and features along the interphalangeal joint were investigated as potential biometric identifiers. Thirty-six pairs of three-dimensional (3D) gray-scale images of second to fourth finger (index, middle and ring) data taken from 20 individuals were spatially registered using MIAMI-Fuse software developed at our institution and also visually matched by four readers. The image-based registration met the criteria for matching successfully in 14 out of 15 image pairs on the same individual and did not meet criteria for matching in any of the 12 image pairs from different subjects, providing a sensitivity and specificity of 0.93 and 1.00, respectively. Visual matching of all image pairs by four readers yielded 96% successful match. Power Doppler imaging was performed to calculate the change in color pixel density due to physical exercise as a surrogate of stress level and to provide basic physiological information. (E-mail: gnarayan@umich.edu).

  4. Anatomical masking of pressure footprints based on the Oxford Foot Model: validation and clinical relevance.

    PubMed

    Giacomozzi, Claudia; Stebbins, Julie A

    2017-03-01

    Plantar pressure analysis is widely used in the assessment of foot function. In order to assess regional loading, a mask is applied to the footprint to sub-divide it into regions of interest (ROIs). The most common masking method is based on geometric features of the footprint (GM). Footprint masking based on anatomical landmarks of the foot has been implemented more recently, and involves the integration of a 3D motion capture system, plantar pressure measurement device, and a multi-segment foot model. However, thorough validation of anatomical masking (AM) using pathological footprints has not yet been presented. In the present study, an AM method based on the Oxford Foot Model (OFM) was compared to an equivalent GM. Pressure footprints from 20 young healthy subjects (HG) and 20 patients with clubfoot (CF) were anatomically divided into 5 ROIs using a subset of the OFM markers. The same foot regions were also identified by using a standard GM method. Comparisons of intra-subject coefficient of variation (CV) showed that the OFM-based AM was at least as reliable as the GM for all investigated pressure parameters in all foot regions. Clinical relevance of AM was investigated by comparing footprints from HG and CF groups. Contact time, maximum force, force-time integral and contact area proved to be sensitive parameters that were able to distinguish HG and CF groups, using both AM and GM methods However, the AM method revealed statistically significant differences between groups in 75% of measured variables, compared to 62% using a standard GM method, indicating that the AM method is more sensitive for revealing differences between groups. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Off-the-job training for VATS employing anatomically correct lung models.

    PubMed

    Obuchi, Toshiro; Imakiire, Takayuki; Miyahara, Sou; Nakashima, Hiroyasu; Hamanaka, Wakako; Yanagisawa, Jun; Hamatake, Daisuke; Shiraishi, Takeshi; Moriyama, Shigeharu; Iwasaki, Akinori

    2012-02-01

    We evaluated our simulated major lung resection employing anatomically correct lung models as "off-the-job training" for video-assisted thoracic surgery trainees. A total of 76 surgeons voluntarily participated in our study. They performed video-assisted thoracic surgical lobectomy employing anatomically correct lung models, which are made of sponges so that vessels and bronchi can be cut using usual surgical techniques with typical forceps. After the simulation surgery, participants answered questionnaires on a visual analogue scale, in terms of their level of interest and the reality of our training method as off-the-job training for trainees. We considered that the closer a score was to 10, the more useful our method would be for training new surgeons. Regarding the appeal or level of interest in this simulation surgery, the mean score was 8.3 of 10, and regarding reality, it was 7.0. The participants could feel some of the real sensations of the surgery and seemed to be satisfied to perform the simulation lobectomy. Our training method is considered to be suitable as an appropriate type of surgical off-the-job training.

  6. Automated location detection of injection site for preclinical stereotactic neurosurgery procedure

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, Shiva; Wu, Hemmings C. H.

    2017-03-01

    Currently, during stereotactic neurosurgery procedures, the manual task of locating the proper area for needle insertion or implantation of electrode/cannula/optic fiber can be time consuming. The requirement of the task is to quickly and accurately find the location for insertion. In this study we investigate an automated method to locate the entry point of region of interest. This method leverages a digital image capture system, pattern recognition, and motorized stages. Template matching of known anatomical identifiable regions is used to find regions of interest (e.g. Bregma) in rodents. For our initial study, we tackle the problem of automatically detecting the entry point.

  7. Development and validation of real-time simulation of X-ray imaging with respiratory motion.

    PubMed

    Vidal, Franck P; Villard, Pierre-Frédéric

    2016-04-01

    We present a framework that combines evolutionary optimisation, soft tissue modelling and ray tracing on GPU to simultaneously compute the respiratory motion and X-ray imaging in real-time. Our aim is to provide validated building blocks with high fidelity to closely match both the human physiology and the physics of X-rays. A CPU-based set of algorithms is presented to model organ behaviours during respiration. Soft tissue deformation is computed with an extension of the Chain Mail method. Rigid elements move according to kinematic laws. A GPU-based surface rendering method is proposed to compute the X-ray image using the Beer-Lambert law. It is provided as an open-source library. A quantitative validation study is provided to objectively assess the accuracy of both components: (i) the respiration against anatomical data, and (ii) the X-ray against the Beer-Lambert law and the results of Monte Carlo simulations. Our implementation can be used in various applications, such as interactive medical virtual environment to train percutaneous transhepatic cholangiography in interventional radiology, 2D/3D registration, computation of digitally reconstructed radiograph, simulation of 4D sinograms to test tomography reconstruction tools. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Contribution to the anatomical nomenclature concerning upper limb anatomy.

    PubMed

    Kachlik, David; Musil, Vladimir; Baca, Vaclav

    2017-04-01

    The aim of this article is to revise and extend the existing sections of Terminologia Anatomica dealing with the upper limb structures, which nomenclature belongs to its most neglected and not developing parts, and to justify the use of the proposed anatomical terms in the clinical practice, research, and education. A sample collected from own educational and research experience was matched in the main anatomical textbooks as well as old and recent anatomical journals and compared with four versions of the official Latin anatomical nomenclatures. The authors summarize here 145 terms, completed with their definitions or explanations, concerning both constant and variable (inconstant) morphological structures (bones, joints, muscles, vessels, and nerves) of the pectoral girdle, arm, cubital region, forearm, wrist, and hand, completed with some grammar remarks and several general terms. After a broad discussion on this topic, the Terminologia Anatomica should be revised and extend with the listed terms (or their equivalents).

  9. Estimating Fast Neural Input Using Anatomical and Functional Connectivity

    PubMed Central

    Eriksson, David

    2016-01-01

    In the last 20 years there has been an increased interest in estimating signals that are sent between neurons and brain areas. During this time many new methods have appeared for measuring those signals. Here we review a wide range of methods for which connected neurons can be identified anatomically, by tracing axons that run between the cells, or functionally, by detecting if the activity of two neurons are correlated with a short lag. The signals that are sent between the neurons are represented by the activity in the neurons that are connected to the target population or by the activity at the corresponding synapses. The different methods not only differ in the accuracy of the signal measurement but they also differ in the type of signal being measured. For example, unselective recording of all neurons in the source population encompasses more indirect pathways to the target population than if one selectively record from the neurons that project to the target population. Infact, this degree of selectivity is similar to that of optogenetic perturbations; one can perturb selectively or unselectively. Thus it becomes possible to match a given signal measurement method with a signal perturbation method, something that allows for an exact input control to any neuronal population. PMID:28066189

  10. Designing learning spaces for interprofessional education in the anatomical sciences.

    PubMed

    Cleveland, Benjamin; Kvan, Thomas

    2015-01-01

    This article explores connections between interprofessional education (IPE) models and the design of learning spaces for undergraduate and graduate education in the anatomical sciences and other professional preparation. The authors argue that for IPE models to be successful and sustained they must be embodied in the environment in which interprofessional learning occurs. To elaborate these arguments, two exemplar tertiary education facilities are discussed: the Charles Perkins Centre at the University of Sydney for science education and research, and Victoria University's Interprofessional Clinic in Wyndham for undergraduate IPE in health care. Backed by well-conceived curriculum and pedagogical models, the architectures of these facilities embody the educational visions, methods, and practices they were designed to support. Subsequently, the article discusses the spatial implications of curriculum and pedagogical change in the teaching of the anatomical sciences and explores how architecture might further the development of IPE models in the field. In conclusion, it is argued that learning spaces should be designed and developed (socially) with the expressed intention of supporting collaborative IPE models in health education settings, including those in the anatomical sciences. © 2015 American Association of Anatomists.

  11. Monitoring blood-flow in the mouse cochlea using an endoscopic laser speckle contrast imaging system

    PubMed Central

    Yu, Sunkon; Jung, Byungjo; Choi, Jin Sil

    2018-01-01

    Laser speckle contrast imaging (LSCI) enables continuous high-resolution assessment of microcirculation in real-time. We applied an endoscope to LSCI to measure cochlear blood-flow in an ischemia–reperfusion mouse model. We also explored whether using xenon light in combination with LSCI facilitates visualization of anatomical position. Based on a previous preliminary study, the appropriate wavelength for penetrating the thin bony cochlea was 830 nm. A 2.7-mm-diameter endoscope was used, as appropriate for the size of the mouse cochlea. Our endoscopic LSCI system was used to illuminate the right cochlea after dissection of the mouse. We observed changes in the speckle signals when we applied the endoscopic LSCI system to the ischemia-reperfusion mouse model. The anatomical structure of the mouse cochlea and surrounding structures were clearly visible using the xenon light. The speckle signal of the cochlea was scattered, with an intensity that varied between that of the stapes (with the lowest signal), the negative control, and the stapedial artery (with the highest signal), the positive control. In the cochlear ischemia–reperfusion mouse model, the speckle signal of the cochlea decreased during the ischemic phase, and increased during the reperfusion phase, clearly reflecting cochlear blood-flow. The endoscopic LSCI system generates high-resolution images in real-time, allowing visualization of blood-flow and its changes in the mouse cochlea. Anatomical structures were clearly matched using LSCI along with visible light. PMID:29489849

  12. Monitoring blood-flow in the mouse cochlea using an endoscopic laser speckle contrast imaging system.

    PubMed

    Kong, Tae Hoon; Yu, Sunkon; Jung, Byungjo; Choi, Jin Sil; Seo, Young Joon

    2018-01-01

    Laser speckle contrast imaging (LSCI) enables continuous high-resolution assessment of microcirculation in real-time. We applied an endoscope to LSCI to measure cochlear blood-flow in an ischemia-reperfusion mouse model. We also explored whether using xenon light in combination with LSCI facilitates visualization of anatomical position. Based on a previous preliminary study, the appropriate wavelength for penetrating the thin bony cochlea was 830 nm. A 2.7-mm-diameter endoscope was used, as appropriate for the size of the mouse cochlea. Our endoscopic LSCI system was used to illuminate the right cochlea after dissection of the mouse. We observed changes in the speckle signals when we applied the endoscopic LSCI system to the ischemia-reperfusion mouse model. The anatomical structure of the mouse cochlea and surrounding structures were clearly visible using the xenon light. The speckle signal of the cochlea was scattered, with an intensity that varied between that of the stapes (with the lowest signal), the negative control, and the stapedial artery (with the highest signal), the positive control. In the cochlear ischemia-reperfusion mouse model, the speckle signal of the cochlea decreased during the ischemic phase, and increased during the reperfusion phase, clearly reflecting cochlear blood-flow. The endoscopic LSCI system generates high-resolution images in real-time, allowing visualization of blood-flow and its changes in the mouse cochlea. Anatomical structures were clearly matched using LSCI along with visible light.

  13. Injury surveillance in a rugby tournament.

    PubMed Central

    Wekesa, M; Asembo, J M; Njororai, W W

    1996-01-01

    OBJECTIVE--To investigate injuries in international rugby football. METHODS--All injuries that led to temporary stoppage of the game or to the substitution of a player during the Rugby World Cup prequalifying tournament were recorded. Six matches were played, involving the Arabian Gulf, Kenya, Namibia, and Zimbabwe. RESULTS--47 injuries were recorded, giving an injury rate of eight per match. The number of injuries decreased from 38.3% in the first matches to 23.4% in the final ones. The most serious injury was a concussion and the majority of the injuries affected soft tissues. Anatomically, the lower limbs suffered most injuries (46.8%), followed by the head (21.3%), trunk (17.0%), and upper limbs (12.8%). Slightly more injuries occurred in the defensive half of the field of play (53.2%) than in the offensive half (46.8%). More injuries occurred in the second half (61.7%) than in the first half (38.3%). CONCLUSIONS--Protective equipment should be introduced to minimise the number and seriousness of injuries in rugby. PMID:8665122

  14. A new registration method with voxel-matching technique for temporal subtraction images

    NASA Astrophysics Data System (ADS)

    Itai, Yoshinori; Kim, Hyoungseop; Ishikawa, Seiji; Katsuragawa, Shigehiko; Doi, Kunio

    2008-03-01

    A temporal subtraction image, which is obtained by subtraction of a previous image from a current one, can be used for enhancing interval changes on medical images by removing most of normal structures. One of the important problems in temporal subtraction is that subtraction images commonly include artifacts created by slight differences in the size, shape, and/or location of anatomical structures. In this paper, we developed a new registration method with voxel-matching technique for substantially removing the subtraction artifacts on the temporal subtraction image obtained from multiple-detector computed tomography (MDCT). With this technique, the voxel value in a warped (or non-warped) previous image is replaced by a voxel value within a kernel, such as a small cube centered at a given location, which would be closest (identical or nearly equal) to the voxel value in the corresponding location in the current image. Our new method was examined on 16 clinical cases with MDCT images. Preliminary results indicated that interval changes on the subtraction images were enhanced considerably, with a substantial reduction of misregistration artifacts. The temporal subtraction images obtained by use of the voxel-matching technique would be very useful for radiologists in the detection of interval changes on MDCT images.

  15. Parameterisation of multi-scale continuum perfusion models from discrete vascular networks.

    PubMed

    Hyde, Eoin R; Michler, Christian; Lee, Jack; Cookson, Andrew N; Chabiniok, Radek; Nordsletten, David A; Smith, Nicolas P

    2013-05-01

    Experimental data and advanced imaging techniques are increasingly enabling the extraction of detailed vascular anatomy from biological tissues. Incorporation of anatomical data within perfusion models is non-trivial, due to heterogeneous vessel density and disparate radii scales. Furthermore, previous idealised networks have assumed a spatially repeating motif or periodic canonical cell, thereby allowing for a flow solution via homogenisation. However, such periodicity is not observed throughout anatomical networks. In this study, we apply various spatial averaging methods to discrete vascular geometries in order to parameterise a continuum model of perfusion. Specifically, a multi-compartment Darcy model was used to provide vascular scale separation for the fluid flow. Permeability tensor fields were derived from both synthetic and anatomically realistic networks using (1) porosity-scaled isotropic, (2) Huyghe and Van Campen, and (3) projected-PCA methods. The Darcy pressure fields were compared via a root-mean-square error metric to an averaged Poiseuille pressure solution over the same domain. The method of Huyghe and Van Campen performed better than the other two methods in all simulations, even for relatively coarse networks. Furthermore, inter-compartment volumetric flux fields, determined using the spatially averaged discrete flux per unit pressure difference, were shown to be accurate across a range of pressure boundary conditions. This work justifies the application of continuum flow models to characterise perfusion resulting from flow in an underlying vascular network.

  16. Design, development and clinical validation of computer-aided surgical simulation system for streamlined orthognathic surgical planning.

    PubMed

    Yuan, Peng; Mai, Huaming; Li, Jianfu; Ho, Dennis Chun-Yu; Lai, Yingying; Liu, Siting; Kim, Daeseung; Xiong, Zixiang; Alfi, David M; Teichgraeber, John F; Gateno, Jaime; Xia, James J

    2017-12-01

    There are many proven problems associated with traditional surgical planning methods for orthognathic surgery. To address these problems, we developed a computer-aided surgical simulation (CASS) system, the AnatomicAligner, to plan orthognathic surgery following our streamlined clinical protocol. The system includes six modules: image segmentation and three-dimensional (3D) reconstruction, registration and reorientation of models to neutral head posture, 3D cephalometric analysis, virtual osteotomy, surgical simulation, and surgical splint generation. The accuracy of the system was validated in a stepwise fashion: first to evaluate the accuracy of AnatomicAligner using 30 sets of patient data, then to evaluate the fitting of splints generated by AnatomicAligner using 10 sets of patient data. The industrial gold standard system, Mimics, was used as the reference. When comparing the results of segmentation, virtual osteotomy and transformation achieved with AnatomicAligner to the ones achieved with Mimics, the absolute deviation between the two systems was clinically insignificant. The average surface deviation between the two models after 3D model reconstruction in AnatomicAligner and Mimics was 0.3 mm with a standard deviation (SD) of 0.03 mm. All the average surface deviations between the two models after virtual osteotomy and transformations were smaller than 0.01 mm with a SD of 0.01 mm. In addition, the fitting of splints generated by AnatomicAligner was at least as good as the ones generated by Mimics. We successfully developed a CASS system, the AnatomicAligner, for planning orthognathic surgery following the streamlined planning protocol. The system has been proven accurate. AnatomicAligner will soon be available freely to the boarder clinical and research communities.

  17. Fast multigrid-based computation of the induced electric field for transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka; Hirata, Akimasa

    2012-12-01

    In transcranial magnetic stimulation (TMS), the distribution of the induced electric field, and the affected brain areas, depends on the position of the stimulation coil and the individual geometry of the head and brain. The distribution of the induced electric field in realistic anatomies can be modelled using computational methods. However, existing computational methods for accurately determining the induced electric field in realistic anatomical models have suffered from long computation times, typically in the range of tens of minutes or longer. This paper presents a matrix-free implementation of the finite-element method with a geometric multigrid method that can potentially reduce the computation time to several seconds or less even when using an ordinary computer. The performance of the method is studied by computing the induced electric field in two anatomically realistic models. An idealized two-loop coil is used as the stimulating coil. Multiple computational grid resolutions ranging from 2 to 0.25 mm are used. The results show that, for macroscopic modelling of the electric field in an anatomically realistic model, computational grid resolutions of 1 mm or 2 mm appear to provide good numerical accuracy compared to higher resolutions. The multigrid iteration typically converges in less than ten iterations independent of the grid resolution. Even without parallelization, each iteration takes about 1.0 s or 0.1 s for the 1 and 2 mm resolutions, respectively. This suggests that calculating the electric field with sufficient accuracy in real time is feasible.

  18. Solid object visualization of 3D ultrasound data

    NASA Astrophysics Data System (ADS)

    Nelson, Thomas R.; Bailey, Michael J.

    2000-04-01

    Visualization of volumetric medical data is challenging. Rapid-prototyping (RP) equipment producing solid object prototype models of computer generated structures is directly applicable to visualization of medical anatomic data. The purpose of this study was to develop methods for transferring 3D Ultrasound (3DUS) data to RP equipment for visualization of patient anatomy. 3DUS data were acquired using research and clinical scanning systems. Scaling information was preserved and the data were segmented using threshold and local operators to extract features of interest, converted from voxel raster coordinate format to a set of polygons representing an iso-surface and transferred to the RP machine to create a solid 3D object. Fabrication required 30 to 60 minutes depending on object size and complexity. After creation the model could be touched and viewed. A '3D visualization hardcopy device' has advantages for conveying spatial relations compared to visualization using computer display systems. The hardcopy model may be used for teaching or therapy planning. Objects may be produced at the exact dimension of the original object or scaled up (or down) to facilitate matching the viewers reference frame more optimally. RP models represent a useful means of communicating important information in a tangible fashion to patients and physicians.

  19. Morphogenic designer--an efficient tool to digitally design tooth forms.

    PubMed

    Hajtó, J; Marinescu, C; Silva, N R F A

    2014-01-01

    Different digital software tools are available today for the purpose of designing anatomically correct anterior and posterior restorations. The current concepts present weaknesses, which can be potentially addressed by more advanced modeling tools, such as the ones already available in professional CAD (Computer Aided Design) graphical software. This study describes the morphogenic designer (MGD) as an efficient and easy method for digitally designing tooth forms for the anterior and posterior dentition. Anterior and posterior tooth forms were selected from a collection of digitalized natural teeth and subjectively assessed as "average". The models in the form of STL files were filtered, cleaned, idealized, and re-meshed to match the specifications of the software used. The shapes were then imported as wavefront ".obj" model into Modo 701, software built for modeling, texturing, visualization, and animation. In order to create a parametric design system, intentional interactive deformations were performed on the average tooth shapes and then further defined as morph targets. By combining various such parameters, several tooth shapes were formed virtually and their images presented. MGD proved to be a versatile and powerful tool for the purpose of esthetic and functional digital crown designs.

  20. Anatomical frame identification and reconstruction for repeatable lower limb joint kinematics estimates.

    PubMed

    Donati, Marco; Camomilla, Valentina; Vannozzi, Giuseppe; Cappozzo, Aurelio

    2008-07-19

    The quantitative description of joint mechanics during movement requires the reconstruction of the position and orientation of selected anatomical axes with respect to a laboratory reference frame. These anatomical axes are identified through an ad hoc anatomical calibration procedure and their position and orientation are reconstructed relative to bone-embedded frames normally derived from photogrammetric marker positions and used to describe movement. The repeatability of anatomical calibration, both within and between subjects, is crucial for kinematic and kinetic end results. This paper illustrates an anatomical calibration approach, which does not require anatomical landmark manual palpation, described in the literature to be prone to great indeterminacy. This approach allows for the estimate of subject-specific bone morphology and automatic anatomical frame identification. The experimental procedure consists of digitization through photogrammetry of superficial points selected over the areas of the bone covered with a thin layer of soft tissue. Information concerning the location of internal anatomical landmarks, such as a joint center obtained using a functional approach, may also be added. The data thus acquired are matched with the digital model of a deformable template bone. Consequently, the repeatability of pelvis, knee and hip joint angles is determined. Five volunteers, each of whom performed five walking trials, and six operators, with no specific knowledge of anatomy, participated in the study. Descriptive statistics analysis was performed during upright posture, showing a limited dispersion of all angles (less than 3 deg) except for hip and knee internal-external rotation (6 deg and 9 deg, respectively). During level walking, the ratio of inter-operator and inter-trial error and an absolute subject-specific repeatability were assessed. For pelvic and hip angles, and knee flexion-extension the inter-operator error was equal to the inter-trial error-the absolute error ranging from 0.1 deg to 0.9 deg. Knee internal-external rotation and ab-adduction showed, on average, inter-operator errors, which were 8% and 28% greater than the relevant inter-trial errors, respectively. The absolute error was in the range 0.9-2.9 deg.

  1. Automated extraction of temporal motor activity signals from video recordings of neonatal seizures based on adaptive block matching.

    PubMed

    Karayiannis, Nicolaos B; Sami, Abdul; Frost, James D; Wise, Merrill S; Mizrahi, Eli M

    2005-04-01

    This paper presents an automated procedure developed to extract quantitative information from video recordings of neonatal seizures in the form of motor activity signals. This procedure relies on optical flow computation to select anatomical sites located on the infants' body parts. Motor activity signals are extracted by tracking selected anatomical sites during the seizure using adaptive block matching. A block of pixels is tracked throughout a sequence of frames by searching for the most similar block of pixels in subsequent frames; this search is facilitated by employing various update strategies to account for the changing appearance of the block. The proposed procedure is used to extract temporal motor activity signals from video recordings of neonatal seizures and other events not associated with seizures.

  2. HipMatch: an object-oriented cross-platform program for accurate determination of cup orientation using 2D-3D registration of single standard X-ray radiograph and a CT volume.

    PubMed

    Zheng, Guoyan; Zhang, Xuan; Steppacher, Simon D; Murphy, Stephen B; Siebenrock, Klaus A; Tannast, Moritz

    2009-09-01

    The widely used procedure of evaluation of cup orientation following total hip arthroplasty using single standard anteroposterior (AP) radiograph is known inaccurate, largely due to the wide variability in individual pelvic orientation relative to X-ray plate. 2D-3D image registration methods have been introduced for an accurate determination of the post-operative cup alignment with respect to an anatomical reference extracted from the CT data. Although encouraging results have been reported, their extensive usage in clinical routine is still limited. This may be explained by their requirement of a CAD model of the prosthesis, which is often difficult to be organized from the manufacturer due to the proprietary issue, and by their requirement of either multiple radiographs or a radiograph-specific calibration, both of which are not available for most retrospective studies. To address these issues, we developed and validated an object-oriented cross-platform program called "HipMatch" where a hybrid 2D-3D registration scheme combining an iterative landmark-to-ray registration with a 2D-3D intensity-based registration was implemented to estimate a rigid transformation between a pre-operative CT volume and the post-operative X-ray radiograph for a precise estimation of cup alignment. No CAD model of the prosthesis is required. Quantitative and qualitative results evaluated on cadaveric and clinical datasets are given, which indicate the robustness and the accuracy of the program. HipMatch is written in object-oriented programming language C++ using cross-platform software Qt (TrollTech, Oslo, Norway), VTK, and Coin3D and is transportable to any platform.

  3. Active Inference and Learning in the Cerebellum.

    PubMed

    Friston, Karl; Herreros, Ivan

    2016-09-01

    This letter offers a computational account of Pavlovian conditioning in the cerebellum based on active inference and predictive coding. Using eyeblink conditioning as a canonical paradigm, we formulate a minimal generative model that can account for spontaneous blinking, startle responses, and (delay or trace) conditioning. We then establish the face validity of the model using simulated responses to unconditioned and conditioned stimuli to reproduce the sorts of behavior that are observed empirically. The scheme's anatomical validity is then addressed by associating variables in the predictive coding scheme with nuclei and neuronal populations to match the (extrinsic and intrinsic) connectivity of the cerebellar (eyeblink conditioning) system. Finally, we try to establish predictive validity by reproducing selective failures of delay conditioning, trace conditioning, and extinction using (simulated and reversible) focal lesions. Although rather metaphorical, the ensuing scheme can account for a remarkable range of anatomical and neurophysiological aspects of cerebellar circuitry-and the specificity of lesion-deficit mappings that have been established experimentally. From a computational perspective, this work shows how conditioning or learning can be formulated in terms of minimizing variational free energy (or maximizing Bayesian model evidence) using exactly the same principles that underlie predictive coding in perception.

  4. Effectiveness of Plastinated Anatomical Specimens Depicting Common Sports Injuries to Enhance Musculoskeletal Injury Evaluation Education

    ERIC Educational Resources Information Center

    Tamura, Kaori; Stickley, Christopher D.; Labrash, Steven J.; Lozanoff, Scott

    2014-01-01

    Context: Plastination techniques have emerged as effective methods for preserving human tissue and enabling human specimens to be utilized in a fashion similar to anatomical models with much greater accuracy. Opportunities to observe and experience human specimens in classroom settings should be beneficial to undergraduate and graduate students in…

  5. 3D Measurement of Anatomical Cross-sections of Foot while Walking

    NASA Astrophysics Data System (ADS)

    Kimura, Makoto; Mochimaru, Masaaki; Kanade, Takeo

    Recently, techniques for measuring and modeling of human body are taking attention, because human models are useful for ergonomic design in manufacturing. We aim to measure accurate shape of human foot that will be useful for the design of shoes. For such purpose, shape measurement of foot in motion is obviously important, because foot shape in the shoe is deformed while walking or running. In this paper, we propose a method to measure anatomical cross-sections of foot while walking. No one had ever measured dynamic shape of anatomical cross-sections, though they are very basic and popular in the field of biomechanics. Our proposed method is based on multi-view stereo method. The target cross-sections are painted in individual colors (red, green, yellow and blue), and the proposed method utilizes the characteristic of target shape in the camera captured images. Several nonlinear conditions are introduced in the process to find the consistent correspondence in all images. Our desired accuracy is less than 1mm error, which is similar to the existing 3D scanners for static foot measurement. In our experiments, the proposed method achieved the desired accuracy.

  6. Technical Note: Method to correlate whole-specimen histopathology of radical prostatectomy with diagnostic MR imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGrath, Deirdre M., E-mail: d.mcgrath@sheffield.ac.uk; Lee, Jenny; Foltz, Warren D.

    Purpose: Validation of MRI-guided tumor boundary delineation for targeted prostate cancer therapy is achieved via correlation with gold-standard histopathology of radical prostatectomy specimens. Challenges to accurate correlation include matching the pathology sectioning plane with the in vivo imaging slice plane and correction for the deformation that occurs between in vivo imaging and histology. A methodology is presented for matching of the histological sectioning angle and position to the in vivo imaging slices. Methods: Patients (n = 4) with biochemical failure following external beam radiotherapy underwent diagnostic MRI to confirm localized recurrence of prostate cancer, followed by salvage radical prostatectomy. High-resolutionmore » 3-D MRI of the ex vivo specimens was acquired to determine the pathology sectioning angle that best matched the in vivo imaging slice plane, using matching anatomical features and implanted fiducials. A novel sectioning device was developed to guide sectioning at the correct angle, and to assist the insertion of reference dye marks to aid in histopathology reconstruction. Results: The percentage difference in the positioning of the urethra in the ex vivo pathology sections compared to the positioning in in vivo images was reduced from 34% to 7% through slicing at the best match angle. Reference dye marks were generated, which were visible in ex vivo imaging, in the tissue sections before and after processing, and in histology sections. Conclusions: The method achieved an almost fivefold reduction in the slice-matching error and is readily implementable in combination with standard MRI technology. The technique will be employed to generate datasets for correlation of whole-specimen prostate histopathology with in vivo diagnostic MRI using 3-D deformable registration, allowing assessment of the sensitivity and specificity of MRI parameters for prostate cancer. Although developed specifically for prostate, the method is readily adaptable to other types of whole tissue specimen, such as mastectomy or liver resection.« less

  7. Evaluation of a 3D local multiresolution algorithm for the correction of partial volume effects in positron emission tomography

    PubMed Central

    Le Pogam, Adrien; Hatt, Mathieu; Descourt, Patrice; Boussion, Nicolas; Tsoumpas, Charalampos; Turkheimer, Federico E.; Prunier-Aesch, Caroline; Baulieu, Jean-Louis; Guilloteau, Denis; Visvikis, Dimitris

    2011-01-01

    Purpose Partial volume effects (PVE) are consequences of the limited spatial resolution in emission tomography leading to under-estimation of uptake in tissues of size similar to the point spread function (PSF) of the scanner as well as activity spillover between adjacent structures. Among PVE correction methodologies, a voxel-wise mutual multi-resolution analysis (MMA) was recently introduced. MMA is based on the extraction and transformation of high resolution details from an anatomical image (MR/CT) and their subsequent incorporation into a low resolution PET image using wavelet decompositions. Although this method allows creating PVE corrected images, it is based on a 2D global correlation model which may introduce artefacts in regions where no significant correlation exists between anatomical and functional details. Methods A new model was designed to overcome these two issues (2D only and global correlation) using a 3D wavelet decomposition process combined with a local analysis. The algorithm was evaluated on synthetic, simulated and patient images, and its performance was compared to the original approach as well as the geometric transfer matrix (GTM) method. Results Quantitative performance was similar to the 2D global model and GTM in correlated cases. In cases where mismatches between anatomical and functional information were present the new model outperformed the 2D global approach, avoiding artefacts and significantly improving quality of the corrected images and their quantitative accuracy. Conclusions A new 3D local model was proposed for a voxel-wise PVE correction based on the original mutual multi-resolution analysis approach. Its evaluation demonstrated an improved and more robust qualitative and quantitative accuracy compared to the original MMA methodology, particularly in the absence of full correlation between anatomical and functional information. PMID:21978037

  8. Patch-Based Super-Resolution of MR Spectroscopic Images: Application to Multiple Sclerosis

    PubMed Central

    Jain, Saurabh; Sima, Diana M.; Sanaei Nezhad, Faezeh; Hangel, Gilbert; Bogner, Wolfgang; Williams, Stephen; Van Huffel, Sabine; Maes, Frederik; Smeets, Dirk

    2017-01-01

    Purpose: Magnetic resonance spectroscopic imaging (MRSI) provides complementary information to conventional magnetic resonance imaging. Acquiring high resolution MRSI is time consuming and requires complex reconstruction techniques. Methods: In this paper, a patch-based super-resolution method is presented to increase the spatial resolution of metabolite maps computed from MRSI. The proposed method uses high resolution anatomical MR images (T1-weighted and Fluid-attenuated inversion recovery) to regularize the super-resolution process. The accuracy of the method is validated against conventional interpolation techniques using a phantom, as well as simulated and in vivo acquired human brain images of multiple sclerosis subjects. Results: The method preserves tissue contrast and structural information, and matches well with the trend of acquired high resolution MRSI. Conclusions: These results suggest that the method has potential for clinically relevant neuroimaging applications. PMID:28197066

  9. A Robust False Matching Points Detection Method for Remote Sensing Image Registration

    NASA Astrophysics Data System (ADS)

    Shan, X. J.; Tang, P.

    2015-04-01

    Given the influences of illumination, imaging angle, and geometric distortion, among others, false matching points still occur in all image registration algorithms. Therefore, false matching points detection is an important step in remote sensing image registration. Random Sample Consensus (RANSAC) is typically used to detect false matching points. However, RANSAC method cannot detect all false matching points in some remote sensing images. Therefore, a robust false matching points detection method based on Knearest- neighbour (K-NN) graph (KGD) is proposed in this method to obtain robust and high accuracy result. The KGD method starts with the construction of the K-NN graph in one image. K-NN graph can be first generated for each matching points and its K nearest matching points. Local transformation model for each matching point is then obtained by using its K nearest matching points. The error of each matching point is computed by using its transformation model. Last, L matching points with largest error are identified false matching points and removed. This process is iterative until all errors are smaller than the given threshold. In addition, KGD method can be used in combination with other methods, such as RANSAC. Several remote sensing images with different resolutions and terrains are used in the experiment. We evaluate the performance of KGD method, RANSAC + KGD method, RANSAC, and Graph Transformation Matching (GTM). The experimental results demonstrate the superior performance of the KGD and RANSAC + KGD methods.

  10. A statistical parts-based appearance model of inter-subject variability.

    PubMed

    Toews, Matthew; Collins, D Louis; Arbel, Tal

    2006-01-01

    In this article, we present a general statistical parts-based model for representing the appearance of an image set, applied to the problem of inter-subject MR brain image matching. In contrast with global image representations such as active appearance models, the parts-based model consists of a collection of localized image parts whose appearance, geometry and occurrence frequency are quantified statistically. The parts-based approach explicitly addresses the case where one-to-one correspondence does not exist between subjects due to anatomical differences, as parts are not expected to occur in all subjects. The model can be learned automatically, discovering structures that appear with statistical regularity in a large set of subject images, and can be robustly fit to new images, all in the presence of significant inter-subject variability. As parts are derived from generic scale-invariant features, the framework can be applied in a wide variety of image contexts, in order to study the commonality of anatomical parts or to group subjects according to the parts they share. Experimentation shows that a parts-based model can be learned from a large set of MR brain images, and used to determine parts that are common within the group of subjects. Preliminary results indicate that the model can be used to automatically identify distinctive features for inter-subject image registration despite large changes in appearance.

  11. The UF family of reference hybrid phantoms for computational radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Lee, Choonsik; Lodwick, Daniel; Hurtado, Jorge; Pafundi, Deanna; Williams, Jonathan L.; Bolch, Wesley E.

    2010-01-01

    Computational human phantoms are computer models used to obtain dose distributions within the human body exposed to internal or external radiation sources. In addition, they are increasingly used to develop detector efficiencies for in vivo whole-body counters. Two classes of computational human phantoms have been widely utilized for dosimetry calculation: stylized and voxel phantoms that describe human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Stylized phantoms are flexible in that changes to organ position and shape are possible given avoidance of region overlap, while voxel phantoms are typically fixed to a given patient anatomy, yet can be proportionally scaled to match individuals of larger or smaller stature, but of equivalent organ anatomy. Voxel phantoms provide much better anatomical realism as compared to stylized phantoms which are intrinsically limited by mathematical surface equations. To address the drawbacks of these phantoms, hybrid phantoms based on non-uniform rational B-spline (NURBS) surfaces have been introduced wherein anthropomorphic flexibility and anatomic realism are both preserved. Researchers at the University of Florida have introduced a series of hybrid phantoms representing the ICRP Publication 89 reference newborn, 15 year, and adult male and female. In this study, six additional phantoms are added to the UF family of hybrid phantoms—those of the reference 1 year, 5 year and 10 year child. Head and torso CT images of patients whose ages were close to the targeted ages were obtained under approved protocols. Major organs and tissues were segmented from these images using an image processing software, 3D-DOCTOR™. NURBS and polygon mesh surfaces were then used to model individual organs and tissues after importing the segmented organ models to the 3D NURBS modeling software, Rhinoceros™. The phantoms were matched to four reference datasets: (1) standard anthropometric data, (2) reference organ masses from ICRP Publication 89, (3) reference elemental compositions provided in ICRP 89 as well as ICRU Report 46, and (4) reference data on the alimentary tract organs given in ICRP Publications 89 and 100. Various adjustments and refinements to the organ systems of the previously described newborn, 15 year and adult phantoms are also presented. The UF series of hybrid phantoms retain the non-uniform scalability of stylized phantoms while maintaining the anatomical realism of patient-specific voxel phantoms with respect to organ shape, depth and inter-organ distance. While the final versions of these phantoms are in a voxelized format for radiation transport simulation, their primary format is given as NURBS and polygon mesh surfaces, thus permitting one to sculpt non-reference phantoms using the reference phantoms as an anatomic template.

  12. Shape analysis of corpus callosum in autism subtype using planar conformal mapping

    NASA Astrophysics Data System (ADS)

    He, Qing; Duan, Ye; Yin, Xiaotian; Gu, Xianfeng; Karsch, Kevin; Miles, Judith

    2009-02-01

    A number of studies have documented that autism has a neurobiological basis, but the anatomical extent of these neurobiological abnormalities is largely unknown. In this study, we aimed at analyzing highly localized shape abnormalities of the corpus callosum in a homogeneous group of autism children. Thirty patients with essential autism and twenty-four controls participated in this study. 2D contours of the corpus callosum were extracted from MR images by a semiautomatic segmentation method, and the 3D model was constructed by stacking the contours. The resulting 3D model had two openings at the ends, thus a new conformal parameterization for high genus surfaces was applied in our shape analysis work, which mapped each surface onto a planar domain. Surface matching among different individual meshes was achieved by re-triangulating each mesh according to a template surface. Statistical shape analysis was used to compare the 3D shapes point by point between patients with autism and their controls. The results revealed significant abnormalities in the anterior most and anterior body in essential autism group.

  13. Analysis of anatomic periarticular tibial plate fit on normal adults.

    PubMed

    Goyal, Kanu S; Skalak, Anthony S; Marcus, Randall E; Vallier, Heather A; Cooperman, Daniel R

    2007-08-01

    Implant manufacturers are producing anatomically contoured periarticular plates to improve the treatment of proximal tibia fractures. We assessed the accuracy of the designation anatomic. We applied eight-hole medial and lateral anatomically contoured periarticular plates to 101 cadaveric tibiae. The tibiae and the plate fits were mapped, quantified, and analyzed using a MicroScribe G2LX digitizer, Rhinoceros software, and MATLAB software. By corresponding the clinical appearance of good fit with our digital findings, we created numerical criteria for plate fit in three planes: coronal (volume of free space between the plate and bone), sagittal (alignment with the tibial plateau and shaft), and axial (match in curvature between the proximal horizontal part of the plate and the tibial plateau). An anatomic fit should mirror the shape of the tibia in all three planes, and only four medial and four lateral plate fits qualified. Recognizing and understanding the substantial variations in fit that exist between anatomically contoured plates and the tibia may help lead to a more stable fixation and prevent malreduction of the fracture and/or soft tissue impingement.

  14. Eye model for the ground squirrel

    NASA Astrophysics Data System (ADS)

    Sussman, Dafna; Chou, B. Ralph; Lakshminarayanan, Vasudevan

    2011-11-01

    This paper presents an anatomically-correct eye model for the ground squirrel, a diurnal, highly-developed mammal with high visual acuity. This model can assist in understanding the relationship between ocular structural development and its corresponding function. The eye model is constructed based on anatomical measurements of thicknesses and indices of refraction of the various ocular media. The model then derives the gradient index distribution of the crystalline lens using a ray tracing method with a Monte Carlo optimization. Results indicate a diffraction-limited ocular behaviour, implying the visual acuity of the ground squirrel is more likely to be limited by photoreceptor density and diffraction effects, than by ocular geometry.

  15. TU-AB-303-11: Predict Parotids Deformation Applying SIS Epidemiological Model in H&N Adaptive RT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maffei, N; Guidi, G; University of Bologna, Bologna, Bologna

    2015-06-15

    Purpose: The aim is to investigate the use of epidemiological models to predict morphological variations in patients undergoing radiation therapy (RT). The susceptible-infected-susceptible (SIS) deterministic model was applied to simulate warping within a focused region of interest (ROI). Hypothesis is to consider each voxel like a single subject of the whole sample and to treat displacement vector fields like an infection. Methods: Using Raystation hybrid deformation algorithms and automatic re-contouring based on mesh grid, we post-processed 360 MVCT images of 12 H&N patients treated with Tomotherapy. Study focused on parotid glands, identified by literature and previous analysis, as ROI moremore » susceptible to warping in H&N region. Susceptible (S) and infectious (I) cases were identified in voxels with inter-fraction movement respectively under and over a set threshold. IronPython scripting allowed to export positions and displacement data of surface voxels for every fraction. A MATLAB homemade toolbox was developed to model the SIS. Results: SIS model was validated simulating organ motion on QUASAR phantom. Applying model in patients, within a [0–1cm] range, a single voxel movement of 0.4cm was selected as displacement threshold. SIS indexes were evaluated by MATLAB simulations. Dynamic time warping algorithm was used to assess matching between model and parotids behavior days of treatments. The best fit of the model was obtained with contact rate of 7.89±0.94 and recovery rate of 2.36±0.21. Conclusion: SIS model can follow daily structures evolutions, making possible to compare warping conditions and highlighting challenges due to abnormal variation and set-up errors. By epidemiology approach, organ motion could be assessed and predicted not in terms of average of the whole ROI, but in a voxel-by-voxel deterministic trend. Identifying anatomical region subjected to variations, would be possible to focus clinic controls within a cohort of pre-selected patients eligible for adaptive RT. The research is partially co-funded by the Italian Research Grant: Dose warping methods for IGRT and Adaptive RT: dose accumulation based on organ motion and anatomical variations of the patients during radiation therapy treatments,MoH (GR-2010-2318757) and Tecnologie Avanzate S.r.l.(Italy)« less

  16. Morphometry Based on Effective and Accurate Correspondences of Localized Patterns (MEACOLP)

    PubMed Central

    Wang, Hu; Ren, Yanshuang; Bai, Lijun; Zhang, Wensheng; Tian, Jie

    2012-01-01

    Local features in volumetric images have been used to identify correspondences of localized anatomical structures for brain morphometry. However, the correspondences are often sparse thus ineffective in reflecting the underlying structures, making it unreliable to evaluate specific morphological differences. This paper presents a morphometry method (MEACOLP) based on correspondences with improved effectiveness and accuracy. A novel two-level scale-invariant feature transform is used to enhance the detection repeatability of local features and to recall the correspondences that might be missed in previous studies. Template patterns whose correspondences could be commonly identified in each group are constructed to serve as the basis for morphometric analysis. A matching algorithm is developed to reduce the identification errors by comparing neighboring local features and rejecting unreliable matches. The two-sample t-test is finally adopted to analyze specific properties of the template patterns. Experiments are performed on the public OASIS database to clinically analyze brain images of Alzheimer's disease (AD) and normal controls (NC). MEACOLP automatically identifies known morphological differences between AD and NC brains, and characterizes the differences well as the scaling and translation of underlying structures. Most of the significant differences are identified in only a single hemisphere, indicating that AD-related structures are characterized by strong anatomical asymmetry. In addition, classification trials to differentiate AD subjects from NC confirm that the morphological differences are reliably related to the groups of interest. PMID:22540000

  17. Gender differences of airway dimensions in anatomically matched sites on CT in smokers.

    PubMed

    Kim, Yu-Il; Schroeder, Joyce; Lynch, David; Newell, John; Make, Barry; Friedlander, Adam; Estépar, Raúl San José; Hanania, Nicola A; Washko, George; Murphy, James R; Wilson, Carla; Hokanson, John E; Zach, Jordan; Butterfield, Kiel; Bowler, Russell P; Copdgene Investigators

    2011-08-01

    There are limited data on, and controversies regarding gender differences in the airway dimensions of smokers. Multi-detector CT (MDCT) images were analyzed to examine whether gender could explain differences in airway dimensions of anatomically matched airways in smokers. We used VIDA imaging software to analyze MDCT scans from 2047 smokers (M:F, 1021:1026) from the COPDGene® cohort. The airway dimensions were analyzed from segmental to subsubsegmental bronchi. We compared the differences of luminal area, inner diameter, wall thickness, wall area percentage (WA%) for each airway between men and women, and multiple linear regression including covariates (age, gender, body sizes, and other relevant confounding factors) was used to determine the predictors of each airway dimensions. Lumen area, internal diameter and wall thickness were smaller for women than men in all measured airway (18.4 vs 22.5 mm(2) for segmental bronchial lumen area, 10.4 vs 12.5 mm(2) for subsegmental bronchi, 6.5 vs 7.7 mm(2) for subsubsegmental bronchi, respectively p < 0.001). However, women had greater WA% in subsegmental and subsubsegmental bronchi. In multivariate regression, gender remained one of the most significant predictors of WA%, lumen area, inner diameter and wall thickness. Women smokers have higher WA%, but lower luminal area, internal diameter and airway thickness in anatomically matched airways as measured by CT scan than do male smokers. This difference may explain, in part, gender differences in the prevalence of COPD and airflow limitation.

  18. Comparison of methods for individualized astronaut organ dosimetry: Morphometry-based phantom library versus body contour autoscaling of a reference phantom

    NASA Astrophysics Data System (ADS)

    Sands, Michelle M.; Borrego, David; Maynard, Matthew R.; Bahadori, Amir A.; Bolch, Wesley E.

    2017-11-01

    One of the hazards faced by space crew members in low-Earth orbit or in deep space is exposure to ionizing radiation. It has been shown previously that while differences in organ-specific and whole-body risk estimates due to body size variations are small for highly-penetrating galactic cosmic rays, large differences in these quantities can result from exposure to shorter-range trapped proton or solar particle event radiations. For this reason, it is desirable to use morphometrically accurate computational phantoms representing each astronaut for a risk analysis, especially in the case of a solar particle event. An algorithm was developed to automatically sculpt and scale the UF adult male and adult female hybrid reference phantom to the individual outer body contour of a given astronaut. This process begins with the creation of a laser-measured polygon mesh model of the astronaut's body contour. Using the auto-scaling program and selecting several anatomical landmarks, the UF adult male or female phantom is adjusted to match the laser-measured outer body contour of the astronaut. A dosimetry comparison study was conducted to compare the organ dose accuracy of both the autoscaled phantom and that based upon a height-weight matched phantom from the UF/NCI Computational Phantom Library. Monte Carlo methods were used to simulate the environment of the August 1972 and February 1956 solar particle events. Using a series of individual-specific voxel phantoms as a local benchmark standard, autoscaled phantom organ dose estimates were shown to provide a 1% and 10% improvement in organ dose accuracy for a population of females and males, respectively, as compared to organ doses derived from height-weight matched phantoms from the UF/NCI Computational Phantom Library. In addition, this slight improvement in organ dose accuracy from the autoscaled phantoms is accompanied by reduced computer storage requirements and a more rapid method for individualized phantom generation when compared to the UF/NCI Computational Phantom Library.

  19. a Target Aware Texture Mapping for Sculpture Heritage Modeling

    NASA Astrophysics Data System (ADS)

    Yang, C.; Zhang, F.; Huang, X.; Li, D.; Zhu, Y.

    2017-08-01

    In this paper, we proposed a target aware image to model registration method using silhouette as the matching clues. The target sculpture object in natural environment can be automatically detected from image with complex background with assistant of 3D geometric data. Then the silhouette can be automatically extracted and applied in image to model matching. Due to the user don't need to deliberately draw target area, the time consumption for precisely image to model matching operation can be greatly reduced. To enhance the function of this method, we also improved the silhouette matching algorithm to support conditional silhouette matching. Two experiments using a stone lion sculpture of Ming Dynasty and a potable relic in museum are given to evaluate the method we proposed. The method we proposed in this paper is extended and developed into a mature software applied in many culture heritage documentation projects.

  20. Realistic simulated MRI and SPECT databases. Application to SPECT/MRI registration evaluation.

    PubMed

    Aubert-Broche, Berengere; Grova, Christophe; Reilhac, Anthonin; Evans, Alan C; Collins, D Louis

    2006-01-01

    This paper describes the construction of simulated SPECT and MRI databases that account for realistic anatomical and functional variability. The data is used as a gold-standard to evaluate four SPECT/MRI similarity-based registration methods. Simulation realism was accounted for using accurate physical models of data generation and acquisition. MRI and SPECT simulations were generated from three subjects to take into account inter-subject anatomical variability. Functional SPECT data were computed from six functional models of brain perfusion. Previous models of normal perfusion and ictal perfusion observed in Mesial Temporal Lobe Epilepsy (MTLE) were considered to generate functional variability. We studied the impact noise and intensity non-uniformity in MRI simulations and SPECT scatter correction may have on registration accuracy. We quantified the amount of registration error caused by anatomical and functional variability. Registration involving ictal data was less accurate than registration involving normal data. MR intensity nonuniformity was the main factor decreasing registration accuracy. The proposed simulated database is promising to evaluate many functional neuroimaging methods, involving MRI and SPECT data.

  1. A diffusion-matched principal component analysis (DM-PCA) based two-channel denoising procedure for high-resolution diffusion-weighted MRI

    PubMed Central

    Chang, Hing-Chiu; Bilgin, Ali; Bernstein, Adam; Trouard, Theodore P.

    2018-01-01

    Over the past several years, significant efforts have been made to improve the spatial resolution of diffusion-weighted imaging (DWI), aiming at better detecting subtle lesions and more reliably resolving white-matter fiber tracts. A major concern with high-resolution DWI is the limited signal-to-noise ratio (SNR), which may significantly offset the advantages of high spatial resolution. Although the SNR of DWI data can be improved by denoising in post-processing, existing denoising procedures may potentially reduce the anatomic resolvability of high-resolution imaging data. Additionally, non-Gaussian noise induced signal bias in low-SNR DWI data may not always be corrected with existing denoising approaches. Here we report an improved denoising procedure, termed diffusion-matched principal component analysis (DM-PCA), which comprises 1) identifying a group of (not necessarily neighboring) voxels that demonstrate very similar magnitude signal variation patterns along the diffusion dimension, 2) correcting low-frequency phase variations in complex-valued DWI data, 3) performing PCA along the diffusion dimension for real- and imaginary-components (in two separate channels) of phase-corrected DWI voxels with matched diffusion properties, 4) suppressing the noisy PCA components in real- and imaginary-components, separately, of phase-corrected DWI data, and 5) combining real- and imaginary-components of denoised DWI data. Our data show that the new two-channel (i.e., for real- and imaginary-components) DM-PCA denoising procedure performs reliably without noticeably compromising anatomic resolvability. Non-Gaussian noise induced signal bias could also be reduced with the new denoising method. The DM-PCA based denoising procedure should prove highly valuable for high-resolution DWI studies in research and clinical uses. PMID:29694400

  2. Multiview road sign detection via self-adaptive color model and shape context matching

    NASA Astrophysics Data System (ADS)

    Liu, Chunsheng; Chang, Faliang; Liu, Chengyun

    2016-09-01

    The multiview appearance of road signs in uncontrolled environments has made the detection of road signs a challenging problem in computer vision. We propose a road sign detection method to detect multiview road signs. This method is based on several algorithms, including the classical cascaded detector, the self-adaptive weighted Gaussian color model (SW-Gaussian model), and a shape context matching method. The classical cascaded detector is used to detect the frontal road signs in video sequences and obtain the parameters for the SW-Gaussian model. The proposed SW-Gaussian model combines the two-dimensional Gaussian model and the normalized red channel together, which can largely enhance the contrast between the red signs and background. The proposed shape context matching method can match shapes with big noise, which is utilized to detect road signs in different directions. The experimental results show that compared with previous detection methods, the proposed multiview detection method can reach higher detection rate in detecting signs with different directions.

  3. Estimation of High-Dimensional Graphical Models Using Regularized Score Matching

    PubMed Central

    Lin, Lina; Drton, Mathias; Shojaie, Ali

    2017-01-01

    Graphical models are widely used to model stochastic dependences among large collections of variables. We introduce a new method of estimating undirected conditional independence graphs based on the score matching loss, introduced by Hyvärinen (2005), and subsequently extended in Hyvärinen (2007). The regularized score matching method we propose applies to settings with continuous observations and allows for computationally efficient treatment of possibly non-Gaussian exponential family models. In the well-explored Gaussian setting, regularized score matching avoids issues of asymmetry that arise when applying the technique of neighborhood selection, and compared to existing methods that directly yield symmetric estimates, the score matching approach has the advantage that the considered loss is quadratic and gives piecewise linear solution paths under ℓ1 regularization. Under suitable irrepresentability conditions, we show that ℓ1-regularized score matching is consistent for graph estimation in sparse high-dimensional settings. Through numerical experiments and an application to RNAseq data, we confirm that regularized score matching achieves state-of-the-art performance in the Gaussian case and provides a valuable tool for computationally efficient estimation in non-Gaussian graphical models. PMID:28638498

  4. Mathematical modelling of the growth of human fetus anatomical structures.

    PubMed

    Dudek, Krzysztof; Kędzia, Wojciech; Kędzia, Emilia; Kędzia, Alicja; Derkowski, Wojciech

    2017-09-01

    The goal of this study was to present a procedure that would enable mathematical analysis of the increase of linear sizes of human anatomical structures, estimate mathematical model parameters and evaluate their adequacy. Section material consisted of 67 foetuses-rectus abdominis muscle and 75 foetuses- biceps femoris muscle. The following methods were incorporated to the study: preparation and anthropologic methods, image digital acquisition, Image J computer system measurements and statistical analysis method. We used an anthropologic method based on age determination with the use of crown-rump length-CRL (V-TUB) by Scammon and Calkins. The choice of mathematical function should be based on a real course of the curve presenting growth of anatomical structure linear size Ύ in subsequent weeks t of pregnancy. Size changes can be described with a segmental-linear model or one-function model with accuracy adequate enough for clinical purposes. The interdependence of size-age is described with many functions. However, the following functions are most often considered: linear, polynomial, spline, logarithmic, power, exponential, power-exponential, log-logistic I and II, Gompertz's I and II and von Bertalanffy's function. With the use of the procedures described above, mathematical models parameters were assessed for V-PL (the total length of body) and CRL body length increases, rectus abdominis total length h, its segments hI, hII, hIII, hIV, as well as biceps femoris length and width of long head (LHL and LHW) and of short head (SHL and SHW). The best adjustments to measurement results were observed in the exponential and Gompertz's models.

  5. Radio-guided sentinel lymph node identification by lymphoscintigraphy fused with an anatomical vector profile: clinical applications.

    PubMed

    Niccoli Asabella, A; Antonica, F; Renna, M A; Rubini, D; Notaristefano, A; Nicoletti, A; Rubini, G

    2013-12-01

    To develop a method to fuse lymphoscintigraphic images with an adaptable anatomical vector profile and to evaluate its role in the clinical practice. We used Adobe Illustrator CS6 to create different vector profiles, we fused those profiles, using Adobe Photoshop CS6, with lymphoscintigraphic images of the patient. We processed 197 lymphoscintigraphies performed in patients with cutaneous melanomas, breast cancer or delayed lymph drainage. Our models can be adapted to every patient attitude or position and contain different levels of anatomical details ranging from external body profiles to the internal anatomical structures like bones, muscles, vessels, and lymph nodes. If needed, more new anatomical details can be added and embedded in the profile without redrawing them, saving a lot of time. Details can also be easily hidden, allowing the physician to view only relevant information and structures. Fusion times are about 85 s. The diagnostic confidence of the observers increased significantly. The validation process showed a slight shift (mean 4.9 mm). We have created a new, practical, inexpensive digital technique based on commercial software for fusing lymphoscintigraphic images with built-in anatomical reference profiles. It is easily reproducible and does not alter the original scintigraphic image. Our method allows a more meaningful interpretation of lymphoscintigraphies, an easier recognition of the anatomical site and better lymph node dissection planning.

  6. History matching of a complex epidemiological model of human immunodeficiency virus transmission by using variance emulation.

    PubMed

    Andrianakis, I; Vernon, I; McCreesh, N; McKinley, T J; Oakley, J E; Nsubuga, R N; Goldstein, M; White, R G

    2017-08-01

    Complex stochastic models are commonplace in epidemiology, but their utility depends on their calibration to empirical data. History matching is a (pre)calibration method that has been applied successfully to complex deterministic models. In this work, we adapt history matching to stochastic models, by emulating the variance in the model outputs, and therefore accounting for its dependence on the model's input values. The method proposed is applied to a real complex epidemiological model of human immunodeficiency virus in Uganda with 22 inputs and 18 outputs, and is found to increase the efficiency of history matching, requiring 70% of the time and 43% fewer simulator evaluations compared with a previous variant of the method. The insight gained into the structure of the human immunodeficiency virus model, and the constraints placed on it, are then discussed.

  7. Human Lumbar Ligamentum Flavum Anatomy for Epidural Anesthesia: Reviewing a 3D MR-Based Interactive Model and Postmortem Samples.

    PubMed

    Reina, Miguel A; Lirk, Philipp; Puigdellívol-Sánchez, Anna; Mavar, Marija; Prats-Galino, Alberto

    2016-03-01

    The ligamentum flavum (LF) forms the anatomic basis for the loss-of-resistance technique essential to the performance of epidural anesthesia. However, the LF presents considerable interindividual variability, including the possibility of midline gaps, which may influence the performance of epidural anesthesia. We devise a method to reconstruct the anatomy of the digitally LF based on magnetic resonance images to clarify the exact limits and edges of LF and its different thickness, depending on the area examined, while avoiding destructive methods, as well as the dissection processes. Anatomic cadaveric cross sections enabled us to visually check the definition of the edges along the entire LF and compare them using 3D image reconstruction methods. Reconstruction was performed in images obtained from 7 patients. Images from 1 patient were used as a basis for the 3D spinal anatomy tool. In parallel, axial cuts, 2 to 3 cm thick, were performed in lumbar spines of 4 frozen cadavers. This technique allowed us to identify the entire ligament and its exact limits, while avoiding alterations resulting from cutting processes or from preparation methods. The LF extended between the laminas of adjacent vertebrae at all vertebral levels of the patients examined, but midline gaps are regularly encountered. These anatomical variants were reproduced in a 3D portable document format. The major anatomical features of the LF were reproduced in the 3D model. Details of its structure and variations of thickness in successive sagittal and axial slides could be visualized. Gaps within LF previously studied in cadavers have been identified in our interactive 3D model, which may help to understand their nature, as well as possible implications for epidural techniques.

  8. Bridging the Gap between the Human and Macaque Connectome: A Quantitative Comparison of Global Interspecies Structure-Function Relationships and Network Topology

    PubMed Central

    Miranda-Dominguez, Oscar; Mills, Brian D.; Grayson, David; Woodall, Andrew; Grant, Kathleen A.; Kroenke, Christopher D.

    2014-01-01

    Resting state functional connectivity MRI (rs-fcMRI) may provide a powerful and noninvasive “bridge” for comparing brain function between patients and experimental animal models; however, the relationship between human and macaque rs-fcMRI remains poorly understood. Here, using a novel surface deformation process for species comparisons in the same anatomical space (Van Essen, 2004, 2005), we found high correspondence, but also unique hub topology, between human and macaque functional connectomes. The global functional connectivity match between species was moderate to strong (r = 0.41) and increased when considering the top 15% strongest connections (r = 0.54). Analysis of the match between functional connectivity and the underlying anatomical connectivity, derived from a previous retrograde tracer study done in macaques (Markov et al., 2012), showed impressive structure–function correspondence in both the macaque and human. When examining the strongest structural connections, we found a 70–80% match between structural and functional connectivity matrices in both species. Finally, we compare species on two widely used metrics for studying hub topology: degree and betweenness centrality. The data showed topological agreement across the species, with nodes of the posterior cingulate showing high degree and betweenness centrality. In contrast, nodes in medial frontal and parietal cortices were identified as having high degree and betweenness in the human as opposed to the macaque. Our results provide: (1) a thorough examination and validation for a surface-based interspecies deformation process, (2) a strong theoretical foundation for making interspecies comparisons of rs-fcMRI, and (3) a unique look at topological distinctions between the species. PMID:24741045

  9. 3D scanning and printing skeletal tissues for anatomy education.

    PubMed

    Thomas, Daniel B; Hiscox, Jessica D; Dixon, Blair J; Potgieter, Johan

    2016-09-01

    Detailed anatomical models can be produced with consumer-level 3D scanning and printing systems. 3D replication techniques are significant advances for anatomical education as they allow practitioners to more easily introduce diverse or numerous specimens into classrooms. Here we present a methodology for producing anatomical models in-house, with the chondrocranium cartilage from a spiny dogfish (Squalus acanthias) and the skeleton of a cane toad (Rhinella marina) as case studies. 3D digital replicas were produced using two consumer-level scanners and specimens were 3D-printed with selective laser sintering. The fidelity of the two case study models was determined with respect to key anatomical features. Larger-scale features of the dogfish chondrocranium and frog skeleton were all well-resolved and distinct in the 3D digital models, and many finer-scale features were also well-resolved, but some more subtle features were absent from the digital models (e.g. endolymphatic foramina in chondrocranium). All characters identified in the digital chondrocranium could be identified in the subsequent 3D print; however, three characters in the 3D-printed frog skeleton could not be clearly delimited (palatines, parasphenoid and pubis). Characters that were absent in the digital models or 3D prints had low-relief in the original scanned specimen and represent a minor loss of fidelity. Our method description and case studies show that minimal equipment and training is needed to produce durable skeletal specimens. These technologies support the tailored production of models for specific classes or research aims. © 2016 Anatomical Society.

  10. Arthroscopic suture anchor repair of the lateral ligament ankle complex: a cadaveric study.

    PubMed

    Giza, Eric; Shin, Edward C; Wong, Stephanie E; Acevedo, Jorge I; Mangone, Peter G; Olson, Kirstina; Anderson, Matthew J

    2013-11-01

    Operative treatment of mechanical ankle instability is indicated for patients with multiple sprains and continued episodes of instability. Open repair of the lateral ankle ligaments involves exposure of the attenuated ligaments and advancement back to their anatomic insertions on the fibula using bone tunnels or suture implants. Open and arthroscopic fixation are equal in strength to failure for anatomic Broström repair. Controlled laboratory study. Seven matched pairs of human cadaveric ankle specimens were randomized into 2 groups of anatomic Broström repair: open or arthroscopic. The calcaneofibular ligament and anterior talofibular ligament were excised from their origin on the fibula. In the open repair group, 2 suture anchors were used to reattach the ligaments to their anatomic origins. In the arthroscopic repair group, identical suture anchors were used for repair via an arthroscopic technique. The ligaments were cyclically loaded 20 times and then tested to failure. Torque to failure, degrees to failure, initial stiffness, and working stiffness were measured. A matched-pair analysis was performed. Power analysis of 0.8 demonstrated that 7 pairs needed to show a difference of 30%, with a 15% standard error at a significance level of α = .05. There was no difference in the degrees to failure, torque to failure, or stiffness for the repaired ligament complex. Nine of 14 specimens failed at the suture anchor. There is no statistical difference in strength or stiffness of a traditional open repair as compared with an arthroscopic anatomic repair of the lateral ligaments of the ankle. An arthroscopic technique can be considered for lateral ligament stabilization in patients with mild to moderate mechanical instability.

  11. SU-G-BRA-07: An Innovative Fiducial-Less Tracking Method for Radiation Treatment of Abdominal Tumors by Diaphragm Disparity Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dick, D; Zhao, W; Wu, X

    2016-06-15

    Purpose: To investigate the feasibility of tracking abdominal tumors without the use of gold fiducial markers Methods: In this simulation study, an abdominal 4DCT dataset, acquired previously and containing 8 phases of the breathing cycle, was used as the testing data. Two sets of DRR images (45 and 135 degrees) were generated for each phase. Three anatomical points along the lung-diaphragm interface on each of the Digital Reconstructed Radiograph(DRR) images were identified by cross-correlation. The gallbladder, which simulates the tumor, was contoured for each phase of the breathing cycle and the corresponding centroid values serve as the measured center ofmore » the tumor. A linear model was created to correlate the diaphragm’s disparity of the three identified anatomical points with the center of the tumor. To verify the established linear model, we sequentially removed one phase of the data (i.e., 3 anatomical points and the corresponding tumor center) and created new linear models with the remaining 7 phases. Then we substituted the eliminated phase data (disparities of the 3 anatomical points) into the corresponding model to compare model-generated tumor center and the measured tumor center. Results: The maximum difference between the modeled and the measured centroid values across the 8 phases were 0.72, 0.29 and 0.30 pixels in the x, y and z directions respectively, which yielded a maximum mean-squared-error value of 0.75 pixels. The outcomes of the verification process, by eliminating each phase, produced mean-squared-errors ranging from 0.41 to 1.28 pixels. Conclusion: Gold fiducial markers, requiring surgical procedures to be implanted, are conventionally used in radiation therapy. The present work shows the feasibility of a fiducial-less tracking method for localizing abdominal tumors. Through developed diaphragm disparity analysis, the established linear model was verified with clinically accepted errors. The tracking method in real time under different radiation therapy platforms will be further investigated.« less

  12. The evolution of anatomical illustration and wax modelling in Italy from the 16th to early 19th centuries

    PubMed Central

    Riva, Alessandro; Conti, Gabriele; Solinas, Paola; Loy, Francesco

    2010-01-01

    Although the contribution to anatomical illustration by Vesalius and his followers has received much attention, less credit has been given to Veslingius and particularly Fabricius. By 1600, Fabricius had amassed more than 300 paintings that together made the Tabulae Pictae, a great atlas of anatomy that was highly admired by his contemporaries. Many of his new observations were incorporated into subsequent books, including those by Casserius, Spighelius, Harvey and Veslingius. Also of importance were the Tabulae by Eustachius (1552), which, although only published in 1714, greatly influenced anatomical wax modelling. In 1742, Pope Benedict XIV established a Museum of Anatomy in Bologna, entrusting to Ercole Lelli the creation of several anatomical preparations in wax. Felice Fontana realised that the production of a large number of models by the casting method would make cadaveric specimens superfluous for anatomical teaching and in 1771 he asked the Grand Duke to fund a wax-modelling workshop in Florence as part of the Natural History Museum, later known as La Specola. Fontana engaged Giuseppe Ferrini as his first modeller and then the 19-year-old Clemente Susini who, by his death in 1814, had superintended the production of, or personally made, more than 2000 models. In 1780, the Austrian Emperor Joseph II visited La Specola and ordered a great number of models for his Josephinum museum; these were made by Fontana with the help of Clemente Susini and supervised by the anatomist Paolo Mascagni. It is, however, in Cagliari that some of Susini’s greatest waxes are to be found. These were made when he was free of Fontana’s influence and were based on dissections made by Francesco Antonio Boi (University of Cagliari). Their distinctive anatomical features include the emphasis given to nerves and the absence of lymphatics in the brain, a mistake made on earlier waxes. The refined technical perfection of the anatomical details demonstrates the closeness of the cooperation between Susini and Boi, whereas the expressiveness of the faces and the harmony of colours make the models of Cagliari masterpieces of figurative art. PMID:19900181

  13. Establishing the 3-D finite element solid model of femurs in partial by volume rendering.

    PubMed

    Zhang, Yinwang; Zhong, Wuxue; Zhu, Haibo; Chen, Yun; Xu, Lingjun; Zhu, Jianmin

    2013-01-01

    It remains rare to report three-dimensional (3-D) finite element solid model of femurs in partial by volume rendering method, though several methods of femoral 3-D finite element modeling are already available. We aim to analyze the advantages of the modeling method by establishing the 3-D finite element solid model of femurs in partial by volume rendering. A 3-D finite element model of the normal human femurs, made up of three anatomic structures: cortical bone, cancellous bone and pulp cavity, was constructed followed by pretreatment of the CT original image. Moreover, the finite-element analysis was carried on different material properties, three types of materials given for cortical bone, six assigned for cancellous bone, and single for pulp cavity. The established 3-D finite element of femurs contains three anatomical structures: cortical bone, cancellous bone, and pulp cavity. The compressive stress primarily concentrated in the medial surfaces of femur, especially in the calcar femorale. Compared with whole modeling by volume rendering method, the 3-D finite element solid model created in partial is more real and fit for finite element analysis. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  14. Computed Tomographic Analysis of Ventral Atlantoaxial Optimal Safe Implantation Corridors in 27 Dogs.

    PubMed

    Leblond, Guillaume; Gaitero, Luis; Moens, Noel M M; Zur Linden, Alex; James, Fiona M K; Monteith, Gabrielle J; Runciman, John

    2017-11-01

    Objectives  Ventral atlantoaxial stabilization techniques are challenging surgical procedures in dogs. Available surgical guidelines are based upon subjective anatomical landmarks, and limited radiographic and computed tomographic data. The aims of this study were (1) to provide detailed anatomical descriptions of atlantoaxial optimal safe implantation corridors to generate objective recommendations for optimal implant placements and (2) to compare anatomical data obtained in non-affected Toy breed dogs, affected Toy breed dogs suffering from atlantoaxial instability and non-affected Beagle dogs. Methods  Anatomical data were collected from a prospectively recruited population of 27 dogs using a previously validated method of optimal safe implantation corridor analysis using computed tomographic images. Results  Optimal implant positions and three-dimensional numerical data were generated successfully in all cases. Anatomical landmarks could be used to generate objective definitions of optimal insertion points which were applicable across all three groups. Overall the geometrical distribution of all implant sites was similar in all three groups with a few exceptions. Clinical Significance  This study provides extensive anatomical data available to facilitate surgical planning of implant placement for atlantoaxial stabilization. Our data suggest that non-affected Toy breed dogs and non-affected Beagle dogs constitute reasonable research models to study atlantoaxial stabilization constructs. Schattauer GmbH Stuttgart.

  15. Microstereolithography-Based Fabrication of Anatomically Shaped Beta-Tricalcium Phosphate Scaffolds for Bone Tissue Engineering

    PubMed Central

    Du, Dajiang; Asaoka, Teruo; Shinohara, Makoto; Kageyama, Tomonori; Ushida, Takashi; Furukawa, Katsuko Sakai

    2015-01-01

    Porous ceramic scaffolds with shapes matching the bone defects may result in more efficient grafting and healing than the ones with simple geometries. Using computer-assisted microstereolithography (MSTL), we have developed a novel gelcasting indirect MSTL technology and successfully fabricated two scaffolds according to CT images of rabbit femur. Negative resin molds with outer 3D dimensions conforming to the femur and an internal structure consisting of stacked meshes with uniform interconnecting struts, 0.5 mm in diameter, were fabricated by MSTL. The second mold type was designed for cortical bone formation. A ceramic slurry of beta-tricalcium phosphate (β-TCP) with room temperature vulcanization (RTV) silicone as binder was cast into the molds. After the RTV silicone was completely cured, the composite was sintered at 1500°C for 5 h. Both gross anatomical shape and the interpenetrating internal network were preserved after sintering. Even cortical structure could be introduced into the customized scaffolds, which resulted in enhanced strength. Biocompatibility was confirmed by vital staining of rabbit bone marrow mesenchymal stromal cells cultured on the customized scaffolds for 5 days. This fabrication method could be useful for constructing bone substitutes specifically designed according to local anatomical defects. PMID:26504839

  16. Development of a Hybrid EPR/NMR Coimaging System

    PubMed Central

    Samouilov, Alexandre; Caia, George L.; Kesselring, Eric; Petryakov, Sergey; Wasowicz, Tomasz; Zweier, Jay L.

    2010-01-01

    Electron paramagnetic resonance imaging (EPRI) is a powerful technique that enables spatial mapping of free radicals or other paramagnetic compounds; however, it does not in itself provide anatomic visualization of the body. Proton magnetic resonance imaging (MRI) is well suited to provide anatomical visualization. A hybrid EPR/NMR coimaging instrument was constructed that utilizes the complementary capabilities of both techniques, superimposing EPR and proton-MR images to provide the distribution of paramagnetic species in the body. A common magnet and field gradient system is utilized along with a dual EPR and proton-NMR resonator assembly, enabling coimaging without the need to move the sample. EPRI is performed at ~1.2 GHz/~40 mT and proton MRI is performed at 16.18 MHz/~380 mT; hence the method is suitable for whole-body coimaging of living mice. The gradient system used is calibrated and controlled in such a manner that the spatial geometry of the two acquired images is matched, enabling their superposition without additional postprocessing or marker registration. The performance of the system was tested in a series of phantoms and in vivo applications by mapping the location of a paramagnetic probe in the gastrointestinal (GI) tract of mice. This hybrid EPR/NMR coimaging instrument enables imaging of paramagnetic molecules along with their anatomic localization in the body. PMID:17659621

  17. Use of regularized principal component analysis to model anatomical changes during head and neck radiation therapy for treatment adaptation and response assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chetvertkov, Mikhail A., E-mail: chetvertkov@wayne

    2016-10-15

    Purpose: To develop standard (SPCA) and regularized (RPCA) principal component analysis models of anatomical changes from daily cone beam CTs (CBCTs) of head and neck (H&N) patients and assess their potential use in adaptive radiation therapy, and for extracting quantitative information for treatment response assessment. Methods: Planning CT images of ten H&N patients were artificially deformed to create “digital phantom” images, which modeled systematic anatomical changes during radiation therapy. Artificial deformations closely mirrored patients’ actual deformations and were interpolated to generate 35 synthetic CBCTs, representing evolving anatomy over 35 fractions. Deformation vector fields (DVFs) were acquired between pCT and syntheticmore » CBCTs (i.e., digital phantoms) and between pCT and clinical CBCTs. Patient-specific SPCA and RPCA models were built from these synthetic and clinical DVF sets. EigenDVFs (EDVFs) having the largest eigenvalues were hypothesized to capture the major anatomical deformations during treatment. Results: Principal component analysis (PCA) models achieve variable results, depending on the size and location of anatomical change. Random changes prevent or degrade PCA’s ability to detect underlying systematic change. RPCA is able to detect smaller systematic changes against the background of random fraction-to-fraction changes and is therefore more successful than SPCA at capturing systematic changes early in treatment. SPCA models were less successful at modeling systematic changes in clinical patient images, which contain a wider range of random motion than synthetic CBCTs, while the regularized approach was able to extract major modes of motion. Conclusions: Leading EDVFs from the both PCA approaches have the potential to capture systematic anatomical change during H&N radiotherapy when systematic changes are large enough with respect to random fraction-to-fraction changes. In all cases the RPCA approach appears to be more reliable at capturing systematic changes, enabling dosimetric consequences to be projected once trends are established early in a treatment course, or based on population models.« less

  18. Anatomical parameterization for volumetric meshing of the liver

    NASA Astrophysics Data System (ADS)

    Vera, Sergio; González Ballester, Miguel A.; Gil, Debora

    2014-03-01

    A coordinate system describing the interior of organs is a powerful tool for a systematic localization of injured tissue. If the same coordinate values are assigned to specific anatomical landmarks, the coordinate system allows integration of data across different medical image modalities. Harmonic mappings have been used to produce parametric coordinate systems over the surface of anatomical shapes, given their flexibility to set values at specific locations through boundary conditions. However, most of the existing implementations in medical imaging restrict to either anatomical surfaces, or the depth coordinate with boundary conditions is given at sites of limited geometric diversity. In this paper we present a method for anatomical volumetric parameterization that extends current harmonic parameterizations to the interior anatomy using information provided by the volume medial surface. We have applied the methodology to define a common reference system for the liver shape and functional anatomy. This reference system sets a solid base for creating anatomical models of the patient's liver, and allows comparing livers from several patients in a common framework of reference.

  19. Multimodality localization of epileptic foci

    NASA Astrophysics Data System (ADS)

    Desco, Manuel; Pascau, Javier; Pozo, M. A.; Santos, Andres; Reig, Santiago; Gispert, Juan D.; Garcia-Barreno, Pedro

    2001-05-01

    This paper presents a multimodality approach for the localization of epileptic foci using PET, MRI and EEG combined without the need of external markers. Mutual Information algorithm is used for MRI-PET registration. Dipole coordinates (provided by BESA software) are projected onto the MRI using a specifically developed algorithm. The four anatomical references used for electrode positioning (nasion, inion and two preauricular points) are located on the MRI using a triplanar viewer combined with a surface-rendering tool. Geometric transformation using deformation of the ideal sphere used for dipole calculations is then applied to match the patient's brain size and shape. Eight treatment-refractory epileptic patients have been studied. The combination of the anatomical information from the MRI, hipoperfusion areas in PET and dipole position and orientation helped the physician in the diagnosis of epileptic focus location. Neurosurgery was not indicated for patients where PET and dipole results were inconsistent; in two cases it was clinically indicated despite the mismatch, showing a negative follow up. The multimodality approach presented does not require external markers for dipole projection onto the MRI, this being the main difference with previous methods. The proposed method may play an important role in the indication of surgery for treatment- refractory epileptic patients.

  20. Eliciting candidate anatomical routes for protein interactions: a scenario from endocrine physiology

    PubMed Central

    2013-01-01

    Background In this paper, we use: i) formalised anatomical knowledge of connectivity between body structures and ii) a formal theory of physiological transport between fluid compartments in order to define and make explicit the routes followed by proteins to a site of interaction. The underlying processes are the objects of mathematical models of physiology and, therefore, the motivation for the approach can be understood as using knowledge representation and reasoning methods to propose concrete candidate routes corresponding to correlations between variables in mathematical models of physiology. In so doing, the approach projects physiology models onto a representation of the anatomical and physiological reality which underpins them. Results The paper presents a method based on knowledge representation and reasoning for eliciting physiological communication routes. In doing so, the paper presents the core knowledge representation and algorithms using it in the application of the method. These are illustrated through the description of a prototype implementation and the treatment of a simple endocrine scenario whereby a candidate route of communication between ANP and its receptors on the external membrane of smooth muscle cells in renal arterioles is elicited. The potential of further development of the approach is illustrated through the informal discussion of a more complex scenario. Conclusions The work presented in this paper supports research in intercellular communication by enabling knowledge‐based inference on physiologically‐related biomedical data and models. PMID:23590598

  1. Probabilistic model for quick detection of dissimilar binary images

    NASA Astrophysics Data System (ADS)

    Mustafa, Adnan A. Y.

    2015-09-01

    We present a quick method to detect dissimilar binary images. The method is based on a "probabilistic matching model" for image matching. The matching model is used to predict the probability of occurrence of distinct-dissimilar image pairs (completely different images) when matching one image to another. Based on this model, distinct-dissimilar images can be detected by matching only a few points between two images with high confidence, namely 11 points for a 99.9% successful detection rate. For image pairs that are dissimilar but not distinct-dissimilar, more points need to be mapped. The number of points required to attain a certain successful detection rate or confidence depends on the amount of similarity between the compared images. As this similarity increases, more points are required. For example, images that differ by 1% can be detected by mapping fewer than 70 points on average. More importantly, the model is image size invariant; so, images of any sizes will produce high confidence levels with a limited number of matched points. As a result, this method does not suffer from the image size handicap that impedes current methods. We report on extensive tests conducted on real images of different sizes.

  2. Building a high-resolution T2-weighted MR-based probabilistic model of tumor occurrence in the prostate.

    PubMed

    Nagarajan, Mahesh B; Raman, Steven S; Lo, Pechin; Lin, Wei-Chan; Khoshnoodi, Pooria; Sayre, James W; Ramakrishna, Bharath; Ahuja, Preeti; Huang, Jiaoti; Margolis, Daniel J A; Lu, David S K; Reiter, Robert E; Goldin, Jonathan G; Brown, Matthew S; Enzmann, Dieter R

    2018-02-19

    We present a method for generating a T2 MR-based probabilistic model of tumor occurrence in the prostate to guide the selection of anatomical sites for targeted biopsies and serve as a diagnostic tool to aid radiological evaluation of prostate cancer. In our study, the prostate and any radiological findings within were segmented retrospectively on 3D T2-weighted MR images of 266 subjects who underwent radical prostatectomy. Subsequent histopathological analysis determined both the ground truth and the Gleason grade of the tumors. A randomly chosen subset of 19 subjects was used to generate a multi-subject-derived prostate template. Subsequently, a cascading registration algorithm involving both affine and non-rigid B-spline transforms was used to register the prostate of every subject to the template. Corresponding transformation of radiological findings yielded a population-based probabilistic model of tumor occurrence. The quality of our probabilistic model building approach was statistically evaluated by measuring the proportion of correct placements of tumors in the prostate template, i.e., the number of tumors that maintained their anatomical location within the prostate after their transformation into the prostate template space. Probabilistic model built with tumors deemed clinically significant demonstrated a heterogeneous distribution of tumors, with higher likelihood of tumor occurrence at the mid-gland anterior transition zone and the base-to-mid-gland posterior peripheral zones. Of 250 MR lesions analyzed, 248 maintained their original anatomical location with respect to the prostate zones after transformation to the prostate. We present a robust method for generating a probabilistic model of tumor occurrence in the prostate that could aid clinical decision making, such as selection of anatomical sites for MR-guided prostate biopsies.

  3. A Computational Model Quantifies the Effect of Anatomical Variability on Velopharyngeal Function

    PubMed Central

    Inouye, Joshua M.; Perry, Jamie L.; Lin, Kant Y.

    2015-01-01

    Purpose This study predicted the effects of velopharyngeal (VP) anatomical parameters on VP function to provide a greater understanding of speech mechanics and aid in the treatment of speech disorders. Method We created a computational model of the VP mechanism using dimensions obtained from magnetic resonance imaging measurements of 10 healthy adults. The model components included the levator veli palatini (LVP), the velum, and the posterior pharyngeal wall, and the simulations were based on material parameters from the literature. The outcome metrics were the VP closure force and LVP muscle activation required to achieve VP closure. Results Our average model compared favorably with experimental data from the literature. Simulations of 1,000 random anatomies reflected the large variability in closure forces observed experimentally. VP distance had the greatest effect on both outcome metrics when considering the observed anatomic variability. Other anatomical parameters were ranked by their predicted influences on the outcome metrics. Conclusions Our results support the implication that interventions for VP dysfunction that decrease anterior to posterior VP portal distance, increase velar length, and/or increase LVP cross-sectional area may be very effective. Future modeling studies will help to further our understanding of speech mechanics and optimize treatment of speech disorders. PMID:26049120

  4. Automatic lung nodule matching for the follow-up in temporal chest CT scans

    NASA Astrophysics Data System (ADS)

    Hong, Helen; Lee, Jeongjin; Shin, Yeong Gil

    2006-03-01

    We propose a fast and robust registration method for matching lung nodules of temporal chest CT scans. Our method is composed of four stages. First, the lungs are extracted from chest CT scans by the automatic segmentation method. Second, the gross translational mismatch is corrected by the optimal cube registration. This initial registration does not require extracting any anatomical landmarks. Third, initial alignment is step by step refined by the iterative surface registration. To evaluate the distance measure between surface boundary points, a 3D distance map is generated by the narrow-band distance propagation, which drives fast and robust convergence to the optimal location. Fourth, nodule correspondences are established by the pairs with the smallest Euclidean distances. The results of pulmonary nodule alignment of twenty patients are reported on a per-center-of mass point basis using the average Euclidean distance (AED) error between corresponding nodules of initial and follow-up scans. The average AED error of twenty patients is significantly reduced to 4.7mm from 30.0mm by our registration. Experimental results show that our registration method aligns the lung nodules much faster than the conventional ones using a distance measure. Accurate and fast result of our method would be more useful for the radiologist's evaluation of pulmonary nodules on chest CT scans.

  5. Numerical compliance testing of human exposure to electromagnetic radiation from smart-watches.

    PubMed

    Hong, Seon-Eui; Lee, Ae-Kyoung; Kwon, Jong-Hwa; Pack, Jeong-Ki

    2016-10-07

    In this study, we investigated the electromagnetic dosimetry for smart-watches. At present, the standard for compliance testing of body-mounted and handheld devices specifies the use of a flat phantom to provide conservative estimates of the peak spatial-averaged specific absorption rate (SAR). This means that the estimated SAR using a flat phantom should be higher than the SAR in the exposure part of an anatomical human-body model. To verify this, we numerically calculated the SAR for a flat phantom and compared it with the numerical calculation of the SAR for four anatomical human-body models of different ages. The numerical analysis was performed using the finite difference time domain method (FDTD). The smart-watch models were used in the three antennas: the shorted planar inverted-F antenna (PIFA), loop antenna, and monopole antenna. Numerical smart-watch models were implemented for cellular commutation and wireless local-area network operation at 835, 1850, and 2450 MHz. The peak spatial-averaged SARs of the smart-watch models are calculated for the flat phantom and anatomical human-body model for the wrist-worn and next to mouth positions. The results show that the flat phantom does not provide a consistent conservative SAR estimate. We concluded that the difference in the SAR results between an anatomical human-body model and a flat phantom can be attributed to the different phantom shapes and tissue structures.

  6. Numerical compliance testing of human exposure to electromagnetic radiation from smart-watches

    NASA Astrophysics Data System (ADS)

    Hong, Seon-Eui; Lee, Ae-Kyoung; Kwon, Jong-Hwa; Pack, Jeong-Ki

    2016-10-01

    In this study, we investigated the electromagnetic dosimetry for smart-watches. At present, the standard for compliance testing of body-mounted and handheld devices specifies the use of a flat phantom to provide conservative estimates of the peak spatial-averaged specific absorption rate (SAR). This means that the estimated SAR using a flat phantom should be higher than the SAR in the exposure part of an anatomical human-body model. To verify this, we numerically calculated the SAR for a flat phantom and compared it with the numerical calculation of the SAR for four anatomical human-body models of different ages. The numerical analysis was performed using the finite difference time domain method (FDTD). The smart-watch models were used in the three antennas: the shorted planar inverted-F antenna (PIFA), loop antenna, and monopole antenna. Numerical smart-watch models were implemented for cellular commutation and wireless local-area network operation at 835, 1850, and 2450 MHz. The peak spatial-averaged SARs of the smart-watch models are calculated for the flat phantom and anatomical human-body model for the wrist-worn and next to mouth positions. The results show that the flat phantom does not provide a consistent conservative SAR estimate. We concluded that the difference in the SAR results between an anatomical human-body model and a flat phantom can be attributed to the different phantom shapes and tissue structures.

  7. Strength of bone tunnel versus suture anchor and push-lock construct in Broström repair.

    PubMed

    Giza, Eric; Nathe, Ryan; Nathe, Tyler; Anderson, Matthew; Campanelli, Valentina

    2012-06-01

    Operative treatment of mechanical ankle instability is indicated for patients who have had multiple sprains and have continued episodes of instability despite bracing and rehabilitation. Anatomic reconstruction has been shown to have improved outcomes and return to sport as compared with nonanatomic reconstruction. The use of 2 suture anchors and a push-lock anchor is equal to 2 bone tunnels in strength to failure for anatomic Broström repair. Controlled laboratory study. In 7 matched pairs of human cadaver ankles, the calcaneofibular ligament (CFL) and anterior talofibular ligament (ATFL) were incised from their origin on the fibula. A No. 2 Fiberwire suture was placed into the CFL and a separate suture into the ATFL in a running Krackow fashion with a total of 4 locking loops. In 1 ankle of the matched pair, the ligaments were repaired to their anatomic insertion with bone tunnels. In the other, 2 suture anchors were used to reattach the ligaments to their anatomic origins, and a push-lock was used proximally to reinforce these suture anchors. The ligaments were cyclically loaded 20 times and then tested to failure. Torque to failure, degrees to failure, and stiffness were measured. The authors performed a matched pair analysis. An a priori power analysis of 0.8 demonstrated 6 pairs were needed to show a difference of 30% with a 15% standard error at a significance level of .05. There was no difference in the degrees to failure, torque to failure, and stiffness. A post hoc power analysis of torque to failure showed a power of .89 with 7 samples. Power for initial stiffness was .97 with 7 samples. Eleven of 14 specimens failed at either the suture anchor or the bone tunnel. There is no statistical difference in strength or stiffness for a suture anchor and push-lock construct as compared with a bone tunnel construct for an anatomic repair of the lateral ligaments of the ankle. The use of suture anchors in lateral ligament stabilization allows for a smaller incision, less surgical dissection, and improved surgical efficiency. It is up to the discretion of the performing surgeon based on preference, ease of use, operative time, and cost profile to choose either of these constructs for anatomic repair of the lateral ligaments of the ankle. The suture repair at the ligament was significantly strong enough such that the majority of ankles failed at the bone interface.

  8. Line segment confidence region-based string matching method for map conflation

    NASA Astrophysics Data System (ADS)

    Huh, Yong; Yang, Sungchul; Ga, Chillo; Yu, Kiyun; Shi, Wenzhong

    2013-04-01

    In this paper, a method to detect corresponding point pairs between polygon object pairs with a string matching method based on a confidence region model of a line segment is proposed. The optimal point edit sequence to convert the contour of a target object into that of a reference object was found by the string matching method which minimizes its total error cost, and the corresponding point pairs were derived from the edit sequence. Because a significant amount of apparent positional discrepancies between corresponding objects are caused by spatial uncertainty and their confidence region models of line segments are therefore used in the above matching process, the proposed method obtained a high F-measure for finding matching pairs. We applied this method for built-up area polygon objects in a cadastral map and a topographical map. Regardless of their different mapping and representation rules and spatial uncertainties, the proposed method with a confidence level at 0.95 showed a matching result with an F-measure of 0.894.

  9. Quantitative detection of cartilage surfaces and ligament geometry of the wrist using an imaging cryomicrotome system.

    PubMed

    Dvinskikh, N A; Blankevoort, L; Foumani, M; Spaan, J A E; Streekstra, G J

    2010-03-22

    Biomechanical models may aid in improving diagnosis and treatment of wrist joint disorders. As input, geometrical information is required for model development. Previous studies acquired some elements of the average wrist joint geometry. However, there is a close geometric functional match between articulating surfaces and ligament geometry. Therefore, biomechanical models need to be fed with the geometric data of individual joints. This study is aimed at acquiring geometric data of cartilage surfaces and ligaments from individual wrist joints by using a cryomicrotome imaging system and the evaluation of inter- and intra-observer variability of the data. The 3D geometry of 30 cartilage surfaces and 15 ligaments in three cadaver wrists was manually detected and quantitatively reconstructed. The inter- and intra-observer variability of the cartilage surface detection was 0.14 and 0.19 mm, respectively. For the position of the radius attachment of the dorsal radiocarpal ligament (DRC), the observer variations were 0.12 and 0.65 mm, for intra-/inter-observer, respectively. For the DRC attachment on the triquetrum, the observer variations were 0.22 and 1.19 mm. Anatomic reconstruction from 3D cryomicrotome images offer a method to obtain unique geometry data of the entire wrist joint for modeling purposes. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  10. Implementation of the Business Process Modelling Notation (BPMN) in the modelling of anatomic pathology processes

    PubMed Central

    Rojo, Marcial García; Rolón, Elvira; Calahorra, Luis; García, Felix Óscar; Sánchez, Rosario Paloma; Ruiz, Francisco; Ballester, Nieves; Armenteros, María; Rodríguez, Teresa; Espartero, Rafael Martín

    2008-01-01

    Background Process orientation is one of the essential elements of quality management systems, including those in use in healthcare. Business processes in hospitals are very complex and variable. BPMN (Business Process Modelling Notation) is a user-oriented language specifically designed for the modelling of business (organizational) processes. Previous experiences of the use of this notation in the processes modelling within the Pathology in Spain or another country are not known. We present our experience in the elaboration of the conceptual models of Pathology processes, as part of a global programmed surgical patient process, using BPMN. Methods With the objective of analyzing the use of BPMN notation in real cases, a multidisciplinary work group was created, including software engineers from the Dep. of Technologies and Information Systems from the University of Castilla-La Mancha and health professionals and administrative staff from the Hospital General de Ciudad Real. The work in collaboration was carried out in six phases: informative meetings, intensive training, process selection, definition of the work method, process describing by hospital experts, and process modelling. Results The modelling of the processes of Anatomic Pathology is presented using BPMN. The presented subprocesses are those corresponding to the surgical pathology examination of the samples coming from operating theatre, including the planning and realization of frozen studies. Conclusion The modelling of Anatomic Pathology subprocesses has allowed the creation of an understandable graphical model, where management and improvements are more easily implemented by health professionals. PMID:18673511

  11. Hybrid computational phantoms of the 15-year male and female adolescent: Applications to CT organ dosimetry for patients of variable morphometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Choonsik; Lodwick, Daniel; Williams, Jonathan L.

    Currently, two classes of the computational phantoms have been developed for dosimetry calculation: (1) stylized (or mathematical) and (2) voxel (or tomographic) phantoms describing human anatomy through mathematical surface equations and three-dimensional labeled voxel matrices, respectively. Mathematical surface equations in stylized phantoms provide flexibility in phantom design and alteration, but the resulting anatomical description is, in many cases, not very realistic. Voxel phantoms display far better anatomical realism, but they are limited in terms of their ability to alter organ shape, position, and depth, as well as body posture. A new class of computational phantoms - called hybrid phantoms -more » takes advantage of the best features of stylized and voxel phantoms - flexibility and anatomical realism, respectively. In the current study, hybrid computational phantoms representing reference 15-year male and female body anatomy and anthropometry are presented. For the male phantom, organ contours were extracted from the University of Florida (UF) 14-year series B male voxel phantom, while for the female phantom, original computed tomography (CT) data from two 14-year female patients were used. Polygon mesh models for the major organs and tissues were reconstructed for nonuniform rational B-spline (NURBS) surface modeling. The resulting NURBS/polygon mesh models representing body contour and internal anatomy were matched to anthropometric data and reference organ mass data provided by the Centers for Disease Control and Prevention (CDC) and the International Commission on Radiation Protection (ICRP), respectively. Finally, two hybrid 15-year male and female phantoms were completed where a total of eight anthropometric data categories were matched to standard values within 4% and organ masses matched to ICRP data within 1% with the exception of total skin. To highlight the flexibility of the hybrid phantoms, 10th and 90th weight percentile 15-year male and female phantoms were further developed from the 50th percentile phantoms through adjustments in the body contour to match the total body masses given in CDC pediatric growth curves. The resulting six NURBS phantoms, male and female phantoms representing their 10th, 50th, and 90th weight percentiles, were used to investigate the influence of body fat distributions on internal organ doses following CT imaging. The phantoms were exposed to multislice chest and abdomen helical CT scans, and in-field organ absorbed doses were calculated. The results demonstrated that the use of traditional stylized phantoms yielded organ dose estimates that deviate from those given by the UF reference hybrid phantoms by up to a factor of 2. The study also showed that use of reference, or 50th percentile, phantoms to assess organ doses in underweight 15-year-old children would not lead to significant organ dose errors (typically less than 10%). However, more significant errors were noted (up to {approx}30%) when reference phantoms are used to represent overweight children in CT imaging dosimetry. These errors are expected to only further increase as one considers CT organ doses in overweight and obese individuals of the adult patient population, thus emphasizing the advantages of patient-sculptable phantom technology.« less

  12. Non-imaged based method for matching brains in a common anatomical space for cellular imagery.

    PubMed

    Midroit, Maëllie; Thevenet, Marc; Fournel, Arnaud; Sacquet, Joelle; Bensafi, Moustafa; Breton, Marine; Chalençon, Laura; Cavelius, Matthias; Didier, Anne; Mandairon, Nathalie

    2018-04-22

    Cellular imagery using histology sections is one of the most common techniques used in Neuroscience. However, this inescapable technique has severe limitations due to the need to delineate regions of interest on each brain, which is time consuming and variable across experimenters. We developed algorithms based on a vectors field elastic registration allowing fast, automatic realignment of experimental brain sections and associated labeling in a brain atlas with high accuracy and in a streamlined way. Thereby, brain areas of interest can be finely identified without outlining them and different experimental groups can be easily analyzed using conventional tools. This method directly readjusts labeling in the brain atlas without any intermediate manipulation of images. We mapped the expression of cFos, in the mouse brain (C57Bl/6J) after olfactory stimulation or a non-stimulated control condition and found an increased density of cFos-positive cells in the primary olfactory cortex but not in non-olfactory areas of the odor-stimulated animals compared to the controls. Existing methods of matching are based on image registration which often requires expensive material (two-photon tomography mapping or imaging with iDISCO) or are less accurate since they are based on mutual information contained in the images. Our new method is non-imaged based and relies only on the positions of detected labeling and the external contours of sections. We thus provide a new method that permits automated matching of histology sections of experimental brains with a brain reference atlas. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Numerical investigation of fluid-particle interactions for embolic stroke

    NASA Astrophysics Data System (ADS)

    Mukherjee, Debanjan; Padilla, Jose; Shadden, Shawn C.

    2016-04-01

    Roughly one-third of all strokes are caused by an embolus traveling to a cerebral artery and blocking blood flow in the brain. The objective of this study is to gain a detailed understanding of the dynamics of embolic particles within arteries. Patient computed tomography image is used to construct a three-dimensional model of the carotid bifurcation. An idealized carotid bifurcation model of same vessel diameters was also constructed for comparison. Blood flow velocities and embolic particle trajectories are resolved using a coupled Euler-Lagrange approach. Blood is modeled as a Newtonian fluid, discretized using the finite volume method, with physiologically appropriate inflow and outflow boundary conditions. The embolus trajectory is modeled using Lagrangian particle equations accounting for embolus interaction with blood as well as vessel wall. Both one- and two-way fluid-particle coupling are considered, the latter being implemented using momentum sources augmented to the discretized flow equations. It was observed that for small-to-moderate particle sizes (relative to vessel diameters), the estimated particle distribution ratio—with and without the inclusion of two-way fluid-particle momentum exchange—were found to be similar. The maximum observed differences in distribution ratio with and without the coupling were found to be higher for the idealized bifurcation model. Additionally, the distribution was found to be reasonably matching the volumetric flow distribution for the idealized model, while a notable deviation from volumetric flow was observed in the anatomical model. It was also observed from an analysis of particle path lines that particle interaction with helical flow, characteristic of anatomical vasculature models, could play a prominent role in transport of embolic particle. The results indicate therefore that flow helicity could be an important hemodynamic indicator for analysis of embolus particle transport. Additionally, in the presence of helical flow, and vessel curvature, inclusion of two-way momentum exchange was found to have a secondary effect for transporting small to moderate embolus particles—and one-way coupling could be used as a reasonable approximation, thereby causing substantial savings in computational resources.

  14. Validation of cone-beam computed tomography and magnetic resonance imaging of the porcine spine: a comparative study with multidetector computed tomography and anatomical specimens.

    PubMed

    de Freitas, Ricardo Miguel Costa; Andrade, Celi Santos; Caldas, José Guilherme Mendes Pereira; Kanas, Alexandre Fligelman; Cabral, Richard Halti; Tsunemi, Miriam Harumi; Rodríguez, Hernán Joel Cervantes; Rabbani, Said Rahnamaye

    2015-05-01

    New spinal interventions or implants have been tested on ex vivo or in vivo porcine spines, as they are readily available and have been accepted as a comparable model to human cadaver spines. Imaging-guided interventional procedures of the spine are mostly based on fluoroscopy or, still, on multidetector computed tomography (MDCT). Cone-beam computed tomography (CBCT) and magnetic resonance imaging (MRI) are also available methods to guide interventional procedures. Although some MDCT data from porcine spines are available in the literature, validation of the measurements on CBCT and MRI is lacking. To describe and compare the anatomical measurements accomplished with MDCT, CBCT, and MRI of lumbar porcine spines to determine if CBCT and MRI are also useful methods for experimental studies. An experimental descriptive-comparative study. Sixteen anatomical measurements of an individual vertebra from six lumbar porcine spines (n=36 vertebrae) were compared with their MDCT, CBCT, and MRI equivalents. Comparisons were made for the absolute values of the parameters. Similarities were found in all imaging methods. Significant correlation (p<.05) was observed with all variables except those that included cartilaginous tissue from the end plates when the anatomical study was compared with the imaging methods. The CBCT and MRI provided imaging measurements of the lumbar porcine spines that were similar to the anatomical and MDCT data, and they can be useful for specific experimental research studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Scaled Anatomical Model Creation of Biomedical Tomographic Imaging Data and Associated Labels for Subsequent Sub-surface Laser Engraving (SSLE) of Glass Crystals.

    PubMed

    Betts, Aislinn M; McGoldrick, Matthew T; Dethlefs, Christopher R; Piotrowicz, Justin; Van Avermaete, Tony; Maki, Jeff; Gerstler, Steve; Leevy, W M

    2017-04-25

    Biomedical imaging modalities like computed tomography (CT) and magnetic resonance (MR) provide excellent platforms for collecting three-dimensional data sets of patient or specimen anatomy in clinical or preclinical settings. However, the use of a virtual, on-screen display limits the ability of these tomographic images to fully convey the anatomical information embedded within. One solution is to interface a biomedical imaging data set with 3D printing technology to generate a physical replica. Here we detail a complementary method to visualize tomographic imaging data with a hand-held model: Sub Surface Laser Engraving (SSLE) of crystal glass. SSLE offers several unique benefits including: the facile ability to include anatomical labels, as well as a scale bar; streamlined multipart assembly of complex structures in one medium; high resolution in the X, Y, and Z planes; and semi-transparent shells for visualization of internal anatomical substructures. Here we demonstrate the process of SSLE with CT data sets derived from pre-clinical and clinical sources. This protocol will serve as a powerful and inexpensive new tool with which to visualize complex anatomical structures for scientists and students in a number of educational and research settings.

  16. Unconditional or Conditional Logistic Regression Model for Age-Matched Case-Control Data?

    PubMed

    Kuo, Chia-Ling; Duan, Yinghui; Grady, James

    2018-01-01

    Matching on demographic variables is commonly used in case-control studies to adjust for confounding at the design stage. There is a presumption that matched data need to be analyzed by matched methods. Conditional logistic regression has become a standard for matched case-control data to tackle the sparse data problem. The sparse data problem, however, may not be a concern for loose-matching data when the matching between cases and controls is not unique, and one case can be matched to other controls without substantially changing the association. Data matched on a few demographic variables are clearly loose-matching data, and we hypothesize that unconditional logistic regression is a proper method to perform. To address the hypothesis, we compare unconditional and conditional logistic regression models by precision in estimates and hypothesis testing using simulated matched case-control data. Our results support our hypothesis; however, the unconditional model is not as robust as the conditional model to the matching distortion that the matching process not only makes cases and controls similar for matching variables but also for the exposure status. When the study design involves other complex features or the computational burden is high, matching in loose-matching data can be ignored for negligible loss in testing and estimation if the distributions of matching variables are not extremely different between cases and controls.

  17. Unconditional or Conditional Logistic Regression Model for Age-Matched Case–Control Data?

    PubMed Central

    Kuo, Chia-Ling; Duan, Yinghui; Grady, James

    2018-01-01

    Matching on demographic variables is commonly used in case–control studies to adjust for confounding at the design stage. There is a presumption that matched data need to be analyzed by matched methods. Conditional logistic regression has become a standard for matched case–control data to tackle the sparse data problem. The sparse data problem, however, may not be a concern for loose-matching data when the matching between cases and controls is not unique, and one case can be matched to other controls without substantially changing the association. Data matched on a few demographic variables are clearly loose-matching data, and we hypothesize that unconditional logistic regression is a proper method to perform. To address the hypothesis, we compare unconditional and conditional logistic regression models by precision in estimates and hypothesis testing using simulated matched case–control data. Our results support our hypothesis; however, the unconditional model is not as robust as the conditional model to the matching distortion that the matching process not only makes cases and controls similar for matching variables but also for the exposure status. When the study design involves other complex features or the computational burden is high, matching in loose-matching data can be ignored for negligible loss in testing and estimation if the distributions of matching variables are not extremely different between cases and controls. PMID:29552553

  18. Evaluation of Deep Learning Based Stereo Matching Methods: from Ground to Aerial Images

    NASA Astrophysics Data System (ADS)

    Liu, J.; Ji, S.; Zhang, C.; Qin, Z.

    2018-05-01

    Dense stereo matching has been extensively studied in photogrammetry and computer vision. In this paper we evaluate the application of deep learning based stereo methods, which were raised from 2016 and rapidly spread, on aerial stereos other than ground images that are commonly used in computer vision community. Two popular methods are evaluated. One learns matching cost with a convolutional neural network (known as MC-CNN); the other produces a disparity map in an end-to-end manner by utilizing both geometry and context (known as GC-net). First, we evaluate the performance of the deep learning based methods for aerial stereo images by a direct model reuse. The models pre-trained on KITTI 2012, KITTI 2015 and Driving datasets separately, are directly applied to three aerial datasets. We also give the results of direct training on target aerial datasets. Second, the deep learning based methods are compared to the classic stereo matching method, Semi-Global Matching(SGM), and a photogrammetric software, SURE, on the same aerial datasets. Third, transfer learning strategy is introduced to aerial image matching based on the assumption of a few target samples available for model fine tuning. It experimentally proved that the conventional methods and the deep learning based methods performed similarly, and the latter had greater potential to be explored.

  19. Electrophysiological Modeling of Cardiac Ventricular Function: From Cell to Organ

    PubMed Central

    Winslow, R. L.; Scollan, D. F.; Holmes, A.; Yung, C. K.; Zhang, J.; Jafri, M. S.

    2005-01-01

    Three topics of importance to modeling the integrative function of the heart are reviewed. The first is modeling of the ventricular myocyte. Emphasis is placed on excitation-contraction coupling and intracellular Ca2+ handling, and the interpretation of experimental data regarding interval-force relationships. Second, data on use of diffusion tensor magnetic resonance (DTMR) imaging for measuring the anatomical structure of the cardiac ventricles are presented. A method for the semi-automated reconstruction of the ventricles using a combination of gradient recalled acquisition in the steady state (GRASS) and DTMR images is described. Third, we describe how these anatomically and biophysically based models of the cardiac ventricles can be implemented on parallel computers. PMID:11701509

  20. Comparison of femur tunnel aperture location in patients undergoing transtibial and anatomical single-bundle anterior cruciate ligament reconstruction.

    PubMed

    Lee, Dae-Hee; Kim, Hyun-Jung; Ahn, Hyeong-Sik; Bin, Seong-Il

    2016-12-01

    Although three-dimensional computed tomography (3D-CT) has been used to compare femoral tunnel position following transtibial and anatomical anterior cruciate ligament (ACL) reconstruction, no consensus has been reached on which technique results in a more anatomical position because methods of quantifying femoral tunnel position on 3D-CT have not been consistent. This meta-analysis was therefore performed to compare femoral tunnel location following transtibial and anatomical ACL reconstruction, in both the low-to-high and deep-to-shallow directions. This meta-analysis included all studies that used 3D-CT to compare femoral tunnel location, using quadrant or anatomical coordinate axis methods, following transtibial and anatomical (AM portal or OI) single-bundle ACL reconstruction. Six studies were included in the meta-analysis. Femoral tunnel location was 18 % higher in the low-to-high direction, but was not significant in the deep-to-shallow direction, using the transtibial technique than the anatomical methods, when measured using the anatomical coordinate axis method. When measured using the quadrant method, however, femoral tunnel positions were significantly higher (21 %) and shallower (6 %) with transtibial than anatomical methods of ACL reconstruction. The anatomical ACL reconstruction techniques led to a lower femoral tunnel aperture location than the transtibial technique, suggesting the superiority of anatomical techniques for creating new femoral tunnels during revision ACL reconstruction in femoral tunnel aperture location in the low-to-high direction. However, the mean difference in the deep-to-shallow direction differed by method of measurement. Meta-analysis, Level II.

  1. Directional constraint of endpoint force emerges from hindlimb anatomy.

    PubMed

    Bunderson, Nathan E; McKay, J Lucas; Ting, Lena H; Burkholder, Thomas J

    2010-06-15

    Postural control requires the coordination of force production at the limb endpoints to apply an appropriate force to the body. Subjected to horizontal plane perturbations, quadruped limbs stereotypically produce force constrained along a line that passes near the center of mass. This phenomenon, referred to as the force constraint strategy, may reflect mechanical constraints on the limb or body, a specific neural control strategy or an interaction among neural controls and mechanical constraints. We used a neuromuscular model of the cat hindlimb to test the hypothesis that the anatomical constraints restrict the mechanical action of individual muscles during stance and constrain the response to perturbations to a line independent of perturbation direction. In a linearized neuromuscular model of the cat hindlimb, muscle lengthening directions were highly conserved across 10,000 different muscle activation patterns, each of which produced an identical, stance-like endpoint force. These lengthening directions were closely aligned with the sagittal plane and reveal an anatomical structure for directionally constrained force responses. Each of the 10,000 activation patterns was predicted to produce stable stance based on Lyapunov stability analysis. In forward simulations of the nonlinear, seven degree of freedom model under the action of 200 random muscle activation patterns, displacement of the endpoint from its equilibrium position produced restoring forces, which were also biased toward the sagittal plane. The single exception was an activation pattern based on minimum muscle stress optimization, which produced destabilizing force responses in some perturbation directions. The sagittal force constraint increased during simulations as the system shifted from an inertial response during the acceleration phase to a viscoelastic response as peak velocity was obtained. These results qualitatively match similar experimental observations and suggest that the force constraint phenomenon may result from the anatomical arrangement of the limb.

  2. Directional constraint of endpoint force emerges from hindlimb anatomy

    PubMed Central

    Bunderson, Nathan E.; McKay, J. Lucas; Ting, Lena H.; Burkholder, Thomas J.

    2010-01-01

    Postural control requires the coordination of force production at the limb endpoints to apply an appropriate force to the body. Subjected to horizontal plane perturbations, quadruped limbs stereotypically produce force constrained along a line that passes near the center of mass. This phenomenon, referred to as the force constraint strategy, may reflect mechanical constraints on the limb or body, a specific neural control strategy or an interaction among neural controls and mechanical constraints. We used a neuromuscular model of the cat hindlimb to test the hypothesis that the anatomical constraints restrict the mechanical action of individual muscles during stance and constrain the response to perturbations to a line independent of perturbation direction. In a linearized neuromuscular model of the cat hindlimb, muscle lengthening directions were highly conserved across 10,000 different muscle activation patterns, each of which produced an identical, stance-like endpoint force. These lengthening directions were closely aligned with the sagittal plane and reveal an anatomical structure for directionally constrained force responses. Each of the 10,000 activation patterns was predicted to produce stable stance based on Lyapunov stability analysis. In forward simulations of the nonlinear, seven degree of freedom model under the action of 200 random muscle activation patterns, displacement of the endpoint from its equilibrium position produced restoring forces, which were also biased toward the sagittal plane. The single exception was an activation pattern based on minimum muscle stress optimization, which produced destabilizing force responses in some perturbation directions. The sagittal force constraint increased during simulations as the system shifted from an inertial response during the acceleration phase to a viscoelastic response as peak velocity was obtained. These results qualitatively match similar experimental observations and suggest that the force constraint phenomenon may result from the anatomical arrangement of the limb. PMID:20511528

  3. Cardiovascular cast model fabrication and casting effectiveness evaluation in fetus with severe congenital heart disease or normal heart.

    PubMed

    Wang, Yu; Cao, Hai-yan; Xie, Ming-xing; He, Lin; Han, Wei; Hong, Liu; Peng, Yuan; Hu, Yun-fei; Song, Ben-cai; Wang, Jing; Wang, Bin; Deng, Cheng

    2016-04-01

    To investigate the application and effectiveness of vascular corrosion technique in preparing fetal cardiovascular cast models, 10 normal fetal heart specimens with other congenital disease (control group) and 18 specimens with severe congenital heart disease (case group) from induced abortions were enrolled in this study from March 2013 to June 2015 in our hospital. Cast models were prepared by injecting casting material into vascular lumen to demonstrate real geometries of fetal cardiovascular system. Casting effectiveness was analyzed in terms of local anatomic structures and different anatomical levels (including overall level, atrioventricular and great vascular system, left-sided and right-sided heart), as well as different trimesters of pregnancy. In our study, all specimens were successfully casted. Casting effectiveness analysis of local anatomic structures showed a mean score from 1.90±1.45 to 3.60±0.52, without significant differences between case and control groups in most local anatomic structures except left ventricle, which had a higher score in control group (P=0.027). Inter-group comparison of casting effectiveness in different anatomical levels showed no significant differences between the two groups. Intra-group comparison also revealed undifferentiated casting effectiveness between atrioventricular and great vascular system, or left-sided and right-sided heart in corresponding group. Third-trimester group had a significantly higher perfusion score in great vascular system than second-trimester group (P=0.046), while the other anatomical levels displayed no such difference. Vascular corrosion technique can be successfully used in fabrication of fetal cardiovascular cast model. It is also a reliable method to demonstrate three-dimensional anatomy of severe congenital heart disease and normal heart in fetus.

  4. Segmenting Brain Tissues from Chinese Visible Human Dataset by Deep-Learned Features with Stacked Autoencoder

    PubMed Central

    Zhao, Guangjun; Wang, Xuchu; Niu, Yanmin; Tan, Liwen; Zhang, Shao-Xiang

    2016-01-01

    Cryosection brain images in Chinese Visible Human (CVH) dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel). Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging data, and they may not be applicable for cryosection images due to the imaging difference. In this paper, we propose a supervised learning-based CVH brain tissues segmentation method that uses stacked autoencoder (SAE) to automatically learn the deep feature representations. Specifically, our model includes two successive parts where two three-layer SAEs take image patches as input to learn the complex anatomical feature representation, and then these features are sent to Softmax classifier for inferring the labels. Experimental results validated the effectiveness of our method and showed that it outperformed four other classical brain tissue detection strategies. Furthermore, we reconstructed three-dimensional surfaces of these tissues, which show their potential in exploring the high-resolution anatomical structures of human brain. PMID:27057543

  5. Segmenting Brain Tissues from Chinese Visible Human Dataset by Deep-Learned Features with Stacked Autoencoder.

    PubMed

    Zhao, Guangjun; Wang, Xuchu; Niu, Yanmin; Tan, Liwen; Zhang, Shao-Xiang

    2016-01-01

    Cryosection brain images in Chinese Visible Human (CVH) dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel). Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging data, and they may not be applicable for cryosection images due to the imaging difference. In this paper, we propose a supervised learning-based CVH brain tissues segmentation method that uses stacked autoencoder (SAE) to automatically learn the deep feature representations. Specifically, our model includes two successive parts where two three-layer SAEs take image patches as input to learn the complex anatomical feature representation, and then these features are sent to Softmax classifier for inferring the labels. Experimental results validated the effectiveness of our method and showed that it outperformed four other classical brain tissue detection strategies. Furthermore, we reconstructed three-dimensional surfaces of these tissues, which show their potential in exploring the high-resolution anatomical structures of human brain.

  6. Investigating the neural basis for functional and effective connectivity. Application to fMRI

    PubMed Central

    Horwitz, Barry; Warner, Brent; Fitzer, Julie; Tagamets, M.-A; Husain, Fatima T; Long, Theresa W

    2005-01-01

    Viewing cognitive functions as mediated by networks has begun to play a central role in interpreting neuroscientific data, and studies evaluating interregional functional and effective connectivity have become staples of the neuroimaging literature. The neurobiological substrates of functional and effective connectivity are, however, uncertain. We have constructed neurobiologically realistic models for visual and auditory object processing with multiple interconnected brain regions that perform delayed match-to-sample (DMS) tasks. We used these models to investigate how neurobiological parameters affect the interregional functional connectivity between functional magnetic resonance imaging (fMRI) time-series. Variability is included in the models as subject-to-subject differences in the strengths of anatomical connections, scan-to-scan changes in the level of attention, and trial-to-trial interactions with non-specific neurons processing noise stimuli. We find that time-series correlations between integrated synaptic activities between the anterior temporal and the prefrontal cortex were larger during the DMS task than during a control task. These results were less clear when the integrated synaptic activity was haemodynamically convolved to generate simulated fMRI activity. As the strength of the model anatomical connectivity between temporal and frontal cortex was weakened, so too was the strength of the corresponding functional connectivity. These results provide a partial validation for using fMRI functional connectivity to assess brain interregional relations. PMID:16087450

  7. Evaluation of a 3D local multiresolution algorithm for the correction of partial volume effects in positron emission tomography.

    PubMed

    Le Pogam, Adrien; Hatt, Mathieu; Descourt, Patrice; Boussion, Nicolas; Tsoumpas, Charalampos; Turkheimer, Federico E; Prunier-Aesch, Caroline; Baulieu, Jean-Louis; Guilloteau, Denis; Visvikis, Dimitris

    2011-09-01

    Partial volume effects (PVEs) are consequences of the limited spatial resolution in emission tomography leading to underestimation of uptake in tissues of size similar to the point spread function (PSF) of the scanner as well as activity spillover between adjacent structures. Among PVE correction methodologies, a voxel-wise mutual multiresolution analysis (MMA) was recently introduced. MMA is based on the extraction and transformation of high resolution details from an anatomical image (MR/CT) and their subsequent incorporation into a low-resolution PET image using wavelet decompositions. Although this method allows creating PVE corrected images, it is based on a 2D global correlation model, which may introduce artifacts in regions where no significant correlation exists between anatomical and functional details. A new model was designed to overcome these two issues (2D only and global correlation) using a 3D wavelet decomposition process combined with a local analysis. The algorithm was evaluated on synthetic, simulated and patient images, and its performance was compared to the original approach as well as the geometric transfer matrix (GTM) method. Quantitative performance was similar to the 2D global model and GTM in correlated cases. In cases where mismatches between anatomical and functional information were present, the new model outperformed the 2D global approach, avoiding artifacts and significantly improving quality of the corrected images and their quantitative accuracy. A new 3D local model was proposed for a voxel-wise PVE correction based on the original mutual multiresolution analysis approach. Its evaluation demonstrated an improved and more robust qualitative and quantitative accuracy compared to the original MMA methodology, particularly in the absence of full correlation between anatomical and functional information.

  8. Anatomical Thin Titanium Mesh Plate Structural Optimization for Zygomatic-Maxillary Complex Fracture under Fatigue Testing.

    PubMed

    Wang, Yu-Tzu; Huang, Shao-Fu; Fang, Yu-Ting; Huang, Shou-Chieh; Cheng, Hwei-Fang; Chen, Chih-Hao; Wang, Po-Fang; Lin, Chun-Li

    2018-01-01

    This study performs a structural optimization of anatomical thin titanium mesh (ATTM) plate and optimal designed ATTM plate fabricated using additive manufacturing (AM) to verify its stabilization under fatigue testing. Finite element (FE) analysis was used to simulate the structural bending resistance of a regular ATTM plate. The Taguchi method was employed to identify the significance of each design factor in controlling the deflection and determine an optimal combination of designed factors. The optimal designed ATTM plate with patient-matched facial contour was fabricated using AM and applied to a ZMC comminuted fracture to evaluate the resting maxillary micromotion/strain under fatigue testing. The Taguchi analysis found that the ATTM plate required a designed internal hole distance to be 0.9 mm, internal hole diameter to be 1 mm, plate thickness to be 0.8 mm, and plate height to be 10 mm. The designed plate thickness factor primarily dominated the bending resistance up to 78% importance. The averaged micromotion (displacement) and strain of the maxillary bone showed that ZMC fracture fixation using the miniplate was significantly higher than those using the AM optimal designed ATTM plate. This study concluded that the optimal designed ATTM plate with enough strength to resist the bending effect can be obtained by combining FE and Taguchi analyses. The optimal designed ATTM plate with patient-matched facial contour fabricated using AM provides superior stabilization for ZMC comminuted fractured bone segments.

  9. A-scan ultrasound system for real-time puncture safety assessment during percutaneous nephrolithotomy

    NASA Astrophysics Data System (ADS)

    Rodrigues, Pedro L.; Rodrigues, Nuno F.; Fonseca, Jaime C.; von Krüger, M. A.; Pereira, W. C. A.; Vilaça, João. L.

    2015-03-01

    Background: Kidney stone is a major universal health problem, affecting 10% of the population worldwide. Percutaneous nephrolithotomy is a first-line and established procedure for disintegration and removal of renal stones. Its surgical success depends on the precise needle puncture of renal calyces, which remains the most challenging task for surgeons. This work describes and tests a new ultrasound based system to alert the surgeon when undesirable anatomical structures are in between the puncture path defined through a tracked needle. Methods: Two circular ultrasound transducers were built with a single 3.3-MHz piezoelectric ceramic PZT SN8, 25.4 mm of radius and resin-epoxy matching and backing layers. One matching layer was designed with a concave curvature to work as an acoustic lens with long focusing. The A-scan signals were filtered and processed to automatically detect reflected echoes. Results: The transducers were mapped in water tank and tested in a study involving 45 phantoms. Each phantom mimics different needle insertion trajectories with a percutaneous path length between 80 and 150 mm. Results showed that the beam cross-sectional area oscillates around the ceramics radius and it was possible to automatically detect echo signals in phantoms with length higher than 80 mm. Conclusions: This new solution may alert the surgeon about anatomical tissues changes during needle insertion, which may decrease the need of X-Ray radiation exposure and ultrasound image evaluation during percutaneous puncture.

  10. Identification and tracking of vertebrae in ultrasound using deep networks with unsupervised feature learning

    NASA Astrophysics Data System (ADS)

    Hetherington, Jorden; Pesteie, Mehran; Lessoway, Victoria A.; Abolmaesumi, Purang; Rohling, Robert N.

    2017-03-01

    Percutaneous needle insertion procedures on the spine often require proper identification of the vertebral level in order to effectively deliver anesthetics and analgesic agents to achieve adequate block. For example, in obstetric epidurals, the target is at the L3-L4 intervertebral space. The current clinical method involves "blind" identification of the vertebral level through manual palpation of the spine, which has only 30% accuracy. This implies the need for better anatomical identification prior to needle insertion. A system is proposed to identify the vertebrae, assigning them to their respective levels, and track them in a standard sequence of ultrasound images, when imaged in the paramedian plane. Machine learning techniques are developed to identify discriminative features of the laminae. In particular, a deep network is trained to automatically learn the anatomical features of the lamina peaks, and classify image patches, for pixel-level classification. The chosen network utilizes multiple connected auto-encoders to learn the anatomy. Pre-processing with ultrasound bone enhancement techniques is done to aid the pixel-level classification performance. Once the lamina are identified, vertebrae are assigned levels and tracked in sequential frames. Experimental results were evaluated against an expert sonographer. Based on data acquired from 15 subjects, vertebrae identification with sensitivity of 95% and precision of 95% was achieved within each frame. Between pairs of subsequently analyzed frames, matches of predicted vertebral level labels were correct in 94% of cases, when compared to matches of manually selected labels

  11. Matching CCD images to a stellar catalog using locality-sensitive hashing

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Yu, Jia-Zong; Peng, Qing-Yu

    2018-02-01

    The usage of a subset of observed stars in a CCD image to find their corresponding matched stars in a stellar catalog is an important issue in astronomical research. Subgraph isomorphic-based algorithms are the most widely used methods in star catalog matching. When more subgraph features are provided, the CCD images are recognized better. However, when the navigation feature database is large, the method requires more time to match the observing model. To solve this problem, this study investigates further and improves subgraph isomorphic matching algorithms. We present an algorithm based on a locality-sensitive hashing technique, which allocates quadrilateral models in the navigation feature database into different hash buckets and reduces the search range to the bucket in which the observed quadrilateral model is located. Experimental results indicate the effectivity of our method.

  12. Intraoperative Localization of Tantalum Markers for Proton Beam Radiation of Choroidal Melanoma by an Opto-Electronic Navigation System: A Novel Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amstutz, Christoph A., E-mail: christoph.amstutz@usz.ch; Bechrakis, Nikolaos E.; Foerster, Michael H.

    2012-03-15

    Purpose: External beam proton radiation therapy has been used since 1975 to treat choroidal melanoma. For tumor location determination during proton radiation treatment, surgical tantalum clips are registered with image data. This report introduces the intraoperative application of an opto-electronic navigation system to determine with high precision the position of the tantalum markers and their spatial relationship to the tumor and anatomical landmarks. The application of the technique in the first 4 patients is described. Methods and Materials: A navigated reference base was attached noninvasively to the eye, and a navigated pointer device was used to record the spatial positionmore » of the tantalum markers, the tumor, and anatomical landmarks. Measurement accuracy was assessed on ex vivo porcine eye specimen by repetitive recording of the tantalum marker positions. The method was applied intraoperatively on 4 patients undergoing routine tantalum clip surgery. The spatial position information delivered by the navigation system was compared to the geometric data generated by the EYEPLAN software. Results: In the ex vivo experiments, the maximum repetition error was 0.34 mm. For the intraoperative application, the root mean square error of paired-points matching of the marker positions from the navigation system and from the EYEPLAN software was 0.701-1.25 mm. Conclusions: Navigation systems are a feasible tool for accurate localization of tantalum markers and anatomic landmarks. They can provide additional geometric information, and therefore have the potential to increase the reliability and accuracy of external beam proton radiation therapy for choroidal melanoma.« less

  13. Dictionary construction and identification of possible adverse drug events in Danish clinical narrative text.

    PubMed

    Eriksson, Robert; Jensen, Peter Bjødstrup; Frankild, Sune; Jensen, Lars Juhl; Brunak, Søren

    2013-01-01

    Drugs have tremendous potential to cure and relieve disease, but the risk of unintended effects is always present. Healthcare providers increasingly record data in electronic patient records (EPRs), in which we aim to identify possible adverse events (AEs) and, specifically, possible adverse drug events (ADEs). Based on the undesirable effects section from the summary of product characteristics (SPC) of 7446 drugs, we have built a Danish ADE dictionary. Starting from this dictionary we have developed a pipeline for identifying possible ADEs in unstructured clinical narrative text. We use a named entity recognition (NER) tagger to identify dictionary matches in the text and post-coordination rules to construct ADE compound terms. Finally, we apply post-processing rules and filters to handle, for example, negations and sentences about subjects other than the patient. Moreover, this method allows synonyms to be identified and anatomical location descriptions can be merged to allow appropriate grouping of effects in the same location. The method identified 1 970 731 (35 477 unique) possible ADEs in a large corpus of 6011 psychiatric hospital patient records. Validation was performed through manual inspection of possible ADEs, resulting in precision of 89% and recall of 75%. The presented dictionary-building method could be used to construct other ADE dictionaries. The complication of compound words in Germanic languages was addressed. Additionally, the synonym and anatomical location collapse improve the method. The developed dictionary and method can be used to identify possible ADEs in Danish clinical narratives.

  14. Positioning accuracy and daily dose assessment for prostate cancer treatment using in-room CT image guidance at a proton therapy facility.

    PubMed

    Maeda, Yoshikazu; Sato, Yoshitaka; Minami, Hiroki; Yasukawa, Yutaka; Yamamoto, Kazutaka; Tamamura, Hiroyasu; Shibata, Satoshi; Bou, Sayuri; Sasaki, Makoto; Tameshige, Yuji; Kume, Kyo; Ooto, Hiroshi; Kasahara, Shigeru; Shimizu, Yasuhiro; Saga, Yusuke; Omoya, Akira; Saitou, Makoto

    2018-05-01

    To evaluate the effectiveness of CT image-guided proton radiotherapy for prostate cancer by analyzing the positioning uncertainty and assessing daily dose change due to anatomical variations. Patients with prostate cancer were treated by opposed lateral proton beams based on a passive scattering method using an in-room CT image-guided system. The system employs a single couch for both CT scanning and beam delivery. The patient was positioned by matching the boundary between the prostate and the rectum's anterior region identified in the CT images to the corresponding boundary in the simulator images after bone matching. We acquired orthogonal kV x-ray images after couch movement and confirmed the body position by referring to the bony structure prior to treatment. In offline analyses, we contoured the targeted anatomical structures on 375 sets of daily in-room CT images for 10 patients. The uncertainty of the image-matching procedure was evaluated using the prostate contours and actual couch corrections. We also performed dose calculations using the same set of CT images, and evaluated daily change of dose-volume histograms (DVHs) to compare the effectiveness of the treatment using prostate matching to the bone-matching procedure. The isocenter shifts by prostate matching after bone matching were 0.5 ± 1.8 and -0.8 ± 2.6 mm along the superior-inferior (SI) and anterior-posterior (AP) directions, respectively. The body movement errors (σ) after couch movement were 0.7, 0.5, and 0.3 mm along the lateral, SI and AP direction, respectively, for 30 patients. The estimated errors (σ) in the prostate matching were 1.0 and 1.3 mm, and, in conjunction with the movement errors, the total positioning uncertainty was estimated to be 1.0 and 1.4 mm along the SI and AP directions, respectively. Daily DVH analyses showed that in the prostate matching, 98.7% and 86.1% of the total 375 irradiations maintained a dose condition of V 95%  > 95% for the prostate and a dose constraint of V 77%  < 18% for the rectum, whereas 90.4% and 66.1% of the total irradiations did so when bone matching was used. The dose constraint of the rectum and dose coverage of the prostate were better maintained by prostate matching than bone matching (P < 0.001). The daily variation in the dose to the seminal vesicles (SVs) was large, and only 40% of the total irradiations maintained the initial planned values of V 95% for high-risk treatment. Nevertheless, the deviations from the original value were -4 ± 7% and -5 ± 11% in the prostate and bone matching, respectively, and a better dose coverage of the SV was achieved by the prostate matching. The correction of repositioning along the AP and SI direction from conventional bone matching in CT image-guided proton therapy was found to be effective to maintain the dose constraint of the rectum and the dose coverage of the prostate. This work indicated that prostate cancer treatment by prostate matching using CT image guidance may be effective to reduce the rectal complications and achieve better tumor control of the prostate. However, an adaptive approach is desirable to maintain better dose coverage of the SVs. © 2018 American Association of Physicists in Medicine.

  15. A comparison of cone-beam computed tomography and direct measurement in the examination of the mandibular canal and adjacent structures.

    PubMed

    Kim, Thomas S; Caruso, Joseph M; Christensen, Heidi; Torabinejad, Mahmoud

    2010-07-01

    The purpose of this investigation was to assess the ability of cone-beam computed tomography (CBCT) scanning to measure distances from the apices of selected posterior teeth to the mandibular canal. Measurements were taken from the apices of all posterior teeth that were superior to the mandibular canal. A pilot study was performed to determine the scanning parameters that produced the most diagnostic image and the best dissection technique. Twelve human hemimandibles with posterior teeth were scanned at .20 voxels on an I-CAT Classic CBCT device (Imaging Sciences International, Hatfield, PA), and the scans were exported in Digital Imaging and Communications in Medicine (DICOM) format. The scans were examined in InVivo Dental software (Anatomage, San Jose, CA), and measurements were taken from the apex of each root along its long axis to the upper portion of the mandibular canal. The specimens were dissected under a dental operating microscope, and analogous direct measurements were taken with a Boley gauge. All measurements were taken in triplicate at least 1 week apart by one individual (TSK). The results were averaged and the data separated into matching pairs for statistical analysis. There was no statistical difference (alpha = .05) between the methods of measurement according to the Wilcoxon matched pairs test (p = 0.676). For the anatomic measurements, the intra-rater correlation coefficient (ICC) was .980 and for the CBCT it was .949, indicating that both methods were highly reproducible. Both measurement methods were highly predictive of and highly correlated to each other according to regression and correlation analysis, respectively. Based on the results of this study, the I-CAT Classic can be used to measure distances from the apices of the posterior teeth to the mandibular canal as accurately as direct anatomic dissection. Copyright 2010 American Association of Endodontists. All rights reserved.

  16. Quantitative vs. subjective portal verification using digital portal images.

    PubMed

    Bissett, R; Leszczynski, K; Loose, S; Boyko, S; Dunscombe, P

    1996-01-15

    Off-line, computer-aided prescription (simulator) and treatment (portal) image registration using chamfer matching has been implemented on PC based viewing station. The purposes of this study were (a) to evaluate the performance of interactive anatomy and field edge extraction and subsequent registration, and (b) to compare observer's perceptions of field accuracy with measured discrepancies following anatomical registration. Prescription-treatment image pairs for 48 different patients were examined in this study. Digital prescription images were produced with the aid of a television camera and a digital frame grabber, while the treatment images were obtained directly from an on-line portal imaging system. To facilitate perception of low contrast anatomical detail, on-line portal images were enhanced with selective adaptive histogram equalization prior to extraction of anatomical edges. Following interactive extraction of anatomical and field border information by an experienced observer, the identified anatomy was registered using chamfer matching. The degree of conformity between the prescription and treatment fields was quantified using several parameters, which included relative prescription field coverage and overcoverage, as well as the translational and rotational displacements as measured by chamfer matching applied to the boundaries of the two fields. These quantitative measures were compared with subjective evaluations made by four radiation oncologists. All the images in this series that included a range of the most commonly seen treatment sites were registered and the conformity parameters were found. The mean treatment/prescription field coverage and overcoverage were approximately 95 and 7%, respectively before registration. The mean translational displacement in the transverse and cranio-caudal directions were 2.9 and 3.4 mm, respectively. The mean rotational displacement was approximately 2 degrees. For all four oncologists, the portals classified as unacceptable, in terms of the field placement, exhibited significantly higher (p < 0.03) translational errors in the transverse direction. The field coverages were significantly lower (p < 0.05) and the translational errors in the cranio-caudal direction were significantly higher (p < 0.05) for the portals rated as unacceptable by two of the oncologists. From the parameters that were used to quantify the degree of conformity between the prescription and treatment fields, the translational error in the transverse direction correlated best with the oncologists' assessments on the field placement. Field coverage and translational error in the cranio-caudal direction correlated well with assessments of only two out of the four participating oncologists. This can be explained by the fact that for the majority of treatment sites included in the study the positioning of field borders was more critical for the transverse direction. A conclusion for the design of future quantitative and automated on-line portal verification systems is that they will have to model different perceived significances of different types of localization errors intrinsic to oncologist evaluation of portal images.

  17. Bayesian reconstruction and use of anatomical a priori information for emission tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowsher, J.E.; Johnson, V.E.; Turkington, T.G.

    1996-10-01

    A Bayesian method is presented for simultaneously segmenting and reconstructing emission computed tomography (ECT) images and for incorporating high-resolution, anatomical information into those reconstructions. The anatomical information is often available from other imaging modalities such as computed tomography (CT) or magnetic resonance imaging (MRI). The Bayesian procedure models the ECT radiopharmaceutical distribution as consisting of regions, such that radiopharmaceutical activity is similar throughout each region. It estimates the number of regions, the mean activity of each region, and the region classification and mean activity of each voxel. Anatomical information is incorporated by assigning higher prior probabilities to ECT segmentations inmore » which each ECT region stays within a single anatomical region. This approach is effective because anatomical tissue type often strongly influences radiopharmaceutical uptake. The Bayesian procedure is evaluated using physically acquired single-photon emission computed tomography (SPECT) projection data and MRI for the three-dimensional (3-D) Hoffman brain phantom. A clinically realistic count level is used. A cold lesion within the brain phantom is created during the SPECT scan but not during the MRI to demonstrate that the estimation procedure can detect ECT structure that is not present anatomically.« less

  18. Stemless shoulder arthroplasty: a literature review

    PubMed Central

    PETRICCIOLI, DARIO; BERTONE, CELESTE; MARCHI, GIACOMO

    2015-01-01

    The design of humeral implants for shoulder arthroplasty has evolved over the years. The new-generation modular shoulder prostheses have an anatomical humeral stem that replicates the three-dimensional parameters of the proximal humerus. An anatomical reconstruction is the best way to restore stability and mobility of the prosthetic shoulder and improve implant durability. However, a perfect anatomical match is not always possible in, for example, patients with post-traumatic osteoarthritis of the shoulder and deformities in the metaphyseal region. To avoid stem-related complications while retaining the advantages of the fourth generation of shoulder implants, different stemless implants have been developed. The stemless shoulder prosthesis is a new concept in shoulder arthroplasty. The authors review the indications, surgical technique, clinical and radiological midterm results, and complications of these humeral implants. PMID:26151038

  19. Matching Aerial Images to 3D Building Models Using Context-Based Geometric Hashing

    PubMed Central

    Jung, Jaewook; Sohn, Gunho; Bang, Kiin; Wichmann, Andreas; Armenakis, Costas; Kada, Martin

    2016-01-01

    A city is a dynamic entity, which environment is continuously changing over time. Accordingly, its virtual city models also need to be regularly updated to support accurate model-based decisions for various applications, including urban planning, emergency response and autonomous navigation. A concept of continuous city modeling is to progressively reconstruct city models by accommodating their changes recognized in spatio-temporal domain, while preserving unchanged structures. A first critical step for continuous city modeling is to coherently register remotely sensed data taken at different epochs with existing building models. This paper presents a new model-to-image registration method using a context-based geometric hashing (CGH) method to align a single image with existing 3D building models. This model-to-image registration process consists of three steps: (1) feature extraction; (2) similarity measure; and matching, and (3) estimating exterior orientation parameters (EOPs) of a single image. For feature extraction, we propose two types of matching cues: edged corner features representing the saliency of building corner points with associated edges, and contextual relations among the edged corner features within an individual roof. A set of matched corners are found with given proximity measure through geometric hashing, and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on collinearity equations. The result shows that acceptable accuracy of EOPs of a single image can be achievable using the proposed registration approach as an alternative to a labor-intensive manual registration process. PMID:27338410

  20. The biomechanical analysis of three-dimensional distal radius fracture model with different fixed splints.

    PubMed

    Hua, Zhen; Wang, Jian-Wei; Lu, Zhen-Fei; Ma, Jian-Wei; Yin, Heng

    2018-01-01

    The distal radius fracture is one of the common clinical fractures. At present, there are no reports regarding application of the finite element method in studying the mechanism of Colles fracture and the biomechanical behavior when using splint fixation. To explore the mechanism of Colles fracture and the biomechanical behavior when using different fixed splints. Based on the CT scanning images of forearm for a young female volunteer, by using model construction technology combined with RPOE and ANSYS software, a 3-D distal radius fracture forearm finite element model with a real shape and bioactive materials is built. The material tests are performed to obtain the mechanical properties of the paper-based splint, the willow splint and the anatomical splint. The numerical results are compared with the experimental results to verify the correctness of the presented model. Based on the verified model, the stress distribution of different tissues are analyzed. Finally, the clinical tests are performed to observe and verify that the anatomical splint is the best fit for human body. Using the three kinds of splints, the transferred bone stress focus on the distal radius and ulna, which is helpful to maintain the stability of fracture. Also the stress is accumulated in the distal radius which may be attributed to flexion position. Such stress distribution may be helpful to maintain the ulnar declination. By comparing the simulation results with the experimental observations, the anatomical splint has the best fitting to the limb, which can effectively avoid the local compression. The anatomical splint is the most effective for fixing and curing the fracture. The presented model can provide theoretical basis and technical guide for further investigating mechanism of distal radius fracture and clinical application of anatomical splint.

  1. 3D Printing Based on Cardiac CT Assists Anatomic Visualization Prior to Transcatheter Aortic Valve Replacement

    PubMed Central

    Ripley, Beth; Kelil, Tatiana; Cheezum, Michael K.; Goncalves, Alexandra; Di Carli, Marcelo F.; Rybicki, Frank J.; Steigner, Mike; Mitsouras, Dimitrios; Blankstein, Ron

    2017-01-01

    Background 3D printing is a promising technique that may have applications in medicine, and there is expanding interest in the use of patient-specific 3D models to guide surgical interventions. Objective To determine the feasibility of using cardiac CT to print individual models of the aortic root complex for transcatheter aortic valve replacement (TAVR) planning as well as to determine the ability to predict paravalvular aortic regurgitation (PAR). Methods This retrospective study included 16 patients (9 with PAR identified on blinded interpretation of post-procedure trans-thoracic echocardiography and 7 age, sex, and valve size-matched controls with no PAR). 3D printed models of the aortic root were created from pre-TAVR cardiac computed tomography data. These models were fitted with printed valves and predictions regarding post-implant PAR were made using a light transmission test. Results Aortic root 3D models were highly accurate, with excellent agreement between annulus measurements made on 3D models and those made on corresponding 2D data (mean difference of −0.34 mm, 95% limits of agreement: ± 1.3 mm). The 3D printed valve models were within 0.1 mm of their designed dimensions. Examination of the fit of valves within patient-specific aortic root models correctly predicted PAR in 6 of 9 patients (6 true positive, 3 false negative) and absence of PAR in 5 of 7 patients (5 true negative, 2 false positive). Conclusions Pre-TAVR 3D-printing based on cardiac CT provides a unique patient-specific method to assess the physical interplay of the aortic root and implanted valves. With additional optimization, 3D models may complement traditional techniques used for predicting which patients are more likely to develop PAR. PMID:26732862

  2. Fluid Structure Interaction simulation of heart prosthesis in patient-specific left-ventricle/aorta anatomies

    NASA Astrophysics Data System (ADS)

    Le, Trung; Borazjani, Iman; Sotiropoulos, Fotis

    2009-11-01

    In order to test and optimize heart valve prosthesis and enable virtual implantation of other biomedical devices it is essential to develop and validate high-resolution FSI-CFD codes for carrying out simulations in patient-specific geometries. We have developed a powerful numerical methodology for carrying out FSI simulations of cardiovascular flows based on the CURVIB approach (Borazjani, L. Ge, and F. Sotiropoulos, Journal of Computational physics, vol. 227, pp. 7587-7620 2008). We have extended our FSI method to overset grids to handle efficiently more complicated geometries e.g. simulating an MHV implanted in an anatomically realistic aorta and left-ventricle. A compliant, anatomic left-ventricle is modeled using prescribed motion in one domain. The mechanical heart valve is placed inside the second domain i.e. the body-fitted curvilinear mesh of the anatomic aorta. The simulations of an MHV with a left-ventricle model underscore the importance of inflow conditions and ventricular compliance for such simulations and demonstrate the potential of our method as a powerful tool for patient-specific simulations.

  3. Principal component analysis-based anatomical motion models for use in adaptive radiation therapy of head and neck cancer patients

    NASA Astrophysics Data System (ADS)

    Chetvertkov, Mikhail A.

    Purpose: To develop standard and regularized principal component analysis (PCA) models of anatomical changes from daily cone beam CTs (CBCTs) of head and neck (H&N) patients, assess their potential use in adaptive radiation therapy (ART), and to extract quantitative information for treatment response assessment. Methods: Planning CT (pCT) images of H&N patients were artificially deformed to create "digital phantom" images, which modeled systematic anatomical changes during Radiation Therapy (RT). Artificial deformations closely mirrored patients' actual deformations, and were interpolated to generate 35 synthetic CBCTs, representing evolving anatomy over 35 fractions. Deformation vector fields (DVFs) were acquired between pCT and synthetic CBCTs (i.e., digital phantoms), and between pCT and clinical CBCTs. Patient-specific standard PCA (SPCA) and regularized PCA (RPCA) models were built from these synthetic and clinical DVF sets. Eigenvectors, or eigenDVFs (EDVFs), having the largest eigenvalues were hypothesized to capture the major anatomical deformations during treatment. Modeled anatomies were used to assess the dose deviations with respect to the planned dose distribution. Results: PCA models achieve variable results, depending on the size and location of anatomical change. Random changes prevent or degrade SPCA's ability to detect underlying systematic change. RPCA is able to detect smaller systematic changes against the background of random fraction-to-fraction changes, and is therefore more successful than SPCA at capturing systematic changes early in treatment. SPCA models were less successful at modeling systematic changes in clinical patient images, which contain a wider range of random motion than synthetic CBCTs, while the regularized approach was able to extract major modes of motion. For dose assessment it has been shown that the modeled dose distribution was different from the planned dose for the parotid glands due to their shrinkage and shift into the higher dose volumes during the radiotherapy course. Modeled DVHs still underestimated the effect of parotid shrinkage due to the large compression factor (CF) used to acquire DVFs. Conclusion: Leading EDVFs from both PCA approaches have the potential to capture systematic anatomical changes during H&N radiotherapy when systematic changes are large enough with respect to random fraction-to-fraction changes. In all cases the RPCA approach appears to be more reliable than SPCA at capturing systematic changes, enabling dosimetric consequences to be projected to the future treatment fractions based on trends established early in a treatment course, or, potentially, based on population models. This work showed that PCA has a potential in identifying the major mode of anatomical changes during the radiotherapy course and subsequent use of this information in future dose predictions is feasible. Use of smaller CF values for DVFs is preferred, otherwise anatomical motion will be underestimated.

  4. MR Guided PET Image Reconstruction

    PubMed Central

    Bai, Bing; Li, Quanzheng; Leahy, Richard M.

    2013-01-01

    The resolution of PET images is limited by the physics of positron-electron annihilation and instrumentation for photon coincidence detection. Model based methods that incorporate accurate physical and statistical models have produced significant improvements in reconstructed image quality when compared to filtered backprojection reconstruction methods. However, it has often been suggested that by incorporating anatomical information, the resolution and noise properties of PET images could be improved, leading to better quantitation or lesion detection. With the recent development of combined MR-PET scanners, it is possible to collect intrinsically co-registered MR images. It is therefore now possible to routinely make use of anatomical information in PET reconstruction, provided appropriate methods are available. In this paper we review research efforts over the past 20 years to develop these methods. We discuss approaches based on the use of both Markov random field priors and joint information or entropy measures. The general framework for these methods is described and their performance and longer term potential and limitations discussed. PMID:23178087

  5. Evaluation of the diagnostic yield of dental radiography and cone-beam computed tomography for the identification of anatomic landmarks in small to medium-sized brachycephalic dogs.

    PubMed

    Döring, Sophie; Arzi, Boaz; Barich, Catherine R; Hatcher, David C; Kass, Philip H; Verstraete, Frank J M

    2018-01-01

    OBJECTIVE To evaluate the diagnostic yield of dental radiography (Rad method) and 3 cone-beam CT (CBCT) methods for the identification of predefined anatomic landmarks in brachycephalic dogs. ANIMALS 19 client-owned brachycephalic dogs admitted for evaluation and treatment of dental disease. PROCEDURES 26 predefined anatomic landmarks were evaluated separately by use of the RAD method and 3 CBCT software modules (serial CBCT slices and custom cross sections, tridimensional rendering, and reconstructed panoramic views). A semiquantitative scoring system was used, and mean scores were calculated for each anatomic landmark and imaging method. The Friedman test was used to evaluate values for significant differences in diagnostic yield. For values that were significant, the Wilcoxon signed rank test was used with the Bonferroni-Holm multiple comparison adjustment to determine significant differences among each of the 6 possible pairs of diagnostic methods. RESULTS Differences of diagnostic yield among the Rad and 3 CBCT methods were significant for 19 of 26 anatomic landmarks. For these landmarks, Rad scores were significantly higher than scores for reconstructed panoramic views for 4 of 19 anatomic landmarks, but Rad scores were significantly lower than scores for reconstructed panoramic views for 8 anatomic landmarks, tridimensional rendering for 18 anatomic landmarks, and serial CBCT slices and custom cross sections for all 19 anatomic landmarks. CONCLUSIONS AND CLINICAL RELEVANCE CBCT methods were better suited than dental radiography for the identification of anatomic landmarks in brachycephalic dogs. Results of this study can serve as a basis for CBCT evaluation of dental disorders in brachycephalic dogs.

  6. An Example-Based Brain MRI Simulation Framework.

    PubMed

    He, Qing; Roy, Snehashis; Jog, Amod; Pham, Dzung L

    2015-02-21

    The simulation of magnetic resonance (MR) images plays an important role in the validation of image analysis algorithms such as image segmentation, due to lack of sufficient ground truth in real MR images. Previous work on MRI simulation has focused on explicitly modeling the MR image formation process. However, because of the overwhelming complexity of MR acquisition these simulations must involve simplifications and approximations that can result in visually unrealistic simulated images. In this work, we describe an example-based simulation framework, which uses an "atlas" consisting of an MR image and its anatomical models derived from the hard segmentation. The relationships between the MR image intensities and its anatomical models are learned using a patch-based regression that implicitly models the physics of the MR image formation. Given the anatomical models of a new brain, a new MR image can be simulated using the learned regression. This approach has been extended to also simulate intensity inhomogeneity artifacts based on the statistical model of training data. Results show that the example based MRI simulation method is capable of simulating different image contrasts and is robust to different choices of atlas. The simulated images resemble real MR images more than simulations produced by a physics-based model.

  7. A novel medical image data-based multi-physics simulation platform for computational life sciences.

    PubMed

    Neufeld, Esra; Szczerba, Dominik; Chavannes, Nicolas; Kuster, Niels

    2013-04-06

    Simulating and modelling complex biological systems in computational life sciences requires specialized software tools that can perform medical image data-based modelling, jointly visualize the data and computational results, and handle large, complex, realistic and often noisy anatomical models. The required novel solvers must provide the power to model the physics, biology and physiology of living tissue within the full complexity of the human anatomy (e.g. neuronal activity, perfusion and ultrasound propagation). A multi-physics simulation platform satisfying these requirements has been developed for applications including device development and optimization, safety assessment, basic research, and treatment planning. This simulation platform consists of detailed, parametrized anatomical models, a segmentation and meshing tool, a wide range of solvers and optimizers, a framework for the rapid development of specialized and parallelized finite element method solvers, a visualization toolkit-based visualization engine, a Python scripting interface for customized applications, a coupling framework, and more. Core components are cross-platform compatible and use open formats. Several examples of applications are presented: hyperthermia cancer treatment planning, tumour growth modelling, evaluating the magneto-haemodynamic effect as a biomarker and physics-based morphing of anatomical models.

  8. Robust feature matching via support-line voting and affine-invariant ratios

    NASA Astrophysics Data System (ADS)

    Li, Jiayuan; Hu, Qingwu; Ai, Mingyao; Zhong, Ruofei

    2017-10-01

    Robust image matching is crucial for many applications of remote sensing and photogrammetry, such as image fusion, image registration, and change detection. In this paper, we propose a robust feature matching method based on support-line voting and affine-invariant ratios. We first use popular feature matching algorithms, such as SIFT, to obtain a set of initial matches. A support-line descriptor based on multiple adaptive binning gradient histograms is subsequently applied in the support-line voting stage to filter outliers. In addition, we use affine-invariant ratios computed by a two-line structure to refine the matching results and estimate the local affine transformation. The local affine model is more robust to distortions caused by elevation differences than the global affine transformation, especially for high-resolution remote sensing images and UAV images. Thus, the proposed method is suitable for both rigid and non-rigid image matching problems. Finally, we extract as many high-precision correspondences as possible based on the local affine extension and build a grid-wise affine model for remote sensing image registration. We compare the proposed method with six state-of-the-art algorithms on several data sets and show that our method significantly outperforms the other methods. The proposed method achieves 94.46% average precision on 15 challenging remote sensing image pairs, while the second-best method, RANSAC, only achieves 70.3%. In addition, the number of detected correct matches of the proposed method is approximately four times the number of initial SIFT matches.

  9. Experimental methods and transport models for drug delivery across the blood-brain barrier.

    PubMed

    Fu, Bingmei M

    2012-06-01

    The blood-brain barrier (BBB) is a dynamic barrier essential for maintaining the micro-environment of the brain. Although the special anatomical features of the BBB determine its protective role for the central nervous system (CNS) from blood-born neurotoxins, however, the BBB extremely limits the therapeutic efficacy of drugs into the CNS, which greatly hinders the treatment of major brain diseases. This review summarized the unique structures of the BBB, described a variety of in vivo and in vitro experimental methods for determining the transport properties of the BBB, e.g., the permeability of the BBB to water, ions, and solutes including nutrients, therapeutic agents and drug carriers, and presented newly developed mathematical models which quantitatively correlate the anatomical structures of the BBB with its barrier functions. Finally, on the basis of the experimental observations and the quantitative models, several strategies for drug delivery through the BBB were proposed.

  10. Experimental Methods and Transport Models for Drug Delivery across the Blood-Brain Barrier

    PubMed Central

    Fu, Bingmei M

    2017-01-01

    The blood-brain barrier (BBB) is a dynamic barrier essential for maintaining the micro-environment of the brain. Although the special anatomical features of the BBB determine its protective role for the central nervous system (CNS) from blood-born neurotoxins, however, the BBB extremely limits the therapeutic efficacy of drugs into the CNS, which greatly hinders the treatment of major brain diseases. This review summarized the unique structures of the BBB, described a variety of in vivo and in vitro experimental methods for determining the transport properties of the BBB, e.g., the permeability of the BBB to water, ions, and solutes including nutrients, therapeutic agents and drug carriers, and presented newly developed mathematical models which quantitatively correlate the anatomical structures of the BBB with its barrier functions. Finally, on the basis of the experimental observations and the quantitative models, several strategies for drug delivery through the BBB were proposed. PMID:22201587

  11. Assessing breathing motion by shape matching of lung and diaphragm surfaces

    NASA Astrophysics Data System (ADS)

    Urschler, Martin; Bischof, Horst

    2005-04-01

    Studying complex thorax breating motion is an important research topic for accurate fusion of functional and anatomical data, radiotherapy planning or reduction of breathing motion artifacts. We investigate segmented CT lung, airway and diaphragm surfaces at several different breathing states between Functional Residual and Total Lung Capacity. In general, it is hard to robustly derive corresponding shape features like curvature maxima from lung and diaphragm surfaces since diaphragm and rib cage muscles tend to deform the elastic lung tissue such that e.g. ridges might disappear. A novel registration method based on the shape context approach for shape matching is presented where we extend shape context to 3D surfaces. The shape context approach was reported as a promising method for matching 2D shapes without relying on extracted shape features. We use the point correspondences for a non-rigid thin-plate-spline registration to get deformation fields that describe the movement of lung and diaphragm. Our validation consists of experiments on phantom and real sheep thorax data sets. Phantom experiments make use of shapes that are manipulated with known transformations that simulate breathing behaviour. Real thorax data experiments use a data set showing lungs and diaphragm at 5 distinct breathing states, where we compare subsets of the data sets and qualitatively and quantitatively asses the registration performance by using manually identified corresponding landmarks.

  12. A Procedure for Calculating the Vertical Space Height of the Sacrum When Determining Skeletal Height for Use in the Anatomical Method of Adult Stature Estimation.

    PubMed

    Hayashi, Atsuko; Emanovsky, Paul D; Pietrusewsky, Michael; Holland, Thomas D

    2016-03-01

    Estimating stature from skeletonized remains is one of the essential parameters in the development of a biological profile. A new procedure for determining skeletal height (SKH) incorporating the vertical space height (VSH) from the anterior margin of the sacral promontory to the superior margins of the acetabulae for use in the anatomical method of stature estimation is introduced. Regression equations for stature estimation were generated from measurements of 38 American males of European ancestry from the William M. Bass Donated Skeletal Collection. The modification to the procedure results in a SKH that is highly correlated with stature (r = 0.925-0.948). Stature estimates have low standard errors of the estimate ranging from 21.79 to 25.95 mm, biases from to 0.50 to 0.94 mm, and accuracy rates from 17.71 mm to 19.45 mm. The procedure for determining the VSH, which replaces "S1 height" in traditional anatomical method models, is a key improvement to the method. © 2016 American Academy of Forensic Sciences.

  13. Scaled Anatomical Model Creation of Biomedical Tomographic Imaging Data and Associated Labels for Subsequent Sub-surface Laser Engraving (SSLE) of Glass Crystals

    PubMed Central

    Dethlefs, Christopher R.; Piotrowicz, Justin; Van Avermaete, Tony; Maki, Jeff; Gerstler, Steve; Leevy, W. M.

    2017-01-01

    Biomedical imaging modalities like computed tomography (CT) and magnetic resonance (MR) provide excellent platforms for collecting three-dimensional data sets of patient or specimen anatomy in clinical or preclinical settings. However, the use of a virtual, on-screen display limits the ability of these tomographic images to fully convey the anatomical information embedded within. One solution is to interface a biomedical imaging data set with 3D printing technology to generate a physical replica. Here we detail a complementary method to visualize tomographic imaging data with a hand-held model: Sub Surface Laser Engraving (SSLE) of crystal glass. SSLE offers several unique benefits including: the facile ability to include anatomical labels, as well as a scale bar; streamlined multipart assembly of complex structures in one medium; high resolution in the X, Y, and Z planes; and semi-transparent shells for visualization of internal anatomical substructures. Here we demonstrate the process of SSLE with CT data sets derived from pre-clinical and clinical sources. This protocol will serve as a powerful and inexpensive new tool with which to visualize complex anatomical structures for scientists and students in a number of educational and research settings. PMID:28518066

  14. Artificial intelligence (AI)-based relational matching and multimodal medical image fusion: generalized 3D approaches

    NASA Astrophysics Data System (ADS)

    Vajdic, Stevan M.; Katz, Henry E.; Downing, Andrew R.; Brooks, Michael J.

    1994-09-01

    A 3D relational image matching/fusion algorithm is introduced. It is implemented in the domain of medical imaging and is based on Artificial Intelligence paradigms--in particular, knowledge base representation and tree search. The 2D reference and target images are selected from 3D sets and segmented into non-touching and non-overlapping regions, using iterative thresholding and/or knowledge about the anatomical shapes of human organs. Selected image region attributes are calculated. Region matches are obtained using a tree search, and the error is minimized by evaluating a `goodness' of matching function based on similarities of region attributes. Once the matched regions are found and the spline geometric transform is applied to regional centers of gravity, images are ready for fusion and visualization into a single 3D image of higher clarity.

  15. Evaluation of SAR in a human body model due to wireless power transmission in the 10 MHz band.

    PubMed

    Laakso, Ilkka; Tsuchida, Shogo; Hirata, Akimasa; Kamimura, Yoshitsugu

    2012-08-07

    This study discusses a computational method for calculating the specific absorption rate (SAR) due to a wireless power transmission system in the 10 MHz frequency band. A two-step quasi-static method comprised of the method of moments and the scalar potential finite-difference method are proposed. The applicability of the quasi-static approximation for localized exposure in this frequency band is discussed by comparing the SAR in a lossy dielectric cylinder computed with a full-wave electromagnetic analysis and the quasi-static approximation. From the computational results, the input impedance of the resonant coils was affected by the existence of the cylinder. On the other hand, the magnetic field distribution in free space and considering the cylinder and an impedance matching circuit were in good agreement; the maximum difference in the amplitude of the magnetic field was 4.8%. For a cylinder-coil distance of 10 mm, the difference between the peak 10 g averaged SAR in the cylinder computed with the full-wave electromagnetic method and our quasi-static method was 7.8%. These results suggest that the quasi-static approach is applicable for conducting the dosimetry of wireless power transmission in the 10 MHz band. With our two-step quasi-static method, the SAR in the anatomically based model was computed for different exposure scenarios. From those computations, the allowable input power satisfying the limit of a peak 10 g averaged SAR of 2.0 W kg(-1) was 830 W in the worst case exposure scenario with a coil positioned at a distance of 30 mm from the chest.

  16. Combination of intensity-based image registration with 3D simulation in radiation therapy.

    PubMed

    Li, Pan; Malsch, Urban; Bendl, Rolf

    2008-09-07

    Modern techniques of radiotherapy like intensity modulated radiation therapy (IMRT) make it possible to deliver high dose to tumors of different irregular shapes at the same time sparing surrounding healthy tissue. However, internal tumor motion makes precise calculation of the delivered dose distribution challenging. This makes analysis of tumor motion necessary. One way to describe target motion is using image registration. Many registration methods have already been developed previously. However, most of them belong either to geometric approaches or to intensity approaches. Methods which take account of anatomical information and results of intensity matching can greatly improve the results of image registration. Based on this idea, a combined method of image registration followed by 3D modeling and simulation was introduced in this project. Experiments were carried out for five patients 4DCT lung datasets. In the 3D simulation, models obtained from images of end-exhalation were deformed to the state of end-inhalation. Diaphragm motions were around -25 mm in the cranial-caudal (CC) direction. To verify the quality of our new method, displacements of landmarks were calculated and compared with measurements in the CT images. Improvement of accuracy after simulations has been shown compared to the results obtained only by intensity-based image registration. The average improvement was 0.97 mm. The average Euclidean error of the combined method was around 3.77 mm. Unrealistic motions such as curl-shaped deformations in the results of image registration were corrected. The combined method required less than 30 min. Our method provides information about the deformation of the target volume, which we need for dose optimization and target definition in our planning system.

  17. Quantification of organ motion based on an adaptive image-based scale invariant feature method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paganelli, Chiara; Peroni, Marta; Baroni, Guido

    2013-11-15

    Purpose: The availability of corresponding landmarks in IGRT image series allows quantifying the inter and intrafractional motion of internal organs. In this study, an approach for the automatic localization of anatomical landmarks is presented, with the aim of describing the nonrigid motion of anatomo-pathological structures in radiotherapy treatments according to local image contrast.Methods: An adaptive scale invariant feature transform (SIFT) was developed from the integration of a standard 3D SIFT approach with a local image-based contrast definition. The robustness and invariance of the proposed method to shape-preserving and deformable transforms were analyzed in a CT phantom study. The application ofmore » contrast transforms to the phantom images was also tested, in order to verify the variation of the local adaptive measure in relation to the modification of image contrast. The method was also applied to a lung 4D CT dataset, relying on manual feature identification by an expert user as ground truth. The 3D residual distance between matches obtained in adaptive-SIFT was then computed to verify the internal motion quantification with respect to the expert user. Extracted corresponding features in the lungs were used as regularization landmarks in a multistage deformable image registration (DIR) mapping the inhale vs exhale phase. The residual distances between the warped manual landmarks and their reference position in the inhale phase were evaluated, in order to provide a quantitative indication of the registration performed with the three different point sets.Results: The phantom study confirmed the method invariance and robustness properties to shape-preserving and deformable transforms, showing residual matching errors below the voxel dimension. The adapted SIFT algorithm on the 4D CT dataset provided automated and accurate motion detection of peak to peak breathing motion. The proposed method resulted in reduced residual errors with respect to standard SIFT, providing a motion description comparable to expert manual identification, as confirmed by DIR.Conclusions: The application of the method to a 4D lung CT patient dataset demonstrated adaptive-SIFT potential as an automatic tool to detect landmarks for DIR regularization and internal motion quantification. Future works should include the optimization of the computational cost and the application of the method to other anatomical sites and image modalities.« less

  18. Automatic pose correction for image-guided nonhuman primate brain surgery planning

    NASA Astrophysics Data System (ADS)

    Ghafurian, Soheil; Chen, Antong; Hines, Catherine; Dogdas, Belma; Bone, Ashleigh; Lodge, Kenneth; O'Malley, Stacey; Winkelmann, Christopher T.; Bagchi, Ansuman; Lubbers, Laura S.; Uslaner, Jason M.; Johnson, Colena; Renger, John; Zariwala, Hatim A.

    2016-03-01

    Intracranial delivery of recombinant DNA and neurochemical analysis in nonhuman primate (NHP) requires precise targeting of various brain structures via imaging derived coordinates in stereotactic surgeries. To attain targeting precision, the surgical planning needs to be done on preoperative three dimensional (3D) CT and/or MR images, in which the animals head is fixed in a pose identical to the pose during the stereotactic surgery. The matching of the image to the pose in the stereotactic frame can be done manually by detecting key anatomical landmarks on the 3D MR and CT images such as ear canal and ear bar zero position. This is not only time intensive but also prone to error due to the varying initial poses in the images which affects both the landmark detection and rotation estimation. We have introduced a fast, reproducible, and semi-automatic method to detect the stereotactic coordinate system in the image and correct the pose. The method begins with a rigid registration of the subject images to an atlas and proceeds to detect the anatomical landmarks through a sequence of optimization, deformable and multimodal registration algorithms. The results showed similar precision (maximum difference of 1.71 in average in-plane rotation) to a manual pose correction.

  19. Dictionary construction and identification of possible adverse drug events in Danish clinical narrative text

    PubMed Central

    Eriksson, Robert; Jensen, Peter Bjødstrup; Frankild, Sune; Jensen, Lars Juhl; Brunak, Søren

    2013-01-01

    Objective Drugs have tremendous potential to cure and relieve disease, but the risk of unintended effects is always present. Healthcare providers increasingly record data in electronic patient records (EPRs), in which we aim to identify possible adverse events (AEs) and, specifically, possible adverse drug events (ADEs). Materials and methods Based on the undesirable effects section from the summary of product characteristics (SPC) of 7446 drugs, we have built a Danish ADE dictionary. Starting from this dictionary we have developed a pipeline for identifying possible ADEs in unstructured clinical narrative text. We use a named entity recognition (NER) tagger to identify dictionary matches in the text and post-coordination rules to construct ADE compound terms. Finally, we apply post-processing rules and filters to handle, for example, negations and sentences about subjects other than the patient. Moreover, this method allows synonyms to be identified and anatomical location descriptions can be merged to allow appropriate grouping of effects in the same location. Results The method identified 1 970 731 (35 477 unique) possible ADEs in a large corpus of 6011 psychiatric hospital patient records. Validation was performed through manual inspection of possible ADEs, resulting in precision of 89% and recall of 75%. Discussion The presented dictionary-building method could be used to construct other ADE dictionaries. The complication of compound words in Germanic languages was addressed. Additionally, the synonym and anatomical location collapse improve the method. Conclusions The developed dictionary and method can be used to identify possible ADEs in Danish clinical narratives. PMID:23703825

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nose, Y.

    Methods were developed for generating an integrated, statistical model of the anatomical structures within the human thorax relevant to radioisotope powered artificial heart implantation. These methods involve measurement and analysis of anatomy in four areas: chest wall, pericardium, vascular connections, and great vessels. A model for the prediction of thorax outline from radiograms was finalized. These models were combined with 100 radiograms to arrive at a size distribution representing the adult male and female populations. (CH)

  1. Evaluation of subset matching methods and forms of covariate balance.

    PubMed

    de Los Angeles Resa, María; Zubizarreta, José R

    2016-11-30

    This paper conducts a Monte Carlo simulation study to evaluate the performance of multivariate matching methods that select a subset of treatment and control observations. The matching methods studied are the widely used nearest neighbor matching with propensity score calipers and the more recently proposed methods, optimal matching of an optimally chosen subset and optimal cardinality matching. The main findings are: (i) covariate balance, as measured by differences in means, variance ratios, Kolmogorov-Smirnov distances, and cross-match test statistics, is better with cardinality matching because by construction it satisfies balance requirements; (ii) for given levels of covariate balance, the matched samples are larger with cardinality matching than with the other methods; (iii) in terms of covariate distances, optimal subset matching performs best; (iv) treatment effect estimates from cardinality matching have lower root-mean-square errors, provided strong requirements for balance, specifically, fine balance, or strength-k balance, plus close mean balance. In standard practice, a matched sample is considered to be balanced if the absolute differences in means of the covariates across treatment groups are smaller than 0.1 standard deviations. However, the simulation results suggest that stronger forms of balance should be pursued in order to remove systematic biases due to observed covariates when a difference in means treatment effect estimator is used. In particular, if the true outcome model is additive, then marginal distributions should be balanced, and if the true outcome model is additive with interactions, then low-dimensional joints should be balanced. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. A Low-Cost Teaching Model of Inguinal Canal: A Useful Method to Teach Surgical Concepts in Hernia Repair

    ERIC Educational Resources Information Center

    Ansaloni, Luca; Catena, Fausto; Coccolini, Frederico; Ceresoli, Marco; Pinna, Antonio Daniele

    2014-01-01

    Objectives: Inguinal canal anatomy and hernia repair is difficult for medical students and surgical residents to comprehend. Methods: Using low-cost material, a 3-dimensional inexpensive model of the inguinal canal was created to allow students to learn anatomical details and landmarks and to perform their own simulated hernia repair. In order to…

  3. Digital preservation of anatomical variation: 3D-modeling of embalmed and plastinated cadaveric specimens using uCT and MRI.

    PubMed

    Moore, Colin W; Wilson, Timothy D; Rice, Charles L

    2017-01-01

    Anatomy educators have an opportunity to teach anatomical variations as a part of medical and allied health curricula using both cadaveric and three-dimensional (3D) digital models of these specimens. Beyond published cadaveric case reports, anatomical variations identified during routine gross anatomy dissection can be powerful teaching tools and a medium to discuss several anatomical sub-disciplines from embryology to medical imaging. The purpose of this study is to document how cadaveric anatomical variation identified during routine dissection can be scanned using medical imaging techniques to create two-dimensional axial images and interactive 3D models for teaching and learning of anatomical variations. Three cadaveric specimens (2 formalin embalmed, 1 plastinated) depicting anatomical variations and an embryological malformation were scanned using magnetic resonance imaging (MRI) and micro-computed tomography (μCT) for visualization in cross-section and for creation of 3D volumetric models. Results provide educational options to enable visualization and facilitate learning of anatomical variations from cross-sectional scans. Furthermore, the variations can be highlighted, digitized, modeled and manipulated using 3D imaging software and viewed in the anatomy laboratory in conjunction with traditional anatomical dissection. This study provides an example for anatomy educators to teach and describe anatomical variations in the undergraduate medical curriculum. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. A comparison of behavioural (Landolt C) and anatomical estimates of visual acuity in archerfish (Toxotes chatareus).

    PubMed

    Temple, S E; Manietta, D; Collin, S P

    2013-05-03

    Archerfish forage by shooting jets of water at insects above the water's surface. The challenge of detecting small prey items against a complex background suggests that they have good visual acuity, but to date this has never been tested, despite archerfish becoming an increasingly important model species for vertebrate vision. We used a modified Landolt C test to measure visual acuity behaviourally, and compared the results to their predicted minimum separable angle based on both photoreceptor and ganglion cell spacing in the retina. Both measures yielded similar estimates of visual acuity; between 3.23 and 3.57 cycles per degree (0.155-0.140° of visual arc). Such a close match between behavioural and anatomical estimates of visual acuity in fishes is unusual and may be due to our use of an ecologically relevant task that measured the resolving power of the part of the retina that has the highest photoreceptor density and that is used in aligning their spitting angle with potential targets. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Nonparametric Bayesian Modeling for Automated Database Schema Matching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferragut, Erik M; Laska, Jason A

    2015-01-01

    The problem of merging databases arises in many government and commercial applications. Schema matching, a common first step, identifies equivalent fields between databases. We introduce a schema matching framework that builds nonparametric Bayesian models for each field and compares them by computing the probability that a single model could have generated both fields. Our experiments show that our method is more accurate and faster than the existing instance-based matching algorithms in part because of the use of nonparametric Bayesian models.

  6. Soft 3D-Printed Phantom of the Human Kidney with Collecting System.

    PubMed

    Adams, Fabian; Qiu, Tian; Mark, Andrew; Fritz, Benjamin; Kramer, Lena; Schlager, Daniel; Wetterauer, Ulrich; Miernik, Arkadiusz; Fischer, Peer

    2017-04-01

    Organ models are used for planning and simulation of operations, developing new surgical instruments, and training purposes. There is a substantial demand for in vitro organ phantoms, especially in urological surgery. Animal models and existing simulator systems poorly mimic the detailed morphology and the physical properties of human organs. In this paper, we report a novel fabrication process to make a human kidney phantom with realistic anatomical structures and physical properties. The detailed anatomical structure was directly acquired from high resolution CT data sets of human cadaveric kidneys. The soft phantoms were constructed using a novel technique that combines 3D wax printing and polymer molding. Anatomical details and material properties of the phantoms were validated in detail by CT scan, ultrasound, and endoscopy. CT reconstruction, ultrasound examination, and endoscopy showed that the designed phantom mimics a real kidney's detailed anatomy and correctly corresponds to the targeted human cadaver's upper urinary tract. Soft materials with a tensile modulus of 0.8-1.5 MPa as well as biocompatible hydrogels were used to mimic human kidney tissues. We developed a method of constructing 3D organ models from medical imaging data using a 3D wax printing and molding process. This method is cost-effective means for obtaining a reproducible and robust model suitable for surgical simulation and training purposes.

  7. Pathology economic model tool: a novel approach to workflow and budget cost analysis in an anatomic pathology laboratory.

    PubMed

    Muirhead, David; Aoun, Patricia; Powell, Michael; Juncker, Flemming; Mollerup, Jens

    2010-08-01

    The need for higher efficiency, maximum quality, and faster turnaround time is a continuous focus for anatomic pathology laboratories and drives changes in work scheduling, instrumentation, and management control systems. To determine the costs of generating routine, special, and immunohistochemical microscopic slides in a large, academic anatomic pathology laboratory using a top-down approach. The Pathology Economic Model Tool was used to analyze workflow processes at The Nebraska Medical Center's anatomic pathology laboratory. Data from the analysis were used to generate complete cost estimates, which included not only materials, consumables, and instrumentation but also specific labor and overhead components for each of the laboratory's subareas. The cost data generated by the Pathology Economic Model Tool were compared with the cost estimates generated using relative value units. Despite the use of automated systems for different processes, the workflow in the laboratory was found to be relatively labor intensive. The effect of labor and overhead on per-slide costs was significantly underestimated by traditional relative-value unit calculations when compared with the Pathology Economic Model Tool. Specific workflow defects with significant contributions to the cost per slide were identified. The cost of providing routine, special, and immunohistochemical slides may be significantly underestimated by traditional methods that rely on relative value units. Furthermore, a comprehensive analysis may identify specific workflow processes requiring improvement.

  8. Advanced 3D mesh manipulation in stereolithographic files and post-print processing for the manufacturing of patient-specific vascular flow phantoms

    NASA Astrophysics Data System (ADS)

    O'Hara, Ryan P.; Chand, Arpita; Vidiyala, Sowmya; Arechavala, Stacie M.; Mitsouras, Dimitrios; Rudin, Stephen; Ionita, Ciprian N.

    2016-03-01

    Complex vascular anatomies can cause the failure of image-guided endovascular procedures. 3D printed patient-specific vascular phantoms provide clinicians and medical device companies the ability to preemptively plan surgical treatments, test the likelihood of device success, and determine potential operative setbacks. This research aims to present advanced mesh manipulation techniques of stereolithographic (STL) files segmented from medical imaging and post-print surface optimization to match physiological vascular flow resistance. For phantom design, we developed three mesh manipulation techniques. The first method allows outlet 3D mesh manipulations to merge superfluous vessels into a single junction, decreasing the number of flow outlets and making it feasible to include smaller vessels. Next we introduced Boolean operations to eliminate the need to manually merge mesh layers and eliminate errors of mesh self-intersections that previously occurred. Finally we optimize support addition to preserve the patient anatomical geometry. For post-print surface optimization, we investigated various solutions and methods to remove support material and smooth the inner vessel surface. Solutions of chloroform, alcohol and sodium hydroxide were used to process various phantoms and hydraulic resistance was measured and compared with values reported in literature. The newly mesh manipulation methods decrease the phantom design time by 30 - 80% and allow for rapid development of accurate vascular models. We have created 3D printed vascular models with vessel diameters less than 0.5 mm. The methods presented in this work could lead to shorter design time for patient specific phantoms and better physiological simulations.

  9. Advanced 3D Mesh Manipulation in Stereolithographic Files and Post-Print Processing for the Manufacturing of Patient-Specific Vascular Flow Phantoms.

    PubMed

    O'Hara, Ryan P; Chand, Arpita; Vidiyala, Sowmya; Arechavala, Stacie M; Mitsouras, Dimitrios; Rudin, Stephen; Ionita, Ciprian N

    2016-02-27

    Complex vascular anatomies can cause the failure of image-guided endovascular procedures. 3D printed patient-specific vascular phantoms provide clinicians and medical device companies the ability to preemptively plan surgical treatments, test the likelihood of device success, and determine potential operative setbacks. This research aims to present advanced mesh manipulation techniques of stereolithographic (STL) files segmented from medical imaging and post-print surface optimization to match physiological vascular flow resistance. For phantom design, we developed three mesh manipulation techniques. The first method allows outlet 3D mesh manipulations to merge superfluous vessels into a single junction, decreasing the number of flow outlets and making it feasible to include smaller vessels. Next we introduced Boolean operations to eliminate the need to manually merge mesh layers and eliminate errors of mesh self-intersections that previously occurred. Finally we optimize support addition to preserve the patient anatomical geometry. For post-print surface optimization, we investigated various solutions and methods to remove support material and smooth the inner vessel surface. Solutions of chloroform, alcohol and sodium hydroxide were used to process various phantoms and hydraulic resistance was measured and compared with values reported in literature. The newly mesh manipulation methods decrease the phantom design time by 30 - 80% and allow for rapid development of accurate vascular models. We have created 3D printed vascular models with vessel diameters less than 0.5 mm. The methods presented in this work could lead to shorter design time for patient specific phantoms and better physiological simulations.

  10. Advanced 3D Mesh Manipulation in Stereolithographic Files and Post-Print Processing for the Manufacturing of Patient-Specific Vascular Flow Phantoms

    PubMed Central

    O’Hara, Ryan P.; Chand, Arpita; Vidiyala, Sowmya; Arechavala, Stacie M.; Mitsouras, Dimitrios; Rudin, Stephen; Ionita, Ciprian N.

    2017-01-01

    Complex vascular anatomies can cause the failure of image-guided endovascular procedures. 3D printed patient-specific vascular phantoms provide clinicians and medical device companies the ability to preemptively plan surgical treatments, test the likelihood of device success, and determine potential operative setbacks. This research aims to present advanced mesh manipulation techniques of stereolithographic (STL) files segmented from medical imaging and post-print surface optimization to match physiological vascular flow resistance. For phantom design, we developed three mesh manipulation techniques. The first method allows outlet 3D mesh manipulations to merge superfluous vessels into a single junction, decreasing the number of flow outlets and making it feasible to include smaller vessels. Next we introduced Boolean operations to eliminate the need to manually merge mesh layers and eliminate errors of mesh self-intersections that previously occurred. Finally we optimize support addition to preserve the patient anatomical geometry. For post-print surface optimization, we investigated various solutions and methods to remove support material and smooth the inner vessel surface. Solutions of chloroform, alcohol and sodium hydroxide were used to process various phantoms and hydraulic resistance was measured and compared with values reported in literature. The newly mesh manipulation methods decrease the phantom design time by 30 – 80% and allow for rapid development of accurate vascular models. We have created 3D printed vascular models with vessel diameters less than 0.5 mm. The methods presented in this work could lead to shorter design time for patient specific phantoms and better physiological simulations. PMID:28649165

  11. Autocorrelation techniques for soft photogrammetry

    NASA Astrophysics Data System (ADS)

    Yao, Wu

    In this thesis research is carried out on image processing, image matching searching strategies, feature type and image matching, and optimal window size in image matching. To make comparisons, the soft photogrammetry package SoftPlotter is used. Two aerial photographs from the Iowa State University campus high flight 94 are scanned into digital format. In order to create a stereo model from them, interior orientation, single photograph rectification and stereo rectification are done. Two new image matching methods, multi-method image matching (MMIM) and unsquare window image matching are developed and compared. MMIM is used to determine the optimal window size in image matching. Twenty four check points from four different types of ground features are used for checking the results from image matching. Comparison between these four types of ground feature shows that the methods developed here improve the speed and the precision of image matching. A process called direct transformation is described and compared with the multiple steps in image processing. The results from image processing are consistent with those from SoftPlotter. A modified LAN image header is developed and used to store the information about the stereo model and image matching. A comparison is also made between cross correlation image matching (CCIM), least difference image matching (LDIM) and least square image matching (LSIM). The quality of image matching in relation to ground features are compared using two methods developed in this study, the coefficient surface for CCIM and the difference surface for LDIM. To reduce the amount of computation in image matching, the best-track searching algorithm, developed in this research, is used instead of the whole range searching algorithm.

  12. Functional and anatomical evidence of cerebral tissue hypoxia in young sickle cell anemia mice.

    PubMed

    Cahill, Lindsay S; Gazdzinski, Lisa M; Tsui, Albert Ky; Zhou, Yu-Qing; Portnoy, Sharon; Liu, Elaine; Mazer, C David; Hare, Gregory Mt; Kassner, Andrea; Sled, John G

    2017-03-01

    Cerebral ischemia is a significant source of morbidity in children with sickle cell anemia; however, the mechanism of injury is poorly understood. Increased cerebral blood flow and low hemoglobin levels in children with sickle cell anemia are associated with increased stroke risk, suggesting that anemia-induced tissue hypoxia may be an important factor contributing to subsequent morbidity. To better understand the pathophysiology of brain injury, brain physiology and morphology were characterized in a transgenic mouse model, the Townes sickle cell model. Relative to age-matched controls, sickle cell anemia mice demonstrated: (1) decreased brain tissue pO 2 and increased expression of hypoxia signaling protein in the perivascular regions of the cerebral cortex; (2) elevated basal cerebral blood flow , consistent with adaptation to anemia-induced tissue hypoxia; (3) significant reduction in cerebrovascular blood flow reactivity to a hypercapnic challenge; (4) increased diameter of the carotid artery; and (5) significant volume changes in white and gray matter regions in the brain, as assessed by ex vivo magnetic resonance imaging. Collectively, these findings support the hypothesis that brain tissue hypoxia contributes to adaptive physiological and anatomic changes in Townes sickle cell mice. These findings may help define the pathophysiology for stroke in children with sickle cell anemia.

  13. Functional and anatomical evidence of cerebral tissue hypoxia in young sickle cell anemia mice

    PubMed Central

    Gazdzinski, Lisa M; Tsui, Albert KY; Zhou, Yu-Qing; Portnoy, Sharon; Liu, Elaine; Mazer, C David; Hare, Gregory MT; Kassner, Andrea; Sled, John G

    2016-01-01

    Cerebral ischemia is a significant source of morbidity in children with sickle cell anemia; however, the mechanism of injury is poorly understood. Increased cerebral blood flow and low hemoglobin levels in children with sickle cell anemia are associated with increased stroke risk, suggesting that anemia-induced tissue hypoxia may be an important factor contributing to subsequent morbidity. To better understand the pathophysiology of brain injury, brain physiology and morphology were characterized in a transgenic mouse model, the Townes sickle cell model. Relative to age-matched controls, sickle cell anemia mice demonstrated: (1) decreased brain tissue pO2 and increased expression of hypoxia signaling protein in the perivascular regions of the cerebral cortex; (2) elevated basal cerebral blood flow , consistent with adaptation to anemia-induced tissue hypoxia; (3) significant reduction in cerebrovascular blood flow reactivity to a hypercapnic challenge; (4) increased diameter of the carotid artery; and (5) significant volume changes in white and gray matter regions in the brain, as assessed by ex vivo magnetic resonance imaging. Collectively, these findings support the hypothesis that brain tissue hypoxia contributes to adaptive physiological and anatomic changes in Townes sickle cell mice. These findings may help define the pathophysiology for stroke in children with sickle cell anemia. PMID:27165012

  14. Matching CT and ultrasound data of the liver by landmark constrained image registration

    NASA Astrophysics Data System (ADS)

    Olesch, Janine; Papenberg, Nils; Lange, Thomas; Conrad, Matthias; Fischer, Bernd

    2009-02-01

    In navigated liver surgery the key challenge is the registration of pre-operative planing and intra-operative navigation data. Due to the patients individual anatomy the planning is based on segmented, pre-operative CT scans whereas ultrasound captures the actual intra-operative situation. In this paper we derive a novel method based on variational image registration methods and additional given anatomic landmarks. For the first time we embed the landmark information as inequality hard constraints and thereby allowing for inaccurately placed landmarks. The yielding optimization problem allows to ensure the accuracy of the landmark fit by simultaneous intensity based image registration. Following the discretize-then-optimize approach the overall problem is solved by a generalized Gauss-Newton-method. The upcoming linear system is attacked by the MinRes solver. We demonstrate the applicability of the new approach for clinical data which lead to convincing results.

  15. Statistical primer: propensity score matching and its alternatives.

    PubMed

    Benedetto, Umberto; Head, Stuart J; Angelini, Gianni D; Blackstone, Eugene H

    2018-06-01

    Propensity score (PS) methods offer certain advantages over more traditional regression methods to control for confounding by indication in observational studies. Although multivariable regression models adjust for confounders by modelling the relationship between covariates and outcome, the PS methods estimate the treatment effect by modelling the relationship between confounders and treatment assignment. Therefore, methods based on the PS are not limited by the number of events, and their use may be warranted when the number of confounders is large, or the number of outcomes is small. The PS is the probability for a subject to receive a treatment conditional on a set of baseline characteristics (confounders). The PS is commonly estimated using logistic regression, and it is used to match patients with similar distribution of confounders so that difference in outcomes gives unbiased estimate of treatment effect. This review summarizes basic concepts of the PS matching and provides guidance in implementing matching and other methods based on the PS, such as stratification, weighting and covariate adjustment.

  16. Adaptive algorithms to map how brain trauma affects anatomical connectivity in children

    NASA Astrophysics Data System (ADS)

    Dennis, Emily L.; Prasad, Gautam; Babikian, Talin; Kernan, Claudia; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C.; Asarnow, Robert F.; Thompson, Paul M.

    2015-12-01

    Deficits in white matter (WM) integrity occur following traumatic brain injury (TBI), and often persist long after the visible scars have healed. Heterogeneity in injury types and locations can complicate analyses, making it harder to discover common biomarkers for tracking recovery. Here we apply a newly developed adaptive connectivity method, EPIC (evolving partitions to improve connectomics) to identify differences in structural connectivity that persist longitudinally. This data comes from a longitudinal study, in which we scanned participants (aged 8-19 years) with anatomical and diffusion MRI in both the post-acute and chronic phases (1-6 months and 13-19 months post-injury). To identify patterns of abnormal connectivity, we trained a model on data from 32 TBI patients in the post-acute phase and 45 well-matched healthy controls, reducing an initial 68x68 connectivity matrix to a 14x14 matrix. We then applied this reduced parcellation to the chronic data in participants who had returned for their chronic assessment (21 TBI and 26 healthy controls) and tested for group differences. We found significant differences in two connections, comprising callosal fibers and long anterior-posterior fibers, with the TBI group showing increased fiber density relative to controls. Longitudinal analysis revealed that these were connections that were decreasing over time in the healthy controls, as is a common developmental phenomenon, but they were increasing in the TBI group. While we cannot definitively tell why this may occur with our current data, this study provides targets for longitudinal tracking, and poses questions for future investigation.

  17. Three-dimensional templating arthroplasty of the humeral head.

    PubMed

    Cho, Sung Won; Jharia, Trambak K; Moon, Young Lae; Sim, Sung Woo; Shin, Dong Sun; Bigliani, Louis U

    2013-10-01

    No anatomical study has been conducted over Asian population to design humeral head prosthesis for the population concerned. This study was done to evaluate the accuracy of commercially available humeral head prosthetic designs, in replicating the humeral head anatomy. CT scan data of 48 patients were taken and their 3D CAD models were generated. Then, humeral head prosthetic design of a BF shoulder system produced by a standardized, commercially available company (Zimmer) was used for templating shoulder arthroplasty and the humeral head size having the perfect fit was assessed. These data were compared with the available data in the literature. All the humeral heads were perfectly matched by one of the sizes available. The average head size was 48.5 mm and the average head thickness was 23.5 mm. The results matched reasonably well with the available data in the literature. The humeral head anatomy can be recreated reasonably well by the commercially available humeral head prosthetic designs and sizes. Their dimensions are similar to that of the published literature.

  18. Integration of prior CT into CBCT reconstruction for improved image quality via reconstruction of difference: first patient studies

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Gang, Grace J.; Lee, Junghoon; Wong, John; Stayman, J. Webster

    2017-03-01

    Purpose: There are many clinical situations where diagnostic CT is used for an initial diagnosis or treatment planning, followed by one or more CBCT scans that are part of an image-guided intervention. Because the high-quality diagnostic CT scan is a rich source of patient-specific anatomical knowledge, this provides an opportunity to incorporate the prior CT image into subsequent CBCT reconstruction for improved image quality. We propose a penalized-likelihood method called reconstruction of difference (RoD), to directly reconstruct differences between the CBCT scan and the CT prior. In this work, we demonstrate the efficacy of RoD with clinical patient datasets. Methods: We introduce a data processing workflow using the RoD framework to reconstruct anatomical changes between the prior CT and current CBCT. This workflow includes processing steps to account for non-anatomical differences between the two scans including 1) scatter correction for CBCT datasets due to increased scatter fractions in CBCT data; 2) histogram matching for attenuation variations between CT and CBCT; and 3) registration for different patient positioning. CBCT projection data and CT planning volumes for two radiotherapy patients - one abdominal study and one head-and-neck study - were investigated. Results: In comparisons between the proposed RoD framework and more traditional FDK and penalized-likelihood reconstructions, we find a significant improvement in image quality when prior CT information is incorporated into the reconstruction. RoD is able to provide additional low-contrast details while correctly incorporating actual physical changes in patient anatomy. Conclusions: The proposed framework provides an opportunity to either improve image quality or relax data fidelity constraints for CBCT imaging when prior CT studies of the same patient are available. Possible clinical targets include CBCT image-guided radiotherapy and CBCT image-guided surgeries.

  19. Recovery of directed intracortical connectivity from fMRI data

    NASA Astrophysics Data System (ADS)

    Gilson, Matthieu; Ritter, Petra; Deco, Gustavo

    2016-06-01

    The brain exhibits complex spatio-temporal patterns of activity. In particular, its baseline activity at rest has a specific structure: imaging techniques (e.g., fMRI, EEG and MEG) show that cortical areas experience correlated fluctuations, which is referred to as functional connectivity (FC). The present study relies on our recently developed model in which intracortical white-matter connections shape noise-driven fluctuations to reproduce FC observed in experimental data (here fMRI BOLD signal). Here noise has a functional role and represents the variability of neural activity. The model also incorporates anatomical information obtained using diffusion tensor imaging (DTI), which estimates the density of white-matter fibers (structural connectivity, SC). After optimization to match empirical FC, the model provides an estimation of the efficacies of these fibers, which we call effective connectivity (EC). EC differs from SC, as EC not only accounts for the density of neural fibers, but also the concentration of synapses formed at their end, the type of neurotransmitters associated and the excitability of target neural populations. In summary, the model combines anatomical SC and activity FC to evaluate what drives the neural dynamics, embodied in EC. EC can then be analyzed using graph theory to understand how it generates FC and to seek for functional communities among cortical areas (parcellation of 68 areas). We find that intracortical connections are not symmetric, which affects the dynamic range of cortical activity (i.e., variety of states it can exhibit).

  20. Modeling of the contrast-enhanced perfusion test in liver based on the multi-compartment flow in porous media.

    PubMed

    Rohan, Eduard; Lukeš, Vladimír; Jonášová, Alena

    2018-01-24

    The paper deals with modeling the liver perfusion intended to improve quantitative analysis of the tissue scans provided by the contrast-enhanced computed tomography (CT). For this purpose, we developed a model of dynamic transport of the contrast fluid through the hierarchies of the perfusion trees. Conceptually, computed time-space distributions of the so-called tissue density can be compared with the measured data obtained from CT; such a modeling feedback can be used for model parameter identification. The blood flow is characterized at several scales for which different models are used. Flows in upper hierarchies represented by larger branching vessels are described using simple 1D models based on the Bernoulli equation extended by correction terms to respect the local pressure losses. To describe flows in smaller vessels and in the tissue parenchyma, we propose a 3D continuum model of porous medium defined in terms of hierarchically matched compartments characterized by hydraulic permeabilities. The 1D models corresponding to the portal and hepatic veins are coupled with the 3D model through point sources, or sinks. The contrast fluid saturation is governed by transport equations adapted for the 1D and 3D flow models. The complex perfusion model has been implemented using the finite element and finite volume methods. We report numerical examples computed for anatomically relevant geometries of the liver organ and of the principal vascular trees. The simulated tissue density corresponding to the CT examination output reflects a pathology modeled as a localized permeability deficiency.

  1. Relevance of Whitnall's tubercle and auditory meatus in diagnosing exclusions during skull-photo superimposition.

    PubMed

    Jayaprakash, Paul T; Hashim, Natassha; Yusop, Ridzuan Abd Aziz Mohd

    2015-08-01

    Video vision mixer based skull-photo superimposition is a popular method for identifying skulls retrieved from unidentified human remains. A report on the reliability of the superimposition method suggested increased failure rates of 17.3 to 32% to exclude and 15 to 20% to include skulls while using related and unrelated face photographs. Such raise in failures prompted an analysis of the methods employed for the research. The protocols adopted for assessing the reliability are seen to vary from those suggested by the practitioners in the field. The former include overlaying the skull- and face-images on the basis of morphology by relying on anthropometric landmarks on the front plane of the face-images and evaluating the goodness of match depending on mix-mode images; the latter consist of orienting the skull considering landmarks on both the eye and ear planes of the face- and skull-images and evaluating the match utilizing images seen in wipe-mode in addition to those in mix-mode. Superimposition of a skull with face-images of five living individuals in two sets of experiments, one following the procedure described for the research on reliability and the other applying the methods suggested by the practitioners has shown that overlaying the images on the basis of morphology depending on the landmarks on the front plane alone and assessing the match in mix-mode fails to exclude the skull. However, orienting the skull relying on the relationship between the anatomical landmarks on the skull- and face-images such as Whitnall's tubercle and exocanthus in the front (eye) plane and the porion and tragus in the rear (ear) plane as well as assessing the match using wipe-mode images enables excluding that skull while superimposing with the same set of face-images. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. An Improved Image Matching Method Based on Surf Algorithm

    NASA Astrophysics Data System (ADS)

    Chen, S. J.; Zheng, S. Z.; Xu, Z. G.; Guo, C. C.; Ma, X. L.

    2018-04-01

    Many state-of-the-art image matching methods, based on the feature matching, have been widely studied in the remote sensing field. These methods of feature matching which get highly operating efficiency, have a disadvantage of low accuracy and robustness. This paper proposes an improved image matching method which based on the SURF algorithm. The proposed method introduces color invariant transformation, information entropy theory and a series of constraint conditions to increase feature points detection and matching accuracy. First, the model of color invariant transformation is introduced for two matching images aiming at obtaining more color information during the matching process and information entropy theory is used to obtain the most information of two matching images. Then SURF algorithm is applied to detect and describe points from the images. Finally, constraint conditions which including Delaunay triangulation construction, similarity function and projective invariant are employed to eliminate the mismatches so as to improve matching precision. The proposed method has been validated on the remote sensing images and the result benefits from its high precision and robustness.

  3. A new template matching method based on contour information

    NASA Astrophysics Data System (ADS)

    Cai, Huiying; Zhu, Feng; Wu, Qingxiao; Li, Sicong

    2014-11-01

    Template matching is a significant approach in machine vision due to its effectiveness and robustness. However, most of the template matching methods are so time consuming that they can't be used to many real time applications. The closed contour matching method is a popular kind of template matching methods. This paper presents a new closed contour template matching method which is suitable for two dimensional objects. Coarse-to-fine searching strategy is used to improve the matching efficiency and a partial computation elimination scheme is proposed to further speed up the searching process. The method consists of offline model construction and online matching. In the process of model construction, triples and distance image are obtained from the template image. A certain number of triples which are composed by three points are created from the contour information that is extracted from the template image. The rule to select the three points is that the template contour is divided equally into three parts by these points. The distance image is obtained here by distance transform. Each point on the distance image represents the nearest distance between current point and the points on the template contour. During the process of matching, triples of the searching image are created with the same rule as the triples of the model. Through the similarity that is invariant to rotation, translation and scaling between triangles, the triples corresponding to the triples of the model are found. Then we can obtain the initial RST (rotation, translation and scaling) parameters mapping the searching contour to the template contour. In order to speed up the searching process, the points on the searching contour are sampled to reduce the number of the triples. To verify the RST parameters, the searching contour is projected into the distance image, and the mean distance can be computed rapidly by simple operations of addition and multiplication. In the fine searching process, the initial RST parameters are discrete to obtain the final accurate pose of the object. Experimental results show that the proposed method is reasonable and efficient, and can be used in many real time applications.

  4. Human Anatomy: Let the Students Tell Us How to Teach

    ERIC Educational Resources Information Center

    Davis, Christopher R.; Bates, Anthony S.; Ellis, Harold; Roberts, Alice M.

    2014-01-01

    Anatomy teaching methods have evolved as the medical undergraduate curriculum has modernized. Traditional teaching methods of dissection, prosection, tutorials and lectures are now supplemented by anatomical models and e-learning. Despite these changes, the preferences of medical students and anatomy faculty towards both traditional and…

  5. Toward building an anatomically correct solid eye model with volumetric representation of retinal morphology

    NASA Astrophysics Data System (ADS)

    Zawadzki, Robert J.; Rowe, T. Scott; Fuller, Alfred R.; Hamann, Bernd; Werner, John S.

    2010-02-01

    An accurate solid eye model (with volumetric retinal morphology) has many applications in the field of ophthalmology, including evaluation of ophthalmic instruments and optometry/ophthalmology training. We present a method that uses volumetric OCT retinal data sets to produce an anatomically correct representation of three-dimensional (3D) retinal layers. This information is exported to a laser scan system to re-create it within solid eye retinal morphology of the eye used in OCT testing. The solid optical model eye is constructed from PMMA acrylic, with equivalent optical power to that of the human eye (~58D). Additionally we tested a water bath eye model from Eyetech Ltd. with a customized retina consisting of five layers of ~60 μm thick biaxial polypropylene film and hot melt rubber adhesive.

  6. Organ doses for reference adult male and female undergoing computed tomography estimated by Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Choonsik; Kim, Kwang Pyo; Long, Daniel

    2011-03-15

    Purpose: To develop a computed tomography (CT) organ dose estimation method designed to readily provide organ doses in a reference adult male and female for different scan ranges to investigate the degree to which existing commercial programs can reasonably match organ doses defined in these more anatomically realistic adult hybrid phantomsMethods: The x-ray fan beam in the SOMATOM Sensation 16 multidetector CT scanner was simulated within the Monte Carlo radiation transport code MCNPX2.6. The simulated CT scanner model was validated through comparison with experimentally measured lateral free-in-air dose profiles and computed tomography dose index (CTDI) values. The reference adult malemore » and female hybrid phantoms were coupled with the established CT scanner model following arm removal to simulate clinical head and other body region scans. A set of organ dose matrices were calculated for a series of consecutive axial scans ranging from the top of the head to the bottom of the phantoms with a beam thickness of 10 mm and the tube potentials of 80, 100, and 120 kVp. The organ doses for head, chest, and abdomen/pelvis examinations were calculated based on the organ dose matrices and compared to those obtained from two commercial programs, CT-EXPO and CTDOSIMETRY. Organ dose calculations were repeated for an adult stylized phantom by using the same simulation method used for the adult hybrid phantom. Results: Comparisons of both lateral free-in-air dose profiles and CTDI values through experimental measurement with the Monte Carlo simulations showed good agreement to within 9%. Organ doses for head, chest, and abdomen/pelvis scans reported in the commercial programs exceeded those from the Monte Carlo calculations in both the hybrid and stylized phantoms in this study, sometimes by orders of magnitude. Conclusions: The organ dose estimation method and dose matrices established in this study readily provides organ doses for a reference adult male and female for different CT scan ranges and technical parameters. Organ doses from existing commercial programs do not reasonably match organ doses calculated for the hybrid phantoms due to differences in phantom anatomy, as well as differences in organ dose scaling parameters. The organ dose matrices developed in this study will be extended to cover different technical parameters, CT scanner models, and various age groups.« less

  7. The expert surgical assistant. An intelligent virtual environment with multimodal input.

    PubMed

    Billinghurst, M; Savage, J; Oppenheimer, P; Edmond, C

    1996-01-01

    Virtual Reality has made computer interfaces more intuitive but not more intelligent. This paper shows how an expert system can be coupled with multimodal input in a virtual environment to provide an intelligent simulation tool or surgical assistant. This is accomplished in three steps. First, voice and gestural input is interpreted and represented in a common semantic form. Second, a rule-based expert system is used to infer context and user actions from this semantic representation. Finally, the inferred user actions are matched against steps in a surgical procedure to monitor the user's progress and provide automatic feedback. In addition, the system can respond immediately to multimodal commands for navigational assistance and/or identification of critical anatomical structures. To show how these methods are used we present a prototype sinus surgery interface. The approach described here may easily be extended to a wide variety of medical and non-medical training applications by making simple changes to the expert system database and virtual environment models. Successful implementation of an expert system in both simulated and real surgery has enormous potential for the surgeon both in training and clinical practice.

  8. A mathematical analysis to address the 6 degree-of-freedom segmental power imbalance.

    PubMed

    Ebrahimi, Anahid; Collins, John D; Kepple, Thomas M; Takahashi, Kota Z; Higginson, Jill S; Stanhope, Steven J

    2018-01-03

    Segmental power is used in human movement analyses to indicate the source and net rate of energy transfer between the rigid bodies of biomechanical models. Segmental power calculations are performed using segment endpoint dynamics (kinetic method). A theoretically equivalent method is to measure the rate of change in a segment's mechanical energy state (kinematic method). However, these two methods have not produced experimentally equivalent results for segments proximal to the foot, with the difference in methods deemed the "power imbalance." In a 6 degree-of-freedom model, segments move independently, resulting in relative segment endpoint displacement and non-equivalent segment endpoint velocities at a joint. In the kinetic method, a segment's distal end translational velocity may be defined either at the anatomical end of the segment or at the location of the joint center (defined here as the proximal end of the adjacent distal segment). Our mathematical derivations revealed the power imbalance between the kinetic method using the anatomical definition and the kinematic method can be explained by power due to relative segment endpoint displacement. In this study, we tested this analytical prediction through experimental gait data from nine healthy subjects walking at a typical speed. The average absolute segmental power imbalance was reduced from 0.023 to 0.046 W/kg using the anatomical definition to ≤0.001 W/kg using the joint center definition in the kinetic method (95.56-98.39% reduction). Power due to relative segment endpoint displacement in segmental power analyses is substantial and should be considered in analyzing energetic flow into and between segments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Hybrid computational phantoms representing the reference adult male and adult female: construction and applications for retrospective dosimetry.

    PubMed

    Hurtado, Jorge L; Lee, Choonsik; Lodwick, Daniel; Goede, Timothy; Williams, Jonathan L; Bolch, Wesley E

    2012-03-01

    Currently, two classes of computational phantoms have been developed for dosimetry calculation: (1) stylized (or mathematical) and (2) voxel (or tomographic) phantoms describing human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Mathematical surface equations in stylized phantoms are flexible, but the resulting anatomy is not as realistic. Voxel phantoms display far better anatomical realism, but they are limited in terms of their ability to alter organ shape, position, and depth, as well as body posture. A new class of computational phantoms called hybrid phantoms takes advantage of the best features of stylized and voxel phantoms-flexibility and anatomical realism, respectively. In the current study, hybrid computational phantoms representing the adult male and female reference anatomy and anthropometry are presented. These phantoms serve as the starting framework for creating patient or worker sculpted whole-body phantoms for retrospective dose reconstruction. Contours of major organs and tissues were converted or segmented from computed tomography images of a 36-y-old Korean volunteer and a 25-y-old U.S. female patient, respectively, with supplemental high-resolution CT images of the cranium. Polygon mesh models for the major organs and tissues were reconstructed and imported into Rhinoceros™ for non-uniform rational B-spline (NURBS) surface modeling. The resulting NURBS/polygon mesh models representing body contour and internal anatomy were matched to anthropometric data and reference organ mass data provided by Centers for Disease Control and Prevention and International Commission on Radiation Protection, respectively. Finally, two hybrid adult male and female phantoms were completed where a total of eight anthropometric data categories were matched to standard values within 4% and organ volumes matched to ICRP data within 1% with the exception of total skin. The hybrid phantoms were voxelized from the NURBS phantoms at resolutions of 0.158 × 0.158 × 0.158 cm and 0.126 × 0.126 × 0.126 cm for the male and female, respectively. To highlight the flexibility of the hybrid phantoms, graphical displays are given of (1) underweight and overweight adult male phantoms, (2) a sitting position for the adult female phantom, and (3) extraction and higher-resolution voxelization of the small intestine for localized dosimetry of mucosal and stem cell layers. These phantoms are used to model radioactively contaminated individuals and to then assess time-dependent detector count rate thresholds corresponding to 50, 250, and 500 mSv effective dose, as might be needed during in-field radiological triage by first responders or first receivers.

  10. Anatomical education and surgical simulation based on the Chinese Visible Human: a three-dimensional virtual model of the larynx region.

    PubMed

    Liu, Kaijun; Fang, Binji; Wu, Yi; Li, Ying; Jin, Jun; Tan, Liwen; Zhang, Shaoxiang

    2013-09-01

    Anatomical knowledge of the larynx region is critical for understanding laryngeal disease and performing required interventions. Virtual reality is a useful method for surgical education and simulation. Here, we assembled segmented cross-section slices of the larynx region from the Chinese Visible Human dataset. The laryngeal structures were precisely segmented manually as 2D images, then reconstructed and displayed as 3D images in the virtual reality Dextrobeam system. Using visualization and interaction with the virtual reality modeling language model, a digital laryngeal anatomy instruction was constructed using HTML and JavaScript languages. The volume larynx models can thus display an arbitrary section of the model and provide a virtual dissection function. This networked teaching system of the digital laryngeal anatomy can be read remotely, displayed locally, and manipulated interactively.

  11. Do 3D Printing Models Improve Anatomical Teaching About Hepatic Segments to Medical Students? A Randomized Controlled Study.

    PubMed

    Kong, Xiangxue; Nie, Lanying; Zhang, Huijian; Wang, Zhanglin; Ye, Qiang; Tang, Lei; Huang, Wenhua; Li, Jianyi

    2016-08-01

    It is a difficult and frustrating task for young surgeons and medical students to understand the anatomy of hepatic segments. We tried to develop an optimal 3D printing model of hepatic segments as a teaching aid to improve the teaching of hepatic segments. A fresh human cadaveric liver without hepatic disease was CT scanned. After 3D reconstruction, three types of 3D computer models of hepatic structures were designed and 3D printed as models of hepatic segments without parenchyma (type 1) and with transparent parenchyma (type 2), and hepatic ducts with segmental partitions (type 3). These models were evaluated by six experts using a five-point Likert scale. Ninety two medical freshmen were randomized into four groups to learn hepatic segments with the aid of the three types of models and traditional anatomic atlas (TAA). Their results of two quizzes were compared to evaluate the teaching effects of the four methods. Three types of models were successful produced which displayed the structures of hepatic segments. By experts' evaluation, type 3 model was better than type 1 and 2 models in anatomical condition, type 2 and 3 models were better than type 1 model in tactility, and type 3 model was better than type 1 model in overall satisfaction (P < 0.05). The first quiz revealed that type 1 model was better than type 2 model and TAA, while type 3 model was better than type 2 and TAA in teaching effects (P < 0.05). The second quiz found that type 1 model was better than TAA, while type 3 model was better than type 2 model and TAA regarding teaching effects (P < 0.05). Only TAA group had significant declines between two quizzes (P < 0.05). The model with segmental partitions proves to be optimal, because it can best improve anatomical teaching about hepatic segments.

  12. Chronic Hypoxia Accentuates Dysanaptic Lung Growth.

    PubMed

    Llapur, Conrado J; Martínez, Myriam R; Grassino, Pedro T; Stok, Ana; Altieri, Héctor H; Bonilla, Federico; Caram, María M; Krowchuk, Natasha M; Kirby, Miranda; Coxson, Harvey O; Tepper, Robert S

    2016-08-01

    Adults born and raised at high altitudes have larger lung volumes and greater pulmonary diffusion capacity compared with adults at low altitude; however, it remains unclear whether the air and tissue volumes have comparable increases and whether there is a difference in airway size. To assess the effect of chronic hypoxia on lung growth using in vivo high-resolution computed tomography measurements. Healthy adults born and raised at moderate altitude (2,000 m above sea level; n = 19) and at low altitude (400 m above sea level; n = 23) underwent high-resolution computed tomography. Differences in total lung, air, and tissue volume, mean lung density, as well as airway lumen and wall areas in anatomically matched airways were compared between groups. No significant differences for age, sex, weight, or height were found between the two groups (P > 0.05). In a multivariate regression model, altitude was a significant contributor for total lung volume (P = 0.02), air volume (P = 0.03), and tissue volume (P = 0.03), whereby the volumes were greater for the moderate- versus the low-altitude group. However, altitude was not a significant contributor for mean lung density (P = 0.35) or lumen and wall areas in anatomically matched segmental, subsegmental, and subsubsegmental airways. Our findings suggest that the adult lung did not increase lung volume later in life by expansion of an existing number of alveoli, but rather from increased alveolarization early in life. In addition, chronic hypoxia accentuates dysanaptic lung growth by increasing the lung parenchyma but not the airways.

  13. Comparative evaluation between anatomic and non-anatomic lateral ligament reconstruction techniques in the ankle joint: A computational study.

    PubMed

    Purevsuren, Tserenchimed; Batbaatar, Myagmarbayar; Khuyagbaatar, Batbayar; Kim, Kyungsoo; Kim, Yoon Hyuk

    2018-03-12

    Biomechanical studies have indicated that the conventional non-anatomic reconstruction techniques for lateral ankle sprain (LAS) tend to restrict subtalar joint motion compared to intact ankle joints. Excessive restriction in subtalar motion may lead to chronic pain, functional difficulties, and development of osteoarthritis. Therefore, various anatomic surgical techniques to reconstruct both the anterior talofibular and calcaneofibular ligaments have been introduced. In this study, ankle joint stability was evaluated using multibody computational ankle joint model to assess two new anatomic reconstruction and three popular non-anatomic reconstruction techniques. An LAS injury, three popular non-anatomic reconstruction models (Watson-Jones, Evans, and Chrisman-Snook), and two common types of anatomic reconstruction models were developed based on the intact ankle model. The stability of ankle in both talocrural and subtalar joint were evaluated under anterior drawer test (150 N anterior force), inversion test (3 Nm inversion moment), internal rotational test (3 Nm internal rotation moment), and the combined loading test (9 Nm inversion and internal moment as well as 1800 N compressive force). Our overall results show that the two anatomic reconstruction techniques were superior to the non-anatomic reconstruction techniques in stabilizing both talocrural and subtalar joints. Restricted subtalar joint motion, which mainly observed in Watson-Jones and Chrisman-Snook techniques, was not shown in the anatomical reconstructions. Evans technique was beneficial for subtalar joint as it does not restrict subtalar motion, though Evans technique was insufficient for restoring talocrural joint inversion. The anatomical reconstruction techniques best recovered ankle stability.

  14. A multi-segment foot model based on anatomically registered technical coordinate systems: method repeatability in pediatric feet.

    PubMed

    Saraswat, Prabhav; MacWilliams, Bruce A; Davis, Roy B

    2012-04-01

    Several multi-segment foot models to measure the motion of intrinsic joints of the foot have been reported. Use of these models in clinical decision making is limited due to lack of rigorous validation including inter-clinician, and inter-lab variability measures. A model with thoroughly quantified variability may significantly improve the confidence in the results of such foot models. This study proposes a new clinical foot model with the underlying strategy of using separate anatomic and technical marker configurations and coordinate systems. Anatomical landmark and coordinate system identification is determined during a static subject calibration. Technical markers are located at optimal sites for dynamic motion tracking. The model is comprised of the tibia and three foot segments (hindfoot, forefoot and hallux) and inter-segmental joint angles are computed in three planes. Data collection was carried out on pediatric subjects at two sites (Site 1: n=10 subjects by two clinicians and Site 2: five subjects by one clinician). A plaster mold method was used to quantify static intra-clinician and inter-clinician marker placement variability by allowing direct comparisons of marker data between sessions for each subject. Intra-clinician and inter-clinician joint angle variability were less than 4°. For dynamic walking kinematics, intra-clinician, inter-clinician and inter-laboratory variability were less than 6° for the ankle and forefoot, but slightly higher for the hallux. Inter-trial variability accounted for 2-4° of the total dynamic variability. Results indicate the proposed foot model reduces the effects of marker placement variability on computed foot kinematics during walking compared to similar measures in previous models. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Skeletal Muscle Fascicle Arrangements Can Be Reconstructed Using a Laplacian Vector Field Simulation

    PubMed Central

    Choi, Hon Fai; Blemker, Silvia S.

    2013-01-01

    Skeletal muscles are characterized by a large diversity in anatomical architecture and function. Muscle force and contraction are generated by contractile fiber cells grouped in fascicle bundles, which transmit the mechanical action between origin and insertion attachments of the muscle. Therefore, an adequate representation of fascicle arrangements in computational models of skeletal muscles is important, especially when investigating three-dimensional muscle deformations in finite element models. However, obtaining high resolution in vivo measurements of fascicle arrangements in skeletal muscles is currently still challenging. This motivated the development of methods in previous studies to generate numerical representations of fascicle trajectories using interpolation templates. Here, we present an alternative approach based on the hypothesis of a rotation and divergence free (Laplacian) vector field behavior which reflects observed physical characteristics of fascicle trajectories. To obtain this representation, the Laplace equation was solved in anatomical reconstructions of skeletal muscle shapes based on medical images using a uniform flux boundary condition on the attachment areas. Fascicle tracts were generated through a robust flux based tracing algorithm. The concept of this approach was demonstrated in two-dimensional synthetic examples of typical skeletal muscle architectures. A detailed evaluation was performed in an example of the anatomical human tibialis anterior muscle which showed an overall agreement with measurements from the literature. The utility and capability of the proposed method was further demonstrated in other anatomical examples of human skeletal muscles with a wide range of muscle shapes and attachment morphologies. PMID:24204878

  16. Introducing 3-Dimensional Printing of a Human Anatomic Pathology Specimen: Potential Benefits for Undergraduate and Postgraduate Education and Anatomic Pathology Practice.

    PubMed

    Mahmoud, Amr; Bennett, Michael

    2015-08-01

    Three-dimensional (3D) printing, a rapidly advancing technology, is widely applied in fields such as mechanical engineering and architecture. Three-dimensional printing has been introduced recently into medical practice in areas such as reconstructive surgery, as well as in clinical research. Three-dimensionally printed models of anatomic and autopsy pathology specimens can be used for demonstrating pathology entities to undergraduate medical, dental, and biomedical students, as well as for postgraduate training in examination of gross specimens for anatomic pathology residents and pathology assistants, aiding clinicopathological correlation at multidisciplinary team meetings, and guiding reconstructive surgical procedures. To apply 3D printing in anatomic pathology for teaching, training, and clinical correlation purposes. Multicolored 3D printing of human anatomic pathology specimens was achieved using a ZCorp 510 3D printer (3D Systems, Rock Hill, South Carolina) following creation of a 3D model using Autodesk 123D Catch software (Autodesk, Inc, San Francisco, California). Three-dimensionally printed models of anatomic pathology specimens created included pancreatoduodenectomy (Whipple operation) and radical nephrectomy specimens. The models accurately depicted the topographic anatomy of selected specimens and illustrated the anatomic relation of excised lesions to adjacent normal tissues. Three-dimensional printing of human anatomic pathology specimens is achievable. Advances in 3D printing technology may further improve the quality of 3D printable anatomic pathology specimens.

  17. Stereo Sound Field Controller Design Using Partial Model Matching on the Frequency Domain

    NASA Astrophysics Data System (ADS)

    Kumon, Makoto; Miike, Katsuhiro; Eguchi, Kazuki; Mizumoto, Ikuro; Iwai, Zenta

    The objective of sound field control is to make the acoustic characteristics of a listening room close to those of the desired system. Conventional methods apply feedforward controllers, such as digital filters, to achieve this objective. However, feedback controllers are also necessary in order to attenuate noise or to compensate the uncertainty of the acoustic characteristics of the listening room. Since acoustic characteristics are well modeled on the frequency domain, it is efficient to design controllers with respect to frequency responses, but it is difficult to design a multi input multi output (MIMO) control system on a wide frequency domain. In the present study, a partial model matching method on the frequency domain was adopted because this method requires only sampled data, rather than complex mathematical models of the plant, in order to design controllers for MIMO systems. The partial model matching method was applied to design two-degree-of-freedom controllers for acoustic equalization and noise reduction. Experiments demonstrated effectiveness of the proposed method.

  18. Force of habit: shrubs, trees and contingent evolution of wood anatomical diversity using Croton (Euphorbiaceae) as a model system

    PubMed Central

    van Ee, Benjamin W.; Riina, Ricarda; Berry, Paul E.; Wiedenhoeft, Alex C.

    2017-01-01

    Abstract Background and Aims Wood is a major innovation of land plants, and is usually a central component of the body plan for two major plant habits: shrubs and trees. Wood anatomical syndromes vary between shrubs and trees, but no prior work has explicitly evaluated the contingent evolution of wood anatomical diversity in the context of these plant habits. Methods Phylogenetic comparative methods were used to test for contingent evolution of habit, habitat and wood anatomy in the mega-diverse genus Croton (Euphorbiaceae), across the largest and most complete molecular phylogeny of the genus to date. Key Results Plant habit and habitat are highly correlated, but most wood anatomical features correlate more strongly with habit. The ancestral Croton was reconstructed as a tree, the wood of which is inferred to have absent or indistinct growth rings, confluent-like axial parenchyma, procumbent ray cells and disjunctive ray parenchyma cell walls. The taxa sampled showed multiple independent origins of the shrub habit in Croton, and this habit shift is contingent on several wood anatomical features (e.g. similar vessel-ray pits, thick fibre walls, perforated ray cells). The only wood anatomical trait correlated with habitat and not habit was the presence of helical thickenings in the vessel elements of mesic Croton. Conclusions Plant functional traits, individually or in suites, are responses to multiple and often confounding contexts in evolution. By establishing an explicit contingent evolutionary framework, the interplay between habit, habitat and wood anatomical diversity was dissected in the genus Croton. Both habit and habitat influence the evolution of wood anatomical characters, and conversely, the wood anatomy of lineages can affect shifts in plant habit and habitat. This study hypothesizes novel putatively functional trait associations in woody plant structure that could be further tested in a variety of other taxa. PMID:28065919

  19. TU-C-17A-10: Patient Features Based Dosimetric Pareto Front Prediction In Esophagus Cancer Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Zhao, K; Peng, J

    2014-06-15

    Purpose: The purpose of this study is to study the feasibility of the dosimetric pareto front (PF) prediction based on patient anatomic and dosimetric parameters for esophagus cancer patients. Methods: Sixty esophagus patients in our institution were enrolled in this study. A total 2920 IMRT plans were created to generated PF for each patient. On average, each patient had 48 plans. The anatomic and dosimetric features were extracted from those plans. The mean lung dose (MLD), mean heart dose (MHD), spinal cord max dose and PTV homogeneous index (PTVHI) were recorded for each plan. The principal component analysis (PCA) wasmore » used to extract overlap volume histogram (OVH) features between PTV and other critical organs. The full dataset was separated into two parts include the training dataset and the validation dataset. The prediction outcomes were the MHD and MLD for the current study. The spearman rank correlation coefficient was used to evaluate the correlation between the anatomical features and dosimetric features. The PF was fit by the the stepwise multiple regression method. The cross-validation method was used to evaluation the model. Results: The mean prediction error of the MHD was 465 cGy with 100 repetitions. The most correlated factors were the first principal components of the OVH between heart and PTV, and the overlap between heart and PTV in Z-axis. The mean prediction error of the MLD was 195 cGy. The most correlated factors were the first principal components of the OVH between lung and PTV, and the overlap between lung and PTV in Z-axis. Conclusion: It is feasible to use patients anatomic and dosimetric features to generate a predicted PF. Additional samples and further studies were required to get a better prediction model.« less

  20. Patient feature based dosimetric Pareto front prediction in esophageal cancer radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiazhou; Zhao, Kuaike; Peng, Jiayuan

    2015-02-15

    Purpose: To investigate the feasibility of the dosimetric Pareto front (PF) prediction based on patient’s anatomic and dosimetric parameters for esophageal cancer patients. Methods: Eighty esophagus patients in the authors’ institution were enrolled in this study. A total of 2928 intensity-modulated radiotherapy plans were obtained and used to generate PF for each patient. On average, each patient had 36.6 plans. The anatomic and dosimetric features were extracted from these plans. The mean lung dose (MLD), mean heart dose (MHD), spinal cord max dose, and PTV homogeneity index were recorded for each plan. Principal component analysis was used to extract overlapmore » volume histogram (OVH) features between PTV and other organs at risk. The full dataset was separated into two parts; a training dataset and a validation dataset. The prediction outcomes were the MHD and MLD. The spearman’s rank correlation coefficient was used to evaluate the correlation between the anatomical features and dosimetric features. The stepwise multiple regression method was used to fit the PF. The cross validation method was used to evaluate the model. Results: With 1000 repetitions, the mean prediction error of the MHD was 469 cGy. The most correlated factor was the first principal components of the OVH between heart and PTV and the overlap between heart and PTV in Z-axis. The mean prediction error of the MLD was 284 cGy. The most correlated factors were the first principal components of the OVH between heart and PTV and the overlap between lung and PTV in Z-axis. Conclusions: It is feasible to use patients’ anatomic and dosimetric features to generate a predicted Pareto front. Additional samples and further studies are required improve the prediction model.« less

  1. Prospective regularization design in prior-image-based reconstruction

    NASA Astrophysics Data System (ADS)

    Dang, Hao; Siewerdsen, Jeffrey H.; Webster Stayman, J.

    2015-12-01

    Prior-image-based reconstruction (PIBR) methods leveraging patient-specific anatomical information from previous imaging studies and/or sequences have demonstrated dramatic improvements in dose utilization and image quality for low-fidelity data. However, a proper balance of information from the prior images and information from the measurements is required (e.g. through careful tuning of regularization parameters). Inappropriate selection of reconstruction parameters can lead to detrimental effects including false structures and failure to improve image quality. Traditional methods based on heuristics are subject to error and sub-optimal solutions, while exhaustive searches require a large number of computationally intensive image reconstructions. In this work, we propose a novel method that prospectively estimates the optimal amount of prior image information for accurate admission of specific anatomical changes in PIBR without performing full image reconstructions. This method leverages an analytical approximation to the implicitly defined PIBR estimator, and introduces a predictive performance metric leveraging this analytical form and knowledge of a particular presumed anatomical change whose accurate reconstruction is sought. Additionally, since model-based PIBR approaches tend to be space-variant, a spatially varying prior image strength map is proposed to optimally admit changes everywhere in the image (eliminating the need to know change locations a priori). Studies were conducted in both an ellipse phantom and a realistic thorax phantom emulating a lung nodule surveillance scenario. The proposed method demonstrated accurate estimation of the optimal prior image strength while achieving a substantial computational speedup (about a factor of 20) compared to traditional exhaustive search. Moreover, the use of the proposed prior strength map in PIBR demonstrated accurate reconstruction of anatomical changes without foreknowledge of change locations in phantoms where the optimal parameters vary spatially by an order of magnitude or more. In a series of studies designed to explore potential unknowns associated with accurate PIBR, optimal prior image strength was found to vary with attenuation differences associated with anatomical change but exhibited only small variations as a function of the shape and size of the change. The results suggest that, given a target change attenuation, prospective patient-, change-, and data-specific customization of the prior image strength can be performed to ensure reliable reconstruction of specific anatomical changes.

  2. Construction of a 3-D anatomical model for teaching temporal lobectomy.

    PubMed

    de Ribaupierre, Sandrine; Wilson, Timothy D

    2012-06-01

    Although we live and work in 3 dimensional space, most of the anatomical teaching during medical school is done on 2-D (books, TV and computer screens, etc). 3-D spatial abilities are essential for a surgeon but teaching spatial skills in a non-threatening and safe educational environment is a much more difficult pedagogical task. Currently, initial anatomical knowledge formation or specific surgical anatomy techniques, are taught either in the OR itself, or in cadaveric labs; which means that the trainee has only limited exposure. 3-D computer models incorporated into virtual learning environments may provide an intermediate and key step in a blended learning approach for spatially challenging anatomical knowledge formation. Specific anatomical structures and their spatial orientation can be further clinically contextualized through demonstrations of surgical procedures in the 3-D digital environments. Recordings of digital models enable learner reviews, taking as much time as they want, stopping the demonstration, and/or exploring the model to understand the anatomical relation of each structure. We present here how a temporal lobectomy virtual model has been developed to aid residents and fellows conceptualization of the anatomical relationships between different cerebral structures during that procedure. We suggest in comparison to cadaveric dissection, such virtual models represent a cost effective pedagogical methodology providing excellent support for anatomical learning and surgical technique training. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Models of vocal learning in the songbird: Historical frameworks and the stabilizing critic.

    PubMed

    Nick, Teresa A

    2015-10-01

    Birdsong is a form of sensorimotor learning that involves a mirror-like system that activates with both song hearing and production. Early models of song learning, based on behavioral measures, identified key features of vocal plasticity, such as the requirements for memorization of a tutor song and auditory feedback during song practice. The concept of a comparator, which compares the memory of the tutor song to auditory feedback, featured prominently. Later models focused on linking anatomically-defined neural modules to behavioral concepts, such as the comparator. Exploiting the anatomical modularity of the songbird brain, localized lesions illuminated mechanisms of the neural song system. More recent models have integrated neuronal mechanisms identified in other systems with observations in songbirds. While these models explain multiple aspects of song learning, they must incorporate computational elements based on unknown biological mechanisms to bridge the motor-to-sensory delay and/or transform motor signals into the sensory domain. Here, I introduce the stabilizing critic hypothesis, which enables sensorimotor learning by (1) placing a purely sensory comparator afferent of the song system and (2) endowing song system disinhibitory interneuron networks with the capacity both to bridge the motor-sensory delay through prolonged bursting and to stabilize song segments selectively based on the comparator signal. These proposed networks stabilize an otherwise variable signal generated by both putative mirror neurons and a cortical-basal ganglia-thalamic loop. This stabilized signal then temporally converges with a matched premotor signal in the efferent song motor cortex, promoting spike-timing-dependent plasticity in the premotor circuitry and behavioral song learning. © 2014 Wiley Periodicals, Inc.

  4. Anatomical Knowledge Gain through a Clay-Modeling Exercise Compared to Live and Video Observations

    ERIC Educational Resources Information Center

    Kooloos, Jan G. M.; Schepens-Franke, Annelieke N.; Bergman, Esther M.; Donders, Rogier A. R. T.; Vorstenbosch, Marc A. T. M.

    2014-01-01

    Clay modeling is increasingly used as a teaching method other than dissection. The haptic experience during clay modeling is supposed to correspond to the learning effect of manipulations during exercises in the dissection room involving tissues and organs. We questioned this assumption in two pretest-post-test experiments. In these experiments,…

  5. Estimating patient-specific and anatomically correct reference model for craniomaxillofacial deformity via sparse representation

    PubMed Central

    Wang, Li; Ren, Yi; Gao, Yaozong; Tang, Zhen; Chen, Ken-Chung; Li, Jianfu; Shen, Steve G. F.; Yan, Jin; Lee, Philip K. M.; Chow, Ben; Xia, James J.; Shen, Dinggang

    2015-01-01

    Purpose: A significant number of patients suffer from craniomaxillofacial (CMF) deformity and require CMF surgery in the United States. The success of CMF surgery depends on not only the surgical techniques but also an accurate surgical planning. However, surgical planning for CMF surgery is challenging due to the absence of a patient-specific reference model. Currently, the outcome of the surgery is often subjective and highly dependent on surgeon’s experience. In this paper, the authors present an automatic method to estimate an anatomically correct reference shape of jaws for orthognathic surgery, a common type of CMF surgery. Methods: To estimate a patient-specific jaw reference model, the authors use a data-driven method based on sparse shape composition. Given a dictionary of normal subjects, the authors first use the sparse representation to represent the midface of a patient by the midfaces of the normal subjects in the dictionary. Then, the derived sparse coefficients are used to reconstruct a patient-specific reference jaw shape. Results: The authors have validated the proposed method on both synthetic and real patient data. Experimental results show that the authors’ method can effectively reconstruct the normal shape of jaw for patients. Conclusions: The authors have presented a novel method to automatically estimate a patient-specific reference model for the patient suffering from CMF deformity. PMID:26429255

  6. Do Three-dimensional Visualization and Three-dimensional Printing Improve Hepatic Segment Anatomy Teaching? A Randomized Controlled Study.

    PubMed

    Kong, Xiangxue; Nie, Lanying; Zhang, Huijian; Wang, Zhanglin; Ye, Qiang; Tang, Lei; Li, Jianyi; Huang, Wenhua

    2016-01-01

    Hepatic segment anatomy is difficult for medical students to learn. Three-dimensional visualization (3DV) is a useful tool in anatomy teaching, but current models do not capture haptic qualities. However, three-dimensional printing (3DP) can produce highly accurate complex physical models. Therefore, in this study we aimed to develop a novel 3DP hepatic segment model and compare the teaching effectiveness of a 3DV model, a 3DP model, and a traditional anatomical atlas. A healthy candidate (female, 50-years old) was recruited and scanned with computed tomography. After three-dimensional (3D) reconstruction, the computed 3D images of the hepatic structures were obtained. The parenchyma model was divided into 8 hepatic segments to produce the 3DV hepatic segment model. The computed 3DP model was designed by removing the surrounding parenchyma and leaving the segmental partitions. Then, 6 experts evaluated the 3DV and 3DP models using a 5-point Likert scale. A randomized controlled trial was conducted to evaluate the educational effectiveness of these models compared with that of the traditional anatomical atlas. The 3DP model successfully displayed the hepatic segment structures with partitions. All experts agreed or strongly agreed that the 3D models provided good realism for anatomical instruction, with no significant differences between the 3DV and 3DP models in each index (p > 0.05). Additionally, the teaching effects show that the 3DV and 3DP models were significantly better than traditional anatomical atlas in the first and second examinations (p < 0.05). Between the first and second examinations, only the traditional method group had significant declines (p < 0.05). A novel 3DP hepatic segment model was successfully developed. Both the 3DV and 3DP models could improve anatomy teaching significantly. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  7. Coupled binary embedding for large-scale image retrieval.

    PubMed

    Zheng, Liang; Wang, Shengjin; Tian, Qi

    2014-08-01

    Visual matching is a crucial step in image retrieval based on the bag-of-words (BoW) model. In the baseline method, two keypoints are considered as a matching pair if their SIFT descriptors are quantized to the same visual word. However, the SIFT visual word has two limitations. First, it loses most of its discriminative power during quantization. Second, SIFT only describes the local texture feature. Both drawbacks impair the discriminative power of the BoW model and lead to false positive matches. To tackle this problem, this paper proposes to embed multiple binary features at indexing level. To model correlation between features, a multi-IDF scheme is introduced, through which different binary features are coupled into the inverted file. We show that matching verification methods based on binary features, such as Hamming embedding, can be effectively incorporated in our framework. As an extension, we explore the fusion of binary color feature into image retrieval. The joint integration of the SIFT visual word and binary features greatly enhances the precision of visual matching, reducing the impact of false positive matches. Our method is evaluated through extensive experiments on four benchmark datasets (Ukbench, Holidays, DupImage, and MIR Flickr 1M). We show that our method significantly improves the baseline approach. In addition, large-scale experiments indicate that the proposed method requires acceptable memory usage and query time compared with other approaches. Further, when global color feature is integrated, our method yields competitive performance with the state-of-the-arts.

  8. Feature-Based Morphometry: Discovering Group-related Anatomical Patterns

    PubMed Central

    Toews, Matthew; Wells, William; Collins, D. Louis; Arbel, Tal

    2015-01-01

    This paper presents feature-based morphometry (FBM), a new, fully data-driven technique for discovering patterns of group-related anatomical structure in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between subjects, FBM explicitly aims to identify distinctive anatomical patterns that may only be present in subsets of subjects, due to disease or anatomical variability. The image is modeled as a collage of generic, localized image features that need not be present in all subjects. Scale-space theory is applied to analyze image features at the characteristic scale of underlying anatomical structures, instead of at arbitrary scales such as global or voxel-level. A probabilistic model describes features in terms of their appearance, geometry, and relationship to subject groups, and is automatically learned from a set of subject images and group labels. Features resulting from learning correspond to group-related anatomical structures that can potentially be used as image biomarkers of disease or as a basis for computer-aided diagnosis. The relationship between features and groups is quantified by the likelihood of feature occurrence within a specific group vs. the rest of the population, and feature significance is quantified in terms of the false discovery rate. Experiments validate FBM clinically in the analysis of normal (NC) and Alzheimer's (AD) brain images using the freely available OASIS database. FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven fashion, and an equal error classification rate of 0.80 is achieved for subjects aged 60-80 years exhibiting mild AD (CDR=1). PMID:19853047

  9. Anatomical Correlates of Non-Verbal Perception in Dementia Patients

    PubMed Central

    Lin, Pin-Hsuan; Chen, Hsiu-Hui; Chen, Nai-Ching; Chang, Wen-Neng; Huang, Chi-Wei; Chang, Ya-Ting; Hsu, Shih-Wei; Hsu, Che-Wei; Chang, Chiung-Chih

    2016-01-01

    Purpose: Patients with dementia who have dissociations in verbal and non-verbal sound processing may offer insights into the anatomic basis for highly related auditory modes. Methods: To determine the neuronal networks on non-verbal perception, 16 patients with Alzheimer’s dementia (AD), 15 with behavior variant fronto-temporal dementia (bv-FTD), 14 with semantic dementia (SD) were evaluated and compared with 15 age-matched controls. Neuropsychological and auditory perceptive tasks were included to test the ability to compare pitch changes, scale-violated melody and for naming and associating with environmental sound. The brain 3D T1 images were acquired and voxel-based morphometry (VBM) was used to compare and correlated the volumetric measures with task scores. Results: The SD group scored the lowest among 3 groups in pitch or scale-violated melody tasks. In the environmental sound test, the SD group also showed impairment in naming and also in associating sound with pictures. The AD and bv-FTD groups, compared with the controls, showed no differences in all tests. VBM with task score correlation showed that atrophy in the right supra-marginal and superior temporal gyri was strongly related to deficits in detecting violated scales, while atrophy in the bilateral anterior temporal poles and left medial temporal structures was related to deficits in environmental sound recognition. Conclusions: Auditory perception of pitch, scale-violated melody or environmental sound reflects anatomical degeneration in dementia patients and the processing of non-verbal sounds are mediated by distinct neural circuits. PMID:27630558

  10. My Corporis Fabrica: an ontology-based tool for reasoning and querying on complex anatomical models

    PubMed Central

    2014-01-01

    Background Multiple models of anatomy have been developed independently and for different purposes. In particular, 3D graphical models are specially useful for visualizing the different organs composing the human body, while ontologies such as FMA (Foundational Model of Anatomy) are symbolic models that provide a unified formal description of anatomy. Despite its comprehensive content concerning the anatomical structures, the lack of formal descriptions of anatomical functions in FMA limits its usage in many applications. In addition, the absence of connection between 3D models and anatomical ontologies makes it difficult and time-consuming to set up and access to the anatomical content of complex 3D objects. Results First, we provide a new ontology of anatomy called My Corporis Fabrica (MyCF), which conforms to FMA but extends it by making explicit how anatomical structures are composed, how they contribute to functions, and also how they can be related to 3D complex objects. Second, we have equipped MyCF with automatic reasoning capabilities that enable model checking and complex queries answering. We illustrate the added-value of such a declarative approach for interactive simulation and visualization as well as for teaching applications. Conclusions The novel vision of ontologies that we have developed in this paper enables a declarative assembly of different models to obtain composed models guaranteed to be anatomically valid while capturing the complexity of human anatomy. The main interest of this approach is its declarativity that makes possible for domain experts to enrich the knowledge base at any moment through simple editors without having to change the algorithmic machinery. This provides MyCF software environment a flexibility to process and add semantics on purpose for various applications that incorporate not only symbolic information but also 3D geometric models representing anatomical entities as well as other symbolic information like the anatomical functions. PMID:24936286

  11. Training models of anatomic shape variability

    PubMed Central

    Merck, Derek; Tracton, Gregg; Saboo, Rohit; Levy, Joshua; Chaney, Edward; Pizer, Stephen; Joshi, Sarang

    2008-01-01

    Learning probability distributions of the shape of anatomic structures requires fitting shape representations to human expert segmentations from training sets of medical images. The quality of statistical segmentation and registration methods is directly related to the quality of this initial shape fitting, yet the subject is largely overlooked or described in an ad hoc way. This article presents a set of general principles to guide such training. Our novel method is to jointly estimate both the best geometric model for any given image and the shape distribution for the entire population of training images by iteratively relaxing purely geometric constraints in favor of the converging shape probabilities as the fitted objects converge to their target segmentations. The geometric constraints are carefully crafted both to obtain legal, nonself-interpenetrating shapes and to impose the model-to-model correspondences required for useful statistical analysis. The paper closes with example applications of the method to synthetic and real patient CT image sets, including same patient male pelvis and head and neck images, and cross patient kidney and brain images. Finally, we outline how this shape training serves as the basis for our approach to IGRT∕ART. PMID:18777919

  12. A multimodal imaging framework for enhanced robot-assisted partial nephrectomy guidance

    NASA Astrophysics Data System (ADS)

    Halter, Ryan J.; Wu, Xiaotian; Hartov, Alex; Seigne, John; Khan, Shadab

    2015-03-01

    Robot-assisted laparoscopic partial nephrectomies (RALPN) are performed to treat patients with locally confined renal carcinoma. There are well-documented benefits to performing partial (opposed to radical) kidney resections and to using robot-assisted laparoscopic (opposed to open) approaches. However, there are challenges in identifying tumor margins and critical benign structures including blood vessels and collecting systems during current RALPN procedures. The primary objective of this effort is to couple multiple image and data streams together to augment visual information currently provided to surgeons performing RALPN and ultimately ensure complete tumor resection and minimal damage to functional structures (i.e. renal vasculature and collecting systems). To meet this challenge we have developed a framework and performed initial feasibility experiments to couple pre-operative high-resolution anatomic images with intraoperative MRI, ultrasound (US) and optical-based surface mapping and kidney tracking. With these registered images and data streams, we aim to overlay the high-resolution contrast-enhanced anatomic (CT or MR) images onto the surgeon's view screen for enhanced guidance. To date we have integrated the following components of our framework: 1) a method for tracking an intraoperative US probe to extract the kidney surface and a set of embedded kidney markers, 2) a method for co-registering intraoperative US scans with pre-operative MR scans, and 3) a method for deforming pre-op scans to match intraoperative scans. These components have been evaluated through phantom studies to demonstrate protocol feasibility.

  13. Scale invariant feature transform in adaptive radiation therapy: a tool for deformable image registration assessment and re-planning indication

    NASA Astrophysics Data System (ADS)

    Paganelli, Chiara; Peroni, Marta; Riboldi, Marco; Sharp, Gregory C.; Ciardo, Delia; Alterio, Daniela; Orecchia, Roberto; Baroni, Guido

    2013-01-01

    Adaptive radiation therapy (ART) aims at compensating for anatomic and pathological changes to improve delivery along a treatment fraction sequence. Current ART protocols require time-consuming manual updating of all volumes of interest on the images acquired during treatment. Deformable image registration (DIR) and contour propagation stand as a state of the ART method to automate the process, but the lack of DIR quality control methods hinder an introduction into clinical practice. We investigated the scale invariant feature transform (SIFT) method as a quantitative automated tool (1) for DIR evaluation and (2) for re-planning decision-making in the framework of ART treatments. As a preliminary test, SIFT invariance properties at shape-preserving and deformable transformations were studied on a computational phantom, granting residual matching errors below the voxel dimension. Then a clinical dataset composed of 19 head and neck ART patients was used to quantify the performance in ART treatments. For the goal (1) results demonstrated SIFT potential as an operator-independent DIR quality assessment metric. We measured DIR group systematic residual errors up to 0.66 mm against 1.35 mm provided by rigid registration. The group systematic errors of both bony and all other structures were also analyzed, attesting the presence of anatomical deformations. The correct automated identification of 18 patients who might benefit from ART out of the total 22 cases using SIFT demonstrated its capabilities toward goal (2) achievement.

  14. Detectability of radiological images: the influence of anatomical noise

    NASA Astrophysics Data System (ADS)

    Bochud, Francois O.; Verdun, Francis R.; Hessler, Christian; Valley, Jean-Francois

    1995-04-01

    Radiological image quality can be objectively quantified by the statistical decision theory. This theory is commonly applied with the noise of the imaging system alone (quantum, screen and film noises) whereas the actual noise present on the image is the 'anatomical noise' (sum of the system noise and the anatomical texture). This anatomical texture should play a role in the detection task. This paper compares these two kinds of noises by performing 2AFC experiments and computing the area under the ROC-curve. It is shown that the 'anatomical noise' cannot be considered as a noise in the sense of Wiener spectrum approach and that the detectability performance is the same as the one obtained with the system noise alone in the case of a small object to be detected. Furthermore, the statistical decision theory and the non- prewhitening observer does not match the experimental results. This is especially the case in the low contrast values for which the theory predicts an increase of the detectability as soon as the contrast is different from zero whereas the experimental result demonstrates an offset of the contrast value below which the detectability is purely random. The theory therefore needs to be improved in order to take this result into account.

  15. Refractive-index-matched hydrogel materials for measuring flow-structure interactions

    NASA Astrophysics Data System (ADS)

    Byron, Margaret L.; Variano, Evan A.

    2013-02-01

    In imaging-based studies of flow around solid objects, it is useful to have materials that are refractive-index-matched to the surrounding fluid. However, materials currently in use are usually rigid and matched to liquids that are either expensive or highly viscous. This does not allow for measurements at high Reynolds number, nor accurate modeling of flexible structures. This work explores the use of two hydrogels (agarose and polyacrylamide) as refractive-index-matched models in water. These hydrogels are inexpensive, can be cast into desired shapes, and have flexibility that can be tuned to match biological materials. The use of water as the fluid phase allows this method to be implemented immediately in many experimental facilities and permits investigation of high-Reynolds-number phenomena. We explain fabrication methods and present a summary of the physical and optical properties of both gels, and then show measurements demonstrating the use of hydrogel models in quantitative imaging.

  16. Anatomic Optical Coherence Tomography of Upper Airways

    NASA Astrophysics Data System (ADS)

    Chin Loy, Anthony; Jing, Joseph; Zhang, Jun; Wang, Yong; Elghobashi, Said; Chen, Zhongping; Wong, Brian J. F.

    The upper airway is a complex and intricate system responsible for respiration, phonation, and deglutition. Obstruction of the upper airways afflicts an estimated 12-18 million Americans. Pharyngeal size and shape are important factors in the pathogenesis of airway obstructions. In addition, nocturnal loss in pharyngeal muscular tone combined with high pharyngeal resistance can lead to collapse of the airway and periodic partial or complete upper airway obstruction. Anatomical optical coherence tomography (OCT) has the potential to provide high-speed three-dimensional tomographic images of the airway lumen without the use of ionizing radiation. In this chapter we describe the methods behind endoscopic OCT imaging and processing to generate full three dimensional anatomical models of the human airway which can be used in conjunction with numerical simulation methods to assess areas of airway obstruction. Combining this structural information with flow dynamic simulations, we can better estimate the site and causes of airway obstruction and better select and design surgery for patients with obstructive sleep apnea.

  17. Visualization of Stereoscopic Anatomic Models of the Paranasal Sinuses and Cervical Vertebrae from the Surgical and Procedural Perspective

    ERIC Educational Resources Information Center

    Chen, Jian; Smith, Andrew D.; Khan, Majid A.; Sinning, Allan R.; Conway, Marianne L.; Cui, Dongmei

    2017-01-01

    Recent improvements in three-dimensional (3D) virtual modeling software allows anatomists to generate high-resolution, visually appealing, colored, anatomical 3D models from computed tomography (CT) images. In this study, high-resolution CT images of a cadaver were used to develop clinically relevant anatomic models including facial skull, nasal…

  18. Radial force distribution changes associated with tangential force production in cylindrical grasping, and the importance of anatomical registration.

    PubMed

    Pataky, Todd C; Slota, Gregory P; Latash, Mark L; Zatsiorsky, Vladimir M

    2012-01-10

    Radial force (F(r)) distributions describe grip force coordination about a cylindrical object. Recent studies have employed only explicit F(r) tasks, and have not normalized for anatomical variance when considering F(r) distributions. The goals of the present study were (i) to explore F(r) during tangential force production tasks, and (ii) to examine the extent to which anatomical registration (i.e. spatial normalization of anatomically analogous structures) could improve signal detectability in F(r) data. Twelve subjects grasped a vertically oriented cylindrical handle (diameter=6 cm) and matched target upward tangential forces of 10, 20, and 30 N. F(r) data were measured using a flexible pressure mat with an angular resolution of 4.8°, and were registered using piecewise-linear interpolation between five manually identified points-of-interest. Results indicate that F(r) was primarily limited to three contact regions: the distal thumb, the distal fingers, and the fingers' metatacarpal heads, and that, while increases in tangential force caused significant increases in F(r) for these regions, they did not significantly affect the F(r) distribution across the hand. Registration was found to substantially reduce between-subject variability, as indicated by both accentuated F(r) trends, and amplification of the test statistic. These results imply that, while subjects focus F(r) primarily on three anatomical regions during cylindrical grasp, inter-subject anatomical differences introduce a variability that, if not corrected for via registration, may compromise one's ability to draw anatomically relevant conclusions from grasping force data. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Applied mathematical problems in modern electromagnetics

    NASA Astrophysics Data System (ADS)

    Kriegsman, Gregory

    1994-05-01

    We have primarily investigated two classes of electromagnetic problems. The first contains the quantitative description of microwave heating of dispersive and conductive materials. Such problems arise, for example, when biological tissue are exposed, accidentally or purposefully, to microwave radiation. Other instances occur in ceramic processing, such as sintering and microwave assisted chemical vapor infiltration and other industrial drying processes, such as the curing of paints and concrete. The second class characterizes the scattering of microwaves by complex targets which possess two or more disparate length and/or time scales. Spatially complex scatterers arise in a variety of applications, such as large gratings and slowly changing guiding structures. The former are useful in developing microstrip energy couplers while the later can be used to model anatomical subsystems (e.g., the open guiding structure composed of two legs and the adjoining lower torso). Temporally complex targets occur in applications involving dispersive media whose relaxation times differ by orders of magnitude from thermal and/or electromagnetic time scales. For both cases the mathematical description of the problems gives rise to complicated ill-conditioned boundary value problems, whose accurate solutions require a blend of both asymptotic techniques, such as multiscale methods and matched asymptotic expansions, and numerical methods incorporating radiation boundary conditions, such as finite differences and finite elements.

  20. Did pterosaurs feed by skimming? Physical modelling and anatomical evaluation of an unusual feeding method.

    PubMed

    Humphries, Stuart; Bonser, Richard H C; Witton, Mark P; Martill, David M

    2007-08-01

    Similarities between the anatomies of living organisms are often used to draw conclusions regarding the ecology and behaviour of extinct animals. Several pterosaur taxa are postulated to have been skim-feeders based largely on supposed convergences of their jaw anatomy with that of the modern skimming bird, Rynchops spp. Using physical and mathematical models of Rynchops bills and pterosaur jaws, we show that skimming is considerably more energetically costly than previously thought for Rynchops and that pterosaurs weighing more than one kilogram would not have been able to skim at all. Furthermore, anatomical comparisons between the highly specialised skull of Rynchops and those of postulated skimming pterosaurs suggest that even smaller forms were poorly adapted for skim-feeding. Our results refute the hypothesis that some pterosaurs commonly used skimming as a foraging method and illustrate the pitfalls involved in extrapolating from limited morphological convergence.

  1. Did Pterosaurs Feed by Skimming? Physical Modelling and Anatomical Evaluation of an Unusual Feeding Method

    PubMed Central

    Humphries, Stuart; Bonser, Richard H. C; Witton, Mark P; Martill, David M

    2007-01-01

    Similarities between the anatomies of living organisms are often used to draw conclusions regarding the ecology and behaviour of extinct animals. Several pterosaur taxa are postulated to have been skim-feeders based largely on supposed convergences of their jaw anatomy with that of the modern skimming bird, Rynchops spp. Using physical and mathematical models of Rynchops bills and pterosaur jaws, we show that skimming is considerably more energetically costly than previously thought for Rynchops and that pterosaurs weighing more than one kilogram would not have been able to skim at all. Furthermore, anatomical comparisons between the highly specialised skull of Rynchops and those of postulated skimming pterosaurs suggest that even smaller forms were poorly adapted for skim-feeding. Our results refute the hypothesis that some pterosaurs commonly used skimming as a foraging method and illustrate the pitfalls involved in extrapolating from limited morphological convergence. PMID:17676976

  2. What We Know About the Brain Structure-Function Relationship.

    PubMed

    Batista-García-Ramó, Karla; Fernández-Verdecia, Caridad Ivette

    2018-04-18

    How the human brain works is still a question, as is its implication with brain architecture: the non-trivial structure–function relationship. The main hypothesis is that the anatomic architecture conditions, but does not determine, the neural network dynamic. The functional connectivity cannot be explained only considering the anatomical substrate. This involves complex and controversial aspects of the neuroscience field and that the methods and methodologies to obtain structural and functional connectivity are not always rigorously applied. The goal of the present article is to discuss about the progress made to elucidate the structure–function relationship of the Central Nervous System, particularly at the brain level, based on results from human and animal studies. The current novel systems and neuroimaging techniques with high resolutive physio-structural capacity have brought about the development of an integral framework of different structural and morphometric tools such as image processing, computational modeling and graph theory. Different laboratories have contributed with in vivo, in vitro and computational/mathematical models to study the intrinsic neural activity patterns based on anatomical connections. We conclude that multi-modal techniques of neuroimaging are required such as an improvement on methodologies for obtaining structural and functional connectivity. Even though simulations of the intrinsic neural activity based on anatomical connectivity can reproduce much of the observed patterns of empirical functional connectivity, future models should be multifactorial to elucidate multi-scale relationships and to infer disorder mechanisms.

  3. Cadaveric dissection as an educational tool for anatomical sciences in the 21st century.

    PubMed

    Ghosh, Sanjib Kumar

    2017-06-01

    Anatomical education has been undergoing reforms in line with the demands of medical profession. The aim of the present study is to assess the impact of a traditional method like cadaveric dissection in teaching/learning anatomy at present times when medical schools are inclining towards student-centered, integrated, clinical application models. The article undertakes a review of literature and analyzes the observations made therein reflecting on the relevance of cadaveric dissection in anatomical education of 21st century. Despite the advent of modern technology and evolved teaching methods, dissection continues to remain a cornerstone of anatomy curriculum. Medical professionals of all levels believe that dissection enables learning anatomy with relevant clinical correlates. Moreover dissection helps to build discipline independent skills which are essential requirements of modern health care setup. It has been supplemented by other teaching/learning methods due to limited availability of cadavers in some countries. However, in the developing world due to good access to cadavers, dissection based teaching is central to anatomy education till date. Its utility is also reflected in the perception of students who are of the opinion that dissection provides them with a foundation critical to development of clinical skills. Researchers have even suggested that time has come to reinstate dissection as the core method of teaching gross anatomy to ensure safe medical practice. Nevertheless, as dissection alone cannot provide uniform learning experience hence needs to be complemented with other innovative learning methods in the future education model of anatomy. Anat Sci Educ 10: 286-299. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  4. Computer aided three-dimensional reconstruction and modeling of the pelvis, by using plastinated cross sections, as a powerful tool for morphological investigations.

    PubMed

    Sora, Mircea-Constantin; Jilavu, Radu; Matusz, Petru

    2012-10-01

    The aim of this study was to describe a method of developing a computerized model of the human female pelvis using plastinated slices. Computerized reconstruction of anatomical structures is becoming very useful for developing anatomical teaching, research modules and animations. Although databases consisting of serial sections derived from frozen cadaver material exist, plastination represents an alternative method for developing anatomical data useful for computerized reconstruction. A slice anatomy study, using plastinated transparent pelvis cross sections, was performed to obtain a 3D reconstruction. One female human pelvis used for this study, first plastinated as a block, then sliced into thin slices and in the end subjected to 3D computerized reconstruction using WinSURF modeling system (SURFdriver Software). To facilitate the understanding of the complex pelvic floor anatomy on sectional images obtained through MR imaging, and to make the representation more vivid, a female pelvis computer-aided 3D model was created. Qualitative observations revealed that the morphological features of the model were consistent with those displayed by typical cadaveric specimens. The quality of the reconstructed images appeared distinct, especially the spatial positions and complicated relationships of contiguous structures of the female pelvis. All reconstructed structures can be displayed in groups or as a whole and interactively rotated in 3D space. The utilization of plastinates for generating tissue sections is useful for 3D computerized modeling. The 3D model of the female pelvis presented in this paper provides a stereoscopic view to study the adjacent relationship and arrangement of respective pelvis sections. A better understanding of the pelvic floor anatomy is relevant to gynaecologists, radiologists, surgeons, urologists, physical therapists and all professionals who take care of women with pelvic floor dysfunction.

  5. Three-dimensional printing of X-ray computed tomography datasets with multiple materials using open-source data processing.

    PubMed

    Sander, Ian M; McGoldrick, Matthew T; Helms, My N; Betts, Aislinn; van Avermaete, Anthony; Owers, Elizabeth; Doney, Evan; Liepert, Taimi; Niebur, Glen; Liepert, Douglas; Leevy, W Matthew

    2017-07-01

    Advances in three-dimensional (3D) printing allow for digital files to be turned into a "printed" physical product. For example, complex anatomical models derived from clinical or pre-clinical X-ray computed tomography (CT) data of patients or research specimens can be constructed using various printable materials. Although 3D printing has the potential to advance learning, many academic programs have been slow to adopt its use in the classroom despite increased availability of the equipment and digital databases already established for educational use. Herein, a protocol is reported for the production of enlarged bone core and accurate representation of human sinus passages in a 3D printed format using entirely consumer-grade printers and a combination of free-software platforms. The comparative resolutions of three surface rendering programs were also determined using the sinuses, a human body, and a human wrist data files to compare the abilities of different software available for surface map generation of biomedical data. Data shows that 3D Slicer provided highest compatibility and surface resolution for anatomical 3D printing. Generated surface maps were then 3D printed via fused deposition modeling (FDM printing). In conclusion, a methodological approach that explains the production of anatomical models using entirely consumer-grade, fused deposition modeling machines, and a combination of free software platforms is presented in this report. The methods outlined will facilitate the incorporation of 3D printed anatomical models in the classroom. Anat Sci Educ 10: 383-391. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  6. Designing Free Energy Surfaces That Match Experimental Data with Metadynamics

    DOE PAGES

    White, Andrew D.; Dama, James F.; Voth, Gregory A.

    2015-04-30

    Creating models that are consistent with experimental data is essential in molecular modeling. This is often done by iteratively tuning the molecular force field of a simulation to match experimental data. An alternative method is to bias a simulation, leading to a hybrid model composed of the original force field and biasing terms. Previously we introduced such a method called experiment directed simulation (EDS). EDS minimally biases simulations to match average values. We also introduce a new method called experiment directed metadynamics (EDM) that creates minimal biases for matching entire free energy surfaces such as radial distribution functions and phi/psimore » angle free energies. It is also possible with EDM to create a tunable mixture of the experimental data and free energy of the unbiased ensemble with explicit ratios. EDM can be proven to be convergent, and we also present proof, via a maximum entropy argument, that the final bias is minimal and unique. Examples of its use are given in the construction of ensembles that follow a desired free energy. Finally, the example systems studied include a Lennard-Jones fluid made to match a radial distribution function, an atomistic model augmented with bioinformatics data, and a three-component electrolyte solution where ab initio simulation data is used to improve a classical empirical model.« less

  7. Designing free energy surfaces that match experimental data with metadynamics.

    PubMed

    White, Andrew D; Dama, James F; Voth, Gregory A

    2015-06-09

    Creating models that are consistent with experimental data is essential in molecular modeling. This is often done by iteratively tuning the molecular force field of a simulation to match experimental data. An alternative method is to bias a simulation, leading to a hybrid model composed of the original force field and biasing terms. We previously introduced such a method called experiment directed simulation (EDS). EDS minimally biases simulations to match average values. In this work, we introduce a new method called experiment directed metadynamics (EDM) that creates minimal biases for matching entire free energy surfaces such as radial distribution functions and phi/psi angle free energies. It is also possible with EDM to create a tunable mixture of the experimental data and free energy of the unbiased ensemble with explicit ratios. EDM can be proven to be convergent, and we also present proof, via a maximum entropy argument, that the final bias is minimal and unique. Examples of its use are given in the construction of ensembles that follow a desired free energy. The example systems studied include a Lennard-Jones fluid made to match a radial distribution function, an atomistic model augmented with bioinformatics data, and a three-component electrolyte solution where ab initio simulation data is used to improve a classical empirical model.

  8. PathBot: A Radiology-Pathology Correlation Dashboard.

    PubMed

    Kelahan, Linda C; Kalaria, Amit D; Filice, Ross W

    2017-12-01

    Pathology is considered the "gold standard" of diagnostic medicine. The importance of radiology-pathology correlation is seen in interdepartmental patient conferences such as "tumor boards" and by the tradition of radiology resident immersion in a radiologic-pathology course at the American Institute of Radiologic Pathology. In practice, consistent pathology follow-up can be difficult due to time constraints and cumbersome electronic medical records. We present a radiology-pathology correlation dashboard that presents radiologists with pathology reports matched to their dictations, for both diagnostic imaging and image-guided procedures. In creating our dashboard, we utilized the RadLex ontology and National Center for Biomedical Ontology (NCBO) Annotator to identify anatomic concepts in pathology reports that could subsequently be mapped to relevant radiology reports, providing an automated method to match related radiology and pathology reports. Radiology-pathology matches are presented to the radiologist on a web-based dashboard. We found that our algorithm was highly specific in detecting matches. Our sensitivity was slightly lower than expected and could be attributed to missing anatomy concepts in the RadLex ontology, as well as limitations in our parent term hierarchical mapping and synonym recognition algorithms. By automating radiology-pathology correlation and presenting matches in a user-friendly dashboard format, we hope to encourage pathology follow-up in clinical radiology practice for purposes of self-education and to augment peer review. We also hope to provide a tool to facilitate the production of quality teaching files, lectures, and publications. Diagnostic images have a richer educational value when they are backed up by the gold standard of pathology.

  9. A New Unified Analysis of Estimate Errors by Model-Matching Phase-Estimation Methods for Sensorless Drive of Permanent-Magnet Synchronous Motors and New Trajectory-Oriented Vector Control, Part II

    NASA Astrophysics Data System (ADS)

    Shinnaka, Shinji

    This paper presents a new unified analysis of estimate errors by model-matching extended-back-EMF estimation methods for sensorless drive of permanent-magnet synchronous motors. Analytical solutions about estimate errors, whose validity is confirmed by numerical experiments, are rich in universality and applicability. As an example of universality and applicability, a new trajectory-oriented vector control method is proposed, which can realize directly quasi-optimal strategy minimizing total losses with no additional computational loads by simply orienting one of vector-control coordinates to the associated quasi-optimal trajectory. The coordinate orientation rule, which is analytically derived, is surprisingly simple. Consequently the trajectory-oriented vector control method can be applied to a number of conventional vector control systems using model-matching extended-back-EMF estimation methods.

  10. Flexible, phase-matched, linear receive arrays for high-field MRI in monkeys.

    PubMed

    Goense, Jozien; Logothetis, Nikos K; Merkle, Hellmut

    2010-10-01

    High signal-to-noise ratios (SNR) are essential for high-resolution anatomical and functional MRI. Phased arrays are advantageous for this but have the drawback that they often have inflexible and bulky configurations. Particularly in experiments where functional MRI is combined with simultaneous electrophysiology, space constraints can be prohibitive. To this end we developed a highly flexible multiple receive element phased array for use on anesthetized monkeys. The elements are interchangeable and different sizes and combinations of coil elements can be used, for instance, combinations of single and overlapped elements. The preamplifiers including control electronics are detachable and can serve a variety of prefabricated and phase matched arrays of different configurations, allowing the elements to always be placed in close proximity to the area of interest. Optimizing performance of the individual elements ensured high SNR at the cortical surface as well as in deeper laying structures. Performance of a variety of arrangements of gapped linear arrays was evaluated at 4.7 and 7T in high-resolution anatomical and functional MRI. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. TU-CD-BRA-01: A Novel 3D Registration Method for Multiparametric Radiological Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhbardeh, A; Parekth, VS; Jacobs, MA

    2015-06-15

    Purpose: Multiparametric and multimodality radiological imaging methods, such as, magnetic resonance imaging(MRI), computed tomography(CT), and positron emission tomography(PET), provide multiple types of tissue contrast and anatomical information for clinical diagnosis. However, these radiological modalities are acquired using very different technical parameters, e.g.,field of view(FOV), matrix size, and scan planes, which, can lead to challenges in registering the different data sets. Therefore, we developed a hybrid registration method based on 3D wavelet transformation and 3D interpolations that performs 3D resampling and rotation of the target radiological images without loss of information Methods: T1-weighted, T2-weighted, diffusion-weighted-imaging(DWI), dynamic-contrast-enhanced(DCE) MRI and PET/CT were usedmore » in the registration algorithm from breast and prostate data at 3T MRI and multimodality(PET/CT) cases. The hybrid registration scheme consists of several steps to reslice and match each modality using a combination of 3D wavelets, interpolations, and affine registration steps. First, orthogonal reslicing is performed to equalize FOV, matrix sizes and the number of slices using wavelet transformation. Second, angular resampling of the target data is performed to match the reference data. Finally, using optimized angles from resampling, 3D registration is performed using similarity transformation(scaling and translation) between the reference and resliced target volume is performed. After registration, the mean-square-error(MSE) and Dice Similarity(DS) between the reference and registered target volumes were calculated. Results: The 3D registration method registered synthetic and clinical data with significant improvement(p<0.05) of overlap between anatomical structures. After transforming and deforming the synthetic data, the MSE and Dice similarity were 0.12 and 0.99. The average improvement of the MSE in breast was 62%(0.27 to 0.10) and prostate was 63%(0.13 to 0.04;p<0.05). The Dice similarity was in breast 8%(0.91 to 0.99) and for prostate was 89%(0.01 to 0.90;p<0.05) Conclusion: Our 3D wavelet hybrid registration approach registered diverse breast and prostate data of different radiological images(MR/PET/CT) with a high accuracy.« less

  12. Standard plane localization in ultrasound by radial component model and selective search.

    PubMed

    Ni, Dong; Yang, Xin; Chen, Xin; Chin, Chien-Ting; Chen, Siping; Heng, Pheng Ann; Li, Shengli; Qin, Jing; Wang, Tianfu

    2014-11-01

    Acquisition of the standard plane is crucial for medical ultrasound diagnosis. However, this process requires substantial experience and a thorough knowledge of human anatomy. Therefore it is very challenging for novices and even time consuming for experienced examiners. We proposed a hierarchical, supervised learning framework for automatically detecting the standard plane from consecutive 2-D ultrasound images. We tested this technique by developing a system that localizes the fetal abdominal standard plane from ultrasound video by detecting three key anatomical structures: the stomach bubble, umbilical vein and spine. We first proposed a novel radial component-based model to describe the geometric constraints of these key anatomical structures. We then introduced a novel selective search method which exploits the vessel probability algorithm to produce probable locations for the spine and umbilical vein. Next, using component classifiers trained by random forests, we detected the key anatomical structures at their probable locations within the regions constrained by the radial component-based model. Finally, a second-level classifier combined the results from the component detection to identify an ultrasound image as either a "fetal abdominal standard plane" or a "non- fetal abdominal standard plane." Experimental results on 223 fetal abdomen videos showed that the detection accuracy of our method was as high as 85.6% and significantly outperformed both the full abdomen and the separate anatomy detection methods without geometric constraints. The experimental results demonstrated that our system shows great promise for application to clinical practice. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  13. Numeric and symbolic knowledge representation of cerebral cortex anatomy: methods and preliminary results.

    PubMed

    Dameron, O; Gibaud, B; Morandi, X

    2004-06-01

    The human cerebral cortex anatomy describes the brain organization at the scale of gyri and sulci. It is used as landmarks for neurosurgery as well as localization support for functional data analysis or inter-subject data comparison. Existing models of the cortex anatomy either rely on image labeling but fail to represent variability and structural properties or rely on a conceptual model but miss the inner 3D nature and relations of anatomical structures. This study was therefore conducted to propose a model of sulco-gyral anatomy for the healthy human brain. We hypothesized that both numeric knowledge (i.e., image-based) and symbolic knowledge (i.e., concept-based) have to be represented and coordinated. In addition, the representation of this knowledge should be application-independent in order to be usable in various contexts. Therefore, we devised a symbolic model describing specialization, composition and spatial organization of cortical anatomical structures. We also collected numeric knowledge such as 3D models of shape and shape variation about cortical anatomical structures. For each numeric piece of knowledge, a companion file describes the concept it refers to and the nature of the relationship. Demonstration software performs a mapping between the numeric and the symbolic aspects for browsing the knowledge base.

  14. A novel method for pair-matching using three-dimensional digital models of bone: mesh-to-mesh value comparison.

    PubMed

    Karell, Mara A; Langstaff, Helen K; Halazonetis, Demetrios J; Minghetti, Caterina; Frelat, Mélanie; Kranioti, Elena F

    2016-09-01

    The commingling of human remains often hinders forensic/physical anthropologists during the identification process, as there are limited methods to accurately sort these remains. This study investigates a new method for pair-matching, a common individualization technique, which uses digital three-dimensional models of bone: mesh-to-mesh value comparison (MVC). The MVC method digitally compares the entire three-dimensional geometry of two bones at once to produce a single value to indicate their similarity. Two different versions of this method, one manual and the other automated, were created and then tested for how well they accurately pair-matched humeri. Each version was assessed using sensitivity and specificity. The manual mesh-to-mesh value comparison method was 100 % sensitive and 100 % specific. The automated mesh-to-mesh value comparison method was 95 % sensitive and 60 % specific. Our results indicate that the mesh-to-mesh value comparison method overall is a powerful new tool for accurately pair-matching commingled skeletal elements, although the automated version still needs improvement.

  15. Rebar: Reinforcing a Matching Estimator with Predictions from High-Dimensional Covariates

    ERIC Educational Resources Information Center

    Sales, Adam C.; Hansen, Ben B.; Rowan, Brian

    2018-01-01

    In causal matching designs, some control subjects are often left unmatched, and some covariates are often left unmodeled. This article introduces "rebar," a method using high-dimensional modeling to incorporate these commonly discarded data without sacrificing the integrity of the matching design. After constructing a match, a researcher…

  16. Hybrid computational phantoms of the male and female newborn patient: NURBS-based whole-body models

    NASA Astrophysics Data System (ADS)

    Lee, Choonsik; Lodwick, Daniel; Hasenauer, Deanna; Williams, Jonathan L.; Lee, Choonik; Bolch, Wesley E.

    2007-07-01

    Anthropomorphic computational phantoms are computer models of the human body for use in the evaluation of dose distributions resulting from either internal or external radiation sources. Currently, two classes of computational phantoms have been developed and widely utilized for organ dose assessment: (1) stylized phantoms and (2) voxel phantoms which describe the human anatomy via mathematical surface equations or 3D voxel matrices, respectively. Although stylized phantoms based on mathematical equations can be very flexible in regard to making changes in organ position and geometrical shape, they are limited in their ability to fully capture the anatomic complexities of human internal anatomy. In turn, voxel phantoms have been developed through image-based segmentation and correspondingly provide much better anatomical realism in comparison to simpler stylized phantoms. However, they themselves are limited in defining organs presented in low contrast within either magnetic resonance or computed tomography images—the two major sources in voxel phantom construction. By definition, voxel phantoms are typically constructed via segmentation of transaxial images, and thus while fine anatomic features are seen in this viewing plane, slice-to-slice discontinuities become apparent in viewing the anatomy of voxel phantoms in the sagittal or coronal planes. This study introduces the concept of a hybrid computational newborn phantom that takes full advantage of the best features of both its stylized and voxel counterparts: flexibility in phantom alterations and anatomic realism. Non-uniform rational B-spline (NURBS) surfaces, a mathematical modeling tool traditionally applied to graphical animation studies, was adopted to replace the limited mathematical surface equations of stylized phantoms. A previously developed whole-body voxel phantom of the newborn female was utilized as a realistic anatomical framework for hybrid phantom construction. The construction of a hybrid phantom is performed in three steps: polygonization of the voxel phantom, organ modeling via NURBS surfaces and phantom voxelization. Two 3D graphic tools, 3D-DOCTOR™ and Rhinoceros™, were utilized to polygonize the newborn voxel phantom and generate NURBS surfaces, while an in-house MATLAB™ code was used to voxelize the resulting NURBS model into a final computational phantom ready for use in Monte Carlo radiation transport calculations. A total of 126 anatomical organ and tissue models, including 38 skeletal sites and 31 cartilage sites, were described within the hybrid phantom using either NURBS or polygon surfaces. A male hybrid newborn phantom was constructed following the development of the female phantom through the replacement of female-specific organs with male-specific organs. The outer body contour and internal anatomy of the NURBS-based phantoms were adjusted to match anthropometric and reference newborn data reported by the International Commission on Radiological Protection in their Publication 89. The voxelization process was designed to accurately convert NURBS models to a voxel phantom with minimum volumetric change. A sensitivity study was additionally performed to better understand how the meshing tolerance and voxel resolution would affect volumetric changes between the hybrid-NURBS and hybrid-voxel phantoms. The male and female hybrid-NURBS phantoms were constructed in a manner so that all internal organs approached their ICRP reference masses to within 1%, with the exception of the skin (-6.5% relative error) and brain (-15.4% relative error). Both hybrid-voxel phantoms were constructed with an isotropic voxel resolution of 0.663 mm—equivalent to the ICRP 89 reference thickness of the newborn skin (dermis and epidermis). Hybrid-NURBS phantoms used to create their voxel counterpart retain the non-uniform scalability of stylized phantoms, while maintaining the anatomic realism of segmented voxel phantoms with respect to organ shape, depth and inter-organ positioning. This work was supported by the National Cancer Institute.

  17. Comparison of anatomical, functional and regression methods for estimating the rotation axes of the forearm.

    PubMed

    Fraysse, François; Thewlis, Dominic

    2014-11-07

    Numerous methods exist to estimate the pose of the axes of rotation of the forearm. These include anatomical definitions, such as the conventions proposed by the ISB, and functional methods based on instantaneous helical axes, which are commonly accepted as the modelling gold standard for non-invasive, in-vivo studies. We investigated the validity of a third method, based on regression equations, to estimate the rotation axes of the forearm. We also assessed the accuracy of both ISB methods. Axes obtained from a functional method were considered as the reference. Results indicate a large inter-subject variability in the axes positions, in accordance with previous studies. Both ISB methods gave the same level of accuracy in axes position estimations. Regression equations seem to improve estimation of the flexion-extension axis but not the pronation-supination axis. Overall, given the large inter-subject variability, the use of regression equations cannot be recommended. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. A biomechanical comparison of four fixed-angle dorsal plates in a finite element model of dorsally-unstable radius fracture.

    PubMed

    Knežević, Josip; Kodvanj, Janoš; Čukelj, Fabijan; Pamuković, Frane; Pavić, Arsen

    2017-11-01

    To compare the finite element models of two different composite radius fracture patterns, reduced and stabilised with four different fixed-angle dorsal plates during axial, dorsal and volar loading conditions. Eight different plastic models representing four AO/ASIF type 23-A3 distal radius fractures and four AO/ASIF 23-C2 distal radius fractures were obtained and fixed each with 1 of 4 methods: a standard dorsal non-anatomical fixed angle T-plate (3.5mm Dorsal T-plate, Synthes), anatomical fixed-angle double plates (2.4mm LCP Dorsal Distal Radius, Synthes), anatomical fixed angle T-plate (2.4mm Acu-Loc Dorsal Plate, Acumed) or anatomical variable-angle dorsal T-plate (3.5mm, Dorsal Plate, Zrinski). Composite radius with plate and screws were scanned with a 3D optical scanner and later processed in Abaqus Software to generate the finite element model. All models were axially loaded at 3 points (centrally, volarly and dorsally) with 50 N forces to avoid the appearance of plastic deformations of the models. Total displacements at the end of the bone and the stresses in the bones and plates were determined and compared. Maximal von Mises stress in bone for 3-part fracture models was very similar to that in 2-part fracture models. The biggest difference between models and the largest displacements were seen during volar loading. The stresses in all models were the highest above the fracture gap. The best performance in all parameters tested was with the Zrinski plate and the most modest results were with the Synthes T-plate. There was no significant difference between 2-part (AO/ASIF type 23-A3) and 3-part (AO/ASIF 23-C2) fracture models. Maximal stresses in the plates appeared above the fracture gap; therefore, it is worth considering the development of plates without screw holes above the gap. © 2017 Elsevier Ltd. All rights reserved.

  19. Incorrect Match Detection Method for Arctic Sea-Ice Reconstruction Using Uav Images

    NASA Astrophysics Data System (ADS)

    Kim, J.-I.; Kim, H.-C.

    2018-05-01

    Shapes and surface roughness, which are considered as key indicators in understanding Arctic sea-ice, can be measured from the digital surface model (DSM) of the target area. Unmanned aerial vehicle (UAV) flying at low altitudes enables theoretically accurate DSM generation. However, the characteristics of sea-ice with textureless surface and incessant motion make image matching difficult for DSM generation. In this paper, we propose a method for effectively detecting incorrect matches before correcting a sea-ice DSM derived from UAV images. The proposed method variably adjusts the size of search window to analyze the matching results of DSM generated and distinguishes incorrect matches. Experimental results showed that the sea-ice DSM produced large errors along the textureless surfaces, and that the incorrect matches could be effectively detected by the proposed method.

  20. Comparison of demons deformable registration-based methods for texture analysis of serial thoracic CT scans

    NASA Astrophysics Data System (ADS)

    Cunliffe, Alexandra R.; Al-Hallaq, Hania A.; Fei, Xianhan M.; Tuohy, Rachel E.; Armato, Samuel G.

    2013-02-01

    To determine how 19 image texture features may be altered by three image registration methods, "normal" baseline and follow-up computed tomography (CT) scans from 27 patients were analyzed. Nineteen texture feature values were calculated in over 1,000 32x32-pixel regions of interest (ROIs) randomly placed in each baseline scan. All three methods used demons registration to map baseline scan ROIs to anatomically matched locations in the corresponding transformed follow-up scan. For the first method, the follow-up scan transformation was subsampled to achieve a voxel size identical to that of the baseline scan. For the second method, the follow-up scan was transformed through affine registration to achieve global alignment with the baseline scan. For the third method, the follow-up scan was directly deformed to the baseline scan using demons deformable registration. Feature values in matched ROIs were compared using Bland- Altman 95% limits of agreement. For each feature, the range spanned by the 95% limits was normalized to the mean feature value to obtain the normalized range of agreement, nRoA. Wilcoxon signed-rank tests were used to compare nRoA values across features for the three methods. Significance for individual tests was adjusted using the Bonferroni method. nRoA was significantly smaller for affine-registered scans than for the resampled scans (p=0.003), indicating lower feature value variability between baseline and follow-up scan ROIs using this method. For both of these methods, however, nRoA was significantly higher than when feature values were calculated directly on demons-deformed followup scans (p<0.001). Across features and methods, nRoA values remained below 26%.

  1. Depressive Symptoms, Anatomical Region, and Clinical Outcomes for Patients Seeking Outpatient Physical Therapy for Musculoskeletal Pain

    PubMed Central

    Coronado, Rogelio A.; Beneciuk, Jason M.; Valencia, Carolina; Werneke, Mark W.; Hart, Dennis L.

    2011-01-01

    Background Clinical guidelines advocate the routine identification of depressive symptoms for patients with pain in the lumbar or cervical spine, but not for other anatomical regions. Objective The purpose of this study was to investigate the prevalence and impact of depressive symptoms for patients with musculoskeletal pain across different anatomical regions. Design This was a prospective, associational study. Methods Demographic, clinical, depressive symptom (Symptom Checklist 90–Revised), and outcome data were collected by self-report from a convenience sample of 8,304 patients. Frequency of severe depressive symptoms was assessed by chi-square analysis for demographic and clinical variables. An analysis of variance examined the influence of depressive symptoms and anatomical region on intake pain intensity and functional status. Separate hierarchical multiple regression models by anatomical region examined the influence of depressive symptoms on clinical outcomes. Results Prevalence of severe depression was higher in women, in industrial and pain clinics, and in patients who reported chronic pain or prior surgery. Lower prevalence rates were found in patients older than 65 years and those who had upper- or lower-extremity pain. Depressive symptoms had a moderate to large effect on pain ratings (Cohen d=0.55–0.87) and a small to large effect on functional status (Cohen d=0.28–0.95). In multivariate analysis, depressive symptoms contributed additional variance to pain intensity and functional status for all anatomical locations, except for discharge values for the cervical region. Conclusions Rates of depressive symptoms varied slightly based on anatomical region of musculoskeletal pain. Depressive symptoms had a consistent detrimental influence on outcomes, except on discharge scores for the cervical anatomical region. Expanding screening recommendations for depressive symptoms to include more anatomical regions may be indicated in physical therapy settings. PMID:21233305

  2. Evaluation by medical students of the educational value of multi-material and multi-colored three-dimensional printed models of the upper limb for anatomical education.

    PubMed

    Mogali, Sreenivasulu Reddy; Yeong, Wai Yee; Tan, Heang Kuan Joel; Tan, Gerald Jit Shen; Abrahams, Peter H; Zary, Nabil; Low-Beer, Naomi; Ferenczi, Michael Alan

    2018-01-01

    For centuries, cadaveric material has been the cornerstone of anatomical education. For reasons of changes in curriculum emphasis, cost, availability, expertise, and ethical concerns, several medical schools have replaced wet cadaveric specimens with plastinated prosections, plastic models, imaging, and digital models. Discussions about the qualities and limitations of these alternative teaching resources are on-going. We hypothesize that three-dimensional printed (3DP) models can replace or indeed enhance existing resources for anatomical education. A novel multi-colored and multi-material 3DP model of the upper limb was developed based on a plastinated upper limb prosection, capturing muscles, nerves, arteries and bones with a spatial resolution of ∼1 mm. This study aims to examine the educational value of the 3DP model from the learner's point of view. Students (n = 15) compared the developed 3DP models with the plastinated prosections, and provided their views on their learning experience using 3DP models using a survey and focus group discussion. Anatomical features in 3DP models were rated as accurate by all students. Several positive aspects of 3DP models were highlighted, such as the color coding by tissue type, flexibility and that less care was needed in the handling and examination of the specimen than plastinated specimens which facilitated the appreciation of relations between the anatomical structures. However, students reported that anatomical features in 3DP models are less realistic compared to the plastinated specimens. Multi-colored, multi-material 3DP models are a valuable resource for anatomical education and an excellent adjunct to wet cadaveric or plastinated prosections. Anat Sci Educ 11: 54-64. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  3. Specimen-specific modeling of hip fracture pattern and repair.

    PubMed

    Ali, Azhar A; Cristofolini, Luca; Schileo, Enrico; Hu, Haixiang; Taddei, Fulvia; Kim, Raymond H; Rullkoetter, Paul J; Laz, Peter J

    2014-01-22

    Hip fracture remains a major health problem for the elderly. Clinical studies have assessed fracture risk based on bone quality in the aging population and cadaveric testing has quantified bone strength and fracture loads. Prior modeling has primarily focused on quantifying the strain distribution in bone as an indicator of fracture risk. Recent advances in the extended finite element method (XFEM) enable prediction of the initiation and propagation of cracks without requiring a priori knowledge of the crack path. Accordingly, the objectives of this study were to predict femoral fracture in specimen-specific models using the XFEM approach, to perform one-to-one comparisons of predicted and in vitro fracture patterns, and to develop a framework to assess the mechanics and load transfer in the fractured femur when it is repaired with an osteosynthesis implant. Five specimen-specific femur models were developed from in vitro experiments under a simulated stance loading condition. Predicted fracture patterns closely matched the in vitro patterns; however, predictions of fracture load differed by approximately 50% due to sensitivity to local material properties. Specimen-specific intertrochanteric fractures were induced by subjecting the femur models to a sideways fall and repaired with a contemporary implant. Under a post-surgical stance loading, model-predicted load sharing between the implant and bone across the fracture surface varied from 59%:41% to 89%:11%, underscoring the importance of considering anatomic and fracture variability in the evaluation of implants. XFEM modeling shows potential as a macro-level analysis enabling fracture investigations of clinical cohorts, including at-risk groups, and the design of robust implants. © 2013 Published by Elsevier Ltd.

  4. Inter-hemispheric Intrinsic Connectivity as a Neuromarker for the Diagnosis of Boys with Tourette Syndrome.

    PubMed

    Liao, Wei; Yu, Yang; Miao, Huan-Huan; Feng, Yi-Xuan; Ji, Gong-Jun; Feng, Jian-Hua

    2017-05-01

    Tourette syndrome (TS) is associated with gross morphological changes in the corpus callosum, suggesting deficits in inter-hemispheric coordination. The present study sought to identify changes in inter-hemispheric functional and anatomical connectivity in boys with "pure" TS as well as their potential value for clinical diagnosis. TS boys without comorbidity (pure TS, n = 24) were selected from a large dataset and compared to age- and education-matched controls (n = 32). Intrinsic functional connectivity (iFC) between bilateral homotopic voxels was computed and compared between groups. Abnormal iFC was found in the bilateral prefronto-striatum-midbrain networks as well as bilateral sensorimotor and temporal cortices. The iFC between the bilateral anterior cingulate cortex (ACC) was negatively correlated with symptom severity. Anatomical connectivity strengths between functionally abnormal regions were estimated by diffusion probabilistic tractography, but no significant between-group difference was found. To test the clinical applicability of these neuroimaging findings, multivariate pattern analysis was used to develop a classification model in half of the total sample. The classification model exhibited excellent classification power for discriminating TS patients from controls in the other half samples. In summary, our findings emphasize the role of inter-hemispheric communication deficits in the pathophysiology of TS and suggest that iFC is a potential quantitative neuromarker for clinical diagnosis.

  5. Automated kidney detection for 3D ultrasound using scan line searching

    NASA Astrophysics Data System (ADS)

    Noll, Matthias; Nadolny, Anne; Wesarg, Stefan

    2016-04-01

    Ultrasound (U/S) is a fast and non-expensive imaging modality that is used for the examination of various anatomical structures, e.g. the kidneys. One important task for automatic organ tracking or computer-aided diagnosis is the identification of the organ region. During this process the exact information about the transducer location and orientation is usually unavailable. This renders the implementation of such automatic methods exceedingly challenging. In this work we like to introduce a new automatic method for the detection of the kidney in 3D U/S images. This novel technique analyses the U/S image data along virtual scan lines. Here, characteristic texture changes when entering and leaving the symmetric tissue regions of the renal cortex are searched for. A subsequent feature accumulation along a second scan direction produces a 2D heat map of renal cortex candidates, from which the kidney location is extracted in two steps. First, the strongest candidate as well as its counterpart are extracted by heat map intensity ranking and renal cortex size analysis. This process exploits the heat map gap caused by the renal pelvis region. Substituting the renal pelvis detection with this combined cortex tissue feature increases the detection robustness. In contrast to model based methods that generate characteristic pattern matches, our method is simpler and therefore faster. An evaluation performed on 61 3D U/S data sets showed, that in 55 cases showing none or minor shadowing the kidney location could be correctly identified.

  6. [3D modeling of the female pelvis by Computer-Assisted Anatomical Dissection: Applications and perspectives].

    PubMed

    Balaya, V; Uhl, J-F; Lanore, A; Salachas, C; Samoyeau, T; Ngo, C; Bensaid, C; Cornou, C; Rossi, L; Douard, R; Bats, A-S; Lecuru, F; Delmas, V

    2016-05-01

    To achieve a 3D vectorial model of a female pelvis by Computer-Assisted Anatomical Dissection and to assess educationnal and surgical applications. From the database of "visible female" of Visible Human Project(®) (VHP) of the "national library of medicine" NLM (United States), we used 739 transverse anatomical slices of 0.33mm thickness going from L4 to the trochanters. The manual segmentation of each anatomical structures was done with Winsurf(®) software version 4.3. Each anatomical element was built as a separate vectorial object. The whole colored-rendered vectorial model with realistic textures was exported in 3Dpdf format to allow a real time interactive manipulation with Acrobat(®) pro version 11 software. Each element can be handled separately at any transparency, which allows an anatomical learning by systems: skeleton, pelvic organs, urogenital system, arterial and venous vascularization. This 3D anatomical model can be used as data bank to teach of the fundamental anatomy. This 3D vectorial model, realistic and interactive constitutes an efficient educational tool for the teaching of the anatomy of the pelvis. 3D printing of the pelvis is possible with the new printers. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Fabrication and assessment of 3D printed anatomical models of the lower limb for anatomical teaching and femoral vessel access training in medicine.

    PubMed

    O'Reilly, Michael K; Reese, Sven; Herlihy, Therese; Geoghegan, Tony; Cantwell, Colin P; Feeney, Robin N M; Jones, James F X

    2016-01-01

    For centuries, cadaveric dissection has been the touchstone of anatomy education. It offers a medical student intimate access to his or her first patient. In contrast to idealized artisan anatomical models, it presents the natural variation of anatomy in fine detail. However, a new teaching construct has appeared recently in which artificial cadavers are manufactured through three-dimensional (3D) printing of patient specific radiological data sets. In this article, a simple powder based printer is made more versatile to manufacture hard bones, silicone muscles and perfusable blood vessels. The approach involves blending modern approaches (3D printing) with more ancient ones (casting and lost-wax techniques). These anatomically accurate models can augment the approach to anatomy teaching from dissection to synthesis of 3D-printed parts held together with embedded rare earth magnets. Vascular simulation is possible through application of pumps and artificial blood. The resulting arteries and veins can be cannulated and imaged with Doppler ultrasound. In some respects, 3D-printed anatomy is superior to older teaching methods because the parts are cheap, scalable, they can cover the entire age span, they can be both dissected and reassembled and the data files can be printed anywhere in the world and mass produced. Anatomical diversity can be collated as a digital repository and reprinted rather than waiting for the rare variant to appear in the dissection room. It is predicted that 3D printing will revolutionize anatomy when poly-material printing is perfected in the early 21st century. © 2015 American Association of Anatomists.

  8. Brain structural plasticity in survivors of a major earthquake

    PubMed Central

    Lui, Su; Chen, Long; Yao, Li; Xiao, Yuan; Wu, Qi-Zhu; Zhang, Jun-Ran; Huang, Xiao-Qi; Zhang, Wei; Wang, Yu-Qin; Chen, Hua-Fu; Chan, Raymond C.K.; Sweeney, John A.; Gong, Qi-Yong

    2013-01-01

    Background Stress responses have been studied extensively in animal models, but effects of major life stress on the human brain remain poorly understood. The aim of this study was to determine whether survivors of a major earthquake, who were presumed to have experienced extreme emotional stress during the disaster, demonstrate differences in brain anatomy relative to individuals who have not experienced such stressors. Methods Healthy survivors living in an area devastated by a major earthquake and matched healthy controls underwent 3-dimentional high-resolution magnetic resonance imaging (MRI). Survivors were scanned 13–25 days after the earthquake; controls had undergone MRI for other studies not long before the earthquake. We used optimized voxel-based morphometry analysis to identify regional differences of grey matter volume between the survivors and controls. Results We included 44 survivors (17 female, mean age 37 [standard deviation (SD) 10.6] yr) and 38 controls (14 female, mean age 35.3 [SD 11.2] yr) in our analysis. Compared with controls, the survivors showed significantly lower grey matter volume in the bilateral insula, hippocampus, left caudate and putamen, and greater grey matter volume in the bilateral orbitofrontal cortex and the parietal lobe (all p < 0.05, corrected for multiple comparison). Limitations Differences in the variance of survivor and control data could impact study findings. Conclusion Acute anatomic alterations could be observed in earthquake survivors in brain regions where functional alterations after stress have been described. Anatomic changes in the present study were observed earlier than previously reported and were seen in prefrontal–limbic, parietal and striatal brain systems. Together with the results of previous functional imaging studies, our observations suggest a complex pattern of human brain response to major life stress affecting brain systems that modulate and respond to heightened affective arousal. PMID:23710694

  9. Prostate tissue ablation with MRI guided transurethral therapeutic ultrasound and intraoperative assessment of the integrity of the neurovascular bundle

    NASA Astrophysics Data System (ADS)

    Sammet, Steffen; Partanen, Ari; Yousuf, Ambereen; Wardrip, Craig; Niekrasz, Marek; Antic, Tatjana; Razmaria, Aria; Sokka, Sham; Karczmar, Gregory; Oto, Aytekin

    2017-03-01

    OBJECTIVES: Evaluation of the precision of prostate tissue ablation with MRI guided therapeuticultrasound by intraoperative objective assessment of the neurovascular bundle in canines in-vivo. METHODS: In this ongoing IACUC approved study, eight male canines were scanned in a clinical 3T Achieva MRI scanner (Philips) before, during, and after ultrasound therapy with a prototype MR-guided ultrasound therapy system (Philips). The system includes a therapy console to plan treatment, to calculate real-time temperature maps, and to control ultrasound exposures with temperature feedback. Atransurethral ultrasound applicator with eight transducer elements was used to ablate canine prostate tissue in-vivo. Ablated prostate tissue volumes were compared to the prescribed target volumes to evaluate technical effectiveness. The ablated volumes determined by MRI (T1, T2, diffusion, dynamic contrast enhanced and 240 CEM43 thermal dose maps) were compared to H&E stained histological slides afterprostatectomy. Potential nerve damage of the neurovascular bundle was objectively assessed intraoperativelyduring prostatectomy with a CaverMap Surgical Aid nerve stimulator (Blue Torch Medical Technologies). RESULTS: Transurethral MRI -guided ultrasound therapy can effectively ablate canine prostate tissue invivo. Coronal MR-imaging confirmed the correct placement of the HIFU transducer. MRI temperature maps were acquired during HIFU treatment, and subsequently used for calculating thermal dose. Prescribed target volumes corresponded to the 240 CEM43 thermal dose maps during HIFU treatment in all canines. Ablated volumes on high resolution anatomical, diffusion weighted, and contrast enhanced MR images matched corresponding histological slides after prostatectomy. MRI guidance with realtime temperature monitoring showed no damage to surrounding tissues, especially to the neurovascular bundle (assessed intra-operatively with a nerve stimulator) or to the rectum wall. CONCLUSIONS: Our study demonstrates the effectiveness and precision of transurethral ultrasound ablation of prostatic tissue in canines with MRI monitoring and guidance. The canine prostate is an excellent model for the human prostate with similar anatomical characteristics and diseases. MRI guidance with real-time, intraoperative temperature monitoring reduces the risk of damaging critical surrounding anatomical structures in ultrasound therapy of the prostate.

  10. Implementation of the Business Process Modelling Notation (BPMN) in the modelling of anatomic pathology processes.

    PubMed

    Rojo, Marcial García; Rolón, Elvira; Calahorra, Luis; García, Felix Oscar; Sánchez, Rosario Paloma; Ruiz, Francisco; Ballester, Nieves; Armenteros, María; Rodríguez, Teresa; Espartero, Rafael Martín

    2008-07-15

    Process orientation is one of the essential elements of quality management systems, including those in use in healthcare. Business processes in hospitals are very complex and variable. BPMN (Business Process Modelling Notation) is a user-oriented language specifically designed for the modelling of business (organizational) processes. Previous experiences of the use of this notation in the processes modelling within the Pathology in Spain or another country are not known. We present our experience in the elaboration of the conceptual models of Pathology processes, as part of a global programmed surgical patient process, using BPMN. With the objective of analyzing the use of BPMN notation in real cases, a multidisciplinary work group was created, including software engineers from the Dep. of Technologies and Information Systems from the University of Castilla-La Mancha and health professionals and administrative staff from the Hospital General de Ciudad Real. The work in collaboration was carried out in six phases: informative meetings, intensive training, process selection, definition of the work method, process describing by hospital experts, and process modelling. The modelling of the processes of Anatomic Pathology is presented using BPMN. The presented subprocesses are those corresponding to the surgical pathology examination of the samples coming from operating theatre, including the planning and realization of frozen studies. The modelling of Anatomic Pathology subprocesses has allowed the creation of an understandable graphical model, where management and improvements are more easily implemented by health professionals.

  11. Comparing Four Age Model Techniques using Nine Sediment Cores from the Iberian Margin

    NASA Astrophysics Data System (ADS)

    Lisiecki, L. E.; Jones, A. M.; Lawrence, C.

    2017-12-01

    Interpretations of paleoclimate records from ocean sediment cores rely on age models, which provide estimates of age as a function of core depth. Here we compare four methods used to generate age models for sediment cores for the past 140 kyr. The first method is based on radiocarbon dating using the Bayesian statistical software, Bacon [Blaauw and Christen, 2011]. The second method aligns benthic δ18O to a target core using the probabilistic alignment algorithm, HMM-Match, which also generates age uncertainty estimates [Lin et al., 2014]. The third and fourth methods are planktonic δ18O and sea surface temperature (SST) alignments to the same target core, using the alignment algorithm Match [Lisiecki and Lisiecki, 2002]. Unlike HMM-Match, Match requires parameter tuning and does not produce uncertainty estimates. The results of these four age model techniques are compared for nine high-resolution cores from the Iberian margin. The root mean square error between the individual age model results and each core's average estimated age is 1.4 kyr. Additionally, HMM-Match and Bacon age estimates agree to within uncertainty and have similar 95% confidence widths of 1-2 kyr for the highest resolution records. In one core, the planktonic and SST alignments did not fall within the 95% confidence intervals from HMM-Match. For this core, the surface proxy alignments likely produce more reliable results due to millennial-scale SST variability and the presence of several gaps in the benthic δ18O data. Similar studies of other oceanographic regions are needed to determine the spatial extents over which these climate proxies may be stratigraphically correlated.

  12. A framework for medical image retrieval using machine learning and statistical similarity matching techniques with relevance feedback.

    PubMed

    Rahman, Md Mahmudur; Bhattacharya, Prabir; Desai, Bipin C

    2007-01-01

    A content-based image retrieval (CBIR) framework for diverse collection of medical images of different imaging modalities, anatomic regions with different orientations and biological systems is proposed. Organization of images in such a database (DB) is well defined with predefined semantic categories; hence, it can be useful for category-specific searching. The proposed framework consists of machine learning methods for image prefiltering, similarity matching using statistical distance measures, and a relevance feedback (RF) scheme. To narrow down the semantic gap and increase the retrieval efficiency, we investigate both supervised and unsupervised learning techniques to associate low-level global image features (e.g., color, texture, and edge) in the projected PCA-based eigenspace with their high-level semantic and visual categories. Specially, we explore the use of a probabilistic multiclass support vector machine (SVM) and fuzzy c-mean (FCM) clustering for categorization and prefiltering of images to reduce the search space. A category-specific statistical similarity matching is proposed in a finer level on the prefiltered images. To incorporate a better perception subjectivity, an RF mechanism is also added to update the query parameters dynamically and adjust the proposed matching functions. Experiments are based on a ground-truth DB consisting of 5000 diverse medical images of 20 predefined categories. Analysis of results based on cross-validation (CV) accuracy and precision-recall for image categorization and retrieval is reported. It demonstrates the improvement, effectiveness, and efficiency achieved by the proposed framework.

  13. Localizing gray matter deficits in late-onset depression using computational cortical pattern matching methods.

    PubMed

    Ballmaier, Martina; Kumar, Anand; Thompson, Paul M; Narr, Katherine L; Lavretsky, Helen; Estanol, Laverne; Deluca, Heather; Toga, Arthur W

    2004-11-01

    The authors used magnetic resonance imaging and an image analysis technique known as cortical pattern matching to map cortical gray matter deficits in elderly depressed patients with an illness onset after age 60 (late-onset depression). Seventeen patients with late-onset depression (11 women and six men; mean age=75.24, SD=8.52) and 17 group-matched comparison subjects (11 women and six men; mean age=73.88, SD=7.61) were included. Detailed spatial analyses of gray matter were conducted across the entire cortex by measuring local proportions of gray matter at thousands of homologous cortical surface locations in each subject, and these patterns were matched across subjects by using elastic transformations to align sulcal topography. To visualize regional changes, statistical differences were mapped at each cortical surface location in three dimensions. The late-onset depression group exhibited significant gray matter deficits in the right lateral temporal cortex and the right parietal cortex, where decreases were most pronounced in sensorimotor regions. The statistical maps also showed gray matter deficits in the same regions of the left hemisphere that approached significance after permutation testing. No significant group differences were detected in frontal cortices or any other anatomical region. Regionally specific decreases of gray matter occur in late-onset depression, supporting the hypothesis that this subset of elderly patients with major depression presents with certain unique neuroanatomical abnormalities that may differ from patients with an earlier onset of illness.

  14. Modern morphometry: new perspectives in physical anthropology.

    PubMed

    Mantini, Simone; Ripani, Maurizio

    2009-06-01

    In the past one hundred years physical anthropology has recourse to more and more efficient methods, which provide several new information regarding, human evolution and biology. Apart from the molecular approach, the introduction of new computed assisted techniques gave rise to a new concept of morphometry. Computed tomography and 3D-imaging, allowed providing anatomical description of the external and inner structures exceeding the problems encountered with the traditional morphometric methods. Furthermore, the support of geometric morphometrics, allowed creating geometric models to investigate morphological variation in terms of evolution, ontogeny and variability. The integration of these new tools gave rise to the virtual anthropology and to a new image of the anthropologist in which anatomical, biological, mathematical statistical and data processing information are fused in a multidisciplinary approach.

  15. Simultaneous 3D–2D image registration and C-arm calibration: Application to endovascular image-guided interventions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitrović, Uroš; Pernuš, Franjo; Likar, Boštjan

    Purpose: Three-dimensional to two-dimensional (3D–2D) image registration is a key to fusion and simultaneous visualization of valuable information contained in 3D pre-interventional and 2D intra-interventional images with the final goal of image guidance of a procedure. In this paper, the authors focus on 3D–2D image registration within the context of intracranial endovascular image-guided interventions (EIGIs), where the 3D and 2D images are generally acquired with the same C-arm system. The accuracy and robustness of any 3D–2D registration method, to be used in a clinical setting, is influenced by (1) the method itself, (2) uncertainty of initial pose of the 3Dmore » image from which registration starts, (3) uncertainty of C-arm’s geometry and pose, and (4) the number of 2D intra-interventional images used for registration, which is generally one and at most two. The study of these influences requires rigorous and objective validation of any 3D–2D registration method against a highly accurate reference or “gold standard” registration, performed on clinical image datasets acquired in the context of the intervention. Methods: The registration process is split into two sequential, i.e., initial and final, registration stages. The initial stage is either machine-based or template matching. The latter aims to reduce possibly large in-plane translation errors by matching a projection of the 3D vessel model and 2D image. In the final registration stage, four state-of-the-art intrinsic image-based 3D–2D registration methods, which involve simultaneous refinement of rigid-body and C-arm parameters, are evaluated. For objective validation, the authors acquired an image database of 15 patients undergoing cerebral EIGI, for which accurate gold standard registrations were established by fiducial marker coregistration. Results: Based on target registration error, the obtained success rates of 3D to a single 2D image registration after initial machine-based and template matching and final registration involving C-arm calibration were 36%, 73%, and 93%, respectively, while registration accuracy of 0.59 mm was the best after final registration. By compensating in-plane translation errors by initial template matching, the success rates achieved after the final stage improved consistently for all methods, especially if C-arm calibration was performed simultaneously with the 3D–2D image registration. Conclusions: Because the tested methods perform simultaneous C-arm calibration and 3D–2D registration based solely on anatomical information, they have a high potential for automation and thus for an immediate integration into current interventional workflow. One of the authors’ main contributions is also comprehensive and representative validation performed under realistic conditions as encountered during cerebral EIGI.« less

  16. Three-dimensional object surface identification

    NASA Astrophysics Data System (ADS)

    Celenk, Mehmet

    1995-03-01

    This paper describes a computationally efficient matching method for inspecting 3D objects using their serial cross sections. Object regions of interest in cross-sectional binary images of successive slices are aligned with those of the models. Cross-sectional differences between the object and the models are measured in the direction of the gradient of the cross section boundary. This is repeated in all the cross-sectional images. The model with minimum average cross-sectional difference is selected as the best match to the given object (i.e., no defect). The method is tested using various computer generated surfaces and matching results are presented. It is also demonstrated using Symult S-2010 16-node system that the method is suitable for parallel implementation in massage passing processors with the maximum attainable speedup (close to 16 for S-2010).

  17. Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited.

    PubMed

    Thomas, Cibu; Ye, Frank Q; Irfanoglu, M Okan; Modi, Pooja; Saleem, Kadharbatcha S; Leopold, David A; Pierpaoli, Carlo

    2014-11-18

    Tractography based on diffusion-weighted MRI (DWI) is widely used for mapping the structural connections of the human brain. Its accuracy is known to be limited by technical factors affecting in vivo data acquisition, such as noise, artifacts, and data undersampling resulting from scan time constraints. It generally is assumed that improvements in data quality and implementation of sophisticated tractography methods will lead to increasingly accurate maps of human anatomical connections. However, assessing the anatomical accuracy of DWI tractography is difficult because of the lack of independent knowledge of the true anatomical connections in humans. Here we investigate the future prospects of DWI-based connectional imaging by applying advanced tractography methods to an ex vivo DWI dataset of the macaque brain. The results of different tractography methods were compared with maps of known axonal projections from previous tracer studies in the macaque. Despite the exceptional quality of the DWI data, none of the methods demonstrated high anatomical accuracy. The methods that showed the highest sensitivity showed the lowest specificity, and vice versa. Additionally, anatomical accuracy was highly dependent upon parameters of the tractography algorithm, with different optimal values for mapping different pathways. These results suggest that there is an inherent limitation in determining long-range anatomical projections based on voxel-averaged estimates of local fiber orientation obtained from DWI data that is unlikely to be overcome by improvements in data acquisition and analysis alone.

  18. Interpolation of diffusion weighted imaging datasets.

    PubMed

    Dyrby, Tim B; Lundell, Henrik; Burke, Mark W; Reislev, Nina L; Paulson, Olaf B; Ptito, Maurice; Siebner, Hartwig R

    2014-12-01

    Diffusion weighted imaging (DWI) is used to study white-matter fibre organisation, orientation and structural connectivity by means of fibre reconstruction algorithms and tractography. For clinical settings, limited scan time compromises the possibilities to achieve high image resolution for finer anatomical details and signal-to-noise-ratio for reliable fibre reconstruction. We assessed the potential benefits of interpolating DWI datasets to a higher image resolution before fibre reconstruction using a diffusion tensor model. Simulations of straight and curved crossing tracts smaller than or equal to the voxel size showed that conventional higher-order interpolation methods improved the geometrical representation of white-matter tracts with reduced partial-volume-effect (PVE), except at tract boundaries. Simulations and interpolation of ex-vivo monkey brain DWI datasets revealed that conventional interpolation methods fail to disentangle fine anatomical details if PVE is too pronounced in the original data. As for validation we used ex-vivo DWI datasets acquired at various image resolutions as well as Nissl-stained sections. Increasing the image resolution by a factor of eight yielded finer geometrical resolution and more anatomical details in complex regions such as tract boundaries and cortical layers, which are normally only visualized at higher image resolutions. Similar results were found with typical clinical human DWI dataset. However, a possible bias in quantitative values imposed by the interpolation method used should be considered. The results indicate that conventional interpolation methods can be successfully applied to DWI datasets for mining anatomical details that are normally seen only at higher resolutions, which will aid in tractography and microstructural mapping of tissue compartments. Copyright © 2014. Published by Elsevier Inc.

  19. Inspection of aeronautical mechanical parts with a pan-tilt-zoom camera: an approach guided by the computer-aided design model

    NASA Astrophysics Data System (ADS)

    Viana, Ilisio; Orteu, Jean-José; Cornille, Nicolas; Bugarin, Florian

    2015-11-01

    We focus on quality control of mechanical parts in aeronautical context using a single pan-tilt-zoom (PTZ) camera and a computer-aided design (CAD) model of the mechanical part. We use the CAD model to create a theoretical image of the element to be checked, which is further matched with the sensed image of the element to be inspected, using a graph theory-based approach. The matching is carried out in two stages. First, the two images are used to create two attributed graphs representing the primitives (ellipses and line segments) in the images. In the second stage, the graphs are matched using a similarity function built from the primitive parameters. The similarity scores of the matching are injected in the edges of a bipartite graph. A best-match-search procedure in the bipartite graph guarantees the uniqueness of the match solution. The method achieves promising performance in tests with synthetic data including missing elements, displaced elements, size changes, and combinations of these cases. The results open good prospects for using the method with realistic data.

  20. Improving the precision of the keyword-matching pornographic text filtering method using a hybrid model.

    PubMed

    Su, Gui-yang; Li, Jian-hua; Ma, Ying-hua; Li, Sheng-hong

    2004-09-01

    With the flooding of pornographic information on the Internet, how to keep people away from that offensive information is becoming one of the most important research areas in network information security. Some applications which can block or filter such information are used. Approaches in those systems can be roughly classified into two kinds: metadata based and content based. With the development of distributed technologies, content based filtering technologies will play a more and more important role in filtering systems. Keyword matching is a content based method used widely in harmful text filtering. Experiments to evaluate the recall and precision of the method showed that the precision of the method is not satisfactory, though the recall of the method is rather high. According to the results, a new pornographic text filtering model based on reconfirming is put forward. Experiments showed that the model is practical, has less loss of recall than the single keyword matching method, and has higher precision.

  1. Model for spectral and chromatographic data

    DOEpatents

    Jarman, Kristin [Richland, WA; Willse, Alan [Richland, WA; Wahl, Karen [Richland, WA; Wahl, Jon [Richland, WA

    2002-11-26

    A method and apparatus using a spectral analysis technique are disclosed. In one form of the invention, probabilities are selected to characterize the presence (and in another form, also a quantification of a characteristic) of peaks in an indexed data set for samples that match a reference species, and other probabilities are selected for samples that do not match the reference species. An indexed data set is acquired for a sample, and a determination is made according to techniques exemplified herein as to whether the sample matches or does not match the reference species. When quantification of peak characteristics is undertaken, the model is appropriately expanded, and the analysis accounts for the characteristic model and data. Further techniques are provided to apply the methods and apparatuses to process control, cluster analysis, hypothesis testing, analysis of variance, and other procedures involving multiple comparisons of indexed data.

  2. The bovine patella as a model of early osteoarthritis.

    PubMed

    Hargrave-Thomas, E J; Thambyah, A; McGlashan, S R; Broom, N D

    2013-12-01

    The bovine patella model has been used extensively for studying important structure-function aspects of articular cartilage, including its degeneration. However, the degeneration seen in this model has, to our knowledge, never been adequately compared with human osteoarthritis (OA). In this study, bovine patellae displaying normal to severely degenerate states were compared with human tissue displaying intact cartilage to severe OA. Comparisons of normal and OA features were made with histological scoring, morphometric measurements, and qualitative observations. Differential interference contrast microscopy was used to image early OA changes in the articular cartilage matrix and to investigate whether this method provided comparable quality of visualisation of key structural features with standard histology. The intact bovine cartilage was found to be similar to healthy human cartilage and the degenerate bovine cartilage resembled the human OA tissues with regard to structural disruption, cellularity changes, and staining loss. The extent of degeneration in the bovine tissues matched the mild to moderate range of human OA tissues; however, no bovine samples exhibited late-stage OA. Additionally, in both bovine and human tissues, cartilage degeneration was accompanied by calcified cartilage thickening, tidemark duplication, and the advancement of the cement line by protrusions of bony spicules into the calcified cartilage. This comparison of degeneration in the bovine and human tissues suggests a common pathway for the progression of OA and thus the bovine patella is proposed to be an appropriate model for investigating the structural changes associated with early OA. © 2013 Anatomical Society.

  3. Accelerating cardiac bidomain simulations using graphics processing units.

    PubMed

    Neic, A; Liebmann, M; Hoetzl, E; Mitchell, L; Vigmond, E J; Haase, G; Plank, G

    2012-08-01

    Anatomically realistic and biophysically detailed multiscale computer models of the heart are playing an increasingly important role in advancing our understanding of integrated cardiac function in health and disease. Such detailed simulations, however, are computationally vastly demanding, which is a limiting factor for a wider adoption of in-silico modeling. While current trends in high-performance computing (HPC) hardware promise to alleviate this problem, exploiting the potential of such architectures remains challenging since strongly scalable algorithms are necessitated to reduce execution times. Alternatively, acceleration technologies such as graphics processing units (GPUs) are being considered. While the potential of GPUs has been demonstrated in various applications, benefits in the context of bidomain simulations where large sparse linear systems have to be solved in parallel with advanced numerical techniques are less clear. In this study, the feasibility of multi-GPU bidomain simulations is demonstrated by running strong scalability benchmarks using a state-of-the-art model of rabbit ventricles. The model is spatially discretized using the finite element methods (FEM) on fully unstructured grids. The GPU code is directly derived from a large pre-existing code, the Cardiac Arrhythmia Research Package (CARP), with very minor perturbation of the code base. Overall, bidomain simulations were sped up by a factor of 11.8 to 16.3 in benchmarks running on 6-20 GPUs compared to the same number of CPU cores. To match the fastest GPU simulation which engaged 20 GPUs, 476 CPU cores were required on a national supercomputing facility.

  4. Accelerating Cardiac Bidomain Simulations Using Graphics Processing Units

    PubMed Central

    Neic, Aurel; Liebmann, Manfred; Hoetzl, Elena; Mitchell, Lawrence; Vigmond, Edward J.; Haase, Gundolf

    2013-01-01

    Anatomically realistic and biophysically detailed multiscale computer models of the heart are playing an increasingly important role in advancing our understanding of integrated cardiac function in health and disease. Such detailed simulations, however, are computationally vastly demanding, which is a limiting factor for a wider adoption of in-silico modeling. While current trends in high-performance computing (HPC) hardware promise to alleviate this problem, exploiting the potential of such architectures remains challenging since strongly scalable algorithms are necessitated to reduce execution times. Alternatively, acceleration technologies such as graphics processing units (GPUs) are being considered. While the potential of GPUs has been demonstrated in various applications, benefits in the context of bidomain simulations where large sparse linear systems have to be solved in parallel with advanced numerical techniques are less clear. In this study, the feasibility of multi-GPU bidomain simulations is demonstrated by running strong scalability benchmarks using a state-of-the-art model of rabbit ventricles. The model is spatially discretized using the finite element methods (FEM) on fully unstructured grids. The GPU code is directly derived from a large pre-existing code, the Cardiac Arrhythmia Research Package (CARP), with very minor perturbation of the code base. Overall, bidomain simulations were sped up by a factor of 11.8 to 16.3 in benchmarks running on 6–20 GPUs compared to the same number of CPU cores. To match the fastest GPU simulation which engaged 20GPUs, 476 CPU cores were required on a national supercomputing facility. PMID:22692867

  5. Network-based regularization for matched case-control analysis of high-dimensional DNA methylation data.

    PubMed

    Sun, Hokeun; Wang, Shuang

    2013-05-30

    The matched case-control designs are commonly used to control for potential confounding factors in genetic epidemiology studies especially epigenetic studies with DNA methylation. Compared with unmatched case-control studies with high-dimensional genomic or epigenetic data, there have been few variable selection methods for matched sets. In an earlier paper, we proposed the penalized logistic regression model for the analysis of unmatched DNA methylation data using a network-based penalty. However, for popularly applied matched designs in epigenetic studies that compare DNA methylation between tumor and adjacent non-tumor tissues or between pre-treatment and post-treatment conditions, applying ordinary logistic regression ignoring matching is known to bring serious bias in estimation. In this paper, we developed a penalized conditional logistic model using the network-based penalty that encourages a grouping effect of (1) linked Cytosine-phosphate-Guanine (CpG) sites within a gene or (2) linked genes within a genetic pathway for analysis of matched DNA methylation data. In our simulation studies, we demonstrated the superiority of using conditional logistic model over unconditional logistic model in high-dimensional variable selection problems for matched case-control data. We further investigated the benefits of utilizing biological group or graph information for matched case-control data. We applied the proposed method to a genome-wide DNA methylation study on hepatocellular carcinoma (HCC) where we investigated the DNA methylation levels of tumor and adjacent non-tumor tissues from HCC patients by using the Illumina Infinium HumanMethylation27 Beadchip. Several new CpG sites and genes known to be related to HCC were identified but were missed by the standard method in the original paper. Copyright © 2012 John Wiley & Sons, Ltd.

  6. 3D/2D model-to-image registration by imitation learning for cardiac procedures.

    PubMed

    Toth, Daniel; Miao, Shun; Kurzendorfer, Tanja; Rinaldi, Christopher A; Liao, Rui; Mansi, Tommaso; Rhode, Kawal; Mountney, Peter

    2018-05-12

    In cardiac interventions, such as cardiac resynchronization therapy (CRT), image guidance can be enhanced by involving preoperative models. Multimodality 3D/2D registration for image guidance, however, remains a significant research challenge for fundamentally different image data, i.e., MR to X-ray. Registration methods must account for differences in intensity, contrast levels, resolution, dimensionality, field of view. Furthermore, same anatomical structures may not be visible in both modalities. Current approaches have focused on developing modality-specific solutions for individual clinical use cases, by introducing constraints, or identifying cross-modality information manually. Machine learning approaches have the potential to create more general registration platforms. However, training image to image methods would require large multimodal datasets and ground truth for each target application. This paper proposes a model-to-image registration approach instead, because it is common in image-guided interventions to create anatomical models for diagnosis, planning or guidance prior to procedures. An imitation learning-based method, trained on 702 datasets, is used to register preoperative models to intraoperative X-ray images. Accuracy is demonstrated on cardiac models and artificial X-rays generated from CTs. The registration error was [Formula: see text] on 1000 test cases, superior to that of manual ([Formula: see text]) and gradient-based ([Formula: see text]) registration. High robustness is shown in 19 clinical CRT cases. Besides the proposed methods feasibility in a clinical environment, evaluation has shown good accuracy and high robustness indicating that it could be applied in image-guided interventions.

  7. Validation of model-based deformation correction in image-guided liver surgery via tracked intraoperative ultrasound: preliminary method and results

    NASA Astrophysics Data System (ADS)

    Clements, Logan W.; Collins, Jarrod A.; Wu, Yifei; Simpson, Amber L.; Jarnagin, William R.; Miga, Michael I.

    2015-03-01

    Soft tissue deformation represents a significant error source in current surgical navigation systems used for open hepatic procedures. While numerous algorithms have been proposed to rectify the tissue deformation that is encountered during open liver surgery, clinical validation of the proposed methods has been limited to surface based metrics and sub-surface validation has largely been performed via phantom experiments. Tracked intraoperative ultrasound (iUS) provides a means to digitize sub-surface anatomical landmarks during clinical procedures. The proposed method involves the validation of a deformation correction algorithm for open hepatic image-guided surgery systems via sub-surface targets digitized with tracked iUS. Intraoperative surface digitizations were acquired via a laser range scanner and an optically tracked stylus for the purposes of computing the physical-to-image space registration within the guidance system and for use in retrospective deformation correction. Upon completion of surface digitization, the organ was interrogated with a tracked iUS transducer where the iUS images and corresponding tracked locations were recorded. After the procedure, the clinician reviewed the iUS images to delineate contours of anatomical target features for use in the validation procedure. Mean closest point distances between the feature contours delineated in the iUS images and corresponding 3-D anatomical model generated from the preoperative tomograms were computed to quantify the extent to which the deformation correction algorithm improved registration accuracy. The preliminary results for two patients indicate that the deformation correction method resulted in a reduction in target error of approximately 50%.

  8. Accuracy of DSM based on digital aerial image matching. (Polish Title: Dokładność NMPT tworzonego metodą automatycznego dopasowania cyfrowych zdjęć lotniczych)

    NASA Astrophysics Data System (ADS)

    Kubalska, J. L.; Preuss, R.

    2013-12-01

    Digital Surface Models (DSM) are used in GIS data bases as single product more often. They are also necessary to create other products such as3D city models, true-ortho and object-oriented classification. This article presents results of DSM generation for classification of vegetation in urban areas. Source data allowed producing DSM with using of image matching method and ALS data. The creation of DSM from digital images, obtained by Ultra Cam-D digital Vexcel camera, was carried out in Match-T by INPHO. This program optimizes the configuration of images matching process, which ensures high accuracy and minimize gap areas. The analysis of the accuracy of this process was made by comparison of DSM generated in Match-T with DSM generated from ALS data. Because of further purpose of generated DSM it was decided to create model in GRID structure with cell size of 1 m. With this parameter differential model from both DSMs was also built that allowed determining the relative accuracy of the compared models. The analysis indicates that the generation of DSM with multi-image matching method is competitive for the same surface model creation from ALS data. Thus, when digital images with high overlap are available, the additional registration of ALS data seems to be unnecessary.

  9. Automated anatomical labeling method for abdominal arteries extracted from 3D abdominal CT images

    NASA Astrophysics Data System (ADS)

    Oda, Masahiro; Hoang, Bui Huy; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Mori, Kensaku

    2012-02-01

    This paper presents an automated anatomical labeling method of abdominal arteries. In abdominal surgery, understanding of blood vessel structure concerning with a target organ is very important. Branching pattern of blood vessels differs among individuals. It is required to develop a system that can assist understanding of a blood vessel structure and anatomical names of blood vessels of a patient. Previous anatomical labbeling methods for abdominal arteries deal with either of the upper or lower abdominal arteries. In this paper, we present an automated anatomical labeling method of both of the upper and lower abdominal arteries extracted from CT images. We obtain a tree structure of artery regions and calculate feature values for each branch. These feature values include the diameter, curvature, direction, and running vectors of a branch. Target arteries of this method are grouped based on branching conditions. The following processes are separately applied for each group. We compute candidate artery names by using classifiers that are trained to output artery names. A correction process of the candidate anatomical names based on the rule of majority is applied to determine final names. We applied the proposed method to 23 cases of 3D abdominal CT images. Experimental results showed that the proposed method is able to perform nomenclature of entire major abdominal arteries. The recall and the precision rates of labeling are 79.01% and 80.41%, respectively.

  10. Automated anatomical labeling of bronchial branches extracted from CT datasets based on machine learning and combination optimization and its application to bronchoscope guidance.

    PubMed

    Mori, Kensaku; Ota, Shunsuke; Deguchi, Daisuke; Kitasaka, Takayuki; Suenaga, Yasuhito; Iwano, Shingo; Hasegawa, Yosihnori; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi

    2009-01-01

    This paper presents a method for the automated anatomical labeling of bronchial branches extracted from 3D CT images based on machine learning and combination optimization. We also show applications of anatomical labeling on a bronchoscopy guidance system. This paper performs automated labeling by using machine learning and combination optimization. The actual procedure consists of four steps: (a) extraction of tree structures of the bronchus regions extracted from CT images, (b) construction of AdaBoost classifiers, (c) computation of candidate names for all branches by using the classifiers, (d) selection of best combination of anatomical names. We applied the proposed method to 90 cases of 3D CT datasets. The experimental results showed that the proposed method can assign correct anatomical names to 86.9% of the bronchial branches up to the sub-segmental lobe branches. Also, we overlaid the anatomical names of bronchial branches on real bronchoscopic views to guide real bronchoscopy.

  11. Alzheimer's Disease Diagnosis in Individual Subjects using Structural MR Images: Validation Studies

    PubMed Central

    Vemuri, Prashanthi; Gunter, Jeffrey L.; Senjem, Matthew L.; Whitwell, Jennifer L.; Kantarci, Kejal; Knopman, David S.; Boeve, Bradley F.; Petersen, Ronald C.; Jack, Clifford R.

    2008-01-01

    OBJECTIVE To develop and validate a tool for Alzheimer's disease (AD) diagnosis in individual subjects using support vector machine (SVM) based classification of structural MR (sMR) images. BACKGROUND Libraries of sMR scans of clinically well characterized subjects can be harnessed for the purpose of diagnosing new incoming subjects. METHODS 190 patients with probable AD were age- and gender-matched with 190 cognitively normal (CN) subjects. Three different classification models were implemented: Model I uses tissue densities obtained from sMR scans to give STructural Abnormality iNDex (STAND)-score; and Models II and III use tissue densities as well as covariates (demographics and Apolipoprotein E genotype) to give adjusted-STAND (aSTAND)-score. Data from 140 AD and 140 CN were used for training. The SVM parameter optimization and training was done by four-fold cross validation. The remaining independent sample of 50 AD and 50 CN were used to obtain a minimally biased estimate of the generalization error of the algorithm. RESULTS The CV accuracy of Model II and Model III aSTAND-scores was 88.5% and 89.3% respectively and the developed models generalized well on the independent test datasets. Anatomic patterns best differentiating the groups were consistent with the known distribution of neurofibrillary AD pathology. CONCLUSIONS This paper presents preliminary evidence that application of SVM-based classification of an individual sMR scan relative to a library of scans can provide useful information in individual subjects for diagnosis of AD. Including demographic and genetic information in the classification algorithm slightly improves diagnostic accuracy. PMID:18054253

  12. Development of Image Segmentation Methods for Intracranial Aneurysms

    PubMed Central

    Qian, Yi; Morgan, Michael

    2013-01-01

    Though providing vital means for the visualization, diagnosis, and quantification of decision-making processes for the treatment of vascular pathologies, vascular segmentation remains a process that continues to be marred by numerous challenges. In this study, we validate eight aneurysms via the use of two existing segmentation methods; the Region Growing Threshold and Chan-Vese model. These methods were evaluated by comparison of the results obtained with a manual segmentation performed. Based upon this validation study, we propose a new Threshold-Based Level Set (TLS) method in order to overcome the existing problems. With divergent methods of segmentation, we discovered that the volumes of the aneurysm models reached a maximum difference of 24%. The local artery anatomical shapes of the aneurysms were likewise found to significantly influence the results of these simulations. In contrast, however, the volume differences calculated via use of the TLS method remained at a relatively low figure, at only around 5%, thereby revealing the existence of inherent limitations in the application of cerebrovascular segmentation. The proposed TLS method holds the potential for utilisation in automatic aneurysm segmentation without the setting of a seed point or intensity threshold. This technique will further enable the segmentation of anatomically complex cerebrovascular shapes, thereby allowing for more accurate and efficient simulations of medical imagery. PMID:23606905

  13. A Novel Perforator Flap Training Model Using a Chicken Leg

    PubMed Central

    Cifuentes, Ignacio J.; Yañez, Ricardo A.; Salisbury, Maria C.; Rodriguez, José R.; Varas, Julian E.; Dagnino, Bruno L.

    2016-01-01

    Introduction  Living animal models are frequently used for perforator flap dissection training, but no ex vivo models have been described. The aim of this study is to present a novel nonliving model for perforator flap training based on a constant perforator in the chicken leg. Methods  A total of 15 chicken legs were used in this study. Anatomical dissection of the perforator was performed after its identification using ink injection, and in four of these specimens a perforator-based flap was raised. Results  The anatomical dissection revealed a constant intramuscular perforator with a median length of 5.7 cm. Median proximal and distal vessel diameters were 0.93 and 0.4 mm, respectively. The median dissection time was 77.5 minutes. Conclusion  This study introduces a novel, affordable, and reproducible model for the intramuscular dissection of a perforator-based flap using an ex vivo animal model. Its consistent perforator and appropriate-sized vessels make it useful for training. PMID:27616823

  14. Effect of Anatomically Realistic Full-Head Model on Activation of Cortical Neurons in Subdural Cortical Stimulation—A Computational Study

    NASA Astrophysics Data System (ADS)

    Seo, Hyeon; Kim, Donghyeon; Jun, Sung Chan

    2016-06-01

    Electrical brain stimulation (EBS) is an emerging therapy for the treatment of neurological disorders, and computational modeling studies of EBS have been used to determine the optimal parameters for highly cost-effective electrotherapy. Recent notable growth in computing capability has enabled researchers to consider an anatomically realistic head model that represents the full head and complex geometry of the brain rather than the previous simplified partial head model (extruded slab) that represents only the precentral gyrus. In this work, subdural cortical stimulation (SuCS) was found to offer a better understanding of the differential activation of cortical neurons in the anatomically realistic full-head model than in the simplified partial-head models. We observed that layer 3 pyramidal neurons had comparable stimulation thresholds in both head models, while layer 5 pyramidal neurons showed a notable discrepancy between the models; in particular, layer 5 pyramidal neurons demonstrated asymmetry in the thresholds and action potential initiation sites in the anatomically realistic full-head model. Overall, the anatomically realistic full-head model may offer a better understanding of layer 5 pyramidal neuronal responses. Accordingly, the effects of using the realistic full-head model in SuCS are compelling in computational modeling studies, even though this modeling requires substantially more effort.

  15. Sex differences in chronic obstructive pulmonary disease evaluated using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Kirby, Miranda; Zhang, Wei; Laratta, Peter K.; Sin, Don D.; Lam, Stephen; Coxson, Harvey O.

    2014-03-01

    Although there are more women than men dying of chronic obstructive pulmonary disease (COPD) in the United States and elsewhere, we still do not have a clear understanding of the differences in the pathophysiology of airflow obstruction between the sexes. Optical coherence tomography (OCT) is an emerging imaging technology that has the capability of imaging small bronchioles with resolution approaching histology. Therefore, our objective was to compare OCT-derived airway wall measurements between males and females matched for lung size and in anatomically matched small airways. Subjects 50-80 yrs were enrolled in the British Columbia Lung Health Study and underwent OCT and spirometry. OCT was performed using a 1.5mm diameter probe/sheath in anatomically matched airways for males and females; the right lower lobe (RB8 or RB9) or left lower lobe (LB8 or LB9) during end-expiration. OCT airway wall area (Aaw) was obtained by manual segmentation. For males and females there was no significant difference in OCT Aaw (p=0.12). Spearman correlation coefficients indicated that the forced expiratory volume in 1 second (FEV1) and Aaw were significantly correlated for males (r=-0.78, p=0.004) but not for females (r=-0.20, p=0.49) matched for lung size. These novel OCT findings demonstrate that while there were no overall sex differences in airway wall thickness, the relationship between lung function and airway wall thickness was correlated only in men. Therefore, factors other than airway remodeling may be driving COPD pathogenesis in women and OCT may provide important information for investigating airway remodeling and its relationship with COPD progression.

  16. Anatomical models and wax Venuses: art masterpieces or scientific craft works?

    PubMed Central

    Ballestriero, R

    2010-01-01

    The art of wax modelling has an ancient origin but rose to prominence in 14th century Italy with the cult of votive artefacts. With the advent of Neoclassicism this art, now deemed repulsive, continued to survive in a scientific environment, where it flourished in the study of normal and pathological anatomy, obstetrics, zoology and botany. The achievement of having originated the creation of anatomical models in coloured wax must be ascribed to a joint effort undertaken by the Sicilian wax modeller Gaetano Giulio Zumbo and the French surgeon Guillaume Desnoues in the late 17th century. Interest in anatomical wax models spread throughout Europe during the 18th century, first in Bologna with Ercole Lelli, Giovanni Manzolini and Anna Morandi, and then in Florence with Felice Fontana and Clemente Susini. In England, the art of anatomical ceroplastics was brought to London from Florence by the sculptor Joseph Towne. Throughout the centuries many anatomical artists preferred this material due to the remarkable mimetic likeness obtained, far surpassing any other material. Independent of the material used, whether wood, wax or clay, anatomical models were always considered merely craft works confined to hospitals or faculties of medicine and have survived to this day only because of their scientific interest. Italian and English waxes are stylistically different but the remarkable results obtained by Susini and Towne, and the fact that some contemporary artists are again representing anatomical wax bodies in their works, makes the border that formerly separated art and craft indistinguishable. PMID:20002228

  17. Anatomical models and wax Venuses: art masterpieces or scientific craft works?

    PubMed

    Ballestriero, R

    2010-02-01

    The art of wax modelling has an ancient origin but rose to prominence in 14th century Italy with the cult of votive artefacts. With the advent of Neoclassicism this art, now deemed repulsive, continued to survive in a scientific environment, where it flourished in the study of normal and pathological anatomy, obstetrics, zoology and botany. The achievement of having originated the creation of anatomical models in coloured wax must be ascribed to a joint effort undertaken by the Sicilian wax modeller Gaetano Giulio Zumbo and the French surgeon Guillaume Desnoues in the late 17th century. Interest in anatomical wax models spread throughout Europe during the 18th century, first in Bologna with Ercole Lelli, Giovanni Manzolini and Anna Morandi, and then in Florence with Felice Fontana and Clemente Susini. In England, the art of anatomical ceroplastics was brought to London from Florence by the sculptor Joseph Towne. Throughout the centuries many anatomical artists preferred this material due to the remarkable mimetic likeness obtained, far surpassing any other material. Independent of the material used, whether wood, wax or clay, anatomical models were always considered merely craft works confined to hospitals or faculties of medicine and have survived to this day only because of their scientific interest. Italian and English waxes are stylistically different but the remarkable results obtained by Susini and Towne, and the fact that some contemporary artists are again representing anatomical wax bodies in their works, makes the border that formerly separated art and craft indistinguishable.

  18. A 3D terrain reconstruction method of stereo vision based quadruped robot navigation system

    NASA Astrophysics Data System (ADS)

    Ge, Zhuo; Zhu, Ying; Liang, Guanhao

    2017-01-01

    To provide 3D environment information for the quadruped robot autonomous navigation system during walking through rough terrain, based on the stereo vision, a novel 3D terrain reconstruction method is presented. In order to solve the problem that images collected by stereo sensors have large regions with similar grayscale and the problem that image matching is poor at real-time performance, watershed algorithm and fuzzy c-means clustering algorithm are combined for contour extraction. Aiming at the problem of error matching, duel constraint with region matching and pixel matching is established for matching optimization. Using the stereo matching edge pixel pairs, the 3D coordinate algorithm is estimated according to the binocular stereo vision imaging model. Experimental results show that the proposed method can yield high stereo matching ratio and reconstruct 3D scene quickly and efficiently.

  19. A New Unified Analysis of Estimate Errors by Model-Matching Phase-Estimation Methods for Sensorless Drive of Permanent-Magnet Synchronous Motors and New Trajectory-Oriented Vector Control, Part I

    NASA Astrophysics Data System (ADS)

    Shinnaka, Shinji; Sano, Kousuke

    This paper presents a new unified analysis of estimate errors by model-matching phase-estimation methods such as rotor-flux state-observers, back EMF state-observers, and back EMF disturbance-observers, for sensorless drive of permanent-magnet synchronous motors. Analytical solutions about estimate errors, whose validity is confirmed by numerical experiments, are rich in universality and applicability. As an example of universality and applicability, a new trajectory-oriented vector control method is proposed, which can realize directly quasi-optimal strategy minimizing total losses with no additional computational loads by simply orienting one of vector-control coordinates to the associated quasi-optimal trajectory. The coordinate orientation rule, which is analytically derived, is surprisingly simple. Consequently the trajectory-oriented vector control method can be applied to a number of conventional vector control systems using one of the model-matching phase-estimation methods.

  20. Anatomic Peculiarities of Pig and Human Liver.

    PubMed

    Nykonenko, Andriy; Vávra, Petr; Zonča, Pavel

    2017-02-01

    Many investigations on surgical methods and medical treatment are currently done on pigs. This is possible because the pig is sufficiently close genetically to humans. In recent years, progress in liver surgery has opened new possibilities in surgical treatment of liver diseases. Because the methods are relatively novel, various improvements are still needed, and it is thus helpful to conduct experimental surgeries on pig livers. We reviewed the literature to compare the anatomic and functional features of pig and human livers, information that will be of great importance for improving surgical techniques. During the literature review, we used various sources, such as PubMed, Scopus, and veterinary journals. Our results were summarized in diagrams to facilitate understanding of the vascular structure and biliary systems. We conclude that, although the shapes of the human and pig livers are quite different, the pig liver is divided into the same number of segments as the human liver, which also shows a common structure of the vascular system. Thus, with the anatomic and structural features of the pig liver taken into account, this animal model can be used in experimental hepatic surgery.

  1. Multimodality medical image database for temporal lobe epilepsy

    NASA Astrophysics Data System (ADS)

    Siadat, Mohammad-Reza; Soltanian-Zadeh, Hamid; Fotouhi, Farshad A.; Elisevich, Kost

    2003-05-01

    This paper presents the development of a human brain multi-modality database for surgical candidacy determination in temporal lobe epilepsy. The focus of the paper is on content-based image management, navigation and retrieval. Several medical image-processing methods including our newly developed segmentation method are utilized for information extraction/correlation and indexing. The input data includes T1-, T2-Weighted and FLAIR MRI and ictal/interictal SPECT modalities with associated clinical data and EEG data analysis. The database can answer queries regarding issues such as the correlation between the attribute X of the entity Y and the outcome of a temporal lobe epilepsy surgery. The entity Y can be a brain anatomical structure such as the hippocampus. The attribute X can be either a functionality feature of the anatomical structure Y, calculated with SPECT modalities, such as signal average, or a volumetric/morphological feature of the entity Y such as volume or average curvature. The outcome of the surgery can be any surgery assessment such as non-verbal Wechsler memory quotient. A determination is made regarding surgical candidacy by analysis of both textual and image data. The current database system suggests a surgical determination for the cases with relatively small hippocampus and high signal intensity average on FLAIR images within the hippocampus. This indication matches the neurosurgeons expectations/observations. Moreover, as the database gets more populated with patient profiles and individual surgical outcomes, using data mining methods one may discover partially invisible correlations between the contents of different modalities of data and the outcome of the surgery.

  2. Registration of partially overlapping surfaces for range image based augmented reality on mobile devices

    NASA Astrophysics Data System (ADS)

    Kilgus, T.; Franz, A. M.; Seitel, A.; Marz, K.; Bartha, L.; Fangerau, M.; Mersmann, S.; Groch, A.; Meinzer, H.-P.; Maier-Hein, L.

    2012-02-01

    Visualization of anatomical data for disease diagnosis, surgical planning, or orientation during interventional therapy is an integral part of modern health care. However, as anatomical information is typically shown on monitors provided by a radiological work station, the physician has to mentally transfer internal structures shown on the screen to the patient. To address this issue, we recently presented a new approach to on-patient visualization of 3D medical images, which combines the concept of augmented reality (AR) with an intuitive interaction scheme. Our method requires mounting a range imaging device, such as a Time-of-Flight (ToF) camera, to a portable display (e.g. a tablet PC). During the visualization process, the pose of the camera and thus the viewing direction of the user is continuously determined with a surface matching algorithm. By moving the device along the body of the patient, the physician is given the impression of looking directly into the human body. In this paper, we present and evaluate a new method for camera pose estimation based on an anisotropic trimmed variant of the well-known iterative closest point (ICP) algorithm. According to in-silico and in-vivo experiments performed with computed tomography (CT) and ToF data of human faces, knees and abdomens, our new method is better suited for surface registration with ToF data than the established trimmed variant of the ICP, reducing the target registration error (TRE) by more than 60%. The TRE obtained (approx. 4-5 mm) is promising for AR visualization, but clinical applications require maximization of robustness and run-time.

  3. Deformable 3D-2D registration for guiding K-wire placement in pelvic trauma surgery

    NASA Astrophysics Data System (ADS)

    Goerres, J.; Jacobson, M.; Uneri, A.; de Silva, T.; Ketcha, M.; Reaungamornrat, S.; Vogt, S.; Kleinszig, G.; Wolinsky, J.-P.; Osgood, G.; Siewerdsen, J. H.

    2017-03-01

    Pelvic Kirschner wire (K-wire) insertion is a challenging surgical task requiring interpretation of complex 3D anatomical shape from 2D projections (fluoroscopy) and delivery of device trajectories within fairly narrow bone corridors in proximity to adjacent nerves and vessels. Over long trajectories ( 10-25 cm), K-wires tend to curve (deform), making conventional rigid navigation inaccurate at the tip location. A system is presented that provides accurate 3D localization and guidance of rigid or deformable surgical devices ("components" - e.g., K-wires) based on 3D-2D registration. The patient is registered to a preoperative CT image by virtually projecting digitally reconstructed radiographs (DRRs) and matching to two or more intraoperative x-ray projections. The K-wire is localized using an analogous procedure matching DRRs of a deformably parametrized model for the device component (deformable known-component registration, or dKC-Reg). A cadaver study was performed in which a K-wire trajectory was delivered in the pelvis. The system demonstrated target registration error (TRE) of 2.1 ± 0.3 mm in location of the K-wire tip (median ± interquartile range, IQR) and 0.8 ± 1.4º in orientation at the tip (median ± IQR), providing functionality analogous to surgical tracking / navigation using imaging systems already in the surgical arsenal without reliance on a surgical tracker. The method offers quantitative 3D guidance using images (e.g., inlet / outlet views) already acquired in the standard of care, potentially extending the advantages of navigation to broader utilization in trauma surgery to improve surgical precision and safety.

  4. Design of compactly supported wavelet to match singularities in medical images

    NASA Astrophysics Data System (ADS)

    Fung, Carrson C.; Shi, Pengcheng

    2002-11-01

    Analysis and understanding of medical images has important clinical values for patient diagnosis and treatment, as well as technical implications for computer vision and pattern recognition. One of the most fundamental issues is the detection of object boundaries or singularities, which is often the basis for further processes such as organ/tissue recognition, image registration, motion analysis, measurement of anatomical and physiological parameters, etc. The focus of this work involved taking a correlation based approach toward edge detection, by exploiting some of desirable properties of wavelet analysis. This leads to the possibility of constructing a bank of detectors, consisting of multiple wavelet basis functions of different scales which are optimal for specific types of edges, in order to optimally detect all the edges in an image. Our work involved developing a set of wavelet functions which matches the shape of the ramp and pulse edges. The matching algorithm used focuses on matching the edges in the frequency domain. It was proven that this technique could create matching wavelets applicable at all scales. Results have shown that matching wavelets can be obtained for the pulse edge while the ramp edge requires another matching algorithm.

  5. Altered gray matter organization in children and adolescents with ADHD: a structural covariance connectome study

    PubMed Central

    Griffiths, K R; Grieve, S M; Kohn, M R; Clarke, S; Williams, L M; Korgaonkar, M S

    2016-01-01

    Although multiple studies have reported structural deficits in multiple brain regions in attention-deficit hyperactivity disorder (ADHD), we do not yet know if these deficits reflect a more systematic disruption to the anatomical organization of large-scale brain networks. Here we used a graph theoretical approach to quantify anatomical organization in children and adolescents with ADHD. We generated anatomical networks based on covariance of gray matter volumes from 92 regions across the brain in children and adolescents with ADHD (n=34) and age- and sex-matched healthy controls (n=28). Using graph theory, we computed metrics that characterize both the global organization of anatomical networks (interconnectivity (clustering), integration (path length) and balance of global integration and localized segregation (small-worldness)) and their local nodal measures (participation (degree) and interaction (betweenness) within a network). Relative to Controls, ADHD participants exhibited altered global organization reflected in more clustering or network segregation. Locally, nodal degree and betweenness were increased in the subcortical amygdalae in ADHD, but reduced in cortical nodes in the anterior cingulate, posterior cingulate, mid temporal pole and rolandic operculum. In ADHD, anatomical networks were disrupted and reflected an emphasis on subcortical local connections centered around the amygdala, at the expense of cortical organization. Brains of children and adolescents with ADHD may be anatomically configured to respond impulsively to the automatic significance of stimulus input without having the neural organization to regulate and inhibit these responses. These findings provide a novel addition to our current understanding of the ADHD connectome. PMID:27824356

  6. Using a Large-scale Neural Model of Cortical Object Processing to Investigate the Neural Substrate for Managing Multiple Items in Short-term Memory.

    PubMed

    Liu, Qin; Ulloa, Antonio; Horwitz, Barry

    2017-11-01

    Many cognitive and computational models have been proposed to help understand working memory. In this article, we present a simulation study of cortical processing of visual objects during several working memory tasks using an extended version of a previously constructed large-scale neural model [Tagamets, M. A., & Horwitz, B. Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cerebral Cortex, 8, 310-320, 1998]. The original model consisted of arrays of Wilson-Cowan type of neuronal populations representing primary and secondary visual cortices, inferotemporal (IT) cortex, and pFC. We added a module representing entorhinal cortex, which functions as a gating module. We successfully implemented multiple working memory tasks using the same model and produced neuronal patterns in visual cortex, IT cortex, and pFC that match experimental findings. These working memory tasks can include distractor stimuli or can require that multiple items be retained in mind during a delay period (Sternberg's task). Besides electrophysiology data and behavioral data, we also generated fMRI BOLD time series from our simulation. Our results support the involvement of IT cortex in working memory maintenance and suggest the cortical architecture underlying the neural mechanisms mediating particular working memory tasks. Furthermore, we noticed that, during simulations of memorizing a list of objects, the first and last items in the sequence were recalled best, which may implicate the neural mechanism behind this important psychological effect (i.e., the primacy and recency effect).

  7. The mouse-human anatomy ontology mapping project.

    PubMed

    Hayamizu, Terry F; de Coronado, Sherri; Fragoso, Gilberto; Sioutos, Nicholas; Kadin, James A; Ringwald, Martin

    2012-01-01

    The overall objective of the Mouse-Human Anatomy Project (MHAP) was to facilitate the mapping and harmonization of anatomical terms used for mouse and human models by Mouse Genome Informatics (MGI) and the National Cancer Institute (NCI). The anatomy resources designated for this study were the Adult Mouse Anatomy (MA) ontology and the set of anatomy concepts contained in the NCI Thesaurus (NCIt). Several methods and software tools were identified and evaluated, then used to conduct an in-depth comparative analysis of the anatomy ontologies. Matches between mouse and human anatomy terms were determined and validated, resulting in a highly curated set of mappings between the two ontologies that has been used by other resources. These mappings will enable linking of data from mouse and human. As the anatomy ontologies have been expanded and refined, the mappings have been updated accordingly. Insights are presented into the overall process of comparing and mapping between ontologies, which may prove useful for further comparative analyses and ontology mapping efforts, especially those involving anatomy ontologies. Finally, issues concerning further development of the ontologies, updates to the mapping files, and possible additional applications and significance were considered. DATABASE URL: http://obofoundry.org/cgi-bin/detail.cgi?id=ma2ncit.

  8. The Betting Odds Rating System: Using soccer forecasts to forecast soccer.

    PubMed

    Wunderlich, Fabian; Memmert, Daniel

    2018-01-01

    Betting odds are frequently found to outperform mathematical models in sports related forecasting tasks, however the factors contributing to betting odds are not fully traceable and in contrast to rating-based forecasts no straightforward measure of team-specific quality is deducible from the betting odds. The present study investigates the approach of combining the methods of mathematical models and the information included in betting odds. A soccer forecasting model based on the well-known ELO rating system and taking advantage of betting odds as a source of information is presented. Data from almost 15.000 soccer matches (seasons 2007/2008 until 2016/2017) are used, including both domestic matches (English Premier League, German Bundesliga, Spanish Primera Division and Italian Serie A) and international matches (UEFA Champions League, UEFA Europe League). The novel betting odds based ELO model is shown to outperform classic ELO models, thus demonstrating that betting odds prior to a match contain more relevant information than the result of the match itself. It is shown how the novel model can help to gain valuable insights into the quality of soccer teams and its development over time, thus having a practical benefit in performance analysis. Moreover, it is argued that network based approaches might help in further improving rating and forecasting methods.

  9. The Betting Odds Rating System: Using soccer forecasts to forecast soccer

    PubMed Central

    Memmert, Daniel

    2018-01-01

    Betting odds are frequently found to outperform mathematical models in sports related forecasting tasks, however the factors contributing to betting odds are not fully traceable and in contrast to rating-based forecasts no straightforward measure of team-specific quality is deducible from the betting odds. The present study investigates the approach of combining the methods of mathematical models and the information included in betting odds. A soccer forecasting model based on the well-known ELO rating system and taking advantage of betting odds as a source of information is presented. Data from almost 15.000 soccer matches (seasons 2007/2008 until 2016/2017) are used, including both domestic matches (English Premier League, German Bundesliga, Spanish Primera Division and Italian Serie A) and international matches (UEFA Champions League, UEFA Europe League). The novel betting odds based ELO model is shown to outperform classic ELO models, thus demonstrating that betting odds prior to a match contain more relevant information than the result of the match itself. It is shown how the novel model can help to gain valuable insights into the quality of soccer teams and its development over time, thus having a practical benefit in performance analysis. Moreover, it is argued that network based approaches might help in further improving rating and forecasting methods. PMID:29870554

  10. Operative simulation of anterior clinoidectomy using a rapid prototyping model molded by a three-dimensional printer.

    PubMed

    Okonogi, Shinichi; Kondo, Kosuke; Harada, Naoyuki; Masuda, Hiroyuki; Nemoto, Masaaki; Sugo, Nobuo

    2017-09-01

    As the anatomical three-dimensional (3D) positional relationship around the anterior clinoid process (ACP) is complex, experience of many surgeries is necessary to understand anterior clinoidectomy (AC). We prepared a 3D synthetic image from computed tomographic angiography (CTA) and magnetic resonance imaging (MRI) data and a rapid prototyping (RP) model from the imaging data using a 3D printer. The objective of this study was to evaluate anatomical reproduction of the 3D synthetic image and intraosseous region after AC in the RP model. In addition, the usefulness of the RP model for operative simulation was investigated. The subjects were 51 patients who were examined by CTA and MRI before surgery. The size of the ACP, thickness and length of the optic nerve and artery, and intraosseous length after AC were measured in the 3D synthetic image and RP model, and reproducibility in the RP model was evaluated. In addition, 10 neurosurgeons performed AC in the completed RP models to investigate their usefulness for operative simulation. The RP model reproduced the region in the vicinity of the ACP in the 3D synthetic image, including the intraosseous region, at a high accuracy. In addition, drilling of the RP model was a useful operative simulation method of AC. The RP model of the vicinity of ACP, prepared using a 3D printer, showed favorable anatomical reproducibility, including reproduction of the intraosseous region. In addition, it was concluded that this RP model is useful as a surgical education tool for drilling.

  11. The importance of spatial ability and mental models in learning anatomy

    NASA Astrophysics Data System (ADS)

    Chatterjee, Allison K.

    As a foundational course in medical education, gross anatomy serves to orient medical and veterinary students to the complex three-dimensional nature of the structures within the body. Understanding such spatial relationships is both fundamental and crucial for achievement in gross anatomy courses, and is essential for success as a practicing professional. Many things contribute to learning spatial relationships; this project focuses on a few key elements: (1) the type of multimedia resources, particularly computer-aided instructional (CAI) resources, medical students used to study and learn; (2) the influence of spatial ability on medical and veterinary students' gross anatomy grades and their mental models; and (3) how medical and veterinary students think about anatomy and describe the features of their mental models to represent what they know about anatomical structures. The use of computer-aided instruction (CAI) by gross anatomy students at Indiana University School of Medicine (IUSM) was assessed through a questionnaire distributed to the regional centers of the IUSM. Students reported using internet browsing, PowerPoint presentation software, and email on a daily bases to study gross anatomy. This study reveals that first-year medical students at the IUSM make limited use of CAI to study gross anatomy. Such studies emphasize the importance of examining students' use of CAI to study gross anatomy prior to development and integration of electronic media into the curriculum and they may be important in future decisions regarding the development of alternative learning resources. In order to determine how students think about anatomical relationships and describe the features of their mental models, personal interviews were conducted with select students based on students' ROT scores. Five typologies of the characteristics of students' mental models were identified and described: spatial thinking, kinesthetic approach, identification of anatomical structures, problem solving strategies, and study methods. Students with different levels of spatial ability visualize and think about anatomy in qualitatively different ways, which is reflected by the features of their mental models. Low spatial ability students thought about and used two-dimensional images from the textbook. They possessed basic two-dimensional models of anatomical structures; they placed emphasis on diagrams and drawings in their studies; and they re-read anatomical problems many times before answering. High spatial ability students thought fully in three-dimensional and imagined rotation and movement of the structures; they made use of many types of images and text as they studied and solved problems. They possessed elaborate three-dimensional models of anatomical structures which they were able to manipulate to solve problems; and they integrated diagrams, drawings, and written text in their studies. Middle spatial ability students were a mix between both low and high spatial ability students. They imagined two-dimensional images popping out of the flat paper to become more three-dimensional, but still relied on drawings and diagrams. Additionally, high spatial ability students used a higher proportion of anatomical terminology than low spatial ability or middle spatial ability students. This provides additional support to the premise that high spatial students' mental models are a complex mixture of imagistic representations and propositional representations that incorporate correct anatomical terminology. Low spatial ability students focused on the function of structures and ways to group information primarily for the purpose of recall. This supports the theory that low spatial students' mental models will be characterized by more on imagistic representations that are general in nature. (Abstract shortened by UMI.)

  12. A new method to predict anatomical outcome after idiopathic macular hole surgery.

    PubMed

    Liu, Peipei; Sun, Yaoyao; Dong, Chongya; Song, Dan; Jiang, Yanrong; Liang, Jianhong; Yin, Hong; Li, Xiaoxin; Zhao, Mingwei

    2016-04-01

    To investigate whether a new macular hole closure index (MHCI) could predict anatomic outcome of macular hole surgery. A vitrectomy with internal limiting membrane peeling, air-fluid exchange, and gas tamponade were performed on all patients. The postoperative anatomic status of the macular hole was defined by spectral-domain OCT. MHCI was calculated as (M+N)/BASE based on the preoperative OCT status. M and N were the curve lengths of the detached photoreceptor arms, and BASE was the length of the retinal pigment epithelial layer (RPE layer) detaching from the photoreceptors. Postoperative anatomical outcomes were divided into three grades: A (bridge-like closure), B (good closure), and C (poor closure or no closure). Correlation analysis was performed between anatomical outcomes and MHCI. Receiver operating characteristic (ROC) curves were derived for MHCI, indicating good model discrimination. ROC curves were also assessed by the area under the curve, and cut-offs were calculated. Other predictive parameters reported previously, which included the MH minimum, the MH height, the macular hole index (MHI), the diameter hole index (DHI), and the tractional hole index (THI) had been compared as well. MHCI correlated significantly with postoperative anatomical outcomes (r = 0.543, p = 0.000), but other predictive parameters did not. The areas under the curves indicated that MHCI could be used as an effective predictor of anatomical outcome. Cut-off values of 0.7 and 1.0 were obtained for MHCI from ROC curve analysis. MHCI demonstrated a better predictive effect than other parameters, both in the correlation analysis and ROC analysis. MHCI could be an easily measured and accurate predictive index for postoperative anatomical outcomes.

  13. Photogrammetric Point Clouds Generation in Urban Areas from Integrated Image Matching and Segmentation

    NASA Astrophysics Data System (ADS)

    Ye, L.; Wu, B.

    2017-09-01

    High-resolution imagery is an attractive option for surveying and mapping applications due to the advantages of high quality imaging, short revisit time, and lower cost. Automated reliable and dense image matching is essential for photogrammetric 3D data derivation. Such matching, in urban areas, however, is extremely difficult, owing to the complexity of urban textures and severe occlusion problems on the images caused by tall buildings. Aimed at exploiting high-resolution imagery for 3D urban modelling applications, this paper presents an integrated image matching and segmentation approach for reliable dense matching of high-resolution imagery in urban areas. The approach is based on the framework of our existing self-adaptive triangulation constrained image matching (SATM), but incorporates three novel aspects to tackle the image matching difficulties in urban areas: 1) occlusion filtering based on image segmentation, 2) segment-adaptive similarity correlation to reduce the similarity ambiguity, 3) improved dense matching propagation to provide more reliable matches in urban areas. Experimental analyses were conducted using aerial images of Vaihingen, Germany and high-resolution satellite images in Hong Kong. The photogrammetric point clouds were generated, from which digital surface models (DSMs) were derived. They were compared with the corresponding airborne laser scanning data and the DSMs generated from the Semi-Global matching (SGM) method. The experimental results show that the proposed approach is able to produce dense and reliable matches comparable to SGM in flat areas, while for densely built-up areas, the proposed method performs better than SGM. The proposed method offers an alternative solution for 3D surface reconstruction in urban areas.

  14. Applications of wavelets in morphometric analysis of medical images

    NASA Astrophysics Data System (ADS)

    Davatzikos, Christos; Tao, Xiaodong; Shen, Dinggang

    2003-11-01

    Morphometric analysis of medical images is playing an increasingly important role in understanding brain structure and function, as well as in understanding the way in which these change during development, aging and pathology. This paper presents three wavelet-based methods with related applications in morphometric analysis of magnetic resonance (MR) brain images. The first method handles cases where very limited datasets are available for the training of statistical shape models in the deformable segmentation. The method is capable of capturing a larger range of shape variability than the standard active shape models (ASMs) can, by using the elegant spatial-frequency decomposition of the shape contours provided by wavelet transforms. The second method addresses the difficulty of finding correspondences in anatomical images, which is a key step in shape analysis and deformable registration. The detection of anatomical correspondences is completed by using wavelet-based attribute vectors as morphological signatures of voxels. The third method uses wavelets to characterize the morphological measurements obtained from all voxels in a brain image, and the entire set of wavelet coefficients is further used to build a brain classifier. Since the classification scheme operates in a very-high-dimensional space, it can determine subtle population differences with complex spatial patterns. Experimental results are provided to demonstrate the performance of the proposed methods.

  15. Thermal-depth matching in dynamic scene based on affine projection and feature registration

    NASA Astrophysics Data System (ADS)

    Wang, Hongyu; Jia, Tong; Wu, Chengdong; Li, Yongqiang

    2018-03-01

    This paper aims to study the construction of 3D temperature distribution reconstruction system based on depth and thermal infrared information. Initially, a traditional calibration method cannot be directly used, because the depth and thermal infrared camera is not sensitive to the color calibration board. Therefore, this paper aims to design a depth and thermal infrared camera calibration board to complete the calibration of the depth and thermal infrared camera. Meanwhile a local feature descriptors in thermal and depth images is proposed. The belief propagation matching algorithm is also investigated based on the space affine transformation matching and local feature matching. The 3D temperature distribution model is built based on the matching of 3D point cloud and 2D thermal infrared information. Experimental results show that the method can accurately construct the 3D temperature distribution model, and has strong robustness.

  16. A model based method for recognizing psoas major muscles in torso CT images

    NASA Astrophysics Data System (ADS)

    Kamiya, Naoki; Zhou, Xiangrong; Chen, Huayue; Hara, Takeshi; Yokoyama, Ryujiro; Kanematsu, Masayuki; Hoshi, Hiroaki; Fujita, Hiroshi

    2010-03-01

    In aging societies, it is important to analyze age-related hypokinesia. A psoas major muscle has many important functional capabilities such as capacity of balance and posture control. These functions can be measured by its cross sectional area (CSA), volume, and thickness. However, these values are calculated manually in the clinical situation. The purpose of our study is to propose an automated recognition method of psoas major muscles in X-ray torso CT images. The proposed recognition process involves three steps: 1) determination of anatomical points such as the origin and insertion of the psoas major muscle, 2) generation of a shape model for the psoas major muscle, and 3) recognition of the psoas major muscles by use of the shape model. The model was built using quadratic function, and was fit to the anatomical center line of psoas major muscle. The shape model was generated using 20 CT cases and tested by 20 other CT cases. The applied database consisted of 12 male and 8 female cases from the ages of 40's to 80's. The average value of Jaccard similarity coefficient (JSC) values employed in the evaluation was 0.7. Our experimental results indicated that the proposed method was effective for a volumetric analysis and could be possible to be used for a quantitative measurement of psoas major muscles in CT images.

  17. Modelling and Manufacturing of a 3D Printed Trachea for Cricothyroidotomy Simulation.

    PubMed

    Doucet, Gregory; Ryan, Stephen; Bartellas, Michael; Parsons, Michael; Dubrowski, Adam; Renouf, Tia

    2017-08-18

    Cricothyroidotomy is a life-saving medical procedure that allows for tracheal intubation. Most current cricothyroidotomy simulation models are either expensive or not anatomically accurate and provide the learner with an unrealistic simulation experience. The goal of this project is to improve current simulation techniques by utilizing rapid prototyping using 3D printing technology and expert opinions to develop inexpensive and anatomically accurate trachea simulators. In doing so, emergency cricothyroidotomy simulation can be made accessible, accurate, cost-effective and reproducible. Three-dimensional modelling software was used in conjunction with a desktop three-dimensional (3D) printer to design and manufacture an anatomically accurate model of the cartilage within the trachea (thyroid cartilage, cricoid cartilage, and the tracheal rings). The initial design was based on dimensions found in studies of tracheal anatomical configuration. This ensured that the landmarking necessary for emergency cricothyroidotomies was designed appropriately. Several revisions of the original model were made based on informal opinion from medical professionals to establish appropriate anatomical accuracy of the model for use in rural/remote cricothyroidotomy simulation. Using an entry-level desktop 3D printer, a low cost tracheal model was successfully designed that can be printed in less than three hours for only $1.70 Canadian dollars (CAD). Due to its anatomical accuracy, flexibility and durability, this model is great for use in emergency medicine simulation training. Additionally, the model can be assembled in conjunction with a membrane to simulate tracheal ligaments. Skin has been simulated as well to enhance the realism of the model. The result is an accurate simulation that will provide users with an anatomically correct model to practice important skills used in emergency airway surgery, specifically landmarking, incision and intubation. This design is a novel and easy to manufacture and reproduce, high fidelity trachea model that can be used by educators with limited resources.

  18. Modelling and Manufacturing of a 3D Printed Trachea for Cricothyroidotomy Simulation

    PubMed Central

    Ryan, Stephen; Bartellas, Michael; Parsons, Michael; Dubrowski, Adam; Renouf, Tia

    2017-01-01

    Cricothyroidotomy is a life-saving medical procedure that allows for tracheal intubation. Most current cricothyroidotomy simulation models are either expensive or not anatomically accurate and provide the learner with an unrealistic simulation experience. The goal of this project is to improve current simulation techniques by utilizing rapid prototyping using 3D printing technology and expert opinions to develop inexpensive and anatomically accurate trachea simulators. In doing so, emergency cricothyroidotomy simulation can be made accessible, accurate, cost-effective and reproducible. Three-dimensional modelling software was used in conjunction with a desktop three-dimensional (3D) printer to design and manufacture an anatomically accurate model of the cartilage within the trachea (thyroid cartilage, cricoid cartilage, and the tracheal rings). The initial design was based on dimensions found in studies of tracheal anatomical configuration. This ensured that the landmarking necessary for emergency cricothyroidotomies was designed appropriately. Several revisions of the original model were made based on informal opinion from medical professionals to establish appropriate anatomical accuracy of the model for use in rural/remote cricothyroidotomy simulation. Using an entry-level desktop 3D printer, a low cost tracheal model was successfully designed that can be printed in less than three hours for only $1.70 Canadian dollars (CAD). Due to its anatomical accuracy, flexibility and durability, this model is great for use in emergency medicine simulation training. Additionally, the model can be assembled in conjunction with a membrane to simulate tracheal ligaments. Skin has been simulated as well to enhance the realism of the model. The result is an accurate simulation that will provide users with an anatomically correct model to practice important skills used in emergency airway surgery, specifically landmarking, incision and intubation. This design is a novel and easy to manufacture and reproduce, high fidelity trachea model that can be used by educators with limited resources. PMID:29057187

  19. Research on Matching Method of Power Supply Parameters for Dual Energy Source Electric Vehicles

    NASA Astrophysics Data System (ADS)

    Jiang, Q.; Luo, M. J.; Zhang, S. K.; Liao, M. W.

    2018-03-01

    A new type of power source is proposed, which is based on the traffic signal matching method of the dual energy source power supply composed of the batteries and the supercapacitors. First, analyzing the power characteristics is required to meet the excellent dynamic characteristics of EV, studying the energy characteristics is required to meet the mileage requirements and researching the physical boundary characteristics is required to meet the physical conditions of the power supply. Secondly, the parameter matching design with the highest energy efficiency is adopted to select the optimal parameter group with the method of matching deviation. Finally, the simulation analysis of the vehicle is carried out in MATLABSimulink, The mileage and energy efficiency of dual energy sources are analyzed in different parameter models, and the rationality of the matching method is verified.

  20. Lower limb estimation from sparse landmarks using an articulated shape model.

    PubMed

    Zhang, Ju; Fernandez, Justin; Hislop-Jambrich, Jacqui; Besier, Thor F

    2016-12-08

    Rapid generation of lower limb musculoskeletal models is essential for clinically applicable patient-specific gait modeling. Estimation of muscle and joint contact forces requires accurate representation of bone geometry and pose, as well as their muscle attachment sites, which define muscle moment arms. Motion-capture is a routine part of gait assessment but contains relatively sparse geometric information. Standard methods for creating customized models from motion-capture data scale a reference model without considering natural shape variations. We present an articulated statistical shape model of the left lower limb with embedded anatomical landmarks and muscle attachment regions. This model is used in an automatic workflow, implemented in an easy-to-use software application, that robustly and accurately estimates realistic lower limb bone geometry, pose, and muscle attachment regions from seven commonly used motion-capture landmarks. Estimated bone models were validated on noise-free marker positions to have a lower (p=0.001) surface-to-surface root-mean-squared error of 4.28mm, compared to 5.22mm using standard isotropic scaling. Errors at a variety of anatomical landmarks were also lower (8.6mm versus 10.8mm, p=0.001). We improve upon standard lower limb model scaling methods with shape model-constrained realistic bone geometries, regional muscle attachment sites, and higher accuracy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Experimental validation of finite element modelling of a modular metal-on-polyethylene total hip replacement.

    PubMed

    Hua, Xijin; Wang, Ling; Al-Hajjar, Mazen; Jin, Zhongmin; Wilcox, Ruth K; Fisher, John

    2014-07-01

    Finite element models are becoming increasingly useful tools to conduct parametric analysis, design optimisation and pre-clinical testing for hip joint replacements. However, the verification of the finite element model is critically important. The purposes of this study were to develop a three-dimensional anatomic finite element model for a modular metal-on-polyethylene total hip replacement for predicting its contact mechanics and to conduct experimental validation for a simple finite element model which was simplified from the anatomic finite element model. An anatomic modular metal-on-polyethylene total hip replacement model (anatomic model) was first developed and then simplified with reasonable accuracy to a simple modular total hip replacement model (simplified model) for validation. The contact areas on the articulating surface of three polyethylene liners of modular metal-on-polyethylene total hip replacement bearings with different clearances were measured experimentally in the Leeds ProSim hip joint simulator under a series of loading conditions and different cup inclination angles. The contact areas predicted from the simplified model were then compared with that measured experimentally under the same conditions. The results showed that the simplification made for the anatomic model did not change the predictions of contact mechanics of the modular metal-on-polyethylene total hip replacement substantially (less than 12% for contact stresses and contact areas). Good agreements of contact areas between the finite element predictions from the simplified model and experimental measurements were obtained, with maximum difference of 14% across all conditions considered. This indicated that the simplification and assumptions made in the anatomic model were reasonable and the finite element predictions from the simplified model were valid. © IMechE 2014.

  2. Patient feature based dosimetric Pareto front prediction in esophageal cancer radiotherapy.

    PubMed

    Wang, Jiazhou; Jin, Xiance; Zhao, Kuaike; Peng, Jiayuan; Xie, Jiang; Chen, Junchao; Zhang, Zhen; Studenski, Matthew; Hu, Weigang

    2015-02-01

    To investigate the feasibility of the dosimetric Pareto front (PF) prediction based on patient's anatomic and dosimetric parameters for esophageal cancer patients. Eighty esophagus patients in the authors' institution were enrolled in this study. A total of 2928 intensity-modulated radiotherapy plans were obtained and used to generate PF for each patient. On average, each patient had 36.6 plans. The anatomic and dosimetric features were extracted from these plans. The mean lung dose (MLD), mean heart dose (MHD), spinal cord max dose, and PTV homogeneity index were recorded for each plan. Principal component analysis was used to extract overlap volume histogram (OVH) features between PTV and other organs at risk. The full dataset was separated into two parts; a training dataset and a validation dataset. The prediction outcomes were the MHD and MLD. The spearman's rank correlation coefficient was used to evaluate the correlation between the anatomical features and dosimetric features. The stepwise multiple regression method was used to fit the PF. The cross validation method was used to evaluate the model. With 1000 repetitions, the mean prediction error of the MHD was 469 cGy. The most correlated factor was the first principal components of the OVH between heart and PTV and the overlap between heart and PTV in Z-axis. The mean prediction error of the MLD was 284 cGy. The most correlated factors were the first principal components of the OVH between heart and PTV and the overlap between lung and PTV in Z-axis. It is feasible to use patients' anatomic and dosimetric features to generate a predicted Pareto front. Additional samples and further studies are required improve the prediction model.

  3. Light propagation along the pericardium meridian at human wrist as evidenced by the optical experiment and Monte Carlo method.

    PubMed

    Jiang, Yi-fan; Chen, Chang-shui; Liu, Xiao-mei; Liu, Rong-ting; Liu, Song-hao

    2015-04-01

    To explore the characteristics of light propagation along the Pericardium Meridian and its surrounding areas at human wrist by using optical experiment and Monte Carlo method. An experiment was carried out to obtain the distribution of diffuse light on Pericardium Meridian line and its surrounding areas at the wrist, and then a simplified model based on the anatomical structure was proposed to simulate the light transportation within the same area by using Monte Carlo method. The experimental results showed strong accordance with the Monte Carlo simulation that the light propagation along the Pericardium Meridian had an advantage over its surrounding areas at the wrist. The advantage of light transport along Pericardium Merdian line was related to components and structure of tissue, also the anatomical structure of the area that the Pericardium Meridian line runs.

  4. Probabilistic modeling of anatomical variability using a low dimensional parameterization of diffeomorphisms.

    PubMed

    Zhang, Miaomiao; Wells, William M; Golland, Polina

    2017-10-01

    We present an efficient probabilistic model of anatomical variability in a linear space of initial velocities of diffeomorphic transformations and demonstrate its benefits in clinical studies of brain anatomy. To overcome the computational challenges of the high dimensional deformation-based descriptors, we develop a latent variable model for principal geodesic analysis (PGA) based on a low dimensional shape descriptor that effectively captures the intrinsic variability in a population. We define a novel shape prior that explicitly represents principal modes as a multivariate complex Gaussian distribution on the initial velocities in a bandlimited space. We demonstrate the performance of our model on a set of 3D brain MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our model yields a more compact representation of group variation at substantially lower computational cost than the state-of-the-art method such as tangent space PCA (TPCA) and probabilistic principal geodesic analysis (PPGA) that operate in the high dimensional image space. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Hybrid ontology for semantic information retrieval model using keyword matching indexing system.

    PubMed

    Uthayan, K R; Mala, G S Anandha

    2015-01-01

    Ontology is the process of growth and elucidation of concepts of an information domain being common for a group of users. Establishing ontology into information retrieval is a normal method to develop searching effects of relevant information users require. Keywords matching process with historical or information domain is significant in recent calculations for assisting the best match for specific input queries. This research presents a better querying mechanism for information retrieval which integrates the ontology queries with keyword search. The ontology-based query is changed into a primary order to predicate logic uncertainty which is used for routing the query to the appropriate servers. Matching algorithms characterize warm area of researches in computer science and artificial intelligence. In text matching, it is more dependable to study semantics model and query for conditions of semantic matching. This research develops the semantic matching results between input queries and information in ontology field. The contributed algorithm is a hybrid method that is based on matching extracted instances from the queries and information field. The queries and information domain is focused on semantic matching, to discover the best match and to progress the executive process. In conclusion, the hybrid ontology in semantic web is sufficient to retrieve the documents when compared to standard ontology.

  6. Hybrid Ontology for Semantic Information Retrieval Model Using Keyword Matching Indexing System

    PubMed Central

    Uthayan, K. R.; Anandha Mala, G. S.

    2015-01-01

    Ontology is the process of growth and elucidation of concepts of an information domain being common for a group of users. Establishing ontology into information retrieval is a normal method to develop searching effects of relevant information users require. Keywords matching process with historical or information domain is significant in recent calculations for assisting the best match for specific input queries. This research presents a better querying mechanism for information retrieval which integrates the ontology queries with keyword search. The ontology-based query is changed into a primary order to predicate logic uncertainty which is used for routing the query to the appropriate servers. Matching algorithms characterize warm area of researches in computer science and artificial intelligence. In text matching, it is more dependable to study semantics model and query for conditions of semantic matching. This research develops the semantic matching results between input queries and information in ontology field. The contributed algorithm is a hybrid method that is based on matching extracted instances from the queries and information field. The queries and information domain is focused on semantic matching, to discover the best match and to progress the executive process. In conclusion, the hybrid ontology in semantic web is sufficient to retrieve the documents when compared to standard ontology. PMID:25922851

  7. Development of an Anatomically Accurate Finite Element Human Ocular Globe Model for Blast-Related Fluid-Structure Interaction Studies

    DTIC Science & Technology

    2017-02-01

    ARL-TR-7945 ● FEB 2017 US Army Research Laboratory Development of an Anatomically Accurate Finite Element Human Ocular Globe...ARL-TR-7945 ● FEB 2017 US Army Research Laboratory Development of an Anatomically Accurate Finite Element Human Ocular Globe Model... Finite Element Human Ocular Globe Model for Blast-Related Fluid-Structure Interaction Studies 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  8. Experiments in concept modeling for radiographic image reports.

    PubMed Central

    Bell, D S; Pattison-Gordon, E; Greenes, R A

    1994-01-01

    OBJECTIVE: Development of methods for building concept models to support structured data entry and image retrieval in chest radiography. DESIGN: An organizing model for chest-radiographic reporting was built by analyzing manually a set of natural-language chest-radiograph reports. During model building, clinician-informaticians judged alternative conceptual structures according to four criteria: content of clinically relevant detail, provision for semantic constraints, provision for canonical forms, and simplicity. The organizing model was applied in representing three sample reports in their entirety. To explore the potential for automatic model discovery, the representation of one sample report was compared with the noun phrases derived from the same report by the CLARIT natural-language processing system. RESULTS: The organizing model for chest-radiographic reporting consists of 62 concept types and 17 relations, arranged in an inheritance network. The broadest types in the model include finding, anatomic locus, procedure, attribute, and status. Diagnoses are modeled as a subtype of finding. Representing three sample reports in their entirety added 79 narrower concept types. Some CLARIT noun phrases suggested valid associations among subtypes of finding, status, and anatomic locus. CONCLUSIONS: A manual modeling process utilizing explicitly stated criteria for making modeling decisions produced an organizing model that showed consistency in early testing. A combination of top-down and bottom-up modeling was required. Natural-language processing may inform model building, but algorithms that would replace manual modeling were not discovered. Further progress in modeling will require methods for objective model evaluation and tools for formalizing the model-building process. PMID:7719807

  9. Computational tissue volume reconstruction of a peripheral nerve using high-resolution light-microscopy and reconstruct.

    PubMed

    Gierthmuehlen, Mortimer; Freiman, Thomas M; Haastert-Talini, Kirsten; Mueller, Alexandra; Kaminsky, Jan; Stieglitz, Thomas; Plachta, Dennis T T

    2013-01-01

    The development of neural cuff-electrodes requires several in vivo studies and revisions of the electrode design before the electrode is completely adapted to its target nerve. It is therefore favorable to simulate many of the steps involved in this process to reduce costs and animal testing. As the restoration of motor function is one of the most interesting applications of cuff-electrodes, the position and trajectories of myelinated fibers in the simulated nerve are important. In this paper, we investigate a method for building a precise neuroanatomical model of myelinated fibers in a peripheral nerve based on images obtained using high-resolution light microscopy. This anatomical model describes the first aim of our "Virtual workbench" project to establish a method for creating realistic neural simulation models based on image datasets. The imaging, processing, segmentation and technical limitations are described, and the steps involved in the transition into a simulation model are presented. The results showed that the position and trajectories of the myelinated axons were traced and virtualized using our technique, and small nerves could be reliably modeled based on of light microscopy images using low-cost OpenSource software and standard hardware. The anatomical model will be released to the scientific community.

  10. Computational Tissue Volume Reconstruction of a Peripheral Nerve Using High-Resolution Light-Microscopy and Reconstruct

    PubMed Central

    Gierthmuehlen, Mortimer; Freiman, Thomas M.; Haastert-Talini, Kirsten; Mueller, Alexandra; Kaminsky, Jan; Stieglitz, Thomas; Plachta, Dennis T. T.

    2013-01-01

    The development of neural cuff-electrodes requires several in vivo studies and revisions of the electrode design before the electrode is completely adapted to its target nerve. It is therefore favorable to simulate many of the steps involved in this process to reduce costs and animal testing. As the restoration of motor function is one of the most interesting applications of cuff-electrodes, the position and trajectories of myelinated fibers in the simulated nerve are important. In this paper, we investigate a method for building a precise neuroanatomical model of myelinated fibers in a peripheral nerve based on images obtained using high-resolution light microscopy. This anatomical model describes the first aim of our “Virtual workbench” project to establish a method for creating realistic neural simulation models based on image datasets. The imaging, processing, segmentation and technical limitations are described, and the steps involved in the transition into a simulation model are presented. The results showed that the position and trajectories of the myelinated axons were traced and virtualized using our technique, and small nerves could be reliably modeled based on of light microscopy images using low-cost OpenSource software and standard hardware. The anatomical model will be released to the scientific community. PMID:23785485

  11. Propensity score method: a non-parametric technique to reduce model dependence

    PubMed Central

    2017-01-01

    Propensity score analysis (PSA) is a powerful technique that it balances pretreatment covariates, making the causal effect inference from observational data as reliable as possible. The use of PSA in medical literature has increased exponentially in recent years, and the trend continue to rise. The article introduces rationales behind PSA, followed by illustrating how to perform PSA in R with MatchIt package. There are a variety of methods available for PS matching such as nearest neighbors, full matching, exact matching and genetic matching. The task can be easily done by simply assigning a string value to the method argument in the matchit() function. The generic summary() and plot() functions can be applied to an object of class matchit to check covariate balance after matching. Furthermore, there is a useful package PSAgraphics that contains several graphical functions to check covariate balance between treatment groups across strata. If covariate balance is not achieved, one can modify model specifications or use other techniques such as random forest and recursive partitioning to better represent the underlying structure between pretreatment covariates and treatment assignment. The process can be repeated until the desirable covariate balance is achieved. PMID:28164092

  12. Joint brain connectivity estimation from diffusion and functional MRI data

    NASA Astrophysics Data System (ADS)

    Chu, Shu-Hsien; Lenglet, Christophe; Parhi, Keshab K.

    2015-03-01

    Estimating brain wiring patterns is critical to better understand the brain organization and function. Anatomical brain connectivity models axonal pathways, while the functional brain connectivity characterizes the statistical dependencies and correlation between the activities of various brain regions. The synchronization of brain activity can be inferred through the variation of blood-oxygen-level dependent (BOLD) signal from functional MRI (fMRI) and the neural connections can be estimated using tractography from diffusion MRI (dMRI). Functional connections between brain regions are supported by anatomical connections, and the synchronization of brain activities arises through sharing of information in the form of electro-chemical signals on axon pathways. Jointly modeling fMRI and dMRI data may improve the accuracy in constructing anatomical connectivity as well as functional connectivity. Such an approach may lead to novel multimodal biomarkers potentially able to better capture functional and anatomical connectivity variations. We present a novel brain network model which jointly models the dMRI and fMRI data to improve the anatomical connectivity estimation and extract the anatomical subnetworks associated with specific functional modes by constraining the anatomical connections as structural supports to the functional connections. The key idea is similar to a multi-commodity flow optimization problem that minimizes the cost or maximizes the efficiency for flow configuration and simultaneously fulfills the supply-demand constraint for each commodity. In the proposed network, the nodes represent the grey matter (GM) regions providing brain functionality, and the links represent white matter (WM) fiber bundles connecting those regions and delivering information. The commodities can be thought of as the information corresponding to brain activity patterns as obtained for instance by independent component analysis (ICA) of fMRI data. The concept of information flow is introduced and used to model the propagation of information between GM areas through WM fiber bundles. The link capacity, i.e., ability to transfer information, is characterized by the relative strength of fiber bundles, e.g., fiber count gathered from the tractography of dMRI data. The node information demand is considered to be proportional to the correlation between neural activity at various cortical areas involved in a particular functional mode (e.g. visual, motor, etc.). These two properties lead to the link capacity and node demand constraints in the proposed model. Moreover, the information flow of a link cannot exceed the demand from either end node. This is captured by the feasibility constraints. Two different cost functions are considered in the optimization formulation in this paper. The first cost function, the reciprocal of fiber strength represents the unit cost for information passing through the link. In the second cost function, a min-max (minimizing the maximal link load) approach is used to balance the usage of each link. Optimizing the first cost function selects the pathway with strongest fiber strength for information propagation. In the second case, the optimization procedure finds all the possible propagation pathways and allocates the flow proportionally to their strength. Additionally, a penalty term is incorporated with both the cost functions to capture the possible missing and weak anatomical connections. With this set of constraints and the proposed cost functions, solving the network optimization problem recovers missing and weak anatomical connections supported by the functional information and provides the functional-associated anatomical subnetworks. Feasibility is demonstrated using realistic diffusion and functional MRI phantom data. It is shown that the proposed model recovers the maximum number of true connections, with fewest number of false connections when compared with the connectivity derived from a joint probabilistic model using the expectation-maximization (EM) algorithm presented in a prior work. We also apply the proposed method to data provided by the Human Connectome Project (HCP).

  13. Anatomic, Clinical, and Neuropsychological Correlates of Spelling Errors in Primary Progressive Aphasia

    ERIC Educational Resources Information Center

    Shim, HyungSub; Hurley, Robert S.; Rogalski, Emily; Mesulam, M.-Marsel

    2012-01-01

    This study evaluates spelling errors in the three subtypes of primary progressive aphasia (PPA): agrammatic (PPA-G), logopenic (PPA-L), and semantic (PPA-S). Forty-one PPA patients and 36 age-matched healthy controls were administered a test of spelling. The total number of errors and types of errors in spelling to dictation of regular words,…

  14. Clinical comparison of CR and screen film for imaging the critically ill neonate

    NASA Astrophysics Data System (ADS)

    Andriole, Katherine P.; Brasch, Robert C.; Gooding, Charles A.; Gould, Robert G.; Cohen, Pierre A.; Rencken, Ingo R.; Huang, H. K.

    1996-05-01

    A clinical comparison of computed radiography (CR) versus screen-film for imaging the critically-ill neonate is performed, utilizing a modified (hybrid) film cassette containing a CR (standard ST-V) imaging plate, a conventional screen and film, allowing simultaneous acquisition of perfectly matched CR and plain film images. For 100 portable neonatal chest and abdominal projection radiographs, plain film was subjectively compared to CR hardcopy. Three pediatric radiologists graded overall image quality on a scale of one (poor) to five (excellent), as well as visualization of various anatomic structures (i.e., lung parenchyma, pulmonary vasculature, tubes/lines) and pathological findings (i.e., pulmonary interstitial emphysema, pleural effusion, pneumothorax). Results analyzed using a combined kappa statistic of the differences between scores from each matched set, combined over the three readers showed no statistically significant difference in overall image quality between screen- film and CR (p equals 0.19). Similarly, no statistically significant difference was seen between screen-film and CR for anatomic structure visualization and for visualization of pathological findings. These results indicate that the image quality of CR is comparable to plain film, and that CR may be a suitable alternative to screen-film imaging for portable neonatal chest and abdominal examinations.

  15. In vivo characterization of structural and optical properties of human skin by combined photothermal radiometry and diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Verdel, Nina; Marin, Ana; Vidovič, Luka; Milanič, Matija; Majaron, Boris

    2017-02-01

    We have combined two optical techniques to enable simultaneous assessment of structure and composition of human skin in vivo: Pulsed photothermal radiometry (PPTR), which involves measurements of transient dynamics in midinfrared emission from sample surface after exposure to a light pulse, and diffuse reflectance spectroscopy (DRS) in visible part of the spectrum. Namely, while PPTR is highly sensitive to depth distribution of selected absorbers, DRS provides spectral information and thus enables differentiation between various chromophores. The accuracy and robustness of the inverse analysis is thus considerably improved compared to use of either technique on its own. Our analysis approach is simultaneous multi-dimensional fitting of the measured PPTR signals and DRS with predictions from a numerical model of light-tissue interaction (a.k.a. inverse Monte Carlo). By using a three-layer skin model (epidermis, dermis, and subcutis), we obtain a good match between the experimental and modeling data. However, dividing the dermis into two separate layers (i.e., papillary and reticular dermis) helps to bring all assessed parameter values within anatomically and physiologically plausible intervals. Both the quality of the fit and the assessed parameter values depend somewhat on the assumed scattering properties for skin, which vary in literature and likely depend on subject's age and gender, anatomical site, etc. In our preliminary experience, simultaneous fitting of the scattering properties is possible and leads to considerable improvement of the fit. The described approach may thus have a potential for simultaneous determination of absorption and scattering properties of human skin in vivo.

  16. Precision 3d Surface Reconstruction from Lro Nac Images Using Semi-Global Matching with Coupled Epipolar Rectification

    NASA Astrophysics Data System (ADS)

    Hu, H.; Wu, B.

    2017-07-01

    The Narrow-Angle Camera (NAC) on board the Lunar Reconnaissance Orbiter (LRO) comprises of a pair of closely attached high-resolution push-broom sensors, in order to improve the swath coverage. However, the two image sensors do not share the same lenses and cannot be modelled geometrically using a single physical model. Thus, previous works on dense matching of stereo pairs of NAC images would generally create two to four stereo models, each with an irregular and overlapping region of varying size. Semi-Global Matching (SGM) is a well-known dense matching method and has been widely used for image-based 3D surface reconstruction. SGM is a global matching algorithm relying on global inference in a larger context rather than individual pixels to establish stable correspondences. The stereo configuration of LRO NAC images causes severe problem for image matching methods such as SGM, which emphasizes global matching strategy. Aiming at using SGM for image matching of LRO NAC stereo pairs for precision 3D surface reconstruction, this paper presents a coupled epipolar rectification methods for LRO NAC stereo images, which merges the image pair in the disparity space and in this way, only one stereo model will be estimated. For a stereo pair (four) of NAC images, the method starts with the boresight calibration by finding correspondence in the small overlapping stripe between each pair of NAC images and bundle adjustment of the stereo pair, in order to clean the vertical disparities. Then, the dominate direction of the images are estimated by project the center of the coverage area to the reference image and back-projected to the bounding box plane determined by the image orientation parameters iteratively. The dominate direction will determine an affine model, by which the pair of NAC images are warped onto the object space with a given ground resolution and in the meantime, a mask is produced indicating the owner of each pixel. SGM is then used to generate a disparity map for the stereo pair and each correspondence is transformed back to the owner and 3D points are derived through photogrammetric space intersection. Experimental results reveal that the proposed method is able to reduce gaps and inconsistencies caused by the inaccurate boresight offsets between the two NAC cameras and the irregular overlapping regions, and finally generate precise and consistent 3D surface models from the NAC stereo images automatically.

  17. A stochastic Markov chain approach for tennis: Monte Carlo simulation and modeling

    NASA Astrophysics Data System (ADS)

    Aslam, Kamran

    This dissertation describes the computational formulation of probability density functions (pdfs) that facilitate head-to-head match simulations in tennis along with ranking systems developed from their use. A background on the statistical method used to develop the pdfs , the Monte Carlo method, and the resulting rankings are included along with a discussion on ranking methods currently being used both in professional sports and in other applications. Using an analytical theory developed by Newton and Keller in [34] that defines a tennis player's probability of winning a game, set, match and single elimination tournament, a computational simulation has been developed in Matlab that allows further modeling not previously possible with the analytical theory alone. Such experimentation consists of the exploration of non-iid effects, considers the concept the varying importance of points in a match and allows an unlimited number of matches to be simulated between unlikely opponents. The results of these studies have provided pdfs that accurately model an individual tennis player's ability along with a realistic, fair and mathematically sound platform for ranking them.

  18. The role of long-range connectivity for the characterization of the functional-anatomical organization of the cortex.

    PubMed

    Knösche, Thomas R; Tittgemeyer, Marc

    2011-01-01

    This review focuses on the role of long-range connectivity as one element of brain structure that is of key importance for the functional-anatomical organization of the cortex. In this context, we discuss the putative guiding principles for mapping brain function and structure onto the cortical surface. Such mappings reveal a high degree of functional-anatomical segregation. Given that brain regions frequently maintain characteristic connectivity profiles and the functional repertoire of a cortical area is closely related to its anatomical connections, long-range connectivity may be used to define segregated cortical areas. This methodology is called connectivity-based parcellation. Within this framework, we investigate different techniques to estimate connectivity profiles with emphasis given to non-invasive methods based on diffusion magnetic resonance imaging (dMRI) and diffusion tractography. Cortical parcellation is then defined based on similarity between diffusion tractograms, and different clustering approaches are discussed. We conclude that the use of non-invasively acquired connectivity estimates to characterize the functional-anatomical organization of the brain is a valid, relevant, and necessary endeavor. Current and future developments in dMRI technology, tractography algorithms, and models of the similarity structure hold great potential for a substantial improvement and enrichment of the results of the technique.

  19. The Research on Automatic Construction of Domain Model Based on Deep Web Query Interfaces

    NASA Astrophysics Data System (ADS)

    JianPing, Gu

    The integration of services is transparent, meaning that users no longer face the millions of Web services, do not care about the required data stored, but do not need to learn how to obtain these data. In this paper, we analyze the uncertainty of schema matching, and then propose a series of similarity measures. To reduce the cost of execution, we propose the type-based optimization method and schema matching pruning method of numeric data. Based on above analysis, we propose the uncertain schema matching method. The experiments prove the effectiveness and efficiency of our method.

  20. Identification of cortex in magnetic resonance images

    NASA Astrophysics Data System (ADS)

    VanMeter, John W.; Sandon, Peter A.

    1992-06-01

    The overall goal of the work described here is to make available to the neurosurgeon in the operating room an on-line, three-dimensional, anatomically labeled model of the patient brain, based on pre-operative magnetic resonance (MR) images. A stereotactic operating microscope is currently in experimental use, which allows structures that have been manually identified in MR images to be made available on-line. We have been working to enhance this system by combining image processing techniques applied to the MR data with an anatomically labeled 3-D brain model developed from the Talairach and Tournoux atlas. Here we describe the process of identifying cerebral cortex in the patient MR images. MR images of brain tissue are reasonably well described by material mixture models, which identify each pixel as corresponding to one of a small number of materials, or as being a composite of two materials. Our classification algorithm consists of three steps. First, we apply hierarchical, adaptive grayscale adjustments to correct for nonlinearities in the MR sensor. The goal of this preprocessing step, based on the material mixture model, is to make the grayscale distribution of each tissue type constant across the entire image. Next, we perform an initial classification of all tissue types according to gray level. We have used a sum of Gaussian's approximation of the histogram to perform this classification. Finally, we identify pixels corresponding to cortex, by taking into account the spatial patterns characteristic of this tissue. For this purpose, we use a set of matched filters to identify image locations having the appropriate configuration of gray matter (cortex), cerebrospinal fluid and white matter, as determined by the previous classification step.

  1. Asymptotic matching by the symbolic manipulator MACSYMA

    NASA Technical Reports Server (NTRS)

    Lo, L. L.

    1985-01-01

    The delegation of the labor of calculating higher-order terms in singular perturbation (SP) expansions to a computer by the use of MACSYMA is considered. The method of matched asymptotic expansions is studied in detail for two model SP problems: a model resembling the boundary layer equation with a small parameter multiplying the highest derivatives; and a turning-point problem. It is shown that MACSYMA has successfully performed the higher-order matching in both problems.

  2. Advertising cadavers in the republic of letters: anatomical publications in the early modern Netherlands.

    PubMed

    Margócsy, Dániel

    2009-06-01

    This paper sketches how late seventeenth-century Dutch anatomists used printed publications to advertise their anatomical preparations, inventions and instructional technologies to an international clientele. It focuses on anatomists Frederik Ruysch (1638-1732) and Lodewijk de Bils (1624-69), inventors of two separate anatomical preparation methods for preserving cadavers and body parts in a lifelike state for decades or centuries. Ruysch's and de Bils's publications functioned as an 'advertisement' for their preparations. These printed volumes informed potential customers that anatomical preparations were aesthetically pleasing and scientifically important but did not divulge the trade secrets of the method of production. Thanks to this strategy of non-disclosure and advertisement, de Bils and Ruysch could create a well-working monopoly market of anatomical preparations. The 'advertising' rhetorics of anatomical publications highlight the potential dangers of equating the growth of print culture with the development of an open system of knowledge exchange.

  3. Modeling influenza-like illnesses through composite compartmental models

    NASA Astrophysics Data System (ADS)

    Levy, Nir; , Michael, Iv; Yom-Tov, Elad

    2018-03-01

    Epidemiological models for the spread of pathogens in a population are usually only able to describe a single pathogen. This makes their application unrealistic in cases where multiple pathogens with similar symptoms are spreading concurrently within the same population. Here we describe a method which makes possible the application of multiple single-strain models under minimal conditions. As such, our method provides a bridge between theoretical models of epidemiology and data-driven approaches for modeling of influenza and other similar viruses. Our model extends the Susceptible-Infected-Recovered model to higher dimensions, allowing the modeling of a population infected by multiple viruses. We further provide a method, based on an overcomplete dictionary of feasible realizations of SIR solutions, to blindly partition the time series representing the number of infected people in a population into individual components, each representing the effect of a single pathogen. We demonstrate the applicability of our proposed method on five years of seasonal influenza-like illness (ILI) rates, estimated from Twitter data. We demonstrate that our method describes, on average, 44% of the variance in the ILI time series. The individual infectious components derived from our model are matched to known viral profiles in the populations, which we demonstrate matches that of independently collected epidemiological data. We further show that the basic reproductive numbers (R 0) of the matched components are in range known for these pathogens. Our results suggest that the proposed method can be applied to other pathogens and geographies, providing a simple method for estimating the parameters of epidemics in a population.

  4. Estimating error rates for firearm evidence identifications in forensic science

    PubMed Central

    Song, John; Vorburger, Theodore V.; Chu, Wei; Yen, James; Soons, Johannes A.; Ott, Daniel B.; Zhang, Nien Fan

    2018-01-01

    Estimating error rates for firearm evidence identification is a fundamental challenge in forensic science. This paper describes the recently developed congruent matching cells (CMC) method for image comparisons, its application to firearm evidence identification, and its usage and initial tests for error rate estimation. The CMC method divides compared topography images into correlation cells. Four identification parameters are defined for quantifying both the topography similarity of the correlated cell pairs and the pattern congruency of the registered cell locations. A declared match requires a significant number of CMCs, i.e., cell pairs that meet all similarity and congruency requirements. Initial testing on breech face impressions of a set of 40 cartridge cases fired with consecutively manufactured pistol slides showed wide separation between the distributions of CMC numbers observed for known matching and known non-matching image pairs. Another test on 95 cartridge cases from a different set of slides manufactured by the same process also yielded widely separated distributions. The test results were used to develop two statistical models for the probability mass function of CMC correlation scores. The models were applied to develop a framework for estimating cumulative false positive and false negative error rates and individual error rates of declared matches and non-matches for this population of breech face impressions. The prospect for applying the models to large populations and realistic case work is also discussed. The CMC method can provide a statistical foundation for estimating error rates in firearm evidence identifications, thus emulating methods used for forensic identification of DNA evidence. PMID:29331680

  5. Estimating error rates for firearm evidence identifications in forensic science.

    PubMed

    Song, John; Vorburger, Theodore V; Chu, Wei; Yen, James; Soons, Johannes A; Ott, Daniel B; Zhang, Nien Fan

    2018-03-01

    Estimating error rates for firearm evidence identification is a fundamental challenge in forensic science. This paper describes the recently developed congruent matching cells (CMC) method for image comparisons, its application to firearm evidence identification, and its usage and initial tests for error rate estimation. The CMC method divides compared topography images into correlation cells. Four identification parameters are defined for quantifying both the topography similarity of the correlated cell pairs and the pattern congruency of the registered cell locations. A declared match requires a significant number of CMCs, i.e., cell pairs that meet all similarity and congruency requirements. Initial testing on breech face impressions of a set of 40 cartridge cases fired with consecutively manufactured pistol slides showed wide separation between the distributions of CMC numbers observed for known matching and known non-matching image pairs. Another test on 95 cartridge cases from a different set of slides manufactured by the same process also yielded widely separated distributions. The test results were used to develop two statistical models for the probability mass function of CMC correlation scores. The models were applied to develop a framework for estimating cumulative false positive and false negative error rates and individual error rates of declared matches and non-matches for this population of breech face impressions. The prospect for applying the models to large populations and realistic case work is also discussed. The CMC method can provide a statistical foundation for estimating error rates in firearm evidence identifications, thus emulating methods used for forensic identification of DNA evidence. Published by Elsevier B.V.

  6. Wide baseline stereo matching based on double topological relationship consistency

    NASA Astrophysics Data System (ADS)

    Zou, Xiaohong; Liu, Bin; Song, Xiaoxue; Liu, Yang

    2009-07-01

    Stereo matching is one of the most important branches in computer vision. In this paper, an algorithm is proposed for wide-baseline stereo vision matching. Here, a novel scheme is presented called double topological relationship consistency (DCTR). The combination of double topological configuration includes the consistency of first topological relationship (CFTR) and the consistency of second topological relationship (CSTR). It not only sets up a more advanced model on matching, but discards mismatches by iteratively computing the fitness of the feature matches and overcomes many problems of traditional methods depending on the powerful invariance to changes in the scale, rotation or illumination across large view changes and even occlusions. Experimental examples are shown where the two cameras have been located in very different orientations. Also, epipolar geometry can be recovered using RANSAC by far the most widely method adopted possibly. By the method, we can obtain correspondences with high precision on wide baseline matching problems. Finally, the effectiveness and reliability of this method are demonstrated in wide-baseline experiments on the image pairs.

  7. Functional differentiation of posterior superior temporal sulcus in autism: A functional connectivity MRI study

    PubMed Central

    Shih, Patricia; Keehn, Brandon; Oram, Jessica K.; Leyden, Kelly M.; Keown, Christopher L.; Müller, Ralph-Axel

    2012-01-01

    Background Socio-communicative impairments are salient features of autism spectrum disorder (ASD). Abnormal development of posterior superior temporal sulcus (pSTS), a key processing area for language, biological motion, and social context, may play a role in these deficits. Methods Functional connectivity MRI (fcMRI) was used to examine the synchronization of low frequency BOLD fluctuations during continuous performance on a visual search task. Twenty-one children and adolescents with ASD and 26 typically developing (TD) individuals, matched on age, sex, and IQ, participated in the study. Three subregions of pSTS were delineated with a data-driven approach, and differentiation of pSTS was examined by comparing the connectivity of each subregion. Results In TD individuals, differentiation of networks was positively associated with age and anatomical maturation (cortical thinning in pSTS, greater white matter volume). In the ASD group, differentiation of pSTS connectivity was significantly reduced and correlations with anatomical measures were weak or absent. Moreover, pSTS differentiation was inversely correlated with autism symptom severity. Conclusions Atypical maturation of pSTS suggests altered trajectories for functional segregation and integration of networks in ASD, potentially related to impaired cognitive and sensorimotor development. Furthermore, our findings provide a novel explanation for atypically increased connectivity in ASD observed in some fcMRI studies. PMID:21601832

  8. Evaluation of a proposed method for representing drug terminology.

    PubMed Central

    Cimino, J. J.; McNamara, T. J.; Meredith, T.; Broverman, C. A.; Eckert, K. C.; Moore, M.; Tyree, D. J.

    1999-01-01

    In the absence of a single, standard, multipurpose terminology for representing medications, the HL7 Vocabulary Technical Committee has sought to develop a model for such terms in a way that will provide a unified method for representing them and supporting interoperability among various terminology systems. We evaluated the preliminary model by obtaining terms, represented in our model, from three leading vendors of pharmacy system knowledge bases. A total of 2303 terms were obtained, and 3982 pair-wise comparisons were possible. We found that the components of the term descriptions matched 68-87% of the time and that the overall descriptions matched 53% of the time. The evaluation has identified a number of areas in the model where more rigorous definitions will be needed in order to improve the matching rate. This paper discusses the implications of these results. PMID:10566318

  9. Comparison of Pap smear quality with anatomical spatula and convenience (spatula-cytobrush) methods: a single blind clinical trial.

    PubMed

    Abdali, Khadijeh; Soleimani, Marzieh; Khajehei, Marjan; Tabatabaee, Hamid Reza; Komar, Perikala V; Montazer, Nader Riaz

    2010-01-01

    The Papanicolaou smear is a standard test for cervical cancer screening; however, the most important challenge is high false negative results. Several factors contribute to this problem and one the most important is inappropriate sampling. The aim of this study was to compare the quality of smears obtained by either an anatomical spatula or a spatula-cyto brush. One hundred married women participated in this single blind clinical trial. After all participants were interviewed, two samples were obtained from each: one with a spatula-cytobrush and another with an anatomical spatula. Slides were prepared and assessed by two pathologists for kappa coefficient analysis. Cell adequacy was 96.1 % in anatomical spatula method and 91.2 % in spatula-cyto brush method (p= 0.016). The rates for endocervical cells and metaplasia cells were 70.6%and 24.5%, respectively, with the anatomical spatula method and 69.6% and 24.5% using a spatula-cytobrush (p<0.001). No one reported pain and the amount of bleeding was 38.2% in both methods (p>0.05). In addition, there were no statistically significant differences regarding infection and inflammatory reactions (p>0.05). Based on the findings of this study, the results of sampling with anatomical spatula were more acceptable and better than those of spatula-cytobrush sampling.

  10. A study on automated anatomical labeling to arteries concerning with colon from 3D abdominal CT images

    NASA Astrophysics Data System (ADS)

    Hoang, Bui Huy; Oda, Masahiro; Jiang, Zhengang; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Mori, Kensaku

    2011-03-01

    This paper presents an automated anatomical labeling method of arteries extracted from contrasted 3D CT images based on multi-class AdaBoost. In abdominal surgery, understanding of vasculature related to a target organ such as the colon is very important. Therefore, the anatomical structure of blood vessels needs to be understood by computers in a system supporting abdominal surgery. There are several researches on automated anatomical labeling, but there is no research on automated anatomical labeling to arteries concerning with the colon. The proposed method obtains a tree structure of arteries from the artery region and calculates features values of each branch. These feature values are thickness, curvature, direction, and running vectors of branch. Then, candidate arterial names are computed by classifiers that are trained to output artery names. Finally, a global optimization process is applied to the candidate arterial names to determine final names. Target arteries of this paper are nine lower abdominal arteries (AO, LCIA, RCIA, LEIA, REIA, SMA, IMA, LIIA, RIIA). We applied the proposed method to 14 cases of 3D abdominal contrasted CT images, and evaluated the results by leave-one-out scheme. The average precision and recall rates of the proposed method were 87.9% and 93.3%, respectively. The results of this method are applicable for anatomical name display of surgical simulation and computer aided surgery.

  11. Bayesian adjustment for measurement error in continuous exposures in an individually matched case-control study.

    PubMed

    Espino-Hernandez, Gabriela; Gustafson, Paul; Burstyn, Igor

    2011-05-14

    In epidemiological studies explanatory variables are frequently subject to measurement error. The aim of this paper is to develop a Bayesian method to correct for measurement error in multiple continuous exposures in individually matched case-control studies. This is a topic that has not been widely investigated. The new method is illustrated using data from an individually matched case-control study of the association between thyroid hormone levels during pregnancy and exposure to perfluorinated acids. The objective of the motivating study was to examine the risk of maternal hypothyroxinemia due to exposure to three perfluorinated acids measured on a continuous scale. Results from the proposed method are compared with those obtained from a naive analysis. Using a Bayesian approach, the developed method considers a classical measurement error model for the exposures, as well as the conditional logistic regression likelihood as the disease model, together with a random-effect exposure model. Proper and diffuse prior distributions are assigned, and results from a quality control experiment are used to estimate the perfluorinated acids' measurement error variability. As a result, posterior distributions and 95% credible intervals of the odds ratios are computed. A sensitivity analysis of method's performance in this particular application with different measurement error variability was performed. The proposed Bayesian method to correct for measurement error is feasible and can be implemented using statistical software. For the study on perfluorinated acids, a comparison of the inferences which are corrected for measurement error to those which ignore it indicates that little adjustment is manifested for the level of measurement error actually exhibited in the exposures. Nevertheless, a sensitivity analysis shows that more substantial adjustments arise if larger measurement errors are assumed. In individually matched case-control studies, the use of conditional logistic regression likelihood as a disease model in the presence of measurement error in multiple continuous exposures can be justified by having a random-effect exposure model. The proposed method can be successfully implemented in WinBUGS to correct individually matched case-control studies for several mismeasured continuous exposures under a classical measurement error model.

  12. Optimizing electrode configuration for electrical impedance measurements of muscle via the finite element method.

    PubMed

    Jafarpoor, Mina; Li, Jia; White, Jacob K; Rutkove, Seward B

    2013-05-01

    Electrical impedance myography (EIM) is a technique for the evaluation of neuromuscular diseases, including amyotrophic lateral sclerosis and muscular dystrophy. In this study, we evaluated how alterations in the size and conductivity of muscle and thickness of subcutaneous fat impact the EIM data, with the aim of identifying an optimized electrode configuration for EIM measurements. Finite element models were developed for the human upper arm based on anatomic data; material properties of the tissues were obtained from rat and published sources. The developed model matched the frequency-dependent character of the data. Of the three major EIM parameters, resistance, reactance, and phase, the reactance was least susceptible to alterations in the subcutaneous fat thickness, regardless of electrode arrangement. For example, a quadrupling of fat thickness resulted in a 375% increase in resistance at 35 kHz but only a 29% reduction in reactance. By further optimizing the electrode configuration, the change in reactance could be reduced to just 0.25%. For a fixed 30 mm distance between the sense electrodes centered between the excitation electrodes, an 80 mm distance between the excitation electrodes was found to provide the best balance, with a less than 1% change in reactance despite a doubling of subcutaneous fat thickness or halving of muscle size. These analyses describe a basic approach for further electrode configuration optimization for EIM.

  13. Research on sparse feature matching of improved RANSAC algorithm

    NASA Astrophysics Data System (ADS)

    Kong, Xiangsi; Zhao, Xian

    2018-04-01

    In this paper, a sparse feature matching method based on modified RANSAC algorithm is proposed to improve the precision and speed. Firstly, the feature points of the images are extracted using the SIFT algorithm. Then, the image pair is matched roughly by generating SIFT feature descriptor. At last, the precision of image matching is optimized by the modified RANSAC algorithm,. The RANSAC algorithm is improved from three aspects: instead of the homography matrix, this paper uses the fundamental matrix generated by the 8 point algorithm as the model; the sample is selected by a random block selecting method, which ensures the uniform distribution and the accuracy; adds sequential probability ratio test(SPRT) on the basis of standard RANSAC, which cut down the overall running time of the algorithm. The experimental results show that this method can not only get higher matching accuracy, but also greatly reduce the computation and improve the matching speed.

  14. New ghost-node method for linking different models with varied grid refinement

    USGS Publications Warehouse

    James, S.C.; Dickinson, J.E.; Mehl, S.W.; Hill, M.C.; Leake, S.A.; Zyvoloski, G.A.; Eddebbarh, A.-A.

    2006-01-01

    A flexible, robust method for linking grids of locally refined ground-water flow models constructed with different numerical methods is needed to address a variety of hydrologic problems. This work outlines and tests a new ghost-node model-linking method for a refined "child" model that is contained within a larger and coarser "parent" model that is based on the iterative method of Steffen W. Mehl and Mary C. Hill (2002, Advances in Water Res., 25, p. 497-511; 2004, Advances in Water Res., 27, p. 899-912). The method is applicable to steady-state solutions for ground-water flow. Tests are presented for a homogeneous two-dimensional system that has matching grids (parent cells border an integer number of child cells) or nonmatching grids. The coupled grids are simulated by using the finite-difference and finite-element models MODFLOW and FEHM, respectively. The simulations require no alteration of the MODFLOW or FEHM models and are executed using a batch file on Windows operating systems. Results indicate that when the grids are matched spatially so that nodes and child-cell boundaries are aligned, the new coupling technique has error nearly equal to that when coupling two MODFLOW models. When the grids are nonmatching, model accuracy is slightly increased compared to that for matching-grid cases. Overall, results indicate that the ghost-node technique is a viable means to couple distinct models because the overall head and flow errors relative to the analytical solution are less than if only the regional coarse-grid model was used to simulate flow in the child model's domain.

  15. Segmentation of radiographic images under topological constraints: application to the femur.

    PubMed

    Gamage, Pavan; Xie, Sheng Quan; Delmas, Patrice; Xu, Wei Liang

    2010-09-01

    A framework for radiographic image segmentation under topological control based on two-dimensional (2D) image analysis was developed. The system is intended for use in common radiological tasks including fracture treatment analysis, osteoarthritis diagnostics and osteotomy management planning. The segmentation framework utilizes a generic three-dimensional (3D) model of the bone of interest to define the anatomical topology. Non-rigid registration is performed between the projected contours of the generic 3D model and extracted edges of the X-ray image to achieve the segmentation. For fractured bones, the segmentation requires an additional step where a region-based active contours curve evolution is performed with a level set Mumford-Shah method to obtain the fracture surface edge. The application of the segmentation framework to analysis of human femur radiographs was evaluated. The proposed system has two major innovations. First, definition of the topological constraints does not require a statistical learning process, so the method is generally applicable to a variety of bony anatomy segmentation problems. Second, the methodology is able to handle both intact and fractured bone segmentation. Testing on clinical X-ray images yielded an average root mean squared distance (between the automatically segmented femur contour and the manual segmented ground truth) of 1.10 mm with a standard deviation of 0.13 mm. The proposed point correspondence estimation algorithm was benchmarked against three state-of-the-art point matching algorithms, demonstrating successful non-rigid registration for the cases of interest. A topologically constrained automatic bone contour segmentation framework was developed and tested, providing robustness to noise, outliers, deformations and occlusions.

  16. Partonomies for interactive explorable 3D-models of anatomy.

    PubMed

    Schubert, R; Höhne, K H

    1998-01-01

    We introduce a concept to model subtle part-whole-semantics for the use with interactive 3d-models of human anatomy. Similar to experiences with modeling partonomies for physical artifacts like machines or buildings we found one unique part-whole-relation to be insufficient to represent anatomical reality. This claim will be illustrated with anatomical examples. According to the requirements these examples demand, a semantic classification of part-whole-relations is introduced. Initial results in modeling anatomical partonomies for a 3d-visualization environment proved this approach to be an promising way to represent anatomy and to enable powerful complex inferences.

  17. Carotid artery protrusion and dehiscence in patients with acromegaly.

    PubMed

    Sasagawa, Yasuo; Tachibana, Osamu; Doai, Mariko; Hayashi, Yasuhiko; Tonami, Hisao; Iizuka, Hideaki; Nakada, Mitsutoshi

    2016-10-01

    Acromegaly is a systemic disease which causes multiple bony alterations. Some authors reported that acromegalic patients have risk factors for an intraoperative vascular injury due to the specific anatomical features of their sphenoid sinus. The objective of our study was to analyze the anatomic characteristics of sphenoid sinus in acromegalic patients compared with controls, by evaluation of computed tomography (CT) findings. We examined 45 acromegalic (acromegaly group) and 45 non-acromegalic patients (control group) with pituitary adenomas who were matched for sex, age, height, tumor size, and cavernous sinus invasion (Knosp grade). Preoperative CT of the pituitary region including the sphenoid sinus was used to evaluate the following anatomic characteristics: type of sphenoid sinus (sellar or pre-sellar/conchal); intrasphenoid septa (non/single or multiple); carotid artery protrusion; carotid artery dehiscence; intercarotid distance. Sixteen acromegalic patients (35.5 %) and 6 controls (13.3 %) had carotid artery protrusion. Additionally, 10 acromegalic patients (22.2 %) and 3 controls (6.6 %) had carotid artery dehiscence. Carotid artery protrusion and dehiscence were more frequent in the acromegaly group than in control group (p = 0.013 and 0.035, respectively). Other anatomic characteristics (type of sphenoid sinus, intrasphenoid septa, and intracarotid distance) showed no significant differences between acromegaly and control groups. Our study suggests that carotid artery protrusion and dehiscence occur more frequently among acromegalic patients, compared with non-acromegalic patients. It is important for surgeons to be aware of these anatomic variations to avoid vital complications, such as carotid injuries, during surgery.

  18. Animal models for rotator cuff repair.

    PubMed

    Lebaschi, Amir; Deng, Xiang-Hua; Zong, Jianchun; Cong, Guang-Ting; Carballo, Camila B; Album, Zoe M; Camp, Christopher; Rodeo, Scott A

    2016-11-01

    Rotator cuff (RC) injuries represent a significant source of pain, functional impairment, and morbidity. The large disease burden of RC pathologies necessitates rapid development of research methodologies to treat these conditions. Given their ability to model anatomic, biomechanical, cellular, and molecular aspects of the human RC, animal models have played an indispensable role in reducing injury burden and advancing this field of research for many years. The development of animal models in the musculoskeletal (MSK) research arena is uniquely different from that in other fields in that the similarity of macrostructures and functions is as critical to replicate as cellular and molecular functions. Traditionally, larger animals have been used because of their anatomic similarity to humans and the ease of carrying out realistic surgical procedures. However, refinement of current molecular methods, introduction of novel research tools, and advancements in microsurgical techniques have increased the applicability of small animal models in MSK research. In this paper, we review RC animal models and emphasize a murine model that may serve as a valuable instrument for future RC tendon repair investigations. © 2016 New York Academy of Sciences.

  19. Reduced hemispheric asymmetry of brain anatomical networks in attention deficit hyperactivity disorder.

    PubMed

    Li, Dandan; Li, Ting; Niu, Yan; Xiang, Jie; Cao, Rui; Liu, Bo; Zhang, Hui; Wang, Bin

    2018-05-11

    Despite many studies reporting a variety of alterations in brain networks in patients with attention deficit hyperactivity disorder (ADHD), alterations in hemispheric anatomical networks are still unclear. In this study, we investigated topology alterations in hemispheric white matter in patients with ADHD and the relationship between these alterations and clinical features of the illness. Weighted hemispheric brain anatomical networks were first constructed for each of 40 right-handed patients with ADHD and 53 matched normal controls. Then, graph theoretical approaches were utilized to compute hemispheric topological properties. The small-world property was preserved in the hemispheric network. Furthermore, a significant group-by-hemisphere interaction was revealed in global efficiency, local efficiency and characteristic path length, attributed to the significantly reduced hemispheric asymmetry of global and local integration in patients with ADHD compared with normal controls. Specifically, reduced asymmetric regional efficiency was found in three regions. Finally, we found that the abnormal asymmetry of hemispheric brain anatomical network topology and regional efficiency were both associated with clinical features (the Adult ADHD Self-Report Scale and Wechsler Adult Intelligence Scale) in patients. Our findings provide new insights into the lateralized nature of hemispheric dysconnectivity and highlight the potential for using brain network measures of hemispheric asymmetry as neural biomarkers for ADHD and its clinical features.

  20. A novel augmented reality system of image projection for image-guided neurosurgery.

    PubMed

    Mahvash, Mehran; Besharati Tabrizi, Leila

    2013-05-01

    Augmented reality systems combine virtual images with a real environment. To design and develop an augmented reality system for image-guided surgery of brain tumors using image projection. A virtual image was created in two ways: (1) MRI-based 3D model of the head matched with the segmented lesion of a patient using MRIcro software (version 1.4, freeware, Chris Rorden) and (2) Digital photograph based model in which the tumor region was drawn using image-editing software. The real environment was simulated with a head phantom. For direct projection of the virtual image to the head phantom, a commercially available video projector (PicoPix 1020, Philips) was used. The position and size of the virtual image was adjusted manually for registration, which was performed using anatomical landmarks and fiducial markers position. An augmented reality system for image-guided neurosurgery using direct image projection has been designed successfully and implemented in first evaluation with promising results. The virtual image could be projected to the head phantom and was registered manually. Accurate registration (mean projection error: 0.3 mm) was performed using anatomical landmarks and fiducial markers position. The direct projection of a virtual image to the patients head, skull, or brain surface in real time is an augmented reality system that can be used for image-guided neurosurgery. In this paper, the first evaluation of the system is presented. The encouraging first visualization results indicate that the presented augmented reality system might be an important enhancement of image-guided neurosurgery.

  1. Freeform fabrication of tissue-simulating phantom for potential use of surgical planning in conjoined twins separation surgery.

    PubMed

    Shen, Shuwei; Wang, Haili; Xue, Yue; Yuan, Li; Zhou, Ximing; Zhao, Zuhua; Dong, Erbao; Liu, Bin; Liu, Wendong; Cromeens, Barrett; Adler, Brent; Besner, Gail; Xu, Ronald X

    2017-09-08

    Preoperative assessment of tissue anatomy and accurate surgical planning is crucial in conjoined twin separation surgery. We developed a new method that combines three-dimensional (3D) printing, assembling, and casting to produce anatomic models of high fidelity for surgical planning. The related anatomic features of the conjoined twins were captured by computed tomography (CT), classified as five organ groups, and reconstructed as five computer models. Among these organ groups, the skeleton was produced by fused deposition modeling (FDM) using acrylonitrile-butadiene-styrene. For the other four organ groups, shell molds were prepared by FDM and cast with silica gel to simulate soft tissues, with contrast enhancement pigments added to simulate different CT and visual contrasts. The produced models were assembled, positioned firmly within a 3D printed shell mold simulating the skin boundary, and cast with transparent silica gel. The produced phantom was subject to further CT scan in comparison with that of the patient data for fidelity evaluation. Further data analysis showed that the produced model reassembled the geometric features of the original CT data with an overall mean deviation of less than 2 mm, indicating the clinical potential to use this method for surgical planning in conjoined twin separation surgery.

  2. The challenges in developing a finite element injury model of the neck to predict the penetration of explosively propelled projectiles.

    PubMed

    Breeze, Johno; Newbery, T; Pope, D; Midwinter, M J

    2014-09-01

    Neck injuries sustained by UK service personnel serving on current operations from explosively propelled fragments result in significant mortality and long-term morbidity. Many of these injuries could potentially have been prevented had the soldiers been wearing their issued neck collars at the time of injury. The aim of this research is to develop an accurate method of predicting the resultant damage to cervical neurovascular structures from explosively propelled fragments. A finite element numerical model has been developed based on an anatomically accurate, anthropometrically representative 3D mathematical mesh of cervical neurovascular structures. Currently, the model simulates the passage of a fragment simulating projectile through all anatomical components of the neck using material models based upon 20% ballistic gelatin on the simplification that all tissue types act like homogenous muscle. The material models used to define the properties of each element within the model will be sequentially replaced by ones specific to each individual tissue within an anatomical structure. However, the cumulative effect of so many additional variables will necessitate experimental validation against both animal models and post-mortem human subjects to improve the credibility of any predictions made by the model. We believe this approach will in the future have the potential to enable objective comparisons between the mitigative effects of different body armour systems to be made with resultant time and financial savings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. Learning-based stochastic object models for use in optimizing imaging systems

    NASA Astrophysics Data System (ADS)

    Dolly, Steven R.; Anastasio, Mark A.; Yu, Lifeng; Li, Hua

    2017-03-01

    It is widely known that the optimization of imaging systems based on objective, or task-based, measures of image quality via computer-simulation requires use of a stochastic object model (SOM). However, the development of computationally tractable SOMs that can accurately model the statistical variations in anatomy within a specified ensemble of patients remains a challenging task. Because they are established by use of image data corresponding a single patient, previously reported numerical anatomical models lack of the ability to accurately model inter- patient variations in anatomy. In certain applications, however, databases of high-quality volumetric images are available that can facilitate this task. In this work, a novel and tractable methodology for learning a SOM from a set of volumetric training images is developed. The proposed method is based upon geometric attribute distribution (GAD) models, which characterize the inter-structural centroid variations and the intra-structural shape variations of each individual anatomical structure. The GAD models are scalable and deformable, and constrained by their respective principal attribute variations learned from training data. By use of the GAD models, random organ shapes and positions can be generated and integrated to form an anatomical phantom. The randomness in organ shape and position will reflect the variability of anatomy present in the training data. To demonstrate the methodology, a SOM corresponding to the pelvis of an adult male was computed and a corresponding ensemble of phantoms was created. Additionally, computer-simulated X-ray projection images corresponding to the phantoms were computed, from which tomographic images were reconstructed.

  4. Meniscus Induced Cartilaginous Damage and Non-linear Gross Anatomical Progression of Early-stage Osteoarthritis in a Canine Model

    PubMed Central

    Kahn, David; Mittelstaedt, Daniel; Matyas, John; Qu, Xiangui; Lee, Ji Hyun; Badar, Farid; Les, Clifford; Zhuang, Zhiguo; Xia, Yang

    2016-01-01

    Background: The predictable outcome of the anterior cruciate ligament transection (ACLT) canine model, and the similarity to naturally occurring osteoarthritis (OA) in humans, provide a translatable method for studying OA. Still, evidence of direct meniscus-induced cartilaginous damage has not been identified, and gross-anatomical blinded scoring of early-stage OA has not been performed. Objective: A gross anatomical observation and statistical analysis of OA progression to determine meniscus induced cartilaginous damage, to measure the macroscopic progression of OA, and to address matters involving arthroscopic and surgical procedures of the knee. Method: Unblinded assessment and blinded scoring of meniscal, tibial, femoral, and patellar damage were performed for control and at four time points following unilateral ACLT: 3-week (N=4), 8-week (N=4), 12-week (N=5), and 25-week (N=4). Mixed-model statistics illustrates damage (score) progression; Wilcoxon rank-sum tests compared time-point scores; and Wilcoxon signed-rank tests compared ACLT and contralateral scores, and meniscus and tibia scores. Result: Damage was manifest first on the posterior aspect of the medial meniscus and subsequently on the tibia and femur, implying meniscal damage can precede, coincide with, and aggravate cartilage damage. Damage extent varied chronologically and was dependent upon the joint component. Meniscal damage was evident at 3 weeks and progressed through 25-weeks. Meniscal loose bodies corresponded to tibial cartilage damage location and extent through 12 weeks, followed by cartilage repair activity after complete meniscal degeneration. Conclusion: This study provides additional information for understanding OA progression, identifying OA biomarkers, and arthroscopic and meniscectomy procedures. PMID:28144379

  5. Earliest effects of sudden occlusions on pressure profiles in selected locations of the human systemic arterial system

    NASA Astrophysics Data System (ADS)

    Majka, Marcin; Gadda, Giacomo; Taibi, Angelo; Gałązka, Mirosław; Zieliński, Piotr

    2017-03-01

    We have developed a numerical simulation method for predicting the time dependence (wave form) of pressure at any location in the systemic arterial system in humans. The method uses the matlab-Simulink environment. The input data include explicitly the geometry of the arterial tree, treated up to an arbitrary bifurcation level, and the elastic properties of arteries as well as rheological parameters of blood. Thus, the impact of anatomic details of an individual subject can be studied. The method is applied here to reveal the earliest stages of mechanical reaction of the pressure profiles to sudden local blockages (thromboses or embolisms) of selected arteries. The results obtained with a purely passive model provide reference data indispensable for studies of longer-term effects due to neural and humoral mechanisms. The reliability of the results has been checked by comparison of two available sets of anatomic, elastic, and rheological data involving (i) 55 and (ii) 138 arterial segments. The remaining arteries have been replaced with the appropriate resistive elements. Both models are efficient in predicting an overall shift of pressure, whereas the accuracy of the 55-segment model in reproducing the detailed wave forms and stabilization times turns out dependent on the location of the blockage and the observation point.

  6. SU-F-R-41: Regularized PCA Can Model Treatment-Related Changes in Head and Neck Patients Using Daily CBCTs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chetvertkov, M; Henry Ford Health System, Detroit, MI; Siddiqui, F

    2016-06-15

    Purpose: To use daily cone beam CTs (CBCTs) to develop regularized principal component analysis (PCA) models of anatomical changes in head and neck (H&N) patients, to guide replanning decisions in adaptive radiation therapy (ART). Methods: Known deformations were applied to planning CT (pCT) images of 10 H&N patients to model several different systematic anatomical changes. A Pinnacle plugin was used to interpolate systematic changes over 35 fractions, generating a set of 35 synthetic CTs for each patient. Deformation vector fields (DVFs) were acquired between the pCT and synthetic CTs and random fraction-to-fraction changes were superimposed on the DVFs. Standard non-regularizedmore » and regularized patient-specific PCA models were built using the DVFs. The ability of PCA to extract the known deformations was quantified. PCA models were also generated from clinical CBCTs, for which the deformations and DVFs were not known. It was hypothesized that resulting eigenvectors/eigenfunctions with largest eigenvalues represent the major anatomical deformations during the course of treatment. Results: As demonstrated with quantitative results in the supporting document regularized PCA is more successful than standard PCA at capturing systematic changes early in the treatment. Regularized PCA is able to detect smaller systematic changes against the background of random fraction-to-fraction changes. To be successful at guiding ART, regularized PCA should be coupled with models of when anatomical changes occur: early, late or throughout the treatment course. Conclusion: The leading eigenvector/eigenfunction from the both PCA approaches can tentatively be identified as a major systematic change during radiotherapy course when systematic changes are large enough with respect to random fraction-to-fraction changes. In all cases the regularized PCA approach appears to be more reliable at capturing systematic changes, enabling dosimetric consequences to be projected once trends are established early in the treatment course. This work is supported in part by a grant from Varian Medical Systems, Palo Alto, CA.« less

  7. Development of a skull/brain model for military wound ballistics studies.

    PubMed

    Carr, Debra; Lindstrom, Anne-Christine; Jareborg, Andreas; Champion, Stephen; Waddell, Neil; Miller, David; Teagle, Michael; Horsfall, Ian; Kieser, Jules

    2015-05-01

    Reports on penetrating ballistic head injuries in the literature are dominated by case studies of suicides; the penetrating ammunition usually being .22 rimfire or shotgun. The dominating cause of injuries in modern warfare is fragmentation and hence, this is the primary threat that military helmets protect the brain from. When helmets are perforated, this is usually by bullets. In combat, 20% of penetrating injuries occur to the head and its wounding accounts for 50% of combat deaths. A number of head simulants are described in the academic literature, in ballistic test methods for helmets (including measurement of behind helmet blunt trauma, BHBT) and in the 'open' and 'closed' government literature of several nations. The majority of these models are not anatomically correct and are not assessed with high-velocity rifle ammunition. In this article, an anatomically correct 'skull' (manufactured from polyurethane) and 'brain' (manufactured from 10%, by mass, gelatine) model for use in military wound ballistic studies is described. Filling the cranium completely with gelatine resulted in a similar 'skull' fracture pattern as an anatomically correct 'brain' combined with a representation of cerebrospinal fluid. In particular, posterior cranial fossa and occipital fractures and brain ejection were observed. This pattern of injury compared favourably to reported case studies of actual incidents in the literature.

  8. Fabrication and Assessment of 3D Printed Anatomical Models of the Lower Limb for Anatomical Teaching and Femoral Vessel Access Training in Medicine

    ERIC Educational Resources Information Center

    O'Reilly, Michael K.; Reese, Sven; Herlihy, Therese; Geoghegan, Tony; Cantwell, Colin P.; Feeney, Robin N. M.; Jones, James F. X.

    2016-01-01

    For centuries, cadaveric dissection has been the touchstone of anatomy education. It offers a medical student intimate access to his or her first patient. In contrast to idealized artisan anatomical models, it presents the natural variation of anatomy in fine detail. However, a new teaching construct has appeared recently in which artificial…

  9. Investigating the effect of cardiac oscillations and deadspace gas mixing during apnea using computer simulation.

    PubMed

    Laviola, Marianna; Das, Anup; Chikhani, Marc; Bates, Declan G; Hardman, Jonathan G

    2017-07-01

    Gaseous mixing in the anatomical deadspace with stimulation of respiratory ventilation through cardiogenic oscillations is an important physiological mechanism at the onset of apnea, which has been credited with various beneficial effects, e.g. reduction of hypercapnia during the use of low flow ventilation techniques. In this paper, a novel method is proposed to investigate the effect of these mechanisms in silico. An existing computational model of cardio-pulmonary physiology is extended to include the apneic state, gas mixing within the anatomical deadspace, insufflation into the trachea and cardiogenic oscillations. The new model is validated against data published in an experimental animal (dog) study that reported an increase in arterial partial pressure of carbon dioxide (PaCO 2 ) during apnea. Computational simulations confirm that the model outputs accurately reproduce the available experimental data. This new model can be used to investigate the physiological mechanisms underlying clearance of carbon dioxide during apnea, and hence to develop more effective ventilation strategies for apneic patients.

  10. Differences in subependymal vein anatomy may predispose preterm infants to GMH-IVH.

    PubMed

    Tortora, Domenico; Severino, Mariasavina; Malova, Mariya; Parodi, Alessandro; Morana, Giovanni; Sedlacik, Jan; Govaert, Paul; Volpe, Joseph J; Rossi, Andrea; Ramenghi, Luca Antonio

    2018-01-01

    The anatomy of the deep venous system plays an important role in the pathogenesis of brain lesions in the preterm brain as shown by different histological studies. The aims of this study were to compare the subependymal vein anatomy of preterm neonates with germinal matrix haemorrhage-intraventricular haemorrhage (GMH-IVH), as evaluated by susceptibility-weighted imaging (SWI) venography, with a group of age-matched controls with normal brain MRI, and to explore the relationship between the anatomical features of subependymal veins and clinical risk factors for GMH-IVH. SWI venographies of 48 neonates with GMH-IVH and 130 neonates with normal brain MRI were retrospectively evaluated. Subependymal vein anatomy was classified into six different patterns: type 1 represented the classic pattern and types 2-6 were considered anatomic variants. A quantitative analysis of the venous curvature index was performed. Variables were analysed by using Mann-Whitney U and χ 2 tests, and a multiple logistic regression analysis was performed to evaluate the association between anatomical features, clinical factors and GMH-IVH. A significant difference was noticed among the six anatomical patterns according to the presence of GMH-IVH (χ 2 =14.242, p=0.014). Anatomic variants were observed with higher frequency in neonates with GMH-IVH than in controls (62.2% and 49.6%, respectively). Neonates with GMH-IVH presented a narrower curvature of the terminal portion of subependymal veins (p<0.05). These anatomical features were significantly associated with GMH-IVH (p<0.05). Preterm neonates with GMH-IVH show higher variability of subependymal veins anatomy confirming a potential role as predisposing factor for GMH-IVH. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Anatomical knowledge retention in third-year medical students prior to obstetrics and gynecology and surgery rotations.

    PubMed

    Jurjus, Rosalyn A; Lee, Juliet; Ahle, Samantha; Brown, Kirsten M; Butera, Gisela; Goldman, Ellen F; Krapf, Jill M

    2014-01-01

    Surgical anatomy is taught early in medical school training. The literature shows that many physicians, especially surgical specialists, think that anatomical knowledge of medical students is inadequate and nesting of anatomical sciences later in the clinical curriculum may be necessary. Quantitative data concerning this perception of an anatomical knowledge deficit are lacking, as are specifics as to what content should be reinforced. This study identifies baseline areas of strength and weakness in the surgical anatomy knowledge of medical students entering surgical rotations. Third-year medical students completed a 20-25-question test at the beginning of the General Surgery and Obstetrics and Gynecology rotations. Knowledge of inguinal anatomy (45.3%), orientation in abdominal cavity (38.8%), colon (27.7%), and esophageal varices (12.8%) was poor. The numbers in parentheses are the percentage of questions answered correctly per topic. In comparing those scores to matched test items from this cohort as first-year students in the anatomy course, the drop in retention overall was very significant (P = 0.009) from 86.9 to 51.5%. Students also scored lower in questions relating to pelvic organs (46.7%), urogenital development (54.0%), pulmonary development (17.8%), and pregnancy (17.8%). These data showed that indeed, knowledge of surgical anatomy is poor for medical students entering surgical clerkships. These data collected will be utilized to create interactive learning modules, aimed at improving clinically relevant anatomical knowledge retention. These modules, which will be available to students during their inpatient surgical rotations, connect basic anatomy principles to clinical cases, with the ultimate goal of closing the anatomical knowledge gap. © 2014 American Association of Anatomists.

  12. Anatomically accurate high resolution modeling of human whole heart electromechanics: A strongly scalable algebraic multigrid solver method for nonlinear deformation

    NASA Astrophysics Data System (ADS)

    Augustin, Christoph M.; Neic, Aurel; Liebmann, Manfred; Prassl, Anton J.; Niederer, Steven A.; Haase, Gundolf; Plank, Gernot

    2016-01-01

    Electromechanical (EM) models of the heart have been used successfully to study fundamental mechanisms underlying a heart beat in health and disease. However, in all modeling studies reported so far numerous simplifications were made in terms of representing biophysical details of cellular function and its heterogeneity, gross anatomy and tissue microstructure, as well as the bidirectional coupling between electrophysiology (EP) and tissue distension. One limiting factor is the employed spatial discretization methods which are not sufficiently flexible to accommodate complex geometries or resolve heterogeneities, but, even more importantly, the limited efficiency of the prevailing solver techniques which is not sufficiently scalable to deal with the incurring increase in degrees of freedom (DOF) when modeling cardiac electromechanics at high spatio-temporal resolution. This study reports on the development of a novel methodology for solving the nonlinear equation of finite elasticity using human whole organ models of cardiac electromechanics, discretized at a high para-cellular resolution. Three patient-specific, anatomically accurate, whole heart EM models were reconstructed from magnetic resonance (MR) scans at resolutions of 220 μm, 440 μm and 880 μm, yielding meshes of approximately 184.6, 24.4 and 3.7 million tetrahedral elements and 95.9, 13.2 and 2.1 million displacement DOF, respectively. The same mesh was used for discretizing the governing equations of both electrophysiology (EP) and nonlinear elasticity. A novel algebraic multigrid (AMG) preconditioner for an iterative Krylov solver was developed to deal with the resulting computational load. The AMG preconditioner was designed under the primary objective of achieving favorable strong scaling characteristics for both setup and solution runtimes, as this is key for exploiting current high performance computing hardware. Benchmark results using the 220 μm, 440 μm and 880 μm meshes demonstrate efficient scaling up to 1024, 4096 and 8192 compute cores which allowed the simulation of a single heart beat in 44.3, 87.8 and 235.3 minutes, respectively. The efficiency of the method allows fast simulation cycles without compromising anatomical or biophysical detail.

  13. Anatomically accurate high resolution modeling of human whole heart electromechanics: A strongly scalable algebraic multigrid solver method for nonlinear deformation

    PubMed Central

    Augustin, Christoph M.; Neic, Aurel; Liebmann, Manfred; Prassl, Anton J.; Niederer, Steven A.; Haase, Gundolf; Plank, Gernot

    2016-01-01

    Electromechanical (EM) models of the heart have been used successfully to study fundamental mechanisms underlying a heart beat in health and disease. However, in all modeling studies reported so far numerous simplifications were made in terms of representing biophysical details of cellular function and its heterogeneity, gross anatomy and tissue microstructure, as well as the bidirectional coupling between electrophysiology (EP) and tissue distension. One limiting factor is the employed spatial discretization methods which are not sufficiently flexible to accommodate complex geometries or resolve heterogeneities, but, even more importantly, the limited efficiency of the prevailing solver techniques which are not sufficiently scalable to deal with the incurring increase in degrees of freedom (DOF) when modeling cardiac electromechanics at high spatio-temporal resolution. This study reports on the development of a novel methodology for solving the nonlinear equation of finite elasticity using human whole organ models of cardiac electromechanics, discretized at a high para-cellular resolution. Three patient-specific, anatomically accurate, whole heart EM models were reconstructed from magnetic resonance (MR) scans at resolutions of 220 μm, 440 μm and 880 μm, yielding meshes of approximately 184.6, 24.4 and 3.7 million tetrahedral elements and 95.9, 13.2 and 2.1 million displacement DOF, respectively. The same mesh was used for discretizing the governing equations of both electrophysiology (EP) and nonlinear elasticity. A novel algebraic multigrid (AMG) preconditioner for an iterative Krylov solver was developed to deal with the resulting computational load. The AMG preconditioner was designed under the primary objective of achieving favorable strong scaling characteristics for both setup and solution runtimes, as this is key for exploiting current high performance computing hardware. Benchmark results using the 220 μm, 440 μm and 880 μm meshes demonstrate efficient scaling up to 1024, 4096 and 8192 compute cores which allowed the simulation of a single heart beat in 44.3, 87.8 and 235.3 minutes, respectively. The efficiency of the method allows fast simulation cycles without compromising anatomical or biophysical detail. PMID:26819483

  14. The Comparison of Matching Methods Using Different Measures of Balance: Benefits and Risks Exemplified within a Study to Evaluate the Effects of German Disease Management Programs on Long-Term Outcomes of Patients with Type 2 Diabetes.

    PubMed

    Fullerton, Birgit; Pöhlmann, Boris; Krohn, Robert; Adams, John L; Gerlach, Ferdinand M; Erler, Antje

    2016-10-01

    To present a case study on how to compare various matching methods applying different measures of balance and to point out some pitfalls involved in relying on such measures. Administrative claims data from a German statutory health insurance fund covering the years 2004-2008. We applied three different covariance balance diagnostics to a choice of 12 different matching methods used to evaluate the effectiveness of the German disease management program for type 2 diabetes (DMPDM2). We further compared the effect estimates resulting from applying these different matching techniques in the evaluation of the DMPDM2. The choice of balance measure leads to different results on the performance of the applied matching methods. Exact matching methods performed well across all measures of balance, but resulted in the exclusion of many observations, leading to a change of the baseline characteristics of the study sample and also the effect estimate of the DMPDM2. All PS-based methods showed similar effect estimates. Applying a higher matching ratio and using a larger variable set generally resulted in better balance. Using a generalized boosted instead of a logistic regression model showed slightly better performance for balance diagnostics taking into account imbalances at higher moments. Best practice should include the application of several matching methods and thorough balance diagnostics. Applying matching techniques can provide a useful preprocessing step to reveal areas of the data that lack common support. The use of different balance diagnostics can be helpful for the interpretation of different effect estimates found with different matching methods. © Health Research and Educational Trust.

  15. Anatomic Mesenchymal Stem Cell-Based Engineered Cartilage Constructs for Biologic Total Joint Replacement

    PubMed Central

    Saxena, Vishal; Kim, Minwook; Keah, Niobra M.; Neuwirth, Alexander L.; Stoeckl, Brendan D.; Bickard, Kevin; Restle, David J.; Salowe, Rebecca; Wang, Margaret Ye; Steinberg, David R.

    2016-01-01

    Cartilage has a poor healing response, and few viable options exist for repair of extensive damage. Hyaluronic acid (HA) hydrogels seeded with mesenchymal stem cells (MSCs) polymerized through UV crosslinking can generate functional tissue, but this crosslinking is not compatible with indirect rapid prototyping utilizing opaque anatomic molds. Methacrylate-modified polymers can also be chemically crosslinked in a cytocompatible manner using ammonium persulfate (APS) and N,N,N′,N′-tetramethylethylenediamine (TEMED). The objectives of this study were to (1) compare APS/TEMED crosslinking with UV crosslinking in terms of functional maturation of MSC-seeded HA hydrogels; (2) generate an anatomic mold of a complex joint surface through rapid prototyping; and (3) grow anatomic MSC-seeded HA hydrogel constructs using this alternative crosslinking method. Juvenile bovine MSCs were suspended in methacrylated HA (MeHA) and crosslinked either through UV polymerization or chemically with APS/TEMED to generate cylindrical constructs. Minipig porcine femoral heads were imaged using microCT, and anatomic negative molds were generated by three-dimensional printing using fused deposition modeling. Molded HA constructs were produced using the APS/TEMED method. All constructs were cultured for up to 12 weeks in a chemically defined medium supplemented with TGF-β3 and characterized by mechanical testing, biochemical assays, and histologic analysis. Both UV- and APS/TEMED-polymerized constructs showed increasing mechanical properties and robust proteoglycan and collagen deposition over time. At 12 weeks, APS/TEMED-polymerized constructs had higher equilibrium and dynamic moduli than UV-polymerized constructs, with no differences in proteoglycan or collagen content. Molded HA constructs retained their hemispherical shape in culture and demonstrated increasing mechanical properties and proteoglycan and collagen deposition, especially at the edges compared to the center of these larger constructs. Immunohistochemistry showed abundant collagen type II staining and little collagen type I staining. APS/TEMED crosslinking can be used to produce MSC-seeded HA-based neocartilage and can be used in combination with rapid prototyping techniques to generate anatomic MSC-seeded HA constructs for use in filling large and anatomically complex chondral defects or for biologic joint replacement. PMID:26871863

  16. Stereo matching algorithm based on double components model

    NASA Astrophysics Data System (ADS)

    Zhou, Xiao; Ou, Kejun; Zhao, Jianxin; Mou, Xingang

    2018-03-01

    The tiny wires are the great threat to the safety of the UAV flight. Because they have only several pixels isolated far from the background, while most of the existing stereo matching methods require a certain area of the support region to improve the robustness, or assume the depth dependence of the neighboring pixels to meet requirement of global or semi global optimization method. So there will be some false alarms even failures when images contains tiny wires. A new stereo matching algorithm is approved in the paper based on double components model. According to different texture types the input image is decomposed into two independent component images. One contains only sparse wire texture image and another contains all remaining parts. Different matching schemes are adopted for each component image pairs. Experiment proved that the algorithm can effectively calculate the depth image of complex scene of patrol UAV, which can detect tiny wires besides the large size objects. Compared with the current mainstream method it has obvious advantages.

  17. Deformable Medical Image Registration: A Survey

    PubMed Central

    Sotiras, Aristeidis; Davatzikos, Christos; Paragios, Nikos

    2013-01-01

    Deformable image registration is a fundamental task in medical image processing. Among its most important applications, one may cite: i) multi-modality fusion, where information acquired by different imaging devices or protocols is fused to facilitate diagnosis and treatment planning; ii) longitudinal studies, where temporal structural or anatomical changes are investigated; and iii) population modeling and statistical atlases used to study normal anatomical variability. In this paper, we attempt to give an overview of deformable registration methods, putting emphasis on the most recent advances in the domain. Additional emphasis has been given to techniques applied to medical images. In order to study image registration methods in depth, their main components are identified and studied independently. The most recent techniques are presented in a systematic fashion. The contribution of this paper is to provide an extensive account of registration techniques in a systematic manner. PMID:23739795

  18. Children with ADHD Show No Deficits in Plantar Foot Sensitivity and Static Balance Compared to Healthy Controls

    ERIC Educational Resources Information Center

    Schlee, Gunther; Neubert, Tom; Worenz, Andreas; Milani, Thomas L.

    2012-01-01

    The goal of this study was to investigate plantar foot sensitivity and balance control of ADHD (n = 21) impaired children compared to age-matched healthy controls (n = 25). Thresholds were measured at 200 Hz at three anatomical locations of the plantar foot area of both feet (hallux, first metatarsal head (METI) and heel). Body balance was…

  19. Anatomic distribution and mortality of arterial injury in the wars in Afghanistan and Iraq with comparison to a civilian benchmark.

    PubMed

    Markov, Nickolay P; DuBose, Joseph J; Scott, Daniel; Propper, Brandon W; Clouse, W Darrin; Thompson, Billy; Blackbourne, Lorne H; Rasmussen, Todd E

    2012-09-01

    The purpose of this study was to examine the anatomic distribution and associated mortality of combat-related vascular injuries comparing them to a contemporary civilian standard. The Joint Trauma Theater Registry (JTTR) was queried to identify patients with major compressible arterial injury (CAI) and noncompressible arterial injury (NCAI) sites, and their outcomes, among casualties in Iraq and Afghanistan from 2003 to 2006. The National Trauma Data Bank (NTDB) was then queried over the same time frame to identify civilian trauma patients with similar arterial injuries. Propensity score-based matching was used to create matched patient cohorts from both populations for analysis. Registry queries identified 380 patients from the JTTR and 7020 patients from the NTDB who met inclusion criteria. Propensity score matching for age, elevated Injury Severity Score (ISS; >15), and hypotension on arrival (systolic blood pressure [SBP] <90) resulted in 167 matched patients from each registry. The predominating mechanism of injury among matched JTTR patients was explosive events (73.1%), whereas penetrating injury was more common in the NTDB group (61.7%). In the matched cohorts, the incidence of NCAI did not differ (22.2% JTTR vs 26.6% NTDB; P = .372), but the NTDB patients had a higher incidence of CAI (73.7% vs 59.3%; P = .005). The JTTR cohort was also found to have a higher incidence of associated venous injury (57.5% vs 23.4%; P < .001). Overall, the matched JTTR cohort had a lower mortality than NTDB counterparts (4.2% vs 12.6%; P = .006), a finding that was also noted among patients with NCAI (10.8% vs 36.4%; P = .008). There was no difference in mortality between matched JTTR and NTDB patients with CAI overall (2.0% vs 4.1%; P = .465), or among those presenting with Glasgow Coma Scale (GCS) <8 (28.6% vs 40.0%; P = 1.00) or shock (SBP <90; 10.5% vs 7.7%; P = 1.00). The JTTR mortality rate among patients with CAI was, however, lower among patients with ISS >15 compared with civilian matched counterparts (10.7% vs 42.4%; P = .006). Mortality of injured service personnel who reach a medical treatment facility after major arterial injury compares favorably to a matched civilian standard. Acceptable mortality rates within the military cohort are related to key aspects of an organized Joint Trauma System, including prehospital tactical combat casualty care, rapid medical evacuation to forward surgical capability, and implementation of clinical practice guidelines. Aspects of this comprehensive combat casualty care strategy may translate and be of value to management of arterial injury in the civilian sector. Published by Mosby, Inc.

  20. A direct approach to the design of linear multivariable systems

    NASA Technical Reports Server (NTRS)

    Agrawal, B. L.

    1974-01-01

    Design of multivariable systems is considered and design procedures are formulated in the light of the most recent work on model matching. The word model matching is used exclusively to mean matching the input-output behavior of two systems. The term is used in the frequency domain to indicate the comparison of two transfer matrices containing transfer functions as elements. Design methods where non-interaction is not used as a criteria were studied. Two design methods are considered. The first method of design is based solely upon the specification of generalized error coefficients for each individual transfer function of the overall system transfer matrix. The second design method is called the pole fixing method because all the system poles are fixed at preassigned positions. The zeros of terms either above or below the diagonal are partially fixed via steady state error coefficients. The advantages and disadvantages of each method are discussed and an example is worked to demonstrate their uses. The special cases of triangular decoupling and minimum constraints are discussed.

  1. Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: a cluster analysis study.

    PubMed

    Whitwell, Jennifer L; Przybelski, Scott A; Weigand, Stephen D; Ivnik, Robert J; Vemuri, Prashanthi; Gunter, Jeffrey L; Senjem, Matthew L; Shiung, Maria M; Boeve, Bradley F; Knopman, David S; Parisi, Joseph E; Dickson, Dennis W; Petersen, Ronald C; Jack, Clifford R; Josephs, Keith A

    2009-11-01

    The behavioural variant of frontotemporal dementia is a progressive neurodegenerative syndrome characterized by changes in personality and behaviour. It is typically associated with frontal lobe atrophy, although patterns of atrophy are heterogeneous. The objective of this study was to examine case-by-case variability in patterns of grey matter atrophy in subjects with the behavioural variant of frontotemporal dementia and to investigate whether behavioural variant of frontotemporal dementia can be divided into distinct anatomical subtypes. Sixty-six subjects that fulfilled clinical criteria for a diagnosis of the behavioural variant of frontotemporal dementia with a volumetric magnetic resonance imaging scan were identified. Grey matter volumes were obtained for 26 regions of interest, covering frontal, temporal and parietal lobes, striatum, insula and supplemental motor area, using the automated anatomical labelling atlas. Regional volumes were divided by total grey matter volume. A hierarchical agglomerative cluster analysis using Ward's clustering linkage method was performed to cluster the behavioural variant of frontotemporal dementia subjects into different anatomical clusters. Voxel-based morphometry was used to assess patterns of grey matter loss in each identified cluster of subjects compared to an age and gender-matched control group at P < 0.05 (family-wise error corrected). We identified four potentially useful clusters with distinct patterns of grey matter loss, which we posit represent anatomical subtypes of the behavioural variant of frontotemporal dementia. Two of these subtypes were associated with temporal lobe volume loss, with one subtype showing loss restricted to temporal lobe regions (temporal-dominant subtype) and the other showing grey matter loss in the temporal lobes as well as frontal and parietal lobes (temporofrontoparietal subtype). Another two subtypes were characterized by a large amount of frontal lobe volume loss, with one subtype showing grey matter loss in the frontal lobes as well as loss of the temporal lobes (frontotemporal subtype) and the other subtype showing loss relatively restricted to the frontal lobes (frontal-dominant subtype). These four subtypes differed on clinical measures of executive function, episodic memory and confrontation naming. There were also associations between the four subtypes and genetic or pathological diagnoses which were obtained in 48% of the cohort. The clusters did not differ in behavioural severity as measured by the Neuropsychiatric Inventory; supporting the original classification of the behavioural variant of frontotemporal dementia in these subjects. Our findings suggest behavioural variant of frontotemporal dementia can therefore be subdivided into four different anatomical subtypes.

  2. Model-based cartilage thickness measurement in the submillimeter range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streekstra, G. J.; Strackee, S. D.; Maas, M.

    2007-09-15

    Current methods of image-based thickness measurement in thin sheet structures utilize second derivative zero crossings to locate the layer boundaries. It is generally acknowledged that the nonzero width of the point spread function (PSF) limits the accuracy of this measurement procedure. We propose a model-based method that strongly reduces PSF-induced bias by incorporating the PSF into the thickness estimation method. We estimated the bias in thickness measurements in simulated thin sheet images as obtained from second derivative zero crossings. To gain insight into the range of sheet thickness where our method is expected to yield improved results, sheet thickness wasmore » varied between 0.15 and 1.2 mm with an assumed PSF as present in the high-resolution modes of current computed tomography (CT) scanners [full width at half maximum (FWHM) 0.5-0.8 mm]. Our model-based method was evaluated in practice by measuring layer thickness from CT images of a phantom mimicking two parallel cartilage layers in an arthrography procedure. CT arthrography images of cadaver wrists were also evaluated, and thickness estimates were compared to those obtained from high-resolution anatomical sections that served as a reference. The thickness estimates from the simulated images reveal that the method based on second derivative zero crossings shows considerable bias for layers in the submillimeter range. This bias is negligible for sheet thickness larger than 1 mm, where the size of the sheet is more than twice the FWHM of the PSF but can be as large as 0.2 mm for a 0.5 mm sheet. The results of the phantom experiments show that the bias is effectively reduced by our method. The deviations from the true thickness, due to random fluctuations induced by quantum noise in the CT images, are of the order of 3% for a standard wrist imaging protocol. In the wrist the submillimeter thickness estimates from the CT arthrography images correspond within 10% to those estimated from the anatomical sections. We present a method that yields virtually unbiased thickness estimates of cartilage layers in the submillimeter range. The good agreement of thickness estimates from CT images with estimates from anatomical sections is promising for clinical application of the method in cartilage integrity staging of the wrist and the ankle.« less

  3. Evaluating the impact of an integrated multidisciplinary head & neck competency-based anatomy & radiology teaching approach in radiation oncology: a prospective cohort study

    PubMed Central

    2014-01-01

    Background Modern radiation oncology demands a thorough understanding of gross and cross-sectional anatomy for diagnostic and therapeutic applications. Complex anatomic sites present challenges for learners and are not well-addressed in traditional postgraduate curricula. A multidisciplinary team (MDT) based head-and-neck gross and radiologic anatomy program for radiation oncology trainees was developed, piloted, and empirically assessed for efficacy and learning outcomes. Methods Four site-specific MDT head-and-neck seminars were implemented, each involving a MDT delivering didactic and case-based instruction, supplemented by cadaveric presentations. There was no dedicated contouring instruction. Pre- and post-testing were performed to assess knowledge, and ability to apply knowledge to the clinical setting as defined by accuracy of contouring. Paired analyses of knowledge pretests and posttests were performed by Wilcoxon matched-pair signed-rank test. Results Fifteen post-graduate trainees participated. A statistically significant (p < 0.001) mean absolute improvement of 4.6 points (17.03%) was observed between knowledge pretest and posttest scores. Contouring accuracy was analyzed quantitatively by comparing spatial overlap of participants’ pretest and posttest contours with a gold standard through the dice similarity coefficient. A statistically significant improvement in contouring accuracy was observed for 3 out of 20 anatomical structures. Qualitative and quantitative feedback revealed that participants were more confident at contouring and were enthusiastic towards the seminars. Conclusions MDT seminars were associated with improved knowledge scores and resident satisfaction; however, increased gross and cross-sectional anatomic knowledge did not translate into improvements in contouring accuracy. Further research should evaluate the impact of hands-on contouring sessions in addition to dedicated instructional sessions to develop competencies. PMID:24969509

  4. Labeling for Big Data in radiation oncology: The Radiation Oncology Structures ontology

    PubMed Central

    Zapletal, Eric; Rance, Bastien; Giraud, Philippe; Burgun, Anita

    2018-01-01

    Purpose Leveraging Electronic Health Records (EHR) and Oncology Information Systems (OIS) has great potential to generate hypotheses for cancer treatment, since they directly provide medical data on a large scale. In order to gather a significant amount of patients with a high level of clinical details, multicenter studies are necessary. A challenge in creating high quality Big Data studies involving several treatment centers is the lack of semantic interoperability between data sources. We present the ontology we developed to address this issue. Methods Radiation Oncology anatomical and target volumes were categorized in anatomical and treatment planning classes. International delineation guidelines specific to radiation oncology were used for lymph nodes areas and target volumes. Hierarchical classes were created to generate The Radiation Oncology Structures (ROS) Ontology. The ROS was then applied to the data from our institution. Results Four hundred and seventeen classes were created with a maximum of 14 children classes (average = 5). The ontology was then converted into a Web Ontology Language (.owl) format and made available online on Bioportal and GitHub under an Apache 2.0 License. We extracted all structures delineated in our department since the opening in 2001. 20,758 structures were exported from our “record-and-verify” system, demonstrating a significant heterogeneity within a single center. All structures were matched to the ROS ontology before integration into our clinical data warehouse (CDW). Conclusion In this study we describe a new ontology, specific to radiation oncology, that reports all anatomical and treatment planning structures that can be delineated. This ontology will be used to integrate dosimetric data in the Assistance Publique—Hôpitaux de Paris CDW that stores data from 6.5 million patients (as of February 2017). PMID:29351341

  5. Orientation estimation of anatomical structures in medical images for object recognition

    NASA Astrophysics Data System (ADS)

    Bağci, Ulaş; Udupa, Jayaram K.; Chen, Xinjian

    2011-03-01

    Recognition of anatomical structures is an important step in model based medical image segmentation. It provides pose estimation of objects and information about "where" roughly the objects are in the image and distinguishing them from other object-like entities. In,1 we presented a general method of model-based multi-object recognition to assist in segmentation (delineation) tasks. It exploits the pose relationship that can be encoded, via the concept of ball scale (b-scale), between the binary training objects and their associated grey images. The goal was to place the model, in a single shot, close to the right pose (position, orientation, and scale) in a given image so that the model boundaries fall in the close vicinity of object boundaries in the image. Unlike position and scale parameters, we observe that orientation parameters require more attention when estimating the pose of the model as even small differences in orientation parameters can lead to inappropriate recognition. Motivated from the non-Euclidean nature of the pose information, we propose in this paper the use of non-Euclidean metrics to estimate orientation of the anatomical structures for more accurate recognition and segmentation. We statistically analyze and evaluate the following metrics for orientation estimation: Euclidean, Log-Euclidean, Root-Euclidean, Procrustes Size-and-Shape, and mean Hermitian metrics. The results show that mean Hermitian and Cholesky decomposition metrics provide more accurate orientation estimates than other Euclidean and non-Euclidean metrics.

  6. Surface registration technique for close-range mapping applications

    NASA Astrophysics Data System (ADS)

    Habib, Ayman F.; Cheng, Rita W. T.

    2006-08-01

    Close-range mapping applications such as cultural heritage restoration, virtual reality modeling for the entertainment industry, and anatomical feature recognition for medical activities require 3D data that is usually acquired by high resolution close-range laser scanners. Since these datasets are typically captured from different viewpoints and/or at different times, accurate registration is a crucial procedure for 3D modeling of mapped objects. Several registration techniques are available that work directly with the raw laser points or with extracted features from the point cloud. Some examples include the commonly known Iterative Closest Point (ICP) algorithm and a recently proposed technique based on matching spin-images. This research focuses on developing a surface matching algorithm that is based on the Modified Iterated Hough Transform (MIHT) and ICP to register 3D data. The proposed algorithm works directly with the raw 3D laser points and does not assume point-to-point correspondence between two laser scans. The algorithm can simultaneously establish correspondence between two surfaces and estimates the transformation parameters relating them. Experiment with two partially overlapping laser scans of a small object is performed with the proposed algorithm and shows successful registration. A high quality of fit between the two scans is achieved and improvement is found when compared to the results obtained using the spin-image technique. The results demonstrate the feasibility of the proposed algorithm for registering 3D laser scanning data in close-range mapping applications to help with the generation of complete 3D models.

  7. A three-dimensional digital atlas of the dura mater based on human head MRI.

    PubMed

    Yang, Zhirong; Guo, Zhilin

    2015-03-30

    The goal of this paper was to design a three-dimensional (3D) digital dural atlas of the human brain for assisting neurosurgeons during the planning of an operation, medical research and teaching activities in neurosurgical anatomy. The 176 sagittal head magnetic resonance(MR) images of a 54-year-old female who suffered from the left posterior fossa tumor were processed and outlined, based on which a 3D dural model was created using the softwares of 3ds-max and Mimics. Then the model and images/anatomy photos were matched using the softwares of Z-brush and Photoshop to form the 3-D dural atlas. Dural anatomic photographs were needed to produce the 3D atlas in dural vault and skull base areas. The 3D dural atlas of the brain and related structures was successfully constructed using 73 dural delineations, the contours of dural model match very well on the dural structures of the original images in three orthogonal (axial, coronal and sagittal view) MR cross-sections. The atlas can be arbitrarily rotated and viewed from any direction. It can also be zoomed in and out directly using the zoom function. We successfully generated a 3D dural atlas of human brain, which can be used for repeated observation and research without limitations of time and shortage of corpses. In addition, the atlas has many potential applications in operative planning, surgical training, teaching activities, and so on. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. An interactive three-dimensional virtual body structures system for anatomical training over the internet.

    PubMed

    Temkin, Bharti; Acosta, Eric; Malvankar, Ameya; Vaidyanath, Sreeram

    2006-04-01

    The Visible Human digital datasets make it possible to develop computer-based anatomical training systems that use virtual anatomical models (virtual body structures-VBS). Medical schools are combining these virtual training systems and classical anatomy teaching methods that use labeled images and cadaver dissection. In this paper we present a customizable web-based three-dimensional anatomy training system, W3D-VBS. W3D-VBS uses National Library of Medicine's (NLM) Visible Human Male datasets to interactively locate, explore, select, extract, highlight, label, and visualize, realistic 2D (using axial, coronal, and sagittal views) and 3D virtual structures. A real-time self-guided virtual tour of the entire body is designed to provide detailed anatomical information about structures, substructures, and proximal structures. The system thus facilitates learning of visuospatial relationships at a level of detail that may not be possible by any other means. The use of volumetric structures allows for repeated real-time virtual dissections, from any angle, at the convenience of the user. Volumetric (3D) virtual dissections are performed by adding, removing, highlighting, and labeling individual structures (and/or entire anatomical systems). The resultant virtual explorations (consisting of anatomical 2D/3D illustrations and animations), with user selected highlighting colors and label positions, can be saved and used for generating lesson plans and evaluation systems. Tracking users' progress using the evaluation system helps customize the curriculum, making W3D-VBS a powerful learning tool. Our plan is to incorporate other Visible Human segmented datasets, especially datasets with higher resolutions, that make it possible to include finer anatomical structures such as nerves and small vessels. (c) 2006 Wiley-Liss, Inc.

  9. Realistic Anatomical Prostate Models for Surgical Skills Workshops Using Ballistic Gelatin for Nerve-Sparing Radical Prostatectomy and Fruit for Simple Prostatectomy

    PubMed Central

    Lindner, Uri; Klotz, Laurence

    2011-01-01

    Purpose Understanding of prostate anatomy has evolved as techniques have been refined and improved for radical prostatectomy (RP), particularly regarding the importance of the neurovascular bundles for erectile function. The objectives of this study were to develop inexpensive and simple but anatomically accurate prostate models not involving human or animal elements to teach the terminology and practical aspects of nerve-sparing RP and simple prostatectomy (SP). Materials and Methods The RP model used a Foley catheter with ballistics gelatin in the balloon and mesh fabric (neurovascular bundles) and balloons (prostatic fascial layers) on either side for the practice of inter- and intrafascial techniques. The SP model required only a ripe clementine, for which the skin represented compressed normal prostate, the pulp represented benign tissue, and the pith mimicked fibrous adhesions. A modification with a balloon through the fruit center acted as a "urethra." Results Both models were easily created and successfully represented the principles of anatomical nerve-sparing RP and SP. Both models were tested in workshops by urologists and residents of differing levels with positive feedback. Conclusions Low-fidelity models for prostate anatomy demonstration and surgical practice are feasible. They are inexpensive and simple to construct. Importantly, these models can be used for education on the practical aspects of nerve-sparing RP and SP. The models will require further validation as educational and competency tools, but as we move to an era in which human donors and animal experiments become less ethical and more difficult to complete, so too will low-fidelity models become more attractive. PMID:21379431

  10. Nasal high flow clears anatomical dead space in upper airway models

    PubMed Central

    Celik, Gülnaz; Feng, Sheng; Bartenstein, Peter; Meyer, Gabriele; Eickelberg, Oliver; Schmid, Otmar; Tatkov, Stanislav

    2015-01-01

    Recent studies showed that nasal high flow (NHF) with or without supplemental oxygen can assist ventilation of patients with chronic respiratory and sleep disorders. The hypothesis of this study was to test whether NHF can clear dead space in two different models of the upper nasal airways. The first was a simple tube model consisting of a nozzle to simulate the nasal valve area, connected to a cylindrical tube to simulate the nasal cavity. The second was a more complex anatomically representative upper airway model, constructed from segmented CT-scan images of a healthy volunteer. After filling the models with tracer gases, NHF was delivered at rates of 15, 30, and 45 l/min. The tracer gas clearance was determined using dynamic infrared CO2 spectroscopy and 81mKr-gas radioactive gamma camera imaging. There was a similar tracer-gas clearance characteristic in the tube model and the upper airway model: clearance half-times were below 1.0 s and decreased with increasing NHF rates. For both models, the anterior compartments demonstrated faster clearance levels (half-times < 0.5 s) and the posterior sections showed slower clearance (half-times < 1.0 s). Both imaging methods showed similar flow-dependent tracer-gas clearance in the models. For the anatomically based model, there was complete tracer-gas removal from the nasal cavities within 1.0 s. The level of clearance in the nasal cavities increased by 1.8 ml/s for every 1.0 l/min increase in the rate of NHF. The study has demonstrated the fast-occurring clearance of nasal cavities by NHF therapy, which is capable of reducing of dead space rebreathing. PMID:25882385

  11. An evaluation of exact matching and propensity score methods as applied in a comparative effectiveness study of inhaled corticosteroids in asthma

    PubMed Central

    Burden, Anne; Roche, Nicolas; Miglio, Cristiana; Hillyer, Elizabeth V; Postma, Dirkje S; Herings, Ron MC; Overbeek, Jetty A; Khalid, Javaria Mona; van Eickels, Daniela; Price, David B

    2017-01-01

    Background Cohort matching and regression modeling are used in observational studies to control for confounding factors when estimating treatment effects. Our objective was to evaluate exact matching and propensity score methods by applying them in a 1-year pre–post historical database study to investigate asthma-related outcomes by treatment. Methods We drew on longitudinal medical record data in the PHARMO database for asthma patients prescribed the treatments to be compared (ciclesonide and fine-particle inhaled corticosteroid [ICS]). Propensity score methods that we evaluated were propensity score matching (PSM) using two different algorithms, the inverse probability of treatment weighting (IPTW), covariate adjustment using the propensity score, and propensity score stratification. We defined balance, using standardized differences, as differences of <10% between cohorts. Results Of 4064 eligible patients, 1382 (34%) were prescribed ciclesonide and 2682 (66%) fine-particle ICS. The IPTW and propensity score-based methods retained more patients (96%–100%) than exact matching (90%); exact matching selected less severe patients. Standardized differences were >10% for four variables in the exact-matched dataset and <10% for both PSM algorithms and the weighted pseudo-dataset used in the IPTW method. With all methods, ciclesonide was associated with better 1-year asthma-related outcomes, at one-third the prescribed dose, than fine-particle ICS; results varied slightly by method, but direction and statistical significance remained the same. Conclusion We found that each method has its particular strengths, and we recommend at least two methods be applied for each matched cohort study to evaluate the robustness of the findings. Balance diagnostics should be applied with all methods to check the balance of confounders between treatment cohorts. If exact matching is used, the calculation of a propensity score could be useful to identify variables that require balancing, thereby informing the choice of matching criteria together with clinical considerations. PMID:28356782

  12. Comparison of in vitro flows past a mechanical heart valve in anatomical and axisymmetric aorta models

    NASA Astrophysics Data System (ADS)

    Haya, Laura; Tavoularis, Stavros

    2017-06-01

    Flow characteristics past a bileaflet mechanical heart valve were measured under physiological flow conditions in a straight tube with an axisymmetric expansion, similar to vessels used in previous studies, and in an anatomical model of the aorta. We found that anatomical features, including the three-lobed sinus and the aorta's curvature affected significantly the flow characteristics. The turbulent and viscous stresses were presented and discussed as indicators for potential blood damage and thrombosis. Both types of stresses, averaged over the two axial measurement planes, were significantly lower in the anatomical model than in the axisymmetric one. This difference was attributed to the lower height-to-width ratio and more gradual contraction of the anatomical aortic sinus. The curvature of the aorta caused asymmetries in the velocity and stress distributions during forward flow. Secondary flows resulting from the aorta's curvature are thought to have redistributed the fluid stresses transversely, resulting in a more homogeneous stress distribution in the anatomical aortic root than in the axisymmetric root. The results of this study demonstrate the importance of modelling accurately the aortic geometry in experimental and computational studies of prosthetic devices. Moreover, our findings suggest that grafts used for aortic root replacement should approximate as closely as possible the shape of the natural sinuses.

  13. The concentration dependence of the galaxy–halo connection: Modeling assembly bias with abundance matching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, Benjamin V.; Mao, Yao -Yuan; Becker, Matthew R.

    Empirical methods for connecting galaxies to their dark matter halos have become essential for interpreting measurements of the spatial statistics of galaxies. In this work, we present a novel approach for parameterizing the degree of concentration dependence in the abundance matching method. Furthermore, this new parameterization provides a smooth interpolation between two commonly used matching proxies: the peak halo mass and the peak halo maximal circular velocity. This parameterization controls the amount of dependence of galaxy luminosity on halo concentration at a fixed halo mass. Effectively this interpolation scheme enables abundance matching models to have adjustable assembly bias in the resulting galaxy catalogs. With the newmore » $$400\\,\\mathrm{Mpc}\\,{h}^{-1}$$ DarkSky Simulation, whose larger volume provides lower sample variance, we further show that low-redshift two-point clustering and satellite fraction measurements from SDSS can already provide a joint constraint on this concentration dependence and the scatter within the abundance matching framework.« less

  14. The concentration dependence of the galaxy–halo connection: Modeling assembly bias with abundance matching

    DOE PAGES

    Lehmann, Benjamin V.; Mao, Yao -Yuan; Becker, Matthew R.; ...

    2016-12-28

    Empirical methods for connecting galaxies to their dark matter halos have become essential for interpreting measurements of the spatial statistics of galaxies. In this work, we present a novel approach for parameterizing the degree of concentration dependence in the abundance matching method. Furthermore, this new parameterization provides a smooth interpolation between two commonly used matching proxies: the peak halo mass and the peak halo maximal circular velocity. This parameterization controls the amount of dependence of galaxy luminosity on halo concentration at a fixed halo mass. Effectively this interpolation scheme enables abundance matching models to have adjustable assembly bias in the resulting galaxy catalogs. With the newmore » $$400\\,\\mathrm{Mpc}\\,{h}^{-1}$$ DarkSky Simulation, whose larger volume provides lower sample variance, we further show that low-redshift two-point clustering and satellite fraction measurements from SDSS can already provide a joint constraint on this concentration dependence and the scatter within the abundance matching framework.« less

  15. [Preliminary use of HoloLens glasses in surgery of liver cancer].

    PubMed

    Shi, Lei; Luo, Tao; Zhang, Li; Kang, Zhongcheng; Chen, Jie; Wu, Feiyue; Luo, Jia

    2018-05-28

    To establish the preoperative three dimensional (3D) model of liver cancer, and to precisely match the preoperative planning with the target organs during the operation.
 Methods: The 3D model reconstruction based on magnetic resonance data, which was combined with virtual reality technology via HoloLens glasses, was applied in the operation of liver cancer to achieve preoperative 3D modeling and surgical planning, and to directly match it with the operative target organs during operation.
 Results: The 3D model reconstruction of liver cancer based on magnetic resonance data was completed. The exact match with the target organ was performed during the operation via HoloLens glasses leaded by the 3D model.
 Conclusion: Magnetic resonance data can be used for the 3D model reconstruction to improve preoperative assessment and accurate match during the operation.

  16. Soft Tissue Structure Modelling for Use in Orthopaedic Applications and Musculoskeletal Biomechanics

    NASA Astrophysics Data System (ADS)

    Audenaert, E. A.; Mahieu, P.; van Hoof, T.; Pattyn, C.

    2009-12-01

    We present our methodology for the three-dimensional anatomical and geometrical description of soft tissues, relevant for orthopaedic surgical applications and musculoskeletal biomechanics. The technique involves the segmentation and geometrical description of muscles and neurovascular structures from high-resolution computer tomography scanning for the reconstruction of generic anatomical models. These models can be used for quantitative interpretation of anatomical and biomechanical aspects of different soft tissue structures. This approach should allow the use of these data in other application fields, such as musculoskeletal modelling, simulations for radiation therapy, and databases for use in minimally invasive, navigated and robotic surgery.

  17. Comparative evaluation of the cadaveric and computed tomographic features of the coelomic cavity in the green iguana (Iguana iguana), black and white tegu (Tupinambis merianae) and bearded dragon (Pogona vitticeps).

    PubMed

    Banzato, T; Selleri, P; Veladiano, I A; Zotti, A

    2013-12-01

    Contrast-enhanced computed tomographic studies of the coelomic cavity in four green iguanas, four black and white tegus and four bearded dragons were performed using a conventional CT scanner. Anatomical reference cross sections were obtained from four green iguana, four black and white tegu and six bearded dragon cadavers; the specimens were stored in a -20°C freezer for 24 h then sliced into 5-mm intervals. The frozen sections were cleaned with water and photographed on both sides. The individual anatomical structures were identified by means of the available literature; these were labelled first on the anatomical images and then matched to the corresponding computed tomography images. The results provide an atlas of the normal cross-sectional and computed tomographic anatomy of the coelomic cavity in the green iguana, the black and white tegu and the bearded dragon, which is useful in the interpretation of any imaging modality. © 2013 Blackwell Verlag GmbH.

  18. Proximal versus distal protection during carotid artery stenting: analysis of the two treatment approaches and associated clinical outcomes.

    PubMed

    Mokin, Maxim; Dumont, Travis M; Chi, Joan Mihyun; Mangan, Connor J; Kass-Hout, Tareq; Sorkin, Grant C; Snyder, Kenneth V; Hopkins, L Nelson; Siddiqui, Adnan H; Levy, Elad I

    2014-01-01

    Cerebral protection device utilization during carotid artery stenting (CAS) has been shown to decrease risk of perioperative stroke. The two most commonly used devices are distal filters and proximal protection devices, which allow blood flow cessation or flow reversal. The goal of the present study was to examine anatomic and morphologic characteristics of the treated lesions using each type of cerebral protection device and compare clinical 30-day adverse event rates between the two cerebral protection groups. We conducted a single-center, retrospective review of consecutive CAS cases with proximal protection devices that were matched with CAS cases using distal filter protection devices based on indication (symptomatic vs. asymptomatic), age, and gender. We reviewed clinical, anatomic, and morphologic characteristics of the stented lesions in cases of proximal or distal protection and also studied the rate of major adverse events within the first 30 days after the procedure. We identified a total of 70 patients treated with proximal protection devices who were matched in a blinded fashion to 70 cases with distal protection. There was a significantly higher number of high-risk lesions in patients who had CAS using proximal protection devices (P = 0.009). There was no significant difference in overall frequency of 30-day adverse outcomes (transient ischemic attack/stroke/reperfusion hemorrhage/death) between the two groups (P = 1.0). Our study is the first attempt (to our knowledge) to review and compare anatomic and morphologic characteristics of the stented lesions in cases of proximal versus distal protection for CAS. Our data indicate that in properly selected patients both approaches could be equally safe and effective. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Methods for estimating missing human skeletal element osteometric dimensions employed in the revised fully technique for estimating stature.

    PubMed

    Auerbach, Benjamin M

    2011-05-01

    One of the greatest limitations to the application of the revised Fully anatomical stature estimation method is the inability to measure some of the skeletal elements required in its calculation. These element dimensions cannot be obtained due to taphonomic factors, incomplete excavation, or disease processes, and result in missing data. This study examines methods of imputing these missing dimensions using observable Fully measurements from the skeleton and the accuracy of incorporating these missing element estimations into anatomical stature reconstruction. These are further assessed against stature estimations obtained from mathematical regression formulae for the lower limb bones (femur and tibia). Two thousand seven hundred and seventeen North and South American indigenous skeletons were measured, and subsets of these with observable Fully dimensions were used to simulate missing elements and create estimation methods and equations. Comparisons were made directly between anatomically reconstructed statures and mathematically derived statures, as well as with anatomically derived statures with imputed missing dimensions. These analyses demonstrate that, while mathematical stature estimations are more accurate, anatomical statures incorporating missing dimensions are not appreciably less accurate and are more precise. The anatomical stature estimation method using imputed missing dimensions is supported. Missing element estimation, however, is limited to the vertebral column (only when lumbar vertebrae are present) and to talocalcaneal height (only when femora and tibiae are present). Crania, entire vertebral columns, and femoral or tibial lengths cannot be reliably estimated. Further discussion of the applicability of these methods is discussed. Copyright © 2011 Wiley-Liss, Inc.

  20. Cyclic biomechanical testing of biocomposite lateral row knotless anchors in a human cadaveric model.

    PubMed

    Barber, F Alan; Bava, Eric D; Spenciner, David B; Piccirillo, Justin

    2013-06-01

    The purpose of this study was to assess the mechanical performance of biocomposite knotless lateral row anchors based on both anchor design and the direction of pull. Two lateral row greater tuberosity insertion sites (anterior and posterior) were identified in matched pairs of fresh-frozen human cadaveric shoulders DEXA (dual energy X-ray absorptiometry) scanned to verify comparability. The humeri were stripped of all soft tissue and 3 different biocomposite knotless lateral row anchors: HEALIX Knotless BR (DePuy Mitek, Raynham MA), BioComposite PushLock (Arthrex, Naples, FL), and Bio-SwiveLock (Arthrex). Fifty-two anchors were distributed among the insertion locations and tested them with either an anatomic or axial pull. A fixed-gauge loop (15 mm) of 2 high-strength sutures from each anchor was created. After a 10-Nm preload, anchors were cycled from 10 to 45 Nm at 0.5 Hz for 200 cycles and tested to failure at 4.23 mm/second. The load to reach 3 mm and 5 mm displacement, ultimate failure load, displacement at ultimate failure, and failure mode were recorded. Threaded anchors (Bio-SwiveLock, P = .03; HEALIX Knotless, P = .014) showed less displacement with anatomic testing than did the nonthreaded anchor (BioComposite PushLock), and the HEALIX Knotless showed less overall displacement than did the other 2 anchors. The Bio-SwiveLock exhibited greater failure loads than did the other 2 anchors (P < .05). Comparison of axial and anatomic loading showed no maximum load differences for all anchors as a whole (P = .1084). Yet, anatomic pulling produced higher failure loads than did axial pulling for the Bio-SwiveLock but not for the BioComposite PushLock or the HEALIX Knotless. The nonthreaded anchor (BioComposite PushLock) displayed lower failure loads than did both threaded anchors with axial pulling. Threaded biocomposite anchors (HEALIX Knotless BR and Bio-SwiveLock) show less anatomic loading displacement and higher axial failure loads than do the nonthreaded (BioComposite PushLock) anchor. The HEALIX Knotless BR anchor showed less displacement than did the BioComposite PushLock and Bio-SwiveLock anchors. Neither axial nor anatomic loading had an effect on overall anchor displacement. Because of the strength profiles exhibited, this study supports the use of biocomposite anchors, which have definite advantages over polyetheretherketone (PEEK) and metal products. However, the nonthreaded BioComposite PushLock anchor cannot be recommended. Copyright © 2013 Arthroscopy Association of North America. All rights reserved.

  1. Feature-Motivated Simplified Adaptive PCNN-Based Medical Image Fusion Algorithm in NSST Domain.

    PubMed

    Ganasala, Padma; Kumar, Vinod

    2016-02-01

    Multimodality medical image fusion plays a vital role in diagnosis, treatment planning, and follow-up studies of various diseases. It provides a composite image containing critical information of source images required for better localization and definition of different organs and lesions. In the state-of-the-art image fusion methods based on nonsubsampled shearlet transform (NSST) and pulse-coupled neural network (PCNN), authors have used normalized coefficient value to motivate the PCNN-processing both low-frequency (LF) and high-frequency (HF) sub-bands. This makes the fused image blurred and decreases its contrast. The main objective of this work is to design an image fusion method that gives the fused image with better contrast, more detail information, and suitable for clinical use. We propose a novel image fusion method utilizing feature-motivated adaptive PCNN in NSST domain for fusion of anatomical images. The basic PCNN model is simplified, and adaptive-linking strength is used. Different features are used to motivate the PCNN-processing LF and HF sub-bands. The proposed method is extended for fusion of functional image with an anatomical image in improved nonlinear intensity hue and saturation (INIHS) color model. Extensive fusion experiments have been performed on CT-MRI and SPECT-MRI datasets. Visual and quantitative analysis of experimental results proved that the proposed method provides satisfactory fusion outcome compared to other image fusion methods.

  2. Network diffusion accurately models the relationship between structural and functional brain connectivity networks

    PubMed Central

    Abdelnour, Farras; Voss, Henning U.; Raj, Ashish

    2014-01-01

    The relationship between anatomic connectivity of large-scale brain networks and their functional connectivity is of immense importance and an area of active research. Previous attempts have required complex simulations which model the dynamics of each cortical region, and explore the coupling between regions as derived by anatomic connections. While much insight is gained from these non-linear simulations, they can be computationally taxing tools for predicting functional from anatomic connectivities. Little attention has been paid to linear models. Here we show that a properly designed linear model appears to be superior to previous non-linear approaches in capturing the brain’s long-range second order correlation structure that governs the relationship between anatomic and functional connectivities. We derive a linear network of brain dynamics based on graph diffusion, whereby the diffusing quantity undergoes a random walk on a graph. We test our model using subjects who underwent diffusion MRI and resting state fMRI. The network diffusion model applied to the structural networks largely predicts the correlation structures derived from their fMRI data, to a greater extent than other approaches. The utility of the proposed approach is that it can routinely be used to infer functional correlation from anatomic connectivity. And since it is linear, anatomic connectivity can also be inferred from functional data. The success of our model confirms the linearity of ensemble average signals in the brain, and implies that their long-range correlation structure may percolate within the brain via purely mechanistic processes enacted on its structural connectivity pathways. PMID:24384152

  3. A knowledge based approach to matching human neurodegenerative disease and animal models

    PubMed Central

    Maynard, Sarah M.; Mungall, Christopher J.; Lewis, Suzanna E.; Imam, Fahim T.; Martone, Maryann E.

    2013-01-01

    Neurodegenerative diseases present a wide and complex range of biological and clinical features. Animal models are key to translational research, yet typically only exhibit a subset of disease features rather than being precise replicas of the disease. Consequently, connecting animal to human conditions using direct data-mining strategies has proven challenging, particularly for diseases of the nervous system, with its complicated anatomy and physiology. To address this challenge we have explored the use of ontologies to create formal descriptions of structural phenotypes across scales that are machine processable and amenable to logical inference. As proof of concept, we built a Neurodegenerative Disease Phenotype Ontology (NDPO) and an associated Phenotype Knowledge Base (PKB) using an entity-quality model that incorporates descriptions for both human disease phenotypes and those of animal models. Entities are drawn from community ontologies made available through the Neuroscience Information Framework (NIF) and qualities are drawn from the Phenotype and Trait Ontology (PATO). We generated ~1200 structured phenotype statements describing structural alterations at the subcellular, cellular and gross anatomical levels observed in 11 human neurodegenerative conditions and associated animal models. PhenoSim, an open source tool for comparing phenotypes, was used to issue a series of competency questions to compare individual phenotypes among organisms and to determine which animal models recapitulate phenotypic aspects of the human disease in aggregate. Overall, the system was able to use relationships within the ontology to bridge phenotypes across scales, returning non-trivial matches based on common subsumers that were meaningful to a neuroscientist with an advanced knowledge of neuroanatomy. The system can be used both to compare individual phenotypes and also phenotypes in aggregate. This proof of concept suggests that expressing complex phenotypes using formal ontologies provides considerable benefit for comparing phenotypes across scales and species. PMID:23717278

  4. Bayesian model for matching the radiometric measurements of aerospace and field ocean color sensors.

    PubMed

    Salama, Mhd Suhyb; Su, Zhongbo

    2010-01-01

    A Bayesian model is developed to match aerospace ocean color observation to field measurements and derive the spatial variability of match-up sites. The performance of the model is tested against populations of synthesized spectra and full and reduced resolutions of MERIS data. The model derived the scale difference between synthesized satellite pixel and point measurements with R(2) > 0.88 and relative error < 21% in the spectral range from 400 nm to 695 nm. The sub-pixel variabilities of reduced resolution MERIS image are derived with less than 12% of relative errors in heterogeneous region. The method is generic and applicable to different sensors.

  5. Feature-based Morphometry

    PubMed Central

    Toews, Matthew; Wells, William M.; Collins, Louis; Arbel, Tal

    2013-01-01

    This paper presents feature-based morphometry (FBM), a new, fully data-driven technique for identifying group-related differences in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between all subjects, FBM models images as a collage of distinct, localized image features which may not be present in all subjects. FBM thus explicitly accounts for the case where the same anatomical tissue cannot be reliably identified in all subjects due to disease or anatomical variability. A probabilistic model describes features in terms of their appearance, geometry, and relationship to sub-groups of a population, and is automatically learned from a set of subject images and group labels. Features identified indicate group-related anatomical structure that can potentially be used as disease biomarkers or as a basis for computer-aided diagnosis. Scale-invariant image features are used, which reflect generic, salient patterns in the image. Experiments validate FBM clinically in the analysis of normal (NC) and Alzheimer’s (AD) brain images using the freely available OASIS database. FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven fashion, and obtains an equal error classification rate of 0.78 on new subjects. PMID:20426102

  6. MEG Coherence and DTI Connectivity in mTLE

    PubMed Central

    Nazem-Zadeh, Mohammad-Reza; Bowyer, Susan M.; Moran, John E.; Davoodi-Bojd, Esmaeil; Zillgitt, Andrew; Weiland, Barbara J.; Bagher-Ebadian, Hassan; Mahmoudi, Fariborz; Elisevich, Kost; Soltanian-Zadeh, Hamid

    2017-01-01

    Purpose Magnetoencephalography (MEG) is a noninvasive imaging method for localization of focal epileptiform activity in patients with epilepsy. Diffusion tensor imaging (DTI) is a noninvasive imaging method for measuring the diffusion properties of the underlying white matter tracts through which epileptiform activity is propagated. This study investigates the relationship between the cerebral functional abnormalities quantified by MEG coherence and structural abnormalities quantified by DTI in mesial temporal lobe epilepsy (mTLE). Methods Resting state MEG data was analyzed using MEG coherence source imaging (MEG-CSI) method to determine the coherence in 54 anatomical sites in 17 adult mTLE patients with surgical resection and Engel class I outcome, and 17 age- and gender- matched controls. DTI tractography identified the fiber tracts passing through these same anatomical sites of the same subjects. Then, DTI nodal degree and laterality index were calculated and compared with the corresponding MEG coherence and laterality index. Results MEG coherence laterality, after Bonferroni adjustment, showed significant differences for right versus left mTLE in insular cortex and both lateral orbitofrontal and superior temporal gyri (p<0.017). Likewise, DTI nodal degree laterality, after Bonferroni adjustment, showed significant differences for right versus left mTLE in gyrus rectus, insular cortex, precuneus and superior temporal gyrus (p<0.017). In insular cortex, MEG coherence laterality correlated with DTI nodal degree laterality (R2 = 0.46; p = 0.003) in the cases of mTLE. None of these anatomical sites showed statistically significant differences in coherence laterality between right and left sides of the controls. Coherence laterality was in agreement with the declared side of epileptogenicity in insular cortex (in 82% of patients) and both lateral orbitofrontal (88%) and superior temporal gyri (88%). Nodal degree laterality was also in agreement with the declared side of epileptogenicity in gyrus rectus (in 88% of patients), insular cortex (71%), precuneus (82%) and superior temporal gyrus (94%). Combining all significant laterality indices improved the lateralization accuracy to 94% and 100% for the coherence and nodal degree laterality indices, respectively. Conclusion The associated variations in diffusion properties of fiber tracts quantified by DTI and coherence measures quantified by MEG with respect to epileptogenicity possibly reflect the chronic microstructural cerebral changes associated with functional interictal activity. The proposed methodology for using MEG and DTI to investigate diffusion abnormalities related to focal epileptogenicity and propagation may provide a further means of noninvasive lateralization. PMID:27060092

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Jun, E-mail: jun-lian@med.unc.edu; Chera, Bhishamjit S.; Chang, Sha

    Purpose: To build a statistical model to quantitatively correlate the anatomic features of structures and the corresponding dose-volume histogram (DVH) of head and neck (HN) Tomotherapy (Tomo) plans. To study if the model built upon one intensity modulated radiation therapy (IMRT) technique (such as conventional Linac) can be used to predict anticipated organs-at-risk (OAR) DVH of patients treated with a different IMRT technique (such as Tomo). To study if the model built upon the clinical experience of one institution can be used to aid IMRT planning for another institution. Methods: Forty-four Tomotherapy intensity modulate radiotherapy plans of HN cases (Tomo-IMRT)more » from Institution A were included in the study. A different patient group of 53 HN fixed gantry IMRT (FG-IMRT) plans was selected from Institution B. The analyzed OARs included the parotid, larynx, spinal cord, brainstem, and submandibular gland. Two major groups of anatomical features were considered: the volumetric information and the spatial information. The volume information includes the volume of target, OAR, and overlapped volume between target and OAR. The spatial information of OARs relative to PTVs was represented by the distance-to-target histogram (DTH). Important anatomical and dosimetric features were extracted from DTH and DVH by principal component analysis. Two regression models, one for Tomotherapy plan and one for IMRT plan, were built independently. The accuracy of intratreatment-modality model prediction was validated by a leave one out cross-validation method. The intertechnique and interinstitution validations were performed by using the FG-IMRT model to predict the OAR dosimetry of Tomo-IMRT plans. The dosimetry of OARs, under the same and different institutional preferences, was analyzed to examine the correlation between the model prediction and planning protocol. Results: Significant patient anatomical factors contributing to OAR dose sparing in HN Tomotherapy plans have been analyzed and identified. For all the OARs, the discrepancies of dose indices between the model predicted values and the actual plan values were within 2.1%. Similar results were obtained from the modeling of FG-IMRT plans. The parotid gland was spared in a comparable fashion during the treatment planning of two institutions. The model based on FG-IMRT plans was found to predict the median dose of the parotid of Tomotherapy plans quite well, with a mean error of 2.6%. Predictions from the FG-IMRT model suggested the median dose of the larynx, median dose of the brainstem and D2 of the brainstem could be reduced by 10.5%, 12.8%, and 20.4%, respectively, in the Tomo-IMRT plans. This was found to be correlated to the institutional differences in OAR constraint settings. Re-planning of six Tomotherapy patients confirmed the potential of optimization improvement predicted by the FG-IMRT model was correct. Conclusions: The authors established a mathematical model to correlate the anatomical features and dosimetric indexes of OARs of HN patients in Tomotherapy plans. The model can be used for the setup of patient-specific OAR dose sparing goals and quality control of planning results. The institutional clinical experience was incorporated into the model which allows the model from one institution to generate a reference plan for another institution, or another IMRT technique.« less

  8. 3D printing the pterygopalatine fossa: a negative space model of a complex structure.

    PubMed

    Bannon, Ross; Parihar, Shivani; Skarparis, Yiannis; Varsou, Ourania; Cezayirli, Enis

    2018-02-01

    The pterygopalatine fossa is one of the most complex anatomical regions to understand. It is poorly visualized in cadaveric dissection and most textbooks rely on schematic depictions. We describe our approach to creating a low-cost, 3D model of the pterygopalatine fossa, including its associated canals and foramina, using an affordable "desktop" 3D printer. We used open source software to create a volume render of the pterygopalatine fossa from axial slices of a head computerised tomography scan. These data were then exported to a 3D printer to produce an anatomically accurate model. The resulting 'negative space' model of the pterygopalatine fossa provides a useful and innovative aid for understanding the complex anatomical relationships of the pterygopalatine fossa. This model was designed primarily for medical students; however, it will also be of interest to postgraduates in ENT, ophthalmology, neurosurgery, and radiology. The technical process described may be replicated by other departments wishing to develop their own anatomical models whilst incurring minimal costs.

  9. Walking tree heuristics for biological string alignment, gene location, and phylogenies

    NASA Astrophysics Data System (ADS)

    Cull, P.; Holloway, J. L.; Cavener, J. D.

    1999-03-01

    Basic biological information is stored in strings of nucleic acids (DNA, RNA) or amino acids (proteins). Teasing out the meaning of these strings is a central problem of modern biology. Matching and aligning strings brings out their shared characteristics. Although string matching is well-understood in the edit-distance model, biological strings with transpositions and inversions violate this model's assumptions. We propose a family of heuristics called walking trees to align biologically reasonable strings. Both edit-distance and walking tree methods can locate specific genes within a large string when the genes' sequences are given. When we attempt to match whole strings, the walking tree matches most genes, while the edit-distance method fails. We also give examples in which the walking tree matches substrings even if they have been moved or inverted. The edit-distance method was not designed to handle these problems. We include an example in which the walking tree "discovered" a gene. Calculating scores for whole genome matches gives a method for approximating evolutionary distance. We show two evolutionary trees for the picornaviruses which were computed by the walking tree heuristic. Both of these trees show great similarity to previously constructed trees. The point of this demonstration is that WHOLE genomes can be matched and distances calculated. The first tree was created on a Sequent parallel computer and demonstrates that the walking tree heuristic can be efficiently parallelized. The second tree was created using a network of work stations and demonstrates that there is suffient parallelism in the phylogenetic tree calculation that the sequential walking tree can be used effectively on a network.

  10. Least Median of Squares Filtering of Locally Optimal Point Matches for Compressible Flow Image Registration

    PubMed Central

    Castillo, Edward; Castillo, Richard; White, Benjamin; Rojo, Javier; Guerrero, Thomas

    2012-01-01

    Compressible flow based image registration operates under the assumption that the mass of the imaged material is conserved from one image to the next. Depending on how the mass conservation assumption is modeled, the performance of existing compressible flow methods is limited by factors such as image quality, noise, large magnitude voxel displacements, and computational requirements. The Least Median of Squares Filtered Compressible Flow (LFC) method introduced here is based on a localized, nonlinear least squares, compressible flow model that describes the displacement of a single voxel that lends itself to a simple grid search (block matching) optimization strategy. Spatially inaccurate grid search point matches, corresponding to erroneous local minimizers of the nonlinear compressible flow model, are removed by a novel filtering approach based on least median of squares fitting and the forward search outlier detection method. The spatial accuracy of the method is measured using ten thoracic CT image sets and large samples of expert determined landmarks (available at www.dir-lab.com). The LFC method produces an average error within the intra-observer error on eight of the ten cases, indicating that the method is capable of achieving a high spatial accuracy for thoracic CT registration. PMID:22797602

  11. An evaluation of exact matching and propensity score methods as applied in a comparative effectiveness study of inhaled corticosteroids in asthma.

    PubMed

    Burden, Anne; Roche, Nicolas; Miglio, Cristiana; Hillyer, Elizabeth V; Postma, Dirkje S; Herings, Ron Mc; Overbeek, Jetty A; Khalid, Javaria Mona; van Eickels, Daniela; Price, David B

    2017-01-01

    Cohort matching and regression modeling are used in observational studies to control for confounding factors when estimating treatment effects. Our objective was to evaluate exact matching and propensity score methods by applying them in a 1-year pre-post historical database study to investigate asthma-related outcomes by treatment. We drew on longitudinal medical record data in the PHARMO database for asthma patients prescribed the treatments to be compared (ciclesonide and fine-particle inhaled corticosteroid [ICS]). Propensity score methods that we evaluated were propensity score matching (PSM) using two different algorithms, the inverse probability of treatment weighting (IPTW), covariate adjustment using the propensity score, and propensity score stratification. We defined balance, using standardized differences, as differences of <10% between cohorts. Of 4064 eligible patients, 1382 (34%) were prescribed ciclesonide and 2682 (66%) fine-particle ICS. The IPTW and propensity score-based methods retained more patients (96%-100%) than exact matching (90%); exact matching selected less severe patients. Standardized differences were >10% for four variables in the exact-matched dataset and <10% for both PSM algorithms and the weighted pseudo-dataset used in the IPTW method. With all methods, ciclesonide was associated with better 1-year asthma-related outcomes, at one-third the prescribed dose, than fine-particle ICS; results varied slightly by method, but direction and statistical significance remained the same. We found that each method has its particular strengths, and we recommend at least two methods be applied for each matched cohort study to evaluate the robustness of the findings. Balance diagnostics should be applied with all methods to check the balance of confounders between treatment cohorts. If exact matching is used, the calculation of a propensity score could be useful to identify variables that require balancing, thereby informing the choice of matching criteria together with clinical considerations.

  12. Work domain constraints for modelling surgical performance.

    PubMed

    Morineau, Thierry; Riffaud, Laurent; Morandi, Xavier; Villain, Jonathan; Jannin, Pierre

    2015-10-01

    Three main approaches can be identified for modelling surgical performance: a competency-based approach, a task-based approach, both largely explored in the literature, and a less known work domain-based approach. The work domain-based approach first describes the work domain properties that constrain the agent's actions and shape the performance. This paper presents a work domain-based approach for modelling performance during cervical spine surgery, based on the idea that anatomical structures delineate the surgical performance. This model was evaluated through an analysis of junior and senior surgeons' actions. Twenty-four cervical spine surgeries performed by two junior and two senior surgeons were recorded in real time by an expert surgeon. According to a work domain-based model describing an optimal progression through anatomical structures, the degree of adjustment of each surgical procedure to a statistical polynomial function was assessed. Each surgical procedure showed a significant suitability with the model and regression coefficient values around 0.9. However, the surgeries performed by senior surgeons fitted this model significantly better than those performed by junior surgeons. Analysis of the relative frequencies of actions on anatomical structures showed that some specific anatomical structures discriminate senior from junior performances. The work domain-based modelling approach can provide an overall statistical indicator of surgical performance, but in particular, it can highlight specific points of interest among anatomical structures that the surgeons dwelled on according to their level of expertise.

  13. Systems, methods and apparatus for pattern matching in procedure development and verification

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G. (Inventor); Rouff, Christopher A. (Inventor); Rash, James L. (Inventor)

    2011-01-01

    Systems, methods and apparatus are provided through which, in some embodiments, a formal specification is pattern-matched from scenarios, the formal specification is analyzed, and flaws in the formal specification are corrected. The systems, methods and apparatus may include pattern-matching an equivalent formal model from an informal specification. Such a model can be analyzed for contradictions, conflicts, use of resources before the resources are available, competition for resources, and so forth. From such a formal model, an implementation can be automatically generated in a variety of notations. The approach can improve the resulting implementation, which, in some embodiments, is provably equivalent to the procedures described at the outset, which in turn can improve confidence that the system reflects the requirements, and in turn reduces system development time and reduces the amount of testing required of a new system. Moreover, in some embodiments, two or more implementations can be "reversed" to appropriate formal models, the models can be combined, and the resulting combination checked for conflicts. Then, the combined, error-free model can be used to generate a new (single) implementation that combines the functionality of the original separate implementations, and may be more likely to be correct.

  14. Efficient segmentation of 3D fluoroscopic datasets from mobile C-arm

    NASA Astrophysics Data System (ADS)

    Styner, Martin A.; Talib, Haydar; Singh, Digvijay; Nolte, Lutz-Peter

    2004-05-01

    The emerging mobile fluoroscopic 3D technology linked with a navigation system combines the advantages of CT-based and C-arm-based navigation. The intra-operative, automatic segmentation of 3D fluoroscopy datasets enables the combined visualization of surgical instruments and anatomical structures for enhanced planning, surgical eye-navigation and landmark digitization. We performed a thorough evaluation of several segmentation algorithms using a large set of data from different anatomical regions and man-made phantom objects. The analyzed segmentation methods include automatic thresholding, morphological operations, an adapted region growing method and an implicit 3D geodesic snake method. In regard to computational efficiency, all methods performed within acceptable limits on a standard Desktop PC (30sec-5min). In general, the best results were obtained with datasets from long bones, followed by extremities. The segmentations of spine, pelvis and shoulder datasets were generally of poorer quality. As expected, the threshold-based methods produced the worst results. The combined thresholding and morphological operations methods were considered appropriate for a smaller set of clean images. The region growing method performed generally much better in regard to computational efficiency and segmentation correctness, especially for datasets of joints, and lumbar and cervical spine regions. The less efficient implicit snake method was able to additionally remove wrongly segmented skin tissue regions. This study presents a step towards efficient intra-operative segmentation of 3D fluoroscopy datasets, but there is room for improvement. Next, we plan to study model-based approaches for datasets from the knee and hip joint region, which would be thenceforth applied to all anatomical regions in our continuing development of an ideal segmentation procedure for 3D fluoroscopic images.

  15. The potential for machine learning algorithms to improve and reduce the cost of 3-dimensional printing for surgical planning.

    PubMed

    Huff, Trevor J; Ludwig, Parker E; Zuniga, Jorge M

    2018-05-01

    3D-printed anatomical models play an important role in medical and research settings. The recent successes of 3D anatomical models in healthcare have led many institutions to adopt the technology. However, there remain several issues that must be addressed before it can become more wide-spread. Of importance are the problems of cost and time of manufacturing. Machine learning (ML) could be utilized to solve these issues by streamlining the 3D modeling process through rapid medical image segmentation and improved patient selection and image acquisition. The current challenges, potential solutions, and future directions for ML and 3D anatomical modeling in healthcare are discussed. Areas covered: This review covers research articles in the field of machine learning as related to 3D anatomical modeling. Topics discussed include automated image segmentation, cost reduction, and related time constraints. Expert commentary: ML-based segmentation of medical images could potentially improve the process of 3D anatomical modeling. However, until more research is done to validate these technologies in clinical practice, their impact on patient outcomes will remain unknown. We have the necessary computational tools to tackle the problems discussed. The difficulty now lies in our ability to collect sufficient data.

  16. Gross feature recognition of Anatomical Images based on Atlas grid (GAIA): Incorporating the local discrepancy between an atlas and a target image to capture the features of anatomic brain MRI.

    PubMed

    Qin, Yuan-Yuan; Hsu, Johnny T; Yoshida, Shoko; Faria, Andreia V; Oishi, Kumiko; Unschuld, Paul G; Redgrave, Graham W; Ying, Sarah H; Ross, Christopher A; van Zijl, Peter C M; Hillis, Argye E; Albert, Marilyn S; Lyketsos, Constantine G; Miller, Michael I; Mori, Susumu; Oishi, Kenichi

    2013-01-01

    We aimed to develop a new method to convert T1-weighted brain MRIs to feature vectors, which could be used for content-based image retrieval (CBIR). To overcome the wide range of anatomical variability in clinical cases and the inconsistency of imaging protocols, we introduced the Gross feature recognition of Anatomical Images based on Atlas grid (GAIA), in which the local intensity alteration, caused by pathological (e.g., ischemia) or physiological (development and aging) intensity changes, as well as by atlas-image misregistration, is used to capture the anatomical features of target images. As a proof-of-concept, the GAIA was applied for pattern recognition of the neuroanatomical features of multiple stages of Alzheimer's disease, Huntington's disease, spinocerebellar ataxia type 6, and four subtypes of primary progressive aphasia. For each of these diseases, feature vectors based on a training dataset were applied to a test dataset to evaluate the accuracy of pattern recognition. The feature vectors extracted from the training dataset agreed well with the known pathological hallmarks of the selected neurodegenerative diseases. Overall, discriminant scores of the test images accurately categorized these test images to the correct disease categories. Images without typical disease-related anatomical features were misclassified. The proposed method is a promising method for image feature extraction based on disease-related anatomical features, which should enable users to submit a patient image and search past clinical cases with similar anatomical phenotypes.

  17. Dynamic Modeling and Very Short-term Prediction of Wind Power Output Using Box-Cox Transformation

    NASA Astrophysics Data System (ADS)

    Urata, Kengo; Inoue, Masaki; Murayama, Dai; Adachi, Shuichi

    2016-09-01

    We propose a statistical modeling method of wind power output for very short-term prediction. The modeling method with a nonlinear model has cascade structure composed of two parts. One is a linear dynamic part that is driven by a Gaussian white noise and described by an autoregressive model. The other is a nonlinear static part that is driven by the output of the linear part. This nonlinear part is designed for output distribution matching: we shape the distribution of the model output to match with that of the wind power output. The constructed model is utilized for one-step ahead prediction of the wind power output. Furthermore, we study the relation between the prediction accuracy and the prediction horizon.

  18. A Method to Recognize Anatomical Site and Image Acquisition View in X-ray Images.

    PubMed

    Chang, Xiao; Mazur, Thomas; Li, H Harold; Yang, Deshan

    2017-12-01

    A method was developed to recognize anatomical site and image acquisition view automatically in 2D X-ray images that are used in image-guided radiation therapy. The purpose is to enable site and view dependent automation and optimization in the image processing tasks including 2D-2D image registration, 2D image contrast enhancement, and independent treatment site confirmation. The X-ray images for 180 patients of six disease sites (the brain, head-neck, breast, lung, abdomen, and pelvis) were included in this study with 30 patients each site and two images of orthogonal views each patient. A hierarchical multiclass recognition model was developed to recognize general site first and then specific site. Each node of the hierarchical model recognized the images using a feature extraction step based on principal component analysis followed by a binary classification step based on support vector machine. Given two images in known orthogonal views, the site recognition model achieved a 99% average F1 score across the six sites. If the views were unknown in the images, the average F1 score was 97%. If only one image was taken either with or without view information, the average F1 score was 94%. The accuracy of the site-specific view recognition models was 100%.

  19. The Computerized Anatomical Man (CAM) model

    NASA Technical Reports Server (NTRS)

    Billings, M. P.; Yucker, W. R.

    1973-01-01

    A computerized anatomical man (CAM) model, representing the most detailed and anatomically correct geometrical model of the human body yet prepared, has been developed for use in analyzing radiation dose distribution in man. This model of a 50-percentile standing USAF man comprises some 1100 unique geometric surfaces and some 2450 solid regions. Internal body geometry such as organs, voids, bones, and bone marrow are explicitly modeled. A computer program called CAMERA has also been developed for performing analyses with the model. Such analyses include tracing rays through the CAM geometry, placing results on magnetic tape in various forms, collapsing areal density data from ray tracing information to areal density distributions, preparing cross section views, etc. Numerous computer drawn cross sections through the CAM model are presented.

  20. Statistics of stable marriages

    NASA Astrophysics Data System (ADS)

    Dzierzawa, Michael; Oméro, Marie-José

    2000-11-01

    In the stable marriage problem N men and N women have to be matched by pairs under the constraint that the resulting matching is stable. We study the statistical properties of stable matchings in the large N limit using both numerical and analytical methods. Generalizations of the model including singles and unequal numbers of men and women are also investigated.

Top