Science.gov

Sample records for anchored qtl map

  1. QTL mapping using high-throughput sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative trait locus (QTL) mapping in plants dates to the 1980’s, but earlier studies were often hindered by the expense and time required to identify large numbers of polymorphic genetic markers that differentiated the parental genotypes and then to genotype them on large segregating mapping po...

  2. Advances in Bayesian Multiple QTL Mapping in Experimental Crosses

    PubMed Central

    Yi, Nengjun; Shriner, Daniel

    2016-01-01

    Many complex human diseases and traits of biological and/or economic importance are determined by interacting networks of multiple quantitative trait loci (QTL) and environmental factors. Mapping QTL is critical for understanding the genetic basis of complex traits, and for ultimate identification of responsible genes. A variety of sophisticated statistical methods for QTL mapping have been developed. Among these developments, the evolution of Bayesian approaches for multiple QTL mapping over the past decade has been remarkable. Bayesian methods can jointly infer the number of QTL, their genomic positions, and their genetic effects. Here, we review recently developed and still developing Bayesian methods and associated computer software for mapping multiple QTL in experimental crosses. We compare and contrast these methods to clearly describe the relationships among different Bayesian methods. We conclude this review by highlighting some areas of future research. PMID:17987056

  3. Educational Software for Mapping Quantitative Trait Loci (QTL)

    ERIC Educational Resources Information Center

    Helms, T. C.; Doetkott, C.

    2007-01-01

    This educational software was developed to aid teachers and students in their understanding of how the process of identifying the most likely quantitative trait loci (QTL) position is determined between two flanking DNA markers. The objective of the software that we developed was to: (1) show how a QTL is mapped to a position on a chromosome using…

  4. Genetic analysis and QTL mapping of seed coat color in sesame (Sesamum indicum L.).

    PubMed

    Zhang, Haiyang; Miao, Hongmei; Wei, Libin; Li, Chun; Zhao, Ruihong; Wang, Cuiying

    2013-01-01

    Seed coat color is an important agronomic trait in sesame, as it is associated with seed biochemical properties, antioxidant content and activity and even disease resistance of sesame. Here, using a high-density linkage map, we analyzed genetic segregation and quantitative trait loci (QTL) for sesame seed coat color in six generations (P1, P2, F1, BC1, BC2 and F2). Results showed that two major genes with additive-dominant-epistatic effects and polygenes with additive-dominant-epistatic effects were responsible for controlling the seed coat color trait. Average heritability of the major genes in the BC1, BC2 and F2 populations was 89.30%, 24.00%, and 91.11% respectively, while the heritability of polygenes was low in the BC1 (5.43%), in BC2 (0.00%) and in F2 (0.89%) populations. A high-density map was constructed using 724 polymorphic markers. 653 SSR, AFLP and RSAMPL loci were anchored in 14 linkage groups (LG) spanning a total of 1,216.00 cM. The average length of each LG was 86.86 cM and the marker density was 1.86 cM per marker interval. Four QTLs for seed coat color, QTL1-1, QTL11-1, QTL11-2 and QTL13-1, whose heritability ranged from 59.33%-69.89%, were detected in F3 populations using CIM and MCIM methods. Alleles at all QTLs from the black-seeded parent tended to increase the seed coat color. Results from QTLs mapping and classical genetic analysis among the P1, P2, F1, BC1, BC2 and F2 populations were comparatively consistent. This first QTL analysis and high-density genetic linkage map for sesame provided a good foundation for further research on sesame genetics and molecular marker-assisted selection (MAS).

  5. Mapping QTL Contributing to SCMV Resistance in Tropical Maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane mosaic virus (SCMV) has been increasing in importance as a maize disease in Brazil. In this study, were mapped and characterized quantitative trait loci (QTL) associated to resistance to SCMV in a maize population consisting of 150 F2:3 families from the cross between two tropical maize i...

  6. A high-density genetic map and growth related QTL mapping in bighead carp (Hypophthalmichthys nobilis)

    PubMed Central

    Fu, Beide; Liu, Haiyang; Yu, Xiaomu; Tong, Jingou

    2016-01-01

    Growth related traits in fish are controlled by quantitative trait loci (QTL), but no QTL for growth have been detected in bighead carp (Hypophthalmichthys nobilis) due to the lack of high-density genetic map. In this study, an ultra-high density genetic map was constructed with 3,121 SNP markers by sequencing 117 individuals in a F1 family using 2b-RAD technology. The total length of the map was 2341.27 cM, with an average marker interval of 0.75 cM. A high level of genomic synteny between our map and zebrafish was detected. Based on this genetic map, one genome-wide significant and 37 suggestive QTL for five growth-related traits were identified in 6 linkage groups (i.e. LG3, LG11, LG15, LG18, LG19, LG22). The phenotypic variance explained (PVE) by these QTL varied from 15.4% to 38.2%. Marker within the significant QTL region was surrounded by CRP1 and CRP2, which played an important role in muscle cell division. These high-density map and QTL information provided a solid base for QTL fine mapping and comparative genomics in bighead carp. PMID:27345016

  7. Bayesian mixture structural equation modelling in multiple-trait QTL mapping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative trait loci (QTL) mapping often results in data on a number of traits that have well established causal relationships. Many multi-trait QTL mapping methods that account for the correlation among multiple traits have been developed to improve the statistical power and the precision of QTL...

  8. Resisting anchoring effects: The roles of metric and mapping knowledge.

    PubMed

    Smith, Andrew R; Windschitl, Paul D

    2015-10-01

    The biasing influence of anchors on numerical estimates is well established, but the relationship between knowledge level and the susceptibility to anchoring effects is less clear. In two studies, we addressed the potential mitigating effects of having knowledge in a domain on vulnerability to anchoring effects in that domain. Of critical interest was a distinction between two forms of knowledge-metric and mapping knowledge. In Study 1, participants who had studied question-relevant information-that is, high-knowledge participants-were less influenced by anchors than were participants who had studied irrelevant information. The results from knowledge measures suggested that the reduction in anchoring was tied to increases in metric rather than mapping knowledge. In Study 2, participants studied information specifically designed to influence different types of knowledge. As we predicted, increases in metric knowledge-and not mapping knowledge-led to reduced anchoring effects. Implications for debiasing anchoring effects are discussed.

  9. An ultra-high density linkage map and QTL mapping for sex and growth-related traits of common carp (Cyprinus carpio)

    PubMed Central

    Peng, Wenzhu; Xu, Jian; Zhang, Yan; Feng, Jianxin; Dong, Chuanju; Jiang, Likun; Feng, Jingyan; Chen, Baohua; Gong, Yiwen; Chen, Lin; Xu, Peng

    2016-01-01

    High density genetic linkage maps are essential for QTL fine mapping, comparative genomics and high quality genome sequence assembly. In this study, we constructed a high-density and high-resolution genetic linkage map with 28,194 SNP markers on 14,146 distinct loci for common carp based on high-throughput genotyping with the carp 250 K single nucleotide polymorphism (SNP) array in a mapping family. The genetic length of the consensus map was 10,595.94 cM with an average locus interval of 0.75 cM and an average marker interval of 0.38 cM. Comparative genomic analysis revealed high level of conserved syntenies between common carp and the closely related model species zebrafish and medaka. The genome scaffolds were anchored to the high-density linkage map, spanning 1,357 Mb of common carp reference genome. QTL mapping and association analysis identified 22 QTLs for growth-related traits and 7 QTLs for sex dimorphism. Candidate genes underlying growth-related traits were identified, including important regulators such as KISS2, IGF1, SMTLB, NPFFR1 and CPE. Candidate genes associated with sex dimorphism were also identified including 3KSR and DMRT2b. The high-density and high-resolution genetic linkage map provides an important tool for QTL fine mapping and positional cloning of economically important traits, and improving common carp genome assembly. PMID:27225429

  10. Conditional QTL mapping of protein content in wheat with respect to grain yield and its components.

    PubMed

    Wang, Lin; Cui, Fa; Wang, Jinping; Jun, Li; Ding, Anming; Zhao, Chunhua; Li, Xingfeng; Feng, Deshun; Gao, Jurong; Wang, Honggang

    2012-01-01

    Grain protein content in wheat (Triticum aestivum L.) is generally considered a highly heritable character that is negatively correlated with grain yield and yield-related traits. Quantitative trait loci (QTL) for protein content was mapped using data on protein content and protein content conditioned on the putatively interrelated traits to evaluate possible genetic interrelationships between protein content and yield, as well as yield-related traits. Phenotypic data were evaluated in a recombinant inbred line population with 302 lines derived from a cross between the Chinese cultivar Weimai 8 and Luohan 2. Inclusive composite interval mapping using IciMapping 3.0 was employed for mapping unconditional and conditional QTL with additives. A strong genetic relationship was found between protein content and grain yield, and yield-related traits. Unconditional QTL mapping analysis detected seven additive QTL for protein content, with additive effects ranging in absolute size from 0.1898% to 0.3407% protein content, jointly accounting for 43.45% of the trait variance. Conditional QTL mapping analysis indicated two QTL independent from yield, which can be used in marker-assisted selection for increasing yield without affecting grain protein content. Three additional QTL with minor effects were identified in the conditional mapping. Of the three QTLs, two were identified when protein content was conditioned on yield, which had pleiotropic effects on those two traits. Conditional QTL mapping can be used to dissect the genetic interrelationship between two traits at the individual QTL level for closely correlated traits. Further, conditional QTL mapping can reveal additional QTL with minor effects that are undetectable in unconditional mapping.

  11. Use of single nucleotide polymorphisms (SNP) to fine-map quantitative trait loci (QTL) in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mapping quantitative trait loci (QTL) in swine at the US Meat Animal Research Center has relied heavily on linkage mapping in either F2 or Backcross families. QTL identified in the initial scans typically have very broad confidence intervals and further refinement of the QTL’s position is needed bef...

  12. An Efficient Strategy Combining SSR Markers- and Advanced QTL-seq-driven QTL Mapping Unravels Candidate Genes Regulating Grain Weight in Rice

    PubMed Central

    Daware, Anurag; Das, Sweta; Srivastava, Rishi; Badoni, Saurabh; Singh, Ashok K.; Agarwal, Pinky; Parida, Swarup K.; Tyagi, Akhilesh K.

    2016-01-01

    Development and use of genome-wide informative simple sequence repeat (SSR) markers and novel integrated genomic strategies are vital to drive genomics-assisted breeding applications and for efficient dissection of quantitative trait loci (QTLs) underlying complex traits in rice. The present study developed 6244 genome-wide informative SSR markers exhibiting in silico fragment length polymorphism based on repeat-unit variations among genomic sequences of 11 indica, japonica, aus, and wild rice accessions. These markers were mapped on diverse coding and non-coding sequence components of known cloned/candidate genes annotated from 12 chromosomes and revealed a much higher amplification (97%) and polymorphic potential (88%) along with wider genetic/functional diversity level (16–74% with a mean 53%) especially among accessions belonging to indica cultivar group, suggesting their utility in large-scale genomics-assisted breeding applications in rice. A high-density 3791 SSR markers-anchored genetic linkage map (IR 64 × Sonasal) spanning 2060 cM total map-length with an average inter-marker distance of 0.54 cM was generated. This reference genetic map identified six major genomic regions harboring robust QTLs (31% combined phenotypic variation explained with a 5.7–8.7 LOD) governing grain weight on six rice chromosomes. One strong grain weight major QTL region (OsqGW5.1) was narrowed-down by integrating traditional QTL mapping with high-resolution QTL region-specific integrated SSR and single nucleotide polymorphism markers-based QTL-seq analysis and differential expression profiling. This led us to delineate two natural allelic variants in two known cis-regulatory elements (RAV1AAT and CARGCW8GAT) of glycosyl hydrolase and serine carboxypeptidase genes exhibiting pronounced seed-specific differential regulation in low (Sonasal) and high (IR 64) grain weight mapping parental accessions. Our genome-wide SSR marker resource (polymorphic within/between diverse

  13. An Efficient Strategy Combining SSR Markers- and Advanced QTL-seq-driven QTL Mapping Unravels Candidate Genes Regulating Grain Weight in Rice.

    PubMed

    Daware, Anurag; Das, Sweta; Srivastava, Rishi; Badoni, Saurabh; Singh, Ashok K; Agarwal, Pinky; Parida, Swarup K; Tyagi, Akhilesh K

    2016-01-01

    Development and use of genome-wide informative simple sequence repeat (SSR) markers and novel integrated genomic strategies are vital to drive genomics-assisted breeding applications and for efficient dissection of quantitative trait loci (QTLs) underlying complex traits in rice. The present study developed 6244 genome-wide informative SSR markers exhibiting in silico fragment length polymorphism based on repeat-unit variations among genomic sequences of 11 indica, japonica, aus, and wild rice accessions. These markers were mapped on diverse coding and non-coding sequence components of known cloned/candidate genes annotated from 12 chromosomes and revealed a much higher amplification (97%) and polymorphic potential (88%) along with wider genetic/functional diversity level (16-74% with a mean 53%) especially among accessions belonging to indica cultivar group, suggesting their utility in large-scale genomics-assisted breeding applications in rice. A high-density 3791 SSR markers-anchored genetic linkage map (IR 64 × Sonasal) spanning 2060 cM total map-length with an average inter-marker distance of 0.54 cM was generated. This reference genetic map identified six major genomic regions harboring robust QTLs (31% combined phenotypic variation explained with a 5.7-8.7 LOD) governing grain weight on six rice chromosomes. One strong grain weight major QTL region (OsqGW5.1) was narrowed-down by integrating traditional QTL mapping with high-resolution QTL region-specific integrated SSR and single nucleotide polymorphism markers-based QTL-seq analysis and differential expression profiling. This led us to delineate two natural allelic variants in two known cis-regulatory elements (RAV1AAT and CARGCW8GAT) of glycosyl hydrolase and serine carboxypeptidase genes exhibiting pronounced seed-specific differential regulation in low (Sonasal) and high (IR 64) grain weight mapping parental accessions. Our genome-wide SSR marker resource (polymorphic within/between diverse cultivar

  14. A New Advanced Backcross Tomato Population Enables High Resolution Leaf QTL Mapping and Gene Identification

    PubMed Central

    Fulop, Daniel; Ranjan, Aashish; Ofner, Itai; Covington, Michael F.; Chitwood, Daniel H.; West, Donelly; Ichihashi, Yasunori; Headland, Lauren; Zamir, Daniel; Maloof, Julin N.; Sinha, Neelima R.

    2016-01-01

    Quantitative Trait Loci (QTL) mapping is a powerful technique for dissecting the genetic basis of traits and species differences. Established tomato mapping populations between domesticated tomato (Solanum lycopersicum) and its more distant interfertile relatives typically follow a near isogenic line (NIL) design, such as the S. pennellii Introgression Line (IL) population, with a single wild introgression per line in an otherwise domesticated genetic background. Here, we report on a new advanced backcross QTL mapping resource for tomato, derived from a cross between the M82 tomato cultivar and S. pennellii. This so-called Backcrossed Inbred Line (BIL) population is comprised of a mix of BC2 and BC3 lines, with domesticated tomato as the recurrent parent. The BIL population is complementary to the existing S. pennellii IL population, with which it shares parents. Using the BILs, we mapped traits for leaf complexity, leaflet shape, and flowering time. We demonstrate the utility of the BILs for fine-mapping QTL, particularly QTL initially mapped in the ILs, by fine-mapping several QTL to single or few candidate genes. Moreover, we confirm the value of a backcrossed population with multiple introgressions per line, such as the BILs, for epistatic QTL mapping. Our work was further enabled by the development of our own statistical inference and visualization tools, namely a heterogeneous hidden Markov model for genotyping the lines, and by using state-of-the-art sparse regression techniques for QTL mapping. PMID:27510891

  15. QTL mapping of clubroot resistance in radish (Raphanus sativus L.).

    PubMed

    Kamei, Akito; Tsuro, Masato; Kubo, Nakao; Hayashi, Takeshi; Wang, Ning; Fujimura, Tatsuhito; Hirai, Masashi

    2010-03-01

    A QTL analysis for clubroot resistance (CR) of radish was performed using an F(2) population derived from a crossing of a CR Japanese radish and a clubroot-susceptible (CS) Chinese radish. F(3) plants obtained by selfing of F(2) plants were used for the CR tests. The potted seedlings were inoculated and the symptom was evaluated 6 weeks thereafter. The mean disease indexes of the F(3) plants were used for the phenotype of the F(2). The results of two CR tests were analyzed for the presence of QTL. A linkage map was constructed using AFLP and SSR markers; it spanned 554 cM and contained 18 linkage groups. A CR locus was observed in the top region of linkage group 1 in two tests. Therefore, the present results suggest that a large part of radish CR is controlled by a single gene or closely linked genes in this radish population, although minor effects of other genomic areas cannot be ruled out. The CR locus was named Crs1. Markers linked to Crs1 showed sequence homology to the genomic region of the top of chromosome 3 of Arabidopsis, as in the case of Crr3, a CR locus in Brassica rapa. These markers should be useful for breeding CR cultivars of radish. As Japanese radishes are known to be highly resistant or immune to clubroot, these markers may also be useful in the introgression of this CR gene to Brassica crops.

  16. QTL mapping under truncation selection in homozygous lines derived from biparental crosses.

    PubMed

    Melchinger, Albrecht E; Orsini, Elena; Schön, Chris C

    2012-02-01

    In plant breeding, a large number of progenies that will be discarded later in the breeding process must be phenotyped and marker genotyped for conducting QTL analysis. In many cases, phenotypic preselection of lines could be useful. However, in QTL analyses even moderate preselection can have a significant effect on the power of QTL detection and estimation of effects of the target traits. In this study, we provide exact formulas for quantifying the change of allele frequencies within marker classes, expectations of marker contrasts and the variance of the marker contrasts under truncation selection, for the general case of two QTL affecting the target trait and a correlated trait. We focused on homozygous lines derived at random from biparental crosses. The effects of linkage between the marker and the QTL under selection as well as the effect of selection on a correlated trait can be quantified with the given formulas. Theoretical results clearly show that depending on the magnitude of QTL effects, high selection intensities can lead to a dramatic reduction in power of QTL detection and that approximations based on the infinitesimal model deviate substantially from exact solutions. The presented formulas are valuable for choosing appropriate selection intensity when performing QTL mapping experiments on the data on phenotypically preselected traits and enable the calculation and bias correction of the effects of QTL under selection. Application of our theory to experimental data revealed that selection-induced bias of QTL effects can be successfully corrected.

  17. QTL mapping of physiological traits associated with salt tolerance in Medicago truncatula Recombinant Inbred Lines.

    PubMed

    Arraouadi, Soumaya; Badri, Mounawer; Abdelly, Chedly; Huguet, Thierry; Aouani, Mohamed Elarbi

    2012-02-01

    In this study, QTL mapping of physiological traits in the model Legume (Medicago truncatula) was performed using a set of RILs derived from LR5. Twelve parameters associated with Na+ and K+ content in leaves, stems and roots were measured. Broad-sense heritability of these traits was ranged from 0.15 to 0.83 in control and from 0.14 to 0.61 in salt stress. Variation among RILs was dependent on line, treatment and line by treatment effect. We mapped 6 QTLs in control, 2 in salt stress and 5 for sensitivity index. No major QTL was identified indicating that tolerance to salt stress is governed by several genes with low effects. Detected QTL for leaf, stem and root traits did not share the same map locations, suggesting that genes controlling transport of Na+ and K+ may be different. The maximum of QTL was observed on chromosome 1, no QTL was detected on chromosomes 5 and 6.

  18. A consensus linkage map of oil palm and a major QTL for stem height.

    PubMed

    Lee, May; Xia, Jun Hong; Zou, Zhongwei; Ye, Jian; Rahmadsyah; Alfiko, Yuzer; Jin, Jingjing; Lieando, Jessica Virginia; Purnamasari, Maria Indah; Lim, Chin Huat; Suwanto, Antonius; Wong, Limsoon; Chua, Nam-Hai; Yue, Gen Hua

    2015-02-04

    Oil palm (Elaeis guinensis Jacquin) is the most important source of vegetable oil and fat. Several linkage maps had been constructed using dominant and co-dominant markers to facilitate mapping of QTL. However, dominant markers are not easily transferable among different laboratories. We constructed a consensus linkage map for oil palm using co-dominant markers (i.e. microsatellite and SNPs) and two F1 breeding populations generated by crossing Dura and Pisifera individuals. Four hundreds and forty-four microsatellites and 36 SNPs were mapped onto 16 linkage groups. The map length was 1565.6 cM, with an average marker space of 3.72 cM. A genome-wide scan of QTL identified a major QTL for stem height on the linkage group 5, which explained 51% of the phenotypic variation. Genes in the QTL were predicted using the palm genome sequence and bioinformatic tools. The linkage map supplies a base for mapping QTL for accelerating the genetic improvement, and will be also useful in the improvement of the assembly of the genome sequences. Markers linked to the QTL may be used in selecting dwarf trees. Genes within the QTL will be characterized to understand the mechanisms underlying dwarfing.

  19. A consensus linkage map of oil palm and a major QTL for stem height

    PubMed Central

    Lee, May; Xia, Jun Hong; Zou, Zhongwei; Ye, Jian; Rahmadsyah; Alfiko, Yuzer; Jin, Jingjing; Lieando, Jessica Virginia; Purnamasari, Maria Indah; Lim, Chin Huat; Suwanto, Antonius; Wong, Limsoon; Chua, Nam-Hai; Yue, Gen Hua

    2015-01-01

    Oil palm (Elaeis guinensis Jacquin) is the most important source of vegetable oil and fat. Several linkage maps had been constructed using dominant and co-dominant markers to facilitate mapping of QTL. However, dominant markers are not easily transferable among different laboratories. We constructed a consensus linkage map for oil palm using co-dominant markers (i.e. microsatellite and SNPs) and two F1 breeding populations generated by crossing Dura and Pisifera individuals. Four hundreds and forty-four microsatellites and 36 SNPs were mapped onto 16 linkage groups. The map length was 1565.6 cM, with an average marker space of 3.72 cM. A genome-wide scan of QTL identified a major QTL for stem height on the linkage group 5, which explained 51% of the phenotypic variation. Genes in the QTL were predicted using the palm genome sequence and bioinformatic tools. The linkage map supplies a base for mapping QTL for accelerating the genetic improvement, and will be also useful in the improvement of the assembly of the genome sequences. Markers linked to the QTL may be used in selecting dwarf trees. Genes within the QTL will be characterized to understand the mechanisms underlying dwarfing. PMID:25648560

  20. Genome mapping by random anchoring: A discrete theoretical analysis

    NASA Astrophysics Data System (ADS)

    Zhang, M. Q.; Marr, T. G.

    1993-11-01

    As a part of the international human genome project, large-scale genomic maps of human and other model organisms are being generated. More recently, mapping using various anchoring (as opposed to the traditional "fingerprinting") strategies have been proposed based largely on mathematical models. In all of the theoretical work dealing with anchoring, an anchor has been idealized as a point on a continuous, infinite-length genome. In general, it is not desirable to make these assumptions, since in practice they may be violated under a variety of actual biological situations. Here we analyze a discrete model that can be used to predict the expected progress made when mapping by random anchoring. By virtue of keeping all three length scales (genome length, clone length, and probe length) finite, our results for the random anchoring strategy are derived in full generality, which contain previous results as special cases and hence can have broad application for planning mapping experiments or assessing the accuracy of the continuum models. Finally, we pose a challenging nonrandom anchoring model corresponding to a more efficient mapping scheme.

  1. QTL Mapping of Flowering and Fruiting Traits in Olive

    PubMed Central

    Sadok, Inès Ben; Celton, Jean-Marc; Essalouh, Laila; El Aabidine, Amal Zine; Garcia, Gilbert; Martinez, Sebastien; Grati-Kamoun, Naziha; Rebai, Ahmed; Costes, Evelyne; Khadari, Bouchaib

    2013-01-01

    One of the challenge fruit growers are facing is to balance between tree production and vegetative growth from year to year. To investigate the existence of genetic determinism for reproductive behaviour in olive tree, we studied an olive segregating population derived from a cross between ‘Olivière’ and ‘Arbequina’ cultivars. Our strategy was based on (i) an annual assessment of individual trees yield, and (ii) a decomposition of adult growth units at the crown periphery into quantitative variables related to both flowering and fruiting process in relation to their growth and branching. Genetic models, including the year, genotype effects and their interactions, were built with variance function and correlation structure of residuals when necessary. Among the progeny, trees were either ‘ON’ or ‘OFF’ for a given year and patterns of regular vs. irregular bearing were revealed. Genotype effect was significant on yield but not for flowering traits at growth unit (GU) scale, whereas the interaction between genotype and year was significant for both traits. A strong genetic effect was found for all fruiting traits without interaction with the year. Based on the new constructed genetic map, QTLs with small effects were detected, revealing multigenic control of the studied traits. Many were associated to alleles from ‘Arbequina’. Genetic correlations were found between Yield and Fruit set at GU scale suggesting a common genetic control, even though QTL co-localisations were in spe`cific years only. Most QTL were associated to flowering traits in specific years, even though reproductive traits at GU scale did not capture the bearing status of the trees in a given year. Results were also interpreted with respect to ontogenetic changes of growth and branching, and an alternative sampling strategy was proposed for capturing tree fruiting behaviour. Regular bearing progenies were identified and could constitute innovative material for selection programs

  2. Inclusive Composite Interval Mapping of QTL by Environment Interactions in Biparental Populations.

    PubMed

    Li, Shanshan; Wang, Jiankang; Zhang, Luyan

    2015-01-01

    Identification of environment-specific QTL and stable QTL having consistent genetic effects across a wide range of environments is of great importance in plant breeding. Inclusive Composite Interval Mapping (ICIM) has been proposed for additive, dominant and epistatic QTL mapping in biparental populations for single environment. In this study, ICIM was extended to QTL by environment interaction (QEI) mapping for multi-environmental trials, where the QTL average effect and QEI effects could be properly estimated. Stepwise regression was firstly applied in each environment to identify the most significant marker variables which were then used to adjust the phenotypic values. One-dimensional scanning was then conducted on the adjusted phenotypic values across the environments in order to detect QTL with either average effect or QEI effects, or both average effect and QEI effects. In this way, the genetic background could be well controlled while the conventional interval mapping was applied. An empirical method to determine the threshold of logarithm of odds was developed, and the efficiency of the ICIM QEI mapping was demonstrated in simulated populations under different genetic models. One actual recombinant inbred line population was used to compare mapping results between QEI mapping and single-environment analysis.

  3. QTL mapping of powdery mildew resistance in WI 2757 cucumber (Cucumis sativus L.).

    PubMed

    He, Xiaoming; Li, Yuhong; Pandey, Sudhakar; Yandell, Brain S; Pathak, Mamta; Weng, Yiqun

    2013-08-01

    Powdery mildew (PM) is a very important disease of cucumber (Cucumis sativus L.). Resistant cultivars have been deployed in production for a long time, but the genetic mechanisms of PM resistance in cucumber are not well understood. A 3-year QTL mapping study of PM resistance was conducted with 132 F2:3 families derived from two cucumber inbred lines WI 2757 (resistant) and True Lemon (susceptible). A genetic map covering 610.4 cM in seven linkage groups was developed with 240 SSR marker loci. Multiple QTL mapping analysis of molecular marker data and disease index of the hypocotyl, cotyledon and true leaf for responses to PM inoculation identified six genomic regions in four chromosomes harboring QTL for PM resistance in WI 2757. Among the six QTL, pm1.1 and pm1.2 in chromosome 1 conferred leaf resistance. Minor QTL pm3.1 (chromosome 3) and pm4.1 (chromosome 4) contributed to disease susceptibility. The two major QTL, pm5.1 and pm5.2 were located in an interval of ~40 cM in chromosome 5 with each explaining 21.0-74.5 % phenotypic variations. Data presented herein support two recessively inherited, linked major QTL in chromosome 5 plus minor QTL in other chromosomes that control the PM resistance in WI 2757. The QTL pm5.2 for hypocotyl resistance plays the most important role in host resistance. Multiple observations in the same year revealed the importance of scoring time in the detection of PM resistance QTL. Results of this study provided new insights into phenotypic and genetic mechanisms of powdery mildew resistance in cucumber.

  4. A new simple method for improving QTL mapping under selective genotyping.

    PubMed

    Lee, Hsin-I; Ho, Hsiang-An; Kao, Chen-Hung

    2014-12-01

    The selective genotyping approach, where only individuals from the high and low extremes of the trait distribution are selected for genotyping and the remaining individuals are not genotyped, has been known as a cost-saving strategy to reduce genotyping work and can still maintain nearly equivalent efficiency to complete genotyping in QTL mapping. We propose a novel and simple statistical method based on the normal mixture model for selective genotyping when both genotyped and ungenotyped individuals are fitted in the model for QTL analysis. Compared to the existing methods, the main feature of our model is that we first provide a simple way for obtaining the distribution of QTL genotypes for the ungenotyped individuals and then use it, rather than the population distribution of QTL genotypes as in the existing methods, to fit the ungenotyped individuals in model construction. Another feature is that the proposed method is developed on the basis of a multiple-QTL model and has a simple estimation procedure similar to that for complete genotyping. As a result, the proposed method has the ability to provide better QTL resolution, analyze QTL epistasis, and tackle multiple QTL problem under selective genotyping. In addition, a truncated normal mixture model based on a multiple-QTL model is developed when only the genotyped individuals are considered in the analysis, so that the two different types of models can be compared and investigated in selective genotyping. The issue in determining threshold values for selective genotyping in QTL mapping is also discussed. Simulation studies are performed to evaluate the proposed methods, compare the different models, and study the QTL mapping properties in selective genotyping. The results show that the proposed method can provide greater QTL detection power and facilitate QTL mapping for selective genotyping. Also, selective genotyping using larger genotyping proportions may provide roughly equivalent power to complete

  5. Genetic analysis of arsenic accumulation in maize using QTL mapping

    NASA Astrophysics Data System (ADS)

    Fu, Zhongjun; Li, Weihua; Xing, Xiaolong; Xu, Mengmeng; Liu, Xiaoyang; Li, Haochuan; Xue, Yadong; Liu, Zonghua; Tang, Jihua

    2016-02-01

    Arsenic (As) is a toxic heavy metal that can accumulate in crops and poses a threat to human health. The genetic mechanism of As accumulation is unclear. Herein, we used quantitative trait locus (QTL) mapping to unravel the genetic basis of As accumulation in a maize recombinant inbred line population derived from the Chinese crossbred variety Yuyu22. The kernels had the lowest As content among the different maize tissues, followed by the axes, stems, bracts and leaves. Fourteen QTLs were identified at each location. Some of these QTLs were identified in different environments and were also detected by joint analysis. Compared with the B73 RefGen v2 reference genome, the distributions and effects of some QTLs were closely linked to those of QTLs detected in a previous study; the QTLs were likely in strong linkage disequilibrium. Our findings could be used to help maintain maize production to satisfy the demand for edible corn and to decrease the As content in As-contaminated soil through the selection and breeding of As pollution-safe cultivars.

  6. Genetic analysis of arsenic accumulation in maize using QTL mapping

    PubMed Central

    Fu, Zhongjun; Li, Weihua; Xing, Xiaolong; Xu, Mengmeng; Liu, Xiaoyang; Li, Haochuan; Xue, Yadong; Liu, Zonghua; Tang, Jihua

    2016-01-01

    Arsenic (As) is a toxic heavy metal that can accumulate in crops and poses a threat to human health. The genetic mechanism of As accumulation is unclear. Herein, we used quantitative trait locus (QTL) mapping to unravel the genetic basis of As accumulation in a maize recombinant inbred line population derived from the Chinese crossbred variety Yuyu22. The kernels had the lowest As content among the different maize tissues, followed by the axes, stems, bracts and leaves. Fourteen QTLs were identified at each location. Some of these QTLs were identified in different environments and were also detected by joint analysis. Compared with the B73 RefGen v2 reference genome, the distributions and effects of some QTLs were closely linked to those of QTLs detected in a previous study; the QTLs were likely in strong linkage disequilibrium. Our findings could be used to help maintain maize production to satisfy the demand for edible corn and to decrease the As content in As-contaminated soil through the selection and breeding of As pollution-safe cultivars. PMID:26880701

  7. Genetic analysis of arsenic accumulation in maize using QTL mapping.

    PubMed

    Fu, Zhongjun; Li, Weihua; Xing, Xiaolong; Xu, Mengmeng; Liu, Xiaoyang; Li, Haochuan; Xue, Yadong; Liu, Zonghua; Tang, Jihua

    2016-02-16

    Arsenic (As) is a toxic heavy metal that can accumulate in crops and poses a threat to human health. The genetic mechanism of As accumulation is unclear. Herein, we used quantitative trait locus (QTL) mapping to unravel the genetic basis of As accumulation in a maize recombinant inbred line population derived from the Chinese crossbred variety Yuyu22. The kernels had the lowest As content among the different maize tissues, followed by the axes, stems, bracts and leaves. Fourteen QTLs were identified at each location. Some of these QTLs were identified in different environments and were also detected by joint analysis. Compared with the B73 RefGen v2 reference genome, the distributions and effects of some QTLs were closely linked to those of QTLs detected in a previous study; the QTLs were likely in strong linkage disequilibrium. Our findings could be used to help maintain maize production to satisfy the demand for edible corn and to decrease the As content in As-contaminated soil through the selection and breeding of As pollution-safe cultivars.

  8. QTL mapping for combining ability in different population-based NCII designs: a simulation study.

    PubMed

    Li, Lanzhi; Sun, Congwei; Chen, Yuan; Dai, Zhijun; Qu, Zhen; Zheng, Xingfei; Yu, Sibin; Mou, Tongmin; Xu, Chenwu; Hu, Zhongli

    2013-12-01

    The NCII design (North Carolina mating design II) has been widely applied in studies of combining ability and heterosis. The objective of our research was to estimate how different base populations, sample sizes, testcross numbers and heritability influence QTL analyses of combining ability and heterosis. A series of Monte Carlo simulation experiments with QTL mapping were then conducted for the base population performance, testcross population phenotypic values and the general combining ability (GCA), specific combining ability (SCA) and Hmp (midparental heterosis) datasets. The results indicated that: (i) increasing the number of testers did not necessarily enhance the QTL detection power for GCA, but it was significantly related to the QTL effect. (ii) The QTLs identified in the base population may be different from those from GCA dataset. Similar phenomena can be seen from QTL detected in SCA and Hmp datasets. (iii) The QTL detection power for GCA ranked in the order of DH(RIL) based > F2 based > BC based NCII design, when the heritability was low. The recombinant inbred lines (RILs) (or DHs) allows more recombination and offers higher mapping resolution than other populations. Further, their testcross progeny can be repeatedly generated and phenotyped. Thus, RIL based (or DH based) NCII design was highly recommend for combining ability QTL analysis. Our results expect to facilitate selecting elite parental lines with high combining ability and for geneticists to research the genetic basis of combining ability.

  9. Fine Mapping and Evolution of a QTL Region on Cattle Chromosome 3

    ERIC Educational Resources Information Center

    Donthu, Ravikiran

    2009-01-01

    The goal of my dissertation was to fine map the milk yield and composition quantitative trait loci (QTL) mapped to cattle chromosome 3 (BTA3) by Heyen et al. (1999) and to identify candidate genes affecting these traits. To accomplish this, the region between "BL41" and "TGLA263" was mapped to the cattle genome sequence assembly Btau 3.1 and a…

  10. QTL mapping for yield and lodging resistance in an enhanced SSR-based map for tef.

    PubMed

    Zeid, M; Belay, G; Mulkey, S; Poland, J; Sorrells, M E

    2011-01-01

    Tef is a cereal crop of cultural and economic importance in Ethiopia. It is grown primarily for its grain though it is also an important source of fodder. Tef suffers from lodging that reduces both grain yield and quality. As a first step toward executing a marker-assisted breeding program for lodging resistance and grain yield improvement, a linkage map was constructed using 151 F(9) recombinant inbred lines obtained by single-seed-descent from a cross between Eragrostis tef and its wild relative Eragrostis pilosa. The map was primarily based on microsatellite (SSR) markers that were developed from SSR-enriched genomic libraries. The map consisted of 30 linkage groups and spanned a total length of 1,277.4 cM (78.7% of the genome) with an average distance of 5.7 cM between markers. This is the most saturated map for tef to date, and for the first time, all of the markers are PCR-based. Using agronomic data from 11 environments and marker data, it was possible to map quantitative trait loci (QTL) controlling lodging, grain yield and 15 other related traits. The positive effects of the QTL identified from the wild parent were mainly for earliness, reduced culm length and lodging resistance. In this population, it is now possible to combine lodging resistance and grain yield using a marker-assisted selection program targeting the QTL identified for both traits. The newly developed SSR markers will play a key role in germplasm organization, fingerprinting and monitoring the success of the hybridization process in intra-specific crosses lacking distinctive morphological markers.

  11. Expression QTL mapping in grapevine--revisiting the genetic determinism of grape skin colour.

    PubMed

    Huang, Yung-Fen; Bertrand, Yves; Guiraud, Jean-Luc; Vialet, Sandrine; Launay, Amandine; Cheynier, Véronique; Terrier, Nancy; This, Patrice

    2013-06-01

    Expression quantitative locus (eQTL) mapping was proposed as a valuable approach to dissect the genetic basis of transcript variation, one of the prime causes of natural phenotypic variation. Few eQTL studies have been performed on woody species due to the difficulty in sample homogenisation. Based on previous knowledge on berry colour formation, we performed eQTL mapping in field experimentation of grapevine with appropriate sampling criteria. The transcript level of VvUFGT, a key enzyme for anthocyanin synthesis was measured by real-time qRT-PCR in grape berry on a 191-individual pseudo-F1 progeny, derived from a cross between Syrah and Grenache cultivars. Two eQTLs were identified: one, explaining 20%, of genotypic variance and co-locating with VvUFGT itself (cis-eQTL), was principally due to the contrast between Grenache alleles; the other, explaining 35% of genotypic variance, was a trans-eQTL due to Syrah allelic contrast and co-located with VvMYBAs, transcription factors known to activate the expression of VvUFGT. This study assessed and validated the feasibility of eQTL mapping approach in grapevine and offered insights and new hypotheses on grape skin colour formation.

  12. QTL Mapping of Kernel Number-Related Traits and Validation of One Major QTL for Ear Length in Maize.

    PubMed

    Huo, Dongao; Ning, Qiang; Shen, Xiaomeng; Liu, Lei; Zhang, Zuxin

    2016-01-01

    The kernel number is a grain yield component and an important maize breeding goal. Ear length, kernel number per row and ear row number are highly correlated with the kernel number per ear, which eventually determines the ear weight and grain yield. In this study, two sets of F2:3 families developed from two bi-parental crosses sharing one inbred line were used to identify quantitative trait loci (QTL) for four kernel number-related traits: ear length, kernel number per row, ear row number and ear weight. A total of 39 QTLs for the four traits were identified in the two populations. The phenotypic variance explained by a single QTL ranged from 0.4% to 29.5%. Additionally, 14 overlapping QTLs formed 5 QTL clusters on chromosomes 1, 4, 5, 7, and 10. Intriguingly, six QTLs for ear length and kernel number per row overlapped in a region on chromosome 1. This region was designated qEL1.10 and was validated as being simultaneously responsible for ear length, kernel number per row and ear weight in a near isogenic line-derived population, suggesting that qEL1.10 was a pleiotropic QTL with large effects. Furthermore, the performance of hybrids generated by crossing 6 elite inbred lines with two near isogenic lines at qEL1.10 showed the breeding value of qEL1.10 for the improvement of the kernel number and grain yield of maize hybrids. This study provides a basis for further fine mapping, molecular marker-aided breeding and functional studies of kernel number-related traits in maize.

  13. QTL Mapping of Kernel Number-Related Traits and Validation of One Major QTL for Ear Length in Maize

    PubMed Central

    Huo, Dongao; Ning, Qiang; Shen, Xiaomeng; Liu, Lei; Zhang, Zuxin

    2016-01-01

    The kernel number is a grain yield component and an important maize breeding goal. Ear length, kernel number per row and ear row number are highly correlated with the kernel number per ear, which eventually determines the ear weight and grain yield. In this study, two sets of F2:3 families developed from two bi-parental crosses sharing one inbred line were used to identify quantitative trait loci (QTL) for four kernel number-related traits: ear length, kernel number per row, ear row number and ear weight. A total of 39 QTLs for the four traits were identified in the two populations. The phenotypic variance explained by a single QTL ranged from 0.4% to 29.5%. Additionally, 14 overlapping QTLs formed 5 QTL clusters on chromosomes 1, 4, 5, 7, and 10. Intriguingly, six QTLs for ear length and kernel number per row overlapped in a region on chromosome 1. This region was designated qEL1.10 and was validated as being simultaneously responsible for ear length, kernel number per row and ear weight in a near isogenic line-derived population, suggesting that qEL1.10 was a pleiotropic QTL with large effects. Furthermore, the performance of hybrids generated by crossing 6 elite inbred lines with two near isogenic lines at qEL1.10 showed the breeding value of qEL1.10 for the improvement of the kernel number and grain yield of maize hybrids. This study provides a basis for further fine mapping, molecular marker-aided breeding and functional studies of kernel number-related traits in maize. PMID:27176215

  14. An Empirical Method for Establishing Positional Confidence Intervals Tailored for Composite Interval Mapping of QTL

    PubMed Central

    Love, Tanzy M.

    2010-01-01

    Background Improved genetic resolution and availability of sequenced genomes have made positional cloning of moderate-effect QTL realistic in several systems, emphasizing the need for precise and accurate derivation of positional confidence intervals (CIs) for QTL. Support interval (SI) methods based on the shape of the QTL likelihood curve have proven adequate for standard interval mapping, but have not been shown to be appropriate for use with composite interval mapping (CIM), which is one of the most commonly used QTL mapping methods. Results Based on a non-parametric confidence interval (NPCI) method designed for use with the Haley-Knott regression method for mapping QTL, a CIM-specific method (CIM-NPCI) was developed to appropriately account for the selection of background markers during analysis of bootstrap-resampled data sets. Coverage probabilities and interval widths resulting from use of the NPCI, SI, and CIM-NPCI methods were compared in a series of simulations analyzed via CIM, wherein four genetic effects were simulated in chromosomal regions with distinct marker densities while heritability was fixed at 0.6 for a population of 200 isolines. CIM-NPCIs consistently capture the simulated QTL across these conditions while slightly narrower SIs and NPCIs fail at unacceptably high rates, especially in genomic regions where marker density is high, which is increasingly common for real studies. The effects of a known CIM bias toward locating QTL peaks at markers were also investigated for each marker density case. Evaluation of sub-simulations that varied according to the positions of simulated effects relative to the nearest markers showed that the CIM-NPCI method overcomes this bias, offering an explanation for the improved coverage probabilities when marker densities are high. Conclusions Extensive simulation studies herein demonstrate that the QTL confidence interval methods typically used to positionally evaluate CIM results can be dramatically improved

  15. QTL mapping of grain weight in rice and the validation of the QTL qTGW3.2.

    PubMed

    Tang, Shao-qing; Shao, Gao-neng; Wei, Xiang-jin; Chen, Ming-liang; Sheng, Zhong-hua; Luo, Ju; Jiao, Gui-ai; Xie, Li-hong; Hu, Pei-song

    2013-09-15

    A recombinant inbred line (RIL) population bred from a cross between a javanica type (cv. D50) and an indica type (cv. HB277) rice was used to map seven quantitative trait loci (QTLs) for thousand grain weight (TGW). The loci were distributed on chromosomes 2, 3, 5, 6, 8 and 10. The chromosome 3 QTL qTGW3.2 was stably expressed over two years, and contributed 9-10% of the phenotypic variance. A residual heterozygous line (RHL) was selected from the RIL population and its selfed progeny was used to fine map qTGW3.2. In this "F2" population, the QTL explained about 23% of the variance, rising to nearly 33% in the subsequent "F2:3" generation. The physical location of qTGW3.2 was confined to a ~556 kb region flanked by the microsatellite loci RM16162 and RM16194. The region also contains other factors influencing certain yield-related traits, although it is also possible that qTGW3.2 affects these in a pleiotropic fashion.

  16. QTL mapping for two commercial traits in farmed saltwater crocodiles (Crocodylus porosus).

    PubMed

    Miles, L G; Isberg, S R; Thomson, P C; Glenn, T C; Lance, S L; Dalzell, P; Moran, C

    2010-04-01

    The recent generation of a genetic linkage map for the saltwater crocodile (Crocodylus porosus) has now made it possible to carry out the systematic searches necessary for the identification of quantitative trait loci (QTL) affecting traits of economic, as well as evolutionary, importance in crocodilians. In this study, we conducted genome-wide scans for two commercially important traits, inventory head length (which is highly correlated with growth rate) and number of scale rows (SR, a skin quality trait), for the existence of QTL in a commercial population of saltwater crocodiles at Darwin Crocodile Farm, Northern Territory, Australia. To account for the uncommonly large difference in sex-specific recombination rates apparent in the saltwater crocodile, a duel mapping strategy was employed. This strategy employed a sib-pair analysis to take advantage of our full-sib pedigree structure, together with a half-sib analysis to account for, and take advantage of, the large difference in sex-specific recombination frequencies. Using these approaches, two putative QTL regions were identified for SR on linkage group 1 (LG1) at 36 cM, and on LG12 at 0 cM. The QTL identified in this investigation represent the first for a crocodilian and indeed for any non-avian member of the Class Reptilia. Mapping of QTL is an important first step towards the identification of genes and causal mutations for commercially important traits and the development of selection tools for implementation in crocodile breeding programmes for the industry.

  17. In silico QTL mapping of basal liver iron levels in inbred mouse strains

    PubMed Central

    McLachlan, Stela; Lee, Seung-Min; Steele, Teresa M.; Hawthorne, Paula L.; Zapala, Matthew A.; Eskin, Eleazar; Schork, Nicholas J.; Anderson, Gregory J.

    2011-01-01

    Both iron deficiency and iron excess are detrimental in many organisms, and previous studies in both mice and humans suggest that genetic variation may influence iron status in mammals. However, these genetic factors are not well defined. To address this issue, we measured basal liver iron levels in 18 inbred strains of mice of both sexes on a defined iron diet and found ∼4-fold variation in liver iron in males (lowest 153 μg/g, highest 661 μg/g) and ∼3-fold variation in females (lowest 222 μg/g, highest 658 μg/g). We carried out a genome-wide association mapping to identify haplotypes underlying differences in liver iron and three other related traits (copper and zinc liver levels, and plasma diferric transferrin levels) in a subset of 14 inbred strains for which genotype information was available. We identified two putative quantitative trait loci (QTL) that contain genes with a known role in iron metabolism: Eif2ak1 and Igf2r. We also identified four putative QTL that reside in previously identified iron-related QTL and 22 novel putative QTL. The most promising putative QTL include a 0.22 Mb region on Chromosome 7 and a 0.32 Mb region on Chromosome 11 that both contain only one candidate gene, Adam12 and Gria1, respectively. Identified putative QTL are good candidates for further refinement and subsequent functional studies. PMID:21062905

  18. Fine mapping QTL for resistance to VNN disease using a high-density linkage map in Asian seabass

    PubMed Central

    Liu, Peng; Wang, Le; Wong, Sek-Man; Yue, Gen Hua

    2016-01-01

    Asian seabass has suffered from viral nervous necrosis (VNN) disease. Our previous study has mapped quantitative trait loci (QTL) for resistance to VNN disease. To fine map these QTL and identify causative genes, we identified 6425 single nucleotide polymorphisms (SNPs) from 85 dead and 94 surviving individuals. Combined with 155 microsatellites, we constructed a genetic map consisting of 24 linkage groups (LGs) containing 3000 markers, with an average interval of 1.27 cM. We mapped one significant and three suggestive QTL with phenotypic variation explained (PVE) of 8.3 to 11.0%, two significant and two suggestive QTL with PVE of 7.8 to 10.9%, for resistance in three LGs and survival time in four LGs, respectively. Further analysis one QTL with the largest effect identified protocadherin alpha-C 2-like (Pcdhac2) as the possible candidate gene. Association study in 43 families with 1127 individuals revealed a 6 bp insertion-deletion was significantly associated with disease resistance. qRT-PCR showed the expression of Pcdhac2 was significantly induced in the brain, muscle and skin after nervous necrosis virus (NNV) infection. Our results could facilitate marker-assisted selection (MAS) for resistance to NNV in Asian seabass and set up the basis for functional analysis of the potential causative gene for resistance. PMID:27555039

  19. Mapping Quantitative Trait Loci (QTL) in sheep. III. QTL for carcass composition traits derived from CT scans and aligned with a meta-assembly for sheep and cattle carcass QTL.

    PubMed

    Cavanagh, Colin R; Jonas, Elisabeth; Hobbs, Matthew; Thomson, Peter C; Tammen, Imke; Raadsma, Herman W

    2010-09-16

    An (Awassi × Merino) × Merino single-sire backcross family with 165 male offspring was used to map quantitative trait loci (QTL) for body composition traits on a framework map of 189 microsatellite loci across all autosomes. Two cohorts were created from the experimental progeny to represent alternative maturity classes for body composition assessment. Animals were raised under paddock conditions prior to entering the feedlot for a 90-day fattening phase. Body composition traits were derived in vivo at the end of the experiment prior to slaughter at 2 (cohort 1) and 3.5 (cohort 2) years of age, using computed tomography. Image analysis was used to gain accurate predictions for 13 traits describing major fat depots, lean muscle, bone, body proportions and body weight which were used for single- and two-QTL mapping analysis. Using a maximum-likelihood approach, three highly significant (LOD ≥ 3), 15 significant (LOD ≥ 2), and 11 suggestive QTL (1.7 ≤ LOD < 2) were detected on eleven chromosomes. Regression analysis confirmed 28 of these QTL and an additional 17 suggestive (P < 0.1) and two significant (P < 0.05) QTL were identified using this method. QTL with pleiotropic effects for two or more tissues were identified on chromosomes 1, 6, 10, 14, 16 and 23. No tissue-specific QTL were identified.A meta-assembly of ovine QTL for carcass traits from this study and public domain sources was performed and compared with a corresponding bovine meta-assembly. The assembly demonstrated QTL with effects on carcass composition in homologous regions on OAR1, 2, 6 and 21.

  20. QTL mapping identifies candidate alleles involved in adaptive introgression and range expansion in a wild sunflower

    PubMed Central

    Whitney, Kenneth D.; Broman, Karl W.; Kane, Nolan C.; Hovick, Stephen M.; Randell, Rebecca A.; Rieseberg, Loren H.

    2014-01-01

    The wild North American sunflowers Helianthus annuus and H. debilis are participants in one of the earliest identified examples of adaptive trait introgression, and the exchange is hypothesized to have triggered a range expansion in H. annuus. However, the genetic basis of the adaptive exchange has not been examined. Here, we combine quantitative trait locus (QTL) mapping with field measurements of fitness to identify candidate H. debilis QTL alleles likely to have introgressed into H. annuus to form the natural hybrid lineage H. a. texanus. Two 500-individual BC1 mapping populations were grown in central Texas, genotyped for 384 SNP markers, and then phenotyped in the field for two fitness and 22 herbivore resistance, ecophysiological, phenological, and architectural traits. We identified a total of 110 QTL, including at least one QTL for 22 of the 24 traits. Over 75% of traits exhibited at least one H. debilis QTL allele that would shift the trait in the direction of the wild hybrid H. a. texanus. We identified three chromosomal regions where H. debilis alleles increased both female and male components of fitness; these regions are expected to be strongly favored in the wild. QTL for a number of other ecophysiological, phenological, and architectural traits co-localized with these three regions and are candidates for the actual traits driving adaptive shifts. G × E interactions played a modest role, with 17% of the QTL showing potentially divergent phenotypic effects between the two field sites. The candidate adaptive chromosomal regions identified here serve as explicit hypotheses for how the genetic architecture of the hybrid lineage came into existence. PMID:25522096

  1. A Random-Model Approach to QTL Mapping in Multiparent Advanced Generation Intercross (MAGIC) Populations.

    PubMed

    Wei, Julong; Xu, Shizhong

    2016-02-01

    Most standard QTL mapping procedures apply to populations derived from the cross of two parents. QTL detected from such biparental populations are rarely relevant to breeding programs because of the narrow genetic basis: only two alleles are involved per locus. To improve the generality and applicability of mapping results, QTL should be detected using populations initiated from multiple parents, such as the multiparent advanced generation intercross (MAGIC) populations. The greatest challenges of QTL mapping in MAGIC populations come from multiple founder alleles and control of the genetic background information. We developed a random-model methodology by treating the founder effects of each locus as random effects following a normal distribution with a locus-specific variance. We also fit a polygenic effect to the model to control the genetic background. To improve the statistical power for a scanned marker, we release the marker effect absorbed by the polygene back to the model. In contrast to the fixed-model approach, we estimate and test the variance of each locus and scan the entire genome one locus at a time using likelihood-ratio test statistics. Simulation studies showed that this method can increase statistical power and reduce type I error compared with composite interval mapping (CIM) and multiparent whole-genome average interval mapping (MPWGAIM). We demonstrated the method using a public Arabidopsis thaliana MAGIC population and a mouse MAGIC population.

  2. Identification and QTL mapping of whitefly resistance components in Solanum galapagense.

    PubMed

    Firdaus, Syarifin; van Heusden, Adriaan W; Hidayati, Nurul; Supena, Ence Darmo Jaya; Mumm, Roland; de Vos, Ric C H; Visser, Richard G F; Vosman, Ben

    2013-06-01

    Solanum galapagense is closely related to the cultivated tomato and can show a very good resistance towards whitefly. A segregating population resulting from a cross between the cultivated tomato and a whitefly resistant S. galapagense was created and used for mapping whitefly resistance and related traits, which made it possible to study the genetic basis of the resistance. Quantitative trait loci (QTL) for adult survival co-localized with type IV trichome characteristics (presence, density, gland longevity and gland size). A major QTL (Wf-1) was found for adult survival and trichome characters on Chromosome 2. This QTL explained 54.1 % of the variation in adult survival and 81.5 % of the occurrence of type IV trichomes. A minor QTL (Wf-2) for adult survival and trichome characters was identified on Chromosome 9. The major QTL was confirmed in F3 populations. Comprehensive metabolomics, based on GCMS profiling, revealed that 16 metabolites segregating in the F2 mapping population were associated with Wf-1 and/or Wf-2. Analysis of the 10 most resistant and susceptible F2 genotypes by LCMS showed that several acyl sugars were present in significantly higher concentration in the whitefly resistant genotypes, suggesting a role for these components in the resistance as well. Our results show that whitefly resistance in S. galapagense seems to inherit relatively simple compared to whitefly resistance from other sources and this offers great prospects for resistance breeding as well as elucidating the underlying molecular mechanism(s) of the resistance.

  3. Fine-mapping of a QTL influencing pork tenderness on porcine chromosome 2

    PubMed Central

    Meyers, Stacey N; Rodriguez-Zas, Sandra L; Beever, Jonathan E

    2007-01-01

    Background In a previous study, a quantitative trait locus (QTL) exhibiting large effects on both Instron shear force and taste panel tenderness was detected within the Illinois Meat Quality Pedigree (IMQP). This QTL mapped to the q arm of porcine chromosome 2 (SSC2q). Comparative analysis of SSC2q indicates that it is orthologous to a segment of human chromosome 5 (HSA5) containing a strong positional candidate gene, calpastatin (CAST). CAST polymorphisms have recently been shown to be associated with meat quality characteristics; however, the possible involvement of other genes and/or molecular variation in this region cannot be excluded, thus requiring fine-mapping of the QTL. Results Recent advances in porcine genome resources, including high-resolution radiation hybrid and bacterial artificial chromosome (BAC) physical maps, were utilized for development of novel informative markers. Marker density in the ~30-Mb region surrounding the most likely QTL position was increased by addition of eighteen new microsatellite markers, including nine publicly-available and nine novel markers. Two newly-developed markers were derived from a porcine BAC clone containing the CAST gene. Refinement of the QTL position was achieved through linkage and haplotype analyses. Within-family linkage analyses revealed at least two families segregating for a highly-significant QTL in strong positional agreement with CAST markers. A combined analysis of these two families yielded QTL intervals of 36 cM and 7 cM for Instron shear force and taste panel tenderness, respectively, while haplotype analyses suggested further refinement to a 1.8 cM interval containing CAST markers. The presence of additional tenderness QTL on SSC2q was also suggested. Conclusion These results reinforce CAST as a strong positional candidate. Further analysis of CAST molecular variation within the IMQP F1 boars should enhance understanding of the molecular basis of pork tenderness, and thus allow for genetic

  4. Mapping QTL Contributing to Variation in Posterior Lobe Morphology between Strains of Drosophila melanogaster

    PubMed Central

    Hackett, Jennifer L.; Wang, Xiaofei; Smith, Brittny R.

    2016-01-01

    Closely-related, and otherwise morphologically similar insect species frequently show striking divergence in the shape and/or size of male genital structures, a phenomenon thought to be driven by sexual selection. Comparative interspecific studies can help elucidate the evolutionary forces acting on genital structures to drive this rapid differentiation. However, genetic dissection of sexual trait divergence between species is frequently hampered by the difficulty generating interspecific recombinants. Intraspecific variation can be leveraged to investigate the genetics of rapidly-evolving sexual traits, and here we carry out a genetic analysis of variation in the posterior lobe within D. melanogaster. The lobe is a male-specific process emerging from the genital arch of D. melanogaster and three closely-related species, is essential for copulation, and shows radical divergence in form across species. There is also abundant variation within species in the shape and size of the lobe, and while this variation is considerably more subtle than that seen among species, it nonetheless provides the raw material for QTL mapping. We created an advanced intercross population from a pair of phenotypically-different inbred strains, and after phenotyping and genotyping-by-sequencing the recombinants, mapped several QTL contributing to various measures of lobe morphology. The additional generations of crossing over in our mapping population led to QTL intervals that are smaller than is typical for an F2 mapping design. The intervals we map overlap with a pair of lobe QTL we previously identified in an independent mapping cross, potentially suggesting a level of shared genetic control of trait variation. Our QTL additionally implicate a suite of genes that have been shown to contribute to the development of the posterior lobe. These loci are strong candidates to harbor naturally-segregating sites contributing to phenotypic variation within D. melanogaster, and may also be those

  5. High Resolution QTL Maps Of 31 Traits in Contemporary U.S. Holstein Cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-resolution QTL maps of 1586 SNPs affecting 31 dairy traits (top 100 effects per trait)were constructed based on a genome-wide association analysis of 1,654 contemporary U.S. Holstein cows genotyped with 45,878 SNPs. The 31 traits include net merit and its 8 compnent traits, 4 calving traits, an...

  6. QTL mapping for downy mildew resistance in cucumber inbred line WI7120 (PI 330628)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Downy mildew (DM) is the most devastating fungal disease of cucumber worldwide. The molecular mechanism of DM resistance in cucumber is poorly understood, and use of marker-assisted breeding for DM resistance is not widely available. Here we reported QTL mapping of DM resistance with 243 F2:3 famili...

  7. QTL Mapping of Sex Determination Loci Supports an Ancient Pathway in Ants and Honey Bees.

    PubMed

    Miyakawa, Misato O; Mikheyev, Alexander S

    2015-11-01

    Sex determination mechanisms play a central role in life-history characteristics, affecting mating systems, sex ratios, inbreeding tolerance, etc. Downstream components of sex determination pathways are highly conserved, but upstream components evolve rapidly. Evolutionary dynamics of sex determination remain poorly understood, particularly because mechanisms appear so diverse. Here we investigate the origins and evolution of complementary sex determination (CSD) in ants and bees. The honey bee has a well-characterized CSD locus, containing tandemly arranged homologs of the transformer gene [complementary sex determiner (csd) and feminizer (fem)]. Such tandem paralogs appear frequently in aculeate hymenopteran genomes. However, only comparative genomic, but not functional, data support a broader role for csd/fem in sex determination, and whether species other than the honey bee use this pathway remains controversial. Here we used a backcross to test whether csd/fem acts as a CSD locus in an ant (Vollenhovia emeryi). After sequencing and assembling the genome, we computed a linkage map, and conducted a quantitative trait locus (QTL) analysis of diploid male production using 68 diploid males and 171 workers. We found two QTLs on separate linkage groups (CsdQTL1 and CsdQTL2) that jointly explained 98.0% of the phenotypic variance. CsdQTL1 included two tandem transformer homologs. These data support the prediction that the same CSD mechanism has indeed been conserved for over 100 million years. CsdQTL2 had no similarity to CsdQTL1 and included a 236-kb region with no obvious CSD gene candidates, making it impossible to conclusively characterize it using our data. The sequence of this locus was conserved in at least one other ant genome that diverged >75 million years ago. By applying QTL analysis to ants for the first time, we support the hypothesis that elements of hymenopteran CSD are ancient, but also show that more remains to be learned about the diversity of CSD

  8. A second generation SNP and SSR integrated linkage map and QTL mapping for the Chinese mitten crab Eriocheir sinensis

    PubMed Central

    Qiu, Gao-Feng; Xiong, Liang-Wei; Han, Zhi-Ke; Liu, Zhi-Qiang; Feng, Jian-Bin; Wu, Xu-Gan; Yan, Yin-Long; Shen, Hong; Huang, Long; Chen, Li

    2017-01-01

    The Chinese mitten crab Eriocheir sinensis is the most economically important cultivated crab species in China, and its genome has a high number of chromosomes (2n = 146). To obtain sufficient markers for construction of a dense genetic map for this species, we employed the recently developed specific-locus amplified fragment sequencing (SLAF-seq) method for large-scale SNPs screening and genotyping in a F1 full-sib family of 149 individuals. SLAF-seq generated 127,677 polymorphic SNP markers, of which 20,803 valid markers were assigned into five segregation types and were used together with previous SSR markers for linkage map construction. The final integrated genetic map included 17,680 SNP and 629 SSR markers on the 73 linkage groups (LG), and spanned 14,894.9 cM with an average marker interval of 0.81 cM. QTL mapping localized three significant growth-related QTL to a 1.2 cM region in LG53 as well as 146 sex-linked markers in LG48. Genome-wide QTL-association analysis further identified four growth-related QTL genes named LNX2, PAK2, FMRFamide and octopamine receptors. These genes are involved in a variety of different signaling pathways including cell proliferation and growth. The map and SNP markers described here will be a valuable resource for the E. sinensis genome project and selective breeding programs. PMID:28045132

  9. Mapping genetic determinants of viral traits with FST and quantitative trait locus (QTL) approaches.

    PubMed

    Doumayrou, Juliette; Thébaud, Gaël; Vuillaume, Florence; Peterschmitt, Michel; Urbino, Cica

    2015-10-01

    The genetic determinism of viral traits can generally be dissected using either forward or reverse genetics because the clonal reproduction of viruses does not require the use of approaches based on laboratory crosses. Nevertheless, we hypothesized that recombinant viruses could be analyzed as sexually reproducing organisms, using either a quantitative trait loci (QTL) approach or a locus-by-locus fixation index (FST). Locus-by-locus FST analysis, and four different regressions and interval mapping algorithms of QTL analysis were applied to a phenotypic and genotypic dataset previously obtained from 47 artificial recombinant genomes generated between two begomovirus species. Both approaches assigned the determinant of within-host accumulation-previously identified using standard virology approaches-to a region including the 5׳ end of the replication-associated protein (Rep) gene and the upstream intergenic region. This study provides a proof of principle that QTL and population genetics tools can be extended to characterize the genetic determinants of viral traits.

  10. Factors influencing QTL mapping accuracy under complicated genetic models by computer simulation.

    PubMed

    Su, C F; Wang, W; Gong, S L; Zuo, J H; Li, S J

    2016-12-19

    The accuracy of quantitative trait loci (QTLs) identified using different sample sizes and marker densities was evaluated in different genetic models. Model I assumed one additive QTL; Model II assumed three additive QTLs plus one pair of epistatic QTLs; and Model III assumed two additive QTLs with opposite genetic effects plus two pairs of epistatic QTLs. Recombinant inbred lines (RILs) (50-1500 samples) were simulated according to the Models to study the influence of different sample sizes under different genetic models on QTL mapping accuracy. RILs with 10-100 target chromosome markers were simulated according to Models I and II to evaluate the influence of marker density on QTL mapping accuracy. Different marker densities did not significantly influence accurate estimation of genetic effects with simple additive models, but influenced QTL mapping accuracy in the additive and epistatic models. The optimum marker density was approximately 20 markers when the recombination fraction between two adjacent markers was 0.056 in the additive and epistatic models. A sample size of 150 was sufficient for detecting simple additive QTLs. Thus, a sample size of approximately 450 is needed to detect QTLs with additive and epistatic models. Sample size must be approximately 750 to detect QTLs with additive, epistatic, and combined effects between QTLs. The sample size should be increased to >750 if the genetic models of the data set become more complicated than Model III. Our results provide a theoretical basis for marker-assisted selection breeding and molecular design breeding.

  11. QTL Mapping of Genome Regions Controlling Temephos Resistance in Larvae of the Mosquito Aedes aegypti

    PubMed Central

    Reyes-Solis, Guadalupe del Carmen; Saavedra-Rodriguez, Karla; Suarez, Adriana Flores; Black, William C.

    2014-01-01

    Introduction The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Temephos is an organophosphate insecticide used globally to suppress Ae. aegypti larval populations but resistance has evolved in many locations. Methodology/Principal Findings Quantitative Trait Loci (QTL) controlling temephos survival in Ae. aegypti larvae were mapped in a pair of F3 advanced intercross lines arising from temephos resistant parents from Solidaridad, México and temephos susceptible parents from Iquitos, Peru. Two sets of 200 F3 larvae were exposed to a discriminating dose of temephos and then dead larvae were collected and preserved for DNA isolation every two hours up to 16 hours. Larvae surviving longer than 16 hours were considered resistant. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 23 single copy genes and 26 microsatellite loci of known physical positions in the Ae. aegypti genome. In both reciprocal crosses, Multiple Interval Mapping identified eleven QTL associated with time until death. In the Solidaridad×Iquitos (SLD×Iq) cross twelve were associated with survival but in the reciprocal IqxSLD cross, only six QTL were survival associated. Polymorphisms at acetylcholine esterase (AchE) loci 1 and 2 were not associated with either resistance phenotype suggesting that target site insensitivity is not an organophosphate resistance mechanism in this region of México. Conclusions/Significance Temephos resistance is under the control of many metabolic genes of small effect and dispersed throughout the Ae. aegypti genome. PMID:25330200

  12. Mapping QTL main and interaction influences on milling quality in elite US rice germplasm.

    PubMed

    Nelson, J C; McClung, A M; Fjellstrom, R G; Moldenhauer, K A K; Boza, E; Jodari, F; Oard, J H; Linscombe, S; Scheffler, B E; Yeater, K M

    2011-02-01

    Rice (Oryza sativa L.) head-rice yield (HR) is a key export and domestic quality trait whose genetic control is poorly understood. With the goal of identifying genomic regions influencing HR, quantitative-trait-locus (QTL) mapping was carried out for quality-related traits in recombinant inbred lines (RILs) derived from crosses of common parent Cypress, a high-HR US japonica cultivar, with RT0034, a low-HR indica line (129 RILs) and LaGrue, a low-HR japonica cultivar (298 RILs), grown in two US locations in 2005-2007. Early heading increased HR in the Louisiana (LA) but not the Arkansas (AR) location. Fitting QTL-mapping models to separate QTL main and QTL × environment interaction (QEI) effects and identify epistatic interactions revealed six main-effect HR QTLs in the two crosses, at four of which Cypress contributed the increasing allele. Multi-QTL models accounted for 0.36 of genetic and 0.21 of genetic × environment interaction of HR in MY1, and corresponding proportions of 0.25 and 0.37 in MY2. The greater HR advantage of Cypress in LA than in AR corresponded to a genomewide pattern of opposition of HR-increasing QTL effects by AR-specific effects, suggesting a selection strategy for improving this cultivar for AR. Treating year-location combinations as independent environments resulted in underestimation of QEI effects, evidently owing to lower variation among years within location than between location. Identification of robust HR QTLs in elite long-grain germplasm is suggested to require more detailed attention to the interaction of plant and grain development parameters with environmental conditions than has been given to date.

  13. QTL mapping for bacterial wilt resistance in peanut (Arachis hypogaea L.).

    PubMed

    Zhao, Yongli; Zhang, Chong; Chen, Hua; Yuan, Mei; Nipper, Rick; Prakash, C S; Zhuang, Weijian; He, Guohao

    Bacterial wilt (BW) caused by Ralstonia solanacearum is a serious, global, disease of peanut (Arachis hypogaea L.), but it is especially destructive in China. Identification of DNA markers linked to the resistance to this disease will help peanut breeders efficiently develop resistant cultivars through molecular breeding. A F2 population, from a cross between disease-resistant and disease-susceptible cultivars, was used to detect quantitative trait loci (QTL) associated with the resistance to this disease in the cultivated peanut. Genome-wide SNPs were identified from restriction-site-associated DNA sequencing tags using next-generation DNA sequencing technology. SNPs linked to disease resistance were determined in two bulks of 30 resistant and 30 susceptible plants along with two parental plants using bulk segregant analysis. Polymorphic SSR and SNP markers were utilized for construction of a linkage map and for performing the QTL analysis, and a moderately dense linkage map was constructed in the F2 population. Two QTL (qBW-1 and qBW-2) detected for resistance to BW disease were located in the linkage groups LG1 and LG10 and account for 21 and 12 % of the bacterial wilt phenotypic variance. To confirm these QTL, the F8 RIL population with 223 plants was utilized for genotyping and phenotyping plants by year and location as compared to the F2 population. The QTL qBW-1 was consistent in the location of LG1 in the F8 population though the QTL qBW-2 could not be clarified due to fewer markers used and mapped in LG10. The QTL qBW-1, including four linked SNP markers and one SSR marker within 14.4-cM interval in the F8, was closely related to a disease resistance gene homolog and was considered as a candidate gene for resistance to BW. QTL identified in this study would be useful to conduct marker-assisted selection and may permit cloning of resistance genes. Our study shows that bulk segregant analysis of genome-wide SNPs is a useful approach to expedite the

  14. QTL Mapping of Low-Temperature Germination Ability in the Maize IBM Syn4 RIL Population.

    PubMed

    Hu, Shuaidong; Lübberstedt, Thomas; Zhao, Guangwu; Lee, Michael

    2016-01-01

    Low temperature is the primary factor to affect maize sowing in early spring. It is, therefore, vital for maize breeding programs to improve tolerance to low temperatures at seed germination stage. However, little is known about maize QTL involved in low-temperature germination ability. 243 lines of the intermated B73×Mo17 (IBM) Syn4 recombinant inbred line (RIL) population was used for QTL analysis of low-temperature germination ability. There were significant differences in germination-related traits under both conditions of low temperature (12°C/16 h, 18°C/8 h) and optimum temperature (28°C/24 h) between the parental lines. Only three QTL were identified for controlling optimum-temperature germination rate. Six QTL controlling low-temperature germination rate were detected on chromosome 4, 5, 6, 7 and 9, and contribution rate of single QTL explained between 3.39%~11.29%. In addition, six QTL controlling low-temperature primary root length were detected in chromosome 4, 5, 6, and 9, and the contribution rate of single QTL explained between 3.96%~8.41%. Four pairs of QTL were located at the same chromosome position and together controlled germination rate and primary root length under low temperature condition. The nearest markers apart from the corresponding QTL (only 0.01 cM) were umc1303 (265.1 cM) on chromosome 4, umc1 (246.4 cM) on chromosome 5, umc62 (459.1 cM) on chromosome 6, bnl14.28a (477.4 cM) on chromosome 9, respectively. A total of 3155 candidate genes were extracted from nine separate intervals based on the Maize Genetics and Genomics Database (http://www.maizegdb.org). Five candidate genes were selected for analysis as candidates putatively affecting seed germination and seedling growth at low temperature. The results provided a basis for further fine mapping, molecular marker assisted breeding and functional study of cold-tolerance at the stage of seed germination in maize.

  15. Genome-Wide QTL Mapping for Wheat Processing Quality Parameters in a Gaocheng 8901/Zhoumai 16 Recombinant Inbred Line Population

    PubMed Central

    Jin, Hui; Wen, Weie; Liu, Jindong; Zhai, Shengnan; Zhang, Yan; Yan, Jun; Liu, Zhiyong; Xia, Xianchun; He, Zhonghu

    2016-01-01

    Dough rheological and starch pasting properties play an important role in determining processing quality in bread wheat (Triticum aestivum L.). In the present study, a recombinant inbred line (RIL) population derived from a Gaocheng 8901/Zhoumai 16 cross grown in three environments was used to identify quantitative trait loci (QTLs) for dough rheological and starch pasting properties evaluated by Mixograph, Rapid Visco-Analyzer (RVA), and Mixolab parameters using the wheat 90 and 660 K single nucleotide polymorphism (SNP) chip assays. A high-density linkage map constructed with 46,961 polymorphic SNP markers from the wheat 90 and 660 K SNP assays spanned a total length of 4121 cM, with an average chromosome length of 196.2 cM and marker density of 0.09 cM/marker; 6596 new SNP markers were anchored to the bread wheat linkage map, with 1046 and 5550 markers from the 90 and 660 K SNP assays, respectively. Composite interval mapping identified 119 additive QTLs on 20 chromosomes except 4D; among them, 15 accounted for more than 10% of the phenotypic variation across two or three environments. Twelve QTLs for Mixograph parameters, 17 for RVA parameters and 55 for Mixolab parameters were new. Eleven QTL clusters were identified. The closely linked SNP markers can be used in marker-assisted wheat breeding in combination with the Kompetitive Allele Specific PCR (KASP) technique for improvement of processing quality in bread wheat. PMID:27486464

  16. Mapping of QTL for Tolerance to Cereal Yellow Dwarf Virus in Two-rowed Spring Barley

    PubMed Central

    Gallagher, L.; Falk, B. W.; Brown-Guedira, G.; Pellerin, E.; Dubcovsky, J.

    2016-01-01

    Cereal yellow dwarf virus (CYDV-RPV) causes a serious viral disease affecting small grain crops around the world. In the United States, it frequently is present in California where it causes significant yield losses, and when infections start early in development, plant death. CYDV is transmitted by aphids, and it has been a major impediment to developing malting barley in California. To identify chromosome locations associated with tolerance/resistance to CYDV, a segregating population of 184 recombinant inbred lines (RIL) from a cross of the California adapted malting barley line Butta 12 with the CYDV tolerant Madre Selva was used to construct a genetic map including 180 polymorphic markers mapping to 163 unique loci. Tolerance to CYDV was evaluated in replicated experiments where plants were challenged by aphid mediated inoculation with the isolate CYDV-RPV in a controlled environment. Quantitative trait loci (QTL) analysis revealed the presence of two major QTL for CYDV tolerance from Madre Selva on chromosomes 2H (Qcyd.MaBu-1) and 7H (Qcyd.MaBu-2), and 4 minor QTL from Butta 12 on chromosomes 3H, 4H, and 2H. This paper discusses the contribution of each QTL and their potential value to improve barley tolerance to CYDV. PMID:27212713

  17. Identification of exercise capacity QTL using association mapping in inbred mice.

    PubMed

    Courtney, Sean M; Massett, Michael P

    2012-10-02

    There are large interindividual differences in exercise capacity. It is well established that there is a genetic basis for these differences. However, the genetic factors underlying this variation are undefined. Therefore, the purpose of this study was to identify novel putative quantitative trait loci (QTL) for exercise capacity by measuring exercise capacity in inbred mice and performing genome-wide association mapping. Exercise capacity, defined as run time and work, was assessed in male mice (n = 6) from 34 strains of classical and wild-derived inbred mice performing a graded treadmill test. Genome-wide association mapping was performed with an efficient mixed-model association (EMMA) algorithm to identify QTL. Exercise capacity was significantly different across strains. Run time varied by 2.7-fold between the highest running strain (C58/J) and the lowest running strain (A/J). These same strains showed a 16.5-fold difference in work. Significant associations were identified for exercise time on chromosomes 1, 2, 7, 11, and 13. The QTL interval on chromosome 2 (~168 Mb) contains one gene, Nfatc2, and overlaps with a suggestive QTL for training responsiveness in humans. These results provide phenotype data on the widest range of inbred strains tested thus far and indicate that genetic background significantly influences exercise capacity. Furthermore, the novel QTLs identified in the current study provide new targets for investigating the underlying mechanisms for variation in exercise capacity.

  18. Fine mapping of a calving QTL on Bos taurus autosome 18 in Holstein cattle.

    PubMed

    Mao, X; Kadri, N K; Thomasen, J R; De Koning, D J; Sahana, G; Guldbrandtsen, B

    2016-06-01

    Decreased calving performance not only directly impacts the economic efficiency of dairy cattle farming but also influences public concern for animal welfare. Previous studies have revealed a QTL on Bos taurus autosome (BTA) 18 that has a large effect on calving traits in Holstein cattle. In this study, fine mapping of this QTL was performed using imputed high-density SNP chip (HD) genotypes followed by imputed next-generation sequencing (NGS) variants. BTA18 was scanned for seven direct calving traits in 6113 bulls with imputed HD genotypes. SNP rs136283363 (BTA18: 57 548 213) was consistently the most significantly associated SNP across all seven traits [e.g. p-value = 2.04 × 10(-59) for birth index (BI)]. To finely map the QTL region and to explore pleiotropic effects, we studied NGS variants within the targeted region (BTA18: 57 321 450-57 625 355) for associations with direct calving traits and with three conformation traits. Significant variants were prioritized, and their biological relevance to the traits was interpreted. Considering their functional relationships with direct calving traits, SIGLEC12, CD33 and CEACAM18 were proposed as candidate genes. In addition, pleiotropic effects of this QTL region on direct calving traits and conformation traits were observed. However, the extent of linkage disequilibrium combined with the lack of complete annotation and potential errors in the Bos taurus genome assembly hampered our efforts to pinpoint the causal mutation.

  19. Approaches to interval mapping of QTL in a multigeneration pedigree: the example of porcine chromosome 4.

    PubMed

    Knott, S A; Nyström, P E; Andersson-Eklund, L; Stern, S; Marklund, L; Andersson, L; Haley, C S

    2002-02-01

    Quantitative trait loci (QTLs) have been mapped in many studies of F2 populations derived from crosses between diverse lines. One approach to confirming these effects and improving the mapping resolution is genetic chromosome dissection through a backcrossing programme. Analysis by interval mapping of the data generated is likely to provide additional power and resolution compared with treating data marker by marker. However, interval mapping approaches for such a programme are not well developed, especially where the founder lines were outbred. We explore alternative approaches to analysis using, as an example, data from chromosome 4 in an intercross between wild boar and Large White pigs where QTLs have been previously identified. A least squares interval mapping procedure was used to study growth rate and carcass traits in a subsequent second backcross generation (BC2). This procedure requires the probability of inheriting a wild boar allele for each BC2 animal for locations throughout the chromosome. Two methods for obtaining these probabilities were compared: stochastic or deterministic. The two methods gave similar probabilities for inheriting wild boar alleles and, hence, gave very similar results from the QTL analysis. The deterministic approach has the advantage of being much faster to run but requires specialized software. A QTL for fatness and for growth were confirmed and, in addition, a QTL for piglet growth from weaning at 5 weeks up to 7 weeks of age and another for carcass length were detected.

  20. Genetic determinism of bone and mineral metabolism in meat-type chickens: A QTL mapping study.

    PubMed

    Mignon-Grasteau, Sandrine; Chantry-Darmon, Céline; Boscher, Marie-Yvonne; Sellier, Nadine; Chabault-Dhuit, Marie; Le Bihan-Duval, Elisabeth; Narcy, Agnès

    2016-12-01

    Skeletal integrity in meat-type chickens is affected by many factors including rapid growth rate, nutrition and genetics. To investigate the genetic basis of bone and mineral metabolism, a QTL detection study was conducted in an intercross between two lines of meat-type chickens divergently selected for their high (D +) or low (D -) digestive efficiency. Tibia size (length, diameter, volume) and ash content were determined at 3 weeks of age as well as phosphorus (P) retention and plasma concentration. Heritability of these traits and their genetic correlations with digestive efficiency were estimated. A QTL mapping study was performed using 3379 SNP markers. Tibia size, weight, ash content and breaking strength were highly heritable (0.42 to 0.61). Relative tibia diameter and volume as well as P retention were strongly and positively genetically correlated with digestive efficiency (0.57 to 0.80). A total of 35 QTL were identified (9 for tibia weight, 13 for tibia size, 5 for bone strength, 5 for bone mineralization, 2 for plasma P concentration and 1 for P retention). Six QTL were genome-wide significant, and 3 QTL for tibia relative volume, weight and ash weight on chromosome 6 were fixed, the positive allele coming from the D-line. For two QTL for ash content on chromosome 18 and relative tibia length on chromosome 26, the confidence intervals were small enough to identify potential candidate genes. These findings support the evidence of multiple genetic loci controlling bone and mineral metabolism. The identification of candidate genes may provide new perspectives in the understanding of bone regulation, even beyond avian species.

  1. Mapping QTL for dollar spot resistance in creeping bentgrass (Agrostis stolonifera L.).

    PubMed

    Chakraborty, N; Curley, J; Warnke, S; Casler, M D; Jung, G

    2006-11-01

    Dollar spot caused by Sclerotinia homoeocarpa F. T. Bennett is the most economically important turf disease on golf courses in North America. Dollar spot resistance in a creeping bentgrass cultivar would greatly reduce the frequency, costs, and environmental impacts of fungicide application. Little work has been done to understand the genetics of resistance to dollar spot in creeping bentgrass. Therefore, QTL analysis was used to determine the location, number and effects of genomic regions associated with dollar spot resistance in the field. To meet this objective, field inoculations using a single isolate were performed over 2 years and multiple locations using progeny of a full sib mapping population '549 x 372'. Dollar spot resistance seems to be inherited quantitatively and broad sense heritability for resistance was estimated to be 0.88. We have detected one QTL with large effect on linkage group 7.1 with LOD values ranging from 3.4 to 8.6 and explaining 14-36% of the phenotypic variance. Several smaller effect QTL specific to rating dates, locations and years were also detected. The association of the tightly linked markers with the LG 7.1 QTL based on 106 progeny was further examined by single marker analysis on all 697 progeny. The high significance of the QTL on LG 7.1 at a sample size of 697 (P < 0.0001), along with its consistency across locations, years and ratings dates, indicated that it was stable over environments. Markers tightly linked to the QTL can be utilized for marker-assisted selection in future bentgrass breeding programs.

  2. Quantitative genomics of voluntary exercise in mice: transcriptional analysis and mapping of expression QTL in muscle.

    PubMed

    Kelly, Scott A; Nehrenberg, Derrick L; Hua, Kunjie; Garland, Theodore; Pomp, Daniel

    2014-08-15

    Motivation and ability both underlie voluntary exercise, each with a potentially unique genetic architecture. Muscle structure and function are one of many morphological and physiological systems acting to simultaneously determine exercise ability. We generated a large (n = 815) advanced intercross line of mice (G4) derived from a line selectively bred for increased wheel running (high runner) and the C57BL/6J inbred strain. We previously mapped quantitative trait loci (QTL) contributing to voluntary exercise, body composition, and changes in body composition as a result of exercise. Using brain tissue in a subset of the G4 (n = 244), we have also previously reported expression QTL (eQTL) colocalizing with the QTL for the higher-level phenotypes. Here, we examined the transcriptional landscape of hind limb muscle tissue via global mRNA expression profiles. Correlations revealed an ∼1,168% increase in significant relationships between muscle transcript expression levels and the same exercise and body composition phenotypes examined previously in the brain. The exercise trait most often significantly correlated with gene expression in the brain was running duration while in the muscle it was maximum running speed. This difference may indicate that time spent engaging in exercise behavior may be more influenced by central (neurobiological) mechanisms, while intensity of exercise may be largely controlled by peripheral mechanisms. Additionally, we used subsets of cis-acting eQTL, colocalizing with QTL, to identify candidate genes based on both positional and functional evidence. We discuss three plausible candidate genes (Insig2, Prcp, Sparc) and their potential regulatory role.

  3. QTL mapping of sake brewing characteristics of yeast.

    PubMed

    Katou, Taku; Namise, Masahiro; Kitagaki, Hiroshi; Akao, Takeshi; Shimoi, Hitoshi

    2009-04-01

    A haploid sake yeast strain derived from the commercial diploid sake yeast strain Kyokai no. 7 showed better characteristics for sake brewing compared to the haploid laboratory yeast strain X2180-1B, including higher production of ethanol and aromatic components. A hybrid of these two strains showed intermediate characteristics in most cases. After sporulation of the hybrid strain, we obtained 100 haploid segregants of the hybrid. Small-scale sake brewing tests of these segregants showed a smooth continuous distribution of the sake brewing characteristics, suggesting that these traits are determined by multiple quantitative trait loci (QTLs). To examine these sake brewing characteristics at the genomic level, we performed QTL analysis of sake brewing characteristics using 142 DNA markers that showed heterogeneity between the two parental strains. As a result, we identified 25 significant QTLs involved in the specification of sake brewing characteristics such as ethanol fermentation and the production of aromatic components.

  4. A multiparental cross population for mapping QTL for agronomic traits in durum wheat (Triticum turgidum ssp. durum).

    PubMed

    Milner, Sara Giulia; Maccaferri, Marco; Huang, Bevan Emma; Mantovani, Paola; Massi, Andrea; Frascaroli, Elisabetta; Tuberosa, Roberto; Salvi, Silvio

    2016-02-01

    Multiparental cross designs for mapping quantitative trait loci (QTL) provide an efficient alternative to biparental populations because of their broader genetic basis and potentially higher mapping resolution. We describe the development and deployment of a recombinant inbred line (RIL) population in durum wheat (Triticum turgidum ssp. durum) obtained by crossing four elite cultivars. A linkage map spanning 2664 cM and including 7594 single nucleotide polymorphisms (SNPs) was produced by genotyping 338 RILs. QTL analysis was carried out by both interval mapping on founder haplotype probabilities and SNP bi-allelic tests for heading date and maturity date, plant height and grain yield from four field experiments. Sixteen QTL were identified across environments and detection methods, including two yield QTL on chromosomes 2BL and 7AS, with the former mapped independently from the photoperiod response gene Ppd-B1, while the latter overlapped with the vernalization locus VRN-A3. Additionally, 21 QTL with environment-specific effects were found. Our results indicated a prevalence of environment-specific QTL with relatively small effect on the control of grain yield. For all traits, functionally different QTL alleles in terms of direction and size of genetic effect were distributed among parents. We showed that QTL results based on founder haplotypes closely matched functional alleles at known heading date loci. Despite the four founders, only 2.1 different functional haplotypes were estimated per QTL, on average. This durum wheat population provides a mapping resource for detailed genetic dissection of agronomic traits in an elite background typical of breeding programmes.

  5. Targeted linkage map densification to improve cell wall related QTL detection and interpretation in maize.

    PubMed

    Courtial, Audrey; Thomas, Justine; Reymond, Matthieu; Méchin, Valérie; Grima-Pettenati, Jacqueline; Barrière, Yves

    2013-05-01

    Several QTLs for cell wall degradability and lignin content were previously detected in the F288 × F271 maize RIL progeny, including a set of major QTLs located in bin 6.06. Unexpectedly, allelic sequencing of genes located around the bin 6.06 QTL positions revealed a monomorphous region, suggesting that these QTLs were likely "ghost" QTLs. Refining the positions of all QTLs detected in this population was thus considered, based on a linkage map densification in most important QTL regions, and in several large still unmarked regions. Re-analysis of data with an improved genetic map (173 markers instead of 108) showed that ghost QTLs located in bin 6.06 were then fractionated over two QTL positions located upstream and downstream of the monomorphic region. The area located upstream of bin 6.06 position carried the major QTLs, which explained from 37 to 59 % of the phenotypic variation for per se values and extended on only 6 cM, corresponding to a physical distance of 2.2 Mbp. Among the 92 genes present in the corresponding area of the B73 maize reference genome, nine could putatively be considered as involved in the formation of the secondary cell wall [bHLH, FKBP, laccase, fasciclin, zinc finger C2H2-type and C3HC4-type (two genes), NF-YB, and WRKY]. In addition, based on the currently improved genetic map, eight QTLs were detected in bin 4.09, while only one QTL was highlighted in the initial investigation. Moreover, significant epistatic interaction effects were shown for all traits between these QTLs located in bin 4.09 and the major QTLs located in bin 6.05. Three genes related to secondary cell wall assembly (ZmMYB42, COV1-like, PAL-like) underlay QTL support intervals in this newly identified bin 4.09 region. The current investigations, even if they were based only on one RIL progeny, illustrated the interest of a targeted marker mapping on a genetic map to improve QTL position.

  6. Glucose tolerance female-specific QTL mapped in collaborative cross mice.

    PubMed

    Abu-Toamih Atamni, Hanifa J; Ziner, Yaron; Mott, Richard; Wolf, Lior; Iraqi, Fuad A

    2017-02-01

    Type-2 diabetes (T2D) is a complex metabolic disease characterized by impaired glucose tolerance. Despite environmental high risk factors, host genetic background is a strong component of T2D development. Herein, novel highly genetically diverse strains of collaborative cross (CC) lines from mice were assessed to map quantitative trait loci (QTL) associated with variations of glucose-tolerance response. In total, 501 mice of 58 CC lines were maintained on high-fat (42 % fat) diet for 12 weeks. Thereafter, an intraperitoneal glucose tolerance test (IPGTT) was performed for 180 min. Subsequently, the values of Area under curve for the glucose at zero and 180 min (AUC0-180), were measured, and used for QTL mapping. Heritability and coefficient of variations in glucose tolerance (CVg) were calculated. One-way analysis of variation was significant (P < 0.001) for AUC0-180 between the CC lines as well between both sexes. Despite Significant variations for both sexes, QTL analysis was significant, only for females, reporting a significant female-sex-dependent QTL (~2.5 Mbp) associated with IPGTT AUC0-180 trait, located on Chromosome 8 (32-34.5 Mbp, containing 51 genes). Gene browse revealed QTL for body weight/size, genes involved in immune system, and two main protein-coding genes involved in the Glucose homeostasis, Mboat4 and Leprotl1. Heritability and coefficient of genetic variance (CVg) were 0.49 and 0.31 for females, while for males, these values 0.34 and 0.22, respectively. Our findings demonstrate the roles of genetic factors controlling glucose tolerance, which significantly differ between sexes requiring independent studies for females and males toward T2D prevention and therapy.

  7. Mapping of angular leaf spot resistance QTL in common bean (Phaseolus vulgaris L.) under different environments

    PubMed Central

    2012-01-01

    Background Common bean (Phaseolus vulgaris L.) is the most important grain legume for human diet worldwide and the angular leaf spot (ALS) is one of the most devastating diseases of this crop, leading to yield losses as high as 80%. In an attempt to breed resistant cultivars, it is important to first understand the inheritance mode of resistance and to develop tools that could be used in assisted breeding. Therefore, the aim of this study was to identify quantitative trait loci (QTL) controlling resistance to ALS under natural infection conditions in the field and under inoculated conditions in the greenhouse. Results QTL analyses were made using phenotypic data from 346 recombinant inbreed lines from the IAC-UNA x CAL 143 cross, gathered in three experiments, two of which were conducted in the field in different seasons and one in the greenhouse. Joint composite interval mapping analysis of QTL x environment interaction was performed. In all, seven QTLs were mapped on five linkage groups. Most of them, with the exception of two, were significant in all experiments. Among these, ALS10.1DG,UC presented major effects (R2 between 16% - 22%). This QTL was found linked to the GATS11b marker of linkage group B10, which was consistently amplified across a set of common bean lines and was associated with the resistance. Four new QTLs were identified. Between them the ALS5.2 showed an important effect (9.4%) under inoculated conditions in the greenhouse. ALS4.2 was another major QTL, under natural infection in the field, explaining 10.8% of the variability for resistance reaction. The other QTLs showed minor effects on resistance. Conclusions The results indicated a quantitative inheritance pattern of ALS resistance in the common bean line CAL 143. QTL x environment interactions were observed. Moreover, the major QTL identified on linkage group B10 could be important for bean breeding, as it was stable in all the environments. Thereby, the GATS11b marker is a potential tool

  8. High-Throughput Phenotyping and QTL Mapping Reveals the Genetic Architecture of Maize Plant Growth.

    PubMed

    Zhang, Xuehai; Huang, Chenglong; Wu, Di; Qiao, Feng; Li, Wenqiang; Duan, Lingfeng; Wang, Ke; Xiao, Yingjie; Chen, Guoxing; Liu, Qian; Xiong, Lizhong; Yang, Wanneng; Yan, Jianbing

    2017-03-01

    With increasing demand for novel traits in crop breeding, the plant research community faces the challenge of quantitatively analyzing the structure and function of large numbers of plants. A clear goal of high-throughput phenotyping is to bridge the gap between genomics and phenomics. In this study, we quantified 106 traits from a maize (Zea mays) recombinant inbred line population (n = 167) across 16 developmental stages using the automatic phenotyping platform. Quantitative trait locus (QTL) mapping with a high-density genetic linkage map, including 2,496 recombinant bins, was used to uncover the genetic basis of these complex agronomic traits, and 988 QTLs have been identified for all investigated traits, including three QTL hotspots. Biomass accumulation and final yield were predicted using a combination of dissected traits in the early growth stage. These results reveal the dynamic genetic architecture of maize plant growth and enhance ideotype-based maize breeding and prediction.

  9. A QTL model to map the common genetic basis for correlative phenotypic plasticity.

    PubMed

    Zhou, Tao; Lyu, Yafei; Xu, Fang; Bo, Wenhao; Zhai, Yi; Zhang, Jian; Pang, Xiaoming; Zheng, Bingsong; Wu, Rongling

    2015-01-01

    As an important mechanism for adaptation to heterogeneous environment, plastic responses of correlated traits to environmental alteration may also be genetically correlated, but less is known about the underlying genetic basis. We describe a statistical model for mapping specific quantitative trait loci (QTLs) that control the interrelationship of phenotypic plasticity between different traits. The model is constructed by a bivariate mixture setting, implemented with the EM algorithm to estimate the genetic effects of QTLs on correlative plastic response. We provide a series of procedure that test (1) how a QTL controls the phenotypic plasticity of a single trait; and (2) how the QTL determines the correlation of environment-induced changes of different traits. The model is readily extended to test how epistatic interactions among QTLs play a part in the correlations of different plastic traits. The model was validated through computer simulation and used to analyse multi-environment data of genetic mapping in winter wheat, showing its utilization in practice.

  10. Genetic mapping of a QTL controlling source-sink size and heading date in rice.

    PubMed

    Zhan, Xiaodeng; Sun, Bin; Lin, Zechuan; Gao, Zhiqiang; Yu, Ping; Liu, Qunen; Shen, Xihong; Zhang, Yingxin; Chen, Daibo; Cheng, Shihua; Cao, Liyong

    2015-10-25

    Source size, sink size and heading date (HD) are three important classes of traits that determine the productivity of rice. In this study, a set of recombinant inbred lines (RILs) derived from the cross between an elite indica line Big Grain1 (BG1) and a japonica line Xiaolijing (XLJ) were used to map quantitative trait loci (QTLs) for source-sink size and heading date. Totally, thirty-one QTLs for source size, twenty-two for sink size, four for heading date and seven QTL clusters which included QTLs for multiple traits were identified in three environmental trials. Thirty QTLs could be consistently detected in at least two trials and generally located in the clusters. Using a set of BC4F2 lines, the QTL cluster in C5-1-C5-2 on chromosome 5 was validated to be a major QTL pleiotropically affecting heading date, source size (flag leaf area) and panicle type (neck length of panicle, primary branching number and the ratio of secondary branching number to primary branching number), and was narrowed down to a 309.52Kb region. QTL clusters described above have a large effect on source-sink size and/or heading date, therefore they should be good resources to improve the adaptability and high yield potential of cultivars genetically.

  11. Graph-regularized dual Lasso for robust eQTL mapping

    PubMed Central

    Cheng, Wei; Zhang, Xiang; Guo, Zhishan; Shi, Yu; Wang, Wei

    2014-01-01

    Motivation: As a promising tool for dissecting the genetic basis of complex traits, expression quantitative trait loci (eQTL) mapping has attracted increasing research interest. An important issue in eQTL mapping is how to effectively integrate networks representing interactions among genetic markers and genes. Recently, several Lasso-based methods have been proposed to leverage such network information. Despite their success, existing methods have three common limitations: (i) a preprocessing step is usually needed to cluster the networks; (ii) the incompleteness of the networks and the noise in them are not considered; (iii) other available information, such as location of genetic markers and pathway information are not integrated. Results: To address the limitations of the existing methods, we propose Graph-regularized Dual Lasso (GDL), a robust approach for eQTL mapping. GDL integrates the correlation structures among genetic markers and traits simultaneously. It also takes into account the incompleteness of the networks and is robust to the noise. GDL utilizes graph-based regularizers to model the prior networks and does not require an explicit clustering step. Moreover, it enables further refinement of the partial and noisy networks. We further generalize GDL to incorporate the location of genetic makers and gene-pathway information. We perform extensive experimental evaluations using both simulated and real datasets. Experimental results demonstrate that the proposed methods can effectively integrate various available priori knowledge and significantly outperform the state-of-the-art eQTL mapping methods. Availability: Software for both C++ version and Matlab version is available at http://www.cs.unc.edu/∼weicheng/. Contact: weiwang@cs.ucla.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24931977

  12. QTL and candidate gene mapping for polyphenolic composition in apple fruit

    PubMed Central

    2012-01-01

    Background The polyphenolic products of the phenylpropanoid pathway, including proanthocyanidins, anthocyanins and flavonols, possess antioxidant properties that may provide health benefits. To investigate the genetic architecture of control of their biosynthesis in apple fruit, various polyphenolic compounds were quantified in progeny from a 'Royal Gala' × 'Braeburn' apple population segregating for antioxidant content, using ultra high performance liquid chromatography of extracts derived from fruit cortex and skin. Results Construction of genetic maps for 'Royal Gala' and 'Braeburn' enabled detection of 79 quantitative trait loci (QTL) for content of 17 fruit polyphenolic compounds. Seven QTL clusters were stable across two years of harvest and included QTLs for content of flavanols, flavonols, anthocyanins and hydroxycinnamic acids. Alignment of the parental genetic maps with the apple whole genome sequence in silico enabled screening for co-segregation with the QTLs of a range of candidate genes coding for enzymes in the polyphenolic biosynthetic pathway. This co-location was confirmed by genetic mapping of markers derived from the gene sequences. Leucoanthocyanidin reductase (LAR1) co-located with a QTL cluster for the fruit flavanols catechin, epicatechin, procyanidin dimer and five unknown procyanidin oligomers identified near the top of linkage group (LG) 16, while hydroxy cinnamate/quinate transferase (HCT/HQT) co-located with a QTL for chlorogenic acid concentration mapping near the bottom of LG 17. Conclusion We conclude that LAR1 and HCT/HQT are likely to influence the concentration of these compounds in apple fruit and provide useful allele-specific markers for marker assisted selection of trees bearing fruit with healthy attributes. PMID:22269060

  13. Genetic mapping of a 7R Al tolerance QTL in triticale (x Triticosecale Wittmack).

    PubMed

    Niedziela, A; Bednarek, P T; Labudda, M; Mańkowski, D R; Anioł, A

    2014-02-01

    Triticale (x Triticosecale Wittmack) is a relatively new cereal crop. In Poland, triticale is grown on 12 % of arable land ( http://www.stat.gov.pl ). There is an increasing interest in its cultivation due to lowered production costs and increased adaptation to adverse environmental conditions. However, it has an insufficient tolerance to the presence of aluminum ions (Al(3+)) in the soil. The number of genes controlling aluminum tolerance in triticale and their chromosomal location is not known. Two F2 mapping biparental populations (MP1 and MP15) segregating for aluminum (Al) tolerance were tested with AFLP, SSR, DArT, and specific PCR markers. Genetic mapping enabled the construction of linkage groups representing chromosomes 7R, 5R and 2B. Obtained linkage groups were common for both mapping populations and mostly included the same markers. Composite interval mapping (CIM) allowed identification of a single QTL that mapped to the 7R chromosome and explained 25 % (MP1) and 36 % (MP15) of phenotypic variation. The B1, B26 and Xscm150 markers were 0.04 cM and 0.02 cM from the maximum of the LOD function in the MP1 and MP15, respectively and were highly associated with aluminum tolerance as indicated by Kruskal-Wallis nonparametric test. Moreover, the molecular markers B1, B26, Xrems1162 and Xscm92, previously associated with the Alt4 locus that encoded an aluminum-activated malate transporter (ScALMT1) that was involved in Al tolerance in rye (Secale cereale) also mapped within QTL. Biochemical analysis of plants represented MP1 and MP15 mapping populations confirmed that the QTL located on 7R chromosome in both mapping populations is responsible for Al tolerance.

  14. Coding Gene SNP Mapping Reveals QTL Linked to Growth and Stress Response in Brook Charr (Salvelinus fontinalis)

    PubMed Central

    Sauvage, Christopher; Vagner, Marie; Derôme, Nicolas; Audet, Céline; Bernatchez, Louis

    2012-01-01

    Growth performance and reduced stress response are traits of major interest in fish production. Growth and stress-related quantitative trait loci (QTL) have been already identified in several salmonid species, but little effort has been devoted to charrs (genus Salvelinus). Moreover, most QTL studies to date focused on one or very few traits, and little investigation has been devoted to QTL identification for gene expression. Here, our objective was to identify QTL for 27 phenotypes related to growth and stress responses in brook charr (Salvelinus fontinalis), which is one of the most economically important freshwater aquaculture species in Canada. Phenotypes included 12 growth parameters, six blood and plasma variables, three hepatic variables, and one plasma hormone level as well as the relative expression measurements of five genes of interest linked to growth regulation. QTL analysis relied on a linkage map recently built from S. fontinalis consisting of both single-nucleotide polymorphism (SNP, n = 266) and microsatellite (n =81) markers in an F2 interstrain hybrid population (n = 171). We identified 63 growth-related QTL and four stress-related QTL across 18 of the 40 linkage groups of the brook charr linkage map. Percent variance explained, confidence interval, and allelic QTL effects also were investigated to provide insight into the genetic architecture of growth- and stress-related QTL. QTL related to growth performance and stress response that were identified could be classified into two groups: (1) a group composed of the numerous, small-effect QTL associated with some traits related to growth (i.e., weight) that may be under the control of a large number of genes or pleiotropic genes, and (2) a group of less numerous QTL associated with growth (i.e., gene expression) and with stress-related QTL that display a larger effect, suggesting that these QTL are under the control of a limited number of genes of major effect. This study represents a first step

  15. Arabidopsis Seed Content QTL Mapping Using High-Throughput Phenotyping: The Assets of Near Infrared Spectroscopy

    PubMed Central

    Jasinski, Sophie; Lécureuil, Alain; Durandet, Monique; Bernard-Moulin, Patrick; Guerche, Philippe

    2016-01-01

    Seed storage compounds are of crucial importance for human diet, feed and industrial uses. In oleo-proteaginous species like rapeseed, seed oil and protein are the qualitative determinants that conferred economic value to the harvested seed. To date, although the biosynthesis pathways of oil and storage protein are rather well-known, the factors that determine how these types of reserves are partitioned in seeds have to be identified. With the aim of implementing a quantitative genetics approach, requiring phenotyping of 100s of plants, our first objective was to establish near-infrared reflectance spectroscopic (NIRS) predictive equations in order to estimate oil, protein, carbon, and nitrogen content in Arabidopsis seed with high-throughput level. Our results demonstrated that NIRS is a powerful non-destructive, high-throughput method to assess the content of these four major components studied in Arabidopsis seed. With this tool in hand, we analyzed Arabidopsis natural variation for these four components and illustrated that they all displayed a wide range of variation. Finally, NIRS was used in order to map QTL for these four traits using seeds from the Arabidopsis thaliana Ct-1 × Col-0 recombinant inbred line population. Some QTL co-localized with QTL previously identified, but others mapped to chromosomal regions never identified so far for such traits. This paper illustrates the usefulness of NIRS predictive equations to perform accurate high-throughput phenotyping of Arabidopsis seed content, opening new perspectives in gene identification following QTL mapping and genome wide association studies. PMID:27891138

  16. Comprehensive QTL mapping survey dissects the complex fruit texture physiology in apple (Malus x domestica Borkh.).

    PubMed

    Longhi, Sara; Moretto, Marco; Viola, Roberto; Velasco, Riccardo; Costa, Fabrizio

    2012-02-01

    Fruit ripening is a complex physiological process in plants whereby cell wall programmed changes occur mainly to promote seed dispersal. Cell wall modification also directly regulates the textural properties, a fundamental aspect of fruit quality. In this study, two full-sib populations of apple, with 'Fuji' as the common maternal parent, crossed with 'Delearly' and 'Pink Lady', were used to understand the control of fruit texture by QTL mapping and in silico gene mining. Texture was dissected with a novel high resolution phenomics strategy, simultaneously profiling both mechanical and acoustic fruit texture components. In 'Fuji × Delearly' nine linkage groups were associated with QTLs accounting from 15.6% to 49% of the total variance, and a highly significant QTL cluster for both textural components was mapped on chromosome 10 and co-located with Md-PG1, a polygalacturonase gene that, in apple, is known to be involved in cell wall metabolism processes. In addition, other candidate genes related to Md-NOR and Md-RIN transcription factors, Md-Pel (pectate lyase), and Md-ACS1 were mapped within statistical intervals. In 'Fuji × Pink Lady', a smaller set of linkage groups associated with the QTLs identified for fruit texture (15.9-34.6% variance) was observed. The analysis of the phenotypic variance over a two-dimensional PCA plot highlighted a transgressive segregation for this progeny, revealing two QTL sets distinctively related to both mechanical and acoustic texture components. The mining of the apple genome allowed the discovery of the gene inventory underlying each QTL, and functional profile assessment unravelled specific gene expression patterns of these candidate genes.

  17. QTL mapping in white spruce: gene maps and genomic regions underlying adaptive traits across pedigrees, years and environments

    PubMed Central

    2011-01-01

    Background The genomic architecture of bud phenology and height growth remains poorly known in most forest trees. In non model species, QTL studies have shown limited application because most often QTL data could not be validated from one experiment to another. The aim of our study was to overcome this limitation by basing QTL detection on the construction of genetic maps highly-enriched in gene markers, and by assessing QTLs across pedigrees, years, and environments. Results Four saturated individual linkage maps representing two unrelated mapping populations of 260 and 500 clonally replicated progeny were assembled from 471 to 570 markers, including from 283 to 451 gene SNPs obtained using a multiplexed genotyping assay. Thence, a composite linkage map was assembled with 836 gene markers. For individual linkage maps, a total of 33 distinct quantitative trait loci (QTLs) were observed for bud flush, 52 for bud set, and 52 for height growth. For the composite map, the corresponding numbers of QTL clusters were 11, 13, and 10. About 20% of QTLs were replicated between the two mapping populations and nearly 50% revealed spatial and/or temporal stability. Three to four occurrences of overlapping QTLs between characters were noted, indicating regions with potential pleiotropic effects. Moreover, some of the genes involved in the QTLs were also underlined by recent genome scans or expression profile studies. Overall, the proportion of phenotypic variance explained by each QTL ranged from 3.0 to 16.4% for bud flush, from 2.7 to 22.2% for bud set, and from 2.5 to 10.5% for height growth. Up to 70% of the total character variance could be accounted for by QTLs for bud flush or bud set, and up to 59% for height growth. Conclusions This study provides a basic understanding of the genomic architecture related to bud flush, bud set, and height growth in a conifer species, and a useful indicator to compare with Angiosperms. It will serve as a basic reference to functional and

  18. Joint QTL mapping and gene expression analysis identify positional candidate genes influencing pork quality traits

    PubMed Central

    González-Prendes, Rayner; Quintanilla, Raquel; Cánovas, Angela; Manunza, Arianna; Figueiredo Cardoso, Tainã; Jordana, Jordi; Noguera, José Luis; Pena, Ramona N.; Amills, Marcel

    2017-01-01

    Meat quality traits have an increasing importance in the pig industry because of their strong impact on consumer acceptance. Herewith, we have combined phenotypic and microarray expression data to map loci with potential effects on five meat quality traits recorded in the longissimus dorsi (LD) and gluteus medius (GM) muscles of 350 Duroc pigs, i.e. pH at 24 hours post-mortem (pH24), electric conductivity (CE) and muscle redness (a*), lightness (L*) and yellowness (b*). We have found significant genome-wide associations for CE of LD on SSC4 (~104 Mb), SSC5 (~15 Mb) and SSC13 (~137 Mb), while several additional regions were significantly associated with meat quality traits at the chromosome-wide level. There was a low positional concordance between the associations found for LD and GM traits, a feature that reflects the existence of differences in the genetic determinism of meat quality phenotypes in these two muscles. The performance of an eQTL search for SNPs mapping to the regions associated with meat quality traits demonstrated that the GM a* SSC3 and pH24 SSC17 QTL display positional concordance with cis-eQTL regulating the expression of several genes with a potential role on muscle metabolism. PMID:28054563

  19. Mapping of Novel QTL Regulating Grain Shattering Using Doubled Haploid Population in Rice (Oryza sativa L.)

    PubMed Central

    Lee, Gyu-Ho; Kang, In-Kyu

    2016-01-01

    The critical evolutionary step during domestication of major cereals was elimination of seed shattering because the easy-to-shatter trait in wild relatives results in a severe reduction in yield. In this study, we analyzed the QTLs associated with shattering employing a high-density genetic map in doubled haploid (DH) population of rice (Oryza sativa L.). A genetic linkage map was generated with 217 microsatellite markers spanning 2082.4 cM and covering 12 rice chromosomes with an average interval of 9.6 cM between markers based on 120 DHLs derived from a cross between Cheongcheong indica type cultivar and Nagdong japonica type cultivar. In the QTL analysis, five QTLs pertaining to the breaking tensile strength (BTS) were detected in 2013 and 2015. Two regions of the QTLs related to BTS on chromosome 1 and chromosome 6 were detected. Several important genes are distributed in 1 Mbp region of the QTL on chromosome 6 and they are related to the formation of abscission layer. We decide to name this QTL qSh6 and the candidate genes in the qSh6 region can be employed usefully in further research for cloning. PMID:27419124

  20. Mapping QTL influencing gastrointestinal nematode burden in Dutch Holstein-Friesian dairy cattle

    PubMed Central

    Coppieters, Wouter; Mes, Ted HM; Druet, Tom; Farnir, Frédéric; Tamma, Nico; Schrooten, Chris; Cornelissen, Albert WCA; Georges, Michel; Ploeger, Harm W

    2009-01-01

    Background Parasitic gastroenteritis caused by nematodes is only second to mastitis in terms of health costs to dairy farmers in developed countries. Sustainable control strategies complementing anthelmintics are desired, including selective breeding for enhanced resistance. Results and Conclusion To quantify and characterize the genetic contribution to variation in resistance to gastro-intestinal parasites, we measured the heritability of faecal egg and larval counts in the Dutch Holstein-Friesian dairy cattle population. The heritability of faecal egg counts ranged from 7 to 21% and was generally higher than for larval counts. We performed a whole genome scan in 12 paternal half-daughter groups for a total of 768 cows, corresponding to the ~10% most and least infected daughters within each family (selective genotyping). Two genome-wide significant QTL were identified in an across-family analysis, respectively on chromosomes 9 and 19, coinciding with previous findings in orthologous chromosomal regions in sheep. We identified six more suggestive QTL by within-family analysis. An additional 73 informative SNPs were genotyped on chromosome 19 and the ensuing high density map used in a variance component approach to simultaneously exploit linkage and linkage disequilibrium in an initial inconclusive attempt to refine the QTL map position. PMID:19254385

  1. Mapping QTL for Sex and Growth Traits in Salt-Tolerant Tilapia (Oreochromis spp. X O. mossambicus)

    PubMed Central

    Lin, Grace; Chua, Elaine; Orban, Laszlo; Yue, Gen Hua

    2016-01-01

    In aquaculture, growth and sex are economically important traits. To accelerate genetic improvement in increasing growth in salt-tolerant tilapia, we conducted QTL mapping for growth traits and sex with an F2 family, including 522 offspring and two parents. We used 144 polymorphic microsatellites evenly covering the genome of tilapia to genotype the family. QTL analyses were carried out using interval mapping for all individuals, males and females in the family, respectively. Using all individuals, three suggestive QTL for body weight, body length and body thickness respectively were detected in LG20, LG22 and LG12 and explained 2.4% to 3.1% of phenotypic variance (PV). When considering only males, five QTL for body weight were detected on five LGs, and explained 4.1 to 6.3% of PV. Using only females from the F2 family, three QTL for body weight were detected on LG1, LG6 and LG8, and explained 7.9–14.3% of PV. The QTL for body weight in males and females were located in different LGs, suggesting that in salt-tolerant tilapia, different set of genes ‘switches’ control the growth in males and females. QTL for sex were mapped on LG1 and LG22, indicating multigene sex determination in the salt-tolerant tilapia. This study provides new insights on the locations and effects of QTL for growth traits and sex, and sets the foundation for fine mapping for future marker-assisted selection for growth and sex in salt-tolerant tilapia aquaculture. PMID:27870905

  2. Mapping QTL for drought stress-induced premature senescence and maturity in cowpea [Vigna unguiculata (L.) Walp.].

    PubMed

    Muchero, Wellington; Ehlers, Jeffrey D; Close, Timothy J; Roberts, Philip A

    2009-03-01

    Cowpea is an important crop for subsistence farmers in arid regions of Africa, Asia, and South America. Efforts to develop cultivars with improved productivity under drought conditions are constrained by lack of molecular markers associated with drought tolerance. Here, we report the mapping of 12 quantitative trait loci (QTL) associated with seedling drought tolerance and maturity in a cowpea recombinant inbred (RIL) population. One hundred and twenty-seven F(8) RILs developed from a cross between IT93K503-1 and CB46 were screened with 62 EcoR1 and Mse1 primer combinations to generate 306 amplified fragment length polymorphisms for use in genetic linkage mapping. The same population was phenotyped for maintenance of stem greenness (stg) and recovery dry weight (rdw) after drought stress in six greenhouse experiments. In field experiments conducted over 3 years, visual ratings and dry weights were used to phenotype drought stress-induced premature senescence in the RIL population. Kruskall-Wallis and multiple-QTL model mapping analysis were used to identify QTL associated with drought response phenotypes. Observed QTL were highly reproducible between stg and rdw under greenhouse conditions. Field studies confirmed all ten drought-response QTL observed under greenhouse conditions. Regions harboring drought-related QTL were observed on linkage groups 1, 2, 3, 5, 6, 7, 9, and 10 accounting for between 4.7 and 24.2% of the phenotypic variance (R(2)). Further, two QTL for maturity (R(2) = 14.4-28.9% and R(2) = 11.7-25.2%) mapped on linkage groups 7 and 8 separately from drought-related QTL. These results provide a platform for identification of genetic determinants of seedling drought tolerance in cowpea.

  3. Molecular mapping of Verticillium wilt resistance QTL clustered on chromosomes D7 and D9 in upland cotton.

    PubMed

    Jiang, Feng; Zhao, Jun; Zhou, Lei; Guo, WangZhen; Zhang, TianZhen

    2009-09-01

    Verticillium wilt is a destructive disease with international consequences for cotton production. Breeding broad-spectrum resistant cultivars is considered to be one of the most effective means for reducing crop losses. A resistant cotton cultivar, 60182, was crossed with a susceptible cultivar, Junmian 1, to identify markers for Verticillium resistance genes and validate the mode of its inheritance. Genetic segregation analysis for Verticillium wilt resistance was evaluated based upon infected leaf percentage in the seedling stage using major gene-polygene mixed inheritance models and joint analysis of P(1), P(2), F(1), B(1), B(2) and F(2) populations obtained from the cultivar cross. We found that resistance of upland cotton cultivar 60182 to isolates BP2, VD8 and T9, and their isoconcentration mixture was controlled by two major genes with additive-dominance-epistatic effects, and the inheritance of the major gene was dominant. Furthermore, a genetic linkage map was constructed using F(2) segregating population and resistance phenotypic data were obtained using F(2:3) families inoculated with different isolates and detected in different developmental stages. The genetic linkage map with 139 loci was comprised of 31 linkage groups covering 1165 cM, with an average distance of 8.38 cM between two markers, or 25.89% of the cotton genome length. From 60182, we found 4 QTL on chromosome D7 and 4 QTL on D9 for BP2, 5 QTL on D7 and 9 QTL on D9 for VD8, 4 QTL on D7 and 5 QTL on D9 for T9 and 3 QTL on D7 and 7 QTL on D7 for mixed pathogens. The QTL mapping results revealed that QTL clusters with high contribution rates were screened simultaneously on chromosomes D9 and D7 by multiple interval mapping (CIM), whether from resistance phenotypic data from different developmental stages or for different isolates. The result is consistent with the genetic model of two major genes in 60182 and suggests broad-spectrum resistance to both defoliating isolates of V. dahliae and

  4. A Genetic Map Between Gossypium hirsutum and the Brazilian Endemic G. mustelinum and Its Application to QTL Mapping

    PubMed Central

    Wang, Baohua; Liu, Limei; Zhang, Dong; Zhuang, Zhimin; Guo, Hui; Qiao, Xin; Wei, Lijuan; Rong, Junkang; May, O. Lloyd; Paterson, Andrew H.; Chee, Peng W.

    2016-01-01

    Among the seven tetraploid cotton species, little is known about transmission genetics and genome organization in Gossypium mustelinum, the species most distant from the source of most cultivated cotton, G. hirsutum. In this research, an F2 population was developed from an interspecific cross between G. hirsutum and G. mustelinum (HM). A genetic linkage map was constructed mainly using simple sequence repeat (SSRs) and restriction fragment length polymorphism (RFLP) DNA markers. The arrangements of most genetic loci along the HM chromosomes were identical to those of other tetraploid cotton species. However, both major and minor structural rearrangements were also observed, for which we propose a parsimony-based model for structural divergence of tetraploid cottons from common ancestors. Sequences of mapped markers were used for alignment with the 26 scaffolds of the G. hirsutum draft genome, and showed high consistency. Quantitative trait locus (QTL) mapping of fiber elongation in advanced backcross populations derived from the same parents demonstrated the value of the HM map. The HM map will serve as a valuable resource for QTL mapping and introgression of G. mustelinum alleles into G. hirsutum, and help clarify evolutionary relationships between the tetraploid cotton genomes. PMID:27172208

  5. Genetic and Targeted eQTL Mapping Reveals Strong Candidate Genes Modulating the Stress Response During Chicken Domestication

    PubMed Central

    Fallahsharoudi, Amir; de Kock, Neil; Johnsson, Martin; Bektic, Lejla; Ubhayasekera, S. J. Kumari A.; Bergquist, Jonas; Wright, Dominic; Jensen, Per

    2016-01-01

    The stress response has been largely modified in all domesticated animals, offering a strong tool for genetic mapping. In chickens, ancestral Red Junglefowl react stronger both in terms of physiology and behavior to a brief restraint stress than domesticated White Leghorn, demonstrating modified functions of the hypothalamic–pituitary–adrenal (HPA) axis. We mapped quantitative trait loci (QTL) underlying variations in stress-induced hormone levels using 232 birds from the 12th generation of an advanced intercross between White Leghorn and Red Junglefowl, genotyped for 739 genetic markers. Plasma levels of corticosterone, dehydroepiandrosterone (DHEA), and pregnenolone (PREG) were measured using LC-MS/MS in all genotyped birds. Transcription levels of the candidate genes were measured in the adrenal glands or hypothalamus of 88 out of the 232 birds used for hormone assessment. Genes were targeted for expression analysis when they were located in a hormone QTL region and were differentially expressed in the pure breed birds. One genome-wide significant QTL on chromosome 5 and two suggestive QTL together explained 20% of the variance in corticosterone response. Two significant QTL for aldosterone on chromosome 2 and 5 (explaining 19% of the variance), and one QTL for DHEA on chromosome 4 (explaining 5% of the variance), were detected. Orthologous DNA regions to the significant corticosterone QTL have been previously associated with the physiological stress response in other species but, to our knowledge, the underlying gene(s) have not been identified. SERPINA10 had an expression QTL (eQTL) colocalized with the corticosterone QTL on chromosome 5 and PDE1C had an eQTL colocalized with the aldosterone QTL on chromosome 2. Furthermore, in both cases, the expression levels of the genes were correlated with the plasma levels of the hormones. Hence, both these genes are strong putative candidates for the domestication-induced modifications of the stress response in

  6. QTL mapping with near-isogenic lines in maize.

    PubMed

    Szalma, S J; Hostert, B M; Ledeaux, J R; Stuber, C W; Holland, J B

    2007-05-01

    A set of 89 near-isogenic lines (NILs) of maize was created using marker-assisted selection. Nineteen genomic regions, identified by restriction fragment length polymorphism loci and chosen to represent portions of all ten maize chromosomes, were introgressed by backcrossing three generations from donor line Tx303 into the B73 genetic background. NILs were genotyped at an additional 128 simple sequence repeat loci to estimate the size of introgressions and the amount of background introgression. Tx303 introgressions ranged in size from 10 to 150 cM, with an average of 60 cM. Across all NILs, 89% of the Tx303 genome is represented in targeted and background introgressions. The average proportion of background introgression was 2.5% (range 0-15%), significantly lower than the expected value of 9.4% for third backcross generation lines developed without marker-assisted selection. The NILs were grown in replicated field evaluations in two years to map QTLs for flowering time traits. A parallel experiment of testcrosses of each NIL to the unrelated inbred, Mo17, was conducted in the same environments to map QTLs in NIL testcross hybrids. QTLs affecting days to anthesis, days to silking, and anthesis-silk interval were detected in both inbreds and hybrids in both environments. The testing environments differed dramatically for drought stress, and different sets of QTLs were detected across environments. Furthermore, QTLs detected in inbreds were typically different from QTLs detected in hybrids, demonstrating the genetic complexity of flowering time. NILs can serve as a valuable genetic mapping resource for maize breeders and geneticists.

  7. SNP Discovery and Chromosome Anchoring Provide the First Physically-Anchored Hexaploid Oat Map and Reveal Synteny with Model Species

    PubMed Central

    Chao, Shiaoman; Jellen, Eric N.; Carson, Martin L.; Rines, Howard W.; Obert, Donald E.; Lutz, Joseph D.; Shackelford, Irene; Korol, Abraham B.; Wight, Charlene P.; Gardner, Kyle M.; Hattori, Jiro; Beattie, Aaron D.; Bjørnstad, Åsmund; Bonman, J. Michael; Jannink, Jean-Luc; Sorrells, Mark E.; Brown-Guedira, Gina L.; Mitchell Fetch, Jennifer W.; Harrison, Stephen A.; Howarth, Catherine J.; Ibrahim, Amir; Kolb, Frederic L.; McMullen, Michael S.; Murphy, J. Paul; Ohm, Herbert W.; Rossnagel, Brian G.; Yan, Weikai; Miclaus, Kelci J.; Hiller, Jordan; Maughan, Peter J.; Redman Hulse, Rachel R.; Anderson, Joseph M.; Islamovic, Emir

    2013-01-01

    A physically anchored consensus map is foundational to modern genomics research; however, construction of such a map in oat (Avena sativa L., 2n = 6x = 42) has been hindered by the size and complexity of the genome, the scarcity of robust molecular markers, and the lack of aneuploid stocks. Resources developed in this study include a modified SNP discovery method for complex genomes, a diverse set of oat SNP markers, and a novel chromosome-deficient SNP anchoring strategy. These resources were applied to build the first complete, physically-anchored consensus map of hexaploid oat. Approximately 11,000 high-confidence in silico SNPs were discovered based on nine million inter-varietal sequence reads of genomic and cDNA origin. GoldenGate genotyping of 3,072 SNP assays yielded 1,311 robust markers, of which 985 were mapped in 390 recombinant-inbred lines from six bi-parental mapping populations ranging in size from 49 to 97 progeny. The consensus map included 985 SNPs and 68 previously-published markers, resolving 21 linkage groups with a total map distance of 1,838.8 cM. Consensus linkage groups were assigned to 21 chromosomes using SNP deletion analysis of chromosome-deficient monosomic hybrid stocks. Alignments with sequenced genomes of rice and Brachypodium provide evidence for extensive conservation of genomic regions, and renewed encouragement for orthology-based genomic discovery in this important hexaploid species. These results also provide a framework for high-resolution genetic analysis in oat, and a model for marker development and map construction in other species with complex genomes and limited resources. PMID:23533580

  8. Molecular Mapping and QTL for Expression Profiles of Flavonoid Genes in Brassica napus

    PubMed Central

    Qu, Cunmin; Zhao, Huiyan; Fu, Fuyou; Zhang, Kai; Yuan, Jianglian; Liu, Liezhao; Wang, Rui; Xu, Xinfu; Lu, Kun; Li, Jia-Na

    2016-01-01

    Flavonoids are secondary metabolites that are extensively distributed in the plant kingdom and contribute to seed coat color formation in rapeseed. To decipher the genetic networks underlying flavonoid biosynthesis in rapeseed, we constructed a high-density genetic linkage map with 1089 polymorphic loci (including 464 SSR loci, 97 RAPD loci, 451 SRAP loci, and 75 IBP loci) using recombinant inbred lines (RILs). The map consists of 19 linkage groups and covers 2775 cM of the B. napus genome with an average distance of 2.54 cM between adjacent markers. We then performed expression quantitative trait locus (eQTL) analysis to detect transcript-level variation of 18 flavonoid biosynthesis pathway genes in the seeds of the 94 RILs. In total, 72 eQTLs were detected and found to be distributed among 15 different linkage groups that account for 4.11% to 52.70% of the phenotypic variance atrributed to each eQTL. Using a genetical genomics approach, four eQTL hotspots together harboring 28 eQTLs associated with 18 genes were found on chromosomes A03, A09, and C08 and had high levels of synteny with genome sequences of A. thaliana and Brassica species. Associated with the trans-eQTL hotspots on chromosomes A03, A09, and C08 were 5, 17, and 1 genes encoding transcription factors, suggesting that these genes have essential roles in the flavonoid biosynthesis pathway. Importantly, bZIP25, which is expressed specifically in seeds, MYC1, which controls flavonoid biosynthesis, and the R2R3-type gene MYB51, which is involved in the synthesis of secondary metabolites, were associated with the eQTL hotspots, and these genes might thus be involved in different flavonoid biosynthesis pathways in rapeseed. Hence, further studies of the functions of these genes will provide insight into the regulatory mechanism underlying flavonoid biosynthesis, and lay the foundation for elaborating the molecular mechanism of seed coat color formation in B. napus. PMID:27881992

  9. QTL Mapping and Candidate Gene Analysis of Telomere Length Control Factors in Maize (Zea mays L.)

    PubMed Central

    Brown, Amber N.; Lauter, Nick; Vera, Daniel L.; McLaughlin-Large, Karen A.; Steele, Tace M.; Fredette, Natalie C.; Bass, Hank W.

    2011-01-01

    Telomere length is a quantitative trait important for many cellular functions. Failure to regulate telomere length contributes to genomic instability, cellular senescence, cancer, and apoptosis in humans, but the functional significance of telomere regulation in plants is much less well understood. To gain a better understanding of telomere biology in plants, we used quantitative trait locus (QTL) mapping to identify genetic elements that control telomere length variation in maize (Zea mays L.). For this purpose, we measured the median and mean telomere lengths from 178 recombinant inbred lines of the IBM mapping population and found multiple regions that collectively accounted for 33–38% of the variation in telomere length. Two-way analysis of variance revealed interaction between the quantitative trait loci at genetic bin positions 2.09 and 5.04. Candidate genes within these and other significant QTL intervals, along with select genes known a priori to regulate telomere length, were tested for correlations between expression levels and telomere length in the IBM population and diverse inbred lines by quantitative real-time PCR. A slight but significant positive correlation between expression levels and telomere length was observed for many of the candidate genes, but Ibp2 was a notable exception, showing instead a negative correlation. A rad51-like protein (TEL-MD_5.04) was strongly supported as a candidate gene by several lines of evidence. Our results highlight the value of QTL mapping plus candidate gene expression analysis in a genetically diverse model system for telomere research. PMID:22384354

  10. A large QTL for fear and anxiety mapped using an F2 cross can be dissected into multiple smaller QTLs

    PubMed Central

    Parker, Clarissa C.; Sokoloff, Greta; Leung, Emily; Kirkpatrick, Stacey L.; Palmer, Abraham A.

    2013-01-01

    Using chromosome substitution strains (CSS), we previously identified a large quantitative trait locus (QTL) for conditioned fear (CF) on mouse chromosome 10. Here, we used an F2 cross between CSS-10 and C57BL/6J (B6) to localize that QTL to distal chromosome 10. That QTL accounted for all of the difference between CSS-10 and B6. We then produced congenic strains to fine-map that interval. We identified two congenic strains that captured some or all of the QTL. The larger congenic strain (Line 1; 122.387121 – 129.068 Mb; build 37) appeared to account for all of the difference between CSS-10 and B6. The smaller congenic strain (Line 2; 127.277–129.068 Mb) was intermediate between CSS-10 and B6. We used haplotype mapping followed by qPCR to identify one gene that was differentially expressed in both lines relative to B6 (Rnf41) and one that was differentially expressed between only Line 1 and B6 (Shmt2). These cis-eQTLs may cause the behavioral QTLs; however, further studies are required to validate these candidate genes. More generally, our observation that a large QTL mapped using CSS and F2 crosses can be dissected into multiple smaller QTLs demonstrates a weaknesses of two-stage approaches that seek to use coarse mapping to identify large regions followed by fine-mapping. Indeed, additional dissection of these congenic strains might result in further subdivision of these QTL regions. Despite these limitations we have successfully fine mapped two QTLs to small regions and identified putative candidate genes, demonstrating that the congenic approach can be effective for fine mapping QTLs. PMID:23876074

  11. A large QTL for fear and anxiety mapped using an F2 cross can be dissected into multiple smaller QTLs.

    PubMed

    Parker, C C; Sokoloff, G; Leung, E; Kirkpatrick, S L; Palmer, A A

    2013-10-01

    Using chromosome substitution strains (CSS), we previously identified a large quantitative trait locus (QTL) for conditioned fear (CF) on mouse chromosome 10. Here, we used an F2 cross between CSS-10 and C57BL/6J (B6) to localize that QTL to distal chromosome 10. That QTL accounted for all the difference between CSS-10 and B6. We then produced congenic strains to fine-map that interval. We identified two congenic strains that captured some or all the QTL. The larger congenic strain (Line 1: 122.387121-129.068 Mb; build 37) appeared to account for all the difference between CSS-10 and B6. The smaller congenic strain (Line 2: 127.277-129.068 Mb) was intermediate between CSS-10 and B6. We used haplotype mapping followed by quantitative polymerase chain reaction to identify one gene that was differentially expressed in both lines relative to B6 (Rnf41) and one that was differentially expressed between only Line 1 and B6 (Shmt2). These cis-eQTLs may cause the behavioral QTLs; however, further studies are required to validate these candidate genes. More generally, our observation that a large QTL mapped using CSS and F2 crosses can be dissected into multiple smaller QTLs shows a weaknesses of two-stage approaches that seek to use coarse mapping to identify large regions followed by fine-mapping. Indeed, additional dissection of these congenic strains might result in further subdivision of these QTL regions. Despite these limitations, we have successfully fine-mapped two QTLs to small regions and identified putative candidate genes, showing that the congenic approach can be effective for fine-mapping QTLs.

  12. Fine Mapping of a QTL Associated with Kernel Row Number on Chromosome 1 of Maize.

    PubMed

    Calderón, Claudia I; Yandell, Brian S; Doebley, John F

    2016-01-01

    The genetic factors underlying changes in ear morphology, and particularly the inheritance of kernel row number (KRN), have been broadly investigated in diverse mapping populations in maize (Zea mays L.). In this study, we mapped a region on the long arm of chromosome 1 containing a QTL for KRN. This work was performed using a set of recombinant chromosome nearly isogenic lines (RCNILs) derived from a BC2S3 population produced using the inbred maize line W22 and teosinte (Zea mays ssp. parviglumis) as the parents. A set of 48 RCNILs was evaluated in the field during the summer of 2013 in order to perform the mapping. A QTL for KRN was found that explained approximately 51% of the phenotypic variance and had a 1.5-LOD confidence interval of 203 kb. Seven genes are described in this interval. One of these candidate genes may have been the target of domestication processes in maize and contributed to the shift from two kernel row ears in teosinte to a highly polystichous ear in maize.

  13. Fine Mapping of a QTL Associated with Kernel Row Number on Chromosome 1 of Maize

    PubMed Central

    Calderón, Claudia I.; Yandell, Brian S.; Doebley, John F.

    2016-01-01

    The genetic factors underlying changes in ear morphology, and particularly the inheritance of kernel row number (KRN), have been broadly investigated in diverse mapping populations in maize (Zea mays L.). In this study, we mapped a region on the long arm of chromosome 1 containing a QTL for KRN. This work was performed using a set of recombinant chromosome nearly isogenic lines (RCNILs) derived from a BC2S3 population produced using the inbred maize line W22 and teosinte (Zea mays ssp. parviglumis) as the parents. A set of 48 RCNILs was evaluated in the field during the summer of 2013 in order to perform the mapping. A QTL for KRN was found that explained approximately 51% of the phenotypic variance and had a 1.5-LOD confidence interval of 203 kb. Seven genes are described in this interval. One of these candidate genes may have been the target of domestication processes in maize and contributed to the shift from two kernel row ears in teosinte to a highly polystichous ear in maize. PMID:26930509

  14. Genetic Analysis of Grain Filling Rate Using Conditional QTL Mapping in Maize

    PubMed Central

    Cui, Zitian; Hu, Yanmin; Wang, Bin; Tang, Jihua

    2013-01-01

    The grain filling rate (GFR) is an important dynamic trait that determines the final grain yield and is controlled by a network of genes and environment factors. To determine the genetic basis of the GFR, a conditional quantitative trait locus (QTL) analysis method was conducted using time-related phenotypic values of the GFR collected from a set of 243 immortalized F2 (IF2) population, which were evaluated at two locations over 2 years. The GFR gradually rose in the 0–15 days after pollination (DAP) and 16–22 DAP, reaching a maximum at 23–29 DAP, and then gradually decreasing. The variation of kernel weight (KW) was mainly decided by the GFR, and not by the grain filling duration (GFD). Thirty-three different unconditional QTLs were identified for the GFR at the six sampling stages over 2 years. Among them, QTLs qGFR7b, qGFR9 and qGFR6d were identified at the same stages at two locations over 2 years. In addition, 14 conditional QTLs for GFR were detected at five stages. The conditional QTL qGFR7c was identified at stage V|IV (37–43 DAP) at two locations over 2 years, and qGFR7b was detected at the sixth stage (44–50 DAP) in all four environments, except at Anyang location in 2009. QTLs qQTL7b and qQTL6f were identified by unconditional and conditional QTL mapping at the same stages, and might represent major QTLs for regulating the GFR in maize in the IF2 population. Moreover, most of the QTLs identified were co-located with QTLs from previous studies that were associated with GFR, enzyme activities of starch synthesis, soluble carbohydrates, and grain filling related genes. These results indicated that the GFR is regulated by many genes, which are specifically expressed at different grain filling stages, and the specific expression of the genes between 16–35 DAP might be very important for deciding the final kernel weight. PMID:23441180

  15. Integrating QTL mapping and transcriptomics identifies candidate genes underlying QTLs associated with soybean tolerance to low-phosphorus stress.

    PubMed

    Zhang, Dan; Zhang, Hengyou; Chu, Shanshan; Li, Hongyan; Chi, Yingjun; Triebwasser-Freese, Daniella; Lv, Haiyan; Yu, Deyue

    2017-01-01

    Soybean is a high phosphorus (P) demand species that is sensitive to low-P stress. Although many quantitative trait loci (QTL) for P efficiency have been identified in soybean, but few of these have been cloned and agriculturally applied mainly due to various limitations on identifying suitable P efficiency candidate genes. Here, we combined QTL mapping, transcriptome profiling, and plant transformation to identify candidate genes underlying QTLs associated with low-P tolerance and response mechanisms to low-P stress in soybean. By performing QTL linkage mapping using 152 recombinant inbred lines (RILs) that were derived from a cross between a P-efficient variety, Nannong 94-156, and P-sensitive Bogao, we identified four major QTLs underlying P efficiency. Within these four QTL regions, 34/81 candidate genes in roots/leaves were identified using comparative transcriptome analysis between two transgressive RILs, low-P tolerant genotype B20 and sensitive B18. A total of 22 phosphatase family genes were up-regulated significantly under low-P condition in B20. Overexpression of an acid phosphatase candidate gene, GmACP2, in soybean hairy roots increased P efficiency by 15.43-24.54 % compared with that in controls. Our results suggest that integrating QTL mapping and transcriptome profiling could be useful for rapidly identifying candidate genes underlying complex traits, and phosphatase-encoding genes, such as GmACP2, play important roles involving in low-P stress tolerance in soybean.

  16. The mouse QTL map helps interpret human genome-wide association studies for HDL cholesterol.

    PubMed

    Leduc, Magalie S; Lyons, Malcolm; Darvishi, Katayoon; Walsh, Kenneth; Sheehan, Susan; Amend, Sarah; Cox, Allison; Orho-Melander, Marju; Kathiresan, Sekar; Paigen, Beverly; Korstanje, Ron

    2011-06-01

    Genome-wide association (GWA) studies represent a powerful strategy for identifying susceptibility genes for complex diseases in human populations but results must be confirmed and replicated. Because of the close homology between mouse and human genomes, the mouse can be used to add evidence to genes suggested by human studies. We used the mouse quantitative trait loci (QTL) map to interpret results from a GWA study for genes associated with plasma HDL cholesterol levels. We first positioned single nucleotide polymorphisms (SNPs) from a human GWA study on the genomic map for mouse HDL QTL. We then used mouse bioinformatics, sequencing, and expression studies to add evidence for one well-known HDL gene (Abca1) and three newly identified genes (Galnt2, Wwox, and Cdh13), thus supporting the results of the human study. For GWA peaks that occur in human haplotype blocks with multiple genes, we examined the homologous regions in the mouse to prioritize the genes using expression, sequencing, and bioinformatics from the mouse model, showing that some genes were unlikely candidates and adding evidence for candidate genes Mvk and Mmab in one haplotype block and Fads1 and Fads2 in the second haplotype block. Our study highlights the value of mouse genetics for evaluating genes found in human GWA studies.

  17. eQTL mapping identify insertion and deletion specific eQTLs in multiple tissues

    PubMed Central

    Huang, Jinyan; Chen, Jun; Esparza, Jorge; Ding, Jun; Elder, James; Abecasis, Goncalo R; Lee, Young-Ae; Lathrop, G. Mark; Moffatt, Miriam F; Cookson, William O C; Liang, Liming

    2016-01-01

    GenomeC wide gene expression quantitative trait loci (eQTL) mapping have been focused on single nucleotide polymorphisms and have helped interpret findings from diseases mapping studies. The functional effect of structure variants, especially short insertions and deletions (indel) has not been well investigated. Here we imputed 1,380,133 indels based on the latest 1000 Genomes Project panel into 3 eQTL datasets from multiple tissues. Imputation of indels increased 9.9% power and identified indel specific eQTLs for 325 genes. We found introns and vicinities of UTRs were more enriched of indel eQTLs and 3.6 (singleC tissue)C 9.2%(multiC tissue) of previous identified eSNPs were taggers of eindels. Functional analyses identified epigenetics marks, gene ontology categories and disease GWAS loci affected by SNPs and indels eQTLs showing tissueC consistent or tissueC specific effects. This study provides new insights into the underlying genetic architecture of gene expression across tissues and new resource to interpret function of diseases and traits associated structure variants. PMID:25951796

  18. [The construction of the genetic map and QTL locating analysis on chromosome 2 in swine].

    PubMed

    Qu, Yan-Chun; Deng, Chang-Yan; Xiong, Yuan-Zhu; Zheng, Rong; Yu, Li; Su, Yu-Hong; Liu, Gui-Lan

    2002-01-01

    The study constructed the genetic linkage map of porcine chromosome 2 and further analysis of quantitative trait loci was conducted. The results of the study demonstrated that all 7 microsatellite loci we chose were with relatively high polymorphism, and its polymorphic information content was from 0.40182 to 0.58477. The genetic map we constructed for resource family was 152.9 cM in length, with the order of all loci highly consistent with the USDA map. All marker intervals were longer than USDA map with the interval between marker Sw2516 and Sw1201 as an exception. Furthermore, we conducted QTLs locating analysis by combining the genetic map with the phenotypic data. QTLs affecting lively estimated traits such as lean meat percentage, were located at 60-65 cM on chromosome 2, while QTLs for the height and marbling of Longissmus dorsi muscle were located at 20 cM and 55 cM, respectively Among them, QTL for estimated lean meat percentage was significant at chromosome-wise level (P < 0.01) and was responsible for 21.55% of the phenotypic variance. QTLs for the height and marbling of Longissmus dorsi muscle were responsible for 10.12% and 10.97% of the phenotypic variance, respectively. The additive and dominance effect of lively estimated traits were in the inverse tendency, while the QTL for the height of Longissmus dorsi muscle had its additive and dominance effect in the same tendency and was with advantageous allele in Large White. The QTLs we detected had relatively large effect on phenotype and built a basis for molecular marker assisted selection and breeding.

  19. Novel Resampling Improves Statistical Power for Multiple-Trait QTL Mapping

    PubMed Central

    Cheng, Riyan; Doerge, R. W.; Borevitz, Justin

    2017-01-01

    Multiple-trait analysis typically employs models that associate a quantitative trait locus (QTL) with all of the traits. As a result, statistical power for QTL detection may not be optimal if the QTL contributes to the phenotypic variation in only a small proportion of the traits. Excluding QTL effects that contribute little to the test statistic can improve statistical power. In this article, we show that an optimal power can be achieved when the number of QTL effects is best estimated, and that a stringent criterion for QTL effect selection may improve power when the number of QTL effects is small but can reduce power otherwise. We investigate strategies for excluding trivial QTL effects, and propose a method that improves statistical power when the number of QTL effects is relatively small, and fairly maintains the power when the number of QTL effects is large. The proposed method first uses resampling techniques to determine the number of nontrivial QTL effects, and then selects QTL effects by the backward elimination procedure for significance test. We also propose a method for testing QTL-trait associations that are desired for biological interpretation in applications. We validate our methods using simulations and Arabidopsis thaliana transcript data. PMID:28064191

  20. Genome-wide SNP identification for the construction of a high-resolution genetic map of Japanese flounder (Paralichthys olivaceus): applications to QTL mapping of Vibrio anguillarum disease resistance and comparative genomic analysis.

    PubMed

    Shao, Changwei; Niu, Yongchao; Rastas, Pasi; Liu, Yang; Xie, Zhiyuan; Li, Hengde; Wang, Lei; Jiang, Yong; Tai, Shuaishuai; Tian, Yongsheng; Sakamoto, Takashi; Chen, Songlin

    2015-04-01

    High-resolution genetic maps are essential for fine mapping of complex traits, genome assembly, and comparative genomic analysis. Single-nucleotide polymorphisms (SNPs) are the primary molecular markers used for genetic map construction. In this study, we identified 13,362 SNPs evenly distributed across the Japanese flounder (Paralichthys olivaceus) genome. Of these SNPs, 12,712 high-confidence SNPs were subjected to high-throughput genotyping and assigned to 24 consensus linkage groups (LGs). The total length of the genetic linkage map was 3,497.29 cM with an average distance of 0.47 cM between loci, thereby representing the densest genetic map currently reported for Japanese flounder. Nine positive quantitative trait loci (QTLs) forming two main clusters for Vibrio anguillarum disease resistance were detected. All QTLs could explain 5.1-8.38% of the total phenotypic variation. Synteny analysis of the QTL regions on the genome assembly revealed 12 immune-related genes, among them 4 genes strongly associated with V. anguillarum disease resistance. In addition, 246 genome assembly scaffolds with an average size of 21.79 Mb were anchored onto the LGs; these scaffolds, comprising 522.99 Mb, represented 95.78% of assembled genomic sequences. The mapped assembly scaffolds in Japanese flounder were used for genome synteny analyses against zebrafish (Danio rerio) and medaka (Oryzias latipes). Flounder and medaka were found to possess almost one-to-one synteny, whereas flounder and zebrafish exhibited a multi-syntenic correspondence. The newly developed high-resolution genetic map, which will facilitate QTL mapping, scaffold assembly, and genome synteny analysis of Japanese flounder, marks a milestone in the ongoing genome project for this species.

  1. Quantitative Trait Loci Mapping of the Mouse Plasma Proteome (pQTL)

    PubMed Central

    Holdt, Lesca M.; von Delft, Annette; Nicolaou, Alexandros; Baumann, Sven; Kostrzewa, Markus; Thiery, Joachim; Teupser, Daniel

    2013-01-01

    A current challenge in the era of genome-wide studies is to determine the responsible genes and mechanisms underlying newly identified loci. Screening of the plasma proteome by high-throughput mass spectrometry (MALDI-TOF MS) is considered a promising approach for identification of metabolic and disease processes. Therefore, plasma proteome screening might be particularly useful for identifying responsible genes when combined with analysis of variation in the genome. Here, we describe a proteomic quantitative trait locus (pQTL) study of plasma proteome screens in an F2 intercross of 455 mice mapped with 177 genetic markers across the genome. A total of 69 of 176 peptides revealed significant LOD scores (≥5.35) demonstrating strong genetic regulation of distinct components of the plasma proteome. Analyses were confirmed by mechanistic studies and MALDI-TOF/TOF, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses of the two strongest pQTLs: A pQTL for mass-to-charge ratio (m/z) 3494 (LOD 24.9, D11Mit151) was identified as the N-terminal 35 amino acids of hemoglobin subunit A (Hba) and caused by genetic variation in Hba. Another pQTL for m/z 8713 (LOD 36.4; D1Mit111) was caused by variation in apolipoprotein A2 (Apoa2) and cosegregated with HDL cholesterol. Taken together, we show that genome-wide plasma proteome profiling in combination with genome-wide genetic screening aids in the identification of causal genetic variants affecting abundance of plasma proteins. PMID:23172855

  2. Combined Linkage and Association Mapping Reveals QTL and Candidate Genes for Plant and Ear Height in Maize

    PubMed Central

    Li, Xiaopeng; Zhou, Zijian; Ding, Junqiang; Wu, Yabin; Zhou, Bo; Wang, Ruixia; Ma, Jinliang; Wang, Shiwei; Zhang, Xuecai; Xia, Zongliang; Chen, Jiafa; Wu, Jianyu

    2016-01-01

    Plant height (PH) and ear height (EH) are two very important agronomic traits related to the population density and lodging in maize. In order to better understand of the genetic basis of nature variation in PH and EH, two bi-parental populations and one genome-wide association study (GWAS) population were used to map quantitative trait loci (QTL) for both traits. Phenotypic data analysis revealed a wide normal distribution and high heritability for PH and EH in the three populations, which indicated that maize height is a highly polygenic trait. A total of 21 QTL for PH and EH in three common genomic regions (bin 1.05, 5.04/05, and 6.04/05) were identified by QTL mapping in the two bi-parental populations under multiple environments. Additionally, 41 single nucleotide polymorphisms (SNPs) were identified for PH and EH by GWAS, of which 29 SNPs were located in 19 unique candidate gene regions. Most of the candidate genes were related to plant growth and development. One QTL on Chromosome 1 was further verified in a near-isogenic line (NIL) population, and GWAS identified a C2H2 zinc finger family protein that maybe the candidate gene for this QTL. These results revealed that nature variation of PH and EH are strongly controlled by multiple genes with low effect and facilitated a better understanding of the underlying mechanism of height in maize. PMID:27379126

  3. Linkage mapping and identification of QTL affecting deoxynivalenol (DON) content (Fusarium resistance) in oats (Avena sativa L.).

    PubMed

    He, Xinyao; Skinnes, Helge; Oliver, Rebekah E; Jackson, Eric W; Bjørnstad, Asmund

    2013-10-01

    Mycotoxins caused by Fusarium spp. is a major concern on food and feed safety in oats, although Fusarium head blight (FHB) is often less apparent than in other small grain cereals. Breeding resistant cultivars is an economic and environment-friendly way to reduce toxin content, either by the identification of resistance QTL or phenotypic evaluation. Both are little explored in oats. A recombinant-inbred line population, Hurdal × Z595-7 (HZ595, with 184 lines), was used for QTL mapping and was phenotyped for 3 years. Spawn inoculation was applied and deoxynivalenol (DON) content, FHB severity, days to heading and maturity (DH and DM), and plant height (PH) were measured. The population was genotyped with DArTs, AFLPs, SSRs and selected SNPs, and a linkage map of 1,132 cM was constructed, covering all 21 oat chromosomes. A QTL for DON on chromosome 17A/7C, tentatively designated as Qdon.umb-17A/7C, was detected in all experiments using composite interval mapping, with phenotypic effects of 12.2–26.6 %. In addition, QTL for DON were also found on chromosomes 5C, 9D, 13A, 14D and unknown_3, while a QTL for FHB was found on 11A. Several of the DON/FHB QTL coincided with those for DH, DM and/or PH. A half-sib population of HZ595, Hurdal × Z615-4 (HZ615, with 91 lines), was phenotyped in 2011 for validation of QTL found in HZ595, and Qdon.umb-17A/7C was again localized with a phenotypic effect of 12.4 %. Three SNPs closely linked to Qdon.umb-17A/7C were identified in both populations, and one each for QTL on 5C, 11A and 13A were identified in HZ595. These SNPs, together with those yet to be identified, could be useful in marker-assisted selection to pyramiding resistance QTL.

  4. Mapping and QTL analysis of drought tolerance in a spring wheat population using AFLP and DArt markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water availability is commonly the most limiting factor to crop production. This study was conducted to map quantitative trait loci (QTL) involved in drought tolerance in wheat (Triticum aestivum L.) to enable their use for marker assisted selection (MAS) in breeding. Using amplified fragment leng...

  5. In-silico QTL mapping of postpubertal mammary ductal development in the mouse uncovers potential human breast cancer risk loci

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic background plays a dominant role in mammary gland development and breast cancer (BrCa). Despite this, the role of genetics is only partially understood. This study used strain-dependent variation in an inbred mouse mapping panel, to identify quantitative trait loci (QTL) underlying structura...

  6. Association mapping of common bacterial blight resistance QTL in Ontario bean breeding populations

    PubMed Central

    2011-01-01

    Background Common bacterial blight (CBB), incited by Xanthomonas axonopodis pv. phaseoli (Xap), is a major yield-limiting factor of common bean (Phaseolus vulgaris L.) production around the world. Host resistance is practically the most effective and environmentally-sound approach to control CBB. Unlike conventional QTL discovery strategies, in which bi-parental populations (F2, RIL, or DH) need to be developed, association mapping-based strategies can use plant breeding populations to synchronize QTL discovery and cultivar development. Results A population of 469 dry bean lines of different market classes representing plant materials routinely developed in a bean breeding program were used. Of them, 395 lines were evaluated for CBB resistance at 14 and 21 DAI (Days After Inoculation) in the summer of 2009 in an artificially inoculated CBB nursery in south-western Ontario. All lines were genotyped using 132 SNPs (Single Nucleotide Polymorphisms) evenly distributed across the genome. Of the 132 SNPs, 26 SNPs had more than 20% missing data, 12 SNPs were monomorphic, and 17 SNPs had a MAF (Minor Allelic Frequency) of less than 0.20, therefore only 75 SNPs were used for association study, based on one SNP per locus. The best possible population structure was to assign 36% and 64% of the lines into Andean and Mesoamerican subgroups, respectively. Kinship analysis also revealed complex familial relationships among all lines, which corresponds with the known pedigree history. MLM (Mixed Linear Model) analysis, including population structure and kinship, was used to discover marker-trait associations. Eighteen and 22 markers were significantly associated with CBB rating at 14 and 21 DAI, respectively. Fourteen markers were significant for both dates and the markers UBC420, SU91, g321, g471, and g796 were highly significant (p ≤ 0.001). Furthermore, 12 significant SNP markers were co-localized with or close to the CBB-QTLs identified previously in bi-parental QTL mapping

  7. Construction of a high-density genetic map and QTL mapping for pearl quality-related traits in Hyriopsis cumingii

    PubMed Central

    Bai, Zhi-Yi; Han, Xue-Kai; Liu, Xiao-Jun; Li, Qing-Qing; Li, Jia-Le

    2016-01-01

    A high-density genetic map is essential for quantitative trait locus (QTL) fine mapping. In this study, 4,508 effective single nucleotide polymorphism markers (detected using specific-locus amplified fragment sequencing) and 475 microsatellites were mapped to 19 linkage groups (LGs) using a family with 157 individuals. The map spanned 2,713 cM, with an average of 259 markers and 79 loci per LG and an average inter-marker distance of 1.81 cM. To identify QTLs for pearl quality traits, 26 putatively significant QTLs were detected for 10 traits, including, three for shell width, seven for body weight, two for shell weight, two for margin mantle weight, five for inner mantle weight, and seven for shell nacre colour. Among them, five QTLs associated with shell nacre colour were mapped to LG17 and explained 19.7% to 22.8% of the trait variation; this suggests that some important genes or loci determine shell nacre colour in LG17. The linkage map and mapped QTLs for shell nacre colour would be useful for improving the quality of Hyriopsis cumingii via marker-assisted selection. PMID:27587236

  8. Genetic Mapping and QTL Analysis of Growth-Related Traits in Pinctada fucata Using Restriction-Site Associated DNA Sequencing

    PubMed Central

    Li, Yaoguo; He, Maoxian

    2014-01-01

    The pearl oyster, Pinctada fucata (P. fucata), is one of the marine bivalves that is predominantly cultured for pearl production. To obtain more genetic information for breeding purposes, we constructed a high-density linkage map of P. fucata and identified quantitative trait loci (QTL) for growth-related traits. One F1 family, which included the two parents, 48 largest progeny and 50 smallest progeny, was sampled to construct a linkage map using restriction site-associated DNA sequencing (RAD-Seq). With low coverage data, 1956.53 million clean reads and 86,342 candidate RAD loci were generated. A total of 1373 segregating SNPs were used to construct a sex-average linkage map. This spanned 1091.81 centimorgans (cM), with 14 linkage groups and an average marker interval of 1.41 cM. The genetic linkage map coverage, Coa, was 97.24%. Thirty-nine QTL-peak loci, for seven growth-related traits, were identified using the single-marker analysis, nonparametric mapping Kruskal-Wallis (KW) test. Parameters included three for shell height, six for shell length, five for shell width, four for hinge length, 11 for total weight, eight for soft tissue weight and two for shell weight. The QTL peak loci for shell height, shell length and shell weight were all located in linkage group 6. The genotype frequencies of most QTL peak loci showed significant differences between the large subpopulation and the small subpopulation (P<0.05). These results highlight the effectiveness of RAD-Seq as a tool for generation of QTL-targeted and genome-wide marker data in the non-model animal, P. fucata, and its possible utility in marker-assisted selection (MAS). PMID:25369421

  9. Genetic Linkage Map Construction and QTL Analysis of Two Interspecific Reproductive Isolation Traits in Sponge Gourd.

    PubMed

    Wu, Haibin; He, Xiaoli; Gong, Hao; Luo, Shaobo; Li, Mingzhu; Chen, Junqiu; Zhang, Changyuan; Yu, Ting; Huang, Wangping; Luo, Jianning

    2016-01-01

    The hybrids between Luffa acutangula (L.) Roxb. and L.cylindrica (L.) Roem. have strong heterosis effects. However, some reproductive isolation traits hindered their normal hybridization and fructification, which was mainly caused by the flowering time and hybrid pollen sterility. In order to study the genetic basis of two interspecific reproductive isolation traits, we constructed a genetic linkage map using an F2 population derived from a cross between S1174 [L. acutangula (L.) Roxb.] and 93075 [L. cylindrica (L.) Roem.]. The map spans 1436.12 CentiMorgans (cM), with an average of 8.11 cM among markers, and consists of 177 EST-SSR markers distributed in 14 linkage groups (LG) with an average of 102.58 cM per LG. Meanwhile, we conducted colinearity analysis between the sequences of EST-SSR markers and the genomic sequences of cucumber, melon and watermelon. On the basis of genetic linkage map, we conducted QTL mapping of two reproductive isolation traits in sponge gourd, which were the flowering time and hybrid male sterility. Two putative QTLs associated with flowering time (FT) were both detected on LG 1. The accumulated contribution of these two QTLs explained 38.07% of the total phenotypic variance (PV), and each QTL explained 15.36 and 22.71% of the PV respectively. Four QTLs for pollen fertility (PF) were identified on LG 1 (qPF1.1 and qPF1.2), LG 3 (qPF3) and LG 7 (qPF7), respectively. The percentage of PF explained by these QTLs varied from 2.91 to 16.79%, and all together the four QTLs accounted for 39.98% of the total PV. Our newly developed EST-SSR markers and linkage map are very useful for gene mapping, comparative genomics and molecular marker-assisted breeding. These QTLs for interspecific reproductive isolation will also contribute to the cloning of genes relating to interspecific reproductive isolation and the utilization of interspecific heterosis in sponge gourd in further studies.

  10. Genetic Linkage Map Construction and QTL Analysis of Two Interspecific Reproductive Isolation Traits in Sponge Gourd

    PubMed Central

    Wu, Haibin; He, Xiaoli; Gong, Hao; Luo, Shaobo; Li, Mingzhu; Chen, Junqiu; Zhang, Changyuan; Yu, Ting; Huang, Wangping; Luo, Jianning

    2016-01-01

    The hybrids between Luffa acutangula (L.) Roxb. and L.cylindrica (L.) Roem. have strong heterosis effects. However, some reproductive isolation traits hindered their normal hybridization and fructification, which was mainly caused by the flowering time and hybrid pollen sterility. In order to study the genetic basis of two interspecific reproductive isolation traits, we constructed a genetic linkage map using an F2 population derived from a cross between S1174 [L. acutangula (L.) Roxb.] and 93075 [L. cylindrica (L.) Roem.]. The map spans 1436.12 CentiMorgans (cM), with an average of 8.11 cM among markers, and consists of 177 EST-SSR markers distributed in 14 linkage groups (LG) with an average of 102.58 cM per LG. Meanwhile, we conducted colinearity analysis between the sequences of EST-SSR markers and the genomic sequences of cucumber, melon and watermelon. On the basis of genetic linkage map, we conducted QTL mapping of two reproductive isolation traits in sponge gourd, which were the flowering time and hybrid male sterility. Two putative QTLs associated with flowering time (FT) were both detected on LG 1. The accumulated contribution of these two QTLs explained 38.07% of the total phenotypic variance (PV), and each QTL explained 15.36 and 22.71% of the PV respectively. Four QTLs for pollen fertility (PF) were identified on LG 1 (qPF1.1 and qPF1.2), LG 3 (qPF3) and LG 7 (qPF7), respectively. The percentage of PF explained by these QTLs varied from 2.91 to 16.79%, and all together the four QTLs accounted for 39.98% of the total PV. Our newly developed EST-SSR markers and linkage map are very useful for gene mapping, comparative genomics and molecular marker-assisted breeding. These QTLs for interspecific reproductive isolation will also contribute to the cloning of genes relating to interspecific reproductive isolation and the utilization of interspecific heterosis in sponge gourd in further studies. PMID:27458467

  11. A Linkage Map and QTL Analysis for Pyrethroid Resistance in the Bed Bug Cimex lectularius

    PubMed Central

    Fountain, Toby; Ravinet, Mark; Naylor, Richard; Reinhardt, Klaus; Butlin, Roger K.

    2016-01-01

    The rapid evolution of insecticide resistance remains one of the biggest challenges in the control of medically and economically important pests. Insects have evolved a diverse range of mechanisms to reduce the efficacy of the commonly used classes of insecticides, and finding the genetic basis of resistance is a major aid to management. In a previously unstudied population, we performed an F2 resistance mapping cross for the common bed bug, Cimex lectularius, for which insecticide resistance is increasingly widespread. Using 334 SNP markers obtained through RAD-sequencing, we constructed the first linkage map for the species, consisting of 14 putative linkage groups (LG), with a length of 407 cM and an average marker spacing of 1.3 cM. The linkage map was used to reassemble the recently published reference genome, facilitating refinement and validation of the current genome assembly. We detected a major QTL on LG12 associated with insecticide resistance, occurring in close proximity (1.2 Mb) to a carboxylesterase encoding candidate gene for pyrethroid resistance. This provides another example of this candidate gene playing a major role in determining survival in a bed bug population following pesticide resistance evolution. The recent availability of the bed bug genome, complete with a full list of potential candidate genes related to insecticide resistance, in addition to the linkage map generated here, provides an excellent resource for future research on the development and spread of insecticide resistance in this resurging pest species. PMID:27733453

  12. A Linkage Map and QTL Analysis for Pyrethroid Resistance in the Bed Bug Cimex lectularius.

    PubMed

    Fountain, Toby; Ravinet, Mark; Naylor, Richard; Reinhardt, Klaus; Butlin, Roger K

    2016-12-07

    The rapid evolution of insecticide resistance remains one of the biggest challenges in the control of medically and economically important pests. Insects have evolved a diverse range of mechanisms to reduce the efficacy of the commonly used classes of insecticides, and finding the genetic basis of resistance is a major aid to management. In a previously unstudied population, we performed an F2 resistance mapping cross for the common bed bug, Cimex lectularius, for which insecticide resistance is increasingly widespread. Using 334 SNP markers obtained through RAD-sequencing, we constructed the first linkage map for the species, consisting of 14 putative linkage groups (LG), with a length of 407 cM and an average marker spacing of 1.3 cM. The linkage map was used to reassemble the recently published reference genome, facilitating refinement and validation of the current genome assembly. We detected a major QTL on LG12 associated with insecticide resistance, occurring in close proximity (1.2 Mb) to a carboxylesterase encoding candidate gene for pyrethroid resistance. This provides another example of this candidate gene playing a major role in determining survival in a bed bug population following pesticide resistance evolution. The recent availability of the bed bug genome, complete with a full list of potential candidate genes related to insecticide resistance, in addition to the linkage map generated here, provides an excellent resource for future research on the development and spread of insecticide resistance in this resurging pest species.

  13. QTL mapping of leafy heads by genome resequencing in the RIL population of Brassica rapa.

    PubMed

    Yu, Xiang; Wang, Han; Zhong, Weili; Bai, Jinjuan; Liu, Pinglin; He, Yuke

    2013-01-01

    Leaf heads of cabbage (Brassica oleracea), Chinese cabbage (B. rapa), and lettuce (Lactuca sativa) are important vegetables that supply mineral nutrients, crude fiber and vitamins in the human diet. Head size, head shape, head weight, and heading time contribute to yield and quality. In an attempt to investigate genetic basis of leafy head in Chinese cabbage (B. rapa), we took advantage of recent technical advances of genome resequencing to perform quantitative trait locus (QTL) mapping using 150 recombinant inbred lines (RILs) derived from the cross between heading and non-heading Chinese cabbage. The resequenced genomes of the parents uncovered more than 1 million SNPs. Genotyping of RILs using the high-quality SNPs assisted by Hidden Markov Model (HMM) generated a recombination map. The raw genetic map revealed some physical assembly error and missing fragments in the reference genome that reduced the quality of SNP genotyping. By deletion of the genetic markers in which recombination rates higher than 20%, we have obtained a high-quality genetic map with 2209 markers and detected 18 QTLs for 6 head traits, from which 3 candidate genes were selected. These QTLs provide the foundation for study of genetic basis of leafy heads and the other complex traits.

  14. QTL Mapping in Three Rice Populations Uncovers Major Genomic Regions Associated with African Rice Gall Midge Resistance.

    PubMed

    Yao, Nasser; Lee, Cheng-Ruei; Semagn, Kassa; Sow, Mounirou; Nwilene, Francis; Kolade, Olufisayo; Bocco, Roland; Oyetunji, Olumoye; Mitchell-Olds, Thomas; Ndjiondjop, Marie-Noëlle

    2016-01-01

    African rice gall midge (AfRGM) is one of the most destructive pests of irrigated and lowland African ecologies. This study aimed to identify the quantitative trait loci (QTL) associated with AfRGM pest incidence and resistance in three independent bi-parental rice populations (ITA306xBW348-1, ITA306xTOG7106 and ITA306xTOS14519), and to conduct meta QTL (mQTL) analysis to explore whether any genomic regions are conserved across different genetic backgrounds. Composite interval mapping (CIM) conducted on the three populations independently uncovered a total of 28 QTLs associated with pest incidence (12) and pest severity (16). The number of QTLs per population associated with AfRGM resistance varied from three in the ITA306xBW348-1 population to eight in the ITA306xTOG7106 population. Each QTL individually explained 1.3 to 34.1% of the phenotypic variance. The major genomic region for AfRGM resistance had a LOD score and R2 of 60.0 and 34.1% respectively, and mapped at 111 cM on chromosome 4 (qAfrGM4) in the ITA306xTOS14519 population. The meta-analysis reduced the number of QTLs from 28 to 17 mQTLs, each explaining 1.3 to 24.5% of phenotypic variance, and narrowed the confidence intervals by 2.2 cM. There was only one minor effect mQTL on chromosome 1 that was common in the TOS14519 and TOG7106 genetic backgrounds; all other mQTLs were background specific. We are currently fine-mapping and validating the major effect genomic region on chromosome 4 (qAfRGM4). This is the first report in mapping the genomic regions associated with the AfRGM resistance, and will be highly useful for rice breeders.

  15. Genetic mapping of sulfur assimilation genes reveals a QTL for onion bulb pungency.

    PubMed

    McCallum, John; Pither-Joyce, Meeghan; Shaw, Martin; Kenel, Fernand; Davis, Sheree; Butler, Ruth; Scheffer, John; Jakse, Jernej; Havey, Michael J

    2007-03-01

    Onion exhibits wide genetic and environmental variation in bioactive organosulfur compounds that impart pungency and health benefits. A PCR-based molecular marker map that included candidate genes for sulfur assimilation was used to identify genomic regions affecting pungency in the cross 'W202A' x 'Texas Grano 438'. Linkage mapping revealed that genes encoding plastidic ferredoxin-sulfite reductase (SiR) and plastidic ATP sulfurylase (ATPS) are closely linked (1-2 cM) on chromosome 3. Inbred F(3) families derived from the F(2 )population used to construct the genetic map were grown in replicated trials in two environments and bulb pungency was evaluated as pyruvic acid or lachrymatory factor. Broad-sense heritability of pungency was estimated to be 0.78-0.80. QTL analysis revealed significant associations of both pungency and bulb soluble solids content with marker intervals on chromosomes 3 and 5, which have previously been reported to condition pleiotropic effects on bulb carbohydrate composition. Highly significant associations (LOD 3.7-8.7) were observed between ATPS and SiR Loci and bulb pungency but not with bulb solids content. This association was confirmed in two larger, independently derived F(2) families from the same cross. Single-locus models suggested that the partially dominant locus associated with these candidate genes controls 30-50% of genetic variation in pungency in these pedigrees. These markers may provide a practical means to select for lower pungency without correlated selection for lowered solids.

  16. Mapping with RAD (restriction-site associated DNA) markers to rapidly identify QTL for stem rust resistance in Lolium perenne.

    PubMed

    Pfender, W F; Saha, M C; Johnson, E A; Slabaugh, M B

    2011-05-01

    A mapping population was created to detect quantitative trait loci (QTL) for resistance to stem rust caused by Puccinia graminis subsp. graminicola in Lolium perenne. A susceptible and a resistant plant were crossed to produce a pseudo-testcross population of 193 F(1) individuals. Markers were produced by the restriction-site associated DNA (RAD) process, which uses massively parallel and multiplexed sequencing of reduced-representation libraries. Additional simple sequence repeat (SSR) and sequence-tagged site (STS) markers were combined with the RAD markers to produce maps for the female (738 cM) and male (721 cM) parents. Stem rust phenotypes (number of pustules per plant) were determined in replicated greenhouse trials by inoculation with a field-collected, genetically heterogeneous population of urediniospores. The F(1) progeny displayed continuous distribution of phenotypes and transgressive segregation. We detected three resistance QTL. The most prominent QTL (qLpPg1) is located near 41 cM on linkage group (LG) 7 with a 2-LOD interval of 8 cM, and accounts for 30-38% of the stem rust phenotypic variance. QTL were detected also on LG1 (qLpPg2) and LG6 (qLpPg3), each accounting for approximately 10% of phenotypic variance. Alleles of loci closely linked to these QTL originated from the resistant parent for qLpPg1 and from both parents for qLpPg2 and qLpPg3. Observed quantitative nature of the resistance may be due to partial-resistance effects against all pathogen genotypes, or qualitative effects completely preventing infection by only some genotypes in the genetically mixed inoculum. RAD markers facilitated rapid construction of new genetic maps in this outcrossing species and will enable development of sequence-based markers linked to stem rust resistance in L. perenne.

  17. Mapping of QTL for resistance to the Mediterranean corn borer attack using the intermated B73 x Mo17 (IBM) population of maize.

    PubMed

    Ordas, Bernardo; Malvar, Rosa A; Santiago, Rogelio; Sandoya, German; Romay, Maria C; Butron, Ana

    2009-11-01

    The Mediterranean corn borer or pink stem borer (MCB, Sesamia nonagrioides Lefebvre) causes important yield losses as a consequence of stalk tunneling and direct kernel damage. B73 and Mo17 are the source of the most commercial valuable maize inbred lines in temperate zones, while the intermated B73 x Mo17 (IBM) population is an invaluable source for QTL identification. However, no or few experiments have been carried out to detect QTL for corn borer resistance in the B73 x Mo17 population. The objective of this work was to locate QTL for resistance to stem tunneling and kernel damage by MCB in the IBM population. We detected a QTL for kernel damage at bin 8.05, although the effect was small and two QTL for stalk tunneling at bins 1.06 and 9.04 in which the additive effects were 4 cm, approximately. The two QTL detected for MCB resistance were close to other QTL consistently found for European corn borer (ECB, Ostrinia nubilalis Hübner) resistance, indicating mechanisms of resistance common to both pests or gene clusters controlling resistance to different plagues. The precise mapping achieved with the IBM population will facilitate the QTL pyramiding and the positional cloning of the detected QTL.

  18. High-Throughput Phenotyping and QTL Mapping Reveals the Genetic Architecture of Maize Plant Growth1[OPEN

    PubMed Central

    Huang, Chenglong; Wu, Di; Qiao, Feng; Li, Wenqiang; Duan, Lingfeng; Wang, Ke; Xiao, Yingjie; Chen, Guoxing; Liu, Qian; Yang, Wanneng

    2017-01-01

    With increasing demand for novel traits in crop breeding, the plant research community faces the challenge of quantitatively analyzing the structure and function of large numbers of plants. A clear goal of high-throughput phenotyping is to bridge the gap between genomics and phenomics. In this study, we quantified 106 traits from a maize (Zea mays) recombinant inbred line population (n = 167) across 16 developmental stages using the automatic phenotyping platform. Quantitative trait locus (QTL) mapping with a high-density genetic linkage map, including 2,496 recombinant bins, was used to uncover the genetic basis of these complex agronomic traits, and 988 QTLs have been identified for all investigated traits, including three QTL hotspots. Biomass accumulation and final yield were predicted using a combination of dissected traits in the early growth stage. These results reveal the dynamic genetic architecture of maize plant growth and enhance ideotype-based maize breeding and prediction. PMID:28153923

  19. Rapid genotyping with DNA micro-arrays for high-density linkage mapping and QTL mapping in common buckwheat (Fagopyrum esculentum Moench).

    PubMed

    Yabe, Shiori; Hara, Takashi; Ueno, Mariko; Enoki, Hiroyuki; Kimura, Tatsuro; Nishimura, Satoru; Yasui, Yasuo; Ohsawa, Ryo; Iwata, Hiroyoshi

    2014-12-01

    For genetic studies and genomics-assisted breeding, particularly of minor crops, a genotyping system that does not require a priori genomic information is preferable. Here, we demonstrated the potential of a novel array-based genotyping system for the rapid construction of high-density linkage map and quantitative trait loci (QTL) mapping. By using the system, we successfully constructed an accurate, high-density linkage map for common buckwheat (Fagopyrum esculentum Moench); the map was composed of 756 loci and included 8,884 markers. The number of linkage groups converged to eight, which is the basic number of chromosomes in common buckwheat. The sizes of the linkage groups of the P1 and P2 maps were 773.8 and 800.4 cM, respectively. The average interval between adjacent loci was 2.13 cM. The linkage map constructed here will be useful for the analysis of other common buckwheat populations. We also performed QTL mapping for main stem length and detected four QTL. It took 37 days to process 178 samples from DNA extraction to genotyping, indicating the system enables genotyping of genome-wide markers for a few hundred buckwheat plants before the plants mature. The novel system will be useful for genomics-assisted breeding in minor crops without a priori genomic information.

  20. Genetic Analysis and QTL Mapping of Fruit Peduncle Length in Cucumber (Cucumis sativus L.)

    PubMed Central

    Zhang, Song; Wang, Ye; Zhang, Sheng-Ping; Gu, Xing-Fang

    2016-01-01

    Mechanized harvesting of cucumbers offers significant advantages compared to manual labor as both shortages and costs of labor increase. However the efficient use of machines depends on breeding plants with longer peduncles, but the genetic and molecular basis of fruit peduncle development in cucumber is not well understood. In this study, F2 populations were developed from a cross between two inbred lines, 1101 with a long peduncle and 1694 with a short peduncle. These were grown at two field sites, Hainan, with a tropical marine climate, in December 2014, and Beijing, with a warm temperate climate, in May 2015. Electron microscope examination of the pith cells in the peduncles of the two parental lines showed that line 1101 had significantly greater numbers of smaller cells compared to line 1694. The inheritance of cucumber fruit peduncle length (FPL) was investigated by the mixed major gene and polygene inheritance model. Genetic analysis indicated that FPL in cucumber is quantitatively inherited and controlled by one additive major gene and additive-dominant polygenes (D-2 model). A total of 1460 pairs of SSR (simple sequence repeat) primers were analyzed to identify quantitative trait loci (QTLs). Two similar genetic maps with 78 SSR markers which covered 720.6 cM in seven linkage groups were constructed based on two F2 populations. QTL analysis from the data collected at the two field sites showed that there are two minor QTLs on chromosome 1, named qfpl1.1 and qfpl1.2, and one major QTL on chromosome 6, named qfpl6.1. The marker UW021226, which was the closest one to qfpl6.1, had an accuracy rate of 79.0% when tested against plants selected from populations of the two parents. The results from this study provide insights into the inheritance and molecular mechanism of the variation of FPL in cucumber, and further research will be carried out to fine map qfpl6.1 to develop more accurate markers for MAS breeding. PMID:27936210

  1. QTL Analysis and Candidate Gene Mapping for the Polyphenol Content in Cider Apple

    PubMed Central

    Verdu, Cindy F.; Guyot, Sylvain; Childebrand, Nicolas; Bahut, Muriel; Celton, Jean-Marc; Gaillard, Sylvain; Lasserre-Zuber, Pauline; Troggio, Michela; Guilet, David; Laurens, François

    2014-01-01

    Polyphenols have favorable antioxidant potential on human health suggesting that their high content is responsible for the beneficial effects of apple consumption. They control the quality of ciders as they predominantly account for astringency, bitterness, color and aroma. In this study, we identified QTLs controlling phenolic compound concentrations and the average polymerization degree of flavanols in a cider apple progeny. Thirty-two compounds belonging to five groups of phenolic compounds were identified and quantified by reversed phase liquid chromatography on both fruit extract and juice, over three years. The average polymerization degree of flavanols was estimated in fruit by phloroglucinolysis coupled to HPLC. Parental maps were built using SSR and SNP markers and used for the QTL analysis. Sixty-nine and 72 QTLs were detected on 14 and 11 linkage groups of the female and male maps, respectively. A majority of the QTLs identified in this study are specific to this population, while others are consistent with previous studies. This study presents for the first time in apple, QTLs for the mean polymerization degree of procyanidins, for which the mechanisms involved remains unknown to this day. Identification of candidate genes underlying major QTLs was then performed in silico and permitted the identification of 18 enzymes of the polyphenol pathway and six transcription factors involved in the apple anthocyanin regulation. New markers were designed from sequences of the most interesting candidate genes in order to confirm their co-localization with underlying QTLs by genetic mapping. Finally, the potential use of these QTLs in breeding programs is discussed. PMID:25271925

  2. QTL analysis and candidate gene mapping for the polyphenol content in cider apple.

    PubMed

    Verdu, Cindy F; Guyot, Sylvain; Childebrand, Nicolas; Bahut, Muriel; Celton, Jean-Marc; Gaillard, Sylvain; Lasserre-Zuber, Pauline; Troggio, Michela; Guilet, David; Laurens, François

    2014-01-01

    Polyphenols have favorable antioxidant potential on human health suggesting that their high content is responsible for the beneficial effects of apple consumption. They control the quality of ciders as they predominantly account for astringency, bitterness, color and aroma. In this study, we identified QTLs controlling phenolic compound concentrations and the average polymerization degree of flavanols in a cider apple progeny. Thirty-two compounds belonging to five groups of phenolic compounds were identified and quantified by reversed phase liquid chromatography on both fruit extract and juice, over three years. The average polymerization degree of flavanols was estimated in fruit by phloroglucinolysis coupled to HPLC. Parental maps were built using SSR and SNP markers and used for the QTL analysis. Sixty-nine and 72 QTLs were detected on 14 and 11 linkage groups of the female and male maps, respectively. A majority of the QTLs identified in this study are specific to this population, while others are consistent with previous studies. This study presents for the first time in apple, QTLs for the mean polymerization degree of procyanidins, for which the mechanisms involved remains unknown to this day. Identification of candidate genes underlying major QTLs was then performed in silico and permitted the identification of 18 enzymes of the polyphenol pathway and six transcription factors involved in the apple anthocyanin regulation. New markers were designed from sequences of the most interesting candidate genes in order to confirm their co-localization with underlying QTLs by genetic mapping. Finally, the potential use of these QTLs in breeding programs is discussed.

  3. QTL Mapping of Agronomic Waterlogging Tolerance Using Recombinant Inbred Lines Derived from Tropical Maize (Zea mays L) Germplasm

    PubMed Central

    Zaidi, Pervez Haider; Rashid, Zerka; Vinayan, Madhumal Thayil; Almeida, Gustavo Dias; Phagna, Ramesh Kumar; Babu, Raman

    2015-01-01

    Waterlogging is an important abiotic stress constraint that causes significant yield losses in maize grown throughout south and south-east Asia due to erratic rainfall patterns. The most economic option to offset the damage caused by waterlogging is to genetically incorporate tolerance in cultivars that are grown widely in the target agro-ecologies. We assessed the genetic variation in a population of recombinant inbred lines (RILs) derived from crossing a waterlogging tolerant line (CAWL-46-3-1) to an elite but sensitive line (CML311-2-1-3) and observed significant range of variation for grain yield (GY) under waterlogging stress along with a number of other secondary traits such as brace roots (BR), chlorophyll content (SPAD), % stem and root lodging (S&RL) among the RILs. Significant positive correlation of GY with BR and SPAD and negative correlation with S&RL indicated the potential use of these secondary traits in selection indices under waterlogged conditions. RILs were genotyped with 331 polymorphic single nucleotide polymorphism (SNP) markers using KASP (Kompetitive Allele Specific PCR) Platform. QTL mapping revealed five QTL on chromosomes 1, 3, 5, 7 and 10, which together explained approximately 30% of phenotypic variance for GY based on evaluation of RIL families under waterlogged conditions, with effects ranging from 520 to 640 kg/ha for individual genomic regions. 13 QTL were identified for various secondary traits associated with waterlogging tolerance, each individually explaining from 3 to 14% of phenotypic variance. Of the 22 candidate genes with known functional domains identified within the physical intervals delimited by the flanking markers of the QTL influencing GY and other secondary traits, six have previously been demonstrated to be associated with anaerobic responses in either maize or other model species. A pair of flanking SNP markers has been identified for each of the QTL and high throughput marker assays were developed to facilitate

  4. Multipoint-likelihood maximization mapping on 4 segregating populations to achieve an integrated framework map for QTL analysis in pot azalea (Rhododendron simsii hybrids)

    PubMed Central

    2010-01-01

    Background Azalea (Rhododendron simsii hybrids) is the most important flowering pot plant produced in Belgium, being exported world-wide. In the breeding program, flower color is the main feature for selection, only in later stages cultivation related plant quality traits are evaluated. As a result, plants with attractive flowering are kept too long in the breeding cycle. The inheritance of flower color has been well studied; information on the heritability of cultivation related quality traits is lacking. For this purpose, QTL mapping in diverse genetic backgrounds appeared to be a must and therefore 4 mapping populations were made and analyzed. Results An integrated framework map on four individual linkage maps in Rhododendron simsii hybrids was constructed. For genotyping, mainly dominant scored AFLP (on average 364 per population) and MYB-based markers (15) were combined with co-dominant SSR (23) and EST markers (12). Linkage groups were estimated in JoinMap. A consensus grouping for the 4 mapping populations was made and applied in each individual mapping population. Finally, 16 stable linkage groups were set for the 4 populations; the azalea chromosome number being 13. A combination of regression mapping (JoinMap) and multipoint-likelihood maximization (Carthagène) enabled the construction of 4 maps and their alignment. A large portion of loci (43%) was common to at least two populations and could therefore serve as bridging markers. The different steps taken for map optimization and integration into a reference framework map for QTL mapping are discussed. Conclusions This is the first map of azalea up to our knowledge. AFLP and SSR markers are used as a reference backbone and functional markers (EST and MYB) were added as candidate genes for QTL analysis. The alignment of the 4 maps on the basis of framework markers will facilitate in turn the alignment of QTL regions detected in each of the populations. The approach we took is thoroughly different than the

  5. Confirmation and Fine Mapping of a Major QTL for Aflatoxin Resistance in Maize Using a Combination of Linkage and Association Mapping

    PubMed Central

    Zhang, Yu; Cui, Min; Zhang, Jimin; Zhang, Lei; Li, Chenliu; Kan, Xin; Sun, Qian; Deng, Dexiang; Yin, Zhitong

    2016-01-01

    Maize grain contamination with aflatoxin from Aspergillus flavus (A. flavus) is a serious health hazard to animals and humans. To map the quantitative trait loci (QTLs) associated with resistance to A. flavus, we employed a powerful approach that differs from previous methods in one important way: it combines the advantages of the genome-wide association analysis (GWAS) and traditional linkage mapping analysis. Linkage mapping was performed using 228 recombinant inbred lines (RILs), and a highly significant QTL that affected aflatoxin accumulation, qAA8, was mapped. This QTL spanned approximately 7 centi-Morgan (cM) on chromosome 8. The confidence interval was too large for positional cloning of the causal gene. To refine this QTL, GWAS was performed with 558,629 single nucleotide polymorphisms (SNPs) in an association population comprising 437 maize inbred lines. Twenty-five significantly associated SNPs were identified, most of which co-localised with qAA8 and explained 6.7% to 26.8% of the phenotypic variation observed. Based on the rapid linkage disequilibrium (LD) and the high density of SNPs in the association population, qAA8 was further localised to a smaller genomic region of approximately 1500 bp. A high-resolution map of the qAA8 region will be useful towards a marker-assisted selection (MAS) of A. flavus resistance and a characterisation of the causal gene. PMID:27598199

  6. From beavis to beak color: a simulation study to examine how much qtl mapping can reveal about the genetic architecture of quantitative traits.

    PubMed

    Slate, Jon

    2013-05-01

    Quantitative trait locus (QTL) mapping is frequently used in evolutionary studies to understand the genetic architecture of continuously varying traits. The majority of studies have been conducted in specially created crosses, in which genetic differences between parental lines are identified by linkage analysis. Detecting QTL segregating within populations is more problematic, especially in wild populations, because these populations typically have complicated and unbalanced multigenerational pedigrees. However, QTL mapping can still be conducted in such populations using a variance components mixed model approach, and the advent of appropriate statistical frameworks and better genotyping methods mean that the approach is gaining popularity. In this study it is shown that all studies described to date report evidence of QTL of major effect on trait variation, but that these findings are probably caused by inflated estimates of QTL effect sizes due to the Beavis effect. Using simulations I show that even the most powerful studies conducted to date are likely to give misleading descriptions of the genetic architecture of a trait. I show that an interpretation of a mapping study of beak color in the zebra finch (Taeniopygia guttata), that suggested genetic variation was determined by a small number of loci of large effect, which are possibly maintained by antagonistic pleiotropy, is likely to be incorrect. More generally, recommendations are made to how QTL mapping can be combined with other approaches to provide more accurate descriptions of a trait's genetic architecture.

  7. Mapping a QTL conferring resistance to Fusarium head blight on chromosome 1B in winter wheat (Triticum aestivum L.)

    PubMed Central

    Nishio, Zenta; Onoe, Chihiro; Ito, Miwako; Tabiki, Tadashi; Nagasawa, Koichi; Miura, Hideho

    2016-01-01

    Fusarium head blight (FHB) is one of the most devastating diseases of wheat (Triticum aestivum L.), and the development of cultivars with FHB resistance is the most effective way to control the disease. Yumechikara is a Japanese hard red winter wheat cultivar that shows moderate resistance to FHB with superior bread-making quality. To identify quantitative trait loci (QTLs) for FHB resistance in Yumechikara, we evaluated doubled haploid lines derived from a cross between Yumechikara and a moderate susceptible cultivar, Kitahonami, for FHB resistance in a 5-year field trial, and we analyzed polymorphic molecular markers between the parents. Our analysis of these markers identified two FHB-resistance QTLs, one from Yumechikara and one from Kitahonami. The QTL from Yumechikara, which explained 36.4% of the phenotypic variation, was mapped on the distal region of chromosome 1BS, which is closely linked to the low-molecular-weight glutenin subunit gene Glu-B3 and the glume color gene Rg-B1. The other QTL (from Kitahonami) was mapped on chromosome 3BS, which explained 11.2% of the phenotypic variation. The close linkage between the FHB-resistance QTL on 1BS, Glu-B3 and Rg-B1 brings an additional value of simultaneous screening for both quality and FHB resistance using the glume color. PMID:28163582

  8. Single QTL mapping and nucleotide-level resolution of a physiologic trait in wine Saccharomyces cerevisiae strains.

    PubMed

    Marullo, Philippe; Aigle, Michel; Bely, Marina; Masneuf-Pomarède, Isabelle; Durrens, Pascal; Dubourdieu, Denis; Yvert, Gaël

    2007-09-01

    Natural Saccharomyces cerevisiae yeast strains exhibit very large genotypic and phenotypic diversity. However, the link between phenotype variation and genetic determinism is still difficult to identify, especially in wild populations. Using genome hybridization on DNA microarrays, it is now possible to identify single-feature polymorphisms among divergent yeast strains. This tool offers the possibility of applying quantitative genetics to wild yeast strains. In this instance, we studied the genetic basis for variations in acetic acid production using progeny derived from two strains from grape must isolates. The trait was quantified during alcoholic fermentation of the two strains and 108 segregants derived from their crossing. A genetic map of 2212 markers was generated using oligonucleotide microarrays, and a major quantitative trait locus (QTL) was mapped with high significance. Further investigations showed that this QTL was due to a nonsynonymous single-nucleotide polymorphism that targeted the catalytic core of asparaginase type I (ASP1) and abolished its activity. This QTL was only effective when asparagine was used as a major nitrogen source. Our results link nitrogen assimilation and CO(2) production rate to acetic acid production, as well as, on a broader scale, illustrating the specific problem of quantitative genetics when working with nonlaboratory microorganisms.

  9. Identification and Verification of QTL Associated with Frost Tolerance Using Linkage Mapping and GWAS in Winter Faba Bean

    PubMed Central

    Sallam, Ahmed; Arbaoui, Mustapha; El-Esawi, Mohamed; Abshire, Nathan; Martsch, Regina

    2016-01-01

    Frost stress is one of the abiotic stresses that causes a significant reduction in winter faba bean yield in Europe. The main objective of this work is to genetically improve frost tolerance in winter faba bean by identifying and validating QTL associated with frost tolerance to be used in marker-assisted selection (MAS). Two different genetic backgrounds were used: a biparental population (BPP) consisting of 101 inbred lines, and 189 genotypes from single seed descent (SSD) from the Gottingen Winter bean Population (GWBP). All experiments were conducted in a frost growth chamber under controlled conditions. Both populations were genotyped using the same set of 189 SNP markers. Visual scoring for frost stress symptoms was used to define frost tolerance in both populations. In addition, leaf fatty acid composition (FAC) and proline content were analyzed in BPP as physiological traits. QTL mapping (for BPP) and genome wide association studies (for GWBP) were performed to detect QTL associated with frost tolerance. High genetic variation between genotypes, and repeatability estimates, were found for all traits. QTL mapping and GWAS identified new putative QTL associated with promising frost tolerance and related traits. A set of 54 SNP markers common in both genetic backgrounds showed a high genetic diversity with polymorphic information content (PIC) ranging from 0.31 to 0.37 and gene diversity ranging from 0.39 to 0.50. This indicates that these markers may be polymorphic for many faba bean populations. Five SNP markers showed a significant marker-trait association with frost tolerance and related traits in both populations. Moreover, synteny analysis between Medicago truncatula (a model legume) and faba bean genomes was performed to identify candidate genes for these markers. Collinearity was evaluated between the faba bean genetic map constructed in this study and the faba bean consensus map, resulting in identifying possible genomic regions in faba bean which may

  10. Identification and Verification of QTL Associated with Frost Tolerance Using Linkage Mapping and GWAS in Winter Faba Bean.

    PubMed

    Sallam, Ahmed; Arbaoui, Mustapha; El-Esawi, Mohamed; Abshire, Nathan; Martsch, Regina

    2016-01-01

    Frost stress is one of the abiotic stresses that causes a significant reduction in winter faba bean yield in Europe. The main objective of this work is to genetically improve frost tolerance in winter faba bean by identifying and validating QTL associated with frost tolerance to be used in marker-assisted selection (MAS). Two different genetic backgrounds were used: a biparental population (BPP) consisting of 101 inbred lines, and 189 genotypes from single seed descent (SSD) from the Gottingen Winter bean Population (GWBP). All experiments were conducted in a frost growth chamber under controlled conditions. Both populations were genotyped using the same set of 189 SNP markers. Visual scoring for frost stress symptoms was used to define frost tolerance in both populations. In addition, leaf fatty acid composition (FAC) and proline content were analyzed in BPP as physiological traits. QTL mapping (for BPP) and genome wide association studies (for GWBP) were performed to detect QTL associated with frost tolerance. High genetic variation between genotypes, and repeatability estimates, were found for all traits. QTL mapping and GWAS identified new putative QTL associated with promising frost tolerance and related traits. A set of 54 SNP markers common in both genetic backgrounds showed a high genetic diversity with polymorphic information content (PIC) ranging from 0.31 to 0.37 and gene diversity ranging from 0.39 to 0.50. This indicates that these markers may be polymorphic for many faba bean populations. Five SNP markers showed a significant marker-trait association with frost tolerance and related traits in both populations. Moreover, synteny analysis between Medicago truncatula (a model legume) and faba bean genomes was performed to identify candidate genes for these markers. Collinearity was evaluated between the faba bean genetic map constructed in this study and the faba bean consensus map, resulting in identifying possible genomic regions in faba bean which may

  11. QTL Mapping in Three Rice Populations Uncovers Major Genomic Regions Associated with African Rice Gall Midge Resistance

    PubMed Central

    Semagn, Kassa; Sow, Mounirou; Nwilene, Francis; Kolade, Olufisayo; Bocco, Roland; Oyetunji, Olumoye; Mitchell-Olds, Thomas; Ndjiondjop, Marie-Noëlle

    2016-01-01

    African rice gall midge (AfRGM) is one of the most destructive pests of irrigated and lowland African ecologies. This study aimed to identify the quantitative trait loci (QTL) associated with AfRGM pest incidence and resistance in three independent bi-parental rice populations (ITA306xBW348-1, ITA306xTOG7106 and ITA306xTOS14519), and to conduct meta QTL (mQTL) analysis to explore whether any genomic regions are conserved across different genetic backgrounds. Composite interval mapping (CIM) conducted on the three populations independently uncovered a total of 28 QTLs associated with pest incidence (12) and pest severity (16). The number of QTLs per population associated with AfRGM resistance varied from three in the ITA306xBW348-1 population to eight in the ITA306xTOG7106 population. Each QTL individually explained 1.3 to 34.1% of the phenotypic variance. The major genomic region for AfRGM resistance had a LOD score and R2 of 60.0 and 34.1% respectively, and mapped at 111 cM on chromosome 4 (qAfrGM4) in the ITA306xTOS14519 population. The meta-analysis reduced the number of QTLs from 28 to 17 mQTLs, each explaining 1.3 to 24.5% of phenotypic variance, and narrowed the confidence intervals by 2.2 cM. There was only one minor effect mQTL on chromosome 1 that was common in the TOS14519 and TOG7106 genetic backgrounds; all other mQTLs were background specific. We are currently fine-mapping and validating the major effect genomic region on chromosome 4 (qAfRGM4). This is the first report in mapping the genomic regions associated with the AfRGM resistance, and will be highly useful for rice breeders. PMID:27508500

  12. Advanced backcross QTL mapping of resistance to Fusarium head blight and plant morphological traits in a Triticum macha × T. aestivum population.

    PubMed

    Buerstmayr, Maria; Lemmens, Marc; Steiner, Barbara; Buerstmayr, Hermann

    2011-07-01

    While many reports on genetic analysis of Fusarium head blight (FHB) resistance in bread wheat have been published during the past decade, only limited information is available on FHB resistance derived from wheat relatives. In this contribution, we report on the genetic analysis of FHB resistance derived from Triticum macha (Georgian spelt wheat). As the origin of T. macha is in the Caucasian region, it is supposed that its FHB resistance differs from other well-investigated resistance sources. To introduce valuable alleles from the landrace T. macha into a modern genetic background, we adopted an advanced backcross QTL mapping scheme. A backcross-derived recombinant-inbred line population of 321 BC(2)F(3) lines was developed from a cross of T. macha with the Austrian winter wheat cultivar Furore. The population was evaluated for Fusarium resistance in seven field experiments during four seasons using artificial inoculations. A total of 300 lines of the population were genetically fingerprinted using SSR and AFLP markers. The resulting linkage map covered 33 linkage groups with 560 markers. Five novel FHB-resistance QTL, all descending from T. macha, were found on four chromosomes (2A, 2B, 5A, 5B). Several QTL for morphological and developmental traits were mapped in the same population, which partly overlapped with FHB-resistance QTL. Only the 2BL FHB-resistance QTL co-located with a plant height QTL. The largest-effect FHB-resistance QTL in this population mapped at the spelt-type locus on chromosome 5A and was associated with the wild-type allele q, but it is unclear whether q has a pleiotropic effect on FHB resistance or is closely linked to a nearby resistance QTL.

  13. A Cross-Species Gene Expression Marker-Based Genetic Map and QTL Analysis in Bambara Groundnut.

    PubMed

    Chai, Hui Hui; Ho, Wai Kuan; Graham, Neil; May, Sean; Massawe, Festo; Mayes, Sean

    2017-02-22

    Bambara groundnut (Vigna subterranea (L.) Verdc.) is an underutilised legume crop, which has long been recognised as a protein-rich and drought-tolerant crop, used extensively in Sub-Saharan Africa. The aim of the study was to identify quantitative trait loci (QTL) involved in agronomic and drought-related traits using an expression marker-based genetic map based on major crop resources developed in soybean. The gene expression markers (GEMs) were generated at the (unmasked) probe-pair level after cross-hybridisation of bambara groundnut leaf RNA to the Affymetrix Soybean Genome GeneChip. A total of 753 markers grouped at an LOD (Logarithm of odds) of three, with 527 markers mapped into linkage groups. From this initial map, a spaced expression marker-based genetic map consisting of 13 linkage groups containing 218 GEMs, spanning 982.7 cM (centimorgan) of the bambara groundnut genome, was developed. Of the QTL detected, 46% were detected in both control and drought treatment populations, suggesting that they are the result of intrinsic trait differences between the parental lines used to construct the cross, with 31% detected in only one of the conditions. The present GEM map in bambara groundnut provides one technically feasible route for the translation of information and resources from major and model plant species to underutilised and resource-poor crops.

  14. A Cross-Species Gene Expression Marker-Based Genetic Map and QTL Analysis in Bambara Groundnut

    PubMed Central

    Chai, Hui Hui; Ho, Wai Kuan; Graham, Neil; May, Sean; Massawe, Festo; Mayes, Sean

    2017-01-01

    Bambara groundnut (Vigna subterranea (L.) Verdc.) is an underutilised legume crop, which has long been recognised as a protein-rich and drought-tolerant crop, used extensively in Sub-Saharan Africa. The aim of the study was to identify quantitative trait loci (QTL) involved in agronomic and drought-related traits using an expression marker-based genetic map based on major crop resources developed in soybean. The gene expression markers (GEMs) were generated at the (unmasked) probe-pair level after cross-hybridisation of bambara groundnut leaf RNA to the Affymetrix Soybean Genome GeneChip. A total of 753 markers grouped at an LOD (Logarithm of odds) of three, with 527 markers mapped into linkage groups. From this initial map, a spaced expression marker-based genetic map consisting of 13 linkage groups containing 218 GEMs, spanning 982.7 cM (centimorgan) of the bambara groundnut genome, was developed. Of the QTL detected, 46% were detected in both control and drought treatment populations, suggesting that they are the result of intrinsic trait differences between the parental lines used to construct the cross, with 31% detected in only one of the conditions. The present GEM map in bambara groundnut provides one technically feasible route for the translation of information and resources from major and model plant species to underutilised and resource-poor crops. PMID:28241413

  15. Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping.

    PubMed

    Famoso, Adam N; Zhao, Keyan; Clark, Randy T; Tung, Chih-Wei; Wright, Mark H; Bustamante, Carlos; Kochian, Leon V; McCouch, Susan R

    2011-08-01

    Aluminum (Al) toxicity is a primary limitation to crop productivity on acid soils, and rice has been demonstrated to be significantly more Al tolerant than other cereal crops. However, the mechanisms of rice Al tolerance are largely unknown, and no genes underlying natural variation have been reported. We screened 383 diverse rice accessions, conducted a genome-wide association (GWA) study, and conducted QTL mapping in two bi-parental populations using three estimates of Al tolerance based on root growth. Subpopulation structure explained 57% of the phenotypic variation, and the mean Al tolerance in Japonica was twice that of Indica. Forty-eight regions associated with Al tolerance were identified by GWA analysis, most of which were subpopulation-specific. Four of these regions co-localized with a priori candidate genes, and two highly significant regions co-localized with previously identified QTLs. Three regions corresponding to induced Al-sensitive rice mutants (ART1, STAR2, Nrat1) were identified through bi-parental QTL mapping or GWA to be involved in natural variation for Al tolerance. Haplotype analysis around the Nrat1 gene identified susceptible and tolerant haplotypes explaining 40% of the Al tolerance variation within the aus subpopulation, and sequence analysis of Nrat1 identified a trio of non-synonymous mutations predictive of Al sensitivity in our diversity panel. GWA analysis discovered more phenotype-genotype associations and provided higher resolution, but QTL mapping identified critical rare and/or subpopulation-specific alleles not detected by GWA analysis. Mapping using Indica/Japonica populations identified QTLs associated with transgressive variation where alleles from a susceptible aus or indica parent enhanced Al tolerance in a tolerant Japonica background. This work supports the hypothesis that selectively introgressing alleles across subpopulations is an efficient approach for trait enhancement in plant breeding programs and demonstrates

  16. Using a Candidate Gene-Based Genetic Linkage Map to Identify QTL for Winter Survival in Perennial Ryegrass

    PubMed Central

    Paina, Cristiana; Byrne, Stephen L.; Studer, Bruno; Rognli, Odd Arne; Asp, Torben

    2016-01-01

    Important agronomical traits in perennial ryegrass (Lolium perenne) breeding programs such as winter survival and heading date, are quantitative traits that are generally controlled by multiple loci. Individually, these loci have relatively small effects. The aim of this study was to develop a candidate gene based Illumina GoldenGate 1,536-plex assay, containing single nucleotide polymorphism markers designed from transcripts involved in response to cold acclimation, vernalization, and induction of flowering. The assay was used to genotype a mapping population that we have also phenotyped for winter survival to complement the heading date trait previously mapped in this population. A positive correlation was observed between strong vernalization requirement and winter survival, and some QTL for winter survival and heading date overlapped on the genetic map. Candidate genes were located in clusters along the genetic map, some of which co-localized with QTL for winter survival and heading date. These clusters of candidate genes may be used in candidate gene based association studies to identify alleles associated with winter survival and heading date. PMID:27010567

  17. Using a Candidate Gene-Based Genetic Linkage Map to Identify QTL for Winter Survival in Perennial Ryegrass.

    PubMed

    Paina, Cristiana; Byrne, Stephen L; Studer, Bruno; Rognli, Odd Arne; Asp, Torben

    2016-01-01

    Important agronomical traits in perennial ryegrass (Lolium perenne) breeding programs such as winter survival and heading date, are quantitative traits that are generally controlled by multiple loci. Individually, these loci have relatively small effects. The aim of this study was to develop a candidate gene based Illumina GoldenGate 1,536-plex assay, containing single nucleotide polymorphism markers designed from transcripts involved in response to cold acclimation, vernalization, and induction of flowering. The assay was used to genotype a mapping population that we have also phenotyped for winter survival to complement the heading date trait previously mapped in this population. A positive correlation was observed between strong vernalization requirement and winter survival, and some QTL for winter survival and heading date overlapped on the genetic map. Candidate genes were located in clusters along the genetic map, some of which co-localized with QTL for winter survival and heading date. These clusters of candidate genes may be used in candidate gene based association studies to identify alleles associated with winter survival and heading date.

  18. QTL mapping of fruit rot resistance to the plant pathogen Phytophthora capsici in a recombinant inbred line Capsicum annuum population.

    PubMed

    Naegele, R P; Ashrafi, H; Hill, T A; Chin-Wo, S Reyes; Van Deynze, A E; Hausbeck, M K

    2014-05-01

    Phytophthora capsici is an important pepper (Capsicum annuum) pathogen causing fruit and root rot, and foliar blight in field and greenhouse production. Previously, an F6 recombinant inbred line population was evaluated for fruit rot susceptibility. Continuous variation among lines and partial and isolate-specific resistance were found. In this study, Phytophthora fruit rot resistance was mapped in the same F6 population between Criollo del Morelos 334 (CM334), a landrace from Mexico, and 'Early Jalapeno' using a high-density genetic map. Isolate-specific resistance was mapped independently in 63 of the lines evaluated and the two parents. Heritability of the resistance for each isolate at 3 and 5 days postinoculation (dpi) was high (h(2) = 0.63 to 0.68 and 0.74 to 0.83, respectively). Significant additive and epistatic quantitative trait loci (QTL) were identified for resistance to isolates OP97 and 13709 (3 and 5 dpi) and 12889 (3 dpi only). Mapping of fruit traits showed potential linkage with few disease resistance QTL. The partial fruit rot resistance from CM334 suggests that this may not be an ideal source for fruit rot resistance in pepper.

  19. A High-Resolution InDel (Insertion–Deletion) Markers-Anchored Consensus Genetic Map Identifies Major QTLs Governing Pod Number and Seed Yield in Chickpea

    PubMed Central

    Srivastava, Rishi; Singh, Mohar; Bajaj, Deepak; Parida, Swarup K.

    2016-01-01

    Development and large-scale genotyping of user-friendly informative genome/gene-derived InDel markers in natural and mapping populations is vital for accelerating genomics-assisted breeding applications of chickpea with minimal resource expenses. The present investigation employed a high-throughput whole genome next-generation resequencing strategy in low and high pod number parental accessions and homozygous individuals constituting the bulks from each of two inter-specific mapping populations [(Pusa 1103 × ILWC 46) and (Pusa 256 × ILWC 46)] to develop non-erroneous InDel markers at a genome-wide scale. Comparing these high-quality genomic sequences, 82,360 InDel markers with reference to kabuli genome and 13,891 InDel markers exhibiting differentiation between low and high pod number parental accessions and bulks of aforementioned mapping populations were developed. These informative markers were structurally and functionally annotated in diverse coding and non-coding sequence components of genome/genes of kabuli chickpea. The functional significance of regulatory and coding (frameshift and large-effect mutations) InDel markers for establishing marker-trait linkages through association/genetic mapping was apparent. The markers detected a greater amplification (97%) and intra-specific polymorphic potential (58–87%) among a diverse panel of cultivated desi, kabuli, and wild accessions even by using a simpler cost-efficient agarose gel-based assay implicating their utility in large-scale genetic analysis especially in domesticated chickpea with narrow genetic base. Two high-density inter-specific genetic linkage maps generated using aforesaid mapping populations were integrated to construct a consensus 1479 InDel markers-anchored high-resolution (inter-marker distance: 0.66 cM) genetic map for efficient molecular mapping of major QTLs governing pod number and seed yield per plant in chickpea. Utilizing these high-density genetic maps as anchors, three major

  20. Genome-Wide Association Mapping in the Global Diversity Set Reveals New QTL Controlling Root System and Related Shoot Variation in Barley

    PubMed Central

    Reinert, Stephan; Kortz, Annika; Léon, Jens; Naz, Ali A.

    2016-01-01

    The fibrous root system is a visible sign of ecological adaptation among barley natural populations. In the present study, we utilized rich barley diversity to dissect the genetic basis of root system variation and its link with shoot attributes under well-water and drought conditions. Genome-wide association mapping of phenotype data using a dense genetic map (5892 SNP markers) revealed 17 putative QTL for root and shoot traits. Among these, at 14 loci the preeminence of exotic QTL alleles resulted in trait improvements. The most promising QTL were quantified using haplotype analysis at local and global genome levels. The strongest QTL was found on chromosome 1H which accounted for root dry weight and tiller number simultaneously. Candidate gene analysis across the targeted region detected a crucial amino acid substitution mutation in the conserved domain of a WRKY29 transcription factor among genotypes bearing major and minor QTL alleles. Similarly, the drought inducible QTL QRdw.5H (5H, 95.0 cM) seems to underlie 37 amino acid deletion and substitution mutations in the conserved domain of two related genes CBF10B and CBF10A, respectively. The identification and further characterization of these candidate genes will be essential to decipher genetics behind developmental and natural adaptation mechanisms of barley. PMID:27486472

  1. The peach volatilome modularity is reflected at the genetic and environmental response levels in a QTL mapping population

    PubMed Central

    2014-01-01

    Background The improvement of fruit aroma is currently one of the most sought-after objectives in peach breeding programs. To better characterize and assess the genetic potential for increasing aroma quality by breeding, a quantity trait locus (QTL) analysis approach was carried out in an F1 population segregating largely for fruit traits. Results Linkage maps were constructed using the IPSC peach 9 K Infinium ® II array, rendering dense genetic maps, except in the case of certain chromosomes, probably due to identity-by-descent of those chromosomes in the parental genotypes. The variability in compounds associated with aroma was analyzed by a metabolomic approach based on GC-MS to profile 81 volatiles across the population from two locations. Quality-related traits were also studied to assess possible pleiotropic effects. Correlation-based analysis of the volatile dataset revealed that the peach volatilome is organized into modules formed by compounds from the same biosynthetic origin or which share similar chemical structures. QTL mapping showed clustering of volatile QTL included in the same volatile modules, indicating that some are subjected to joint genetic control. The monoterpene module is controlled by a unique locus at the top of LG4, a locus previously shown to affect the levels of two terpenoid compounds. At the bottom of LG4, a locus controlling several volatiles but also melting/non-melting and maturity-related traits was found, suggesting putative pleiotropic effects. In addition, two novel loci controlling lactones and esters in linkage groups 5 and 6 were discovered. Conclusions The results presented here give light on the mode of inheritance of the peach volatilome confirming previously loci controlling the aroma of peach but also identifying novel ones. PMID:24885290

  2. Quantitative trait loci (QTL) mapping of resistance to strongyles and coccidia in the free-living Soay sheep (Ovis aries).

    PubMed

    Beraldi, Dario; McRae, Allan F; Gratten, Jacob; Pilkington, Jill G; Slate, Jon; Visscher, Peter M; Pemberton, Josephine M

    2007-01-01

    A genome-wide scan was performed to detect quantitative trait loci (QTL) for resistance to gastrointestinal parasites and ectoparasitic keds segregating in the free-living Soay sheep population on St. Kilda (UK). The mapping panel consisted of a single pedigree of 882 individuals of which 588 were genotyped. The Soay linkage map used for the scans comprised 251 markers covering the whole genome at average spacing of 15cM. The traits here investigated were the strongyle faecal egg count (FEC), the coccidia faecal oocyst count (FOC) and a count of keds (Melophagus ovinus). QTL mapping was performed by means of variance component analysis so that the genetic parameters of the study traits were also estimated and compared with previous studies in Soay and domestic sheep. Strongyle FEC and coccidia FOC showed moderate heritability (h(2)=0.26 and 0.22, respectively) in lambs but low heritability in adults (h(2)<0.10). Ked count appeared to have very low h(2) in both lambs and adults. Genome scans were performed for the traits with moderate heritability and two genomic regions reached the level of suggestive linkage for coccidia FOC in lambs (logarithm of the odds=2.68 and 2.21 on chromosomes 3 and X, respectively). We believe this is the first study to report a QTL search for parasite resistance in a free-living animal population and therefore may represent a useful reference for similar studies aimed at understanding the genetics of host-parasite co-evolution in the wild.

  3. QTL mapping in multiple populations and development stages reveals dynamic quantitative trait loci for fruit size in cucumbers of different market classes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit size is an important quality trait in cucumber of different market classes. The genetic and molecular basis of fruit size variations in cucumber is not well understood. In this study, we conducted QTL mapping of fruit size in cucumber using three mapping populations developed from cross betwee...

  4. High-resolution mapping of a major effect QTL from wild tomato Solanum habrochaites that influences water relations under root chilling.

    PubMed

    Arms, Erin M; Bloom, Arnold J; St Clair, Dina A

    2015-09-01

    QTL stm9 controlling rapid-onset water stress tolerance in S. habrochaites was high-resolution mapped to a chromosome 9 region that contains genes associated with abiotic stress tolerances. Wild tomato (Solanum habrochaites) exhibits tolerance to abiotic stresses, including drought and chilling. Root chilling (6 °C) induces rapid-onset water stress by impeding water movement from roots to shoots. S. habrochaites responds to such changes by closing stomata and maintaining shoot turgor, while cultivated tomato (S. lycopersicum) fails to close stomata and wilts. This response (shoot turgor maintenance under root chilling) is controlled by a major QTL (designated stm9) on chromosome 9, which was previously fine-mapped to a 2.7-cM region. Recombinant sub-near-isogenic lines for chromosome 9 were marker-selected, phenotyped for shoot turgor maintenance under root chilling in two sets of replicated experiments (Fall and Spring), and the data were used to high-resolution map QTL stm9 to a 0.32-cM region. QTL mapping revealed a single QTL that was coincident for both the Spring and Fall datasets, suggesting that the gene or genes contributing to shoot turgor maintenance under root chilling reside within the marker interval H9-T1673. In the S. lycopersicum reference genome sequence, this chromosome 9 region is gene-rich and contains representatives of gene families that have been associated with abiotic stress tolerance.

  5. Genetic mapping of QTL for resistance to Fusarium head blight spread (type 2 resistance) in a Triticum dicoccoides × Triticum durum backcross-derived population.

    PubMed

    Buerstmayr, Maria; Alimari, Abdallah; Steiner, Barbara; Buerstmayr, Hermann

    2013-11-01

    Improvement of resistance to Fusarium head blight (FHB) is a continuous challenge for durum wheat breeders, particularly due to the limited genetic variation within this crop species. We accordingly generated a backcross-derived mapping population using the type 2 FHB resistant Triticum dicoccoides line Mt. Gerizim #36 as donor and the modern Austrian T. durum cultivar Helidur as recipient; 103 BC1F6:7 lines were phenotyped for type 2 FHB resistance using single-spikelet inoculations and genotyped with 421 DNA markers (SSR and AFLP). QTL mapping revealed two highly significant QTL, mapping to chromosomes 3A and 6B, respectively. For both QTL the T. dicoccoides allele improved type 2 FHB resistance. Recombinant lines with both favorable alleles fixed conferred high resistance to FHB similar to that observed in the T. dicoccoides parent. The results appear directly applicable for durum wheat resistance breeding.

  6. Identification of quantitative trait locus (QTL) linked to dorsal fin length from preliminary linkage map of molly fish, Poecilia sp.

    PubMed

    Keong, Bun Poh; Siraj, Siti Shapor; Daud, Siti Khalijah; Panandam, Jothi Malar; Rahman, Arina Nadia Abdul

    2014-02-15

    A preliminary linkage map was constructed by applying backcross and testcross strategy using microsatellite (SSR) markers developed for Xiphophorus and Poecilia reticulata in ornamental fish, molly Poecilia sp. The linkage map having 18 SSR loci consisted of four linkage groups that spanned a map size of 516.1cM. Association between genotypes and phenotypes was tested in a random fashion and QTL for dorsal fin length was found to be linked to locus Msb069 on linkage group 2. Coincidentally, locus Msb069 was also reported as putative homologue primer pairs containing SSRs repeat motif which encoded hSMP-1, a sex determining locus. Dorsal fin length particularly in males of Poecilia latipinna is an important feature during courtship display. Therefore, we speculate that both dorsal fin length and putative hSMP-1 gene formed a close proximity to male sexual characteristics.

  7. Mapping of Fusarium Head Blight resistance QTL in winter wheat cultivar NC-Neuse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium Head Blight (FHB), primarily caused by Fusarium graminearum, can significantly reduce the grain quality of wheat (Triticum aestivum L.) due to mycotoxin contamination. The objective of this study was to identify quantitative trait loci (QTL) for FHB resistance in the moderately resistant so...

  8. An Empirical Method for Establishing Positional Confidence Intervals Tailored for Composite Interval Mapping of QTL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improved genetic resolution and availability of sequenced genomes have made positional cloning of moderate-effect QTL (quantitative trait loci) realistic in several systems, emphasizing the need for precise and accurate derivation of positional confidence intervals (CIs). Support interval (SI) meth...

  9. Molecular mapping and validation of a major QTL conferring resistance to a defoliating isolate of verticillium wilt in cotton (Gossypium hirsutum L.).

    PubMed

    Zhang, Xingju; Yuan, Yanchao; Wei, Ze; Guo, Xian; Guo, Yuping; Zhang, Suqing; Zhao, Junsheng; Zhang, Guihua; Song, Xianliang; Sun, Xuezhen

    2014-01-01

    Verticillium wilt (VW) caused by Verticillium dahliae Kleb is one of the most destructive diseases of cotton. Development and use of a VW resistant variety is the most practical and effective way to manage this disease. Identification of highly resistant genes/QTL and the underlining genetic architecture is a prerequisite for developing a VW resistant variety. A major QTL qVW-c6-1 conferring resistance to the defoliating isolate V991 was identified on chromosome 6 in LHB22×JM11 F2∶3 population inoculated and grown in a greenhouse. This QTL was further validated in the LHB22×NNG F2∶3 population that was evaluated in an artificial disease nursery of V991 for two years and in its subsequent F4 population grown in a field severely infested by V991. The allele conferring resistance within the QTL qVW-c6-1 region originated from parent LHB22 and could explain 23.1-27.1% of phenotypic variation. Another resistance QTL qVW-c21-1 originated from the susceptible parent JM11 was mapped on chromosome 21, explaining 14.44% of phenotypic variation. The resistance QTL reported herein provides a useful tool for breeding a cotton variety with enhanced resistance to VW.

  10. Molecular Mapping and Validation of a Major QTL Conferring Resistance to a Defoliating Isolate of Verticillium Wilt in Cotton (Gossypium hirsutum L.)

    PubMed Central

    Wei, Ze; Guo, Xian; Guo, Yuping; Zhang, Suqing; Zhao, Junsheng; Zhang, Guihua; Song, Xianliang; Sun, Xuezhen

    2014-01-01

    Verticillium wilt (VW) caused by Verticillium dahliae Kleb is one of the most destructive diseases of cotton. Development and use of a VW resistant variety is the most practical and effective way to manage this disease. Identification of highly resistant genes/QTL and the underlining genetic architecture is a prerequisite for developing a VW resistant variety. A major QTL qVW-c6-1 conferring resistance to the defoliating isolate V991 was identified on chromosome 6 in LHB22×JM11 F2∶3 population inoculated and grown in a greenhouse. This QTL was further validated in the LHB22×NNG F2∶3 population that was evaluated in an artificial disease nursery of V991 for two years and in its subsequent F4 population grown in a field severely infested by V991. The allele conferring resistance within the QTL qVW-c6-1 region originated from parent LHB22 and could explain 23.1–27.1% of phenotypic variation. Another resistance QTL qVW-c21-1 originated from the susceptible parent JM11 was mapped on chromosome 21, explaining 14.44% of phenotypic variation. The resistance QTL reported herein provides a useful tool for breeding a cotton variety with enhanced resistance to VW. PMID:24781706

  11. QTL for several metabolic traits map to loci controlling growth and body composition in an F2 intercross between high- and low-growth chicken lines.

    PubMed

    Nadaf, Javad; Pitel, Frédérique; Gilbert, Hélène; Duclos, Michel J; Vignoles, Florence; Beaumont, Catherine; Vignal, Alain; Porter, Tom E; Cogburn, Larry A; Aggrey, Samuel E; Simon, Jean; Le Bihan-Duval, Elisabeth

    2009-08-07

    Quantitative trait loci (QTL) for metabolic and body composition traits were mapped at 7 and 9 wk, respectively, in an F(2) intercross between high-growth and low-growth chicken lines. These lines also diverged for abdominal fat percentage (AFP) and plasma insulin-like growth factor-I (IGF-I), insulin, and glucose levels. Genotypings were performed with 129 microsatellite markers covering 21 chromosomes. A total of 21 QTL with genomewide level of significance were detected by single-trait analyses for body weight (BW), breast muscle weight (BMW) and percentage (BMP), AF weight (AFW) and percentage (AFP), shank length (ShL) and diameter (ShD), fasting plasma glucose level (Gluc), and body temperature (T(b)). Other suggestive QTL were identified for these parameters and for plasma IGF-I and nonesterified fatty acid levels. QTL controlling adiposity and Gluc were colocalized on GGA3 and GGA5 and QTL for BW, ShL and ShD, adiposity, and T(b) on GGA4. Multitrait analyses revealed two QTL controlling Gluc and AFP on GGA5 and Gluc and T(b) on GGA26. Significant effects of the reciprocal cross were observed on BW, ShD, BMW, and Gluc, which may result from mtDNA and/or maternal effects. Most QTL regions for Gluc and adiposity harbor genes for which alleles have been associated with increased susceptibility to diabetes and/or obesity in humans. Identification of genes responsible for these metabolic QTL will increase our understanding of the constitutive "hyperglycemia" found in chickens. Furthermore, a comparative approach could provide new information on the genetic causes of diabetes and obesity in humans.

  12. The Identification of Two Head Smut Resistance-Related QTL in Maize by the Joint Approach of Linkage Mapping and Association Analysis.

    PubMed

    Li, Yong-xiang; Wu, Xun; Jaqueth, Jennifer; Zhang, Dengfeng; Cui, Donghui; Li, Chunhui; Hu, Guanghui; Dong, Huaiyu; Song, Yan-chun; Shi, Yun-su; Wang, Tianyu; Li, Bailin; Li, Yu

    2015-01-01

    Head smut, caused by the fungus Sphacelotheca reiliana (Kühn) Clint, is a devastating threat to maize production. In this study, QTL mapping of head smut resistance was performed using a recombinant inbred line (RIL) population from a cross between a resistant line "QI319" and a susceptible line "Huangzaosi" (HZS) with a genetic map constructed from genotyping-by-sequencing (GBS) data and composed of 1638 bin markers. Two head smut resistance QTL were identified, located on Chromosome 2 (q2.09HR) and Chromosome 5 (q5.03HR), q2.09HR is co-localized with a previously reported QTL for head smut resistance, and the effect of q5.03HR has been validated in backcross populations. It was also observed that pyramiding the resistant alleles of both QTL enhanced the level of resistance to head smut. A genome-wide association study (GWAS) using 277 diverse inbred lines was processed to validate the mapped QTL and to identify additional head smut resistance associations. A total of 58 associated SNPs were detected, which were distributed in 31 independent regions. SNPs with significant association to head smut resistance were detected within the q2.09HR and q5.03HR regions, confirming the linkage mapping results. It was also observed that both additive and epistastic effects determine the genetic architecture of head smut resistance in maize. As shown in this study, the combined strategy of linkage mapping and association analysis is a powerful approach in QTL dissection for disease resistance in maize.

  13. Genetic Architecture of Resistance to Alternaria brassicae in Arabidopsis thaliana: QTL Mapping Reveals Two Major Resistance-Conferring Loci

    PubMed Central

    Rajarammohan, Sivasubramanian; Kumar, Amarendra; Gupta, Vibha; Pental, Deepak; Pradhan, Akshay K.; Kaur, Jagreet

    2017-01-01

    Alternaria brassicae, a necrotrophic fungal pathogen, causes Alternaria blight, one of the most important diseases of oleiferous Brassica crops. The current study utilized Arabidopsis as a model to decipher the genetic architecture of defense against A. brassicae. Significant phenotypic variation that was largely genetically determined was observed among Arabidopsis accessions in response to pathogen challenge. Three biparental mapping populations were developed from three resistant accessions viz. CIBC-5, Ei-2, and Cvi-0 and two susceptible accessions – Gre-0 and Zdr-1 (commonly crossed to CIBC-5 and Ei-2). A total of six quantitative trait locus (QTLs) governing resistance to A. brassicae were identified, five of which were population-specific while one QTL was common between all the three mapping populations. Interestingly, the common QTL had varying phenotypic contributions in different populations, which can be attributed to the genetic background of the parental accessions. The presence of both common and population-specific QTLs indicate that resistance to A. brassicae is quantitative, and that different genes may mediate resistance to the pathogen in different accessions. Two of the QTLs had moderate-to-large effects, one of which explained nearly 50% of the variation. The large effect QTLs may therefore contain genes that could play a significant role in conferring resistance even in heterologous hosts. PMID:28286515

  14. An anchored framework BAC map of mouse chromosome 11 assembled using multiplex oligonucleotide hybridization.

    PubMed

    Cai, W W; Reneker, J; Chow, C W; Vaishnav, M; Bradley, A

    1998-12-15

    Despite abundant library resources for many organisms, physical mapping of these organisms has been seriously limited due to lack of efficient library screening techniques. We have developed a highly efficient strategy for large-scale screening of genomic libraries based on multiplex oligonucleotide hybridization on high-density genomic filters. We have applied this strategy to generate a bacterial artificial chromosome (BAC) anchored map of mouse chromosome 11. Using the MIT mouse SSLP data, 320 pairs of oligonucleotide probes were designed with an "overgo" computer program that selects new primer sequences that avoid the microsatellite repeat. BACs identified by these probes are automatically anchored to the chromosome. Ninety-two percent of the probes identified positive clones from a 5.9-fold coverage mouse BAC library with an average of 7 positive clones per marker. An average of 4.2 clones was confirmed for 204 markers by PCR. Our data show that a large number of clones can be efficiently isolated from a large genomic library using this strategy with minimal effort. This strategy will have wide application for large-scale mapping and sequencing of human and other large genomes.

  15. A High-Density Genetic Linkage Map for Cucumber (Cucumis sativus L.): Based on Specific Length Amplified Fragment (SLAF) Sequencing and QTL Analysis of Fruit Traits in Cucumber

    PubMed Central

    Zhu, Wen-Ying; Huang, Long; Chen, Long; Yang, Jian-Tao; Wu, Jia-Ni; Qu, Mei-Ling; Yao, Dan-Qing; Guo, Chun-Li; Lian, Hong-Li; He, Huan-Le; Pan, Jun-Song; Cai, Run

    2016-01-01

    High-density genetic linkage map plays an important role in genome assembly and quantitative trait loci (QTL) fine mapping. Since the coming of next-generation sequencing, makes the structure of high-density linkage maps much more convenient and practical, which simplifies SNP discovery and high-throughput genotyping. In this research, a high-density linkage map of cucumber was structured using specific length amplified fragment sequencing, using 153 F2 populations of S1000 × S1002. The high-density genetic map composed 3,057 SLAFs, including 4,475 SNP markers on seven chromosomes, and spanned 1061.19 cM. The average genetic distance is 0.35 cM. Based on this high-density genome map, QTL analysis was performed on two cucumber fruit traits, fruit length and fruit diameter. There are 15 QTLs for the two fruit traits were detected. PMID:27148281

  16. Uncovering the genetic architecture of Colletotrichum lindemuthianum resistance through QTL mapping and epistatic interaction analysis in common bean

    PubMed Central

    González, Ana M.; Yuste-Lisbona, Fernando J.; Rodiño, A. Paula; De Ron, Antonio M.; Capel, Carmen; García-Alcázar, Manuel; Lozano, Rafael; Santalla, Marta

    2015-01-01

    Colletotrichum lindemuthianum is a hemibiotrophic fungal pathogen that causes anthracnose disease in common bean. Despite the genetics of anthracnose resistance has been studied for a long time, few quantitative trait loci (QTLs) studies have been conducted on this species. The present work examines the genetic basis of quantitative resistance to races 23 and 1545 of C. lindemuthianum in different organs (stem, leaf and petiole). A population of 185 recombinant inbred lines (RIL) derived from the cross PMB0225 × PHA1037 was evaluated for anthracnose resistance under natural and artificial photoperiod growth conditions. Using multi-environment QTL mapping approach, 10 and 16 main effect QTLs were identified for resistance to anthracnose races 23 and 1545, respectively. The homologous genomic regions corresponding to 17 of the 26 main effect QTLs detected were positive for the presence of resistance-associated gene cluster encoding nucleotide-binding and leucine-rich repeat (NL) proteins. Among them, it is worth noting that the main effect QTLs detected on linkage group 05 for resistance to race 1545 in stem, petiole and leaf were located within a 1.2 Mb region. The NL gene Phvul.005G117900 is located in this region, which can be considered an important candidate gene for the non-organ-specific QTL identified here. Furthermore, a total of 39 epistatic QTL (E-QTLs) (21 for resistance to race 23 and 18 for resistance to race 1545) involved in 20 epistatic interactions (eleven and nine interactions for resistance to races 23 and 1545, respectively) were identified. None of the main and epistatic QTLs detected displayed significant environment interaction effects. The present research provides essential information not only for the better understanding of the plant-pathogen interaction but also for the application of genomic assisted breeding for anthracnose resistance improvement in common bean through application of marker-assisted selection (MAS). PMID:25852706

  17. Uncovering the genetic architecture of Colletotrichum lindemuthianum resistance through QTL mapping and epistatic interaction analysis in common bean.

    PubMed

    González, Ana M; Yuste-Lisbona, Fernando J; Rodiño, A Paula; De Ron, Antonio M; Capel, Carmen; García-Alcázar, Manuel; Lozano, Rafael; Santalla, Marta

    2015-01-01

    Colletotrichum lindemuthianum is a hemibiotrophic fungal pathogen that causes anthracnose disease in common bean. Despite the genetics of anthracnose resistance has been studied for a long time, few quantitative trait loci (QTLs) studies have been conducted on this species. The present work examines the genetic basis of quantitative resistance to races 23 and 1545 of C. lindemuthianum in different organs (stem, leaf and petiole). A population of 185 recombinant inbred lines (RIL) derived from the cross PMB0225 × PHA1037 was evaluated for anthracnose resistance under natural and artificial photoperiod growth conditions. Using multi-environment QTL mapping approach, 10 and 16 main effect QTLs were identified for resistance to anthracnose races 23 and 1545, respectively. The homologous genomic regions corresponding to 17 of the 26 main effect QTLs detected were positive for the presence of resistance-associated gene cluster encoding nucleotide-binding and leucine-rich repeat (NL) proteins. Among them, it is worth noting that the main effect QTLs detected on linkage group 05 for resistance to race 1545 in stem, petiole and leaf were located within a 1.2 Mb region. The NL gene Phvul.005G117900 is located in this region, which can be considered an important candidate gene for the non-organ-specific QTL identified here. Furthermore, a total of 39 epistatic QTL (E-QTLs) (21 for resistance to race 23 and 18 for resistance to race 1545) involved in 20 epistatic interactions (eleven and nine interactions for resistance to races 23 and 1545, respectively) were identified. None of the main and epistatic QTLs detected displayed significant environment interaction effects. The present research provides essential information not only for the better understanding of the plant-pathogen interaction but also for the application of genomic assisted breeding for anthracnose resistance improvement in common bean through application of marker-assisted selection (MAS).

  18. Construction of a high-density genetic map and lint percentage and cottonseed nutrient trait QTL identification in upland cotton (Gossypium hirsutum L.).

    PubMed

    Liu, Dexin; Liu, Fang; Shan, Xiaoru; Zhang, Jian; Tang, Shiyi; Fang, Xiaomei; Liu, Xueying; Wang, Wenwen; Tan, Zhaoyun; Teng, Zhonghua; Zhang, Zhengsheng; Liu, Dajun

    2015-10-01

    Upland cotton plays a critical role not only in the textile industry, but also in the production of important secondary metabolites, such as oil and proteins. Construction of a high-density linkage map and identifying yield and seed trait quantitative trail loci (QTL) are prerequisites for molecular marker-assisted selective breeding projects. Here, we update a high-density upland cotton genetic map from recombinant inbred lines. A total of 25,313 SSR primer pairs were screened for polymorphism between Yumian 1 and T586, and 1712 SSR primer pairs were used to genotype the mapping population and construct a map. An additional 1166 loci have been added to our previously published map with 509 SSR markers. The updated genetic map spans a total recombinant length of 3338.2 cM and contains 1675 SSR loci and nine morphological markers, with an average interval of 1.98 cM between adjacent markers. Green lint (Lg) mapped on chromosome 15 in a previous report is mapped in an interval of 2.6 cM on chromosome 21. Based on the map and phenotypic data from multiple environments, 79 lint percentage and seed nutrient trait QTL are detected. These include 8 lint percentage, 13 crude protein, 15 crude oil, 8 linoleic, 10 oleic, 13 palmitic, and 12 stearic acid content QTL. They explain 3.5-62.7 % of the phenotypic variation observed. Four morphological markers identified have a major impact on lint percentage and cottonseed nutrients traits. In this study, our genetic map provides new sights into the tetraploid cotton genome. Furthermore, the stable QTL and morphological markers could be used for fine-mapping and map-based cloning.

  19. Genome anchored QTLs for biomass productivity in Hybrid Populus: Heterosis and detection across Contrasting Environments.

    SciTech Connect

    Muchero, Wellington; Sewell, Mitchell; Gunter, Lee E; Tschaplinski, Timothy J; Yin, Tongming; DiFazio, Steven P; Tuskan, Gerald A

    2013-01-01

    Traits related to biomass production were analyzed for the presence of quantitative trait loci (QTLs) in an interspecific F2 population derived from an outbred Populus trichocarpa P. deltoides parental cross. Three years of phenotypic data for stem growth traits (height and diameter) were collected from two parental, two F1 and 339 F2 trees in a clonal trial replicated both within and among two environmentally contrasting sites in the North American Pacific Northwest. A genetic linkage map comprised of 841 SSR, AFLP, and RAPD markers and phenotypic data from 310 progeny were used to identify genomic regions harboring QTL using the Multiple-QTL Model (MQM) package of the statistical program MapQTL 6. A total of twelve QTLs, nine putative and three suggestive, were identified with eight of these being identified at both sites in at least one experiment. Of these, three putative QTL BM-1, BM-2, BM-7, on LGs I, II, and XIV, respectively, were identified in all three years for both height and diameter. Two QTLs BM-2 and BM-7, on LG II and XIV, respectively, exhibited significant evidence of over-dominance in all three years for both traits. Conversely a QTL on BM-6 LG XIII exhibited out-breeding depression in two years for both height and diameter. The remaining nine QTLs showed difference levels of dominance and additive effects. Seven of the nine QTL were successfully anchored and QTL peak positions were estimated for each one on the P. trichocarpa genome assembly using flanking SSR markers with known physical positions positions. QTL BM-7 on LG XIV had been anchored on the genome assembly in a previous study, therefore eight QTLs identified in this study were assigned genome assembly positions. Physical distances encompassed by each QTL regions ranged from 1.3 to 8.8 Mb.

  20. High Resolution QTL Map Of Net Merit Component Traits And Calving Traits From Genome-Wide Association Analysis In Contemporary U.S. Holstein Cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A QTL map of 725 SNPs affecting 13 dairy traits (top 100 effects per trait) was constructed based on a genome-wide association analysis of 1,654 contemporary U.S. Holstein cows genotyped with 45,878 SNPs. The 13 traits were net merit (NM$), its 8 component traits and 4 calving traits. The top 100 ef...

  1. High Resolution QTL Map Of Body Conformation Traits From Genome-Wide Association Analysis In Contemporary U.S. Holstein Cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A QTL map of 1,005 SNP markers affecting 18 body conformation traits (top 100 effects per trait) was constructed based on a genome-wide association analysis of 1,654 contemporary U.S. Holstein cows genotyped with the BovineSNP50 (45,878 SNPs). The top 100 effects for each trait explained 38-56% of t...

  2. Using a set of TeQing-into-Lemont chromosome segment substitution lines for fine mapping QTL: Case studies on sheath blight resistance, spreading culm, and mesocotyl elongation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A set of backcross introgression lines containing portions of the TeQing genome now introgressed into a Lemont genetic background allows us to fine map rice QTL, and measure their breeding value within U.S. rice genetic and field environments....

  3. Identification of genetic loci associated with fire blight resistance in Malus through combined use of QTL and association mapping.

    PubMed

    Khan, M Awais; Zhao, Youfu Frank; Korban, Schuyler S

    2013-07-01

    Fire blight, incited by the enterobacterium Erwinia amylovora, is a destructive disease of Rosaceae, particularly of apples and pears. There are reports on the molecular mechanisms underlying E. amylovora pathogenesis and how the host activates its resistance mechanism. The host's resistance mechanism is quantitatively controlled, although some major genes might also be involved. Thus far, quantitative trait loci (QTL) mapping and differential expression studies have been used to elucidate those genes and/or genomic regions underlying quantitative resistance present in the apple genome. In this study, an effort is undertaken to dissect the genetic basis of fire blight resistance in apple using both QTL and genome-wide association mapping. On the basis of an F1 pedigree of 'Coop 16' × 'Coop 17' and a genome-wide association study (GWAS) mapping population of Malus accessions (species, old and new cultivars and selections), new QTLs and associations have been identified. A total of three QTLs for resistance to fire blight, with above 95% significant logarithm of odds threshold value of 2.5, have been identified on linkage groups (LGs) 02, 06, and 15 of the apple genome with phenotypic variation explained values of 14.7, 20.1 and 17.4, respectively. Although elevated P-values with signals for marker-trait associations are observed for some LGs, these are not found to be significant. However, a total of 34 significant associations, with P-values ≥0.02, have been detected including 8 for lesion length at 7 days following inoculation (PL1), 14 for lesion length at 14 days following inoculation (PL2), and 12 for shoot length.

  4. Combined linkage and linkage disequilibrium QTL mapping in multiple families of maize (Zea mays L.) line crosses highlights complementarities between models based on parental haplotype and single locus polymorphism.

    PubMed

    Bardol, N; Ventelon, M; Mangin, B; Jasson, S; Loywick, V; Couton, F; Derue, C; Blanchard, P; Charcosset, A; Moreau, Laurence

    2013-11-01

    Advancements in genotyping are rapidly decreasing marker costs and increasing marker density. This opens new possibilities for mapping quantitative trait loci (QTL), in particular by combining linkage disequilibrium information and linkage analysis (LDLA). In this study, we compared different approaches to detect QTL for four traits of agronomical importance in two large multi-parental datasets of maize (Zea mays L.) of 895 and 928 testcross progenies composed of 7 and 21 biparental families, respectively, and genotyped with 491 markers. We compared to traditional linkage-based methods two LDLA models relying on the dense genotyping of parental lines with 17,728 SNP: one based on a clustering approach of parental line segments into ancestral alleles and one based on single marker information. The two LDLA models generally identified more QTL (60 and 52 QTL in total) than classical linkage models (49 and 44 QTL in total). However, they performed inconsistently over datasets and traits suggesting that a compromise must be found between the reduction of allele number for increasing statistical power and the adequacy of the model to potentially complex allelic variation. For some QTL, the model exclusively based on linkage analysis, which assumed that each parental line carried a different QTL allele, was able to capture remaining variation not explained by LDLA models. These complementarities between models clearly suggest that the different QTL mapping approaches must be considered to capture the different levels of allelic variation at QTL involved in complex traits.

  5. Genetic map construction and quantitative trait locus (QTL) detection of growth-related traits in Litopenaeus vannamei for selective breeding applications.

    PubMed

    Andriantahina, Farafidy; Liu, Xiaolin; Huang, Hao

    2013-01-01

    Growth is a priority trait from the point of view of genetic improvement. Molecular markers linked to quantitative trait loci (QTL) have been regarded as useful for marker-assisted selection (MAS) in complex traits as growth. Using an intermediate F2 cross of slow and fast growth parents, a genetic linkage map of Pacific whiteleg shrimp, Litopenaeusvannamei, based on amplified fragment length polymorphisms (AFLP) and simple sequence repeats (SSR) markers was constructed. Meanwhile, QTL analysis was performed for growth-related traits. The linkage map consisted of 451 marker loci (429 AFLPs and 22 SSRs) which formed 49 linkage groups with an average marker space of 7.6 cM; they spanned a total length of 3627.6 cM, covering 79.50% of estimated genome size. 14 QTLs were identified for growth-related traits, including three QTLs for body weight (BW), total length (TL) and partial carapace length (PCL), two QTLs for body length (BL), one QTL for first abdominal segment depth (FASD), third abdominal segment depth (TASD) and first abdominal segment width (FASW), which explained 2.62 to 61.42% of phenotypic variation. Moreover, comparison of linkage maps between L. vannamei and Penaeusjaponicus was applied, providing a new insight into the genetic base of QTL affecting the growth-related traits. The new results will be useful for conducting MAS breeding schemes in L. vannamei .

  6. High-Density SNP Map Construction and QTL Identification for the Apetalous Character in Brassica napus L.

    PubMed Central

    Wang, Xiaodong; Yu, Kunjiang; Li, Hongge; Peng, Qi; Chen, Feng; Zhang, Wei; Chen, Song; Hu, Maolong; Zhang, Jiefu

    2015-01-01

    The apetalous genotype is a morphological ideotype for increasing seed yield and should be of considerable agricultural use; however, only a few studies have focused on the genetic control of this trait in Brassica napus. In the present study, a recombinant inbred line, the AH population, containing 189 individuals was derived from a cross between an apetalous line ‘APL01’ and a normally petalled variety ‘Holly’. The Brassica 60 K Infinium BeadChip Array harboring 52,157 single nucleotide polymorphism (SNP) markers was used to genotype the AH individuals. A high-density genetic linkage map was constructed based on 2,755 bins involving 11,458 SNPs and 57 simple sequence repeats, and was used to identify loci associated with petalous degree (PDgr). The linkage map covered 2,027.53 cM, with an average marker interval of 0.72 cM. The AH map had good collinearity with the B. napus reference genome, indicating its high quality and accuracy. After phenotypic analyses across five different experiments, a total of 19 identified quantitative trait loci (QTLs) distributed across chromosomes A3, A5, A6, A9 and C8 were obtained, and these QTLs were further integrated into nine consensus QTLs by a meta-analysis. Interestingly, the major QTL qPD.C8-2 was consistently detected in all five experiments, and qPD.A9-2 and qPD.C8-3 were stably expressed in four experiments. Comparative mapping between the AH map and the B. napus reference genome suggested that there were 328 genes underlying the confidence intervals of the three steady QTLs. Based on the Gene Ontology assignments of 52 genes to the regulation of floral development in published studies, 146 genes were considered as potential candidate genes for PDgr. The current study carried out a QTL analysis for PDgr using a high-density SNP map in B. napus, providing novel targets for improving seed yield. These results advanced our understanding of the genetic control of PDgr regulation in B. napus. PMID:26779193

  7. Leaf Rubisco turnover in a perennial ryegrass (Lolium perenne L.) mapping population: genetic variation, identification of associated QTL, and correlation with plant morphology and yield.

    PubMed

    Khaembah, Edith N; Irving, Louis J; Thom, Errol R; Faville, Marty J; Easton, H Sydney; Matthew, Cory

    2013-03-01

    This study tested the hypotheses that: (i) genetic variation in Rubisco turnover may exist in perennial ryegrass (Lolium perenne L.); (ii) such variation might affect nitrogen use efficiency and plant yield; and (iii) genetic control of Rubisco turnover might be amenable to identification by quantitative trait loci (QTL) mapping. A set of 135 full-sib F1 perennial ryegrass plants derived from a pair cross between genotypes from the cultivars 'Grasslands Impact' and 'Grasslands Samson' was studied to test these hypotheses. Leaf Rubisco concentration at different leaf ages was measured and modelled as a log-normal curve described by three mathematical parameters: D (peak Rubisco concentration), G (time of D), and F (curve standard deviation). Herbage dry matter (DM) yield and morphological traits (tiller weight (TW), tiller number (TN), leaf lamina length (LL), and an index of competitive ability (PI)) were also measured. The progeny exhibited continuous variation for all traits. Simple correlation and principal component analyses indicated that plant productivity was associated with peak Rubisco concentration and not Rubisco turnover. Lower DM was associated with higher leaf Rubisco concentration indicating that Rubisco turnover effects on plant productivity may relate to energy cost of Rubisco synthesis rather than photosynthetic capacity. QTL detection by a multiple QTL model identified seven significant QTL for Rubisco turnover and nine QTL for DM and morphological traits. An indication of the genetic interdependence of DM and the measures of Rubisco turnover was the support interval overlap involving QTL for D and QTL for TN on linkage group 5 in a cluster involving QTL for DM and PI. In this region, alleles associated with increased TN, DM, and PI were associated with decreased D, indicating that this region may regulate Rubisco concentration and plant productivity via increased tillering. A second cluster involving QTL for LL, TN, PI and DM was found on

  8. QTL mapping in eggplant reveals clusters of yield-related loci and orthology with the tomato genome.

    PubMed

    Portis, Ezio; Barchi, Lorenzo; Toppino, Laura; Lanteri, Sergio; Acciarri, Nazzareno; Felicioni, Nazzareno; Fusari, Fabio; Barbierato, Valeria; Cericola, Fabio; Valè, Giampiero; Rotino, Giuseppe Leonardo

    2014-01-01

    In spite of its widespread cultivation and nutritional and economic importance, the eggplant (Solanum melongena L.) genome has not been extensively explored. A lack of knowledge of the patterns of inheritance of key agronomic traits has hindered the exploitation of marker technologies to accelerate its genetic improvement. An already established F2 intraspecific population of eggplant bred from the cross '305E40' x '67/3' was phenotyped for 20 agronomically relevant traits at two sites. Up to seven quantitative trait loci (QTL) per trait were identified and the percentage of the phenotypic variance (PV) explained per QTL ranged from 4 to 93%. Not all the QTL were detectable at both sites, but for each trait at least one major QTL (PV explained ≥ 10%) was identified. Although no detectable QTL x environment interaction was found, some QTL identified were location-specific. Many of the fruit-related QTL clustered within specific chromosomal regions, reflecting either linkage and/or pleiotropy. Evidence for putative tomato orthologous QTL/genes was obtained for several of the eggplant QTL. Information regarding the inheritance of key agronomic traits was obtained. Some of the QTL, along with their respective linked markers, may be useful in the context of marker-assisted breeding.

  9. High-resolution genetic linkage mapping, high-temperature tolerance and growth-related quantitative trait locus (QTL) identification in Marsupenaeus japonicus.

    PubMed

    Lu, Xia; Luan, Sheng; Hu, Long Yang; Mao, Yong; Tao, Ye; Zhong, Sheng Ping; Kong, Jie

    2016-06-01

    The Kuruma prawn, Marsupenaeus japonicus, is one of the most promising marine invertebrates in the industry in Asia, Europe and Australia. However, the increasing global temperatures result in considerable economic losses in M. japonicus farming. In the present study, to select genetically improved animals for the sustainable development of the Kuruma prawn industry, a high-resolution genetic linkage map and quantitative trait locus (QTL) identification were performed using the RAD technology. The maternal map contained 5849 SNP markers and spanned 3127.23 cM, with an average marker interval of 0.535 cM. Instead, the paternal map contained 3927 SNP markers and spanned 3326.19 cM, with an average marker interval of 0.847 cM. The consensus map contained 9289 SNP markers and spanned 3610.90 cM, with an average marker interval of 0.388 cM and coverage of 99.06 % of the genome. The markers were grouped into 41 linkage groups in the maps. Significantly, negative correlation was detected between high-temperature tolerance (UTT) and body weight (BW). The QTL mapping revealed 129 significant QTL loci for UTT and four significant QTL loci for BW at the genome-wide significance threshold. Among these QTLs, 129 overlapped with linked SNPs, and the remaining four were located in regions between contiguous SNPs. They explained the total phenotypic variance ranging from 8.9 to 12.4 %. Because of a significantly negative correlation between growth and high-temperature tolerance, we demonstrate that this high-resolution linkage map and QTLs would be useful for further marker-assisted selection in the genetic improvement of M. japonicus.

  10. Construction of a genetic linkage map and QTL analysis of erucic acid content and glucosinolate components in yellow mustard (Sinapis alba L.)

    PubMed Central

    2013-01-01

    Background Yellow mustard (Sinapis alba L.) is an important condiment crop for the spice trade in the world. It has lagged behind oilseed Brassica species in molecular marker development and application. Intron length polymorphism (ILP) markers are highly polymorphic, co-dominant and cost-effective. The cross-species applicability of ILP markers from Brassica species and Arabidopsis makes them possible to be used for genetic linkage mapping and further QTL analysis of agronomic traits in yellow mustard. Results A total of 250 ILP and 14 SSR markers were mapped on 12 linkage groups and designated as Sal01-12 in yellow mustard. The constructed map covered a total genetic length of 890.4 cM with an average marker interval of 3.3 cM. The QTL for erucic content co-localized with the fatty acid elongase 1 (FAE1) gene on Sal03. The self-(in)compatibility gene was assigned to Sal08. The 4-hydroxybenzyl, 3-indolylmethyl and 4-hydroxy-3-indolylmethyl glucosinolate contents were each controlled by one major QTL, all of which were located on Sal02. Two QTLs, accounting for the respective 20.4% and 19.2% of the total variation of 2-hydroxy-3-butenyl glucosinolate content, were identified and mapped to Sal02 and Sal11. Comparative synteny analysis revealed that yellow mustard was phylogenetically related to Arabidopsis thaliana and had undergone extensive chromosomal rearrangements during speciation. Conclusion The linkage map based on ILP and SSR markers was constructed and used for QTL analysis of seed quality traits in yellow mustard. The markers tightly linked with the genes for different glucosinolate components will be used for marker-assisted selection and map-based cloning. The ILP markers and linkage map provide useful molecular tools for yellow mustard breeding. PMID:24066707

  11. Construction of chromosome segment substitution lines in peanut (Arachis hypogaea L.) using a wild synthetic and QTL mapping for plant morphology.

    PubMed

    Fonceka, Daniel; Tossim, Hodo-Abalo; Rivallan, Ronan; Vignes, Hélène; Lacut, Elodie; de Bellis, Fabien; Faye, Issa; Ndoye, Ousmane; Leal-Bertioli, Soraya C M; Valls, José F M; Bertioli, David J; Glaszmann, Jean-Christophe; Courtois, Brigitte; Rami, Jean-François

    2012-01-01

    Chromosome segment substitution lines (CSSLs) are powerful QTL mapping populations that have been used to elucidate the molecular basis of interesting traits of wild species. Cultivated peanut is an allotetraploid with limited genetic diversity. Capturing the genetic diversity from peanut wild relatives is an important objective in many peanut breeding programs. In this study, we used a marker-assisted backcrossing strategy to produce a population of 122 CSSLs from the cross between the wild synthetic allotetraploid (A. ipaënsis×A. duranensis)(4x) and the cultivated Fleur11 variety. The 122 CSSLs offered a broad coverage of the peanut genome, with target wild chromosome segments averaging 39.2 cM in length. As a demonstration of the utility of these lines, four traits were evaluated in a subset of 80 CSSLs. A total of 28 lines showed significant differences from Fleur11. The line×trait significant associations were assigned to 42 QTLs: 14 for plant growth habit, 15 for height of the main stem, 12 for plant spread and one for flower color. Among the 42 QTLs, 37 were assigned to genomic regions and three QTL positions were considered putative. One important finding arising from this QTL analysis is that peanut growth habit is a complex trait that is governed by several QTLs with different effects. The CSSL population developed in this study has proved efficient for deciphering the molecular basis of trait variations and will be useful to the peanut scientific community for future QTL mapping studies.

  12. Genetic mapping and QTL analysis for body weight in Jian carp ( Cyprinus carpio var. Jian) compared with mirror carp ( Cyprinus carpio L.)

    NASA Astrophysics Data System (ADS)

    Gu, Ying; Lu, Cuiyun; Zhang, Xiaofeng; Li, Chao; Yu, Juhua; Sun, Xiaowen

    2015-05-01

    We report the genetic linkage map of Jian carp ( Cyprinus carpio var. Jian). An F1 population comprising 94 Jian carp individuals was mapped using 254 microsatellite markers. The genetic map spanned 1 381.592 cM and comprised 44 linkage groups, with an average marker distance of 6.58 cM. We identified eight quantitative trait loci (QTLs) for body weight (BW) in seven linkage groups, explaining 12.6% to 17.3% of the phenotypic variance. Comparative mapping was performed between Jian carp and mirror carp ( Cyprinus carpio L.), which both have 50 chromosomes. One hundred and ninety-eight Jian carp marker loci were found in common with the mirror carp map, with 186 (93.94%) showing synteny. All 44 Jian carp linkage groups could be one-to-one aligned to the 44 mirror carp linkage groups, mostly sharing two or more common loci. Three QTLs for BW in Jian carp were conserved in mirror carp. QTL comparison suggested that the QTL confidence interval in mirror carp was more precise than the homologous interval in Jian carp, which was contained within the QTL interval in Jian carp. The syntenic relationship and consensus QTLs between the two varieties provide a foundation for genomic research and genetic breeding in common carp.

  13. QTL mapping of partial resistance in winter wheat to Stagonospora nodorum blotch.

    PubMed

    Czembor, Pawel C; Arseniuk, Edward; Czaplicki, Andrzej; Song, Qijiang; Cregan, Perry B; Ueng, Peter P

    2003-08-01

    Stagonospora nodorum blotch is an important foliar and glume disease in cereals. Inheritance of resistance in wheat appears to be quantitative. To date, breeding of partially resistant cultivars has been the only effective way to combat this pathogen. The partial resistance components, namely length of incubation period, disease severity, and length of latent period, were evaluated on a population of doubled haploids derived from a cross between the partially resistant Triticum aestivum 'Liwilla' and susceptible Triticum aestivum 'Begra'. Experiments were conducted in a controlled environment and the fifth leaf was examined. Molecular analyses were based on bulked segregant analyses using 240 microsatellite markers. Four QTLs were significantly associated with partial resistance components and were located on chromosomes 2B, 3B, 5B, and 5D. The percentage of phenotypic variance explained by a single QTL ranged from 14 to 21% for incubation period, from 16 to 37% for disease severity, and from 13 to 28% for latent period,

  14. Genetic Architecture of Sexual Selection: QTL Mapping of Male Song and Female Receiver Traits in an Acoustic Moth

    PubMed Central

    Limousin, Denis; Streiff, Réjane; Courtois, Brigitte; Dupuy, Virginie; Alem, Sylvain; Greenfield, Michael D.

    2012-01-01

    Models of indirect (genetic) benefits sexual selection predict linkage disequilibria between genes that influence male traits and female preferences, owing to non-random mate choice or physical linkage. Such linkage disequilibria can accelerate the evolution of traits and preferences to exaggerated levels. Both theory and recent empirical findings on species recognition suggest that such linkage disequilibria may result from physical linkage or pleiotropy, but very little work has addressed this possibility within the context of sexual selection. We studied the genetic architecture of sexually selected traits by analyzing signals and preferences in an acoustic moth, Achroia grisella, in which males attract females with a train of ultrasound pulses and females prefer loud songs and a fast pulse rhythm. Both male signal characters and female preferences are repeatable and heritable traits. Moreover, female choice is based largely on male song, while males do not appear to provide direct benefits at mating. Thus, some genetic correlation between song and preference traits is expected. We employed a standard crossing design between inbred lines and used AFLP markers to build a linkage map for this species and locate quantitative trait loci (QTL) that influence male song and female preference. Our analyses mostly revealed QTLs of moderate strength that influence various male signal and female receiver traits, but one QTL was found that exerts a major influence on the pulse-pair rate of male song, a critical trait in female attraction. However, we found no evidence of specific co-localization of QTLs influencing male signal and female receiver traits on the same linkage groups. This finding suggests that the sexual selection process would proceed at a modest rate in A. grisella and that evolution toward exaggerated character states may be tempered. We suggest that this equilibrium state may be more the norm than the exception among animal species. PMID:22957082

  15. A Consensus Microsatellite-Based Linkage Map for the Hermaphroditic Bay Scallop (Argopecten irradians) and Its Application in Size-Related QTL Analysis

    PubMed Central

    Li, Hongjun; Liu, Xiao; Zhang, Guofan

    2012-01-01

    Bay scallop (Argopecten irradians) is one of the most economically important aquaculture species in China. In this study, we constructed a consensus microsatellite-based genetic linkage map with a mapping panel containing two hybrid backcross-like families involving two subspecies of bay scallop, A. i. irradians and A. i. concentricus. One hundred sixty-one microsatellite and one phenotypic (shell color) markers were mapped to 16 linkage groups (LGs), which corresponds to the haploid chromosome number of bay scallop. The sex-specific map was 779.2 cM and 781.6 cM long in female and male, respectively, whereas the sex-averaged map spanned 849.3 cM. The average resolution of integrated map was 5.9 cM/locus and the estimated coverage was 81.3%. The proportion of distorted markers occurred more in the hybrid parents, suggesting that the segregation distortion was possibly resulted from heterospecific interaction between genomes of two subspecies of bay scallop. The overall female-to-male recombination rate was 1.13∶1 across all linked markers in common to both parents, and considerable differences in recombination also existed among different parents in both families. Four size-related traits, including shell length (SL), shell height (SH), shell width (SW) and total weight (TW) were measured for quantitative trait loci (QTL) analysis. Three significant and six suggestive QTL were detected on five LGs. Among the three significant QTL, two (qSW-10 and qTW-10, controlling SW and TW, respectively) were mapped on the same region near marker AiAD121 on LG10 and explained 20.5% and 27.7% of the phenotypic variance, while the third (qSH-7, controlling SH) was located on LG7 and accounted for 15.8% of the phenotypic variance. Six suggestive QTL were detected on four different LGs. The linkage map and size-related QTL obtained in this study may facilitate marker-assisted selection (MAS) in bay scallop. PMID:23077533

  16. QTL mapping of ten agronomic traits on the soybean ( Glycine max L. Merr.) genetic map and their association with EST markers.

    PubMed

    Zhang, W-K; Wang, Y-J; Luo, G-Z; Zhang, J-S; He, C-Y; Wu, X-L; Gai, J-Y; Chen, S-Y

    2004-04-01

    A set of 184 recombinant inbred lines (RILs) derived from soybean vars. Kefeng No.1 x Nannong 1138-2 was used to construct a genetic linkage map. The two parents exhibit contrasting characteristics for most of the traits that were mapped. Using restricted fragment length polymorphisms (RFLPs), simple sequence repeats (SSRs) and expressed sequence tags (ESTs), we mapped 452 markers onto 21 linkage groups and covered 3595.9 cM of the soybean genome. All of the linkage groups except linkage group F were consistent with those of the consensus map of Cregan et al. (1999). Linkage group F was divided into two linkage groups, F1 and F2. The map consisted of 189 RFLPs, 219 SSRs, 40 ESTs, three R gene loci and one phenotype marker. Ten agronomic traits-days to flowering, days to maturity, plant height, number of nodes on main stem, lodging, number of pods per node, protein content, oil content, 100-seed weight, and plot yield-were studied. Using winqtlcart, we detected 63 quantitative trait loci (QTLs) that had LOD>3 for nine of the agronomic traits (only exception being seed oil content) and mapped these on 12 linkage groups. Most of the QTLs were clustered, especially on groups B1 and C2. Some QTLs were mapped to the same loci. This pleiotropism was common for most of the QTLs, and one QTL could influence at most five traits. Seven EST markers were found to be linked closely with or located at the same loci as the QTLs. EST marker GmKF059a, encoding a repressor protein and mapped on group C2, accounted for about 20% of the total variation of days to flowering, plant height, lodging and nodes on the main stem, respectively.

  17. QTL mapping of leukocyte telomere length in American Indians: The Strong Heart Family Study

    PubMed Central

    Lin, Jue; Matsuguchi, Tet; Blackburn, Elizabeth; Best, Lyle G.; Lee, Elisa T.; MacCluer, Jean W.; Cole, Shelley A.; Zhao, Jinying

    2013-01-01

    Telomeres play a central role in cellular senescence and are associated with a variety of age-related disorders such as dementia, Alzheimer's disease and atherosclerosis. Telomere length varies greatly among individuals of the same age, and is heritable. Here we performed a genome-wide linkage scan to identify quantitative trait loci (QTL) influencing leukocyte telomere length (LTL) measured by quantitative PCR in 3,665 American Indians (aged 14 – 93 years) from 94 large, multi-generational families. All participants were recruited by the Strong Heart Family Study (SHFS), a prospective study to identify genetic factors for cardiovascular disease and its risk factors in American Indians residing in Oklahoma, Arizona and Dakota. LTL heritability was estimated to be between 51% and 62%, suggesting a strong genetic predisposition to interindividual variation of LTL in this population. Significant QTLs were localized to chromosome 13 (Logarithm of odds score (LOD) = 3.9) at 13q12.11, to 18q22.2 (LOD = 3.2) and to 3p14.1 (LOD = 3.0) for Oklahoma. This is the first study to identify susceptibility loci influencing leukocyte telomere variation in American Indians, a minority group suffering from a disproportionately high rate of type 2 diabetes and other age-related disorders. PMID:24036517

  18. QTL mapping with different genetic systems for nine non-essential amino acids of cottonseeds.

    PubMed

    Liu, Haiying; Quampah, Alfred; Chen, Jinhong; Li, Jinrong; Huang, Zhuangrong; He, Qiuling; Shi, Chunhai; Zhu, Shuijin

    2017-03-18

    Amino acid is an important nutrient resource for both human and animals. Using a set of 188 RILs population derived from an elite hybrid cross of upland cotton cultivars 'HS46' × 'MARCABUCAG8US-1-88' and their immortal F2 (IF2) with reciprocal backcrosses BC1F1 and BC2F1 (BC) populations in two environments, the QTLs located on the embryo genome and maternal plant genome for nine amino acids of cottonseed were studied across environments. The QTL Network-CL-2.0-seed software was used to analyze the QTLs and their genetic effects for nine amino acids. A total of 56 QTLs for nine amino acids were detected in both populations, with many having over 5% of phenotypic variation. Ten of the total QTLs could be simultaneously found in the IF2 and BC populations. For most QTLs, the genetic effects from embryo genome were more important than those from maternal plant genome for the performance of nine amino acids. Significant embryo additive main effects and maternal additive main effect with their environment interaction effects from many QTLs were also found in present experiment. Some QTLs with larger phenotypic variation were important for improving the amino-acid contents in cottonseeds.

  19. QTL mapping of protein content and seed characteristics under water-stress conditions in sunflower.

    PubMed

    Ebrahimi, A; Maury, P; Berger, M; Calmon, A; Grieu, P; Sarrafi, A

    2009-05-01

    The purpose of this study was to identify genomic regions controlling seed protein content, kernel and hull weights, and seed density in water-stress conditions in sunflower (Helianthus annuus L.). The experiments consisted of a split-plot design (water treatment and recombinant inbred lines) with three blocks in two environments (greenhouse and field). High significant variation was observed between genotypes for all traits as well as for water treatment x genotype interaction. Several specific and nonspecific QTLs were detected for all traits under well-watered and water-stress conditions. Two SSR markers, ORS671_2 and HA2714, linked to protein content were identified that have no interaction with water treatments in greenhouse conditions. We also detected the E35M60_4 marker associated with kernel weight that had no interaction with water treatments. A specific QTL for protein content was detected with important phenotypic variance (17%) under water-stress conditions. Overlapping QTLs for protein content and seed density were identified in linkage group 15. This region probably has a peliotropic effect on protein content and seed density. QTLs for protein content colocated with grain weight traits were also identified.

  20. QTL mapping for a trade-off between leaf and bud production in a recombinant inbred population of Microseris douglasii and M. bigelovii (Asteraceae, Lactuceae): a potential preadaptation for the colonization of serpentine soils.

    PubMed

    Gailing, O; Macnair, M R; Bachmann, K

    2004-07-01

    The different response to growth on serpentine soil is a major autecological difference between the annual asteracean species Microseris douglasii and M. bigelovii, with nearly non-overlapping distribution ranges in California. Early flowering and seed set is regarded as a crucial character contributing to escape drought and thus is strongly correlated with survival and reproductive success on serpentine as naturally toxic soil. M. bigelovii (strain C94) from non-serpentine soil produces more leaves at the expense of bud production in the first growing phase than M. douglasii (B14) from serpentine soil. A QTL mapping study for this trade-off and for other growth-related traits was performed after six generations of inbreeding (F7) from a single interspecific hybrid between B14 and C94 on plants that were grown on serpentine and alternatively on normal potting soil. The trade-off is mainly correlated with markers on one map region on linkage group 03a (lg03a) with major phenotypic effects (phenotypic variance explained [PVE] = 18.8 - 31.7 %). Plants with the M. douglasii allele in QTL-B1 (QTL-NL1) produce more buds but fewer leaves in the first 119 days on both soil types. Three modifier QTL could be mapped for bud and leaf production. In one modifier (QTL-B2 = QTL-NL4) the M. douglasii allele is again associated with more buds but fewer leaves. QTL mapped for bud set in the F6 co-localize with QTL-B1 (major QTL) and QTL-B3. Two additional QTL for leaf length and red coloration of leaves could be mapped to one map region on lg03a. Co-localization of the two QTL loci with major phenotypic effects on bud and leaf production strongly suggests that a major genetic locus controls the trade-off between the two adaptive traits. The importance of mutational changes in major genes for the adaptation to stressful environments is discussed.

  1. A high-density genetic map identifies a novel major QTL for boron efficiency in oilseed rape (Brassica napus L.).

    PubMed

    Zhang, Didi; Hua, Yingpeng; Wang, Xiaohua; Zhao, Hua; Shi, Lei; Xu, Fangsen

    2014-01-01

    Low boron (B) seriously limits the growth of oilseed rape (Brassica napus L.), a high B demand species that is sensitive to low B conditions. Significant genotypic variations in response to B deficiency have been observed among B. napus cultivars. To reveal the genetic basis for B efficiency in B. napus, quantitative trait loci (QTLs) for the plant growth traits, B uptake traits and the B efficiency coefficient (BEC) were analyzed using a doubled haploid (DH) population derived from a cross between a B-efficient parent, Qingyou 10, and a B-inefficient parent, Westar 10. A high-density genetic map was constructed based on single nucleotide polymorphisms (SNPs) assayed using Brassica 60 K Infinium BeadChip Array, simple sequence repeats (SSRs) and amplified fragment length polymorphisms (AFLPs). The linkage map covered a total length of 2139.5 cM, with 19 linkage groups (LGs) and an average distance of 1.6 cM between adjacent markers. Based on hydroponic evaluation of six B efficiency traits measured in three separate repeated trials, a total of 52 QTLs were identified, accounting for 6.14-46.27% of the phenotypic variation. A major QTL for BEC, qBEC-A3a, was co-located on A3 with other QTLs for plant growth and B uptake traits under low B stress. Using a subset of substitution lines, qBEC-A3a was validated and narrowed down to the interval between CNU384 and BnGMS436. The results of this study provide a novel major locus located on A3 for B efficiency in B. napus that will be suitable for fine mapping and marker-assisted selection breeding for B efficiency in B. napus.

  2. A High-Density Genetic Map Identifies a Novel Major QTL for Boron Efficiency in Oilseed Rape (Brassica napus L.)

    PubMed Central

    Wang, Xiaohua; Zhao, Hua; Shi, Lei; Xu, Fangsen

    2014-01-01

    Low boron (B) seriously limits the growth of oilseed rape (Brassica napus L.), a high B demand species that is sensitive to low B conditions. Significant genotypic variations in response to B deficiency have been observed among B. napus cultivars. To reveal the genetic basis for B efficiency in B. napus, quantitative trait loci (QTLs) for the plant growth traits, B uptake traits and the B efficiency coefficient (BEC) were analyzed using a doubled haploid (DH) population derived from a cross between a B-efficient parent, Qingyou 10, and a B-inefficient parent, Westar 10. A high-density genetic map was constructed based on single nucleotide polymorphisms (SNPs) assayed using Brassica 60 K Infinium BeadChip Array, simple sequence repeats (SSRs) and amplified fragment length polymorphisms (AFLPs). The linkage map covered a total length of 2139.5 cM, with 19 linkage groups (LGs) and an average distance of 1.6 cM between adjacent markers. Based on hydroponic evaluation of six B efficiency traits measured in three separate repeated trials, a total of 52 QTLs were identified, accounting for 6.14–46.27% of the phenotypic variation. A major QTL for BEC, qBEC-A3a, was co-located on A3 with other QTLs for plant growth and B uptake traits under low B stress. Using a subset of substitution lines, qBEC-A3a was validated and narrowed down to the interval between CNU384 and BnGMS436. The results of this study provide a novel major locus located on A3 for B efficiency in B. napus that will be suitable for fine mapping and marker-assisted selection breeding for B efficiency in B. napus. PMID:25375356

  3. SNP-Based QTL Mapping of 15 Complex Traits in Barley under Rain-Fed and Well-Watered Conditions by a Mixed Modeling Approach.

    PubMed

    Mora, Freddy; Quitral, Yerko A; Matus, Ivan; Russell, Joanne; Waugh, Robbie; Del Pozo, Alejandro

    2016-01-01

    This study identified single nucleotide polymorphism (SNP) markers associated with 15 complex traits in a breeding population of barley (Hordeum vulgare L.) consisting of 137 recombinant chromosome substitution lines (RCSL), evaluated under contrasting water availability conditions in the Mediterranean climatic region of central Chile. Given that markers showed a very strong segregation distortion, a quantitative trait locus/loci (QTL) mapping mixed model was used to account for the heterogeneity in genetic relatedness between genotypes. Fifty-seven QTL were detected under rain-fed conditions, which accounted for 5-22% of the phenotypic variation. In full irrigation conditions, 84 SNPs were significantly associated with the traits studied, explaining 5-35% of phenotypic variation. Most of the QTL were co-localized on chromosomes 2H and 3H. Environment-specific genomic regions were detected for 12 of the 15 traits scored. Although most QTL-trait associations were environment and trait specific, some important and stable associations were also detected. In full irrigation conditions, a relatively major genomic region was found underlying hectoliter weight (HW), on chromosome 1H, which explained between 27% (SNP 2711-234) and 35% (SNP 1923-265) of the phenotypic variation. Interestingly, the locus 1923-265 was also detected for grain yield at both environmental conditions, accounting for 9 and 18%, in the rain-fed and irrigation conditions, respectively. Analysis of QTL in this breeding population identified significant genomic regions that can be used for marker-assisted selection (MAS) of barley in areas where drought is a significant constraint.

  4. Fine mapping of porcine SSC14 QTL and SCD gene effects on fatty acid composition and melting point of fat in a Duroc purebred population.

    PubMed

    Uemoto, Y; Nakano, H; Kikuchi, T; Sato, S; Ishida, M; Shibata, T; Kadowaki, H; Kobayashi, E; Suzuki, K

    2012-04-01

    The stearoyl-CoA desaturase (delta-9-desaturase; SCD) gene is a candidate gene for fatty acid composition. It is located on pig SSC14 in a region where quantitative trait loci (QTL) for fatty acid composition were previously detected in a Duroc purebred population. The objective of the present study was to fine map the QTL, to identify polymorphisms of the pig SCD gene and to examine the effects of SCD polymorphisms on fatty acid composition and melting point of fat in the population. The pigs were examined for fatty acid composition and melting point of inner and outer subcutaneous fat and inter- and intramuscular fat; the number of pigs examined was 479-521. Two SNPs (g.-353C>T and g.-233T>C) were identified in the promoter region of the SCD gene and were completely linked in the pigs from the base generation. In all pigs, 19 microsatellite markers and SCD haplotypes were then genotyped. Different statistical models were applied to evaluate the effects of QTL and the possible causality of the SCD gene variants with respect to the QTL. The results show that all significant QTL for C14:0, C18:0, C18:1 and melting point of fat were detected in the same region, located near the SCD gene. The results also show a significant association between SCD haplotypes and fatty acid composition and fat melting point in this population. These results indicate that the haplotype of the SCD gene has a strong effect on fatty acid composition and melting point of fat.

  5. SNP-Based QTL Mapping of 15 Complex Traits in Barley under Rain-Fed and Well-Watered Conditions by a Mixed Modeling Approach

    PubMed Central

    Mora, Freddy; Quitral, Yerko A.; Matus, Ivan; Russell, Joanne; Waugh, Robbie; del Pozo, Alejandro

    2016-01-01

    This study identified single nucleotide polymorphism (SNP) markers associated with 15 complex traits in a breeding population of barley (Hordeum vulgare L.) consisting of 137 recombinant chromosome substitution lines (RCSL), evaluated under contrasting water availability conditions in the Mediterranean climatic region of central Chile. Given that markers showed a very strong segregation distortion, a quantitative trait locus/loci (QTL) mapping mixed model was used to account for the heterogeneity in genetic relatedness between genotypes. Fifty-seven QTL were detected under rain-fed conditions, which accounted for 5–22% of the phenotypic variation. In full irrigation conditions, 84 SNPs were significantly associated with the traits studied, explaining 5–35% of phenotypic variation. Most of the QTL were co-localized on chromosomes 2H and 3H. Environment-specific genomic regions were detected for 12 of the 15 traits scored. Although most QTL-trait associations were environment and trait specific, some important and stable associations were also detected. In full irrigation conditions, a relatively major genomic region was found underlying hectoliter weight (HW), on chromosome 1H, which explained between 27% (SNP 2711-234) and 35% (SNP 1923-265) of the phenotypic variation. Interestingly, the locus 1923-265 was also detected for grain yield at both environmental conditions, accounting for 9 and 18%, in the rain-fed and irrigation conditions, respectively. Analysis of QTL in this breeding population identified significant genomic regions that can be used for marker-assisted selection (MAS) of barley in areas where drought is a significant constraint. PMID:27446139

  6. Fast Genome-Wide QTL Association Mapping on Pedigree and Population Data.

    PubMed

    Zhou, Hua; Blangero, John; Dyer, Thomas D; Chan, Kei-Hang K; Lange, Kenneth; Sobel, Eric M

    2017-04-01

    Since most analysis software for genome-wide association studies (GWAS) currently exploit only unrelated individuals, there is a need for efficient applications that can handle general pedigree data or mixtures of both population and pedigree data. Even datasets thought to consist of only unrelated individuals may include cryptic relationships that can lead to false positives if not discovered and controlled for. In addition, family designs possess compelling advantages. They are better equipped to detect rare variants, control for population stratification, and facilitate the study of parent-of-origin effects. Pedigrees selected for extreme trait values often segregate a single gene with strong effect. Finally, many pedigrees are available as an important legacy from the era of linkage analysis. Unfortunately, pedigree likelihoods are notoriously hard to compute. In this paper, we reexamine the computational bottlenecks and implement ultra-fast pedigree-based GWAS analysis. Kinship coefficients can either be based on explicitly provided pedigrees or automatically estimated from dense markers. Our strategy (a) works for random sample data, pedigree data, or a mix of both; (b) entails no loss of power; (c) allows for any number of covariate adjustments, including correction for population stratification; (d) allows for testing SNPs under additive, dominant, and recessive models; and (e) accommodates both univariate and multivariate quantitative traits. On a typical personal computer (six CPU cores at 2.67 GHz), analyzing a univariate HDL (high-density lipoprotein) trait from the San Antonio Family Heart Study (935,392 SNPs on 1,388 individuals in 124 pedigrees) takes less than 2 min and 1.5 GB of memory. Complete multivariate QTL analysis of the three time-points of the longitudinal HDL multivariate trait takes less than 5 min and 1.5 GB of memory. The algorithm is implemented as the Ped-GWAS Analysis (Option 29) in the Mendel statistical genetics package, which is

  7. Regression-based multi-trait QTL mapping using a structural equation model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative trait locus mapping often results in data on a number of traits that have well established causal relationships. Many multi-trait quantitative trait locus mapping methods that account for the correlation among the multiple traits have been developed to improve the statistical power and ...

  8. Joint QTL linkage mapping for multiple-cross mating design sharing one common parent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nested association mapping (NAM) is a novel genetic mating design that combines the advantages of linkage analysis and association mapping. This design provides opportunities to study the inheritance of complex traits, but also requires more advanced statistical methods. In this paper, we present th...

  9. Mapping and confirmation of a major left ventricular mass QTL on rat chromosome 1 by contrasting SHRSP and F344 rats.

    PubMed

    Grabowski, Katja; Koplin, Gerold; Aliu, Bujar; Schulte, Leonard; Schulz, Angela; Kreutz, Reinhold

    2013-09-16

    An abnormal increase in left ventricular (LV) mass, i.e., LV hypertrophy (LVH), represents an important target organ damage in arterial hypertension and has been associated with poor clinical outcome. Genetic factors are contributing to variation in LV mass in addition to blood pressure and other factors such as dietary salt intake. We set out to map quantitative trait loci (QTL) for LV mass by comparing the spontaneously hypertensive stroke-prone (SHRSP) rat with LVH and normotensive Fischer rats (F344) with contrasting low LV mass. To this end we performed a genome-wide QTL mapping analysis in 232 F2 animals derived from SHRSP and F344 exposed to high-salt (4% in chow) intake for 8 wk. We mapped one major QTL for LV mass on rat chromosome 1 (RNO1) that demonstrated strong linkage (peak logarithm of odds score 8.4) to relative LV weight (RLVW) and accounted for ∼19% of the variance of this phenotype in F2 rats. We therefore generated a consomic SHRSP-1(F344) strain in which RNO1 from F344 was introgressed into the SHRSP background. Consomic and SHRSP animals showed similar blood pressures during conventional intra-arterial measurements, while RLVW was already significantly lower (-17.7%, P<0.05) in SHRSP-1(F344) in response to a normal-salt diet; a similar significant reduction of LV mass was also observed in consomic rats after high-salt intake (P<0.05 vs. SHRSP). Thus, a major QTL on RNO1 was confirmed with significant impact on LV mass in the hypertensive background of SHRSP.

  10. QTL analyses for seed iron and zinc concentrations in an intra-genepool population of Andean common beans (Phaseolus vulgaris L.).

    PubMed

    Blair, Matthew W; Astudillo, Carohna; Rengifo, Judith; Beebe, Steve E; Graham, Robin

    2011-02-01

    Legumes provide essential micronutrients that are found only in low amounts in the cereals or root crops. An ongoing project at CIAT has shown that the legume common bean is variable in the amount of seed minerals (iron, zinc, and other elements), vitamins, and sulfur amino acids that they contain and that these traits are likely to be inherited quantitatively. In this study we analyzed iron and zinc concentrations in an Andean recombinant inbred line (RIL) population of 100 lines derived from a cross between G21242, a Colombian cream-mottled climbing bean with high seed iron/zinc and G21078, an Argentinean cream seeded climbing bean with low seed iron/zinc. The population was planted across three environments; seed from each genotype was analyzed with two analytical methods, and quantitative trait loci (QTL) were detected using composite interval mapping and single-point analyses. A complete genetic map was created for the cross using a total of 74 microsatellite markers to anchor the map to previously published reference maps and 42 RAPD markers. In total, nine seed mineral QTL were identified on five linkage groups (LGs) with the most important being new loci on b02 and other QTL on b06, b08, and b07 near phaseolin. Seed weight QTL were associated with these on b02 and b08. These Andean-derived QTL are candidates for marker-assisted selection either in combination with QTL from the Mesoamerican genepool or with other QTL found in inter and intra-genepool crosses, and the genetic map can be used to anchor other intra-genepool studies.

  11. Cloning of a phosphatidylinositol 4-kinase gene based on fiber strength transcriptome QTL mapping in the cotton species Gossypium barbadense.

    PubMed

    Liu, H W; Shi, R F; Wang, X F; Pan, Y X; Zang, G Y; Ma, Z Y

    2012-09-25

    Sea Island cotton (Gossypium barbadense) is highly valued for its superior fiber qualities, especially fiber strength. Based on a transcript-derived fragment originated from transcriptome QTL mapping, a fiber strength related candidate gene of phosphatidylinositol 4-kinase cDNA, designated as GbPI4K, was first cloned, and its expression was characterized in the secondary cell wall thickening stage of G. barbadense fibers. The ORF of GbPI4K was found to be 1926 bp in length and encoded a predicted protein of 641 amino acid residues. The putative protein contained a clear PI3/4K kinase catalytic domain and fell into the plant type II PI4K cluster in phylogenetic analysis. In this study, the expression of cotton PI4K protein was also induced in Escherichia coli BL21 (DE3) as a fused protein. Semi-quantitative RT-PCR analysis showed that the gene expressed in the root, hypocotyl and leaf of the cotton plants. Real-time RT-PCR indicated that this gene in Sea Island cotton fibers expressed 10 days longer than that in Upland cotton fibers, and the main expression difference of PI4K between Sea Island cotton and Upland cotton in fibers was located in the secondary cell wall thickening stage of the fiber. Further analysis indicated that PI4K is a crucial factor in the ability of Rac proteins to regulate phospholipid signaling pathways.

  12. Genome-Wide Association Study and QTL Mapping Reveal Genomic Loci Associated with Fusarium Ear Rot Resistance in Tropical Maize Germplasm

    PubMed Central

    Chen, Jiafa; Shrestha, Rosemary; Ding, Junqiang; Zheng, Hongjian; Mu, Chunhua; Wu, Jianyu; Mahuku, George

    2016-01-01

    Fusarium ear rot (FER) incited by Fusarium verticillioides is a major disease of maize that reduces grain quality globally. Host resistance is the most suitable strategy for managing the disease. We report the results of genome-wide association study (GWAS) to detect alleles associated with increased resistance to FER in a set of 818 tropical maize inbred lines evaluated in three environments. Association tests performed using 43,424 single-nucleotide polymorphic (SNPs) markers identified 45 SNPs and 15 haplotypes that were significantly associated with FER resistance. Each associated SNP locus had relatively small additive effects on disease resistance and accounted for 1–4% of trait variation. These SNPs and haplotypes were located within or adjacent to 38 candidate genes, 21 of which were candidate genes associated with plant tolerance to stresses, including disease resistance. Linkage mapping in four biparental populations to validate GWAS results identified 15 quantitative trait loci (QTL) associated with F. verticillioides resistance. Integration of GWAS and QTL to the maize physical map showed eight colocated loci on chromosomes 2, 3, 4, 5, 9, and 10. QTL on chromosomes 2 and 9 are new. These results reveal that FER resistance is a complex trait that is conditioned by multiple genes with minor effects. The value of selection on identified markers for improving FER resistance is limited; rather, selection to combine small effect resistance alleles combined with genomic selection for polygenic background for both the target and general adaptation traits might be fruitful for increasing FER resistance in maize. PMID:27742723

  13. Construction of Commercial Sweet Cherry Linkage Maps and QTL Analysis for Trunk Diameter

    PubMed Central

    Wang, Jing; Zhang, Kaichun; Zhang, Xiaoming; Yan, Guohua; Zhou, Yu; Feng, Laibao; Ni, Yang; Duan, Xuwei

    2015-01-01

    A cross between the sweet cherry (Prunus avium) cultivars ‘Wanhongzhu’ and ‘Lapins’ was performed to create a mapping population suitable for the construction of a linkage map. The specific-locus amplified fragment (SLAF) sequencing technique used as a single nucleotide polymorphism (SNP) discovery platform and generated 701 informative genotypic assays; these, along with 16 microsatellites (SSRs) and the incompatibility (S) gene, were used to build a map which comprised 8 linkage groups (LGs) and covered a genetic distance of 849.0 cM. The mean inter-marker distance was 1.18 cM and there were few gaps > 5 cM in length. Marker collinearity was maintained with the established peach genomic sequence. The map was used to show that trunk diameter (TD) is under the control of 4 loci, mapping to 3 different LGs. Different locus influenced TD at a varying stage of the tree’s development. The high density ‘W×L’ genetic linkage map has the potential to enable high-resolution identification of QTLs of agronomically relevant traits, and accelerate sweet cherry breeding. PMID:26516760

  14. Construction of Commercial Sweet Cherry Linkage Maps and QTL Analysis for Trunk Diameter.

    PubMed

    Wang, Jing; Zhang, Kaichun; Zhang, Xiaoming; Yan, Guohua; Zhou, Yu; Feng, Laibao; Ni, Yang; Duan, Xuwei

    2015-01-01

    A cross between the sweet cherry (Prunus avium) cultivars 'Wanhongzhu' and 'Lapins' was performed to create a mapping population suitable for the construction of a linkage map. The specific-locus amplified fragment (SLAF) sequencing technique used as a single nucleotide polymorphism (SNP) discovery platform and generated 701 informative genotypic assays; these, along with 16 microsatellites (SSRs) and the incompatibility (S) gene, were used to build a map which comprised 8 linkage groups (LGs) and covered a genetic distance of 849.0 cM. The mean inter-marker distance was 1.18 cM and there were few gaps > 5 cM in length. Marker collinearity was maintained with the established peach genomic sequence. The map was used to show that trunk diameter (TD) is under the control of 4 loci, mapping to 3 different LGs. Different locus influenced TD at a varying stage of the tree's development. The high density 'W×L' genetic linkage map has the potential to enable high-resolution identification of QTLs of agronomically relevant traits, and accelerate sweet cherry breeding.

  15. Integrating Small RNA Sequencing with QTL Mapping for Identification of miRNAs and Their Target Genes Associated with Heat Tolerance at the Flowering Stage in Rice

    PubMed Central

    Liu, Qing; Yang, Tifeng; Yu, Ting; Zhang, Shaohong; Mao, Xingxue; Zhao, Junliang; Wang, Xiaofei; Dong, Jingfang; Liu, Bin

    2017-01-01

    Although, microRNAs (miRNAs) have been reported to be associated with heat tolerance at the seedling stage in rice, their involvement in heat tolerance at the flowering stage is still unknown. In this study, small RNA profiling was conducted in a heat-tolerant variety Gan-Xiang-Nuo (GXN) and a heat-sensitive variety Hua-Jing-Xian-74 (HJX), respectively. Totally, 102 miRNAs were differentially expressed (DE) under heat stress. Compared to HJX, GXN had more DE miRNAs and its DE miRNAs changed earlier under heat stress. Plant Ontology (PO) analysis of the target genes revealed that many DE miRNAs were involved in flower development. As a parallel experiment, QTL mapping was also conducted and four QTLs for heat tolerance at the flowering stage were identified using chromosome single-segment substitution lines derived from GXN and HJX. Further, through integrating analysis of DE miRNAs with QTLs, we identified 8 target genes corresponding to 26 miRNAs within the four QTL regions. Some meaningful target genes such as LOC_Os12g42400, SGT1, and pectinesterase were within the QTL regions. The negative correlation between miR169r-5p and its target gene LOC_Os12g42400 was confirmed under heat stress, and overexpression of miR169r-5p enhanced heat tolerance at flowering stage in rice. Our results demonstrate that the integrated analysis of genome-wide miRNA profiling with QTL mapping can facilitate identification of miRNAs and their target genes associated with the target traits and the limited candidates identified in this study offer an important source for further functional analysis and molecular breeding for heat tolerance in rice. PMID:28174587

  16. Genetic linkage map construction and QTL identification of juvenile growth traits in Torreya grandis

    PubMed Central

    2014-01-01

    Torreya grandis Fort. ex Lindl, a conifer species widely distributed in Southeastern China, is of high economic value by producing edible, nutrient seeds. However, knowledge about the genome structure and organization of this species is poorly understood, thereby limiting the effective use of its gene resources. Here, we report on a first genetic linkage map for Torreya grandis using 96 progeny randomly chosen from a half-sib family of a commercially cultivated variety of this species, Torreya grandis Fort. ex Lindl cv. Merrillii. The map contains 262 molecular markers, i.e., 75 random amplified polymorphic DNAs (RAPD), 119 inter-simple sequence repeats (ISSR) and 62 amplified fragments length polymorphisms (AFLP), and spans a total of 7,139.9 cM, separated by 10 linkage groups. The linkage map was used to map quantitative trait loci (QTLs) associated with juvenile growth traits by functional mapping. We identified four basal diameter-related QTLs on linkage groups 1, 5 and 9; four height-related QTLs on linkage groups 1, 2, 5 and 8. It was observed that the genetic effects of QTLs on growth traits vary with age, suggesting the dynamic behavior of growth QTLs. Part of the QTLs was found to display a pleiotropic effect on basal diameter growth and height growth. PMID:25079139

  17. QTL mapping of forage yield and forage yield component traits in Sorghum bicolor x S. sudanense.

    PubMed

    Liu, Y L; Wang, L H; Li, J Q; Zhan, Q W; Zhang, Q; Li, J F; Fan, F F

    2015-04-22

    The sorghum-sudangrass hybrid (Sorghum bicolor x S. sudanense) is an important forage crop. However, little is known about the genetic mechanisms related to forage yield and the 4 forage yield component traits in this forage crop. In this study, a linkage map was constructed with 124 assigned SSR markers using an F2 mapping population derived from the crossing of sorghum Tx623A and sudangrass Sa. Nine quantitative trait loci (QTLs) were detected for forage yield and the 4 forage yield component traits using inclusive composite interval mapping. Five fresh weight QTLs were identified and contributed >50% of the total phenotypic variance. Of these QTLs, all showed additive and dominant effects, but most exhibited mainly dominant effects. These results will provide useful information for improvements in sorghum-sudangrass hybrid breeding.

  18. QTL mapping in A-genome diploid Asiatic cotton and their congruence analysis with AD-genome tetraploid cotton in genus Gossypium.

    PubMed

    Ma, Xuexia; Ding, Yezhang; Zhou, Baoliang; Guo, Wangzhen; Lv, Yanhui; Zhu, Xiefei; Zhang, Tianzhen

    2008-12-01

    Asiatic cotton (Gossypium arboreum L.) is an Old World cultivated cotton species. The sinense race was planted extensively in China. Due to the advances in spinning technology during the last century, the species was replaced by the New World allotetraploid cotton G. hirsutum L. Gossypium arboreum is still grown in India and Pakistan and also used as an elite in current cotton breeding programs. In addition, G. arboreum serves as a model for genomic research in Gossypium. In the present study, we generated an A-genome diploid cotton intraspecific genetic map including 264 SSR loci with three morphological markers mapped to 13 linkage groups. The map spans 2,508.71 cM with an average distance of 9.4 cM between adjacent loci. A population containing 176 F(2:3) families was used to perform quantitative trait loci (QTL) mapping for 17 phenotypes using Multiple QTL Model (MQM) of MapQTL ver 5.0. Overall, 108 QTLs were detected on 13 chromosomes. Thirty-one QTLs for yield and its components were detected in the F2 population. Forty-one QTLs for yield and its components were detected in the F(2:3) families with a total of 43 QTLs for fiber qualities. Two QTLs for seed cotton weight/plant and lint index and three QTLs for seed index were consistently detected both in F2 and F(2:3). Most QTLs for fiber qualities and yields were located at the same interval or neighboring intervals. These results indicated that the negative correlation between fiber qualities and yield traits may result from either pleiotropic effect of one gene or linkage effects of multiple closely linked genes.

  19. A linkage map of transcribed single nucleotide polymorphisms in rohu (Labeo rohita) and QTL associated with resistance to Aeromonas hydrophila

    PubMed Central

    2014-01-01

    Background Production of carp dominates world aquaculture. More than 1.1 million tonnes of rohu carp, Labeo rohita (Hamilton), were produced in 2010. Aeromonas hydrophila is a bacterial pathogen causing aeromoniasis in rohu, and is a major problem for carp production worldwide. There is a need to better understand the genetic mechanisms affecting resistance to this disease, and to develop tools that can be used with selective breeding to improve resistance. Here we use a 6 K SNP array to genotype 21 full-sibling families of L. rohita that were experimentally challenged intra-peritoneally with a virulent strain of A. hydrophila to scan the genome for quantitative trait loci associated with disease resistance. Results In all, 3193 SNPs were found to be informative and were used to create a linkage map and to scan for QTL affecting resistance to A. hydrophila. The linkage map consisted of 25 linkage groups, corresponding to the number of haploid chromosomes in L. rohita. Male and female linkage maps were similar in terms of order, coverage (1384 and 1393 cM, respectively) and average interval distances (1.32 and 1.35 cM, respectively). Forty-one percent of the SNPs were annotated with gene identity using BLAST (cut off E-score of 0.001). Twenty-one SNPs mapping to ten linkage groups showed significant associations with the traits hours of survival and dead or alive (P <0.05 after Bonferroni correction). Of the SNPs showing significant or suggestive associations with the traits, several were homologous to genes of known immune function or were in close linkage to such genes. Genes of interest included heat shock proteins (70, 60, 105 and “small heat shock proteins”), mucin (5b precursor and 2), lectin (receptor and CD22), tributyltin-binding protein, major histocompatibility loci (I and II), complement protein component c7-1, perforin 1, ubiquitin (ligase, factor e4b isoform 2 and conjugation enzyme e2 c), proteasome subunit, T-cell antigen receptor and

  20. Genetic dissection of heterosis using epistatic QTL mapping in partial NCII mating design

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heterosis refers to the phenomenon in which hybrid F1 exhibits enhanced growth or agronomic performance. However, theoretical studies on the genetic basis of heterosis were based on bi-parental segregation populations instead of multiple-parental hybrid F1 populations. In simulation study, we mapped...

  1. Radiation hybrid QTL mapping of Tdes2 involved in the first meiotic division of wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since the dawn of wheat cytogenetics, chromosome 3B has been known to harbor a gene(s) that, when removed, caused chromosome desynapsis and gametic sterility. The lack of natural genetic diversity for this gene(s) has prevented any attempts to fine map and further characterize it. Here, gamma radiat...

  2. A statistical model for QTL mapping in polysomic autotetraploids underlying double reduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Abstract: As a group of economically important species, linkage mapping of polysomic autotetraploids, including potato, sugarcane and rose, is difficult to conduct due to their unique meiotic property of double reduction that allows sister chromatids to enter into the same gamete. We desc...

  3. Precision QTL mapping of downy mildew resistance in Hop (Humulus lupulus L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hop Downy mildew (DM) is an obligate parasite causing severe losses in hop if not controlled. Resistance to this pathogen is a primary goal for hop breeding programs. The objective of this study was to identify QTLs linked to DM resistance. Next-generation-sequencing was performed on a mapping po...

  4. The Use of Kosher Phenotyping for Mapping QTL Affecting Susceptibility to Bovine Respiratory Disease

    PubMed Central

    Eitam, Harel; Yishay, Moran; Schiavini, Fausta; Soller, Morris; Bagnato, Alessandro; Shabtay, Ariel

    2016-01-01

    Bovine respiratory disease (BRD) is the leading cause of morbidity and mortality in feedlot cattle, caused by multiple pathogens that become more virulent in response to stress. As clinical signs often go undetected and various preventive strategies failed, identification of genes affecting BRD is essential for selection for resistance. Selective DNA pooling (SDP) was applied in a genome wide association study (GWAS) to map BRD QTLs in Israeli Holstein male calves. Kosher scoring of lung adhesions was used to allocate 122 and 62 animals to High (Glatt Kosher) and Low (Non-Kosher) resistant groups, respectively. Genotyping was performed using the Illumina BovineHD BeadChip according to the Infinium protocol. Moving average of -logP was used to map QTLs and Log drop was used to define their boundaries (QTLRs). The combined procedure was efficient for high resolution mapping. Nineteen QTLRs distributed over 13 autosomes were found, some overlapping previous studies. The QTLRs contain polymorphic functional and expression candidate genes to affect kosher status, with putative immunological and wound healing activities. Kosher phenotyping was shown to be a reliable means to map QTLs affecting BRD morbidity. PMID:27077383

  5. The Use of Kosher Phenotyping for Mapping QTL Affecting Susceptibility to Bovine Respiratory Disease.

    PubMed

    Lipkin, Ehud; Strillacci, Maria Giuseppina; Eitam, Harel; Yishay, Moran; Schiavini, Fausta; Soller, Morris; Bagnato, Alessandro; Shabtay, Ariel

    2016-01-01

    Bovine respiratory disease (BRD) is the leading cause of morbidity and mortality in feedlot cattle, caused by multiple pathogens that become more virulent in response to stress. As clinical signs often go undetected and various preventive strategies failed, identification of genes affecting BRD is essential for selection for resistance. Selective DNA pooling (SDP) was applied in a genome wide association study (GWAS) to map BRD QTLs in Israeli Holstein male calves. Kosher scoring of lung adhesions was used to allocate 122 and 62 animals to High (Glatt Kosher) and Low (Non-Kosher) resistant groups, respectively. Genotyping was performed using the Illumina BovineHD BeadChip according to the Infinium protocol. Moving average of -logP was used to map QTLs and Log drop was used to define their boundaries (QTLRs). The combined procedure was efficient for high resolution mapping. Nineteen QTLRs distributed over 13 autosomes were found, some overlapping previous studies. The QTLRs contain polymorphic functional and expression candidate genes to affect kosher status, with putative immunological and wound healing activities. Kosher phenotyping was shown to be a reliable means to map QTLs affecting BRD morbidity.

  6. A microsatellite-based, physically anchored linkage map for the gray, short-tailed opossum (Monodelphis domestica).

    PubMed

    Samollow, Paul B; Gouin, Nicolas; Miethke, Pat; Mahaney, Susan M; Kenney, Margaret; VandeBerg, John L; Graves, Jennifer A Marshall; Kammerer, Candace M

    2007-01-01

    The genome of the gray, short-tailed opossum, Monodelphis domestica, will be the first of any marsupial to be fully sequenced. The utility of this sequence will be greatly enhanced by construction and integration of detailed genetic and physical maps. Therefore, it is important to verify the unusual recombinational characteristics that were suggested by the 'first-generation' M. domestica linkage map; specifically, very low levels of recombination and severely reduced female recombination, both of which are contrary to patterns in other vertebrates. We constructed a new linkage map based on a different genetic cross, using a new and much larger set of map markers, and physically anchored and oriented the linkage groups onto chromosomes via fluorescence in-situ hybridization mapping. This map includes 150 loci in eight autosomal linkage groups corresponding to the eight autosome pairs, and spans 86-89% of the autosomal genome. The sex-averaged autosomal map covers 715 cM, with a full-length estimate of 866 cM; the shortest full-length linkage map reported for any vertebrate. The sex-specific maps confirmed severely reduced female recombination in all linkage groups, and an overall F/M map ratio = 0.54. These results greatly extend earlier findings, and provide an improved microsatellite-based linkage map for this species.

  7. Ensemble Learning of QTL Models Improves Prediction of Complex Traits

    PubMed Central

    Bian, Yang; Holland, James B.

    2015-01-01

    Quantitative trait locus (QTL) models can provide useful insights into trait genetic architecture because of their straightforward interpretability but are less useful for genetic prediction because of the difficulty in including the effects of numerous small effect loci without overfitting. Tight linkage between markers introduces near collinearity among marker genotypes, complicating the detection of QTL and estimation of QTL effects in linkage mapping, and this problem is exacerbated by very high density linkage maps. Here we developed a thinning and aggregating (TAGGING) method as a new ensemble learning approach to QTL mapping. TAGGING reduces collinearity problems by thinning dense linkage maps, maintains aspects of marker selection that characterize standard QTL mapping, and by ensembling, incorporates information from many more markers-trait associations than traditional QTL mapping. The objective of TAGGING was to improve prediction power compared with QTL mapping while also providing more specific insights into genetic architecture than genome-wide prediction models. TAGGING was compared with standard QTL mapping using cross validation of empirical data from the maize (Zea mays L.) nested association mapping population. TAGGING-assisted QTL mapping substantially improved prediction ability for both biparental and multifamily populations by reducing both the variance and bias in prediction. Furthermore, an ensemble model combining predictions from TAGGING-assisted QTL and infinitesimal models improved prediction abilities over the component models, indicating some complementarity between model assumptions and suggesting that some trait genetic architectures involve a mixture of a few major QTL and polygenic effects. PMID:26276383

  8. QTL analysis for some quantitative traits in bread wheat*

    PubMed Central

    Pushpendra, Kumar Gupta; Harindra, Singh Balyan; Pawan, Laxminarayan Kulwal; Neeraj, Kumar; Ajay, Kumar; Reyazul, Rouf Mir; Amita, Mohan; Jitendra, Kumar

    2007-01-01

    Quantitative trait loci (QTL) analysis was conducted in bread wheat for 14 important traits utilizing data from four different mapping populations involving different approaches of QTL analysis. Analysis for grain protein content (GPC) suggested that the major part of genetic variation for this trait is due to environmental interactions. In contrast, pre-harvest sprouting tolerance (PHST) was controlled mainly by main effect QTL (M-QTL) with very little genetic variation due to environmental interactions; a major QTL for PHST was detected on chromosome arm 3AL. For grain weight, one QTL each was detected on chromosome arms 1AS, 2BS and 7AS. QTL for 4 growth related traits taken together detected by different methods ranged from 37 to 40; nine QTL that were detected by single-locus as well as two-locus analyses were all M-QTL. Similarly, single-locus and two-locus QTL analyses for seven yield and yield contributing traits in two populations respectively allowed detection of 25 and 50 QTL by composite interval mapping (CIM), 16 and 25 QTL by multiple-trait composite interval mapping (MCIM) and 38 and 37 QTL by two-locus analyses. These studies should prove useful in QTL cloning and wheat improvement through marker aided selection. PMID:17973342

  9. Insight into the genetic components of community genetics: QTL mapping of insect association in a fast-growing forest tree.

    PubMed

    DeWoody, Jennifer; Viger, Maud; Lakatos, Ferenc; Tuba, Katalin; Taylor, Gail; Smulders, Marinus J M

    2013-01-01

    Identifying genetic sequences underlying insect associations on forest trees will improve the understanding of community genetics on a broad scale. We tested for genomic regions associated with insects in hybrid poplar using quantitative trait loci (QTL) analyses conducted on data from a common garden experiment. The F2 offspring of a hybrid poplar (Populus trichocarpa x P. deltoides) cross were assessed for seven categories of insect leaf damage at two time points, June and August. Positive and negative correlations were detected among damage categories and between sampling times. For example, sap suckers on leaves in June were positively correlated with sap suckers on leaves (P<0.001) but negatively correlated with skeletonizer damage (P<0.01) in August. The seven forms of leaf damage were used as a proxy for seven functional groups of insect species. Significant variation in insect association occurred among the hybrid offspring, including transgressive segregation of susceptibility to damage. NMDS analyses revealed significant variation and modest broad-sense heritability in insect community structure among genets. QTL analyses identified 14 genomic regions across 9 linkage groups that correlated with insect association. We used three genomics tools to test for putative mechanisms underlying the QTL. First, shikimate-phenylpropanoid pathway genes co-located to 9 of the 13 QTL tested, consistent with the role of phenolic glycosides as defensive compounds. Second, two insect association QTL corresponded to genomic hotspots for leaf trait QTL as identified in previous studies, indicating that, in addition to biochemical attributes, leaf morphology may influence insect preference. Third, network analyses identified categories of gene models over-represented in QTL for certain damage types, providing direction for future functional studies. These results provide insight into the genetic components involved in insect community structure in a fast-growing forest tree.

  10. Insight into the Genetic Components of Community Genetics: QTL Mapping of Insect Association in a Fast-Growing Forest Tree

    PubMed Central

    DeWoody, Jennifer; Viger, Maud; Lakatos, Ferenc; Tuba, Katalin; Taylor, Gail; Smulders, Marinus J. M.

    2013-01-01

    Identifying genetic sequences underlying insect associations on forest trees will improve the understanding of community genetics on a broad scale. We tested for genomic regions associated with insects in hybrid poplar using quantitative trait loci (QTL) analyses conducted on data from a common garden experiment. The F2 offspring of a hybrid poplar (Populus trichocarpa x P. deltoides) cross were assessed for seven categories of insect leaf damage at two time points, June and August. Positive and negative correlations were detected among damage categories and between sampling times. For example, sap suckers on leaves in June were positively correlated with sap suckers on leaves (P<0.001) but negatively correlated with skeletonizer damage (P<0.01) in August. The seven forms of leaf damage were used as a proxy for seven functional groups of insect species. Significant variation in insect association occurred among the hybrid offspring, including transgressive segregation of susceptibility to damage. NMDS analyses revealed significant variation and modest broad-sense heritability in insect community structure among genets. QTL analyses identified 14 genomic regions across 9 linkage groups that correlated with insect association. We used three genomics tools to test for putative mechanisms underlying the QTL. First, shikimate-phenylpropanoid pathway genes co-located to 9 of the 13 QTL tested, consistent with the role of phenolic glycosides as defensive compounds. Second, two insect association QTL corresponded to genomic hotspots for leaf trait QTL as identified in previous studies, indicating that, in addition to biochemical attributes, leaf morphology may influence insect preference. Third, network analyses identified categories of gene models over-represented in QTL for certain damage types, providing direction for future functional studies. These results provide insight into the genetic components involved in insect community structure in a fast-growing forest tree

  11. Insight into Genotype-Phenotype Associations through eQTL Mapping in Multiple Cell Types in Health and Immune-Mediated Disease

    PubMed Central

    Peters, James E.; Lyons, Paul A.; Lee, James C.; Richard, Arianne C.; Fortune, Mary D.; Newcombe, Paul J.; Richardson, Sylvia; Smith, Kenneth G. C.

    2016-01-01

    Genome-wide association studies (GWAS) have transformed our understanding of the genetics of complex traits such as autoimmune diseases, but how risk variants contribute to pathogenesis remains largely unknown. Identifying genetic variants that affect gene expression (expression quantitative trait loci, or eQTLs) is crucial to addressing this. eQTLs vary between tissues and following in vitro cellular activation, but have not been examined in the context of human inflammatory diseases. We performed eQTL mapping in five primary immune cell types from patients with active inflammatory bowel disease (n = 91), anti-neutrophil cytoplasmic antibody-associated vasculitis (n = 46) and healthy controls (n = 43), revealing eQTLs present only in the context of active inflammatory disease. Moreover, we show that following treatment a proportion of these eQTLs disappear. Through joint analysis of expression data from multiple cell types, we reveal that previous estimates of eQTL immune cell-type specificity are likely to have been exaggerated. Finally, by analysing gene expression data from multiple cell types, we find eQTLs not previously identified by database mining at 34 inflammatory bowel disease-associated loci. In summary, this parallel eQTL analysis in multiple leucocyte subsets from patients with active disease provides new insights into the genetic basis of immune-mediated diseases. PMID:27015630

  12. A complete genetic linkage map and QTL analyses for bast fibre quality traits, yield and yield components in jute (Corchorus olitorius L.).

    PubMed

    Topdar, N; Kundu, A; Sinha, M K; Sarkar, D; Das, M; Banerjee, S; Kar, C S; Satya, P; Balyan, H S; Mahapatra, B S; Gupta, P K

    2013-01-01

    We report the first complete microsatellite genetic map of jute (Corchorus olitorius L.; 2n = 2x = 14) using an F6 recombinant inbred population. Of the 403 microsatellite markers screened, 82 were mapped on the seven linkage groups (LGs) that covered a total genetic distance of 799.9 cM, with an average marker interval of 10.7 cM. LG5 had the longest and LG7 the shortest genetic lengths, whereas LG1 had the maximum and LG7 the minimum number of markers. Segregation distortion of microsatellite loci was high (61%), with the majority of them (76%) skewed towards the female parent. Genomewide non-parametric single-marker analysis in combination with multiple quantitative trait loci (QTL)-models (MQM) mapping detected 26 definitive QTLs for bast fibre quality, yield and yield-related traits. These were unevenly distributed on six LGs, as colocalized clusters, at genomic sectors marked by 15 microsatellite loci. LG1 was the QTL-richest map sector, with the densest colocalized clusters of QTLs governing fibre yield, yield-related traits and tensile strength. Expectedly, favorable QTLs were derived from the desirable parents, except for nearly all of those of fibre fineness, which might be due to the creation of new gene combinations. Our results will be a good starting point for further genome analyses in jute.

  13. QTL mapping for growth and carcass traits in an Iberian by Landrace pig intercross: additive, dominant and epistatic effects.

    PubMed

    Varona, L; Ovilo, C; Clop, A; Noguera, J L; Pérez-Enciso, M; Coll, A; Folch, J M; Barragán, C; Toro, M A; Babot, D; Sánchez, A

    2002-10-01

    Results from a QTL experiment on growth and carcass traits in an experimental F2 cross between Iberian and Landrace pigs are reported. Phenotypic data for growth, length of carcass and muscle mass, fat deposition and carcass composition traits from 321 individuals corresponding to 58 families were recorded. Animals were genotyped for 92 markers covering the 18 porcine autosomes (SSC). The results from the genomic scan show genomewide significant QTL in SSC2 (longissimus muscle area and backfat thickness), SSC4 (length of carcass, backfat thickness, loin, shoulder and belly bacon weights) and SSC6 (longissimus muscle area, backfat thickness, loin, shoulder and belly bacon weights). Suggestive QTL were also found on SSC1, SSC5, SSC7, SSC8, SSC9, SSC13, SCC14, SSC16 and SSC17. A bidimensional genomic scan every 10 cM was performed to detect interaction between QTL. The joint action of two suggestive QTL in SSC2 and SSC17 led to a genome-wide significant effect in live weight. The results of the bidimensional genomic scan showed that the genetic architecture was mainly additive or the experimental set-up did not have enough power to detect epistatic interactions.

  14. QTL Detection and Elite Alleles Mining for Stigma Traits in Oryza sativa by Association Mapping

    PubMed Central

    Dang, Xiaojing; Liu, Erbao; Liang, Yinfeng; Liu, Qiangming; Breria, Caleb M.; Hong, Delin

    2016-01-01

    Stigma traits are very important for hybrid seed production in Oryza sativa, which is a self-pollinated crop; however, the genetic mechanism controlling the traits is poorly understood. In this study, we investigated the phenotypic data of 227 accessions across 2 years and assessed their genotypic variation with 249 simple sequence repeat (SSR) markers. By combining phenotypic and genotypic data, a genome-wide association (GWA) map was generated. Large phenotypic variations in stigma length (STL), stigma brush-shaped part length (SBPL) and stigma non-brush-shaped part length (SNBPL) were found. Significant positive correlations were identified among stigma traits. In total, 2072 alleles were detected among 227 accessions, with an average of 8.3 alleles per SSR locus. GWA mapping detected 6 quantitative trait loci (QTLs) for the STL, 2 QTLs for the SBPL and 7 QTLs for the SNBPL. Eleven, 5, and 12 elite alleles were found for the STL, SBPL, and SNBPL, respectively. Optimal cross designs were predicted for improving the target traits. The detected genetic variation in stigma traits and QTLs provides helpful information for cloning candidate STL genes and breeding rice cultivars with longer STLs in the future. PMID:27555858

  15. Genetic dissection of the maize kernel development process via conditional QTL mapping for three developing kernel-related traits in an immortalized F2 population.

    PubMed

    Zhang, Zhanhui; Wu, Xiangyuan; Shi, Chaonan; Wang, Rongna; Li, Shengfei; Wang, Zhaohui; Liu, Zonghua; Xue, Yadong; Tang, Guiliang; Tang, Jihua

    2016-02-01

    Kernel development is an important dynamic trait that determines the final grain yield in maize. To dissect the genetic basis of maize kernel development process, a conditional quantitative trait locus (QTL) analysis was conducted using an immortalized F2 (IF2) population comprising 243 single crosses at two locations over 2 years. Volume (KV) and density (KD) of dried developing kernels, together with kernel weight (KW) at different developmental stages, were used to describe dynamic changes during kernel development. Phenotypic analysis revealed that final KW and KD were determined at DAP22 and KV at DAP29. Unconditional QTL mapping for KW, KV and KD uncovered 97 QTLs at different kernel development stages, of which qKW6b, qKW7a, qKW7b, qKW10b, qKW10c, qKV10a, qKV10b and qKV7 were identified under multiple kernel developmental stages and environments. Among the 26 QTLs detected by conditional QTL mapping, conqKW7a, conqKV7a, conqKV10a, conqKD2, conqKD7 and conqKD8a were conserved between the two mapping methodologies. Furthermore, most of these QTLs were consistent with QTLs and genes for kernel development/grain filling reported in previous studies. These QTLs probably contain major genes associated with the kernel development process, and can be used to improve grain yield and quality through marker-assisted selection.

  16. QTL mapping - Current status and challenges: Comment on "Mapping complex traits as a dynamic system" by L. Sun and R. Wu

    NASA Astrophysics Data System (ADS)

    Liu, Nianjun

    2015-06-01

    One of the important objectives of genetic study is to understand the underlying mechanism of complex traits. However, complex traits are complex in terms of their mechanisms. First, multiple genetic variants are involved in different ways. In addition to the main effects (such as additive and dominant effects), these genetic variants may interact with each other [1-4], they may have pleiotropic effects [5,6], there may be genomic imprinting (a phenomenon where some genes are expressed or repressed depending on their parental origin) [7-9] and epigenetic effects [10-14]. In addition, environment often fits in via gene by environment interaction [15,16]. A more complicated genetic interaction between QTLs is from different genomes, i.e. the genome-genome interaction which may involve genomes from the same organisms or even different organisms [17-19]. Biology is multifactorial and dynamic. Complex traits are closely related to developmental changes in an organism's ontogeny, giving time an important role in the formation of complex traits. From the point of view of ecology, the formation of complex traits is extremely complex involving not only the genes of an individual but also the genotypes of its neighbors that co-occur with it [17,18,20-23]. Such complexity makes QTL mapping very challenging.

  17. QTL mapping of temperature sensitivity reveals candidate genes for thermal adaptation and growth morphology in the plant pathogenic fungus Zymoseptoria tritici.

    PubMed

    Lendenmann, M H; Croll, D; Palma-Guerrero, J; Stewart, E L; McDonald, B A

    2016-04-01

    Different thermal environments impose strong, differential selection on populations, leading to local adaptation, but the genetic basis of thermal adaptation is poorly understood. We used quantitative trait locus (QTL) mapping in the fungal wheat pathogen Zymoseptoria tritici to study the genetic architecture of thermal adaptation and identify candidate genes. Four wild-type strains originating from the same thermal environment were crossed to generate two mapping populations with 263 (cross 1) and 261 (cross 2) progeny. Restriction site-associated DNA sequencing was used to genotype 9745 (cross 1) and 7333 (cross 2) single-nucleotide polymorphism markers segregating within the mapping population. Temperature sensitivity was assessed using digital image analysis of colonies growing at two different temperatures. We identified four QTLs for temperature sensitivity, with unique QTLs found in each cross. One QTL had a logarithm of odds score >11 and contained only six candidate genes, including PBS2, encoding a mitogen-activated protein kinase kinase associated with low temperature tolerance in Saccharomyces cerevisiae. This and other QTLs showed evidence for pleiotropy among growth rate, melanization and growth morphology, suggesting that many traits can be correlated with thermal adaptation in fungi. Higher temperatures were highly correlated with a shift to filamentous growth among the progeny in both crosses. We show that thermal adaptation has a complex genetic architecture, with natural populations of Z. tritici harboring significant genetic variation for this trait. We conclude that Z. tritici populations have the potential to adapt rapidly to climate change and expand into new climatic zones.

  18. Fine mapping of qGW1, a major QTL for grain weight in sorghum.

    PubMed

    Han, Lijie; Chen, Jun; Mace, Emma S; Liu, Yishan; Zhu, Mengjiao; Yuyama, Nana; Jordan, David R; Cai, Hongwei

    2015-09-01

    We detected seven QTLs for 100-grain weight in sorghum using an F 2 population, and delimited qGW1 to a 101-kb region on the short arm of chromosome 1, which contained 13 putative genes. Sorghum is one of the most important cereal crops. Breeding high-yielding sorghum varieties will have a profound impact on global food security. Grain weight is an important component of grain yield. It is a quantitative trait controlled by multiple quantitative trait loci (QTLs); however, the genetic basis of grain weight in sorghum is not well understood. In the present study, using an F2 population derived from a cross between the grain sorghum variety SA2313 (Sorghum bicolor) and the Sudan-grass variety Hiro-1 (S. bicolor), we detected seven QTLs for 100-grain weight. One of them, qGW1, was detected consistently over 2 years and contributed between 20 and 40 % of the phenotypic variation across multiple genetic backgrounds. Using extreme recombinants from a fine-mapping F3 population, we delimited qGW1 to a 101-kb region on the short arm of chromosome 1, containing 13 predicted gene models, one of which was found to be under purifying selection during domestication. However, none of the grain size candidate genes shared sequence similarity with previously cloned grain weight-related genes from rice. This study will facilitate isolation of the gene underlying qGW1 and advance our understanding of the regulatory mechanisms of grain weight. SSR markers linked to the qGW1 locus can be used for improving sorghum grain yield through marker-assisted selection.

  19. Mapping QTL controlling southern leaf blight resistance by combined analysis of three related recombinant inbred line populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative trait loci (QTL) for resistance to southern leaf blight (SLB) disease caused by Cochliobolus heterostrophus race O were identified in three maize recombinant inbred populations assed in two environments. Each population derived from a cross between a temperate and a tropical maize li...

  20. Candidate Genes Within Tissue Culture Regeneration QTL Revisited with a Linkage Map Based on Transcript Derived Markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Green plant regeneration from tissue culture is under the genetic control of multiple genes. Candidate genes for regeneration have been identified in multiple species using QTL and microarray analyses, and some of these genes have been verified as improving regeneration through transformation. Multi...

  1. SNP discovery and QTL mapping of Sclerotinia basal stalk rot resistance in sunflower using genotyping-by-sequencing (GBS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Basal stalk rot (BSR) caused by the ascomycete fungus Sclerotinia sclerotiorum (Lib.) de Bary is a serious disease of sunflower (Helianthus annuus L.) in the cool and humid production areas of the world. Quantitative trait loci (QTL) for BSR resistance were identified in a sunflower recombinant inbr...

  2. Fine mapping of a major QTL for flag leaf width in rice, qFLW4, which might be caused by alternative splicing of NAL1.

    PubMed

    Chen, Mingliang; Luo, Ju; Shao, Gaoneng; Wei, Xiangjin; Tang, Shaoqing; Sheng, Zhonghua; Song, Jian; Hu, Peisong

    2012-05-01

    Leaf width is an important agricultural trait in rice. QTL mapping in a recombinant inbred line population derived from the cross between the javanica cultivar D50 (narrow-leaved) and the indica cultivar HB277 (wide-leaved) identified five QTLs controlling flag leaf width. Fine mapping of the major QTL qFLW4 narrowed its location to a 74.8 kb interval between the SSR loci RM17483 and RM17486, a region which also contains the gene NAL1 (Narrow leaf 1). There was no difference in the level of NAL1 expression between cvs. D50 and HB277, but an analysis of the NAL1 transcripts showed that while most (if not all) of those produced in cv. D50 were full-length, two-thirds of those in HB277 were non-functional due to either loss or gain of sequence. The inference was that NAL1 is probably synonymous with qFLW4, and that the functional difference between the two alleles was due to alternative splicing. The analysis of expression of other known genes involved in the determination of leaf width provided no evidence of their having any clear functional association with qFLW4/NAL1.

  3. Whole-genome profiling and shotgun sequencing delivers an anchored, gene-decorated, physical map assembly of bread wheat chromosome 6A.

    PubMed

    Poursarebani, Naser; Nussbaumer, Thomas; Simková, Hana; Safář, Jan; Witsenboer, Hanneke; van Oeveren, Jan; Doležel, Jaroslav; Mayer, Klaus F X; Stein, Nils; Schnurbusch, Thorsten

    2014-07-01

    Bread wheat (Triticum aestivum L.) is the most important staple food crop for 35% of the world's population. International efforts are underway to facilitate an increase in wheat production, of which the International Wheat Genome Sequencing Consortium (IWGSC) plays an important role. As part of this effort, we have developed a sequence-based physical map of wheat chromosome 6A using whole-genome profiling (WGP™). The bacterial artificial chromosome (BAC) contig assembly tools fingerprinted contig (fpc) and linear topological contig (ltc) were used and their contig assemblies were compared. A detailed investigation of the contigs structure revealed that ltc created a highly robust assembly compared with those formed by fpc. The ltc assemblies contained 1217 contigs for the short arm and 1113 contigs for the long arm, with an L50 of 1 Mb. To facilitate in silico anchoring, WGP™ tags underlying BAC contigs were extended by wheat and wheat progenitor genome sequence information. Sequence data were used for in silico anchoring against genetic markers with known sequences, of which almost 79% of the physical map could be anchored. Moreover, the assigned sequence information led to the 'decoration' of the respective physical map with 3359 anchored genes. Thus, this robust and genetically anchored physical map will serve as a framework for the sequencing of wheat chromosome 6A, and is of immediate use for map-based isolation of agronomically important genes/quantitative trait loci located on this chromosome.

  4. Anchoring Linkage Groups of the Rosa Genetic Map to Physical Chromosomes with Tyramide-FISH and EST-SNP Markers

    PubMed Central

    Kirov, Ilya; Van Laere, Katrijn; De Riek, Jan; De Keyser, Ellen; Van Roy, Nadine; Khrustaleva, Ludmila

    2014-01-01

    In order to anchor Rosa linkage groups to physical chromosomes, a combination of the Tyramide-FISH technology and the modern molecular marker system based on High Resolution Melting (HRM) is an efficient approach. Although, Tyramide-FISH is a very promising technique for the visualization of short DNA probes, it is very challenging for plant species with small chromosomes such as Rosa. In this study, we successfully applied the Tyramide-FISH technique for Rosa and compared different detection systems. An indirect detection system exploiting biotinylated tyramides was shown to be the most suitable technique for reliable signal detection. Three gene fragments with a size of 1100 pb–1700 bp (Phenylalanine Ammonia Lyase, Pyrroline-5-Carboxylate Synthase and Orcinol O-Methyl Transferase) have been physically mapped on chromosomes 7, 4 and 1, respectively, of Rosa wichurana. The signal frequency was between 25% and 40%. HRM markers of these 3 gene fragments were used to include the gene fragments on the existing genetic linkage map of Rosa wichurana. As a result, three linkage groups could be anchored to their physical chromosomes. The information was used to check for synteny between the Rosa chromosomes and Fragaria. PMID:24755945

  5. Anchoring linkage groups of the Rosa genetic map to physical chromosomes with tyramide-FISH and EST-SNP markers.

    PubMed

    Kirov, Ilya; Van Laere, Katrijn; De Riek, Jan; De Keyser, Ellen; Van Roy, Nadine; Khrustaleva, Ludmila

    2014-01-01

    In order to anchor Rosa linkage groups to physical chromosomes, a combination of the Tyramide-FISH technology and the modern molecular marker system based on High Resolution Melting (HRM) is an efficient approach. Although, Tyramide-FISH is a very promising technique for the visualization of short DNA probes, it is very challenging for plant species with small chromosomes such as Rosa. In this study, we successfully applied the Tyramide-FISH technique for Rosa and compared different detection systems. An indirect detection system exploiting biotinylated tyramides was shown to be the most suitable technique for reliable signal detection. Three gene fragments with a size of 1100 pb-1700 bp (Phenylalanine Ammonia Lyase, Pyrroline-5-Carboxylate Synthase and Orcinol O-Methyl Transferase) have been physically mapped on chromosomes 7, 4 and 1, respectively, of Rosa wichurana. The signal frequency was between 25% and 40%. HRM markers of these 3 gene fragments were used to include the gene fragments on the existing genetic linkage map of Rosa wichurana. As a result, three linkage groups could be anchored to their physical chromosomes. The information was used to check for synteny between the Rosa chromosomes and Fragaria.

  6. Genome-Wide Linkage Mapping of QTL for Adult-Plant Resistance to Stripe Rust in a Chinese Wheat Population Linmai 2 × Zhong 892

    PubMed Central

    Liu, Jindong; He, Zhonghu; Wu, Ling; Bai, Bin; Wen, Weie; Xie, Chaojie; Xia, Xianchun

    2015-01-01

    Stripe rust is one of the most devastating diseases of wheat (Triticum aestivum) worldwide. Adult-plant resistance (APR) is an efficient approach to provide long-term protection of wheat from the disease. The Chinese winter wheat cultivar Zhong 892 has a moderate level of APR to stripe rust in the field. To determine the inheritance of the APR resistance in this cultivar, 273 F6 recombinant inbred lines (RILs) were developed from a cross between Linmai 2 and Zhong 892. The RILs were evaluated for maximum disease severity (MDS) in two sites during the 2011–2012, 2012–2013 and 2013–2014 cropping seasons, providing data for five environments. Illumina 90k SNP (single nucleotide polymorphism) chips were used to genotype the RILs and their parents. Composite interval mapping (CIM) detected eight QTL, namely QYr.caas-2AL, QYr.caas-2BL.3, QYr.caas-3AS, QYr.caas-3BS, QYr.caas-5DL, QYr.caas-6AL, QYr.caas-7AL and QYr.caas-7DS.1, respectively. All except QYr.caas-2BL.3 resistance alleles were contributed by Zhong 892. QYr.caas-3AS and QYr.caas-3BS conferred stable resistance to stripe rust in all environments, explaining 6.2–17.4% and 5.0–11.5% of the phenotypic variances, respectively. The genome scan of SNP sequences tightly linked to QTL for APR against annotated proteins in wheat and related cereals genomes identified two candidate genes (autophagy-related gene and disease resistance gene RGA1), significantly associated with stripe rust resistance. These QTL and their closely linked SNP markers, in combination with kompetitive allele specific PCR (KASP) technology, are potentially useful for improving stripe rust resistances in wheat breeding. PMID:26714310

  7. Mapping and introgression of QTL involved in fruit shape transgressive segregation into ‘piel de sapo’ melon (cucumis melo l.) [corrected].

    PubMed

    Díaz, Aurora; Zarouri, Belkacem; Fergany, Mohamed; Eduardo, Iban; Alvarez, José M; Picó, Belén; Monforte, Antonio J

    2014-01-01

    A mapping F2 population from the cross 'Piel de Sapo' × PI124112 was selectively genotyped to study the genetic control of morphological fruit traits by QTL (Quantitative Trait Loci) analysis. Ten QTL were identified, five for FL (Fruit Length), two for FD (Fruit Diameter) and three for FS (Fruit Shape). At least one robust QTL per character was found, flqs8.1 (LOD = 16.85, R2 = 34%), fdqs12.1 (LOD = 3.47, R2 = 11%) and fsqs8.1 (LOD = 14.85, R2 = 41%). flqs2.1 and fsqs2.1 cosegregate with gene a (andromonoecious), responsible for flower sex determination and with pleiotropic effects on FS. They display a positive additive effect (a) value, so the PI124112 allele causes an increase in FL and FS, producing more elongated fruits. Conversely, the negative a value for flqs8.1 and fsqs8.1 indicates a decrease in FL and FS, what results in rounder fruits, even if PI124112 produces very elongated melons. This is explained by a significant epistatic interaction between fsqs2.1 and fsqs8.1, where the effects of the alleles at locus a are attenuated by the additive PI124112 allele at fsqs8.1. Roundest fruits are produced by homozygous for PI124112 at fsqs8.1 that do not carry any dominant A allele at locus a (PiPiaa). A significant interaction between fsqs8.1 and fsqs12.1 was also detected, with the alleles at fsqs12.1 producing more elongated fruits. fsqs8.1 seems to be allelic to QTL discovered in other populations where the exotic alleles produce elongated fruits. This model has been validated in assays with backcross lines along 3 years and ultimately obtaining a fsqs8.1-NIL (Near Isogenic Line) in 'Piel de Sapo' background which yields round melons.

  8. An SSR-based genetic map of pepper (Capsicum annuum L.) serves as an anchor for the alignment of major pepper maps.

    PubMed

    Mimura, Yutaka; Inoue, Takahiro; Minamiyama, Yasuhiro; Kubo, Nakao

    2012-03-01

    Of the Capsicum peppers (Capsicum spp.), cultivated C. annuum is the most commercially important, but has lacked an intraspecific linkage map based on sequence-specific PCR markers in accord with haploid chromosome numbers. We constructed a linkage map of pepper using a doubled haploid (DH) population derived from a cross between two C. annuum genotypes, a bell-type cultivar 'California Wonder' and a Malaysian small-fruited cultivar 'LS2341 (JP187992)', which is used as a source of resistance to bacterial wilt (Ralstonia solanacearum). A set of 253 markers (151 SSRs, 90 AFLPs, 10 CAPSs and 2 sequence-tagged sites) was on the map which we constructed, spanning 1,336 cM. This is the first SSR-based map to consist of 12 linkage groups, corresponding to the haploid chromosome number in an intraspecific cross of C. annuum. As this map has a lot of PCR-based anchor markers, it is easy to compare it to other pepper genetic maps. Therefore, this map and the newly developed markers will be useful for cultivated C. annuum breeding.

  9. Mapping of a major QTL associated with protein content on chromosome 2B in hard red winter wheat (Triticum aestivum L.).

    PubMed

    Terasawa, Yohei; Ito, Miwako; Tabiki, Tadashi; Nagasawa, Koichi; Hatta, Koichi; Nishio, Zenta

    2016-09-01

    A quantitative trait locus (QTL) controlling wheat grain protein content (GPC) and flour protein content (FPC) was identified using doubled haploid (DH) lines developed from a cross between the hard red winter wheat variety 'Yumechikara' with a high protein content used for bread making, and the soft red winter wheat 'Kitahonami' with a low protein content used for Japanese white salted noodles. A single major QTL, QGpc.2B-yume, was identified on the short arm of wheat chromosome 2B for both the GPC and FPC over 3 years of testing. QGpc.2B-yume was mapped on the flanking region of microsatellite marker Xgpw4382. The DH lines grouped by the haplotype of the closest flanking microsatellite marker Xgpw4382 showed differences of 1.0% and 1.1% in mean GPC and FPC, respectively. Yield-component-related traits were not affected by the haplotype of QGpc.2B-yume, and major North American hard red winter wheat varieties showed the high-protein haplotype. Unlike Gpc-B1 derived from tetraploid wheat, QGpc.2B-yume has no negative effects on yield-component-related traits and should be useful for wheat breeding to increase GPC and FPC.

  10. Genetic Analysis in Maize Foundation Parents with Mapping Population and Testcross Population: Ye478 Carried More Favorable Alleles and Using QTL Information Could Improve Foundation Parents.

    PubMed

    Liu, Yinghong; Hou, Xianbin; Xiao, Qianlin; Yi, Qiang; Bian, Shaowei; Hu, Yufeng; Liu, Hanmei; Zhang, Junjie; Hao, Xiaoqin; Cheng, Weidong; Li, Yu; Huang, Yubi

    2016-01-01

    The development of maize foundation parents is an important part of genetics and breeding research, and applying new genetic information to produce foundation parents has been challenging. In this study, we focused on quantitative trait loci (QTLs) and general combining ability (GCA) of Ye478, a widely used foundation parent in China. We developed three sets of populations for QTL mapping and to analyze the GCA for some agronomic traits. The assessment of 15 traits resulted in the detection of 251 QTLs in six tested environments, with 119 QTLs identified through a joint analysis across all environments. Further, analyses revealed that most favorable alleles for plant type-related traits were from Ye478, and more than half of the favorable alleles for yield-related traits were from R08, another foundation parent used in southwestern China, suggesting that different types of foundation parents carried different favorable alleles. We observed that the GCA for most traits (e.g., plant height and 100-kernel weight) was maintained in the inbred lines descended from the foundation parents. Additionally, the continuous improvement in the GCA of the descendants of the foundation parents was consistent with the main trend in maize breeding programs. We identified three significant genomic regions that were highly conserved in three Ye478 descendants, including the stable QTL for plant height. The GCA for the traits in the F7 generation revealed that the QTLs for the given traits per se were affected by additive effects in the same way in different populations.

  11. Mapping of a major QTL associated with protein content on chromosome 2B in hard red winter wheat (Triticum aestivum L.)

    PubMed Central

    Terasawa, Yohei; Ito, Miwako; Tabiki, Tadashi; Nagasawa, Koichi; Hatta, Koichi; Nishio, Zenta

    2016-01-01

    A quantitative trait locus (QTL) controlling wheat grain protein content (GPC) and flour protein content (FPC) was identified using doubled haploid (DH) lines developed from a cross between the hard red winter wheat variety ‘Yumechikara’ with a high protein content used for bread making, and the soft red winter wheat ‘Kitahonami’ with a low protein content used for Japanese white salted noodles. A single major QTL, QGpc.2B-yume, was identified on the short arm of wheat chromosome 2B for both the GPC and FPC over 3 years of testing. QGpc.2B-yume was mapped on the flanking region of microsatellite marker Xgpw4382. The DH lines grouped by the haplotype of the closest flanking microsatellite marker Xgpw4382 showed differences of 1.0% and 1.1% in mean GPC and FPC, respectively. Yield-component-related traits were not affected by the haplotype of QGpc.2B-yume, and major North American hard red winter wheat varieties showed the high-protein haplotype. Unlike Gpc-B1 derived from tetraploid wheat, QGpc.2B-yume has no negative effects on yield-component-related traits and should be useful for wheat breeding to increase GPC and FPC. PMID:27795672

  12. QTL for resistance in Lolium perenne to a mixed population of Puccinia graminis subsp. graminicola: use of RAD (restriction site associated DNA) markers to rapidly populate a new linkage map

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A mapping population was created to detect quantitative trait loci (QTL) for resistance to stem rust caused by Puccinia graminis subsp. graminicola in Lolium perenne. Susceptible and resistant plants were crossed to produce a pseudo-testcross population. Markers were produced by the Restriction-sit...

  13. QTL mapping & quantitative disease resistance to TSWV and leaf spots in a recombinant inbred line population SunOleic 97R and C94022 of peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut is susceptible to a range of diseases, such as Tomato spotted wilt virus (TSWV), early leaf spot (ELS) and late leaf spot (LLS). Breeding line NC94022 has been identified with the highest resistance to TSWV in the field. Quantitative trait loci (QTL) mapping is a highly effective approach fo...

  14. Genetic Map Construction and Quantitative Trait Locus (QTL) Detection of Six Economic Traits Using an F2 Population of the Hybrid from Saccharina longissima and Saccharina japonica

    PubMed Central

    Zhang, Jing; Liu, Tao; Feng, Rongfang; Liu, Cui; Chi, Shan

    2015-01-01

    Saccharina (Laminaria) is one of the most important economic seaweeds. Previously, four genetic linkage maps of Saccharina have been constructed and five QTLs have been identified. However, they were not enough for its breeding. In this work, Saccharina longissima (♀) and Saccharina japonica (♂), which showed obvious differences in morphology and genetics, were applied in hybridization to yield the F2 mapping population with 102 individuals. Using these 102 F2 hybrids, the genetic linkage map of Saccharina was constructed by MapMaker software based on 37 amplified fragment length polymorphisms (AFLPs), 22 sequence-related amplified polymorphisms (SRAPs) and 139 simple sequence repeats (SSRs) markers. Meanwhile, QTL analysis was performed for six economic traits. The linkage map constructed in this research consisted of 422 marker loci (137 AFLPs, 57 SRAPs and 228 SSRs), which formed 45 linkage groups (LGs) with an average marker space of 7.92 cM; they spanned a total length of 2233.1 cM, covering the whole estimated genome size. A total of 29 QTLs were identified for six economic traits, which explained 1.06 to 64.00% of phenotypic variation, including three QTLs for frond length (FL) and raw weight (RW), five QTLs for frond width (FW), two QTLs for frond fascia width (FFW) and frond thickness (FT), and fourteen QTLs for base shape (BS). The results of this research will improve the breeding efficiency and be beneficial for marker-assisted selection (MAS) schemes in Saccharina breeding. PMID:26010152

  15. Genetic Map Construction and Quantitative Trait Locus (QTL) Detection of Six Economic Traits Using an F2 Population of the Hybrid from Saccharina longissima and Saccharina japonica.

    PubMed

    Zhang, Jing; Liu, Tao; Feng, Rongfang; Liu, Cui; Chi, Shan

    2015-01-01

    Saccharina (Laminaria) is one of the most important economic seaweeds. Previously, four genetic linkage maps of Saccharina have been constructed and five QTLs have been identified. However, they were not enough for its breeding. In this work, Saccharina longissima (♀) and Saccharina japonica (♂), which showed obvious differences in morphology and genetics, were applied in hybridization to yield the F2 mapping population with 102 individuals. Using these 102 F2 hybrids, the genetic linkage map of Saccharina was constructed by MapMaker software based on 37 amplified fragment length polymorphisms (AFLPs), 22 sequence-related amplified polymorphisms (SRAPs) and 139 simple sequence repeats (SSRs) markers. Meanwhile, QTL analysis was performed for six economic traits. The linkage map constructed in this research consisted of 422 marker loci (137 AFLPs, 57 SRAPs and 228 SSRs), which formed 45 linkage groups (LGs) with an average marker space of 7.92 cM; they spanned a total length of 2233.1 cM, covering the whole estimated genome size. A total of 29 QTLs were identified for six economic traits, which explained 1.06 to 64.00% of phenotypic variation, including three QTLs for frond length (FL) and raw weight (RW), five QTLs for frond width (FW), two QTLs for frond fascia width (FFW) and frond thickness (FT), and fourteen QTLs for base shape (BS). The results of this research will improve the breeding efficiency and be beneficial for marker-assisted selection (MAS) schemes in Saccharina breeding.

  16. The ACS Exams Institute Undergraduate Chemistry Anchoring Concepts Content Map II: Organic Chemistry

    ERIC Educational Resources Information Center

    Raker, Jeffrey; Holme, Thomas; Murphy, Kristen

    2013-01-01

    As a way to assist chemistry departments with programmatic assessment of undergraduate chemistry curricula, the ACS Examinations Institute is devising a map of the content taught throughout the undergraduate curriculum. The structure of the map is hierarchal, with large grain size at the top and more content detail as one moves "down"…

  17. QTL mapping of slow-rusting, adult plant resistance to race Ug99 of stem rust fungus in PBW343/Muu RIL population.

    PubMed

    Singh, Sukhwinder; Singh, Ravi P; Bhavani, Sridhar; Huerta-Espino, Julio; Eugenio, Lopez-Vera Eric

    2013-05-01

    Races of stem rust fungus pose a major threat to wheat production worldwide. We mapped adult plant resistance (APR) to Ug99 in 141 lines of a PBW343/Muu recombinant inbred lines (RILs) population by phenotyping them for three seasons at Njoro, Kenya in field trials and genotyping them with Diversity Arrays Technology (DArT) markers. Moderately susceptible parent PBW343 and APR parent Muu displayed mean stem rust severities of 66.6 and 5 %, respectively. The mean disease severity of RILs ranged from 1 to 100 %, with an average of 23.3 %. Variance components for stem rust severity were highly significant (p < 0.001) for RILs and seasons and the heritability (h (2)) for the disease ranged between 0.78 and 0.89. Quantitative trait loci (QTL) analysis identified four consistent genomic regions on chromosomes 2BS, 3BS, 5BL, and 7AS; three contributed by Muu (QSr.cim-2BS, QSr.cim-3BS and QSr.cim-7AS) and one (QSr.cim-5BL) derived from PBW343. RILs with flanking markers for these QTLs had significantly lower severities than those lacking the markers, and combinations of QTLs had an additive effect, significantly enhancing APR. The QTL identified on chromosome 3BS mapped to the matching region as the known APR gene Sr2. Four additional QTLs on chromosomes 1D, 3A, 4B, and 6A reduced disease severity significantly at least once in three seasons. Our results show a complex nature of APR to stem rust where Sr2 and other minor slow rusting resistance genes can confer a higher level of resistance when present together.

  18. SNP identification from RNA sequencing and linkage map construction of rubber tree for anchoring the draft genome.

    PubMed

    Shearman, Jeremy R; Sangsrakru, Duangjai; Jomchai, Nukoon; Ruang-Areerate, Panthita; Sonthirod, Chutima; Naktang, Chaiwat; Theerawattanasuk, Kanikar; Tragoonrung, Somvong; Tangphatsornruang, Sithichoke

    2015-01-01

    Hevea brasiliensis, or rubber tree, is an important crop species that accounts for the majority of natural latex production. The rubber tree nuclear genome consists of 18 chromosomes and is roughly 2.15 Gb. The current rubber tree reference genome assembly consists of 1,150,326 scaffolds ranging from 200 to 531,465 bp and totalling 1.1 Gb. Only 143 scaffolds, totalling 7.6 Mb, have been placed into linkage groups. We have performed RNA-seq on 6 varieties of rubber tree to identify SNPs and InDels and used this information to perform target sequence enrichment and high throughput sequencing to genotype a set of SNPs in 149 rubber tree offspring from a cross between RRIM 600 and RRII 105 rubber tree varieties. We used this information to generate a linkage map allowing for the anchoring of 24,424 contigs from 3,009 scaffolds, totalling 115 Mb or 10.4% of the published sequence, into 18 linkage groups. Each linkage group contains between 319 and 1367 SNPs, or 60 to 194 non-redundant marker positions, and ranges from 156 to 336 cM in length. This linkage map includes 20,143 of the 69,300 predicted genes from rubber tree and will be useful for mapping studies and improving the reference genome assembly.

  19. A High-Density SNP Genetic Linkage Map and QTL Analysis of Growth-Related Traits in a Hybrid Family of Oysters (Crassostrea gigas × Crassostrea angulata) Using Genotyping-by-Sequencing

    PubMed Central

    Wang, Jinpeng; Li, Li; Zhang, Guofan

    2016-01-01

    Oysters are among the most important species in global aquaculture. Crassostrea gigas, and its subspecies C. angulata, are the major cultured species. To determine the genetic basis of growth-related traits in oysters, we constructed a second-generation linkage map from 3367 single-nucleotide polymorphisms (SNPs) based on genotyping-by-sequencing, genotyped from a C. gigas × C. angulata hybrid family. These 3367 SNPs were distributed on 1695 markers, which were assigned to 10 linkage groups. The genetic linkage map had a total length of 1084.3 cM, with an average of 0.8 cM between markers; it thus represents the densest genetic map constructed for oysters to date. Twenty-seven quantitative trait loci (QTL) for five growth-related traits were detected. These QTL could explain 4.2–7.7% (mean = 5.4%) of the phenotypic variation. In total, 50.8% of phenotypic variance for shell width, 7.7% for mass weight, and 34.1% for soft tissue weight were explained. The detected QTL were distributed among eight linkage groups, and more than half (16) were concentrated within narrow regions in their respective linkage groups. Thirty-eight annotated genes were identified within the QTL regions, two of which are key genes for carbohydrate metabolism. Other genes were found to participate in assembly and regulation of the actin cytoskeleton, signal transduction, and regulation of cell differentiation and development. The newly developed high-density genetic map, and the QTL and candidate genes identified provide a valuable genetic resource and a basis for marker-assisted selection for C. gigas and C. angulata. PMID:26994291

  20. The age related markers lipofuscin and apoptosis show different genetic architecture by QTL mapping in short-lived Nothobranchius fish

    PubMed Central

    Ng'oma, Enoch; Reichwald, Kathrin; Dorn, Alexander; Wittig, Michael; Balschun, Tobias; Franke, Andre; Platzer, Matthias; Cellerino, Allesandro

    2014-01-01

    Annual fish of the genus Nothobranchius show large variations in lifespan and expression of age-related phenotypes between closely related populations. We studied N. kadleci and its sister species N. furzeri GRZ strain, and found that N.kadleci is longer-lived than the N. furzeri. Lipofuscin and apoptosis measured in the liver increased with age in N. kadleci with different profiles: lipofuscin increased linearly, while apoptosis declined in the oldest animals. More lipofuscin (P < 0.001) and apoptosis (P < 0.001) was observed in N. furzeri than in N. kadleci at 16w age. Lipofuscin and apoptotic cells were then quantified in hybrids from the mating of N. furzeri to N. kadleci. F1 individuals showed heterosis for lipofuscin but additive effects for apoptosis. These two age-related phenotypes were not correlated in F2 hybrids. Quantitative trait loci analysis of 287 F2 fish using 237 markers identified two QTL accounting for 10% of lipofuscin variance (P < 0.001) with overdominance effect. Apoptotic cells revealed three significant- and two suggestive QTL explaining 19% of variance (P < 0.001), showing additive and dominance effects, and two interacting loci. Our results show that lipofuscin and apoptosis are markers of different age-dependent biological processes controlled by different genetic mechanisms. PMID:25093339

  1. Genetic architecture of sensory exploitation: QTL mapping of female and male receiver traits in an acoustic moth.

    PubMed

    Alem, S; Streiff, R; Courtois, B; Zenboudji, S; Limousin, D; Greenfield, M D

    2013-12-01

    The evolution of extravagant sexual traits by sensory exploitation occurs if males incidentally evolve features that stimulate females owing to a pre-existing environmental response that arose in the context of natural selection. The sensory exploitation process is thus expected to leave a specific genetic imprint, a pleiotropic control of the original environmental response and the novel sexual response in females. However, females may be subsequently selected to improve their discrimination of environmental and sexual stimuli. Accordingly, responses may have diverged and the original genetic architecture may have been modified. These possibilities may be considered by studying the genetic architecture of responses to male signals and to the environmental stimuli that were purportedly 'exploited' by those signals. However, no previous study has addressed the genetic control of sensory exploitation. We investigated this question in an acoustic pyralid moth, Achroia grisella, in which a male ultrasonic song attracts females and perception of ultrasound likely arose in the context of detecting predatory bats. We examined the genetic architecture of female response to bat echolocation signals and to male song via a cartographic study of quantitative trait loci (QTL) influencing these receiver traits. We found several QTL for both traits, but none of them were colocalized on the same chromosomes. These results indicate that - to the extent to which male A. grisella song originated by the process of sensory exploitation - some modification of the female responses occurred since the origin of the male signal.

  2. seeQTL: a searchable database for human eQTLs

    PubMed Central

    Xia, Kai; Shabalin, Andrey A.; Huang, Shunping; Madar, Vered; Zhou, Yi-Hui; Wang, Wei; Zou, Fei; Sun, Wei; Sullivan, Patrick F.; Wright, Fred A.

    2012-01-01

    Summary: seeQTL is a comprehensive and versatile eQTL database, including various eQTL studies and a meta-analysis of HapMap eQTL information. The database presents eQTL association results in a convenient browser, using both segmented local-association plots and genome-wide Manhattan plots. Availability and implementation: seeQTL is freely available for non-commercial use at http://www.bios.unc.edu/research/genomic_software/seeQTL/. Contact: fred_wright@unc.edu; kxia@bios.unc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22171328

  3. Microsatellite Discovery from BAC End Sequences and Genetic Mapping to Anchor the Soybean Physical and Genetic Maps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physical maps can be an invaluable resource for improving and assessing the quality of a whole-genome sequence assembly. Here we report the identification and screening of 3,290 microsatellites (SSRs) identified from BAC end sequences of clones comprising the physical map of the cultivar Williams 8...

  4. Genetic map construction and quantitative trait loci (QTL) mapping for nitrogen use efficiency and its relationship with productivity and quality of the biennial crop Belgian endive (Cichorium intybus L.).

    PubMed

    Cassan, Laurent; Moreau, Laurence; Segouin, Samuel; Bellamy, Annick; Falque, Mathieu; Limami, Anis M

    2010-10-15

    A genetic study of the biennial crop Belgian endive (Cichorium intybus) was carried out to examine the effect of nitrogen nutrition during the vegetative phase in the control of the productivity and quality of the chicon (etiolated bud), a crop that grows during the second phase of development (forcing process). A population of 302 recombinant inbred lines (RIL) was obtained from the cross between contrasting lines "NS1" and "NR2". A genetic map was constructed and QTLs of several physiological and agronomical traits were mapped under two levels of nitrogen fertilization during the vegetative phase (N- and N+). The agronomical traits showed high broad sense heritability, whereas the physiological traits were characterized by low broad sense heritability. Nitrogen reserves mobilization during the forcing process was negatively correlated with nitrogen reserves content of the tuberized root and common QTLs were detected for these traits. The chicon productivity and quality were not correlated, but showed one common QTL. This study revealed that chicon productivity and quality were genetically associated with nitrogen reserves mobilization that exerts opposite effects on both traits. Chicon productivity was positively correlated with N reserves mobilization under N- and N+ and a common QTL with the same additive effects was detected for both traits. Chicon quality was negatively correlated with N reserves mobilization under N- and N+ and a common QTL with opposite additive effects was detected for both traits. These results lead to the conclusion that N reserves mobilization is a more effective trait than N reserves content in predicting chicon productivity and quality. Finally, this study revealed agronomical and physiological QTLs utilizable by breeders via marker-assisted selection to aid the optimization of chicon quality under adapted N fertilization.

  5. Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.).

    PubMed

    Blair, M W; Pedraza, F; Buendia, H F; Gaitán-Solís, E; Beebe, S E; Gepts, P; Tohme, J

    2003-11-01

    A total of 150 microsatellite markers developed for common bean ( Phaseolus vulgaris L.) were tested for parental polymorphism and used to determine the positions of 100 genetic loci on an integrated genetic map of the species. The value of these single-copy markers was evident in their ability to link two existing RFLP-based genetic maps with a base map developed for the Mesoamerican x Andean population, DOR364 x G19833. Two types of microsatellites were mapped, based respectively on gene-coding and anonymous genomic-sequences. Gene-based microsatellites proved to be less polymorphic (46.3%) than anonymous genomic microsatellites (64.3%) between the parents of two inter-genepool crosses. The majority of the microsatellites produced single bands and detected single loci, however four of the gene-based and three of the genomic microsatellites produced consistent double or multiple banding patterns and detected more than one locus. Microsatellite loci were found on each of the 11 chromosomes of common bean, the number per chromosome ranging from 5 to 17 with an average of ten microsatellites each. Total map length for the base map was 1,720 cM and the average chromosome length was 156.4 cM, with an average distance between microsatellite loci of 19.5 cM. The development of new microsatellites from sequences in the Genbank database and the implication of these results for genetic mapping, quantitative trait locus analysis and marker-assisted selection in common bean are described.

  6. Genotyping by Sequencing for SNP-Based Linkage Map Construction and QTL Analysis of Chilling Requirement and Bloom Date in Peach [Prunus persica (L.) Batsch].

    PubMed

    Bielenberg, Douglas Gary; Rauh, Bradley; Fan, Shenghua; Gasic, Ksenija; Abbott, Albert Glenn; Reighard, Gregory Lynn; Okie, William R; Wells, Christina Elizabeth

    2015-01-01

    Low-cost, high throughput genotyping methods are crucial to marker discovery and marker-assisted breeding efforts, but have not been available for many 'specialty crops' such as fruit and nut trees. Here we apply the Genotyping-By-Sequencing (GBS) method developed for cereals to the discovery of single nucleotide polymorphisms (SNPs) in a peach F2 mapping population. Peach is a genetic and genomic model within the Rosaceae and will provide a template for the use of this method with other members of this family. Our F2 mapping population of 57 genotypes segregates for bloom time (BD) and chilling requirement (CR) and we have extensively phenotyped this population. The population derives from a selfed F1 progeny of a cross between 'Hakuho' (high CR) and 'UFGold' (low CR). We were able to successfully employ GBS and the TASSEL GBS pipeline without modification of the original methodology using the ApeKI restriction enzyme and multiplexing at an equivalent of 96 samples per Illumina HiSeq 2000 lane. We obtained hundreds of SNP markers which were then used to construct a genetic linkage map and identify quantitative trait loci (QTL) for BD and CR.

  7. Cytogenetic anchoring of radiation hybrid and virtual maps of sheep chromosome X and comparison of X chromosomes in sheep, cattle, and human.

    PubMed

    Goldammer, Tom; Brunner, Ronald M; Rebl, Alexander; Wu, Chun Hua; Nomura, Ko; Hadfield, Tracy; Maddox, Jill F; Cockett, Noelle E

    2009-01-01

    A comprehensive physical map was generated for Ovis aries chromosome X (OARX) based on a cytogenomics approach. DNA probes were prepared from bacterial artificial chromosome (BAC) clones from the CHORI-243 sheep library and were assigned to G-banded metaphase spreads via fluorescence in-situ hybridization (FISH). A total of 22 BACs gave a single hybridization signal to the X chromosome and were assigned out of 32 tested. The positioned BACs contained 16 genes and a microsatellite marker which represent new cytogenetically mapped loci in the sheep genome. The gene and microsatellite loci serve to anchor between the existing radiation hybrid (RH) and virtual sheep genome (VSG) maps to the cytogenetic OARX map, whilst the BACs themselves also serve as anchors between the VSG and the cytogenetic maps. An additional 17 links between the RH and cytogenetic maps are provided by BAC end sequence (BES) derived markers that have also been positioned on the RH map. Comparison of the map orders for the cytogenetic, RH, and virtual maps reveals that the orders for the cytogenetic and RH maps are most similar, with only one locus, represented by BAC CH243-330E18, mapping to relatively different positions. Several discrepancies, including an inverted segment are found when comparing both the cytogenetic and RH maps with the virtual map. These discrepancies highlight the value of using physical mapping methods to inform the process of future in silico map construction. A detailed comparative analysis of sheep, human, and cattle mapping data allowed the construction of a comparative map that confirms and expands the knowledge about evolutionary conservation and break points between the X chromosomes of the three mammalian species.

  8. Genetic Analysis in Maize Foundation Parents with Mapping Population and Testcross Population: Ye478 Carried More Favorable Alleles and Using QTL Information Could Improve Foundation Parents

    PubMed Central

    Liu, Yinghong; Hou, Xianbin; Xiao, Qianlin; Yi, Qiang; Bian, Shaowei; Hu, Yufeng; Liu, Hanmei; Zhang, Junjie; Hao, Xiaoqin; Cheng, Weidong; Li, Yu; Huang, Yubi

    2016-01-01

    The development of maize foundation parents is an important part of genetics and breeding research, and applying new genetic information to produce foundation parents has been challenging. In this study, we focused on quantitative trait loci (QTLs) and general combining ability (GCA) of Ye478, a widely used foundation parent in China. We developed three sets of populations for QTL mapping and to analyze the GCA for some agronomic traits. The assessment of 15 traits resulted in the detection of 251 QTLs in six tested environments, with 119 QTLs identified through a joint analysis across all environments. Further, analyses revealed that most favorable alleles for plant type-related traits were from Ye478, and more than half of the favorable alleles for yield-related traits were from R08, another foundation parent used in southwestern China, suggesting that different types of foundation parents carried different favorable alleles. We observed that the GCA for most traits (e.g., plant height and 100-kernel weight) was maintained in the inbred lines descended from the foundation parents. Additionally, the continuous improvement in the GCA of the descendants of the foundation parents was consistent with the main trend in maize breeding programs. We identified three significant genomic regions that were highly conserved in three Ye478 descendants, including the stable QTL for plant height. The GCA for the traits in the F7 generation revealed that the QTLs for the given traits per se were affected by additive effects in the same way in different populations. PMID:27721817

  9. The ACS Exams Institute Undergraduate Chemistry Anchoring Concepts Content Map I: General Chemistry

    ERIC Educational Resources Information Center

    Holme, Thomas; Murphy, Kristen

    2012-01-01

    To provide tools for programmatic assessment related to the use of ACS Exams in undergraduate chemistry courses, the ACS Exams Institute has built a content map that applies to the entire undergraduate curriculum. At the top two levels, the grain size of the content classification is large and spans the entire undergraduate curriculum. At the…

  10. Joint QTL analyses for partial resistance to Phytophthora sojae using six nested inbred populations with heterogeneous conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Partial resistance to Phytophthora sojae in soybean is controlled by multiple quantitative trait loci (QTL). With traditional QTL mapping approaches, power to detect these QTL, frequently of small effect, can be limited by population size. Joint linkage QTL analysis of nested recombinant inbred li...

  11. Concordance analysis for QTL detection in dairy cattle: a case study of leg morphology

    PubMed Central

    2014-01-01

    Background The present availability of sequence data gives new opportunities to narrow down from QTL (quantitative trait locus) regions to causative mutations. Our objective was to decrease the number of candidate causative mutations in a QTL region. For this, a concordance analysis was applied for a leg conformation trait in dairy cattle. Several QTL were detected for which the QTL status (homozygous or heterozygous for the QTL) was inferred for each individual. Subsequently, the inferred QTL status was used in a concordance analysis to reduce the number of candidate mutations. Methods Twenty QTL for rear leg set side view were mapped using Bayes C. Marker effects estimated during QTL mapping were used to infer the QTL status for each individual. Subsequently, polymorphisms present in the QTL regions were extracted from the whole-genome sequences of 71 Holstein bulls. Only polymorphisms for which the status was concordant with the QTL status were kept as candidate causative mutations. Results QTL status could be inferred for 15 of the 20 QTL. The number of concordant polymorphisms differed between QTL and depended on the number of QTL statuses that could be inferred and the linkage disequilibrium in the QTL region. For some QTL, the concordance analysis was efficient and narrowed down to a limited number of candidate mutations located in one or two genes, while for other QTL a large number of genes contained concordant polymorphisms. Conclusions For regions for which the concordance analysis could be performed, we were able to reduce the number of candidate mutations. For part of the QTL, the concordant analyses narrowed QTL regions down to a limited number of genes, of which some are known for their role in limb or skeletal development in humans and mice. Mutations in these genes are good candidates for QTN (quantitative trait nucleotides) influencing rear leg set side view. PMID:24884971

  12. Deciphering gamma-decalactone biosynthesis in strawberry fruit using a combination of genetic mapping, RNA-Seq and eQTL analyses

    PubMed Central

    2014-01-01

    Background Understanding the basis for volatile organic compound (VOC) biosynthesis and regulation is of great importance for the genetic improvement of fruit flavor. Lactones constitute an essential group of fatty acid-derived VOCs conferring peach-like aroma to a number of fruits including peach, plum, pineapple and strawberry. Early studies on lactone biosynthesis suggest that several enzymatic pathways could be responsible for the diversity of lactones, but detailed information on them remained elusive. In this study, we have integrated genetic mapping and genome-wide transcriptome analysis to investigate the molecular basis of natural variation in γ-decalactone content in strawberry fruit. Results As a result, the fatty acid desaturase FaFAD1 was identified as the gene underlying the locus at LGIII-2 that controls γ-decalactone production in ripening fruit. The FaFAD1 gene is specifically expressed in ripe fruits and its expression fully correlates with the presence of γ-decalactone in all 95 individuals of the mapping population. In addition, we show that the level of expression of FaFAH1, with similarity to cytochrome p450 hydroxylases, significantly correlates with the content of γ-decalactone in the mapping population. The analysis of expression quantitative trait loci (eQTL) suggests that the product of this gene also has a regulatory role in the biosynthetic pathway of lactones. Conclusions Altogether, this study provides mechanistic information of how the production of γ-decalactone is naturally controlled in strawberry, and proposes enzymatic activities necessary for the formation of this VOC in plants. PMID:24742100

  13. Metabolomic Quantitative Trait Loci (mQTL) Mapping Implicates the Ubiquitin Proteasome System in Cardiovascular Disease Pathogenesis

    PubMed Central

    Kraus, William E.; Muoio, Deborah M.; Stevens, Robert; Craig, Damian; Bain, James R.; Grass, Elizabeth; Haynes, Carol; Kwee, Lydia; Qin, Xuejun; Slentz, Dorothy H.; Krupp, Deidre; Muehlbauer, Michael; Hauser, Elizabeth R.; Gregory, Simon G.; Newgard, Christopher B.; Shah, Svati H.

    2015-01-01

    Levels of certain circulating short-chain dicarboxylacylcarnitine (SCDA), long-chain dicarboxylacylcarnitine (LCDA) and medium chain acylcarnitine (MCA) metabolites are heritable and predict cardiovascular disease (CVD) events. Little is known about the biological pathways that influence levels of most of these metabolites. Here, we analyzed genetics, epigenetics, and transcriptomics with metabolomics in samples from a large CVD cohort to identify novel genetic markers for CVD and to better understand the role of metabolites in CVD pathogenesis. Using genomewide association in the CATHGEN cohort (N = 1490), we observed associations of several metabolites with genetic loci. Our strongest findings were for SCDA metabolite levels with variants in genes that regulate components of endoplasmic reticulum (ER) stress (USP3, HERC1, STIM1, SEL1L, FBXO25, SUGT1) These findings were validated in a second cohort of CATHGEN subjects (N = 2022, combined p = 8.4x10-6–2.3x10-10). Importantly, variants in these genes independently predicted CVD events. Association of genomewide methylation profiles with SCDA metabolites identified two ER stress genes as differentially methylated (BRSK2 and HOOK2). Expression quantitative trait loci (eQTL) pathway analyses driven by gene variants and SCDA metabolites corroborated perturbations in ER stress and highlighted the ubiquitin proteasome system (UPS) arm. Moreover, culture of human kidney cells in the presence of levels of fatty acids found in individuals with cardiometabolic disease, induced accumulation of SCDA metabolites in parallel with increases in the ER stress marker BiP. Thus, our integrative strategy implicates the UPS arm of the ER stress pathway in CVD pathogenesis, and identifies novel genetic loci associated with CVD event risk. PMID:26540294

  14. Genetic mapping and QTL analysis of disease resistance traits in peanut population Tifrunner x GT-C20

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A genetic map of peanut (Arachis hypogaea L.) with 426 SSR markers was constructed using a population of 162 recombinant inbred lines (RILs) from a cross between ‘Tifrunner’ and ‘GT-C20’. Linkage groups (LGs) were assigned to chromosomes using published peanut reference maps. The total length of the...

  15. Construction of a High-Density Genetic Map and Quantitative Trait Locus Mapping in the Sea Cucumber Apostichopus japonicus

    PubMed Central

    Tian, Meilin; Li, Yangping; Jing, Jing; Mu, Chuang; Du, Huixia; Dou, Jinzhuang; Mao, Junxia; Li, Xue; Jiao, Wenqian; Wang, Yangfan; Hu, Xiaoli; Wang, Shi; Wang, Ruijia; Bao, Zhenmin

    2015-01-01

    Genetic linkage maps are critical and indispensable tools in a wide range of genetic and genomic research. With the advancement of genotyping-by-sequencing (GBS) methods, the construction of a high-density and high-resolution linkage maps has become achievable in marine organisms lacking sufficient genomic resources, such as echinoderms. In this study, high-density, high-resolution genetic map was constructed for a sea cucumber species, Apostichopus japonicus, utilizing the 2b-restriction site-associated DNA (2b-RAD) method. A total of 7839 markers were anchored to the linkage map with the map coverage of 99.57%, to our knowledge, this is the highest marker density among echinoderm species. QTL mapping and association analysis consistently captured one growth-related QTL located in a 5 cM region of linkage group (LG) 5. An annotated candidate gene, retinoblastoma-binding protein 5 (RbBP5), which has been reported to be an important regulator of cell proliferation, was recognized in the QTL region. This linkage map represents a powerful tool for research involving both fine-scale QTL mapping and marker assisted selection (MAS), and will facilitate chromosome assignment and improve the whole-genome assembly of sea cucumber in the future. PMID:26439740

  16. Cross-genome map based dissection of a nitrogen use efficiency ortho-metaQTL in bread wheat unravels concerted cereal genome evolution.

    PubMed

    Quraishi, Umar Masood; Abrouk, Michael; Murat, Florent; Pont, Caroline; Foucrier, Séverine; Desmaizieres, Gregory; Confolent, Carole; Rivière, Nathalie; Charmet, Gilles; Paux, Etienne; Murigneux, Alain; Guerreiro, Laurent; Lafarge, Stéphane; Le Gouis, Jacques; Feuillet, Catherine; Salse, Jerome

    2011-03-01

    Monitoring nitrogen use efficiency (NUE) in plants is becoming essential to maintain yield while reducing fertilizer usage. Optimized NUE application in major crops is essential for long-term sustainability of agriculture production. Here, we report the precise identification of 11 major chromosomal regions controlling NUE in wheat that co-localise with key developmental genes such as Ppd (photoperiod sensitivity), Vrn (vernalization requirement), Rht (reduced height) and can be considered as robust markers from a molecular breeding perspective. Physical mapping, sequencing, annotation and candidate gene validation of an NUE metaQTL on wheat chromosome 3B allowed us to propose that a glutamate synthase (GoGAT) gene that is conserved structurally and functionally at orthologous positions in rice, sorghum and maize genomes may contribute to NUE in wheat and other cereals. We propose an evolutionary model for the NUE locus in cereals from a common ancestral region, involving species specific shuffling events such as gene deletion, inversion, transposition and the invasion of repetitive elements.

  17. Screening of Candidate Leaf Morphology Genes by Integration of QTL Mapping and RNA Sequencing Technologies in Oilseed Rape (Brassica napus L.)

    PubMed Central

    Jian, Hongju; Yang, Bo; Zhang, Aoxiang; Zhang, Li; Xu, Xinfu; Li, Jiana; Liu, Liezhao

    2017-01-01

    Leaf size and shape play important roles in agronomic traits, such as yield, quality and stress responses. Wide variations in leaf morphological traits exist in cultivated varieties of many plant species. By now, the genetics of leaf shape and size have not been characterized in Brassica napus. In this study, a population of 172 recombinant inbred lines (RILs) was used for quantitative trait locus (QTL) analysis of leaf morphology traits. Furthermore, fresh young leaves of extreme lines with more leaf lobes (referred to as ‘A’) and extreme lines with fewer lobes (referred to as ‘B’) selected from the RIL population and leaves of dissected lines (referred to as ‘P’) were used for transcriptional analysis. A total of 31 QTLs for the leaf morphological traits tested in this study were identified on 12 chromosomes, explaining 5.32–39.34% of the phenotypic variation. There were 8, 6, 2, 5, 8, and 2 QTLs for PL (petiole length), PN (lobe number), LW (lamina width), LL (Lamina length), LL/LTL (the lamina size ratio) and LTL (leaf total length), respectively. In addition, 74, 1,166 and 1,272 differentially expressed genes (DEGs) were identified in ‘A vs B’, ‘A vs P’ and ‘B vs P’ comparisons, respectively. The Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were used to predict the functions of these DEGs. Gene regulators of leaf shape and size, such as ASYMMETRIC LEAVES 2, gibberellin 20-oxidase 3, genes encoding gibberellin-regulated family protein, genes encoding growth-regulating factor and KNOTTED1-like homeobox were also detected in DEGs. After integrating the QTL mapping and RNA sequencing data, 33 genes, including a gene encoding auxin-responsive GH3 family protein and a gene encoding sphere organelles protein-related gene, were selected as candidates that may control leaf shape. Our findings should be valuable for studies of the genetic control of leaf morphological trait regulation in B. napus. PMID

  18. QTL Mapping by SLAF-seq and Expression Analysis of Candidate Genes for Aphid Resistance in Cucumber

    PubMed Central

    Liang, Danna; Chen, Minyang; Qi, Xiaohua; Xu, Qiang; Zhou, Fucai; Chen, Xuehao

    2016-01-01

    Cucumber, a very important vegetable crop worldwide, is easily damaged by pests. Aphid is one of the most serious cucumber pests and frequently cause severe damage to commercially produced crops. Understanding the genetic mechanisms underlying pest resistance is important for aphid-resistant cucumber varieties breeding. In this study, two parental cucumber lines, JY30 (aphid susceptible) and EP6392 (aphid resistant), and pools of resistant and susceptible (n = 50 each) plants from 1000 F2 individuals derived from crossing JY30 with EP6392, were used to detect genomic regions associated with aphid resistance in cucumbers. The analysis was performed using specific length amplified fragment sequencing (SLAF-seq), bulked segregant analysis (BSA), and single nucleotide polymorphism index (SNP-index) methods. A main effect QTL (quantitative trait locus) of 0.31 Mb on Chr5, including 43 genes, was identified by association analysis. Sixteen of the 43 genes were identified as potentially associated with aphid resistance through gene annotation analysis. The effect of aphid infestation on the expression of these candidate genes screened by SLAF-seq was investigated in EP6392 plants by qRT-PCR. The results indicated that seven genes including encoding transcription factor MYB59-like (Csa5M641610.1), auxin transport protein BIG-like (Csa5M642140.1), F-box/kelch-repeat protein At5g15710-like (Csa5M642160.1), transcription factor HBP-1a-like (Csa5M642710.1), beta-glucan-binding protein (Csa5M643380.1), endo-1,3(4)-beta-glucanase 1-like (Csa5M643880.1), and proline-rich receptor-like protein kinase PERK10-like (Csa5M643900.1), out of the 16 genes were down regulated after aphid infestation, whereas 5 genes including encoding probable leucine-rich repeat (LRR) receptor-like serine/threonine-protein kinase At5g15730-like (Csa5M642150.1), Stress-induced protein KIN2 (Csa5M643240.1 and Csa5M643260.1), F-box family protein (Csa5M643280.1), F-box/kelch-repeat protein (Csa5M643290

  19. Functional screening of willow alleles in Arabidopsis combined with QTL mapping in willow (Salix) identifies SxMAX4 as a coppicing response gene.

    PubMed

    Salmon, Jemma; Ward, Sally P; Hanley, Steven J; Leyser, Ottoline; Karp, Angela

    2014-05-01

    Willows (Salix spp.) are important biomass crops due to their ability to grow rapidly with low fertilizer inputs and ease of cultivation in short-rotation coppice cycles. They are relatively undomesticated and highly diverse, but functional testing to identify useful allelic variation is time-consuming in trees and transformation is not yet possible in willow. Arabidopsis is heralded as a model plant from which knowledge can be transferred to advance the improvement of less tractable species. Here, knowledge and methodologies from Arabidopsis were successfully used to identify a gene influencing stem number in coppiced willows, a complex trait of key biological and industrial relevance. The strigolactone-related More AXillary growth (MAX) genes were considered candidates due to their role in shoot branching. We previously demonstrated that willow and Arabidopsis show similar response to strigolactone and that transformation rescue of Arabidopsis max mutants with willow genes could be used to detect allelic differences. Here, this approach was used to screen 45 SxMAX1, SxMAX2, SxMAX3 and SxMAX4 alleles cloned from 15 parents of 11 mapping populations varying in shoot-branching traits. Single-nucleotide polymorphism (SNP) frequencies were locus dependent, ranging from 29.2 to 74.3 polymorphic sites per kb. SxMAX alleles were 98%-99% conserved at the amino acid level, but different protein products varying in their ability to rescue Arabidopsis max mutants were identified. One poor rescuing allele, SxMAX4D, segregated in a willow mapping population where its presence was associated with increased shoot resprouting after coppicing and colocated with a QTL for this trait.

  20. Genome-Wide SNP Linkage Mapping and QTL Analysis for Fiber Quality and Yield Traits in the Upland Cotton Recombinant Inbred Lines Population

    PubMed Central

    Li, Cong; Dong, Yating; Zhao, Tianlun; Li, Ling; Li, Cheng; Yu, En; Mei, Lei; Daud, M. K.; He, Qiuling; Chen, Jinhong; Zhu, Shuijin

    2016-01-01

    It is of significance to discover genes related to fiber quality and yield traits and tightly linked markers for marker-assisted selection (MAS) in cotton breeding. In this study, 188 F8 recombinant inbred lines (RILs), derived from a intraspecific cross between HS46 and MARCABUCAG8US-1-88 were genotyped by the cotton 63K single nucleotide polymorphism (SNP) assay. Field trials were conducted in Sanya, Hainan Province, during the 2014–2015 cropping seasons under standard conditions. Results revealed significant differences (P < 0.05) among RILs, environments and replications for fiber quality and yield traits. Broad-sense heritabilities of all traits including fiber length, fiber uniformity, micronaire, fiber elongation, fiber strength, boll weight, and lint percentage ranged from 0.26 to 0.66. A 1784.28 cM (centimorgans) linkage map, harboring 2618 polymorphic SNP markers, was constructed, which had 0.68 cM per marker density. Seventy-one quantitative trait locus (QTLs) for fiber quality and yield traits were detected on 21 chromosomes, explaining 4.70∼32.28% phenotypic variance, in which 16 were identified as stable QTLs across two environments. Meanwhile, 12 certain regions were investigated to be involved in the control of one (hotspot) or more (cluster) traits, mainly focused on Chr05, Chr09, Chr10, Chr14, Chr19, and Chr20. Nineteen pairs of epistatic QTLs (e-QTLs) were identified, of which two pairs involved in two additive QTLs. These additive QTLs, e-QTLs, and QTL clusters were tightly linked to SNP markers, which may serve as target regions for map-based cloning, gene discovery, and MAS in cotton breeding. PMID:27660632

  1. Genome-Wide Linkage Mapping of QTL for Yield Components, Plant Height and Yield-Related Physiological Traits in the Chinese Wheat Cross Zhou 8425B/Chinese Spring

    PubMed Central

    Gao, Fengmei; Wen, Weie; Liu, Jindong; Rasheed, Awais; Yin, Guihong; Xia, Xianchun; Wu, Xiaoxia; He, Zhonghu

    2015-01-01

    Identification of genes for yield components, plant height (PH), and yield-related physiological traits and tightly linked molecular markers is of great importance in marker-assisted selection (MAS) in wheat breeding. In the present study, 246 F8 RILs derived from the cross of Zhou 8425B/Chinese Spring were genotyped using the high-density Illumina iSelect 90K single nucleotide polymorphism (SNP) assay. Field trials were conducted at Zhengzhou and Zhoukou of Henan Province, during the 2012–2013 and 2013–2014 cropping season under irrigated conditions, providing data for four environments. Analysis of variance (ANOVA) of agronomic and physiological traits revealed significant differences (P < 0.01) among RILs, environments, and RILs × environments interactions. Broad-sense heritabilities of all traits including thousand kernel weight (TKW), PH, spike length (SL), kernel number per spike (KNS), spike number/m2 (SN), normalized difference in vegetation index at anthesis (NDVI-A) and at 10 days post-anthesis (NDVI-10), SPAD value of chlorophyll content at anthesis (Chl-A) and at 10 days post-anthesis (Chl-10) ranged between 0.65 and 0.94. A linkage map spanning 3609.4 cM was constructed using 5636 polymorphic SNP markers, with an average chromosome length of 171.9 cM and marker density of 0.64 cM/marker. A total of 866 SNP markers were newly mapped to the hexaploid wheat linkage map. Eighty-six QTL for yield components, PH, and yield-related physiological traits were detected on 18 chromosomes except 1D, 5D, and 6D, explaining 2.3–33.2% of the phenotypic variance. Ten stable QTL were identified across four environments, viz. QTKW.caas-6A.1, QTKW.caas-7AL, QKNS.caas-4AL, QSN.caas-1AL.1, QPH.caas-4BS.2, QPH.caas-4DS.1, QSL.caas-4AS, QSL.caas-4AL.1, QChl-A.caas-5AL, and QChl-10.caas-5BL. Meanwhile, 10 QTL-rich regions were found on chromosome 1BS, 2AL (2), 3AL, 4AL (2), 4BS, 4DS, 5BL, and 7AL exhibiting pleiotropic effects. These QTL or QTL clusters are tightly

  2. Fine-mapping of qRfg2, a QTL for resistance to Gibberella stalk rot in maize.

    PubMed

    Zhang, Dongfeng; Liu, Yongjie; Guo, Yanling; Yang, Qin; Ye, Jianrong; Chen, Shaojiang; Xu, Mingliang

    2012-02-01

    Stalk rot is one of the most devastating diseases in maize worldwide. In our previous study, two QTLs, a major qRfg1 and a minor qRfg2, were identified in the resistant inbred line '1145' to confer resistance to Gibberella stalk rot. In the present study, we report on fine-mapping of the minor qRfg2 that is located on chromosome 1 and account for ~8.9% of the total phenotypic variation. A total of 22 markers were developed in the qRfg2 region to resolve recombinants. The progeny-test mapping strategy was developed to accurately determine the phenotypes of all recombinants for fine-mapping of the qRfg2 locus. This fine-mapping process was performed from BC(4)F(1) to BC(8)F(1) generations to narrow down the qRfg2 locus into ~300 kb, flanked by the markers SSRZ319 and CAPSZ459. A predicted gene in the mapped region, coding for an auxin-regulated protein, is believed to be a candidate for qRfg2. The qRfg2 locus could steadily increase the resistance percentage by ~12% across different backcross generations, suggesting its usefulness in enhancing maize resistance against Gibberella stalk rot.

  3. Identification of QTL for drought tolerance and characterization of extreme phenotypes in the Buster x Roza mapping population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Terminal and intermittent drought limits dry bean production worldwide.The Buster/Roza mapping population (140 F7:9 RILs) has been screened for drought tolerance across multiple years/locations. In 2011 and 2012 the RILs were tested for terminal drought response at two locations: Othello, WA and Sco...

  4. Precision mapping and identification of candidate genes for a QTL affecting Meloidogyne incognita reproduction in Upland cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The resistant line Auburn 623RNR and a number of elite breeding lines derived from it remain the most important source of root-knot nematode (RKN) resistance because they exhibit the highest level of resistance to RKN known to date in Upland cotton (Gossypium hirsutum L). Prior genetic mapping analy...

  5. QTL Mapping for Grain Yield, Flowering Time, and Stay-Green Traits in Sorghum with Genotyping-by-Sequencing Markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular breeding can complement traditional breeding approaches to achieve genetic gains in a more efficient way. In the present study, genetic mapping was conducted in a sorghum recombinant inbred line (RIL) population developed from Tx436 (a non-stay-green high food quality inbred) × 00MN7645 (a...

  6. QTL mapping for European corn borer resistance ( Ostrinia nubilalis Hb.), agronomic and forage quality traits of testcross progenies in early-maturing European maize ( Zea mays L.) germplasm.

    PubMed

    Papst, C; Bohn, M; Utz, H F; Melchinger, A E; Klein, D; Eder, J

    2004-05-01

    In hybrid breeding the performance of lines in hybrid combinations is more important than their performance per se. Little information is available on the correlation between individual line and testcross (TC) performances for the resistance to European corn borer (ECB, Ostrinia nubilalis Hb.) in maize ( Zea mays L.). Marker assisted selection (MAS) will be successful only if quantitative trait loci (QTL) found in F(2) derived lines for ECB resistance are still expressed in hybrid combinations. The objectives of our study were: (1) to identify and characterize QTL for ECB resistance as well as agronomic and forage quality traits in a population of testcrossed F(2:3) families; (2) to evaluate the consistency of QTL for per se and TC performances; and (3) to determine the association between per se and TC performances of F(2:3) lines for these traits. Two hundred and four F(2:3) lines were derived from the cross between maize lines D06 (resistant) and D408 (susceptible). These lines were crossed to D171 and the TC progenies were evaluated for ECB resistance and agronomic performance in two locations in 2000 and 2001. Using these TC progenies, six QTL for stalk damage rating (SDR) were found. These QTL explained 27.4% of the genotypic variance in a simultaneous fit. Three QTL for SDR were detected consistently for per se and TC performance. Phenotypic and genotypic correlations were low for per se and TC performance for SDR. Correlations between SDR and quality traits were not significant. Based on these results, we conclude that MAS will not be an efficient method for improving SDR. However, new molecular tools might provide the opportunity to use QTL data as a first step to identify genes involved in ECB resistance. Efficient MAS procedures might then be based on markers designed to trace and to combine specific genes and their alleles in elite maize breeding germplasm.

  7. Genome-wide protein QTL mapping identifies human plasma kallikrein as a post-translational regulator of serum uPAR levels

    PubMed Central

    Portelli, Michael A.; Siedlinski, Mateusz; Stewart, Ceri E.; Postma, Dirkje S.; Nieuwenhuis, Maartje A.; Vonk, Judith M.; Nurnberg, Peter; Altmuller, Janine; Moffatt, Miriam F.; Wardlaw, Andrew J.; Parker, Stuart G.; Connolly, Martin J.; Koppelman, Gerard H.; Sayers, Ian

    2014-01-01

    The soluble cleaved urokinase plasminogen activator receptor (scuPAR) is a circulating protein detected in multiple diseases, including various cancers, cardiovascular disease, and kidney disease, where elevated levels of scuPAR have been associated with worsening prognosis and increased disease aggressiveness. We aimed to identify novel genetic and biomolecular mechanisms regulating scuPAR levels. Elevated serum scuPAR levels were identified in asthma (n=514) and chronic obstructive pulmonary disease (COPD; n=219) cohorts when compared to controls (n=96). In these cohorts, a genome-wide association study of serum scuPAR levels identified a human plasma kallikrein gene (KLKB1) promoter polymorphism (rs4253238) associated with serum scuPAR levels in a control/asthma population (P=1.17×10−7), which was also observed in a COPD population (combined P=5.04×10−12). Using a fluorescent assay, we demonstrated that serum KLKB1 enzymatic activity was driven by rs4253238 and is inverse to scuPAR levels. Biochemical analysis identified that KLKB1 cleaves scuPAR and negates scuPAR's effects on primary human bronchial epithelial cells (HBECs) in vitro. Chymotrypsin was used as a proproteolytic control, while basal HBECs were used as a control to define scuPAR-driven effects. In summary, we reveal a novel post-translational regulatory mechanism for scuPAR using a hypothesis-free approach with implications for multiple human diseases.—Portelli, M. A., Siedlinski, M., Stewart, C. E., Postma, D. S., Nieuwenhuis, M. A., Vonk, J. M., Nurnberg, P., Altmuller, J., Moffatt, M. F., Wardlaw, A. J., Parker, S. G., Connolly, M. J., Koppelman, G. H., Sayers, I. Genome-wide protein QTL mapping identifies human plasma kallikrein as a post-translational regulator of serum uPAR levels. PMID:24249636

  8. A Genetic Relationship between Phosphorus Efficiency and Photosynthetic Traits in Soybean As Revealed by QTL Analysis Using a High-Density Genetic Map

    PubMed Central

    Li, Hongyan; Yang, Yuming; Zhang, Hengyou; Chu, Shanshan; Zhang, Xingguo; Yin, Dongmei; Yu, Deyue; Zhang, Dan

    2016-01-01

    Plant productivity relies on photosynthesis, and the photosynthetic process relies on phosphorus (P). The genetic basis of photosynthesis and P efficiency (PE) affecting yield has been separately characterized in various crop plants. However, the genetic relationship between PE and photosynthesis remains to be elucidated. In this study, we used a combined analysis of phenotypic correlation, linkage mapping, and expression analysis to dissect the relationship between PE and photosynthesis. We found significant phenotypic correlations between PE and photosynthetic related traits, particularly under low P stress. A total of 172 QTLs for both traits were detected and classified into 29 genomic regions. 12 (41.4%) of 29 regions were detected to be associated with both PE and photosynthetic related traits. Three major QTLs, q14-2, q15-2, and q19-2, were found to be associated with both traits and explained 6.6–58.9% of phenotypic variation. A photosynthetic-specific QTL cluster, q12-1, was detected under both normal and low P conditions, suggesting that genes responsible for this region were less effected by low P stress, and could be used in high photosynthetic efficiency breeding programs. In addition, several candidate genes with significantly differential expression upon low P stress, such as a purple acid phosphatase gene (Glyma.19G193900) within q19-2 region, were considered as promising candidates involved in regulating both soybean PE and photosynthetic capacity. Our results reveal a significant genetic relationship between PE and photosynthetic traits, and uncover several major genomic regions specific or common to these traits. The markers linked closely to these major QTLs may be used for selection of soybean varieties with improved P efficiency and photosynthetic capacity. PMID:27446154

  9. A Genetic Relationship between Phosphorus Efficiency and Photosynthetic Traits in Soybean As Revealed by QTL Analysis Using a High-Density Genetic Map.

    PubMed

    Li, Hongyan; Yang, Yuming; Zhang, Hengyou; Chu, Shanshan; Zhang, Xingguo; Yin, Dongmei; Yu, Deyue; Zhang, Dan

    2016-01-01

    Plant productivity relies on photosynthesis, and the photosynthetic process relies on phosphorus (P). The genetic basis of photosynthesis and P efficiency (PE) affecting yield has been separately characterized in various crop plants. However, the genetic relationship between PE and photosynthesis remains to be elucidated. In this study, we used a combined analysis of phenotypic correlation, linkage mapping, and expression analysis to dissect the relationship between PE and photosynthesis. We found significant phenotypic correlations between PE and photosynthetic related traits, particularly under low P stress. A total of 172 QTLs for both traits were detected and classified into 29 genomic regions. 12 (41.4%) of 29 regions were detected to be associated with both PE and photosynthetic related traits. Three major QTLs, q14-2, q15-2, and q19-2, were found to be associated with both traits and explained 6.6-58.9% of phenotypic variation. A photosynthetic-specific QTL cluster, q12-1, was detected under both normal and low P conditions, suggesting that genes responsible for this region were less effected by low P stress, and could be used in high photosynthetic efficiency breeding programs. In addition, several candidate genes with significantly differential expression upon low P stress, such as a purple acid phosphatase gene (Glyma.19G193900) within q19-2 region, were considered as promising candidates involved in regulating both soybean PE and photosynthetic capacity. Our results reveal a significant genetic relationship between PE and photosynthetic traits, and uncover several major genomic regions specific or common to these traits. The markers linked closely to these major QTLs may be used for selection of soybean varieties with improved P efficiency and photosynthetic capacity.

  10. Fine mapping and identification of candidate rice genes associated with qSTV11(SG), a major QTL for rice stripe disease resistance.

    PubMed

    Kwon, Tackmin; Lee, Jong-Hee; Park, Soo-Kwon; Hwang, Un-Ha; Cho, Jun-Hyun; Kwak, Do-Yeon; Youn, Yeong-Nam; Yeo, Un-Sang; Song, You-Chun; Nam, Jaesung; Kang, Hang-Won; Nam, Min-Hee; Park, Dong-Soo

    2012-09-01

    Rice stripe disease, caused by rice stripe virus (RSV) is a serious constraint to rice production in subtropical regions of East Asia. We performed fine mapping of a RSV resistance QTL on chromosome 11, qSTV11 ( SG ), using near-isogenic lines (NILs, BC(6)F(4)) derived from a cross between the highly resistant variety, Shingwang, and the highly susceptible variety, Ilpum, using 11 insertion and deletion (InDel) markers. qSTV11 ( SG ) was localized to a 150-kb region between InDel 11 (17.86 Mbp) and InDel 5 (18.01 Mbp). Among the two markers in this region, InDel 7 is diagnostic of RSV resistance in 55 Korean japonica and indica rice varieties. InDel 7 could also distinguish the allele type of Nagdong, Shingwang, Mudgo, and Pe-bi-hun from Zenith harboring the Stv-b ( i ) allele. As a result, qSTV11 ( SG ) is likely to be the Stv-b ( i ) allele. There were 21 genes in the 150-kb region harboring the qSTV11 ( SG ) locus. Three of these genes, LOC_Os11g31430, LOC_Os11g31450, and LOC_Os11g31470, were exclusively expressed in the susceptible variety. These expression profiles were consistent with the quantitative nature along with incomplete dominance of RSV resistance. Sequencing of these genes showed that there were several amino acid substitutions between susceptible and resistant varieties. Putative functions of these candidate genes for qSTV11 (SG) are discussed.

  11. A High-Resolution SNP Array-Based Linkage Map Anchors a New Domestic Cat Draft Genome Assembly and Provides Detailed Patterns of Recombination

    PubMed Central

    Li, Gang; Hillier, LaDeana W.; Grahn, Robert A.; Zimin, Aleksey V.; David, Victor A.; Menotti-Raymond, Marilyn; Middleton, Rondo; Hannah, Steven; Hendrickson, Sher; Makunin, Alex; O’Brien, Stephen J.; Minx, Pat; Wilson, Richard K.; Lyons, Leslie A.; Warren, Wesley C.; Murphy, William J.

    2016-01-01

    High-resolution genetic and physical maps are invaluable tools for building accurate genome assemblies, and interpreting results of genome-wide association studies (GWAS). Previous genetic and physical maps anchored good quality draft assemblies of the domestic cat genome, enabling the discovery of numerous genes underlying hereditary disease and phenotypes of interest to the biomedical science and breeding communities. However, these maps lacked sufficient marker density to order thousands of shorter scaffolds in earlier assemblies, which instead relied heavily on comparative mapping with related species. A high-resolution map would aid in validating and ordering chromosome scaffolds from existing and new genome assemblies. Here, we describe a high-resolution genetic linkage map of the domestic cat genome based on genotyping 453 domestic cats from several multi-generational pedigrees on the Illumina 63K SNP array. The final maps include 58,055 SNP markers placed relative to 6637 markers with unique positions, distributed across all autosomes and the X chromosome. Our final sex-averaged maps span a total autosomal length of 4464 cM, the longest described linkage map for any mammal, confirming length estimates from a previous microsatellite-based map. The linkage map was used to order and orient the scaffolds from a substantially more contiguous domestic cat genome assembly (Felis catus v8.0), which incorporated ∼20 × coverage of Illumina fragment reads. The new genome assembly shows substantial improvements in contiguity, with a nearly fourfold increase in N50 scaffold size to 18 Mb. We use this map to report probable structural errors in previous maps and assemblies, and to describe features of the recombination landscape, including a massive (∼50 Mb) recombination desert (of virtually zero recombination) on the X chromosome that parallels a similar desert on the porcine X chromosome in both size and physical location. PMID:27172201

  12. A High-Resolution SNP Array-Based Linkage Map Anchors a New Domestic Cat Draft Genome Assembly and Provides Detailed Patterns of Recombination.

    PubMed

    Li, Gang; Hillier, LaDeana W; Grahn, Robert A; Zimin, Aleksey V; David, Victor A; Menotti-Raymond, Marilyn; Middleton, Rondo; Hannah, Steven; Hendrickson, Sher; Makunin, Alex; O'Brien, Stephen J; Minx, Pat; Wilson, Richard K; Lyons, Leslie A; Warren, Wesley C; Murphy, William J

    2016-06-01

    High-resolution genetic and physical maps are invaluable tools for building accurate genome assemblies, and interpreting results of genome-wide association studies (GWAS). Previous genetic and physical maps anchored good quality draft assemblies of the domestic cat genome, enabling the discovery of numerous genes underlying hereditary disease and phenotypes of interest to the biomedical science and breeding communities. However, these maps lacked sufficient marker density to order thousands of shorter scaffolds in earlier assemblies, which instead relied heavily on comparative mapping with related species. A high-resolution map would aid in validating and ordering chromosome scaffolds from existing and new genome assemblies. Here, we describe a high-resolution genetic linkage map of the domestic cat genome based on genotyping 453 domestic cats from several multi-generational pedigrees on the Illumina 63K SNP array. The final maps include 58,055 SNP markers placed relative to 6637 markers with unique positions, distributed across all autosomes and the X chromosome. Our final sex-averaged maps span a total autosomal length of 4464 cM, the longest described linkage map for any mammal, confirming length estimates from a previous microsatellite-based map. The linkage map was used to order and orient the scaffolds from a substantially more contiguous domestic cat genome assembly (Felis catus v8.0), which incorporated ∼20 × coverage of Illumina fragment reads. The new genome assembly shows substantial improvements in contiguity, with a nearly fourfold increase in N50 scaffold size to 18 Mb. We use this map to report probable structural errors in previous maps and assemblies, and to describe features of the recombination landscape, including a massive (∼50 Mb) recombination desert (of virtually zero recombination) on the X chromosome that parallels a similar desert on the porcine X chromosome in both size and physical location.

  13. Fatness QTL on chicken chromosome 5 and interaction with sex

    PubMed Central

    Abasht, Behnam; Pitel, Frédérique; Lagarrigue, Sandrine; Le Bihan-Duval, Elisabeth; Le Roy, Pascale; Demeure, Olivier; Vignoles, Florence; Simon, Jean; Cogburn, Larry; Aggrey, Sammy; Vignal, Alain; Douaire, Madeleine

    2006-01-01

    Quantitative trait loci (QTL) affecting fatness in male chickens were previously identified on chromosome 5 (GGA5) in a three-generation design derived from two experimental chicken lines divergently selected for abdominal fat weight. A new design, established from the same pure lines, produced 407 F2 progenies (males and females) from 4 F1-sire families. Body weight and abdominal fat were measured on the F2 at 9 wk of age. In each sire family, selective genotyping was carried out for 48 extreme individuals for abdominal fat using seven microsatellite markers from GGA5. QTL analyses confirmed the presence of QTL for fatness on GGA5 and identified a QTL by sex interaction. By crossing one F1 sire heterozygous at the QTL with lean line dams, three recombinant backcross 1 (BC1) males were produced and their QTL genotypes were assessed in backcross 2 (BC2) progenies. These results confirmed the QTL by sex interaction identified in the F2 generation and they allow mapping of the female QTL to less than 8 Mb at the distal part of the GGA5. They also indicate that fat QTL alleles were segregating in both fat and lean lines. PMID:16635451

  14. Mapping of QTL associated with seed amino acids content in MD96-5722 by "Spencer" RIL population of soybean using SNP markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean seeds are major sources of essential amino acids, protein, and fatty acids. Limited information is available on the genetic analysis of amino acid composition in soybean. Therefore, the objective of this study was to identify genomic regions containing quantitative trait loci (QTL) controlli...

  15. Integration of the Rat Recombination and EST Maps in the Rat Genomic Sequence and Comparative Mapping Analysis With the Mouse Genome

    PubMed Central

    Wilder, Steven P.; Bihoreau, Marie-Thérèse; Argoud, Karène; Watanabe, Takeshi K.; Lathrop, Mark; Gauguier, Dominique

    2004-01-01

    Inbred strains of the laboratory rat are widely used for identifying genetic regions involved in the control of complex quantitative phenotypes of biomedical importance. The draft genomic sequence of the rat now provides essential information for annotating rat quantitative trait locus (QTL) maps. Following the survey of unique rat microsatellite (11,585 including 1648 new markers) and EST (10,067) markers currently available, we have incorporated a selection of 7952 rat EST sequences in an improved version of the integrated linkage-radiation hybrid map of the rat containing 2058 microsatellite markers which provided over 10,000 potential anchor points between rat QTL and the genomic sequence of the rat. A total of 996 genetic positions were resolved (avg. spacing 1.77 cM) in a single large intercross and anchored in the rat genomic sequence (avg. spacing 1.62 Mb). Comparative genome maps between rat and mouse were constructed by successful computational alignment of 6108 mapped rat ESTs in the mouse genome. The integration of rat linkage maps in the draft genomic sequence of the rat and that of other species represents an essential step for translating rat QTL intervals into human chromosomal targets. PMID:15060020

  16. Partial Dominance, Overdominance, Epistasis and QTL by Environment Interactions Contribute to Heterosis in Two Upland Cotton Hybrids.

    PubMed

    Shang, Lianguang; Wang, Yumei; Cai, Shihu; Wang, Xiaocui; Li, Yuhua; Abduweli, Abdugheni; Hua, Jinping

    2015-12-29

    Based on two recombinant inbred line (RIL) populations, two corresponding backcross (BC) populations were constructed to elucidate the genetic basis of heterosis in Upland cotton (Gossypium hirsutum L.). The yield, and yield components, of these populations were evaluated in three environments. At the single-locus level, 78 and 66 quantitative trait loci (QTL) were detected using composite interval mapping in RIL and BC populations, respectively, and 29 QTL were identified based on mid-parental heterosis (MPH) data of two hybrids. Considering all traits together, a total of 50 (64.9%) QTL with partial dominance effect, and 27 (35.1%) QTL for overdominance effect were identified in two BC populations. At the two-locus level, 120 and 88 QTL with main effects (M-QTL), and 335 and 99 QTL involved in digenic interactions (E-QTL), were detected by inclusive composite interval mapping in RIL and BC populations, respectively. A large number of QTL by environment interactions (QEs) for M-QTL and E-QTL were detected in three environments. For most traits, average E-QTL explained a larger proportion of phenotypic variation than did M-QTL in two RIL populations and two BC populations. It was concluded that partial dominance, overdominance, epistasis, and QEs all contribute to heterosis in Upland cotton, and that partial dominance resulting from single loci and epistasis play a relatively more important role than other genetic effects in heterosis in Upland cotton.

  17. Mapping of continuum and lattice models for describing the adsorption of an ideal chain anchored to a planar surface

    NASA Astrophysics Data System (ADS)

    Gorbunov, A. A.; Skvortsov, A. M.; van Male, J.; Fleer, G. J.

    2001-03-01

    An ideal polymer chain anchored to a planar surface is considered by using both lattice and continuum model approaches. A general equation relating the lattice and continuum model adsorption interaction parameters is derived in a consistent way by substituting the exact continuum solution for the free chain end distribution function into the lattice model boundary condition. This equation is not mathematically exact but provides excellent results. With the use of this relation the quantitative equivalence between lattice and continuum results was demonstrated for chains of both infinite and finite length and for all three regimes corresponding to attractive, repulsive and adsorption-threshold energy of polymer-surface interaction. The obtained equations are used to discuss the distribution functions describing the tail of an anchored macromolecule and its adsorbed parts. For the tail-related properties the results are independent of the microscopic details of the polymer chain and the adsorbing surface. One interesting result obtained in the vicinity of adsorption threshold point is a bimodal tail length distribution function, which manifests chain populations with either tail or loop dominance. The properties related to the number of surface contacts contain, apart from universal scaling terms, also a nonuniversal factor depending on microscopic details of polymer-surface interaction. We derived an equation for calculating this nonuniversal factor for different lattice models and demonstrated excellent agreement between the lattice results and the continuum model.

  18. A physically anchored genetic map and linkage to avirulence reveals recombination suppression over the proximal region of Hessian fly chromosome A2.

    PubMed Central

    Behura, Susanta K; Valicente, Fernando H; Rider, S Dean; Shun-Chen, Ming; Jackson, Scott; Stuart, Jeffrey J

    2004-01-01

    Resistance in wheat (Triticum aestivum) to the Hessian fly (Mayetiola destructor), a major insect pest of wheat, is based on a gene-for-gene interaction. Close linkage (3 +/- 2 cM) was discovered between Hessian fly avirulence genes vH3 and vH5. Bulked segregant analysis revealed two DNA markers (28-178 and 23-201) within 10 cM of these loci and only 3 +/- 2 cM apart. However, 28-178 was located in the middle of the short arm of Hessian fly chromosome A2 whereas 23-201 was located in the middle of the long arm of chromosome A2, suggesting the presence of severe recombination suppression over its proximal region. To further test that possibility, an AFLP-based genetic map of the Hessian fly genome was constructed. Fluorescence in situ hybridization of 20 markers on the genetic map to the polytene chromosomes of the Hessian fly indicated good correspondence between the linkage groups and the four Hessian fly chromosomes. The physically anchored genetic map is the first of any gall midge species. The proximal region of mitotic chromosome A2 makes up 30% of its length but corresponded to <3% of the chromosome A2 genetic map. PMID:15166159

  19. Identification of major and minor QTL for ecologically important morphological traits in three-spined sticklebacks (Gasterosteus aculeatus).

    PubMed

    Liu, Jun; Shikano, Takahito; Leinonen, Tuomas; Cano, José Manuel; Li, Meng-Hua; Merilä, Juha

    2014-04-16

    Quantitative trait locus (QTL) mapping studies of Pacific three-spined sticklebacks (Gasterosteus aculeatus) have uncovered several genomic regions controlling variability in different morphological traits, but QTL studies of Atlantic sticklebacks are lacking. We mapped QTL for 40 morphological traits, including body size, body shape, and body armor, in a F2 full-sib cross between northern European marine and freshwater three-spined sticklebacks. A total of 52 significant QTL were identified at the 5% genome-wide level. One major QTL explaining 74.4% of the total variance in lateral plate number was detected on LG4, whereas several major QTL for centroid size (a proxy for body size), and the lengths of two dorsal spines, pelvic spine, and pelvic girdle were mapped on LG21 with the explained variance ranging from 27.9% to 57.6%. Major QTL for landmark coordinates defining body shape variation also were identified on LG21, with each explaining ≥15% of variance in body shape. Multiple QTL for different traits mapped on LG21 overlapped each other, implying pleiotropy and/or tight linkage. Thus, apart from providing confirmatory data to support conclusions born out of earlier QTL studies of Pacific sticklebacks, this study also describes several novel QTL of both major and smaller effect for ecologically important traits. The finding that many major QTL mapped on LG21 suggests that this linkage group might be a hotspot for genetic determinants of ecologically important morphological traits in three-spined sticklebacks.

  20. Multiple QTL for Horticultural Traits and Quantitative Resistance to Phytophthora infestans Linked on Solanum habrochaites Chromosome 11

    PubMed Central

    Haggard, J. Erron; Johnson, Emily B.; St. Clair, Dina A.

    2014-01-01

    Previously, a Phytophthora infestans resistance QTL from Solanum habrochaites chromosome 11 was introgressed into cultivated tomato (S. lycopersicum). Fine mapping of this resistance QTL using near-isogenic lines (NILs) revealed some co-located QTL with undesirable effects on plant size, canopy density, and fruit size traits. Subsequently, higher-resolution mapping with sub-NILs detected multiple P. infestans resistance QTL within this 9.4-cM region of chromosome 11. In our present study, these same sub-NILs were also evaluated for 17 horticultural traits, including yield, maturity, fruit size and shape, fruit quality, and plant architecture traits in replicated field experiments over 2 years. The horticultural trait QTL originally detected by fine mapping each fractionated into two or more QTL at higher resolution. A total of 34 QTL were detected across all traits, with 14% exhibiting significant QTL × environment interactions (QTL × E). QTL for many traits were co-located, suggesting either pleiotropic effects or tight linkage among genes controlling these traits. Recombination in the pericentromeric region of the introgression between markers TG147 and At4g10050 was suppressed to approximately 29.7 Mbp per cM, relative to the genomewide average of 750 kbp per cM. The genetic architecture of many of the horticultural and P. infestans resistance traits that mapped within this chromosome 11 S. habrochaites region is complex. Complicating factors included fractionation of QTL, pleiotropy or tight linkage of QTL for multiple traits, pericentromeric chromosomal location(s), and/or QTL × E. High-resolution mapping of QTL in this region would be needed to determine which specific target QTL could be useful in breeding cultivated tomato. PMID:25504736

  1. A first generation integrated map of the rainbow trout genome

    PubMed Central

    2011-01-01

    Background Rainbow trout (Oncorhynchus mykiss) are the most-widely cultivated cold freshwater fish in the world and an important model species for many research areas. Coupling great interest in this species as a research model with the need for genetic improvement of aquaculture production efficiency traits justifies the continued development of genomics research resources. Many quantitative trait loci (QTL) have been identified for production and life-history traits in rainbow trout. An integrated physical and genetic map is needed to facilitate fine mapping of QTL and the selection of positional candidate genes for incorporation in marker-assisted selection (MAS) programs for improving rainbow trout aquaculture production. Results The first generation integrated map of the rainbow trout genome is composed of 238 BAC contigs anchored to chromosomes of the genetic map. It covers more than 10% of the genome across segments from all 29 chromosomes. Anchoring of 203 contigs to chromosomes of the National Center for Cool and Cold Water Aquaculture (NCCCWA) genetic map was achieved through mapping of 288 genetic markers derived from BAC end sequences (BES), screening of the BAC library with previously mapped markers and matching of SNPs with BES reads. In addition, 35 contigs were anchored to linkage groups of the INRA (French National Institute of Agricultural Research) genetic map through markers that were not informative for linkage analysis in the NCCCWA mapping panel. The ratio of physical to genetic linkage distances varied substantially among chromosomes and BAC contigs with an average of 3,033 Kb/cM. Conclusions The integrated map described here provides a framework for a robust composite genome map for rainbow trout. This resource is needed for genomic analyses in this research model and economically important species and will facilitate comparative genome mapping with other salmonids and with model fish species. This resource will also facilitate efforts to

  2. SNP Assay Development for Linkage Map Construction, Anchoring Whole-Genome Sequence, and Other Genetic and Genomic Applications in Common Bean

    DOE PAGES

    Song, Qijian; Jia, Gaofeng; Hyten, David L.; ...

    2015-08-28

    A total of 992,682 single-nucleotide polymorphisms (SNPs) was identified as ideal for Illumina Infinium II BeadChip design after sequencing a diverse set of 17 common bean (Phaseolus vulgaris L) varieties with the aid of next-generation sequencing technology. From these, two BeadChips each with >5000 SNPs were designed. The BARCBean6K_1 BeadChip was selected for the purpose of optimizing polymorphism among market classes and, when possible, SNPs were targeted to sequence scaffolds in the Phaseolus vulgaris 14× genome assembly with sequence lengths >10 kb. The BARCBean6K_2 BeadChip was designed with the objective of anchoring additional scaffolds and to facilitate orientation of largemore » scaffolds. Analysis of 267 F2 plants from a cross of varieties Stampede × Red Hawk with the two BeadChips resulted in linkage maps with a total of 7040 markers including 7015 SNPs. With the linkage map, a total of 432.3 Mb of sequence from 2766 scaffolds was anchored to create the Phaseolus vulgaris v1.0 assembly, which accounted for approximately 89% of the 487 Mb of available sequence scaffolds of the Phaseolus vulgaris v0.9 assembly. A core set of 6000 SNPs (BARCBean6K_3 BeadChip) with high genotyping quality and polymorphism was selected based on the genotyping of 365 dry bean and 134 snap bean accessions with the BARCBean6K_1 and BARCBean6K_2 BeadChips. The BARCBean6K_3 BeadChip is a useful tool for genetics and genomics research and it is widely used by breeders and geneticists in the United States and abroad.« less

  3. SNP Assay Development for Linkage Map Construction, Anchoring Whole-Genome Sequence, and Other Genetic and Genomic Applications in Common Bean

    PubMed Central

    Song, Qijian; Jia, Gaofeng; Hyten, David L.; Jenkins, Jerry; Hwang, Eun-Young; Schroeder, Steven G.; Osorno, Juan M.; Schmutz, Jeremy; Jackson, Scott A.; McClean, Phillip E.; Cregan, Perry B.

    2015-01-01

    A total of 992,682 single-nucleotide polymorphisms (SNPs) was identified as ideal for Illumina Infinium II BeadChip design after sequencing a diverse set of 17 common bean (Phaseolus vulgaris L) varieties with the aid of next-generation sequencing technology. From these, two BeadChips each with >5000 SNPs were designed. The BARCBean6K_1 BeadChip was selected for the purpose of optimizing polymorphism among market classes and, when possible, SNPs were targeted to sequence scaffolds in the Phaseolus vulgaris 14× genome assembly with sequence lengths >10 kb. The BARCBean6K_2 BeadChip was designed with the objective of anchoring additional scaffolds and to facilitate orientation of large scaffolds. Analysis of 267 F2 plants from a cross of varieties Stampede × Red Hawk with the two BeadChips resulted in linkage maps with a total of 7040 markers including 7015 SNPs. With the linkage map, a total of 432.3 Mb of sequence from 2766 scaffolds was anchored to create the Phaseolus vulgaris v1.0 assembly, which accounted for approximately 89% of the 487 Mb of available sequence scaffolds of the Phaseolus vulgaris v0.9 assembly. A core set of 6000 SNPs (BARCBean6K_3 BeadChip) with high genotyping quality and polymorphism was selected based on the genotyping of 365 dry bean and 134 snap bean accessions with the BARCBean6K_1 and BARCBean6K_2 BeadChips. The BARCBean6K_3 BeadChip is a useful tool for genetics and genomics research and it is widely used by breeders and geneticists in the United States and abroad. PMID:26318155

  4. SNP Assay Development for Linkage Map Construction, Anchoring Whole-Genome Sequence, and Other Genetic and Genomic Applications in Common Bean

    SciTech Connect

    Song, Qijian; Jia, Gaofeng; Hyten, David L.; Jenkins, Jerry; Hwang, Eun-Young; Schroeder, Steven G.; Osorno, Juan M.; Schmutz, Jeremy; Jackson, Scott A.; McClean, Phillip E.; Cregan, Perry B.

    2015-08-28

    A total of 992,682 single-nucleotide polymorphisms (SNPs) was identified as ideal for Illumina Infinium II BeadChip design after sequencing a diverse set of 17 common bean (Phaseolus vulgaris L) varieties with the aid of next-generation sequencing technology. From these, two BeadChips each with >5000 SNPs were designed. The BARCBean6K_1 BeadChip was selected for the purpose of optimizing polymorphism among market classes and, when possible, SNPs were targeted to sequence scaffolds in the Phaseolus vulgaris 14× genome assembly with sequence lengths >10 kb. The BARCBean6K_2 BeadChip was designed with the objective of anchoring additional scaffolds and to facilitate orientation of large scaffolds. Analysis of 267 F2 plants from a cross of varieties Stampede × Red Hawk with the two BeadChips resulted in linkage maps with a total of 7040 markers including 7015 SNPs. With the linkage map, a total of 432.3 Mb of sequence from 2766 scaffolds was anchored to create the Phaseolus vulgaris v1.0 assembly, which accounted for approximately 89% of the 487 Mb of available sequence scaffolds of the Phaseolus vulgaris v0.9 assembly. A core set of 6000 SNPs (BARCBean6K_3 BeadChip) with high genotyping quality and polymorphism was selected based on the genotyping of 365 dry bean and 134 snap bean accessions with the BARCBean6K_1 and BARCBean6K_2 BeadChips. The BARCBean6K_3 BeadChip is a useful tool for genetics and genomics research and it is widely used by breeders and geneticists in the United States and abroad.

  5. QTL detection for a medium density SNP panel: comparison of different LD and LA methods

    PubMed Central

    Filangi, Olivier; Le Roy, Pascale

    2010-01-01

    Background New molecular technologies allow high throughput genotyping for QTL mapping with dense genetic maps. Therefore, the interest of linkage analysis models against linkage disequilibrium could be questioned. As these two strategies are very sensitive to marker density, experimental design structures, linkage disequilibrium extent and QTL effect, we propose to investigate these parameters effects on QTL detection. Methods The XIIIth QTLMAS workshop simulated dataset was analysed using three linkage disequilibrium models and a linkage analysis model. Interval mapping, multivariate and interaction between QTL analyses were performed using QTLMAP. Results The linkage analysis models identified 13 QTL, from which 10 mapped close of the 18 which were simulated and three other positions being falsely mapped as containing a QTL. Most of the QTLs identified by interval mapping analysis are not clearly detected by any linkage disequilibrium model. In addition, QTL effects are evolving during the time which was not observed using the linkage disequilibrium models. Conclusions Our results show that for such a marker density the interval mapping strategy is still better than using the linkage disequilibrium only. While the experimental design structure gives a lot of power to both approaches, the marker density and informativity clearly affect linkage disequilibrium efficiency for QTL detection. PMID:20380753

  6. Anchor Modeling

    NASA Astrophysics Data System (ADS)

    Regardt, Olle; Rönnbäck, Lars; Bergholtz, Maria; Johannesson, Paul; Wohed, Petia

    Maintaining and evolving data warehouses is a complex, error prone, and time consuming activity. The main reason for this state of affairs is that the environment of a data warehouse is in constant change, while the warehouse itself needs to provide a stable and consistent interface to information spanning extended periods of time. In this paper, we propose a modeling technique for data warehousing, called anchor modeling, that offers non-destructive extensibility mechanisms, thereby enabling robust and flexible management of changes in source systems. A key benefit of anchor modeling is that changes in a data warehouse environment only require extensions, not modifications, to the data warehouse. This ensures that existing data warehouse applications will remain unaffected by the evolution of the data warehouse, i.e. existing views and functions will not have to be modified as a result of changes in the warehouse model.

  7. Analysis of morphine responses in mice reveals a QTL on Chromosome 7

    PubMed Central

    Crusio, Wim E.; Dhawan, Esha; Chesler, Elissa J.; Delprato, Anna

    2016-01-01

    In this study we identified a quantitative trait locus (QTL) on mouse Chromosome 7 associated with locomotor activity and rearing post morphine treatment. This QTL was revealed after correcting for the effects of another QTL peak on Chromosome 10 using composite interval mapping. The positional candidate genes are Syt9 and Ppfibp2. Several other genes within the interval are linked to neural processes, locomotor activity, and the defensive response to harmful stimuli. PMID:27746909

  8. Investigation of a QTL region for loin eye area and fatness on pig chromosome 1.

    PubMed

    Grapes, Laura; Rothschild, Max F

    2006-06-01

    Previously, quantitative trait loci (QTL) for tenth-rib backfat (TENTHRIB) and loin eye area (LEA) were identified on pig Chromosome 1 (SSC 1) near microsatellite S0008 from a three-generation Berkshire x Yorkshire cross (BY). This work attempted to refine these QTL positions and identify genes associated with these QTL. Genotypes of BY (n = 555) were determined by PCR-RFLP or PCR tests for 13 polymorphisms identified in BY F(0) individuals for candidate genes, BAC end sequences, and genomic clones. Using least-squares regression interval mapping, the LEA QTL was estimated at S0008; the TENTHRIB QTL position was shifted approximately 1 cM downstream from S0008. Of the genes/sequences mapped in the QTL region, CL349415 was significantly associated with TENTHRIB (p = 0.02) and solute carrier family 2, member 12 (SLC2A12) was significantly associated with LEA (p = 0.02). These results suggest that the gene(s) responsible for the LEA and TENTHRIB QTL effects are tightly linked to S0008 or that the high informativeness of S0008 relative to surrounding markers is influencing the QTL position estimates. In addition, janus kinase 2 (JAK2) was mapped to a suggestive LEA QTL region and showed association with LEA (p = 0.009), fatness, color, and pH traits in BY.

  9. Molecular mapping of signals in the Qa-2 antigen required for attachment of the phosphatidylinositol membrane anchor.

    PubMed Central

    Waneck, G L; Sherman, D H; Kincade, P W; Low, M G; Flavell, R A

    1988-01-01

    Proteins anchored in the membrane by covalent linkage to phosphatidylinositol (PtdIns) can be released by treatment with purified PtdIns-specific phospholipase C (Ptd-Ins-PLC). A recent survey of leukocyte antigens using flow cytometry has shown that staining of certain Qa antigens was diminished after PtdIns-PLC treatment, but staining of structurally related H-2 antigens was not affected. Therefore, in this study, the sensitivity of cell-surface Qa-2, H-2Kb, and H-2Db to hydrolysis by PtdIns-PLC was investigated biochemically by immunoprecipitation of radioiodinated molecules from cell lysates or supernatants. Qa-2, but not H-2Kb, was released from the surface of PtdIns-PLC-treated C57BL/10 mouse spleen cells and recovered in the cell supernatants. Similar analysis of thymoma cells transfected with cloned C57BL/10 genes showed that cell-surface Qa-2 molecules encoded by a Q7b cDNA and the Q7b or Q9b gene were sensitive to hydrolysis by PtdIns-PLC, whereas the H-2Kb and H-2Db gene products were resistant. Using thymoma cells transfected with hybrid genes constructed by exchanging exons between Q7b and H-2Db, the signals for PtdIns modification were localized to a defined region of Qa-2. This region differs from H-2Db most significantly by the presence of a central aspartate residue in the transmembrane segment and in the length of the cytoplasmic portion. Images PMID:3422441

  10. Cross-species bacterial artificial chromosome (BAC) library screening via overgo-based hybridization and BAC-contig mapping of a yield enhancement quantitative trait locus (QTL) yld1.1 in the Malaysian wild rice Oryza rufipogon.

    PubMed

    Song, Beng-Kah; Nadarajah, Kalaivani; Romanov, Michael N; Ratnam, Wickneswari

    2005-01-01

    The construction of BAC-contig physical maps is an important step towards a partial or ultimate genome sequence analysis. Here, we describe our initial efforts to apply an overgo approach to screen a BAC library of the Malaysian wild rice species, Oryza rufipogon. Overgo design is based on repetitive element masking and sequence uniqueness, and uses short probes (approximately 40 bp), making this method highly efficient and specific. Pairs of 24-bp oligos that contain an 8-bp overlap were developed from the publicly available genomic sequences of the cultivated rice, O. sativa, to generate 20 overgo probes for a 1-Mb region that encompasses a yield enhancement QTL yld1.1 in O. rufipogon. The advantages of a high similarity in melting temperature, hybridization kinetics and specific activities of overgos further enabled a pooling strategy for library screening by filter hybridization. Two pools of ten overgos each were hybridized to high-density filters representing the O. rufipogon genomic BAC library. These screening tests succeeded in providing 69 PCR-verified positive hits from a total of 23,040 BAC clones of the entire O. rufipogon library. A minimal tilling path of clones was generated to contribute to a fully covered BAC-contig map of the targeted 1-Mb region. The developed protocol for overgo design based on O. sativa sequences as a comparative genomic framework, and the pooled overgo hybridization screening technique are suitable means for high-resolution physical mapping and the identification of BAC candidates for sequencing.

  11. Meta-analysis of QTL involved in silage quality of maize and comparison with the position of candidate genes.

    PubMed

    Truntzler, M; Barrière, Y; Sawkins, M C; Lespinasse, D; Betran, J; Charcosset, A; Moreau, L

    2010-11-01

    A meta-analysis of quantitative trait loci (QTL) associated with plant digestibility and cell wall composition in maize was carried out using results from 11 different mapping experiments. Statistical methods implemented in "MetaQTL" software were used to build a consensus map, project QTL positions and perform meta-analysis. Fifty-nine QTL for traits associated with digestibility and 150 QTL for traits associated with cell wall composition were included in the analysis. We identified 26 and 42 metaQTL for digestibility and cell wall composition traits, respectively. Fifteen metaQTL with confidence interval (CI) smaller than 10 cM were identified. As expected from trait correlations, 42% of metaQTL for digestibility displayed overlapping CIs with metaQTL for cell wall composition traits. Coincidences were particularly strong on chromosomes 1 and 3. In a second step, 356 genes selected from the MAIZEWALL database as candidates for the cell wall biosynthesis pathway were positioned on our consensus map. Colocalizations between candidate genes and metaQTL positions appeared globally significant based on χ(2) tests. This study contributed in identifying key chromosomal regions involved in silage quality and potentially associated genes for most of these regions. These genes deserve further investigation, in particular through association mapping.

  12. Meta-analysis of grain yield QTL identified during agricultural drought in grasses showed consensus

    PubMed Central

    2011-01-01

    Background In the last few years, efforts have been made to identify large effect QTL for grain yield under drought in rice. However, identification of most precise and consistent QTL across the environments and genetics backgrounds is essential for their successful use in Marker-assisted Selection. In this study, an attempt was made to locate consistent QTL regions associated with yield increase under drought by applying a genome-wide QTL meta-analysis approach. Results The integration of 15 maps resulted in a consensus map with 531 markers and a total map length of 1821 cM. Fifty-three yield QTL reported in 15 studies were projected on a consensus map and meta-analysis was performed. Fourteen meta-QTL were obtained on seven chromosomes. MQTL1.2, MQTL1.3, MQTL1.4, and MQTL12.1 were around 700 kb and corresponded to a reasonably small genetic distance of 1.8 to 5 cM and they are suitable for use in marker-assisted selection (MAS). The meta-QTL for grain yield under drought coincided with at least one of the meta-QTL identified for root and leaf morphology traits under drought in earlier reports. Validation of major-effect QTL on a panel of random drought-tolerant lines revealed the presence of at least one major QTL in each line. DTY12.1 was present in 85% of the lines, followed by DTY4.1 in 79% and DTY1.1 in 64% of the lines. Comparative genomics of meta-QTL with other cereals revealed that the homologous regions of MQTL1.4 and MQTL3.2 had QTL for grain yield under drought in maize, wheat, and barley respectively. The genes in the meta-QTL regions were analyzed by a comparative genomics approach and candidate genes were deduced for grain yield under drought. Three groups of genes such as stress-inducible genes, growth and development-related genes, and sugar transport-related genes were found in clusters in most of the meta-QTL. Conclusions Meta-QTL with small genetic and physical intervals could be useful in Marker-assisted selection individually and in

  13. An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Citrullus lanatus)

    PubMed Central

    2014-01-01

    Background Modern watermelon (Citrullus lanatus L.) cultivars share a narrow genetic base due to many years of selection for desirable horticultural qualities. Wild subspecies within C. lanatus are important potential sources of novel alleles for watermelon breeding, but successful trait introgression into elite cultivars has had limited success. The application of marker assisted selection (MAS) in watermelon is yet to be realized, mainly due to the past lack of high quality genetic maps. Recently, a number of useful maps have become available, however these maps have few common markers, and were constructed using different marker sets, thus, making integration and comparative analysis among maps difficult. The objective of this research was to use single-nucleotide polymorphism (SNP) anchor markers to construct an integrated genetic map for C. lanatus. Results Under the framework of the high density genetic map, an integrated genetic map was constructed by merging data from four independent mapping experiments using a genetically diverse array of parental lines, which included three subspecies of watermelon. The 698 simple sequence repeat (SSR), 219 insertion-deletion (InDel), 36 structure variation (SV) and 386 SNP markers from the four maps were used to construct an integrated map. This integrated map contained 1339 markers, spanning 798 cM with an average marker interval of 0.6 cM. Fifty-eight previously reported quantitative trait loci (QTL) for 12 traits in these populations were also integrated into the map. In addition, new QTL identified for brix, fructose, glucose and sucrose were added. Some QTL associated with economically important traits detected in different genetic backgrounds mapped to similar genomic regions of the integrated map, suggesting that such QTL are responsible for the phenotypic variability observed in a broad array of watermelon germplasm. Conclusions The integrated map described herein enhances the utility of genomic tools over

  14. Chromosome-anchored QTL conferring aluminum tolerance in hexaploid oat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract Aluminum (Al) toxicity is a major constraint on crop production in acid soils around the world. Hexaploid oat (Avena sativa L.) possesses signi'cant Al tolerance making it a good candidate for production in these environments. Genetic improvement for Al tolerance in oat has traditionally be...

  15. High-Density Genetic Mapping with Interspecific Hybrids of Two Sea Urchins, Strongylocentrotus nudus and S. intermedius, by RAD Sequencing.

    PubMed

    Zhou, Zunchun; Liu, Shikai; Dong, Ying; Gao, Shan; Chen, Zhong; Jiang, Jingwei; Yang, Aifu; Sun, Hongjuan; Guan, Xiaoyan; Jiang, Bei; Wang, Bai

    2015-01-01

    Sea urchins have long been used as research model organisms for developmental biology and evolutionary studies. Some of them are also important aquaculture species in East Asia. In this work, we report the construction of RAD-tag based high-density genetic maps by genotyping F1 interspecific hybrids derived from a crossing between a female sea urchin Strongylocentrotus nudus and a male Strongylocentrotus intermedius. With polymorphisms present in these two wild individuals, we constructed a female meiotic map containing 3,080 markers for S. nudus, and a male meiotic map for S. intermedius which contains 1,577 markers. Using the linkage maps, we were able to anchor a total of 1,591 scaffolds (495.9 Mb) accounting for 60.8% of the genome assembly of Strongylocentrotus purpuratus. A genome-wide scan resulted in the identification of one putative QTL for body size which spanned from 25.3 cM to 30.3 cM. This study showed the efficiency of RAD-Seq based high-density genetic map construction using F1 progenies for species with no prior genomic information. The genetic maps are essential for QTL mapping and are useful as framework to order and orientate contiguous scaffolds from sea urchin genome assembly. The integration of the genetic map with genome assembly would provide an unprecedented opportunity to conduct QTL analysis, comparative genomics, and population genetics studies.

  16. High-Density Genetic Mapping with Interspecific Hybrids of Two Sea Urchins, Strongylocentrotus nudus and S. intermedius, by RAD Sequencing

    PubMed Central

    Dong, Ying; Gao, Shan; Chen, Zhong; Jiang, Jingwei; Yang, Aifu; Sun, Hongjuan; Guan, Xiaoyan; Jiang, Bei; Wang, Bai

    2015-01-01

    Sea urchins have long been used as research model organisms for developmental biology and evolutionary studies. Some of them are also important aquaculture species in East Asia. In this work, we report the construction of RAD-tag based high-density genetic maps by genotyping F1 interspecific hybrids derived from a crossing between a female sea urchin Strongylocentrotus nudus and a male Strongylocentrotus intermedius. With polymorphisms present in these two wild individuals, we constructed a female meiotic map containing 3,080 markers for S. nudus, and a male meiotic map for S. intermedius which contains 1,577 markers. Using the linkage maps, we were able to anchor a total of 1,591 scaffolds (495.9 Mb) accounting for 60.8% of the genome assembly of Strongylocentrotus purpuratus. A genome-wide scan resulted in the identification of one putative QTL for body size which spanned from 25.3 cM to 30.3 cM. This study showed the efficiency of RAD-Seq based high-density genetic map construction using F1 progenies for species with no prior genomic information. The genetic maps are essential for QTL mapping and are useful as framework to order and orientate contiguous scaffolds from sea urchin genome assembly. The integration of the genetic map with genome assembly would provide an unprecedented opportunity to conduct QTL analysis, comparative genomics, and population genetics studies. PMID:26398139

  17. Ultrasonic/Sonic Anchor

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart

    2009-01-01

    The ultrasonic/sonic anchor (U/S anchor) is an anchoring device that drills a hole for itself in rock, concrete, or other similar material. The U/S anchor is a recent addition to a series of related devices, the first of which were reported in "Ultrasonic/Sonic Drill/Corers With Integrated Sensors"

  18. Lineage-specific mapping of quantitative trait loci

    PubMed Central

    Chen, C; Ritland, K

    2013-01-01

    We present an approach for quantitative trait locus (QTL) mapping, termed as ‘lineage-specific QTL mapping', for inferring allelic changes of QTL evolution along with branches in a phylogeny. We describe and analyze the simplest case: by adding a third taxon into the normal procedure of QTL mapping between pairs of taxa, such inferences can be made along lineages to a presumed common ancestor. Although comparisons of QTL maps among species can identify homology of QTLs by apparent co-location, lineage-specific mapping of QTL can classify homology into (1) orthology (shared origin of QTL) versus (2) paralogy (independent origin of QTL within resolution of map distance). In this light, we present a graphical method that identifies six modes of QTL evolution in a three taxon comparison. We then apply our model to map lineage-specific QTLs for inbreeding among three taxa of yellow monkey-flower: Mimulus guttatus and two inbreeders M. platycalyx and M. micranthus, but critically assuming outcrossing was the ancestral state. The two most common modes of homology across traits were orthologous (shared ancestry of mutation for QTL alleles). The outbreeder M. guttatus had the fewest lineage-specific QTL, in accordance with the presumed ancestry of outbreeding. Extensions of lineage-specific QTL mapping to other types of data and crosses, and to inference of ancestral QTL state, are discussed. PMID:23612690

  19. MT-HESS: an efficient Bayesian approach for simultaneous association detection in OMICS datasets, with application to eQTL mapping in multiple tissues

    PubMed Central

    Lewin, Alex; Saadi, Habib; Peters, James E.; Moreno-Moral, Aida; Lee, James C.; Smith, Kenneth G. C.; Petretto, Enrico; Bottolo, Leonardo; Richardson, Sylvia

    2016-01-01

    Motivation: Analysing the joint association between a large set of responses and predictors is a fundamental statistical task in integrative genomics, exemplified by numerous expression Quantitative Trait Loci (eQTL) studies. Of particular interest are the so-called ‘hotspots’, important genetic variants that regulate the expression of many genes. Recently, attention has focussed on whether eQTLs are common to several tissues, cell-types or, more generally, conditions or whether they are specific to a particular condition. Results: We have implemented MT-HESS, a Bayesian hierarchical model that analyses the association between a large set of predictors, e.g. SNPs, and many responses, e.g. gene expression, in multiple tissues, cells or conditions. Our Bayesian sparse regression algorithm goes beyond ‘one-at-a-time’ association tests between SNPs and responses and uses a fully multivariate model search across all linear combinations of SNPs, coupled with a model of the correlation between condition/tissue-specific responses. In addition, we use a hierarchical structure to leverage shared information across different genes, thus improving the detection of hotspots. We show the increase of power resulting from our new approach in an extensive simulation study. Our analysis of two case studies highlights new hotspots that would remain undetected by standard approaches and shows how greater prediction power can be achieved when several tissues are jointly considered. Availability and implementation: C++ source code and documentation including compilation instructions are available under GNU licence at http://www.mrc-bsu.cam.ac.uk/software/. Contact: sylvia.richardson@mrc-bsu.cam.ac.uk or lb664@cam.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26504141

  20. Fine mapping of a region on chromosome 8p gives evidence for a QTL contributing to individual differences in an anxiety-related personality trait: TPQ harm avoidance.

    PubMed

    Dina, Christian; Nemanov, Lubov; Gritsenko, Inga; Rosolio, Naama; Osher, Yamima; Heresco-Levy, Uri; Sariashvilli, Emma; Bachner-Melman, Rachel; Zohar, Ada H; Benjamin, Jonathan; Belmaker, Robert H; Ebstein, Richard P

    2005-01-05

    The chromosome 8p region is of interest in human behavioral genetics since it harbors a susceptibility region not only for schizophrenia but also for anxiety-related personality traits such as harm avoidance and neuroticism. Towards verifying our preliminary linkage finding of a QTL for TPQ harm avoidance at chromosome 8p, we have now genotyped altogether 24 micro-satellite markers in 377 families. Using three methods (maximum likelihood binomial or MLB, MERLIN, and an associated one parameter model), we observed significant results (P values from 0.002 to 0.0004) for linkage to harm avoidance in this region. A peak multipoint LOD score of 2.76 (P value 0.0002) was obtained with the MLB method. The region-wide empirical P value was 0.002 [0.001-0.0046]. Although, the peak position varied somewhat according to the method (D8S1048 for MLB, D8S1463 for the two other methods), for three methods D8S1810 ( approximately 60 cM) is within 1-2 cM of the peak for harm avoidance. This marker is of particular interest since it is proximate (<0.5 cM) of the core haplotype that in several recent studies show significant association with schizophrenia near neuroregulin 1. Although association studies with microsatellite markers need to be interpreted cautiously, using the Haplotype Trend Regression test one marker, D8S499 ( approximately 60 cM), showed an empirical P value of 2 x 10(-5) for allele 3, which confers a decreased harm avoidance score. Altogether, the current linkage and association results suggest the possibility that the same locus near the neuroregulin 1 gene on chromosome 8p confers risk for both an anxiety-related personality trait as well as schizophrenia. We hypothesize that this common genetic factor may contribute to emotional liability during early development, which constitutes a predisposing factor for major psychosis.

  1. Genetic linkage mapping in fungi: current state, applications, and future trends.

    PubMed

    Foulongne-Oriol, Marie

    2012-08-01

    Genetic mapping is a basic tool for eukaryotic genomic research. Linkage maps provide insights into genome organization and can be used for genetic studies of traits of interest. A genetic linkage map is a suitable support for the anchoring of whole genome sequences. It allows the localization of genes of interest or quantitative trait loci (QTL) and map-based cloning. While genetic mapping has been extensively used in plant or animal models, this discipline is more recent in fungi. The present article reviews the current status of genetic linkage map research in fungal species. The process of linkage mapping is detailed, from the development of mapping populations to the construction of the final linkage map, and illustrated based on practical examples. The range of specific applications in fungi is browsed, such as the mapping of virulence genes in pathogenic species or the mapping of agronomically relevant QTL in cultivated edible mushrooms. Future prospects are finally discussed in the context of the most recent advances in molecular techniques and the release of numerous fungal genome sequences.

  2. QTL x Genetic Background Interaction: Application to Predicting Progeny Value

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Failures of the additive infinitesimal model continue to provide incentive to study other modes of gene action, in particular, epistasis. Epistasis can be modeled as a QTL by genetic background interaction. Association mapping models lend themselves to fitting such an interaction because they often ...

  3. A gene-derived SNP-based high resolution linkage map of carrot including the location of QTL conditioning root and leaf anthocyanin pigmentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Purple carrots accumulate large quantities of anthocyanins in their roots and leaves. These flavonoid pigments possess antioxidant activity and are implicated in providing health benefits. The lack of informative and saturated linkage maps associated with well characterized populations s...

  4. QTL detection for stover yield and quality traits using two connected populations in high-oil maize.

    PubMed

    Wei, Mengguan; Li, Xuehui; Li, Junzhou; Fu, Jiafeng; Wang, Yanzhao; Li, Yuling

    2009-10-01

    Both yield and quality traits for stover portion were important for forage and biofuel production utility in maize. A high-oil maize inbred GY220 was crossed with two normal-oil dent maize inbred lines 8984 and 8622 to generate two connected F(2:3) populations with 284 and 265 F(2:3) families. Seven yield and quality traits were evaluated under two environments. The variance components of genotype (sigma(g)(2)), environment (sigma(e)(2)) and genotype x environment interactions (sigma(ge)(2)) were all significant for most traits in both populations. Different levels of correlations were observed for all traits. QTL mapping was conducted using composite interval mapping (CIM) for data under each environment and in combined analysis in both populations. Totally, 45 and 42 QTL were detected in the two populations. Only five common QTL across the two populations, and one and three common QTL across the two environments in the two populations were detected, reflecting substantial influence of genetic backgrounds and environments on the results of QTL detection for stover traits. Combined analysis across two environments failed to detect most QTL mapped using individual environmental data in both populations. Few of the detected QTL displayed digenic epistatic interactions. Common QTL among all traits were consistent with their correlations. Some QTL herein have been detected in previous researches, and linked with candidate genes for enzymes postulated to have direct and indirect roles in cell wall components biosynthesis.

  5. A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.)

    PubMed Central

    2011-01-01

    Background A number of molecular marker linkage maps have been developed for melon (Cucumis melo L.) over the last two decades. However, these maps were constructed using different marker sets, thus, making comparative analysis among maps difficult. In order to solve this problem, a consensus genetic map in melon was constructed using primarily highly transferable anchor markers that have broad potential use for mapping, synteny, and comparative quantitative trait loci (QTL) analysis, increasing breeding effectiveness and efficiency via marker-assisted selection (MAS). Results Under the framework of the International Cucurbit Genomics Initiative (ICuGI, http://www.icugi.org), an integrated genetic map has been constructed by merging data from eight independent mapping experiments using a genetically diverse array of parental lines. The consensus map spans 1150 cM across the 12 melon linkage groups and is composed of 1592 markers (640 SSRs, 330 SNPs, 252 AFLPs, 239 RFLPs, 89 RAPDs, 15 IMAs, 16 indels and 11 morphological traits) with a mean marker density of 0.72 cM/marker. One hundred and ninety-six of these markers (157 SSRs, 32 SNPs, 6 indels and 1 RAPD) were newly developed, mapped or provided by industry representatives as released markers, including 27 SNPs and 5 indels from genes involved in the organic acid metabolism and transport, and 58 EST-SSRs. Additionally, 85 of 822 SSR markers contributed by Syngenta Seeds were included in the integrated map. In addition, 370 QTL controlling 62 traits from 18 previously reported mapping experiments using genetically diverse parental genotypes were also integrated into the consensus map. Some QTL associated with economically important traits detected in separate studies mapped to similar genomic positions. For example, independently identified QTL controlling fruit shape were mapped on similar genomic positions, suggesting that such QTL are possibly responsible for the phenotypic variability observed for this trait in

  6. Mapping and validation of Yr48 and other QTL conferring partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A mapping population of 188 recombinant inbred lines developed from a cross between UC1110, an adapted California spring wheat, and PI610750, a synthetic derivative from CIMMYT's wide-cross program, was evaluated for its response to current California races of stripe rust (Puccinia striiformis f.sp....

  7. A SNP genetic linkage map based on the ‘Hamilton’ by ‘Spencer’ recombinant inbred line (RIL) population identified QTL for seed Isoflavone contents in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean is one of the most important crops worldwide for its protein, oil as well as the health beneficial phytoestrogens or isoflavone. This study reports a relatively dense SNP-Based genetic map based on ‘Hamilton’ by ‘Spencer’ recombinant inbred line (RIL) population and quantitative t...

  8. Fine mapping and introgressing qFIS1-2, a major QTL for kernel fissure resistance in rice (Oryza sativa L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice (Oryza sativa L.) kernel fissuring increases breakage during milling and decreases the value of processed rice. This study employed molecular gene tagging methods to fine-map a fissure resistance (FR) locus in ‘Cybonnet’, a semidwarf tropical japonica cultivar, as well as transfer this trait to...

  9. Fusarium Head Blight Resistance QTL in the Spring Wheat Cross Kenyon/86ISMN 2137

    PubMed Central

    McCartney, Curt A.; Brûlé-Babel, Anita L.; Fedak, George; Martin, Richard A.; McCallum, Brent D.; Gilbert, Jeannie; Hiebert, Colin W.; Pozniak, Curtis J.

    2016-01-01

    Fusarium head blight (FHB), caused by Fusarium graminearum, is a very important disease of wheat globally. Damage caused by F. graminearum includes reduced grain yield, reduced grain functional quality, and results in the presence of the trichothecene mycotoxin deoxynivalenol in Fusarium-damaged kernels. The development of FHB resistant wheat cultivars is an important component of integrated management. The objective of this study was to identify QTL for FHB resistance in a recombinant inbred line (RIL) population of the spring wheat cross Kenyon/86ISMN 2137. Kenyon is a Canadian spring wheat, while 86ISMN 2137 is an unrelated spring wheat. The RIL population was evaluated for FHB resistance in six FHB nurseries. Nine additive effect QTL for FHB resistance were identified, six from Kenyon and three from 86ISMN 2137. Rht8 and Ppd-D1a co-located with two FHB resistance QTL on chromosome arm 2DS. A major QTL for FHB resistance from Kenyon (QFhb.crc-7D) was identified on chromosome 7D. The QTL QFhb.crc-2D.4 from Kenyon mapped to the same region as a FHB resistance QTL from Wuhan-1 on chromosome arm 2DL. This result was unexpected since Kenyon does not share common ancestry with Wuhan-1. Other FHB resistance QTL on chromosomes 4A, 4D, and 5B also mapped to known locations of FHB resistance. Four digenic epistatic interactions were detected for FHB resistance, which involved eight QTL. None of these QTL were significant based upon additive effect QTL analysis. This study provides insight into the genetic basis of native FHB resistance in Canadian spring wheat. PMID:27790188

  10. A genetic linkage map of the Durum x Triticum dicoccoides backcross population based on SSRs and AFLP markers, and QTL analysis for milling traits.

    PubMed

    Elouafi, I; Nachit, M M

    2004-02-01

    Durum wheat ( Triticum turgidum L. var durum) is mainly produced and consumed in the Mediterranean region; it is used to produce several specific end-products; such as local pasta, couscous and burghul. To study the genetics of grain-milling quality traits, chromosomal locations, and interaction with the environment, a genetic linkage map of durum was constructed and the quantitative trait loci QTLs for the milling-related traits, test weight (TW) and thousand-kernel weight (TKW), were identified. The population constituted 114 recombinant inbred lines derived from the cross: Omrabi 5 /Triticum dicoccoides 600545// Omrabi 5. TW and TKW were analyzed over 18 environments (sites x years). Single-sequence-repeat markers (SSRs), Amplified-fragment-length-polymorphism markers (AFLPs), and seed storage proteins (SSPs) showed a high level of polymorphism (>60%). The map was constructed with 124 SSRs, 149 AFLPs and 6 SSPs; its length covered 2,288.8 cM (8.2 cM/marker). The map showed high synteny with previous wheat maps, and both SSRs and AFLPs mapped evenly across the genome, with more markers in the B genome. However, some rearrangements were observed. For TW, a high genotypic effect was detected and two QTLs with epistasic effect were identified on 7AS and 6BS, explaining 30% of the total variation. The TKW showed a significant transgressive inheritance and five QTLs were identified, explaining 32% of the total variation, out of which 25% was of a genetic nature, and showing QTLxE interaction. The major TKW-QTLs were around the centromere region of 6B. For both traits, Omrabi 5 alleles had a significant positive effect. This population will be used to determine other QTLs of interest, as its parents are likely to harbor different genes for diseases and drought tolerance.

  11. Barley stripe rust resistance QTL: Development and validation of SNP markers for resistance to Puccinia striiformis f. sp. hordei

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative trait loci (QTL) linked with seedling and field resistance to barley stripe rust were mapped in 156 recombinant inbred lines (RILs) derived from a Lenetah by Grannelose Zweizeilige (GZ) cross. A major QTL for seedling resistance on chromosome 4H (LOD = 15.94 at 97.19 cM) was identified,...

  12. Construction of a chromosome-assigned, sequence-tagged linkage map for the radish, Raphanus sativus L. and QTL analysis of morphological traits

    PubMed Central

    Hashida, Tomoko; Nakatsuji, Ryoichi; Budahn, Holger; Schrader, Otto; Peterka, Herbert; Fujimura, Tatsuhito; Kubo, Nakao; Hirai, Masashi

    2013-01-01

    The radish displays great morphological variation but the genetic factors underlying this variability are mostly unknown. To identify quantitative trait loci (QTLs) controlling radish morphological traits, we cultivated 94 F4 and F5 recombinant inbred lines derived from a cross between the rat-tail radish and the Japanese radish cultivar ‘Harufuku’ inbred lines. Eight morphological traits (ovule and seed numbers per silique, plant shape, pubescence and root formation) were measured for investigation. We constructed a map composed of 322 markers with a total length of 673.6 cM. The linkage groups were assigned to the radish chromosomes using disomic rape-radish chromosome-addition lines. On the map, eight and 10 QTLs were identified in 2008 and 2009, respectively. The chromosome-linkage group correspondence, the sequence-specific markers and the QTLs detected here will provide useful information for further genetic studies and for selection during radish breeding programs. PMID:23853517

  13. An SSR-based linkage map of yardlong bean (Vigna unguiculata (L.) Walp. subsp. unguiculata Sesquipedalis Group) and QTL analysis of pod length.

    PubMed

    Kongjaimun, Alisa; Kaga, Akito; Tomooka, Norihiko; Somta, Prakit; Shimizu, Takehiko; Shu, Yujian; Isemura, Takehisa; Vaughan, Duncan A; Srinives, Peerasak

    2012-02-01

    Yardlong bean (Vigna unguiculata (L.) Walp. subsp. unguiculata Sesquipedalis Group) (2n = 2x = 22) is one of the most important vegetable legumes of Asia. The objectives of this study were to develop a genetic linkage map of yardlong bean using SSR makers from related Vigna species and to identify QTLs for pod length. The map was constructed from 226 simple sequence repeat (SSR) markers from cowpea (Vigna unguiculata (L.) Walp. subsp. unguiculata Unguiculata Group), azuki bean (Vigna angularis (Willd.) Ohwi & Ohashi), and mungbean (Vigna radiata (L.) Wilczek) in a BC(1)F(1) ((JP81610 × TVnu457) × JP81610) population derived from the cross between yardlong bean accession JP81610 and wild cowpea (Vigna unguiculata subsp. unguiculata var. spontanea) accession TVnu457. The markers were clustered into 11 linkage groups (LGs) spanning 852.4 cM in total length with a mean distance between adjacent markers of 3.96 cM. All markers on LG11 showed segregation distortion towards the homozygous yardlong bean JP81610 genotype. The markers on LG11 were also distorted in the rice bean (Vigna umbellata (Thunb.) Ohwi & Ohashi) map, suggesting the presence of common segregation distortion factors in Vigna species on this LG. One major and six minor QTLs were identified for pod length variation between yardlong bean and wild cowpea. Using flanking markers, six of the seven QTLs were confirmed in an F(2) population of JP81610 × TVnu457. The molecular linkage map developed and markers linked to pod length QTLs would be potentially useful for yardlong bean and cowpea breeding.

  14. Genomics of a metamorphic timing QTL: met1 maps to a unique genomic position and regulates morph and species-specific patterns of brain transcription.

    PubMed

    Page, Robert B; Boley, Meredith A; Kump, David K; Voss, Stephen R

    2013-01-01

    Very little is known about genetic factors that regulate life history transitions during ontogeny. Closely related tiger salamanders (Ambystoma species complex) show extreme variation in metamorphic timing, with some species foregoing metamorphosis altogether, an adaptive trait called paedomorphosis. Previous studies identified a major effect quantitative trait locus (met1) for metamorphic timing and expression of paedomorphosis in hybrid crosses between the biphasic Eastern tiger salamander (Ambystoma tigrinum tigrinum) and the paedomorphic Mexican axolotl (Ambystoma mexicanum). We used existing hybrid mapping panels and a newly created hybrid cross to map the met1 genomic region and determine the effect of met1 on larval growth, metamorphic timing, and gene expression in the brain. We show that met1 maps to the position of a urodele-specific chromosome rearrangement on linkage group 2 that uniquely brought functionally associated genes into linkage. Furthermore, we found that more than 200 genes were differentially expressed during larval development as a function of met1 genotype. This list of differentially expressed genes is enriched for proteins that function in the mitochondria, providing evidence of a link between met1, thyroid hormone signaling, and mitochondrial energetics associated with metamorphosis. Finally, we found that met1 significantly affected metamorphic timing in hybrids, but not early larval growth rate. Collectively, our results show that met1 regulates species and morph-specific patterns of brain transcription and life history variation.

  15. Genomics of a Metamorphic Timing QTL: met1 Maps to a Unique Genomic Position and Regulates Morph and Species-Specific Patterns of Brain Transcription

    PubMed Central

    Page, Robert B.; Boley, Meredith A.; Kump, David K.; Voss, Stephen R.

    2013-01-01

    Very little is known about genetic factors that regulate life history transitions during ontogeny. Closely related tiger salamanders (Ambystoma species complex) show extreme variation in metamorphic timing, with some species foregoing metamorphosis altogether, an adaptive trait called paedomorphosis. Previous studies identified a major effect quantitative trait locus (met1) for metamorphic timing and expression of paedomorphosis in hybrid crosses between the biphasic Eastern tiger salamander (Ambystoma tigrinum tigrinum) and the paedomorphic Mexican axolotl (Ambystoma mexicanum). We used existing hybrid mapping panels and a newly created hybrid cross to map the met1 genomic region and determine the effect of met1 on larval growth, metamorphic timing, and gene expression in the brain. We show that met1 maps to the position of a urodele-specific chromosome rearrangement on linkage group 2 that uniquely brought functionally associated genes into linkage. Furthermore, we found that more than 200 genes were differentially expressed during larval development as a function of met1 genotype. This list of differentially expressed genes is enriched for proteins that function in the mitochondria, providing evidence of a link between met1, thyroid hormone signaling, and mitochondrial energetics associated with metamorphosis. Finally, we found that met1 significantly affected metamorphic timing in hybrids, but not early larval growth rate. Collectively, our results show that met1 regulates species and morph-specific patterns of brain transcription and life history variation. PMID:23946331

  16. Rapid identification of fruit length loci in cucumber (Cucumis sativus L.) using next-generation sequencing (NGS)-based QTL analysis

    PubMed Central

    Wei, Qing-zhen; Fu, Wen-yuan; Wang, Yun-zhu; Qin, Xiao-dong; Wang, Jing; Li, Ji; Lou, Qun-feng; Chen, Jin-feng

    2016-01-01

    The cucumber (Cucumis sativus L.) exhibits extensive variations in fruit size and shape. Fruit length is an important agronomic and domesticated trait controlled by quantitative trait loci (QTLs). Nonetheless, the underlying molecular and genetic mechanisms that determine cucumber fruit length remain unclear. QTL-seq is an efficient strategy for QTL identification that takes advantage of bulked-segregant analysis (BSA) and next-generation sequencing (NGS). In the present study, we conducted QTL mapping and QTL-seq of cucumber fruit length. QTL mapping identified 8 QTLs for immature and mature fruit length. A major-effect QTL fl3.2, which explained a maximum of 38.87% of the phenotypic variation, was detected. A genome-wide comparison of SNP profiles between two DNA bulks identified 6 QTLs for ovary length. QTLs ovl3.1 and ovl3.2 both had major effects on ovary length with a △ (SNP-index) of 0.80 (P < 0.01) and 0.74 (P < 0.01), respectively. Quantitative RT-PCR of fruit size-related homologous genes localized in the consensus QTL FL3.2 was conducted. Four candidate genes exhibited increased expression levels in long fruit genotypes. Our results demonstrated the power of the QTL-seq method in rapid QTL detection and provided reliable QTL regions for fine mapping of fruit length-related loci and for identifying candidate genes. PMID:27271557

  17. Rapid identification of fruit length loci in cucumber (Cucumis sativus L.) using next-generation sequencing (NGS)-based QTL analysis.

    PubMed

    Wei, Qing-Zhen; Fu, Wen-Yuan; Wang, Yun-Zhu; Qin, Xiao-Dong; Wang, Jing; Li, Ji; Lou, Qun-Feng; Chen, Jin-Feng

    2016-06-07

    The cucumber (Cucumis sativus L.) exhibits extensive variations in fruit size and shape. Fruit length is an important agronomic and domesticated trait controlled by quantitative trait loci (QTLs). Nonetheless, the underlying molecular and genetic mechanisms that determine cucumber fruit length remain unclear. QTL-seq is an efficient strategy for QTL identification that takes advantage of bulked-segregant analysis (BSA) and next-generation sequencing (NGS). In the present study, we conducted QTL mapping and QTL-seq of cucumber fruit length. QTL mapping identified 8 QTLs for immature and mature fruit length. A major-effect QTL fl3.2, which explained a maximum of 38.87% of the phenotypic variation, was detected. A genome-wide comparison of SNP profiles between two DNA bulks identified 6 QTLs for ovary length. QTLs ovl3.1 and ovl3.2 both had major effects on ovary length with a △ (SNP-index) of 0.80 (P < 0.01) and 0.74 (P < 0.01), respectively. Quantitative RT-PCR of fruit size-related homologous genes localized in the consensus QTL FL3.2 was conducted. Four candidate genes exhibited increased expression levels in long fruit genotypes. Our results demonstrated the power of the QTL-seq method in rapid QTL detection and provided reliable QTL regions for fine mapping of fruit length-related loci and for identifying candidate genes.

  18. Meta-QTL for resistance to white mold in common bean

    PubMed Central

    Vasconcellos, Renato C. C.; Oraguzie, O. Blessing; Soler, Alvaro; Arkwazee, Haidar; Myers, James R.; Ferreira, Juan J.; Song, Qijian; McClean, Phil; Miklas, Phillip N.

    2017-01-01

    White mold, caused by the fungus Sclerotinia sclerotiorum (Lib.) de Bary, is a major disease that limits common bean production and quality worldwide. The host-pathogen interaction is complex, with partial resistance in the host inherited as a quantitative trait with low to moderate heritability. Our objective was to identify meta-QTL conditioning partial resistance to white mold from individual QTL identified across multiple populations and environments. The physical positions for 37 individual QTL were identified across 14 recombinant inbred bi-parental populations (six new, three re-genotyped, and five from the literature). A meta-QTL analysis of the 37 QTL was conducted using the genetic linkage map of Stampede x Red Hawk population as the reference. The 37 QTL condensed into 17 named loci (12 previously named and five new) of which nine were defined as meta-QTL WM1.1, WM2.2, WM3.1, WM5.4, WM6.2, WM7.1, WM7.4, WM7.5, and WM8.3. The nine meta-QTL had confidence intervals ranging from 0.65 to 9.41 Mb. Candidate genes shown to express under S. sclerotiorum infection in other studies, including cell wall receptor kinase, COI1, ethylene responsive transcription factor, peroxidase, and MYB transcription factor, were found within the confidence interval for five of the meta-QTL. The nine meta-QTL are recommended as potential targets for MAS for partial resistance to white mold in common bean. PMID:28199342

  19. Use of Genome Sequence Information for Meat Quality Trait QTL Mining for Causal Genes and Mutations on Pig Chromosome 17

    PubMed Central

    Hu, Zhi-Liang; Ramos, Antonio M.; Humphray, Sean J.; Rogers, Jane; Reecy, James M.; Rothschild, Max F.

    2011-01-01

    The newly available pig genome sequence has provided new information to fine map quantitative trait loci (QTL) in order to eventually identify causal variants. With targeted genomic sequencing efforts, we were able to obtain high quality BAC sequences that cover a region on pig chromosome 17 where a number of meat quality QTL have been previously discovered. Sequences from 70 BAC clones were assembled to form an 8-Mbp contig. Subsequently, we successfully mapped five previously identified QTL, three for meat color and two for lactate related traits, to the contig. With an additional 25 genetic markers that were identified by sequence comparison, we were able to carry out further linkage disequilibrium analysis to narrow down the genomic locations of these QTL, which allowed identification of the chromosomal regions that likely contain the causative variants. This research has provided one practical approach to combine genetic and molecular information for QTL mining. PMID:22303339

  20. Monogenean anchor morphometry: systematic value, phylogenetic signal, and evolution

    PubMed Central

    Soo, Oi Yoon Michelle; Tan, Wooi Boon; Lim, Lee Hong Susan

    2016-01-01

    Background. Anchors are one of the important attachment appendages for monogenean parasites. Common descent and evolutionary processes have left their mark on anchor morphometry, in the form of patterns of shape and size variation useful for systematic and evolutionary studies. When combined with morphological and molecular data, analysis of anchor morphometry can potentially answer a wide range of biological questions. Materials and Methods. We used data from anchor morphometry, body size and morphology of 13 Ligophorus (Monogenea: Ancyrocephalidae) species infecting two marine mugilid (Teleostei: Mugilidae) fish hosts: Moolgarda buchanani (Bleeker) and Liza subviridis (Valenciennes) from Malaysia. Anchor shape and size data (n = 530) were generated using methods of geometric morphometrics. We used 28S rRNA, 18S rRNA, and ITS1 sequence data to infer a maximum likelihood phylogeny. We discriminated species using principal component and cluster analysis of shape data. Adams’s Kmult was used to detect phylogenetic signal in anchor shape. Phylogeny-correlated size and shape changes were investigated using continuous character mapping and directional statistics, respectively. We assessed morphological constraints in anchor morphometry using phylogenetic regression of anchor shape against body size and anchor size. Anchor morphological integration was studied using partial least squares method. The association between copulatory organ morphology and anchor shape and size in phylomorphospace was used to test the Rohde-Hobbs hypothesis. We created monogeneaGM, a new R package that integrates analyses of monogenean anchor geometric morphometric data with morphological and phylogenetic data. Results. We discriminated 12 of the 13 Ligophorus species using anchor shape data. Significant phylogenetic signal was detected in anchor shape. Thus, we discovered new morphological characters based on anchor shaft shape, the length between the inner root point and the outer root

  1. QTL Analysis of Spike Morphological Traits and Plant Height in Winter Wheat (Triticum aestivum L.) Using a High-Density SNP and SSR-Based Linkage Map

    PubMed Central

    Zhai, Huijie; Feng, Zhiyu; Li, Jiang; Liu, Xinye; Xiao, Shihe; Ni, Zhongfu; Sun, Qixin

    2016-01-01

    Wheat yield can be enhanced by modifying the spike morphology and the plant height. In this study, a population of 191 F9 recombinant inbred lines (RILs) was developed from a cross between two winter cultivars Yumai 8679 and Jing 411. A dense genetic linkage map with 10,816 markers was constructed by incorporating single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) marker information. Five spike morphological traits and plant height were evaluated under nine environments for the RILs and parental lines, and the number of detected environmentally stable QTLs were 18 and three, respectively. The 1RS/1BL (rye) translocation increased both spike length and spikelet number with constant spikelet compactness. The QPht.cau-2D.1 was identical to gene Rht8, which decreased spike length without modifying spikelet number. Notably, four novel QTLs locating on chromosomes 1AS (QSc.cau-1A.1), 2DS (QSc.cau-2D.1), and 7BS (QSl.cau-7B.1 and QSl.cau-7B.2) were firstly identified in this study, which provide further insights into the genetic factors that shaped the spike morphology in wheat. Moreover, SNP markers tightly linked to previously reported QTLs will eventually facilitate future studies including their positional cloning or marker-assisted selection. PMID:27872629

  2. Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population.

    PubMed

    Tang, Jihua; Yan, Jianbing; Ma, Xiqing; Teng, Wentao; Wu, Weiren; Dai, Jingrui; Dhillon, Baldev S; Melchinger, Albrecht E; Li, Jiansheng

    2010-01-01

    The genetic basis of heterosis for grain yield and its components was investigated at the single- and two-locus levels using molecular markers with an immortalized F(2) (IF(2)) population, which was developed by pair crosses among recombinant inbred lines (RILs) derived from the elite maize hybrid Yuyu22. Mid-parent heterosis of each cross in the IF(2) population was used to map heterotic quantitative trait loci. A total of 13 heterotic loci (HL) were detected. These included three HL for grain yield, seven for ear length, one for ear row number and two for 100-kernel weight. A total of 143 digenic interactions contributing to mid-parent heterosis were detected at the two-locus level involving all three types of interactions (additive x additive = AA, additive x dominance = AD or DA, dominance x dominance = DD). There were 25 digenic interactions for grain yield, 36 for ear length, 31 for ear row number and 51 for 100-kernel weight. Altogether, dominance effects of HL at the single-locus level as well as AA interactions played an important role in the genetic basis of heterosis for grain yield and its components in Yuyu22.

  3. QTL analysis of soft scald in two apple populations

    PubMed Central

    McClure, Kendra A; Gardner, Kyle M; Toivonen, Peter MA; Hampson, Cheryl R; Song, Jun; Forney, Charles F; DeLong, John; Rajcan, Istvan; Myles, Sean

    2016-01-01

    The apple (Malus×domestica Borkh.) is one of the world’s most widely grown and valuable fruit crops. With demand for apples year round, storability has emerged as an important consideration for apple breeding programs. Soft scald is a cold storage-related disorder that results in sunken, darkened tissue on the fruit surface. Apple breeders are keen to generate new cultivars that do not suffer from soft scald and can thus be marketed year round. Traditional breeding approaches are protracted and labor intensive, and therefore marker-assisted selection (MAS) is a valuable tool for breeders. To advance MAS for storage disorders in apple, we used genotyping-by-sequencing (GBS) to generate high-density genetic maps in two F1 apple populations, which were then used for quantitative trait locus (QTL) mapping of soft scald. In total, 900 million DNA sequence reads were generated, but after several data filtering steps, only 2% of reads were ultimately used to create two genetic maps that included 1918 and 2818 single-nucleotide polymorphisms. Two QTL associated with soft scald were identified in one of the bi-parental populations originating from parent 11W-12-11, an advanced breeding line. This study demonstrates the utility of next-generation DNA sequencing technologies for QTL mapping in F1 populations, and provides a basis for the advancement of MAS to improve storability of apples. PMID:27651916

  4. Main Effect QTL with Dominance Determines Heterosis for Dynamic Plant Height in Upland Cotton

    PubMed Central

    Shang, Lianguang; Ma, Lingling; Wang, Yumei; Su, Ying; Wang, Xiaocui; Li, Yuhua; Abduweli, Abdugheni; Cai, Shihu; Liu, Fang; Wang, Kunbo; Hua, Jinping

    2016-01-01

    Plant height, which shows dynamic development and heterosis, is a major trait affecting plant architecture and has an indirect influence on economic yield related to biological yield in cotton. In the present study, we carried out dynamic analysis for plant height and its heterosis by quantitative trait loci (QTL) mapping at multiple developmental stages using two recombinant inbred lines (RILs) and their backcross progeny. At the single-locus level, 47 QTL were identified at five developmental stages in two hybrids. In backcross populations, QTL identified at an early stage mainly showed partial effects and QTL detected at a later stage mostly displayed overdominance effects. At the two-locus level, we found that main effect QTL played a more important role than epistatic QTL in the expression of heterosis in backcross populations. Therefore, this study implies that the genetic basis of plant height heterosis shows dynamic character and main effect QTL with dominance determines heterosis for plant height in Upland cotton. PMID:27565885

  5. QTL mapping of genes controlling plasma insulin and leptin concentrations: metabolic effect of obesity QTLs identified in an F2 intercross between C57BL/6J and DDD.Cg-A(y) inbred mice.

    PubMed

    Suto, Jun-ichi

    2013-07-31

    DDD.Cg-A(y) female mice developed massive obesity as compared with B6.Cg-A(y) female mice. We previously identified quantitative trait loci (QTLs) for obesity on chromosomes 1, 6, 9 and 17 in F2 female mice, including F2A(y) (F2 mice with the A(y) allele) and F2 non- A(y) mice (F2 mice without the A(y) allele), produced by crossing C57BL/6J and DDD.Cg-A(y) strains. We here addressed the question whether the obesity QTLs share genetic bases with putative QTLs for plasma glucose, insulin and leptin concentrations. We performed QTL analyses for the first principal component (PC1) extracted from these metabolic measurements to identify the genes that contributed to the comprehensive evaluation of metabolic traits. By single QTL scans, we identified two significant QTLs for insulin concentration on chromosomes 6 and 12, three for leptin concentration on chromosomes 1, 6 and 17, and five for PC1 on chromosomes 1, 6, 12 (two loci) and 17. Although insulin and leptin concentrations and PC1 were not normally distributed in combined F2 mice, results of single QTL scans by parametric and non-parametric methods were very similar. Therefore, QTL scan by the parametric method was performed with the agouti locus genotype as a covariate. A significant QTL × covariate interaction was found for PC1 on chromosome 9. All obesity QTLs had significant metabolic effects. Thus, obesity- and diabetes-related traits in DDD.Cg-A(y) mice were largely controlled by QTLs on chromosomes 1, 6, 9, 12 and 17.

  6. Anchors for Education Reforms

    ERIC Educational Resources Information Center

    Alok, Kumar

    2012-01-01

    Education reforms, considering their significance, deserve better methods than mere "trial and error." This article conceptualizes a network of six anchors for education reforms: education policy, education system, curriculum, pedagogy, assessment, and teacher education. It establishes the futility to reform anchors in isolation and…

  7. Integrating genome annotation and QTL position to identify candidate genes for productivity, architecture and water-use efficiency in Populus spp

    PubMed Central

    2012-01-01

    Background Hybrid poplars species are candidates for biomass production but breeding efforts are needed to combine productivity and water use efficiency in improved cultivars. The understanding of the genetic architecture of growth in poplar by a Quantitative Trait Loci (QTL) approach can help us to elucidate the molecular basis of such integrative traits but identifying candidate genes underlying these QTLs remains difficult. Nevertheless, the increase of genomic information together with the accessibility to a reference genome sequence (Populus trichocarpa Nisqually-1) allow to bridge QTL information on genetic maps and physical location of candidate genes on the genome. The objective of the study is to identify QTLs controlling productivity, architecture and leaf traits in a P. deltoides x P. trichocarpa F1 progeny and to identify candidate genes underlying QTLs based on the anchoring of genetic maps on the genome and the gene ontology information linked to genome annotation. The strategy to explore genome annotation was to use Gene Ontology enrichment tools to test if some functional categories are statistically over-represented in QTL regions. Results Four leaf traits and 7 growth traits were measured on 330 F1 P. deltoides x P. trichocarpa progeny. A total of 77 QTLs controlling 11 traits were identified explaining from 1.8 to 17.2% of the variation of traits. For 58 QTLs, confidence intervals could be projected on the genome. An extended functional annotation was built based on data retrieved from the plant genome database Phytozome and from an inference of function using homology between Populus and the model plant Arabidopsis. Genes located within QTL confidence intervals were retrieved and enrichments in gene ontology (GO) terms were determined using different methods. Significant enrichments were found for all traits. Particularly relevant biological processes GO terms were identified for QTLs controlling number of sylleptic branches: intervals were

  8. Mendelizing all Components of a Pyramid of Three Yield QTL in Tomato

    PubMed Central

    Gur, Amit; Zamir, Dani

    2015-01-01

    Molecular markers allowed breeders to mendelize quantitative trait loci (QTL) providing another demonstration that quantitative traits are governed by the same principles as single qualitative genes. This research extends the QTL analysis to two and three QTL and tests our ability to mendelize an oligogenic trait. In tomato, agricultural yield is determined by the weight of the fruits harvested per unit area and the total soluble solids (% Brix)–sugars and acids. The current study explores the segregation of multiple independent yield-related QTL that were identified and mapped using introgression lines (IL) of Solanum pennellii in cultivated processing tomato (S. lycopersicum). We screened 45 different double and triple IL-QTL combinations for agricultural yield, to identify QTL pyramids that behaved in an additive manner and were suitable substrate for mendelizing an oligogenic trait. A pyramid of three independent QTL that significantly improved Brix∗Yield (BXY - the soluble solids output per unit area) compared to M82 was selected. In the progenies of the tri-hybrid we bred using markers a nearly isogenic ‘immortalized F2.’ While the common mode of QTL–QTL interactions across the 45 IL-QTLs combinations was less than additive, the three QTLs in the selected triple-stack performed in an additive manner which made it an exceptional material for breeding. This study demonstrates that using the phenotypic effect of all 27 possible QTL-alleles combinations it is possible to make reliable predictions about the genotypes that will maximize the yield. PMID:26697048

  9. Approximate analysis of QTL-environment interaction with no limits on the number of environments.

    PubMed Central

    Korol, A B; Ronin, Y I; Nevo, E

    1998-01-01

    An approach is presented here for quantitative trait loci (QTL) mapping analysis that allows for QTL x environment (E) interaction across multiple environments, without necessarily increasing the number of parameters. The main distinction of the proposed model is in the chosen way of approximation of the dependence of putative QTL effects on environmental states. We hypothesize that environmental dependence of a putative QTL effect can be represented as a function of environmental mean value of the trait. Such a description can be applied to take into account the effects of any cosegregating QTLs from other genomic regions that also may vary across environments. The conducted Monte-Carlo simulations and the example of barley multiple environments experiment demonstrate a high potential of the proposed approach for analyzing QTL x E interaction, although the results are only approximated by definition. However, this drawback is compensated by the possibility to utilize information from a potentially unlimited number of environments with a remarkable reduction in the number of parameters, as compared to previously proposed mapping models with QTL x E interactions. PMID:9560414

  10. Linkage relationships among multiple QTL for horticultural traits and late blight (P. infestans) resistance on chromosome 5 introgressed from wild tomato Solanum habrochaites.

    PubMed

    Haggard, J Erron; Johnson, Emily B; St Clair, Dina A

    2013-12-09

    When the allele of a wild species at a quantitative trait locus (QTL) conferring a desirable trait is introduced into cultivated species, undesirable effects on other traits may occur. These negative phenotypic effects may result from the presence of wild alleles at other closely linked loci that are transferred along with the desired QTL allele (i.e., linkage drag) and/or from pleiotropic effects of the desired allele. Previously, a QTL for resistance to Phytophthora infestans on chromosome 5 of Solanum habrochaites was mapped and introgressed into cultivated tomato (S. lycopersicum). Near-isogenic lines (NILs) were generated and used for fine-mapping of this resistance QTL, which revealed coincident or linked QTL with undesirable effects on yield, maturity, fruit size, and plant architecture traits. Subsequent higher-resolution mapping with chromosome 5 sub-NILs revealed the presence of multiple P. infestans resistance QTL within this 12.3 cM region. In our present study, these sub-NILs were also evaluated for 17 horticultural traits, including yield, maturity, fruit size and shape, fruit quality, and plant architecture traits in replicated field experiments over the course of two years. Each previously detected single horticultural trait QTL fractionated into two or more QTL. A total of 41 QTL were detected across all traits, with ∼30% exhibiting significant QTL × environment interactions. Colocation of QTL for multiple traits suggests either pleiotropy or tightly linked genes control these traits. The complex genetic architecture of horticultural and P. infestans resistance trait QTL within this S. habrochaites region of chromosome 5 presents challenges and opportunities for breeding efforts in cultivated tomato.

  11. QTL meta-analysis of root traits in Brassica napus under contrasting phosphorus supply in two growth systems

    PubMed Central

    Zhang, Ying; Thomas, Catherine L.; Xiang, Jinxia; Long, Yan; Wang, Xiaohua; Zou, Jun; Luo, Ziliang; Ding, Guangda; Cai, Hongmei; Graham, Neil S.; Hammond, John P.; King, Graham J.; White, Philip J.; Xu, Fangsen; Broadley, Martin R.; Shi, Lei; Meng, Jinling

    2016-01-01

    A high-density SNP-based genetic linkage map was constructed and integrated with a previous map in the Tapidor x Ningyou7 (TNDH) Brassica napus population, giving a new map with a total of 2041 molecular markers and an average marker density which increased from 0.39 to 0.97 (0.82 SNP bin) per cM. Root and shoot traits were screened under low and ‘normal’ phosphate (Pi) supply using a ‘pouch and wick’ system, and had been screened previously in an agar based system. The P-efficient parent Ningyou7 had a shorter primary root length (PRL), greater lateral root density (LRD) and a greater shoot biomass than the P-inefficient parent Tapidor under both treatments and growth systems. Quantitative trait loci (QTL) analysis identified a total of 131 QTL, and QTL meta-analysis found four integrated QTL across the growth systems. Integration reduced the confidence interval by ~41%. QTL for root and shoot biomass were co-located on chromosome A3 and for lateral root emergence were co-located on chromosomes A4/C4 and C8/C9. There was a major QTL for LRD on chromosome C9 explaining ~18% of the phenotypic variation. QTL underlying an increased LRD may be a useful breeding target for P uptake efficiency in Brassica. PMID:27624881

  12. Mapping Drought QTL in Tall Fescue Populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tall fescue [Lolium arundinacetum (Schreb.) Darbysh.] growth and persistence are adversely affected by the hot-dry summers in the Southern Great Plains (Hopkins, 2005). Both forage yield and drought tolerance are difficult to select for because of large genotype-by-environment interactions. The ob...

  13. QTL meta-analysis provides a comprehensive view of loci controlling partial resistance to Aphanomyces euteiches in four sources of resistance in pea

    PubMed Central

    2013-01-01

    Background Development of durable plant genetic resistance to pathogens through strategies of QTL pyramiding and diversification requires in depth knowledge of polygenic resistance within the available germplasm. Polygenic partial resistance to Aphanomyces root rot, caused by Aphanomyces euteiches, one of the most damaging pathogens of pea worldwide, was previously dissected in individual mapping populations. However, there are no data available regarding the diversity of the resistance QTL across a broader collection of pea germplasm. In this study, we performed a meta-analysis of Aphanomyces root rot resistance QTL in the four main sources of resistance in pea and compared their genomic localization with genes/QTL controlling morphological or phenological traits and with putative candidate genes. Results Meta-analysis, conducted using 244 individual QTL reported previously in three mapping populations (Puget x 90–2079, Baccara x PI180693 and Baccara x 552) and in a fourth mapping population in this study (DSP x 90–2131), resulted in the identification of 27 meta-QTL for resistance to A. euteiches. Confidence intervals of meta-QTL were, on average, reduced four-fold compared to mean confidence intervals of individual QTL. Eleven consistent meta-QTL, which highlight seven highly consistent genomic regions, were identified. Few meta-QTL specificities were observed among mapping populations, suggesting that sources of resistance are not independent. Seven resistance meta-QTL, including six of the highly consistent genomic regions, co-localized with six of the meta-QTL identified in this study for earliness and plant height and with three morphological genes (Af, A, R). Alleles contributing to the resistance were often associated with undesirable alleles for dry pea breeding. Candidate genes underlying six main meta-QTL regions were identified using colinearity between the pea and Medicago truncatula genomes. Conclusions QTL meta-analysis provided an overview of

  14. Prioritization of candidate genes in "QTL-hotspot" region for drought tolerance in chickpea (Cicer arietinum L.).

    PubMed

    Kale, Sandip M; Jaganathan, Deepa; Ruperao, Pradeep; Chen, Charles; Punna, Ramu; Kudapa, Himabindu; Thudi, Mahendar; Roorkiwal, Manish; Katta, Mohan A V S K; Doddamani, Dadakhalandar; Garg, Vanika; Kishor, P B Kavi; Gaur, Pooran M; Nguyen, Henry T; Batley, Jacqueline; Edwards, David; Sutton, Tim; Varshney, Rajeev K

    2015-10-19

    A combination of two approaches, namely QTL analysis and gene enrichment analysis were used to identify candidate genes in the "QTL-hotspot" region for drought tolerance present on the Ca4 pseudomolecule in chickpea. In the first approach, a high-density bin map was developed using 53,223 single nucleotide polymorphisms (SNPs) identified in the recombinant inbred line (RIL) population of ICC 4958 (drought tolerant) and ICC 1882 (drought sensitive) cross. QTL analysis using recombination bins as markers along with the phenotyping data for 17 drought tolerance related traits obtained over 1-5 seasons and 1-5 locations split the "QTL-hotspot" region into two subregions namely "QTL-hotspot_a" (15 genes) and "QTL-hotspot_b" (11 genes). In the second approach, gene enrichment analysis using significant marker trait associations based on SNPs from the Ca4 pseudomolecule with the above mentioned phenotyping data, and the candidate genes from the refined "QTL-hotspot" region showed enrichment for 23 genes. Twelve genes were found common in both approaches. Functional validation using quantitative real-time PCR (qRT-PCR) indicated four promising candidate genes having functional implications on the effect of "QTL-hotspot" for drought tolerance in chickpea.

  15. Prioritization of candidate genes in “QTL-hotspot” region for drought tolerance in chickpea (Cicer arietinum L.)

    PubMed Central

    Kale, Sandip M; Jaganathan, Deepa; Ruperao, Pradeep; Chen, Charles; Punna, Ramu; Kudapa, Himabindu; Thudi, Mahendar; Roorkiwal, Manish; Katta, Mohan AVSK; Doddamani, Dadakhalandar; Garg, Vanika; Kishor, P B Kavi; Gaur, Pooran M; Nguyen, Henry T; Batley, Jacqueline; Edwards, David; Sutton, Tim; Varshney, Rajeev K

    2015-01-01

    A combination of two approaches, namely QTL analysis and gene enrichment analysis were used to identify candidate genes in the “QTL-hotspot” region for drought tolerance present on the Ca4 pseudomolecule in chickpea. In the first approach, a high-density bin map was developed using 53,223 single nucleotide polymorphisms (SNPs) identified in the recombinant inbred line (RIL) population of ICC 4958 (drought tolerant) and ICC 1882 (drought sensitive) cross. QTL analysis using recombination bins as markers along with the phenotyping data for 17 drought tolerance related traits obtained over 1–5 seasons and 1–5 locations split the “QTL-hotspot” region into two subregions namely “QTL-hotspot_a” (15 genes) and “QTL-hotspot_b” (11 genes). In the second approach, gene enrichment analysis using significant marker trait associations based on SNPs from the Ca4 pseudomolecule with the above mentioned phenotyping data, and the candidate genes from the refined “QTL-hotspot” region showed enrichment for 23 genes. Twelve genes were found common in both approaches. Functional validation using quantitative real-time PCR (qRT-PCR) indicated four promising candidate genes having functional implications on the effect of “QTL-hotspot” for drought tolerance in chickpea. PMID:26478518

  16. Linkage disequilibrium with linkage analysis of multiline crosses reveals different multiallelic QTL for hybrid performance in the flint and dent heterotic groups of maize.

    PubMed

    Giraud, Héloïse; Lehermeier, Christina; Bauer, Eva; Falque, Matthieu; Segura, Vincent; Bauland, Cyril; Camisan, Christian; Campo, Laura; Meyer, Nina; Ranc, Nicolas; Schipprack, Wolfgang; Flament, Pascal; Melchinger, Albrecht E; Menz, Monica; Moreno-González, Jesús; Ouzunova, Milena; Charcosset, Alain; Schön, Chris-Carolin; Moreau, Laurence

    2014-12-01

    Multiparental designs combined with dense genotyping of parents have been proposed as a way to increase the diversity and resolution of quantitative trait loci (QTL) mapping studies, using methods combining linkage disequilibrium information with linkage analysis (LDLA). Two new nested association mapping designs adapted to European conditions were derived from the complementary dent and flint heterotic groups of maize (Zea mays L.). Ten biparental dent families (N = 841) and 11 biparental flint families (N = 811) were genotyped with 56,110 single nucleotide polymorphism markers and evaluated as test crosses with the central line of the reciprocal design for biomass yield, plant height, and precocity. Alleles at candidate QTL were defined as (i) parental alleles, (ii) haplotypic identity by descent, and (iii) single-marker groupings. Between five and 16 QTL were detected depending on the model, trait, and genetic group considered. In the flint design, a major QTL (R(2) = 27%) with pleiotropic effects was detected on chromosome 10, whereas other QTL displayed milder effects (R(2) < 10%). On average, the LDLA models detected more QTL but generally explained lower percentages of variance, consistent with the fact that most QTL display complex allelic series. Only 15% of the QTL were common to the two designs. A joint analysis of the two designs detected between 15 and 21 QTL for the five traits. Of these, between 27 for silking date and 41% for tasseling date were significant in both groups. Favorable allelic effects detected in both groups open perspectives for improving biomass production.

  17. Anchor Trial Launch

    Cancer.gov

    NCI has launched a multicenter phase III clinical trial called the ANCHOR Study -- Anal Cancer HSIL (High-grade Squamous Intraepithelial Lesion) Outcomes Research Study -- to determine if treatment of HSIL in HIV-infected individuals can prevent anal canc

  18. Genetic Architecture of Ear Fasciation in Maize (Zea mays) under QTL Scrutiny

    PubMed Central

    Mendes-Moreira, Pedro; Alves, Mara L.; Satovic, Zlatko; dos Santos, João Pacheco; Santos, João Nina; Souza, João Cândido; Pêgo, Silas E.; Hallauer, Arnel R.; Vaz Patto, Maria Carlota

    2015-01-01

    Maize ear fasciation Knowledge of the genes affecting maize ear inflorescence may lead to better grain yield modeling. Maize ear fasciation, defined as abnormal flattened ears with high kernel row number, is a quantitative trait widely present in Portuguese maize landraces. Material and Methods Using a segregating population derived from an ear fasciation contrasting cross (consisting of 149 F2:3 families) we established a two location field trial using a complete randomized block design. Correlations and heritabilities for several ear fasciation-related traits and yield were determined. Quantitative Trait Loci (QTL) involved in the inheritance of those traits were identified and candidate genes for these QTL proposed. Results and Discussion Ear fasciation broad-sense heritability was 0.73. Highly significant correlations were found between ear fasciation and some ear and cob diameters and row number traits. For the 23 yield and ear fasciation-related traits, 65 QTL were identified, out of which 11 were detected in both environments, while for the three principal components, five to six QTL were detected per environment. Detected QTL were distributed across 17 genomic regions and explained individually, 8.7% to 22.4% of the individual traits or principal components phenotypic variance. Several candidate genes for these QTL regions were proposed, such as bearded-ear1, branched silkless1, compact plant1, ramosa2, ramosa3, tasselseed4 and terminal ear1. However, many QTL mapped to regions without known candidate genes, indicating potential chromosomal regions not yet targeted for maize ear traits selection. Conclusions Portuguese maize germplasm represents a valuable source of genes or allelic variants for yield improvement and elucidation of the genetic basis of ear fasciation traits. Future studies should focus on fine mapping of the identified genomic regions with the aim of map-based cloning. PMID:25923975

  19. Mapping quantitative trait Loci using generalized estimating equations.

    PubMed Central

    Lange, C; Whittaker, J C

    2001-01-01

    A number of statistical methods are now available to map quantitative trait loci (QTL) relative to markers. However, no existing methodology can simultaneously map QTL for multiple nonnormal traits. In this article we rectify this deficiency by developing a QTL-mapping approach based on generalized estimating equations (GEE). Simulation experiments are used to illustrate the application of the GEE-based approach. PMID:11729173

  20. Genetic Dissection of a Genomic Region with Pleiotropic Effects on Domestication Traits in Maize Reveals Multiple Linked QTL

    PubMed Central

    Lemmon, Zachary H.; Doebley, John F.

    2014-01-01

    The domesticated crop maize and its wild progenitor, teosinte, have been used in numerous experiments to investigate the nature of divergent morphologies. This study examines a poorly understood region on the fifth chromosome of maize associated with a number of traits under selection during domestication, using a quantitative trait locus (QTL) mapping population specific to the fifth chromosome. In contrast with other major domestication loci in maize where large-effect, highly pleiotropic, single genes are responsible for phenotypic effects, our study found the region on chromosome five fractionates into multiple-QTL regions, none with singularly large effects. The smallest 1.5-LOD support interval for a QTL contained 54 genes, one of which was a MADS MIKCC transcription factor, a family of proteins implicated in many developmental programs. We also used simulated trait data sets to investigate the power of our mapping population to identify QTL for which there is a single underlying causal gene. This analysis showed that while QTL for traits controlled by single genes can be accurately mapped, our population design can detect no more than ∼4.5 QTL per trait even when there are 100 causal genes. Thus when a trait is controlled by ≥5 genes in the simulated data, the number of detected QTL can represent a simplification of the underlying causative factors. Our results show how a QTL region with effects on several domestication traits may be due to multiple linked QTL of small effect as opposed to a single gene with large and pleiotropic effects. PMID:24950893

  1. Genetic Analysis and QTL Detection on Fiber Traits Using Two Recombinant Inbred Lines and Their Backcross Populations in Upland Cotton

    PubMed Central

    Shang, Lianguang; Wang, Yumei; Wang, Xiaocui; Liu, Fang; Abduweli, Abdugheni; Cai, Shihu; Li, Yuhua; Ma, Lingling; Wang, Kunbo; Hua, Jinping

    2016-01-01

    Cotton fiber, a raw natural fiber material, is widely used in the textile industry. Understanding the genetic mechanism of fiber traits is helpful for fiber quality improvement. In the present study, the genetic basis of fiber quality traits was explored using two recombinant inbred lines (RILs) and corresponding backcross (BC) populations under multiple environments in Upland cotton based on marker analysis. In backcross populations, no significant correlation was observed between marker heterozygosity and fiber quality performance and it suggested that heterozygosity was not always necessarily advantageous for the high fiber quality. In two hybrids, 111 quantitative trait loci (QTL) for fiber quality were detected using composite interval mapping, in which 62 new stable QTL were simultaneously identified in more than one environment or population. QTL detected at the single-locus level mainly showed additive effect. In addition, a total of 286 digenic interactions (E-QTL) and their environmental interactions [QTL × environment interactions (QEs)] were detected for fiber quality traits by inclusive composite interval mapping. QE effects should be considered in molecular marker-assisted selection breeding. On average, the E-QTL explained a larger proportion of the phenotypic variation than the main-effect QTL did. It is concluded that the additive effect of single-locus and epistasis with few detectable main effects play an important role in controlling fiber quality traits in Upland cotton. PMID:27342735

  2. eQTL Regulating Transcript Levels Associated with Diverse Biological Processes in Tomato1[OPEN

    PubMed Central

    Budke, Jessica M.; Rowland, Steven D.; Kumar, Ravi; Ichihashi, Yasunori

    2016-01-01

    Variation in gene expression, in addition to sequence polymorphisms, is known to influence developmental, physiological, and metabolic traits in plants. Genetic mapping populations have facilitated identification of expression quantitative trait loci (eQTL), the genetic determinants of variation in gene expression patterns. We used an introgression population developed from the wild desert-adapted Solanum pennellii and domesticated tomato (Solanum lycopersicum) to identify the genetic basis of transcript level variation. We established the effect of each introgression on the transcriptome and identified approximately 7,200 eQTL regulating the steady-state transcript levels of 5,300 genes. Barnes-Hut t-distributed stochastic neighbor embedding clustering identified 42 modules revealing novel associations between transcript level patterns and biological processes. The results showed a complex genetic architecture of global transcript abundance pattern in tomato. Several genetic hot spots regulating a large number of transcript level patterns relating to diverse biological processes such as plant defense and photosynthesis were identified. Important eQTL regulating transcript level patterns were related to leaf number and complexity as well as hypocotyl length. Genes associated with leaf development showed an inverse correlation with photosynthetic gene expression, but eQTL regulating genes associated with leaf development and photosynthesis were dispersed across the genome. This comprehensive eQTL analysis details the influence of these loci on plant phenotypes and will be a valuable community resource for investigations on the genetic effects of eQTL on phenotypic traits in tomato. PMID:27418589

  3. Target Enrichment Improves Mapping of Complex Traits by Deep Sequencing.

    PubMed

    Guo, Jianjun; Fan, Jue; Hauser, Bernard A; Rhee, Seung Y

    2015-11-03

    Complex traits such as crop performance and human diseases are controlled by multiple genetic loci, many of which have small effects and often go undetected by traditional quantitative trait locus (QTL) mapping. Recently, bulked segregant analysis with large F2 pools and genome-level markers (named extreme-QTL or X-QTL mapping) has been used to identify many QTL. To estimate parameters impacting QTL detection for X-QTL mapping, we simulated the effects of population size, marker density, and sequencing depth of markers on QTL detectability for traits with differing heritabilities. These simulations indicate that a high (>90%) chance of detecting QTL with at least 5% effect requires 5000× sequencing depth for a trait with heritability of 0.4-0.7. For most eukaryotic organisms, whole-genome sequencing at this depth is not economically feasible. Therefore, we tested and confirmed the feasibility of applying deep sequencing of target-enriched markers for X-QTL mapping. We used two traits in Arabidopsis thaliana with different heritabilities: seed size (H(2) = 0.61) and seedling greening in response to salt (H(2) = 0.94). We used a modified G test to identify QTL regions and developed a model-based statistical framework to resolve individual peaks by incorporating recombination rates. Multiple QTL were identified for both traits, including previously undiscovered QTL. We call our method target-enriched X-QTL (TEX-QTL) mapping; this mapping approach is not limited by the genome size or the availability of recombinant inbred populations and should be applicable to many organisms and traits.

  4. Mapping-Linked Quantitative Trait Loci Using Bayesian Analysis and Markov Chain Monte Carlo Algorithms

    PubMed Central

    Uimari, P.; Hoeschele, I.

    1997-01-01

    A Bayesian method for mapping linked quantitative trait loci (QTL) using multiple linked genetic markers is presented. Parameter estimation and hypothesis testing was implemented via Markov chain Monte Carlo (MCMC) algorithms. Parameters included were allele frequencies and substitution effects for two biallelic QTL, map positions of the QTL and markers, allele frequencies of the markers, and polygenic and residual variances. Missing data were polygenic effects and multi-locus marker-QTL genotypes. Three different MCMC schemes for testing the presence of a single or two linked QTL on the chromosome were compared. The first approach includes a model indicator variable representing two unlinked QTL affecting the trait, one linked and one unlinked QTL, or both QTL linked with the markers. The second approach incorporates an indicator variable for each QTL into the model for phenotype, allowing or not allowing for a substitution effect of a QTL on phenotype, and the third approach is based on model determination by reversible jump MCMC. Methods were evaluated empirically by analyzing simulated granddaughter designs. All methods identified correctly a second, linked QTL and did not reject the one-QTL model when there was only a single QTL and no additional or an unlinked QTL. PMID:9178021

  5. High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers

    PubMed Central

    Wu, Jun; Li, Lei-Ting; Li, Meng; Khan, M. Awais; Li, Xiu-Gen; Chen, Hui; Yin, Hao; Zhang, Shao-Ling

    2014-01-01

    Pear (Pyrus spp) is an important fruit crop, grown in all temperate regions of the world, with global production ranked after grape and apples among deciduous tree crops. A high-density linkage map is a valuable tool for fine mapping quantitative trait loci (QTL) and map-based gene cloning. In this study, we firstly constructed a high-density linkage map of pear using SNPs integrated with SSRs, developed by the rapid and robust technology of restriction-associated DNA sequencing (RADseq). The linkage map consists of 3143 SNP markers and 98 SSRs, 3241 markers in total, spanning 2243.4 cM, with an average marker distance of 0.70 cM. Anchoring SSRs were able to anchor seventeen linkage groups to their corresponding chromosomes. Based on this high-density integrated pear linkage map and two years of fruit phenotyping, a total of 32 potential QTLs for 11 traits, including length of pedicel (LFP), single fruit weight (SFW), soluble solid content (SSC), transverse diameter (TD), vertical diameter (VD), calyx status (CS), flesh colour (FC), juice content (JC), number of seeds (NS), skin colour (SC), and skin smooth (SS), were identified and positioned on the genetic map. Among them, some important fruit-related traits have for the first time been identified, such as calyx status, length of pedicel, and flesh colour, and reliable localization of QTLs were verified repeatable. This high-density linkage map of pear is a worthy reference for mapping important fruit traits, QTL identification, and comparison and combination of different genetic maps. PMID:25129128

  6. Integrative Structure–Function Mapping of the Nucleoporin Nup133 Suggests a Conserved Mechanism for Membrane Anchoring of the Nuclear Pore Complex*

    PubMed Central

    Kim, Seung Joong; Fernandez-Martinez, Javier; Sampathkumar, Parthasarathy; Martel, Anne; Matsui, Tsutomu; Tsuruta, Hiro; Weiss, Thomas M.; Shi, Yi; Markina-Inarrairaegui, Ane; Bonanno, Jeffery B.; Sauder, J. Michael; Burley, Stephen K.; Chait, Brian T.; Almo, Steven C.; Rout, Michael P.; Sali, Andrej

    2014-01-01

    The nuclear pore complex (NPC) is the sole passageway for the transport of macromolecules across the nuclear envelope. Nup133, a major component in the essential Y-shaped Nup84 complex, is a large scaffold protein of the NPC's outer ring structure. Here, we describe an integrative modeling approach that produces atomic models for multiple states of Saccharomyces cerevisiae (Sc) Nup133, based on the crystal structures of the sequence segments and their homologs, including the related Vanderwaltozyma polyspora (Vp) Nup133 residues 55 to 502 (VpNup13355–502) determined in this study, small angle X-ray scattering profiles for 18 constructs of ScNup133 and one construct of VpNup133, and 23 negative-stain electron microscopy class averages of ScNup1332–1157. Using our integrative approach, we then computed a multi-state structural model of the full-length ScNup133 and validated it with mutational studies and 45 chemical cross-links determined via mass spectrometry. Finally, the model of ScNup133 allowed us to annotate a potential ArfGAP1 lipid packing sensor (ALPS) motif in Sc and VpNup133 and discuss its potential significance in the context of the whole NPC; we suggest that ALPS motifs are scattered throughout the NPC's scaffold in all eukaryotes and play a major role in the assembly and membrane anchoring of the NPC in the nuclear envelope. Our results are consistent with a common evolutionary origin of Nup133 with membrane coating complexes (the protocoatomer hypothesis); the presence of the ALPS motifs in coatomer-like nucleoporins suggests an ancestral mechanism for membrane recognition present in early membrane coating complexes. PMID:25139911

  7. Integrative structure-function mapping of the nucleoporin Nup133 suggests a conserved mechanism for membrane anchoring of the nuclear pore complex.

    PubMed

    Kim, Seung Joong; Fernandez-Martinez, Javier; Sampathkumar, Parthasarathy; Martel, Anne; Matsui, Tsutomu; Tsuruta, Hiro; Weiss, Thomas M; Shi, Yi; Markina-Inarrairaegui, Ane; Bonanno, Jeffery B; Sauder, J Michael; Burley, Stephen K; Chait, Brian T; Almo, Steven C; Rout, Michael P; Sali, Andrej

    2014-11-01

    The nuclear pore complex (NPC) is the sole passageway for the transport of macromolecules across the nuclear envelope. Nup133, a major component in the essential Y-shaped Nup84 complex, is a large scaffold protein of the NPC's outer ring structure. Here, we describe an integrative modeling approach that produces atomic models for multiple states of Saccharomyces cerevisiae (Sc) Nup133, based on the crystal structures of the sequence segments and their homologs, including the related Vanderwaltozyma polyspora (Vp) Nup133 residues 55 to 502 (VpNup133(55-502)) determined in this study, small angle X-ray scattering profiles for 18 constructs of ScNup133 and one construct of VpNup133, and 23 negative-stain electron microscopy class averages of ScNup133(2-1157). Using our integrative approach, we then computed a multi-state structural model of the full-length ScNup133 and validated it with mutational studies and 45 chemical cross-links determined via mass spectrometry. Finally, the model of ScNup133 allowed us to annotate a potential ArfGAP1 lipid packing sensor (ALPS) motif in Sc and VpNup133 and discuss its potential significance in the context of the whole NPC; we suggest that ALPS motifs are scattered throughout the NPC's scaffold in all eukaryotes and play a major role in the assembly and membrane anchoring of the NPC in the nuclear envelope. Our results are consistent with a common evolutionary origin of Nup133 with membrane coating complexes (the protocoatomer hypothesis); the presence of the ALPS motifs in coatomer-like nucleoporins suggests an ancestral mechanism for membrane recognition present in early membrane coating complexes.

  8. Identification of QTL for locomotor activation and anxiety using closely-related inbred strains

    PubMed Central

    Bailey, Janice S.; Grabowski-Boase, Laura; Steffy, Brian M.; Wiltshire, Tim; Churchill, Gary A.; Tarantino, Lisa M.

    2008-01-01

    We carried out a QTL mapping experiment in two phenotypically similar inbred mouse strains, C57BL/6J and C58/J, using the open field assay, a well-established model of anxiety-related behavior in rodents. This intercross was initially carried out as a control cross for an ENU-mutagenesis mapping study. Surprisingly, although open field behavior is similar in the two strains, we identified significant QTL in their F2 progeny. Marker regression identified a locus on chromosome 8 having associations with multiple open field measures and a significant interaction between loci on chromosomes 13 and 17. Together, the chromosome 8 locus and the interaction effect form the core set of QTL controlling these behaviors with additional loci on chromosomes 1 and 6 present in a subset of the behaviors. PMID:19130624

  9. Detection and Validation of QTL Affecting Bacterial Cold Water Disease Resistance in Rainbow Trout Using Restriction-Site Associated DNA Sequencing

    PubMed Central

    Gao, Guangtu; Liu, Sixin; Hernandez, Alvaro G.; Rexroad, Caird E.

    2015-01-01

    Bacterial cold water disease (BCWD) causes significant economic loss in salmonid aquaculture. Using microsatellite markers in a genome scan, we previously detected significant and suggestive QTL affecting phenotypic variation in survival following challenge with Flavobacterium psychrophilum, the causative agent of BCWD in rainbow trout. In this study, we performed selective genotyping of SNPs from restriction-site associated DNA (RAD) sequence data from two pedigreed families (2009070 and 2009196) to validate the major QTL from the previous work and to detect new QTL. The use of RAD SNPs in the genome scans increased the number of mapped markers from ~300 to ~5,000 per family. The significant QTL detected in the microsatellites scan on chromosome Omy8 in family 2009070 was validated explaining up to 58% of the phenotypic variance in that family, and in addition, a second QTL was also detected on Omy8. Two novel QTL on Omy11 and 14 were also detected, and the previously suggestive QTL on Omy1, 7 and 25 were also validated in family 2009070. In family 2009196, the microsatellite significant QTL on Omy6 and 12 were validated and a new QTL on Omy8 was detected, but none of the previously detected suggestive QTL were validated. The two Omy8 QTL from family 2009070 and the Omy12 QTL from family 2009196 were found to be co-localized with handling and confinement stress response QTL that our group has previously identified in a separate pedigreed family. With the currently available data we cannot determine if the co-localized QTL are the result of genes with pleiotropic effects or a mere physical proximity on the same chromosome segment. The genetic markers linked to BCWD resistance QTL were used to query the scaffolds of the rainbow trout reference genome assembly and the QTL-positive scaffold sequences were found to include 100 positional candidate genes. Several of the candidate genes located on or near the two Omy8 QTL detected in family 2009070 suggest potential

  10. QTL Analysis of Intraspecific Differences between Two Silene vulgaris Ecotypes

    PubMed Central

    BRATTELER, MARTIN; BALTISBERGER, MATTHIAS; WIDMER, ALEX

    2006-01-01

    • Background and Aims Serpentine soils provide a highly selective substrate for plant colonization and growth and represent an ideal system for studying the evolution of plant-ecotypes. In the present study the aim was to identify the genetic architecture of morphological traits distinguishing serpentine and non-serpentine ecotypes of Silene vulgaris. • Methods Using an F2 mapping population derived from an intraspecific cross between a serpentine and a non-serpentine ecotype of S. vulgaris, the genetic architecture of 12 morphological traits was explored using a quantitative trait locus (QTL) analysis. • Key Results The QTL analysis identified a total of 49 QTLs, of which 24 were classified as major QTLs. The mean number of QTLs per trait category was found to correspond well with numbers reported in the literature for similar crosses. Clustering of QTLs for different traits was found on several linkage groups. • Conclusions Morphological traits that differentiate the two ecotypes are strongly correlated, presumably as a consequence of the joint effects of extensive linkage of QTLs for different traits and directional selection. The signature of consistent directional selection was found for leaf and shoot trait divergence. Intraspecific ecotype differences in S. vulgaris were found to be distributed across the entire genome. The study shows that QTL analyses on non-model organisms can provide novel insights into the genetic basis of plant diversification. PMID:16757498

  11. An example of association mapping in Cacao.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Association mapping and genomic selection have become important methodologies in perennial crop breeding improvement programs for accelerating breeding efforts and increasing the efficiency of selection. They are good alternatives to the classical Quantitative Trait Loci (QTL) mapping approach.The ...

  12. A Sequence-Anchored Linkage Map of the Plant–Parasitic Nematode Meloidogyne hapla Reveals Exceptionally High Genome-Wide Recombination

    PubMed Central

    Thomas, Varghese P.; Fudali, Sylwia L.; Schaff, Jennifer E.; Liu, Qingli; Scholl, Elizabeth H.; Opperman, Charles H.; Bird, David McK; Williamson, Valerie M.

    2012-01-01

    Root-knot nematodes (Meloidogyne spp.) cause major yield losses to many of the world’s crops, but efforts to understand how these pests recognize and interact with their hosts have been hampered by a lack of genetic resources. Starting with progeny of a cross between inbred strains (VW8 and VW9) of Meloidogyne hapla that differed in host range and behavioral traits, we exploited the novel, facultative meiotic parthenogenic reproductive mode of this species to produce a genetic linkage map. Molecular markers were derived from SNPs identified between the sequenced and annotated VW9 genome and de novo sequence of VW8. Genotypes were assessed in 183 F2 lines. The colinearity of the genetic and physical maps supported the veracity of both. Analysis of local crossover intervals revealed that the average recombination rate is exceptionally high compared with that in other metazoans. In addition, F2 lines are largely homozygous for markers flanking crossover points, and thus resemble recombinant inbred lines. We suggest that the unusually high recombination rate may be an adaptation to generate within-population genetic diversity in this organism. This work presents the most comprehensive linkage map of a parasitic nematode to date and, together with genomic and transcript sequence resources, empowers M. hapla as a tractable model. Alongside the molecular map, these progeny lines can be used for analyses of genome organization and the inheritance of phenotypic traits that have key functions in modulating parasitism, behavior, and survival and for the eventual identification of the responsible genes. PMID:22870404

  13. Genetic, Physiological, and Gene Expression Analyses Reveal That Multiple QTL Enhance Yield of Rice Mega-Variety IR64 under Drought

    PubMed Central

    Swamy B. P., Mallikarjuna; Ahmed, Helal Uddin; Henry, Amelia; Mauleon, Ramil; Dixit, Shalabh; Vikram, Prashant; Tilatto, Ram; Verulkar, Satish B.; Perraju, Puvvada; Mandal, Nimai P.; Variar, Mukund; S., Robin; Chandrababu, Ranganath; Singh, Onkar N.; Dwivedi, Jawaharlal L.; Das, Sankar Prasad; Mishra, Krishna K.; Yadaw, Ram B.; Aditya, Tamal Lata; Karmakar, Biswajit; Satoh, Kouji; Moumeni, Ali; Kikuchi, Shoshi; Leung, Hei; Kumar, Arvind

    2013-01-01

    Background Rice (Oryza sativa L.) is a highly drought sensitive crop, and most semi dwarf rice varieties suffer severe yield losses from reproductive stage drought stress. The genetic complexity of drought tolerance has deterred the identification of agronomically relevant quantitative trait loci (QTL) that can be deployed to improve rice yield under drought in rice. Convergent evidence from physiological characterization, genetic mapping, and multi-location field evaluation was used to address this challenge. Methodology/Principal Findings Two pairs of backcross inbred lines (BILs) from a cross between drought-tolerant donor Aday Sel and high-yielding but drought-susceptible rice variety IR64 were produced. From six BC4F3 mapping populations produced by crossing the +QTL BILs with the −QTL BILs and IR64, four major-effect QTL - one each on chromosomes 2, 4, 9, and 10 - were identified. Meta-analysis of transcriptome data from the +QTL/−QTL BILs identified differentially expressed genes (DEGs) significantly associated with QTL on chromosomes 2, 4, 9, and 10. Physiological characterization of BILs showed increased water uptake ability under drought. The enrichment of DEGs associated with root traits points to differential regulation of root development and function as contributing to drought tolerance in these BILs. BC4F3-derived lines with the QTL conferred yield advantages of 528 to 1875 kg ha−1 over IR64 under reproductive-stage drought stress in the targeted ecosystems of South Asia. Conclusions/Significance Given the importance of rice in daily food consumption and the popularity of IR64, the BC4F3 lines with multiple QTL could provide higher livelihood security to farmers in drought-prone environments. Candidate genes were shortlisted for further characterization to confirm their role in drought tolerance. Differential yield advantages of different combinations of the four QTL reported here indicate that future research should include optimizing QTL

  14. Breeding lines and host QTL interaction with bacterial strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance to common bacterial blight (CBB) is controlled by more than 20 QTL (Miklas and Singh, 2007). A QTL on Pv10 linked to SAP6 SCAR markers is derived from common bean. Higher levels of resistance associated with BC420 QTL on Pv06 (Yu et al., 2000) and SU91-CG11 QTL on Pv08 (Pedraza et al., 20...

  15. QTL and drought effects on leaf physiology in lowland Panicum virgatum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass is a key component of plans to develop sustainable cellulosic ethanol production for bioenergy in the U.S. We sought quantitative trait loci (QTL) for leaf structure and function, and tested for genotype × environment interactions in response to drought using the Albany full-sib mapping...

  16. Unravelling enzymatic discoloration in potato through a combined approach of candidate genes, QTL, and expression analysis

    PubMed Central

    Kloosterman, Bjorn; Celis-Gamboa, Carolina; de Vos, C. H. Ric; America, Twan; Visser, Richard G. F.; Bachem, Christian W. B.

    2007-01-01

    Enzymatic discoloration (ED) of potato tubers was investigated in an attempt to unravel the underlying genetic factors. Both enzyme and substrate concentration have been reported to influence the degree of discoloration and as such this trait can be regarded as polygenic. The diploid mapping population C × E, consisting of 249 individuals, was assayed for the degree of ED and levels of chlorogenic acid and tyrosine. Using this data, Quantitative Trait Locus (QTL) analysis was performed. Three QTLs for ED have been found on parental chromosomes C3, C8, E1, and E8. For chlorogenic acid a QTL has been identified on C2 and for tyrosine levels, a QTL has been detected on C8. None of the QTLs overlap, indicating the absence of genetic correlations between these components underlying ED, in contrast to earlier reports in literature. An obvious candidate gene for the QTL for ED on Chromosome 8 is polyphenol oxidase (PPO), which was previously mapped on chromosome 8. With gene-specific primers for PPO gene POT32 a CAPS marker was developed. Three different alleles (POT32-1, -2, and -3) could be discriminated. The segregating POT32 alleles were used to map the POT32 CAPS marker and QTL analysis was redone, showing that POT32 coincides with the QTL peak. A clear correlation between allele combinations and degree of discoloration was observed. In addition, analysis of POT32 gene expression in a subset of genotypes indicated a correlation between the level of gene expression and allele composition. On average, genotypes having two copies of allele 1 had both the highest degree of discoloration as well as the highest level of POT32 gene expression. PMID:17492422

  17. Identification of causal relationships among traits related to drought resistance in Stylosanthes scabra using QTL analysis.

    PubMed

    Thumma, B R; Naidu, B P; Chandra, A; Cameron, D F; Bahnisch, L M; Liu, C

    2001-02-01

    Previous studies have shown that a negative relationship exists between transpiration efficiency (TE) and carbon isotope discrimination (Delta) and between TE and specific leaf area (SLA) in Stylosanthes scabra. A glasshouse experiment was conducted to confirm these relationships in an F(2) population and to study the causal nature of these relationships through quantitative trait loci (QTL) analysis. One hundred and twenty F(2) genotypes from a cross between two genotypes within S. scabra were used. Three replications for each genotype were maintained through vegetative propagation. Water stress was imposed by maintaining plants at 40% of field capacity for about 45 d. To facilitate QTL analysis, a genetic linkage map consisting of 151 RAPD markers was developed. Results from this study show that Delta was significantly and negatively correlated with TE and biomass production. Similarly, SLA showed significant negative correlation with TE and biomass production. Most of the QTL for TE and Delta were present on linkage groups 5 and 11. Similarly, QTL for SLA, transpiration and biomass productivity traits were clustered on linkage groups 13 and 24. One unlinked marker was also associated with these traits. There were several markers coincident between different traits. At all the coincident QTL, the direction of QTL effects was consistent with phenotypic data. At the coincident markers between TE and Delta, high alleles of TE were associated with low alleles of Delta. Similarly, low alleles of SLA were associated with high alleles of biomass productivity traits and transpiration. At the coincident markers between trans-4-hydroxy-N:-methyl proline (MHP) and relative water content (RWC), low alleles of MHP were associated with high alleles of RWC. This study suggests the causal nature of the relationship between TE and Delta. Phenotypic data and QTL data show that SLA was more closely associated with biomass production than with TE. This study also shows that a cause

  18. QTL analysis of percentage of grains with chalkiness in Japonica rice (Oryza sativa).

    PubMed

    Liu, X; Wang, Y; Wang, S W

    2012-03-22

    Appearance quality of rice grains is a major problem for rice production in many areas of the world. We conducted a molecular marker-based genetic analysis of percentage of grains with chalkiness (PGWC), which is a determining factor for appearance quality; it strongly affects milling, eating and cooking quality. An F(8) recombinant inbred line population, which consists of 261 lines derived from a cross between Koshihikari (Japonica) and C602 (Japonica), was used for QTL mapping. Three QTLs related to PGWC were detected on chromosomes 5, 8 and 10, together explaining 50.8% of the genetic variation. The 'Koshihikari' alleles qJPGC-5, qJPGC-8 and the 'C602' alleles at qJPGC-10 were associated with reduced PGWC. The QTL contributions to phenotypic variance were 18.2, 9.6 and 25%, respectively. These QTL markers for PGWC could be used for developing improved varieties.

  19. New Insights on Eggplant/Tomato/Pepper Synteny and Identification of Eggplant and Pepper Orthologous QTL

    PubMed Central

    Rinaldi, Riccardo; Van Deynze, Allen; Portis, Ezio; Rotino, Giuseppe L.; Toppino, Laura; Hill, Theresa; Ashrafi, Hamid; Barchi, Lorenzo; Lanteri, Sergio

    2016-01-01

    Eggplant, pepper, and tomato are the most exploited berry-producing vegetables within the Solanaceae family. Their genomes differ in size, but each has 12 chromosomes which have undergone rearrangements causing a redistribution of loci. The genome sequences of all three species are available but differ in coverage, assembly quality and percentage of anchorage. Determining their syntenic relationship and QTL orthology will contribute to exploit genomic resources and genetic data for key agronomic traits. The syntenic analysis between tomato and pepper based on the alignment of 34,727 tomato CDS to the pepper genome sequence, identified 19,734 unique hits. The resulting synteny map confirmed the 14 inversions and 10 translocations previously documented, but also highlighted 3 new translocations and 4 major new inversions. Furthermore, each of the 12 chromosomes exhibited a number of rearrangements involving small regions of 0.5–0.7 Mbp. Due to high fragmentation of the publicly available eggplant genome sequence, physical localization of most eggplant QTL was not possible, thus, we compared the organization of the eggplant genetic map with the genome sequence of both tomato and pepper. The eggplant/tomato syntenic map confirmed all the 10 translocations but only 9 of the 14 known inversions; on the other hand, a newly detected inversion was recognized while another one was not confirmed. The eggplant/pepper syntenic map confirmed 10 translocations and 8 inversions already detected and suggested a putative new translocation. In order to perform the assessment of eggplant and pepper QTL orthology, the eggplant and pepper sequence-based markers located in their respective genetic map were aligned onto the pepper genome. GBrowse in pepper was used as reference platform for QTL positioning. A set of 151 pepper QTL were located as well as 212 eggplant QTL, including 76 major QTL (PVE ≥ 10%) affecting key agronomic traits. Most were confirmed to cluster in orthologous

  20. Combined expression patterns of QTL-linked candidate genes best predict thermotolerance in Drosophila melanogaster.

    PubMed

    Norry, Fabian M; Larsen, Peter F; Liu, Yongjie; Loeschcke, Volker

    2009-11-01

    Knockdown resistance to high temperature (KRHT) is a thermal adaptation trait in Drosophila melanogaster. Here we used quantitative real-time PCR (qRT-PCR) to test for possible associations between KRHT and the expression of candidate genes within quantitative trait loci (QTL) in eight recombinant inbred lines (RIL). hsp60 and hsc70-3 map within an X-linked QTL, while CG10383, catsup, ddc, trap1, and cyp6a13 are linked in a KRHT-QTL on chromosome 2. hsc70-3 expression increased by heat-hardening. Principal Components analysis revealed that catsup, ddc and trap1 were either co-expressed or combined in their expression levels. This composite expression variable (e-PC1) was positively associated to KRHT in non-hardened RIL. In heat-hardened flies, hsp60 was negatively related to hsc70-3 on e-PC2, with effects on KRHT. These results are consistent with the notion that QTL can be shaped by expression variation in combined candidate loci. We found composite variables of gene expression (e-PCs) that best correlated to KRHT. Network effects with other untested linked loci are apparent because, in spite of their associations with KRHT phenotypes, e-PCs were sometimes uncorrelated with their QTL genotype.

  1. WormQTL--public archive and analysis web portal for natural variation data in Caenorhabditis spp.

    PubMed

    Snoek, L Basten; Van der Velde, K Joeri; Arends, Danny; Li, Yang; Beyer, Antje; Elvin, Mark; Fisher, Jasmin; Hajnal, Alex; Hengartner, Michael O; Poulin, Gino B; Rodriguez, Miriam; Schmid, Tobias; Schrimpf, Sabine; Xue, Feng; Jansen, Ritsert C; Kammenga, Jan E; Swertz, Morris A

    2013-01-01

    Here, we present WormQTL (http://www.wormqtl.org), an easily accessible database enabling search, comparative analysis and meta-analysis of all data on variation in Caenorhabditis spp. Over the past decade, Caenorhabditis elegans has become instrumental for molecular quantitative genetics and the systems biology of natural variation. These efforts have resulted in a valuable amount of phenotypic, high-throughput molecular and genotypic data across different developmental worm stages and environments in hundreds of C. elegans strains. WormQTL provides a workbench of analysis tools for genotype-phenotype linkage and association mapping based on but not limited to R/qtl (http://www.rqtl.org). All data can be uploaded and downloaded using simple delimited text or Excel formats and are accessible via a public web user interface for biologists and R statistic and web service interfaces for bioinformaticians, based on open source MOLGENIS and xQTL workbench software. WormQTL welcomes data submissions from other worm researchers.

  2. Genome Scan for Parent-of-Origin QTL Effects on Bovine Growth and Carcass Traits

    PubMed Central

    Imumorin, Ikhide G.; Kim, Eun-Hee; Lee, Yun-Mi; De Koning, Dirk-Jan; van Arendonk, Johan A.; De Donato, Marcos; Taylor, Jeremy F.; Kim, Jong-Joo

    2011-01-01

    Parent-of-origin effects (POE) such as genomic imprinting influence growth and body composition in livestock, rodents, and humans. Here, we report the results of a genome scan to detect quantitative trait loci (QTL) with POE on growth and carcass traits in Angus × Brahman cattle crossbreds. We identified 24 POE–QTL on 15 Bos taurus autosomes (BTAs) of which six were significant at 5% genome-wide (GW) level and 18 at the 5% chromosome-wide (CW) significance level. Six QTL were paternally expressed while 15 were maternally expressed. Three QTL influencing post-weaning growth map to the proximal end of BTA2 (linkage region of 0–9 cM; genomic region of 5.0–10.8 Mb), for which only one imprinted ortholog is known so far in the human and mouse genomes, and therefore may potentially represent a novel imprinted region. The detected QTL individually explained 1.4 ∼ 5.1% of each trait’s phenotypic variance. Comparative in silico analysis of bovine genomic locations show that 32 out of 1,442 known mammalian imprinted genes from human and mouse homologs map to the identified QTL regions. Although several of the 32 genes have been associated with quantitative traits in cattle, only two (GNAS and PEG3) have experimental proof of being imprinted in cattle. These results lend additional support to recent reports that POE on quantitative traits in mammals may be more common than previously thought, and strengthen the need to identify and experimentally validate cattle orthologs of imprinted genes so as to investigate their effects on quantitative traits. PMID:22303340

  3. Genome-wide linkage analysis of QTL for growth and body composition employing the PorcineSNP60 BeadChip

    PubMed Central

    2012-01-01

    Background The traditional strategy to map QTL is to use linkage analysis employing a limited number of markers. These analyses report wide QTL confidence intervals, making very difficult to identify the gene and polymorphisms underlying the QTL effects. The arrival of genome-wide panels of SNPs makes available thousands of markers increasing the information content and therefore the likelihood of detecting and fine mapping QTL regions. The aims of the current study are to confirm previous QTL regions for growth and body composition traits in different generations of an Iberian x Landrace intercross (IBMAP) and especially identify new ones with narrow confidence intervals by employing the PorcineSNP60 BeadChip in linkage analyses. Results Three generations (F3, Backcross 1 and Backcross 2) of the IBMAP and their related animals were genotyped with PorcineSNP60 BeadChip. A total of 8,417 SNPs equidistantly distributed across autosomes were selected after filtering by quality, position and frequency to perform the QTL scan. The joint and separate analyses of the different IBMAP generations allowed confirming QTL regions previously identified in chromosomes 4 and 6 as well as new ones mainly for backfat thickness in chromosomes 4, 5, 11, 14 and 17 and shoulder weight in chromosomes 1, 2, 9 and 13; and many other to the chromosome-wide signification level. In addition, most of the detected QTLs displayed narrow confidence intervals, making easier the selection of positional candidate genes. Conclusions The use of higher density of markers has allowed to confirm results obtained in previous QTL scans carried out with microsatellites. Moreover several new QTL regions have been now identified in regions probably not covered by markers in previous scans, most of these QTLs displayed narrow confidence intervals. Finally, prominent putative biological and positional candidate genes underlying those QTL effects are listed based on recent porcine genome annotation. PMID

  4. A native QTL for Fusarium head blight resistance in North American barley (Hordeum vulgare L.) independent of height, maturity, and spike type loci.

    PubMed

    Yu, G T; Franckowiak, J D; Neate, S M; Zhang, B; Horsley, R D

    2010-02-01

    Fusarium head blight (FHB), caused by Fusarium graminearum Schwabe (teleomorph Gibberella zeae (Schwein.) Petch), is one of the major diseases of barley (Hordeum vulgare L.) in eastern China, the Upper Midwest of the USA, and the eastern Prairie Provinces of Canada. To identify quantitative trait loci (QTL) controlling FHB resistance, a recombinant inbred line population (F6:7) was developed from the cross Zhenongda 7/PI 643302. The population was phenotyped for resistance to FHB in two experiments in China and four experiments in North Dakota. Accumulation of the mycotoxin deoxynivalenol was determined in one experiment in China and two in North Dakota. Simplified composite interval mapping was performed on the whole genome level using the software MQTL. The QTL FHB-2 from PI 643302 for FHB resistance was found on the distal portion of chromosome 2HL in all six FHB screening environments. This QTL accounted for 14% of phenotypic variation over six environments and was not associated with heading date or plant height. The FHB resistance QTL FHB-2 detected near the end of chromosome 2HL is in a different location from those found previously and is therefore probably unique. Because the QTL was not contributed by the Chinese cultivar Zhenongda 7, it is likely a native QTL present in North American barley. The QTL FHB-2 represents the first reported QTL for native FHB resistance in North American germ plasm and has been given the provisional name Qrgz-2H-14. This QTL should be considered for pyramiding with other FHB QTL previously mapped.

  5. A major QTL for resistance to Gibberella stalk rot in maize.

    PubMed

    Yang, Qin; Yin, Guangming; Guo, Yanling; Zhang, Dongfeng; Chen, Shaojiang; Xu, Mingliang

    2010-08-01

    Fusarium graminearum Schwabe, the conidial form of Gibberella zeae, is the causal fungal pathogen responsible for Gibberella stalk rot of maize. Using a BC(1)F(1) backcross mapping population derived from a cross between '1145' (donor parent, completely resistant) and 'Y331' (recurrent parent, highly susceptible), two quantitative trait loci (QTLs), qRfg1 and qRfg2, conferring resistance to Gibberella stalk rot have been detected. The major QTL qRfg1 was further confirmed in the double haploid, F(2), BC(2)F(1), and BC(3)F(1) populations. Within a qRfg1 confidence interval, single/low-copy bacterial artificial chromosome sequences, anchored expressed sequence tags, and insertion/deletion polymorphisms, were exploited to develop 59 markers to saturate the qRfg1 region. A step by step narrowing-down strategy was adopted to pursue fine mapping of the qRfg1 locus. Recombinants within the qRfg1 region, screened from each backcross generation, were backcrossed to 'Y331' to produce the next backcross progenies. These progenies were individually genotyped and evaluated for resistance to Gibberella stalk rot. Significant (or no significant) difference in resistance reactions between homozygous and heterozygous genotypes in backcross progeny suggested presence (or absence) of qRfg1 in '1145' donor fragments. The phenotypes were compared to sizes of donor fragments among recombinants to delimit the qRfg1 region. Sequential fine mapping of BC(4)F(1) to BC(6)F(1) generations enabled us to progressively refine the qRfg1 locus to a ~500-kb interval flanked by the markers SSR334 and SSR58. Meanwhile, resistance of qRfg1 to Gibberella stalk rot was also investigated in BC(3)F(1) to BC(6)F(1) generations. Once introgressed into the 'Y331' genome, the qRfg1 locus could steadily enhance the frequency of resistant plants by 32-43%. Hence, the qRfg1 locus was capable of improving maize resistance to Gibberella stalk rot.

  6. QTL mapping, association mapping and marker assisted breeding in lettuce

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of elite lettuce cultivars is a lengthy process that involves cross-pollination, several rounds of selection, development of homozygous genotypes, and testing of material performance. Use of molecular markers linked to the genes allows for rapid and frequently more accurate selection of ...

  7. Sequence-based Association Analysis Reveals an MGST1 eQTL with Pleiotropic Effects on Bovine Milk Composition.

    PubMed

    Littlejohn, Mathew D; Tiplady, Kathryn; Fink, Tania A; Lehnert, Klaus; Lopdell, Thomas; Johnson, Thomas; Couldrey, Christine; Keehan, Mike; Sherlock, Richard G; Harland, Chad; Scott, Andrew; Snell, Russell G; Davis, Stephen R; Spelman, Richard J

    2016-05-05

    The mammary gland is a prolific lipogenic organ, synthesising copious amounts of triglycerides for secretion into milk. The fat content of milk varies widely both between and within species, and recent independent genome-wide association studies have highlighted a milk fat percentage quantitative trait locus (QTL) of large effect on bovine chromosome 5. Although both EPS8 and MGST1 have been proposed to underlie these signals, the causative status of these genes has not been functionally confirmed. To investigate this QTL in detail, we report genome sequence-based imputation and association mapping in a population of 64,244 taurine cattle. This analysis reveals a cluster of 17 non-coding variants spanning MGST1 that are highly associated with milk fat percentage, and a range of other milk composition traits. Further, we exploit a high-depth mammary RNA sequence dataset to conduct expression QTL (eQTL) mapping in 375 lactating cows, revealing a strong MGST1 eQTL underpinning these effects. These data demonstrate the utility of DNA and RNA sequence-based association mapping, and implicate MGST1, a gene with no obvious mechanistic relationship to milk composition regulation, as causally involved in these processes.

  8. Sequence-based Association Analysis Reveals an MGST1 eQTL with Pleiotropic Effects on Bovine Milk Composition

    PubMed Central

    Littlejohn, Mathew D.; Tiplady, Kathryn; Fink, Tania A.; Lehnert, Klaus; Lopdell, Thomas; Johnson, Thomas; Couldrey, Christine; Keehan, Mike; Sherlock, Richard G.; Harland, Chad; Scott, Andrew; Snell, Russell G.; Davis, Stephen R.; Spelman, Richard J.

    2016-01-01

    The mammary gland is a prolific lipogenic organ, synthesising copious amounts of triglycerides for secretion into milk. The fat content of milk varies widely both between and within species, and recent independent genome-wide association studies have highlighted a milk fat percentage quantitative trait locus (QTL) of large effect on bovine chromosome 5. Although both EPS8 and MGST1 have been proposed to underlie these signals, the causative status of these genes has not been functionally confirmed. To investigate this QTL in detail, we report genome sequence-based imputation and association mapping in a population of 64,244 taurine cattle. This analysis reveals a cluster of 17 non-coding variants spanning MGST1 that are highly associated with milk fat percentage, and a range of other milk composition traits. Further, we exploit a high-depth mammary RNA sequence dataset to conduct expression QTL (eQTL) mapping in 375 lactating cows, revealing a strong MGST1 eQTL underpinning these effects. These data demonstrate the utility of DNA and RNA sequence-based association mapping, and implicate MGST1, a gene with no obvious mechanistic relationship to milk composition regulation, as causally involved in these processes. PMID:27146958

  9. Identification of QTL underlying vitamin E contents in soybean seed among multiple environments.

    PubMed

    Li, Haiyan; Liu, Huancheng; Han, Yingpeng; Wu, Xiaoxia; Teng, Weili; Liu, Guifeng; Li, Wenbin

    2010-05-01

    Vitamin E (VE) in soybean seed has value for foods, medicines, cosmetics, and animal husbandry. Selection for higher VE contents in seeds along with agronomic traits was an important goal for many soybean breeders. In order to map the loci controlling the VE content, F(5)-derived F(6) recombinant inbred lines (RILs) were advanced through single-seed-descent (SSD) to generate a population including 144 RILs. The population was derived from a cross between 'OAC Bayfield', a soybean cultivar with high VE content, and 'Hefeng 25', a soybean cultivar with low VE content. A total of 107 polymorphic simple sequence repeat markers were used to construct a genetic linkage map. Seed VE contents were analyzed by high performance liquid chromatography for multiple years and locations (Harbin in 2007 and 2008, Hulan in 2008 and Suihua in 2008). Four QTL associated with alpha-Toc (on four linkage groups, LGs), eight QTL associated with gamma-Toc (on eight LGs), four QTL associated with delta-Toc (on four LGs) and five QTL associated with total VE (on four LGs) were identified. A major QTL was detected by marker Satt376 on linkage group C2 and associated with alpha-Toc (0.0012 > P > 0.0001, 5.0% < R (2) < 17.0%, 25.1 < alpha-Toc < 30.1 microg g(-1)), total VE (P < 0.0001, 7.0% < R (2) < 10.0%, 118.2 < total VE < 478.3 microg g(-1)). A second QTL detected by marker Satt286 on LG C2 was associated with gamma-Toc (0.0003 > P > 0.0001, 6.0% < R (2) < 13.0%, 141.5 < gamma-Toc < 342.4 microg g(-1)) and total VE (P < 0.0001, 2.0% < R (2) < 9.0%, 353.9 < total VE < 404.0 microg g(-1)). Another major QTL was detected by marker Satt266 on LG D1b that was associated with alpha-Toc (0.0002 > P > 0.0001, 4.0% < R (2) < 6.0%, 27.7 < alpha-Toc < 43.7 microg g(-1)) and gamma-Toc (0.0032 > P > 0.0001, 3.0% < R (2) < 10.0%, 69.7 < gamma-Toc < 345.7 microg g(-1)). Since beneficial alleles were all from 'OAC Bayfield', it was concluded that these three QTL would have great potential value for marker

  10. Bellow seal and anchor

    DOEpatents

    Mansure, Arthur J.

    2001-01-01

    An annular seal is made of a collapsible bellows. The bellows can function as an anchor or a seal and is easily set into position using relative component movement. The bellows folds can be slanted and their outer sealing edges can have different profiles to meet expected conditions. The bellows is expanded for insertion to reduce its outer dimension and sets by compaction as a result of relative movement. The bellows can be straight or tapered and is settable with a minimal axial force.

  11. eQTL analysis links inflammatory bowel disease associated 1q21 locus to ECM1 gene.

    PubMed

    Repnik, Katja; Potočnik, Uroš

    2016-08-01

    Genome-wide association studies (GWAS) have been highly successful in inflammatory bowel disease (IBD) with 163 confirmed associations so far. We used expression quantitative trait loci (eQTL) mapping to analyze IBD associated regions for which causative gene from the region is still unknown. First, we performed an extensive literature search and in silico analysis of published GWAS in IBD and eQTL studies and extracted 402 IBD associated SNPs assigned to 208 candidate loci, and 9562 eQTL correlations. When crossing GWA and eQTL data we found that for 50 % of loci there is no eQTL gene, while for 31.2 % we can determine one gene, for 11.1 % two genes and for the remaining 7.7 % three or more genes. Based on that we selected loci with one, two, and three or more eQTL genes and analyzed them in peripheral blood lymphocytes and intestine tissue samples of 606 Slovene patients with IBD and in 449 controls. Association analysis of selected SNPs showed statistical significance for three (rs2631372 and rs1050152 on 5q locus and rs13294 on 1q locus) out of six selected SNPs with at least one phenotype. Furthermore, with eQTL analysis of selected chromosomal regions, we confirmed a link between SNP and gene for four (SLC22A5 on 5q, ECM1 on 1q, ORMDL3 on 17q, and PUS10 on 2p locus) out of five selected regions. For 1q21 loci, we confirmed gene ECM1 as the most plausible gene from this region to be involved in pathogenesis of IBD and thereby contributed new eQTL correlation from this genomic region.

  12. Functional screening of an asthma QTL in YAC transgenic mice

    SciTech Connect

    Symula, Derek J.; Frazer, Kelly A.; Ueda, Yukihiko; Denefle, Patrice; Stevens, Mary E.; Wang, Zhi-En; Locksley, Richard; Rubin, Edward M.

    1999-07-02

    While large numbers of quantitative trait loci (QTLs) contributing to genetically complex conditions have been discovered, few causative genes have been identified. This is mainly due to the large size of QTLs and the subtle connection between genotype and quantitative phenotype associated with these conditions. While large numbers of quantitative trait loci (QTLs) contributing to genetically complex conditions have been discovered, few causative genes have been identified. This is mainly due to the large size of QTLs and the subtle connection between genotype and quantitative phenotype associated with these conditions. To screen for genes contributing to an asthma QTL mapped to human chromosome 5q33, the authors characterized a panel of large-insert 5q31 transgenics based on studies demonstrating that altering gene dosage frequently affects quantitative phenotypes normally influenced by that gene. This panel of human YAC transgenics, propagating a one megabase interva2048 chromosome 5q31 containing 23 genes, was screened for quantitative changes in several asthma-associated phenotypes. Multiple independent transgenic lines with altered IgE response to antigen treatment shared a 180 kb region containing 5 genes, including human interleukin 4 (IL4) and interleukin 13 (IL13), which induce IgE class switching in B cells5. Further analysis of these mice and mice transgenic for only murine Il4 and Il13 demonstrated that moderate changes in murine Il4 and Il13 expression affect asthma-associated phenotypes in vivo. This functional screen of large-insert transgenics enabled them to sift through multiple genes in the 5q3 asthma QTL without prior consideration of assumed individual gene function and identify genes that influence the QTL phenotype in vivo.

  13. QTL for the thermotolerance effect of heat hardening, knockdown resistance to heat and chill-coma recovery in an intercontinental set of recombinant inbred lines of Drosophila melanogaster.

    PubMed

    Norry, Fabian M; Scannapieco, Alejandra C; Sambucetti, Pablo; Bertoli, Carlos I; Loeschcke, Volker

    2008-10-01

    The thermotolerance effect of heat hardening (also called short-term acclimation), knockdown resistance to high temperature (KRHT) with and without heat hardening and chill-coma recovery (CCR) are important phenotypes of thermal adaptation in insects and other organisms. Drosophila melanogaster from Denmark and Australia were previously selected for low and high KRHT, respectively. These flies were crossed to construct recombinant inbred lines (RIL). KRHT was higher in heat-hardened than in nonhardened RIL. We quantify the heat-hardening effect (HHE) as the ratio in KRHT between heat-hardened and nonhardened RIL. Composite interval mapping revealed a more complex genetic architecture for KRHT without heat-hardening than for KRHT in heat-hardened insects. Five quantitative trait loci (QTL) were found for KRHT, but only two of them were significant after heat hardening. KRHT and CCR showed trade-off associations for QTL both in the middle of chromosome 2 and the right arm of chromosome 3, which should be the result of either pleiotropy or linkage. The major QTL on chromosome 2 explained 18% and 27-33% of the phenotypic variance in CCR and KRHT in nonhardened flies, respectively, but its KRHT effects decreased by heat hardening. We discuss candidate loci for each QTL. One HHE-QTL was found in the region of small heat-shock protein genes. However, HHE-QTL explained only a small fraction of the phenotypic variance. Most heat-resistance QTL did not colocalize with CCR-QTL. Large-effect QTL for CCR and KRHT without hardening (basal thermotolerance) were consistent across continents, with apparent transgressive segregation for CCR. HHE (inducible thermotolerance) was not regulated by large-effect QTL.

  14. Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine.

    PubMed

    Fischer, B M; Salakhutdinov, I; Akkurt, M; Eibach, R; Edwards, K J; Töpfer, R; Zyprian, E M

    2004-02-01

    A full-sibling F1 population comprising 153 individuals from the cross of 'Regent' x 'Lemberger' was employed to construct a genetic map based on 429 molecular markers. The newly-bred red grapevine variety 'Regent' has multiple field-resistance to fungal diseases inherited as polygenic traits, while 'Lemberger' is a traditional fungus-susceptible cultivar. The progeny segregate quantitatively for resistances to Plasmopara viticola and Uncinula necator, fungal pathogens that threaten viticulture in temperate areas. A double pseudo-testcross strategy was employed to construct the two parental maps under high statistical stringency for linkage to obtain a robust marker frame for subsequent quantitative trait locus (QTL) analysis. In total, 185 amplified fragment length polymorphism, 137 random amplified polymorphic DNA, 85 single sequence repeat and 22 sequence characterized amplified region or cleaved amplified polymorphic sequence markers were mapped. The maps were aligned by co-dominant or doubly heterozygous dominant anchor markers. Twelve pairs of homologous linkage groups could be integrated into consensus linkage groups. Resistance phenotypes and segregating characteristics were scored as quantitative traits in three or four growing seasons. Interval mapping reproducibly localized genetic factors that correlated with fungal disease resistances to specific regions on three linkage groups of the maternal 'Regent' map. A QTL for resistance to Uncinula necator was identified on linkage group 16, and QTLs for endurance to Plasmopara viticola on linkage groups 9 and 10 of 'Regent'. Additional QTLs for the onset of berry ripening ("veraison"), berry size and axillary shoot growth were identified. Berry color segregated as a simple trait in this cross of two red varieties and was mapped as a morphological marker. Six markers derived from functional genes could be localized. This dissection of polygenic fungus disease resistance in grapevine allows the development of

  15. QTL detection for Aeromonas salmonicida resistance related traits in turbot (Scophthalmus maximus)

    PubMed Central

    2011-01-01

    Background Interactions between fish and pathogens, that may be harmless under natural conditions, often result in serious diseases in aquaculture systems. This is especially important due to the fact that the strains used in aquaculture are derived from wild strains that may not have had enough time to adapt to new disease pressures. The turbot is one of the most promising European aquaculture species. Furunculosis, caused by the bacterium Aeromonas salmonicida, produces important losses to turbot industry. An appealing solution is to achieve more robust broodstock, which can prevent or diminish the devastating effects of epizooties. Genomics strategies have been developed in turbot to look for candidate genes for resistance to furunculosis and a genetic map with appropriate density to screen for genomic associations has been also constructed. In the present study, a genome scan for QTL affecting resistance and survival to A. salmonicida in four turbot families was carried out. The objectives were to identify consistent QTL using different statistical approaches (linear regression and maximum likelihood) and to locate the tightest associated markers for their application in genetic breeding strategies. Results Significant QTL for resistance were identified by the linear regression method in three linkage groups (LGs 4, 6 and 9) and for survival in two LGs (6 and 9). The maximum likelihood methodology identified QTL in three LGs (5, 6 and 9) for both traits. Significant association between disease traits and genotypes was detected for several markers, some of them explaining up to 17% of the phenotypic variance. We also identified candidate genes located in the detected QTL using data from previously mapped markers. Conclusions Several regions controlling resistance to A. salmonicida in turbot have been detected. The observed concordance between different statistical methods at particular linkage groups gives consistency to our results. The detected associated

  16. Joint-multiple family linkage analysis predicts within-family variation better than single-family analysis of the maize nested association mapping population.

    PubMed

    Ogut, F; Bian, Y; Bradbury, P J; Holland, J B

    2015-06-01

    Quantitative trait locus (QTL) mapping has been used to dissect the genetic architecture of complex traits and predict phenotypes for marker-assisted selection. Many QTL mapping studies in plants have been limited to one biparental family population. Joint analysis of multiple biparental families offers an alternative approach to QTL mapping with a wider scope of inference. Joint-multiple population analysis should have higher power to detect QTL shared among multiple families, but may have lower power to detect rare QTL. We compared prediction ability of single-family and joint-family QTL analysis methods with fivefold cross-validation for 6 diverse traits using the maize nested association mapping population, which comprises 25 biparental recombinant inbred families. Joint-family QTL analysis had higher mean prediction abilities than single-family QTL analysis for all traits at most significance thresholds, and was always better at more stringent significance thresholds. Most robust QTL (detected in >50% of data samples) were restricted to one family and were often not detected at high frequency by joint-family analysis, implying substantial genetic heterogeneity among families for complex traits in maize. The superior predictive ability of joint-family QTL models despite important genetic differences among families suggests that joint-family models capture sufficient smaller effect QTL that are shared across families to compensate for missing some rare large-effect QTL.

  17. Genetic Dissection of a QTL Affecting Bone Geometry

    PubMed Central

    Sabik, Olivia L.; Medrano, Juan F.; Farber, Charles R.

    2017-01-01

    Parameters of bone geometry such as width, length, and cross-sectional area are major determinants of bone strength. Although these traits are highly heritable, few genes influencing bone geometry have been identified. Here, we dissect a major quantitative trait locus (QTL) influencing femur size. This QTL was originally identified in an F2 cross between the C57BL/6J-hg/hg (HG) and CAST/EiJ strains and was referred to as femur length in high growth mice 2 (Feml2). Feml2 was located on chromosome (Chr.) 9 at ∼20 cM. Here, we show that the HG.CAST-(D9Mit249-D9Mit133)/Ucd congenic strain captures Feml2. In an F2 congenic cross, we fine-mapped the location of Feml2 to an ∼6 Mbp region extending from 57.3 to 63.3 Mbp on Chr. 9. We have identified candidates by mining the complete genome sequence of CAST/EiJ and through allele-specific expression (ASE) analysis of growth plates in C57BL/6J × CAST/EiJ F1 hybrids. Interestingly, we also find that the refined location of Feml2 overlaps a cluster of six independent genome-wide associations for human height. This work provides the foundation for the identification of novel genes affecting bone geometry. PMID:28082324

  18. Improvement of Rice Biomass Yield through QTL-Based Selection

    PubMed Central

    Matsubara, Kazuki; Yamamoto, Eiji; Kobayashi, Nobuya; Ishii, Takuro; Tanaka, Junichi; Tsunematsu, Hiroshi; Yoshinaga, Satoshi; Matsumura, Osamu; Yonemaru, Jun-ichi; Mizobuchi, Ritsuko; Yamamoto, Toshio; Kato, Hiroshi; Yano, Masahiro

    2016-01-01

    Biomass yield of rice (Oryza sativa L.) is an important breeding target, yet it is not easy to improve because the trait is complex and phenotyping is laborious. Using progeny derived from a cross between two high-yielding Japanese cultivars, we evaluated whether quantitative trait locus (QTL)-based selection can improve biomass yield. As a measure of biomass yield, we used plant weight (aboveground parts only), which included grain weight and stem and leaf weight. We measured these and related traits in recombinant inbred lines. Phenotypic values for these traits showed a continuous distribution with transgressive segregation, suggesting that selection can affect plant weight in the progeny. Four significant QTLs were mapped for plant weight, three for grain weight, and five for stem and leaf weight (at α = 0.05); some of them overlapped. Multiple regression analysis showed that about 43% of the phenotypic variance of plant weight was significantly explained (P < 0.0001) by six of the QTLs. From F2 plants derived from the same parental cross as the recombinant inbred lines, we divergently selected lines that carried alleles with positive or negative additive effects at these QTLs, and performed successive selfing. In the resulting F6 lines and parents, plant weight significantly differed among the genotypes (at α = 0.05). These results demonstrate that QTL-based selection is effective in improving rice biomass yield. PMID:26986071

  19. Genetic Dissection of a QTL Affecting Bone Geometry.

    PubMed

    Sabik, Olivia L; Medrano, Juan F; Farber, Charles R

    2017-03-10

    Parameters of bone geometry such as width, length, and cross-sectional area are major determinants of bone strength. Although these traits are highly heritable, few genes influencing bone geometry have been identified. Here, we dissect a major quantitative trait locus (QTL) influencing femur size. This QTL was originally identified in an F2 cross between the C57BL/6J-hg/hg (HG) and CAST/EiJ strains and was referred to as femur length in high growth mice 2 (Feml2). Feml2 was located on chromosome (Chr.) 9 at ∼20 cM. Here, we show that the HG.CAST-(D9Mit249-D9Mit133)/Ucd congenic strain captures Feml2 In an F2 congenic cross, we fine-mapped the location of Feml2 to an ∼6 Mbp region extending from 57.3 to 63.3 Mbp on Chr. 9. We have identified candidates by mining the complete genome sequence of CAST/EiJ and through allele-specific expression (ASE) analysis of growth plates in C57BL/6J × CAST/EiJ F1 hybrids. Interestingly, we also find that the refined location of Feml2 overlaps a cluster of six independent genome-wide associations for human height. This work provides the foundation for the identification of novel genes affecting bone geometry.

  20. CHEMICAL SYNTHESIS OF GLYCOSYLPHOSPHATIDYLINOSITOL ANCHORS

    PubMed Central

    Swarts, Benjamin M.; Guo, Zhongwu

    2013-01-01

    Many eukaryotic cell-surface proteins and glycoproteins are anchored to the plasma membrane by glycosylphosphatidylinositols (GPIs), a family of glycolipids that are post-translationally attached to proteins at their C-termini. GPIs and GPI-anchored proteins play important roles in many biological and pathological events, such as cell recognition and adhesion, signal transduction, host defense, and acting as receptors for viruses and toxins. Chemical synthesis of structurally defined GPI anchors and GPI derivatives is a necessary step toward understanding the properties and functions of these molecules in biological systems and exploring their potential therapeutic applications. In the first part of this comprehensive article on the chemical synthesis of GPIs, classic syntheses of naturally occurring GPI anchors from protozoan parasites, yeast, and mammals are covered. The second part of the article focuses on recent diversity-oriented strategies for the synthesis of GPI anchors containing unsaturated lipids, “click chemistry” tags, and highly branched and modified structures. PMID:22794184

  1. Cell Wall Composition and Underlying QTL in an F1 Pseudo-Testcross Population of Switchgrass

    SciTech Connect

    Serba, Desalegn D.; Sykes, Robert W.; Gjersing, Erica L.; Decker, Stephen R.; Daverdin, Guillaume; Devos, Katrien M.; Brummer, E. Charles; Saha, Malay C.

    2016-04-23

    Natural genetic variation for reduced recalcitrance can be used to improve switchgrass for biofuel production. A full-sib switchgrass mapping population developed by crossing a lowland genotype, AP13, and upland genotype, VS16, was evaluated at three locations (Ardmore and Burneyville, OK and Watkinsville, GA). Biomass harvested after senescence in 2009 and 2010 was evaluated at the National Renewable Energy Laboratory (NREL) for sugar release using enzymatic hydrolysis and for lignin content and syringyl/guaiacyl lignin monomer (S/G) ratio using pyrolysis molecular beam mass spectrometry (py-MBMS). Glucose and xylose release ranged from 120 to 313 and 123 to 263 mg g-1, respectively, while lignin content ranged from 19 to 27% of the dry biomass. Statistically significant differences were observed among the genotypes and the environments for the cell wall composition traits. Regression analysis showed that a unit increase in lignin content reduced total sugar release by an average of 10 mg g-1. Quantitative trait loci (QTL) analysis detected 9 genomic regions underlying sugar release and 14 for lignin content. The phenotypic variation explained by the individual QTL identified for sugar release ranged from 4.5 to 9.4 and for lignin content from 3.8 to 11.1%. Mapping of the QTL regions to the switchgrass genome sequence (v1.1) found that some of the QTL colocalized with genes involved in carbohydrate processing and metabolism, plant development, defense systems, and transcription factors. Finally, the markers associated with QTL can be implemented in breeding programs to efficiently develop improved switchgrass cultivars for biofuel production.

  2. Cell Wall Composition and Underlying QTL in an F1 Pseudo-Testcross Population of Switchgrass

    DOE PAGES

    Serba, Desalegn D.; Sykes, Robert W.; Gjersing, Erica L.; ...

    2016-04-23

    Natural genetic variation for reduced recalcitrance can be used to improve switchgrass for biofuel production. A full-sib switchgrass mapping population developed by crossing a lowland genotype, AP13, and upland genotype, VS16, was evaluated at three locations (Ardmore and Burneyville, OK and Watkinsville, GA). Biomass harvested after senescence in 2009 and 2010 was evaluated at the National Renewable Energy Laboratory (NREL) for sugar release using enzymatic hydrolysis and for lignin content and syringyl/guaiacyl lignin monomer (S/G) ratio using pyrolysis molecular beam mass spectrometry (py-MBMS). Glucose and xylose release ranged from 120 to 313 and 123 to 263 mg g-1, respectively, whilemore » lignin content ranged from 19 to 27% of the dry biomass. Statistically significant differences were observed among the genotypes and the environments for the cell wall composition traits. Regression analysis showed that a unit increase in lignin content reduced total sugar release by an average of 10 mg g-1. Quantitative trait loci (QTL) analysis detected 9 genomic regions underlying sugar release and 14 for lignin content. The phenotypic variation explained by the individual QTL identified for sugar release ranged from 4.5 to 9.4 and for lignin content from 3.8 to 11.1%. Mapping of the QTL regions to the switchgrass genome sequence (v1.1) found that some of the QTL colocalized with genes involved in carbohydrate processing and metabolism, plant development, defense systems, and transcription factors. Finally, the markers associated with QTL can be implemented in breeding programs to efficiently develop improved switchgrass cultivars for biofuel production.« less

  3. Habitat-specific natural selection at a flowering-time QTL is a main driver of local adaptation in two wild barley populations.

    PubMed

    Verhoeven, K J F; Poorter, H; Nevo, E; Biere, A

    2008-07-01

    Understanding the genetic basis of local adaptation requires insight in the fitness effects of individual loci under natural field conditions. While rapid progress is made in the search for genes that control differences between plant populations, it is typically unknown whether the genes under study are in fact key targets of habitat-specific natural selection. Using a quantitative trait loci (QTL) approach, we show that a QTL associated with flowering-time variation between two locally adapted wild barley populations is an important determinant of fitness in one, but not in the other population's native habitat. The QTL mapped to the same position as a habitat-specific QTL for field fitness that affected plant reproductive output in only one of the parental habitats, indicating that the genomic region is under differential selection between the native habitats. Consistent with the QTL results, phenotypic selection of flowering time differed between the two environments, whereas other traits (growth rate and seed weight) were under selection but experienced no habitat-specific differential selection. This implies the flowering-time QTL as a driver of adaptive population divergence. Our results from phenotypic selection and QTL analysis are consistent with local adaptation without genetic trade-offs in performance across environments, i.e. without alleles or traits having opposing fitness effects in contrasting environments.

  4. An integrated linkage map reveals candidate genes underlying adaptive variation in Chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    McKinney, G J; Seeb, L W; Larson, W A; Gomez-Uchida, D; Limborg, M T; Brieuc, M S O; Everett, M V; Naish, K A; Waples, R K; Seeb, J E

    2016-05-01

    Salmonids are an important cultural and ecological resource exhibiting near worldwide distribution between their native and introduced range. Previous research has generated linkage maps and genomic resources for several species as well as genome assemblies for two species. We first leveraged improvements in mapping and genotyping methods to create a dense linkage map for Chinook salmon Oncorhynchus tshawytscha by assembling family data from different sources. We successfully mapped 14 620 SNP loci including 2336 paralogs in subtelomeric regions. This improved map was then used as a foundation to integrate genomic resources for gene annotation and population genomic analyses. We anchored a total of 286 scaffolds from the Atlantic salmon genome to the linkage map to provide a framework for the placement 11 728 Chinook salmon ESTs. Previously identified thermotolerance QTL were found to colocalize with several candidate genes including HSP70, a gene known to be involved in thermal response, as well as its inhibitor. Multiple regions of the genome with elevated divergence between populations were also identified, and annotation of ESTs in these regions identified candidate genes for fitness related traits such as stress response, growth and behaviour. Collectively, these results demonstrate the utility of combining genomic resources with linkage maps to enhance evolutionary inferences.

  5. QTL analysis for sugar-regulated leaf senescence supports flowering-dependent and -independent senescence pathways.

    PubMed

    Wingler, Astrid; Purdy, Sarah Jane; Edwards, Sally-Anne; Chardon, Fabien; Masclaux-Daubresse, Céline

    2010-01-01

    *The aim of this work was to determine the genetic basis of sugar-regulated senescence and to explore the relationship with other traits, including flowering and nitrogen-use efficiency. *Quantitative trait loci (QTLs) for senescence were mapped in the Arabidopsis Bay-0 x Shahdara recombinant-inbred line (RIL) population after growth on glucose-containing medium, which accelerates senescence. The extent of whole-rosette senescence was determined by imaging the maximum quantum yield of photosystem II (F(v)/F(m)). *A major QTL on the top of chromosome 4 colocalized with FRI, a major determinant of flowering. This QTL interacted epistatically with a QTL on chromosome 5, where the floral repressor FLC localizes. Vernalization accelerated senescence in late-flowering lines with functional FRI and FLC alleles. Comparison with previous results using the Bay-0 x Shahdara population showed that rapid rosette senescence on glucose-containing medium was correlated with early flowering and high sugar content in compost-grown plants. In addition, correlation was found between the expression of flowering and senescence-associated genes in Arabidopsis accessions. However, an additional QTL on chromosome 3 was not linked to flowering, but to nitrogen-use efficiency. *The results show that whole-rosette senescence is genetically linked to the vernalization-dependent control of flowering, but is also controlled by flowering-independent pathways.

  6. Granular Simulation of NEO Anchoring

    NASA Technical Reports Server (NTRS)

    Mazhar, Hammad

    2011-01-01

    NASA is interested in designing a spacecraft capable of visiting a Near Earth Object (NEO), performing experiments, and then returning safely. Certain periods of this mission will require the spacecraft to remain stationary relative to the NEO. Such situations require an anchoring mechanism that is compact, easy to deploy and upon mission completion, easily removed. The design philosophy used in the project relies on the simulation capability of a multibody dynamics physics engine. On Earth it is difficult to create low gravity conditions and testing in low gravity environments, whether artificial or in space is costly and therefore not feasible. Through simulation, gravity can be controlled with great accuracy, making it ideally suited to analyze the problem at hand. Using Chrono::Engine [1], a simulation package capable of utilizing massively parallel GPU hardware, several validation experiments will be performed. Once there is sufficient confidence, modeling of the NEO regolith interaction will begin after which the anchor tests will be performed and analyzed. The outcome of this task is a study with an analysis of several different anchor designs, along with a recommendation on which anchor is better suited to the task of anchoring. With the anchors tested against a range of parameters relating to soil, environment and anchor penetration angles/velocities on a NEO.

  7. Fine mapping and single nucleotide polymorphism effects estimation on pig chromosomes 1, 4, 7, 8, 17 and X

    PubMed Central

    Hidalgo, André M.; Lopes, Paulo S.; Paixão, Débora M.; Silva, Fabyano F.; Bastiaansen, John W.M.; Paiva, Samuel R.; Faria, Danielle A.; Guimarães, Simone E.F.

    2013-01-01

    Fine mapping of quantitative trait loci (QTL) from previous linkage studies was performed on pig chromosomes 1, 4, 7, 8, 17, and X which were known to harbor QTL. Traits were divided into: growth performance, carcass, internal organs, cut yields, and meat quality. Fifty families were used of a F2 population produced by crossing local Brazilian Piau boars with commercial sows. The linkage map consisted of 237 SNP and 37 microsatellite markers covering 866 centimorgans. QTL were identified by regression interval mapping using GridQTL. Individual marker effects were estimated by Bayesian LASSO regression using R. In total, 32 QTL affecting the evaluated traits were detected along the chromosomes studied. Seven of the QTL were known from previous studies using our F2 population, and 25 novel QTL resulted from the increased marker coverage. Six of the seven QTL that were significant at the 5% genome-wide level had SNPs within their confidence interval whose effects were among the 5% largest effects. The combined use of microsatellites along with SNP markers increased the saturation of the genome map and led to smaller confidence intervals of the QTL. The results showed that the tested models yield similar improvements in QTL mapping accuracy. PMID:24385854

  8. Genetic Architecture of Maize Kernel Quality in the Nested Association Mapping (NAM) Population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many studies have been conducted to identify genes (quantitative trait loci; QTL) underlying kernel quality traits. However, these studies were limited to analyzing two parents at once and often resulted in low resolution mapping of QTL. The maize nested association mapping (NAM) population is a r...

  9. QTL for resistance to summer mortality and OsHV-1 load in the Pacific oyster (Crassostrea gigas).

    PubMed

    Sauvage, C; Boudry, P; de Koning, D-J; Haley, C S; Heurtebise, S; Lapègue, S

    2010-08-01

    Summer mortality is a phenomenon severely affecting the aquaculture production of the Pacific oyster (Crassostrea gigas). Although its causal factors are complex, resistance to mortality has been described as a highly heritable trait, and several pathogens including the virus Ostreid Herpes virus type 1 (OsHV-1) have been associated with this phenomenon. A QTL analysis for survival of summer mortality and OsHV-1 load, estimated using real-time PCR, was performed using five F(2) full-sib families resulting from a divergent selection experiment for resistance to summer mortality. A consensus linkage map was built using 29 SNPs and 51 microsatellite markers. Five significant QTL were identified and assigned to linkage groups V, VI, VII and IX. Analysis of single full-sib families revealed differential QTL segregation between families. QTL for the two-recorded traits presented very similar locations, highlighting the interest of further study of their respective genetic controls. These QTL show substantial genetic variation in resistance to summer mortality, and present new opportunities for selection for resistance to OsHV-1.

  10. Quantitative Trait Locus Analysis of Seed Germination and Seedling Vigor in Brassica rapa Reveals QTL Hotspots and Epistatic Interactions.

    PubMed

    Basnet, Ram K; Duwal, Anita; Tiwari, Dev N; Xiao, Dong; Monakhos, Sokrat; Bucher, Johan; Visser, Richard G F; Groot, Steven P C; Bonnema, Guusje; Maliepaard, Chris

    2015-01-01

    The genetic basis of seed germination and seedling vigor is largely unknown in Brassica species. We performed a study to evaluate the genetic basis of these important traits in a B. rapa doubled haploid population from a cross of a yellow-seeded oil-type yellow sarson and a black-seeded vegetable-type pak choi. We identified 26 QTL regions across all 10 linkage groups for traits related to seed weight, seed germination and seedling vigor under non-stress and salt stress conditions illustrating the polygenic nature of these traits. QTLs for multiple traits co-localized and we identified eight hotspots for quantitative trait loci (QTL) of seed weight, seed germination, and root and shoot lengths. A QTL hotspot for seed germination on A02 mapped at the B. rapa Flowering Locus C (BrFLC2). Another hotspot on A05 with salt stress specific QTLs co-located with the B. rapa Fatty acid desaturase 2 (BrFAD2) locus. Epistatic interactions were observed between QTL hotspots for seed germination on A02 and A10 and with a salt tolerance QTL on A05. These results contribute to the understanding of the genetics of seed quality and seeding vigor in B. rapa and can offer tools for Brassica breeding.

  11. QTL for fibre-related traits in grain × sweet sorghum as a tool for the enhancement of sorghum as a biomass crop.

    PubMed

    Shiringani, Amukelani L; Friedt, Wolfgang

    2011-10-01

    Compared to maize and temperate grasses, sorghum has received less attention in terms of improving cell wall components. The objectives of this study were to identify quantitative trait loci (QTL) with main effects, epistatic and pleiotropic effects along with QTL × environment (QE) interactions controlling fibre-related traits in sorghum. Neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent lignin (ADL), cellulose, hemicellulose, fresh leaf mass, stripped stalk mass, dry stalk mass, fresh biomass and dry biomass were analysed from a population of 188 grain × sweet sorghum recombinant inbred lines. A genetic map consisting of 157 DNA markers was constructed, and QTL were detected using composite interval mapping (CIM). CIM detected more than 5 additive QTL per trait explaining 7.1-24.7% of the phenotypic variation. Abundant co-localization of these QTL was observed across all chromosomes, and the highest cluster was identified on chromosome 6. Searching for candidate genes using the confidence interval of our QTL clusters reveals that these clusters might comprise a set of genes that are tightly linked. Some QTL showed multiple effects; however, the allele for each trait was favouring the parent with the increasing effect. QE interactions were observed for QTL showing multiple effects. Additive × additive interaction was observed for 7 out of 10 traits, indicating the importance of epistatic analysis. However, the phenotypic variation explained by digenic interactions was lower compared to the individual QTL. Our results indicate that various genetic components contribute to fibre-related traits and should be considered during the enhancement of sorghum for lignocellulosic biomass.

  12. Validation of a 1DL earliness per se (eps) flowering QTL in bread wheat (Triticum aestivum).

    PubMed

    Zikhali, Meluleki; Leverington-Waite, Michelle; Fish, Lesley; Simmonds, James; Orford, Simon; Wingen, Luzie U; Goram, Richard; Gosman, Nick; Bentley, Alison; Griffiths, Simon

    2014-01-01

    Vernalization, photoperiod and the relatively poorly defined earliness per se (eps) genes regulate flowering in plants. We report here the validation of a major eps quantitative trait locus (QTL) located on wheat 1DL using near isogenic lines (NILs). We used four independent pairs of NILs derived from a cross between Spark and Rialto winter wheat varieties, grown in both the field and controlled environments. NILs carrying the Spark allele, defined by QTL flanking markers Xgdm111 and Xbarc62, consistently flowered 3-5 days earlier when fully vernalized relative to those with the Rialto. The effect was independent of photoperiod under field conditions, short days (10-h light), long days (16-h light) and very long days (20-h light). These results validate our original QTL identified using doubled haploid (DH) populations. This QTL represents variation maintained in elite north-western European winter wheat germplasm. The two DH lines used to develop the NILs, SR9 and SR23 enabled us to define the location of the 1DL QTL downstream of marker Xgdm111. SR9 has the Spark 1DL arm while SR23 has a recombinant 1DL arm with the Spark allele from Xgdm111 to the distal end. Our work suggests that marker assisted selection of eps effects is feasible and useful even before the genes are cloned. This means eps genes can be defined and positionally cloned in the same way as the photoperiod and vernalization genes have been. This validation study is a first step towards fine mapping and eventually cloning the gene directly in hexaploid wheat.

  13. Anchor of Liberty.

    ERIC Educational Resources Information Center

    Kleinknecht, C. Fred

    This book provides a road map for renewing knowledge and understanding of the Articles of the U.S. Constitution and the Bill of Rights. Chapter 1, "Blueprint for Freedom," describes the historical background of the Constitutional Convention and the Bill of Rights. Chapter 2 gives a brief description of the four parts of the…

  14. QTL analysis of Kernel-related traits in maize using an immortalized F2 population.

    PubMed

    Zhang, Zhanhui; Liu, Zonghua; Hu, Yanmin; Li, Weihua; Fu, Zhiyuan; Ding, Dong; Li, Haochuan; Qiao, Mengmeng; Tang, Jihua

    2014-01-01

    Kernel size and weight are important determinants of grain yield in maize. In this study, multivariate conditional and unconditional quantitative trait loci (QTL), and digenic epistatic analyses were utilized in order to elucidate the genetic basis for these kernel-related traits. Five kernel-related traits, including kernel weight (KW), volume (KV), length (KL), thickness (KT), and width (KWI), were collected from an immortalized F2 (IF2) maize population comprising of 243 crosses performed at two separate locations over a span of two years. A total of 54 unconditional main QTL for these five kernel-related traits were identified, many of which were clustered in chromosomal bins 6.04-6.06, 7.02-7.03, and 10.06-10.07. In addition, qKL3, qKWI6, qKV10a, qKV10b, qKW10a, and qKW7a were detected across multiple environments. Sixteen main QTL were identified for KW conditioned on the other four kernel traits (KL, KWI, KT, and KV). Thirteen main QTL were identified for KV conditioned on three kernel-shape traits. Conditional mapping analysis revealed that KWI and KV had the strongest influence on KW at the individual QTL level, followed by KT, and then KL; KV was mostly strongly influenced by KT, followed by KWI, and was least impacted by KL. Digenic epistatic analysis identified 18 digenic interactions involving 34 loci over the entire genome. However, only a small proportion of them were identical to the main QTL we detected. Additionally, conditional digenic epistatic analysis revealed that the digenic epistasis for KW and KV were entirely determined by their constituent traits. The main QTL identified in this study for determining kernel-related traits with high broad-sense heritability may play important roles during kernel development. Furthermore, digenic interactions were shown to exert relatively large effects on KL (the highest AA and DD effects were 4.6% and 6.7%, respectively) and KT (the highest AA effects were 4.3%).

  15. Nested Association Mapping of Stem Rust Resistance in Wheat Using Genotyping by Sequencing

    PubMed Central

    Rouse, Matthew N.; Tsilo, Toi J.; Macharia, Godwin K.; Bhavani, Sridhar; Jin, Yue; Anderson, James A.

    2016-01-01

    We combined the recently developed genotyping by sequencing (GBS) method with joint mapping (also known as nested association mapping) to dissect and understand the genetic architecture controlling stem rust resistance in wheat (Triticum aestivum). Ten stem rust resistant wheat varieties were crossed to the susceptible line LMPG-6 to generate F6 recombinant inbred lines. The recombinant inbred line populations were phenotyped in Kenya, South Africa, and St. Paul, Minnesota, USA. By joint mapping of the 10 populations, we identified 59 minor and medium-effect QTL (explained phenotypic variance range of 1% – 20%) on 20 chromosomes that contributed towards adult plant resistance to North American Pgt races as well as the highly virulent Ug99 race group. Fifteen of the 59 QTL were detected in multiple environments. No epistatic relationship was detected among the QTL. While these numerous small- to medium-effect QTL are shared among the families, the founder parents were found to have different allelic effects for the QTL. Fourteen QTL identified by joint mapping were also detected in single-population mapping. As these QTL were mapped using SNP markers with known locations on the physical chromosomes, the genomic regions identified with QTL could be explored more in depth to discover candidate genes for stem rust resistance. The use of GBS-derived de novo SNPs in mapping resistance to stem rust shown in this study could be used as a model to conduct similar marker-trait association studies in other plant species. PMID:27186883

  16. Analyzing paleomagnetic data: To anchor or not to anchor?

    NASA Astrophysics Data System (ADS)

    Heslop, David; Roberts, Andrew P.

    2016-11-01

    Paleomagnetic directions provide the basis for use of paleomagnetism in chronological and tectonic reconstructions and for constraining past geomagnetic field behavior over a variety of timescales. Crucial to paleomagnetic analysis is the separation and quantification of a characteristic remanent magnetization (ChRM), which relates to a process of interest, from other remanence components. Principal component analysis (PCA) of stepwise demagnetization data is employed routinely in these situations to estimate magnetic remanence directions and their uncertainties. A given ChRM is often assumed to trend toward the origin of a vector demagnetization diagram and prevailing data analysis frameworks allow remanence directions to be estimated based on PCA fits that are forced to pass through the origin of such diagrams, a process referred to as "anchoring." While this approach is adopted commonly, little attention has been paid to the effects of anchoring and the influence it has on both estimated remanence directions and their associated uncertainties. In almost all cases, anchoring produces an artificially low uncertainty estimation compared to an unanchored fit. Bayesian model selection demonstrates that the effects of anchoring cannot typically be justified from a statistical standpoint. We present an alternative to anchoring that constrains the best fit remanence direction to pass through the origin of a vector demagnetization diagram without unreasonably distorting the representation of the demagnetization data.

  17. Genetic analysis of QTL for eye cross and eye diameter in common carp (Cyprinus carpio L.) using microsatellites and SNPs.

    PubMed

    Jin, S B; Zhang, X F; Lu, J G; Fu, H T; Jia, Z Y; Sun, X W

    2015-04-17

    A group of 107 F1 hybrid common carp was used to construct a linkage map using JoinMap 4.0. A total of 4877 microsatellite and single nucleotide polymorphism (SNP) markers isolated from a genomic library (978 microsatellite and 3899 SNP markers) were assigned to construct the genetic map, which comprised 50 linkage groups. The total length of the linkage map for the common carp was 4775.90 cM with an average distance between markers of 0.98 cM. Ten quantitative trait loci (QTL) were associated with eye diameter, corresponding to 10.5-57.2% of the total phenotypic variation. Twenty QTL were related to eye cross, contributing to 10.8-36.9% of the total phenotypic variation. Two QTL for eye diameter and four QTL for eye cross each accounted for more than 20% of the total phenotypic variation and were considered to be major QTL. One growth factor related to eye diameter was observed on LG10 of the common carp genome, and three growth factors related to eye cross were observed on LG10, LG35, and LG44 of the common carp genome. The significant positive relationship of eye cross and eye diameter with other commercial traits suggests that eye diameter and eye cross can be used to assist in indirect selection for many commercial traits, particularly body weight. Thus, the growth factor for eye cross may also contribute to the growth of body weight, implying that aggregate breeding could have multiple effects. These findings provide information for future genetic studies and breeding of common carp.

  18. A simple regression-based method to map quantitative trait loci underlying function-valued phenotypes.

    PubMed

    Kwak, Il-Youp; Moore, Candace R; Spalding, Edgar P; Broman, Karl W

    2014-08-01

    Most statistical methods for quantitative trait loci (QTL) mapping focus on a single phenotype. However, multiple phenotypes are commonly measured, and recent technological advances have greatly simplified the automated acquisition of numerous phenotypes, including function-valued phenotypes, such as growth measured over time. While methods exist for QTL mapping with function-valued phenotypes, they are generally computationally intensive and focus on single-QTL models. We propose two simple, fast methods that maintain high power and precision and are amenable to extensions with multiple-QTL models using a penalized likelihood approach. After identifying multiple QTL by these approaches, we can view the function-valued QTL effects to provide a deeper understanding of the underlying processes. Our methods have been implemented as a package for R, funqtl.

  19. Development of a 690 K SNP array in catfish and its application for genetic mapping and validation of the reference genome sequence

    PubMed Central

    Zeng, Qifan; Fu, Qiang; Li, Yun; Waldbieser, Geoff; Bosworth, Brian; Liu, Shikai; Yang, Yujia; Bao, Lisui; Yuan, Zihao; Li, Ning; Liu, Zhanjiang

    2017-01-01

    Single nucleotide polymorphisms (SNPs) are capable of providing the highest level of genome coverage for genomic and genetic analysis because of their abundance and relatively even distribution in the genome. Such a capacity, however, cannot be achieved without an efficient genotyping platform such as SNP arrays. In this work, we developed a high-density SNP array with 690,662 unique SNPs (herein 690 K array) that were relatively evenly distributed across the entire genome, and covered 98.6% of the reference genome sequence. Here we also report linkage mapping using the 690 K array, which allowed mapping of over 250,000 SNPs on the linkage map, the highest marker density among all the constructed linkage maps. These markers were mapped to 29 linkage groups (LGs) with 30,591 unique marker positions. This linkage map anchored 1,602 scaffolds of the reference genome sequence to LGs, accounting for over 97% of the total genome assembly. A total of 1,007 previously unmapped scaffolds were placed to LGs, allowing validation and in few instances correction of the reference genome sequence assembly. This linkage map should serve as a valuable resource for various genetic and genomic analyses, especially for GWAS and QTL mapping for genes associated with economically important traits. PMID:28079141

  20. Development of a 690 K SNP array in catfish and its application for genetic mapping and validation of the reference genome sequence.

    PubMed

    Zeng, Qifan; Fu, Qiang; Li, Yun; Waldbieser, Geoff; Bosworth, Brian; Liu, Shikai; Yang, Yujia; Bao, Lisui; Yuan, Zihao; Li, Ning; Liu, Zhanjiang

    2017-01-12

    Single nucleotide polymorphisms (SNPs) are capable of providing the highest level of genome coverage for genomic and genetic analysis because of their abundance and relatively even distribution in the genome. Such a capacity, however, cannot be achieved without an efficient genotyping platform such as SNP arrays. In this work, we developed a high-density SNP array with 690,662 unique SNPs (herein 690 K array) that were relatively evenly distributed across the entire genome, and covered 98.6% of the reference genome sequence. Here we also report linkage mapping using the 690 K array, which allowed mapping of over 250,000 SNPs on the linkage map, the highest marker density among all the constructed linkage maps. These markers were mapped to 29 linkage groups (LGs) with 30,591 unique marker positions. This linkage map anchored 1,602 scaffolds of the reference genome sequence to LGs, accounting for over 97% of the total genome assembly. A total of 1,007 previously unmapped scaffolds were placed to LGs, allowing validation and in few instances correction of the reference genome sequence assembly. This linkage map should serve as a valuable resource for various genetic and genomic analyses, especially for GWAS and QTL mapping for genes associated with economically important traits.

  1. QTL and association analysis for skin and fibre pigmentation in sheep provides evidence of a major causative mutation and epistatic effects.

    PubMed

    Raadsma, H W; Jonas, E; Fleet, M R; Fullard, K; Gongora, J; Cavanagh, C R; Tammen, I; Thomson, P C

    2013-08-01

    The pursuits of white features and white fleeces free of pigmented fibre have been important selection objectives for many sheep breeds. The cause and inheritance of non-white colour patterns in sheep has been studied since the early 19th century. Discovery of genetic causes, especially those which predispose pigmentation in white sheep, may lead to more accurate selection tools for improved apparel wool. This article describes an extended QTL study for 13 skin and fibre pigmentation traits in sheep. A total of 19 highly significant, 10 significant and seven suggestive QTL were identified in a QTL mapping experiment using an Awassi × Merino × Merino backcross sheep population. All QTL on chromosome 2 exceeded a LOD score of greater than 4 (range 4.4-30.1), giving very strong support for a major gene for pigmentation on this chromosome. Evidence of epistatic interactions was found for QTL for four traits on chromosomes 2 and 19. The ovine TYRP1 gene on OAR 2 was sequenced as a strong positional candidate gene. A highly significant association (P < 0.01) of grandparental haplotypes across nine segregating SNP/microsatellite markers including one non-synonymous SNP with pigmentation traits could be shown. Up to 47% of the observed variation in pigmentation was accounted for by models using TYRP1 haplotypes and 83% for models with interactions between two QTL probabilities, offering scope for marker-assisted selection for these traits.

  2. GWAS analysis of QTL for enteric septicemia of catfish and their involved genes suggest evolutionary conservation of a molecular mechanism of disease resistance.

    PubMed

    Zhou, Tao; Liu, Shikai; Geng, Xin; Jin, Yulin; Jiang, Chen; Bao, Lisui; Yao, Jun; Zhang, Yu; Zhang, Jiaren; Sun, Luyang; Wang, Xiaozhu; Li, Ning; Tan, Suxu; Liu, Zhanjiang

    2017-02-01

    Disease problems cause major economic losses for the aquaculture industries. In catfish, enteric septicemia of catfish (ESC), caused by the bacterial pathogen Edwardsiella ictaluri, is the leading disease problem, causing tens of millions of dollars of annual economic losses. In this study, we conducted a genome-wide association study to determine quantitative trait loci (QTL) for resistance against ESC using an interspecific hybrid system. Five hundred fish were used in the analysis and 192 phenotypic extremes were used for genotyping with the catfish 250K SNP arrays. A genomic region on linkage group (LG) 1 was found significantly associated with ESC disease resistance. In addition, two suggestively associated QTL for ESC resistance were identified on LG 12 and LG 16. The nlrc3 duplicates were identified within all the three QTL, suggesting their importance in association with the QTL. Within the significant QTL on LG 1, 16 genes with known functions in immunity were identified. Of particular interest is the nck1 gene nearby the most significantly associated SNP. Nck1 was known to function as an adaptor to facilitating the pathogenesis of enteropathogenic Escherichia coli (EPEC) in humans. E. ictaluri and EPEC pathogens belong to the same bacterial family and share many common characteristics. The fact that nck1 is mapped in the QTL and that it was significantly upregulated in channel catfish intestine after ESC challenge suggested its candidacy of being involved in resistance/susceptibility of ESC.

  3. A major QTL introgressed from wild Lycopersicon hirsutum confers chilling tolerance to cultivated tomato (Lycopersicon esculentum).

    PubMed

    John Goodstal, F; Kohler, Glenn R; Randall, Leslie B; Bloom, Arnold J; St Clair, Dina A

    2005-09-01

    Many plants of tropical or subtropical origin, such as tomato, suffer damage under chilling temperatures (under 10 degrees C but above 0 degrees C). An earlier study identified several quantitative trait loci (QTLs) for shoot turgor maintenance (stm) under root chilling in an interspecific backcross population derived from crossing chilling-susceptible cultivated tomato (Lycopersicon esculentum) and chilling-tolerant wild L. hirsutum. The QTL with the greatest phenotypic effect on stm was located in a 28 cM region on chromosome 9 (designated stm 9), and enhanced chilling-tolerance was conferred by the presence of the Lycopersicon hirsutum allele at this QTL. Here, near-isogenic lines (NILs) were used to verify the effect of stm 9, and recombinant sub-NILs were used to fine map its position. Replicated experiments were performed with NILs and sub-NILs in a refrigerated hydroponic tank in the greenhouse. Sub-NIL data was analyzed using least square means separations, marker-genotype mean t-tests, and composite interval mapping. A dominant QTL controlling shoot turgor maintenance under root chilling was confirmed on chromosome 9 using both NILs and sub-NILs. Furthermore, sub-NILs permitted localization of stm 9 to a 2.7 cM interval within the original 28 cM QTL region. If the presence of the L. hirsutum allele at stm 9 also confers chilling-tolerance in L. esculentum plants grown under field conditions, it has the potential to expand the geographic areas in which cultivated tomato can be grown for commercial production.

  4. Microgravity Drill and Anchor System

    NASA Technical Reports Server (NTRS)

    Parness, Aaron; Frost, Matthew A.; King, Jonathan P.

    2013-01-01

    This work is a method to drill into a rock surface regardless of the gravitational field or orientation. The required weight-on-bit (WOB) is supplied by a self-contained anchoring mechanism. The system includes a rotary percussive coring drill, forming a complete sampling instrument usable by robot or human. This method of in situ sample acquisition using micro - spine anchoring technology enables several NASA mission concepts not currently possible with existing technology, including sampling from consolidated rock on asteroids, providing a bolt network for astronauts visiting a near-Earth asteroid, and sampling from the ceilings or vertical walls of lava tubes and cliff faces on Mars. One of the most fundamental parameters of drilling is the WOB; essentially, the load applied to the bit that allows it to cut, creating a reaction force normal to the surface. In every drilling application, there is a minimum WOB that must be maintained for the system to function properly. In microgravity (asteroids and comets), even a small WOB could not be supported conventionally by the weight of the robot or astronaut. An anchoring mechanism would be needed to resist the reactions, or the robot or astronaut would push themselves off the surface and into space. The ability of the system to anchor itself to a surface creates potential applications that reach beyond use in low gravity. The use of these anchoring mechanisms as end effectors on climbing robots has the potential of vastly expanding the scope of what is considered accessible terrain. Further, because the drill is supported by its own anchor rather than by a robotic arm, the workspace is not constrained by the reach of such an arm. Yet, if the drill is on a robotic arm, it has the benefit of not reflecting the forces of drilling back to the arm s joints. Combining the drill with the anchoring feet will create a highly mobile, highly stable, and highly reliable system. The drilling system s anchor uses hundreds of

  5. An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations.

    PubMed

    Qin, Hongde; Feng, Suping; Chen, Charles; Guo, Yufang; Knapp, Steven; Culbreath, Albert; He, Guohao; Wang, Ming Li; Zhang, Xinyou; Holbrook, C Corley; Ozias-Akins, Peggy; Guo, Baozhu

    2012-03-01

    Construction and improvement of a genetic map for peanut (Arachis hypogaea L.) continues to be an important task in order to facilitate quantitative trait locus (QTL) analysis and the development of tools for marker-assisted breeding. The objective of this study was to develop a comparative integrated map from two cultivated × cultivated recombinant inbred line (RIL) mapping populations and to apply in mapping Tomato spotted wilt virus (TSWV) resistance trait in peanut. A total of 4,576 simple sequence repeat (SSR) markers from three sources: published SSR markers, newly developed SSR markers from expressed sequence tags (EST) and from bacterial artificial chromosome end-sequences were used for screening polymorphisms. Two cleaved amplified polymorphic sequence markers were also included to differentiate ahFAD2A alleles and ahFAD2B alleles. A total of 324 markers were anchored on this integrated map covering 1,352.1 cM with 21 linkage groups (LGs). Combining information from duplicated loci between LGs and comparing with published diploid maps, seven homoeologous groups were defined and 17 LGs (A1-A10, B1-B4, B7, B8, and B9) were aligned to corresponding A-subgenome or B-subgenome of diploid progenitors. One reciprocal translocation was confirmed in the tetraploid-cultivated peanut genome. Several chromosomal rearrangements were observed by comparing with published cultivated peanut maps. High consistency with cultivated peanut maps derived from different populations may support this integrated map as a reliable reference map for peanut whole genome sequencing assembling. Further two major QTLs for TSWV resistance were identified for each RILs, which illustrated the application of this map.

  6. Deficiency mapping of quantitative trait loci affecting longevity in Drosophila melanogaster.

    PubMed Central

    Pasyukova, E G; Vieira, C; Mackay, T F

    2000-01-01

    In a previous study, sex-specific quantitative trait loci (QTL) affecting adult longevity were mapped by linkage to polymorphic roo transposable element markers, in a population of recombinant inbred lines derived from the Oregon and 2b strains of Drosophila melanogaster. Two life span QTL were each located on chromosomes 2 and 3, within sections 33E-46C and 65D-85F on the cytological map, respectively. We used quantitative deficiency complementation mapping to further resolve the locations of life span QTL within these regions. The Oregon and 2b strains were each crossed to 47 deficiencies spanning cytological regions 32F-44E and 64C-76B, and quantitative failure of the QTL alleles to complement the deficiencies was assessed. We initially detected a minimum of five and four QTL in the chromosome 2 and 3 regions, respectively, illustrating that multiple linked factors contribute to each QTL detected by recombination mapping. The QTL locations inferred from deficiency mapping did not generally correspond to those of candidate genes affecting oxidative and thermal stress or glucose metabolism. The chromosome 2 QTL in the 35B-E region was further resolved to a minimum of three tightly linked QTL, containing six genetically defined loci, 24 genes, and predicted genes that are positional candidates corresponding to life span QTL. This region was also associated with quantitative variation in life span in a sample of 10 genotypes collected from nature. Quantitative deficiency complementation is an efficient method for fine-scale QTL mapping in Drosophila and can be further improved by controlling the background genotype of the strains to be tested. PMID:11063689

  7. Genetic analysis of metabolites in apple fruits indicates an mQTL hotspot for phenolic compounds on linkage group 16

    PubMed Central

    Khan, Sabaz Ali; Chibon, Pierre-Yves; de Vos, Ric C.H.; Schipper, Bert A.; Walraven, Evert; Beekwilder, Jules; van Dijk, Thijs; Finkers, Richard; Visser, Richard G.F.; van de Weg, Eric W.; Bovy, Arnaud; Cestaro, Alessandro; Velasco, Riccardo; Jacobsen, Evert; Schouten, Henk J.

    2012-01-01

    Apple (Malus×domestica Borkh) is among the main sources of phenolic compounds in the human diet. The genetic basis of the quantitative variations of these potentially beneficial phenolic compounds was investigated. A segregating F1 population was used to map metabolite quantitative trait loci (mQTLs). Untargeted metabolic profiling of peel and flesh tissues of ripe fruits was performed using liquid chromatography–mass spectrometry (LC-MS), resulting in the detection of 418 metabolites in peel and 254 in flesh. In mQTL mapping using MetaNetwork, 669 significant mQTLs were detected: 488 in the peel and 181 in the flesh. Four linkage groups (LGs), LG1, LG8, LG13, and LG16, were found to contain mQTL hotspots, mainly regulating metabolites that belong to the phenylpropanoid pathway. The genetics of annotated metabolites was studied in more detail using MapQTL®. A number of quercetin conjugates had mQTLs on LG1 or LG13. The most important mQTL hotspot with the largest number of metabolites was detected on LG16: mQTLs for 33 peel-related and 17 flesh-related phenolic compounds. Structural genes involved in the phenylpropanoid biosynthetic pathway were located, using the apple genome sequence. The structural gene leucoanthocyanidin reductase (LAR1) was in the mQTL hotspot on LG16, as were seven transcription factor genes. The authors believe that this is the first time that a QTL analysis was performed on such a high number of metabolites in an outbreeding plant species. PMID:22330898

  8. [Stable expression of QTL for grain shape of milled rice (Oryza sativa L. ) using a CSSLs population].

    PubMed

    Wan, Xiang-Yuan; Liu, Shi-Jia; Wang, Chun-Ming; Jiang, Ling; Zhai, Hu-Qu; Atsushi, Yoshimura; Wan, Jian-Min

    2004-11-01

    A set of chromosome segment substitution lines (CSSLs), derived from Asominori/IR24 with Asominori as the recurrent parent,was planted and phenotyped for grain length (GL), grain width (GW) and length-width ratio (LWR) of milled rice in two successive years and four sites. QTL for GL,GW and LWR were characterized and stability of their expression was investigated. The phenotypic values for each trait showed a continuous distribution and some transgressive lines were also observed in the CSSLs population. Additionally, a total of 13 QTL for GL, GW and LWR were identified,and six of them were consistently detected in the eight different environments. Phenotypic values were different significantly (P < 0. 001) between the CSSLs harboring any of the six QTL alleles and the genetic background parent, Asominori. Significant phenotypic correlations (r > or = 0.75, r0.05 = 0.67) were detected among different environments for these CSSLs carrying the same target QTL. Also, the results indicated that the six QTL, namely, qGL-3 for GL, qGW-5a and qGW-5b for GW, qLWR-3, qLWR-5a and qLWR-5b for LWR, were stably expressed in different environments. Since QTL qGL-3 and qLWR-3 were mapped in the R19-C1677 interval, qGW-5a and qLWR-5a in the vicinity of RFLP marker C263, qGW-5b and qLWR-5b near R569,the four RFLP markers, R19, C1677, C263 and R569,would be useful for further marker-assisted selection (MAS) in rice quality improvement.

  9. How anchoring proteins shape pain.

    PubMed

    Fischer, Michael J M; McNaughton, Peter A

    2014-09-01

    Cellular responsiveness to external stimuli can be altered by extracellular mediators which activate membrane receptors, in turn signalling to the intracellular space via calcium, cyclic nucleotides, membrane lipids or enzyme activity. These signalling events trigger a cascade leading to an effector which can be a channel, an enzyme or a transcription factor. The effectiveness of these intracellular events is enhanced when they are maintained in close proximity by anchoring proteins, which assemble complexes of signalling molecules such as kinases together with their targets, and in this way enhance both the speed and the precision of intracellular signalling. The A kinase anchoring protein (AKAP) family are adaptor proteins originally named for their ability to associate Protein Kinase A and its targets, but several other enzymes bound by AKAPs have now been found and a wide variety of target structures has been described. This review provides an overview of anchoring proteins involved in pain signalling. The key anchoring proteins and their ion channel targets in primary sensory neurons responding to painful stimuli (nociceptors) are discussed.

  10. ATHLETE : Double Auger Anchoring Mechanism

    NASA Technical Reports Server (NTRS)

    Shin, Joseph

    2011-01-01

    The All-Terrain Hex-Legged Extra-Terrestrial Explorer (ATHLETE) is a six-limbed robot designed to support surface explorations on Near Earth Objects, the Moon and Mars. ATHLETE can carry large payloads on its top deck and can carry a fully equipped pressurized habitat in low gravity. The robot has wheels on each of its six articulated limbs, allowing it to actively conform to terrain while driving and to walk when driving is impractical. With the use of a tool adapter, ATHLETE limbs can be equipped with end effectors to support various mission objectives. For work on Near Earth Objects and other microgravity environments, an anchoring mechanism is needed to keep the ATHLETE from floating off the surface. My goal for this spring session at JPL was to design and build a counter rotating, double auger, anchoring mechanism. The mechanism mates to the tool adapter and is driven off the wheel motor. The double auger anchoring mechanism will be tested in a regolith simulant that will determine the uplift capacity of the anchoring mechanism.

  11. Holding Capacity of Plate Anchors

    DTIC Science & Technology

    1980-10-01

    embedded anchor, and a functional sequence is shown in Figure 1-3. On contact- ing the seafloor, the touchdown probe triggers the safe/arm device which...OOC-DG DiGeorge . Washington, DC; Code 0325, Program Mgr, Washington, DC; Code OOC (LT R. MacDougal). Washington DC; Code OOC-D, Washington, DC; Code PMS

  12. Construction of an interspecific genetic map based on InDel and SSR for mapping the QTLs affecting the initiation of flower primordia in pepper (Capsicum spp.).

    PubMed

    Tan, Shu; Cheng, Jiao-Wen; Zhang, Li; Qin, Cheng; Nong, Ding-Guo; Li, Wei-Peng; Tang, Xin; Wu, Zhi-Ming; Hu, Kai-Lin

    2015-01-01

    Re-sequencing permits the mining of genome-wide variations on a large scale and provides excellent resources for the research community. To accelerate the development and application of molecular markers and identify the QTLs affecting the flowering time-related trait in pepper, a total of 1,038 pairs of InDel and 674 SSR primers from different sources were used for genetic mapping using the F2 population (n = 154) derived from a cross between BA3 (C. annuum) and YNXML (C. frutescens). Of these, a total of 224 simple PCR-based markers, including 129 InDels and 95 SSRs, were validated and integrated into a map, which was designated as the BY map. The BY map consisted of 13 linkage groups (LGs) and spanned a total genetic distance of 1,249.77 cM with an average marker distance of 5.60 cM. Comparative analysis of the genetic and physical map based on the anchored markers showed that the BY map covered nearly the whole pepper genome. Based on the BY map, one major and five minor QTLs affecting the number of leaves on the primary axis (Nle) were detected on chromosomes P2, P7, P10 and P11 in 2012. The major QTL on P2 was confirmed based on another subset of the same F2 population (n = 147) in 2014 with selective genotyping of markers from the BY map. With the accomplishment of pepper whole genome sequencing and annotations (release 2.0), 153 candidate genes were predicted to embed in the Nle2.2 region, of which 12 important flowering related genes were obtained. The InDel/SSR-based interspecific genetic map, QTLs and candidate genes obtained by the present study will be useful for the downstream isolation of flowering time-related gene and other genetic applications for pepper.

  13. A radiation hybrid map of the European sea bass (Dicentrarchus labrax) based on 1581 markers: Synteny analysis with model fish genomes.

    PubMed

    Guyon, Richard; Senger, Fabrice; Rakotomanga, Michaelle; Sadequi, Naoual; Volckaert, Filip A M; Hitte, Christophe; Galibert, Francis

    2010-10-01

    The selective breeding of fish for aquaculture purposes requires the understanding of the genetic basis of traits such as growth, behaviour, resistance to pathogens and sex determinism. Access to well-developed genomic resources is a prerequisite to improve the knowledge of these traits. Having this aim in mind, a radiation hybrid (RH) panel of European sea bass (Dicentrarchus labrax) was constructed from splenocytes irradiated at 3000 rad, allowing the construction of a 1581 marker RH map. A total of 1440 gene markers providing ~4400 anchors with the genomes of three-spined stickleback, medaka, pufferfish and zebrafish, helped establish synteny relationships with these model species. The identification of Conserved Segments Ordered (CSO) between sea bass and model species allows the anticipation of the position of any sea bass gene from its location in model genomes. Synteny relationships between sea bass and gilthead seabream were addressed by mapping 37 orthologous markers. The sea bass genetic linkage map was integrated in the RH map through the mapping of 141 microsatellites. We are thus able to present the first complete gene map of sea bass. It will facilitate linkage studies and the identification of candidate genes and Quantitative Trait Loci (QTL). The RH map further positions sea bass as a genetic and evolutionary model of Perciformes and supports their ongoing aquaculture expansion.

  14. Quantitative trait loci mapping and genetic dissection for lint percentage in upland cotton (Gossypium hirsutum).

    PubMed

    Wang, Min; Li, Chengqi; Wang, Qinglian

    2014-08-01

    Lint percentage is an important character of cotton yield components and it is also correlated with cotton fibre development. In this study, we used a high lint percentage variety, Baimian1, and a low lint percentage, TM-1 genetic standard for Gossypium hirsutum, as parents to construct a mapping populations in upland cotton (G. hirsutum). A quantitative trait locus/loci (QTL) analysis of lint percentage was performed by using two mapping procedures; composite interval mapping (CIM), inclusive composite interval mapping (ICIM) and the F2:3 populations in 2 years. Six main-effect QTL (M-QTL) for lint percentage (four significant and two suggestive) were detected in both years by CIM, and were located on chr. 3, chr. 19, chr. 26 and chr. 5/chr. 19. Of the six QTL, marker intervals and favourable gene sources of the significant M-QTL, qLP-3(2010) and qLP-3(2011) were consistent. These QTL were also detected by ICIM, and therefore, should preferentially be used for markerassisted selection (MAS) of lint percentage. Another M-QTL, qLP-19(2010), was detected by two mapping procedures, and it could also be a candidate for MAS. We detected the interaction between two M-QTL and environment, and 11 epistatic QTL (E-QTL) and their interaction with environment by using ICIM. The study also found two EST-SSRs, NAU1187 and NAU1255, linked to M-QTL for lint percentage that could be candidate markers affecting cotton fibre development.

  15. OTEC Anchors: Selection and Plan for Development.

    DTIC Science & Technology

    1977-12-01

    Anchor systems capable of maintaining the Ocean Thermal Energy Conversion ( OTEC ) power plants on station were identified and compared. Deadweight...for OTEC , however, is probably not necessary because it is expected that such hard seafloor anchor sites are best avoided by OTEC plants. A plan for...structural analysis and design technique for the anchor, and finally a demonstration of a near prototype size OTEC free-fall deadweight anchor in early 1980. (Author)

  16. Effect of the Texel muscling QTL (TM-QTL) on spine characteristics in purebred Texel lambs

    PubMed Central

    Donaldson, C.L.; Lambe, N.R.; Maltin, C.A.; Knott, S.; Bünger, L.

    2014-01-01

    Previous work showed that the Texel muscling QTL (TM-QTL) results in pronounced hypertrophy in the loin muscle, with the largest phenotypic effects observed in lambs inheriting a single copy of the allele from the sire. As the loin runs parallel to the spinal vertebrae, and the development of muscle and bone are closely linked, the primary aim of this study was to investigate if there were any subsequent associations between TM-QTL inheritance and underlying spine characteristics (vertebrae number, VN; spine region length, SPL; average length of individual vertebrae, VL) of the thoracic, lumbar, and thoracolumbar spine regions. Spine characteristics were measured from X-ray computed tomography (CT) scans for 142 purebred Texel lambs which had been previously genotyped. Least-squares means were significantly different between genotype groups for lumbar and thoracic VN and lumbar SPL. Similarly for these traits, contrasts were shown to be significant for particular modes of gene action but overall were inconclusive. In general, the results showed little evidence that spine trait phenotypes were associated with differences in loin muscling associated with the different TM-QTL genotypes. PMID:25844019

  17. Association studies in QTL regions linked to bovine trypanotolerance in a West African crossbred population.

    PubMed

    Dayo, G K; Gautier, M; Berthier, D; Poivey, J P; Sidibe, I; Bengaly, Z; Eggen, A; Boichard, D; Thevenon, S

    2012-04-01

    African animal trypanosomosis is a parasitic blood disease transmitted by tsetse flies and is widespread in sub-Saharan Africa. West African taurine breeds have the ability, known as trypanotolerance, to limit parasitaemia and anaemia and remain productive in enzootic areas. Several quantitative trait loci (QTL) underlying traits related to trypanotolerance have been identified in an experimentally infected F(2) population resulting from a cross between taurine and zebu cattle. Although this information is highly valuable, the QTL remain to be confirmed in populations subjected to natural conditions of infection, and the corresponding regions need to be refined. In our study, 360 West African cattle were phenotyped for the packed cell volume control under natural conditions of infection in south-western Burkina Faso. Phenotypes were assessed by analysing data from previous cattle monitored over 2 years in an area enzootic for trypanosomosis. We further genotyped for 64 microsatellite markers mapping within four previously reported QTL on BTA02, BTA04, BTA07 and BTA13. These data enabled us to estimate the heritability of the phenotype using the kinship matrix between individuals computed from genotyping data. Thus, depending on the estimators considered and the method used, the heritability of anaemia control ranged from 0.09 to 0.22. Finally, an analysis of association identified an allele of the MNB42 marker on BTA04 as being strongly associated with anaemia control, and a candidate gene, INHBA, as being close to that marker.

  18. Accurate and fast multiple-testing correction in eQTL studies.

    PubMed

    Sul, Jae Hoon; Raj, Towfique; de Jong, Simone; de Bakker, Paul I W; Raychaudhuri, Soumya; Ophoff, Roel A; Stranger, Barbara E; Eskin, Eleazar; Han, Buhm

    2015-06-04

    In studies of expression quantitative trait loci (eQTLs), it is of increasing interest to identify eGenes, the genes whose expression levels are associated with variation at a particular genetic variant. Detecting eGenes is important for follow-up analyses and prioritization because genes are the main entities in biological processes. To detect eGenes, one typically focuses on the genetic variant with the minimum p value among all variants in cis with a gene and corrects for multiple testing to obtain a gene-level p value. For performing multiple-testing correction, a permutation test is widely used. Because of growing sample sizes of eQTL studies, however, the permutation test has become a computational bottleneck in eQTL studies. In this paper, we propose an efficient approach for correcting for multiple testing and assess eGene p values by utilizing a multivariate normal distribution. Our approach properly takes into account the linkage-disequilibrium structure among variants, and its time complexity is independent of sample size. By applying our small-sample correction techniques, our method achieves high accuracy in both small and large studies. We have shown that our method consistently produces extremely accurate p values (accuracy > 98%) for three human eQTL datasets with different sample sizes and SNP densities: the Genotype-Tissue Expression pilot dataset, the multi-region brain dataset, and the HapMap 3 dataset.

  19. The application of the entropy-based statistic for genomic association study of QTL.

    PubMed

    Xiang, Yang; Li, Yumei; Liu, Zaiming; Sun, Zhenqiu

    2008-03-01

    An entropy-based statistic T(PE) has been proposed for genomic association study for disease-susceptibility locus. The statistic T(PE) may be directly adopted and/or extended to quantitative-trait locus (QTL) mapping for quantitative traits. In this article, the statistic T(PE) was extended and applied to quantitative trait for association analysis of QTL by means of selective genotyping. The statistical properties (the type I error rate and the power) were examined under a range of parameters and population-sampling strategies (e.g., various genetic models, various heritabilities, and various sample-selection threshold values) by simulation studies. The results indicated that the statistic T(PE) is robust and powerful for genomic association study of QTL. A simulation study based on the haplotype frequencies of 10 single nucleotide polymorphisms (SNPs) of angiotensin-I converting enzyme genes was conducted to evaluate the performance of the statistic T(PE) for genetic association study.

  20. Quantitative trait locus mapping in laboratory mice derived from a replicated selection experiment for open-field activity.

    PubMed Central

    Turri, M G; Henderson, N D; DeFries, J C; Flint, J

    2001-01-01

    Bidirectional selection in rodents has been used to derive animal models of human behavior. An important question is whether selection for behavior operates on a limited number of QTL or whether the number and individual contribution of QTL varies between selection experiments. To address this question, we mapped QTL in two large F2 intercrosses (N = 815 and 821) from the four lines derived from a replicated selection experiment for open-field activity, an animal model for susceptibility to anxiety. Our analyses indicate that selection operated on the same relatively small number of loci in both crosses. Haplotype information and the direction of effect of each QTL allele were used to confirm that the QTL mapped in the two crosses lie in the same chromosomal regions, although we were unable to determine whether QTL in the two crosses represent the same genes. We conclude that the genetic architecture of the selected strains is similar and relatively simple. PMID:11454769

  1. QTL for phytosterol and sinapate ester content in Brassica napus L. collocate with the two erucic acid genes.

    PubMed

    Amar, Samija; Ecke, Wolfgang; Becker, Heiko C; Möllers, Christian

    2008-05-01

    Improving oil and protein quality for food and feed purposes is an important goal in rapeseed (Brassica napus L.) breeding programs. Rapeseed contains phytosterols, used to enrich food products, and sinapate esters, which are limiting the utilization of rapeseed proteins in the feed industry. Increasing the phytosterol content of oil and lowering sinapate ester content of meal could increase the value of the oilseed rape crop. The objective of the present study was to identify quantitative trait loci (QTL) for phytosterol and sinapate ester content in a winter rapeseed population of 148 doubled haploid lines, previously found to have a large variation for these two traits. This population also segregated for the two erucic acid genes. A close negative correlation was found between erucic acid and phytosterol content (Spearman's rank correlation, r(s) = -0.80**). For total phytosterol content, three QTL were detected, explaining 60% of the genetic variance. The two QTL with the strongest additive effects were mapped on linkage groups N8 and N13 within the confidence intervals of the two erucic acid genes. For sinapate ester content four QTL were detected, explaining 53% of the genetic variance. Again, a close negative correlation was found between erucic acid and sinapate ester content (r(s) = -0.66**) and the QTL with the strongest additive effects mapped on linkage groups N8 and N13 within the confidence intervals of the two erucic acid genes. The results suggests, that there is a pleiotropic effect of the two erucic acid genes on phytosterol and sinapate ester content; the effect of the alleles for low erucic acid content is to increase phytosterol and sinapate ester content. Possible reasons for this are discussed based on known biosynthetic pathways.

  2. An Anchor-Based Pedestrian Navigation Approach Using Only Inertial Sensors

    PubMed Central

    Gu, Yang; Song, Qian; Li, Yanghuan; Ma, Ming; Zhou, Zhimin

    2016-01-01

    In inertial-based pedestrian navigation, anchors can effectively compensate the positioning errors originating from deviations of Inertial Measurement Units (IMUs), by putting constraints on pedestrians’ motions. However, these anchors often need to be deployed beforehand, which can greatly increase system complexity, rendering it unsuitable for emergency response missions. In this paper, we propose an anchor-based pedestrian navigation approach without any additional sensors. The anchors are defined as the intersection points of perpendicular corridors and are considered characteristics of building structures. In contrast to these real anchors, virtual anchors are extracted from the pedestrian’s trajectory and are considered as observations of real anchors, which can accordingly be regarded as inferred building structure characteristics. Then a Rao-Blackwellized particle filter (RBPF) is used to solve the joint estimation of positions (trajectory) and maps (anchors) problem. Compared with other building structure-based methods, our method has two advantages. The assumption on building structure is minimum and valid in most cases. Even if the assumption does not stand, the method will not lead to positioning failure. Several real-scenario experiments are conducted to validate the effectiveness and robustness of the proposed method. PMID:26959031

  3. In-silico mapping of quantitative trait loci for lactation-associated traits in inbred mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Significant variation exists for fecundity and maternal nurturing ability in inbred mice. Classical gene mapping approaches in mice have identified several quantitative trait loci (QTL) that account for some this variation. Current studies in our laboratory are aimed at identifying QTL genes that un...

  4. Genetic mapping of quantitative trait loci for milk production in sheep.

    PubMed

    Mateescu, R G; Thonney, M L

    2010-10-01

    A backcross pedigree using dairy East Friesian rams and non-dairy Dorset ewes was established specifically to map quantitative trait loci (QTL) affecting milk production in sheep. Ninety nine microsatellite markers of an initial set of 120 were successfully genotyped and informative on 188 animals of this backcross pedigree. Test-day milk records on individual ewes were used to estimate several milk yield related traits, including peak milk yield and cumulative milk yield to 50 (MY50), 100 (MY100) and 250 days (MY250). These traits, as well as estimated breeding value of backcross ewes extracted from the genetic evaluation file of the entire flock, were used in interval mapping. Ovine chromosomes 2, 12, 18, 20 and 24 were identified to harbour putative QTL for different measures of milk production. The QTL on Ovis aries chromosomes (OAR) 2 and 20 mapped to locations where similar trait QTL have already been mapped in other studies, whereas QTL on OAR 12, 18 and 24 were unique to our backcross pedigree and have not been reported previously. In addition, all identified QTL regions were syntenic with bovine chromosomal segments revealed to harbour QTL affecting milk production traits, providing supporting evidence for the QTL identified here.

  5. Linkage disequilibrium fine mapping of quantitative trait loci: A simulation study

    PubMed Central

    Abdallah, Jihad M; Goffinet, Bruno; Cierco-Ayrolles, Christine; Pérez-Enciso, Miguel

    2003-01-01

    Recently, the use of linkage disequilibrium (LD) to locate genes which affect quantitative traits (QTL) has received an increasing interest, but the plausibility of fine mapping using linkage disequilibrium techniques for QTL has not been well studied. The main objectives of this work were to (1) measure the extent and pattern of LD between a putative QTL and nearby markers in finite populations and (2) investigate the usefulness of LD in fine mapping QTL in simulated populations using a dense map of multiallelic or biallelic marker loci. The test of association between a marker and QTL and the power of the test were calculated based on single-marker regression analysis. The results show the presence of substantial linkage disequilibrium with closely linked marker loci after 100 to 200 generations of random mating. Although the power to test the association with a frequent QTL of large effect was satisfactory, the power was low for the QTL with a small effect and/or low frequency. More powerful, multi-locus methods may be required to map low frequent QTL with small genetic effects, as well as combining both linkage and linkage disequilibrium information. The results also showed that multiallelic markers are more useful than biallelic markers to detect linkage disequilibrium and association at an equal distance. PMID:12939203

  6. Linkage mapping of domestication loci in a large maize-teosinte backcross resource

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An ultimate objective of QTL mapping is cloning genes responsible for quantitative traits. However, projects seldom go beyond segments narrower than 5 cM without subsequent breeding and genotyping lines to identify additional crossovers in a genomic region of interest. We report on a QTL analysis ...

  7. Quantitative trait loci mapping in dairy cattle: review and meta-analysis.

    PubMed

    Khatkar, Mehar S; Thomson, Peter C; Tammen, Imke; Raadsma, Herman W

    2004-01-01

    From an extensive review of public domain information on dairy cattle quantitative trait loci (QTL), we have prepared a draft online QTL map for dairy production traits. Most publications (45 out of 55 reviewed) reported QTL for the major milk production traits (milk, fat and protein yield, and fat and protein concentration (%)) and somatic cell score. Relatively few QTL studies have been reported for more complex traits such as mastitis, fertility and health. The collated QTL map shows some chromosomal regions with a high density of QTL, as well as a substantial number of QTL at single chromosomal locations. To extract the most information from these published records, a meta-analysis was conducted to obtain consensus on QTL location and allelic substitution effect of these QTL. This required modification and development of statistical methodologies. The meta-analysis indicated a number of consensus regions, the most striking being two distinct regions affecting milk yield on chromosome 6 at 49 cM and 87 cM explaining 4.2 and 3.6 percent of the genetic variance of milk yield, respectively. The first of these regions (near marker BM143) affects five separate milk production traits (protein yield, protein percent, fat yield, fat percent, as well as milk yield).

  8. Quantitative trait loci mapping in dairy cattle: review and meta-analysis

    PubMed Central

    Khatkar, Mehar S; Thomson, Peter C; Tammen, Imke; Raadsma, Herman W

    2004-01-01

    From an extensive review of public domain information on dairy cattle quantitative trait loci (QTL), we have prepared a draft online QTL map for dairy production traits. Most publications (45 out of 55 reviewed) reported QTL for the major milk production traits (milk, fat and protein yield, and fat and protein concentration (%)) and somatic cell score. Relatively few QTL studies have been reported for more complex traits such as mastitis, fertility and health. The collated QTL map shows some chromosomal regions with a high density of QTL, as well as a substantial number of QTL at single chromosomal locations. To extract the most information from these published records, a meta-analysis was conducted to obtain consensus on QTL location and allelic substitution effect of these QTL. This required modification and development of statistical methodologies. The meta-analysis indicated a number of consensus regions, the most striking being two distinct regions affecting milk yield on chromosome 6 at 49 cM and 87 cM explaining 4.2 and 3.6 percent of the genetic variance of milk yield, respectively. The first of these regions (near marker BM143) affects five separate milk production traits (protein yield, protein percent, fat yield, fat percent, as well as milk yield). PMID:15040897

  9. Toward a better understanding of the genomic region harboring Fusarium head blight resistance QTL Qfhs.ndsu-3AS in durum wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The wild emmer wheat (Triticum dicoccoides)-derived Fusarium head blight (FHB) resistance quantitative trait locus (QTL) Qfhs.ndsu-3AS previously mapped to the short arm of chromosome 3A (3AS) in a population of recombinant inbred chromosome lines (RICLs). This study aimed to attain a better unders...

  10. Sequencing of a QTL-rich region of the Theobroma cacao genome using pooled BACs and the identification of trait specific candidate genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: BAC-based physical maps provide for sequencing across an entire genome or selected sub-genome regions of biological interest. Using the minimum tiling path as a guide, it is possible to select specific BAC clones from prioritized genome sections such as a genetically defined QTL interv...

  11. fw 2.2:a major QTL controlling fruit weight is common to both red- and green-fruited tomato species.

    PubMed

    Alpert, K B; Grandillo, S; Tanksley, S D

    1995-11-01

    We have shown that a major QTL for fruit weight (fw2.2) maps to the same position on chromosome 2 in the green-fruited wild tomato species, Lycopersicon pennellii and in the red-fruited wild tomato species, L. pimpinellifolium. An introgression line F2 derived from L. esculentum (tomato) x L. pennellii and a backcross 1 (BC1) population derived from L. esculentum x L. pimpinellifolium both place fw2.2 near TG91 and TG167 on chromosome 2 of the tomato highdensity linkage map. fw2.2 accounts for 30% and 47% of the total phenotypic variance in the L. pimpinellifolium and L. pennellii populations, respectively, indicating that this is a major QTL controlling fruit weight in both species. Partial dominance (d/a of 0.44) was observed for the L. pennellii allele of fw 2.2 as compared with the L. esculentum allele. A QTL with very similar phenotypic affects and gene action has also been identified and mapped to the same chromosomal region in other wild tomato accessions: L. cheesmanii and L. pimpinellifolium. Together, these data suggest that fw2.2 represents an orthologous QTL (i.e., derived by speciation as opposed to duplication) common to most, if not all, wild tomato species. High-resolution mapping may ultimately lead to the cloning of this key locus controlling fruit development in tomato.

  12. Joint-multiple family linkage analysis predicts within-family variation better than single-family analysis of the maize nested association mapping population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative trait loci (QTL) mapping has been used to dissect the genetic architecture of a trait and predict phenotypes for marker-assisted selection. Many QTL mapping studies in plants have been limited to one biparental family population. Joint analysis of multiple biparental families offers an ...

  13. The ROSETTA Lander anchoring system

    NASA Astrophysics Data System (ADS)

    Thiel, Markus; Stöcker, Jakob; Rohe, Christian; Kömle, Norbert I.; Kargl, Günter; Hillenmaier, Olaf; Lell, Peter

    2003-09-01

    A major goal of the ESA cornerstone mission ROSETTA is to land a package of scientific instruments known as the ROSETTA Lander on the nucleus of a comet. Due to the low gravity a highly reliable fixation of the ROSETTA Lander to the target comet 67P/Churyumov-Gerasimenko (3rd) is essential. For that purpose a redundant Anchoring System, consisting of two pyrotechnically actuated Anchoring Harpoons and a redundant Control Electronics has been developed, built and qualified at the Max-Planck-Institut für extraterrestrische Physik (MPE), Garching. The pyrotechnical gas generator has been developed jointly by Pyroglobe GmbH and MPE, the procurement of the control electronics has been sub-contracted to Magson GmbH, Berlin. A study to obtain a suitable lubrication method for the commutator of a brushed DC motor has been conducted at the European Space Tribology Laboratory (ESTL; S. D. Lewis et al., 2003).

  14. Design of new genome- and gene-sourced primers and identification of QTL for seed oil content in a specially high-oil Brassica napus cultivar.

    PubMed

    Sun, Meiyu; Hua, Wei; Liu, Jing; Huang, Shunmou; Wang, Xinfa; Liu, Guihua; Wang, Hanzhong

    2012-01-01

    Rapeseed (Brassica napus L.) is one of most important oilseed crops in the world. There are now various rapeseed cultivars in nature that differ in their seed oil content because they vary in oil-content alleles and there are high-oil alleles among the high-oil rapeseed cultivars. For these experiments, we generated doubled haploid (DH) lines derived from the cross between the specially high-oil cultivar zy036 whose seed oil content is approximately 50% and the specially low-oil cultivar 51070 whose seed oil content is approximately 36%. First, to address the deficiency in polymorphic markers, we designed 5944 pairs of newly developed genome-sourced primers and 443 pairs of newly developed primers related to oil-content genes to complement the 2244 pairs of publicly available primers. Second, we constructed a new DH genetic linkage map using 527 molecular markers, consisting of 181 publicly available markers, 298 newly developed genome-sourced markers and 48 newly developed markers related to oil-content genes. The map contained 19 linkage groups, covering a total length of 2,265.54 cM with an average distance between markers of 4.30 cM. Third, we identified quantitative trait loci (QTL) for seed oil content using field data collected at three sites over 3 years, and found a total of 12 QTL. Of the 12 QTL associated with seed oil content identified, 9 were high-oil QTL which derived from the specially high-oil cultivar zy036. Two high-oil QTL on chromosomes A2 and C9 co-localized in two out of three trials. By QTL mapping for seed oil content, we found four candidate genes for seed oil content related to four gene markers: GSNP39, GSSR161, GIFLP106 and GIFLP046. This information will be useful for cloning functional genes correlated with seed oil content in the future.

  15. Anchoring in Numeric Judgments of Visual Stimuli

    PubMed Central

    Langeborg, Linda; Eriksson, Mårten

    2016-01-01

    This article investigates effects of anchoring in age estimation and estimation of quantities, two tasks which to different extents are based on visual stimuli. The results are compared to anchoring in answers to classic general knowledge questions that rely on semantic knowledge. Cognitive load was manipulated to explore possible differences between domains. Effects of source credibility, manipulated by differing instructions regarding the selection of anchor values (no information regarding anchor selection, information that the anchors are randomly generated or information that the anchors are answers from an expert) on anchoring were also investigated. Effects of anchoring were large for all types of judgments but were not affected by cognitive load or by source credibility in either one of the researched domains. A main effect of cognitive load on quantity estimations and main effects of source credibility in the two visually based domains indicate that the manipulations were efficient. Implications for theoretical explanations of anchoring are discussed. In particular, because anchoring did not interact with cognitive load, the results imply that the process behind anchoring in visual tasks is predominantly automatic and unconscious. PMID:26941684

  16. Independent control of polar and azimuthal anchoring.

    PubMed

    Anquetil-Deck, C; Cleaver, D J; Bramble, J P; Atherton, T J

    2013-07-01

    Monte Carlo simulation, experiment, and continuum theory are used to examine the anchoring exhibited by a nematic liquid crystal at a patterned substrate comprising a periodic array of rectangles that, respectively, promote vertical and planar alignment. It is shown that the easy axis and effective anchoring energy promoted by such surfaces can be readily controlled by adjusting the design of the pattern. The calculations reveal rich behavior: for strong anchoring, as exhibited by the simulated system, for rectangle ratios ≥2 the nematic aligns in the direction of the long edge of the rectangles, the azimuthal anchoring coefficient changing with pattern shape. In weak anchoring scenarios, however, including our experimental systems, preferential anchoring is degenerate between the two rectangle diagonals. Bistability between diagonally aligned and edge-aligned arrangement is predicted for intermediate combinations of anchoring coefficient and system length scale.

  17. Association of sugar content QTL and PQL with physiological traits relevant to frost damage resistance in pea under field and controlled conditions.

    PubMed

    Dumont, Estelle; Fontaine, Véronique; Vuylsteker, Christophe; Sellier, Hélène; Bodèle, Sylvie; Voedts, Najia; Devaux, Rosemonde; Frise, Marlène; Avia, Komlan; Hilbert, Jean-Louis; Bahrman, Nasser; Hanocq, Eric; Lejeune-Hénaut, Isabelle; Delbreil, Bruno

    2009-05-01

    To increase yield in pea (Pisum sativum L.), autumn sowing would be preferable. Hence, frost tolerance of pea became a major trait of interest for breeders. In order to better understand the cold acclimation in pea, Champagne a frost tolerant line and Terese, a frost sensitive line, and their recombinant inbred lines (RIL) were studied. RIL frost tolerance was evaluated by a frost damage scale under field as well as controlled conditions. A quantitative trait loci (QTL) approach was used to identify chromosomal regions linked to frost tolerance. The detected QTL explained from 6.5 to 46.5% of the phenotypic variance. Amongst them, those located on linkage groups 5 and 6 were consistent with over all experiments, in field as well as in controlled environments. In order to improve the understanding of the frost tolerance mechanisms, several cold acclimation key characters such as concentration of sugars, electrolyte leakage, osmotic pressure, and activity of RuBisCO were assessed. Some of these physiological QTL colocalised with QTL for frost damage, in particular two raffinose QTL on LG5 and LG6 and one RuBisCO activity QTL on LG6, explaining 8.8 to 27.0% of the phenotypic variance. In addition, protein quantitative loci were mapped; some of them colocalised with frost damage and physiological QTL on LG5 and LG6, explaining 16.0-43.6% of the phenotypic variance. Raffinose metabolism and RuBisCO activity and its effect on photosynthesis might play a major role in cold acclimation of pea.

  18. Genetic control of soybean seed oil: I. QTL and genes associated with seed oil concentration in RIL populations derived from crossing moderately high-oil parents.

    PubMed

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-02-01

    Soybean seed is a major source of oil for human consumption worldwide and the main renewable feedstock for biodiesel production in North America. Increasing seed oil concentration in soybean [Glycine max (L.) Merrill] with no or minimal impact on protein concentration could be accelerated by exploiting quantitative trait loci (QTL) or gene-specific markers. Oil concentration in soybean is a polygenic trait regulated by many genes with mostly small effects and which is negatively associated with protein concentration. The objectives of this study were to discover and validate oil QTL in two recombinant inbred line (RIL) populations derived from crosses between three moderately high-oil soybean cultivars, OAC Wallace, OAC Glencoe, and RCAT Angora. The RIL populations were grown across several environments over 2 years in Ontario, Canada. In a population of 203 F(3:6) RILs from a cross of OAC Wallace and OAC Glencoe, a total of 11 genomic regions on nine different chromosomes were identified as associated with oil concentration using multiple QTL mapping and single-factor ANOVA. The percentage of the phenotypic variation accounted for by each QTL ranged from 4 to 11 %. Of the five QTL that were tested in a population of 211 F(3:5) RILs from the cross RCAT Angora × OAC Wallace, a "trait-based" bidirectional selective genotyping analysis validated four QTL (80 %). In addition, a total of seven two-way epistatic interactions were identified for oil concentration in this study. The QTL and epistatic interactions identified in this study could be used in marker-assisted introgression aimed at pyramiding high-oil alleles in soybean cultivars to increase oil concentration for biodiesel as well as edible oil applications.

  19. Genetic mapping of quantitative phenotypic traits in Saccharomyces cerevisiae.

    PubMed

    Swinnen, Steve; Thevelein, Johan M; Nevoigt, Elke

    2012-03-01

    Saccharomyces cerevisiae has become a favorite production organism in industrial biotechnology presenting new challenges to yeast engineers in terms of introducing advantageous traits such as stress tolerances. Exploring subspecies diversity of S. cerevisiae has identified strains that bear industrially relevant phenotypic traits. Provided that the genetic basis of such phenotypic traits can be identified inverse engineering allows the targeted modification of production strains. Most phenotypic traits of interest in S. cerevisiae strains are quantitative, meaning that they are controlled by multiple genetic loci referred to as quantitative trait loci (QTL). A straightforward approach to identify the genetic basis of quantitative traits is QTL mapping which aims at the allocation of the genetic determinants to regions in the genome. The application of high-density oligonucleotide arrays and whole-genome re-sequencing to detect genetic variations between strains has facilitated the detection of large numbers of molecular markers thus allowing high-resolution QTL mapping over the entire genome. This review focuses on the basic principle and state of the art of QTL mapping in S. cerevisiae. Furthermore we discuss several approaches developed during the last decade that allow down-scaling of the regions identified by QTL mapping to the gene level